Science.gov

Sample records for isolation structure elucidation

  1. Isolation and structural elucidation of cyclic tetrapeptides from Onychocola sclerotica.

    PubMed

    Pérez-Victoria, Ignacio; Martín, Jesús; González-Menéndez, Víctor; de Pedro, Nuria; El Aouad, Noureddine; Ortiz-López, Francisco Javier; Tormo, José Rubén; Platas, Gonzalo; Vicente, Francisca; Bills, Gerald F; Genilloud, Olga; Goetz, Michael A; Reyes, Fernando

    2012-06-22

    Three new cyclic tetrapeptides (1-3) have been isolated from the crude fermentation extract of Onychocola sclerotica. The planar structures of 1-3 were elucidated by detailed spectroscopic analyses using one- and two-dimensional NMR experiments and high-resolution mass spectrometry. The absolute configuration of the amino acid residues in each cyclotetrapeptide was established by Marfey's method. Compounds 1-3 displayed activity as cardiac calcium channel blockers (Cav1.2) but did not inhibit the hERG potassium channel and were not cytotoxic. These peptides are the first secondary metabolites ever reported from fungi of the order Arachnomycetales.

  2. Nature's Anti-Alzheimer's Drug: Isolation and Structure Elucidation of Galantamine from "Leucojum Aestivum"

    ERIC Educational Resources Information Center

    Halpin, Catherine M.; Reilly, Ciara; Walsh, John J.

    2010-01-01

    The discovery that galantamine penetrates the blood-brain barrier has led to its clinical use in the treatment of choline-deficiency conditions in the brain, such as Alzheimer's disease. This experiment involves the isolation and structure elucidation of galantamine from "Leucojum aestivum". Isolation of the alkaloid constituents in "L. aestivum"…

  3. Isolation and Structure Elucidation of Three New Dolastanes from the Brown Alga Dilophus spiralis

    PubMed Central

    Ioannou, Efstathia; Vagias, Constantinos; Roussis, Vassilios

    2013-01-01

    Three new dolastane diterpenes (1–3) and five previously reported perhydroazulenes were isolated from the organic extracts of the brown alga Dilophus spiralis. The structure elucidation and the assignment of the relative configurations of the isolated natural products were based on extensive analyses of their spectroscopic data, whereas the absolute configuration of metabolite 2 was determined through its chemical conversion to a previously isolated compound of known configuration. PMID:23549282

  4. Nature's Migraine Treatment: Isolation and Structure Elucidation of Parthenolide from "Tanacetum parthenium"

    ERIC Educational Resources Information Center

    Walsh, Emma L.; Ashe, Siobhan; Walsh, John J.

    2012-01-01

    The purpose of this experiment is to provide students with the essential skills and knowledge required to perform the extraction, isolation, and structural elucidation of parthenolide from "Tanacetum parthenium" or feverfew. Students are introduced to a background of the traditional medicinal uses of parthenolide, while more modern applications of…

  5. Isolation and Structural Elucidation of Chondrosterins F–H from the Marine Fungus Chondrostereum sp

    PubMed Central

    Li, Hou-Jin; Chen, Ting; Xie, Ying-Lu; Chen, Wen-Dan; Zhu, Xiao-Feng; Lan, Wen-Jian

    2013-01-01

    The marine fungus Chondrostereum sp. was collected from a soft coral of the species Sarcophyton tortuosum from the South China Sea. Three new compounds, chondrosterins F–H (1, 4 and 5), together with three known compounds, incarnal (2), arthrosporone (3), and (2E)-decene-4,6,8-triyn-1-ol (6), were isolated. Their structures were elucidated primarily based on NMR and MS data. Incarnal (2) exhibited potent cytotoxic activity against various cancer cell lines. PMID:23434797

  6. Isolation and structure elucidation of gymnemic acids, antisweet principles of Gymnema sylvestre.

    PubMed

    Liu, H M; Kiuchi, F; Tsuda, Y

    1992-06-01

    The structure of gymnemagenin (3 beta,16 beta,21 beta,22 alpha,23,28-hexahydroxy-olean-12-ene), the sapogenin of the antisweet principles of Gymnema sylvestre, was established by X-ray analysis of the 3 beta,23;21 beta,22 alpha-di-O-isopropylidene derivative. On the basis of this result, the structure of deacylgymnemic acid was elucidated as the 3-O-beta-glucuronide from the carbon-13 nuclear magnetic resonance spectra. Five antisweet principles, gymnemic acid-III, -IV, -V, -VIII, and -IX, were isolated in pure states from the hot water extract of leaves of Gymnema sylvestre. Of these, three (GA-III, -IV, and -V) were known, while two (GA-VIII and -IX) were new compounds. The structures of GA-VIII and -IX were elucidated as 3'-O-beta-D-arabino-2-hexulopyranosyl gymnemic acid-III and -IV, respectively.

  7. Isolation and structure elucidation of cytotoxic polyacetylenes and polyenes from Echinacea pallida.

    PubMed

    Pellati, Federica; Calò, Samuele; Benvenuti, Stefania; Adinolfi, Barbara; Nieri, Paola; Melegari, Michele

    2006-07-01

    Bioassay-guided fractionation of n-hexane extracts of Echinacea pallida (Asteraceae) roots led to the isolation and structure elucidation of two polyacetylenes (1, 3) and three polyenes (2, 4, 5). Two are known hydroxylated compounds, namely 8-hydroxy-pentadeca-(9E)-ene-11,13-diyn-2-one (1) and 8-hydroxy-pentadeca-(9E,13Z)-dien-11-yn-2-one (2). Two dicarbonylic constituents, namely pentadeca-(9E)-ene-11,13-diyne-2,8-dione (3) and pentadeca-(9E,13Z)-dien-11-yne-2,8-dione (4), were isolated and characterized for the first time. Furthermore, the structure elucidation of pentadeca-(8Z,13Z)-dien-11-yn-2-one (5) is described. The structure of the compounds isolated was determined on the basis of UV, IR, NMR (including 1D and 2D NMR experiments, such as 1H-1H gCOSY, gHSQC-DEPT, gHMBC, gNOESY) and MS spectroscopic data. The cytotoxic activity of the isolated constituents against MIA PaCa-2 human pancreatic adenocarcinoma cells was evaluated in the concentration range 1-100 microg/ml. Results show that the hydroxylated compounds (1, 2) have low cytotoxicity, while the more hydrophobic polyacetylenes (3) and polyenes (4, 5) displayed moderate activity.

  8. Plant antimutagenic agents, 4. Isolation and structure elucidation of maesol, an inactive constituent of Maesa spp.

    PubMed

    Wall, M E; Wani, M C; Gaetano, K; Manikumar, G; Taylor, H; McGivney, R

    1988-01-01

    Maesol, a novel dimeric phenol, was isolated from seeds of Maesa montana and Maesa indica. Maesol was shown to have the formula C28H42O4 with structure 1, a dimeric, symmetrical 1,12-bis(3,3'-dihydroxy-4,4'-dimethyl-5,5'-dimethoxyphenyl)dodecane. It is the first compound with such structure to be isolated from plant material. Structure elucidation was based largely on 1H- and 13C-nmr techniques and comparison with a known synthetic isomeric dimer 3. Although crude extracts showed strong inhibition of 2-aminoanthracene activity against Salmonella typhimurium (T-98), the pure compound was inactive when tested for inhibition of the mutagenic activity of several mutagens.

  9. Isolation, structure elucidation and biological activity of angucycline antibiotics from an epiphytic yew streptomycete.

    PubMed

    Maruna, Michal; Sturdikova, Maria; Liptaj, Tibor; Godany, Andrej; Muckova, Marta; Certik, Milan; Pronayova, Nadezda; Proksa, Bohumil

    2010-04-01

    In the course of study of epiphytic microorganisms occurring on the surface of roots of Taxus baccata L. a new strain Streptomyces sp. AC113 was isolated. According to 16S ribosomal DNA-based identification the new strain is 99% identical with Streptomyces flavidofuscus. This strain cultivated in an arginine glycerol medium produced three major metabolites identified as (-)-8-O -methyltetrangomycin (1), 8-O -methyltetrangulol (2) and 8-O -methyl-7-deoxo-7-hydroxytetrangomycin (3). The chemical structures of these angucyclines were elucidated by 1D and 2D NMR as well as by mass spectrometry. Isolated angucycline metabolites showed significant antimicrobial activity against Bacillus cereus and Listeria mocytogenes. Cytotoxic activities of compounds 1, 2 and 3 against four cell lines (B16, HT-29 and non - tumor V79, L929) were evaluated. Compound 3 was the most potent anticancer agents with IC(50) 0.054 microg/ml against cell line B16.

  10. Isolation, structure elucidation and DFT study on two novel oligosaccharides from yak milk

    NASA Astrophysics Data System (ADS)

    Singh, Meenakshi; Kumar, Alok; Srivastava, Gaurav; Deepak, Desh; Singh, M. P. V. V.

    2016-08-01

    Two novel oligosaccharides were isolated from yak milk. The milk was processed by the method of Kobata and Ginsberg involving deproteination, centrifugation and lyophilization followed by gel filtrate chromatography acetylation and silica gel column chromatography of derivatized oligosaccharides while their homogeneity was confirmed by HPLC. The structures of these isolated oligosaccharides were elucidated by chemical transformation, chemical degradation, 1H, 13C NMR, 2D NMR (COSY, TOCSY and HSQC) and mass spectrometry. The geometry of compound A (Bosiose) and B (Bovisose) have been optimized at B3LYP method and 6-311 + G(d,p) basis set. The difference between the energies of A and B is 1.269 a.u. or 796.309 kcal/mol.

  11. Isolation, Characterization, Crystal Structure Elucidation, and Anticancer Study of Dimethyl Cardamonin, Isolated from Syzygium campanulatum Korth

    PubMed Central

    Aisha, Abdalrahim F. A.; Al-Suede, Fouad Saleih Resq; Hamil, Mohammad Shahrul Ridzuan; Laghari, Madeeha; Abdul Majid, Amin Malik Shah

    2014-01-01

    Syzygium campanulatum Korth is an equatorial, evergreen, aboriginal shrub of Malaysia. Conventionally it has been used as a stomachic. However, in the currently conducted study dimethyl cardamonin or 2′,4′-dihydroxy-6′-methoxy-3′,5′-dimethylchalcone (DMC) was isolated from S. campanulatum Korth, leaf extract. The structural characterization of DMC was carried out by making use of various techniques including UV, IR, NMR spectral followed by LC-MS, and X-ray crystallographic techniques. For determining the purity of compound, highly effective techniques including TLC, HPLC, and melting point were used. The cytotoxicity of DMC and three different extracts of S. campanulatum was evaluated against human colon cancer cell line (HT-29) by three different assays. DMC and ethanolic extract revealed potent and dose-dependent cytotoxic activity on the cancer cell line with IC50 12.6 and 90.1 µg/mL, respectively. Quite astonishingly to our knowledge, this is the very first report on S. campanulatum as being a rich source (3.5%) of DMC, X-ray crystallography, and anticancer activity on human colon cancer cells. PMID:25530783

  12. Isolation, Characterization, Crystal Structure Elucidation, and Anticancer Study of Dimethyl Cardamonin, Isolated from Syzygium campanulatum Korth.

    PubMed

    Memon, Abdul Hakeem; Ismail, Zhari; Aisha, Abdalrahim F A; Al-Suede, Fouad Saleih Resq; Hamil, Mohammad Shahrul Ridzuan; Hashim, Suzana; Saeed, Mohammed Ali Ahmed; Laghari, Madeeha; Abdul Majid, Amin Malik Shah

    2014-01-01

    Syzygium campanulatum Korth is an equatorial, evergreen, aboriginal shrub of Malaysia. Conventionally it has been used as a stomachic. However, in the currently conducted study dimethyl cardamonin or 2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone (DMC) was isolated from S. campanulatum Korth, leaf extract. The structural characterization of DMC was carried out by making use of various techniques including UV, IR, NMR spectral followed by LC-MS, and X-ray crystallographic techniques. For determining the purity of compound, highly effective techniques including TLC, HPLC, and melting point were used. The cytotoxicity of DMC and three different extracts of S. campanulatum was evaluated against human colon cancer cell line (HT-29) by three different assays. DMC and ethanolic extract revealed potent and dose-dependent cytotoxic activity on the cancer cell line with IC50 12.6 and 90.1 µg/mL, respectively. Quite astonishingly to our knowledge, this is the very first report on S. campanulatum as being a rich source (3.5%) of DMC, X-ray crystallography, and anticancer activity on human colon cancer cells.

  13. Isolation and structure elucidation of linolipins C and D, complex oxylipins from flax leaves.

    PubMed

    Chechetkin, Ivan R; Blufard, Alexander S; Khairutdinov, Bulat I; Mukhitova, Fakhima K; Gorina, Svetlana S; Yarin, Andrey Y; Antsygina, Larisa L; Grechkin, Alexander N

    2013-12-01

    Two complex oxylipins (linolipins C and D) were isolated from the leaves of flax plants inoculated with phytopathogenic bacteria Pectobacterium atrosepticum. Their structures were elucidated based on UV, MS and NMR spectroscopic data. Both oxylipins were identified as digalactosyldiacylglycerol (DGDG) molecular species. Linolipin C contains one residue of divinyl ether (ω5Z)-etherolenic acid and one α-linolenate residue at sn-1 and sn-2 positions, respectively. Linolipin D possesses two (ω5Z)-etherolenic acid residues at both sn-1 and sn-2 positions. The rapid formation (2-30min) of linolipins C and D alongside with linolipins A and B occurred in the flax leaves upon their damage by freezing-thawing.

  14. Isolation and structural elucidation of two impurities from a diacerein bulk drug.

    PubMed

    Ashok, Chaudhari; Golak, Maikap; Adwait, Deo; Krishna, Vivek; Himani, Agrawal; Umesh, Peshawe; Amol, Gawande; Srinivas, Sompalli; Sharad, Mane; Deepali, Jadhav; Atul, Chaudhari

    2009-02-20

    Two impurities were found in the crude sample of diacerein. The level of these impurities 1.14% and 1.24% were detected by isocratic reverse-phase high performance liquid chromatography (HPLC). The molecular weights of the impurities were determined by liquid chromatography-mass spectroscopy (LC-MS) analysis. These impurities were isolated from crude sample of diacerein by reverse-phase preparative liquid chromatography. These impurities were characterized as 5-acetoxy-4-hydroxy-9,10-dioxo-9,10-dihydroanthracene-2-carboxylic acid (Impurity-1) and 4-acetoxy-5-hydroxy-9,10-dioxo-9,10-dihydroanthracene-2-carboxylic acid (Impurity-2) respectively. Structural elucidation of both the impurities were carried out by (1)H NMR, (13)C NMR, DEPT, 1D NOESY, MS and IR spectroscopy.

  15. Isolation and structure elucidation of new phthalide and phthalane derivatives, isolated as antimicrobial agents from Emericella sp. IFM57991.

    PubMed

    Saito, Tetsuya; Itabashi, Takeshi; Wakana, Daigo; Takeda, Hisashi; Yaguchi, Takashi; Kawai, Ken-ichi; Hosoe, Tomoo

    2016-02-01

    Three new phthalide derivatives, emefuranones A1, A2 and B (1-3); six new phthalane derivatives, emefuran A, B1, B2, C1, C2 and D (4-9); three new farnesylated phthalide derivatives, farnesylemefuranones A-C (10-12); xylarinol C (13); and emericelloxide (14), along with four known compounds (dustanin, sorbicillin, aspergillodiol and xylarinol A), were isolated from the culture extracts of Emericella sp. IFM57991. Structures of 1-14 were elucidated on the basis of spectroscopic analysis and chemical evidence. Compounds 4-7 and 13 showed moderate antibacterial activities against Bacillus subtilis.

  16. Isolation and Structural Elucidation of Euryjanicins B–D, Proline-Containing Cycloheptapeptides from the Caribbean Marine Sponge Prosuberites laughlini†

    PubMed Central

    Vera, Brunilda; Vicente, Jan; Rodríguez, Abimael D.

    2016-01-01

    Three new cyclic peptides, euryjanicins B (2), C (3), and D (4), have been isolated from the Puerto Rican marine sponge Prosuberites laughlini, and the structures were elucidated by chemical degradation, ESIMS/MS, and extensive 2D NMR methods. When tested against the National Cancer Institute 60 tumor cell line panel, all of the purified isolates displayed weak cytotoxicity. PMID:19743810

  17. Nature's Cholesterol-Lowering Drug: Isolation and Structure Elucidation of Lovastatin from Red Yeast Rice-Containing Dietary Supplements

    ERIC Educational Resources Information Center

    Nazri, Maisarah Mohd; Samat, Farah D.; Kavanagh, Pierce V.; Walsh, John J.

    2012-01-01

    Red yeast rice, produced by fermenting the fungus, "Monascus purpureus", on rice ("Oryza sativa" L. gramineae), is commonly used as a dietary supplement. It contains lovastatin, a member of the statin family of compounds, and is licensed for use as a cholesterol-lowering agent. This experiment involves the isolation and structure elucidation of…

  18. Isolation and structural elucidation of a novel rotenoid from the seeds of Clitoria fairchildiana.

    PubMed

    Mathias, Leda; Da Silva, Bernadete Pereira; Mors, Walter Baptist; Parente, José Paz

    2005-06-01

    The seeds of Clitoria fairchildiana provided a new rotenoid, 6-hydroxy-2,3,9-trimethoxy-[1]benzopyrano[3,4-b][1]benzopyran-12(6H)-one. The structural elucidation was performed using detailed analyses of H- and 13C-NMR spectra including 2DNMR spectroscopic techniques (1H-13CHETCOR) and by comparison with spectrometric data from the literature. The anti-inflammatory activity was investigated using a capillary permeability assay.

  19. Isolation and extraction of lucidin primeveroside from Rubia tinctorum L. and crystal structure elucidation.

    PubMed

    Henderson, Robert L; Rayner, Christopher M; Blackburn, Richard S

    2013-11-01

    Madder (Rubia tinctorum L.) has been used as a dye for over 2000 years with alizarin and purpurin the major natural dyes analysed from extractions undertaken. The use of ethanol as the solvent in the extraction process produced an extract that yielded four anthraquinone compounds lucidin primeveroside, ruberythric acid, alizarin and lucidin-ω-ethyl ether. Gravitational separation of the extract was used to record the first crystal structure of lucidin primeveroside, which is also the first ever known crystal structure of a glycoside containing anthraquinone moiety. The crystal structure along with (1)H and (13)C NMR helped elucidate and confirm the structure of this overlooked natural dye which has been shown to be a major compound in R. tinctorum L.

  20. Isolation and structure elucidation of radical scavengers from Thymus vulgaris leaves.

    PubMed

    Dapkevicius, Airidas; van Beek, Teris A; Lelyveld, Gerrit P; van Veldhuizen, Albertus; de Groot, Aede; Linssen, Jozef P H; Venskutonis, Rimantas

    2002-06-01

    2,2-Diphenyl-1-picrylhydrazyl radical (DPPH*) scavenging activity-guided fractionation of a leaf extract of Thymus vulgaris led to the isolation of the radical scavengers rosmarinic acid 1, eriodictyol, taxifolin, luteolin 7-glucuronide, p-cymene 2,3-diol, p-cymene 2,3-diol 6-6'-dimer, carvacrol, thymol, and a new compound, 2. The fractionation was considerably facilitated by using an on-line HPLC detector for radical scavenging activity. In this detector activity is monitored as the disappearance of the color of a postcolumn added stable radical after reacting with radical scavengers in a reaction coil. Compound 2, which consists of rosmarinic and caffeic acid moieties linked via a C-3'-C-8' ' ether bridge, was mainly elucidated by various NMR techniques and CD. Phenylpropanoid trimer 2 was a weaker and stronger radical scavenger than rosmarinic acid 1 in off-line TEAC and DPPH* assays, respectively.

  1. Isolation and structure elucidation of procyanidin oligomers from Saskatoon berries (Amelanchier alnifolia).

    PubMed

    Hellström, Jarkko; Sinkkonen, Jari; Karonen, Maarit; Mattila, Pirjo

    2007-01-10

    Proanthocyanidin oligomers with different degrees of polymerization were isolated from Saskatoon berries (Amelanchier alnifolia) by means of gel adsorption and normal-phase liquid chromatography. The proanthocyanidins were identified using electrospray ionization mass spectrometry, nuclear magnetic resonance spectroscopy, and thiolytic degradation coupled with reversed-phase liquid chromatography. The results established that Saskatoon berries contain proanthocyanidins from dimers through heptamers and higher polymers. Saskatoon proanthocyanidins are essentially of procyanidin type, consisting mainly of epicatechin units linked by B-type bonds. The simple procyanidin profile of Saskatoon berries allowed the procyanidins to be separated precisely according to their degrees of polymerization. In the future they can be used as standard compounds for qualitative and quantitative analysis of procyanidins as well as for elucidation of the biological activities of proanthocyanidins.

  2. Tauramamide, a lipopeptide antibiotic produced in culture by Brevibacillus laterosporus isolated from a marine habitat: structure elucidation and synthesis.

    PubMed

    Desjardine, Kelsey; Pereira, Alban; Wright, Helen; Matainaho, Teatulohi; Kelly, Michael; Andersen, Raymond J

    2007-12-01

    Tauramamide (1), a new lipopeptide antibiotic, is produced by cultures of the marine bacterial isolate Brevibacillus laterosporus PNG276 obtained from Papua New Guinea. Tauramamide was isolated as its methyl and ethyl esters 2 and 3, whose structures were elucidated by analysis of NMR, MS, and chemical degradation data. A total synthesis of tauramamide (1) and tauramamide ethyl ester (3) confirmed the structure proposed from spectroscopic analysis and provided the natural product for antimicrobial testing. Tauramamide (1) and ethyl ester 3 show potent and relatively selective inhibition of pathogenic Enterococcus sp.

  3. Isolation and structural elucidation of chemical constituents from the fruits of Morinda citrifolia Linn.

    PubMed

    Siddiqui, Bina S; Sattar, Fouzia A; Ahmad, Fayaz; Begum, Sabira

    2007-08-01

    The fruits of Morinda citrifolia, Linn. afforded a new constituent, morinaphthalenone (1), and three known constituents, scopoletin (2), 1, 3-dimethoxy-anthraquinone (3) and 1, 2-dihydroxy-anthraquinone (4). The structures of these isolated compounds were determined by spectroscopic methods, including 1D- and 2D-NMR (COSY-45, HMQC, HMBC) techniques, as well as by comparison with published values.

  4. Isolation, identification and structure elucidation of two novel process-related impurities of retigabine.

    PubMed

    Zhang, Dengfeng; Song, Xin; Su, Jiangtao

    2014-10-01

    Retigabine was the first neuronal potassium channel opener for the treatment of epilepsy. During the manufacture of retigabine, two unknown impurities were present in laboratory batches in the range of 0.05-0.1% based upon HPLC analysis. These unknown impurities were obtained from the enriched reaction mother liquor by column chromatography. The structure of these process-related impurities were elucidated using FT-IR, (1)H NMR, (13)C NMR, 2D NMR (HSQC, HMBC, NOESY) and MS spectral data. Based on the complete spectral analysis and knowledge of the synthetic route of retigabine, these two new impurities were designated as ethyl 4-fluorobenzyl(2-oxo-2,3-dihydro-1H-benzo[d]imidazol-5-yl)carbamate (impurity-II) and diethyl 5-((ethoxycarbonyl)(4-fluorobenzyl)amino)-2-oxo-1H-benzo[d]imidazole-1,3(2H)-dicarboxylate (impurity-III). Impurity identification, structure elucidation and the formation of impurities were also discussed.

  5. Isolation and structure elucidation of anhydroluteins from cooked sorrel (Rumex rugosus Campd.).

    PubMed

    Molnár, Péter; Osz, Erzsébet; Zsila, Ferenc; Deli, József

    2005-07-01

    Anhydrolutein I (= (all-E,3R,6'R)-3',4'-didehydro-beta,gamma-caroten-3-ol; 2) and anhydrolutein II (= (all-E, 3R,6'S)-2',3'-didehydro-beta,epsilon-caroten-3-ol; 3) have been isolated and characterized from the extract of steam-cooked sorrel. The presence of these compounds in cooked vegetable is postulated to be due to acid-catalyzed dehydration of lutein (1; Scheme). The structures of the isolated anhydroluteins were established by UV/VIS, CD, and 1H-NMR spectroscopy, and mass spectrometry.

  6. Structure elucidation and antioxidant activity of (-)-isosilandrin isolated from Silybum marianum L.

    PubMed

    Samu, Zsuzsanna; Nyiredy, Szabolcs; Baitz-Gács, Eszter; Varga, Zsuzsa; Kurtán, Tibor; Dinya, Zoltán; Antus, Sándor

    2004-11-01

    A regioisomer of the known flavanolignan (-)-silandrin (3a), named (-)-isosilandrin (8a), was isolated from the fruits of a white-flowered variant of Silybum marianum L. populated in Hungary. Its structure was established both by spectroscopic methods and total synthesis, and its absolute configuration was determined by means of circular dichroism. This compound showed stronger inhibitory activity on the superoxide anion (O2*-) release by human polymorphonuclear leukocytes (PMNL) than (+)-silybin (1a,b).

  7. Isolation and structure elucidation of a new prenylcoumarin from Murraya paniculata var. omphalocarpa (Rutaceae).

    PubMed

    Kinoshita, Takeshi; Shimada, Motoko

    2002-01-01

    A new C-8 prenylated 5,7-dimethoxycoumarin named omphamurrayin was isolated from the leaves of Murraya paniculata var. omphalocarpa, and its structure was established as 5,7-dimethoxy-8-(1-oxo-2-senecioyl-3-methyl-3-butenyl)-2H-1-benzopyran-2-one on the basis of the spectroscopic evidence. The taxonomic status of M. paniculata var. omphalocarpa is briefly discussed, along with its synonymity to M. paniculata from the chemosystematic viewpoint.

  8. Structure Elucidation and in Vitro Toxicity of New Azaspiracids Isolated from the Marine Dinoflagellate Azadinium poporum

    PubMed Central

    Krock, Bernd; Tillmann, Urban; Potvin, Éric; Jeong, Hae Jin; Drebing, Wolfgang; Kilcoyne, Jane; Al-Jorani, Ahmed; Twiner, Michael J.; Göthel, Qun; Köck, Matthias

    2015-01-01

    Two strains of Azadinium poporum, one from the Korean West coast and the other from the North Sea, were mass cultured for isolation of new azaspiracids. Approximately 0.9 mg of pure AZA-36 (1) and 1.3 mg of pure AZA-37 (2) were isolated from the Korean (870 L) and North Sea (120 L) strains, respectively. The structures were determined to be 3-hydroxy-8-methyl-39-demethyl-azaspiracid-1 (1) and 3-hydroxy-7,8-dihydro-39-demethyl-azaspiracid-1 (2) by 1H- and 13C-NMR. Using the Jurkat T lymphocyte cell toxicity assay, (1) and (2) were found to be 6- and 3-fold less toxic than AZA-1, respectively. PMID:26528990

  9. Computer-Assisted Structure Elucidation of Black Chokeberry (Aronia melanocarpa) Fruit Juice Isolates with a New Fused Pentacyclic Flavonoid Skeleton.

    PubMed

    Naman, C Benjamin; Li, Jie; Moser, Arvin; Hendrycks, Jeffery M; Benatrehina, P Annécie; Chai, Heebyung; Yuan, Chunhua; Keller, William J; Kinghorn, A Douglas

    2015-06-19

    Melanodiol 4″-O-protocatechuate (1) and melanodiol (2) represent novel flavonoid derivatives isolated from a botanical dietary supplement ingredient, dried black chokeberry (Aronia melanocarpa) fruit juice. These noncrystalline compounds possess an unprecedented fused pentacyclic core with two contiguous hemiketals. Due to having significant hydrogen deficiency indices, their structures were determined using computer-assisted structure elucidation software. The in vitro hydroxyl radical-scavenging and quinone reductase-inducing activity of each compound are reported, and a plausible biogenetic scheme is proposed.

  10. Phytochemicals of apple peels: isolation, structure elucidation, and their antiproliferative and antioxidant activities.

    PubMed

    He, Xiangjiu; Liu, Rui Hai

    2008-11-12

    Bioactivity-guided fractionation of Red Delicious apple peels was used to determine the chemical identity of bioactive constituents, which showed potent antiproliferative and antioxidant activities. Twenty-nine compounds, including triterpenoids, flavonoids, organic acids and plant sterols, were isolated using gradient solvent fractionation, Diaion HP-20, silica gel, and ODS columns, and preparative HPLC. Their chemical structures were identified using HR-MS and 1D and 2D NMR. Antiproliferative activities of isolated pure compounds against HepG2 human liver cancer cells and MCF-7 human breast cancer cells were evaluated. On the basis of the yields of isolated flavonoids (compounds 18- 23), the major flavonoids in apple peels are quercetin-3-O-beta-D-glucopyranoside (compound 20, 82.6%), then quercetin-3-O-beta-D-galactopyranoside (compound 19, 17.1%), followed by trace amounts of quercetin (compound 18, 0.2%), (-)-catechin (compound 22), (-)-epicatechin (compound 23), and quercetin-3-O-alpha-L-arabinofuranoside (compound 21). Among the compounds isolated, quercetin (18) and quercetin-3-O-beta-D-glucopyranoside (20) showed potent antiproliferative activities against HepG2 and MCF-7 cells, with EC 50 values of 40.9 +/- 1.1 and 49.2 +/- 4.9 microM to HepG2 cells and 137.5 +/- 2.6 and 23.9 +/- 3.9 microM to MCF-7 cells, respectively. Six flavonoids (18-23) and three phenolic compounds (10, 11, and 14) showed potent antioxidant activities. Caffeic acid (10), quercetin (18), and quercetin-3-O-beta-D-arabinofuranoside (21) showed higher antioxidant activity, with EC 50 values of <10 microM. Most tested flavonoids and phenolic compounds had high antioxidant activity when compared to ascorbic acid and might be responsible for the antioxidant activities of apples. These results showed apple peel phytochemicals have potent antioxidant and antiproliferative activities.

  11. Sulfated phenolic compounds from Limonium caspium: Isolation, structural elucidation, and biological evaluation

    PubMed Central

    Gadetskaya, Anastassiya V.; Tarawneh, Amer H.; Zhusupova, Galiya E.; Gemejiyeva, Nadezhda G.; Cantrell, Charles L.; Cutler, Stephen J.; Ross, Samir A.

    2016-01-01

    Three new compounds, (2S,3S)-5-methyldihydromyricetin (1), (2S,3S)-5-methyldihydromyricetin-3′-O-sulfate (2) and β-D-glucopyranoside, 3-methyl, but-3-en-1-yl 4-O-α-L-rhamnopyranosyl (3) have been isolated from the Limonium caspium, together with dihydromyricetin (4), dihydromyricetin-3′-O-sulfate (5), myricetin-3′-O-sulfate (6), 5-methylmyricetin (7), myricetin (8), myricetin-3-O-β-glucoside (9), as well as phloridzin (10), and tyramine (11). Compounds 5 and 6 were isolated for the first time as acids. This is the first report of all these compounds from this plant. Their structures were established by extensive NMR studies (1H NMR, 13C NMR, DEPT, 1H–1H COSY, HSQC, HMBC) as well as HRESIMS. All isolated compounds were evaluated for their antibacterial, antifungal, antimalarial and antileishmanial activities. Compounds 7, 8 and 9 exhibited good antifungal activity against Candida glabrata with IC50 values of 6.79, 15.37 and 8.53 μg/mL, respectively. Compound 8 displayed significant antimalarial activity against resistant and sensitive strains of Plasmodium falciparum with IC50 values of 1.82 and 1.51 μg/mL, respectively. Compounds 1, 4, 6, 8 and 9 showed excellent activity against Trypanosoma brucei with IC50 values of 6.93, 9.65, 8.52, 7.67 and 6.31 μg/mL, respectively. To date, this is the first report on the phytochemical and biological activity of secondary metabolites from L. caspium. PMID:26025854

  12. Isolation, Structure Elucidation and Total Synthesis of Lajollamide A from the Marine Fungus Asteromyces cruciatus

    PubMed Central

    Gulder, Tobias A. M.; Hong, Hanna; Correa, Jhonny; Egereva, Ekaterina; Wiese, Jutta; Imhoff, Johannes F.; Gross, Harald

    2012-01-01

    The marine-derived filamentous fungus Asteromyces cruciatus 763, obtained off the coast of La Jolla, San Diego, USA, yielded the new pentapeptide lajollamide A (1), along with the known compounds regiolone (2), hyalodendrin (3), gliovictin (4), 1N-norgliovicitin (5), and bis-N-norgliovictin (6). The planar structure of lajollamide A (1) was determined by Nuclear Magnetic Resonance (NMR) spectroscopy in combination with mass spectrometry. The absolute configuration of lajollamide A (1) was unambiguously solved by total synthesis which provided three additional diastereomers of 1 and also revealed that an unexpected acid-mediated partial racemization (2:1) of the L-leucine and L-N-Me-leucine residues occurred during the chemical degradation process. The biological activities of the isolated metabolites, in particular their antimicrobial properties, were investigated in a series of assay systems. PMID:23342379

  13. Structural elucidation of an immunoenhancing heteroglycan isolated from Russula albonigra (Krombh.) Fr.

    PubMed

    Nandi, Ashis K; Samanta, Surajit; Sen, Ipsita K; Devi, K Sanjana P; Maiti, Tapas K; Acharya, Krishnendu; Islam, Syed S

    2013-05-15

    A water soluble heteroglycan (PS-II) of average molecular weight ∼1.45 × 10(5)Da was isolated from the aqueous extract of an ectomycorrhizal edible mushroom, Russula albonigra (Krombh.) Fr. Structural characterization of PS-II was carried out using acid hydrolysis, methylation analysis, periodate oxidation, and 1D/2D NMR studies. Structural analysis revealed that PS-II was composed of terminal 2-O-methyl-Fucp, terminal Manp, (1→2)-Fucp, (1→3)-Glcp, (1→3,4)-Glcp, (1→6)-Galp, and (1→2,6)-Galp residues in a relative proportion of approximately 1:1:1:1:1:1:1. The proposed repeating unit of the PS-II had a backbone consisting of two (1→3)-β-d-glucopyranosyl, two (1→6)-α-d-galactopyranosyl, and one (1→2)-α-l-fucopyranosyl residues, out of which one (1→3)-β-d-glucopyranosyl residue was branched at O-4 position with terminal 2-O-methyl-α-l-fucopyranosyl and one (1→6)-α-d-galactopyranosyl residue was branched at O-2 position with terminal α-d-mannopyranosyl residue. This PS-II showed in vitro macrophage activation by NO production as well as splenocytes and thymocytes proliferation.

  14. Isolation and structural elucidation of antioxidant peptides from oyster (Saccostrea cucullata) protein hydrolysate.

    PubMed

    Umayaparvathi, S; Meenakshi, S; Vimalraj, V; Arumugam, M; Balasubramanian, T

    2014-01-01

    Protein derived from the oyster (Saccostrea cucullata) was hydrolyzed using protease from Bacillus cereus SU12 for isolation of antioxidant peptides. The oyster hydrolysate exhibited a strong antioxidant potential in DPPH (85.7±0.37%) followed by Hydrogen peroxide radical scavenging activity (81.6±0.3%), Hydroxyl radical-scavenging activity (79.32±0.6%), Reducing power assay (2.63±0.2 OD at 700nm). Due to the high antioxidant potential, hydrolysate was fractionated in Sephadex G-25 gel filtration chromatography. The active peptide fraction was further purified by UPLC-MS. Totally 7 antioxidant peptides were collected. Among 7 peptides (SCAP 1-7), 3 peptides (SCAP 1, 3 and 7) had highest scavenging ability on DPPH radicals. The amino acid sequence and molecular mass of purified antioxidant peptides (SCAP1, SCAP3 and SCAP7) were determined by Q-TOF ESI mass spectroscopy and structures of the peptides were Leu-Ala-Asn-Ala-Lys (MW=515.29Da), Pro-Ser-Leu-Val-Gly-Arg-Pro-Pro-Val-Gly-Lys-Leu-Thr-Leu (MW=1432.89Da) and Val-Lys-Val-Leu-Leu-Glu-His-Pro-Val-Leu (MW=1145.75Da), respectively. The unique amino acid composition and sequence in the peptides might play an important role in expression of their antioxidant activity. The results of this study suggest that oyster protein hydrolysate is good source of natural antioxidants.

  15. Isolation, structural elucidation and immunomodulatory activity of fructans from aged garlic extract.

    PubMed

    Chandrashekar, Puthanapura M; Prashanth, Keelara V Harish; Venkatesh, Yeldur P

    2011-02-01

    Traditionally, garlic (Allium sativum) is known to be a significant immune booster. Aged garlic extract (AGE) possesses superior immunomodulatory effects than raw garlic; these effects are attributed to the transformed organosulfur compounds. AGE is also known to contain fructans; the amount of fructans in AGE represents a small fraction (0.22%) of the total fructans in raw garlic. In order to evaluate the biological activity of fructans present in AGE, both high molecular weight (>3.5 kDa; HF) and low molecular weight (<3 kDa; LF) fructans were isolated. The structures of purified HF and LF from AGE determined by (1)H NMR and (13)C NMR spectroscopy revealed that both have (2→1) β-D-fructofuranosyl bonds linked to a terminal glucose at the non-reducing end and β-D-fructofuranosyl branching on its backbone. Biological activity of fructans was assessed by immunostimulatory activity using murine lymphocytes and peritoneal exudate cells (source of macrophages). Both HF and LF displayed mitogenic activity and activation of macrophages including phagocytosis. These activities were comparable to that of known polysaccharide immunomodulators such as zymosan and mannan. This study clearly demonstrates that garlic fructans also contribute to the immunomodulatory properties of AGE, and is the first such study on the biological effects of garlic fructans.

  16. Structural elucidation and immunostimulatory activity of polysaccharide isolated by subcritical water extraction from Cordyceps militaris.

    PubMed

    Luo, Xiaoping; Duan, Yuqing; Yang, Wenya; Zhang, Haihui; Li, Changzheng; Zhang, Jixian

    2017-02-10

    Water-soluble polysaccharides were obtained from Cordyceps militaris (C. militaris) (CMP) by subcritical water extraction (SWE). Two polysaccharides fractions, CMP-W1 and CMP-S1, were isolated from CMP using DEAE-52 cellulose and Sephadex G-150 column chromatography. The structural characteristics of CMP-W1 and CMP-S1 were investigated. The results showed that the molecular weight of CMP-W1 and CMP-S1 are 3.66×105Da and 4.60×105Da, respectively, and both of them were heteropolysaccharides composed of d-mannose, d-glucose, d-galactose with the molar ratios of 2.84:1:1.29 and 2.05:1:1.09, respectively. FT-IR spectra analysis suggested that CMP-W1 and CMP-S1 belonged to pyranose form sugar and protein free. For immunostimulatory activity assay in vitro, CMP-W1 and CMP-S1 significantly promoted lymphatic spleen cell proliferation of mice. Therefore, the polysaccharides obtained from C. militaris by SWE can be used as potential natural immunostimulant in functional foods or medicine.

  17. Acylated anthocyanins from sprouts of Raphanus sativus cv. Sango: isolation, structure elucidation and antioxidant activity.

    PubMed

    Matera, Riccardo; Gabbanini, Simone; Berretti, Serena; Amorati, Riccardo; De Nicola, Gina Rosalinda; Iori, Renato; Valgimigli, Luca

    2015-01-01

    Little is known on structure-activity relationships of antioxidant anthocyanins. Raphanus sativus cv Sango sprouts are among the richest sources (270 mg/100 g fresh weight). We isolated from sprouts' juice 9 acylated anthocyanins, including 4 new compounds. All comprise a cyanidin core bearing 3-4 glucose units, multiply acylated with malonic and phenolic acids (ferulic and sinapic). All compounds were equally effective in inhibiting the autoxidation of linoleic acid in aqueous micelles, with rate constant for trapping peroxyl radicals kinh=(3.8 ± 0.7) × 10(4)M(-1)s(-1) at 37 °C. In acetonitrile solution kinh varied with acylation: (0.9-2.1) × 10(5)M(-1)s(-1) at 30 °C. Each molecule trapped a number n of peroxyl radicals ranging from 4 to 7. Anthocyanins bearing sinapic acid were more effective than those bearing the ferulic moiety. Under identical settings, deacylated cyanin, ferulic and sinapic acids had kinh of 0.4 × 10(5), 0.3 × 10(5) and 1.6 × 10(5)M(-1)s(-1) respectively, with n ranging 2-3. Results show the major role of acylation on antioxidant performance.

  18. Sulfated phenolic compounds from Limonium caspium: Isolation, structural elucidation, and biological evaluation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three new compounds, 5-methyldihydromyricetin (1), 5-methyldihydromyricetin-3'-O-sulfate (2) and ß-D-glucopyranoside, 3-methyl, but-3-en-1-yl 4-O-a-L-rhamnopyranosyl (3) have been isolated from the Limonium caspium, together with dihydromyricetin (4), dihydromyricetin-3'-O-sulfate (5), myricetin-3'-...

  19. Isolation and Structure Elucidation of the Terpene "[beta]"-Thujone from Cedar Leaf Oil

    ERIC Educational Resources Information Center

    French, Larry G.

    2011-01-01

    Western red cedar leaf affords an essential oil characterized by high thujone content. Students in an advanced organic chemistry lab course isolate a single thujone diastereoisomer from commercially available cedar leaf oil. Treatment of crude oil, containing roughly 70% thujone, predominately as [alpha]-thujone (6.5:1), with ethanolic sodium…

  20. Isolation and structure elucidation of bioactive compounds from the roots of the Tunisian Ononis angustissima L.

    PubMed

    Ghribi, Lotfi; Waffo-Téguo, Pierre; Cluzet, Stéphanie; Marchal, Axel; Marques, Jessica; Mérillon, Jean-Michel; Ben Jannet, Hichem

    2015-09-15

    A phytochemical investigation of the roots of Ononis angustissima L. (Fabaceae) offered to the bio-guided isolation of new isoflavone 3-(4-(glucopyranosyloxy)-5-hydroxy-2-methoxyphenyl)-7-hydroxy-4H-chromen-4-one 1, together with nine known compounds, ononin 2, formononetin 3, (+)-puerol A-2'-O-β-D-glucose 4, (-)-puerol B-2'-O-β-D-glucopyranose ((-)-sophoraside A) 5, (+)-puerol A 6, (-)-trifolirhizin 7, (-)-trifolirhizin-6'-O-malonate 8, (-)-maackiain 9 and (-)-medicarpin 10. Compounds 2-10 were isolated and identified for the first time in Ononis angustissima. We investigated antioxidant capacities of isolated molecules and results showed that compound 6 exhibited the highest antioxidant activity with IC50 values of 19.53 μg/mL, 28.29 μg/mL and 38.53 μg/mL by DPPH radical, ABTS radical cation and reducing power assay, respectively, and an interesting IC50 (20.45 μg/mL) of 1 against DPPH. In addition, the neuroprotective activity of six isolated molecules (4-7, 9, 10) were evaluated. Following the exposure of PC12 cells to Aβ25-35, compounds 9 and 10 triggered a significant increase of cell viability and in a dose dependent manner.

  1. Suppressors of cancer cell proliferation from fig (Ficus carica) resin: isolation and structure elucidation.

    PubMed

    Rubnov, S; Kashman, Y; Rabinowitz, R; Schlesinger, M; Mechoulam, R

    2001-07-01

    A mixture of 6-O-acyl-beta-D-glucosyl-beta-sitosterols, the acyl moeity being primarily palmitoyl and linoleyl with minor amounts of stearyl and oleyl, has been isolated as a potent cytotoxic agent from fig (Ficuscarica) latex and soybeans. Identity was established by spectroscopic methods (NMR, MS) and confirmed by chemical synthesis. Both the natural and the synthetic compounds showed in vitro inhibitory effects on proliferation of various cancer cell lines.

  2. Isolation of a Paenibacillus sp. Strain and Structural Elucidation of Its Broad-Spectrum Lipopeptide Antibiotic

    PubMed Central

    Guo, Yaoqi; Huang, En; Yuan, Chunhua; Zhang, Liwen

    2012-01-01

    This research was initiated to search for novel antimicrobial compounds produced by food or environmental microorganisms. A new bacterial strain, designated OSY-SE, which produces a unique and potent antimicrobial agent was isolated from soil. The isolate was identified as a Paenibacillus sp. through cultural, biochemical, and genetic analyses. An antimicrobial compound was extracted from Paenibacillus OSY-SE with acetonitrile and purified using liquid chromatography. After analyses by mass spectrometry (MS) and nuclear magnetic resonance (NMR), the antimicrobial compound was determined to be a cyclic lipopeptide consisting of a C15 fatty acyl (FA) chain and 13 amino acids. The deduced sequence is FA-Orn-Val-Thr-Orn-Ser-Val-Lys-Ser-Ile-Pro-Val-Lys-Ile. The carboxyl-terminal Ile is connected to Thr by ester linkage. The new compound, designated paenibacterin, showed antagonistic activities against most Gram-positive and Gram-negative bacteria tested, including Listeria monocytogenes, methicillin-resistant Staphylococcus aureus, Escherichia coli O157:H7, and Salmonella enterica serovar Typhimurium. Paenibacterin is resistant to trypsin, lipase, α-glucosidase, and lysozyme. Its antimicrobial activity was lost after digestion by pronase and polymyxin acylase. Paenibacterin is readily soluble in water and fairly stable to exposure to heat and a wide range of pH values. The new isolate and its antimicrobial agent are being investigated for usefulness in food and medical applications. PMID:22367082

  3. Novel bioactive maloyl glucans from aloe vera gel: isolation, structure elucidation and in vitro bioassays.

    PubMed

    Esua, Macniell F; Rauwald, Johann-Wilhelm

    2006-02-27

    In this study, three novel maloyl glucans were isolated at temperatures below 15 degrees C from aloe vera gel (Aloe barbadensis Miller). These compounds were characterized using NMR spectroscopy, ESIMS, MALDITOF-MS and capillary electrophoresis. The compounds were characterized as 6-O-(1-L-maloyl)-alpha-,beta-D-Glcp (veracylglucan A), alpha-D-Glcp-(1-->4)-6-O-(1-L-maloyl)-alpha,-beta,-D-Glcp (veracylglucan B) and alpha-D-Glcp-(1-->4)-tetra-[6-O-(1-L-maloyl)-alpha-D-Glcp-(1-->4)]-6-O-(1-L-maloyl)-alpha,-beta-D-Glcp (veracylglucan C). These unusual malic acid acylated carbohydrates were then tested in vitro for effects on cell proliferation and gene expression of proinflammatory cytokines, IL-6, IL-8 and ICAM-1, using RT-PCR. Veracylglucan B demonstrated potent anti-inflammatory and anti-proliferative effects, while Veracylglucan C, on the other hand, exhibited significant cell proliferative and anti-inflammatory activities. Veracylglucan A could only be isolated in smaller quantities, and it proved to be very unstable. Thus no biological effects could be observed in this respect. The in vitro bioassays also indicated that Veracylglucan B and C are antagonistic and competitive in their effects on cell proliferation. The results of this work represent a major step forward in the research on aloe vera gel. This is the first time that two fully chemically characterized compounds are shown to be responsible for known biological activities of aloe vera gel.

  4. Isolation, structural elucidation, and biological evaluation of a 5-hydroxymethyl-2-furfural derivative, asfural, from enzyme-treated asparagus extract.

    PubMed

    Ito, Tomohiro; Sato, Atsuya; Ono, Tomoko; Goto, Kazunori; Maeda, Takahiro; Takanari, Jun; Nishioka, Hiroshi; Komatsu, Kenichi; Matsuura, Hideyuki

    2013-09-25

    A novel 5-hydroxymethyl-2-furfural (HMF; 1) derivative, which is named asfural (compound 2), was isolated from enzyme-treated asparagus extract (ETAS) along with HMF (1) as a heat shock protein 70 (HSP70) inducible compound. The structure of compound 2 was elucidated on the basis of its spectroscopic data from HREIMS and NMR, whereas the absolute configuration was determined using chiral HPLC analysis, compared to two synthesized compounds, (S)- and (R)-asfural. As a result, compound 2 derived from ETAS was assigned as (S)-(2-formylfuran-5-yl)methyl 5-oxopyrrolidine-2-carboxylate. When compound 2, synthesized (S)- and (R)-asfural, and HMF (1) were evaluated in terms of HSP70 mRNA expression-enhancing activity in HL-60 cells, compound 2 and (S)-asfural significantly increased the expression level in a concentration-dependent manner. HMF (1) also showed significant activity at 0.25 mg/mL.

  5. Structure Elucidation, Antimicrobial and Cytotoxic Activities of a Halimane Isolated from Vellozia kolbekii Alves (Velloziaceae).

    PubMed

    Silva, Carmelita G; Santos Júnior, Helvécio M; Barbosa, Jussara P; Costa, Gisela L; Rodrigues, Felipe A R; Oliveira, Denilson F; Costa-Lotufo, Letícia V; Alves, Ruy J V; Eleutherio, Elis C A; Rezende, Claudia M

    2015-12-01

    A new halimane diterpene was isolated from Vellozia kolbekii Alves (Velloziaceae) and identified as (5R,8R,9S,13R)-halim-1,10-ene-15,16-diol (1). It showed cytotoxicity against three human cancer cell lines, SF-295 (glioblastoma), MDA-MB-435 (melanoma), and HCT-8 (colon adenocarcinoma). In the mechanism of cytotoxic action, halimane 1 interferes in two major phases of the cell cycle: in S phase, in which DNA synthesis occurs and where it is very sensitive to damage, and G2M phase which is the phase of preparation for mitosis and mitosis itself, showing apoptosis-inducing properties. Antimicrobial activity towards Gram-positive and Gram-negative bacteria was studied and, against Bacillus cereus, B. subtilis, Escherichia coli, and Pseudomonas aeruginosa, a MIC value of 0.025 μM was observed for halimane 1, which is more active than the positive control chloramphenicol.

  6. Characterization and structure elucidation of antibacterial compound of Streptomyces sp. ECR77 isolated from east coast of India.

    PubMed

    Thirumurugan, D; Vijayakumar, R

    2015-05-01

    Forty marine actinobacteria were isolated from the sediments of east coast (Bay of Bengal) region of Tamilnadu, India. Morphologically distinct colonies were primarily tested against fish pathogenic bacteria such as Vibrio cholerae, V. parahaemolyticus, V. alginolyticus, Pseudomonas fluorescens and Aeromonas hydrophila by cross-streak plate method. The secondary metabolites produced by the highly potential strain cultured on starch casein broth were extracted separately with various solvents such as alcohol, ethyl acetate, methanol, petroleum ether and chloroform. The antibacterial assay of the bioactive compounds was tested against the fish pathogenic bacteria by well diffusion method. Of the various solvents used, the ethyl acetate extract of the isolate had good antibacterial activity. The potential strain was identified as Streptomyces labedae by phenotypic, 16S rRNA gene sequence and phylogenetic analysis. Purification of the biologically active compounds by column chromatography led to isolation of 27 fractions. The biologically active fraction was re-chromatographed on a silica gel column to obtain a single active compound, namely N-isopentyltridecanamide. The structure of the compounds was elucidated on the basis of ultra violet, Fourier transform infrared and nuclear magnetic resonance spectra.

  7. Antimutagenic Compounds of White Shrimp (Litopenaeus vannamei): Isolation and Structural Elucidation.

    PubMed

    López-Saiz, Carmen-María; Hernández, Javier; Cinco-Moroyoqui, Francisco-Javier; Velázquez, Carlos; Ocaño-Higuera, Víctor-Manuel; Plascencia-Jatomea, Maribel; Robles-Sánchez, Maribel; Machi-Lara, Lorena; Burgos-Hernández, Armando

    2016-01-01

    According to the World Health Organization, cancer is the main cause of mortality worldwide; thus, the search of chemopreventive compounds to prevent the disease has become a priority. White shrimp (Litopenaeus vannamei) has been reported as a source of compounds with chemopreventive activities. In this study, shrimp lipids were extracted and then fractionated in order to isolate those compounds responsible for the antimutagenic activity. The antimutagenic activity was assessed by the inhibition of the mutagenic effect of aflatoxin B1 on TA98 and TA100 Salmonella tester strains using the Ames test. Methanolic fraction was responsible for the highest antimutagenic activity (95.6 and 95.9% for TA98 and TA100, resp.) and was further separated into fifteen different subfractions (M1-M15). Fraction M8 exerted the highest inhibition of AFB1 mutation (96.5 and 101.6% for TA98 and TA100, resp.) and, after further fractionation, four subfractions M8a, M8b, M8c, and M8d were obtained. Data from (1)H and (13)C NMR, and mass spectrometry analysis of fraction M8a (the one with the highest antimutagenic activity), suggest that the compound responsible for its antimutagenicity is an apocarotenoid.

  8. Antimutagenic Compounds of White Shrimp (Litopenaeus vannamei): Isolation and Structural Elucidation

    PubMed Central

    López-Saiz, Carmen-María; Hernández, Javier; Cinco-Moroyoqui, Francisco-Javier; Velázquez, Carlos; Ocaño-Higuera, Víctor-Manuel; Plascencia-Jatomea, Maribel; Robles-Sánchez, Maribel; Machi-Lara, Lorena; Burgos-Hernández, Armando

    2016-01-01

    According to the World Health Organization, cancer is the main cause of mortality worldwide; thus, the search of chemopreventive compounds to prevent the disease has become a priority. White shrimp (Litopenaeus vannamei) has been reported as a source of compounds with chemopreventive activities. In this study, shrimp lipids were extracted and then fractionated in order to isolate those compounds responsible for the antimutagenic activity. The antimutagenic activity was assessed by the inhibition of the mutagenic effect of aflatoxin B1 on TA98 and TA100 Salmonella tester strains using the Ames test. Methanolic fraction was responsible for the highest antimutagenic activity (95.6 and 95.9% for TA98 and TA100, resp.) and was further separated into fifteen different subfractions (M1–M15). Fraction M8 exerted the highest inhibition of AFB1 mutation (96.5 and 101.6% for TA98 and TA100, resp.) and, after further fractionation, four subfractions M8a, M8b, M8c, and M8d were obtained. Data from 1H and 13C NMR, and mass spectrometry analysis of fraction M8a (the one with the highest antimutagenic activity), suggest that the compound responsible for its antimutagenicity is an apocarotenoid. PMID:27006678

  9. Isolation and Structural Elucidation of Antiproliferative Compounds of Lipidic Fractions from White Shrimp Muscle (Litopenaeus vannamei)

    PubMed Central

    López-Saiz, Carmen-María; Velázquez, Carlos; Hernández, Javier; Cinco-Moroyoqui, Francisco-Javier; Plascencia-Jatomea, Maribel; Robles-Sánchez, Maribel; Machi-Lara, Lorena; Burgos-Hernández, Armando

    2014-01-01

    Shrimp is one of the most popular seafood items worldwide, and has been reported as a source of chemopreventive compounds. In this study, shrimp lipids were separated by solvent partition and further fractionated by semi-preparative RP-HPLC and finally by open column chromatography in order to obtain isolated antiproliferative compounds. Antiproliferative activity was assessed by inhibition of M12.C3.F6 murine cell growth using the MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) assay. The methanolic fraction showed the highest antiproliferative activity; this fraction was separated into 15 different sub-fractions (M1–M15). Fractions M8, M9, M10, M12, and M13 were antiproliferative at 100 µg/mL and they were further tested at lower concentrations. Fractions M12 and M13 exerted the highest growth inhibition with an IC50 of 19.5 ± 8.6 and 34.9 ± 7.3 µg/mL, respectively. Fraction M12 was further fractionated in three sub-fractions M12a, M12b, and M12c. Fraction M12a was identified as di-ethyl-hexyl-phthalate, fraction M12b as a triglyceride substituted by at least two fatty acids (predominantly oleic acid accompanied with eicosapentaenoic acid) and fraction M12c as another triglyceride substituted with eicosapentaenoic acid and saturated fatty acids. Bioactive triglyceride contained in M12c exerted the highest antiproliferative activity with an IC50 of 11.33 ± 5.6 µg/mL. Biological activity in shrimp had been previously attributed to astaxanthin; this study demonstrated that polyunsaturated fatty acids are the main compounds responsible for antiproliferative activity. PMID:25526568

  10. Isolation and structural elucidation of a new tadalafil analogue in health supplements: bisprenortadalafil.

    PubMed

    Lee, Ji Hyun; Park, Han Na; Ganganna, Bogonda; Jeong, Ji Hye; Park, Sung-Kwan; Lee, Jongkook; Baek, Sun Young

    2016-06-01

    A new tadalafil analogue was found, along with nortadalafil, using HPLC-DAD during the inspection of a health product sold without official approval. The analogue was separated using a semi-preparative HPLC system and its structure was determined by a combination of mass spectrometry and NMR spectroscopy. The compound was identified as a tadalafil analogue in which the N-methyl group of tadalafil was replaced with a tadalafil precursor moiety. Nuclear Overhauser effect spectroscopy experiments suggested a cis-relationship between the substituents on a piperidine ring in the tadalafil moiety.

  11. Isolation and structure elucidation of avocado seed (Persea americana) lipid derivatives that inhibit Clostridium sporogenes endospore germination.

    PubMed

    Rodríguez-Sánchez, Dariana Graciela; Pacheco, Adriana; García-Cruz, María Isabel; Gutiérrez-Uribe, Janet Alejandra; Benavides-Lozano, Jorge Alejandro; Hernández-Brenes, Carmen

    2013-07-31

    Avocado fruit extracts are known to exhibit antimicrobial properties. However, the effects on bacterial endospores and the identity of antimicrobial compounds have not been fully elucidated. In this study, avocado seed extracts were tested against Clostridium sporogenes vegetative cells and active endospores. Bioassay-guided purification of a crude extract based on inhibitory properties linked antimicrobial action to six lipid derivatives from the family of acetogenin compounds. Two new structures and four compounds known to exist in nature were identified as responsible for the activity. Structurally, most potent molecules shared features of an acetyl moiety and a trans-enone group. All extracts produced inhibition zones on vegetative cells and active endospores. Minimum inhibitory concentrations (MIC) of isolated molecules ranged from 7.8 to 15.6 μg/mL, and bactericidal effects were observed for an enriched fraction at 19.5 μg/mL. Identified molecules showed potential as natural alternatives to additives and antibiotics used by the food and pharmaceutical industries to inhibit Gram-positive spore-forming bacteria.

  12. Structure Elucidation of a Natural Product.

    ERIC Educational Resources Information Center

    Letcher, Roy M.

    1983-01-01

    Describes an experiment simulating a real-life structure elucidation problem through isolation, characterization, and chemical transformation of an "unknown," naturally occurring monoterpene, with extensive use being made of spectroscopy and aided by biogenetic considerations. Information given to students, procedures, results, and discussion of…

  13. Isolation and structure elucidation of tetrameric procyanidins from unripe apples (Malus pumila cv. Fuji) by NMR spectroscopy.

    PubMed

    Nakashima, Shohei; Oda, Chihiro; Masuda, Susumu; Tagashira, Motoyuki; Kanda, Tomomasa

    2012-11-01

    Procyanidins are plant secondary metabolites widely consumed and known to have various physiological functions, but their bioavailability and mechanism of action are still unclear especially for larger oligomers. One of the reasons is scarce information about the detailed structure of oligomeric procyanidins. As for apple, structures of procyanidin components larger than trimers are scarcely known. In this study, 11 tetrameric procyanidins including two known compounds were isolated from unripe apples (Malus pumila cv. Fuji) and identified by NMR spectroscopic analysis and phloroglucinol degradation. As a result, the detailed structural diversity of tetrameric procyanidins in apple was established.

  14. Isolation, structure elucidation and enzyme inhibition studies of a new hydroxy ester and other compounds from Berberis jaeschkeana Schneid stem.

    PubMed

    Alamzeb, Muhammad; Khan, M Rafiullah; Mamoon-Ur-Rashid; Ali, Saqib; Khan, Ashfaq Ahmad

    2015-01-01

    Bioassay-guided isolation and fractionation of Berberis jaeschkeana Schneid var. jaeschkeana stem resulted in the isolation and characterisation of a new long chain hydroxy ester named as berberinol (1) along with six known compounds (2-7). All the structures were established from 1D and 2D spectroscopic data. Crude extract, sub-fractions and all the isolated compounds were evaluated for their anti-fungal and urease enzyme inhibition properties. All of the sub-fractions and compounds showed good anti-fungal and urease enzyme inhibition properties. Minimum inhibitory concentrations (MICs) were calculated for all active samples in case of urease enzyme inhibition. MICs values were found to be in the range of 39.03-49.78 μg/mL for urease enzyme inhibition.

  15. Isolation and structure elucidation of unexpected in-process impurities during tetrazole ring formation of an investigational drug substance.

    PubMed

    Silva Elipe, Maria Victoria; Yoo, Chul; Xia, Fang; Simiens, Jason; Crossley, Kevin; Huckins, John R; Guo, Hong-Xun; Tedrow, Jason; Wong-Moon, Kirby

    2016-02-03

    During the formation of a tetrazole ring on an investigational drug, two in-process impurities were detected and analyzed by LC-MS, which suggested that both impurities were drug-related with the same mass-to-charge ratio. To understand and control their formation, both impurities were isolated from the mother liquor of the reaction using a multi-step isolation procedure to obtain a sufficient amount for high-resolution mass spectrometry (HRMS) and NMR structural analysis. HRMS suggested a protonated mass of 577.32 Da for both impurities; however, MS fragmentation patterns provided limited information on their structures. NMR analysis indicated the presence on an additional NH functional group in both isolates with similar spatial and bond correlations to one of the dimethylcarbamoyl moieties and the corresponding aromatic ring. A phenyldimethylcarbamoylamino moiety was supported by the NMR and HRMS data and could be explained based on the 'Schmidt-like' reaction mechanism, which was an unexpected reaction pathway. Because the reaction conditions were fixed because of safety concerns, the crystallization protocol was redesigned to reduce the levels of these impurities significantly. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Crystal structure elucidation and anticancer studies of (-)-pseudosemiglabrin: a flavanone isolated from the aerial parts of Tephrosia apollinea.

    PubMed

    Ahmed Hassan, Loiy Elsir; Khadeer Ahamed, Mohamed B; Abdul Majid, Aman Shah; Iqbal, Muhammad Adnan; Al Suede, Fouad Saleih R; Haque, Rosenani A; Ismail, Zhari; Ein, Oon Chern; Majid, Amin Malik Shah Abdul

    2014-01-01

    Tephrosia apollinea is a perennial shrublet widely distributed in Africa and is known to have medicinal properties. The current study describes the bio-assay (cytotoxicity) guided isolation of (-)-pseudosemiglabrin from the aerial parts of T. apollinea. The structural and stereochemical features have been described using spectral and x-ray crystallographic techniques. The cytotoxicity of isolated compound was evaluated against nine cancer cell lines. In addition, human fibroblast was used as a model cell line for normal cells. The results showed that (-)-pseudosemiglabrin exhibited dose-dependent antiproliferative effect on most of the tested cancer cell lines. Selectively, the compound showed significant inhibitory effect on the proliferation of leukemia, prostate and breast cancer cell lines. Further studies revealed that, the compound exhibited proapoptotic phenomenon of cytotoxicity. Interestingly, the compound did not display toxicity against the normal human fibroblast. It can be concluded that (-)-pseudosemiglabrin is worthy for further investigation as a potential chemotherapeutic agent.

  17. Crystal Structure Elucidation and Anticancer Studies of (-)-Pseudosemiglabrin: A Flavanone Isolated from the Aerial Parts of Tephrosia apollinea

    PubMed Central

    Ahmed Hassan, Loiy Elsir; Khadeer Ahamed, Mohamed B.; Abdul Majid, Aman Shah; Iqbal, Muhammad Adnan; Al Suede, Fouad Saleih R.; Haque, Rosenani A.; Ismail, Zhari; Ein, Oon Chern; Majid, Amin Malik Shah Abdul

    2014-01-01

    Tephrosia apollinea is a perennial shrublet widely distributed in Africa and is known to have medicinal properties. The current study describes the bio-assay (cytotoxicity) guided isolation of (-)-pseudosemiglabrin from the aerial parts of T. apollinea. The structural and stereochemical features have been described using spectral and x-ray crystallographic techniques. The cytotoxicity of isolated compound was evaluated against nine cancer cell lines. In addition, human fibroblast was used as a model cell line for normal cells. The results showed that (-)-pseudosemiglabrin exhibited dose-dependent antiproliferative effect on most of the tested cancer cell lines. Selectively, the compound showed significant inhibitory effect on the proliferation of leukemia, prostate and breast cancer cell lines. Further studies revealed that, the compound exhibited proapoptotic phenomenon of cytotoxicity. Interestingly, the compound did not display toxicity against the normal human fibroblast. It can be concluded that (-)-pseudosemiglabrin is worthy for further investigation as a potential chemotherapeutic agent. PMID:24608571

  18. Isolation and structure elucidation of secondary metabolites in Central and South American Calea species and their biochemical systematic implications

    SciTech Connect

    Ober, A.G.

    1984-01-01

    Fourteen species of the genus Calea (Family Compositae, Tribe Heliantheae) from Central and northern South America, including the type species for the genus, were investigated chemically to determine their secondary metabolites. The taxa studied were C. leptocephala Blake, C. megacephala Rob, and Greenm., and C. trichotoma B. Smith from Mexico, C. prunifolia Kunth (syn. C. pittieri) from Costa Rica, C. prunifolia Kunth from Panama, C. jamaicensis L. from Jamaica, and the Venezuelan species C. berteriana DC., C. divaricata Benthem, C. oliverii Rob. and Greenm., C. prunifolia Kunth, C. septuplinervia Hieron., C. solidaginea Kunth, and C. subcordata Kunth. The chemical investigation of these Calea species, undertaken as part of biochemical systematic study, has resulted in the isolation of 83 compounds, of which 38 are new natural products. The isolated compounds were represented by a dioxin derivative, 3 benzofuranes, 5 chromenes, 12 flavones, and 62 sesquiterpene lactones. The structures of the new compounds were established by chemical and spectroscopic methods. These methods included MS, IR, UV, and CD, /sup 1/H NMR, /sup 13/C NMR, and single crystal x-ray diffraction analysis.

  19. Isolation, structure elucidation, total synthesis, and evaluation of new natural and synthetic ceramides on human SK-MEL-1 melanoma cells.

    PubMed

    León, Francisco; Brouard, Ignacio; Rivera, Augusto; Torres, Fernando; Rubio, Sara; Quintana, José; Estévez, Francisco; Bermejo, Jaime

    2006-09-21

    Two new long-chain ceramides, trametenamides A (1) and B (2), were isolated from the methanolic extract of the fruiting body of the fungus Trametes menziesii. The structures were elucidated by spectroscopic analyses and chemical transformations, and the absolute stereochemistry of trametenamide B (2) was determined by stereoselective total synthesis of four possible diastereomers. The acetyl derivative of the natural ceramide (1a) and synthetic ceramides (24-27) showed cytotoxicity on the human melanoma cell line SK-MEL-1, which was caused by induction of apoptosis as determined by DNA fragmentation, poly(ADP-ribose) polymerase cleavage, and procaspase-9 and -8 processing.

  20. Isolation, structural elucidation, MS profiling, and evaluation of triglyceride accumulation inhibitory effects of benzophenone C-glucosides from leaves of Mangifera indica L.

    PubMed

    Zhang, Yi; Han, Lifeng; Ge, Dandan; Liu, Xuefeng; Liu, Erwei; Wu, Chunhua; Gao, Xiumei; Wang, Tao

    2013-02-27

    Seventy percent ethanol-water extract from the leaves of Mangifera indica L. (Anacardiaceae) was found to show an inhibitory effect on triglyceride (TG) accumulation in 3T3-L1 cells. From the active fraction, six new benzophenone C-glucosides, foliamangiferosides A(3) (1), A(4) (2), C(4) (3), C(5) (4), C(6) (5), and C(7) (6) together with 11 known benzophenone C-glucosides (7-17) were obtained. In this paper, isolation, structure elucidation (1-6), and MS fragment cleavage pathways of all 17 isolates were studied. 1-6 showed inhibitory effects on TG and free fatty acid accumulation in 3T3-L1 cells at 10 μM.

  1. Isolation, structure elucidation, and biomimetic total synthesis of versicolamide B and the isolation of antipodal (-)-stephacidin A and (+)-notoamide B from Aspergillus versicolor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new prenylated indole alkaloid, versicolamide B, was isolated from cultures of Aspergillus versicolor NRRL 35600. The structure was assigned by 2D NMR data, and confirmed by a biomimetic total synthesis. Versicolamide B is the first member of the paraherquamide-stephacidin family of alkaloids fo...

  2. Isolation, structure elucidation and biological activity of metabolites from Sch-642305-producing endophytic fungus Phomopsis sp. CMU-LMA.

    PubMed

    Adelin, Emilie; Servy, Claudine; Cortial, Sylvie; Lévaique, Hélène; Martin, Marie-Thérèse; Retailleau, Pascal; Le Goff, Géraldine; Bussaban, Boonsom; Lumyong, Saisamorn; Ouazzani, Jamal

    2011-12-01

    Eight polyketide compounds were isolated from the cultivation broth of Phomopsis sp. CMU-LMA. We have recently described LMA-P1, a bicyclic 10-membered macrolide, obtained as a bioconversion derivative of Sch-642305, the major compound isolated in this study. Benquinol is the ethyl ester derivative of the 13-dihydroxytetradeca-2,4,8-trienoic acid produced by Valsa ambiens. This compound is concomitantly produced with the 6,13-dihydroxytetradeca-2,4,8-trienoic acid (DHTTA) previously isolated from Mycosphaerellarubella. The absolute configuration of the new compound, (2R,3R,4S,5R)-3-hydroxy-2,4-dimethyl-5-[(S,Z)-3-methylpentenyl]-tetrahydro-pyranone LMA-P2 was confirmed by X-ray crystallography. The δ-lactone 2,3-dihydroxytetradecan-5-olide (DHTO) was previously isolated from Seiridium unicorne. This compound may form through the cyclization of the methyl-2,3,5-trihydroxytridecanoate LMA-P3, a new linear polyketide isolated in this study. Benquoine, a new 14-membered lactone generated from the cyclization of benquinol, is proposed as the key precursor for the biosynthesis of Sch-642305. Antimicrobial activity and cancer cell viability inhibition by the new compounds were investigated. Benquoine exhibits antimicrobial activity against Gram positive bacteria, and cytotoxicity against HCT-116 cancer cell line.

  3. Nature's Chiral Catalyst and Anti-Malarial Agent: Isolation and Structure Elucidation of Cinchonine and Quinine from "Cinchona calisaya"

    ERIC Educational Resources Information Center

    Carroll, Anne-Marie; Kavanagh, David J.; McGovern, Fiona P.; Reilly, Joe W.; Walsh, John J.

    2012-01-01

    Nature is a well-recognized source of compounds of interest, but access is often an issue. One pertinent example is the cinchona alkaloids from the bark of "Cinchona calisaya." In this experiment, students at the third-year undergraduate level undertake the selective isolation and characterization of two of the four main alkaloids present in the…

  4. Toward better annotation in plant metabolomics: isolation and structure elucidation of 36 specialized metabolites from Oryza sativa (rice) by using MS/MS and NMR analyses.

    PubMed

    Yang, Zhigang; Nakabayashi, Ryo; Okazaki, Yozo; Mori, Tetsuya; Takamatsu, Satoshi; Kitanaka, Susumu; Kikuchi, Jun; Saito, Kazuki

    2014-01-01

    Metabolomics plays an important role in phytochemical genomics and crop breeding; however, metabolite annotation is a significant bottleneck in metabolomic studies. In particular, in liquid chromatography-mass spectrometry (MS)-based metabolomics, which has become a routine technology for the profiling of plant-specialized metabolites, a substantial number of metabolites detected as MS peaks are still not assigned properly to a single metabolite. Oryza sativa (rice) is one of the most important staple crops in the world. In the present study, we isolated and elucidated the structures of specialized metabolites from rice by using MS/MS and NMR. Thirty-six compounds, including five new flavonoids and eight rare flavonolignan isomers, were isolated from the rice leaves. The MS/MS spectral data of the isolated compounds, with a detailed interpretation of MS fragmentation data, will facilitate metabolite annotation of the related phytochemicals by enriching the public mass spectral data depositories, including the plant-specific MS/MS-based database, ReSpect.

  5. Structural elucidation of gemifloxacin mesylate degradation product.

    PubMed

    Paim, Clésio Soldateli; Führ, Fernanda; Martins, Magda Targa; Gnoatto, Simone; Bajerski, Lisiane; Garcia, Cássia Virginia; Steppe, Martin; Schapoval, Elfrides Eva Scherman

    2016-03-01

    Gemifloxacin mesylate (GFM), chemically (R,S)-7-[(4Z)-3-(aminomethyl)-4-(methoxyimino)-1-pyrrolidinyl]-1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-1,8-naphthyridine-3-carboxylic acid methanesulfonate, is a synthetic broad-spectrum antibacterial agent. Although many papers have been published in the literature describing the stability of fluorquinolones, little is known about the degradation products of GFM. Forced degradation studies of GFM were performed using radiation (UV-A), acid (1 mol L(-1) HCl) and alkaline conditions (0.2 mol L(-1) NaOH). The main degradation product, formed under alkaline conditions, was isolated using semi-preparative LC and structurally elucidated by nuclear magnetic resonance (proton - (1) H; carbon - (13) C; correlate spectroscopy - COSY; heteronuclear single quantum coherence - HSQC; heteronuclear multiple-bond correlation - HMBC; spectroscopy - infrared, atomic emission and mass spectrometry techniques). The degradation product isolated was characterized as sodium 7-amino-1-pyrrolidinyl-1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-1,8-naphthyridine-3-carboxylate, which was formed by loss of the 3-(aminomethyl)-4-(methoxyimino)-1-pyrrolidinyl ring and formation of the sodium carboxylate. The structural characterization of the degradation product was very important to understand the degradation mechanism of the GFM under alkaline conditions. In addition, the results highlight the importance of appropriate protection against hydrolysis and UV radiation during the drug-development process, storage, handling and quality control.

  6. Using Genomics for Natural Product Structure Elucidation.

    PubMed

    Tietz, Jonathan I; Mitchell, Douglas A

    2016-01-01

    Natural products (NPs) are the most historically bountiful source of chemical matter for drug development-especially for anti-infectives. With insights gleaned from genome mining, interest in natural product discovery has been reinvigorated. An essential stage in NP discovery is structural elucidation, which sheds light not only on the chemical composition of a molecule but also its novelty, properties, and derivatization potential. The history of structure elucidation is replete with techniquebased revolutions: combustion analysis, crystallography, UV, IR, MS, and NMR have each provided game-changing advances; the latest such advance is genomics. All natural products have a genetic basis, and the ability to obtain and interpret genomic information for structure elucidation is increasingly available at low cost to non-specialists. In this review, we describe the value of genomics as a structural elucidation technique, especially from the perspective of the natural product chemist approaching an unknown metabolite. Herein we first introduce the databases and programs of interest to the natural products chemist, with an emphasis on those currently most suited for general usability. We describe strategies for linking observed natural product-linked phenotypes to their corresponding gene clusters. We then discuss techniques for extracting structural information from genes, illustrated with numerous case examples. We also provide an analysis of the biases and limitations of the field with recommendations for future development. Our overview is not only aimed at biologically-oriented researchers already at ease with bioinformatic techniques, but also, in particular, at natural product, organic, and/or medicinal chemists not previously familiar with genomic techniques.

  7. Structural elucidation of a cell wall fungal polysaccharide isolated from Ustilaginoidea virens, a pathogenic fungus of Oriza sativa and Zea mays.

    PubMed

    Leal, J A; Jiménez-Barbero, Jesús; Bernabé, Manuel; Prieto, Alicia

    2008-11-24

    The alkali-extractable water-soluble polysaccharides (F1SS) isolated from the outer cell wall of two strains of Ustilaginoidea virens have been studied by chemical and methylation analyses, and 1D and 2D (1)H and (13)C NMR spectroscopy. The structures of these polysaccharides are very similar, and can be described by the following idealized repeating unit: where n and m are approximately 1 and 2, respectively.

  8. The isolation, total synthesis and structure elucidation of chlorofusin, a natural product inhibitor of the p53-MDM2 protein-protein interaction

    PubMed Central

    Clark, Ryan C.; Lee, Sang Yeul; Searcey, Mark; Boger, Dale L.

    2009-01-01

    Inhibitors of key protein-protein interactions are emerging as exciting therapeutic targets for the treatment of cancer. One such interaction between MDM2 (HDM2) and p53, that silences the tumour suppression activities of p53, was found to be inhibited by the recently isolated natural product chlorofusin. Synthetic studies on this complex natural product summarized herein have served to reassign its chromophore relative stereochemistry, assign its absolute stereochemistry, and provided access to a series of key analogues and partial structures for biological evaluation. PMID:19642417

  9. Isolation, Characterization, Crystal Structure Elucidation of Two Flavanones and Simultaneous RP-HPLC Determination of Five Major Compounds from Syzygium campanulatum Korth.

    PubMed

    Memon, Abdul Hakeem; Ismail, Zhari; Al-Suede, Fouad Saleih Resq; Aisha, Abdalrahim F A; Hamil, Mohammad Shahrul Ridzuan; Saeed, Mohammed Ali Ahmed; Laghari, Madeeha; Majid, Amin Malik Shah Abdul

    2015-08-04

    Two flavanones named (2S)-7-Hydroxy-5-methoxy-6,8-dimethyl flavanone (1), (S)-5,7-dihydroxy-6,8-dimethyl-flavanone (2), along with known chalcone, namely, (E)-2',4'- dihydroxy-6'-methoxy-3',5'-dimethylchalcone (3) and two triterpenoids, namely, betulinic and ursolic acids (4 and 5), were isolated from the leaves of Syzygium campanulatum Korth (Myrtaceae). The structures of compounds (1 and 2) were determined on the basis of UV-visible, FTIR, NMR spectroscopies and LC-EIMS analytical techniques. Furthermore, new, simple, precise, selective, accurate, highly sensitive, efficient and reproducible RP-HPLC method was developed and validated for the quantitative analysis of the compounds (1-5) from S. campanulatum plants of five different age. RP-HPLC method was validated in terms of specificity, linearity (r2 ≤ 0.999), precision (2.0% RSD), and recoveries (94.4%-105%). The LOD and LOQ of these compounds ranged from 0.13-0.38 and 0.10-2.23 μg·mL-1, OPEN ACCESS respectively. Anti-proliferative activity of isolated flavanones (1 and 2) and standardized extract of S. campanulatum was evaluated on human colon cancer (HCT 116) cell line. Compounds (1 and 2) and extract revealed potent and dose-dependent activity with IC50 67.6, 132.9 and 93.4 μg·mL-1, respectively. To the best of our knowledge, this is the first study on isolation, characterization, X-ray crystallographic analysis of compounds (1 and 2) and simultaneous RP-HPLC determination of five major compounds (1-5) from different age of S. campanulatum plants.

  10. Isolation and structural elucidation of 4-(beta-D-glucopyranosyldisulfanyl)butyl glucosinolate from leaves of rocket salad (Eruca sativa L.) and its antioxidative activity.

    PubMed

    Kim, Sun-Ju; Jin, Shigeki; Ishii, Gensho

    2004-12-01

    A structurally unique glucosinolate (GSL) was identified to be 4-(beta-D-glucopyranosyldisulfanyl)butyl GSL in rocket leaves. The positive-ion electrospray ionization mass spectrometry (ESI-MS) data indicated that the new GSL had a molecular weight of 521 (m/z 522, [M+H](+), as desulfo-GSL). The molecular formula of the substance was determined to be C(17)H(32)O(11)NS(3) (m/z 522.1143, [M+H](+)) based on its positive-ion high-resolution fast atom bombardment mass spectrometry (HR-FAB-MS) data. For the further confirmation, desulfated GSL of 4-(beta-D-glucopyranosyldisulfanyl)butyl GSL was prepared by commercial 1-thio-beta-D-glucose and dimeric 4-mercaptobutyl desulfo-GSL, which was also isolated from rocket leaves, and its chemical structure was then confirmed by MS data and nuclear magnetic resonance (NMR) spectroscopy. In addition, the antioxidative activity of 4-(beta-D-glucopyranosyldisulfanyl)butyl desulfo-GSL was measured by means of chemiluminescence (CL) for evaluating the functional properties. The antioxidative activity (2.089 unit/g) was relatively higher than that of dimeric 4-mercaptobutyl desulfo-GSL (1.227).

  11. Structural elucidation of inhomogeneous lignins from bamboo.

    PubMed

    Wen, Jia-Long; Sun, Shao-Long; Xue, Bai-Liang; Sun, Run-Cang

    2015-01-01

    A better understanding of the inhomogeneous molecular structure of lignin from bamboo is a prerequisite for promoting the "biorefinery" technologies of the bamboo feedstock. A mild and successive method for fractionating native lignin from bamboo species was proposed in the present study. The molecular structure and structural inhomogeneity of the isolated lignin polymers were comprehensively investigated by elemental analysis, carbohydrate analysis, state-of-the-art NMR and analytical pyrolysis techniques (quantitative (13)C NMR, (13)C-DEPT 135 NMR, 2D-HSQC NMR, (31)P NMR, and pyrolysis-GC-MS). The results showed that the proposed method is effective for extracting lignin from bamboo. NMR results showed that syringyl (S) was the predominant unit in bamboo lignin over guaiacyl (G) and p-hydroxyphenyl (H) units. In addition, the lignin was associated with p-coumarates and ferulates via ester and ether bonds, respectively. Moreover, various substructures, such as β-O-4, β-β, β-5, β-1, and α,β-diaryl ether linkages, were identified and quantified by NMR techniques. Based on the results obtained, a proposed schematic diagram of structural heterogeneity of the lignin polymers extracted from the bamboo is presented. In short, well-defined inhomogeneous structures of native lignin from bamboo will facilitate further applications of bamboo in current biorefineries.

  12. Aggregation arrestant pheromone of the German cockroach,Blattella germanica (L.) (Dictyoptera: Blattellidae): Isolation and structure elucidation of blattellastanoside-A and -B.

    PubMed

    Sakuma, M; Fukami, H

    1993-11-01

    The aggregation pheromone of the German cockroach,Blattella germanica, consists of attractant and arrestant, which can be detected by olfactometer and choice-chamber assay, respectively. Both were extracted from the frass-contaminated filter paper being used as a shelter. They were separated by solvent partition withn-butanol and water. The arrestant from then-butanol phase was purified by open column chromatography and then successive HPLC isolated two major arrestant components. Spectral evidence from SI-MS, HR-EI-MS, and NMR experiments with pulse techniques provided possible structures as 1-(6α-chloro-4β,5β-epoxy-5β-stigmast-3β-yl)-β-D-glucopyranoside and 1-(6α-chloro-5β-hydroxy-5β-stigmast-3β-yl)-β-D-glu-copyranoside, denoted as blattellastanoside-A and blattellastanoside-B, respectively. They represented arrestant activity as median effective doses (ED50) at 0.044 (A) and 3.2 (B) nmol on 1.0 cm(2) of Whatman No. 1 filter paper.

  13. Ultrahigh-performance liquid chromatography-ion trap mass spectrometry characterization of the steroidal saponins of Dioscorea panthaica Prain et Burkill and its application for accelerating the isolation and structural elucidation of steroidal saponins.

    PubMed

    Wang, Weihao; Zhao, Ye; Jing, Wenguang; Zhang, Jun; Xiao, Hui; Zha, Qin; Liu, An

    2015-03-01

    Dioscorea panthaica is a traditional Chinese medicinal herb used in the treatment of various physiological conditions, including cardiovascular disease, gastropathy and hypertension. Steroidal saponins (SS) are the main active ingredients of this herb and have effects on myocardial ischemia and cancer. The phytochemical evaluation of SS is both time-consuming and laborious, and the isolation and structural determination steps can be especially demanding. For this reason, the development of new methods to accelerate the processes involved in the identification, isolation and structural elucidation of SS is highly desirable. In this study, a new ultrahigh performance liquid chromatography-ion trap mass spectrometry (UHPLC-IT/MS(n)) method has been developed for the identification of the SS in D. panthaica Prain et Burkill. Notably, the current method can distinguish between spirostanol and furostanol-type compounds based on the fragmentation patterns observed by electrospray ionization-ion trap mass spectrometry (ESI-IT/MS(n)) analysis. UHPLC-IT/MS(n) was used to conduct a detailed investigation of the number, structural class and order of the sugar moieties in the sugar chains of the SS present in D. panthaica. The established fragmentation features were used to analyze the compounds found in the 65% ethanol fraction of the water extracts of D. panthaica. Twenty-three SS were identified, including 11 potential new compounds and six groups of isomers. Two of these newly identified SS were selected as representative examples, and their chemical structures were confirmed by (1)H and (13)C NMR analyses. This newly developed UHPLC-IT/MS(n) method therefore allowed for the efficient identification, isolation and structural determination of the SS in D. panthaica.

  14. Identification and structural elucidation of ergotryptamine, a new ergot alkaloid produced by genetically modified aspergillus nidulans and natural isolates of Epichloë species.

    PubMed

    Ryan, Katy L; Akhmedov, Novruz G; Panaccione, Daniel G

    2015-01-14

    Ergot alkaloid pathway reconstruction in Aspergillus nidulans is an approach used to better understand the biosynthesis of these mycotoxins. An engineered strain named A. nidulans WFC (expressing ergot alkaloid synthesis genes dmaW, easF, and easC) produced the established intermediate N-methyl-4-dimethylallyltryptophan, as well as an uncharacterized ergot alkaloid. We investigated the chemical structure of the new metabolite and its role in the ergot alkaloid pathway. Mass spectrometry, labeling, and NMR studies showed that the unknown ergot alkaloid, designated here as ergotryptamine, differed from N-methyl-4-dimethylallyltryptophan by the loss of the carboxyl group, addition of a hydroxyl group, and shift in position of a carbon–carbon double bond. Feeding studies with Aspergillus mutants did not show ergotryptamine turnover, suggesting it is a pathway byproduct as opposed to an authentic intermediate. Several Epichloë species also produced this metabolite, and further investigations revealed the equivalency of ergotryptamine with an Epichloë-derived ergot alkaloid provisionally described as 6,7-secolysergine.

  15. Blind trials of computer-assisted structure elucidation software

    PubMed Central

    2012-01-01

    Background One of the largest challenges in chemistry today remains that of efficiently mining through vast amounts of data in order to elucidate the chemical structure for an unknown compound. The elucidated candidate compound must be fully consistent with the data and any other competing candidates efficiently eliminated without doubt by using additional data if necessary. It has become increasingly necessary to incorporate an in silico structure generation and verification tool to facilitate this elucidation process. An effective structure elucidation software technology aims to mimic the skills of a human in interpreting the complex nature of spectral data while producing a solution within a reasonable amount of time. This type of software is known as computer-assisted structure elucidation or CASE software. A systematic trial of the ACD/Structure Elucidator CASE software was conducted over an extended period of time by analysing a set of single and double-blind trials submitted by a global audience of scientists. The purpose of the blind trials was to reduce subjective bias. Double-blind trials comprised of data where the candidate compound was unknown to both the submitting scientist and the analyst. The level of expertise of the submitting scientist ranged from novice to expert structure elucidation specialists with experience in pharmaceutical, industrial, government and academic environments. Results Beginning in 2003, and for the following nine years, the algorithms and software technology contained within ACD/Structure Elucidator have been tested against 112 data sets; many of these were unique challenges. Of these challenges 9% were double-blind trials. The results of eighteen of the single-blind trials were investigated in detail and included problems of a diverse nature with many of the specific challenges associated with algorithmic structure elucidation such as deficiency in protons, structure symmetry, a large number of heteroatoms and poor quality

  16. Isolation and Structural Elucidation of Brevibacillin, an Antimicrobial Lipopeptide from Brevibacillus laterosporus That Combats Drug-Resistant Gram-Positive Bacteria

    PubMed Central

    Yang, Xu; Yuan, Chunhua; Zhang, Liwen

    2016-01-01

    A new environmental bacterial strain exhibited strong antimicrobial characteristics against methicillin-resistant Staphylococcus aureus, vancomycin-resistant strains of Enterococcus faecalis and Lactobacillus plantarum, and other Gram-positive bacteria. The producer strain, designated OSY-I1, was determined to be Brevibacillus laterosporus via morphological, biochemical, and genetic analyses. The antimicrobial agent was extracted from cells of OSY-I1 with isopropanol, purified by high-performance liquid chromatography, and structurally analyzed using mass spectrometry (MS) and nuclear magnetic resonance (NMR). The MS and NMR results, taken together, uncovered a linear lipopeptide consisting of 13 amino acids and an N-terminal C6 fatty acid (FA) chain, 2-hydroxy-3-methylpentanoic acid. The lipopeptide (FA-Dhb-Leu-Orn-Ile-Ile-Val-Lys-Val-Val-Lys-Tyr-Leu-valinol, where Dhb is α,β-didehydrobutyric acid and valinol is 2-amino-3-methyl-1-butanol) has a molecular mass of 1,583.0794 Da and contains three modified amino acid residues: α,β-didehydrobutyric acid, ornithine, and valinol. The compound, designated brevibacillin, was determined to be a member of a cationic lipopeptide antibiotic family. In addition to its potency against drug-resistant bacteria, brevibacillin also exhibited low MICs (1 to 8 μg/ml) against selected foodborne pathogenic and spoilage bacteria, such as Listeria monocytogenes, Bacillus cereus, and Alicyclobacillus acidoterrestris. Purified brevibacillin showed no sign of degradation when it was held at 80°C for 60 min, and it retained at least 50% of its antimicrobial activity when it was held for 22 h under acidic or alkaline conditions. On the basis of these findings, brevibacillin is a potent antimicrobial lipopeptide which is potentially useful to combat drug-resistant bacterial pathogens and foodborne pathogenic and spoilage bacteria. PMID:26921428

  17. Isolation and Structural Elucidation of Brevibacillin, an Antimicrobial Lipopeptide from Brevibacillus laterosporus That Combats Drug-Resistant Gram-Positive Bacteria.

    PubMed

    Yang, Xu; Huang, En; Yuan, Chunhua; Zhang, Liwen; Yousef, Ahmed E

    2016-05-01

    A new environmental bacterial strain exhibited strong antimicrobial characteristics against methicillin-resistant Staphylococcus aureus, vancomycin-resistant strains of Enterococcus faecalis and Lactobacillus plantarum, and other Gram-positive bacteria. The producer strain, designated OSY-I1, was determined to be Brevibacillus laterosporusvia morphological, biochemical, and genetic analyses. The antimicrobial agent was extracted from cells of OSY-I1 with isopropanol, purified by high-performance liquid chromatography, and structurally analyzed using mass spectrometry (MS) and nuclear magnetic resonance (NMR). The MS and NMR results, taken together, uncovered a linear lipopeptide consisting of 13 amino acids and an N-terminal C6 fatty acid (FA) chain, 2-hydroxy-3-methylpentanoic acid. The lipopeptide (FA-Dhb-Leu-Orn-Ile-Ile-Val-Lys-Val-Val-Lys-Tyr-Leu-valinol, where Dhb is α,β-didehydrobutyric acid and valinol is 2-amino-3-methyl-1-butanol) has a molecular mass of 1,583.0794 Da and contains three modified amino acid residues: α,β-didehydrobutyric acid, ornithine, and valinol. The compound, designated brevibacillin, was determined to be a member of a cationic lipopeptide antibiotic family. In addition to its potency against drug-resistant bacteria, brevibacillin also exhibited low MICs (1 to 8 μg/ml) against selected foodborne pathogenic and spoilage bacteria, such as Listeria monocytogenes,Bacillus cereus, and Alicyclobacillus acidoterrestris Purified brevibacillin showed no sign of degradation when it was held at 80 °C for 60 min, and it retained at least 50% of its antimicrobial activity when it was held for 22 h under acidic or alkaline conditions. On the basis of these findings, brevibacillin is a potent antimicrobial lipopeptide which is potentially useful to combat drug-resistant bacterial pathogens and foodborne pathogenic and spoilage bacteria.

  18. Structural elucidation and bioactivity of biflavonoids from the stems of Wikstroemia taiwanensis.

    PubMed

    Chen, Li-Yin; Chen, Ih-Sheng; Peng, Chien-Fang

    2012-01-01

    Three new biflavonoids, wikstaiwanones A-C (1-3), along with four known compounds (4-7) were isolated from the stems of Wikstroemia taiwanensis (Thymelaeaceae). Their structures were elucidated by spectroscopic analysis. Compounds 4 and 5 showed antitubercular activity against Mycobacterium tuberculosis with MIC values of 15 μg/mL, respectively.

  19. Structural Elucidation and Bioactivity of Biflavonoids from the Stems of Wikstroemia taiwanensis

    PubMed Central

    Chen, Li-Yin; Chen, Ih-Sheng; Peng, Chien-Fang

    2012-01-01

    Three new biflavonoids, wikstaiwanones A–C (1–3), along with four known compounds (4–7) were isolated from the stems of Wikstroemia taiwanensis (Thymelaeaceae). Their structures were elucidated by spectroscopic analysis. Compounds 4 and 5 showed antitubercular activity against Mycobacterium tuberculosis with MIC values of 15 μg/mL, respectively. PMID:22312302

  20. Structure elucidation and NMR assignments of two unusual monoterpene indole alkaloids from Psychotria stachyoides.

    PubMed

    Pimenta, Antonia Torres Avila; Braz-Filho, Raimundo; Delprete, Piero Giuseppe; de Souza, Elnatan Bezerra; Silveira, Edilberto Rocha; Lima, Mary Anne Sousa

    2010-09-01

    Two unusual monoterpene indole alkaloids, stachyoside (1) and nor-methyl-23-oxo-correantoside (2), have been isolated from the aerial parts of Psychotria stachyoides. The structural elucidation of both compounds was performed by the aid of HRESIMS, FT-IR, and 1D- and 2D-NMR techniques including COSY, HSQC, HMBC, and NOESY.

  1. Elucidating the stop bands of structurally colored systems through recursion

    NASA Astrophysics Data System (ADS)

    Amir, Ariel; Vukusic, Peter

    2013-04-01

    Interference is the source of some of the spectacular colors of animals and plants in nature. In some of these systems, the physical structure consists of an ordered array of layers with alternating high and low refractive indices. This periodicity leads to an optical band structure that is analogous to the electronic band structure encountered in semiconductor physics: specific bands of wavelengths (the stop bands) are perfectly reflected. Here, we present a minimal model for optical band structure in a periodic multilayer structure and solve it using recursion relations. The stop bands emerge in the limit of an infinite number of layers by finding the fixed point of the recursion. We compare to experimental data for various beetles, whose optical structure resembles the proposed model. Thus, using only the phenomenon of interference and the idea of recursion, we are able to elucidate the concept of band structure in the context of the experimentally observed high reflectance and iridescent appearance of structurally colored beetles.

  2. Toward structural elucidation of the gamma-secretase complex

    SciTech Connect

    Li, H.; Wolfe, M. S.; Selkoe, D. J.

    2009-03-11

    {gamma}-Secretase is an intramembrane protease complex that mediates the Notch signaling pathway and the production of amyloid {beta}-proteins. As such, this enzyme has emerged as an important target for development of novel therapeutics for Alzheimer disease and cancer. Great progress has been made in the identification and characterization of the membrane complex and its biological functions. One major challenge now is to illuminate the structure of this fascinating and important protease at atomic resolution. Here, we review recent progress on biochemical and biophysical probing of the structure of the four-component complex and discuss obstacles and potential pathways toward elucidating its detailed structure.

  3. Toward structural elucidation of the γ-secretase complex

    PubMed Central

    Li, Huilin; Wolfe, Michael S.; Selkoe, Dennis J.

    2009-01-01

    γ-Secretase is an intramembrane protease complex that mediates the Notch signaling pathway and the production of amyloid β-proteins. As such, this enzyme has emerged as an important target for development of novel therapeutics for Alzheimer disease and cancer. Great progress has been made in the identification and characterization of the membrane complex and its biological functions. One major challenge now is to illuminate the structure of this fascinating and important protease at atomic resolution. Here, we review recent progress on biochemical and biophysical probing of the structure of the four-component complex and discuss barriers and potential pathways toward elucidating its detailed structure. PMID:19278647

  4. Desktop NMR for structure elucidation and identification of strychnine adulteration.

    PubMed

    Singh, Kawarpal; Blümich, Bernhard

    2017-03-27

    Elucidating the structure of complex molecules is difficult at low magnetic fields due to the overlap of different peak multiplets and second-order coupling effects. This is even more challenging for rigid molecules with small chemical shift differences and with prochiral centers. Since low-field NMR spectroscopy is sometimes presumed as restricted to the analysis of only small and simple molecules, this paper aims at countering this misconception: it demonstrates the use of low-field NMR spectroscopy in chemical forensics for identifying strychnine and its counterions by exploring the chemical shift as a signature in different 1D (1)H and (13)C experiments. Hereby the applied methodologies combine various 1D and 2D experiments such as 1D (1)H, (13)C, DEPT, and 2D COSY, HETCOR, HSQC, HMBC and J-resolved spectroscopy to elucidate the molecular structure and skeleton of strychnine at 1 Tesla. Strychnine is exemplified here, because it is a basic precursor in the chemistry of natural products and is employed as a chemical weapon and as a doping agent in sports including the Olympics. In our study, the molecular structure of the compound could be identified either with a 1D experiment at high magnetic field or with HMBC and HSQC experiments at 1 T. In conclusion, low-field NMR spectroscopy enables the chemical elucidation of the strychnine structure through a simple click with a computer mouse. In situations where a high-field NMR spectrometer is unavailable, compact NMR spectrometers can nevertheless generate knowledge of the structure, important for identifying the different chemical reaction mechanisms associated with the molecule. Desktop NMR is a cost-effective viable option in chemical forensics. It can prove adulteration and identify the origin of different strychnine salts, in particular, the strychnine free base, strychnine hemisulphate and strychnine hydrochloride. The chemical shift signatures report the chemical structure of the molecules due to the impact

  5. [Pharmacokinetics of sodium 4-[alpha-hydroxy-5-(1-imidazolyl)-2-methylbenzyl]-3,5-dimethylbenzoate (Y-20811), a new thromboxane synthetase inhibitor. I. Isolation and structure elucidation of urinary metabolite in dog].

    PubMed

    Iwata, T; Tsuruda, M; Demizu, K; Isobe, M; Takamatsu, R; Yokobe, T

    1989-09-01

    The urinary metabolites of sodium 4-[alpha-hydroxy-5-(1-imidazolyl)-2-methylbenzyl]-3,5-dimethylbenzoat e (Y-20811) in dog were investigated. The main metabolite was isolated by high performance liquid chromatography and subsequent preparative thin layer chromatography. The structure of this metabolite was established as 4-[alpha-hydroxy-2-hydroxymethyl-5-(1-imidazolyl)benzyl]-3,5- dimethylbenzoic acid on the basis of spectral analyses and confirmed by its total synthesis.

  6. Natural dibenzoxazepinones from leaves of Carex distachya: Structural elucidation and radical scavenging activity.

    PubMed

    Fiorentino, Antonio; D'Abrosca, Brigida; Pacifico, Severina; Cefarelli, Giuseppe; Uzzo, Piera; Monaco, Pietro

    2007-02-01

    Two new dibenzoxazepinones have been isolated from the leaves of Carex distachya, an herbaceous plant growing in the Mediterranean area. The structures have been elucidated on the basis of their spectroscopic properties. Bidimensional NMR (DQ-COSY, TOCSY, NOESY, ROESY, HSQC, and HMBC) furnished important data useful for the characterization of the molecules. The compounds have been assayed, for the antioxidant activity, by measuring its capacity to scavenge the DPPH, the superoxide anion, and nitric oxide radicals.

  7. Structure elucidation and complete NMR spectral assignments of four new diterpenoids from Smallantus sonchifolius.

    PubMed

    Dou, De-Qiang; Tian, Fang; Qiu, Ying-Kun; Kang, Ting-Guo; Dong, Feng

    2008-08-01

    Four new diterpenoids, named smaditerpenic acid A-D, together with five known compounds, were isolated from the H(2)O extract of the leaves of Smallantus sonchifolius (yacon) cultivated in Liaoning, China and their structures were elucidated on the basis of one- and two-dimensional NMR (including (1)H, (13)C-NMR, (1)H-(1)H COSY, HSQC, TOCSY, HMBC, and ROESY), electrospray ionization mass spectrometry (ESI-MS), and chemical methods.

  8. Advances in structure elucidation of small molecules using mass spectrometry

    PubMed Central

    Fiehn, Oliver

    2010-01-01

    The structural elucidation of small molecules using mass spectrometry plays an important role in modern life sciences and bioanalytical approaches. This review covers different soft and hard ionization techniques and figures of merit for modern mass spectrometers, such as mass resolving power, mass accuracy, isotopic abundance accuracy, accurate mass multiple-stage MS(n) capability, as well as hybrid mass spectrometric and orthogonal chromatographic approaches. The latter part discusses mass spectral data handling strategies, which includes background and noise subtraction, adduct formation and detection, charge state determination, accurate mass measurements, elemental composition determinations, and complex data-dependent setups with ion maps and ion trees. The importance of mass spectral library search algorithms for tandem mass spectra and multiple-stage MS(n) mass spectra as well as mass spectral tree libraries that combine multiple-stage mass spectra are outlined. The successive chapter discusses mass spectral fragmentation pathways, biotransformation reactions and drug metabolism studies, the mass spectral simulation and generation of in silico mass spectra, expert systems for mass spectral interpretation, and the use of computational chemistry to explain gas-phase phenomena. A single chapter discusses data handling for hyphenated approaches including mass spectral deconvolution for clean mass spectra, cheminformatics approaches and structure retention relationships, and retention index predictions for gas and liquid chromatography. The last section reviews the current state of electronic data sharing of mass spectra and discusses the importance of software development for the advancement of structure elucidation of small molecules. Electronic supplementary material The online version of this article (doi:10.1007/s12566-010-0015-9) contains supplementary material, which is available to authorized users. PMID:21289855

  9. Structural elucidation of organic contaminants by chemical ionisation mass spectrometry

    NASA Astrophysics Data System (ADS)

    Moldovan, Zaharie

    2009-08-01

    The PI-CI mass spectra formation for a new family of aromatic amines, with general formula: R1-Ph-NH-Ph-R2 is discussed in correlation with the R1 and R2 structure. The compounds where isolated from some environmental samples by GC/MS technique. The characteristic ions are produced by rearrangement processes involving olefin and alkane neutral molecule elimination from [M+H]+ and sole olefin molecule elimination from [M+ C2H5]+.

  10. Structure elucidation of casbane diterpenes from Croton argyrophyllus.

    PubMed

    e Silva-Filho, Francisco Artur; Braz-Filho, Raimundo; Silveira, Edilberto Rocha; Lima, Mary Anne Sousa

    2011-06-01

    Two novel casbane diterpenes 1-hydroxy-(2E,6Z,12E)-casba-2,6,12-triene-4,5-dione (1) and 6E,12E-casba-1,3,6,12-tetraen-1,4-epoxy-5-one (2) were isolated from the ethanol extract of the stems of Croton argyrophyllus. Structural characterization including the relative stereochemistry of all compounds was established on the basis of spectroscopic methods, mainly 1D and 2D NMR, and HRESIMS.

  11. Synthesis and structural elucidation of a novel polymorph of alcaftadine

    NASA Astrophysics Data System (ADS)

    Pansuriya, Pramod B.; Maguire, Glenn E. M.; Friedrich, Holger B.

    2015-05-01

    In this study, we have synthesized and elucidated the structure of the H1 histamine antagonist, 2-(1-methylpiperidin-4-ylidene)-4,7-diazatricyclo[8.4.0.0(3,7)]tetradeca-1(14),3,5,10,12-pentaene-6-carbaldehyde in the solution and solid-state. We have also studied the thermal dilapidation of the compound. Solution structure analysis was achieved by employing NMR spectroscopy including 2D experiments NOESY, HSQC and HMBC, while solid state investigations were undertaken using SXRD, PXRD, TGA, DSC, and IR spectroscopy. For the first time the single crystal structure of alcaftadine has now been solved. Crystallographic data are as follows: monoclinic, Cc, a = 11.5694(6) Å, b = 14.5864(6) Å, c = 10.2688(4) Å, α = 90°, β = 111.793(3)°, γ = 90°, V = 1609.07(13) Å3, Z = 4. The Hirshfeld surface analyses also have been performed using the crystal structure.

  12. Elucidation of the structures of residual and dissolved pine kraft lignins using an HMQC NMR technique.

    PubMed

    Balakshin, Mikhail Yu; Capanema, Ewellyn A; Chen, Chen-Loung; Gracz, Hanna S

    2003-10-08

    Comparative studies on the structures of residual and dissolved lignins isolated from pine kraft pulp and pulping liquor have been undertaken using the (1)H-(13)C HMQC NMR technique, GPC, and sugar analysis to elucidate the reaction mechanisms in kraft pulping and the lignin reactivity. A modified procedure for the isolation of enzymatic residual lignins has resulted in an appreciable decrease in protein contaminants in the residual lignin preparations (N content < 0.2%). The very high dispersion of HMQC spectra allows identification of different lignin moieties, which signals appear overlapped in 1D (13)C NMR spectra. Elucidation of the role of condensation reactions indicates that an increase in the degree of lignin condensation during pulping results from accumulation of original condensed lignin moieties rather than from the formation of new alkyl-aryl structures. Among aryl-vinyl type moieties, only stilbene structures are accumulated in lignin in appreciable amounts. Benzyl ether lignin-carbohydrate bonds involving primary hydroxyl groups of carbohydrates have been detected in residual and dissolved lignin preparations. Structures of the alpha-hydroxyacid type have been postulated to be among the important lignin degradation products in kraft pulping. The effect of the isolation method on the lignin structure and differences between the residual and dissolved lignins are discussed.

  13. Elucidation of operon structures across closely related bacterial genomes.

    PubMed

    Zhou, Chuan; Ma, Qin; Li, Guojun

    2014-01-01

    About half of the protein-coding genes in prokaryotic genomes are organized into operons to facilitate co-regulation during transcription. With the evolution of genomes, operon structures are undergoing changes which could coordinate diverse gene expression patterns in response to various stimuli during the life cycle of a bacterial cell. Here we developed a graph-based model to elucidate the diversity of operon structures across a set of closely related bacterial genomes. In the constructed graph, each node represents one orthologous gene group (OGG) and a pair of nodes will be connected if any two genes, from the corresponding two OGGs respectively, are located in the same operon as immediate neighbors in any of the considered genomes. Through identifying the connected components in the above graph, we found that genes in a connected component are likely to be functionally related and these identified components tend to form treelike topology, such as paths and stars, corresponding to different biological mechanisms in transcriptional regulation as follows. Specifically, (i) a path-structure component integrates genes encoding a protein complex, such as ribosome; and (ii) a star-structure component not only groups related genes together, but also reflects the key functional roles of the central node of this component, such as the ABC transporter with a transporter permease and substrate-binding proteins surrounding it. Most interestingly, the genes from organisms with highly diverse living environments, i.e., biomass degraders and animal pathogens of clostridia in our study, can be clearly classified into different topological groups on some connected components.

  14. Computer-assisted methods for molecular structure elucidation: realizing a spectroscopist's dream

    PubMed Central

    2009-01-01

    Background This article coincides with the 40 year anniversary of the first published works devoted to the creation of algorithms for computer-aided structure elucidation (CASE). The general principles on which CASE methods are based will be reviewed and the present state of the art in this field will be described using, as an example, the expert system Structure Elucidator. Results The developers of CASE systems have been forced to overcome many obstacles hindering the development of a software application capable of drastically reducing the time and effort required to determine the structures of newly isolated organic compounds. Large complex molecules of up to 100 or more skeletal atoms with topological peculiarity can be quickly identified using the expert system Structure Elucidator based on spectral data. Logical analysis of 2D NMR data frequently allows for the detection of the presence of COSY and HMBC correlations of "nonstandard" length. Fuzzy structure generation provides a possibility to obtain the correct solution even in those cases when an unknown number of nonstandard correlations of unknown length are present in the spectra. The relative stereochemistry of big rigid molecules containing many stereocenters can be determined using the StrucEluc system and NOESY/ROESY 2D NMR data for this purpose. Conclusion The StrucEluc system continues to be developed in order to expand the general applicability, provide improved workflows, usability of the system and increased reliability of the results. It is expected that expert systems similar to that described in this paper will receive increasing acceptance in the next decade and will ultimately be integrated directly to analytical instruments for the purpose of organic analysis. Work in this direction is in progress. In spite of the fact that many difficulties have already been overcome to deliver on the spectroscopist's dream of "fully automated structure elucidation" there is still work to do. Nevertheless

  15. Phospholpid studies of marine organisms: 2.(1) Phospholipids, phospholipid-bound fatty acids and free sterols of the spongeAplysina fistularis (Pallas) formafulva (Pallas) (=Verongia thiona)(2). Isolation and structure elucidation of unprecedented branched fatty acids.

    PubMed

    Walkup, R D; Jamieson, G C; Ratcliff, M R; Djerassi, C

    1981-09-01

    The free sterols and phospholipids of the demospongeAplysina fistularis were isolated and analyzed. The free sterols consisted mainly of the unusual 26-methylated sterols aplysterol (53%) and 24(28)-dehydroaplysterol (7%) together with 7 commonly occurring sterods. The major phospholipids were phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol, phosphatidylethanolamine, phosphatidylserine and diphosphatidylglycerol. The major fatty acyl components of the phospholipids consisted of 85% C14-C20 acids, including the unprecedented 2,6,10-trimethyl-5-tetradecenoic acid and 11-methyloctadecanoic acid. The remaining 15% were C27-C30 demospongic acids, including 2 novel acids tentatively assigned the structures 5,9,23-octacosatrienoic acid and 5,9,23-nonacosatrienoic acid, and 3 novel acids proven to be 5,9,21-octacosatrienoic acid, Z,Z-20-methyl-5,9-hexacosadienoic acid and Z,Z-22-methyl-5,9-octacosadienoic acid. The biosyntheses of the novel demospongic acids are proposed to occur by chain elongation of monoenoic or branched precursors followed by desaturation. The large quantities of typically bacterial phospholipids and fatty acids found implied the presence of bacteria in the sponge, in agreement with microscopic studies. Analysis of the phospholipid-bound fatty acids in a sponge cell-enriched fraction indicated that the demospongic acids, including the 2 branched structures, were the major acids of the sponge cells. The presence inA. fistularis of demospongic acids containing membrane disordering groups-methyl branches or double bonds-on the ω7 carbon is proposed to be due to the need by the sponge for membranes possessing fluidity near the middle of the phospholipid bilayer. It is also proposed that the C26 methyl group of aplysterol causes disordering of the phospholipid bilayer in the same region, and thus also evolved in response to this need.

  16. Structure elucidation of organic compounds from natural sources using 1D and 2D NMR techniques

    NASA Astrophysics Data System (ADS)

    Topcu, Gulacti; Ulubelen, Ayhan

    2007-05-01

    In our continuing studies on Lamiaceae family plants including Salvia, Teucrium, Ajuga, Sideritis, Nepeta and Lavandula growing in Anatolia, many terpenoids, consisting of over 50 distinct triterpenoids and steroids, and over 200 diterpenoids, several sesterterpenoids and sesquiterpenoids along with many flavonoids and other phenolic compounds have been isolated. For Salvia species abietanes, for Teucrium and Ajuga species neo-clerodanes for Sideritis species ent-kaurane diterpenes are characteristic while nepetalactones are specific for Nepeta species. In this review article, only some interesting and different type of skeleton having constituents, namely rearranged, nor- or rare diterpenes, isolated from these species will be presented. For structure elucidation of these natural diterpenoids intensive one- and two-dimensional NMR techniques ( 1H, 13C, APT, DEPT, NOE/NOESY, 1H- 1H COSY, HETCOR, COLOC, HMQC/HSQC, HMBC, SINEPT) were used besides mass and some other spectroscopic methods.

  17. Structural elucidation of humulone autoxidation products and analysis of their occurrence in stored hops.

    PubMed

    Taniguchi, Yoshimasa; Taniguchi, Harumi; Matsukura, Yasuko; Kawachi, Yasuji; Shindo, Kazutoshi

    2014-06-27

    The transformation of α-acids [in hops (Humulus lupulus L.)] to iso-α-acids (in beer) during the brewing process is well known, but the occurrence and structure of the oxidized α-acids during hop storage are not well documented. Because an understanding of these oxidized compounds is essential to optimize the effects of oxidized hops on the quality of beer, we investigated the autoxidation products of humulone (a representative congener of α-acids) using a simplified autoxidation model. Among the oxidation products, tricyclooxyisohumulones A (1) and B (2), tricycloperoxyisohumulone A (3), deisopropyltricycloisohumulone (4), and the hemiacetal 5 of tricycloperoxyhumulone A (5') were isolated, and their structures were elucidated for the first time. The occurrence of compounds 1-4 in stored hops was verified using LC/MS/MS analysis. We also monitored the levels of compounds 1-4 during hop storage using LC/MS/MS analysis.

  18. Structure Elucidation and Immunomodulatory Activity of A Beta Glucan from the Fruiting Bodies of Ganoderma sinense

    PubMed Central

    Yue, Rui-Qi; Dong, Cai-Xia; Chan, Chung-Lap; Ko, Chun-Hay; Cheung, Wing-Shing; Luo, Ke-Wang; Dai, Hui; Wong, Chun-Kwok; Leung, Ping-Chung; Han, Quan-Bin

    2014-01-01

    A polysaccharide named GSP-2 with a molecular size of 32 kDa was isolated from the fruiting bodies of Ganoderma sinense. Its structure was well elucidated, by a combined utilization of chemical and spectroscopic techniques, to be a β-glucan with a backbone of (1→4)– and (1→6)–Glcp, bearing terminal- and (1→3)–Glcp side-chains at O-3 position of (1→6)–Glcp. Immunological assay exhibited that GSP-2 significantly induced the proliferation of BALB/c mice splenocytes with target on only B cells, and enhanced the production of several cytokines in human peripheral blood mononuclear cells and derived dendritic cells. Besides, the fluorescent labeled GSP-2 was phagocytosed by the RAW 264.7 cells and induced the nitric oxide secretion from the cells. PMID:25014571

  19. Structural elucidation of polysaccharide containing 3-O-methyl galactose from fruiting bodies of Pleurotus citrinopileatus.

    PubMed

    He, Pengfei; Zhang, Anqiang; Zhou, Saijing; Zhang, Fuming; Linhardt, Robert J; Sun, Peilong

    2016-11-03

    A water-soluble polysaccharide containing 3-O-methyl galactose (PCP60W) was isolated from fruiting bodies of Pleurotus citrinopileatus and purified by anion-exchange and gel column chromatography. This polysaccharide has an average molecular weight of 2.74 × 10(4) Da and its structure was elucidated using monosaccharide composition and methylation analysis combined with one- and two-dimensional (COSY, TOCSY, NOESY, HMQC and HMBC) NMR spectroscopy. PCP60W was shown to be a linear partially 3-O-methylated α-galactopyranan comprised of 6-linked galactose, 6-linked 3-O-methyl galactose and 4-linked glucose in a ratio of 3.0:1.0:0.6. This work provides additional evidence for the view that 3-O-methyl galactose is common to the genus Pleurotus.

  20. Elucidation of kinematical and dynamical structure of the Galactic bulge

    NASA Astrophysics Data System (ADS)

    Yano, T.; Gouda, N.; Ueda, H.; Koyama, H.; Kan-ya, Y.; Taruya, A.

    2008-07-01

    Future space mission of astrometric satellite, GAIA and JASMINE (Japan Astrometry Satellite Mission for Infrared Exploration), will produce astrometric parameter, such as positions, parallaxes, and proper motions of stars in the Galactic bulge. Then kinematical information will be obtained in the future. Accordingly it is expected that our understanding of the dynamical structure will be greatly improved. Therefore it is important to make a method to construct a kinematical and dynamical structure of the Galactic bulge immediately.

  1. Structural Elucidation of Chalcone Reductase and Implications for Deoxychalcone Biosynthesis

    PubMed Central

    Bomati, Erin K.; Austin, Michael B.; Bowman, Marianne E.; Dixon, Richard A.; Noel, Joseph P.

    2010-01-01

    4,2′,4′,6′-tetrahydroxychalcone (chalcone) and 4,2′,4′-trihydroxychalcone (deoxychalcone) serve as precursors of ecologically important flavonoids and isoflavonoids. Deoxychalcone formation depends on chalcone synthase and chalcone reductase; however, the identity of the chalcone reductase substrate out of the possible substrates formed during the multistep reaction catalyzed by chalcone synthase remains experimentally elusive. We report here the three-dimensional structure of alfalfa chalcone reductase bound to the NADP+ cofactor and propose the identity and binding mode of its substrate, namely the non-aromatized coumaryl-trione intermediate of the chalcone synthase-catalyzed cyclization of the fully extended coumaryl-tetraketide thioester intermediate. In the absence of a ternary complex, the quality of the refined NADP+-bound chalcone reductase structure serves as a template for computer-assisted docking to evaluate the likelihood of possible substrates. Interestingly, chalcone reductase adopts the three-dimensional structure of the aldo/keto reductase superfamily. The aldo/keto reductase fold is structurally distinct from all known ketoreductases of fatty acid biosynthesis, which instead belong to the short-chain dehydrogenase/reductase superfamily. The results presented here provide structural support for convergent functional evolution of these two ketoreductases that share similar roles in the biosynthesis of fatty acids/polyketides. In addition, the chalcone reductase structure represents the first protein structure of a member of the aldo/ketoreductase 4 family. Therefore, the chalcone reductase structure serves as a template for the homology modeling of other aldo/ketoreductase 4 family members, including the reductase involved in morphine biosynthesis, namely codeinone reductase. PMID:15970585

  2. Atomic structure of anthrax protective antigen pore elucidates toxin translocation.

    PubMed

    Jiang, Jiansen; Pentelute, Bradley L; Collier, R John; Zhou, Z Hong

    2015-05-28

    Anthrax toxin, comprising protective antigen, lethal factor, and oedema factor, is the major virulence factor of Bacillus anthracis, an agent that causes high mortality in humans and animals. Protective antigen forms oligomeric prepores that undergo conversion to membrane-spanning pores by endosomal acidification, and these pores translocate the enzymes lethal factor and oedema factor into the cytosol of target cells. Protective antigen is not only a vaccine component and therapeutic target for anthrax infections but also an excellent model system for understanding the mechanism of protein translocation. On the basis of biochemical and electrophysiological results, researchers have proposed that a phi (Φ)-clamp composed of phenylalanine (Phe)427 residues of protective antigen catalyses protein translocation via a charge-state-dependent Brownian ratchet. Although atomic structures of protective antigen prepores are available, how protective antigen senses low pH, converts to active pore, and translocates lethal factor and oedema factor are not well defined without an atomic model of its pore. Here, by cryo-electron microscopy with direct electron counting, we determine the protective antigen pore structure at 2.9-Å resolution. The structure reveals the long-sought-after catalytic Φ-clamp and the membrane-spanning translocation channel, and supports the Brownian ratchet model for protein translocation. Comparisons of four structures reveal conformational changes in prepore to pore conversion that support a multi-step mechanism by which low pH is sensed and the membrane-spanning channel is formed.

  3. Cytotoxic 1,3-Thiazole and 1,2,4-Thiadiazole Alkaloids from Penicillium oxalicum: Structural Elucidation and Total Synthesis.

    PubMed

    Yang, Zheng; Huang, Nianyu; Xu, Bang; Huang, Wenfeng; Xie, Tianpeng; Cheng, Fan; Zou, Kun

    2016-02-26

    Two new thiazole and thiadiazole alkaloids, penicilliumthiamine A and B (2 and 3), were isolated from the culture broth of Penicillium oxalicum, a fungus found in Acrida cinerea. Their structures were elucidated mainly by spectroscopic analysis, total synthesis and X-ray crystallographic analysis. Biological evaluations indicated that compound 1, 3a and 3 exhibit potent cytotoxicity against different cancer cell lines through inhibiting the phosphorylation of AKT/PKB (Ser 473), one of important cancer drugs target.

  4. Structure elucidation and DNA binding specificity of natural compounds from Cassia siamea leaves: A biophysical approach.

    PubMed

    Parveen, Mehtab; Ahmad, Faheem; Malla, Ali Mohammed; Khan, Mohd Sohrab; Rehman, Sayeed Ur; Tabish, Mohammad; Silva, Manuela Ramos; Silva, P S Pereira

    2016-06-01

    A novel isoflavone, 5,6,7-trimethoxy-3-(3',4',5'-trimethoxyphenyl)-4H-chromen-4-one (1) along with a known pyranocoumarin, Seselin (2) have been isolated from the ethanolic extract of the leaves of Cassia siamea (Family: Fabaceae). Compound 1 has been reported for the first time from any natural source and has not been synthesized so far. Their structures were elucidated on the basis of chemical and physical evidences viz. elemental analysis, UV, FT-IR, (1)H-NMR, (13)C-NMR and mass spectral analysis. Structure of compound (1) was further authenticated by single-crystal X-ray analysis and density functional theory (DFT) calculations. A multi-technique approach employing UV-Visible spectroscopy, fluorescence, KI quenching studies, competitive displacement assay, circular dichroism and viscosity studies have been utilized to probe the extent of interaction and possible binding modes of isolated compounds (1-2) with calf thymus DNA (CT-DNA). Both the compounds were found to interact with DNA via non-intercalative binding mode with moderate proficiencies. Groove binding was the major interaction mode in the case of compound 2 while compound 1 probably interacts with DNA through electrostatic interactions. These studies provide deeper insight in understanding of DNA-drug (natural products) interaction which could be helpful to improve their bioavailability for therapeutic purposes.

  5. Compositional analysis and structural elucidation of glycosaminoglycans in chicken eggs.

    PubMed

    Liu, Zhangguo; Zhang, Fuming; Li, Lingyun; Li, Guoyun; He, Wenqing; Linhardt, Robert J

    2014-11-01

    Glycosaminoglycans (GAGs) have numerous applications in the fields of pharmaceuticals, cosmetics, nutraceuticals, and foods. GAGs are also critically important in the developmental biology of all multicellular animals. GAGs were isolated from chicken egg components including yolk, thick egg white, thin egg white, membrane, calcified shell matrix supernatant, and shell matrix deposit. Disaccharide compositional analysis was performed using ultra high-performance liquid chromatography-mass spectrometry. The results of these analyses showed that all four families of GAGs were detected in all egg components. Keratan sulfate was found in egg whites (thick and thin) and shell matrix (calcified shell matrix supernatant and deposit) with high level. Chondroitin sulfates were much more plentiful in both shell matrix components and membrane. Hyaluronan was plentiful in both shell matrix components and membrane, but was only present in a trace of quantities in the yolk. Heparan sulfate was plentiful in the shell matrix deposit but was present in a trace of quantities in the egg content components (yolk, thick and thin egg whites). Most of the chondroitin and heparan sulfate disaccharides were present in the GAGs found in chicken eggs with the exception of chondroitin and heparan sulfate 2,6-disulfated disaccharides. Both CS and HS in the shell matrix deposit contained the most diverse chondroitin and heparan sulfate disaccharide compositions. Eggs might provide a potential new source of GAGs.

  6. Fatty acid biosynthesis revisited: structure elucidation and metabolic engineering.

    PubMed

    Beld, Joris; Lee, D John; Burkart, Michael D

    2015-01-01

    Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understanding of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases' many intricate structural and regulatory elements. In this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field.

  7. Fatty acid biosynthesis revisited: Structure elucidation and metabolic engineering

    SciTech Connect

    Beld, Joris; Lee, D. John; Burkart, Michael D.

    2014-10-20

    Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understanding of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases' many intricate structural and regulatory elements. Lastly, in this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field.

  8. Fatty Acid Biosynthesis Revisited: Structure Elucidation and Metabolic Engineering

    PubMed Central

    Beld, Joris; Lee, D. John

    2014-01-01

    Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understanding of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases’ many intricate structural and regulatory elements. In this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field. PMID:25360565

  9. N-methylcodeinium iodide—Crystal structure and spectroscopic elucidation

    NASA Astrophysics Data System (ADS)

    Seidel, R. W.; Bakalska, B. R.; Kolev, T.; Vassilev, D.; Mayer-Figge, H.; Spiteller, M.; Sheldrick, W. S.; Koleva, B. B.

    2009-07-01

    The correlation between the structure and the spectroscopic properties of N-methylcodeinium iodide ( 1) has been studied, using the methods of single crystal X-ray diffraction, IR-LD spectroscopy of oriented samples as a suspension in nematic liquid crystals, UV-vis spectroscopy and 1H and 13C NMR spectroscopy. HPLC tandem mass spectrometry (HPLC ESI MS/MS) and thermal methods were also employed. Quantum chemical calculations have been performed with a view to obtaining the electronic structure and vibrational properties of the title compound. Compound ( 1) crystallizes in the space group P2 12 12 1 and its cations and anions are joined by moderate intermolecular OH…I - interaction of length 3.442 Å. The codeine molecule exhibits the classical T-shape for opiates. A dihedral angle value of 86.4(5)° between the A/B/C and D/E planes is obtained. Rings A and B are effectively coplanar with an interplanar angle of 3.6(3)°.

  10. Using Machine Learning to Accelerate Complex Atomic Structure Elucidation

    NASA Astrophysics Data System (ADS)

    Brouwer, William; Calderin, Lazaro; Sofo, Jorge

    2012-02-01

    Workers in various scientific disciplines seek to develop chemical models for extended and molecular systems. The modeling process revolves around the gradual refinement of model assumptions, through comparison of experimental and computational results. Solid state Nuclear Magnetic Resonance (NMR) is one such experimental technique, providing great insight into chemical order over Angstrom length scales. However, interpretation of spectra for complex materials is difficult, often requiring intensive simulations. Similarly, working forward from the model in order to produce experimental quantities via ab initio is computationally demanding. The work involved in these two significant steps, compounded by the need to iterate back and forth, drastically slows the discovery process for new materials. There is thus great motivation for the derivation of structural models directly from complex experimental data, the subject of this work. Using solid state NMR experimental datasets, in conjunction with ab initio calculations of measurable NMR parameters, a network of machine learning kernels are trained to rapidly yield structural details, on the basis of input NMR spectra. Results for an environmentally relevant material will be presented, and directions for future work.

  11. Fatty acid biosynthesis revisited: Structure elucidation and metabolic engineering

    DOE PAGES

    Beld, Joris; Lee, D. John; Burkart, Michael D.

    2014-10-20

    Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understandingmore » of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases' many intricate structural and regulatory elements. Lastly, in this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field.« less

  12. Fluorescent monolayer protected gold nanoparticles - Preparation and structure elucidation

    NASA Astrophysics Data System (ADS)

    Angelova, P.; Kuchukova, N.; Dobrikov, G. M.; Timtcheva, I.; Kostova, K.; Petkova, I.; Vauthey, E.

    2011-05-01

    A novel N-substituted 4-methoxy-1,8-naphthalimide (NAFTA 8) especially designed for fluorescent labeling of gold nanoparticles has been synthesized. NAFTA 8 bears a long methylene chain at the imide N atom and has a terminal SH group, which enables its chemical binding to gold nanostructures. The longest wavelength absorption maximum of NAFTA 8 in chloroform is at 370 nm, the fluorescent maximum is at 430 nm and the fluorescent quantum yield is 0.95. The newly synthesized fluorophore is applied for functionalization of gold nanoparticles with diameter 1.5 ± 0.5 nm prepared through chemical reduction. The obtained Monolayer Protected Clusters are characterized by elemental analysis, TEM, XPS, FT-IR, absorption and fluorescence spectroscopy. The performed investigations provide evidence for the formation of chemical bond between the thiol ligand and the gold surface. They also show that the obtained metal/dielectric 3D structures are highly fluorescent.

  13. Structural elucidation of polysaccharide fractions from brown seaweed Sargassum pallidum.

    PubMed

    Ye, Hong; Zhou, Chunhong; Li, Wei; Hu, Bing; Wang, Xiaoqing; Zeng, Xiaoxiong

    2013-09-12

    The structural characteristics of two purified fractions of polysaccharides from Sargassum pallidum (SPS) were investigated in the present study. As results, the molecular weights of the two polysaccharide fractions, SPS-3-1 and SPS-3-2, were determined to be 5.87 and 7.25 kDa, respectively. SPS-3-1 was composed of glucose, mannose and galactose in a molar ratio of 11.18:1.00:0.96, while SPS-3-2 was composed of fucose, xylose, mannose, glucose and galactose in a molar ratio of 2.53:0.61:1.00:0.46:0.92. Both SPS-3-1 and SPS-3-2 exhibited the characteristics of polysaccharide in the frequency range of 4000-400 cm(-1) based on their Fourier-transform infrared spectra. Furthermore, the results of periodic acid oxidation, Smith degradation, methylation analysis and nuclear magnetic resonance spectroscopic analysis suggested that SPS-3-2 was composed of (1→4)-linked fucopyranosyl backbone and (1→3)-linked galactopyranosyl, (1→3)-linked mannopyranosyl, (1→2)-linked xylopyranosyl and (1→6)-linked glucopyranosyl branch chains.

  14. Structure elucidation of two novel yak milk oligosaccharides and their DFT studies

    NASA Astrophysics Data System (ADS)

    Singh, Ashish Kumar; Ranjan, Ashok Kr.; Srivastava, Gaurav; Deepak, Desh

    2016-03-01

    Milk is a primary dynamic biological fluid responsible for development of neonates. Besides the other regular constituents it have oligosaccharides in it which are responsible for antitumor, anticancer, antigenic and immunostimulant activities. In our endeavor to find biologically active novel oligosaccharides, yak milk was taken, which is a rich source of oligosaccharide and its milk is used as antihypertensive, antioxidative and heart strengthening agent in folk medicine. For this purpose yak milk was processed by method of Kobata and Ginsburg followed by gel filtration HPLC and CC which resulted in the isolation of two novel milk oligosaccharides namely (I) Grunniose and (II) Vakose. The structure of purified milk oligosaccharides were elucidated with the help of chemical degradation, chemical transformation, spectroscopic techniques like NMR (1H, 13C and 2D-NMR), structure reporter group theory and mass spectrometry. The optimized geometry of compound Grunniose and Vakose, at B3LYP method and 6-311 + G basis set on Gaussian 09 program, show that the compound Grunniose is lower in energy as compared to compound Vakose.

  15. Annotation and structural elucidation of bovine milk oligosaccharides and determination of novel fucosylated structures.

    PubMed

    Aldredge, Danielle L; Geronimo, Maria R; Hua, Serenus; Nwosu, Charles C; Lebrilla, Carlito B; Barile, Daniela

    2013-06-01

    Bovine milk oligosaccharides (BMOs) are recognized by the dairy and food industries, as well as by infant formula manufacturers, as novel, high-potential bioactive food ingredients. Recent studies revealed that bovine milk contains complex oligosaccharides structurally related to those previously thought to be present in only human milk. These BMOs are microbiotic modulators involved in important biological activities, including preventing pathogen binding to the intestinal epithelium and serving as nutrients for a selected class of beneficial bacteria. Only a small number of BMO structures are fully elucidated. To better understand the potential of BMOs as a class of biotherapeutics, their detailed structure analysis is needed. This study initiated the development of a structure library of BMOs and a comprehensive evaluation of structure-related specificity. The bovine milk glycome was profiled by high-performance mass spectrometry and advanced separation techniques to obtain a comprehensive catalog of BMOs, including several novel, lower abundant neutral and fucosylated oligosaccharides that are often overlooked during analysis. Structures were identified using isomer-specific tandem mass spectroscopy and targeted exoglycosidase digestions to produce a BMO library detailing retention time, accurate mass and structure to allow their rapid identification in future studies.

  16. Annotation and structural elucidation of bovine milk oligosaccharides and determination of novel fucosylated structures

    PubMed Central

    Aldredge, Danielle L; Geronimo, Maria R; Hua, Serenus; Nwosu, Charles C; Lebrilla, Carlito B; Barile, Daniela

    2013-01-01

    Bovine milk oligosaccharides (BMOs) are recognized by the dairy and food industries, as well as by infant formula manufacturers, as novel, high-potential bioactive food ingredients. Recent studies revealed that bovine milk contains complex oligosaccharides structurally related to those previously thought to be present in only human milk. These BMOs are microbiotic modulators involved in important biological activities, including preventing pathogen binding to the intestinal epithelium and serving as nutrients for a selected class of beneficial bacteria. Only a small number of BMO structures are fully elucidated. To better understand the potential of BMOs as a class of biotherapeutics, their detailed structure analysis is needed. This study initiated the development of a structure library of BMOs and a comprehensive evaluation of structure-related specificity. The bovine milk glycome was profiled by high-performance mass spectrometry and advanced separation techniques to obtain a comprehensive catalog of BMOs, including several novel, lower abundant neutral and fucosylated oligosaccharides that are often overlooked during analysis. Structures were identified using isomer-specific tandem mass spectroscopy and targeted exoglycosidase digestions to produce a BMO library detailing retention time, accurate mass and structure to allow their rapid identification in future studies. PMID:23436288

  17. Methods for the comprehensive structural elucidation of constitution and stereochemistry of lipopeptides.

    PubMed

    Gerhardt, Heike; Sievers-Engler, Adrian; Jahanshah, Ghazaleh; Pataj, Zoltán; Ianni, Federica; Gross, Harald; Lindner, Wolfgang; Lämmerhofer, Michael

    2016-01-08

    A panel of methods of general suitability for complete structural elucidation of the stereochemistry of cyclopeptides, depsipeptides and lipopeptides is presented and described in detail. The suitability of the proposed methods was exemplified on the lipopeptide poaeamide from Pseudomonas poae. Amino acid configurations have been assigned by direct LC enantiomer separation with Chiralpak ZWIX(+) and were confirmed by GC enantiomer separation on Chirasil L-Val. 3-Hydroxydecanoic acid absolute configuration was analyzed on Chiralpak ZWIX(+) and confirmed by injection on ZWIX(-) which showed opposite elution order. Plenty of d-amino acids have been found in this lipopeptide. It contained in total 5 Leu residues of which one had d-configuration. The position of the d-Leu in the peptide sequence was determined by pepsin and chemical digestions in combination with isolation of diagnostic peptide-fragments and subsequent identification of absolute configurations of the Leu residues. This allowed pinpointing the position of the d-amino acid. The complementarity of the peptide retention profiles on Chiralpak ZWIX column as compared to both RPLC and HILIC suggests its great utility as an alternative peptide separation tool.

  18. The structural elucidation and antimicrobial activities of two isoflavane glycosides from Astragalus membranaceus (Fisch) Bge. var. mongholicus (Bge) Hsiao

    NASA Astrophysics Data System (ADS)

    Wang, Qing-Hu; Han, Na-ren-chao-ke-tu; Dai, Na-yin-tai; Wang, Xiu-lan; Ao, Wu-Li-Ji

    2014-11-01

    Two isoflavane glycoside had been isolated from the EtOAc-soluble fraction of the roots of Astragalus membranaceus (Fisch) Bge. var. mongholicus (Bge) Hsiao. This is the first report on the structure elucidation of 2‧,5‧-dicarbonyl-3‧,4‧-dimethoxyisoflavanequinone-7-O-β-D-glucoside (1) based on spectroscopic methods including UV (Ultraviolet Spectrophotometry), IR (Infrared Absorption Spectroscopy), ESI-MS (Electrospray Ionization Mass Spectrometry), 1D NMR (Nuclear Magnetic Resonance Spectroscopy) and 2D NMR techniques. At the same time, antimicrobial activity of the two compounds was evaluated against various bacteria and fungi.

  19. Chemical synthesis and structure elucidation of bovine {kappa}-casein (1-44)

    SciTech Connect

    Bansal, Paramjit S.; Grieve, Paul A.; Marschke, Ronald J.; Daly, Norelle L.; McGhie, Emily; Craik, David J.; Alewood, Paul F. . E-mail: p.alewood@imb.uq.edu.au

    2006-02-24

    The caseins ({alpha}{sub s1}, {alpha}{sub s2}, {beta}, and {kappa}) are phosphoproteins present in bovine milk that have been studied for over a century and whose structures remain obscure. Here we describe the chemical synthesis and structure elucidation of the N-terminal segment (1-44) of bovine {kappa}-casein, the protein which maintains the micellar structure of the caseins. {kappa}-Casein (1-44) was synthesised by highly optimised Boc solid-phase peptide chemistry and characterised by mass spectrometry. Structure elucidation was carried out by circular dichroism and nuclear magnetic resonance spectroscopy. CD analysis demonstrated that the segment was ill defined in aqueous medium but in 30% trifluoroethanol it exhibited considerable helical structure. Further, NMR analysis showed the presence of a helical segment containing 26 residues which extends from Pro{sup 8} to Arg{sup 34}. This is First report which demonstrates extensive secondary structure within the casein class of proteins.

  20. Biosynthesis of photodynamically active rubellins and structure elucidation of new anthraquinone derivatives produced by Ramularia collo-cygni.

    PubMed

    Miethbauer, Sebastian; Haase, Susann; Schmidtke, Kai-Uwe; Günther, Wolfgang; Heiser, Ingrid; Liebermann, Bernd

    2006-06-01

    Here we present the first isolation of the anthrachinone derivative rubellin A out of mycelium and culture filtrate of Ramularia collo-cygni. Furthermore, two compounds, rubellin E and 14-dehydro rubellin D were isolated and their structures elucidated. In comparison to the other rubellins, rubellin A shows increased photodynamic oxygen activation. By incorporating both [1-(13)C]-acetate and [2-(13)C]-acetate into the rubellins, we showed that such anthraquinone derivatives were biosynthesised via the polyketide pathway. The labelling pattern after being fed [U-(13)C(6)]-glucose proved the existence of fungal folding mode of the poly-beta-keto chain. The ability to produce rubellins is not limited to R. collo-cygni in the anamorph genus Ramularia.

  1. Thermodynamic Properties of Asphaltenes: A Predictive Approach Based On Computer Assisted Structure Elucidation and Atomistic Simulations

    SciTech Connect

    Diallo, Mamadou S.; Cagin, Tahir; Faulon, Jean Loup; Goddard, William A.

    2000-08-01

    The authors describe a new methodology for predicting the thermodynamic properties of petroleum geomacromolecules (asphaltenes and resins). This methodology combines computer assisted structure elucidation (CASE) with atomistic simulations (molecular mechanics and molecular dynamics and statistical mechanics). They use quantitative and qualitative structural data as input to a CASE program (SIGNATURE) to generate a sample of ten asphaltene model structures for a Saudi crude oil (Arab Berri). MM calculations and MD simulations are used to estimate selected volumetric and thermal properties of the model structures.

  2. Structure elucidation and NMR assignments of an unusual triterpene saponin derivative from Ilex kudincha.

    PubMed

    Zuo, Wenjian; Wang, Qinghu; Li, Wen; Sha, Yi; Li, Xian; Wang, Jinhui

    2012-04-01

    One unusual triterpenoid derivative, ilekudinchoside E (1), was isolated from the leaves of Ilex kudincha. The structure was established by various spectroscopic techniques, including one- and two-dimensional NMR, HRTOFMS and CD spectra.

  3. Aqabamycins A-G: novel nitro maleimides from a marine Vibrio species: II. Structure elucidation.

    PubMed

    Fotso Fondja Yao, Clarisse Blandine; Al Zereini, Wael; Fotso, Serge; Anke, Heidrun; Laatsch, Hartmut

    2010-06-01

    The structures of secondary metabolites with antibacterial and cytotoxic activities produced by a marine Vibrio strain from the Red Sea were elucidated. Aqabamycin A (1a) and seven further nitro-substituted maleimide derivates named aqabamycins B-G (1b-f and 2) were obtained together with 12 known metabolites, 3-nitro-1H-indazole (3), indazole-3-carbaldehyde (4), 3-nitro-4-hydroxycinnamic acid, 4-hydroxycinnamic acid, 3-nitro-4-hydroxybenzaldehyde, phenyl-2-bis-indolylmethane (5a), turbomycin B (5b), vibrindole A (6), phenylacetic acid, 3-hydroxybenzoic acid, benzoic acid and 1,4-dithiane (7). Some of the known metabolites (for example, 3, 4 and 7) are described in this study for the first time as natural products. Their structures were elucidated based on 1D and 2D NMR, MS spectra and by comparison with synthetic material.

  4. Elucidation of peptide-directed palladium surface structure for biologically tunable nanocatalysts.

    PubMed

    Bedford, Nicholas M; Ramezani-Dakhel, Hadi; Slocik, Joseph M; Briggs, Beverly D; Ren, Yang; Frenkel, Anatoly I; Petkov, Valeri; Heinz, Hendrik; Naik, Rajesh R; Knecht, Marc R

    2015-05-26

    Peptide-enabled synthesis of inorganic nanostructures represents an avenue to access catalytic materials with tunable and optimized properties. This is achieved via peptide complexity and programmability that is missing in traditional ligands for catalytic nanomaterials. Unfortunately, there is limited information available to correlate peptide sequence to particle structure and catalytic activity to date. As such, the application of peptide-enabled nanocatalysts remains limited to trial and error approaches. In this paper, a hybrid experimental and computational approach is introduced to systematically elucidate biomolecule-dependent structure/function relationships for peptide-capped Pd nanocatalysts. Synchrotron X-ray techniques were used to uncover substantial particle surface structural disorder, which was dependent upon the amino acid sequence of the peptide capping ligand. Nanocatalyst configurations were then determined directly from experimental data using reverse Monte Carlo methods and further refined using molecular dynamics simulation, obtaining thermodynamically stable peptide-Pd nanoparticle configurations. Sequence-dependent catalytic property differences for C-C coupling and olefin hydrogenation were then elucidated by identification of the catalytic active sites at the atomic level and quantitative prediction of relative reaction rates. This hybrid methodology provides a clear route to determine peptide-dependent structure/function relationships, enabling the generation of guidelines for catalyst design through rational tailoring of peptide sequences.

  5. Tannin structural elucidation and quantitative ³¹P NMR analysis. 1. Model compounds.

    PubMed

    Melone, Federica; Saladino, Raffaele; Lange, Heiko; Crestini, Claudia

    2013-10-02

    Tannins and flavonoids are secondary metabolites of plants that display a wide array of biological activities. This peculiarity is related to the inhibition of extracellular enzymes that occurs through the complexation of peptides by tannins. Not only the nature of these interactions, but more fundamentally also the structure of these heterogeneous polyphenolic molecules are not completely clear. This first paper describes the development of a new analytical method for the structural characterization of tannins on the basis of tannin model compounds employing an in situ labeling of all labile H groups (aliphatic OH, phenolic OH, and carboxylic acids) with a phosphorus reagent. The ³¹P NMR analysis of ³¹P-labeled samples allowed the unprecedented quantitative and qualitative structural characterization of hydrolyzable tannins, proanthocyanidins, and catechin tannin model compounds, forming the foundations for the quantitative structural elucidation of a variety of actual tannin samples described in part 2 of this series.

  6. Computer-Assisted 3D Structure Elucidation of Natural Products using Residual Dipolar Couplings.

    PubMed

    Troche-Pesqueira, Eduardo; Anklin, Clemens; Gil, Roberto R; Navarro-Vázquez, Armando

    2017-03-20

    An enhanced computer-assisted procedure for the determination of the relative configuration of natural products, which starts from the molecular formula and uses a combination of conventional 1D and 2D NMR spectra, and residual dipolar couplings (RDCs), is reported. Having already the data acquired (1D/2D NMR and RDCs), the procedure begins with the determination of the molecular constitution using standard computer-assisted structure elucidation (CASE) and is followed by fully automated determination of relative configuration through RDC analysis. In the case of moderately flexible molecules the simplest data-explaining conformational model is selected by the use of the Akaike information criterion.

  7. Elucidation of the structure of the oligosaccharide from wild type Moraxella bovis Epp63 lipooligosaccharide.

    PubMed

    De Castro, Cristina; Grice, I Darren; Daal, Terese-Marie; Peak, Ian R; Molinaro, Antonio; Wilson, Jennifer C

    2014-03-31

    Moraxella bovis is a Gram-negative microorganism that causes Infectious Bovine Keratoconjunctivitis (IBK), colloquially known as 'Pink eye' in cattle worldwide. Lipopolysaccharides/lipooligosaccharides are the predominant glycans on the surface of Gram-negative microorganisms. Structural elucidation of the oligosaccharide structure of the rough phenotype of Moraxella bovis strain Epp63 was determined using GC-MS, methylation analysis, and NMR spectroscopy. The oligosaccharide is a branched structure that comprises 10 sugars in addition to KDO. The unusual features of this oligosaccharide include the fact that the oligosaccharide is devoid of heptose. The KDO residue is directly attached to a (→4,6)-branched glucose and additionally contains a terminal open chain acetal-linked N-acetylgalactosamine, (1S)-GalaNAc residue →4,6-linked to a sub-terminal galactose residue.

  8. Towards theory driven structure elucidation of complex natural products: mandelalides and coibamide A.

    PubMed

    Snyder, Kevin M; Sikorska, Justyna; Ye, Tao; Fang, Lijing; Su, Wu; Carter, Rich G; McPhail, Kerry L; Cheong, Paul H-Y

    2016-06-28

    The effectiveness of computational tools in determining relative configurations of complex molecules is investigated, using natural products mandelalides A-D and coibamide A, towards a generalized recipe for the scientific community at large. Ultimately, continuing efforts in this vein will accelerate and strengthen relative structure elucidation of complex molecules, such as natural products. Molecular mechanics conformational search, quantum mechanical NMR chemical shift predictions, and DP4 analyses led to confirmation of the revised structures of mandelalides A-D and coibamide A. All chiral centers in the northern hemisphere of mandelalides A-D are inverted with respect to the originally proposed structures, in agreement with recent total syntheses of mandelalide A by Ye, Fürstner & Carter. In the case of coibamide A, it was found that Fang & Su's revision, in which both the macrocycle [MeAla(11)] and the side chain [HIV(2)] residues are inverted from l to d, was consistent with the authentic natural product and computations.

  9. Complete structure elucidation of shishididemniols, complex lipids with tyramine-derived tether and two serinol units, from a marine tunicate of the family Didemnidae.

    PubMed

    Kobayashi, Hirotsugu; Ohashi, Jun'ichiro; Fujita, Tsuyoshi; Iwashita, Takashi; Nakao, Yoichi; Matsunaga, Shigeki; Fusetani, Nobuhiro

    2007-02-16

    Two new serinolipid derivatives, shishididemniols A (1) and B (2), were isolated as antibacterial constituents of a tunicate of the family Didemnidae. The structure of 1 was elucidated by interpretation of spectral data and the application of the modified Mosher method to 1 and its suitable degradation products. Compound 2 was the chlorohydrin of 1. Compounds 1 and 2 exhibited antibacterial activity against fish pathogenic bacterium Vibrio anguillarum.

  10. Structure elucidation and phytotoxicity of C13 nor-isoprenoids from Cestrum parqui.

    PubMed

    D'Abrosca, Brigida; DellaGreca, Marina; Fiorentino, Antonio; Monaco, Pietro; Oriano, Palma; Temussi, Fabio

    2004-02-01

    Twelve C(13) nor-isoprenoids have been isolated from the leaves of Cestrum parqui (Solanaceae). The structure (2R,6R,9R)-2,9-dihydroxy-4-megastigmen-3-one has been assigned to the new compound. All the structures have been determined by spectroscopic means and chemical correlations. The compounds showed phytotoxic effect on the germination and growth of Lactuca sativa L.

  11. Mitochondria: isolation, structure and function.

    PubMed

    Picard, Martin; Taivassalo, Tanja; Gouspillou, Gilles; Hepple, Russell T

    2011-09-15

    Mitochondria are complex organelles constantly undergoing processes of fusion and fission, processes that not only modulate their morphology, but also their function. Yet the assessment of mitochondrial function in skeletal muscle often involves mechanical isolation of the mitochondria, a process which disrupts their normally heterogeneous branching structure and yields relatively homogeneous spherical organelles. Alternatively, methods have been used where the sarcolemma is permeabilized and mitochondrial morphology is preserved, but both methods face the downside that they remove potential influences of the intracellular milieu on mitochondrial function. Importantly, recent evidence shows that the fragmented mitochondrial morphology resulting from routine mitochondrial isolation procedures used with skeletal muscle alters key indices of function in a manner qualitatively similar to mitochondria undergoing fission in vivo. Although these results warrant caution when interpreting data obtained with mitochondria isolated from skeletal muscle, they also suggest that isolated mitochondrial preparations might present a useful way of interrogating the stress resistance of mitochondria. More importantly, these new findings underscore the empirical value of studying mitochondrial function in minimally disruptive experimental preparations. In this review, we briefly discuss several considerations and hypotheses emerging from this work.

  12. Streamlined structure elucidation of an unknown compound in a pigment formulation.

    PubMed

    Yüce, Imanuel; Morlock, Gertrud E

    2016-10-21

    A fast and reliable quality control is important for ink manufacturers to ensure a constant production grade of mixtures and chemical formulations, and unknown components attract their attention. Structure elucidating techniques seem time-consuming in combination with column-based methods, but especially the low solubility of pigment formulations is challenging the analysis. In contrast, layer chromatography is more tolerant with regard to pigment particles. One PLC plate for NMR and FTIR analyses and one HPTLC plate for recording of high resolution mass spectra, MS/MS spectra and for gathering information on polarity and spectral properties were needed to characterize a structure, exemplarily shown for an unknown component in pigment Red 57:1 to be 3-hydroxy-2-naphtoic acid. A preparative layer chromatography (PLC) workflow was developed that used an Automated Multiple Development 2 (AMD 2) system. The 0.5-mm PLC plate could still be operated in the AMD 2 system and allowed a smooth switch from the analytical to the preparative gradient separation. Through automated gradient development and the resulting focusing of bands, the sharpness of the PLC bands was improved. For NMR, the necessary high load of the target compound on the PLC plate was achieved via a selective solvent extraction that discriminated the polar sample matrix and thus increased the application volume of the extract that could maximally be applied without overloading. By doing so, the yield for NMR analysis was improved by a factor of 9. The effectivity gain through a simple, but thoroughly chosen extraction solvent is often overlooked, and for educational purpose, it was clearly illustrated and demonstrated by an extended solvent screening. Thus, PLC using an automated gradient development after a selective extraction was proven to be a new powerful combination for structural elucidation by NMR.

  13. Bridging the gap between modules in isolation and as part of networks: A systems framework for elucidating interaction and regulation of signalling modules

    NASA Astrophysics Data System (ADS)

    Menon, Govind; Krishnan, J.

    2016-07-01

    While signalling and biochemical modules have been the focus of numerous studies, they are typically studied in isolation, with no examination of the effects of the ambient network. In this paper we formulate and develop a systems framework, rooted in dynamical systems, to understand such effects, by studying the interaction of signalling modules. The modules we consider are (i) basic covalent modification, (ii) monostable switches, (iii) bistable switches, (iv) adaptive modules, and (v) oscillatory modules. We systematically examine the interaction of these modules by analyzing (a) sequential interaction without shared components, (b) sequential interaction with shared components, and (c) oblique interactions. Our studies reveal that the behaviour of a module in isolation may be substantially different from that in a network, and explicitly demonstrate how the behaviour of a given module, the characteristics of the ambient network, and the possibility of shared components can result in new effects. Our global approach illuminates different aspects of the structure and functioning of modules, revealing the importance of dynamical characteristics as well as biochemical features; this provides a methodological platform for investigating the complexity of natural modules shaped by evolution, elucidating the effects of ambient networks on a module in multiple cellular contexts, and highlighting the capabilities and constraints for engineering robust synthetic modules. Overall, such a systems framework provides a platform for bridging the gap between non-linear information processing modules, in isolation and as parts of networks, and a basis for understanding new aspects of natural and engineered cellular networks.

  14. Bridging the gap between modules in isolation and as part of networks: A systems framework for elucidating interaction and regulation of signalling modules.

    PubMed

    Menon, Govind; Krishnan, J

    2016-07-21

    While signalling and biochemical modules have been the focus of numerous studies, they are typically studied in isolation, with no examination of the effects of the ambient network. In this paper we formulate and develop a systems framework, rooted in dynamical systems, to understand such effects, by studying the interaction of signalling modules. The modules we consider are (i) basic covalent modification, (ii) monostable switches, (iii) bistable switches, (iv) adaptive modules, and (v) oscillatory modules. We systematically examine the interaction of these modules by analyzing (a) sequential interaction without shared components, (b) sequential interaction with shared components, and (c) oblique interactions. Our studies reveal that the behaviour of a module in isolation may be substantially different from that in a network, and explicitly demonstrate how the behaviour of a given module, the characteristics of the ambient network, and the possibility of shared components can result in new effects. Our global approach illuminates different aspects of the structure and functioning of modules, revealing the importance of dynamical characteristics as well as biochemical features; this provides a methodological platform for investigating the complexity of natural modules shaped by evolution, elucidating the effects of ambient networks on a module in multiple cellular contexts, and highlighting the capabilities and constraints for engineering robust synthetic modules. Overall, such a systems framework provides a platform for bridging the gap between non-linear information processing modules, in isolation and as parts of networks, and a basis for understanding new aspects of natural and engineered cellular networks.

  15. Structural elucidation of supramolecular alpha-cyclodextrin dimer/aliphatic monofunctional molecules complexes.

    PubMed

    Barrientos, L; Lang, E; Zapata-Torres, G; Celis-Barros, C; Orellana, C; Jara, P; Yutronic, N

    2013-05-01

    The structural elucidation of 2α-cyclodextrin/1-octanethiol, 2α-cyclodextrin/1-octylamine and 2α-cyclodextrin/1-nonanoic acid inclusion complexes by nuclear magnetic resonance (NMR) spectroscopy and molecular modeling has been achieved. The detailed spatial configurations are proposed for the three inclusion complexes based on 2D NMR method. ROESY experiments confirm the inclusion of guest molecules inside the α-cyclodextrin (α-CD) cavity. On the other hand, the host-guest ratio observed was 2:1 for three complexes. The detailed spatial configuration proposed based on 2D NMR methods were further interpreted using molecular modeling studies. The theoretical calculations are in good agreement with the experimental data.

  16. Elucidation of Peptide-Directed Palladium Surface Structure for Biologically Tunable Nanocatalysts

    SciTech Connect

    Bedford, Nicholas M.; Ramezani-Dakhel, Hadi; Slocik, Joseph M.; Briggs, Beverly D.; Ren, Yang; Frenkel, Anatoly I.; Petkov, Valeri; Heinz, Hendrik; Naik, Rajesh R.; Knecht, Mark R.

    2015-05-01

    Peptide-enabled synthesis of inorganic nanostructures represents an avenue to access catalytic materials with tunable and optimized properties. This is achieved via peptide complexity and programmability that is missing in traditional ligands for catalytic nanomaterials. Unfortunately, there is limited information available to correlate peptide sequence to particle structure and catalytic activity to date. As such, the application of peptide-enabled nanocatalysts remains limited to trial and error approaches. In this paper, a hybrid experimental and computational approach is introduced to systematically elucidate biomolecule-dependent structure/function relationships for peptide-capped Pd nanocatalysts. Synchrotron X-ray techniques were used to uncover substantial particle surface structural disorder, which was dependent upon the amino acid sequence of the peptide capping ligand. Nanocatalyst configurations were then determined directly from experimental data using reverse Monte Carlo methods and further refined using molecular dynamics simulation, obtaining thermodynamically stable peptide-Pd nanoparticle configurations. Sequence-dependent catalytic property differences for C-C coupling and olefin hydrogenation were then eluddated by identification of the catalytic active sites at the atomic level and quantitative prediction of relative reaction rates. This hybrid methodology provides a clear route to determine peptide-dependent structure/function relationships, enabling the generation of guidelines for catalyst design through rational tailoring of peptide sequences

  17. Structure elucidation of thioketone analogues of sildenafil detected as adulterants in herbal aphrodisiacs.

    PubMed

    Reepmeyer, John C; d'Avignon, D André

    2009-01-15

    Two analogues of sildenafil were detected in herbal dietary supplements marketed as aphrodisiacs. Both compounds were identified as thioketone analogues of sildenafil in which the carbonyl group in the pyrimidine ring of sildenafil was substituted with a thiocarbonyl group. The first compound was identified as thiosildenafil, a compound that has recently been reported as an adulterant in health supplements. The structure of the second compound was established using LC-MS, UV spectroscopy, ESI-MS(n), NMR and a hydrolytic process. A detailed study of the hydrolysis products of sildenafil, thiosildenafil, and the second unknown compound proved that the second compound, named thiomethisosildenafil, had a structure analogous to sildenafil in which the N-methylpiperazine moiety had been replaced with 2,6-dimethylpiperazine and the oxygen atom of the carbonyl group in the heterocyclic ring had been replaced with a sulfur atom. Under the hydrolytic reaction conditions employed in this study, thioketones hydrolyze to ketones (e.g., thiosildenafil-->sildenafil), making this a valuable technique for the structure elucidation of thiosildenafil analogues. Ten herbal dietary supplements, each as a capsule dosage form, were found to contain 8-151 mg of thiomethisosildenafil per capsule, and one herbal dietary supplement was found to contain 35 mg of thiosildenafil per capsule.

  18. Biosynthetic considerations could assist the structure elucidation of host plant produced rhizosphere signalling compounds (strigolactones) for arbuscular mycorrhizal fungi and parasitic plants.

    PubMed

    Rani, Kumkum; Zwanenburg, Binne; Sugimoto, Yukihiro; Yoneyama, Koichi; Bouwmeester, Harro J

    2008-07-01

    Parasitic plants cause devastating losses to crop yields in several parts of the world. The root parasites, Striga and Orobanche species, use chemical signalling molecules that are exuded by the roots of plants in extremely low concentrations, and that can induce germination of the seeds of these parasites, to detect the vicinity of a suitable host. The majority of the so far identified germination stimulants belong to the strigolactones. It was recently discovered that this class of compounds can also induce hyphal branching in the symbiotic arbuscular mycorrhizal fungi, a process involved in root colonisation. The elucidation of the structure of new strigolactones is hindered by their low abundance and instability. In the present paper, we have used existing knowledge on the structure of strigolactones and combined it with recently obtained insight in the biosynthetic origin of these signalling compounds. This enabled us to postulate structures for strigolactones that have been isolated but for which so far the structure has not been elucidated, but also to propose structures of strigolactones that may be discovered in the future. Considering the strongly increased importance of the strigolactones, we expect that more groups will look for these compounds and also in systems so far not exploited. This could lead to the discovery of new strigolactones for which we expect the present biogenetic considerations will facilitate identification and structure elucidation.

  19. On-line NMR detection of microgram quantities of heparin-derived oligosaccharides and their structure elucidation by microcoil NMR.

    PubMed

    Korir, Albert K; Larive, Cynthia K

    2007-08-01

    The isolation and purification of sufficient quantities of heparin-derived oligosaccharides for characterization by NMR is a tedious and time-consuming process. In addition, the structural complexity and microheterogeneity of heparin makes its characterization a challenging task. The improved mass-sensitivity of microcoil NMR probe technology makes this technique well suited for characterization of mass-limited heparin-derived oligosaccharides. Although microcoil probes have poorer concentration sensitivity than conventional NMR probes, this limitation can be overcome by coupling capillary isotachophoresis (cITP) with on-line microcoil NMR detection (cITP-NMR). Strategies to improve the sensitivity of on-line NMR detection through changes in probe design and in the cITP-NMR experimental protocol are discussed. These improvements in sensitivity allow acquisition of cITP-NMR survey spectra facilitating tentative identification of unknown oligosaccharides. Complete structure elucidation for microgram quantities of the purified material can be carried out through acquisition of 2D NMR spectra using a CapNMR microcoil probe.

  20. Structure-Specific Ribonucleases for MS-Based Elucidation of Higher-Order RNA Structure

    NASA Astrophysics Data System (ADS)

    Scalabrin, Matteo; Siu, Yik; Asare-Okai, Papa Nii; Fabris, Daniele

    2014-07-01

    Supported by high-throughput sequencing technologies, structure-specific nucleases are experiencing a renaissance as biochemical probes for genome-wide mapping of nucleic acid structure. This report explores the benefits and pitfalls of the application of Mung bean (Mb) and V1 nuclease, which attack specifically single- and double-stranded regions of nucleic acids, as possible structural probes to be employed in combination with MS detection. Both enzymes were found capable of operating in ammonium-based solutions that are preferred for high-resolution analysis by direct infusion electrospray ionization (ESI). Sequence analysis by tandem mass spectrometry (MS/MS) was performed to confirm mapping assignments and to resolve possible ambiguities arising from the concomitant formation of isobaric products with identical base composition and different sequences. The observed products grouped together into ladder-type series that facilitated their assignment to unique regions of the substrate, but revealed also a certain level of uncertainty in identifying the boundaries between paired and unpaired regions. Various experimental factors that are known to stabilize nucleic acid structure, such as higher ionic strength, presence of Mg(II), etc., increased the accuracy of cleavage information, but did not completely eliminate deviations from expected results. These observations suggest extreme caution in interpreting the results afforded by these types of reagents. Regardless of the analytical platform of choice, the results highlighted the need to repeat probing experiments under the most diverse possible conditions to recognize potential artifacts and to increase the level of confidence in the observed structural information.

  1. A Mathematical Model to Elucidate Brain Tumor Abrogation by Immunotherapy with T11 Target Structure

    PubMed Central

    Chaudhuri, Swapna

    2015-01-01

    T11 Target structure (T11TS), a membrane glycoprotein isolated from sheep erythrocytes, reverses the immune suppressed state of brain tumor induced animals by boosting the functional status of the immune cells. This study aims at aiding in the design of more efficacious brain tumor therapies with T11 target structure. We propose a mathematical model for brain tumor (glioma) and the immune system interactions, which aims in designing efficacious brain tumor therapy. The model encompasses considerations of the interactive dynamics of glioma cells, macrophages, cytotoxic T-lymphocytes (CD8+ T-cells), TGF-β, IFN-γ and the T11TS. The system undergoes sensitivity analysis, that determines which state variables are sensitive to the given parameters and the parameters are estimated from the published data. Computer simulations were used for model verification and validation, which highlight the importance of T11 target structure in brain tumor therapy. PMID:25955428

  2. Elucidation of structure-to-property relationships of piezoresistive polymer-carbon nanotube nanocomposites

    NASA Astrophysics Data System (ADS)

    Fang, Weiqing; Leung, Siu N.

    2015-07-01

    Polymeric nanocomposites (PNC) filled with carbon nanotubes (CNTs) possess superior multifunctionality, including electrical, thermal, and mechanical properties, making them an emerging family of advanced and multifunctional materials. In recent years, flexible polymer/CNT nanocomposites are increasingly being considered as promising alternatives to conventional smart materials. Their piezoresistive behaviours have led to many potential applications in strain sensing. Despite extensive experimental and theoretical research, the underlying mechanisms for polymer/CNT nanocomposites' piezoresistive behaviours have yet been elucidated. This paper reports comprehensive investigations on the mechanisms and the structure-to-property relationships of these piezoresistive nanocomposites. Quantitative analyses revealed that piezoresistivity of polymer/CNT nanocomposites is predominantly governed by the three mechanisms related to the strain-induced morphological evolution of the CNT network embedded in the polymer matrix. Furthermore, both CNT content and CNT alignment are key structural parameters that affect the contribution of different mechanisms on PNCs' piezoresistivity and the sensitivity of flexible PNCs as strain sensors. For PNC filled with high content of randomly dispersed CNTs, the piezoresistivity was predominantly caused by the breakage of a complex conductive network into two or more simpler conductive paths. For PNC filled with low content of highly aligned CNTs, the piezoresistivity was mainly contributed by the complete disruption of originally interconnected CNTs in electrically conductive pathways.

  3. Characterization of a bioactive polysaccharide from Ganoderma atrum: Re-elucidation of the fine structure.

    PubMed

    Zhang, Hui; Nie, Shaoping; Cui, Steve W; Xu, Ming; Ding, Huihuang; Xie, Mingyong

    2017-02-20

    The fine structure in terms of backbone and branch chain features of a bioactive polysaccharide from Ganoderma atrum (PSG-1) was re-elucidated systematically using high performance anion-exchange chromatography (HPAEC), methylation and GLC-MS analysis, and 1D & 2D NMR spectroscopy. Monosaccharide composition analysis revealed that PSG-1-F0.2 fraction mainly consisted of glucose (73.8%) and glucuronic acid (15.3%), with small amount of mannose (5.7%) and galactose (5.2%). Based on methylation, multistep partial acid hydrolysis and NMR study, were proposed to substitute at the O-6 position of β-(1→3)-glucan. The small amount of mannose and galactose residues were considered to be from the other fraction in PSG which was very difficult to be separated from PSG-1-F0.2. This revised structure as an acidic β-(1→3, 1→6)-glucan is considered to be more accurate than the previous proposal of PSG-1.

  4. Structural Elucidation of Novel Saponins in the Sea Cucumber Holothuria lessoni

    PubMed Central

    Bahrami, Yadollah; Zhang, Wei; Chataway, Tim; Franco, Chris

    2014-01-01

    Sea cucumbers are prolific producers of a wide range of bioactive compounds. This study aimed to purify and characterize one class of compound, the saponins, from the viscera of the Australian sea cucumber Holothuria lessoni. The saponins were obtained by ethanolic extraction of the viscera and enriched by a liquid-liquid partition process and adsorption column chromatography. A high performance centrifugal partition chromatography (HPCPC) was applied to the saponin-enriched mixture to obtain saponins with high purity. The resultant purified saponins were profiled using MALDI-MS/MS and ESI-MS/MS which revealed the structure of isomeric saponins to contain multiple aglycones and/or sugar residues. We have elucidated the structure of five novel saponins, Holothurins D/E and Holothurinosides X/Y/Z, along with seven reported triterpene glycosides, including sulfated and non-sulfated saponins containing a range of aglycones and sugar moieties, from the viscera of H. lessoni. The abundance of novel compounds from this species holds promise for biotechnological applications. PMID:25110919

  5. Constructing kinetic models to elucidate structural dynamics of a complete RNA polymerase II elongation cycle

    NASA Astrophysics Data System (ADS)

    Yu, Jin; Da, Lin-Tai; Huang, Xuhui

    2015-02-01

    The RNA polymerase II elongation is central in eukaryotic transcription. Although multiple intermediates of the elongation complex have been identified, the dynamical mechanisms remain elusive or controversial. Here we build a structure-based kinetic model of a full elongation cycle of polymerase II, taking into account transition rates and conformational changes characterized from both single molecule experimental studies and computational simulations at atomistic scale. Our model suggests a force-dependent slow transition detected in the single molecule experiments corresponds to an essential conformational change of a trigger loop (TL) opening prior to the polymerase translocation. The analyses on mutant study of E1103G and on potential sequence effects of the translocation substantiate this proposal. Our model also investigates another slow transition detected in the transcription elongation cycle which is independent of mechanical force. If this force-independent slow transition happens as the TL gradually closes upon NTP binding, the analyses indicate that the binding affinity of NTP to the polymerase has to be sufficiently high. Otherwise, one infers that the slow transition happens pre-catalytically but after the TL closing. Accordingly, accurate determination of intrinsic properties of NTP binding is demanded for an improved characterization of the polymerase elongation. Overall, the study provides a working model of the polymerase II elongation under a generic Brownian ratchet mechanism, with most essential structural transition and functional kinetics elucidated.

  6. Discovery and structural elucidation of the illegal azo dye Basic Red 46 in sumac spice.

    PubMed

    Ruf, J; Walter, P; Kandler, H; Kaufmann, A

    2012-01-01

    An unknown red dye was discovered in a sumac spice sample during routine analysis for Sudan dyes. LC-DAD and LC-MS/MS did not reveal the identity of the red substance. Nevertheless, using LC-high-resolution MS and isotope ratio comparisons the structure was identified as Basic Red 46. The identity of the dye was further confirmed by comparison with a commercial hair-staining product and two textile dye formulations containing Basic Red 46. Analogous to the Sudan dyes, Basic Red 46 is an azo dye. However, some of the sample clean-up methodology utilised for the analysis of Sudan dyes in food prevents its successful detection. In contrast to the Sudan dyes, Basic Red 46 is a cation. Its cationic properties make it bind strongly to gel permeation columns and silica solid-phase extraction cartridges and prevent elution with standard eluents. This is the first report of Basic Red 46 in food. The structure elucidation of this compound as well as the disadvantages of analytical methods focusing on a narrow group of targeted analytes are discussed.

  7. Production and structural elucidation of exopolysaccharide from endophytic Pestalotiopsis sp. BC55.

    PubMed

    Mahapatra, Subhadip; Banerjee, Debdulal

    2016-01-01

    There is a little information on exopolysaccharide production by endophytic fungi. In this investigation endophytic Pestalotiopsis sp. BC55 was used for optimization of exopolysaccharide production. One variable at a time method and response surface methodology were adopted to find out the best culture conditions and medium compositions for maximum exopolysaccharide production. The organism produced maximum exopolysaccharide (4.320 ± 0.022 g/l EPS) in 250 ml Erlenmeyer flask containing 75 ml potato dextrose broth supplemented with (g%/l) glucose, 7.66; urea, 0.29; CaCl2, 0.05 with medium pH 6.93; after 3.76 days of incubation at 24°C. Exopolysaccharide [EPS (EP-I)] produced by this organism have Mw ∼2×10(5)Da with a melting point range of 122-124°C. Structural elucidation of the EPS (PS-I) was carried out after a series of experiments. Result indicated the presence of only (1→3)-linked β-d-glucopyranosyl moiety. The structure of the repeating unit was established as - →3)-β-d-Glcp-(1→.

  8. Synergic application of spectroscopic and theoretical methods to the chlorogenic acid structure elucidation

    NASA Astrophysics Data System (ADS)

    Marković, Svetlana; Tošović, Jelena; Dimitrić Marković, Jasmina M.

    2016-07-01

    Although chlorogenic acid (5-O-caffeoylquinic acid, 5CQA) is a dietary polyphenol known for its pharmacological and nutritional properties, its structural features have not been completely elucidated. This is the first study whose aim is to contribute to clarification of the 5CQA structure by comparing the experimental and simulated IR, Raman, 1H NMR, 13C NMR, and UV spectra. For this purpose, a comprehensive conformational analysis of 5CQA was performed to reveal its most stable conformations in the gas-state and solution (DMSO and methanol). The lowest-energy conformers were used to predict the spectra at two levels of theory: B3LYP-D3/and M06-2X/6-311+G(d,p) in combination with the CPCM solvation model. Both methods provide very good agreement between all experimental and simulated spectra, thus indicating correct arrangement of the atoms in the 5CQA molecule. The quinic moiety is characterized with directed hydrogen bonds, where the carboxylic hydrogen is not oriented towards the carbonyl oxygen of the carboxylic group, but towards the oxygen of the proximate hydroxyl group. In the gas-state the lowest-energy conformers are characterized with the O4sbnd H4 ⋯ O9‧ hydrogen bond, whereas in the solvated state the structures with the O4sbnd H4 ⋯ O10‧ hydrogen bond prevail. Knowing the fine structural details, i.e. the proper conformation of 5CQA, provides a solid base for all further investigations related to this compound.

  9. Structural elucidation of olive pomace fed sea bass (Dicentrarchus labrax) polar lipids with cardioprotective activities.

    PubMed

    Nasopoulou, Constantina; Smith, Terry; Detopoulou, Maria; Tsikrika, Constantina; Papaharisis, Leonidas; Barkas, Dimitris; Zabetakis, Ioannis

    2014-02-15

    The purpose of this study was to structurally characterise the polar lipids of sea bass (Dicentrarchus labrax), fed with an experimental diet containing olive pomace (OP), that exhibit cardioprotective activities. OP has been added to conventional fish oil (FO) feed at 4% and this was the OP diet, having been supplemented as finishing diet to fish. Sea bass was aquacultured using either FO or OP diet. At the end of the dietary experiment, lipids in both samples of fish muscle were quantified and HPLC fractionated. The in vitro cardioprotective properties of the polar lipid fractions, using washed rabbit's platelets, have been assessed and the two most biologically active fractions were further analysed by mass spectrometry. The gas-chromatrograpy-mass spectrometric data shows that these two fractions contain low levels of myristic (14:0), oleic (18:1 cis ω-9) and linoleic acids (18:2 ω-6), but high levels of palmitic (16:0) and stearic acids (18:0) as well as eicosadienoic acid (20:2 ω-6). The first fraction (MS1) also contained significant levels of arachidonic acid (20:4 ω-6) and the omega-3 fatty acids: eicosapentaenoic acid (22:5) and docosahexaenoic acid (22:6). Electrospray-mass spectrometry elucidated that the lipid composition of the two fractions contained various diacyl-glycerophospholipids species, where the majority of them have either 18:0 or 18:1 fatty acids in the sn-1 position and either 22:6 or 20:2 fatty acids in the sn-2 position for MS1 and MS2, respectively. Our research focuses on the structure/function relationship of fish muscle polar lipids and cardiovascular diseases and structural data are given for polar lipid HPLC fractions with strong cardioprotective properties.

  10. Preparation of a Ammonia-Treated Lac Dye and Structure Elucidation of Its Main Component.

    PubMed

    Nishizaki, Yuzo; Ishizuki, Kyoko; Akiyama, Hiroshi; Tada, Atsuko; Sugimoto, Naoki; Sato, Kyoko

    2016-01-01

    Lac dye and cochineal extract contain laccaic acids and carminic acid as the main pigments, respectively. Both laccaic acids and carminic acid are anthraquinone derivatives. 4-Aminocarminic acid (acid-stable carmine), an illegal colorant, has been detected in several processed foods. 4-Aminocarminic acid is obtained by heating cochineal extract (carminic acid) in ammonia solution. We attempted to prepare ammonia-treated lac dye and to identify the structures of the main pigment components. Ammonia-treated lac dye showed acid stability similar to that of 4-aminocarminic acid. The structures of the main pigments in ammonia-treated lac dye were analyzed using LC/MS. One of the main pigments was isolated and identified as 4-aminolaccaic acid C using various NMR techniques, including 2D-INADEQUATE. These results indicated that ammonia-treatment of lac dye results in the generation of 4-aminolaccaic acids.

  11. Isoflavones from Maclura pomifera: structural elucidation and in silico evaluation of their interaction with PDE5.

    PubMed

    Ribaudo, Giovanni; Vendrame, Tiziano; Bova, Sergio

    2016-12-27

    While osajin and pomiferin are known for their anticancer, antibacterial and antidiabetic properties, scandenone and auriculasin have been proposed as anti-inflammatory and antinociceptive agents. Curiously, these two couples of molecules are, from a chemical point of view, structural isomers which can all be extracted from Maclura pomifera. Although previous works described, separately, the isolation in reasonable amounts of the sole osajin/pomiferin couple or of scandenone/auriculasin, we report the extraction and characterization using direct spectral and chromatographical comparison of the four compounds. 2D NMR allowed to unambiguously assign the correct structures to the isomers. The compounds were screened in silico against PDE5 and their interaction pattern with the protein was compared with that of icarisid II, a natural PDE5 inhibitor.

  12. Elucidating the structure and function of S100 proteins in membranes

    NASA Astrophysics Data System (ADS)

    Valenzuela, Stella M.; Berkahn, Mark; Martin, Donald K.; Huynh, Thuan; Yang, Zheng; Geczy, Carolyn L.

    2006-01-01

    S100 proteins are important Ca 2+-binding proteins involved in vital cellular functions including the modulation of cell growth, migration and differentiation, regulation of intracellular signal transduction/phosphorylation pathways, energy metabolism, cytoskeletal interactions and modulation of ion channels. Furthermore, they are implicated in oncogenesis and numerous other disease states. Three S100 proteins: S100A8, S100A9 and S100A12 are constitutively expressed in neutrophils and monocytes. At low levels of intracellular Ca 2+, S100A8 and S100A9 are located predominantly in the cytosol but when Ca 2+ concentrations are elevated as a consequence of activation, they translocate to membranes and complex with cytoskeletal components such as vimentin. The functions of S100A8 and S100A9 at the plasma membrane remain unclear. A possible role may be the regulation of ion channel proteins. The current study uses the techniques of Atomic Force Microscopy and production of artificial lipid membranes in the form of liposomes to investigate possible mechanisms for the insertion of these proteins into membranes in order to elucidate their structure and stoichiometry in the transmembrane state. We have successfully imaged the liposomes as a lipid bilayer, the S100A8/A9 protein complex in solution and the S100A8/A9 complex associating with lipid, using tapping-mode atomic force microscopy, in buffer.

  13. Elucidation of structural and functional properties of albumin bound to gold nanoparticles.

    PubMed

    Mariam, Jessy; Sivakami, S; Dongre, P M

    2017-02-01

    Nanoparticle-albumin complexes are being designed for targeted drug delivery and imaging. However, the changes in the functional properties of albumin due to adsorption on nanoparticles remain elusive. Thus, the objective of this work was to elucidate the structural and functional properties of human and bovine serum albumin bound to negatively charged gold nanoparticles (GNPs). Fluorescence data demonstrated static quenching of albumin by GNP with the quenching of buried as well as surface tryptophan in BSA. The binding process was enthalpy and entropy-driven in HSA and BSA, respectively. At lower concentrations of GNP there was a higher affinity for tryptophan, whereas at higher concentrations both tryptophan and tyrosine participated in the interaction. Synchronous fluorescence spectra revealed that the microenvironment of tryptophan in HSA turned more hydrophilic upon exposure to GNP. The α-helical content of albumin was unaltered by GNP. Approximately 37 and 23% reduction in specific activity of HSA and BSA was observed due to GNP binding. In presence of warfarin and ibuprofen the binding constants of albumin-GNP complexes were altered. A very interesting observation not reported so far is the retained antioxidant activity of albumin in presence of GNP i.e. we believe that GNPs did not bind to the free sulfhydryl groups of albumin. However enhanced levels of copper binding were observed. We have also highlighted the differential response in albumin due to gold and silver nanoparticles which could be attributed to differences in the charge of the nanoparticle.

  14. Structural elucidation of a pectin from flowers of Lonicera japonica and its antipancreatic cancer activity.

    PubMed

    Lin, Liyan; Wang, Peipei; Du, Zhenyun; Wang, Wucheng; Cong, Qifei; Zheng, Changping; Jin, Can; Ding, Kan; Shao, Chenghao

    2016-07-01

    To investigate polysaccharide structure from Lonicera japonica, and study its effects on behavior of pancreatic cells, a homogenous polysaccharide, LJ-02-1, was extracted and purified from flowers of L. japonica by DEAE-cellulose and Sephacryl S-200HR column. The molecular weight was estimated to be 54kDa. Monosaccharide composition was determined to be rhamnose, galacturonic acid, galactose and arabinose in the molar ratio of 10.77:7.88:15.45:65.89 by analyzing the PMP derivatives of the monosaccharides from 2M trifluoracetic acid hydrolysis via HPLC. Based on methylation analysis, partial acid hydrolysis, and NMR spectra, the polysaccharide was elucidated to be a rhamnogalacturonan backbone and substituted partly at C-4 of rhamnose. The branches were determined to be T- and 1,4,6-linked β-d-Galp, T- and 1,5-linked α-l-Araf. The polysaccharide might inhibit BxPC-3 and PANC-1 pancreatic cancer cells growth at the concentration of 1mg/mL with inhibitory ratio of 66.7% and 52.1%, respectively.

  15. Purification and partial elucidation of the structure of an antioxidant carbohydrate biopolymer from the probiotic bacterium Bacillus coagulans RK-02.

    PubMed

    Kodali, Vidya P; Perali, Ramu S; Sen, R

    2011-08-26

    An exopolysaccharide (EPS) was isolated from Bacillus coagulans RK-02 and purified by size exclusion chromatography. The purified, homogeneous EPS had an average molecular weight of ∼3 × 10⁴ Da by comparison with FITC-labeled dextran standards. In vivo evaluations showed that, like other reported polysaccharides, this EPS displayed significant antioxidant activity. FTIR spectroscopy analysis showed the presence of hydroxy, carboxy, and α-glycosidic linkages and a mannose residue. GC analysis indicated that the EPS was a heteropolymer composed of glucose, mannose, galactose, glucosamine, and fucose as monomeric constituent units. Partial elucidation of the structure of the carbohydrate biopolymer based on GC-MS and NMR analysis showed the presence of two unique sets of tetrasaccharide repeating units that have 1→3 and 1→6 glycosidic linkages. This is also the first report of a Gram-positive bacterial polysaccharide with both fucose as a sugar monomer and 1→3 and 1→6 glycosidic linkages in the molecular backbone.

  16. Structural elucidation and quantification of phenolic conjugates present in human urine after tea intake.

    PubMed

    van der Hooft, Justin J J; de Vos, Ric C H; Mihaleva, Velitchka; Bino, Raoul J; Ridder, Lars; de Roo, Niels; Jacobs, Doris M; van Duynhoven, John P M; Vervoort, Jacques

    2012-08-21

    In dietary polyphenol exposure studies, annotation and identification of urinary metabolites present at low (micromolar) concentrations are major obstacles. To determine the biological activity of specific components, it is necessary to have the correct structures and the quantification of the polyphenol-derived conjugates present in the human body. We present a procedure for identification and quantification of metabolites and conjugates excreted in human urine after single bolus intake of black or green tea. A combination of a solid-phase extraction (SPE) preparation step and two high pressure liquid chromatography (HPLC)-based analytical platforms was used, namely, accurate mass fragmentation (HPLC-FTMS(n)) and mass-guided SPE-trapping of selected compounds for nuclear magnetic resonance spectroscopy (NMR) measurements (HPLC-TOFMS-SPE-NMR). HPLC-FTMS(n) analysis led to the annotation of 138 urinary metabolites, including 48 valerolactone and valeric acid conjugates. By combining the results from MS(n) fragmentation with the one-dimensional (1D)-(1)H NMR spectra of HPLC-TOFMS-SPE-trapped compounds, we elucidated the structures of 36 phenolic conjugates, including the glucuronides of 3',4'-di- and 3',4',5'-trihydroxyphenyl-γ-valerolactone, three urolithin glucuronides, and indole-3-acetic acid glucuronide. We also obtained 26 h-quantitative excretion profiles for specific valerolactone conjugates. The combination of the HPLC-FTMS(n) and HPLC-TOFMS-SPE-NMR platforms results in the efficient identification and quantification of less abundant phenolic conjugates down to nanomoles of trapped amounts of metabolite corresponding to micromolar metabolite concentrations in urine.

  17. Levothyroxine sodium revisited: A wholistic structural elucidation approach of new impurities via HPLC-HRMS/MS, on-line H/D exchange, NMR spectroscopy and chemical synthesis.

    PubMed

    Ruggenthaler, M; Grass, J; Schuh, W; Huber, C G; Reischl, R J

    2017-02-20

    The structural elucidation of unknown pharmaceutical impurities plays an important role in the quality control of newly developed and well-established active pharmaceutical ingredients (APIs). The United States Pharmacopeia (USP) monograph for the API Levothyroxine Sodium, a synthetic thyroid hormone, features two high pressure liquid chromatography (HPLC) methods using UV-VIS absorption detection to determine organic impurities in the drug substance. The impurity profile of the first USP method ("Procedure 1") has already been extensively studied, however for the second method ("Procedure 2"), which exhibits a significantly different impurity profile, no wholistic structural elucidation of impurities has been performed yet. Applying minor modifications to the chromatographic parameters of USP "Procedure 2" and using various comprehensive structural elucidation methods such as high resolution tandem mass spectrometry with on-line hydrogen-deuterium (H/D) exchange or two-dimensional nuclear magnetic resonance spectroscopy (NMR) we gained new insights about the complex impurity profile of the synthetic thyroid hormone. This resulted in the characterization of 24 compounds previously unknown to literature and the introduction of two new classes of Levothyroxine Sodium impurities. Five novel compounds were unambiguously identified via isolation or synthesis of reference substances and subsequent NMR spectroscopic investigation. Additionally, Collision-Induced Dissociation (CID)-type fragmentation of identified major impurities as well as neutral loss fragmentation patterns of many characterized impurities were discussed.

  18. Secondary structure of double-stranded DNA under stretching: Elucidation of the stretched form

    SciTech Connect

    Maaloum, M.; Muller, P.; Beker, A-F.

    2011-03-15

    Almost two decades ago, measurements of force versus extension on isolated double-stranded DNA molecules revealed a force plateau. This unusual stretching phenomenon in DNA suggests that the long molecules may be extended from the usual B form into a new conformation. Different models have been proposed to describe the nature of DNA in its stretched form, S-DNA. Using atomic force microscopy combined with a molecular combing method, we identified the structure of {lambda}-phage DNA for different stretching values. We provide strong evidence for the existence of a first-order transition between B form and S form. Beyond a certain extension of the natural length, DNA molecules adopt a new double-helix conformation characterized by a diameter of 1.2 nm and a helical pitch of18 nm.

  19. Structure elucidation of phenolic compounds from red/white wine with antiatherogenic properties.

    PubMed

    Fragopoulou, Elizabeth; Antonopoulou, Smaragdi; Nomikos, Tzortzis; Demopoulos, Constantinos A

    2003-06-10

    The oxidative modification of low-density lipoproteins (LDL) is supposed to play a critical role in atherogenesis. During this oxidation a potent inflammatory phospholipid mediator named platelet activating factor (PAF) is produced, and it is believed to be the key for the initiation of the inflammation and therefore for the process of atherogenesis. From many studies, it is established that wine has beneficial effects on health, including protection against cardiovascular diseases. According to our point of view, the cardioprotective effect of wine may be attributed partly to the existence of PAF antagonists in red or white wine and partly to the existence of antioxidants that reduce the oxidation of LDL and therefore the production of PAF. In this study, wine compounds that antagonize PAF were isolated and purified via chromatographic procedures, and determined structurally using chemical, enzymatic and spectroscopic methods.

  20. Elucidating the Effect of Biomolecule Structure on Calcium Carbonate Crystal Formation

    NASA Astrophysics Data System (ADS)

    Kulbok, K. E.; Duckworth, O.

    2011-12-01

    Anthropogenic emissions of carbon dioxide have lead to a steady increase in atmospheric concentration. This greenhouse gas has been identified as a key driver of climate change and also has lead to increased acidification of marine and terrestrial waters. Calcium carbonate precipitation at the Earth's surface is an integral linkage in the global carbon cycle, especially in regards to regulating atmospheric carbon dioxide. As concern for the effect of increasing atmospheric CO2 levels grows, the need to understand calcium carbonate systems escalates concurrently. Calcium carbonate phases are the most abundant group of biominerals; therefore, elucidating the mechanism of biomineralization is critical to understanding CaCO3 precipitation and may aid in the development of novel carbon sequestration strategies. The ubiquity of microorganisms leads to an extensive number of biomolecules present in the Earth's systems, and thus an extensive range of possible effects on CaCO3 formation. Carboxylic acids are very common biomolecules and have a relatively simple structure, thus making them an ideal family of model compounds. This study examines the kinetics, thermodynamics, phase, and morphology of calcium carbonate crystals precipitated in the presence of carboxylate-containing biomolecules, including citric acid, succinic acid, and aspartic acid. The experiments utilize a unique (NH4)2CO3 gas-diffusion reactor, which allows in-situ measurements of chemical conditions during the precipitation and growth of crystals. Continuous monitoring of the in-situ conditions of pCO2, pH, [Ca2+], and optical absorbance provides data on the supersaturation at which nucleation occurs and the kinetics of mineral growth. The use of scanning electron microscopy and X-ray diffraction provides information on the morphology and mineralogy of precipitates. The combination of these data sets will provide an in-depth view of the ideal concentration of calcium ions required for solution saturation

  1. The efficient structure elucidation of minor components in heparin digests using microcoil NMR.

    PubMed

    Limtiaco, John F K; Beni, Szabolcs; Jones, Christopher J; Langeslay, Derek J; Larive, Cynthia K

    2011-10-18

    The structural complexity and microheterogeneity of the glycosaminoglycans heparin and heparan sulfate make their characterization a daunting task. The methodology described herein utilizes a combination of enzymatic digestion, size-exclusion chromatography, strong anion-exchange HPLC, reverse-phase ion-pair ultrahigh performance liquid chromatography-mass spectrometry, and microcoil NMR for the efficient sequencing of heparin-derived tetrasaccharides. The high mass sensitivity of microcoil NMR makes this technique well suited for the characterization of mass-limited samples removing a bottleneck in the analysis workflow and permitting structural characterization of minor components isolated from a heparin enzymatic digestion. Complete characterization of one tetrasulfonated, five pentasulfonated isomers and two hexasulfonated tetrasaccharide sequences is described. To our knowledge, two of the identified minor tetrasaccharides are unique, and have not been previously reported: IdoA(2S)-GlcNS(6S)-IdoA(2S)-GlcNS(6S) and ΔUA(2S)-GlcNS(6S)-IdoA-GlcNS(6S).

  2. pH-Controlled Oxidation of an Aromatic Ketone: Structural Elucidation of the Products of Two Green Chemical Reactions

    ERIC Educational Resources Information Center

    Ballard, C. Eric

    2010-01-01

    A laboratory experiment emphasizing the structural elucidation of organic compounds has been developed as a discovery exercise. The "unknown" compounds are the products of the pH-controlled oxidation of 4'-methoxyacetophenone with bleach. The chemoselectivity of this reaction is highly dependent on the pH of the reaction media: under basic…

  3. Structural elucidation and immunostimulating property of a novel polysaccharide extracted from an edible mushroom Lentinus fusipes.

    PubMed

    Manna, Dilip K; Maity, Prasenjit; Nandi, Ashis K; Pattanayak, Manabendra; Panda, Bibhash C; Mandal, Amit K; Tripathy, Satyajit; Acharya, Krishnendu; Sahoo, Atish K; Gupta, Nibha; Roy, Somnath; Islam, Syed S

    2017-02-10

    A water soluble heteroglycan (PS-II) with an average molecular weight∼60kDa was isolated from the hot aqueous extract of an edible mushroom Lentinus fusipes. The structural characterization of PS-II was carried out using total acid hydrolysis, methylation analyses, periodate oxidation, Smith degradation and 1D/2D NMR experiments. Total acid hydrolysis indicated the presence of D-galactose and D-glucose in a molar ratio of approximately 1:1. The chemical and NMR analyses revealed that the proposed repeating unit of the PS-II had a backbone chain consisting of three (1→6)-linked α-d-galactopyranosyl residue and two (1→6)-linked β-d-glucopyranosyl residues, one of the β-d-glucopyranosyl residue was branched at O-3 position with a terminal β-d-glucopyranosyl. The PS-II exhibited significant in vitro splenocyte and macrophage activations with optimum dose of 20μg/ml and 80μg/ml respectively. Flow cytometry study revealed the protective role of the PS-II against nicotine stimulated lymphocytes. Moreover, the ROS scavenging property of PS-II was also established using DPPH radical scavenging assay.

  4. Structure elucidation of hexabromocyclododecanes--a class of compounds with a complex stereochemistry.

    PubMed

    Heeb, Norbert V; Schweizer, W Bernd; Kohler, Martin; Gerecke, Andreas C

    2005-09-01

    Hexabromocyclododecanes (HBCDs) are high production volume chemicals (16700 t worldwide in 2001) used as flame-retardants for plastics and textiles. HBCDs exhibit typical properties of persistent organic pollutants (POPs). They are highly lipophilic and accumulate in biota. Increasing environmental concentrations of HBCDs, mostly reported as sum values, have been observed. As such, HBCDs have to be considered as potential emerging POPs, but their occurrence and environmental fate have not yet been addressed at the level of individual HBCD stereoisomers. Considering the six stereogenic centers of HBCDs, 16 stereoisomers, six diastereomeric pairs of enantiomers as well as four meso forms, can be deduced. Herein, we report spectroscopic and chromatographic data for eight out of 16 possible HBCD stereoisomers, which were isolated from a technical product. Six stereoisomers were identified as three pairs of enantiomers ((+/-) alpha-, beta-, and gamma-HBCDs), differing in optical rotation and chromatographic retention on a chiral phase. The crystal structures of these pairs of enantiomers were determined. Another two of these eight HBCD stereoisomers, not yet described in the literature, showed no optical rotation and are tentatively assigned as meso forms (delta- and epsilon-HBCD). The given spectroscopic and chromatographic information allows the unambiguous identification of eight HBCD stereoisomers and the occurrence, fate, and toxicology of these individual stereoisomers can now be studied.

  5. Structural elucidation of dioxa-cage compounds from tetrahydroisobenzofuran-1(3H)-one: analysis of NMR data and GIAO chemical shifts calculations.

    PubMed

    da Costa Resende, Gabriela; Alvarenga, Elson Santiago

    2016-12-01

    The polycyclic compounds, especially the dioxa-cages, have attracted considerable attention in recent years. In our work, a series of 9β-substituted 3-oxo-4,11-dioxatetracyclo[5.2.1.1(5,8) .0(2,6) ]undecane compounds were unexpectedly isolated during bromination, chlorination and epoxidation reactions of the 3-hydroxy-3a,4,7,7a-tetrahydro-4,7-methanoisobenzofuran-1(3H)-one. After careful analysis of the NMR data, the chemical shifts of the isolated and the expected products were predicted by theoretical calculations using density functional theory and gauge including atomic orbitals. The best correlation between calculated and experimental data was evaluated by comparing mean absolute errors and applying DP4 probability methodology. Results from both approaches indicated a correct structural elucidation. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Structure Elucidation of a Polysaccharide from Umbilicaria esculenta and Its Immunostimulatory Activity

    PubMed Central

    Zhang, Bi-Wei; Xu, Jin-Long; Zhang, Hua; Zhang, Qiang; Lu, Jie; Wang, Jun-Hui

    2016-01-01

    Umbilicaria esculenta has been used as a tonic food in China for several centuries owing to its pleasant flavor and health benefits. In this study, a water soluble polysaccharide, which we designated as UP2, with an average molecular weight of 3.33 × 105 Da, was isolated from U. esculenta cultivated in the Huangshan Mountain, by consecutive hot water extraction and anion-exchange chromatography. Gas chromatography analysis indicated that UP2 contained three kinds of monosaccharides, including mannose, glucose, and galactose at a molar ratio of 1.7:1.0:1.2. Linkage analysis of UP2 revealed the presence of (1 → 6)-linked glucosyl, (1 → 3,6)-linked glucosyl, t-linked galactosyl, (1 → 6)-linked galactosyl and (1 → 6)-linked mannosyl at a molar ratio of 0.7:4.6:4.1:2.2:9.1. Structural analysis determined that UP2 possessed a backbone consisting of (1 → 6)-linked β-D-glucopyranosyl and (1 → 6)-linked α-D-mannopyranosyl residues, which substituted at the O-3 position of (1 → 6)-linked β-D-glucopyranosyl residues by branches of (1 → 6)-linked α-D-galactopyranosyl and 1-linked β-D-galactopyranosyl residues. Immunostimulatory activity analysis showed that UP2 could stimulate the proliferation of RAW264.7 cells in a dose-dependent manner, and all the samples (20–500 μg/mL) were found to enhance nitric oxide production. The highest phagocytic activity of UP2 was observed at 200 μg/mL. Thus, UP2 may be a potential source of biological and pharmacological agents. PMID:27997616

  7. Chemical structure elucidation from ¹³C NMR chemical shifts: efficient data processing using bipartite matching and maximal clique algorithms.

    PubMed

    Koichi, Shungo; Arisaka, Masaki; Koshino, Hiroyuki; Aoki, Atsushi; Iwata, Satoru; Uno, Takeaki; Satoh, Hiroko

    2014-04-28

    Computer-assisted chemical structure elucidation has been intensively studied since the first use of computers in chemistry in the 1960s. Most of the existing elucidators use a structure-spectrum database to obtain clues about the correct structure. Such a structure-spectrum database is expected to grow on a daily basis. Hence, the necessity to develop an efficient structure elucidation system that can adapt to the growth of a database has been also growing. Therefore, we have developed a new elucidator using practically efficient graph algorithms, including the convex bipartite matching, weighted bipartite matching, and Bron-Kerbosch maximal clique algorithms. The utilization of the two matching algorithms especially is a novel point of our elucidator. Because of these sophisticated algorithms, the elucidator exactly produces a correct structure if all of the fragments are included in the database. Even if not all of the fragments are in the database, the elucidator proposes relevant substructures that can help chemists to identify the actual chemical structures. The elucidator, called the CAST/CNMR Structure Elucidator, plays a complementary role to the CAST/CNMR Chemical Shift Predictor, and together these two functions can be used to analyze the structures of organic compounds.

  8. Microfabricated structures with electrical isolation and interconnections

    NASA Technical Reports Server (NTRS)

    Clark, William A. (Inventor); Juneau, Thor N. (Inventor); Roessig, Allen W. (Inventor); Lemkin, Mark A. (Inventor)

    2001-01-01

    The invention is directed to a microfabricated device. The device includes a substrate that is etched to define mechanical structures at least some of which are anchored laterally to the remainder of the substrate. Electrical isolation at points where mechanical structures are attached to the substrate is provided by filled isolation trenches. Filled trenches may also be used to electrically isolate structure elements from each other at points where mechanical attachment of structure elements is desired. The performance of microelectromechanical devices is improved by 1) having a high-aspect-ratio between vertical and lateral dimensions of the mechanical elements, 2) integrating electronics on the same substrate as the mechanical elements, 3) good electrical isolation among mechanical elements and circuits except where electrical interconnection is desired.

  9. Structure-Function Elucidation of a New α-Conotoxin, Lo1a, from Conus longurionis

    PubMed Central

    Lebbe, Eline K. M.; Peigneur, Steve; Maiti, Mohitosh; Devi, Prabha; Ravichandran, Samuthirapandian; Lescrinier, Eveline; Ulens, Chris; Waelkens, Etienne; D'Souza, Lisette; Herdewijn, Piet; Tytgat, Jan

    2014-01-01

    α-Conotoxins are peptide toxins found in the venom of marine cone snails and potent antagonists of various subtypes of nicotinic acetylcholine receptors (nAChRs). nAChRs are cholinergic receptors forming ligand-gated ion channels in the plasma membranes of certain neurons and the neuromuscular junction. Because nAChRs have an important role in regulating transmitter release, cell excitability, and neuronal integration, nAChR dysfunctions have been implicated in a variety of severe pathologies such as epilepsy, myasthenic syndromes, schizophrenia, Parkinson disease, and Alzheimer disease. To expand the knowledge concerning cone snail toxins, we examined the venom of Conus longurionis. We isolated an 18-amino acid peptide named α-conotoxin Lo1a, which is active on nAChRs. To the best of our knowledge, this is the first characterization of a conotoxin from this species. The peptide was characterized by electrophysiological screening against several types of cloned nAChRs expressed in Xenopus laevis oocytes. The three-dimensional solution structure of the α-conotoxin Lo1a was determined by NMR spectroscopy. Lo1a, a member of the α4/7 family, blocks the response to acetylcholine in oocytes expressing α7 nAChRs with an IC50 of 3.24 ± 0.7 μm. Furthermore, Lo1a shows a high selectivity for neuronal versus muscle subtype nAChRs. Because Lo1a has an unusual C terminus, we designed two mutants, Lo1a-ΔD and Lo1a-RRR, to investigate the influence of the C-terminal residue. Lo1a-ΔD has a C-terminal Asp deletion, whereas in Lo1a-RRR, a triple-Arg tail replaces the Asp. They blocked the neuronal nAChR α7 with a lower IC50 value, but remarkably, both adopted affinity for the muscle subtype α1β1δϵ. PMID:24567324

  10. Recent advances in computational predictions of NMR parameters for the structure elucidation of carbohydrates: methods and limitations.

    PubMed

    Toukach, Filip V; Ananikov, Valentine P

    2013-11-07

    All living systems are comprised of four fundamental classes of macromolecules--nucleic acids, proteins, lipids, and carbohydrates (glycans). Glycans play a unique role of joining three principal hierarchical levels of the living world: (1) the molecular level (pathogenic agents and vaccine recognition by the immune system, metabolic pathways involving saccharides that provide cells with energy, and energy accumulation via photosynthesis); (2) the nanoscale level (cell membrane mechanics, structural support of biomolecules, and the glycosylation of macromolecules); (3) the microscale and macroscale levels (polymeric materials, such as cellulose, starch, glycogen, and biomass). NMR spectroscopy is the most powerful research approach for getting insight into the solution structure and function of carbohydrates at all hierarchical levels, from monosaccharides to oligo- and polysaccharides. Recent progress in computational procedures has opened up novel opportunities to reveal the structural information available in the NMR spectra of saccharides and to advance our understanding of the corresponding biochemical processes. The ability to predict the molecular geometry and NMR parameters is crucial for the elucidation of carbohydrate structures. In the present paper, we review the major NMR spectrum simulation techniques with regard to chemical shifts, coupling constants, relaxation rates and nuclear Overhauser effect prediction applied to the three levels of glycomics. Outstanding development in the related fields of genomics and proteomics has clearly shown that it is the advancement of research tools (automated spectrum analysis, structure elucidation, synthesis, sequencing and amplification) that drives the large challenges in modern science. Combining NMR spectroscopy and the computational analysis of structural information encoded in the NMR spectra reveals a way to the automated elucidation of the structure of carbohydrates.

  11. Application of a computer-assisted structure elucidation program for the structural determination of a new terpenoid aldehyde with an unusual skeleton.

    PubMed

    Li, Xing-Nuo; Ridge, Clark D; Mazzola, Eugene P; Sun, Jianghao; Gutierrez, Osvaldo; Moser, Arvin; DiMartino, Joseph C; MacDonald, Scott A; Chen, Pei

    2017-03-01

    The structure of a novel compound from Adansonia digitata has been elucidated, and its (1) H and (13) C NMR spectra have been assigned employing a variety of one-dimensional and two-dimensional NMR techniques without degradative chemistry. The Advanced Chemistry Development ACD/Structure Elucidator software was important for determining part of this structure that contained a fused bicyclic system with very few hydrogen atoms, which in turn, exhibited essentially no discriminating HMBC connectivities throughout that portion of the molecule. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Plantazolicin A and B: structure elucidation of ribosomally synthesized thiazole/oxazole peptides from Bacillus amyloliquefaciens FZB42.

    PubMed

    Kalyon, Bahar; Helaly, Soleiman E; Scholz, Romy; Nachtigall, Jonny; Vater, Joachim; Borriss, Rainer; Süssmuth, Roderich D

    2011-06-17

    The structures of the ribosomally synthesized peptide antibiotics from Bacillus amyloliquefaciens FZB42, plantazolicin A and B, have been elucidated by high resolving ESI-MSMS, 2D (1)H-(13)C-correlated NMR spectroscopy as well as (1)H-(15)N-HMQC/(1)H-(15)N-HMBC NMR experiments. (15)N-labeling prior to the experiments facilitated the structure determination, unveiling a hitherto unusual number of thiazoles and oxazoles formed from a linear 14mer precursor peptide. This finding further extends the number of known secondary metabolites from B. amyloliquefaciens and represents a new type of secondary metabolites from the genus Bacillus.

  13. Elucidation of structure-function relationships in plant major light-harvesting complex (LHC II) by nonlinear spectroscopy.

    PubMed

    Lokstein, Heiko; Betke, Alexander; Krikunova, Maria; Teuchner, Klaus; Voigt, Bernd

    2012-03-01

    Conventional linear and time-resolved spectroscopic techniques are often not appropriate to elucidate specific pigment-pigment interactions in light-harvesting pigment-protein complexes (LHCs). Nonlinear (laser-) spectroscopic techniques, including nonlinear polarization spectroscopy in the frequency domain (NLPF) as well as step-wise (resonant) and simultaneous (non-resonant) two-photon excitation spectroscopies may be advantageous in this regard. Nonlinear spectroscopies have been used to elucidate substructure(s) of very complex spectra, including analyses of strong excitonic couplings between chlorophylls and of interactions between (bacterio)chlorophylls and "optically dark" states of carotenoids in LHCs, including the major antenna complex of higher plants, LHC II. This article shortly reviews our previous study and outlines perspectives regarding the application of selected nonlinear laser-spectroscopic techniques to disentangle structure-function relationships in LHCs and other pigment-protein complexes.

  14. Structure of E. coli 16S RNA elucidated by psoralen crosslinking

    SciTech Connect

    Thompson, J.F.; Hearst, J.E.

    1983-04-01

    E. coli 16S RNA in solution was photoreacted with hydroxymethyltrimethylpsoralen and long wave ultraviolet light. Positions of crosslinks were determined to high resolution by partially digesting the RNA with T/sub 1/ RNase, separating the crosslinked fragments by two-dimensional gel electrophoresis, reversing the crosslink, and sequencing the separated fragments. This method yielded the locations of crosslinks to +/-15 nucleotides. Even finer placement has been made on the basis of our knowledge of psoralen reactivity. Thirteen unique crosslinks were mapped. Seven crosslinks confirmed regions of secondary structure which had been predicted in published phylogenetic models, three crosslinks discriminated between phylogenetic models, and three proved the existence of new structures. The new structures were all long-range interactions which appear to be in dynamic equilibrium with local secondary structure. Because this technique yields direct information about the secondary structure of large RNAs, it should prove invaluable in studying the structure of other RNAs of all sizes.

  15. Metabolic and genomic analysis elucidates strain-level variation in Microbacterium spp. isolated from chromate contaminated sediment

    PubMed Central

    Henson, Michael W.; Santo Domingo, Jorge W.; Kourtev, Peter S.; Jensen, Roderick V.; Dunn, James A.

    2015-01-01

    Hexavalent chromium [Cr(VI)] is a soluble carcinogen that has caused widespread contamination of soil and water in many industrial nations. Bacteria have the potential to aid remediation as certain strains can catalyze the reduction of Cr(VI) to insoluble and less toxic Cr(III). Here, we examine Cr(VI) reducing Microbacterium spp. (Cr-K1W, Cr-K20, Cr-K29, and Cr-K32) isolated from contaminated sediment (Seymore, Indiana) and show varying chromate responses despite the isolates’ phylogenetic similarity (i.e., identical 16S rRNA gene sequences). Detailed analysis identified differences based on genomic metabolic potential, growth and general metabolic capabilities, and capacity to resist and reduce Cr(VI). Taken together, the discrepancies between the isolates demonstrate the complexity inter-strain variation can have on microbial physiology and related biogeochemical processes. PMID:26587353

  16. Fragmentation Follows Structure: Top-Down Mass Spectrometry Elucidates the Topology of Engineered Cystine-Knot Miniproteins

    PubMed Central

    Reinwarth, Michael; Avrutina, Olga; Fabritz, Sebastian; Kolmar, Harald

    2014-01-01

    Over the last decades the field of pharmaceutically relevant peptides has enormously expanded. Among them, several peptide families exist that contain three or more disulfide bonds. In this context, elucidation of the disulfide patterns is extremely important as these motifs are often prerequisites for folding, stability, and activity. An example of this structure-determining pattern is a cystine knot which comprises three constrained disulfide bonds and represents a core element in a vast number of mechanically interlocked peptidic structures possessing different biological activities. Herein, we present our studies on disulfide pattern determination and structure elucidation of cystine-knot miniproteins derived from Momordica cochinchinensis peptide MCoTI-II, which act as potent inhibitors of human matriptase-1. A top-down mass spectrometric analysis of the oxidised and bioactive peptides is described. Following the detailed sequencing of the peptide backbone, interpretation of the MS3 spectra allowed for the verification of the knotted topology of the examined miniproteins. Moreover, we found that the fragmentation pattern depends on the knottin’s folding state, hence, tertiary structure, which to our knowledge has not been described for a top-down MS approach before. PMID:25303319

  17. Tiling array-driven elucidation of transcriptional structures based on maximum-likelihood and Markov models.

    PubMed

    Toyoda, Tetsuro; Shinozaki, Kazuo

    2005-08-01

    Tiling arrays of high-density oligonucleotide probes spanning the entire genome are powerful tools for the discovery of new genes. However, it is difficult to determine the structure of the spliced product of a structurally unknown gene from noisy array signals only. Here we introduce a statistical method that estimates the precise splicing points and the exon/intron structure of a structurally unknown gene by maximizing the odds or the ratio of posterior probabilities of the structure under the observation of array signal intensities and nucleic acid sequences. Our method more accurately predicted the gene structures than the simple threshold-based method, and more correctly estimated the expression values of structurally unknown genes than the window-based method. It was observed that the Markov model contributed to the precision of splice points, and that the statistical significance of expression (P-value) represented the reliability of the estimated gene structure and expression value well. We have implemented the method as a program ARTADE (ARabidopsis Tiling Array-based Detection of Exons) and applied it to the Arabidopsis thaliana whole-genome array data analysis. The database of the predicted results and the ARTADE program are available at http://omicspace.riken.jp/ARTADE/.

  18. Elucidation of Drug Metabolite Structural Isomers Using Molecular Modeling Coupled with Ion Mobility Mass Spectrometry.

    PubMed

    Reading, Eamonn; Munoz-Muriedas, Jordi; Roberts, Andrew D; Dear, Gordon J; Robinson, Carol V; Beaumont, Claire

    2016-02-16

    Ion mobility-mass spectrometry (IM-MS) in combination with molecular modeling offers the potential for small molecule structural isomer identification by measurement of their gas phase collision cross sections (CCSs). Successful application of this approach to drug metabolite identification would facilitate resource reduction, including animal usage, and may benefit other areas of pharmaceutical structural characterization including impurity profiling and degradation chemistry. However, the conformational behavior of drug molecules and their metabolites in the gas phase is poorly understood. Here the gas phase conformational space of drug and drug-like molecules has been investigated as well as the influence of protonation and adduct formation on the conformations of drug metabolite structural isomers. The use of CCSs, measured from IM-MS and molecular modeling information, for the structural identification of drug metabolites has also been critically assessed. Detection of structural isomers of drug metabolites using IM-MS is demonstrated and, in addition, a molecular modeling approach has been developed offering rapid conformational searching and energy assessment of candidate structures which agree with experimental CCSs. Here it is illustrated that isomers must possess markedly dissimilar CCS values for structural differentiation, the existence and extent of CCS differences being ionization state and molecule dependent. The results present that IM-MS and molecular modeling can inform on the identity of drug metabolites and highlight the limitations of this approach in differentiating structural isomers.

  19. Prokaryotic Chaperonins as Experimental Models for Elucidating Structure-Function Abnormalities of Human Pathogenic Mutant Counterparts

    PubMed Central

    Conway de Macario, Everly; Robb, Frank T.; Macario, Alberto J. L.

    2017-01-01

    All archaea have a chaperonin of Group II (thermosome) in their cytoplasm and some have also a chaperonin of Group I (GroEL; Cpn60; Hsp60). Conversely, all bacteria have GroEL, some in various copies, but only a few have, in addition, a chaperonin (tentatively designated Group III chaperonin) very similar to that occurring in all archaea, i.e., the thermosome subunit, and in the cytosol of eukaryotic cells, named CCT. Thus, nature offers a range of prokaryotic organisms that are potentially useful as experimental models to study the human CCT and its abnormalities. This is important because many diseases, the chaperonopathies, have been identified in which abnormal chaperones, including mutant CCT, are determinant etiologic-pathogenic factors and, therefore, research is needed to elucidate their pathologic features at the molecular level. Such research should lead to the clarification of the molecular mechanisms underlying the pathologic lesions observed in the tissues and organs of patients with chaperonopathies. Information on these key issues is necessary to make progress in diagnosis and treatment. Some of the archaeal organisms as well as some of the bacterial models suitable for studying molecular aspects pertinent to human mutant chaperones are discussed here, focusing on CCT. Results obtained with the archaeon Pyrococcus furiosus model to investigate the impact of a pathogenic CCT5 mutation on molecular properties and chaperoning functions are reviewed. The pathogenic mutation examined weakens the ability of the chaperonin subunit to form stable hexadecamers and as a consequence, the chaperoning functions of the complex are impaired. The future prospect is to find means for stabilizing the hexadecamer, which should lead to a recovering of chaperone function and the improving of lesions and clinical condition. PMID:28119916

  20. Using FT-IR Spectroscopy to Elucidate the Structures of Ablative Polymers

    NASA Technical Reports Server (NTRS)

    Fan, Wendy

    2011-01-01

    The composition and structure of an ablative polymer has a multifaceted influence on its thermal, mechanical and ablative properties. Understanding the molecular level information is critical to the optimization of material performance because it helps to establish correlations with the macroscopic properties of the material, the so-called structure-property relationship. Moreover, accurate information of molecular structures is also essential to predict the thermal decomposition pathways as well as to identify decomposition species that are fundamentally important to modeling work. In this presentation, I will describe the use of infrared transmission spectroscopy (FT-IR) as a convenient tool to aid the discovery and development of thermal protection system materials.

  1. Polycyclic aromatic hydrocarbons in Australian coals. III. Structural elucidation by proton nuclear magnetic resonance spectroscopy

    SciTech Connect

    Chaffee, A.L.; Fookes, C.J.R.

    1988-01-01

    The molecular structures of a number of tetra- and pentacyclic aromatic hydrocarbons present in extracts of Victorian brown coal have been unambiguously established by /sup 1/H-NMR. The determined structures support the hypothesis that these polycyclic aromatic hydrocarbons (PAHs) are diagenetically derived from triterpenoid precursors based on the oleanane, ursane and lupane skeletons. The occurrence of diastereoisomerism in these PAHs has been revealed for the first time and the diastereomeric configurations of one pair of triaromatic compounds (XI and XII) defined.

  2. Elucidating the Structure of Sugars: MW Spectroscopy Combined with Ultrafast UV Laser Vaporization

    NASA Astrophysics Data System (ADS)

    Cocinero, Emilio J.; Ecija, Patricia; Basterretxea, Francisco J.; Fernandez, Jose A.; Castano, Fernando; Lesarri, Alberto; Grabow, Jens-Uwe; Cimas, Alvaro

    2013-06-01

    Carbohydrates are one of the most versatile biochemicalbuilding blocks, widely acting in energetic, structural or recognition processes. Even the small monosaccharides display unique structural and conformational freedom and may coexist in many open-chain or cyclic forms. We recently initiated the investigation of a series of monosaccharides using a combination of ultrafast laser vaporization and microwave spectroscopy in supersonic jet expansions. We present several structural studies on carbohydrates of aldoses and ketoses of five and six carbon sugars vaporized by UV ultrafast laser vaporization and stabilized in a jet expansion. The experimental evidence confirms that sugars exhibits a α-/β-pyranose conformation (6-membered ring), sharply contrasting with the furanose form (5-membered ring) found in the nature (as component of RNA, sucrose). In addition, thanks to the use of enriched samples, we have experimentally determined the substitution and effective structures. Finally, the structure of several monosaccharides was compared and common structural patterns of their conformational landscape will be showed. E. J. Cocinero, A. Lesarri, P. écija, F. J. Basterretxea, J. U. Grabow, J. A. Fernández and F. Castaño Angew. Chem. Int. Ed. 51, 3119-3124, 2012. E. J. Cocinero, A. Lesarri, P. écija, Á. Cimas, B. G. Davis, F. J. Basterretxea, J. A. Fernández and F. Castaño J. Am. Chem. Soc. 135, 2845-2852, 2013.

  3. Structure elucidation of alkaline earth impregnated MCM-41 type mesoporous materials obtained by direct synthesis: An experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Paz, Gizeuda L.; Silva, Francisco das Chagas M.; Araújo, Maciel M.; Lima, Francisco das Chagas A.; Luz, Geraldo E.

    2014-06-01

    In this work, MCM-41 were synthesized hydrothermally and functionalized with calcium and strontium salts by direct method, using the Si/M = 50 molar ratio, in order to elucidate the way as the alkaline earth is incorporated on MCM-41 molecular sieve. The materials were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, nitrogen adsorption-desorption and theoretical calculations by DFT method. Experimental results and computer simulations showed that the alkaline earths were incorporated on MCM-41 through a complex structure, which negatively influences on basic sites formation.

  4. Perspectives in the application of residual dipolar couplings in the structure elucidation of weakly aligned small molecules.

    PubMed

    Schmidts, Volker

    2017-01-01

    This perspective article aims to review the general methodology in the application of residual dipolar couplings (RDCs) in the structure elucidation of small molecules and give the author's view on challenges for future applications. Recent improvements in the availability of alignment media, new pulse sequences for the measurement of couplings and improvements in the analysis software have garnered widespread interest in the technique. However, further generalization is needed in order to make RDC analysis into a truly "routine" method. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Structure elucidation of DNA interstrand cross-link by a combination of nuclease P1 digestion with mass spectrometry.

    PubMed

    Wang, Yuesong; Wang, Yinsheng

    2003-11-15

    DNA interstrand cross-link reagents are among the most powerful agents for cancer treatment. Here we report a combined nuclease P1 digestion/mass spectrometry method for the structure elucidation of duplex oligodeoxynucleotides (ODNs) containing an interstrand cross-link. Our results demonstrate that nuclease P1 digestion of a double-stranded ODN containing an interstrand cross-link (ICL) of 4,5',8-trimethylpsoralen or mitomycin C gives a tetranucleotide bearing the cross-linked nucleobase moiety. Product ion spectra of the deprotonated ions of the tetranucleotides provide information about the structure of the cross-link. Furthermore, product-ion spectra of tetranucleotides containing two orientation isomers of mitomycin C interstrand cross-link are distinctive. We believe that the method described in this paper can be generally applicable for investigating the structures of other DNA ICLs.

  6. Polymer-Induced Heteronucleation for Protein Single Crystal Growth: Structural Elucidation of Bovine Liver Catalase and Concanavalin A Forms

    SciTech Connect

    Foroughi, Leila M.; Kang, You-Na; Matzger, Adam J.

    2012-05-09

    Obtaining single crystals for X-ray diffraction remains a major bottleneck in structural biology; when existing crystal growth methods fail to yield suitable crystals, often the target rather than the crystallization approach is reconsidered. Here we demonstrate that polymer-induced heteronucleation, a powerful technique that has been used for small molecule crystallization form discovery, can be applied to protein crystallization by optimizing the heteronucleant composition and crystallization formats for crystallizing a wide range of protein targets. Applying these advances to two benchmark proteins resulted in dramatically increased crystal size, enabling structure determination, for a half century old form of bovine liver catalase (BLC) that had previously only been characterized by electron microscopy, and the discovery of two new forms of concanavalin A (conA) from the Jack bean and accompanying structural elucidation of one of these forms.

  7. Dioximate- and Bis(salicylaldiminate)-Bridged Titanium and Zirconium Alkoxides: Structure Elucidation by Mass Spectrometry

    PubMed Central

    Maurer, Christian; Pittenauer, Ernst; Puchberger, Michael; Allmaier, Günter; Schubert, Ulrich

    2013-01-01

    The treatment of titanium alkoxides with 1,5-pentanedioxime or 2,5-hexanedioxime resulted in the formation of complexes [{TiL(OR)2}2] in which the dioximate ligands (L) bridge a dimeric Ti2(μ2-OR)2 unit. The structures of the complexes were determined by single-crystal structure analysis, ESI mass spectrometry, and 1D and 2D solution NMR spectroscopy. In contrast, the treatment of titanium alkoxides with dioximes bearing cyclic linkers, such as cyclohexyl or aryl groups, resulted in insoluble polymeric compounds. The treatment of various bis(salicylaldiminates) with titanium and zirconium alkoxides resulted in compounds with the same composition [{TiL(OR)2}2], in which, however, two monomeric Ti(OR)2 units are bridged by the ligands L. The two structural possibilities can be distinguished by low-energy collision-induced dissociation owing to their different fragmentation patterns. PMID:23795338

  8. Expression, crystallization and structure elucidation of γ-terpinene synthase from Thymus vulgaris.

    PubMed

    Rudolph, Kristin; Parthier, Christoph; Egerer-Sieber, Claudia; Geiger, Daniel; Muller, Yves A; Kreis, Wolfgang; Müller-Uri, Frieder

    2016-01-01

    The biosynthesis of γ-terpinene, a precursor of the phenolic isomers thymol and carvacrol found in the essential oil from Thymus sp., is attributed to the activitiy of γ-terpinene synthase (TPS). Purified γ-terpinene synthase from T. vulgaris (TvTPS), the Thymus species that is the most widely spread and of the greatest economical importance, is able to catalyze the enzymatic conversion of geranyl diphosphate (GPP) to γ-terpinene. The crystal structure of recombinantly expressed and purified TvTPS is reported at 1.65 Å resolution, confirming the dimeric structure of the enzyme. The putative active site of TvTPS is deduced from its pronounced structural similarity to enzymes from other species of the Lamiaceae family involved in terpenoid biosynthesis: to (+)-bornyl diphosphate synthase and 1,8-cineole synthase from Salvia sp. and to (4S)-limonene synthase from Mentha spicata.

  9. Elucidating the structure of merocyanine dyes with the ASEC-FEG method. Phenol blue in solution

    NASA Astrophysics Data System (ADS)

    Franco, Leandro R.; Brandão, Idney; Fonseca, Tertius L.; Georg, Herbert C.

    2016-11-01

    The electronic structure of phenol blue (PB) was investigated in several protic and aprotic solvents, in a wide range of dielectric constants, using atomistic simulations. We employed the sequential QM/MM and the free energy gradient methods to optimize the geometry of PB in each solvent at the MP2/aug-cc-pVTZ level. The ASEC mean field is used to include the ensemble average of the solute-solvent interaction into the molecular hamiltonian, both for the geometry optimization and for the calculations of the electronic properties. We found that the geometry of PB changes considerably, from a polyene-like structure in nonpolar solvents to a cyanine-like in water. Moreover, and quite interestingly, in protic solvents with higher dielectric constant than water, the structure of the molecule is less affected and lies in an intermediate state. The results illustrate the important role played by hydrogen bonds in the conformation of merocyanine dyes.

  10. Elucidation of the Fe(III) Gallate Structure in Historical Iron Gall Ink.

    PubMed

    Ponce, Aldo; Brostoff, Lynn B; Gibbons, Sarah K; Zavalij, Peter; Viragh, Carol; Hooper, Joseph; Alnemrat, Sufian; Gaskell, Karen J; Eichhorn, Bryan

    2016-05-17

    Synthetic, structural, spectroscopic and aging studies conclusively show that the main colorant of historical iron gall ink (IGI) is an amorphous form of Fe(III) gallate·xH2O (x = ∼1.5-3.2). Comparisons between experimental samples and historical documents, including an 18th century hand-written manuscript by George Washington, by IR and Raman spectroscopy, XRD, X-ray photoelectron spectroscopy, and Mössbauer spectroscopy confirm the relationship between the model and authentic samples. These studies settle controversy in the cultural heritage field, where an alternative structure for Fe(III) gallate has been commonly cited.

  11. Using Jigsaw-Style Spectroscopy Problem-Solving to Elucidate Molecular Structure through Online Cooperative Learning

    ERIC Educational Resources Information Center

    Winschel, Grace A.; Everett, Renata K.; Coppola, Brian P.; Shultz, Ginger V.

    2015-01-01

    Cooperative learning was employed as an instructional approach to facilitate student development of spectroscopy problem solving skills. An interactive online environment was used as a framework to structure weekly discussions around spectroscopy problems outside of class. Weekly discussions consisted of modified jigsaw-style problem solving…

  12. Synthesis, structural elucidation and carbon dioxide adsorption on Zn (II) hexacyanoferrate (II) Prussian blue analogue

    NASA Astrophysics Data System (ADS)

    Roque-Malherbe, R.; Lugo, F.; Polanco, R.

    2016-11-01

    In the course of the last years hexacyanoferrates have been widely studied; even though, the adsorption properties of Zn (II) hexacyanoferrate(II) (labelled here Zn-HII) have not been thoroughly considered. In addition, soft porous crystals, i.e., adsorbents that display structural flexibility have been, as well, extensively studied, however this property has not been reported for Zn (II) hexacyanoferrate(II). In this regard, the key questions addressed here were the synthesis and structural characterization of Zn-HII together with the investigation of their low (up to 1 bar) and high pressure (up to 30 bar) adsorption properties, to found if these materials show structural flexibility. Then, to attain the anticipated goals, structural characterizations were made with: X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), diffuse reflectance infrared Fourier transform spectrometry (DRIFTS) and thermo-gravimetric analysis (TGA), simultaneously, with the investigation of the adsorption of carbon dioxide. As a result of the research process we concluded that the Zn-HII displayed Fm3 barm space group framework. Besides, the carbon dioxide adsorption investigation demonstrated the presence of the framework expansion effect together with an extremely high adsorption heat, properties that could be useful for the use of Zn(II) hexacyanoferrate(II) as an excellent adsorbent.

  13. Structural elucidation of sorghum lignins from an integrated biorefinery process based on hydrothermal and alkaline treatments.

    PubMed

    Sun, Shao-Long; Wen, Jia-Long; Ma, Ming-Guo; Sun, Run-Cang

    2014-08-13

    An integrated process based on hydrothermal pretreatment (HTP) (i.e., 110-230 °C, 0.5-2.0 h) and alkaline post-treatment (2% NaOH at 90 °C for 2.0 h) has been performed for the production of xylooligosaccharide, lignin, and digestible substrate from sweet sorghum stems. The yield, purity, dissociation mechanisms, structural features, and structural transformations of alkali lignins obtained from the integrated process were investigated. It was found that the HTP process facilitated the subsequent alkaline delignification, releasing lignin with the highest yield (79.3%) and purity from the HTP residue obtained at 190 °C for 0.5 h. All of the results indicated that the cleavage of the β-O-4 linkages and degradation of β-β and β-5 linkages occurred under the harsh HTP conditions. Depolymerization and condensation reactions simultaneously occurred at higher temperatures (≥ 170 °C). Moreover, the thermostability of lignin was positively related to its molecular weight, but was also affected by the inherent structures, such as β-O-4 linkages and condensed units. These findings will enhance the understanding of structural transformations of the lignins during the integrated process and maximize the potential utilizations of the lignins in a current biorefinery process.

  14. Structures of benzylsuccinate synthase elucidate roles of accessory subunits in glycyl radical enzyme activation and activity

    PubMed Central

    Funk, Michael A.; Judd, Evan T.; Marsh, E. Neil G.; Elliott, Sean J.; Drennan, Catherine L.

    2014-01-01

    Anaerobic degradation of the environmental pollutant toluene is initiated by the glycyl radical enzyme benzylsuccinate synthase (BSS), which catalyzes the radical addition of toluene to fumarate, forming benzylsuccinate. We have determined crystal structures of the catalytic α-subunit of BSS with its accessory subunits β and γ, which both bind a [4Fe-4S] cluster and are essential for BSS activity in vivo. We find that BSSα has the common glycyl radical enzyme fold, a 10-stranded β/α-barrel that surrounds the glycyl radical cofactor and active site. Both accessory subunits β and γ display folds related to high potential iron–sulfur proteins but differ substantially from each other in how they interact with the α-subunit. BSSγ binds distally to the active site, burying a hydrophobic region of BSSα, whereas BSSβ binds to a hydrophilic surface of BSSα that is proximal to the active site. To further investigate the function of BSSβ, we determined the structure of a BSSαγ complex. Remarkably, we find that the barrel partially opens, allowing the C-terminal region of BSSα that houses the glycyl radical to shift within the barrel toward an exit pathway. The structural changes that we observe in the BSSαγ complex center around the crucial glycyl radical domain, thus suggesting a role for BSSβ in modulating the conformational dynamics required for enzyme activity. Accompanying proteolysis experiments support these structural observations. PMID:24982148

  15. Structural and Functional Elucidation of Yeast Lanosterol 14α-Demethylase in Complex with Agrochemical Antifungals.

    PubMed

    Tyndall, Joel D A; Sabherwal, Manya; Sagatova, Alia A; Keniya, Mikhail V; Negroni, Jacopo; Wilson, Rajni K; Woods, Matthew A; Tietjen, Klaus; Monk, Brian C

    2016-01-01

    Azole antifungals, known as demethylase inhibitors (DMIs), target sterol 14α-demethylase (CYP51) in the ergosterol biosynthetic pathway of fungal pathogens of both plants and humans. DMIs remain the treatment of choice in crop protection against a wide range of fungal phytopathogens that have the potential to reduce crop yields and threaten food security. We used a yeast membrane protein expression system to overexpress recombinant hexahistidine-tagged S. cerevisiae lanosterol 14α-demethylase and the Y140F or Y140H mutants of this enzyme as surrogates in order characterize interactions with DMIs. The whole-cell antifungal activity (MIC50 values) of both the R- and S-enantiomers of tebuconazole, prothioconazole (PTZ), prothioconazole-desthio, and oxo-prothioconazole (oxo-PTZ) as well as for fluquinconazole, prochloraz and a racemic mixture of difenoconazole were determined. In vitro binding studies with the affinity purified enzyme were used to show tight type II binding to the yeast enzyme for all compounds tested except PTZ and oxo-PTZ. High resolution X-ray crystal structures of ScErg11p6×His in complex with seven DMIs, including four enantiomers, reveal triazole-mediated coordination of all compounds and the specific orientation of compounds within the relatively hydrophobic binding site. Comparison with CYP51 structures from fungal pathogens including Candida albicans, Candida glabrata and Aspergillus fumigatus provides strong evidence for a highly conserved CYP51 structure including the drug binding site. The structures obtained using S. cerevisiae lanosterol 14α-demethylase in complex with these agrochemicals provide the basis for understanding the impact of mutations on azole susceptibility and a platform for the structure-directed design of the next-generation of DMIs.

  16. Structural and Functional Elucidation of Yeast Lanosterol 14α-Demethylase in Complex with Agrochemical Antifungals

    PubMed Central

    Sagatova, Alia A.; Keniya, Mikhail V.; Negroni, Jacopo; Wilson, Rajni K.; Woods, Matthew A.; Monk, Brian C.

    2016-01-01

    Azole antifungals, known as demethylase inhibitors (DMIs), target sterol 14α-demethylase (CYP51) in the ergosterol biosynthetic pathway of fungal pathogens of both plants and humans. DMIs remain the treatment of choice in crop protection against a wide range of fungal phytopathogens that have the potential to reduce crop yields and threaten food security. We used a yeast membrane protein expression system to overexpress recombinant hexahistidine-tagged S. cerevisiae lanosterol 14α-demethylase and the Y140F or Y140H mutants of this enzyme as surrogates in order characterize interactions with DMIs. The whole-cell antifungal activity (MIC50 values) of both the R- and S-enantiomers of tebuconazole, prothioconazole (PTZ), prothioconazole-desthio, and oxo-prothioconazole (oxo-PTZ) as well as for fluquinconazole, prochloraz and a racemic mixture of difenoconazole were determined. In vitro binding studies with the affinity purified enzyme were used to show tight type II binding to the yeast enzyme for all compounds tested except PTZ and oxo-PTZ. High resolution X-ray crystal structures of ScErg11p6×His in complex with seven DMIs, including four enantiomers, reveal triazole-mediated coordination of all compounds and the specific orientation of compounds within the relatively hydrophobic binding site. Comparison with CYP51 structures from fungal pathogens including Candida albicans, Candida glabrata and Aspergillus fumigatus provides strong evidence for a highly conserved CYP51 structure including the drug binding site. The structures obtained using S. cerevisiae lanosterol 14α-demethylase in complex with these agrochemicals provide the basis for understanding the impact of mutations on azole susceptibility and a platform for the structure-directed design of the next-generation of DMIs. PMID:27907120

  17. Elucidating in Vivo Structural Dynamics in Integral Membrane Protein by Hydroxyl Radical Footprinting*

    PubMed Central

    Zhu, Yi; Guo, Tiannan; Park, Jung Eun; Li, Xin; Meng, Wei; Datta, Arnab; Bern, Marshall; Lim, Sai Kiang; Sze, Siu Kwan

    2009-01-01

    We describe here a novel footprinting technique to probe the in vivo structural dynamics of membrane protein. This method utilized in situ generation of hydroxyl radicals to oxidize and covalently modify biomolecules on living Escherichia coli cell surface. After enriching and purifying the membrane proteome, the modified amino acid residues of the protein were identified with tandem mass spectrometry to map the solvent-accessible surface of the protein that will form the footprint of in vivo structure of the protein. Of about 100 outer membrane proteins identified, we investigated the structure details of a typical β-barrel structure, the porin OmpF. We found that six modified tryptic peptides of OmpF were reproducibly detected with 19 amino acids modified under the physiological condition. The modified amino acid residues were widely distributed in the external loop area, β-strands, and periplasmic turning area, and all of them were validated as solvent-accessible according to the crystallography data. We further extended this method to study the dynamics of the voltage gating of OmpF in vivo using mimic changes of physiological circumstance either by pH or by ionic strength. Our data showed the voltage gating of porin OmpF in vivo for the first time and supported the proposed mechanism that the local electrostatic field changes in the eyelet region may alter the porin channels to switch. Thus, this novel method can be a potentially efficient method to study the structural dynamics of the membrane proteins of a living cell. PMID:19473960

  18. Structural elucidation and molecular characterization of Marinobacter sp. α-amylase.

    PubMed

    Kumar, Sumit; Khan, Rizwan Hasan; Khare, S K

    2016-01-01

    Halophiles have been perceived as potential source of novel enzymes in recent years. The interest emanates from their ability to catalyze efficiently under high salt and organic solvents. Marinobacter sp. EMB8 α-amylase was found to be active and stable in salt and organic solvents. A study was carried out using circular dichroism (CD), fluorescence spectroscopy, and bioinformatics analysis of similar protein sequence to ascertain molecular basis of salt and solvent adaptability of α-amylase. Structural changes recorded in the presence of varying amounts of NaCl exhibited an increase in negative ellipticity as a function of salt, confirming that salt stabilizes the protein and increases the secondary structure, making it catalytically functional. The data of intrinsic and extrinsic fluorescence (using 1-anilinonaphthalene 8-sulfonate [ANS] as probe) further confirmed the role of salt. The α-amylase was active in the presence of nonpolar solvents, namely, hexane and decane, but inactivated by ethanol. The decrease in the activity was correlated with the loss of tertiary structure in the presence of ethanol. Guanidine hydrochloride and pH denaturation indicated the molten globule state at pH 4.0. Partial N-terminal amino acid sequence of the purified α-amylase revealed the relatedness to Pseudoalteromonas sp. α-amylase. "FVHLFEW" was found as the N-terminal signature sequence. Bioinformatics analysis was done using M. algicola α-amylase protein having the same N-terminal signature sequence. The three-dimensional structure of Marinobacter α-amylase was deduced using the I-TASSER server, which reflected the enrichment of acidic amino acids on the surface, imparting the stability in the presence of salt. Our study clearly indicate that salt is necessary for maintaining the secondary and tertiary structure of halophilic protein, which is a necessary prerequisite for catalysis.

  19. Structural elucidation of the lignins from stems and foliage of Arundo donax Linn.

    PubMed

    You, Ting-Ting; Mao, Jian-Zhen; Yuan, Tong-Qi; Wen, Jia-Long; Xu, Feng

    2013-06-05

    As one of the potential energy crops, Arundo donax Linn. is a renewable source for the production of biofuels and bioproducts. In the present study, milled wood lignin (MWL) and alkaline lignin (AL) from stems and foliage of A. donax were isolated and characterized by FT-IR spectroscopy, UV spectroscopy, GPC, ³¹P NMR, 2D HSQC NMR, and DFRC. The results indicated that both stem and foliage lignins were HGS type lignins. The semiquantitative HSQC spectra analysis demonstrated a predominance of β-O-4' aryl ether linkages (71-82%), followed by β-β', β-5', β-1', and α,β-diaryl ethers linkages in the lignins. Compared to stem lignins, foliage lignins had less β-O-4' alkyl-aryl ethers, lower weight-average molecular weight, less phenolic OH, more H units, and lower S/G ratio. Moreover, tricin was found to incorporate into the foliage lignins (higher content of condensed G units) in significant amounts and might be alkaline-stable.

  20. Structural elucidation of the Brucella melitensis M antigen by high-resolution NMR at 500 MHz.

    PubMed

    Bundle, D R; Cherwonogrodzky, J W; Perry, M B

    1987-12-29

    The Brucella M antigen from the species type strain Brucella melitensis 16M has been identified as a component of the cell wall lipopolysaccharide (LPS). O polysaccharide liberated from this LPS by mild acid hydrolysis exhibited M activity in serological tests and was shown to be a homopolymer of 4-formamido-4,6-dideoxy-alpha-D-mannopyranosyl residues arranged in an oligosaccharide repeating unit as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the native lipopolysaccharide. Structural analysis of the O polysaccharide by NMR methods was difficult due to apparent microheterogeneity of the repeating unit, which was in fact caused by the presence of rotational isomers of the N-formyl moiety. This problem was resolved by chemical modification of the polysaccharide to its amino and N-acetyl derivatives, the 500-MHz 1H and 125-MHz 13C NMR spectra of which could be analyzed in terms of a unique structure through application of pH-dependent beta-shifts and two-dimensional techniques that included COSY, relayed COSY, and NOESY experiments together with heteronuclear C/H shift correlation spectroscopy. On the basis of these experiments and supported by methylation and periodate oxidation data, the structure of the M polysaccharide was determined as a linear polymer of unbranched pentasaccharide repeating units consisting of four 1,2-linked and one 1,3-linked 4,6-dideoxy-4-formamido-alpha-D-mannopyranosyl residues. The marked structural similarity of the M antigen and the A antigen, which is known to be a 1,2-linked homopolysaccharide of 4,6-dideoxy-4-formamido-alpha-D-mannopyranosyl units, accounts for cross-serological reactions of the two and the long-standing confusion surrounding the nature of their antigenic determinants. Structural and serological considerations in conjuction with the sodium dodecyl sulfate banding pattern of Brucella A LPS suggest that its biosynthesis differs appreciably from that of the M antigen, which appears to be

  1. Structural elucidation of a novel mechanism for the bacteriophage-based inhibition of the RNA degradosome.

    PubMed

    Van den Bossche, An; Hardwick, Steven W; Ceyssens, Pieter-Jan; Hendrix, Hanne; Voet, Marleen; Dendooven, Tom; Bandyra, Katarzyna J; De Maeyer, Marc; Aertsen, Abram; Noben, Jean-Paul; Luisi, Ben F; Lavigne, Rob

    2016-07-22

    In all domains of life, the catalysed degradation of RNA facilitates rapid adaptation to changing environmental conditions, while destruction of foreign RNA is an important mechanism to prevent host infection. We have identified a virus-encoded protein termed gp37/Dip, which directly binds and inhibits the RNA degradation machinery of its bacterial host. Encoded by giant phage фKZ, this protein associates with two RNA binding sites of the RNase E component of the Pseudomonas aeruginosa RNA degradosome, occluding them from substrates and resulting in effective inhibition of RNA degradation and processing. The 2.2 Å crystal structure reveals that this novel homo-dimeric protein has no identifiable structural homologues. Our biochemical data indicate that acidic patches on the convex outer surface bind RNase E. Through the activity of Dip, фKZ has evolved a unique mechanism to down regulate a key metabolic process of its host to allow accumulation of viral RNA in infected cells.

  2. Structure elucidation and gene cluster characterization of the O-antigen of Escherichia coli O80.

    PubMed

    Senchenkova, Sof'ya N; Guo, Xi; Filatov, Andrei V; Perepelov, Andrei V; Liu, Bin; Shashkov, Alexander S; Knirel, Yuriy A

    2016-09-02

    Mild alkaline degradation of the lipopolysaccharide of Escherichia coli O80 afforded a polysaccharide, which was studied by sugar analysis, selective cleavage of glycosidic linkages, and (1)H and (13)C NMR spectroscopy. Solvolysis of the polysaccharide with CF3CO2H cleaved the linkages of α-Fuc and β-linked GlcNAc and GalNAc residues to give two disaccharides. The following structure of the hexasaccharide repeating unit of the O-polysaccharide was established: The polysaccharide repeat also contains a minor O-acetyl group but its position was not determined. The O-antigen gene cluster of E. coli O80 between the conserved galF and gnd genes was analyzed and found to be consistent with the O-polysaccharide structure established.

  3. High-Resolution Crystal Structures Elucidate the Molecular Basis of Cholera Blood Group Dependence.

    PubMed

    Heggelund, Julie Elisabeth; Burschowsky, Daniel; Bjørnestad, Victoria Ariel; Hodnik, Vesna; Anderluh, Gregor; Krengel, Ute

    2016-04-01

    Cholera is the prime example of blood-group-dependent diseases, with individuals of blood group O experiencing the most severe symptoms. The cholera toxin is the main suspect to cause this relationship. We report the high-resolution crystal structures (1.1-1.6 Å) of the native cholera toxin B-pentamer for both classical and El Tor biotypes, in complexes with relevant blood group determinants and a fragment of its primary receptor, the GM1 ganglioside. The blood group A determinant binds in the opposite orientation compared to previously published structures of the cholera toxin, whereas the blood group H determinant, characteristic of blood group O, binds in both orientations. H-determinants bind with higher affinity than A-determinants, as shown by surface plasmon resonance. Together, these findings suggest why blood group O is a risk factor for severe cholera.

  4. High-Resolution Crystal Structures Elucidate the Molecular Basis of Cholera Blood Group Dependence

    PubMed Central

    Heggelund, Julie Elisabeth; Burschowsky, Daniel; Bjørnestad, Victoria Ariel; Hodnik, Vesna; Anderluh, Gregor; Krengel, Ute

    2016-01-01

    Cholera is the prime example of blood-group-dependent diseases, with individuals of blood group O experiencing the most severe symptoms. The cholera toxin is the main suspect to cause this relationship. We report the high-resolution crystal structures (1.1–1.6 Å) of the native cholera toxin B-pentamer for both classical and El Tor biotypes, in complexes with relevant blood group determinants and a fragment of its primary receptor, the GM1 ganglioside. The blood group A determinant binds in the opposite orientation compared to previously published structures of the cholera toxin, whereas the blood group H determinant, characteristic of blood group O, binds in both orientations. H-determinants bind with higher affinity than A-determinants, as shown by surface plasmon resonance. Together, these findings suggest why blood group O is a risk factor for severe cholera. PMID:27082955

  5. Structural elucidation of the Brucella melitensis M antigen by high-resolution NMR at 500 MHz

    SciTech Connect

    Bundle, D.R.; Cherwonogrodzky, J.W.; Perry, M.B.

    1987-12-29

    The Brucella M antigen from the species type strain Brucella melitensis 16M has been identified as a component of the cell wall lipopolysaccharide (LPS). O polysaccharide liberated from this LPS by mild acid hydrolysis exhibited M activity in serological tests and was shown to be a homopolymer of 4-formamido-4,6-dideoxy-..cap alpha..-D-mannopyranosyl residues arranged in an oligosaccharide repeating unit as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the native lipopolysaccharide. Structural analysis of the O polysaccharide by NMR methods was difficult due to apparent microheterogeneity of the repeating unit, which was in fact caused by the presence of rotational isomers of the N-formyl moiety. This problem was resolved by chemical modification of the polysaccharide to its amino and N-acetyl derivatives, the 500-MHz /sup 1/H and 125-MHz /sup 13/C NMR spectra of which could be analyzed in terms of a unique structure through application of pH-dependent ..beta..-shifts and two-dimensional techniques that included COSY, relayed COSY, and NOESY experiments together with heteronuclear C/H shift correlation spectroscopy. On the basis of these experiments and supported by methylation and periodate oxidation data, the structure of the M polysaccharide was determined as a linear polymer of unbranched pentasaccharide repeating units consisting of four 1,2-linked and one 1,3-lined 4,6-dideoxy-4-formamido-..cap alpha..-D-mannopyranosyl residues. The marked structural similarity of the M antigen and the A antigen, which is known to be a 1,2-linked homopolysaccharide of 4,6-dideoxy-4-formamido-..cap alpha..-D-mannopyranosyl units, accounts for cross-serological reactions of the two and the long-standing confusion surrounding the nature of their antigenic determinants.

  6. Well-defined azazirconacyclopropane complexes supported on silica structurally determined by 2D NMR comparative elucidation.

    PubMed

    El Eter, Mohamad; Hamzaoui, Bilel; Abou-Hamad, Edy; Pelletier, Jérémie D A; Basset, Jean-Marie

    2013-05-21

    Grafting of Zr(NMe2)4 on mesoporous silica SBA-15 afforded selectively well-defined surface species [triple bond, length as m-dash]SiOZr(NMe2)(η2NMeCH2). 2D solid-state NMR ((1)H-(13)C HETCOR, Multiple Quantum) experiments have shown a unique structural rearrangement occurring on the immobilised zirconium bis methylamido ligand.

  7. Elucidating features that drive the design of selective antifolates using crystal structures of human dihydrofolate reductase.

    PubMed

    Lamb, Kristen M; G-Dayanandan, Narendran; Wright, Dennis L; Anderson, Amy C

    2013-10-15

    The pursuit of antimicrobial drugs that target dihydrofolate reductase (DHFR) exploits differences in sequence and dynamics between the pathogenic and human enzymes. Here, we present five crystal structures of human DHFR bound to a new class of antimicrobial agents, the propargyl-linked antifolates (PLAs), with a range of potency (IC50 values of 0.045-1.07 μM) for human DHFR. These structures reveal that interactions between the ligands and Asn 64, Phe 31, and Phe 34 are important for increased affinity for human DHFR and that loop residues 58-64 undergo ligand-induced conformational changes. The utility of these structural studies was demonstrated through the design of three new ligands that reduce the number of contacts with Asn 64, Phe 31, and Phe 34. Synthesis and evaluation show that one of the designed inhibitors exhibits the lowest affinity for human DHFR of any of the PLAs (2.64 μM). Comparisons of structures of human and Staphylococcus aureus DHFR bound to the same PLA reveal a conformational change in the ligand that enhances interactions with residues Phe 92 (Val 115 in huDHFR) and Ile 50 (Ile 60 in huDHFR) in S. aureus DHFR, yielding selectivity. Likewise, comparisons of human and Candida glabrata DHFR bound to the same ligand show that hydrophobic interactions with residues Ile 121 and Phe 66 (Val 115 and Asn 64 in human DHFR) yield selective inhibitors. The identification of residue substitutions that are important for selectivity and the observation of active site flexibility will help guide antimicrobial antifolate development for the inhibition of pathogenic species.

  8. Structure elucidation of a new isoflavone by exclusive use of ¹H NMR measurements.

    PubMed

    Ortega, Alfredo R; Toscano, Rubén A; Hernández-Barragán, Angelina; Alvarez-Cisneros, Celina; Joseph-Nathan, Pedro

    2015-10-01

    The leaves of Piscidia carthagenensis provided new 7,2',5'-trimethoxy-3',4'-methylenedioxyisoflavone (1), admixed with known 6,7-dimethoxy-3',4'-methylenedioxyisoflavone (2), and 5,4'-dihydroxy-7,2',5'-trimethoxyisoflavone (3), which were separated by extensive fractional solubillization. Selective irradiation of the H-5 "singlet" of 2 allowed distinction of the two methoxy group signals, whose chemical shift difference is only 0.004 ppm (1.2 Hz at 300 MHz). The (1)H and (13)C NMR data of 3 were assigned with the aid of HETCOR and gHMBC measurements. Although 1 looked inhomogeneous in the solid state, its solution structure followed from (1)H NMR measurements, where it looked homogeneous. To clarify the solid state aspect and confirm the structure of 1, two types of crystals were mechanically separated and subjected to single crystal X-ray diffraction measurements. This study revealed polymorphism because of the concomitant presence of orthorhombic and triclinic crystals, but showed no atropisomerism. The structure of 3 was also verified by X-ray diffraction crystallography.

  9. Structural elucidation of a heteroglycan from the fruiting bodies of Agaricus blazei Murill.

    PubMed

    Liu, Jicheng; Zhang, Chunjing; Wang, Yajun; Yu, Haitao; Liu, Han; Wang, Liping; Yang, Xiuzhen; Liu, Zhecheng; Wen, Xianchun; Sun, Yongxu; Yu, Chunlei; Liu, Lei

    2011-11-01

    One water-soluble polysaccharide (ABP-W1) was purified from the fruiting bodies of Agaricus blazei by DEAE Sepharose Fast Flow and Sepharose 6 Fast Flow column chromatography. Its molecular weight was about 3.9×10(2) kDa as determined by high-performance size-exclusion chromatography (HPSEC). The structural feature of ABP-W1 was investigated by a combination of chemical and instrumental analysis, including partial hydrolysis with acid, periodate oxidation-Smith degradation, acetylation, methylation analysis and nuclear magnetic resonance spectroscopy (NMR (1)H, (13)C). The results revealed that ABP-W1 had a backbone consisting of (1→6)-linked-α-D-galactopyranosyl and (1→2,6)-linked-α-D-glucopyranosyl, which was branched with one single terminal (1→)-α-D-glucopyranosyl at the O-2 position of (1→2,6)-linked-α-D-glucopyranosyl along the main chain in the ratio of 1:1:1. The observation of the complex-formation between ABP-W1 and Congo Red indicated that ABP-W1 probably existed in a triple-strand helical conformation in water. Based on the data obtained, ABP-W1 was composed of a repeating unit with a structure as below: [structure: see text].

  10. Structural Elucidation of cis/trans Dicaffeoylquinic Acid Photoisomerization Using Ion Mobility Spectrometry-Mass Spectrometry.

    PubMed

    Zheng, Xueyun; Renslow, Ryan S; Makola, Mpho M; Webb, Ian K; Deng, Liulin; Thomas, Dennis G; Govind, Niranjan; Ibrahim, Yehia M; Kabanda, Mwadham M; Dubery, Ian A; Heyman, Heino M; Smith, Richard D; Madala, Ntakadzeni E; Baker, Erin S

    2017-04-06

    Due to the recently uncovered health benefits and anti-HIV activities of dicaffeoylquinic acids (diCQAs), understanding their structures and functions is of great interest for drug discovery efforts. DiCQAs are analytically challenging to identify and quantify since they commonly exist as a diverse mixture of positional and geometric (cis/trans) isomers. In this work, we utilized ion mobility spectrometry coupled with mass spectrometry to separate the various isomers before and after UV irradiation. The experimental collision cross sections were then compared with theoretical structures to differentiate and identify the diCQA isomers. Our analyses found that naturally the diCQAs existed predominantly as trans/trans isomers, but after 3 h of UV irradiation, cis/cis, cis/trans, trans/cis, and trans/trans isomers were all present in the mixture. This is the first report of successful differentiation of cis/trans diCQA isomers individually, which shows the great promise of IMS coupled with theoretical calculations for determining the structure and activity relationships of different isomers in drug discovery studies.

  11. Cryo-EM structure of lysenin pore elucidates membrane insertion by an aerolysin family protein

    PubMed Central

    Bokori-Brown, Monika; Martin, Thomas G.; Naylor, Claire E.; Basak, Ajit K.; Titball, Richard W.; Savva, Christos G.

    2016-01-01

    Lysenin from the coelomic fluid of the earthworm Eisenia fetida belongs to the aerolysin family of small β-pore-forming toxins (β-PFTs), some members of which are pathogenic to humans and animals. Despite efforts, a high-resolution structure of a channel for this family of proteins has been elusive and therefore the mechanism of activation and membrane insertion remains unclear. Here we determine the pore structure of lysenin by single particle cryo-EM, to 3.1 Å resolution. The nonameric assembly reveals a long β-barrel channel spanning the length of the complex that, unexpectedly, includes the two pre-insertion strands flanking the hypothetical membrane-insertion loop. Examination of other members of the aerolysin family reveals high structural preservation in this region, indicating that the membrane-insertion pathway in this family is conserved. For some toxins, proteolytic activation and pro-peptide removal will facilitate unfolding of the pre-insertion strands, allowing them to form the β-barrel of the channel. PMID:27048994

  12. Cryo-EM structure of lysenin pore elucidates membrane insertion by an aerolysin family protein

    NASA Astrophysics Data System (ADS)

    Bokori-Brown, Monika; Martin, Thomas G.; Naylor, Claire E.; Basak, Ajit K.; Titball, Richard W.; Savva, Christos G.

    2016-04-01

    Lysenin from the coelomic fluid of the earthworm Eisenia fetida belongs to the aerolysin family of small β-pore-forming toxins (β-PFTs), some members of which are pathogenic to humans and animals. Despite efforts, a high-resolution structure of a channel for this family of proteins has been elusive and therefore the mechanism of activation and membrane insertion remains unclear. Here we determine the pore structure of lysenin by single particle cryo-EM, to 3.1 Å resolution. The nonameric assembly reveals a long β-barrel channel spanning the length of the complex that, unexpectedly, includes the two pre-insertion strands flanking the hypothetical membrane-insertion loop. Examination of other members of the aerolysin family reveals high structural preservation in this region, indicating that the membrane-insertion pathway in this family is conserved. For some toxins, proteolytic activation and pro-peptide removal will facilitate unfolding of the pre-insertion strands, allowing them to form the β-barrel of the channel.

  13. Isolation and structural elucidation of acidic terpenoid phytoalexins in maize and their interactions with Aspergillus flavus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants use a variety of physical and chemical defenses in response to herbivory and pathogen attack. Infection of maize by the fungal pathogen Aspergillus flavus results in the accumulation of aflatoxins, which are among the most detrimental biogenic substances known to man. The majority of maize de...

  14. Tackling the stacking disorder of melon--structure elucidation in a semicrystalline material.

    PubMed

    Seyfarth, Lena; Seyfarth, Jan; Lotsch, Bettina V; Schnick, Wolfgang; Senker, Jürgen

    2010-03-07

    In this work we tackle the stacking disorder of melon, a layered carbon imide amide polymer with the ideal composition (C(6)N(7)(NH)(NH(2))). Although its existence has been postulated since 1834 the structure of individual melon layers could only recently be solved via electron diffraction and high-resolution (15)N solid-state NMR spectroscopy. With only weak van der Waals interactions between neighboring layers its long range stacking order is poorly defined preventing an efficient use of diffraction techniques. We, therefore, rely on a combination of solid-state NMR experiments and force field calculations. The key information is obtained based on heteronuclear ((1)H-(13)C) and homonuclear ((1)H-(1)H) second moments M(2) acquired from (1)H-(13)C cross polarization experiments. To allow for an interpretation of the polarization transfer rates the resonances in the (13)C MAS spectra have to be assigned and the hydrogen atoms have to be located. The assignment was performed using a two-dimensional (15)N-(13)C iDCP experiment. For the determination of the position of the hydrogen atoms NH and HH distances were measured via(1)H-(15)N Lee-Goldburg CP and (1)H-(1)H double-quantum build-up curves, respectively. Furthermore, the homogeneity of the material under examination was investigated exploiting (15)N spin-diffusion. Based on force field methods 256 structure models with varying lateral arrangements between neighboring layers were created. For each model the M(2) were calculated allowing them to be ranked by comparing calculated and measured M(2) as well as via their force field energies. This allows the creation of markedly structured hypersurfaces with two distinctly favored shift vectors for the displacement of neighboring layers.

  15. Studies on azaspiracid biotoxins. II. Mass spectral behavior and structural elucidation of azaspiracid analogs.

    PubMed

    Brombacher, Stephan; Edmonds, Suzanne; Volmer, Dietrich A

    2002-01-01

    In this report, the mass spectral analysis of azaspiracid biotoxins is described. Specifically, the collision-induced dissociation (CID) behavior and differences between CID spectra obtained on a triple-quadrupole, a quadrupole time-of-flight, and an ion-trap mass spectrometer are addressed here. The CID spectra obtained on the triple-quadrupole mass spectrometer allowed the classification of the major product ions of the five investigated compounds (AZA 1-5) into five distinct fragment ion groups, according to the backbone cleavage positions. Although the identification of unknown azaspiracids was difficult based on CID alone, the spectra provided sufficient structural information to allow confirmation of known azaspiracids in marine samples. Furthermore, we were able to detect two new azaspiracid analogs (AZA 1b and 6) in our samples and provide a preliminary structural analysis. The proposed dissociation pathways under tandem mass spectrometry (MS/MS) conditions were confirmed by a comparison with accurate mass data from electrospray quadrupole time-of-flight MS/MS experiments. Regular sequential MS(n) analysis on an ion-trap mass spectrometer was more restricted in comparison to the triple-quadrupole mass spectrometer, because the azaspiracids underwent multiple [M + H - nH(2)O](+) (n = 1-6) losses from the precursor ion under CID. Thus, the structural information obtained from MS(n) experiments was somewhat limited. To overcome this limitation, we developed a wide-range excitation technique using a 180-u window that provided results comparable to the triple-quadrupole instrument. To demonstrate the potential of the method, we applied it to the analysis of degraded azaspiracids from mussel tissue extracts.

  16. Tannin structural elucidation and quantitative ³¹P NMR analysis. 2. Hydrolyzable tannins and proanthocyanidins.

    PubMed

    Melone, Federica; Saladino, Raffaele; Lange, Heiko; Crestini, Claudia

    2013-10-02

    An unprecedented analytical method that allows simultaneous structural and quantitative characterization of all functional groups present in tannins is reported. In situ labeling of all labile H groups (aliphatic and phenolic hydroxyls and carboxylic acids) with a phosphorus-containing reagent (Cl-TMDP) followed by quantitative ³¹P NMR acquisition constitutes a novel fast and reliable analytical tool for the analysis of tannins and proanthocyanidins with significant implications for the fields of food and feed analyses, tannery, and the development of natural polyphenolics containing products.

  17. Elucidation of the EP defect in Diamond-Blackfan anemia by characterization and prospective isolation of human EPs.

    PubMed

    Iskander, Deena; Psaila, Bethan; Gerrard, Gareth; Chaidos, Aristeidis; En Foong, Hui; Harrington, Yvonne; Karnik, Leena C; Roberts, Irene; de la Fuente, Josu; Karadimitris, Anastasios

    2015-04-16

    Diamond-Blackfan anemia (DBA) is a disorder characterized by a selective defect in erythropoiesis. Delineation of the precise defect is hampered by a lack of markers that define cells giving rise to erythroid burst- and erythroid colony-forming unit (BFU-E and CFU-E) colonies, the clonogenic assays that quantify early and late erythroid progenitor (EEP and LEP) potential, respectively. By combining flow cytometry, cell-sorting, and single-cell clonogenic assays, we identified Lin(-)CD34(+)CD38(+)CD45RA(-)CD123(-)CD71(+)CD41a(-)CD105(-)CD36(-) bone marrow cells as EEP giving rise to BFU-E, and Lin(-)CD34(+/-)CD38(+)CD45RA(-)CD123(-)CD71(+)CD41a(-)CD105(+)CD36(+) cells as LEP giving rise to CFU-E, in a hierarchical fashion. We then applied these definitions to DBA and identified that, compared with controls, frequency, and clonogenicity of DBA, EEP and LEP are significantly decreased in transfusion-dependent but restored in corticosteroid-responsive patients. Thus, both quantitative and qualitative defects in erythroid progenitor (EP) contribute to defective erythropoiesis in DBA. Prospective isolation of defined EPs will facilitate more incisive study of normal and aberrant erythropoiesis.

  18. Structural elucidation of a novel mechanism for the bacteriophage-based inhibition of the RNA degradosome

    PubMed Central

    Van den Bossche, An; Hardwick, Steven W; Ceyssens, Pieter-Jan; Hendrix, Hanne; Voet, Marleen; Dendooven, Tom; Bandyra, Katarzyna J; De Maeyer, Marc; Aertsen, Abram; Noben, Jean-Paul

    2016-01-01

    In all domains of life, the catalysed degradation of RNA facilitates rapid adaptation to changing environmental conditions, while destruction of foreign RNA is an important mechanism to prevent host infection. We have identified a virus-encoded protein termed gp37/Dip, which directly binds and inhibits the RNA degradation machinery of its bacterial host. Encoded by giant phage фKZ, this protein associates with two RNA binding sites of the RNase E component of the Pseudomonas aeruginosa RNA degradosome, occluding them from substrates and resulting in effective inhibition of RNA degradation and processing. The 2.2 Å crystal structure reveals that this novel homo-dimeric protein has no identifiable structural homologues. Our biochemical data indicate that acidic patches on the convex outer surface bind RNase E. Through the activity of Dip, фKZ has evolved a unique mechanism to down regulate a key metabolic process of its host to allow accumulation of viral RNA in infected cells. DOI: http://dx.doi.org/10.7554/eLife.16413.001 PMID:27447594

  19. Elucidating the mechanisms of cooperative calcium-calmodulin interactions: a structural systems biology approach

    PubMed Central

    Valeyev, Najl V; Bates, Declan G; Heslop-Harrison, Pat; Postlethwaite, Ian; Kotov, Nikolay V

    2008-01-01

    Background Calmodulin is an important multifunctional molecule that regulates the activities of a large number of proteins in the cell. Calcium binding induces conformational transitions in calmodulin that make it specifically active to particular target proteins. The precise mechanisms underlying calcium binding to calmodulin are still, however, quite poorly understood. Results In this study, we adopt a structural systems biology approach and develop a mathematical model to investigate various types of cooperative calcium-calmodulin interactions. We compare the predictions of our analysis with physiological dose-response curves taken from the literature, in order to provide a quantitative comparison of the effects of different mechanisms of cooperativity on calcium-calmodulin interactions. The results of our analysis reduce the gap between current understanding of intracellular calmodulin function at the structural level and physiological calcium-dependent calmodulin target activation experiments. Conclusion Our model predicts that the specificity and selectivity of CaM target regulation is likely to be due to the following factors: variations in the target-specific Ca2+ dissociation and cooperatively effected dissociation constants, and variations in the number of Ca2+ ions required to bind CaM for target activation. PMID:18518982

  20. Structural elucidation of 4-(cystein-S-yl)butyl glucosinolate from the leaves of Eruca sativa.

    PubMed

    Kim, Sun-Ju; Kawaharada, Chiami; Jin, Shigeki; Hashimoto, Makoto; Ishii, Gensho; Yamauchi, Hiroaki

    2007-01-01

    The structurally unique glucosinolate (GSL), 4-(cystein-S-yl)butyl GSL, was identified in the leaves of hydroponically-grown rocket salad (Eruca sativa Mill.). Its electrospray ionization mass spectrometry (ESI-MS)/MS spectrum indicated that this unusual GSL had a molecular weight of 414 as a desulfo (DS)-GSL, and a molecular formula of C(14)H(25)N(2)O(8)S(2) based on its negative ion matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) spectrum. For further confirmation, the 4-(cystein-S-yl)butyl DS-GSL was prepared with authentic L-Ser and purified dimeric 4-mercaptobutyl DS-GSL, and its chemical structure then confirmed by ESI-MS/MS data. It is named "glucorucolamine" as a trivial name from its ammonia sensitivity. This unique GSL was found to the greatest extent when rocket salad was grown in a 100% NH4+-N nutrient solution. Despite it clearly seems to reduce the detoxification of excess NH4+ in the leaves of rocket salad, present knowledge about the unique GSL is still far from being sufficient.

  1. ELUCIDATION OF HUMAN CHOLINE KINASE CRYSTAL STRUCTURES IN COMPLEX WITH THE PRODUCTS ADP OR PHOSPHOCHOLINE

    PubMed Central

    Malito, Enrico; Sekulic, Nikolina; Too, Wei Cun See; Konrad, Manfred; Lavie, Arnon

    2006-01-01

    Summary Choline kinase, responsible for the phosphorylation of choline to phosphocholine as the first step of the CDP-choline pathway for the biosynthesis of phosphatidylcholine, has been recognized as a new target for anticancer therapy. Crystal structures of human choline kinase in its apo, ADP- and phosphocholine-bound complexes, respectively, reveal the molecular details of the substrate binding sites. ATP binds in a cavity where residues from both the N- and C-terminal lobes contribute to form a cleft, while the choline-binding site constitutes a deep hydrophobic groove in the C-terminal domain with a rim composed of negatively charged residues. Upon binding of choline, the enzyme undergoes conformational changes independently affecting the N-terminal domain and the ATP-binding loop. From this structural analysis and comparison with other kinases, and from mutagenesis data on the homologous C. elegans choline kinase, a model of the ternary ADP·Phosphocholine complex was built that reveals the molecular basis for the phosphoryl transfer activity of this enzyme. PMID:17007874

  2. Structural Elucidation and Molecular Docking of a Novel Antibiotic Compound from Cyanobacterium Nostoc sp. MGL001

    PubMed Central

    Niveshika; Verma, Ekta; Mishra, Arun K.; Singh, Angad K.; Singh, Vinay K.

    2016-01-01

    Cyanobacteria are rich source of array of bioactive compounds. The present study reports a novel antibacterial bioactive compound purified from cyanobacterium Nostoc sp. MGL001 using various chromatographic techniques viz. thin layer chromatography (TLC) and high performance liquid chromatography (HPLC). Further characterization was done using electrospray ionization mass spectroscopy (ESIMS) and nuclear magnetic resonance (NMR) and predicted structure of bioactive compound was 9-Ethyliminomethyl-12-(morpholin - 4 - ylmethoxy) -5, 8, 13, 16–tetraaza–hexacene - 2, 3 dicarboxylic acid (EMTAHDCA). Structure of EMTAHDCA clearly indicated that it is a novel compound that was not reported in literature or natural product database. The compound exhibited growth inhibiting effects mainly against the gram negative bacterial strains and produced maximum zone of inhibition at 150 μg/mL concentration. The compound was evaluated through in silico studies for its ability to bind 30S ribosomal fragment (PDB ID: 1YRJ, 1MWL, 1J7T, and 1LC4) and OmpF porin protein (4GCP, 4GCQ, and 4GCS) which are the common targets of various antibiotic drugs. Comparative molecular docking study revealed that EMTAHDCA has strong binding affinity for these selected targets in comparison to a number of most commonly used antibiotics. The ability of EMTAHDCA to bind the active sites on the proteins and 30S ribosomal fragments where the antibiotic drugs generally bind indicated that it is functionally similar to the commercially available drugs. PMID:27965634

  3. Structural Elucidation and Molecular Docking of a Novel Antibiotic Compound from Cyanobacterium Nostoc sp. MGL001.

    PubMed

    Niveshika; Verma, Ekta; Mishra, Arun K; Singh, Angad K; Singh, Vinay K

    2016-01-01

    Cyanobacteria are rich source of array of bioactive compounds. The present study reports a novel antibacterial bioactive compound purified from cyanobacterium Nostoc sp. MGL001 using various chromatographic techniques viz. thin layer chromatography (TLC) and high performance liquid chromatography (HPLC). Further characterization was done using electrospray ionization mass spectroscopy (ESIMS) and nuclear magnetic resonance (NMR) and predicted structure of bioactive compound was 9-Ethyliminomethyl-12-(morpholin - 4 - ylmethoxy) -5, 8, 13, 16-tetraaza-hexacene - 2, 3 dicarboxylic acid (EMTAHDCA). Structure of EMTAHDCA clearly indicated that it is a novel compound that was not reported in literature or natural product database. The compound exhibited growth inhibiting effects mainly against the gram negative bacterial strains and produced maximum zone of inhibition at 150 μg/mL concentration. The compound was evaluated through in silico studies for its ability to bind 30S ribosomal fragment (PDB ID: 1YRJ, 1MWL, 1J7T, and 1LC4) and OmpF porin protein (4GCP, 4GCQ, and 4GCS) which are the common targets of various antibiotic drugs. Comparative molecular docking study revealed that EMTAHDCA has strong binding affinity for these selected targets in comparison to a number of most commonly used antibiotics. The ability of EMTAHDCA to bind the active sites on the proteins and 30S ribosomal fragments where the antibiotic drugs generally bind indicated that it is functionally similar to the commercially available drugs.

  4. Design, synthesis, structural elucidation, pharmacological evaluation of metal complexes with pyrazoline derivatives.

    PubMed

    Muneera, M Sirajul; Joseph, J

    2016-10-01

    A bioactive pyrazoline derivatives have been synthesized by the base-catalyzed Claisen-Schmidt condensation of imidazole-2-carboxaldehyde with 1-acetyl-2-hydroxynaphthalene followed by cyclization with phenylhydrazine (L(1))/2,3-dimethylphenylhydrazine (L(2)) and 3-nitrophenylhydrazine (L(3)). The metal(II) complexes [Ni(II), Co(II), Cu(II) and Zn(II)] were formed by reacting the corresponding metal acetates with the ligands. All complexes were characterized by elemental analyses, electronic, IR, NMR, mass and ESR spectroscopic techniques. The synthesized metal complexes of pyrazoline compounds showed significant antibacterial activity against the organisms Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Proteus mirabilis and Salmonella typhii when compared with the standard antibiotic (Streptomycin). The ligands and their metal complexes were screened for antioxidant activity using DPPH radical scavenging and superoxide radical scavenging assay methods. All the complexes showed good free radical scavenging activity which is comparable to that of the standards. Among the metal complexes, the copper complex has showed higher activity. The results were indicated that 2-pyrazoline (structural core) and copper ion could be responsible for the potential candidate eliciting antioxidant activity. All compounds were evaluated for their in vitro antimycobacterial activity against Mycobacterium tuberculosis. The ligands and metal complexes were subjected to fluorescence properties and exhibited that the variable fluorescence emission behavior of complexes. It can be attributed to the combined effect of the substituents and naphthyl structural core present in the ligands.

  5. Chemical profiling of the major components in natural waxes to elucidate their role in liquid oil structuring.

    PubMed

    Doan, Chi Diem; To, Chak Ming; De Vrieze, Mike; Lynen, Frederic; Danthine, Sabine; Brown, Allison; Dewettinck, Koen; Patel, Ashok R

    2017-01-01

    Elucidating the composition of waxes is of utmost importance to explain their behavior in liquid oil structuring. The chemical components (hydrocarbons - HCs, free fatty acids - FFAs, free fatty alcohols - FALs and wax esters - WEs) of natural waxes were analyzed using HPLC-ELSD and GC-MS followed by evaluation of their oil structuring properties. The gel strength, including the average storage modulus and oscillation yield stress, displayed a negative correlation with FALs and a positive correlation with HCs, FFAs and WEs. The components dictating the gel strength are HCs, FFAs and WEs in a descending order of importance. The consistency of the oleogels increased with the increasing amount of FFAs and HCs and the decreasing amount of WEs and FALs. The presence of more WEs results in a strong but brittle gel with a high initial flow yield stress. We believe these results might be useful in selecting the right waxes to combine in certain fat-based food products.

  6. Structure elucidation of new compounds from acidic treatment of the progestins gestodene and drospirenone.

    PubMed

    Colombo, Diego; Bombieri, Gabriella; Lenna, Roberto; Marchini, Nicoletta; Modica, Emilia; Scala, Antonio

    2006-08-01

    Gestodene acidic treatment afforded a single rearrangement product, namely 13-beta-ethyl-18,19-dinorpregna-4,14,16-trien-3,20-dione 3, which was originated through HCl-catalyzed Rupe rearrangement. Drospirenone acidic treatment yielded two epimeric lactones by addition of HCl to the 6beta,7beta-cyclopropane ring, namely 7beta-(chloromethyl)-15beta,16beta-methylene-3-oxo-17beta-pregn-4-ene-21,17-carbolactone 4 and 7beta-(chloromethyl)-15beta,16beta-methylene-3-oxo-17alpha-pregn-4-ene-21,17-carbolactone 5. The structure of the compounds was assessed by spectroscopic and crystallographic methods.

  7. X-ray Crystal Structures Elucidate the Nucleotidyl Transfer Reaction of Transcript Initiation Using Two Nucleotides

    SciTech Connect

    M Gleghorn; E Davydova; R Basu; L Rothman-Denes; K Murakami

    2011-12-31

    We have determined the X-ray crystal structures of the pre- and postcatalytic forms of the initiation complex of bacteriophage N4 RNA polymerase that provide the complete set of atomic images depicting the process of transcript initiation by a single-subunit RNA polymerase. As observed during T7 RNA polymerase transcript elongation, substrate loading for the initiation process also drives a conformational change of the O helix, but only the correct base pairing between the +2 substrate and DNA base is able to complete the O-helix conformational transition. Substrate binding also facilitates catalytic metal binding that leads to alignment of the reactive groups of substrates for the nucleotidyl transfer reaction. Although all nucleic acid polymerases use two divalent metals for catalysis, they differ in the requirements and the timing of binding of each metal. In the case of bacteriophage RNA polymerase, we propose that catalytic metal binding is the last step before the nucleotidyl transfer reaction.

  8. Preparation and structural elucidation of (-)-tetrahydroberberine-(+)-2,3-di( p-toluyl) tartaric acid complex

    NASA Astrophysics Data System (ADS)

    Gao, Jin-Ming; Liu, Wei-Tao; Li, Man-Lin; Liu, Han-Wei; Zhang, Xing-Chang; Li, Zong-Xiao

    2008-12-01

    A new (2:1) complex of (-)-13a S-tetrahydroberberine [(-)-13a S-THB] with (+)-2,3-di( p-toluyl) tartaric acid (DTTA), i.e. 5,8,13,13a-tetrahydro-9,10-dimethoxy-2,3-methylenedioxy- 6H dibenzo[a,g] quinolizine·2,3-di( p-toluyl) tartaric acid [2C 20H 20NO 4·C 20H 18O 8], as well as its optical active component (-)-THB, has been obtained from the resolution process of (±)-THB in methanol. The structures of this complex and an enantiomer (-)-13a S-THB have been characterized by CD, IR and NMR spectroscopy as well as by X-ray single crystal diffraction.

  9. Shape-Controlled Synthesis of Trimetallic Nanoclusters: Structure Elucidation and Properties Investigation.

    PubMed

    Kang, Xi; Xiong, Lin; Wang, Shuxin; Yu, Haizhu; Jin, Shan; Song, Yongbo; Chen, Tao; Zheng, Liwei; Pan, Chensong; Pei, Yong; Zhu, Manzhou

    2016-11-21

    The shape-controlled synthesis of metal nanoclusters (NCs) with precise atomic arrangement is crucial for tailoring the properties. In this work, we successfully control the shape of alloy NCs by altering the dopants in the alloying processes. The shape of the spherical [Pt1 Ag24 (SPhMe2 )18 ] NC is maintained when [Au(I) SR] is used as dopant. By contrast, the shape of Pt1 Ag24 is changed to be rodlike by alloying with [Au(I) (PPh3 )Br]. The structures of the trimetallic NCs were determined by X-ray crystallography and further confirmed by both DFT and far-IR measurements. The shape-preserved [Pt1 Au6.4 Ag17.6 (SPhMe2 )18 ] NC is in a tristratified arrangement-[Pt(center)@Au/Ag(shell)@Ag(exterior)]-and is indeed the first X-ray crystal structure of thiolated trimetallic NCs. On the other hand, the resulting rodlike NC ([Pt2 Au10 Ag13 (PPh3 )10 Br7 ]) exhibits a high quantum yield (QY=14.7 %), which is in striking contrast to the weakly luminescent Pt1 Ag24 (QY=0.1 %, about 150-fold enhancement). In addition, the thermal stabilities of both trimetallic products are remarkably improved. This study presents a controllable strategy for synthesis of alloy NCs with different shapes (by alloying heteroatom complexes coordinated by different ligands), and may stimulate future work for a deeper understanding of the morphology (shape)-property correlation in NCs.

  10. Structural elucidation of an asparagine-linked oligosaccharide from the hyperthermophilic archaeon, Archaeoglobus fulgidus.

    PubMed

    Fujinami, Daisuke; Nyirenda, James; Matsumoto, Shunsuke; Kohda, Daisuke

    2015-09-02

    The genome of the hyperthermophilic archaeon, Archaeoglobus fulgidus, contains three paralogous AglB genes that encode oligosaccharyltransferase (OST) proteins. The OST enzymes catalyze the transfer of an oligosaccharide chain from lipid-linked oligosaccharides (LLO) to asparagine residues in proteins. The detergent-solubilized membrane fractions prepared from cultured A. fulgidus cells contain both OST and LLO. The addition of a peptide containing the glycosylation sequon produced oligosaccharide chains attached to a structurally defined peptide. To facilitate the NMR analysis, the cells were grown in rich medium supplemented with (13)C-glucose, to label the LLOs metabolically. The MS analysis of the glycopeptide revealed that the glucose and galactose residues were nearly fully (13)C-labeled, but the mannose residues were fractionally labeled with about 20% efficiency. An immunodetection experiment revealed that the longest AglB paralog (AfAglB-L) was expressed in the membrane fractions under our cell culture conditions, while the other two shorter AglB paralogs (AfAglB-S1 and AfAglB-S2) were not. Thus, the oligosaccharide chain analyzed in this study was the product of AfAglB-L. The N-glycan consists of eight hexose residues, as follows: The α1,3-linked glucose is an optional residue branching from the distal mannose residue. The MS analysis of the minor HPLC peak of the in vitro oligosaccharyl transfer products also revealed an optional sulfate modification on the glucose residue directly linked to the Asn residue. The present data will be useful for structural and functional studies of the N-glycosylation system of A. fulgidus.

  11. Crystal Structure of Human Thymine DNA Glycosylase Bound to DNA Elucidates Sequence-Specific Mismatch Recognition

    SciTech Connect

    Maiti, A.; Morgan, M.T.; Pozharski, E.; Drohat, A.C.

    2009-05-19

    Cytosine methylation at CpG dinucleotides produces m{sup 5}CpG, an epigenetic modification that is important for transcriptional regulation and genomic stability in vertebrate cells. However, m{sup 5}C deamination yields mutagenic G{center_dot}T mispairs, which are implicated in genetic disease, cancer, and aging. Human thymine DNA glycosylase (hTDG) removes T from G{center_dot}T mispairs, producing an abasic (or AP) site, and follow-on base excision repair proteins restore the G{center_dot}C pair. hTDG is inactive against normal A{center_dot}T pairs, and is most effective for G{center_dot}T mispairs and other damage located in a CpG context. The molecular basis of these important catalytic properties has remained unknown. Here, we report a crystal structure of hTDG (catalytic domain, hTDG{sup cat}) in complex with abasic DNA, at 2.8 {angstrom} resolution. Surprisingly, the enzyme crystallized in a 2:1 complex with DNA, one subunit bound at the abasic site, as anticipated, and the other at an undamaged (nonspecific) site. Isothermal titration calorimetry and electrophoretic mobility-shift experiments indicate that hTDG and hTDG{sup cat} can bind abasic DNA with 1:1 or 2:1 stoichiometry. Kinetics experiments show that the 1:1 complex is sufficient for full catalytic (base excision) activity, suggesting that the 2:1 complex, if adopted in vivo, might be important for some other activity of hTDG, perhaps binding interactions with other proteins. Our structure reveals interactions that promote the stringent specificity for guanine versus adenine as the pairing partner of the target base and interactions that likely confer CpG sequence specificity. We find striking differences between hTDG and its prokaryotic ortholog (MUG), despite the relatively high (32%) sequence identity.

  12. Structural elucidation and physicochemical properties of mononuclear Uranyl(VI) complexes incorporating dianionic units

    NASA Astrophysics Data System (ADS)

    Azam, Mohammad; Velmurugan, Gunasekaran; Wabaidur, Saikh Mohammad; Trzesowska-Kruszynska, Agata; Kruszynski, Rafal; Al-Resayes, Saud I.; Al-Othman, Zeid A.; Venuvanalingam, Ponnambalam

    2016-09-01

    Two derivatives of organouranyl mononuclear complexes [UO2(L)THF] (1) and [UO2(L)Alc] (2), where L = (2,2‧-(1E,1‧E)-(2,2-dimethylpropane-1,3-dyl)bis(azanylylidene, THF = Tetrahydrofuran, Alc = Alcohol), have been prepared. These complexes have been determined by elemental analyses, single crystal X-ray crystallography and various spectroscopic studies. Moreover, the structure of these complexes have also been studied by DFT and time dependent DFT measurements showing that both the complexes have distorted pentagonal bipyramidal environment around uranyl ion. TD-DFT results indicate that the complex 1 displays an intense band at 458.7 nm which is mainly associated to the uranyl centered LMCT, where complex 2 shows a band at 461.8 nm that have significant LMCT character. The bonding has been further analyzed by EDA and NBO. The photocatalytic activity of complexes 1 and 2 for the degradation of rhodamine-B (RhB) and methylene blue (MB) under the irradiation of 500W Xe lamp has been explored, and found more efficient in presence of complex 1 than complex 2 for both dyes. In addition, dye adsorption and photoluminescence properties have also been discussed for both complexes.

  13. Elucidating the structural chemistry of glycosaminoglycan recognition by protein C inhibitor.

    PubMed Central

    Kuhn, L A; Griffin, J H; Fisher, C L; Greengard, J S; Bouma, B N; España, F; Tainer, J A

    1990-01-01

    Glycosaminoglycans (GAGs) including heparin accelerate the inhibition of serine proteases by serine protease inhibitors (serpins), an essential process in regulating blood coagulation. to analyze the molecular basis for GAG recognition by the plasma serpin protein C inhibitor (PCI; also known as plasminogen activator inhibitor 3), we have constructed a complete, energy-minimized, three-dimensional model of PCI by using the structure of homologous alpha 1-antitrypsin as a template. Sequence analysis, hydrogen-bonding environment, and shape complementarity suggested that the N-terminal residues of PCI, which are not homologous to those of alpha 1-antitrypsin, form an amphipathic alpha-helix, here designated A+ since it precedes the alpha 1-antitrypsin A helix. Electrostatic calculations revealed a single, highly positive surface region arising from both the A+ and H helices, suggesting that this two-helix motif is required for GAG binding by PCI. The dominant role of electrostatic interactions in PCI-heparin binding was confirmed by the strong ionic strength dependence of heparin stimulation. The involvement of the A+ helix in heparin binding was verified by demonstrating that an anti-PCI antibody that specifically binds the A+ peptide blocks heparin binding. Images PMID:2172989

  14. Structural elucidation of potential impurities in Azilsartan bulk drug by HPLC.

    PubMed

    Zhou, Wentao; Zhou, Yuxia; Sun, Lili; Zou, Qiaogen; Wei, Ping; Ouyang, Pingkai

    2014-01-01

    During the synthesis of Azilsartan (AZS), it was speculated that 15 potential impurities would arise. This study investigated the possible mechanism for the formation of 14 of them, and their structures were characterized and confirmed by IR, NMR, and MS techniques. In addition, an efficient chromatographic method was developed to separate and quantify these impurities, using an Inertsil ODS-3 column (250 x 4.6 mm, 5 pm) in gradient mode with a mixture of acetonitrile and the potassium dihydrogen orthophosphate buffer (10 mM, pH adjusted to 3.0 with phosphoric acid). The HPLC method was validated for specificity, precision, accuracy, and sensitivity. LOQ of impurities were in the range of 1.04-2.20 ng. Correlation coefficient values of linearity were >0.9996 for AZS and its impurities. The mean recoveries of all impurities in AZS were between 93.0 and 109.7%. Thus, the validated HPLC method is suitable for the separation and quantification of all potential impurities in AZS.

  15. Quantification and structural elucidation of potential impurities in agomelatine active pharmaceutical ingredient.

    PubMed

    Liu, Yaxuan; Chen, Lei; Ji, Yibing

    2013-01-01

    Seven impurities in agomelatine drug substance were determined by a newly developed RP-HPLC method. Structures of potential impurities were confirmed by NMR and IR analysis. Efficient chromatographic separation was achieved on Hypersil BDS C18 column (250 mm × 4.6 mm, 5 μm) in gradient mode by using a binary mixture of potassium dihydrogen phosphate (15 mM, pH adjusted to 3.0) and acetonitrile at a flow rate of 1.0 ml/min. A photodiode array detector set at 230 nm was used for detection. Forced degradation studies showed that the proposed method was specific, and agomelatine was found to be susceptible to acidic and alkaline conditions. The method was validated according to ICH guidelines with respect to specificity, sensitivity, precision, linearity, accuracy, robustness and system suitability. Detection limit of impurities was in the range of 0.0008-0.0047%. Regression analysis showed correlation coefficient value greater than 0.999 for agomelatine and its seven impurities. Accuracy of the method was established based on the recovery obtained between 94.4% and 106.7% for all impurities. The validation results demonstrated that the developed method was suitable for the quantitative determination of potential impurities in agomelatine. A possible mechanism for the formation of impurities was proposed.

  16. Structural elucidation and physicochemical properties of mononuclear Uranyl(VI) complexes incorporating dianionic units

    PubMed Central

    Azam, Mohammad; Velmurugan, Gunasekaran; Wabaidur, Saikh Mohammad; Trzesowska-Kruszynska, Agata; Kruszynski, Rafal; Al-Resayes, Saud I.; Al-Othman, Zeid A.; Venuvanalingam, Ponnambalam

    2016-01-01

    Two derivatives of organouranyl mononuclear complexes [UO2(L)THF] (1) and [UO2(L)Alc] (2), where L = (2,2′-(1E,1′E)-(2,2-dimethylpropane-1,3-dyl)bis(azanylylidene, THF = Tetrahydrofuran, Alc = Alcohol), have been prepared. These complexes have been determined by elemental analyses, single crystal X-ray crystallography and various spectroscopic studies. Moreover, the structure of these complexes have also been studied by DFT and time dependent DFT measurements showing that both the complexes have distorted pentagonal bipyramidal environment around uranyl ion. TD-DFT results indicate that the complex 1 displays an intense band at 458.7 nm which is mainly associated to the uranyl centered LMCT, where complex 2 shows a band at 461.8 nm that have significant LMCT character. The bonding has been further analyzed by EDA and NBO. The photocatalytic activity of complexes 1 and 2 for the degradation of rhodamine-B (RhB) and methylene blue (MB) under the irradiation of 500W Xe lamp has been explored, and found more efficient in presence of complex 1 than complex 2 for both dyes. In addition, dye adsorption and photoluminescence properties have also been discussed for both complexes. PMID:27595801

  17. Facile synthesis, structural elucidation and spectral analysis of pyrrole 4-imidazole derivatives

    NASA Astrophysics Data System (ADS)

    Singh, R. N.; Rawat, Poonam; Baboo, Vikas

    2015-12-01

    In this work pyrrole 4-imidazole derivatives (3A-3D): benzimidazoles and pyrrole 4-imidazoline have been synthesized by condensation, cyclization and oxidation of ethyl 4-formyl-3,5-dimethyl-1H-pyrrole carboxylate and phenylene diamine derivatives/ethylene diamine. The structure of these biheterocyclic compounds have been derived by elemental and spectroscopic - IR, UV, MS, 1H and 13C NMR analysis as well as theoretical study. The static first hyperpolarizability, β0 values for pyrrole 4-imidazole derivatives, (3A-3D) have been calculated as 10.901 × 10-31, 19.607 × 10-31, 40.323 × 10-31, 5.686 × 10-31 esu, respectively. The gradual increase in β0 value of synthesized pyrrole-benzimidazole derivatives from 3A to 3C is due to addition of acceptors -Cl atom in 3B to -NO2 group in 3C on benzimidazole side. The experimental absorption spectra found to be in UV region and the high β0 values show that the synthesized pyrrole-imidazoles are suitable as non-linear optical (NLO) materials.

  18. Structural elucidation of rat biliary metabolites of corynoxeine and their quantification using LC-MS(n).

    PubMed

    Wang, Wei; Li, Xinmei; Chen, Yaping; Hattori, Masao

    2014-09-01

    Corynoxeine (COR) is one of 4 bioactive oxindole alkaloids in Uncaria species. In this work two phase I metabolites, namely 11-hydroxycorynoxeine (M1) and 10-hydroxycorynoxeine (M2), and two phase II metabolites, namely 11-hydroxycorynoxeine 11-O-β-d-glucuronide (M3) and 10-hydroxycorynoxeine 10-O-β-d-glucuronide (M4), were detected in rat bile after oral dose of COR (0.105 mmol/kg), by optimized high-performance liquid chromatography-tandem mass spectrometry (LC-MS(n) ) with electrospray ionization in positive ion mode. Structures of M1-4 were determined by LC-MS(n) , nuclear magnetic resonance, circular dichroism and high-resolution MS spectra. COR and its metabolites in rat bile were quantified by LC-MS(n) . The LC-MS(n) quantification methods for COR and its metabolites yielded a linearity with coefficient of determination ≥0.995 from 5.0 × 10(-10) to 5.0 × 10(-7)  m. The recoveries of stability tests varied from 96.80 to 103.10%. Accuracy ranged from 91.00 to 105.20%. Relative standard deviation for intra-day and inter-day assay was <5.0%. After the oral dose 0.14% of COR was detected in rat bile from 0 to 8 h, in which in total 97.8% COR biotransformed into M1-4. M1 and M2 yielded 48.1 and 49.7%, which successively glucuronidated to M3 and M4 at 47.2 and 43.8%, respectively.

  19. Structure and dynamics of retinal in rhodopsin elucidated by deuterium solid state NMR

    NASA Astrophysics Data System (ADS)

    Salgado, Gilmar Fernandes De Jesus

    Rhodopsin is a seven transmembrane helix GPCR found which mediates dim light vision, in which the binding pocket is occupied by the ligand 11- cis-retinal. A site-directed 2H-labeling approach utilizing solid-state 2H NMR spectroscopy was used to investigate the structure and dynamics of retinal within its binding pocket in the dark state of rhodopsin, and as well the MetaI and MetaII. 11-cis-[5-C 2H3]-, 11-cis-[9-C 2H3]-, and 11-cis-[13-C2H 3]-retinal were used to regenerate bleached rhodopsin. Recombinant membranes comprising purified rhodopsin and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) were prepared (1:50 molar ratio). Solid-state 2H NMR spectra were obtained for the aligned rhodopsin/POPC recombinant membranes at temperatures below the order-disorder phase transition temperature of POPC. The solid-state NMR studies of aligned samples, give the orientations of the 2H nuclear coupling tensor relative to the membrane frame, which involve both the conformation and orientation of the bound retinal chromophore. Theoretical simulations of the experimental 2H NMR spectra employed a new lineshape treatment for a semi-random distribution due to static uniaxial disorder. The analysis gives the orientation of the 2H-labeled C-C2H3 methyl bond axes relative to the membrane plane as well as the extent of three-dimensional alignment disorder (mosaic spread). These results clearly demonstrate the applicability of site-directed 2H NMR methods for investigating conformational changes and dynamics of ligands bound to rhodopsin and other GPCRs in relation to their characteristic mechanisms of action.

  20. Elucidation of structural and functional integration of a novel antimicrobial peptide from Antheraea mylitta.

    PubMed

    Dutta, Suhrid R; Gauri, Samiran S; Ghosh, Twisa; Halder, Suman K; DasMohapatra, Pradeep K; Mondal, Keshab C; Ghosh, Ananta K

    2017-03-03

    We report here the amino acid sequence of an antimicrobial peptide of Antheraea mylitta (peptide fraction II) effectively killed urinary tract associated MDR E. coli (Dutta et al., 2016), as Gly-Gly-Gly-Gly-Gly-Gly-His-Leu-Val-Ala. The physicochemical and biological properties of this peptide were evaluated by computational analysis and its isoelectric point, grand average of hydropathicity and Boman index values were found to be 6.74, 0.42 and -1.17kcal/mol, respectively. One valid model of peptide fraction II was constructed, that contains two antiparallel β sheets with a hairpin and appeared as 'U' shaped structure. The glycine rich composition (Gly1, Gly5, Gly6 and Ala10) facilitates mostly for its flexibility or dynamicity, and in its other wing, aggregation prone residues (Leu8, Val9, Ala10) triggered its auto-aggregations when contacted only with the microbial membrane. We employed simulation of peptide binding on the membrane, showed stable and deep insertion of peptide fraction II into the membrane through its hydrophobic tail (up to 3.3±1.46Å). Molecular docking study with Patchdock server revealed that this peptide could interact with the lipid aliphatic chain of 1-palmitoyl-2-oleoyl-phosphoethanolamine (POPE) bilayer and may linked to membrane distortion as we have reported earlier. Further, the studied peptide has been predicted not to exhibit any antigenicity and non-responsive to RBC membrane. These data for the first time provide new insights of an antimicrobial peptide from silkworm A. mylitta and it may serve as the template for the design of novel peptide antibiotics from this group of insect against MDR Gram-negative bacteria.

  1. Design, structural and spectroscopic elucidation, and the in vitro biological activities of new diorganotin dithiocarbamates.

    PubMed

    Ferreira, Isabella P; de Lima, Geraldo M; Paniago, Eucler B; Rocha, Willian R; Takahashi, Jacqueline A; Pinheiro, Carlos B; Ardisson, José D

    2012-12-01

    The reaction of 2,2-dimethoxy-N-methylethyllamine or 2-methyl-1,3-dioxolane with CS(2) in alkaline media produced two novel dithiocarbamate salts. Subsequent reactions with organotin halides yielded six new complexes: [SnMe(2){S(2)CNR(R(1))(2)}(2)] (1), [Sn(n-Bu)(2){S(2)CNR(R(1))(2)}(2)] (2), [SnPh(2){S(2)CNR(R(1))(2)}(2)] (3), [SnMe(2){S(2)CNR(R(2))(2)}(2)] (4), [Sn(n-Bu)(2){S(2)CNR(R(2))(2)}(2)] (5), [SnPh(2){S(2)CNR(R(2))(2)}(2)] (6), where R = methyl, R(1) = CH(2)CH(OMe)(2), and R(2) = 2-methyl-1,3-dioxolane. All compounds were identified in terms of infrared, (1)H and (13)C NMR, and the complexes were also characterized using (119)Sn NMR, (119)Sn Mössbauer and X-ray crystallography. The biological activity of all derivatives has been screened in terms of IC(90) and IC(50) against Aspergillus flavus, Aspergillus niger, Aspergillus parasiticus, Penicillium citrinum, Curvularia senegalensis, Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus, Streptococcus sanguinis, Escherichia coli, Citrobacter freundii, Salmonella typhimurium, and Pseudomonas aeruginosa and the results correlated well with a performed study of structure-activity relationship (SAR). Complexes (3), (5) and (6) displayed the best IC(90) and IC(50) in the presence of the fungi, greater than that of miconazole, used as control drug.

  2. Structural and Functional Elucidation of Peptide Ts11 Shows Evidence of a Novel Subfamily of Scorpion Venom Toxins

    PubMed Central

    Cremonez, Caroline M.; Maiti, Mohitosh; Peigneur, Steve; Cassoli, Juliana Silva; Dutra, Alexandre A. A.; Waelkens, Etienne; Lescrinier, Eveline; Herdewijn, Piet; de Lima, Maria Elena; Pimenta, Adriano M. C.; Arantes, Eliane C.; Tytgat, Jan

    2016-01-01

    To date, several families of peptide toxins specifically interacting with ion channels in scorpion venom have been described. One of these families comprise peptide toxins (called KTxs), known to modulate potassium channels. Thus far, 202 KTxs have been reported, belonging to several subfamilies of KTxs (called α, β, γ, κ, δ, and λ-KTxs). Here we report on a previously described orphan toxin from Tityus serrulatus venom, named Ts11. We carried out an in-depth structure-function analysis combining 3D structure elucidation of Ts11 and electrophysiological characterization of the toxin. The Ts11 structure is highlighted by an Inhibitor Cystine Knot (ICK) type scaffold, completely devoid of the classical secondary structure elements (α-helix and/or β-strand). This has, to the best of our knowledge, never been described before for scorpion toxins and therefore represents a novel, 6th type of structural fold for these scorpion peptides. On the basis of their preferred interaction with voltage-gated K channels, as compared to all the other targets tested, it can be postulated that Ts11 is the first member of a new subfamily, designated as ε-KTx. PMID:27706049

  3. Exocyclic Deoxyadenosine Adducts of 1,2,3,4-Diepoxybutane: Synthesis, Structural Elucidation, and Mechanistic Studies

    PubMed Central

    Seneviratne, Uthpala; Antsypovich, Sergey; Goggin, Melissa; Dorr, Danae Quirk; Guza, Rebecca; Moser, Adam; Thompson, Carrie; York, Darrin M.; Tretyakova, Natalia

    2009-01-01

    1,2,3,4-Diepoxybutane (DEB)1 is considered the ultimate carcinogenic metabolite of 1,3-butadiene, an important industrial chemical and environmental pollutant present in urban air. Although it preferentially modifies guanine within DNA, DEB induces a large number of A → T transversions, suggesting that it forms strongly mispairing lesions at adenine nucleobases. We now report the discovery of three potentially mispairing exocyclic adenine lesions of DEB: N6,N6-(2,3-dihydroxybutan-1,4-diyl)-2′-deoxyadenosine (compound 2), 1,N6-(2-hydroxy-3-hydroxymethylpropan-1,3-diyl)-2′-deoxyadenosine (compound 3), and 1,N6-(1-hydroxymethyl-2-hydroxypropan-1,3-diyl)-2′-deoxyadenosine (compound 4). The structures and stereochemistry of the novel DEB-dA adducts were determined by a combination of UV and NMR spectroscopy, tandem mass spectrometry, and independent synthesis. We found that synthetic N6-(2-hydroxy-3,4-epoxybut-1-yl)-2′-deoxyadenosine (compound 1) representing the product of N6-adenine alkylation by DEB spontaneously cyclizes to form 3 under aqueous conditions or 2 under anhydrous conditions in the presence of organic base. Compound 3 can be interconverted with 4 by a reversible unimolecular pericyclic reaction favoring 4 as a more thermodynamically stable product. Both 3 and 4 are present in double stranded DNA treated with DEB in vitro and in liver DNA of laboratory mice exposed to 1,3-butadiene by inhalation. We propose that in DNA under physiological conditions, DEB alkylates the N-1 position of adenine in DNA to form N1-(2-hydroxy-3,4-epoxybut-1-yl)-adenine adducts, which undergo an SN2-type intramolecular nucleophilic substitution and rearrangement to give 3 (minor) and 4 (major). Formation of exocyclic DEB-adenine lesions following exposure to 1,3-butadiene provides a possible mechanism of mutagenesis at the A:T base pairs. PMID:19883087

  4. Asparagine-linked oligosaccharides on lutropin, follitropin, and thyrotropin: structural elucidation of the sulfated and sialylated oligosaccharides on bovine, ovine, and human pituitary glycoprotein hormones

    SciTech Connect

    Green, E.D.; Baenziger, J.U.

    1988-01-05

    The authors have elucidated the structures of the anionic asparagine-linked oligosaccharides present on the glycoprotein hormones lutropin (luteinizing hormone), follitropin (follicle-stimulating hormone), and thyrotropin (thyroid-stimulating hormone). Purified hormones, isolated from bovine, ovine, and human pituitaries, were digested with N-glycanase, and the released oligosaccharides were reduced with NaB(/sup 3/H)/sub 4/. The /sup 3/H-labeled oligosaccharides from each hormone were then fractionated by anion-exchange high performance liquid chromatography (HPLC) into populations differing in the number of sulfate and/or sialic acid moieties. The sulfated, sialylated, and sulfated/sialylated structures, which together comprised 67-90% of the asparagine-linked oligosaccharides on the pituitary glycoprotein hormones, were highly heterogeneous and displayed hormone- as well as animal species-specific features. A previously uncharacterized dibranched oligosaccharide, bearing one residue each of sulfate and sialic acid, was found on all of the hormones except bovine lutropin. In this study, they describe the purification and detailed structural characterizations of the sulfated, sialylated, and sulfated/sialylated oligosaccharides found on lutropin, follitropin, and thyrotropin from several animal species.

  5. Investigating the Web Structure by Isolated Stars

    NASA Astrophysics Data System (ADS)

    Uno, Yushi; Ota, Yoshinobu; Uemichi, Akio

    The link structure of the Web is generally represented by the webgraph, and it is often used for web structure mining that mainly aims to find hidden communities on the Web. In this paper, we identify a common frequent substructure and give it a formal graph definition, which we call an isolated star (i-star), and propose an efficient enumeration algorithm of i-stars. We then investigate the structure of the Web by enumerating i-stars from real web data. As a result, we observed that most i-stars correspond to index structures in single domains, while some of them are verified to be candidates of communities, which implies the validity of i-stars as useful substructure for web structure mining and link spam detecting. We also observed that the distributions of i-star sizes show power-law, which is another new evidence of the scale-freeness of the webgraph.

  6. Structural elucidation and evaluation of multidrug-resistance modulatory capability of amarissinins A-C, diterpenes derived from Salvia amarissima.

    PubMed

    Bautista, Elihú; Fragoso-Serrano, Mabel; Ortiz-Pastrana, Naytzé; Toscano, Rubén A; Ortega, Alfredo

    2016-10-01

    Three new diterpenes (amarissinins A-C, 1-3) containing several oxygenated functionalities were isolated from the leaves and flowers of Salvia amarissima. The structures of these compounds were established through the analysis of their NMR spectroscopy and mass spectrometry data. The structures of compounds 1 and 2 were confirmed by single crystal X-ray diffraction. Compound 2 was identified as a C-10 epimer of dugesin F (5). The cytotoxic activity of these compounds against five human cancer cell lines was determined. Additionally, the capability to modulate the multidrug resistance (MDR) in the MCF-7 cancer cell line resistant to vinblastine was tested.

  7. Structural elucidation of the hormonal inhibition mechanism of the bile acid cholate on human carbonic anhydrase II

    SciTech Connect

    Boone, Christopher D.; Tu, Chingkuang; McKenna, Robert

    2014-06-01

    The structure of human carbonic anhydrase II in complex with cholate has been determined to 1.54 Å resolution. Elucidation of the novel inhibition mechanism of cholate will aid in the development of a nonsulfur-containing, isoform-specific therapeutic agent. The carbonic anhydrases (CAs) are a family of mostly zinc metalloenzymes that catalyze the reversible hydration/dehydration of CO{sub 2} into bicarbonate and a proton. Human isoform CA II (HCA II) is abundant in the surface epithelial cells of the gastric mucosa, where it serves an important role in cytoprotection through bicarbonate secretion. Physiological inhibition of HCA II via the bile acids contributes to mucosal injury in ulcerogenic conditions. This study details the weak biophysical interactions associated with the binding of a primary bile acid, cholate, to HCA II. The X-ray crystallographic structure determined to 1.54 Å resolution revealed that cholate does not make any direct hydrogen-bond interactions with HCA II, but instead reconfigures the well ordered water network within the active site to promote indirect binding to the enzyme. Structural knowledge of the binding interactions of this nonsulfur-containing inhibitor with HCA II could provide the template design for high-affinity, isoform-specific therapeutic agents for a variety of diseases/pathological states, including cancer, glaucoma, epilepsy and osteoporosis.

  8. Structural elucidation of estrus urinary lipocalin protein (EULP) and evaluating binding affinity with pheromones using molecular docking and fluorescence study

    PubMed Central

    Rajesh, Durairaj; Muthukumar, Subramanian; Saibaba, Ganesan; Siva, Durairaj; Akbarsha, Mohammad Abdulkader; Gulyás, Balázs; Padmanabhan, Parasuraman; Archunan, Govindaraju

    2016-01-01

    Transportation of pheromones bound with carrier proteins belonging to lipocalin superfamily is known to prolong chemo-signal communication between individuals belonging to the same species. Members of lipocalin family (MLF) proteins have three structurally conserved motifs for delivery of hydrophobic molecules to the specific recognizer. However, computational analyses are critically required to validate and emphasize the sequence and structural annotation of MLF. This study focused to elucidate the evolution, structural documentation, stability and binding efficiency of estrus urinary lipocalin protein (EULP) with endogenous pheromones adopting in-silico and fluorescence study. The results revealed that: (i) EULP perhaps originated from fatty acid binding protein (FABP) revealed in evolutionary analysis; (ii) Dynamic simulation study shows that EULP is highly stable at below 0.45 Å of root mean square deviation (RMSD); (iii) Docking evaluation shows that EULP has higher binding energy with farnesol and 2-iso-butyl-3-methoxypyrazine (IBMP) than 2-naphthol; and (iv) Competitive binding and quenching assay revealed that purified EULP has good binding interaction with farnesol. Both, In-silico and experimental studies showed that EULP is an efficient binding partner to pheromones. The present study provides impetus to create a point mutation for increasing longevity of EULP to develop pheromone trap for rodent pest management. PMID:27782155

  9. Active vibration isolation using smart structures

    NASA Technical Reports Server (NTRS)

    Guigou, C.; Wagstaff, P. R.; Fuller, C. R.

    1991-01-01

    Passive technologies for the isolation of structures from vibrating sources are often inadequate. Using active control inputs applied directly to the source or designing a structure integrating the transducers required for the control inputs and the response measurements are ways of dealing with the problem. Results are given which were obtained on an experimental set up simulating this kind of problem where the form and the position of the transducers could be varied. By measuring the response of the structure integrated over a particular area the effects of particular types of modes could be taken into account to deal with specific types of input or limit particular modes of response more efficiently. Results of using different modes of vibration excitation of the receiving structure with and without control are presented for particular input frequencies. The problems of optimizing the control system to deal with multiple frequency inputs are discussed.

  10. Mass spectrometry for the elucidation of the subtle molecular structure of biodegradable polymers and their degradation products.

    PubMed

    Kowalczuk, Marek; Adamus, Grażyna

    2016-01-01

    Contemporary reports by Polish authors on the application of mass spectrometric methods for the elucidation of the subtle molecular structure of biodegradable polymers and their degradation products will be presented. Special emphasis will be given to natural aliphatic (co)polyesters (PHA) and their synthetic analogues, formed through anionic ring-opening polymerization (ROP) of β-substituted β-lactones. Moreover, the application of MS techniques for the evaluation of the structure of biodegradable polymers obtained in ionic and coordination polymerization of cyclic ethers and esters as well as products of step-growth polymerization, in which bifunctional or multifunctional monomers react to form oligomers and eventually long chain polymers, will be discussed. Furthermore, the application of modern MS techniques for the assessment of polymer degradation products, frequently bearing characteristic end groups that can be revealed and differentiated by MS, will be discussed within the context of specific degradation pathways. Finally, recent Polish accomplishments in the area of mass spectrometry will be outlined.

  11. Elucidating the higher-order structure of biopolymers by structural probing and mass spectrometry: MS3D

    PubMed Central

    Fabris, Daniele; Yu, Eizadora T.

    2010-01-01

    Chemical probing represents a very versatile alternative for studying the structure and dynamics of substrates that are intractable by established high-resolution techniques. The implementation of MS-based strategies for the characterization of probing products has not only extended the range of applicability to virtually all types of biopolymers, but has also paved the way for the introduction of new reagents that would not have been viable with traditional analytical platforms. As the availability of probing data is steadily increasing on the wings of the development of dedicated interpretation aids, powerful computational approaches have been explored to enable the effective utilization of such information to generate valid molecular models. This combination of factors has contributed to making the possibility of obtaining actual 3D structures by MS-based technologies (MS3D) a reality. Although approaches for achieving structure determination of unknown substrates or assessing the dynamics of known structures may share similar reagents and development trajectories, they clearly involve distinctive experimental strategies, analytical concerns, and interpretation paradigms. This Perspective offers a commentary on methods aimed at obtaining distance constraints for the modeling of full-fledged structures, while highlighting common elements, salient distinctions, and complementary capabilities exhibited by methods employed in dynamics studies. We discuss critical factors to be addressed for completing effective structural determinations and expose possible pitfalls of chemical methods. We survey programs developed for facilitating the interpretation of experimental data and discuss possible computational strategies for translating sparse spatial constraints into all-atom models. Examples are provided to illustrate how the concerted application of very diverse probing techniques can lead to the solution of actual biological substrates. PMID:20648672

  12. Elucidating structural characteristics of biomass using solution-state 2 D NMR with a mixture of deuterated dimethylsulfoxide and hexamethylphosphoramide

    DOE PAGES

    Pu, Yunqiao; Ragauskas, Arthur J.; Yoo, Chang Geun; ...

    2016-04-26

    In recent developments of NMR methods for characterization of lignocellulosic biomass allow improved understanding of plant cell-wall structures with minimal deconstruction and modification of biomass. This study introduces a new NMR solvent system composed of dimethylsulfoxide (DMSO-d6) and hexamethylphosphoramide (HMPA-d18). HMPA as a co-solvent enhanced swelling and mobility of the biomass samples; thereby it allowed enhancing signals of NMR spectra. Moreover, the structural information of biomass was successfully analyzed by the proposed NMR solvent system (DMSO-d6/HMPA-d18; 4:1, v/v) with different biomass. The proposed bi-solvent system does not require derivatization or isolation of biomass, facilitating a facile sample preparation and involvingmore » with no signals overlapping with biomass peaks. Furthermore, it also allows analyzing biomass with a room-temperature NMR probe instead of cryo-probes, which are traditionally used for enhancing signal intensities.« less

  13. Heparin sodium compliance to USP monograph: structural elucidation of an atypical 2.18 ppm NMR signal.

    PubMed

    Mourier, Pierre A J; Guichard, Olivier Y; Herman, Fréderic; Viskov, Christian

    2012-01-01

    The ¹H nuclear magnetic resonance (NMR) acceptance criteria in the new heparin US Pharmacopeia (USP) monograph do not take into account potential structural modifications responsible for any extra signals observed in ¹H NMR spectra, some purified heparins may be non-compliant under the proposed new USP guidelines and incorrectly classified as unsuitable for pharmaceutical use. Heparins from the "ES" source, containing an extra signal at 2.18 ppm, were depolymerized under controlled conditions using heparinases I, II, and III. The oligosaccharides responsible for the 2.18 ppm signal were enriched using orthogonal chromatographic techniques. After multiple purification steps, we obtained an oligosaccharide mixture containing a highly enriched octasaccharide bearing the structural modification responsible for the extra signal. Following heparinase I depolymerization, a pure tetrasaccharide containing the fingerprint structural modification was isolated for full structural determination. Using 1D and 2D ¹H NMR spectroscopy, the structural moiety responsible for the extra signal at 2.18 ppm was identified as an acetyl group on the heparin backbone, most likely resulting from a very minor manufacturing process side reaction that esterifies the uronic acid at position 3. Such analytical peculiarity has always been present in this heparin source and it was used safety over the years.

  14. Relationships between functional genes in Lactobacillus delbrueckii ssp. bulgaricus isolates and phenotypic characteristics associated with fermentation time and flavor production in yogurt elucidated using multilocus sequence typing.

    PubMed

    Liu, Wenjun; Yu, Jie; Sun, Zhihong; Song, Yuqin; Wang, Xueni; Wang, Hongmei; Wuren, Tuoya; Zha, Musu; Menghe, Bilige; Heping, Zhang

    2016-01-01

    Lactobacillus delbrueckii ssp. bulgaricus (L. bulgaricus) is well known for its worldwide application in yogurt production. Flavor production and acid producing are considered as the most important characteristics for starter culture screening. To our knowledge this is the first study applying functional gene sequence multilocus sequence typing technology to predict the fermentation and flavor-producing characteristics of yogurt-producing bacteria. In the present study, phenotypic characteristics of 35 L. bulgaricus strains were quantified during the fermentation of milk to yogurt and during its subsequent storage; these included fermentation time, acidification rate, pH, titratable acidity, and flavor characteristics (acetaldehyde concentration). Furthermore, multilocus sequence typing analysis of 7 functional genes associated with fermentation time, acid production, and flavor formation was done to elucidate the phylogeny and genetic evolution of the same L. bulgaricus isolates. The results showed that strains significantly differed in fermentation time, acidification rate, and acetaldehyde production. Combining functional gene sequence analysis with phenotypic characteristics demonstrated that groups of strains established using genotype data were consistent with groups identified based on their phenotypic traits. This study has established an efficient and rapid molecular genotyping method to identify strains with good fermentation traits; this has the potential to replace time-consuming conventional methods based on direct measurement of phenotypic traits.

  15. Identification and structural elucidation of four cannabimimetic compounds (RCS-4, AM-2201, JWH-203 and JWH-210) in seized products.

    PubMed

    Denooz, Raphael; Vanheugen, Jean-Claude; Frederich, Michel; de Tullio, Pascal; Charlier, Corinne

    2013-03-01

    Since 2008, herbal mixtures with synthetic cannabinoid compounds have been sold as incense throughout the world. Although these new drugs are labeled as not for human consumption, these products are smoked for their cannabis-like effects. This study reports the structural and spectral elucidation of four cannabimimetic compounds seized in Belgium: (4-methoxyphenyl)-1-(pentyl-1H-indol-3-yl)methanone (RCS-4), 1-(5-fluoropentyl)-3-(1-naphtoyl)indole (AM-2201), 2-(2-chlorophenyl)-1-(1-pentylindol-3-yl)ethanone (JWH-203) and 4-ethylnaphthalen-1-yl-(1-pentylindol-3-yl)methanone (JWH-210). Laboratory investigations were conducted by liquid chromatography (LC)-ultraviolet spectroscopy, high-resolution accurate mass detection and nuclear magnetic resonance (NMR) analysis. This combined analytical approach allowed the detection of illicit compounds for which reference materials were not available. To facilitate identification and to complete existing databases, ultraviolet spectra and NMR data of all seized products are presented. Additionally, LC-quadrupole time-of-flight data were recorded to provide absolute identification.

  16. Structure elucidation and HPLC-MS/MS determination of a potential biomarker for estradiol administration in cattle.

    PubMed

    Regal, Patricia; Seijas, Julio A; Cepeda, Alberto; Fente, Cristina

    2013-11-01

    Administration of hormonal compounds as growth promoters in livestock farming was banned by Council Directive 96/22/EC. However, this kind of substances is sometimes reported within the framework of European monitoring residue plans. Various analytical methods have been previously developed to screen for their misuse, and they are now especially efficient for monitoring the illegal administration of synthetic and semisynthetic hormones. Nevertheless, proving an exogenous administration of hormones from natural origin (i.e., estradiol-17β or progesterone) still remains a challenge for European authorities. These target compounds are indeed always present in the animal matrix, and the establishment of reference thresholds appears very difficult because of the extreme variability existing among animals. In 2011, a metabolomics study was performed on serum samples obtained from cows treated with estradiol-17β (or its ester estradiol benzoate) and from control animals using a high-performance liquid chromatography (HPLC)-LTQ-Orbitrap system. After appropriate data processing and multivariate statistical analysis (orthogonal partial least squares discriminant analysis), it was possible to highlight one potential biomarker candidate of estradiol treatments in bovine animals. Now, this biomarker has been structurally elucidated as a dipeptide, and its usefulness has been tested through a targeted HPLC-MS/MS method. Its presence in the previous samples has been confirmed and also in additional samples from estradiol-treated animals.

  17. Biotransformation pathways of biocides and pharmaceuticals in freshwater crustaceans based on structure elucidation of metabolites using high resolution mass spectrometry.

    PubMed

    Jeon, Junho; Kurth, Denise; Hollender, Juliane

    2013-03-18

    So far, there is limited information on biotransformation mechanisms and products of polar contaminants in freshwater crustaceans. In the present study, metabolites of biocides and pharmaceuticals formed in Gammarus pulex and Daphnia magna were identified using liquid chromatography-high resolution mass spectrometry. Different confidence levels were assigned to the identification of metabolites without reference standards using a framework based on the background evidence used for structure elucidation. Twenty-five metabolites were tentatively identified for irgarol, terbutryn, tramadol, and venlafaxine in G. pulex (21 via oxidation and 4 via conjugation reactions) and 11 metabolites in D. magna (7 via oxidation and 4 via conjugation reactions), while no evidence of metabolites for clarithromycin and valsartan was found. Of the 360 metabolites predicted for the four parent compounds using pathway prediction systems and expert knowledge, 23 products were true positives, while 2 identified metabolites were unexpected products. Observed oxidative reactions included N- and O-demethylation, hydroxylation, and N-oxidation. Glutathione conjugation of selected biocides followed by subsequent reactions forming cysteine conjugates was described for the first time in freshwater invertebrates.

  18. Structural investigation and elucidation of new communesins from a marine-derived Penicillium expansum Link by liquid chromatography/electrospray ionization mass spectrometry.

    PubMed

    Kerzaon, Isabelle; Pouchus, Yves F; Monteau, Fabrice; Le Bizec, Bruno; Nourrisson, Marie-Renée; Biard, Jean-François; Grovel, Olivier

    2009-12-01

    Penicillium expansum is a ubiquitous species for which there are only few reports for chemical investigation in marine environments. Among the numerous secondary metabolites produced by this species, communesins represent a new class of cytotoxic and insecticidal indole alkaloids. In this study, we investigated a marine P. expansum strain exhibiting neuroactivity on a Diptera larvae bioassay. Bio-guided purification led to the isolation and the identification of communesin B as the main active compound by HRMS and 1H and 13C NMR. Liquid chromatography analyses with detection by electrospray ionization coupled with tandem mass spectrometry (LC/ESI-MS/MS) and high-resolution tandem mass spectrometry (LC/HRMS/MS) allowed the identification and characterization of four other known communesins (A, D, E and F) in the crude extract. A fragmentation model for dimethyl epoxide communesins was proposed after detailed interpretation of their MS/MS spectra. Further analyses of the extract using the modelled fragmentations led to the detection of seven new communesins found as minor compounds. Chemical structural elucidation of these new derivatives is discussed based on their fragmentation characteristics.

  19. Frequency response characteristics and response spectra of base-isolated and un-isolated structures

    SciTech Connect

    Mok, G.C.; Namba, H.

    1995-07-06

    The transmissibility of seismic loads through a linear base-isolation system is analyzed using an impedance method. The results show that the system acts like a {open_quotes}low-pass{close_quotes} filter. It attenuates high-frequency loads but passes through low-frequency ones. The filtering effect depends on the vibration frequencies and damping of the isolated structure and the isolation system. This paper demonstrates the benefits and design principles of base isolation by comparing the transmissibilities and response spectra of isolated and un-isolated structures. Parameters of typical isolated buildings and ground motions of the 1994 Northridge earthquake are used for the demonstration.

  20. Accelerated X-ray structure elucidation of a 36 kDa muramidase/transglycosylase using wARP.

    PubMed

    Van Asselt, E J; Perrakis, A; Kalk, K H; Lamzin, V S; Dijkstra, B W

    1998-01-01

    The X-ray structure of the 36 kDa soluble lytic transglycosylase from Escherichia coli has been determined starting with the multiple isomorphous replacement method with inclusion of anomalous scattering at 2.7 A resolution. Subsequently, before any model building was carried out, phases were extended to 1.7 A resolution with the weighted automated refinement procedure wARP, which gave a dramatic improvement in the phases. The electron-density maps from wARP were of outstanding quality for both the main chain and the side chains of the protein, which allowed the time spent on the tracing, interpretation and building of the X-ray structure to be substantially shortened. The structure of the soluble lytic transglycosylase was refined at 1.7 A resolution with X-PLOR to a final crystallographic R factor of 18.9%. Analysis of the wARP procedure revealed that the use of the maximum-likelihood refinement in wARP gave much better phases than least-squares refinement, provided that the ratio of reflections to protein atom parameters was approximately 1.8 or higher. Furthermore, setting aside 5% of the data for an Rfree test set had a negative effect on the phase improvement. The mean WwARP, a weight determined at the end of the wARP procedure and based on the variance of structure factors from six individually refined wARP models, proved to be a better indicator than the Rfree factor to judge different phase improvement protocols. The elongated Slt35 structure has three domains named the alpha, beta and core domains. The alpha domain contains mainly alpha-helices, while the beta domain consists of a five-stranded antiparallel beta-sheet flanked by a short alpha-helix. Sandwiched between the alpha and beta domains is the core domain, which bears some resemblance to the fold of the catalytic domain of the previously elucidated 70 kDa soluble lytic transglycosylase from E. coli. The putative active site is at the bottom of a large deep groove in the core domain.

  1. Structure elucidation and in vitro cytotoxicity of ochratoxin α amide, a new degradation product of ochratoxin A.

    PubMed

    Bittner, Andrea; Cramer, Benedikt; Harrer, Henning; Humpf, Hans-Ulrich

    2015-05-01

    The mycotoxin ochratoxin A is a secondary metabolite occurring in a wide range of commodities. During the exposure of ochratoxin A to white and blue light, a cleavage between the carbon atom C-14 and the nitrogen atom was described. As a reaction product, the new compound ochratoxin α amide has been proposed based on mass spectrometry (MS) experiments. In the following study, we observed that this compound is also formed at high temperatures such as used for example during coffee roasting and therefore represents a further thermal ochratoxin A degradation product. To confirm the structure of ochratoxin α amide, the compound was prepared in large scale and complete structure elucidation via nuclear magnetic resonance (NMR) and MS was performed. Additionally, first studies on the toxicity of ochratoxin α amide were performed using immortalized human kidney epithelial (IHKE) cells, a cell line known to be sensitive against ochratoxin A with an IC50 value of 0.5 μM. Using this system, ochratoxin α amide revealed no cytotoxicity up to concentrations of 50 μM. Thus, these results propose that the thermal degradation of ochratoxin A to ochratoxin α amide might be a detoxification process. Finally, we present a sample preparation and a HPLC-tandem mass spectrometry (HPLC-MS/MS) method for the analysis of ochratoxin α amide in extrudates and checked its formation during the extrusion of artificially contaminated wheat grits at 150 and 180 °C, whereas no ochratoxin α amide was detectable under these conditions.

  2. Porphyrins from Messel oil shale (Eocene, Germany): Structure elucidation, geochemical and biological significance, and distribution as a function of depth

    NASA Astrophysics Data System (ADS)

    Ocampo, Rubén; Bauder, Claude; Callot, Henry J.; Albrecht, Pierre

    1992-02-01

    The extraction and isolation procedures of twenty nickel porphyrins (seven alkylporphyrins, thirteen carboxylic acids) from lacustrine Messel shale (Eocene, Germany), as well as the unequivocal structural assignments (obtained using 200 and 400 MHz nuclear magnetic resonance (NMR), nuclear Overhauser effect, mass spectrometry and total or partial synthesis of six reference compounds) are described. Ten porphyrins could be specifically correlated with biological precursors: algal chlorophyll c (4), bacteriochlorophylls d (3) and heme (3), while the remaining ones may arise from several chlorophylls. The structures of these fossil pigments mostly confirm the classical "Treibs scheme," including the origin of some porphyrins from nonchlorophyll sources. They also show that, even in a very immature sediment, deep modifications occur, including, in particular, extensive degradation of chlorophyll E ring. The composition of the porphyrin fractions of Messel oil shale was also studied as a function of depth. A porphyrin acids/alkylporphyrins ratio varying from 0.35 to 24.8 demonstrated that the apparent homogeneity of the shale is not reflected on the molecular scale. This was confirmed when the abundance of the twenty individual porphyrins of known structure was measured along the core. Significant correlations between individual porphyrins were found: fossils of bacteriochlorophylls d, homolog pairs of porphyrins (3-H/3-ethyl), etc.

  3. Active-Site Structure of the Thermophilic Foc-Subunit Ring in Membranes Elucidated by Solid-State NMR

    PubMed Central

    Kang, Su-Jin; Todokoro, Yasuto; Yumen, Ikuko; Shen, Bo; Iwasaki, Iku; Suzuki, Toshiharu; Miyagi, Atsushi; Yoshida, Masasuke; Fujiwara, Toshimichi; Akutsu, Hideo

    2014-01-01

    FoF1-ATP synthase uses the electrochemical potential across membranes or ATP hydrolysis to rotate the Foc-subunit ring. To elucidate the underlying mechanism, we carried out a structural analysis focused on the active site of the thermophilic c-subunit (TFoc) ring in membranes with a solid-state NMR method developed for this purpose. We used stereo-array isotope labeling (SAIL) with a cell-free system to highlight the target. TFoc oligomers were purified using a virtual ring His tag. The membrane-reconstituted TFoc oligomer was confirmed to be a ring indistinguishable from that expressed in E. coli on the basis of the H+-translocation activity and high-speed atomic force microscopic images. For the analysis of the active site, 2D 13C-13C correlation spectra of TFoc rings labeled with SAIL-Glu and -Asn were recorded. Complete signal assignment could be performed with the aid of the Cαi+1-Cαi correlation spectrum of specifically 13C,15N-labeled TFoc rings. The Cδ chemical shift of Glu-56, which is essential for H+ translocation, and related crosspeaks revealed that its carboxyl group is protonated in the membrane, forming the H+-locked conformation with Asn-23. The chemical shift of Asp-61 Cγ of the E. coli c ring indicated an involvement of a water molecule in the H+ locking, in contrast to the involvement of Asn-23 in the TFoc ring, suggesting two different means of proton storage in the c rings. PMID:24461014

  4. Anti- and pro-lipase activity of selected medicinal, herbal and aquatic plants, and structure elucidation of an anti-lipase compound.

    PubMed

    Ado, Muhammad Abubakar; Abas, Faridah; Mohammed, Abdulkarim Sabo; Ghazali, Hasanah M

    2013-11-26

    Plants that help in slowing down the digestion of triacylglycerols (TAGs) in the pancreas and small intestine of humans play an important role in the reduction of obesity. On the other hand, there may be plants or plant parts that stimulate intestinal lipolytic activity, thus contributing to greater TAG assimilation. The aim of this study was to evaluate the aqueous methanolic extracts of ninety eight (98) medicinal, herbal and aquatic plant materials from Malaysia for their effect on porcine pancreatic lipase (PPL) activity and to identify the structure of an anti-lipase compound from one of the sources. The degree of inhibition was also quantified as relative to orlistat activity against PPL (orlistat equivalents). Results revealed that while 19.4% of the extracts were found to have anti-lipase activity ≥80%, 12% were actually found to promote PPL activity. Twenty two percent (22.4%) exhibited moderate inhibition (41%-80%) and 2% were neutral toward PPL activity. The ripe fruit of Averrhoa carambola and the leaves of Archidendron jiringa (Jack) I.C Nielsen L. (jering), Cynometra cauliflora (nam-nam) and Aleurites moluccana (L.) Willd (candle nut/buah keras) had the highest (100%) anti-lipase activity and are equivalent to 0.11 µg orlistat/mL. Plants that stimulated lipase activity included Pimpinella anisum L. (aniseed/jintan manis), activating the enzyme by 186.5%. Kaempferol 3-O-rhamnoside was isolated from the ethyl acetate fraction of C. cauliflora leaves and found to be an active lipase inhibitor. The structure was elucidated using 1H-NMR, 13C-NMR and 2D-NMR analyses.

  5. Phase-shifting structures for isolated features

    NASA Astrophysics Data System (ADS)

    Garofalo, Joseph G.; Kostelak, Robert L.; Yang, Tungsheng

    1991-07-01

    The technique for improving optical projection-system resolution by phase-shifting alternate apertures of a periodic grating was introduced in 1982. This halves the frequency content of the image passing through the optics and should therefore double the effective resolution of such patterns. Unfortunately, as feature separation increases, the efficacy of this method diminishes. Previous work applying a similar approach to isolated features involves introducing minute, non-printable, phase-shifted assist slots around the desired feature. The diffraction side-lobes of these slots constructively interfere with the center lobe of the primary aperture. The resolution enhancement afforded be this technique is limited by the printability of the assist slots. This restraint also dictates 1X-size reticle feature dimensions and the employment of high contrast imaging resists. A new approach entails significantly oversizing the desired feature and introducing a phase-shifting region around the periphery. This type of structure affords substantial focus-exposure improvements and may either be fabricated in a single-level, self-aligned scheme or by a two-level exposure with conventional e-beam tools since the phase-shifting regions are on the order of 1 micrometers (reticle dimensions). Extensive modeling of this structure for isolated contact holes and spaces explores the myriad of trade- offs involved in an optimum design. Mask-fabrication tolerances, such as phase-shift uniformity, are also investigated. It is shown that the focus-exposure window enlarges as the overall structure dimensions increase. The degree of enhancement must therefore by weighed against packing density restrictions. Also, the structure suffers, to some degree, from the effect of side-lobes. However, for a given side-lobe intensity, this technique yields enhancements superior to the assist-slot approach. As is typical of phase-shifted systems, performance is improved as the partial coherence ((sigma

  6. Elucidating structural characteristics of biomass using solution-state 2 D NMR with a mixture of deuterated dimethylsulfoxide and hexamethylphosphoramide

    SciTech Connect

    Pu, Yunqiao; Ragauskas, Arthur J.; Yoo, Chang Geun; Li, Mi

    2016-04-26

    In recent developments of NMR methods for characterization of lignocellulosic biomass allow improved understanding of plant cell-wall structures with minimal deconstruction and modification of biomass. This study introduces a new NMR solvent system composed of dimethylsulfoxide (DMSO-d6) and hexamethylphosphoramide (HMPA-d18). HMPA as a co-solvent enhanced swelling and mobility of the biomass samples; thereby it allowed enhancing signals of NMR spectra. Moreover, the structural information of biomass was successfully analyzed by the proposed NMR solvent system (DMSO-d6/HMPA-d18; 4:1, v/v) with different biomass. The proposed bi-solvent system does not require derivatization or isolation of biomass, facilitating a facile sample preparation and involving with no signals overlapping with biomass peaks. Furthermore, it also allows analyzing biomass with a room-temperature NMR probe instead of cryo-probes, which are traditionally used for enhancing signal intensities.

  7. Elucidating the electronic structure of supported gold nanoparticles and its relevance to catalysis by means of hard X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Reinecke, Benjamin N.; Kuhl, Kendra P.; Ogasawara, Hirohito; Li, Lin; Voss, Johannes; Abild-Pedersen, Frank; Nilsson, Anders; Jaramillo, Thomas F.

    2016-08-01

    We report on the electronic structure of Au (gold) nanoparticles supported onto TiO2 with a goal of elucidating the most important effects that contribute to their high catalytic activity. We synthesize and characterize with high resolution transmission electron microscopy (HRTEM) 3.4, 5.3, and 9.5 nm diameter TiO2-supported Au nanoparticles with nearly spherical shape and measure their valence band using Au 5d subshell sensitive hard X-ray photoelectron spectroscopy (HAXPES) conducted at Spring-8. Based on density functional theory (DFT) calculations of various Au surface structures, we interpret the observed changes in the Au 5d valence band structure as a function of size in terms of an increasing percentage of Au atoms at corners/edges for decreasing particle size. This work elucidates how Au coordination number impacts the electronic structure of Au nanoparticles, ultimately giving rise to their well-known catalytic activity.

  8. Technical decision making with higher order structure data: utilization of differential scanning calorimetry to elucidate critical protein structural changes resulting from oxidation.

    PubMed

    Arthur, Kelly K; Dinh, Nikita; Gabrielson, John P

    2015-04-01

    Differential scanning calorimetry (DSC) is a useful tool for monitoring thermal stability of the molecular conformation of proteins. Here, we present an example of the sensitivity of DSC to changes in stability arising from a common chemical degradation pathway, oxidation. This Note is part of a series of industry case studies demonstrating the application of higher order structure data for technical decision making. For this study, six protein products from three structural classes were evaluated at multiple levels of oxidation. For each protein, the melting temperature (Tm ) decreased linearly as a function of oxidation; however, differences in the rate of change in Tm , as well as differences in domain Tm stability were observed across and within structural classes. For one protein, analysis of the impact of oxidation on protein function was also performed. For this protein, DSC was shown to be a leading indicator of decreased antigen binding suggesting a subtle conformation change may be underway that can be detected using DSC prior to any observable impact on product potency. Detectable changes in oxidized methionine by mass spectrometry (MS) occurred at oxidation levels below those with a detectable conformational or functional impact. Therefore, by using MS, DSC, and relative potency methods in concert, the intricate relationship between a primary structural modification, changes in conformational stability, and functional impact can be elucidated.

  9. Elucidation of the structure-property relationship of p-type organic semiconductors through rapid library construction via a one-pot, Suzuki-Miyaura coupling reaction.

    PubMed

    Fuse, Shinichiro; Matsumura, Keisuke; Wakamiya, Atsushi; Masui, Hisashi; Tanaka, Hiroshi; Yoshikawa, Susumu; Takahashi, Takashi

    2014-09-08

    The elucidation of the structure-property relationship is an important issue in the development of organic electronics. Combinatorial synthesis and the evaluation of systematically modified compounds is a powerful tool in the work of elucidating structure-property relationships. In this manuscript, D-π-A structure, 32 p-type organic semiconductors were rapidly synthesized via a one-pot, Suzuki-Miyaura coupling with subsequent Knoevenagel condensation. Evaluation of the solubility and photovoltaic properties of the prepared compounds revealed that the measured solubility was strongly correlated with the solubility parameter (SP), as reported by Fedors. In addition, the SPs were correlated with the Jsc of thin-film organic solar cells prepared using synthesized compounds. Among the evaluated photovoltaic properties of the solar cells, Jsc and Voc had strong correlations with the photoconversion efficiency (PCE).

  10. Structural elucidation of novel phosphocholine-containing glycosylinositol-phosphoceramides in filamentous fungi and their induction of cell death of cultured rice cells.

    PubMed Central

    Aoki, Kazuhiro; Uchiyama, Ryosuke; Itonori, Saki; Sugita, Mutsumi; Che, Fang-Sik; Isogai, Akira; Hada, Noriyasu; Hada, Junko; Takeda, Tadahiro; Kumagai, Hidehiko; Yamamoto, Kenji

    2004-01-01

    Novel ZGLs (zwitterionic glycosphingolipids) have been found in and extracted from the mycelia of filamentous fungi ( Acremonium sp.) isolated from soil. Five ZGLs (ZGL1-ZGL5) were structurally elucidated by sugar compositional analysis, methylation analysis, periodate oxidation, matrix-assisted laser-desorption ionization-time-of-flight MS, (1)H-NMR spectroscopy and fast-atom bombardment MS. Their chemical structures were as follows: GlcN(alpha1-2)Ins1-P-1Cer (ZGL1), Man(alpha1-6)GlcN(alpha1-2)Ins1-P-1Cer (ZGL2), Man(alpha1-6)Man(alpha1-6)GlcN(alpha1-2)Ins1-P-1Cer (ZGL3), PC-->6Man(alpha1-6)GlcN(alpha1-2)Ins1- P -1Cer (ZGL4), and PC-->6Man(alpha1-6)Man(alpha1-6)GlcN(alpha1-2)Ins1-P-1Cer (ZGL5) (where Cer is ceramide and PC is phosphocholine). In addition, one acidic glycosphingolipid, which was the precursor of ZGLs, was also characterized as inositol-phosphoceramide. The core structure of the ZGLs, GlcN(alpha1-2)Ins1- P, is rather different from those found in other fungi, such as Man(alpha1-2)Ins1- P and Man(alpha1-6)Ins1- P. Interestingly, the terminal mannose residue of ZGL4 and ZGL5 was modified further with a PC group. The presence of PC-containing glycosylinositol-phosphoceramides has not been reported previously in any organism. The ceramide constituents of both ZGLs and acidic glycosphingolipid were essentially the same, and consisted of a 4-hydroxyoctadecasphinganine (phytosphingosine) as the sole sphingoid base and 2-hydroxytetracosanoic acid (>90%) as the major fatty acid. ZGLs were found to cause cell death in suspensions of cultured rice cells. The cell death-inducing activity of ZGLs is probably due to the characteristic glycan moiety of Man(alpha1-6)GlcN, and PC-containing ZGLs had high activity. This study is the first to demonstrate that fungal glycosylinositol-phosphoceramides induce cell death in cultured rice cells. PMID:14583095

  11. Rat α-Fetoprotein binding affinities of a large set of structurally diverse chemicals elucidated the relationships between structures and binding affinities.

    PubMed

    Hong, Huixiao; Branham, William S; Dial, Stacey L; Moland, Carrie L; Fang, Hong; Shen, Jie; Perkins, Roger; Sheehan, Daniel; Tong, Weida

    2012-11-19

    Endocrine disrupting chemicals interfere with the endocrine system in animals, including humans, to exert adverse effects. One of the mechanisms of endocrine disruption is through the binding of receptors such as the estrogen receptor (ER) in target cells. The concentration of any chemical in serum is important for its entry into the target cells to bind the receptors. α-Fetoprotein (AFP) is a major transport protein in rodent serum that can bind with estrogens and thus change a chemical's availability for entrance into the target cell. Sequestration of an estrogen in the serum can alter the chemical's potential for disrupting estrogen receptor-mediated responses. To better understand endocrine disruption, we developed a competitive binding assay using rat amniotic fluid, which contains very high levels of AFP, and measured the binding to the rat AFP for 125 structurally diverse chemicals, most of which are known to bind ER. Fifty-three chemicals were able to bind the rat AFP in the assay, while 72 chemicals were determined to be nonbinders. Observations from closely examining the relationship between the binding data and structures of the tested chemicals are rationally explained in a manner consistent with proposed binding regions of rat AFP in the literature. The data reported here represent the largest data set of structurally diverse chemicals tested for rat AFP binding. The data assist in elucidating binding interactions and mechanisms between chemicals and rat AFP and, in turn, assist in the evaluation of the endocrine disrupting potential of chemicals.

  12. Isolation and structure determination of oxidative degradation products of atorvastatin.

    PubMed

    Kracun, Matjaz; Kocijan, Andrej; Bastarda, Andrej; Grahek, Rok; Plavec, Janez; Kocjan, Darko

    2009-12-05

    Methods were developed for the preparation and isolation of four oxidative degradation products of atorvastatin. ATV-FX1 was prepared in the alkaline acetonitrile solution of atorvastatin with the addition of hydrogen peroxide. The exposition of aqueous acetonitrile solution of atorvastatin to sunlight for several hours followed by the alkalization of the solution with potassium hydroxide to pH 8-9 gave ATV-FXA. By the acidification of the solution with phosphoric acid to pH 3 ATV-FXA1 and FXA2 were prepared. The isolation of oxidative degradation products was carried out on a reversed-phase chromatographic column Luna prep C18(2) 10 microm applying several separation steps. The liquid chromatography coupled with a mass spectrometer (LC-MS), high resolution MS (HR-MS), 1D and 2D NMR spectroscopy methods were applied for the structure elucidation. All degradants are due to the oxidation of the pyrrole ring. The most probable reaction mechanism is intermediate endoperoxide formation with subsequent rearrangement and nucleophilic attack by the 5-hydroxy group of the heptanoic fragment. ATV-FX1 is 4-[1b-(4-Fluoro-phenyl)-6-hydroxy-6-isopropyl-1a-phenyl-6a-phenylcarbamoyl-hexahydro-1,2-dioxa-5a-aza-cyclopropa[a]inden-3-yl]-3-(R)-hydroxy-butyric acid and has a molecular mass increased by two oxygen atoms with regard to atorvastatin. ATV-FXA is the regioisomeric compound, 4-[6-(4-Fluoro-phenyl)-6-hydroxy-1b-isopropyl-6a-phenyl-1a-phenylcarbamoyl-hexahydro-1,2-dioxa-5a-aza-cyclopropa[a]inden-3-yl]-3-(R)-hydroxy-butyric acid. Its descendants ATV-FXA1 and FXA2 appeared without the atorvastatin heptanoic fragment and are 3-(4-Fluoro-benzoyl)-2-isobutyryl-3-phenyl-oxirane-2-carboxylic acid phenylamide and 4-(4-Fluoro-phenyl)-2,4-dihydroxy-2-isopropyl-5-phenyl-3,6-dioxa-bicyclo[3.1.0]hexane-1-carboxylic acid phenylamide, respectively. Quantitative NMR spectroscopy was employed for the assay determination of isolated oxidative degradation products. The results obtained were used

  13. Determination of the chemical structures of tandyukisins B-D, isolated from a marine sponge-derived fungus.

    PubMed

    Yamada, Takeshi; Umebayashi, Yoshihide; Kawashima, Maiko; Sugiura, Yuma; Kikuchi, Takashi; Tanaka, Reiko

    2015-05-21

    Tandyukisins B-D (1-3), novel decalin derivatives, have been isolated from a strain of Trichoderma harzianum OUPS-111D-4 originally derived from the marine sponge Halichondria okadai, and their structures have been elucidated on the basis of spectroscopic analyses using 1D and 2D NMR techniques. In addition, their chemical structures were established by chemical transformation. They exhibited weak cytotoxicity, but selective growth inhibition on panel screening using 39 human cancer cell lines.

  14. Structure elucidation of degradation products of the antibiotic amoxicillin with ion trap MS(n) and accurate mass determination by ESI TOF.

    PubMed

    Nägele, Edgar; Moritz, Ralf

    2005-10-01

    Today, it is necessary to identify relevant compounds appearing in discovery and development of new drug substances in the pharmaceutical industry. For that purpose, the measurement of accurate molecular mass and empirical formula calculation is very important for structure elucidation in addition to other available analytical methods. In this work, the identification and confirmation of degradation products in a finished dosage form of the antibiotic drug amoxicillin obtained under stress conditions will be demonstrated. Structure elucidation is performed utilizing liquid chromatography (LC) ion trap MS/MS and MS3 together with accurate mass measurement of the molecular ions and of the collision induced dissociation (CID) fragments by liquid chromatography electro spray ionization time-of-flight mass spectrometry (LC/ESI-TOF).

  15. Structure elucidation of indole-indoline type alkaloids: a retrospective account from the point of view of current NMR and MS technology.

    PubMed

    Béni, Zoltán; Háda, Viktor; Dubrovay, Zsófia; Szántay, Csaba

    2012-10-01

    In this review our aim is to look back on how the structure elucidation of bisindoles, especially with focus placed on vinblastine and vincristine analogues, has evolved alongside with the development of MS and NMR over the last 60 years from the perspective of our present-day use of state-of-the-art MS and NMR instrumentation and on the basis of our own accumulated views and experience in the field.

  16. LC MS analysis in the e-beam and gamma radiolysis of metoprolol tartrate in aqueous solution: Structure elucidation and formation mechanism of radiolytic products

    NASA Astrophysics Data System (ADS)

    Slegers, Catherine; Maquille, Aubert; Deridder, Véronique; Sonveaux, Etienne; Habib Jiwan, Jean-Louis; Tilquin, Bernard

    2006-09-01

    E-beam and gamma products from the radiolysis of aqueous solutions of (±)-metoprolol tartrate, saturated in nitrogen, are analyzed by HPLC with on-line mass and UV detectors. The structures of 10 radiolytic products common to e-beam and gamma irradiations are elucidated by comparing their fragmentation pattern to that of (±)-metoprolol. Two of the radiolytic products are also metabolites. Different routes for the formation of the radiolytic products are proposed.

  17. Chemical Structure of Lipid A Isolated from Flavobacterium meningosepticum Lipopolysaccharide

    PubMed Central

    Kato, Hitomi; Haishima, Yuji; Iida, Takatoshi; Tanaka, Akira; Tanamoto, Ken-ichi

    1998-01-01

    The chemical structure of the lipid A of the lipopolysaccharide component isolated from Flavobacterium meningosepticum IFO 12535 was elucidated. Methylation and nuclear magnetic resonance analyses showed that two kinds of hydrophilic backbone exist in the free lipid A: a β (1→6)-linked 2-amino-2-deoxy-d-glucose, which is usually present in enterobacterial lipid A’s, and a 2-amino-6-O-(2,3-diamino-2,3-dideoxy-β-d-glucopyranosyl)-2-deoxy-d-glucose, in a molar ratio of 1.00:0.35. Both backbones were α-glycosidically phosphorylated in position 1, and the hydroxyl groups at positions 4, 4′, and 6′ were unsubstituted. Liquid secondary ion-mass spectrometry revealed a pseudomolecular ion at m/z 1673 [M-H]− as a major monophosphoryl lipid A component carrying five acyl groups. Fatty acid analysis showed that the lipid A contained 1 mol each of amide-linked (R)-3-OH iC17:0, ester-linked (R)-3-OH iC15:0, amide-linked (R)-3-O-(iC15:0)-iC17:0, and both amide- and ester-linked (R)-3-OH C16:0. Fatty acid distribution analyses using several mass spectrometry determinations demonstrated that the former two constituents were distributed on positions 2 and 3 of the reducing terminal unit of the backbones and that the latter two were attached to the 2′ and 3′ positions in the nonreducing terminal residue. PMID:9683486

  18. Isolation and structure of ciguatoxin-4A, a new ciguatoxin precursor, from cultures of dinoflagellate Gambierdiscus toxicus and parrotfish Scarus gibbus.

    PubMed

    Satake, M; Ishibashi, Y; Legrand, A M; Yasumoto, T

    1996-12-01

    A new ciguatoxin congener, ciguatoxin-4A (CTX4A), was isolated from cultures of marine dinoflagellate Gambierdiscus toxicus, and its structure was elucidated to be 52-epiciguatoxin-4B on the basis of spectroscopic data. Chromatographic and spectral comparisons indicated that CTX4A was identical with a structurally unelucidated congener known as scaritoxin or SG1.

  19. Isolation and structure determination of two new constituents from the fruits of Morinda citrifolia Linn.

    PubMed

    Siddiqui, Bina S; Sattar, Fouzia A; Ahmad, Fayaz; Begum, Sabira

    2008-01-01

    Studies on the chemical constituents of the fruits of Morinda citrifolia Linn. have led to the isolation of two new compounds, morinaphthalene (=1,3,6,7-tetrahydroxy-2-hydroxymethyl-1,2,3,4-tetrahydronaphthalene, (1); and morindafurone (=5-hydroxy-1,10b-dihydro-6H-anthra [1,9-bc] furan-6-one, (2); as well as two known constituents, 1,8-dihydroxy-6-methoxy-3-methyl-9-anthrone (3) and 2,4-dimethoxy-9-anthrone (4). Their structures were elucidated by spectral analysis including 2D NMR techniques.

  20. Vibration isolation via a scissor-like structured platform

    NASA Astrophysics Data System (ADS)

    Sun, Xiuting; Jing, Xingjian; Xu, Jian; Cheng, Li

    2014-04-01

    More and more attentions are attracted to the analysis and design of nonlinear vibration control/isolation systems for better isolation performance. In this study, an isolation platform with n-layer scissor-like truss structure is investigated to explore novel design of passive/semi-active/active vibration control/isolation systems and to exploit potential nonlinear benefits in vibration suppression. Due to the special scissor-like structure, the dynamic response of the platform has inherent nonlinearities both in equivalent damping and stiffness characteristics (although only linear components are applied), and demonstrates good loading capacity and excellent equilibrium stability. With the mathematical modeling and analysis of the equivalent stiffness and damping of the system, it is shown that: (a) the structural nonlinearity in the system is very helpful in vibration isolation, (b) both equivalent stiffness and damping characteristics are nonlinear and could be designed/adjusted to a desired nonlinearity by tuning structural parameters, and (c) superior vibration isolation performances (e.g., quasi-zero stiffness characteristics etc.) can be achieved with different structural parameters. This scissor-like truss structure can potentially be employed in different engineering practices for much better vibration isolation or control.

  1. Irmpd Action Spectroscopy and Computational Approaches to Elucidate Gas-Phase Structures and Energetics of 2'-DEOXYCYTIDINE and Cytidine Sodium Complexes

    NASA Astrophysics Data System (ADS)

    Zhu, Yanlong; Hamlow, Lucas; He, Chenchen; Gao, Juehan; Oomens, Jos; Rodgers, M. T.

    2016-06-01

    The local structures of DNA and RNA are influenced by protonation, deprotonation and noncovalent interactions with cations. In order to determine the effects of Na+ cationization on the gas-phase structures of 2'-deoxycytidine, [dCyd+Na]+, and cytidine, [Cyd+Na]+, infrared multiple photon dissociation (IRMPD) action spectra of these sodium cationized nucleosides are measured over the range extending from 500 to 1850 wn using the FELIX free electron laser. Complementary electronic structure calculations are performed to determine the stable low-energy conformations of these complexes. Geometry optimizations, frequency analyses, and IR spectra of these species are determined at the B3LYP/6-311+G(d,p) level of theory. Single-point energies are calculated at the B3LYP/6-311+G(2d,2p) level of theory to determine the relative stabilities of these conformations. Comparison of the measure IRMPD action spectra and computed linear IR spectra enable the conformations accessed in the experiments to be elucidated. For both cytosine nucleosides, tridentate binding of the Na+ cation to the O2, O4' and O5' atoms of the nucleobase and sugar is observed. Present results for the sodium cationized nucleosides are compared to results for the analogous protonated forms of these nucleosides to elucidate the effects of multiple chelating interactions with the sodium cation vs. hydrogen bonding interactions in the protonated systems on the structures and stabilities of these nucleosides.

  2. Short Communication: Elucidation of bacterial community structure on thin-spined porcupine (Chaetomys subspinosus) spines by denaturing.

    PubMed

    Bezerra, R A; Giné, G A F; Marques, E L S; Abreu-Tarazi, M F; Rezende, R P; Gaiotto, F A

    2015-10-02

    Thin-spined porcupines (Chaetomys subspinosus) are threatened with extinction and are categorized as vulnerable. This is because of alteration to and loss of their habitat and possible hunting activities in their distribution area. Their spines constitute one of their defense mechanisms, which can be fomites for pathogens to humans. However, little is known about such pathogens. The present study aimed to detect bacteria on spines of C. subspinosus, from the Una Biological Reserve, South of Bahia, northeastern Brazil, by analyzing metagenomic DNA, isolating bacterial culture, using the denaturing gradient gel electrophoresis (DGGE) technique, and sequencing. Six anatomical points were selected for withdrawing spine samples from an individual C. subspinosus. At all sample points, bacteria were detected by bacteriological culture and/or DGGE and sequencing of excised bands. When all samples were combined, standard PCR-DGGE analysis of bacteria present in the spines identified 15 distinct bands, thereby revealing a distinct bacterial community. The main pathogens identified through sequencing were Bacillus cereus, B. thuringiensis, B. anthracis, and B. pumilus. The present study demonstrated the isolation and identification of non-pathogenic and pathogenic bacteria on the spines of C. subspinosus.

  3. Stability-indicating HPLC method development and structural elucidation of novel degradation products in posaconazole injection by LC-TOF/MS, LC-MS/MS and NMR.

    PubMed

    Yang, Yidi; Zhu, Xi; Zhang, Fei; Li, Wei; Wu, Ying; Ding, Li

    2016-06-05

    Stress testing was carried out under acidic, alkaline, oxidative, thermal and photolytic conditions to evaluate the intrinsic stability of posaconazole injection. A total of four degradation products were detected and the drug was found to be susceptible to oxidative and thermal degradations. Three unknown degradants formed under oxidative stress condition were isolated by preparative HPLC and unambiguously elucidated by LC-TOF/MS, LC-MS/MS, (1)H NMR, (13)C NMR and 2D NMR techniques. Based on the spectrometric and spectroscopic information, these novel degradation products were unequivocally assigned as the N-oxides of posaconazole. Probable mechanisms for the formation of the degradants were proposed. A new and selective HPLC method was developed and validated to separate, detect and quantify all the degradants in posaconazole injection.

  4. Elucidation of Antimicrobial Susceptibility Profiles and Genotyping of Salmonella enterica Isolates from Clinical Cases of Salmonellosis in New Mexico in 2008.

    PubMed

    Smith, Kenneth P; George, Jeffy; Cadle, Kathleen M; Kumar, Sanath; Aragon, Steven J; Hernandez, Ricardo L; Jones, Suzanna E; Floyd, Jody L; Varela, Manuel F

    2010-06-01

    In this study, we investigated the antimicrobial susceptibility profiles and the distribution of some well known genetic determinants of virulence in clinical isolates of Salmonella enterica from New Mexico. The minimum inhibitory concentrations (MICs) for various antimicrobials were determined by using the E-test strip method according to CLSI guidelines. Virulence genotyping was performed by polymerase chain reaction (PCR) using primers specific for known virulence genes of Salmonella enterica. Of 15 isolates belonging to 11 different serovars analyzed, one isolate of Salmonella Typhimurium was resistant to multiple drugs namely ampicillin, amoxicillin / clavulanic acid, chloramphenicol and tetracycline, that also harbored class 1 intergron, bla(TEM) encoding genes for β-lactamase, chloramphenicol acetyl transferase (cat1), plus floR, tet(C) and tet(G). This strain was phage typed as DT104. PCR analysis revealed the presence of invA, hilA, stn, agfA and spvR virulence genes in all the isolates tested. The plasmid-borne pefA gene was absent in 11 isolates, while 5 isolates lacked sopE. One isolate belonging to serogroup E4 (Salmonella Sombre) was devoid of multiple virulence genes pefA, iroB, shdA and sopE. These results demonstrate that clinical Salmonella serotypes from New Mexico used here are predominantly sensitive to multiple antimicrobial agents, but vary in their virulence genotypes. Information on antimicrobial sensitivity and virulence genotypes will help in understanding the evolution and spread of epidemic strains of Salmonella enterica in the region of study.

  5. Exploiting the Complementarity between Dereplication and Computer-Assisted Structure Elucidation for the Chemical Profiling of Natural Cosmetic Ingredients: Tephrosia purpurea as a Case Study.

    PubMed

    Hubert, Jane; Chollet, Sébastien; Purson, Sylvain; Reynaud, Romain; Harakat, Dominique; Martinez, Agathe; Nuzillard, Jean-Marc; Renault, Jean-Hugues

    2015-07-24

    The aqueous-ethanolic extract of Tephrosia purpurea seeds is currently exploited in the cosmetic industry as a natural ingredient of skin lotions. The aim of this study was to chemically characterize this ingredient by combining centrifugal partition extraction (CPE) as a fractionation tool with two complementary identification approaches involving dereplication and computer-assisted structure elucidation. Following two rapid fractionations of the crude extract (2 g), seven major compounds namely, caffeic acid, quercetin-3-O-rutinoside, ethyl galactoside, ciceritol, stachyose, saccharose, and citric acid, were unambiguously identified within the CPE-generated simplified mixtures by a recently developed (13)C NMR-based dereplication method. The structures of four additional compounds, patuletin-3-O-rutinoside, kaempferol-3-O-rutinoside, guaiacylglycerol 8-vanillic acid ether, and 2-methyl-2-glucopyranosyloxypropanoic acid, were automatically elucidated by using the Logic for Structure Determination program based on the interpretation of 2D NMR (HSQC, HMBC, and COSY) connectivity data. As more than 80% of the crude extract mass was characterized without need for tedious and labor-intensive multistep purification procedures, the identification tools involved in this work constitute a promising strategy for an efficient and time-saving chemical profiling of natural extracts.

  6. Trapping and Structural Elucidation of a Very Advanced Intermediate in the Lesion-Extrusion Pathway of hOGG1

    SciTech Connect

    Lee, Seongmin; Radom, Christopher T.; Verdine, Gregory L.

    2008-07-28

    Here we present the first structure of a very advanced intermediate in the lesion-extrusion pathway of a DNA glycosylase, human 8-oxoguanine DNA glycosylase (hOGG1), and a substrate DNA containing a mutagenic lesion, 8-oxoguanine (oxoG). The structure was obtained by irradiation and flash-freezing of a disulfide-cross-linked (DXLed) complex of hOgg1 bound to DNA containing a novel photocaged derivative of oxoG. The X-ray structure reveals that, upon irradiation, the oxoG lesion has transited from the exosite to the active site pocket, but has not undergone cleavage by the enzyme. Furthermore, all but one of the specificity-determining interactions between the lesion and the enzyme are unformed in the flashed complex (FC), because active site functionality and elements of the DNA backbone are mispositioned. This structure thus provides a first glimpse into the structure of a very late-stage intermediate in the lesion-extrusion pathway -- the latest observed to date for any glycosylase -- in which the oxoG has undergone insertion into the enzyme active site following photodeprotection, but the enzyme and DNA have not yet completed the slower process of adjusting to the presence of the lesion in the active site.

  7. Structural elucidation of the NADP(H) phosphatase activity of staphylococcal dual-specific IMPase/NADP(H) phosphatase.

    PubMed

    Bhattacharyya, Sudipta; Dutta, Anirudha; Dutta, Debajyoti; Ghosh, Ananta Kumar; Das, Amit Kumar

    2016-02-01

    NADP(H)/NAD(H) homeostasis has long been identified to play a pivotal role in the mitigation of reactive oxygen stress (ROS) in the intracellular milieu and is therefore critical for the progression and pathogenesis of many diseases. NAD(H) kinases and NADP(H) phosphatases are two key players in this pathway. Despite structural evidence demonstrating the existence and mode of action of NAD(H) kinases, the specific annotation and the mode of action of NADP(H) phosphatases remains obscure. Here, structural evidence supporting the alternative role of inositol monophosphatase (IMPase) as an NADP(H) phosphatase is reported. Crystal structures of staphylococcal dual-specific IMPase/NADP(H) phosphatase (SaIMPase-I) in complex with the substrates D-myo-inositol-1-phosphate and NADP(+) have been solved. The structure of the SaIMPase-I-Ca(2+)-NADP(+) ternary complex reveals the catalytic mode of action of NADP(H) phosphatase. Moreover, structures of SaIMPase-I-Ca(2+)-substrate complexes have reinforced the earlier proposal that the length of the active-site-distant helix α4 and its preceding loop are the predisposing factors for the promiscuous substrate specificity of SaIMPase-I. Altogether, the evidence presented suggests that IMPase-family enzymes with a shorter α4 helix could be potential candidates for previously unreported NADP(H) phosphatase activity.

  8. Structural elucidation of the DFG-Asp in and DFG-Asp out states of TAM kinases and insight into the selectivity of their inhibitors.

    PubMed

    Messoussi, Abdellah; Peyronnet, Lucile; Feneyrolles, Clémence; Chevé, Gwénaël; Bougrin, Khalid; Yasri, Aziz

    2014-10-10

    Structural elucidation of the active (DFG-Asp in) and inactive (DFG-Asp out) states of the TAM family of receptor tyrosine kinases is required for future development of TAM inhibitors as drugs. Herein we report a computational study on each of the three TAM members Tyro-3, Axl and Mer. DFG-Asp in and DFG-Asp out homology models of each one were built based on the X-ray structure of c-Met kinase, an enzyme with a closely related sequence. Structural validation and in silico screening enabled identification of critical amino acids for ligand binding within the active site of each DFG-Asp in and DFG-Asp out model. The position and nature of amino acids that differ among Tyro-3, Axl and Mer, and the potential role of these residues in the design of selective TAM ligands, are discussed.

  9. Elucidating the structure of surface acid sites on {gamma}-Al{sub 2}O{sub 3}.

    SciTech Connect

    Chupas, P. J.; Chapman, K. W.; Halder, G. J.

    2011-05-12

    Differential pair distribution function analysis was applied to resolve, with crystallographic detail, the structure of catalytic sites on the surface of nanoscale {gamma}-Al{sup 2}O{sub 3}. The structure was determined for a basic probe molecule, monomethylamine (MMA), bound at the minority Lewis acid sites. These active sites were found to be five-coordinate, forming distorted octahedra upon MMA binding. This approach could be applied to study the interaction of molecules at surfaces in dye-sensitized solar cells, nanoparticles, sensors, materials for waste remediation, and catalysts.

  10. Studies toward the Unique Pederin Family Member Psymberin: Full Structure Elucidation, Two Alternative Total Syntheses, and Analogs

    PubMed Central

    Feng, Yu; Jiang, Xin; De Brabander, Jef K.

    2012-01-01

    Two synthetic approaches to psymberin have been accomplished. A highly convergent first generation synthesis led to the complete stereochemical assignment and demonstrated that psymberin and irciniastatin A are identical compounds. This synthesis featured a diastereoselective aldol coupling between the aryl fragment and a central tetrahydropyran core, and a novel one-pot procedure to convert an amide, via intermediacy of a sensitive methyl imidate, to the N-acyl aminal reminiscent of psymberin. The highlights of the second generation synthesis include an efficient iridium-catalyzed enantioselective bis-allylation of neopentyl glycol, and a stepwise Sonogashira coupling/cycloisomerization/reduction sequence to construct the dihydroisocoumarin unit. The two synthetic avenues were achieved in 17–18 steps (longest linear sequence, ~14–15 isolations) from 3 fragments prepared in 7–8 steps (1st generation) and 3–8 steps (2nd generation) each. This convergent approach allowed for the preparation of sufficient amounts of psymberin (~ 0.5 g) for follow-up biological studies. Meanwhile, our highly flexible strategy enabled the design and synthesis of multiple analogs, including a psymberin-pederin hybrid termed psympederin that proved crucial to a comprehensive understanding of the chemical biology of psymberin and related compounds that will be described in a subsequent manuscript. PMID:23004238

  11. Studies toward the unique pederin family member psymberin: full structure elucidation, two alternative total syntheses, and analogs.

    PubMed

    Feng, Yu; Jiang, Xin; De Brabander, Jef K

    2012-10-17

    Two synthetic approaches to psymberin have been accomplished. A highly convergent first generation synthesis led to the complete stereochemical assignment and demonstrated that psymberin and irciniastatin A are identical compounds. This synthesis featured a diastereoselective aldol coupling between the aryl fragment and a central tetrahydropyran core and a novel one-pot procedure to convert an amide, via intermediacy of a sensitive methyl imidate, to the N-acyl aminal reminiscent of psymberin. The highlights of the second generation synthesis include an efficient iridium-catalyzed enantioselective bisallylation of neopentyl glycol and a stepwise Sonogashira coupling/cycloisomerization/reduction sequence to construct the dihydroisocoumarin unit. The two synthetic avenues were achieved in 17-18 steps (longest linear sequence, ~14-15 isolations) from 3 fragments prepared in 7-8 (first generation) and 3-8 (second generation) steps each. This convergent approach allowed for the preparation of sufficient amounts of psymberin (~ 0.5 g) for follow-up biological studies. Meanwhile, our highly flexible strategy enabled the design and synthesis of multiple analogs, including a psymberin-pederin hybrid, termed psympederin, that proved crucial to a comprehensive understanding of the chemical biology of psymberin and related compounds that will be described in a subsequent manuscript.

  12. Isolation and structure determination of one new metabolite isolated from the red fermented rice of Monascus purpureus.

    PubMed

    Cheng, Ming-Jen; Chen, Jih-Jung; Wu, Ming-Der; Yang, Ping-Shin; Yuan, Gwo-Fang

    2010-06-01

    The n-BuOH-soluble portion of the 95% EtOH extract of red fermented rice fermented with the yellow mutant of the fungus Monascus purpureus BCRC 38113 (Monascaceae) led to the isolation of one new pyran-2-one derivative, namely peroxymonascuspyrone (1), along with nine known compounds, monasfluore A (2), monasfluore B (3), 3-epi-betulinic acid (4), 3-epi-betulinic acid acetate (5), alpha-tocospiro A (6), friedelan-3-one (7), alpha-cadinol (8), anticopalol (9), and spathulenol (10). Interestingly, this is the first report of a naturally occurring pyran-2-one skeleton isolated from Monascus sp. Their structures and relative configurations were elucidated by spectroscopic methods, including 1D- and 2D-NMR ((1)H,(1)H-COSY, HMQC, HMBC and NOESY), as well as low- and high-resolution mass spectrometric analyses. In addition, cytotoxicities against MCF-7, NCI-H460 and SF-268 cancer cell lines were measured in vitro; the results revealed that these metabolites have no cytotoxicity against the selected tumour cells.

  13. Elucidation of molecular structures at buried polymer interfaces and biological interfaces using sum frequency generation vibrational spectroscopy

    PubMed Central

    Zhang, Chi; Myers, John; Chen, Zhan

    2013-01-01

    Sum frequency generation (SFG) vibrational spectroscopy has been developed into an important technique to study surfaces and interfaces. It can probe buried interfaces in situ and provide molecular level structural information such as the presence of various chemical moieties, quantitative molecular functional group orientation, and time dependent kinetics or dynamics at such interfaces. This paper focuses on these three most important advantages of SFG and reviews some of the recent progress in SFG studies on interfaces related to polymer materials and biomolecules. The results discussed here demonstrate that SFG can provide important molecular structural information of buried interfaces in situ and in real time, which is difficult to obtain by other surface sensitive analytical techniques. PMID:23710244

  14. Structural differences between Abeta(1-40) intermediate oligomers and fibrils elucidated by proteolytic fragmentation and hydrogen/deuterium exchange.

    PubMed

    Zhang, Aming; Qi, Wei; Good, Theresa A; Fernandez, Erik J

    2009-02-01

    The aggregation of amyloid-beta protein (Abeta) in vivo is a critical pathological event in Alzheimer's disease. Although more and more evidence shows that the intermediate oligomers are the primary neurotoxic species in Alzheimer's disease, the particular structural features responsible for the toxicity of these intermediates are poorly understood. We measured the peptide level solvent accessibility of multiple Abeta(1-40) aggregated states using hydrogen exchange detected by mass spectrometry. A gradual reduction in solvent accessibility, spreading from the C-terminal region to the N-terminal region was observed with ever more aggregated states of Abeta peptide. The observed hydrogen exchange protection begins with reporter peptides 20-34 and 35-40 in low molecular weight oligomers found in fresh samples and culminates with increasing solvent protection of reporter peptide 1-16 in long time aged fibrillar species. The more solvent exposed structure of intermediate oligomers in the N-termini relative to well-developed fibrils provides a novel explanation for the structure-dependent neurotoxicity of soluble oligomers reported previously.

  15. Adsorption and Reaction of Acetaldehyde on Shape-Controlled CeO2 Nanocrystals: Elucidation of Structure-function Relationships

    SciTech Connect

    Mann, Amanda K; Wu, Zili; Calaza, Florencia; Overbury, Steven {Steve} H

    2014-01-01

    CeO2 cubes with {100} facets, octahedra with {111} facets, and wires with highly defective structures were utilized to probe the structure-dependent reactivity of acetaldehyde. Using temperature-programmed desorption (TPD), temperature-programmed surface reactions (TPSR), and in situ infrared spectroscopy it was found that acetaldehyde desorbs unreacted or undergoes reduction, coupling, or C-C bond scission reactions depending on the surface structure of CeO2. Room temperature FTIR indicates that acetaldehyde binds primarily as 1-acetaldehyde on the octahedra, in a variety of conformations on the cubes, including coupling products and acetate and enolate species, and primarily as coupling products on the wires. The percent consumption of acetaldehyde follows the order of wires > cubes > octahedra. All the nanoshapes produce the coupling product crotonaldehyde; however, the selectivity to produce ethanol follows the order wires cubes >> octahedra. The selectivity and other differences can be attributed to the variation in the basicity of the surfaces, defects densities, coordination numbers of surface atoms, and the reducibility of the nanoshapes.

  16. Metal interactions at the biochar-water interface: energetics and structure-sorption relationships elucidated by flow adsorption microcalorimetry.

    PubMed

    Harvey, Omar R; Herbert, Bruce E; Rhue, Roy D; Kuo, Li-Jung

    2011-07-01

    Plant-derived biochars exhibit large physicochemical heterogeneity due to variations in biomass chemistry and combustion conditions. However, the influence of biochar heterogeneity on biochar-metal interaction mechanisms has not been systematically described. We used flow adsorption microcalorimetry to study structure-sorption relationships between twelve plant-derived biochars and two metals (K(+) and Cd(2+)) of different Lewis acidity. Irrespective of the biochar structure, sorption of K(+) (a hard Lewis acid) occurred predominantly on deprotonated functional groups via ion exchange with molar heats of adsorption (ΔH(ads)) of -4 kJ mol(-1) to -8 kJ mol(-1). By comparison, although ion exchange could not be completely ruled out, our data pointed to Cd(2+) (a soft Lewis acid) sorption occurring predominantly via two distinct cation-π bonding mechanisms, each with ΔH(ads) of +17 kJ mol(-1). The first, evident in low charge-low carbonized biochars, suggested Cd(2+)-π bonding to soft ligands such as -C ═ O; while the second, evident in low charge-highly carbonized biochars, pointed to Cd(2+)-π bonding with electron-rich domains on aromatic structures. Quantitative contributions of these mechanisms to Cd(2+) sorption can exceed 3 times that expected for ion exchange and therefore could have significant implications for the biogeochemical cycling of metals in fire-impacted or biochar-amended systems.

  17. Nano-Structural Elucidation in Carbon Black Loaded NR Vulcanizate by 3D-TEM and In Situ WAXD Measurements

    SciTech Connect

    Ikeda,Y.; Kato, A.; Shimanuki, J.; Kohjiya, S.; Tosaka, M.; Poompradub, S.; Toki, S.; Hsiao, B.

    2007-01-01

    Three dimensional (3D) visualization of nanometer structure of carbon black dispersion in rubbery matrix has successfully been studied and reported in this paper. Use of 3D-TEM, which is computerized tomography combined with transmission electron microscopy (TEM), enabled us to reconstruct 3D images of carbon black aggregates in natural rubber (NR) matrix. The TEM measurements were conducted by a bright-field method on thin samples without any electron staining. The sample was subject to uni-axial tilting (+65 degree to -65 degree with 2 degree increment) in the sample chamber, and 66 TEM images were taken on each sample. These TEM images were used for computerized tomography to reconstruct the 3D image. This technique is designated as 3D-TEM. The nano-structural features observed by 3D-TEM were in conformity with the electron-conductivity results, and the percolation behavior was recognized. These results were further supplemented by in situ wide-angle X-ray diffraction (WAXD), i.e., simultaneous WAXD and tensile measurements on the sample to observe the strain-induced crystallization in NR vulcanizate. Upon tensile elongation, the crystallization was clearly observed in WAXD in the presence of carbon black, and it contributed to the tensile properties. In order to understand the performances of filled NR vulcanizates, it surely is necessary to know the structural states of the mixed nano-filler and the crystallites produced upon elongation.

  18. Evaluation of levels of antibiotic resistance in groundwater-derived E. coli isolates in the Midwest of Ireland and elucidation of potential predictors of resistance

    NASA Astrophysics Data System (ADS)

    O'Dwyer, Jean; Hynds, Paul; Pot, Matthieu; Adley, Catherine C.; Ryan, Michael P.

    2017-02-01

    Antibiotic-resistant (pathogenic and non-pathogenic) organisms and genes are now acknowledged as significant emerging aquatic contaminants with potentially adverse human and ecological health impacts, and thus require monitoring. This study is the first to investigate levels of resistance among Irish groundwater (private wells) samples; Escherichia coli isolates were examined against a panel of commonly prescribed human and veterinary therapeutic antibiotics, followed by determination of the causative factors of resistance. Overall, 42 confirmed E. coli isolates were recovered from a groundwater-sampling cohort. Resistance to the human panel of antibiotics was moderate; nine (21.4%) E. coli isolates demonstrated resistance to one or more human antibiotics. Conversely, extremely high levels of resistance to veterinary antibiotics were found, with all isolates presenting resistance to one or more veterinary antibiotics. Particularly high levels of resistance (93%) were found with respect to the aminoglycoside class of antibiotics. Results of statistical analysis indicate a significant association between the presence of human (multiple) antibiotic resistance (p = 0.002-0.011) and both septic tank density and the presence of vulnerable sub-populations (<5 years). For the veterinary antibiotics, results point to a significant relationship (p = <0.001) between livestock (cattle) density and the prevalence of multiple antibiotic resistant E. coli. Groundwater continues to be an important resource in Ireland, particularly in rural areas; thus, results of this preliminary study offer a valuable insight into the prevalence of antibiotic resistance in the hydrogeological environment and establish a need for further research with a larger geological diversity.

  19. Effect of Glu12-His89 Interaction on Dynamic Structures in HIV-1 p17 Matrix Protein Elucidated by NMR

    PubMed Central

    Konagaya, Yuta; Miyakawa, Rina; Sato, Masumi; Matsugami, Akimasa; Watanabe, Satoru; Hayashi, Fumiaki; Kigawa, Takanori; Nishimura, Chiaki

    2016-01-01

    To test the existence of the salt bridge and stability of the HIV-1 p17 matrix protein, an E12A (mutated at helix 1) was established to abolish possible electrostatic interactions. The chemical shift perturbation from the comparison between wild type and E12A suggested the existence of an electrostatic interaction in wild type between E12 and H89 (located in helix 4). Unexpectedly, the studies using urea denaturation indicated that the E12A substitution slightly stabilized the protein. The dynamic structure of E12A was examined under physiological conditions by both amide proton exchange and relaxation studies. The quick exchange method of amide protons revealed that the residues with faster exchange were located at the mutated region, around A12, compared to those of the wild-type protein. In addition, some residues at the region of helix 4, including H89, exhibited faster exchange in the mutant. In contrast, the average values of the kinetic rate constants for amide proton exchange for residues located in all loop regions were slightly lower in E12A than in wild type. Furthermore, the analyses of the order parameter revealed that less flexible structures existed at each loop region in E12A. Interestingly, the structures of the regions including the alpha1-2 loop and helix 5 of E12A exhibited more significant conformational exchanges with the NMR time-scale than those of wild type. Under lower pH conditions, for further destabilization, the helix 1 and alpha2-3 loop in E12A became more fluctuating than at physiological pH. Because the E12A mutant lacks the activities for trimer formation on the basis of the analytical ultra-centrifuge studies on the sedimentation distribution of p17 (Fledderman et al. Biochemistry 49, 9551–9562, 2010), it is possible that the changes in the dynamic structures induced by the absence of the E12-H89 interaction in the p17 matrix protein contributes to a loss of virus assembly. PMID:27907055

  20. Elucidating the native sources of an invasive tree species, Acacia pycnantha, reveals unexpected native range diversity and structure

    PubMed Central

    Ndlovu, Joice; Richardson, David M.; Wilson, John R. U.; O'Leary, Martin; Le Roux, Johannes J.

    2013-01-01

    Background and Aims Understanding the introduction history of invasive plant species is important for their management and identifying effective host-specific biological control agents. However, uncertain taxonomy, intra- and interspecific hybridization, and cryptic speciation may obscure introduction histories, making it difficult to identify native regions to explore for host-specific agents. The overall aim of this study was to identify the native source populations of Acacia pycnantha, a tree native to south-eastern Australia and invasive in South Africa, Western Australia and Portugal. Using a phylogeographical approach also allowed an exploration of the historical processes that have shaped the genetic structure of A. pycnantha in its native range. Methods Nuclear (nDNA) and plastid DNA sequence data were used in network and tree-building analyses to reconstruct phylogeographical relationships between native and invasive A. pycnantha populations. In addition, mismatch distributions, relative rates and Bayesian analyses were used to infer recent demographic processes and timing of events in Australia that led to population structure and diversification. Key Results The plastid network indicated that Australian populations of A. pycnantha are geographically structured into two informally recognized lineages, the wetland and dryland forms, whereas the nuclear phylogeny showed little geographical structure between these two forms. Moreover, the dryland form of A. pycnantha showed close genetic similarity to the wetland form based on nDNA sequence data. Hybrid zones may explain these findings, supported here by incongruent phylogenetic placement of some of these taxa between nuclear and plastid genealogies. Conclusions It is hypothesized that habitat fragmentation due to cycles of aridity inter-dispersed with periods of abundant rainfall during the Pleistocene (approx. 100 kya) probably gave rise to native dryland and wetland forms of A. pycnantha. Although the

  1. FINE STRUCTURE AND PIGMENT CONVERSION IN ISOLATED ETIOLATED PROPLASTIDS

    PubMed Central

    Klein, Shimon; Poljakoff-Mayber, A.

    1961-01-01

    Proplastids containing a prolamellar body were isolated from leaves of etiolated bean plants. The isolation methods do not necessarily lead to destruction of their submicroscopic structure and most of the isolated proplastids show well preserved outer membranes, lamellar strands, and the prolamellar body. Morphological intactness of the proplastids varies; certain leaf fractions contain single prolamellar bodies as well as proplastids. Since pellets after centrifugation between 350 g and 1000 to 3000 g contain intact proplastids and, as was shown by quantitative experiments, the same fractions show photoconversion of protochlorophyll to chlorophyll, it is supposed that the isolated particles probably retain many of the properties which are characteristic of them in situ. Isolated proplastids may thus be a valuable tool in investigations on the development of the photosynthetic apparatus. PMID:14456780

  2. Cryo-EM structures elucidate neutralizing mechanisms of anti-chikungunya human monoclonal antibodies with therapeutic activity

    SciTech Connect

    Long, Feng; Fong, Rachel H.; Austin, Stephen K.; Chen, Zhenguo; Klose, Thomas; Fokine, Andrei; Liu, Yue; Porta, Jason; Sapparapu, Gopal; Akahata, Wataru; Doranz, Benjamin J.; Crowe, James E.; Diamond, Michael S.; Rossmann, Michael G.

    2015-10-26

    Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes severe acute and chronic disease in humans. Although highly inhibitory murine and human monoclonal antibodies (mAbs) have been generated, the structural basis of their neutralizing activity remains poorly characterized. In this paper, we determined the cryo-EM structures of chikungunya virus-like particles complexed with antibody fragments (Fab) of two highly protective human mAbs, 4J21 and 5M16, that block virus fusion with host membranes. Both mAbs bind primarily to sites within the A and B domains, as well as to the B domain’s β-ribbon connector of the viral glycoprotein E2. The footprints of these antibodies on the viral surface were consistent with results from loss-of-binding studies using an alanine scanning mutagenesis-based epitope mapping approach. The Fab fragments stabilized the position of the B domain relative to the virus, particularly for the complex with 5M16. Finally, this finding is consistent with a mechanism of neutralization in which anti-CHIKV mAbs that bridge the A and B domains impede movement of the B domain away from the underlying fusion loop on the E1 glycoprotein and therefore block the requisite pH-dependent fusion of viral and host membranes.

  3. Cryo-EM structures elucidate neutralizing mechanisms of anti-chikungunya human monoclonal antibodies with therapeutic activity

    DOE PAGES

    Long, Feng; Fong, Rachel H.; Austin, Stephen K.; ...

    2015-10-26

    Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes severe acute and chronic disease in humans. Although highly inhibitory murine and human monoclonal antibodies (mAbs) have been generated, the structural basis of their neutralizing activity remains poorly characterized. In this paper, we determined the cryo-EM structures of chikungunya virus-like particles complexed with antibody fragments (Fab) of two highly protective human mAbs, 4J21 and 5M16, that block virus fusion with host membranes. Both mAbs bind primarily to sites within the A and B domains, as well as to the B domain’s β-ribbon connector of the viral glycoprotein E2. The footprints ofmore » these antibodies on the viral surface were consistent with results from loss-of-binding studies using an alanine scanning mutagenesis-based epitope mapping approach. The Fab fragments stabilized the position of the B domain relative to the virus, particularly for the complex with 5M16. Finally, this finding is consistent with a mechanism of neutralization in which anti-CHIKV mAbs that bridge the A and B domains impede movement of the B domain away from the underlying fusion loop on the E1 glycoprotein and therefore block the requisite pH-dependent fusion of viral and host membranes.« less

  4. Templated Atom-Precise Galvanic Synthesis and Structure Elucidation of a [Ag24Au(SR)18](-) Nanocluster.

    PubMed

    Bootharaju, Megalamane S; Joshi, Chakra P; Parida, Manas R; Mohammed, Omar F; Bakr, Osman M

    2016-01-18

    Synthesis of atom-precise alloy nanoclusters with uniform composition is challenging when the alloying atoms are similar in size (for example, Ag and Au). A galvanic exchange strategy has been devised to produce a compositionally uniform [Ag24Au(SR)18](-) cluster (SR: thiolate) using a pure [Ag25(SR)18](-) cluster as a template. Conversely, the direct synthesis of Ag24Au cluster leads to a mixture of [Ag(25-x)Au(x)(SR)18](-), x=1-8. Mass spectrometry and crystallography of [Ag24Au(SR)18](-) reveal the presence of the Au heteroatom at the Ag25 center, forming Ag24Au. The successful exchange of the central Ag of Ag25 with Au causes perturbations in the Ag25 crystal structure, which are reflected in the absorption, luminescence, and ambient stability of the particle. These properties are compared with those of Ag25 and Ag24Pd clusters with same ligand and structural framework, providing new insights into the modulation of cluster properties with dopants at the single-atom level.

  5. Metal Interactions at the Biochar-Water Interface: Energetics and Structure-Sorption Relationships Elucidated by Flow Adsorption Microcalorimetry

    SciTech Connect

    Harvey, Omar R.; Herbert, Bruce; Rhue, Roy D.; Kuo, Li-Jung

    2011-06-01

    Interest in biochars and their role in the biogeochemical cycling of metals have increased in recent years. However, a systematic understanding of the mechanisms involved in biochar-metal interactions and conditions under which a given mechanism is predominant is still needed. We used flow adsorption micro-calorimetry to study structure-sorption relationships between twelve plant-derived biochars and two metals of different ionization potential (Ip). Biochar structure influenced the amount of K+ (Ip = 419 kJ mol-1) or Cd(II) (Ip = 868 kJ mol-17 ) sorption but had no effect on the mechanism of sorption. Irrespective of the biochar, K+ sorption was exothermic, surface-controlled and occurred via an ion-exchange mechanism on negatively- charged sites with molar heats of adsorption (_Hads) of -4 kJ mol-1 on wood versus -8 kJ mol-1 on grass biochars. In contrast, Cd(II) sorption was endothermic and favored surface complexation on uncharged biochar surfaces with _Hads of around +17 kJ mol-1. Cadmium sorption transitioned from surface- to diffusion-controlled on biochars formed at ≥ 350 oC and _Hads for Cd(II) sorption was the same on grass and wood biochars. We concluded that, in general, metals with lower Ip favor electrostatic interactions with biochars, while metals of higher Ip favor more covalent-like interactions.

  6. Crystal structure of Staphylococcus aureus transglycosylase in complex with a lipid II analog and elucidation of peptidoglycan synthesis mechanism.

    PubMed

    Huang, Chia-Ying; Shih, Hao-Wei; Lin, Li-Ying; Tien, Yi-Wen; Cheng, Ting-Jen Rachel; Cheng, Wei-Chieh; Wong, Chi-Huey; Ma, Che

    2012-04-24

    Bacterial transpeptidase and transglycosylase on the surface are essential for cell wall synthesis, and many antibiotics have been developed to target the transpeptidase; however, the problem of antibiotic resistance has arisen and caused a major threat in bacterial infection. The transglycosylase has been considered to be another excellent target, but no antibiotics have been developed to target this enzyme. Here, we determined the crystal structure of the Staphylococcus aureus membrane-bound transglycosylase, monofunctional glycosyltransferase, in complex with a lipid II analog to 2.3 Å resolution. Our results showed that the lipid II-contacting residues are not only conserved in WT and drug-resistant bacteria but also significant in enzymatic activity. Mechanistically, we proposed that K140 and R148 in the donor site, instead of the previously proposed E156, are used to stabilize the pyrophosphate-leaving group of lipid II, and E100 in the acceptor site acts as general base for the 4-OH of GlcNAc to facilitate the transglycosylation reaction. This mechanism, further supported by mutagenesis study and the structure of monofunctional glycosyltransferase in complex with moenomycin in the donor site, provides a direction for antibacterial drugs design.

  7. In situ analysis and structural elucidation of sainfoin (Onobrychis viciifolia) tannins for high-throughput germplasm screening.

    PubMed

    Gea, An; Stringano, Elisabetta; Brown, Ron H; Mueller-Harvey, Irene

    2011-01-26

    A rapid thiolytic degradation and cleanup procedure was developed for analyzing tannins directly in chlorophyll-containing sainfoin ( Onobrychis viciifolia ) plants. The technique proved suitable for complex tannin mixtures containing catechin, epicatechin, gallocatechin, and epigallocatechin flavan-3-ol units. The reaction time was standardized at 60 min to minimize the loss of structural information as a result of epimerization and degradation of terminal flavan-3-ol units. The results were evaluated by separate analysis of extractable and unextractable tannins, which accounted for 63.6-113.7% of the in situ plant tannins. It is of note that 70% aqueous acetone extracted tannins with a lower mean degree of polymerization (mDP) than was found for tannins analyzed in situ. Extractable tannins had between 4 and 29 lower mDP values. The method was validated by comparing results from individual and mixed sample sets. The tannin composition of different sainfoin accessions covered a range of mDP values from 16 to 83, procyanidin/prodelphinidin (PC/PD) ratios from 19.2/80.8 to 45.6/54.4, and cis/trans ratios from 74.1/25.9 to 88.0/12.0. This is the first high-throughput screening method that is suitable for analyzing condensed tannin contents and structural composition directly in green plant tissue.

  8. Molecular and supramolecular properties of nitroaromatic thiosemicarbazones: Synthesis, spectroscopy, X-ray structure elucidation and DFT calculations

    NASA Astrophysics Data System (ADS)

    Dias, L. C.; de Lima, G. M.; Pinheiro, C. B.; Nascimento, M. A. C.; Bitzer, R. S.

    2017-03-01

    The reactions of 6-nitropiperonal with H2Nsbnd NHsbnd C(S)sbnd NHR, R = Me, Et, Ph or H, afforded four nitroaromatic thiosemicarbazones 1-4, respectively. 1-4 were characterized by elemental analysis (CHN), FTIR, and 1H and 13C{1H} NMR spectroscopy. In addition, the crystal structures of 2 and 3 were determined by single-crystal X-ray diffraction. Our X-ray structural results have shown that the nitropiperonal and thiosemicarbazone moieties exhibit an almost coplanar arrangement for both 2 and 3. Moreover, they establish 2-D networks along the [111] base vector by means of classical and nonclassical hydrogen bonds. Electronic and spectroscopic properties of 1-4 were investigated at the DFT B3LYP/6-311G** level of calculation. The Cdbnd S group of 1-4 constitutes a nucleophilic region, whereas the NO2 group defines an electrophilic centre, as expected. Furthermore, a DFT vibrational analysis of 4 allowed a reliable assignment of the thiosemicarbazone-based vibrations. Also, a good agreement between theoretical and experimental 13C chemical shift values was obtained for 1-4.

  9. Cobalt-Catalyzed [2π + 2π] Cycloadditions of Alkenes: Scope, Mechanism, and Elucidation of Electronic Structure of Catalytic Intermediates.

    PubMed

    Schmidt, Valerie A; Hoyt, Jordan M; Margulieux, Grant W; Chirik, Paul J

    2015-06-24

    Aryl-substituted bis(imino)pyridine cobalt dinitrogen compounds, ((R)PDI)CoN2, are effective precatalysts for the intramolecular [2π + 2π] cycloaddition of α,ω-dienes to yield the corresponding bicyclo[3.2.0]heptane derivatives. The reactions proceed under mild thermal conditions with unactivated alkenes, tolerating both amine and ether functional groups. The overall second order rate law for the reaction, first order with respect to both the cobalt precatalyst and the substrate, in combination with electron paramagnetic resonance (EPR) spectroscopic studies established the catalyst resting state as dependent on the identity of the precatalyst and diene substrate. Planar S = ½ κ(3)-bis(imino)pyridine cobalt alkene and tetrahedral κ(2)-bis(imino)pyridine cobalt diene complexes were observed by EPR spectroscopy and in the latter case structurally characterized. The hemilabile chelate facilitates conversion of a principally ligand-based singly occupied molecular orbital (SOMO) in the cobalt dinitrogen and alkene compounds to a metal-based SOMO in the diene intermediates, promoting C-C bond-forming oxidative cyclization. Structure-activity relationships on bis(imino)pyridine substitution were also established with 2,4,6-tricyclopentyl-substituted aryl groups, resulting in optimized catalytic [2π + 2π] cycloaddition. The cyclopentyl groups provide a sufficiently open metal coordination sphere that encourages substrate coordination while remaining large enough to promote a challenging, turnover-limiting C(sp(3))-C(sp(3)) reductive elimination.

  10. Structural elucidation of the impurities in Enzalutamide bulk drug and the development, validation of corresponding HPLC method.

    PubMed

    Ma, Xingling; Zhou, Wentao; Zou, Qiaogen; Ouyang, Pingkai

    2016-11-30

    As the first approved androgen receptor(AR) signalling inhibitor, Enzalutamide was approved by the US Food and Drug Administration as an anticancer drug used to treat castration-resistant prostate cancer in 2012. In this manuscript, six potential impurities of Enzalutamide including process impurities and degradation products were studied. The structures of six impurities obtained by synthesis were characterized and confirmed by IR, NMR and MS techniques. In addition, an efficient chromatographic method to separate and quantify these impurities was developed, which achieved on Inertsil ODS-3 column (250mm×4.6mm,5μm) in gradient mode with a mixture of acetonitrile and the ammonium acetate buffer (10mM, pH adjusted to 4.0 with glacial acetic acid). The method was validated with respect to specificity, precision, accuracy, and sensitivity and satisfactory result was achieved. The method was demonstrated to be applicable in routine quality control and stability evaluation of Enzalutamide.

  11. Elucidation of the electronic structure of molecules with the help of NMR spin-spin coupling constants: the FH molecule.

    PubMed

    Gräfenstein, Jürgen; Tuttle, Tell; Cremer, Dieter

    2005-03-17

    It is demonstrated how the one-bond NMR spin-spin coupling constant (SSCC) (1)J(FH) can be used as a source of information on the electronic structure of the FH molecule. For this purpose, the best possible agreement between measured and calculated SSCC is achieved by large basis set coupled perturbed density functional theory calculations. Then, the calculated value is dissected into its four Ramsey terms: Fermi contact, the paramagnetic spin-orbit term, the diamagnetic spin-orbit term, and the spin dipole term, which in turn are decomposed into orbital contributions and then described by their spin densities and orbital current densities. In this way, the SSCC gives detailed information about the electronegativity of F, the bond polarity, the bond polarizability, the volume and the polarizability of sigma and pi lone pair orbitals, the s- or p-character of the bond orbital, the nature of the LUMO, and the density distribution around F.

  12. Designer reagents for mass spectrometry-based proteomics: clickable cross-linkers for elucidation of protein structures and interactions.

    PubMed

    Sohn, Chang Ho; Agnew, Heather D; Lee, J Eugene; Sweredoski, Michael J; Graham, Robert L J; Smith, Geoffrey T; Hess, Sonja; Czerwieniec, Gregg; Loo, Joseph A; Heath, James R; Deshaies, Raymond J; Beauchamp, J L

    2012-03-20

    We present novel homobifunctional amine-reactive clickable cross-linkers (CXLs) for investigation of three-dimensional protein structures and protein-protein interactions (PPIs). CXLs afford consolidated advantages not previously available in a simple cross-linker, including (1) their small size and cationic nature at physiological pH, resulting in good water solubility and cell-permeability, (2) an alkyne group for bio-orthogonal conjugation to affinity tags via the click reaction for enrichment of cross-linked peptides, (3) a nucleophilic displacement reaction involving the 1,2,3-triazole ring formed in the click reaction, yielding a lock-mass reporter ion for only clicked peptides, and (4) higher charge states of cross-linked peptides in the gas-phase for augmented electron transfer dissociation (ETD) yields. Ubiquitin, a lysine-abundant protein, is used as a model system to demonstrate structural studies using CXLs. To validate the sensitivity of our approach, biotin-azide labeling and subsequent enrichment of cross-linked peptides are performed for cross-linked ubiquitin digests mixed with yeast cell lysates. Cross-linked peptides are detected and identified by collision induced dissociation (CID) and ETD with linear quadrupole ion trap (LTQ)-Fourier transform ion cyclotron resonance (FTICR) and LTQ-Orbitrap mass spectrometers. The application of CXLs to more complex systems (e.g., in vivo cross-linking) is illustrated by Western blot detection of Cul1 complexes including known binders, Cand1 and Skp2, in HEK 293 cells, confirming good water solubility and cell-permeability.

  13. 3-Dimensional atomic scale structure of the ionic liquid-graphite interface elucidated by AM-AFM and quantum chemical simulations.

    PubMed

    Page, Alister J; Elbourne, Aaron; Stefanovic, Ryan; Addicoat, Matthew A; Warr, Gregory G; Voïtchovsky, Kislon; Atkin, Rob

    2014-07-21

    In situ amplitude modulated atomic force microscopy (AM-AFM) and quantum chemical simulations are used to resolve the structure of the highly ordered pyrolytic graphite (HOPG)-bulk propylammonium nitrate (PAN) interface with resolution comparable with that achieved for frozen ionic liquid (IL) monolayers using STM. This is the first time that (a) molecular resolution images of bulk IL-solid interfaces have been achieved, (b) the lateral structure of the IL graphite interface has been imaged for any IL, (c) AM-AFM has elucidated molecular level structure immersed in a viscous liquid and (d) it has been demonstrated that the IL structure at solid surfaces is a consequence of both thermodynamic and kinetic effects. The lateral structure of the PAN-graphite interface is highly ordered and consists of remarkably well-defined domains of a rhomboidal superstructure composed of propylammonium cations preferentially aligned along two of the three directions in the underlying graphite lattice. The nanostructure is primarily determined by the cation. Van der Waals interactions between the propylammonium chains and the surface mean that the cation is enriched in the surface layer, and is much less mobile than the anion. The presence of a heterogeneous lateral structure at an ionic liquid-solid interface has wide ranging ramifications for ionic liquid applications, including lubrication, capacitive charge storage and electrodeposition.

  14. Crystal structures of protein phosphatase-1 bound to motuporin and dihydromicrocystin-LA: elucidation of the mechanism of enzyme inhibition by cyanobacterial toxins.

    PubMed

    Maynes, Jason T; Luu, Hue A; Cherney, Maia M; Andersen, Raymond J; Williams, David; Holmes, Charles F B; James, Michael N G

    2006-02-10

    The microcystins and nodularins are tumour promoting hepatotoxins that are responsible for global adverse human health effects and wildlife fatalities in countries where drinking water supplies contain cyanobacteria. The toxins function by inhibiting broad specificity Ser/Thr protein phosphatases in the host cells, thereby disrupting signal transduction pathways. A previous crystal structure of a microcystin bound to the catalytic subunit of protein phosphatase-1 (PP-1c) showed distinct changes in the active site region when compared with protein phosphatase-1 structures bound to other toxins. We have elucidated the crystal structures of the cyanotoxins, motuporin (nodularin-V) and dihydromicrocystin-LA bound to human protein phosphatase-1c (gamma isoform). The atomic structures of these complexes reveal the structural basis for inhibition of protein phosphatases by these toxins. Comparisons of the structures of the cyanobacterial toxin:phosphatase complexes explain the biochemical mechanism by which microcystins but not nodularins permanently modify their protein phosphatase targets by covalent addition to an active site cysteine residue.

  15. Structural determination of the K14 capsular polysaccharide from an ST25 Acinetobacter baumannii isolate, D46.

    PubMed

    Kenyon, Johanna J; Hall, Ruth M; De Castro, Cristina

    2015-11-19

    The structure of the capsular polysaccharide (CPS) recovered from D46, an extensively antibiotic resistant ST25 Acinetobacter baumannii clinical isolate, was elucidated. The structure was resolved on the basis of NMR spectroscopy and chemical analyses, and was found to contain a branched neutral pentasaccharide with a backbone composed of GalpNAc and Galp residues, all d configured, and a d-Glcp side group. The KL14 gene cluster found in the D46 genome includes genes for four glycosyltransferases but no modules for synthesis of complex sugars, and this is consistent with the structure of K14. The K14 structure and KL14 sequence clarify the relationship between the structure and K locus sequence for A. nosocomialis isolate LUH5541. The identity of the first sugar of the K14 repeat unit (K unit), and the functions of the four encoded glycosyltransferases and Wzy polymerase were predicted.

  16. Structure elucidation of a pungent compound in black cardamom: Amomum tsao-ko Crevost et Lemarié (Zingiberaceae).

    PubMed

    Starkenmann, Christian; Mayenzet, Fabienne; Brauchli, Robert; Wunsche, Laurent; Vial, Christian

    2007-12-26

    Natural plant extracts containing taste modifier compounds will gain more commercial interest in the future. Black cardamom, Amomum tsao-ko Crevost et Lemarié, used as a spice in Asia, produces a nice refreshing effect in the mouth. Therefore, an ethyl acetate extract was prepared, and constituents were separated by liquid chromatography. Guided by the tasting of each fraction (LC tasting), a new pungent compound was discovered, (+/-)-trans-2,3,3a,7a-tetrahydro-1H-indene-4-carbaldehyde. To confirm this new structure, a synthesis was performed starting from cyclopentene-1-carbaldehyde. The Wittig conditions were determined to control the stereochemistry of the ring fusion to prepare (+/-)-trans-(2,3,3a,7a-tetrahydro-1 H-inden-4-yl) methanol and (+/-)-cis-(2,3,3a,7a-tetrahydro-1H-inden-4-yl) methanol. After oxidation, (+/-)-trans-2,3,3a,7a-tetrahydro-1H-indene-4-carbaldehyde and (+/-)-cis-2,3,3a,7a-tetrahydro-1H-indene-4-carbaldehyde were tasted in water and only the trans-2,3,3a,7a-tetrahydro-1H-indene-4-carbaldehyde, present in black cardamom, produced a trigeminal effect in the mouth.

  17. Elucidation of Structural Elements for Selectivity across Monoamine Transporters: Novel 2-[(Diphenylmethyl)sulfinyl]acetamide (Modafinil) Analogues

    PubMed Central

    2015-01-01

    2-[(Diphenylmethyl)sulfinyl]acetamide (modafinil, (±)-1) is a unique dopamine uptake inhibitor that binds the dopamine transporter (DAT) differently than cocaine and may have potential for the treatment of psychostimulant abuse. To further investigate structural requirements for this divergent binding mode, novel thio- and sulfinylacetamide and ethanamine analogues of (±)-1 were synthesized wherein (1) the diphenyl rings were substituted with methyl, trifluoromethyl, and halogen substituents and (2) substituents were added to the terminal amide/amine nitrogen. Halogen substitution of the diphenyl rings of (±)-1 gave several amide analogues with improved binding affinity for DAT and robust selectivity over the serotonin transporter (SERT), whereas affinity improved at SERT over DAT for the p-halo-substituted amine analogues. Molecular docking studies, using a subset of analogues with DAT and SERT homology models, and functional data obtained with DAT (A480T) and SERT (T497A) mutants defined a role for TM10 in the substrate/inhibitor S1 binding sites of DAT and SERT. PMID:24494745

  18. Genome-Directed Lead Discovery: Biosynthesis, Structure Elucidation, and Biological Evaluation of Two Families of Polyene Macrolactams against Trypanosoma brucei.

    PubMed

    Schulze, Christopher J; Donia, Mohamed S; Siqueira-Neto, Jair L; Ray, Debalina; Raskatov, Jevgenij A; Green, Richard E; McKerrow, James H; Fischbach, Michael A; Linington, Roger G

    2015-10-16

    Marine natural products are an important source of lead compounds against many pathogenic targets. Herein, we report the discovery of lobosamides A-C from a marine actinobacterium, Micromonospora sp., representing three new members of a small but growing family of bacterially produced polyene macrolactams. The lobosamides display growth inhibitory activity against the protozoan parasite Trypanosoma brucei (lobosamide A IC50 = 0.8 μM), the causative agent of human African trypanosomiasis (HAT). The biosynthetic gene cluster of the lobosamides was sequenced and suggests a conserved cluster organization among the 26-membered macrolactams. While determination of the relative and absolute configurations of many members of this family is lacking, the absolute configurations of the lobosamides were deduced using a combination of chemical modification, detailed spectroscopic analysis, and bioinformatics. We implemented a "molecules-to-genes-to-molecules" approach to determine the prevalence of similar clusters in other bacteria, which led to the discovery of two additional macrolactams, mirilactams A and B from Actinosynnema mirum. These additional analogs have allowed us to identify specific structure-activity relationships that contribute to the antitrypanosomal activity of this class. This approach illustrates the power of combining chemical analysis and genomics in the discovery and characterization of natural products as new lead compounds for neglected disease targets.

  19. Impurity profiling of trandolapril under stress testing: Structure elucidation of by-products and development of degradation pathway.

    PubMed

    Dendeni, M; Cimetiere, N; Amrane, A; Hamida, N Ben

    2012-11-15

    Various regulatory authorities like International Conference on Harmonization (ICH), US Food and Drug Administration, Canadian Drug and Health Agency are emphasizing on the purity requirements and the identification of impurities in active pharmaceutical drugs. Qualification of the impurities is the process of acquiring and evaluating data that establishes biological safety of an individual impurity; thus, revealing the need and scope of impurity profiling of drugs in pharmaceutical research. As no stability-indicating method is available for identification of degradation products of trandolapril, a new angiotensin converting enzyme inhibitor (ACEI), under stress testing, the development of an accurate method is needed for quantification and qualification of degradation products. Ultra high performance liquid chromatography (UPLC) coupled to electrospray tandem mass spectrometry was used for the rapid and simultaneous analysis of trandolapril and its degradation products. Chromatographic separation was achieved in less than 4 min, with improved peak resolution and sensitivity. Thanks to this method, the kinetics of trandolapril degradation under various operating conditions and the characterization of the structure of the by-products formed during stress testing have been determined. Thereafter, a mechanism of trandolapril degradation in acid and neutral conditions, including all the identified products, was then proposed.

  20. Screening and structural elucidation of the zwitterionic cocrystal o-picolinic acid with p-nitro aniline

    NASA Astrophysics Data System (ADS)

    Mekala, R.; Jagdish, P.; Mathammal, R.; Sangeetha, K.

    2017-04-01

    The cocrystal was screened by solvent drop grinding method and the crystals were grown by slow evaporation method at ambient conditions. The cocrystal formation of o-picolinic acid with p-nitro aniline was initially analysed by powder X-ray diffraction. Further the structural properties of the grown crystal were confirmed by the single X-ray diffraction which indicates that the cocrystal were connected by the strong N+sbnd H-⋯O hydrogen bond interaction. The cell parameters of the grown crystal were a = 14.2144(5) Å, b = 5.7558(2) Å, c = 16.0539(6) Å. The functional groups were identified using Fourier transform infrared and Raman spectral analysis. The excitation and emission state of the sample was analysed by the UV-Visible and Fluorescence studies. The red emission was observed from the Fluorescence studies. NMR studies revealed the chemical shift of the cocrystal. Thermal stability and its melting behaviour were studied by TGA and DSC analytical techniques. Electrical behaviour was studied using the dielectric studies. The intermolecular charge transfer within the molecule were analysed using HOMO- LUMO plots.

  1. Elucidation of the mechanism and end products of glutaraldehyde crosslinking reaction by X-ray structure analysis.

    PubMed

    Wine, Yariv; Cohen-Hadar, Noa; Freeman, Amihay; Frolow, Felix

    2007-10-15

    Glutaraldehyde has been used for several decades as an effective crosslinking agent for many applications including sample fixation for microscopy, enzyme and cell immobilization, and stabilization of protein crystals. Despite of its common use as a crosslinking agent, the mechanism and chemistry involved in glutaraldehyde crosslinking reaction is not yet fully understood. Here we describe feasibility study and results obtained from a new approach to investigate the process of protein crystals stabilization by glutaraldehyde crosslinking. It involves exposure of a model protein crystal (Lysozyme) to glutaraldehyde in alkaline or acidic pH for different incubation periods and reaction arrest by medium exchange with crystallization medium to remove unbound glutaraldehyde. The crystals were subsequently incubated in diluted buffer affecting dissolution of un-crosslinked crystals. Samples from the resulting solution were subjected to protein composition analysis by gel electrophoresis and mass spectroscopy while crosslinked, dissolution resistant crystals were subjected to high resolution X-ray structural analysis. Data from gel electrophoresis indicated that the crosslinking process starts at specific preferable crosslinking site by lysozyme dimer formation, for both acidic and alkaline pH values. These dimer formations were followed by trimer and tetramer formations leading eventually to dissolution resistant crystals. The crosslinking initiation site and the end products obtained from glutaraldehyde crosslinking in both pH ranges resulted from reactions between lysine residues of neighboring protein molecules and the polymeric form of glutaraldehyde. Reaction rate was much faster at alkaline pH. Different reaction end products, indicating different reaction mechanisms, were identified for crosslinking taking place under alkaline or acidic conditions.

  2. Two dimensional laser induced fluorescence spectroscopy: A powerful technique for elucidating rovibronic structure in electronic transitions of polyatomic molecules

    NASA Astrophysics Data System (ADS)

    Gascooke, Jason R.; Alexander, Ula N.; Lawrance, Warren D.

    2011-05-01

    We demonstrate the power of high resolution, two dimensional laser induced fluorescence (2D-LIF) spectroscopy for observing rovibronic transitions of polyatomic molecules. The technique involves scanning a tunable laser over absorption features in the electronic spectrum while monitoring a segment, in our case 100 cm-1 wide, of the dispersed fluorescence spectrum. 2D-LIF images separate features that overlap in the usual laser induced fluorescence spectrum. The technique is illustrated by application to the S1-S0 transition in fluorobenzene. Images of room temperature samples show that overlap of rotational contours by sequence band structure is minimized with 2D-LIF allowing a much larger range of rotational transitions to be observed and high precision rotational constants to be extracted. A significant advantage of 2D-LIF imaging is that the rotational contours separate into their constituent branches and these can be targeted to determine the three rotational constants individually. The rotational constants determined are an order of magnitude more precise than those extracted from the analysis of the rotational contour and we find the previously determined values to be in error by as much as 5% [G. H. Kirby, Mol. Phys. 19, 289 (1970), 10.1080/00268977000101291]. Comparison with earlier ab initio calculations of the S0 and S1 geometries [I. Pugliesi, N. M. Tonge, and M. C. R. Cockett, J. Chem. Phys. 129, 104303 (2008), 10.1063/1.2970092] reveals that the CCSD/6-311G** and RI-CC2/def2-TZVPP levels of theory predict the rotational constants, and hence geometries, with comparable accuracy. Two ground state Fermi resonances were identified by the distinctive patterns that such resonances produce in the images. 2D-LIF imaging is demonstrated to be a sensitive method capable of detecting weak spectral features, particularly those that are otherwise hidden beneath stronger bands. The sensitivity is demonstrated by observation of the three isotopomers of fluorobenzene

  3. Two dimensional laser induced fluorescence spectroscopy: a powerful technique for elucidating rovibronic structure in electronic transitions of polyatomic molecules.

    PubMed

    Gascooke, Jason R; Alexander, Ula N; Lawrance, Warren D

    2011-05-14

    We demonstrate the power of high resolution, two dimensional laser induced fluorescence (2D-LIF) spectroscopy for observing rovibronic transitions of polyatomic molecules. The technique involves scanning a tunable laser over absorption features in the electronic spectrum while monitoring a segment, in our case 100 cm(-1) wide, of the dispersed fluorescence spectrum. 2D-LIF images separate features that overlap in the usual laser induced fluorescence spectrum. The technique is illustrated by application to the S(1)-S(0) transition in fluorobenzene. Images of room temperature samples show that overlap of rotational contours by sequence band structure is minimized with 2D-LIF allowing a much larger range of rotational transitions to be observed and high precision rotational constants to be extracted. A significant advantage of 2D-LIF imaging is that the rotational contours separate into their constituent branches and these can be targeted to determine the three rotational constants individually. The rotational constants determined are an order of magnitude more precise than those extracted from the analysis of the rotational contour and we find the previously determined values to be in error by as much as 5% [G. H. Kirby, Mol. Phys. 19, 289 (1970)]. Comparison with earlier ab initio calculations of the S(0) and S(1) geometries [I. Pugliesi, N. M. Tonge, and M. C. R. Cockett, J. Chem. Phys. 129, 104303 (2008)] reveals that the CCSD∕6-311G∗∗ and RI-CC2∕def2-TZVPP levels of theory predict the rotational constants, and hence geometries, with comparable accuracy. Two ground state Fermi resonances were identified by the distinctive patterns that such resonances produce in the images. 2D-LIF imaging is demonstrated to be a sensitive method capable of detecting weak spectral features, particularly those that are otherwise hidden beneath stronger bands. The sensitivity is demonstrated by observation of the three isotopomers of fluorobenzene-d(1) in natural abundance in

  4. On the use of X-ray absorption spectroscopy to elucidate the structure of lutetium adenosine mono- and triphosphate complexes.

    PubMed

    Mostapha, S; Berthon, C; Fontaine-Vive, F; Gaysinski, M; Guérin, L; Guillaumont, D; Massi, L; Monfardini, I; Solari, P L; Thomas, O P; Charbonnel, M C; Den Auwer, C

    2014-02-01

    chemical calculations has been implemented in order to assess the lutetium coordination arrangement for the two nucleotides. In all the complexes described in the article, the lutetium cation is coordinated by the phosphate groups of the nucleotide plus additional putative water molecules with various tridimensional arrangements. With AMP 1:2 and ATP 1:1 solid-state compounds, polynuclear complexes are assumed to be obtained. In contrast, with ATP 1:2 soluble compound, the Lu coordination sphere is saturated by two ATP ligands, and this favors the formation of a mononuclear complex. In order to further interpret the EXAFS data obtained at the Lu LIII edge, model structures have been calculated for the 1:1 and 1:2 ATP complexes. They are discussed and compared to the EXAFS best fit metrical parameters.

  5. Seismic Response Analysis and Design of Structure with Base Isolation

    SciTech Connect

    Rosko, Peter

    2010-05-21

    The paper reports the study on seismic response and energy distribution of a multi-story civil structure. The nonlinear analysis used the 2003 Bam earthquake acceleration record as the excitation input to the structural model. The displacement response was analyzed in time domain and in frequency domain. The displacement and its derivatives result energy components. The energy distribution in each story provides useful information for the structural upgrade with help of added devices. The objective is the structural displacement response minimization. The application of the structural seismic response research is presented in base-isolation example.

  6. Active Narrow-Band Vibration Isolation of Large Engineering Structures

    NASA Technical Reports Server (NTRS)

    Rahman, Zahidul; Spanos, John

    1994-01-01

    We present a narrow-band tracking control method using a variant of the Least Mean Squares (LMS) algorithm to isolate slowly changing periodic disturbances from engineering structures. The advantage of the algorithm is that it has a simple architecture and is relatively easy to implement while it can isolate disturbances on the order of 40-50 dB over decades of frequency band. We also present the results of an experiment conducted on a flexible truss structure. The average disturbance rejection achieved is over 40 dB over the frequency band of 5 Hz to 50 Hz.

  7. Isolation and structural characterization of anthocyanin-furfuryl pigments.

    PubMed

    Sousa, André; Mateus, Nuno; Silva, Artur Manuel Soares; Vivas, Nicolas; Nonier, Marie-Françoise; Pianet, Isabelle; de Freitas, Victor

    2010-05-12

    Condensation reactions of malvidin-3-glucoside with two representative oak wood furanic aldehydes (furfural and methylfurfural) were conducted in wine-like model solutions. Methylfurfural led to the formation of malvidin-3-glucoside-methylfurfural (603 m/z), whereas furfural led to the formation of malvidin-3-glucoside-furfural (589 m/z). The latter was structurally characterized by 1D and 2D NMR, allowing an elucidation of the formation mechanism of these anthocyanin-furanic aldehyde adducts in the absence of flavanols.

  8. Elucidating the band structure and free charge carrier dynamics of pure and impurities doped CH3NH3PbI(3-x)Cl(x) perovskite thin films.

    PubMed

    Zhang, Zhen-Yu; Chen, Xin; Wang, Hai-Yu; Xu, Ming; Gao, Bing-Rong; Chen, Qi-Dai; Sun, Hong-Bo

    2015-11-28

    CH3NH3PbI3-xClx perovskite material has been commonly used as the free charge generator and reservoir in highly efficient perovskite-based solid-state solar photovoltaic devices. However, many of the underlying fundamental photophysical mechanisms in this material such as the perovskite transition band structure as well as the dependent relationship between the carrier properties and lattice properties still lack sufficient understanding. Here, we elucidated the fundamental band structure of the pure CH3NH3PbI3-xClx pervoskite lattice, and then reported about the dependent relationship between the free charge carrier characteristic and the different CH3NH3PbI3-xClx pervoskite lattice thin films utilizing femtosecond time-resolved pump-probe technologies. The data demonstrated that the pure perovskite crystal band structure should only have one conduction and one valence band rather than dual valences, and the pure perovskite lattice could trigger more free charge carriers with a slower recombination rate under an identical pump intensity compared with the impurities doped perovskite crystal. We also investigated the perovskite film performance when exposed to moisture and water, the corresponding results gave us a dip in the optimization of the performance of perovskite based devices, and so as a priority this material should be isolated from moisture (water). This work may propose a deeper perspective on the comprehension for this material and it is useful for future optimization of applications in photovoltaic and light emission devices.

  9. Louisianins A, B, C and D: non-steroidal growth inhibitors of testosterone-responsive SC 115 cells. II. Physico-chemical properties and structural elucidation.

    PubMed

    Takamatsu, S; Kim, Y P; Hayashi, M; Furuhata, K; Takayanagi, H; Komiyama, K; Woodruff, H B; Omura, S

    1995-10-01

    New non-steroidal growth inhibitors of testosterone-responsive SC 115 cells, louisianins A (MW: 189; C11H11NO2), B (MW: 191; C11H13NO2), C (MW: 173; C11H11NO) and D (MW: 173; C11H11NO) were isolated from the cultured broth of Streptomyces sp. WK-4028. Their structures were determined on the basis of spectroscopic data. The structure of louisianin A in particular was confirmed by X-ray crystallographic analysis. The four compounds commonly possess a unique pyrindine skeleton in the molecule.

  10. Rhodomyrtials A and B, Two Meroterpenoids with a Triketone-Sesquiterpene-Triketone Skeleton from Rhodomyrtus tomentosa: Structural Elucidation and Biomimetic Synthesis.

    PubMed

    Zhang, Ya-Long; Chen, Chen; Wang, Xiao-Bing; Wu, Lin; Yang, Ming-Hua; Luo, Jun; Zhang, Can; Sun, Hong-Bin; Luo, Jian-Guang; Kong, Ling-Yi

    2016-08-19

    Rhodomyrtials A and B (1 and 2), two unprecedented triketone-sesquiterpene-triketone adducts, along with five biogenetically related intermediates, rhodomentone A (3) and tomentodiones A-D (4-7), were isolated from the leaves of Rhodomyrtus tomentosa. Their structures and absolute configurations were determined by a combination of NMR spectroscopy, chemical conversion, and X-ray diffraction analysis. Compounds 1 and 2 were biomimetically synthesized via 5 and 4, respectively, rather than 3, revealing their key ordering of biosynthetic events and confirming their structural assignments. Compound 7 exhibited potent metastatic inhibitory activity against DLD-1 cells by suppressing the activation of matrix metalloproteinase (MMP)-2 and MMP-9.

  11. ION COMPOSITION ELUCIDATION (ICE)

    EPA Science Inventory



    Ion Composition Elucidation (ICE) utilizes selected ion recording with a double focusing mass spectrometer to simultaneously determine exact masses and relative isotopic abundances from mass peak profiles. These can be determined more accurately and at higher sensitivity ...

  12. Structural insights into dynamics of RecU–HJ complex formation elucidates key role of NTR and stalk region toward formation of reactive state

    PubMed Central

    Khavnekar, Sagar; Dantu, Sarath Chandra; Sedelnikova, Svetlana; Ayora, Sylvia; Rafferty, John; Kale, Avinash

    2017-01-01

    Holliday junction (HJ) resolving enzyme RecU is involved in DNA repair and recombination. We have determined the crystal structure of inactive mutant (D88N) of RecU from Bacillus subtilis in complex with a 12 base palindromic DNA fragment at a resolution of 3.2 Å. This structure shows the stalk region and the essential N-terminal region (NTR) previously unseen in our DNA unbound structure. The flexible nature of the NTR in solution was confirmed using SAXS. Thermofluor studies performed to assess the stability of RecU in complex with the arms of an HJ indicate that it confers stability. Further, we performed molecular dynamics (MD) simulations of wild type and an NTR deletion variant of RecU, with and without HJ. The NTR is observed to be highly flexible in simulations of the unbound RecU, in agreement with SAXS observations. These simulations revealed domain dynamics of RecU and their role in the formation of complex with HJ. The MD simulations also elucidate key roles of the NTR, stalk region, and breathing motion of RecU in the formation of the reactive state. PMID:27903910

  13. Structural insights into dynamics of RecU-HJ complex formation elucidates key role of NTR and stalk region toward formation of reactive state.

    PubMed

    Khavnekar, Sagar; Dantu, Sarath Chandra; Sedelnikova, Svetlana; Ayora, Sylvia; Rafferty, John; Kale, Avinash

    2017-01-25

    Holliday junction (HJ) resolving enzyme RecU is involved in DNA repair and recombination. We have determined the crystal structure of inactive mutant (D88N) of RecU from Bacillus subtilis in complex with a 12 base palindromic DNA fragment at a resolution of 3.2 Å. This structure shows the stalk region and the essential N-terminal region (NTR) previously unseen in our DNA unbound structure. The flexible nature of the NTR in solution was confirmed using SAXS. Thermofluor studies performed to assess the stability of RecU in complex with the arms of an HJ indicate that it confers stability. Further, we performed molecular dynamics (MD) simulations of wild type and an NTR deletion variant of RecU, with and without HJ. The NTR is observed to be highly flexible in simulations of the unbound RecU, in agreement with SAXS observations. These simulations revealed domain dynamics of RecU and their role in the formation of complex with HJ. The MD simulations also elucidate key roles of the NTR, stalk region, and breathing motion of RecU in the formation of the reactive state.

  14. High accuracy NMR chemical shift corrected for bulk magnetization as a tool for structural elucidation of microemulsions. Part 2 - Anionic and nonionic dilutable microemulsions.

    PubMed

    Hoffman, Roy E; Darmon, Eliezer; Aserin, Abraham; Garti, Nissim

    2016-02-01

    In our previous report we suggested a new analytical tool, high accuracy NMR chemical shift corrected for bulk magnetization as a supplementary tool to study structural transitions and droplet size and shape of dilutable microemulsions. The aim of this study was to show the generality of this technique and to demonstrate that in almost any type of microemulsion this technique provides additional valuable structural information. The analysis made by the technique adds to the elucidation of some structural aspects that could not be clearly determined by other classical techniques. Therefore, in this part we are extending the study to three additional systems differing in the type of oil phase (toluene and cyclohexane), the nature of the surfactants (anionic and nonionic), and other microemulsion characteristics. We studied sodium dodecyl sulfate (SDS)-based anionic microemulsions with different oils and a nonionic microemulsion based on Tween 20 as the surfactant and toluene as the oil phase. All the microemulsions were fully dilutable with water. We found that the change in the slope of chemical shift against dilution reflects phase transition points of the microemulsion (O/W, bicontinuous, W/O). Chemical shift changes were clearly observed with the transition between spherical and non-spherical (wormlike, etc.) droplet shapes. We compared the interaction of cyclohexane and toluene and used the anisotropic effect of toluene's ring current to determine its preferred orientation relative to SDS. Chemical shifts of the microemulsion components are therefore a useful addition to the arsenal of techniques for characterizing microemulsions.

  15. Elucidating connectivity and metal-binding structures of unlabeled paramagnetic complexes by 13C and 1H solid-state NMR under fast magic angle spinning.

    PubMed

    Wickramasinghe, Nalinda P; Shaibat, Medhat A; Ishii, Yoshitaka

    2007-08-23

    Characterizing paramagnetic complexes in solids is an essential step toward understanding their molecular functions. However, methodologies to characterize chemical and electronic structures of paramagnetic systems at the molecular level have been notably limited, particularly for noncrystalline solids. We present an approach to obtain connectivities of chemical groups and metal-binding structures for unlabeled paramagnetic complexes by 13C and 1H high-resolution solid-state NMR (SSNMR) using very fast magic angle spinning (VFMAS, spinning speed >or=20 kHz). It is experimentally shown for unlabeled Cu(II)(Ala-Thr) that 2D 13C/1H correlation SSNMR under VFMAS provides the connectivity of chemical groups and assignments for the characterization of unlabeled paramagnetic systems in solids. We demonstrate that on the basis of the assignments provided by the VFMAS approach multiple 13C-metal distances can be simultaneously elucidated by a combination of measurements of 13C anisotropic hyperfine shifts and 13C T1 relaxation due to hyperfine interactions for this peptide-Cu(II) complex. It is also shown that an analysis of 1H anisotropic hyperfine shifts allows for the determination of electron-spin states in Fe(III)-chloroprotoporphyin-IX in solid states.

  16. Structured residual technique for malfunction isolation in interacting systems

    SciTech Connect

    Hardy, C.R.; Miller, D.W.; Hajek, B.K. )

    1992-01-01

    Researchers in the field of fault detection and isolation have presented schemes for diagnosing faults in systems in the presence of unknown input disturbances. These techniques, known collectively as input disturbance decoupling, can be used to isolate a particular system from other systems in a complex process plant. The ability to isolate the operation of a system from systems with which it interacts is desirable when diagnosing faults in complex plants. The diagnosis problem can then be broken down into a set of relatively simple diagnostic tasks and the results evaluated using a knowledge-based approach. One such approach, known as hierarchical classification, has been used for malfunction diagnosis in both nuclear power and chemical plants. Systems that strongly interact are common in nuclear power plants. For example, in the simplified boiling water reactor (BWR) pressure control system (PCS) model of Fig. 1, steam flow from the main steam lines collects in the steam header. The header acts as a source of steam to several plant systems besides the high-pressure turbine. Thus, a change in any one of these auxiliary systems will affect the operation of the PCS. These unmeasured influences complicate the problem of isolating the PCS from the remainder of the plant. The authors have used structured residuals as a disturbance decoupling technique to isolate interacting systems in a BWR model. In this paper, we provide a brief summary of the method and show an example of its application.

  17. Comparison of chitin structures isolated from seven Orthoptera species.

    PubMed

    Kaya, Murat; Erdogan, Sevil; Mol, Abbas; Baran, Talat

    2015-01-01

    Differences in the physichochemical properties of the chitin structure of the exoskeleton of seven species from four genera were investigated in this study. The same method was used to isolate the chitin structure of the seven species. The physicochemical properties of the isolated chitins were revealed by ESEM, FTIR, TGA and XRD analyses. The FTIR, TGA and XRD results from the chitin samples were similar. The surface morphologies of the chitins were investigated by ESEM and interesting results were noted. While the surface morphologies of the chitins isolated from two species within the same genus were quite different, the surface morphologies of chitins isolated from species belonging to different genera showed similarity. It was determined that the dry weight chitin contents of the grasshopper species varied between 5.3% and 8.9%. The results of molecular analysis showed that the chitins from seven Orthoptera species (between 5.2 and 6.8 kDa) have low molecular weights. Considering that these invasive and harmful species are killed with insecticides and go to waste in large amounts, this study suggests that they should be collected and evaluated as an alternative chitin source.

  18. Secondary-structure prediction revisited: Theoretical β-sheet propensity and coil propensity represent structures of amyloids and aid in elucidating phenomena involved in interspecies transmission of prions

    PubMed Central

    Nishida, Noriyuki

    2017-01-01

    Prions are unique infectious agents, consisting solely of abnormally-folded prion protein (PrPSc). However, they possess virus-like features, including strain diversity, the ability to adapt to new hosts and to be altered evolutionarily. Because prions lack genetic material (DNA and RNA), these biological phenomena have been attributed to the structural properties of PrPSc. Therefore, many structural models of the structure of PrPSc have been proposed based on the limited structural information available, regardless of the incompatibility with high-resolution structural analysis. Recently hypothesized models consist solely of β-sheets and intervening loops/kinks; i.e. parallel in-register β-sheet and β-solenoid models. Owing to the relative simplicity of these structural models of PrPSc, we hypothesized that numerical conversion of the primary structures with a relevant algorithm would enable quantitative comparison between PrPs of distinct primary structures. We therefore used the theoretical values of β-sheet (Pβ) and random-coil (Pc) propensity calculated by secondary structure prediction with a neural network, to analyze interspecies transmission of prions. By reviewing experiments in the literature, we ascertained the biological relevance of Pβ and Pc and found that these classical parameters surprisingly carry substantial information of amyloid structures. We also demonstrated how these parameters could aid in interpreting and explaining phenomena in interspecies transmissions. Our approach can lead to the development of a versatile tool for investigating not only prions but also other amyloids. PMID:28199368

  19. Structural elucidation of the Bi(2(n + 2))Mo(n)O(6(n + 1)) (n = 3, 4, 5 and 6) family of fluorite superstructures by transmission electron microscopy.

    PubMed

    Landa-Cánovas, Angel R; Vila, Eladio; Hernández-Velasco, Jorge; Galy, Jean; Castro, Alicia

    2009-08-01

    The cationic framework structure of a whole new family of compounds with the general formula Bi(2(n + 2))Mo(n)O(6(n + 1)) (n = 3, 4, 5 and 6) has been elucidated by transmission electron microscopy (TEM) methods. High-resolution transmission electron microscopy (HRTEM) has been used to postulate heavy-atom models based on the known structure of the n = 3 phase, Bi(10)Mo(3)O(24). These models were tested by HRTEM image simulation, electron diffraction and powder X-ray diffraction simulation methods which agreed with the experimental results. The four known phases of this family correspond to n = 3, 4, 5 and 6 members and all show fluorite superstructures. They consist of a common delta-Bi(2)O(3) fluorite-type framework, inside of which are distributed ribbons of {MoO(4)} tetrahedra which are infinite along b, one tetrahedron thick along c, and of variable widths of 3, 4, 5 or 6 {MoO(4)} tetrahedra along a depending on the family member (n value). These {MoO(4)} tetrahedra are isolated, i.e. without sharing any corner as in the [Bi(12)O(14)] columnar structural-type phase Bi[Bi(12)O(14)][MoO(4)](4)[VO(4)]. The structure of all these family members can be described as crystallographic shear derivatives from Aurivillius-type phases such as Bi(2)MoO(6), the n = infinity end member. All these compounds are good oxygen-ion conductors.

  20. Structural elucidation of Eucalyptus lignin and its dynamic changes in the cell walls during an integrated process of ionic liquids and successive alkali treatments.

    PubMed

    Li, Han-Yin; Wang, Chen-Zhou; Chen, Xue; Cao, Xue-Fei; Sun, Shao-Ni; Sun, Run-Cang

    2016-12-01

    An integrated process based on ionic liquids ([Bmim]Cl and [Bmim]OAc) pretreatment and successive alkali post-treatments (0.5, 2.0, and 4.0% NaOH at 90°C for 2h) was performed to isolate lignins from Eucalyptus. The structural features and spatial distribution of lignin in the Eucalyptus cell wall were investigated thoroughly. Results revealed that the ionic liquids pretreatment promoted the isolation of alkaline lignin from the pretreated samples without obvious structural changes. Additionally, the integrated process resulted in syringyl-rich lignin macromolecules with more β-O-4' linkages and less phenolic hydroxyl groups. Confocal Raman microscopy analysis showed that the dissolution behavior of lignin was varied in the morphologically distinct regions during the successive alkali treatments, and lignin dissolved was mainly stemmed from the secondary wall regions. These results provided some useful information for understanding the mechanisms of delignification during the integrated process and enhancing the potential utilizations of lignin in future biorefineries.

  1. On the structural organization of isolated bovine lens fiber junctions.

    PubMed

    Zampighi, G; Simon, S A; Robertson, J D; McIntosh, T J; Costello, M J

    1982-04-01

    Junctions between fiber cells of bovine lenses have been isolated in milligram quantities, without using detergents or proteases. The structure of the isolated junctions has been studied by thin-section, negative-stain, and freeze-fracture electron microscopy and by x-ray diffraction. The junctions are large and most often have an undulating surface topology as determined by thin sectioning and freeze-fracture. These undulations resemble the tongue-and-groove interdigitations between lens fiber cells previously seen by others (D. H. Dickson and G. W. Crock, 1972, Invest. Ophthalmol. 11:809-815). In sections, the isolated junctions display a pentalamellar structure approximately 13-14 nm in overall thickness, which is significantly thinner than liver gap junctions. Each junctional membrane contains in the plane of the lipid bilayers distinct units arranged in a square lattice with a center-to-center spacing of 6.6 nm. Freeze-fracture replicas of the junctions fractured transversely show that the repeating units extend across the entire thickness of each membrane. Each unit is probably constructed from four identical subunits, with each subunit containing a protein of an apparent molecular weight of 27,000. We conclude that the lens junctions are structurally and chemically, different from gap junctions and could represent a new kind of intercellular contact, not simply another crystalline state of the gap junction protein.

  2. Structural Elucidation and Toxicity Assessment of Degraded Products of Aflatoxin B1 and B2 by Aqueous Extracts of Trachyspermum ammi.

    PubMed

    Iram, Wajiha; Anjum, Tehmina; Iqbal, Mazhar; Ghaffar, Abdul; Abbas, Mateen

    2016-01-01

    In this study aqueous extract of seeds and leaves of Trachyspermum ammi were evaluated for their ability to detoxify aflatoxin B1 and B2 (AFB1; 100 μg L(-1) and AFB2; 50 μg L(-1)) by in vitro and in vivo assays. Results indicated that T. ammi seeds extract was found to be significant (P < 0.05) in degrading AFB1 and AFB2 i.e., 92.8 and 91.9% respectively. However, T. ammi leaves extract proved to be less efficient in degrading these aflatoxins, under optimized conditions i.e., pH 8, temperature 30°C and incubation period of 72 h. The structural elucidation of degraded toxin products by LCMS/MS analysis showed that eight degraded products of AFB1 and AFB2 were formed. MS/MS spectra showed that most of the products were formed by the removal of double bond in the terminal furan ring and modification of lactone group indicating less toxicity as compared to parent compounds. Brine shrimps bioassay further confirmed the low toxicity of degraded products, showing that T. ammi seeds extract can be used as an effective tool for the detoxification of aflatoxins.

  3. Structural elucidation and magnetic behavior evaluation of rare earth (La, Nd, Gd, Tb, Dy) doped BaCoNi-X hexagonal nano-sized ferrites

    NASA Astrophysics Data System (ADS)

    Majeed, Abdul; Khan, Muhammad Azhar; Raheem, Faseeh ur; Hussain, Altaf; Iqbal, F.; Murtaza, Ghulam; Akhtar, Majid Niaz; Shakir, Imran; Warsi, Muhammad Farooq

    2016-06-01

    Rare-earth (RE=La3+, Nd3+, Gd3+, Tb3+, Dy3+) doped Ba2NiCoRExFe28-xO46 (x=0.25) hexagonal ferrites were synthesized for the first time via micro-emulsion route, which is a fast chemistry route for obtaining nano-sized ferrite powders. These nanomaterials were investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), as well as vibrating sample magnetometer (VSM). The XRD analysis exhibited that all the samples crystallized into single X-type hexagonal phase. The crystalline size calculated by Scherrer's formula was found in the range 7-19 nm. The variations in lattice parameters elucidated the incorporation of rare-earth cations in these nanomaterials. FTIR absorption spectra of these X-type ferrites were investigated in the wave number range 500-2400 cm-1. Each spectrum exhibited absorption bands in the low wave number range, thereby confirming the X-type hexagonal structure. The enhancement in the coercivity was observed with the doping of rare-earth cations. The saturation magnetization was lowered owing to the redistribution of rare-earth cations on the octahedral site (3bVI). The higher values of coercivity (664-926 Oe) of these nanomaterials suggest their use in longitudinal recording media.

  4. Niphatenones, glycerol ethers from the sponge Niphates digitalis block androgen receptor transcriptional activity in prostate cancer cells: structure elucidation, synthesis, and biological activity.

    PubMed

    Meimetis, Labros G; Williams, David E; Mawji, Nasrin R; Banuelos, Carmen A; Lal, Aaron A; Park, Jacob J; Tien, Amy H; Fernandez, Javier Garcia; de Voogd, Nicole J; Sadar, Marianne D; Andersen, Raymond J

    2012-01-12

    Extracts of the marine sponge Niphates digitalis collected in Dominica showed strong activity in a cell-based assay designed to detect antagonists of the androgen receptor (AR) that could act as lead compounds for the development of a new class of drugs to treat castration recurrent prostate cancer (CRPC). Assay-guided fractionation showed that niphatenones A (3) and B (4), two new glycerol ether lipids, were the active components of the extracts. The structures of 3 and 4 were elucidated by analysis of NMR and MS data and confimed via total synthesis. Biological evaluation of synthetic analogues of the niphatenones has shown that the enantiomers 7 and 8 are more potent than the natural products in the screening assay and defined preliminary SAR for the new AR antagonist pharmacophore, including the finding that the Michael acceptor enone functionality is not required for activity. Niphatenone B (4) and its enantiomer 8 blocked androgen-induced proliferation of LNCaP prostate cancer cells but had no effect on the proliferation of PC3 prostate cancer cells that do not express functional AR, consistent with activity as AR antagonists. Use of the propargyl ether 44 and Click chemistry showed that niphatenone B binds covalently to the activation function-1 (AF1) region of the AR N-terminus domain (NTD).

  5. Structural Elucidation and Toxicity Assessment of Degraded Products of Aflatoxin B1 and B2 by Aqueous Extracts of Trachyspermum ammi

    PubMed Central

    Iram, Wajiha; Anjum, Tehmina; Iqbal, Mazhar; Ghaffar, Abdul; Abbas, Mateen

    2016-01-01

    In this study aqueous extract of seeds and leaves of Trachyspermum ammi were evaluated for their ability to detoxify aflatoxin B1 and B2 (AFB1; 100 μg L−1 and AFB2; 50 μg L−1) by in vitro and in vivo assays. Results indicated that T. ammi seeds extract was found to be significant (P < 0.05) in degrading AFB1 and AFB2 i.e., 92.8 and 91.9% respectively. However, T. ammi leaves extract proved to be less efficient in degrading these aflatoxins, under optimized conditions i.e., pH 8, temperature 30°C and incubation period of 72 h. The structural elucidation of degraded toxin products by LCMS/MS analysis showed that eight degraded products of AFB1 and AFB2 were formed. MS/MS spectra showed that most of the products were formed by the removal of double bond in the terminal furan ring and modification of lactone group indicating less toxicity as compared to parent compounds. Brine shrimps bioassay further confirmed the low toxicity of degraded products, showing that T. ammi seeds extract can be used as an effective tool for the detoxification of aflatoxins. PMID:27064492

  6. Stability-indicating liquid chromatographic method for determination of saxagliptin and structure elucidation of the major degradation products using LC-MS.

    PubMed

    Abdel-Ghany, Maha F; Abdel-Aziz, Omar; Ayad, Miriam F; Tadros, Mariam M

    2015-04-01

    A new, simple, selective, reproducible and sensitive stability-indicating liquid chromatographic method was developed and subsequently validated for the determination of saxagliptin (SXG). SXG was subjected to oxidation, thermal, acid hydrolysis, alkali hydrolysis and photodegradation according to ICH guidelines. The major degradation products were separated from the pure drug and the proposed structures' elucidation was performed, using an LC-MS technique. Isocratic chromatographic elution was achieved on a Symmetry(®) C18 column (150 × 4.6 mm, 5 µm), using a mobile phase of potassium dihydrogen phosphate buffer (pH 4.6)-acetonitrile-methanol (40 : 30 : 30, v/v/v) at a flow rate of 1 mL min(-1) with UV detection at 208 nm. Linearity, accuracy and precision were found to be acceptable over the concentration range of 25-400 µg mL(-1). All the results were statistically compared with the reference method, using one-way analysis of variance. The developed method was validated and proved to be specific and accurate for quality control of SXG in pharmaceutical dosage form.

  7. Structural analysis of proanthocyanidins isolated from fruit stone of Chinese hawthorn with potent antityrosinase and antioxidant activity.

    PubMed

    Chai, Wei-Ming; Chen, Chih-Min; Gao, Yu-Sen; Feng, Hui-Ling; Ding, Yu-Mei; Shi, Yan; Zhou, Han-Tao; Chen, Qing-Xi

    2014-01-08

    Proanthocyanidins were isolated from fruit stone of Chinese hawthorn (Crataegus pinnatifida Bge. var. major N.E.Br.). Their structures were analyzed and elucidated by methods of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and high performance liquid chromatography electrospray ionization mass spectrometry (HPLC-ESI-MS). The results demonstrated that these compounds are complicated mixtures of homo- and heteropolymers consisting of procyanidin/procyanidin gallate and prodelphinidin. They possessed structural heterogeneity in monomer units, polymer length, and interflavan linkage (A-type and B-type). Their antityrosinase and antioxidant activity were then investigated. The results revealed that they can inhibit tyrosinase activities, including the monophenolase activity and the diphenolase activity. In addition, proanthocyanidins possessed potent antioxidant activity. Our studies revealed that proanthocyanidins isolated from fruit stone of Chinese hawthorn may be applied in food, agriculture, pharmaceutical, and cosmetic industries.

  8. Vibration isolation by exploring bio-inspired structural nonlinearity.

    PubMed

    Wu, Zhijing; Jing, Xingjian; Bian, Jing; Li, Fengming; Allen, Robert

    2015-10-08

    Inspired by the limb structures of animals/insects in motion vibration control, a bio-inspired limb-like structure (LLS) is systematically studied for understanding and exploring its advantageous nonlinear function in passive vibration isolation. The bio-inspired system consists of asymmetric articulations (of different rod lengths) with inside vertical and horizontal springs (as animal muscle) of different linear stiffness. Mathematical modeling and analysis of the proposed LLS reveal that, (a) the system has very beneficial nonlinear stiffness which can provide flexible quasi-zero, zero and/or negative stiffness, and these nonlinear stiffness properties are adjustable or designable with structure parameters; (b) the asymmetric rod-length ratio and spring-stiffness ratio present very beneficial factors for tuning system equivalent stiffness; (c) the system loading capacity is also adjustable with the structure parameters which presents another flexible benefit in application. Experiments and comparisons with existing quasi-zero-stiffness isolators validate the advantageous features above, and some discussions are also given about how to select structural parameters for practical applications. The results would provide an innovative bio-inspired solution to passive vibration control in various engineering practice.

  9. Dke1--structure, dynamics, and function: a theoretical and experimental study elucidating the role of the binding site shape and the hydrogen-bonding network in catalysis.

    PubMed

    Brkić, Hrvoje; Buongiorno, Daniela; Ramek, Michael; Straganz, Grit; Tomić, Sanja

    2012-06-01

    This study elucidates the role of the protein structure in the catalysis of β-diketone cleavage at the three-histidine metal center of diketone cleaving enzyme (Dke1) by computational methods in correlation with kinetic and mutational analyses. Molecular dynamics simulations, using quantum mechanically deduced parameters for the nonheme Fe(II) cofactor, were performed and showed a distinct organization of the hydrophilic triad in the free and substrate-ligated wild-type enzyme. It is shown that in the free species, the Fe(II) center is coordinated to three histidines and one glutamate, whereas the substrate-ligated, catalytically competent enzyme-substrate complex has an Fe(II) center with three-histidine coordination, with a small fraction of three-histidine, one-glutamate coordination. The substrate binding modes and channels for the traffic of water and ligands (2,4-pentandionyl anion, methylglyoxal, and acetate) were identified. To characterize the impact of the hydrophobic protein environment around the metal center on catalysis, a set of hydrophobic residues close to the active site were targeted. The variations resulted in an up to tenfold decrease of the O(2) reduction rates for the mutants. Molecular dynamics studies revealed an impact of the hydrophobic residues on the substrate stabilization in the active site as well as on the orientations of Glu98 and Arg80, which have previously been shown to be crucial for catalysis. Consequently, the Glu98-His104 interaction in the variants is weaker than in the wild-type complex. The role of protein structure in stabilizing the primary O(2) reduction step in Dke1 is discussed on the basis of our results.

  10. Crystal structure of a DNA aptamer bound to PvLDH elucidates novel single-stranded DNA structural elements for folding and recognition

    PubMed Central

    Choi, Sung-Jin; Ban, Changill

    2016-01-01

    Structural elements are key elements for understanding single-stranded nucleic acid folding. Although various RNA structural elements have been documented, structural elements of single-stranded DNA (ssDNA) have rarely been reported. Herein, we determined a crystal structure of PvLDH in complex with a DNA aptamer called pL1. This aptamer folds into a hairpin-bulge contact by adopting three novel structural elements, viz, DNA T-loop-like motif, base–phosphate zipper, and DNA G·G metal ion zipper. Moreover, the pL1:PvLDH complex shows unique properties compared with other protein:nucleic acid complexes. Generally, extensive intermolecular hydrogen bonds occur between unpaired nucleotides and proteins for specific recognitions. Although most protein-interacting nucleotides of pL1 are unpaired nucleotides, pL1 recognizes PvLDH by predominant shape complementarity with many bridging water molecules owing to the combination of three novel structural elements making protein-binding unpaired nucleotides stable. Moreover, the additional set of Plasmodium LDH residues which were shown to form extensive hydrogen bonds with unpaired nucleotides of 2008s does not participate in the recognition of pL1. Superimposition of the pL1:PvLDH complex with hLDH reveals steric clashes between pL1 and hLDH in contrast with no steric clashes between 2008s and hLDH. Therefore, specific protein recognition mode of pL1 is totally different from that of 2008s. PMID:27725738

  11. Harnessing the Unique Structural Properties of Isolated α-Helices*

    PubMed Central

    Swanson, Carter J.; Sivaramakrishnan, Sivaraj

    2014-01-01

    The α-helix is a ubiquitous secondary structural element that is almost exclusively observed in proteins when stabilized by tertiary or quaternary interactions. However, beginning with the unexpected observations of α-helix formation in the isolated C-peptide in ribonuclease A, there is growing evidence that a significant percentage (0.2%) of all proteins contain isolated stable single α-helical domains (SAH). These SAH domains provide unique structural features essential for normal protein function. A subset of SAH domains contain a characteristic ER/K motif, composed of a repeating sequence of ∼4 consecutive glutamic acids followed by ∼4 consecutive basic arginine or lysine (R/K) residues. The ER/K α-helix, also termed the ER/K linker, has been extensively characterized in the context of the myosin family of molecular motors and is emerging as a versatile structural element for protein and cellular engineering applications. Here, we review the structure and function of SAH domains, as well as the tools to identify them in natural proteins. We conclude with a discussion of recent studies that have successfully used the modular ER/K linker for engineering chimeric myosin proteins with altered mechanical properties, as well as synthetic polypeptides that can be used to monitor and systematically modulate protein interactions within cells. PMID:25059657

  12. Lanthanide complexes of macrocyclic polyoxovanadates by VO4 units: synthesis, characterization, and structure elucidation by X-ray crystallography and EXAFS spectroscopy.

    PubMed

    Nishio, Masaki; Inami, Shinnosuke; Katayama, Misaki; Ozutsumi, Kazuhiko; Hayashi, Yoshihito

    2012-01-16

    Reactions of a tetravanadate anion, [V(4)O(12)](4-), with a series of lanthanide(III) salts yield three types of lanthanide complexes of macrocyclic polyoxovanadates: (Et(4)N)(6)[Ln(III)V(9)O(27)] [Ln = Nd (1), Sm (2), Eu (3), Gd (4), Tb (5), Dy (6)], (Et(4)N)(5)[(H(2)O)Ho(III)(V(4)O(12))(2)] (7), and (Et(4)N)(7)[Ln(III)V(10)O(30)] [Ln = Er (8), Tm (9), Yb (10), Lu (11)]. Lanthanide complexes 1-11 are isolated and characterized by IR, elemental analysis, single-crystal X-ray diffraction, and extended X-ray absorption fine structure spectroscopy (EXAFS). Lanthanide complexes 1-6 are composed of a square-antiprism eight-coordinated Ln(III) center with a macrocyclic polyoxovanadate that is constructed from nine VO(4) tetrahedra through vertex sharing. The structure of 7 is composed of a seven-coordinated Ho(III) center, which exhibits a capped trigonal-prism coordination environment by the sandwiching of two cyclic tetravanadates with a capping H(2)O ligand. Lanthanide complexes 8-11 have a six-coordinated Ln(III) center with a 10-membered vanadate ligand. The structural trend to adopt a larger coordination number for a larger lanthanide ion among the three types of structures is accompanied by a change in the vanadate ring sizes. These lanthanide complexes are examined by EXAFS spectroscopies on lanthanide L(III) absorption edges, and the EXAFS oscillations of each of the samples in the solid state and in acetonitrile are identical. The Ln-O and Ln···V bond lengths obtained from fits of the EXAFS data are consistent with the data from the single-crystal X-ray studies, reflecting retention of the structures in acetonitrile.

  13. Anti-proliferative activities of terpenoids isolated from Alisma orientalis and their structure-activity relationships.

    PubMed

    Xu, Wen; Li, Ting; Qiu, Jian-Fang; Wu, Shui-Sheng; Huang, Ming-Qing; Lin, Li-Gen; Zhang, Qing-Wen; Chen, Xiu-Ping; Lu, Jin-Jian

    2015-01-01

    This study aimed to isolate terpenoids from Alisma orientalis (Sam.) Juzep. and elucidate their antiproliferative activities, as well as structure-activity relationships. Fourteen protostane-type triterpenoids were isolated from the rhizome of A. orientalis. Among these triterpenoids, alisol A (1), alisol A 24-acetate (2), alisol B (3), alisol B 23-acetate (4), and alisol G (8) presented inhibitory effects on cancer cell lines tested. Compounds 3 and 4 showed the highest potential; IC50 values for HepG2, MDA-MB-231, and MCF-7 cells were 16.28, 14.47, and 6.66 μM for 3 and 18.01, 15.97, and 13.56 μM for 4, respectively. Based on these results, we concluded that the degree of C-16 oxidation and the double bond between C-13 and C-17 may be significant in anti-proliferative activities. Further study showed that 3 and 4 effectively induced apoptosis, as confirmed by flow cytometry. Increased intracellular calcium concentration and endoplasmic reticulum stress were detected after treatment with 4 in HepG2 cells. Although compounds 1 and 2 induced minimal apoptosis, they evidently delayed the G2/M phase in HepG2 cells. Further study showed that 1-4 also enhanced LC3II expression, indicating autophagy is occured.

  14. Drug effects on functional structures in isolated perfused pig heart

    NASA Astrophysics Data System (ADS)

    Trinks, Tobias; Rauh, Robert; Hiller, Michael; Kessler, Manfred D.

    2002-06-01

    Until today monitoring of immediate drug tissue interaction in living organs is an unsolved problem. However, for the development of new drugs and the improvement of medical therapy outcome it would be helpful to get new tools to visualize drug effects on tissue directly. With the EMPHO II SSK and a 3D-scanning device we detected changes of functional structures in an isolated perfused pig heart model after adding commonly used drugs like verapamil, nitroglycerin and salviae miltiorrhizae (Chinese herbal drug). In the paper the results are presented.

  15. Structural Elucidation of Diglycosyl Diacylglycerol and Monoglycosyl Diacylglycerol from Streptococcus pneumoniae by Multiple-Stage Linear Ion-Trap Mass Spectrometry with Electrospray Ionization

    PubMed Central

    Tatituri, Raju Venkata Veera; Brenner, Michael B.; Turk, John; Hsu, Fong-Fu

    2013-01-01

    The cell wall of the pathogenic bacterium Streptococcus pneumoniae (S. pneumoniae) contains glucopyranosyl diacylglycerol (GlcDAG) and galactoglucopyranosyldiacylglycerol (GalGlcDAG). The specific GlcDAG consisting of vaccenic acid substituent at sn-2 was recently identified as another glycolipid antigen family recognized by invariant natural killer T cells (iNKT cells). Here, we describe a linear ion-trap (LIT) multiple-stage (MSn) mass spectrometric approach towards structural analysis of GalGlcDAG and GlcDAG. Structural information derived from MSn (n = 2,3) on the [M + Li]+ adduct ions desorbed by electrospray ionization (ESI) affords identification of the fatty acid substituents, assignment of the fatty acyl groups on the glycerol backbone, as well as the location of double bond along the fatty acyl chain. The identification of the fatty acyl groups and determination of their regio-specificity were confirmed by MSn (n = 2,3) on the [M + NH4]+ ions. We establish the structures of GalGlcDAG and GlcDAG isolated from S. pneumoniae, in which the major species consists of a 16:1- or 18:1-fatty acid substituent mainly at sn-2, and the double bond of the fatty acid is located at ω-7 (n-7). More than one isomers were found for each mass in the family. This mass spectrometric approach provides a simple method to achieve structure identification of this important lipid family that would be very difficult to define using the traditional method. PMID:22282097

  16. Ready biodegradability of trifluoromethylated phenothiazine drugs, structural elucidation of their aquatic transformation products, and identification of environmental risks studied by LC-MS( n ) and QSAR.

    PubMed

    Trautwein, Christoph; Kümmerer, Klaus

    2012-09-01

    chromatographic column and solvent gradient along with multiple stage mass spectrometric fragmentation experiments uncovered the presence of, in total, nine photolytic transformation products and allowed for their structural elucidation. Typical modifications of the molecules were sulfoxidation, exocyclic N-oxidation, and transformation of the trifluoromethyl to a carboxylic moiety. The obtained results of the QSAR calculations show that all transformation products are highly mobile in the aquatic environment and elimination through biotic or abiotic pathways cannot be expected. Transformation products of trifluoromethylated phenothiazine drugs have to be expected in the aquatic environment, yet nothing is known about their toxicological properties. Therefore, further risk assessment upon these drugs and their fate is strongly recommended.

  17. Adiposity Has No Direct Effect on Carotid Intima-Media Thickness in Adolescents and Young Adults: Use of Structural Equation Modeling to Elucidate Indirect & Direct Pathways

    PubMed Central

    Gao, Zhiqian; Khoury, Philip R.; McCoy, Connie E.; Shah, Amy S.; Kimball, Thomas R.; Dolan, Lawrence M.; Urbina, Elaine M.

    2016-01-01

    Background Carotid intima-media thickness (cIMT) is associated with CV events in adults. Thicker cIMT is found in youth with CV risk factors including obesity. Which risk factors have the most effect upon cIMT in youth and whether obesity has direct or indirect effects is not known. We used structural equation modeling to elucidate direct and indirect pathways through which obesity and other risk factors were associated with cIMT. Methods We collected demographics, anthropometrics and laboratory data on 784 subjects age 10–24 years (mean 18.0 ± 3.3 years). Common, bulb and internal carotid cIMT were measured by ultrasound. Multivariable regression analysis was performed to assess independent determinants of cIMT. Analyses were repeated with structural equation modeling to determine direct and indirect effects. Results Multivariable regression models explained 11%–22% of variation of cIMT. Age, sex and systolic blood pressure (BP) z-score were significant determinants of all cIMT segments. Body mass index (BMI) z-score, race, presence of type 2 diabetes mellitus (T2DM), hemoglobin A1c (HbA1c) and non-HDL were significant for some segments (all p=0.05). The largest direct effect on cIMT was age (0.312) followed by BP (0.228), Blood glucose control (0.108) and non-HDL (0.134). BMI only had a significant indirect effect through blood glucose control, BP & non-HDL. High sensitivity C-reactive protein (CRP) had a small indirect effect through blood glucose control (all p=0.05). Conclusions Age and BP are the major factors with direct effect on cIMT. Glucose and non-HDL were also important in this cohort with a high prevalence of T2DM. BMI only has indirect effects, through other risk factors. Traditional CV risk factors have important direct effects on cIMT in the young, but adiposity exerts its influence only through other CV risk factors. PMID:26752690

  18. Microbial Communities in Sediments of Lagos Lagoon, Nigeria: Elucidation of Community Structure and Potential Impacts of Contamination by Municipal and Industrial Wastes

    PubMed Central

    Obi, Chioma C.; Adebusoye, Sunday A.; Ugoji, Esther O.; Ilori, Mathew O.; Amund, Olukayode O.; Hickey, William J.

    2016-01-01

    Estuarine sediments are significant repositories of anthropogenic contaminants, and thus knowledge of the impacts of pollution upon microbial communities in these environments is important to understand potential effects on estuaries as a whole. The Lagos lagoon (Nigeria) is one of Africa’s largest estuarine ecosystems, and is impacted by hydrocarbon pollutants and other industrial and municipal wastes. The goal of this study was to elucidate microbial community structure in Lagos lagoon sediments to identify groups that may be adversely affected by pollution, and those that may serve as degraders of environmental contaminants, especially polycyclic aromatic hydrocarbons (PAHs). Sediment samples were collected from sites that ranged in types and levels of anthropogenic impacts. The sediments were characterized for a range of physicochemical properties, and microbial community structure was determined by Illumina sequencing of the 16S rRNA genes. Microbial diversity (species richness and evenness) in the Apapa and Eledu sediments was reduced compared to that of the Ofin site, and communities of both of the former two were dominated by a single operational taxonomic unit (OTU) assigned to the family Helicobacteraceae (Epsilonproteobacteria). In the Ofin community, Epsilonproteobacteria were minor constituents, while the major groups were Cyanobacteria, Bacteroidetes, and Firmicutes, which were all minor in the Apapa and Eledu sediments. Sediment oxygen demand (SOD), a broad indicator of contamination, was identified by multivariate analyses as strongly correlated with variation in alpha diversity. Environmental variables that explained beta diversity patterns included SOD, as well as levels of naphthalene, acenaphthylene, cobalt, cadmium, total organic matter, or nitrate. Of 582 OTU identified, abundance of 167 was significantly correlated (false discovery rate q≤ 0.05) to environmental variables. The largest group of OTU correlated with PAH levels were PAH

  19. Synthesis, structural elucidation, and catalytic properties in olefin epoxidation of the polymeric hybrid material [Mo3O9(2-[3(5)-pyrazolyl]pyridine)]n.

    PubMed

    Amarante, Tatiana R; Neves, Patrícia; Gomes, Ana C; Nolasco, Mariela M; Ribeiro-Claro, Paulo; Coelho, Ana C; Valente, Anabela A; Paz, Filipe A Almeida; Smeets, Stef; McCusker, Lynne B; Pillinger, Martyn; Gonçalves, Isabel S

    2014-03-03

    The reaction of [MoO2Cl2(pzpy)] (1) (pzpy = 2-[3(5)-pyrazolyl]pyridine) with water in an open reflux system (16 h), in a microwave synthesis system (120 °C, 2 h), or in a Teflon-lined stainless steel digestion bomb (100 °C, 19 h) gave the molybdenum oxide/pyrazolylpyridine polymeric hybrid material [Mo3O9(pzpy)]n (2) as a microcrystalline powder in yields of 72–79%. Compound 2 can also be obtained by the hydrothermal reaction of MoO3, pzpy, and H2O at 160 °C for 3 d. Secondary products isolated from the reaction solutions included the salt (pzpyH)2(MoCl4) (3) (pzpyH = 2-[3(5)-pyrazolyl]pyridinium), containing a very rare example of the tetrahedral MoCl4(2–) anion, and the tetranuclear compound [Mo4O12(pzpy)4] (4). Reaction of 2 with excess tert-butylhydroperoxide (TBHP) led to the isolation of the oxodiperoxo complex [MoO(O2)2(pzpy)] (5). Single-crystal X-ray structures of 3 and 5 are described. Fourier transform (FT)-IR and FT Raman spectra for 1, 4, and 5 were assigned based on density functional theory calculations. The structure of 2 was determined from synchrotron powder X-ray diffraction data in combination with other physicochemical information. In 2, a hybrid organic–inorganic one-dimensional (1D) polymer, ∞(1)[Mo3O9(pzpy)], is formed by the connection of two very distinct components: a double ladder-type inorganic core reminiscent of the crystal structure of MoO3 and 1D chains of corner-sharing distorted {MoO4N2} octahedra. Compound 2 exhibits moderate activity and high selectivity when used as a (pre)catalyst for the epoxidation of cis-cyclooctene with TBHP. Under the reaction conditions used, 2 is poorly soluble and is gradually converted into 5, which is at least partly responsible for the catalytic reaction.

  20. Hybrid carrageenans: isolation, chemical structure, and gel properties.

    PubMed

    Hilliou, Loic

    2014-01-01

    Hybrid carrageenan is a special class of carrageenan with niche application in food industry. This polysaccharide is extracted from specific species of seaweeds belonging to the Gigartinales order. This chapter focuses on hybrid carrageenan showing the ability to form gels in water, which is known in the food industry as weak kappa or kappa-2 carrageenan. After introducing the general chemical structure defining hybrid carrageenan, the isolation of the polysaccharide will be discussed focusing on the interplay between seaweed species, extraction parameters, and the hybrid carrageenan chemistry. Then, the rheological experiments used to determine the small and large deformation behavior of gels will be detailed before reviewing the relationships between gel properties and hybrid carrageenan chemistry.

  1. Crystal structure of erioflorin isolated from Podanthus mitiqui (L.)

    PubMed Central

    Paz, Cristian; Schilde, Uwe

    2017-01-01

    The title compound, erioflorin, C19H24O6 [systematic name: (1aR,3S,4Z,5aR,8aR,9R,10aR)-1a,2,3,5a,7,8,8a,9,10,10a-deca­hydro-3-hy­droxy-4,10a-dimethyl-8-methyl­idene-7-oxooxireno[5,6]cyclo­deca­[1,2-b]furan-9-yl methacrylate], is a tricyclic germacrane sesquiterpene lactone, which was isolated from Podanthus mitiqui (L.). The compound crystallizes in the space group P212121, and its mol­ecular structure consists of a methacrylic ester of a ten-membered ring sesquiterpenoid annelated with an epoxide and a butyrolactone. The structure is stabilized by one intramolecular C—H⋯O hydrogen bond. An O—H⋯O hydrogen bond and further C—H⋯O interactions can be observed in the packing. PMID:28316802

  2. Human seminal alpha inhibins: isolation, characterization, and structure.

    PubMed Central

    Li, C H; Hammonds, R G; Ramasharma, K; Chung, D

    1985-01-01

    Two additional peptides with inhibin-like activity have been isolated from human seminal plasma. One consists of 52 amino acids and the other, 92 amino acids. They are designated alpha-inhibin-52 and alpha-inhibin-92. Sequence analyses show that the NH2-terminal 31 amino acids of alpha-inhibin-52 are identical to the structure of the inhibin-like peptide previously reported [ILP-(1-31), now designated alpha-inhibin-31], and the COOH-terminal 52 amino acids of alpha-inhibin-92 are identical to the structure of alpha-inhibin-52. The amino acid sequence of alpha-inhibin-92 is: (sequence in text) Bioassay data in mouse pituitaries in vitro show that alpha-inhibin-52 is 3.4 times more active and alpha-inhibin-92 is greater than 40 times more active than alpha-inhibin-31 in suppressing follitropin-release. Radioimmunoassay data indicate that alpha-inhibin-52 and alpha-inhibin-92 have only 60% immunoreactivity. PMID:3889920

  3. Crystal structure of erioflorin isolated from Podanthus mitiqui (L.).

    PubMed

    Paz, Cristian; Ortiz, Leandro; Schilde, Uwe

    2017-03-01

    The title compound, erioflorin, C19H24O6 [systematic name: (1aR,3S,4Z,5aR,8aR,9R,10aR)-1a,2,3,5a,7,8,8a,9,10,10a-deca-hydro-3-hy-droxy-4,10a-dimethyl-8-methyl-idene-7-oxooxireno[5,6]cyclo-deca-[1,2-b]furan-9-yl methacrylate], is a tricyclic germacrane sesquiterpene lactone, which was isolated from Podanthus mitiqui (L.). The compound crystallizes in the space group P212121, and its mol-ecular structure consists of a methacrylic ester of a ten-membered ring sesquiterpenoid annelated with an epoxide and a butyrolactone. The structure is stabilized by one intramolecular C-H⋯O hydrogen bond. An O-H⋯O hydrogen bond and further C-H⋯O interactions can be observed in the packing.

  4. Rapid structure elucidation of drug degradation products using mechanism-based stress studies in conjunction with LC-MS(n) and NMR spectroscopy: identification of a photodegradation product of betamethasone dipropionate.

    PubMed

    Lin, Mingxiang; Li, Min; Buevich, Alexei V; Osterman, Rebecca; Rustum, Abu M

    2009-10-15

    Betamethasone dipropionate is an active pharmaceutical ingredient (API) that is used in various dosage forms of finished products for the treatment of inflammatory disorders. An unknown degradant was observed during a solution stability study of betamethasone dipropionate. An approach that combines LC-MS(n), mechanism-based stress studies, semi-preparative HPLC purification and structure elucidation by NMR spectroscopy was used to identify the unknown species. The key step of this approach is the design of relevant stress studies based on the plausible degradation mechanism that is revealed by the informative LC-MS(n) analysis. The appropriately designed mechanism-based stress studies not only verify the degradation mechanism but also produce enough quantities of the unknown species for further structure elucidation/confirmation by NMR spectroscopy. With this strategy, the unknown degradant was rapidly identified as lumibetametasone dipropionate, a photodegradation product of betamethasone dipropionate.

  5. Isolation, pharmacological activity and structure determination of physalin B and 5β,6β-epoxyphysalin B isolated from Congolese Physalis angulata L.

    PubMed

    Mangwala Kimpende, Peter; Lusakibanza, Mariano; Mesia, Kahunu; Tona, Lutete; Tits, Monique; Angenot, Luc; Frédérich, Michel; Van Meervelt, Luc

    2013-12-15

    Physalis angulata L., an annual herb from the Solanaceae family, is widely used in popular medicine in tropical countries to treat a variety of diseases. Two products, (X) and (Y), were isolated from a crude CH2Cl2 extract of dried Congolese Physalis angulata L. plants and crystallized from acetone for structure elucidation. Compound (X) corresponds to a physalin B dimer acetone solvate hydrate (2C28H30O9·C3H6O·0.22H2O), while compound (Y) crystallizes as a mixed crystal containing two physalin B molecules which overlap with 5β,6β-epoxyphysalin B, also known as physalin F, and one acetone molecule in the asymmetric unit (1.332C28H30O9·0.668C28H30O10·C3H6O). Antiplasmodial activity, cytotoxic activity and selectivity indices were determined for crude extracts and the two isolated products (X) and (Y).

  6. Comparison of genetic diversity and population structure between two Schistosoma japonicum isolates--the field and the laboratory.

    PubMed

    Bian, Chao-Rong; Gao, Yu-Meng; Lamberton, Poppy H L; Lu, Da-Bing

    2015-06-01

    Schistosomiasis japonicum is one of the most important human parasitic diseases, and a number of studies have recently elucidated the difference in biological characteristics of S. japonicum among different parasite isolates, for example, between the field and the laboratory isolates. Therefore, the understanding of underlying genetic mechanism is of both theoretical and practical importance. In this study, we used six microsatellite markers to assess genetic diversity, population structure, and the bottleneck effect (a sharp reduction in population size) of two parasite populations, one field and one laboratory. A total of 136 S. japonicum cercariae from the field and 86 from the laboratory, which were genetically unique within single snails, were analyzed. The results showed bigger numbers of alleles and higher allelic richness in the field parasite population than in the laboratory indicating lower genetic diversity in the laboratory parasites. A bottleneck effect was detected in the laboratory population. When the field and laboratory isolates were combined, there was a clear distinction between two parasite populations using the software Structure. These genetic differences may partially explain the previously observed contrasted biological traits.

  7. A novel polysaccharide isolated from mulberry fruits (Murus alba L.) and its selenide derivative: structural characterization and biological activities.

    PubMed

    Chen, Chun; Zhang, Bin; Fu, Xiong; Liu, Rui Hai

    2016-06-15

    A novel polysaccharide (MFP3P) was isolated from Murus alba L. through the hot water extraction method followed by chromatographic purification. The chemical structure of MFP3P was elucidated by acid hydrolysis, Smith degradation and methylation analysis, along with FT-IR, GC-MS, (1)H and (13)C NMR spectroscopy. Its morphological properties were further characterized by SEM and AFM. The selenide of the polysaccharide (MFP3P-Se) was obtained by the Na2SeO3/BaCl2 method. The antioxidant properties showed that MFP3P-Se exhibited higher peroxy radical-scavenging capacity than MFP3P in vitro. Moreover, MFP3P-Se had more significant hypoglycemic effects than MFP3P through promoting pancreatic cell proliferation and increasing glucose metabolism and insulin secretion.

  8. Structural and biological characterization of one antibacterial acylpolyamine isolated from the hemocytes of the spider Acanthocurria gomesiana

    SciTech Connect

    Pereira, Lourivaldo S.; Silva, Pedro I.; Miranda, M. Teresa M.; Almeida, Igor C.; Naoki, Hideo; Konno, Katsuhiro; Daffre, Sirlei . E-mail: sidaffre@icb.usp.br

    2007-01-26

    We have isolated a 417 Da antibacterial molecule, named mygalin, from the hemocytes of the spider Acanthoscurria gomesiana. The structure of mygalin was elucidated by tandem mass spectrometry (MS/MS) and by two spectroscopic techniques, nuclear magnetic resonance (NMR) and ultraviolet (UV) spectroscopy. Mygalin was identified as bis-acylpolyamine N1,N8-bis(2,5-dihydroxybenzoyl)spermidine, in which the primary amino groups of the spermidine are acylated with the carboxyl group of the 2,5-dihydroxybenzoic acid. Mygalin was active against Escherichia coli at 85 {mu}M, being this activity inhibited completely by catalase. Therefore, the antibacterial activity of mygalin was attributed to its production of hydrogen peroxide (H{sub 2}O{sub 2}). The putative mechanisms of formation of H{sub 2}O{sub 2} from mygalin are discussed. To our knowledge this is the first report of one bis-acylpolyamine with antibacterial activity purified from animal source.

  9. Biosynthesis and structural characterization of silver nanoparticles from bacterial isolates

    SciTech Connect

    Zaki, Sahar; El Kady, M.F.; Abd-El-Haleem, Desouky

    2011-10-15

    Graphical abstract: In this study five bacterial isolates belong to different genera were found to be able to biosynthesize silver nanoparticles. Biosynthesis and spectral characterization are reported here. Highlights: {yields} About 300 bacterial isolates were screened for their ability to produce nanosilvers {yields} Five of them were potential candidates for synthesis of silver nanoparticles {yields} Production of silver nanoparticles was examined using UV-Vis, XRD, SEM and EDS. {yields} The presence of nanoparticles with all five bacterial isolates was confirmed. -- Abstract: This study aimed to develop a green process for biosynthesis of silver nanomaterials by some Egyptian bacterial isolates. This target was achieved by screening an in-house culture collection consists of 300 bacterial isolates for silver nanoparticle formation. Through screening process, it was observed that strains belonging to Escherichia coli (S30, S78), Bacillus megaterium (S52), Acinetobacter sp. (S7) and Stenotrophomonas maltophilia (S54) were potential candidates for synthesis of silver nanoparticles. The extracellular production of silver nanoparticles by positive isolates was investigated by UV-Vis spectroscopy, X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results demonstrated that UV-visible spectrum of the aqueous medium containing silver ion showed a peak at 420 nm corresponding to the plasmon absorbance of silver nanoparticles. Scanning electron microscopy micrograph showed formation of silver nanoparticles in the range of 15-50 nm. XRD-spectrum of the silver nanoparticles exhibited 2{theta} values corresponding to the silver nanocrystal that produce in hexagonal and cubic crystal configurations with different plane of orientation. In addition, the signals of the silver atoms were observed by EDS-spectrum analysis that confirms the presence of silver nanoparticles (Ag

  10. Crystal structures and mutagenesis of PPP-family ser/thr protein phosphatases elucidate the selectivity of cantharidin and novel norcantharidin-based inhibitors of PP5C.

    PubMed

    Chattopadhyay, Debasish; Swingle, Mark R; Salter, Edward A; Wood, Eric; D'Arcy, Brandon; Zivanov, Catherine; Abney, Kevin; Musiyenko, Alla; Rusin, Scott F; Kettenbach, Arminja; Yet, Larry; Schroeder, Chad E; Golden, Jennifer E; Dunham, Wade H; Gingras, Anne-Claude; Banerjee, Surajit; Forbes, David; Wierzbicki, Andrzej; Honkanen, Richard E

    2016-06-01

    Cantharidin is a natural toxin and an active constituent in a traditional Chinese medicine used to treat tumors. Cantharidin acts as a semi-selective inhibitor of PPP-family ser/thr protein phosphatases. Despite sharing a common catalytic mechanism and marked structural similarity with PP1C, PP2AC and PP5C, human PP4C was found to be insensitive to the inhibitory activity of cantharidin. To explore the molecular basis for this selectivity, we synthesized and tested novel C5/C6-derivatives designed from quantum-based modeling of the interactions revealed in the co-crystal structures of PP5C in complex with cantharidin. Structure-activity relationship studies and analysis of high-resolution (1.25Å) PP5C-inhibitor co-crystal structures reveal close contacts between the inhibitor bridgehead oxygen and both a catalytic metal ion and a non-catalytic phenylalanine residue, the latter of which is substituted by tryptophan in PP4C. Quantum chemistry calculations predicted that steric clashes with the bulkier tryptophan side chain in PP4C would force all cantharidin-based inhibitors into an unfavorable binding mode, disrupting the strong coordination of active site metal ions observed in the PP5C co-crystal structures, thereby rendering PP4C insensitive to the inhibitors. This prediction was confirmed by inhibition studies employing native human PP4C. Mutation of PP5C (F446W) and PP1C (F257W), to mimic the PP4C active site, resulted in markedly suppressed sensitivity to cantharidin. These observations provide insight into the structural basis for the natural selectivity of cantharidin and provide an avenue for PP4C deselection. The novel crystal structures also provide insight into interactions that provide increased selectivity of the C5/C6 modifications for PP5C versus other PPP-family phosphatases.

  11. Development of adaptive seismic isolators for ultimate seismic protection of civil structures

    NASA Astrophysics Data System (ADS)

    Li, Jianchun; Li, Yancheng; Li, Weihua; Samali, Bijan

    2013-04-01

    Base isolation is the most popular seismic protection technique for civil engineering structures. However, research has revealed that the traditional base isolation system due to its passive nature is vulnerable to two kinds of earthquakes, i.e. the near-fault and far-fault earthquakes. A great deal of effort has been dedicated to improve the performance of the traditional base isolation system for these two types of earthquakes. This paper presents a recent research breakthrough on the development of a novel adaptive seismic isolation system as the quest for ultimate protection for civil structures, utilizing the field-dependent property of the magnetorheological elastomer (MRE). A novel adaptive seismic isolator was developed as the key element to form smart seismic isolation system. The novel isolator contains unique laminated structure of steel and MR elastomer layers, which enable its large-scale civil engineering applications, and a solenoid to provide sufficient and uniform magnetic field for energizing the field-dependent property of MR elastomers. With the controllable shear modulus/damping of the MR elastomer, the developed adaptive seismic isolator possesses a controllable lateral stiffness while maintaining adequate vertical loading capacity. In this paper, a comprehensive review on the development of the adaptive seismic isolator is present including designs, analysis and testing of two prototypical adaptive seismic isolators utilizing two different MRE materials. Experimental results show that the first prototypical MRE seismic isolator can provide stiffness increase up to 37.49%, while the second prototypical MRE seismic isolator provides amazing increase of lateral stiffness up to1630%. Such range of increase of the controllable stiffness of the seismic isolator makes it highly practical for developing new adaptive base isolation system utilizing either semi-active or smart passive controls.

  12. Structural and functional effects of social isolation on the hippocampus of rats with traumatic brain injury.

    PubMed

    Khodaie, Babak; Lotfinia, Ahmad Ali; Ahmadi, Milad; Lotfinia, Mahmoud; Jafarian, Maryam; Karimzadeh, Fariba; Coulon, Philippe; Gorji, Ali

    2015-02-01

    Social isolation has significant long-term psychological and physiological consequences. Both social isolation and traumatic brain injury (TBI) alter normal brain function and structure. However, the influence of social isolation on recovery from TBI is unclear. This study aims to evaluate if social isolation exacerbates the anatomical and functional deficits after TBI in young rats. Juvenile male rats were divided into four groups; sham operated control with social contacts, sham control with social isolation, TBI with social contacts, and TBI with social isolation. During four weeks after brain injury in juvenile rats, we evaluated the animal behaviors by T-maze and open-field tests, recorded brain activity with electrocorticograms and assessed structural changes by histological procedures in the hippocampal dentate gyrus, CA1, and CA3 areas. Our findings revealed significant memory impairments and hyperactivity conditions in rats with TBI and social isolation compared to the other groups. Histological assessments showed an increase of the mean number of dark neurons, apoptotic cells, and caspase-3 positive cells in all tested areas of the hippocampus in TBI rats with and without social isolation compared to sham rats. Furthermore, social isolation significantly increased the number of dark cells, apoptotic neurons, and caspase-3 positive cells in the hippocampal CA3 region in rats with TBI. This study indicates the harmful effect of social isolation on anatomical and functional deficits induced by TBI in juvenile rats. Prevention of social isolation may improve the outcome of TBI.

  13. Structural Elucidation of the Cell-Penetrating Penetratin Peptide in Model Membranes at the Atomic Level: Probing Hydrophobic Interactions in the Blood-Brain Barrier.

    PubMed

    Bera, Swapna; Kar, Rajiv K; Mondal, Susanta; Pahan, Kalipada; Bhunia, Anirban

    2016-09-06

    Cell-penetrating peptides (CPPs) have shown promise in nonpermeable therapeutic drug delivery, because of their ability to transport a variety of cargo molecules across the cell membranes and their noncytotoxicity. Drosophila antennapedia homeodomain-derived CPP penetratin (RQIKIWFQNRRMKWKK), being rich in positively charged residues, has been increasingly used as a potential drug carrier for various purposes. Penetratin can breach the tight endothelial network known as the blood-brain barrier (BBB), permitting treatment of several neurodegenerative maladies, including Alzheimer's disease, Parkinson's disease, and Huntington's disease. However, a detailed structural understanding of penetratin and its mechanism of action is lacking. This study defines structural features of the penetratin-derived peptide, DK17 (DRQIKIWFQNRRMKWKK), in several model membranes and describes a membrane-induced conformational transition of the DK17 peptide in these environments. A series of biophysical experiments, including high-resolution nuclear magnetic resonance spectroscopy, provides the three-dimensional structure of DK17 in different membranes mimicking the BBB or total brain lipid extract. Molecular dynamics simulations support the experimental results showing preferential binding of DK17 to particular lipids at atomic resolution. The peptide conserves the structure of the subdomain spanning residues Ile6-Arg11, despite considerable conformational variation in different membrane models. In vivo data suggest that the wild type, not a mutated sequence, enters the central nervous system. Together, these data highlight important structural and functional attributes of DK17 that could be utilized in drug delivery for neurodegenerative disorders.

  14. Structure Elucidation of Coxsackievirus A16 in Complex with GPP3 Informs a Systematic Review of Highly Potent Capsid Binders to Enteroviruses

    PubMed Central

    Tijsma, Aloys; Neyts, Johan; Spyrou, John A. B.; Ren, Jingshan; Grimes, Jonathan M.; Puerstinger, Gerhard; Leyssen, Pieter; Fry, Elizabeth E.; Rao, Zihe; Stuart, David I.

    2015-01-01

    The replication of enterovirus 71 (EV71) and coxsackievirus A16 (CVA16), which are the major cause of hand, foot and mouth disease (HFMD) in children, can be inhibited by the capsid binder GPP3. Here, we present the crystal structure of CVA16 in complex with GPP3, which clarifies the role of the key residues involved in interactions with the inhibitor. Based on this model, in silico docking was performed to investigate the interactions with the two next-generation capsid binders NLD and ALD, which we show to be potent inhibitors of a panel of enteroviruses with potentially interesting pharmacological properties. A meta-analysis was performed using the available structural information to obtain a deeper insight into those structural features required for capsid binders to interact effectively and also those that confer broad-spectrum anti-enterovirus activity. PMID:26485389

  15. Elucidating a Key Anti-HIV-1 and Cancer-Associated Axis: The Structure of CCL5 (Rantes) in Complex with CCR5

    NASA Astrophysics Data System (ADS)

    Tamamis, Phanourios; Floudas, Christodoulos A.

    2014-06-01

    CCL5 (RANTES) is an inflammatory chemokine which binds to chemokine receptor CCR5 and induces signaling. The CCL5:CCR5 associated chemotactic signaling is of critical biological importance and is a potential HIV-1 therapeutic axis. Several studies provided growing evidence for the expression of CCL5 and CCR5 in non-hematological malignancies. Therefore, the delineation of the CCL5:CCR5 complex structure can pave the way for novel CCR5-targeted drugs. We employed a computational protocol which is primarily based on free energy calculations and molecular dynamics simulations, and report, what is to our knowledge, the first computationally derived CCL5:CCR5 complex structure which is in excellent agreement with experimental findings and clarifies the functional role of CCL5 and CCR5 residues which are associated with binding and signaling. A wealth of polar and non-polar interactions contributes to the tight CCL5:CCR5 binding. The structure of an HIV-1 gp120 V3 loop in complex with CCR5 has recently been derived through a similar computational protocol. A comparison between the CCL5 : CCR5 and the HIV-1 gp120 V3 loop : CCR5 complex structures depicts that both the chemokine and the virus primarily interact with the same CCR5 residues. The present work provides insights into the blocking mechanism of HIV-1 by CCL5.

  16. DFT calculations in the assignment of solid-state NMR and crystal structure elucidation of a lanthanum(iii) complex with dithiocarbamate and phenanthroline.

    PubMed

    Gowda, Vasantha; Laitinen, Risto S; Telkki, Ville-Veikko; Larsson, Anna-Carin; Antzutkin, Oleg N; Lantto, Perttu

    2016-12-06

    The molecular, crystal, and electronic structures as well as spectroscopic properties of a mononuclear heteroleptic lanthanum(iii) complex with diethyldithiocarbamate and 1,10-phenanthroline ligands (3 : 1) were studied by solid-state (13)C and (15)N cross-polarisation (CP) magic-angle-spinning (MAS) NMR, X-ray diffraction (XRD), and first principles density functional theory (DFT) calculations. A substantially different powder XRD pattern and (13)C and (15)N CP-MAS NMR spectra indicated that the title compound is not isostructural to the previously reported analogous rare earth complexes with the space group P21/n. Both (13)C and (15)N CP-MAS NMR revealed the presence of six structurally different dithiocarbamate groups in the asymmetric unit cell, implying a non-centrosymmetric packing arrangement of molecules. This was supported by single-crystal X-ray crystallography showing that the title compound crystallised in the triclinic space group P1[combining macron]. In addition, the crystal structure also revealed that one of the dithiocarbamate ligands has a conformational disorder. NMR chemical shift calculations employing the periodic gauge including projector augmented wave (GIPAW) approach supported the assignment of the experimental (13)C and (15)N NMR spectra. However, the best correspondences were obtained with the structure where the atomic positions in the X-ray unit cell were optimised at the DFT level. The roles of the scalar and spin-orbit relativistic effects on NMR shielding were investigated using the zeroth-order regular approximation (ZORA) method with the outcome that already the scalar relativistic level qualitatively reproduces the experimental chemical shifts. The electronic properties of the complex were evaluated based on the results of the natural bond orbital (NBO) and topology of the electron density analyses. Overall, we apply a multidisciplinary approach acquiring comprehensive information about the solid-state structure and the

  17. A fluorogenic peptide containing the processing site of human SARS corona virus S-protein: kinetic evaluation and NMR structure elucidation.

    PubMed

    Basak, Ajoy; Mitra, Abhijit; Basak, Sarmistha; Pasko, Carolyn; Chrétien, Michel; Seaton, Pamela

    2007-06-18

    Human severe acute respiratory syndrome coronavirus (hSARS-CoV) is the causative agent for SARS infection. Its surface glycoprotein (spike protein) is considered to be one of the prime targets for SARS therapeutics and intervention because its proteolytic maturation by a host protease is crucial for host-virus fusion. Using intramolecularly quenched fluorogenic (IQF) peptides based on hSARS-CoV spike protein (Abz-(755)Glu-Gln-Asp-Arg-Asn-Thr-Arg-Glu-Val-Phe-Ala-Gln(766)-Tyx-NH(2)) and in vitro studies, we show that besides furin, other PCs, like PC5 and PC7, might also be involved in this cleavage event. Through kinetic measurements with recombinant PCs, we observed that the peptide was cleaved efficiently by both furin and PC5, but very poorly by PC7. The cleavage could be blocked by a PC-inhibitor, alpha1-PDX, in a dose-dependent manner. Circular dichroism spectra indicated that this peptide possesses a high degree of sheet structure. Following cleavage by furin, the sheet content increased, possibly at the expense of turn and random structures. (1)H NMR spectra from 2D COSY and ROESY experiments under physiological buffer and pH conditions indicated that this peptide possesses a structure with a turn at its C-terminal segment, close to the cleavage site. The data suggest that the cleavable peptide bond is located within the most exposed domain; this is supported by the nearby turn structure. Several strong to weak NMR ROESY correlations were detected, and a 3D structure of the spike IQF peptide that contains the crucial cleavage site R(761) E has been proposed.

  18. Enantioselective preparative HPLC separation of the HBCD-Stereoisomers from the technical product and their absolute structure elucidation using X-ray crystallography.

    PubMed

    Koeppen, Robert; Becker, Roland; Emmerling, Franziska; Jung, Christian; Nehls, Irene

    2007-03-01

    1,2,5,6,9,10-Hexabromocyclododecane (HBCD) is a widely used flame retardant, which tends to persist in the environment and accumulates in biota. The six stereoisomers (three racemates named alpha-, beta-, and gamma-HBCD) of the technical mixture were isolated with high-performance liquid chromatography (HPLC). Direct separations were performed on a chiral stationary phase containing permethylated beta-cyclodextrin (NUCLEODEX beta-PM column) and the pure enantiomers of alpha-, beta-, and gamma-HBCD were physically characterized for the first time. The absolute configurations of all six isomers were determined by anomalous dispersion using single crystal X-ray crystallography. Optical rotations alphaD in tetrahydrofuran were +4.2/-4.0 (alpha-HBCD), +26.1/-27.5 (beta-HBCD), and +68.0/-66.3 (gamma-HBCD). The sense of rotation could be correlated with the absolute configurations of alpha-, beta-, and gamma-HBCD enantiomers and their order of elution on a chiral permethylated beta-cyclodextrin-bonded stationary phase. The diastereomersalpha-, beta-, and gamma-HBCD displayed distinctly different melting points as well as (1)H-, (13)C NMR, and IR spectra.

  19. Population structure of Lactobacillus helveticus isolates from naturally fermented dairy products based on multilocus sequence typing.

    PubMed

    Sun, Zhihong; Liu, Wenjun; Song, Yuqin; Xu, Haiyan; Yu, Jie; Bilige, Menghe; Zhang, Heping; Chen, Yongfu

    2015-05-01

    Lactobacillus helveticus is an economically important lactic acid bacterium used in industrial dairy fermentation. In the present study, the population structure of 245 isolates of L. helveticus from different naturally fermented dairy products in China and Mongolia were investigated using an multilocus sequence typing scheme with 11 housekeeping genes. A total of 108 sequence types were detected, which formed 8 clonal complexes and 27 singletons. Results from Structure, SplitsTree, and ClonalFrame software analyses demonstrated the presence of 3 subpopulations in the L. helveticus isolates used in our study, namely koumiss, kurut-tarag, and panmictic lineages. Most L. helveticus isolates from particular ecological origins had specific population structures.

  20. Elucidating Structure-Bioactivity Relationships of Methyl-Branched Alkanes in the Contact Sex Pheromone of the Parasitic Wasp Lariophagus distinguendus.

    PubMed

    Kühbandner, Stephan; Bello, Jan E; Mori, Kenji; Millar, Jocelyn G; Ruther, Joachim

    2013-12-03

    The exoskeletons of insects are covered by complex mixtures of cuticular hydrocarbons (CHCs) which are involved in social and sexual communication. However, little is known about the relationship between the structures of CHCs and their behavioral activity. The key component of the contact sex pheromone of the parasitoid Lariophagus distinguendus is 3-methylheptacosane (3-MeC27), which is present in CHC profiles of both females and newly emerged males. The CHCs of females and young males elicit wing-fanning behavior in older males. However, as young males age, 3-MeC27 disappears from their CHC profiles and they no longer elicit wing-fanning responses from other males. We applied enantiopure 3-MeC27 and structurally related CHCs (with respect to chain length or methyl-branch position) to the cuticle of aged male dummies and recorded the wing-fanning behavior of responding males. Only the two enantiomers of 3-MeC27 restored the dummies' attractiveness. The addition of structurally related CHCs or various n-alkanes to bioactive dummies of young males and females significantly decreased wing-fanning by test males. Hence, L. distinguendus males respond specifically but not enantioselectively to 3-MeC27, and perceive the CHC profiles as a whole. Both removal (as is the case with 3-MeC27 in aging males) and addition of individual compounds may disrupt the behavioral response.

  1. Larger water clusters with edges and corners on their way to ice: structural trends elucidated with an improved parallel evolutionary algorithm.

    PubMed

    Bandow, Bernhard; Hartke, Bernd

    2006-05-04

    For the difficult task of finding global minimum energy structures for molecular clusters of nontrivial size, we present a highly efficient parallel implementation of an evolutionary algorithm. By completely abandoning the traditional concept of generations and by replacing it with a less rigid pool concept, we have managed to eliminate serial bottlenecks completely and can operate the algorithm efficiently on an arbitrary number of parallel processes. Nevertheless, our new algorithm still realizes all of the main features of our old, successful implementation. First tests of the new algorithm are shown for the highly demanding problem of water clusters modeled by a potential with flexible, polarizable monomers (TTM2-F). For this problem, our new algorithm not only reproduces all of the global minima proposed previously in considerably less CPU time but also leads to improved proposals in several cases. These, in turn, qualitatively change our earlier predictions concerning the transitions from all-surface structures to cages with a single interior molecule, and from one to two interior molecules. Furthermore, we compare preliminary results up to n = 105 with locally optimized cuts from several ice modifications. This comparison indicates that relaxed ice structures may start to be competitive already at cluster sizes above n = 90.

  2. Engine isolation for structural-borne interior noise reduction in a general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Unruh, J. F.; Scheidt, D. C.

    1981-01-01

    Engine vibration isolation for structural-borne interior noise reduction is investigated. A laboratory based test procedure to simulate engine induced structure-borne noise transmission, the testing of a range of candidate isolators for relative performance data, and the development of an analytical model of the transmission phenomena for isolator design evaluation are addressed. The isolator relative performance test data show that the elastomeric isolators do not appear to operate as single degree of freedom systems with respect to noise isolation. Noise isolation beyond 150 Hz levels off and begins to decrease somewhat above 600 Hz. Coupled analytical and empirical models were used to study the structure-borne noise transmission phenomena. Correlation of predicted results with measured data show that (1) the modeling procedures are reasonably accurate for isolator design evaluation, (2) the frequency dependent properties of the isolators must be included in the model if reasonably accurate noise prediction beyond 150 Hz is desired. The experimental and analytical studies were carried out in the frequency range from 10 Hz to 1000 Hz.

  3. Structural and Functional Elucidation of the Mechanism Promoting Error-prone Synthesis by Human DNA Polymerase [kappa] Opposite the 7,8-Dihydro-8-oxo-2'-deoxyguanosine Adduct

    SciTech Connect

    Irimia, Adriana; Eoff, Robert L.; Guengerich, F.Peter; Egli, Martin

    2009-09-25

    Human polymerase kappa (hPol {kappa}) is one of four eukaryotic Y-class DNA polymerases and may be an important element in the cellular response to polycyclic aromatic hydrocarbons such as benzo[a]pyrene, which can lead to reactive oxygenated metabolite-mediated oxidative stress. Here, we present a detailed analysis of the activity and specificity of hPol {kappa} bypass opposite the major oxidative adduct 7,8-dihydro-8-oxo-2{prime}-deoxyguanosine (8-oxoG). Unlike its archaeal homolog Dpo4, hPol {kappa} bypasses this lesion in an error-prone fashion by inserting mainly dATP. Analysis of transient-state kinetics shows diminished 'bursts' for dATP:8-oxoG and dCTP:8-oxoG incorporation, indicative of non-productive complex formation, but dATP:8-oxoG insertion events that do occur are 2-fold more efficient than dCTP:G insertion events. Crystal structures of ternary hPol {kappa} complexes with adducted template-primer DNA reveal non-productive (dGTP and dATP) alignments of incoming nucleotide and 8-oxoG. Structural limitations placed upon the hPol {kappa} by interactions between the N-clasp and finger domains combined with stabilization of the syn-oriented template 8-oxoG through the side chain of Met-135 both appear to contribute to error-prone bypass. Mutating Leu-508 in the little finger domain of hPol {kappa} to lysine modulates the insertion opposite 8-oxoG toward more accurate bypass, similar to previous findings with Dpo4. Our structural and activity data provide insight into important mechanistic aspects of error-prone bypass of 8-oxoG by hPol {kappa} compared with accurate and efficient bypass of the lesion by Dpo4 and polymerase {eta}.

  4. Population Structure of Blueberry Mosaic Associated Virus: Evidence of Genetic Exchange in Geographically Distinct Isolates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The population structure of blueberry mosaic associated virus (BlMaV), a putative member of the family Ophioviridae, was examined using 59 isolates collected from North America and Slovenia. The studied isolates displayed low genetic diversity in the movement and nucleoprotein regions and low ratios...

  5. A 1.3Å Structure of Zinc-bound N-terminal Domain of Calmodulin Elucidates Potential Early Ion-binding Step

    PubMed Central

    Warren, Julia T.; Guo, Qing; Tang, Wei-Jen

    2007-01-01

    Summary Calmodulin (CaM) is a 16.8 kDa calcium binding protein involved in calcium-signal transduction. It is the canonical member of the EF-hand family of proteins, which are characterized by a helix-loop-helix calcium-binding motif. CaM is comprised of N- and C-terminal globular domains (N-CaM and C-CaM), and within each domain there are two EF-hand motifs. Upon binding calcium, CaM undergoes a significant, global conformational change involving reorientation of the four helix bundles in each of its two domains. This conformational change upon ion binding is a key component of the signal transduction and regulatory roles of CaM, yet the precise nature of this transition is still unclear. Here, we present a 1.3Å structure of zinc-bound N-terminal calmodulin (N-CaM) solved by single wavelength anomalous diffraction (SAD) phasing of a selenomethionyl-N-CaM. Our zinc-bound N-CaM structure differs from previously reported CaM structures and resembles calcium-free apo-CaM despite the zinc binding to both EF-hand motifs. Structural comparison with calcium-free apo-CaM, calcium-loaded CaM, and a crosslinked calcium-loaded CaM suggests that our zinc-bound N-CaM reveals an intermediate step in the initiation of metal ion binding at the first EF-hand motif. Our data also suggests that metal ion coordination by two key residues in the first metal-binding site represents an initial step in the conformational transition induced by metal binding. This is followed by reordering of the N-terminal region of the helix exiting from this first binding loop. This conformational switch should be incorporated into models of either step-wise conformational transition or flexible, dynamic energetic state-sampling based transition. PMID:17942116

  6. Application of adaptive trusses to vibration isolation in flexible structures

    NASA Technical Reports Server (NTRS)

    Clark, William W.; Robertshaw, Harry H.

    1992-01-01

    It is shown through analysis that force feedback can be used to provide complete vibration isolation in two directions. Simultations were carried out to demonstrate the use of two control methods applied to an adaptive truss as an active mount. The first technique was simple force feedback with a gain. This method has the potential to provide excellent vibration isolation performance. It requires no model of the system and no knowledge of the applied disturbance, and is easily implemented in an adaptive truss. There is some question as to how high the gain can be allowed to go but the experimental results have shown performance advantages over passive techniques even for small gains. The second technique presented is the LQR method, with disturbance modeling. A method is presented for using the LQR method for vibration isolation with the intention of achieving performance with guaranteed stability and relatively lower loop gains. The overhead for those benefits is an accurate system model. It was shown analytically that this method works; however, the performance is not as good as expected. It is believed that the difference in performance is partly due to an increase in active damping which is inadvertently provided by the LQR method.

  7. Structural elucidation, density functional calculations and contribution of intermolecular interactions in cholest-4-en-3-one crystals: Insights from X-ray and Hirshfeld surface analysis

    NASA Astrophysics Data System (ADS)

    Khanam, Hena; Mashrai, Ashraf; Siddiqui, Nazish; Ahmad, Musheer; Alam, Mohammad Jane; Ahmad, Shabbir; Shamsuzzaman

    2015-03-01

    The foremost objective of the present work is systematic analysis of intermolecular interactions in crystal structure of cholest-4-en-3-one (2) molecule. It is accomplished by Hirshfeld surface analysis and fingerprint plot. Hirshfeld surface analysis has been used to visualize the fidelity of the crystal structure. This method permitted for the identification of individual types of intermolecular contacts and their impact on the complete packing. Molecules are linked by a combination of Cdbnd O--H, Csbnd H--H, and C--H contacts, which have clear signatures in the fingerprint plots. The theoretical study was attempted to predict the optimized geometry and computed spectra by the Density Functional Theory (DFT) using the B3LYP function with the 6-311++G(d,p) basis set. Atomic charges, MEP mapping, HOMO-LUMO, various thermodynamic and molecular properties have been reported. In addition thermal stability, optical, morphological, and microstructral properties of the title compound (2) have also been explored.

  8. Application of Molecular Techniques To Elucidate the Influence of Cellulosic Waste on the Bacterial Community Structure at a Simulated Low-Level-Radioactive-Waste Site▿ †

    PubMed Central

    Field, Erin K.; D'Imperio, Seth; Miller, Amber R.; VanEngelen, Michael R.; Gerlach, Robin; Lee, Brady D.; Apel, William A.; Peyton, Brent M.

    2010-01-01

    Low-level-radioactive-waste (low-level-waste) sites, including those at various U.S. Department of Energy sites, frequently contain cellulosic waste in the form of paper towels, cardboard boxes, or wood contaminated with heavy metals and radionuclides such as chromium and uranium. To understand how the soil microbial community is influenced by the presence of cellulosic waste products, multiple soil samples were obtained from a nonradioactive model low-level-waste test pit at the Idaho National Laboratory. Samples were analyzed using 16S rRNA gene clone libraries and 16S rRNA gene microarray (PhyloChip) analyses. Both methods revealed changes in the bacterial community structure with depth. In all samples, the PhyloChip detected significantly more operational taxonomic units, and therefore relative diversity, than the clone libraries. Diversity indices suggest that diversity is lowest in the fill and fill-waste interface (FW) layers and greater in the wood waste and waste-clay interface layers. Principal-coordinate analysis and lineage-specific analysis determined that the Bacteroidetes and Actinobacteria phyla account for most of the significant differences observed between the layers. The decreased diversity in the FW layer and increased members of families containing known cellulose-degrading microorganisms suggest that the FW layer is an enrichment environment for these organisms. These results suggest that the presence of the cellulosic material significantly influences the bacterial community structure in a stratified soil system. PMID:20305022

  9. Multisite constrained model of trans-4-(N,N-dimethylamino)-4'-nitrostilbene for structural elucidation of radiative and nonradiative excited states.

    PubMed

    Lin, Cheng-Kai; Wang, Yu-Fu; Cheng, Yuan-Chung; Yang, Jye-Shane

    2013-04-18

    A constrained model compound of trans-4-(N,N-dimethylamino)-4'-nitrostilbene (DNS), namely, compound DNS-B3 that is limited to torsions about the phenyl-nitro C-N bond and the central C═C bond, was prepared to investigate the structural nature of the radiative and nonradiative states of electronically excited DNS. The great similarities in solvent-dependent electronic spectra, fluorescence decay times, and quantum yields for fluorescence (Φf) and trans → cis photoisomerization (Φtc) between DNS and DNS-B3 indicate that the fluorescence is from a planar charge-transfer state and torsion of the nitro group is sufficient to account for the nonradiative decay of DNS. This conclusion is supported by TDDFT calculations on DNS-B3 in dichloromethane. The structure at the conical intersection for internal conversion is associated with not only a twisting but also a pyramidalization of the nitro group. The mechanism of the NO2 torsion is discussed in terms of the effects of solvent polarity, the substituents, and the volume demand. The differences and analogies of the NO2- vs amino-twisted intramolecular charge-transfer (TICT) state of trans-aminostilbenes are also discussed.

  10. The Structure of Dasatinib (BNS-354825) Bound to Activated ABL Kinase Domain Elucidates its Inhibitory Activity Against Imatinib-Resistant ABL Mutants

    SciTech Connect

    Tokarski,J.; Newitt, J.; Chang, C.; Cheng, J.; Wittekind, M.; Kiefer, S.; Kish, K.; Lee, F.; Borzilerri, R.; et al.

    2006-01-01

    Chronic myeloid leukemia (CML) is caused by the constitutively activated tyrosine kinase breakpoint cluster (BCR)-ABL. Current frontline therapy for CML is imatinib, an inhibitor of BCR-ABL. Although imatinib has a high rate of clinical success in early phase CML, treatment resistance is problematic, particularly in later stages of the disease, and is frequently mediated by mutations in BCR-ABL. Dasatinib (BMS-354825) is a multitargeted tyrosine kinase inhibitor that targets oncogenic pathways and is a more potent inhibitor than imatinib against wild-type BCR-ABL. It has also shown preclinical activity against all but one of the imatinib-resistant BCR-ABL mutants tested to date. Analysis of the crystal structure of dasatinib-bound ABL kinase suggests that the increased binding affinity of dasatinib over imatinib is at least partially due to its ability to recognize multiple states of BCR-ABL. The structure also provides an explanation for the activity of dasatinib against imatinib-resistant BCR-ABL mutants.

  11. Application of molecular techniques to elucidate the influence of cellulosic waste on the bacterial community structure at a simulated low-level-radioactive-waste site.

    PubMed

    Field, Erin K; D'Imperio, Seth; Miller, Amber R; VanEngelen, Michael R; Gerlach, Robin; Lee, Brady D; Apel, William A; Peyton, Brent M

    2010-05-01

    Low-level-radioactive-waste (low-level-waste) sites, including those at various U.S. Department of Energy sites, frequently contain cellulosic waste in the form of paper towels, cardboard boxes, or wood contaminated with heavy metals and radionuclides such as chromium and uranium. To understand how the soil microbial community is influenced by the presence of cellulosic waste products, multiple soil samples were obtained from a nonradioactive model low-level-waste test pit at the Idaho National Laboratory. Samples were analyzed using 16S rRNA gene clone libraries and 16S rRNA gene microarray (PhyloChip) analyses. Both methods revealed changes in the bacterial community structure with depth. In all samples, the PhyloChip detected significantly more operational taxonomic units, and therefore relative diversity, than the clone libraries. Diversity indices suggest that diversity is lowest in the fill and fill-waste interface (FW) layers and greater in the wood waste and waste-clay interface layers. Principal-coordinate analysis and lineage-specific analysis determined that the Bacteroidetes and Actinobacteria phyla account for most of the significant differences observed between the layers. The decreased diversity in the FW layer and increased members of families containing known cellulose-degrading microorganisms suggest that the FW layer is an enrichment environment for these organisms. These results suggest that the presence of the cellulosic material significantly influences the bacterial community structure in a stratified soil system.

  12. Structural changes of Arthrospira sp. after low energy sonication treatment for microalgae harvesting: Elucidating key parameters to detect the rupture of gas vesicles.

    PubMed

    Lecina, Martí; Sanchez, Benjamin; Solà, Carles; Prat, Jordi; Roldán, Mònica; Hernández, Mariona; Bragós, Ramon; Paredes, Carlos J; Cairó, Jordi J

    2017-01-01

    The buoyancy suppression by low energy sonication (LES) treatment (0.8W·mL(-1), 20kHz, 10s) has recently been proposed as an initial harvesting step for Arthrospira sp. This paper aims to describe the structural changes in Arthrospira sp. after LES treatment and to present how these structural changes affect the results obtained by different analytical techniques. Transmission electron microscopy (TEM) micrographs of trichomes evidenced the gas vesicles rupture but also revealed a rearrangement of thylakoids and more visible phycobilisomes were observed. Differences between treated and untreated samples were detected by confocal microscopy, flow cytometry and optical microscopy but not by electrical impedance spectroscopy (EIS). After LES treatment, 2-fold increase in autofluorescence at 610/660nm was measured (phycocyanin/allophycocyanin emission wavelengths) and a ten-fold decrease in side scatter light intensity (due to a reduction of trichome's inner complexity). This was further confirmed by optical microscopy showing changes on trichomes appearance (from wrinkled to smooth).

  13. Application of Molecular Techniques to Elucidate the Influence of Cellulosic Waste on the Bacterial Community Structure at a Simulated Low-Level-Radioactive-Waste Site

    SciTech Connect

    Erin K. Field; Seth D'Imperio; Amber R. Miller; Michael R. VanEngelen; Robin Gerlach; Brady D. Lee; William A. Apel; Brent M. Peyton

    2010-05-01

    Low-level radioactive waste sites, including those at various U.S. Department of Energy (DOE) sites, frequently contain cellulosic waste in the form of paper towels, cardboard boxes, or wood contaminated with heavy metals and radionuclides such as chromium and uranium. To understand how the soil microbial community is influenced by the presence of cellulosic waste products, multiple soil samples were obtained from a non-radioactive model low-level waste test pit at the Idaho National Laboratory. Samples were analyzed using 16S rDNA clone libraries and 16S rRNA gene microarray (PhyloChip) analyses. Both the clone library and PhyloChip results revealed changes in the bacterial community structure with depth. In all samples, the PhyloChip detected significantly more unique Operational Taxonomic Units (OTUs), and therefore more relative diversity, than the clone libraries. Calculated diversity indices suggest that diversity is lowest in the Fill (F) and Fill Waste (FW) layers and greater in the Wood Waste (WW) and Waste Clay (WC) layers. Principal coordinates analysis and lineage specific analysis determined that Bacteroidetes and Actinobacteria phyla account for most of the significant differences observed between the layers. The decreased diversity in the FW layer and increased members of families containing known cellulose degrading microorganisms suggests the FW layer is an enrichment environment for cellulose degradation. Overall, these results suggest that the presence of the cellulosic material significantly influences the bacterial community structure in a stratified soil system.

  14. The development of new molecular tools containing a chemically synthesized carbohydrate ligand for the elucidation of carbohydrate roles via photoaffinity labeling: carbohydrate-protein interactions are affected by the structures of the glycosidic bonds and the reducing-end sugar.

    PubMed

    Ohtsuka, Isao; Sadakane, Yutaka; Hada, Noriyasu; Higuchi, Mari; Atsumi, Toshiyuki; Kakiuchi, Nobuko

    2014-08-01

    Photoaffinity labeling technology is a highly efficient method for cloning carbohydrate-binding proteins. When the carbohydrate probes are synthesized according to conventional methods, however, the reducing terminus of the sugar is opened to provide an acyclic structure. Our continued efforts to solve this problem led to the development of new molecular tools with an oligosaccharide structure that contains a phenyldiazirine group for the elucidation of carbohydrate-protein interactions. We investigated whether carbohydrate-lectin interactions are affected by differences in the glycosidic formation and synthesized three types of molecular tools containing Galp-GlcpNAc disaccharide ligands and a photoreactive group (1, 2, 3). Photoaffinity labeling validated the recognition of the new ligand by different glycosidic bonds. Photoaffinity labeling also demonstrated that both the reducing end sugar and non-reducing end sugar recognized the Erythrina cristagalli agglutinin.

  15. Synthesis, Structural Elucidation, and In Vitro Antitumor Activities of Some Pyrazolopyrimidines and Schiff Bases Derived from 5-Amino-3-(arylamino)-1H-pyrazole-4-carboxamides.

    PubMed

    Hafez, Taghrid S; Osman, Souad A; Yosef, Hisham Abdallah A; El-All, Amira S Abd; Hassan, Ashraf S; El-Sawy, Abdallah A; Abdallah, Mohamed M; Youns, Mahmoud

    2013-01-01

    The reaction of 5-amino-3-(arylamino)-1H-pyrazole-4-carboxamides 1a,b with acetylacetone 2 and arylidenemalononitriles 5a-c yielded the pyrazolo[1,5-a]-pyrimidine derivatives 4a,b and 7a-f respectively. On the other hand, Schiff bases 9a,b and 12a-j were obtained upon treatment of carboxamides 1a,b with isatin 8 and some selected aldehydes 11a-e. The newly synthesized compounds were characterized by analytical and spectroscopic data. Representative examples of the synthesized products 4a,b, 7e, 7f, 9b, 12b-f, 12h, and 12j were screened for their in vitro antitumor activities against different human cancer cell lines and the structure-activity relationship (SAR) was discussed.

  16. Synthesis, Structural Elucidation, and In Vitro Antitumor Activities of Some Pyrazolopyrimidines and Schiff Bases Derived from 5-Amino-3-(arylamino)-1H-pyrazole-4-carboxamides

    PubMed Central

    Hafez, Taghrid S.; Osman, Souad A.; Yosef, Hisham Abdallah A.; El-All, Amira S. Abd; Hassan, Ashraf S.; El-Sawy, Abdallah A.; Abdallah, Mohamed M.; Youns, Mahmoud

    2013-01-01

    The reaction of 5-amino-3-(arylamino)-1H-pyrazole-4-carboxamides 1a,b with acetylacetone 2 and arylidenemalononitriles 5a–c yielded the pyrazolo[1,5-a]-pyrimidine derivatives 4a,b and 7a–f respectively. On the other hand, Schiff bases 9a,b and 12a–j were obtained upon treatment of carboxamides 1a,b with isatin 8 and some selected aldehydes 11a–e. The newly synthesized compounds were characterized by analytical and spectroscopic data. Representative examples of the synthesized products 4a,b, 7e, 7f, 9b, 12b–f, 12h, and 12j were screened for their in vitro antitumor activities against different human cancer cell lines and the structure-activity relationship (SAR) was discussed. PMID:23833708

  17. Coupling multistripe laser triangulation with hyperspectral imaging VisNIR spectroscopy to elucidate the feedbacks between soil structure, hydrology, and organic matter

    NASA Astrophysics Data System (ADS)

    Hirmas, Daniel; Steffens, Markus; Sullivan, Pamela; Zhang, Chi; Giménez, Daniel

    2016-04-01

    Recent advances in three-dimensional (3-D) laser scanning techniques and reflectance spectroscopy provide the high-resolution quantitative measures needed to unravel the feedbacks mechanism between soil structure, hydrology, and organic matter at the pedon scale. Multistripe laser triangulation (MLT) can be used to quantify the shape, size, orientation, abundance, and spatial distribution of soil peds and associated macropore networks, while imaging visible light near infrared spectroscopy (imVisIR) can be used to examine the spatial distribution, quality and quantity of total, labile, and non-labile organic matter (SOM), iron, and manganese oxides at high spatial resolutions. In this work, we sought to investigate the potential for coupling these two disparate sensors (MLT and imVisIR) to examine relationships between soil structure, soil hydrology, and SOM. Soils were sampled from four landscape positions (summit, backslope, footslope, and toeslope) along an oak-hickory forest catena at the University of Kansas Field Station (KUFS) Fitch Natural History Reserve in conjunction with the installation of a National Ecological Observatory Network (NEON) site. Soil pits were excavated at each position to 1 m, described in detail by US Department of Agriculture-Natural Resource Conservation (USDA-NRCS) soil scientists, and sampled by morphological horizon for standard chemical and physical soil analyses. In addition, samples were taken from each horizon for root density and size determination, cores sampled to estimate water content, pore-size distribution, and hydraulic conductivity via low field nuclear magnetic resonance (NMR), and clods taken for water retention determination. Two intact soil monoliths per pit, carefully carved from the excavation walls at two depths (0-40 and 30-70 cm), were sampled in custom steel trays that were 15 cm wide by 40 cm long with a lip around the edge approximately 2 cm deep. The monoliths were prepared and dried at 40° C for 12

  18. Structure of the HCMV UL16-MICB Complex Elucidates Select Binding of a Viral Immunoevasin to Diverse NKG2D Ligands

    PubMed Central

    Müller, Steffen; Zocher, Georg; Steinle, Alexander; Stehle, Thilo

    2010-01-01

    The activating immunoreceptor NKG2D promotes elimination of infected or malignant cells by cytotoxic lymphocytes through engagement of stress-induced MHC class I-related ligands. The human cytomegalovirus (HCMV)-encoded immunoevasin UL16 subverts NKG2D-mediated immune responses by retaining a select group of diverse NKG2D ligands inside the cell. We report here the crystal structure of UL16 in complex with the NKG2D ligand MICB at 1.8 Å resolution, revealing the molecular basis for the promiscuous, but highly selective, binding of UL16 to unrelated NKG2D ligands. The immunoglobulin-like UL16 protein utilizes a three-stranded β-sheet to engage the α-helical surface of the MHC class I-like MICB platform domain. Intriguingly, residues at the center of this β-sheet mimic a central binding motif employed by the structurally unrelated C-type lectin-like NKG2D to facilitate engagement of diverse NKG2D ligands. Using surface plasmon resonance, we find that UL16 binds MICB, ULBP1, and ULBP2 with similar affinities that lie in the nanomolar range (12–66 nM). The ability of UL16 to bind its ligands depends critically on the presence of a glutamine (MICB) or closely related glutamate (ULBP1 and ULBP2) at position 169. An arginine residue at this position however, as found for example in MICA or ULBP3, would cause steric clashes with UL16 residues. The inability of UL16 to bind MICA and ULBP3 can therefore be attributed to single substitutions at key NKG2D ligand locations. This indicates that selective pressure exerted by viral immunoevasins such as UL16 contributed to the diversification of NKG2D ligands. PMID:20090832

  19. The Collaboratory for MS3D: A New Cyberinfrastructure for the Structural Elucidation of Biological Macromolecules and their Assemblies Using Mass Spectrometry-based Approaches

    PubMed Central

    Yu, Eizadora T.; Hawkins, Arie; Kuntz, Irwin D.; Rahn, Larry A.; Rothfuss, Andrew; Sale, Kenneth; Young, Malin M.; Yang, Christine L.; Pancerella, Carmen M.; Fabris, Daniele

    2009-01-01

    Modern biomedical research is evolving with the rapid growth of diverse data types, biophysical characterization methods, computational tools and extensive collaboration among researchers spanning various communities and having complementary backgrounds and expertise. Collaborating researchers are increasingly dependent on shared data and tools made available by other investigators with common interests, thus forming communities that transcend the traditional boundaries of the single research lab or institution. Barriers, however, remain to the formation of these virtual communities, usually due to the steep learning curve associated with becoming familiar with new tools, or with the difficulties associated with transferring data between tools. Recognizing the need for shared reference data and analysis tools, we are developing an integrated knowledge environment that supports productive interactions among researchers. Here we report on our current collaborative environment, which focuses on bringing together structural biologists working in the area of mass spectrometric based methods for the analysis of tertiary and quaternary macromolecular structures (MS3D) called the Collaboratory for MS3D (C-MS3D). C-MS3D is a web-portal designed to provide collaborators with a shared work environment that integrates data storage and management with data analysis tools. Files are stored and archived along with pertinent meta data in such a way as to allow file handling to be tracked (data provenance) and data files to be searched using keywords and modification dates. While at this time the portal is designed around a specific application, the shared work environment is a general approach to building collaborative work groups. The goal of which is to not only provide a common data sharing and archiving system but also to assist in the building of new collaborations and to spur the development of new tools and technologies. PMID:18817429

  20. Elucidation of electronic structure by the analysis of hyperfine interactions: The MnH A 7Π-X 7Sigma + (0,0) band

    NASA Astrophysics Data System (ADS)

    Varberg, Thomas D.; Field, Robert W.; Merer, Anthony J.

    1991-08-01

    We present a complete analysis of the hyperfine structure of the MnH A 7Π-X 7Σ+ (0,0) band near 5680 Å, studied with sub-Doppler resolution by intermodulated fluorescence spectroscopy. Magnetic hyperfine interactions involving both the 55Mn (I=5/2) and 1H (I=1/2) nuclear spins are observed as well as 55Mn electric quadrupole effects. The manganese Fermi contact interaction in the X 7Σ+ state is the dominant contributor to the observed hyperfine splittings; the ΔF=0, ΔN=0, ΔJ=±1 matrix elements of this interaction mix the electron spin components of the ground state quite strongly at low N, destroying the ``goodness'' of J as a quantum number and inducing rotationally forbidden, ΔJ=±2 and ±3 transitions. The hyperfine splittings of over 50 rotational transitions covering all 7 spin components of both states were analyzed and fitted by least squares, allowing the accurate determination of 14 different hyperfine parameters. Using single electronic configurations to describe the A 7Π and X 7Σ+ states and Herman-Skillman atomic radial wave functions to represent the molecular orbitals, we calculated a priori values for the 55Mn and 1H hyperfine parameters which agree closely with experiment. We show that the five high-spin coupled Mn 3d electrons do not contribute to the manganese hyperfine structure but are responsible for the observed proton magnetic dipolar couplings. Furthermore, the results suggest that the Mn 3d electrons are not significantly involved in bonding and demonstrate that the molecular hyperfine interactions may be quantitatively understood using simple physical interpretations.

  1. The collaboratory for MS3D: a new cyberinfrastructure for the structural elucidation of biological macromolecules and their assemblies using mass spectrometry-based approaches.

    PubMed

    Yu, Eizadora T; Hawkins, Arie; Kuntz, Irwin D; Rahn, Larry A; Rothfuss, Andrew; Sale, Kenneth; Young, Malin M; Yang, Christine L; Pancerella, Carmen M; Fabris, Daniele

    2008-11-01

    Modern biomedical research is evolving with the rapid growth of diverse data types, biophysical characterization methods, computational tools and extensive collaboration among researchers spanning various communities and having complementary backgrounds and expertise. Collaborating researchers are increasingly dependent on shared data and tools made available by other investigators with common interests, thus forming communities that transcend the traditional boundaries of the single research laboratory or institution. Barriers, however, remain to the formation of these virtual communities, usually due to the steep learning curve associated with becoming familiar with new tools, or with the difficulties associated with transferring data between tools. Recognizing the need for shared reference data and analysis tools, we are developing an integrated knowledge environment that supports productive interactions among researchers. Here we report on our current collaborative environment, which focuses on bringing together structural biologists working in the area of mass spectrometric based methods for the analysis of tertiary and quaternary macromolecular structures (MS3D) called the Collaboratory for MS3D (C-MS3D). C-MS3D is a Web-portal designed to provide collaborators with a shared work environment that integrates data storage and management with data analysis tools. Files are stored and archived along with pertinent meta data in such a way as to allow file handling to be tracked (data provenance) and data files to be searched using keywords and modification dates. While at this time the portal is designed around a specific application, the shared work environment is a general approach to building collaborative work groups. The goal of this is to not only provide a common data sharing and archiving system, but also to assist in the building of new collaborations and to spur the development of new tools and technologies.

  2. Seismic Performance of a Base Isolated Structure by Shake Table Tests

    SciTech Connect

    Yenidogan, Cem; Uckan, Eren

    2008-07-08

    A 1/4 scaled model structure has been tested on a shake table to investigate the effectiveness of a passive-hybrid isolation system for a three-storey mass concentric steel structure. The isolation system consists of two high damping rubber bearings (HDRB) and four flat sliding bearings (PTFE), which are located below the central and corner columns, respectively. To maintain dynamic similitude, each earthquake record was compressed in time by a factor of two. Measurements were taken at structural points and at the bearings. Two different type of HDRB's were tested. A numerical model for the structure was developed and calibrated by the data from the experimental studies. The effectiveness of the hybrid isolation system is verified by comparing the results obtained from both isolated and fixed base models.

  3. Temperature-Dependence of Lipid A Acyl Structure in Psychrobacter cryohalolentis and Arctic Isolates of Colwellia hornerae and Colwellia piezophila

    PubMed Central

    Sweet, Charles R.; Watson, Rebecca E.; Landis, Corinne A.; Smith, Joseph P.

    2015-01-01

    Lipid A is a fundamental Gram-negative outer membrane component and the essential element of lipopolysaccharide (endotoxin), a potent immunostimulatory molecule. This work describes the metabolic adaptation of the lipid A acyl structure by Psychrobacter cryohalolentis at various temperatures in its facultative psychrophilic growth range, as characterized by MALDI-TOF MS and FAME GC-MS. It also presents the first elucidation of lipid A structure from the Colwellia genus, describing lipid A from strains of Colwellia hornerae and Colwellia piezophila, which were isolated as primary cultures from Arctic fast sea ice and identified by 16S rDNA sequencing. The Colwellia strains are obligate psychrophiles, with a growth range restricted to 15 °C or less. As such, these organisms have less need for fluidity adaptation in the acyl moiety of the outer membrane, and they do not display alterations in lipid A based on growth temperature. Both Psychrobacter and Colwellia make use of extensive single-methylene variation in the size of their lipid A molecules. Such single-carbon variations in acyl size were thought to be restricted to psychrotolerant (facultative) species, but its presence in these Colwellia species shows that odd-chain acyl units and a single-carbon variation in lipid A structure are present in obligate psychrophiles, as well. PMID:26264000

  4. FT-IR and Raman spectroscopies determine structural changes of tilapia fish protein isolate and surimi under different comminution conditions.

    PubMed

    Kobayashi, Yuka; Mayer, Steven G; Park, Jae W

    2017-07-01

    Tilapia proteins refined by pH shift and water washing were chopped under various comminution conditions and their structural changes were investigated using Fourier transform infrared (FT-IR) and Raman spectroscopies. Both techniques revealed the degree of unfolding in protein structure increased when fish protein isolate (FPI) and surimi were chopped at 25°C for 18min compared to samples chopped at 5°C for 6min. Results indicated both hydrophobic interactions and disulfide bonds were significantly enhanced during gelation. FPI and surimi gels prepared at 25°C for 18min exhibited higher β-sheet contents and more chemical bonds such as hydrophobic interactions and disulfide bonds than those at 5°C for 6min. Results suggested that controlling comminution is important to improve gel qualities in FPI and surimi from tropical fish like tilapia. Moreover, FT-IR and Raman spectroscopies are useful complementary tools for elucidating the change in the structure of protein during comminution and gelation.

  5. Temperature-Dependence of Lipid A Acyl Structure in Psychrobacter cryohalolentis and Arctic Isolates of Colwellia hornerae and Colwellia piezophila.

    PubMed

    Sweet, Charles R; Watson, Rebecca E; Landis, Corinne A; Smith, Joseph P

    2015-07-30

    Lipid A is a fundamental Gram-negative outer membrane component and the essential element of lipopolysaccharide (endotoxin), a potent immunostimulatory molecule. This work describes the metabolic adaptation of the lipid A acyl structure by Psychrobacter cryohalolentis at various temperatures in its facultative psychrophilic growth range, as characterized by MALDI-TOF MS and FAME GC-MS. It also presents the first elucidation of lipid A structure from the Colwellia genus, describing lipid A from strains of Colwellia hornerae and Colwellia piezophila, which were isolated as primary cultures from Arctic fast sea ice and identified by 16S rDNA sequencing. The Colwellia strains are obligate psychrophiles, with a growth range restricted to 15 °C or less. As such, these organisms have less need for fluidity adaptation in the acyl moiety of the outer membrane, and they do not display alterations in lipid A based on growth temperature. Both Psychrobacter and Colwellia make use of extensive single-methylene variation in the size of their lipid A molecules. Such single-carbon variations in acyl size were thought to be restricted to psychrotolerant (facultative) species, but its presence in these Colwellia species shows that odd-chain acyl units and a single-carbon variation in lipid A structure are present in obligate psychrophiles, as well.

  6. Food web structure and seasonality of slope megafauna in the NW Mediterranean elucidated by stable isotopes: Relationship with available food sources

    NASA Astrophysics Data System (ADS)

    Papiol, V.; Cartes, J. E.; Fanelli, E.; Rumolo, P.

    2013-03-01

    The food-web structure and seasonality of the dominant taxa of benthopelagic megafauna (fishes and decapods) on the middle slope of the Catalan Sea (Balearic Basin, NW Mediterranean) were investigated using the carbon and nitrogen stable isotope ratios of 29 species. Macrofauna (infauna, suprabenthos and zooplankton) were also analysed as potential prey. Samples were collected on a seasonal basis from 600 to 1000 m depth between February 2007 and February 2008. The fishes and decapods were classified into feeding groups based on the literature: benthic feeders (including suprabenthos) and zooplankton feeders, the latter further separated into migratory and non-migratory species. Decapods exhibited depleted δ15N and enriched δ13C compared to fishes. Annual mean δ13C of fishes ranged from - 19.15‰ (Arctozenus risso) to - 16.65‰ (Phycis blennoides) and of δ15N from 7.27‰ (Lampanyctus crocodilus) to 11.31‰ (Nezumia aequalis). Annual mean values of δ13C of decapods were from - 18.94‰ (Sergestes arcticus) to - 14.78‰ (Pontophilus norvegicus), and of δ15N from 6.36‰ (Sergia robusta) to 9.72‰ (Paromola cuvieri). Stable isotopes distinguished well amongst the 3 feeding guilds established a priori, pointing to high levels of resource partitioning in deep-sea communities. The trophic structure of the community was a function of the position of predators along the benthic-pelagic gradient, with benthic feeders isotopically enriched relative to pelagic feeders. This difference allowed the identification of two food webs based on pelagic versus benthic consumption. Prey and predator sizes were also important in structuring the community. The most generalised seasonal pattern was δ13C depletion from winter to spring and summer, especially amongst migratory macroplankton feeders. This suggests greater consumption of pelagic prey, likely related with increases in pelagic production or with ontogenic migrations of organisms from mid-water to the Benthic

  7. Synthesis, structure elucidation and redox properties of 99Tc complexes of lacunary Wells Dawson polyoxometalates: insights into molecular 99Tc - metal oxide interactions

    SciTech Connect

    McGregor, Donna; Burton-Pye, Benjamin P.; Howell, Robertha C.; Mbomekalle, Israel M.; Lukens Jr, Wayne W.; Bian, Fang; Mausolf, Edward; Poineau, Frederic; Czerwinski, Kenneth R; Francesconi, Lynn C.

    2011-01-10

    The isotope 99Tc (beta max: 250 keV, half-life: 2 x 105 year) is an abundant product of uranium-235 fission in nuclear reactors and is present throughout the radioactive waste stored in underground tanks at Hanford and Savannah River. Understanding and controlling the extensive redox chemistry of 99Tc is important to identify tunable strategies to separate 99Tc from spent fuel and from waste tanks and once separated, to identify and develop an appropriately stable waste-form for 99Tc. Polyoxometalates (POMs), nanometer sized models for metal oxide solid-state materials, are used in this study to provide a molecular level understanding of the speciation and redox chemistry of incorporated 99Tc. In this study, 99Tc complexes of the (alpha 2-P2W17O61)10- and (alpha 1-P2W17O61)10- isomers were prepared. Ethylene glycol was used as a"transfer ligand" to minimize the formation of TcO2 cdot xH2O. The solution structures, formulations, and purity of TcVO(alpha 1/alpha 2-P2W17O61)7- were determined by multinuclear NMR. X-ray Absorption Spectroscopy of the complexes are in agreement with the formulation and structures determined from 31P and 183W NMR. Preliminary electrochemistry results are consistent with the EXAFS results, showing a facile reduction of the TcVO(alpha 1-P2W17O61)7- species compared to the TcVO(alpha 2-P2W17O61)7- analog. The alpha1- defect is unique in that a basic oxygen atom is positioned toward the alpha1- site and the TcVO center appears to form a dative metal-metal bond with a framework W site. These attributes may lead to the assistance of protonation events that facilitate reduction. Electrochemistry comparison shows that the ReV analogs are about 200 mV more difficult to reduce in accordance with periodic trends.

  8. Synthesis, structure elucidation, biological screening, molecular modeling and DNA binding of some Cu(II) chelates incorporating imines derived from amino acids

    NASA Astrophysics Data System (ADS)

    Abdel-Rahman, Laila H.; Abu-Dief, Ahmed M.; Ismael, Mohammed; Mohamed, Mounir A. A.; Hashem, Nahla Ali

    2016-01-01

    Three tridentate Schiff bases amino acids were prepared by direct condensation of 3-methoxysalicylaldehyde (MS) or 4-diethylaminosalicylaldehyde (DS) with α-amino acid ligands [L-phenylalanine (P), L-histidine (H) and DL-tryptophan (T)]. The prepared Schiff bases amino acids were investigated by melting points, elemental analysis, 1HNMR and 13CNMR, IR, UV-Vis spectra, conductivity and magnetic measurements analyses. Subsequently, copper was introduced and Cu(II) complexes formed. These complexes were analyzed by thermal and elemental analyses and further investigated by FT-IR and UV/Vis spectroscopies. The experimental results indicating that all Cu(II) complexes contain hydrated water molecules (except DSPCu complex) and don't contain coordinated water molecules. The kinetic and thermal parameters were extracted from the thermal data using Coast and Redfern method. The molar conductance values of the Schiff base amino acid ligands and their Cu(II) complexes were relatively low, showing that these compounds have non-electrolytic nature. Magnetic susceptibility measurements showed the diamagnetic nature of the Schiff base amino acid ligands and paramagnetic nature of their complexes. Additionally, a spectrophotometric method was determined to extract their stability constants. It was found that the complexes possess 1:2 (M:L) stoichiometry. The results suggested that 3-methoxysalicylaldehyde and 4-diethylaminosalicylaldehyde amino acid Schiff bases behave as monobasic tridentate ONO ligands and coordinate Cu(II) ions in octahedral geometry according to the general formula [Cu(HL)2]·nH2O. To further understanding the structural and electronic properties of these complexes, Density Functional Theory (DFT) calculations were employed and provided a satisfactory description. The optimized structures of MST Schiff base ligand and its complex were calculated using DFT. The antimicrobial activity of the Schiff base ligands and their complexes were screened against some

  9. Isolation, subunit structure, and proteolytic modification of bovine factor VIII.

    PubMed

    Legaz, M E; Weinstein, M J; Heldebrant, C M; Davie, E W

    1975-01-20

    A new method has been described for the isolation of factor VIII. The method results in a high yield of factor VIII that is homogeneous by several different criteria. The purified protein is very stable and is not dissociated in the presence of 1 M NaCl or 0.25 M CaCl2. The highly purified protein is readily activated and inactivated by various proteolytic enzymes, such as thrombin, plasmin, and trypsin. The molecular events that lead to the activation reaction, however, have not been established.

  10. Design, structural and spectroscopic elucidation of new nitroaromatic carboxylic acids and semicarbazones for the in vitro screening of anti-leishmanial activity

    NASA Astrophysics Data System (ADS)

    Dias, L. C.; de Lima, G. M.; Pinheiro, C. B.; Rodrigues, B. L.; Donnici, C. L.; Fujiwara, R. T.; Bartholomeu, D. C.; Ferreira, R. A.; Ferreira, S. R.; Mendes, T. A. O.; da Silva, J. G.; Alves, M. R. A.

    2015-01-01

    In this paper we report the synthesis and characterization of four new nitroaromatic compounds, 2-{6-nitrobenzo[1,3]dioxol-5-(methyleneamino)}benzoic acid (1), 2-{[5-(2-nitrophenyl)furan-2-yl]methylene-amino}benzoic acid (2), 2-{(6-nitrobenzo[1,3]dioxol-5-yl)methylene}hydrazinecarboxamide (3) and 2-{[5-(2-nitrophenyl)furan-2-yl]methylene}hydrazinecarboxamide (4). Compounds (1)-(4) have been authenticated by infrared and NMR spectroscopy, and the structure of (1), (2) and (4) have been determined by X-ray diffraction. In addition, the in vitro ability of compounds (1)-(4) to inhibit the growth of Leishmania infantum has been evaluated. Comparisons of the redox potential of the compounds and leishmanicidal activity indicate that the presence of the electroactive nitro group is important for the biological activity. The inhibition activity of compound (3) is comparable to that of the reference drug, SbCl3. Considering the important side effects and the low efficiency of SbCl3 in the case of resistance, compound (3) deserves further attention as a promising anti-leishmanicidal drug for veterinary use.

  11. Elucidation of the structural determinants responsible for the specific formation of heterodimeric Mxd1/Max b-HLH-LZ and its binding to E-box sequences.

    PubMed

    Montagne, Martin; Naud, Jean-François; Lavigne, Pierre

    2008-02-08

    The proteins of the Mxd family (formally known as Mad) are antagonists of the oncoprotein c-Myc. They compete with c-Myc for their obligate partner Max to prevent the c-Myc/Max heterodimer from binding to E-box sequences in the target gene promoters. In cancer cells, where Myc is overexpressed, the expression of Mxd proteins is usually insufficient or abrogated. However, the reintroduction of Mxd1 expression in these cells prevents growth and proliferation. While the antagonism of c-Myc functions by Mxd proteins is of potential relevance for the development of cancer treatment strategies, the structural determinants responsible for the specific heterodimerization between the Mxd and the Max b-helix-loop-helix-leucine zippers are not fully understood. Moreover, whether the heterodimer is assembled on DNA or in the nucleoplasm prior to DNA binding is under debate. In this article, we demonstrate that Mxd1 D112a and Max N78a and H81d, which are located in the leucine zippers of the proteins, can dictate the specificity of heterodimerization and whether or not the Mxd1/Max/DNA complex forms. Our results also indicate that additional specific determinants exist in the helix-loop-helix domains of Max and Mxd1. Finally, we provide evidence that heterodimerization must precede DNA binding in vivo.

  12. Bio-sensitive activities of coordination compounds containing 1,10-phenanthroline as co-ligand: Synthesis, structural elucidation and DNA binding properties of metal(II) complexes

    NASA Astrophysics Data System (ADS)

    Raman, Natarajan; Mahalakshmi, Rajkumar; Mitu, Liviu

    2014-10-01

    Present work reports the DNA binding and cleavage characteristics of a series of mixed-ligand complexes having the composition [M(L)(phen)2]Cl2 (where M = Cu(II), Ni(II), Co(II) and Zn(II) and phen as co-ligand) in detail. Their structural features and other properties have been deduced from their elemental analyses, magnetic susceptibility and molar conductivity as well as from IR, UV-Vis, 1H NMR and EPR spectral studies. The UV-Vis, magnetic susceptibility and EPR spectral data of metal complexes suggest an octahedral geometry. The binding properties of these complexes with calf thymus DNA (CT-DNA) have been explored using electronic absorption spectroscopy, viscosity measurement, cyclic voltammetry and differential pulse voltammetry. The DNA-binding constants for Cu(II), Ni(II), Co(II), and Zn(II) complexes are 6.14 × 105 M-1, 1.8 × 105 M-1, 6.7 × 104 M-1 and 2.5 × 104 M-1 respectively. Detailed analysis reveals that these complexes interact with DNA through intercalation binding. Nuclease activity has also been investigated by gel electrophoresis. Moreover, the synthesized Schiff base and its mixed-ligand complexes have been screened for antibacterial and antifungal activities. The data reveal that the complexes exhibit higher activity than the parent ligand.

  13. Structure Elucidation at the Nanomole-Scale. 1. Trisoxazole Macrolides and Thiazole-containing Cyclic Peptides from the Nudibranch Hexabranchus sanguineus

    PubMed Central

    Dalisay, Doralyn S.; Rogers, Evan W.; Edison, Arthur S.; Molinski, Tadeusz F.

    2009-01-01

    A single specimen of Hexabranchus sanguineus, a nudibranch from the Indo-Pacific that is known to sequester kabiramides B, C and other trisoxazole macrolides, yielded new kabiramide analogs – 9-desmethylkabiramide B and 33-methyltetrahydrohalichondramide – and two new unexpected thiazole-containing cyclic peptides in sub-micromole amounts. The structures of these cyclic peptides were determined by analyses of 1D and 2D NMR spectra recorded with a state-of-the-art 1-mm 1H NMR high-temperature superconducting micro-cryoprobe, together with mass spectra. In addition to two proline residues, each peptide contains a thiazole- or oxazole-modified amino acid residue, together with conventional amino acid residues. All of the amino acid residues were L- as determined by Marfey’s analysis of the acid hydrolysates of the peptides. This is the first report of cyclic thiazole peptides from H. sanguineus. Since thiazole-oxazole modified peptides are typically associated with cyanobacteria and tunicates, the finding may imply a dietary component of the H. sanguineus that was previously overlooked. PMID:19254038

  14. Structure optimization of 2-benzamidobenzoic acids as PqsD inhibitors for Pseudomonas aeruginosa infections and elucidation of binding mode by SPR, STD NMR, and molecular docking.

    PubMed

    Weidel, Elisabeth; de Jong, Johannes C; Brengel, Christian; Storz, Michael P; Braunshausen, Andrea; Negri, Matthias; Plaza, Alberto; Steinbach, Anke; Müller, Rolf; Hartmann, Rolf W

    2013-08-08

    Pseudomonas aeruginosa employs a characteristic pqs quorum sensing (QS) system that functions via the signal molecules PQS and its precursor HHQ. They control the production of a number of virulence factors and biofilm formation. Recently, we have shown that sulfonamide substituted 2-benzamidobenzoic acids, which are known FabH inhibitors, are also able to inhibit PqsD, the enzyme catalyzing the last and key step in the biosynthesis of HHQ. Here, we describe the further optimization and characterization of this class of compounds as PqsD inhibitors. Structural modifications showed that both the carboxylic acid ortho to the amide and 3'-sulfonamide are essential for binding. Introduction of substituents in the anthranilic part of the molecule resulted in compounds with IC50 values in the low micromolar range. Binding mode investigations by SPR with wild-type and mutated PqsD revealed that this compound class does not bind into the active center of PqsD but in the ACoA channel, preventing the substrate from accessing the active site. This binding mode was further confirmed by docking studies and STD NMR.

  15. Base-pair opening dynamics of primary miR156a using NMR elucidates structural determinants important for its processing level and leaf number phenotype in Arabidopsis

    PubMed Central

    Kim, Wanhui; Kim, Hee-Eun; Lee, Ae-Ree; Jun, A Rim; Jung, Myeong Gyo; Ahn, Ji Hoon; Lee, Joon-Hwa

    2017-01-01

    MicroRNAs originate from primary transcripts containing hairpin structures. The levels of mature miR156 influence the leaf number prior to flowering in the life cycle of plants. To understand the molecular mechanism of biogenesis of primary miR156a (pri-miR156a) to mature miR156, a base-pair opening dynamics study was performed using model RNAs mimicking the cleavage site of wild type and B5 bulge-stabilizing mutant pri-miR156a constructs. We also determined the mature miR156 levels and measured leaf numbers at flowering of plants overexpressing the wild type and mutant constructs. Our results suggest that the stabilities and/or opening dynamics of the C15·G98 and U16·A97 base-pairs at the cleavage site are essential for formation of the active conformation and for efficient processing of pri-miR156a, and that mutations of the B5 bulge can modulate mature miR156 levels as well as miR156-driven leaf number phenotypes via changes in the base-pair stability of the cleavage site. PMID:27574118

  16. Bio-sensitive activities of coordination compounds containing 1,10-phenanthroline as co-ligand: synthesis, structural elucidation and dna binding properties of metal(II) complexes.

    PubMed

    Raman, Natarajan; Mahalakshmi, Rajkumar; Mitu, Liviu

    2014-10-15

    Present work reports the DNA binding and cleavage characteristics of a series of mixed-ligand complexes having the composition [M(L)(phen)2]Cl2 (where M=Cu(II), Ni(II), Co(II) and Zn(II) and phen as co-ligand) in detail. Their structural features and other properties have been deduced from their elemental analyses, magnetic susceptibility and molar conductivity as well as from IR, UV-Vis, (1)H NMR and EPR spectral studies. The UV-Vis, magnetic susceptibility and EPR spectral data of metal complexes suggest an octahedral geometry. The binding properties of these complexes with calf thymus DNA (CT-DNA) have been explored using electronic absorption spectroscopy, viscosity measurement, cyclic voltammetry and differential pulse voltammetry. The DNA-binding constants for Cu(II), Ni(II), Co(II), and Zn(II) complexes are 6.14×10(5)M(-1), 1.8×10(5)M(-1), 6.7×10(4)M(-1) and 2.5×10(4)M(-1) respectively. Detailed analysis reveals that these complexes interact with DNA through intercalation binding. Nuclease activity has also been investigated by gel electrophoresis. Moreover, the synthesized Schiff base and its mixed-ligand complexes have been screened for antibacterial and antifungal activities. The data reveal that the complexes exhibit higher activity than the parent ligand.

  17. Identification and structural elucidation of two process impurities and stress degradants in darifenacin hydrobromide active pharmaceutical ingredient by LC-ESI/MS(n).

    PubMed

    Thomas, Saji; Paul, Saroj Kumar; Shandilya, Sanjeev; Agarwal, Ashutosh; Saxena, Nitesh; Awasthi, Arun Kumar; Matta, Hari babu; Vir, Dharam; Mathela, Chandra S

    2012-08-07

    The present study describes the identification and characterization of two process impurities and major stress degradants in darifenacin hydrobromide using high performance liquid chromatography (HPLC) analysis. Forced degradation studies confirmed that the drug substance was stable under acidic, alkaline, aqueous hydrolysis, thermal and photolytic conditions and susceptible only to oxidative degradation. Impurities were identified using liquid chromatography coupled with ion trap mass spectrometry (LC-MS/MS(n)). Proposed structures were unambiguously confirmed by synthesis followed by characterization using nuclear magnetic resonance spectroscopy (NMR), infrared spectroscopy (IR) and elemental analysis (EA). Based on the spectroscopic, spectrometric and elemental analysis data, the unknown impurities were characterized as 2-{1-[2-(2,3-dihydrobenzofuran-5-yl)-2-oxo-ethyl]-pyrrolidin-3-yl}-2,2-diphenylacetamide (Imp-A), 2-[1-(2-benzofuran-5-yl-ethyl)-pyrrolidin-3-yl]-2,2-diphenylacetamide (Imp-B), 2-{1-[2-(2,3-dihydrobenzofuran-5-yl)-ethyl]-1-oxy-pyrrolidin-3-yl}-2,2-diphenylacetamide (Imp-C) and 2-{1-[2-(7-bromo-2,3-dihydrobenzofuran-5-yl)-ethyl]-pyrrolidin-3-yl}-2,2-diphenylacetamide (Imp-D). Plausible mechanisms for the formation and control of these impurities have also been proposed. The method was validated as per regulatory guidelines to demonstrate specificity, sensitivity, linearity, precision, accuracy and the stability-indicating nature. Regression analysis showed a correlation coefficient value greater than 0.99 for darifenacin hydrobromide and its impurities. The accuracy of the method was established based on the recovery obtained between 86.6 and 106.7% for all impurities.

  18. Prediction Models of Retention Indices for Increased Confidence in Structural Elucidation during Complex Matrix Analysis: Application to Gas Chromatography Coupled with High-Resolution Mass Spectrometry.

    PubMed

    Dossin, Eric; Martin, Elyette; Diana, Pierrick; Castellon, Antonio; Monge, Aurelien; Pospisil, Pavel; Bentley, Mark; Guy, Philippe A

    2016-08-02

    Monitoring of volatile and semivolatile compounds was performed using gas chromatography (GC) coupled to high-resolution electron ionization mass spectrometry, using both headspace and liquid injection modes. A total of 560 reference compounds, including 8 odd n-alkanes, were analyzed and experimental linear retention indices (LRI) were determined. These reference compounds were randomly split into training (n = 401) and test (n = 151) sets. LRI for all 552 reference compounds were also calculated based upon computational Quantitative Structure-Property Relationship (QSPR) models, using two independent approaches RapidMiner (coupled to Dragon) and ACD/ChromGenius software. Correlation coefficients for experimental versus predicted LRI values calculated for both training and test set compounds were calculated at 0.966 and 0.949 for RapidMiner and at 0.977 and 0.976 for ACD/ChromGenius, respectively. In addition, the cross-validation correlation was calculated at 0.96 from RapidMiner and the residual standard error value obtained from ACD/ChromGenius was 53.635. These models were then used to predict LRI values for several thousand compounds reported present in tobacco and tobacco-related fractions, plus a range of specific flavor compounds. It was demonstrated that using the mean of the LRI values predicted by RapidMiner and ACD/ChromGenius, in combination with accurate mass data, could enhance the confidence level for compound identification from the analysis of complex matrixes, particularly when the two predicted LRI values for a compound were in close agreement. Application of this LRI modeling approach to matrixes with unknown composition has already enabled the confirmation of 23 postulated compounds, demonstrating its ability to facilitate compound identification in an analytical workflow. The goal is to reduce the list of putative candidates to a reasonable relevant number that can be obtained and measured for confirmation.

  19. Three-dimensional quantitative structure-activity relationship (3D QSAR) and pharmacophore elucidation of tetrahydropyran derivatives as serotonin and norepinephrine transporter inhibitors

    NASA Astrophysics Data System (ADS)

    Kharkar, Prashant S.; Reith, Maarten E. A.; Dutta, Aloke K.

    2008-01-01

    Three-dimensional quantitative structure-activity relationship (3D QSAR) using comparative molecular field analysis (CoMFA) was performed on a series of substituted tetrahydropyran (THP) derivatives possessing serotonin (SERT) and norepinephrine (NET) transporter inhibitory activities. The study aimed to rationalize the potency of these inhibitors for SERT and NET as well as the observed selectivity differences for NET over SERT. The dataset consisted of 29 molecules, of which 23 molecules were used as the training set for deriving CoMFA models for SERT and NET uptake inhibitory activities. Superimpositions were performed using atom-based fitting and 3-point pharmacophore-based alignment. Two charge calculation methods, Gasteiger-Hückel and semiempirical PM3, were tried. Both alignment methods were analyzed in terms of their predictive abilities and produced comparable results with high internal and external predictivities. The models obtained using the 3-point pharmacophore-based alignment outperformed the models with atom-based fitting in terms of relevant statistics and interpretability of the generated contour maps. Steric fields dominated electrostatic fields in terms of contribution. The selectivity analysis (NET over SERT), though yielded models with good internal predictivity, showed very poor external test set predictions. The analysis was repeated with 24 molecules after systematically excluding so-called outliers (5 out of 29) from the model derivation process. The resulting CoMFA model using the atom-based fitting exhibited good statistics and was able to explain most of the selectivity (NET over SERT)-discriminating factors. The presence of -OH substituent on the THP ring was found to be one of the most important factors governing the NET selectivity over SERT. Thus, a 4-point NET-selective pharmacophore, after introducing this newly found H-bond donor/acceptor feature in addition to the initial 3-point pharmacophore, was proposed.

  20. Elucidating the structural properties that influence the persistence of PCBs in humans using the National Health and Nutrition Examination Survey (NHANES) dataset.

    PubMed

    Megson, David; O'Sullivan, Gwen; Comber, Sean; Worsfold, Paul J; Lohan, Maeve C; Edwards, Melanie R; Shields, Walter J; Sandau, Courtney D; Patterson, Donald G

    2013-09-01

    In human exposure studies involving Polychlorinated Biphenyls (PCBs), it is useful to establish when an individual was potentially exposed. Age dating PCB exposure is complex but assessments can be made because different PCB congeners have different residence times in the human body. The less chlorinated congeners generally tend to have shorter residence times because they are biotransformed and eliminated faster than more chlorinated congeners. Therefore, the presence of high proportions of less chlorinated congeners is often indicative of recent exposure. The 2003-04 National Health and Nutrition Examination Survey (NHANES) dataset contains results for the concentration of 37 PCBs in a sub-sample of the US population. Multivariate statistical analysis of the NHANES data showed that less chlorinated congeners are not always biotransformed faster than higher chlorinated compounds. For example, PCB 28 (a tri-chlorobiphenyl) appears to be more resistant to biotransformation than PCB 101 and 110 (penta-chlorobiphenyls). Using statistical analysis of the NHANES data in conjunction with previously published studies on PCB persistence in humans, it was possible to identify the structural relationships that determine if a PCB is likely to be from a recent exposure (termed 'episodic') or from steady state exposure. Congeners with chlorine atoms in the 2,5- and 2,3,6-positions appear to be more susceptible to biotransformation whereas congeners with chlorine bonds in the 2,3,4- 2,4,5- 3,4,5- and 2,3,4,5-positions appear to be more persistent. This work shows that future investigations to date PCB exposure would benefit from the analysis of a wide range of congeners, including the selection of key congeners based not only on the degree of chlorination but also on the positions of the chlorine atoms on the biphenyl.

  1. The renaissance of high-energy CID for structural elucidation of complex lipids: MALDI-TOF/RTOF-MS of alkali cationized triacylglycerols.

    PubMed

    Pittenauer, Ernst; Allmaier, Günter

    2009-06-01

    Triacylglycerols were analyzed as cationized species (Li(+), Na(+), K(+)) by high-energy CID at 20 keV collisions utilizing MALDI-TOF/RTOF mass spectrometry. Precursor ions, based on [M + Li](+)-adduct ions exhibited incomplete fragmentation in the high and low m/z region whereas [M + K](+)-adducts did not show useful fragmentation. Only sodiated precursor ions yielded product ion spectra with structurally diagnostic product ions across the whole m/z range. The high m/z region of the CID spectra is dominated by abundant charge-remote fragmentation of the fatty acid substituents. In favorable cases also positions of double bonds or of hydroxy groups of the fatty acid alkyl chains could be determined. A-type product ions represent the end products of these charge-remote fragmentations. B- and C-type product ions yield the fatty acid composition of individual triacylglycerol species based on loss of either one neutral fatty acid or one sodium carboxylate residue, respectively. Product ions allowing fatty acid substituent positional determination were present in the low m/z range enabling identification of either the sn-1/sn-3 substituents (E-, F-, and G-type ions) or the sn-2 substituent (J-type ion). These findings were demonstrated with synthetic triacylglycerols and plant oils such as cocoa butter, olive oil, and castor bean oil. Typical features of 20 keV CID spectra of sodiated triacylglycerols obtained by MALDI-TOF/RTOF MS were an even distribution of product ions over the entire m/z range and a mass accuracy of +/-0.1 to 0.2 u. One limitation of the application of this technique is mainly the insufficient precursor ion gating after MS1 (gating window at 4 u) of species separated by 2 u.

  2. Purification, crystallization and structural elucidation of d-galactaro-1,4-lactone cycloisomerase from Agrobacterium tumefaciens involved in pectin degradation

    PubMed Central

    Vetting, Matthew W.; Bouvier, Jason T.; Gerlt, John A.; Almo, Steven C.

    2016-01-01

    Pectin is found in the cell wall of plants and is often discarded as waste. A number of research groups are interested in redirecting this biomass waste stream for the production of fuel and bulk chemicals. The primary monomeric subunit of this polysaccharide is d-galacturonate, a six-carbon acid sugar that is degraded in a five-step pathway to central metabolic intermediates by some bacteria, including Agrobacterium tumefaciens. In the third step of the pathway, d-galactaro-1,4-lactone is converted to 2-keto-3-deoxy-l-threo-hexarate by a member of the mandelate racemase subgroup of the enolase superfamily with a novel activity for the superfamily. The 1.6 Å resolution structure of this enzyme was determined, revealing an overall modified (β/α)7β TIM-barrel domain, a hallmark of the superfamily. d-Galactaro-1,4-lactone was manually docked into the active site located at the interface between the N-terminal lid domain and the C-terminal barrel domain. On the basis of the position of the lactone in the active site, Lys166 is predicted to be the active-site base responsible for abstraction of the α proton. His296 on the opposite side of the active site is predicted to be the general acid that donates a proton to the β carbon as the lactone ring opens. The lactone ring appears to be oriented within the active site by stacking interactions with Trp298. PMID:26750482

  3. Crystallographic analysis of human hemoglobin elucidates the structural basis of the potent and dual antisickling activity of pyridyl derivatives of vanillin

    SciTech Connect

    Abdulmalik, Osheiza; Ghatge, Mohini S.; Musayev, Faik N.; Parikh, Apurvasena; Chen, Qiukan; Yang, Jisheng; Nnamani, Ijeoma; Danso-Danquah, Richmond; Eseonu, Dorothy N.; Asakura, Toshio; Abraham, Donald J.; Venitz, Jurgen; Safo, Martin K.

    2011-11-01

    Pyridyl derivatives of vanillin increase the fraction of the more soluble oxygenated sickle hemoglobin and/or directly increase the solubility of deoxygenated sickle hemoglobin. Crystallographic analysis reveals the structural basis of the potent and dual antisickling activity of these derivatives. Vanillin has previously been studied clinically as an antisickling agent to treat sickle-cell disease. In vitro investigations with pyridyl derivatives of vanillin, including INN-312 and INN-298, showed as much as a 90-fold increase in antisickling activity compared with vanillin. The compounds preferentially bind to and modify sickle hemoglobin (Hb S) to increase the affinity of Hb for oxygen. INN-312 also led to a considerable increase in the solubility of deoxygenated Hb S under completely deoxygenated conditions. Crystallographic studies of normal human Hb with INN-312 and INN-298 showed that the compounds form Schiff-base adducts with the N-terminus of the α-subunits to constrain the liganded (or relaxed-state) Hb conformation relative to the unliganded (or tense-state) Hb conformation. Interestingly, while INN-298 binds and directs its meta-positioned pyridine-methoxy moiety (relative to the aldehyde moiety) further down the central water cavity of the protein, that of INN-312, which is ortho to the aldehyde, extends towards the surface of the protein. These studies suggest that these compounds may act to prevent sickling of SS cells by increasing the fraction of the soluble high-affinity Hb S and/or by stereospecific inhibition of deoxygenated Hb S polymerization.

  4. Crystal structure and mutagenesis of a protein phosphatase-1:calcineurin hybrid elucidate the role of the beta12-beta13 loop in inhibitor binding.

    PubMed

    Maynes, Jason T; Perreault, Kathleen R; Cherney, Maia M; Luu, Hue Anh; James, Michael N G; Holmes, Charles F B

    2004-10-08

    Protein phosphatase-1 and protein phosphatase-2B (calcineurin) are eukaryotic serine/threonine phosphatases that share 40% sequence identity in their catalytic subunits. Despite the similarities in sequence, these phosphatases are widely divergent when it comes to inhibition by natural product toxins, such as microcystin-LR and okadaic acid. The most prominent region of non-conserved sequence between these phosphatases corresponds to the beta12-beta13 loop of protein phosphatase-1, and the L7 loop of toxin-resistant calcineurin. In the present study, mutagenesis of residues 273-277 of the beta12-beta13 loop of the protein phosphatase-1 catalytic subunit (PP-1c) to the corresponding residues in calcineurin (312-316), resulted in a chimeric mutant that showed a decrease in sensitivity to microcystin-LR, okadaic acid, and the endogenous PP-1c inhibitor protein inhibitor-2. A crystal structure of the chimeric mutant in complex with okadaic acid was determined to 2.0-A resolution. The beta12-beta13 loop region of the mutant superimposes closely with that of wild-type PP-1c bound to okadaic acid. Systematic mutation of each residue in the beta12-beta13 loop of PP-1c showed that a single amino acid change (C273L) was the most influential in mediating sensitivity of PP-1c to toxins. Taken together, these data indicate that it is an individual amino acid residue substitution and not a change in the overall beta12-beta13 loop conformation of protein phosphatase-1 that contributes to disrupting important interactions with inhibitors such as microcystin-LR and okadaic acid.

  5. Evaluation of structural issues related to isolation of the 100-KE/100-KW discharge chute

    SciTech Connect

    Winkel, B.V.; Hyde, L.L.

    1995-03-10

    The issue of excessive post-seismic leakage in the discharge chute of the K East and K West fuel storage basins was resolved by designing isolation barriers to maintain basin water levels if the discharge chute should drain. This report addresses the structural issues associated with isolation of the discharge chute. The report demonstrates the structural adequacy of the components associated with chute isolation for normal and seismic loading. Associated issues, such as hardware drop accidents and seismic slosh heights are also addressed.

  6. A 6DOF passive vibration isolator using X-shape supporting structures

    NASA Astrophysics Data System (ADS)

    Wu, Zhijing; Jing, Xingjian; Sun, Bo; Li, Fengming

    2016-10-01

    A novel 6 degree of freedom (6-DOF) passive vibration isolator is studied theoretically and validated with experiments. Based on the Stewart platform configuration, the 6-DOF isolator is constructed by 6 X-shape structures as legs, which can realize very good and tunable vibration isolation performance in all 6 directions with a passive manner. The mechanic model is established for static analysis of the working range, static stiffness and loading capacity. Thereafter, the equation of motion of the isolator is derived with the Hamilton principle. The equivalent stiffness and the displacement transmissibility in the six decoupled DOFs direction are then discussed with experimental results for validation. The results reveal that (a) by designing the structure parameters, the system can possess flexible stiffness such as negative, quasi-zero and positive stiffness, (b) due to the combination of the Stewart platform and the X-shape structure, the system can have very good vibration isolation performance in all the 6 directions and in a passive manner, and (c) compared with the simplified linear-stiffness legs, the nonlinearity of the X-shape structures enhance the passive isolator to have much better vibration isolation performance.

  7. Hydrolyzable tannins of tamaricaceous plants. V. Structures of monomeric-trimeric tannins and cytotoxicity of macrocyclic-type tannins isolated from Tamarix nilotica (1).

    PubMed

    Orabi, Mohamed A A; Taniguchi, Shoko; Sakagami, Hiroshi; Yoshimura, Morio; Yoshida, Takashi; Hatano, Tsutomu

    2013-05-24

    Three new ellagitannin monomers, nilotinins M5-M7 (1-3), a dimer, nilotinin D10 (4), and a trimer, nilotinin T1 (5), together with three known dimers, hirtellin D (7) and tamarixinins B (8) and C (9), and a trimer, hirtellin T2 (6), were isolated from Tamarix nilotica dried leaves. The structures of the tannins were elucidated by intensive spectroscopic methods and chemical conversions into known tannins. The new trimer (5) is a unique macrocyclic type whose monomeric units are linked together by an isodehydrodigalloyl and two dehydrodigalloyl moieties. Additionally, dimeric and trimeric macrocyclic-type tannins isolated from T. nilotica in this study were assessed for possible cytotoxic activity against four human tumor cell lines. Tumor-selective cytotoxicities of the tested compounds were higher than those of synthetic and natural potent cytotoxic compounds, including polyphenols, and comparable with those of 5-fluorouracil and melphalan.

  8. Synthesis and structure of tridentate bis(phosphinic amide)-phosphine oxide complexes of yttrium nitrate. Applications of 31P,89Y NMR methods in structural elucidation in solution.

    PubMed

    Popovici, Cristinel; Fernández, Ignacio; Oña-Burgos, Pascual; Roces, Laura; García-Granda, Santiago; Ortiz, Fernando López

    2011-07-07

    The synthesis and characterisation of a tridentate ligand containing two diphenylphosphinic amide side-arms connected through the ortho position to a phenylphosphine oxide moiety and the 1:1 and 2:1 complexes formed with yttrium nitrate are reported for the first time. The free ligand (R(P1)*,S(P3)*)-11 is obtained diastereoselectively by reaction of ortho-lithiated N,N-diisopropyl-P,P-diphenylphosphinic amide with phenylphosphonic dichloride. Complexes [Y((R(P1)*,S(P3)*)-11)(NO(3))(3)] and [Y((R(P1)*,S(P3)*)-11)(2)(NO(3))](NO(3))(2) were isolated by mixing ligand 11 with Y(NO(3))(3)·6H(2)O in acetonitrile at room temperature in a ligand to metal molar ratio of 1:1 and 2:1, respectively. The 1:1 derivative is the product of thermodynamic control when a molar ratio of ligand to yttrium salt of 1:1 is used. The new compounds have been characterised both as the solid (X-ray diffraction) and in solution (multinuclear magnetic resonance). In both yttrium complexes the ligand acts as a tridentate chelate. The arrangement of the two ligands in the 2:1 complex affords a pseudo-meso structure. Tridentate chelation of yttrium(III) in both complexes is retained in solution as evidenced by (89)Y NMR data obtained via(31)P,(89)Y-HMQC, and (89)Y,(31)P-DEPT experiments. The investigation of the solution behaviour of the Y(III) complexes through PGSE NMR diffusion measurements showed that average structures in agreement with the 1:1 and 1:2 stoichiometries are retained in acetonitrile.

  9. Detection of piluslike structures on clinical and environmental isolates of Vibrio vulnificus.

    PubMed Central

    Gander, R M; LaRocco, M T

    1989-01-01

    Twenty clinical isolates of Vibrio vulnificus were compared with 10 environmental strains by using electron microscopy and agglutination assays with human erythrocytes, guinea pig erythrocytes, and Saccharomyces cerevisiae. In addition, the isolates were tested for ability to adhere to the human epithelial cell lines HEp-2 and A549. When examined by electron microscopy, 16 (80%) of the 20 clinical isolates demonstrated the presence of piluslike structures; the composition of the bacterial populations ranged from 0 to 68% piliated cells. In contrast, only 3 (30%) of the 10 environmental isolates were piliated, with a range from 0 to 16% piliated cells. A significant association between the presence of piliated cells and the isolate source was found (P less than 0.05). None of the 30 strains agglutinated erythrocytes or yeast cells. V. vulnificus adherence results obtained with HEp-2 cells showed 10 (50%) of 20 clinical isolates and 0 (0%) of 10 environmental isolates with averages of greater than 10 adherent bacteria per cell, demonstrating a correlation between attachment and the isolate source (P less than 0.05). Selected strains were tested to determine whether methyl alpha-D-mannopyranoside, fructose, or alpha-L-(-)-fucose would inhibit bacterial adherence to HEp-2 cells. Multiple patterns of adherence inhibition were observed. Adherence to A549 cells showed 8 (40%) of 20 clinical isolates and 0 (0%) of 10 environmental strains with averages of greater than 10 adherent bacteria per cell. A statistical association between attachment and the isolate source was demonstrated (P less than 0.05). These data suggest that the presence of piluslike structures and the ability to adhere to human epithelial cell lines may be more closely associated with V. vulnificus isolates from clinical specimens than with environmental strains. Images PMID:2568368

  10. Population structure and acquisition of the vanB resistance determinant in German clinical isolates of Enterococcus faecium ST192

    PubMed Central

    Bender, Jennifer K.; Kalmbach, Alexander; Fleige, Carola; Klare, Ingo; Fuchs, Stephan; Werner, Guido

    2016-01-01

    In the context of the global action plan to reduce the dissemination of antibiotic resistances it is of utmost importance to understand the population structure of resistant endemic bacterial lineages and to elucidate how bacteria acquire certain resistance determinants. Vancomycin resistant enterococci represent one such example of a prominent nosocomial pathogen on which nation-wide population analyses on prevalent lineages are scarce and data on how the bacteria acquire resistance, especially of the vanB genotype, are still under debate. With respect to Germany, an increased prevalence of VRE was noted in recent years. Here, invasive infections caused by sequence type ST192 VRE are often associated with the vanB-type resistance determinant. Hence, we analyzed 49 vanB-positive and vanB-negative E. faecium isolates by means of whole genome sequencing. Our studies revealed a distinct population structure and that spread of the Tn1549-vanB-type resistance involves exchange of large chromosomal fragments between vanB-positive and vanB-negative enterococci rather than independent acquisition events. In vitro filter-mating experiments support the hypothesis and suggest the presence of certain target sequences as a limiting factor for dissemination of the vanB element. Thus, the present study provides a better understanding of how enterococci emerge into successful multidrug-resistant nosocomial pathogens. PMID:26902259

  11. Isolation, structural determination, synthesis and quantitative determination of impurities in Intron-A, leached from a silicone tubing.

    PubMed

    Chan, Tze-Ming; Pramanik, Birendra; Aslanian, Robert; Gullo, Vincent; Patel, Mahesh; Cronin, Bart; Boyce, Chris; McCormick, Kevin; Berlin, Mike; Zhu, Xiaohong; Buevich, Alexei; Heimark, Larry; Bartner, Peter; Chen, Guodong; Pu, Haiyan; Hegde, Vinod

    2009-02-20

    Investigation of unexpected levels of impurities in Intron product has revealed the presence of low levels of impurities leached from the silicone tubing (Rehau RAU-SIK) on the Bosch filling line. In order to investigate the effect of these compounds (1a, 1b and 2) on humans, they were isolated identified and synthesized. They were extracted from the tubing by stirring in Intron placebo at room temperature for 72 h and were enriched on a reverse phase CHP-20P column, eluting with gradient aqueous ACN and were separated by HPLC. Structural elucidation of 1a, 1b and 2 by MS and NMR studies demonstrated them to be halogenated biphenyl carboxylic acids. The structures were confirmed by independent synthesis. Levels of extractable impurities in first filled vials of actual production are estimated to be in the range of 0.01-0.55 microg/vial for each leached impurity. Potential toxicity of these extractables does not represent a risk for patients under the conditions of clinical use.

  12. Comparison of seismic response of ordinary and base-isolated structures

    SciTech Connect

    Kuroda, T.; Kobatake, M. ); Seidensticker, R.W.; Chang, Y.W. )

    1992-01-01

    Seismic isolation is growing rapidly worldwide as a cost-effective and reliable design strategy for a wide range of critical and important facilities (e.g., hospitals, computer centers, etc.) Shimizu Corporation of Japan has a test facility at Tohoku University in Sendai, Japan. The test facility was constructed in 1986 and has two buildings: one is base isolated and the other is conventionally founded. The buildings are full-size, three-story reinforced concrete structures. The dimensions and construction of the superstructures are identical. For the past several years, Shimizu Corporation has installed a number of different isolation systems in the isolated building at the test facility to study the response of base isolation systems to actual earthquake motions. Argonne National Laboratory (ANL) has been deeply involved in the development of seismic isolation for use in nuclear facilities for the past decade. Using the funding and direction of the US Department of Energy (USDOE), ANL has been developing methodology needed to evaluate the usefulness and effectiveness of seismic isolation for advanced liquid metal-cooled reactors (LMRs). This paper compares the seismic responses of ordinary and base-isolated buildings. Earthquake records of significant importance from April 1989 to September 1991, after the installation of bearings have been analyzed. Numerical simulations of the building responses have been performed and correlated with earthquake observation data. It is hoped that the results of this study will provide guidelines for the future use of isolator bearings for mitigation of earthquake damages.

  13. Comparison of seismic response of ordinary and base-isolated structures

    SciTech Connect

    Kuroda, T.; Kobatake, M.; Seidensticker, R.W.; Chang, Y.W.

    1992-04-01

    Seismic isolation is growing rapidly worldwide as a cost-effective and reliable design strategy for a wide range of critical and important facilities (e.g., hospitals, computer centers, etc.) Shimizu Corporation of Japan has a test facility at Tohoku University in Sendai, Japan. The test facility was constructed in 1986 and has two buildings: one is base isolated and the other is conventionally founded. The buildings are full-size, three-story reinforced concrete structures. The dimensions and construction of the superstructures are identical. For the past several years, Shimizu Corporation has installed a number of different isolation systems in the isolated building at the test facility to study the response of base isolation systems to actual earthquake motions. Argonne National Laboratory (ANL) has been deeply involved in the development of seismic isolation for use in nuclear facilities for the past decade. Using the funding and direction of the US Department of Energy (USDOE), ANL has been developing methodology needed to evaluate the usefulness and effectiveness of seismic isolation for advanced liquid metal-cooled reactors (LMRs). This paper compares the seismic responses of ordinary and base-isolated buildings. Earthquake records of significant importance from April 1989 to September 1991, after the installation of bearings have been analyzed. Numerical simulations of the building responses have been performed and correlated with earthquake observation data. It is hoped that the results of this study will provide guidelines for the future use of isolator bearings for mitigation of earthquake damages.

  14. Integrated framework for jitter analysis combining disturbance, structure, vibration isolator and optical model

    NASA Astrophysics Data System (ADS)

    Lee, Dae-Oen; Yoon, Jae-San; Han, Jae-Hung

    2012-04-01

    Micro-vibration induced by actuating components of the satellite can severely degrade the optical performance of high precision observation satellites. In this paper, an integrated analysis framework combining disturbance, structure, vibration isolator and optical system model is developed for evaluating the performance of optical payloads in the presence of micro-vibration, and the effectiveness of using a vibration isolator for performance enhancement. Reaction wheel generated disturbance, usually the largest anticipated disturbance, is modeled including the disturbances' interaction with the structural modes of the wheel. For structure modeling, a finite element program is used to solve for eigenvalues and eigenvectors of a structure model which are then used to create a state space model in modal form. A vibration isolator model capturing dynamics of an active isolator utilizing piezoelectric based actuator and load cell for feedback control is included to reduce the transmission of reaction wheel disturbances to the base structure. Dynamic response of the structure to reaction wheel disturbances is calculated with and without vibration isolator. The resulting jitter is used to obtain modulation transfer function (MTF) of diffraction limited optical system model, and the obtained MTF is used as spatial frequency filter for image simulation.

  15. Isolation, antimicrobial activities, and primary structures of hamster neutrophil defensins.

    PubMed Central

    Mak, P; Wójcik, K; Thogersen, I B; Dubin, A

    1996-01-01

    Hamster (Mesocricetus auratus) neutrophil granules contain at least four microbicidal peptides belonging to the defensin family. These compounds were purified from granule acid extracts by reverse-phase chromatography and termed HaNP-1 to -4 (hamster neutrophil peptide). HaNP-1 and HaNP-3 revealed the most bactericidal activity, with a 50% inhibitory concentration of 0.3 to 0.8 microg/ml for Staphylococcus aureus and Streptococcus pyogenes strains. The HaNP-4 was always isolated in concentrations exceeding about 10 times the concentrations of other hamster peptides, but its antibacterial activity as well as that of HaNP-2 was relatively lower, probably as a result of conserved Arg residue substitutions. Other microorganisms were also tested, and generally, hamster defensins exhibited less potency against gram-negative bacteria. The amino acid sequence of hamster defensins showed a high percentage of identity to the sequence of mouse enteric defensins, reaching about 60% identical residues in the case of HaNP-3 and cryptdin 3. PMID:8890190

  16. Study of sequential optimal control algorithm smart isolation structure based on Simulink-S function

    NASA Astrophysics Data System (ADS)

    Liu, Xiaohuan; Liu, Yanhui

    2017-01-01

    The study of this paper focuses on smart isolation structure, a method for realizing structural vibration control by using Simulink simulation is proposed according to the proposed sequential optimal control algorithm. In the Simulink simulation environment, A smart isolation structure is used to compare the control effect of three algorithms, i.e., classical optimal control algorithm, linear quadratic gaussian control algorithm and sequential optimal control algorithm under the condition of sensor contaminated with noise. Simulation results show that this method can be applied to the simulation of sequential optimal control algorithm and the proposed sequential optimal control algorithm has a good ability of resisting the noise and better control efficiency.

  17. Mounting Systems for Structural Members, Fastening Assemblies Thereof, and Vibration Isolation Systems Including the Same

    NASA Technical Reports Server (NTRS)

    Young, Ken (Inventor); Hindle, Timothy (Inventor); Barber, Tim Daniel (Inventor)

    2016-01-01

    Mounting systems for structural members, fastening assemblies thereof, and vibration isolation systems including the same are provided. Mounting systems comprise a pair of mounting brackets, each clamped against a fastening assembly forming a mounting assembly. Fastening assemblies comprise a spherical rod end comprising a spherical member having a through opening and an integrally threaded shaft, first and second seating members on opposite sides of the spherical member and each having a through opening that is substantially coaxial with the spherical member through opening, and a partially threaded fastener that threadably engages each mounting bracket forming the mounting assembly. Structural members have axial end portions, each releasably coupled to a mounting bracket by the integrally threaded shaft. Axial end portions are threaded in opposite directions for permitting structural member rotation to adjust a length thereof to a substantially zero strain position. Structural members may be vibration isolator struts in vibration isolation systems.

  18. Mashed potatoes enriched with soy protein isolate and inulin: chemical, rheological and structural basis.

    PubMed

    Alvarez, M D; Olivares, M D; Blanch, M; Canet, W

    2013-10-01

    Soy protein isolate is typical vegetable protein with health-enhancing activities. Inulin, a prebiotic no digestible carbohydrate, has functional properties. A mashed potato serving of 200 g with added soy protein isolate and/or inulin concentrations of 15-60 g/kg provides from 3 to 12 g of soy protein isolate and/or inulin, respectively. Currently, no information is available about the possible texture-modifying effect of this non-ionizable polar carbohydrate in different soy-based food systems. In this study, the effect of the addition of soy protein isolate and inulin blends at different soy protein isolate: inulin ratios on the degree of inulin polymerization and the rheological and structural properties of fresh mashed and frozen/thawed mashed potatoes were evaluated. The inulin chemical structure remained intact throughout the various treatments, and soy protein isolate did not affect inulin composition being a protein compatible with this fructan. Small-strain rheology showed that both ingredients behaved like soft fillers. In the frozen/thawed mashed potatoes samples, addition of 30 : 30 and 15 : 60 blend ratios significantly increased elasticity (G' value) compared with 0 : 0 control, consequently reducing the freeze/thaw stability conferred by the cryoprotectants. Inulin crystallites caused a significant strengthening effect on soy protein isolate gel. Micrographs revealed that soy protein isolate supports the inulin structure by building up a second fine-stranded network. Thereby, possibility of using soy protein isolate and inulin in combination with mashed potatoes to provide a highly nutritious and healthy product is promising.

  19. Isolation, structures, and structure - cytotoxic activity relationships of withanolides and physalins from Physalis angulata.

    PubMed

    Damu, Amooru G; Kuo, Ping-Chung; Su, Chung-Ren; Kuo, Tsung-Hsiao; Chen, Tzu-Hsuan; Bastow, Kenneth F; Lee, Kuo-Hsiung; Wu, Tian-Shung

    2007-07-01

    Phytochemical investigation of Physalis angulata was initiated following primary biological screening. Fractionation of CHCl3 and n-BuOH solubles of the MeOH extract from the whole plant was guided by in vitro cytotoxic activity assay using cultured HONE-1 and NUGC cells and led to the isolation of seven new withanolides, withangulatins B-H (1-7), and a new minor physalin, physalin W (8), along with 14 known compounds, including physaprun A, withaphysanolide, dihydrowithanolide E, physanolide A, withaphysalin A, and physalins B, D, F, G, I, J, T, U, and V. New compounds (1-8) were fully characterized by a combination of spectroscopic methods (1D and 2D NMR and MS) and the relative stereochemical assignments based on NOESY correlations and analysis of coupling constants. Biological evaluation of these compounds against a panel of human cancer cell lines showed broad cytotoxic activity. Withangulatin B (1) and physalins D (10) and F (11) displayed potent cytotoxic activity against a panel of human cancer cell lines with EC50 values ranging from 0.2 to 1.6 microg/mL. Structure-activity relationship analysis indicated that withanolides and physalins with 4beta-hydroxy-2-en-1-one and 5beta,6beta-epoxy moieties are potential cytotoxic agents.

  20. Composition, Structure and Functional Properties of Protein Concentrates and Isolates Produced from Walnut (Juglans regia L.)

    PubMed Central

    Mao, Xiaoying; Hua, Yufei

    2012-01-01

    In this study, composition, structure and the functional properties of protein concentrate (WPC) and protein isolate (WPI) produced from defatted walnut flour (DFWF) were investigated. The results showed that the composition and structure of walnut protein concentrate (WPC) and walnut protein isolate (WPI) were significantly different. The molecular weight distribution of WPI was uniform and the protein composition of DFWF and WPC was complex with the protein aggregation. H0 of WPC was significantly higher (p < 0.05) than those of DFWF and WPI, whilst WPI had a higher H0 compared to DFWF. The secondary structure of WPI was similar to WPC. WPI showed big flaky plate like structures; whereas WPC appeared as a small flaky and more compact structure. The most functional properties of WPI were better than WPC. In comparing most functional properties of WPI and WPC with soybean protein concentrate and isolate, WPI and WPC showed higher fat absorption capacity (FAC). Emulsifying properties and foam properties of WPC and WPI in alkaline pH were comparable with that of soybean protein concentrate and isolate. Walnut protein concentrates and isolates can be considered as potential functional food ingredients. PMID:22408408

  1. Composition, structure and functional properties of protein concentrates and isolates produced from walnut (Juglans regia L.).

    PubMed

    Mao, Xiaoying; Hua, Yufei

    2012-01-01

    In this study, composition, structure and the functional properties of protein concentrate (WPC) and protein isolate (WPI) produced from defatted walnut flour (DFWF) were investigated. The results showed that the composition and structure of walnut protein concentrate (WPC) and walnut protein isolate (WPI) were significantly different. The molecular weight distribution of WPI was uniform and the protein composition of DFWF and WPC was complex with the protein aggregation. H(0) of WPC was significantly higher (p < 0.05) than those of DFWF and WPI, whilst WPI had a higher H(0) compared to DFWF. The secondary structure of WPI was similar to WPC. WPI showed big flaky plate like structures; whereas WPC appeared as a small flaky and more compact structure. The most functional properties of WPI were better than WPC. In comparing most functional properties of WPI and WPC with soybean protein concentrate and isolate, WPI and WPC showed higher fat absorption capacity (FAC). Emulsifying properties and foam properties of WPC and WPI in alkaline pH were comparable with that of soybean protein concentrate and isolate. Walnut protein concentrates and isolates can be considered as potential functional food ingredients.

  2. Isolation and further structural characterization of lignins from the valonea of Quercus variabilis.

    PubMed

    Yang, Lina; Wang, Dongmei; Zhou, Dan; Zhang, Yawei; Yang, Tingting

    2017-04-01

    The isolation process of alkali lignin (AL) from the valonea of Quercus variabilis Blume was optimized (liquid/solid ratio, 12.21; isolation time, 4.21h; isolation temperature, 42.21°C; and alkali concentration, 0.85mol/L) using the response surface method (RSM), with the highest isolation rate obtained being 22.67%. Then, the apparent structures of AL, enzymatic hydrolysis lignin (CEL) and milled wood lignin (MWL) were studied by scanning electron microscopy (SEM), which indicated that the isolation processes of AL and CEL caused some damage to the apparent structure of lignin. The comprehensive structure characteristics of lignin samples was studied using (1)H, (13)C and 2D-HSQC techniques based on former studies. It was found that (1) three lignins were GSH-type; (2) the relative content of β-O-4' linkages in CEL (75.91%) was lower than those in AL (91.57%) and MWL (83.23%), suggesting that the β-O-4' linkages were largely cleaved during the CEL isolation process. In addition, the existence of phenylcoumarane, ferulic acid, p-coumarates and p-hydroxycinnamyl alcohol end groups can be found; (3) The S/G ratios were estimated to be 8.72, 1.30 and 0.98 for AL, MWL and CEL, respectively, suggesting that the lignin fragment rich in S-units was easily released under the alkali conditions.

  3. Structure analysis and laxative effects of oligosaccharides isolated from bananas.

    PubMed

    Wang, Juan; Huang, Hui Hua; Cheng, Yan Feng; Yang, Gong Ming

    2012-10-01

    Banana oligosaccharides (BOS) were extracted with water, and then separated and purified using column chromatography. Gel penetration chromatography was used to determine the molecular weights. Thin layer chromatogram and capillary electrophoresis were employed to analyze the monosaccharide composition. The indican bond and structure of the BOS molecule were determined using Fourier transform infrared spectroscopy and nuclear magnetic resonance. Results showed that BOS were probably composed of eight β-D-pyran glucose units linked with 1→6 indican bonds. The laxative effects of BOS were investigated in mice using the method described in "Handbook of Technical Standards for Testing and Assessment of Health Food in China." The length of the small intestine over which a carbon suspension solution advanced in mice treated with low-, middle-, and high-dose BOS was significantly greater than that in the model group, suggesting that BOS are effective in accelerating the movement of the small intestine.

  4. Isolation and structure of homotemsirolimuses A, B, and C.

    PubMed

    Kong, Fangming; Zhu, Tianmin; Yu, Ker; Pagano, Thomas G; Desai, Parimal; Radebaugh, Galen; Fawzi, Mahdi

    2011-04-25

    Homotemsirolimuses A, B, and C (2a, 2b, 2c) were found to be minor components of a temsirolimus preparation made from rapamycin. These three temsirolimus analogues are derived from the corresponding rapamycin analogues, homorapamycins A, B, and C (1a, 1b, 1c) produced by the strain Streptomyces hygroscopicus. The structures of homotemsirolimuses A, B, and C were determined by spectroscopic methods. These compounds were tested for mTOR kinase inhibition and in two proliferation assays using LNCap prostate and MDA468 breast cancer cells. The results suggested that the mTOR inhibition and antiproliferation potencies for 2a, 2b, and 2c are comparable to those of rapamycin (1) and temsirolimus (2).

  5. Structural and Electronic Properties of Isolated Nanodiamonds: A Theoretical Perspective

    SciTech Connect

    Raty, J; Galli, G

    2004-09-09

    Nanometer sized diamond has been found in meteorites, proto-planetary nebulae and interstellar dusts, as well as in residues of detonation and in diamond films. Remarkably, the size distribution of diamond nanoparticles appears to be peaked around 2-5 nm, and to be largely independent of preparation conditions. Using ab-initio calculations, we have shown that in this size range nanodiamond has a fullerene-like surface and, unlike silicon and germanium, exhibit very weak quantum confinement effects. We called these carbon nanoparticles bucky-diamonds: their atomic structure, predicted by simulations, is consistent with many experimental findings. In addition, we carried out calculations of the stability of nanodiamond which provided a unifying explanation of its size distribution in extra-terrestrial samples, and in ultra-crystalline diamond films. Here we present a summary of our theoretical results and we briefly outline work in progress on doping of nanodiamond with nitrogen.

  6. Seismic response analyses of base isolated structures with high damping elastomeric bearings

    SciTech Connect

    Wang, C.Y.; Tang, Y.; Chang, Y.W.; Seidensticker, R.W. ); Marchertas, A.H. )

    1991-01-01

    Seismic response analysis of base-isolated structures with high damping elastomeric bearings is described. Emphasis is placed on the adaptation of a nonlinear constitutive model for the isolation bearing together with the treatment of foundation embedment for the soil-structure-interaction analysis. The constitutive model requires six input parameters derived from bearing experimental data under sinusoidal loading. The characteristic behavior of bearing, such as the variation of shear modulus and material damping with the change of maximum shear deformation, can be captured closely by the formulation. In the treatment of soil embedment a spring method is utilized to evaluate the foundation input motion as well as soil stiffness and damping. The above features have been incorporated into a three-dimensional system response program, SISEC, developed at Argonne National Laboratory. Sample problems are presented to illustrate the relative response of isolated and unisolated structures. 11 refs., 12 figs.

  7. Effect of removal of phenolic compounds on structural and thermal properties of sunflower protein isolate.

    PubMed

    Malik, M A; Sharma, H K; Saini, C S

    2016-09-01

    The present study evaluated the effect of removal of polyphenols on the structural properties of protein isolates extracted from sunflower seed and kernel. The structural and thermal changes in protein upon phenolic interaction were studied using circular dichroism, differential scanning calorimetry, thermal gravimetric analysis, X-ray diffraction, sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), and Fourier Transform Infrared (FT-IR) spectroscopy. Presence of phenolic compounds in proteins decreased the ordered structure content with parallel increase in unordered structure content. Denaturation temperature was higher for protein isolates with phenolic compounds while, enthalpy decreased upon phenolic interaction. In the presence of phenolic compounds, higher mass loss was observed upon heating. Crystalinity and crystal size got increased after removal of phenolic compounds. Protein isolates from kernels had higher percentage of crystalinity and crystal size as compared to seed protein isolates. Higher molecular weights were observed for protein isolates with phenolic compounds. Presence of polyphenols reduced the hydrophobicity as well the sulfhydryl content and increased the particle size of proteins.

  8. Further elucidation of the genomic structure of PAX3, and identification of two different point mutations within the PAX3 homeobox that cause Waardenburg syndrome type I in two families

    SciTech Connect

    Lalwani, A.K.; Brister, J.R.; Fex, J.; Grundfast, K.M.; Ploplis, B.; San Agustin, T.B.; Wilcox, E.R.

    1995-01-01

    Waardenburg syndrome is an autosomal dominant disorder characterized by sensorineural deafness and pigmentary disturbances. Previous work has linked the disease to PAX3 on chromosome 2, and several mutations within the highly conserved paired-box and octapeptide motifs, but not the homeobox, have been reported. In this report, we have used the published cDNA sequence to further define the genomic structure of PAX3, using inverse PCR. We have identified exon/intron boundaries between exons 5 and 6 and between exons 6 and 7. Further, we have identified the first two mutations within the homeobox in two different families with type 1 Waardenburg syndrome. The first is a point mutation (G{yields}T) at the first base of exon 6, which substitutes phenylalanine for valine. In another family, we have identified a point mutation (C{yields}G) within the homeobox, in exon 6, which substitutes a glycine for arginine at a highly conserved site. The homeodomain is important in binding of DNA and in effecting transcriptional control. These mutations likely result in structural change within the homeodomain that either change the DNA-binding specificity of the homeodomain or reduce the affinity of the PAX3 protein for DNA. These homeodomain mutations should aid in elucidating the role of the homeodomain in the function of the PAX3 protein. 46 refs., 5 figs., 2 tabs.

  9. Further Study of Isolated Electrostatic Structures in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Kellogg, P. J.

    2003-12-01

    A large number of short (sub-millisecond) waveforms has been observed by the Waves Time Domain Sampler on Wind. Similar waveforms have been analyzed by Mangeney et al (1999). They and Lacombe et al (2002) concentrated on double layer-like waveforms having a net potential change, but this study concentrates on electron hole-like waveforms with little potential change. The waveforms are compact, having Debye-length scales. They are often shorter than the X antenna, 100 m tip to tip, and this allows determination of their size and velocity. In many cases they are associated with magnetic discontinuities, and also in many cases occur in close proximity to ion acoustic wave bursts, from which they may evolve. Like the cases analyzed by Mangeney et al, they are quite weak, leading to electric fields of a few tenths of a millivolt per meter. Their structures are generally consistent with electron holes. Lacombe, C., C.Salem, A.Mangeney, D.Hubert, C.Perche, J-L.Bougeret, P.J.Kellogg, K.Goetz, J-M.Bosqued, "Evidence for the interplanetary potential? WIND observations of electrostatic fluctuations", Annales Geophysicae, 20, 609-618, 2002 Mangeney A., C.Salem, C.Lacombe, J-L.Bougeret, C.Perche, R.Manning, P.J.Kellogg, K.Goetz, S.J.Monson, J-M.Bosqued, "WIND observations of coherent electrostatic waves in the solar wind" Annales Geophysicae 17, 307-320, 1999

  10. Structure Elucidation of the Diagnostic Product Ion at m/z 97 Derived from Androst-4-en-3-One-Based Steroids by ESI-CID and IRMPD Spectroscopy

    NASA Astrophysics Data System (ADS)

    Thevis, Mario; Beuck, Simon; Höppner, Sebastian; Thomas, Andreas; Held, Joseph; Schäfer, Mathias; Oomens, Jos; Schänzer, Wilhelm

    2012-03-01

    Structure elucidation of steroids by mass spectrometry has been of great importance to various analytical arenas and numerous studies were conducted to provide evidence for the composition and origin of (tandem) mass spectrometry-derived product ions used to characterize and identify steroidal substances. The common product ion at m/z 97 generated from androst-4-ene-3-one analogs has been subject of various studies, including stable isotope-labeling and (high resolution/high accuracy) tandem mass spectrometry, but its gas-phase structure has never been confirmed. Using high resolution/high accuracy mass spectrometry and low resolution tandem mass spectrometry, density functional theory (DFT) calculation, and infrared multiple photon dissociation (IRMPD) spectroscopy employing a free electron laser, the structure of m/z 97 derived from testosterone was assigned to protonated 3-methyl-2-cyclopenten-1-one. This ion was identified in a set of six cyclic C6H9O+ isomers as computed at the B3LYP/6-311++G(2d,2p) level of theory (protonated 3-methyl-2-cyclopenten-1-one, 2-methyl-2-cyclopenten-1-one and 2-cyclohexen-1-one). Product ions of m/z 97 obtained from MS2 and MS3 experiments of protonated 3-methyl-2-cyclopenten-1-one, 2-methyl-2-cyclopenten-1-one, 2-cyclohexen-1-one, and testosterone corroborated the suggested gas-phase ion structure, which was eventually substantiated by IRMPD spectroscopy yielding a spectrum that convincingly matched the predicted counterpart. Finally, the dissociation pathway of the protonated molecule of testosterone to m/z 97 was revisited and an alternative pathway was suggested that considers the exclusion of C-10 along with the inclusion of C-5, which was experimentally demonstrated with stable isotope labeling.

  11. Molecular Structure of Isolated MvspI, a Variable Surface Protein of the Fish Pathogen Mycoplasma mobile

    PubMed Central

    Adan-Kubo, Jun; Yoshii, Shu-hei; Kono, Hidetoshi

    2012-01-01

    Mycoplasma mobile is a parasitic bacterium that causes necrosis in the gills of freshwater fishes. This study examines the molecular structure of its variable surface protein, MvspI, whose open reading frame encodes 2,002 amino acids. MvspI was isolated from mycoplasma cells by a biochemical procedure to 92% homogeneity. Gel filtration and analytical ultracentrifugation suggested that this protein is a cylinder-shaped monomer with axes of 66 and 2.7 nm. Rotary shadowing transmission electron microscopy of MvspI showed that the molecule is composed of two rods 30 and 45 nm long; the latter rod occasionally features a bulge. Immuno-electron microscopy and epitope mapping showed that the bulge end of the molecular image corresponds to the C terminus of the amino acid sequence. Partial digestion by various proteases suggested that the N-terminal part, comprised of 697 amino acids, is flexible. Analysis of the predicted amino acid sequence showed that the molecule features a lipoprotein and 16 repeats of about 90 residues; 15 positions exist between residues 88 and 1479, and the other position is between residues 1725 and 1807. The amino acid sequence of MvspI was mapped onto a molecular image obtained by electron microscopy. The present study is the first to elucidate the molecular shape of a variable surface protein of mycoplasma. PMID:22447898

  12. Isolation, Purification, and Structural Identification of an Antifungal Compound from a Trichoderma Strain.

    PubMed

    Li, Chong-Wei; Song, Rui-Qing; Yang, Li-Bin; Deng, Xun

    2015-08-01

    Trichoderma strain T-33 has been demonstrated to have inhibitory effect on the fungus species Cytospora chrysosperma. Here, an active antifungal compound was obtained from Trichoderma strain T-33 extract via combined separation technologies, including organic solvent extraction, liquid chromatography, and thin-layer chromatography. The purified compound was further characterized by advanced analytical technologies to elucidate its chemical structure. Results indicated that the active antifungal compound in Trichoderma strain T-33 extract is 2,5- cyclohexadiene-1,4-dione-2,6-bis (1,1-dimethylethyl).

  13. Isolated magnetic field structures in Mercury's magnetosheath as possible analogues for terrestrial magnetosheath plasmoids and jets

    NASA Astrophysics Data System (ADS)

    Karlsson, Tomas; Liljeblad, Elisabet; Kullen, Anita; Raines, Jim M.; Slavin, James A.; Sundberg, Torbjörn

    2016-09-01

    We have investigated MESSENGER magnetic field data from the Mercury magnetosheath and near solar wind, to identify isolated magnetic field structures (defined as clear, isolated changes in the field magnitude). Their properties are studied in order to determine if they may be considered as analogues to plasmoids and jets known to exist in Earth's magnetosheath. Both isolated decreases of the magnetic field absolute value ('negative magnetic field structures') and increases ('positive structures') are found in the magnetosheath, whereas only negative structures are found in the solar wind. The similar properties of the solar wind and magnetosheath negative magnetic field structures suggests that they are analogous to diamagnetic plasmoids found in Earth's magnetosheath and near solar wind. The latter have earlier been identified with solar wind magnetic holes. Positive magnetic field structures are only found in the magnetosheath, concentrated to a region relatively close to the magnetopause. Their proximity to the magnetopause, their scale sizes, and the association of a majority of the structures with bipolar magnetic field signatures identify them as flux transfer events (which generally are associated with a decrease of plasma density in the magnetosheath). The positive magnetic field structures are therefore not likely to be analogous to terrestrial paramagnetic plasmoids but possibly to a sub-population of magnetosheath jets. At Earth, a majority of magnetosheath jets are associated with the quasi-parallel bow shock. We discuss some consequences of the findings of the present investigation pertaining to the different nature of the quasi-parallel bow shock at Mercury and Earth.

  14. Structure Elucidation of the Metabolites of 2', 3', 5'-Tri-O-Acetyl-N6-(3-Hydroxyphenyl) Adenosine in Rat Urine by HPLC-DAD, ESI-MS and Off-Line Microprobe NMR

    PubMed Central

    Miao, Zhaoxia; Qu, Kai; Liu, Xia; Zhang, Peicheng; Qin, Hailin; Zhu, Haibo; Wang, Yinghong

    2015-01-01

    2', 3', 5'-tri-O-acetyl-N6-(3-hydroxyphenyl) adenosine (also known as WS070117) is a new adenosine analog that displays anti-hyperlipidemic activity both in vitro and in vivo experiments as shown in many preliminary studies. Due to its new structure, little is known about the metabolism of WS070117. Hence, the in vivo metabolites of WS070117 in rat urine following oral administration were investigated. Identification of the metabolites was conducted using the combination of high-performance liquid chromatography (HPLC) coupled with diode array detector (DAD), ion trap electrospray ionization-mass spectrometry (ESI-MS), and off-line microprobe nuclear magnetic resonance (NMR) measurements. Seven metabolites were obtained as pure compounds at the sub-milligram to milligram levels. Results of structure elucidation unambiguously revealed that the phase I metabolite, N6-(3-hydroxyphenyl) adenosine (M8), was a hydrolysate of WS070117 by hydrolysis on the three ester groups. N6-(3-hydr-oxyphenyl) adenine (M7), also one of the phase I metabolites, was the derivative of M8 by the loss of ribofuranose. In addition to two phase I metabolites, there were five phase II metabolites of WS070117 found in rat urine. 8-hydroxy-N6-(3-hydroxy-phenyl) adenosine (M6) was the product of M7 by hydrolysis at position 8. The other four were elucidated to be N6-(3-O-β-D-glucuronyphenyl) adenine (M2), N8-hydroxy-N6-(3-O-sulfophenyl) adenine (M3), N6-(3-O-β-D-glucuronyphenyl) adenosine (M4), and N6-(3-O- sulfophenyl) adenosine (M5). Phase II metabolic pathways were proven to consist of hydroxylation, glucuronidation and sulfation. This study provides new and valuable information on the metabolism of WS070117, and also demonstrates the HPLC/MS/off-line microprobe NMR approach as a robust means for rapid identification of metabolites. PMID:26029929

  15. Biosurfactant-producing bacterium, Pseudomonas aeruginosa MA01 isolated from spoiled apples: physicochemical and structural characteristics of isolated biosurfactant.

    PubMed

    Abbasi, Habib; Hamedi, Mir Manochehr; Lotfabad, Tayebe Bagheri; Zahiri, Hossein Shahbani; Sharafi, Hakimeh; Masoomi, Fatemeh; Moosavi-Movahedi, Ali Akbar; Ortiz, Antonio; Amanlou, Massoud; Noghabi, Kambiz Akbari

    2012-02-01

    An extensive investigation was conducted to isolate indigenous bacterial strains with outstanding performance for biosurfactant production from different types of spoiled fruits, food-related products and food processing industries. An isolate was selected from 800 by the highest biosurfactant yield in soybean oil medium and it was identified by 16S rRNA and the two most relevant hypervariable regions of this gene; V3 and V6 as Pseudomonas aeruginosa MA01. The isolate was able to produce 12 g/l of a glycolipid-type biosurfactant and generally less efficient to emulsify vegetable oils compared to hydrocarbons and could emulsify corn and coconut oils more than 50%. However, emulsification index (E(24)) of different hydrocarbons including hexane, toluene, xylene, brake oil, kerosene and hexadecane was between 55.8% and 100%. The surface tension of pure water decreased gradually with increasing biosurfactant concentration to 32.5 mNm(-1) with critical micelle concentration (CMC) value of 10.1mg/l. Among all carbon substrates examined, vegetable oils were the most effective on biosurfactant production. Two glycolipid fractions were purified from the biosurfactant crude extracts, and FTIR and ES-MS were used to determine the structure of these compounds. The analysis indicated the presence of three major monorhamnolipid species: R(1)C(10)C(10), R(1)C(10)C(12:1), and R(1)C(10)C(12); as well as another three major dirhamnolipid species: R(2)C(10)C(10), R(2)C(10)C(12:1), and R(2)C(10)C(12). The strain sweep experiment for measuring the linear viscoelastic of biosurfactant showed that typical behavior characteristics of a weak viscoelastic gel, with storage modulus greater than loss modulus at all frequencies examined, both showing some frequency dependence.

  16. Genomics: Applications in Mechanism Elucidation

    PubMed Central

    Gresham, Venita; McLeod, Howard L.

    2009-01-01

    The inability to predict the pharmacology and toxicology of drug candidates in preclinical studies has led to the decline in the number of new drugs which make it to market and the rise in cost associated with drug development. Identifying molecular interactions associated with therapeutic and toxic drug effects early in development is a top priority. Traditional mechanism elucidation strategies are narrow, often focusing on the identification of solely the molecular target. Methods which can offer additional insight into wide-ranging molecular interactions required for drug effect and the biochemical consequences of these interactions are in demand. Genomic strategies have made impressive advances in defining a more global view of drug action are expected to increasingly be used a complimentary tool in drug discovery and development. PMID:19166886

  17. Charge‐Induced Unzipping of Isolated Proteins to a Defined Secondary Structure

    PubMed Central

    González Flórez, Ana Isabel; Mucha, Eike; Ahn, Doo‐Sik; Gewinner, Sandy; Schöllkopf, Wieland; Pagel, Kevin

    2016-01-01

    Abstract Here we present a combined experimental and theoretical study on the secondary structure of isolated proteins as a function of charge state. In infrared spectra of the proteins ubiquitin and cytochrome c, amide I (C=O stretch) and amide II (N–H bend) bands can be found at positions that are typical for condensed‐phase proteins. For high charge states a new band appears, substantially red‐shifted from the amide II band observed at lower charge states. The observations are interpreted in terms of Coulomb‐driven transitions in secondary structures from mostly helical to extended C5‐type hydrogen‐bonded structures. Support for this interpretation comes from simple energy considerations as well as from quantum chemical calculations on model peptides. This transition in secondary structure is most likely universal for isolated proteins that occur in mass spectrometric experiments. PMID:26847383

  18. Elucidating the structure-property relationships of donor-π-acceptor dyes for dye-sensitized solar cells (DSSCs) through rapid library synthesis by a one-pot procedure.

    PubMed

    Fuse, Shinichiro; Sugiyama, Sakae; Maitani, Masato M; Wada, Yuji; Ogomi, Yuhei; Hayase, Shuzi; Katoh, Ryuzi; Kaiho, Tatsuo; Takahashi, Takashi

    2014-08-18

    The creation of organic dyes with excellent high power conversion efficiency (PCE) is important for the further improvement of dye-sensitized solar cells. We wish to describe the rapid synthesis of a 112-membered donor-π-acceptor dye library by a one-pot procedure, evaluation of PCEs, and elucidation of structure-property relationships. No obvious correlations between ε, and the η were observed, whereas the HOMO and LUMO levels of the dyes were critical for η. The dyes with a more positive E(HOMO), and with an E(LUMO)<-0.80 V, exerted higher PCEs. The proper driving forces were crucial for a high J(sc), and it was the most important parameter for a high η. The above criteria of E(HOMO) and E(LUMO) should be useful for creating high PCE dyes; nevertheless, that was not sufficient for identifying the best combination of donor, π, and acceptor blocks. Combinatorial synthesis and evaluation was important for identifying the best dye.

  19. Effect of structural flexibility on the design of vibration-isolating mounts for aircraft engines

    NASA Technical Reports Server (NTRS)

    Phillips, W. H.

    1984-01-01

    Previous analyses of the design of vibration-isolating mounts for a rear-mounted engine to decouple linear and rotational oscillations are extended to take into account flexibility of the engine-mount structure. Equations and curves are presented to allow the design of mount systems and to illustrate the results for a range of design conditions.

  20. Melanostatin, a new melanin synthesis inhibitor. Production, isolation, chemical properties, structure and biological activity.

    PubMed

    Ishihara, Y; Oka, M; Tsunakawa, M; Tomita, K; Hatori, M; Yamamoto, H; Kamei, H; Miyaki, T; Konishi, M; Oki, T

    1991-01-01

    Melanostatin, a new antibiotic with melanin synthesis inhibitor activity, was isolated from the fermentation broth of Streptomyces clavifer No. N924-2. Its structure was determined by spectral analysis and degradation experiments. Melanostatin strongly inhibited melanin formation in Streptomyces bikiniensis NRRL B-1049 and B16 melanoma cells.

  1. [Isolation and partial structural characteristics of major toxic components of Latrodectus pallidus venom].

    PubMed

    Charakha, A R; Shevchenko, L V; Molodkin, A K; Pluzhnikov, K A; Volkova, T M; Grishin, E V

    1997-03-01

    Toxic components of the Latrodectus pallidus spider venom were isolated and characterized. The venom was shown to contain a toxin specific for mammals and at least one insectospecific toxin. Partial amino acid sequences of both toxins were determined, and their high structural homology with previously studied alpha-latrotoxin and alpha-latroinsectotoxin from L. mactans tredecimguttatus was found.

  2. Structure of complex cell wall polysaccharides isolated from Trichoderma and Hypocrea species.

    PubMed

    Prieto, A; Leal, J A; Poveda, A; Jiménez-Barbero, J; Gómez-Miranda, B; Domenech, J; Ahrazem, O; Bernabé, M

    1997-11-28

    The structure of fungal polysaccharides isolated from the cell wall of Trichoderma reesei, T. koningii, and Hypocrea psychrophila, have been investigated by means of chemical analyses and 1D and 2D NMR spectroscopy. The polysaccharides have an irregular structure, idealized as follows: [formula: see text] The proportions of the different side chains vary from a species to another, being n above some three times larger in H. psychrophila than in T. reesei or T. koningii.

  3. [Characteristics of microbial community structure during isolation of electrical active bacteria].

    PubMed

    Wang, Min; Zhao, Yang- Guo; Lu, Shan-Shan

    2014-10-01

    To investigate the effect of selective culturing on microorganisms and functional role of electrical active bacteria in biofilm, some exoelectrogens were isolated from microbial fuel cell (MFC) anodic biofilm using Hungate roll-tube technique with iron oxide as indicator. At the same time, the dynamics of the microbial community structure was monitored during the pure culture isolation. The results show that maximum voltages of MFCs feeding with lactic acid, acetic acid and steroid wastewater are 0.57, 0.60 and 0.40 V respectively. The dominant bacteria isolated from seed sludge and anodic films feeding with acetate and lactate belong to phylum Proteobacteria; while steroid wastewater contains relative high diversity of bacteria, i. e. Proteobacteria, Firmicutes and Bacteroidetes. After enriching and culturing, two bacteria were consequently obtained, which shared the highest similarity with Enterobacter ludwigii and Citrobacter freundii respectively. When inoculated in MFC with lactic acid as the substrate, they produced maximum voltage of 0.10 and 0.17 V individually. This study shows that electrical active bacteria can be isolated from the MFC anodic biofilm using anaerobic gradient dilution culture techniques with iron oxide as indicator. Microbial community structure presents markedly shifting during the bacteria isolation owing to its selectivity.

  4. Filament wound composite thermal isolator structures for cryogenic dewars and instruments

    SciTech Connect

    Morris, E.E.

    1982-01-01

    Studies showing high tensile strength, low thermal conductivity, and adequate fatigue strength capabiliies in conjunction with low resin outgassing properties of S-90 fiber glass with SCI REZ 080 and 081 epoxy resins has resulted in use of filament wound tension straps, struts, and conical shells as thermal isolators in several high-performance cryogenic applications. These thermal isolator structures and their use in the following cryogenic systems are discussed in this paper: hydrogen and oxygen dewars for space shuttle, helium tank for the infra-red astronomy satellite, spacecraft refrigerators, and infrared telescope. Mechanical and thermo-physical properties of the composite laminates are presented.

  5. The structure and immunoreactivity of exopolysaccharide isolated from Lactobacillus johnsonii strain 151.

    PubMed

    Górska-Frączek, Sabina; Sandström, Corine; Kenne, Lennart; Paściak, Mariola; Brzozowska, Ewa; Strus, Magdalena; Heczko, Piotr; Gamian, Andrzej

    2013-08-30

    The exopolysaccharide (EPS) structure from Lactobacillus johnsonii strain 151 isolated from the intestinal tract of mice was investigated. Sugar and methylation analyses together with (1)H and (13)C NMR spectroscopy, including two-dimensional (1)H,(1)H COSY, TOCSY, NOESY, and (1)H,(13)C HSQC, HMBC experiments, revealed that the repeating unit of the EPS is the linear pentasaccharide: →6)-α-d-Galp-(1→6)-α-d-Glcp-(1→3)-β-d-Galf-(1→3)-α-d-Glcp-(1→2)-β-d-Galf-(1→ The immunoreactivity of two structurally different exopolysaccharides isolated from L. johnsonii, 151 and 142 (Carbohydr. Res. 2010, 345, 108-114), was compared. Both EPSs differed in their reactivity with antisera. EPS from L. johnsonii 151 reacted with anti-Lactobacillus polyclonal sera against cells of five different strains, while EPS from L. johnsonii 142 was found to react only with its own antiserum. The broader specificity and higher reactivity of EPS from 151 strain than EPS from 142 strain were also observed with human sera. The physiological antibodies recognizing polysaccharide antigens were present in both adults and umbilical cord blood sera. A highly specific EPS 142 bearing strain was isolated from experimentally induced inflammatory bowel disease (IBD) mice, while a strain with EPS 151 isolated from the intestinal tract of healthy mice is characterized by a broad immune reactivity common structure.

  6. Finite element prediction of seismic response modification of monumental structures utilizing base isolation

    NASA Astrophysics Data System (ADS)

    Spanos, Konstantinos; Anifantis, Nikolaos; Kakavas, Panayiotis

    2015-05-01

    The analysis of the mechanical behavior of ancient structures is an essential engineering task concerning the preservation of architectural heritage. As many monuments of classical antiquity are located in regions of earthquake activity, the safety assessment of these structures, as well as the selection of possible restoration interventions, requires numerical models capable of correctly representing their seismic response. The work presented herein was part of a research project in which a better understanding of the dynamics of classical column-architrave structures was sought by means of numerical techniques. In this paper, the seismic behavior of ancient monumental structures with multi-drum classical columns is investigated. In particular, the column-architrave classical structure under strong ground excitations was represented by a finite element method. This approach simulates the individual rock blocks as distinct rigid blocks interconnected with slidelines and incorporates seismic isolation dampers under the basement of the structure. Sliding and rocking motions of individual stone blocks and drums are modeled utilizing non-linear frictional contact conditions. The seismic isolation is modeled through the application of pad bearings under the basement of the structure. These pads are interpreted by appropriate rubber and steel layers. Time domain analyses were performed, considering the geometric and material non-linear behavior at the joints and the characteristics of pad bearings. The deformation and failure modes of drum columns subject to seismic excitations of various types and intensities were analyzed. The adverse influence of drum imperfections on structural safety was also examined.

  7. Elucidating Mechanisms of Extensive Chaos

    NASA Astrophysics Data System (ADS)

    Egolf, David A.; Melnikov, Ilarion V.; Pesch, Werner; Ecke, Robert E.

    2001-06-01

    We report studies of the mechanism for the generation of chaotic disorder in a phenomenon found in nature, Rayleigh-Bénard convection (RBC), in a regime exhaustively studied experimentally. Through large-scale, parallel-computational studies of the detailed space-time evolution of the dynamical degrees of freedom, we find that the Spiral Defect Chaos (SDC) state of RBC is spatially- and temporally- localized to defect creation/annihilation events (D.A. Egolf, I.V. Melnikov, W. Pesch, and R.E. Ecke, Nature, 404:733--736, 2000), and we elucidate how these divergent, but very brief, events lead to eventual macroscopic differences between initially similar flow patterns. We also demonstrate that SDC is extensively chaotic, in that the number of dynamical degrees of freedom (the fractal dimension) is proportional to the system size, suggesting the possibility for a hydrodynamic-like description of the long-wavelength properties of SDC. The computational technique employed shows promise for analyzing a wide variety of extended dynamical systems.

  8. Design and Nuclear Magnetic Resonance (NMR) Structure Determination of the Second Extracellular Immunoglobulin Tyrosine Kinase A (TrkAIg2) Domain Construct for Binding Site Elucidation in Drug Discovery

    PubMed Central

    2014-01-01

    The tyrosine kinase A (TrkA) receptor is a validated therapeutic intervention point for a wide range of conditions. TrkA activation by nerve growth factor (NGF) binding the second extracellular immunoglobulin (TrkAIg2) domain triggers intracellular signaling cascades. In the periphery, this promotes the pain phenotype and, in the brain, cell survival or differentiation. Reproducible structural information and detailed validation of protein–ligand interactions aid drug discovery. However, the isolated TrkAIg2 domain crystallizes as a β-strand-swapped dimer in the absence of NGF, occluding the binding surface. Here we report the design and structural validation by nuclear magnetic resonance spectroscopy of the first stable, biologically active construct of the TrkAIg2 domain for binding site confirmation. Our structure closely mimics the wild-type fold of TrkAIg2 in complex with NGF (1WWW.pdb), and the 1H–15N correlation spectra confirm that both NGF and a competing small molecule interact at the known binding interface in solution. PMID:25454499

  9. A vibration isolation system in low frequency excitation region using negative stiffness structure for vehicle seat

    NASA Astrophysics Data System (ADS)

    Le, Thanh Danh; Ahn, Kyoung Kwan

    2011-12-01

    This paper designs and fabricates a vibration isolation model for improving vibration isolation effectiveness of the vehicle seat under low excitation frequencies. The feature of the proposed system is to use two symmetric negative stiffness structures (NSS) in parallel to a positive stiffness structure. Here, theoretical analysis of the proposed system is clearly presented. Then, the design procedure is derived so that the resonance peak of frequency-response curve drifts to the left, the load support capacity of the system is maintained, the total size of the system is reduced for easy practical application and especially, the bending of the frequency-response curve is minimized. Next the dynamic equation of the proposed system is set up. Then, the harmonic balance (HB) method is employed to seek the characteristic of the motion transmissibility of the proposed system at the steady state for each of the excitation frequency. From this characteristic, the curves of the motion transmission are predicted according to the various values of the configurative parameters of the system. Then, the time responses to the sinusoidal, multi frequency and random excitations are also investigated by simulation and experiment. In addition, the isolation performance comparison between the system with NSS and system without NSS is realized. The simulation results reveal that the proposed system has larger frequency region of isolation than that of the system without NSS. The experimental results confirm also that with a random excitation mainly spreading from 0.1 to 10 Hz, the isolation performance of the system with NSS is greatly improved, where the RMS values of the mass displacement may be reduced to 67.2%, whereas the isolation performance of the system without NSS is bad. Besides, the stability of the steady-state response is also studied. Finally, some conclusions are given.

  10. The population structure of Escherichia coli isolated from subtropical and temperate soils

    USGS Publications Warehouse

    Byappanahalli, Muruleedhara N.; Yan, Tao; Hamilton, Matthew J.; Ishii, Satoshi; Fujioka, Roger S.; Whitman, Richard L.; Sadowsky, Michael J.

    2012-01-01

    While genotypically-distinct naturalized Escherichia coli strains have been shown to occur in riparian soils of Lake Michigan and Lake Superior watersheds, comparative analyses of E. coli populations in diverse soils across a range of geographic and climatic conditions have not been investigated. The main objectives of this study were to: (a) examine the population structure and genetic relatedness of E. coli isolates collected from different soil types on a tropical island (Hawaii), and (b) determine if E. coli populations from Hawaii and temperate soils (Indiana, Minnesota) shared similar genotypes that may be reflective of biome-related soil conditions. DNA fingerprint and multivariate statistical analyses were used to examine the population structure and genotypic characteristics of the E. coli isolates. About 33% (98 of 293) of the E. coli from different soil types and locations on the island of Oahu, Hawaii, had unique DNA fingerprints, indicating that these bacteria were relatively diverse; the Shannon diversity index for the population was 4.03. Nearly 60% (171 of 293) of the E. coli isolates from Hawaii clustered into two major groups and the rest, with two or more isolates, fell into one of 22 smaller groups, or individual lineages. Multivariate analysis of variance of 89, 21, and 106 unique E. coli DNA fingerprints for Hawaii, Indiana, and Minnesota soils, respectively, showed that isolates formed tight cohesive groups, clustering mainly by location. However, there were several instances of clonal isolates being shared between geographically different locations. Thus, while nearly identical E. coli strains were shared between disparate climatologically- and geographically-distinct locations, a vast majority of the soil E. coli strains were genotypically diverse and were likely derived from separate lineages. This supports the hypothesis that these bacteria are not unique and multiple genotypes can readily adapt to become part of the soil autochthonous

  11. A modified Kelvin impact model for pounding simulation of base-isolated building with adjacent structures

    NASA Astrophysics Data System (ADS)

    Ye, Kun; Li, Li; Zhu, Hongping

    2009-09-01

    Base isolation can effectively reduce the seismic forces on a superstructure, particularly in low- to medium-rise buildings. However, under strong near-fault ground motions, pounding may occur at the isolation level between the base-isolated building (BIB) and its surrounding retaining walls. To effectively investigate the behavior of the BIB pounding with adjacent structures, after assessing some commonly used impact models, a modified Kelvin impact model is proposed in this paper. Relevant parameters in the modified Kelvin model are theoretically derived and numerically verified through a simple pounding case. At the same time, inelasticity of the isolated superstructure is introduced in order to accurately evaluate the potential damage to the superstructure caused by the pounding of the BIB with adjacent structures. The reliability of the modified Kelvin impact model is validated through numerical comparisons with other impact models. However, the difference between the numerical results from the various impact analytical models is not significant. Many numerical simulations of BIBs are conducted to investigate the influence of various design parameters and conditions on the peak inter-story drifts and floor accelerations during pounding. It is shown that pounding can substantially increase floor accelerations, especially at the ground floor where impacts occur. Higher modes of vibration are excited during poundings, increasing the inter-story drifts instead of keeping a nearly rigid-body motion of the superstructure. Furthermore, higher ductility demands can be imposed on lower floors of the superstructure. Moreover, impact stiffness seems to play a significant role in the acceleration response at the isolation level and the inter-story drifts of lower floors of the superstructure. Finally, the numerical results show that excessive flexibility of the isolation system used to minimize the floor accelerations may cause the BIB to be more susceptible to pounding

  12. Capillary liquid chromatography-microcoil 1H nuclear magnetic resonance spectroscopy and liquid chromatography-ion trap mass spectrometry for on-line structure elucidation of isoflavones in Radix astragali.

    PubMed

    Xiao, H B; Krucker, M; Putzbach, K; Albert, K

    2005-03-04

    Miniaturization and hyphenation of chromatographic separation techniques to nuclear magnetic resonance spectroscopy is being increasingly demanded in the field of biomedical, drug metabolite and natural product analysis. Herein, capillary liquid chromatography was coupled on-line to microcoil 1H nuclear magnetic resonance spectroscopy (capLC-NMR) equipped with a 1.5 microL solenoidal probe for structure elucidation of isoflavones in Radix astragali. The extract was screened by HPLC-UV-MS as the preliminary step and four major peaks were identified tentatively by ion trap mass spectrometry molecular weights and characteristic fragments. Then, stopped-flow capLC-UV-NMR was performed using 33 microg extract injected on-column. The four peaks were parked manually in the micro probe one by one and corresponding 1H NMR spectra were recorded with good resolutions under the applied capLC-NMR conditions (120 and 220 ng injected on-column for peaks 2 and 4, respectively). All aromatic regions of 1H NMR spectra correlated well to the characteristic signals of isoflavone aglycone protons. And the signal corresponding to the anomeric proton of the glucopyranoside of isoflavone glycoside was also obtained for peak 1. Therefore, these four peaks are determined as calycosin-7-O-beta-D-glucopyranoside (1), ononin (2), calycosin (3) and formononetin (4) unambiguously. The capLC-NMR results indicate that this hyphenated technique could be used for the determination of a great variety of natural products from small sample amounts, e.g., only 5 g R. astragali in this study.

  13. Active pneumatic vibration isolation system using negative stiffness structures for a vehicle seat

    NASA Astrophysics Data System (ADS)

    Danh, Le Thanh; Ahn, Kyoung Kwan

    2014-02-01

    In this paper, an active pneumatic vibration isolation system using negative stiffness structures (NSS) for a vehicle seat in low excitation frequencies is proposed, which is named as an active system with NSS. Here, the negative stiffness structures (NSS) are used to minimize the vibratory attraction of a vehicle seat. Owing to the time-varying and nonlinear behavior of the proposed system, it is not easy to build an accurate dynamic for model-based controller design. Thus, an adaptive intelligent backstepping controller (AIBC) is designed to manage the system operation for high-isolation effectiveness. In addition, an auxiliary control effort is also introduced to eliminate the effect of the unpredictable perturbations. Moreover, a radial basis function neural network (RBFNN) model is utilized to estimate the optimal gain of the auxiliary control effort. Final control input and the adaptive law for updating coefficients of the approximate series can be obtained step by step using a suitable Lyapunov function. Afterward, the isolation performance of the proposed system is assessed experimentally. In addition, the effectiveness of the designed controller for the proposed system is also compared with that of the traditional backstepping controller (BC). The experimental results show that the isolation effectiveness of the proposed system is better than that of the active system without NSS. Furthermore, the undesirable chattering phenomenon in control effort is quite reduced by the estimation mechanism. Finally, some concluding remarks are given at the end of the paper.

  14. Multilevel NLTE radiative transfer in isolated atmospheric structures: implementation of the MALI-technique.

    NASA Astrophysics Data System (ADS)

    Heinzel, P.

    1995-07-01

    We have developed and extensively tested a new multilevel NLTE transfer code for isolated solar atmospheric structures (loops, prominences, spicules etc.). The code is based on the MALI approach of Rybicki & Hummer (1991, 1992) to multilevel accelerated lambda iterations. It is demonstrated that this method is fully capable of treating a difficult problem of NLTE hydrogen excitation and ionization equilibrium, provided that we linearize the preconditioned statistical equilibrium equations with respect to atomic level populations and the electron density. With this generalization of the original MALI approach, the numerical code is robust and stable. As compared to the standard linearization method of Auer & Mihalas (1969), the new MALI code designed for 1D slabs is more than one order of magnitude faster and its accuracy is quite satisfactory. We discuss several details of our implementation of the MALI technique to isolated, externally irradiated, 1D structures and finally draw some future prospects.

  15. Isolation of an Isocoumarin and an Isobenzofuran Derivatives from a Fungicolous Isolate of Acremonium crotocinigenum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    6,8-dimethoxy-4,5-dimethyl-3-methyleneisochroman-1-one (1) and 5,7-dimethoxy-3,4-dimethyl-3-hydroxy-isobenzofuranone (2), have been isolated from an organic extract of the fungicolous fungus Acremonium crotocinigenum (NRRL 40192). The structures of these compounds were elucidated on the basis of NM...

  16. Isolation, structural characterization, and potential applications of hemicelluloses from bamboo: a review.

    PubMed

    Peng, Pai; She, Diao

    2014-11-04

    Bamboo is one of the mostly fast growing natural resources and has great potential to be used as a valuable feedstock for biorefinery. The hemicelluloses, next to cellulose, represent a diverse group of polysaccharides in plant cell wall. Elucidation and understanding of the hemicelluloses from bamboo play an important role in the efficient conversion of bamboo into biofuels and bioproducts. This review summarized the recent reports on hemicelluloses from bamboo, including immunohistochemical localization, focused on extraction and purification methods, chemical components, characterization of structural features, as well as physicochemical properties. In addition, attention was also paid to derivatives prepared from bamboo hemicelluloses and to potential applications of bamboo hemicelluloses in a variety of areas such as biomaterials, biofuel, and food.

  17. [Isolation, biological properties, and spatial structure of an antibiotic loloatin A].

    PubMed

    Krachkovskiĭ, S A; Sobol', A G; Ovchinnikova, T V; Tagaev, A A; Iakimenko, Z A; Azizbekian, R R; Kuznetsova, N I; Shamshina, T N; Arsen'ev, A S

    2002-01-01

    Peptide antibiotic with cyanolytic activity was isolated from the IGM52 strain of the Brevibacillus laterosporus Gram-positive spore-forming bacteria. By 1H NMR spectroscopy, this antibiotic was identified as loloatin A, a cyclic decapeptide cyclo(-Asn-Asp-Tyr-Val-Orn-Leu-DTyr-Pro-Phe-DPhe-). The spatial structure of loloatin A in solution was determined. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2002, vol. 28, no. 4; see also http://www.maik.ru.

  18. Structure activity characterization of Bordetella petrii lipid A, from environment to human isolates.

    PubMed

    Basheer, Soorej M; Bouchez, Valerie; Novikov, Alexey; Augusto, Luis A; Guiso, Nicole; Caroff, Martine

    2016-01-01

    Bordetella petrii, a facultative anaerobic species, is the only known member of the Bordetella genus with environmental origin. However it was also recently isolated from humans. The structures of the B. petrii lipid A moieties of the endotoxins were characterized here for the first time for an environmental strain and compared to that of human isolates. Characterization was achieved using chemical analyses, gas chromatography-mass spectrometry, and Matrix Assisted Laser Desorption Ionisation mass spectrometry. The analyses revealed that the different lipid A structures contain a common bisphosphorylated β-(1→6)-linked d-glucosamine disaccharide with hydroxytetradecanoic acid in amide as well at the C-3' in ester linkages. Similar to Bordetella pertussis and Bordetella bronchiseptica lipids A, the hydroxytetradecanoic acid at the C-2' position was substituted by tetradecanoic acid. Unlike B. pertussis, the hydroxytetradecanoic acid at the C-2 position was substituted with either 12:0 or 14:0 and/or their 2-OH forms. Depending on the environmental or human origin the structures differed in the length and degree of fatty acid acylation and impacted the IL-6 and TNF-α inflammatory responses tested. In one isolate we showed the presence at the C-3 position of the short-chain 10:0(3-OH), which according to our previous analyses is more characteristic of the human pathogens in the genus like B. pertussis and Bordetella parapertussis.

  19. Structural degradation of Thar lignite using MW1 fungal isolate: optimization studies

    USGS Publications Warehouse

    Haider, Rizwan; Ghauri, Muhammad A.; Jones, Elizabeth J.; Orem, William H.; SanFilipo, John R.

    2015-01-01

    Biological degradation of low-rank coals, particularly degradation mediated by fungi, can play an important role in helping us to utilize neglected lignite resources for both fuel and non-fuel applications. Fungal degradation of low-rank coals has already been investigated for the extraction of soil-conditioning agents and the substrates, which could be subjected to subsequent processing for the generation of alternative fuel options, like methane. However, to achieve an efficient degradation process, the fungal isolates must originate from an appropriate coal environment and the degradation process must be optimized. With this in mind, a representative sample from the Thar coalfield (the largest lignite resource of Pakistan) was treated with a fungal strain, MW1, which was previously isolated from a drilled core coal sample. The treatment caused the liberation of organic fractions from the structural matrix of coal. Fungal degradation was optimized, and it showed significant release of organics, with 0.1% glucose concentration and 1% coal loading ratio after an incubation time of 7 days. Analytical investigations revealed the release of complex organic moieties, pertaining to polyaromatic hydrocarbons, and it also helped in predicting structural units present within structure of coal. Such isolates, with enhanced degradation capabilities, can definitely help in exploiting the chemical-feedstock-status of coal.

  20. Solution structure of the isolated histone H2A-H2B heterodimer

    PubMed Central

    Moriwaki, Yoshihito; Yamane, Tsutomu; Ohtomo, Hideaki; Ikeguchi, Mitsunori; Kurita, Jun-ichi; Sato, Masahiko; Nagadoi, Aritaka; Shimojo, Hideaki; Nishimura, Yoshifumi

    2016-01-01

    During chromatin-regulated processes, the histone H2A-H2B heterodimer functions dynamically in and out of the nucleosome. Although detailed crystal structures of nucleosomes have been established, that of the isolated full-length H2A-H2B heterodimer has remained elusive. Here, we have determined the solution structure of human H2A-H2B by NMR coupled with CS-Rosetta. H2A and H2B each contain a histone fold, comprising four α-helices and two β-strands (α1–β1–α2–β2–α3–αC), together with the long disordered N- and C-terminal H2A tails and the long N-terminal H2B tail. The N-terminal αN helix, C-terminal β3 strand, and 310 helix of H2A observed in the H2A-H2B nucleosome structure are disordered in isolated H2A-H2B. In addition, the H2A α1 and H2B αC helices are not well fixed in the heterodimer, and the H2A and H2B tails are not completely random coils. Comparison of hydrogen-deuterium exchange, fast hydrogen exchange, and {1H}-15N hetero-nuclear NOE data with the CS-Rosetta structure indicates that there is some conformation in the H2A 310 helical and H2B Lys11 regions, while the repression domain of H2B (residues 27–34) exhibits an extended string-like structure. This first structure of the isolated H2A-H2B heterodimer provides insight into its dynamic functions in chromatin. PMID:27181506

  1. The population structure of drug-resistant Mycobacterium tuberculosis clinical isolates from Sichuan in China.

    PubMed

    Zhao, Yuding; Feng, Qin; Tang, Ke; Zhang, Congcong; Sun, Honghu; Luo, Tao; Yang, Zhirong; Couvin, David; Rastogi, Nalin; Sun, Qun

    2012-06-01

    China ranks second next to India among 22 high-burden countries despite decades' effort on tuberculosis (TB) control. The Sichuan province today contains the second-largest number of TB cases among Chinese provinces, where the prevalence of drug-resistant TB, especially MDR-TB, is much higher than the average level in eastern China. In this study, the population structure and the transmission characteristics of drug-resistant TB in Sichuan province were studied by spoligotyping and 24-locus Mycobacterial interspersed repetitive units-variable number tandem DNA repeats (MIRU-VNTR), applied to a total of 306 clinical isolates. Spoligotyping-based analysis showed that Beijing family represented 69.28% of all isolates and constituted the largest group (66.24%) of MDR-TB in Sichuan. The remaining isolates, accounting for 33.76% of MDR isolates, belonged to the ill-defined T family, Manu2, H3, LAM9, and other minor unassigned clades. The discriminatory power evaluated for spoligotyping was poor (HGI=0.595), but high for 24-locus MIRU-VNTRs (HGI=0.999). The number of the most discriminatory loci (h>0.6) was 12, including locus 424, 802, 960, 1644, 1955, 2163b, 2996, 3007, 3192, 3690, 4348 and 4052. It was concluded that 24-locus MIRU-VNTRs could be a more discriminatory tool for differentiating clinical isolates from Sichuan region. The small clustering size obtained from the current population structure analysis suggested that the high prevalence of drug-resistant TB in this region might be attributed partially to the acquired resistance due to inappropriate drug use rather than active transmission of drug-resistant TB (primary resistance).

  2. On selection and scaling of ground motions for analysis of seismically isolated structures

    NASA Astrophysics Data System (ADS)

    Pant, Deepak R.; Maharjan, Manika

    2016-12-01

    A broader consensus on the number of ground motions to be used and the method of scaling to be adopted for nonlinear response history analysis (RHA) of structures is yet to be reached. Therefore, in this study, the effects of selection and scaling of ground motions on the response of seismically isolated structures, which are routinely designed using nonlinear RHA, are investigated. For this purpose, isolation systems with a range of properties subjected to bidirectional excitation are considered. Benchmark response of the isolation systems is established using large sets of unscaled ground motions systematically categorized into pulse-like, non-pulse-like, and mixed set of motions. Different subsets of seven to 14 ground motions are selected from these large sets using (a) random selection and (b) selection based on the best match of the shape of the response spectrum of ground motions to the target spectrum. Consequences of weighted scaling (also commonly referred to as amplitude scaling or linear scaling) as well as spectral matching are investigated. The ground motion selection and scaling procedures are evaluated from the viewpoint of their accuracy, efficiency, and consistency in predicting the benchmark response. It is confirmed that seven time histories are sufficient for a reliable prediction of isolation system displacement demands, for all ground motion subsets, selection and scaling procedures, and isolation systems considered. If ground motions are selected based on their best match to the shape of the target response spectrum (which should be preferred over randomly selected motions), weighted scaling should be used if pulse-like motions are considered, either of weighted scaling or spectral matching can be used if non-pulse-like motions are considered, and an average of responses from weighted-scaled and spectrum-matched ground motions should be used for a mixed set of motions. On the other hand, the importance of randomly selected motions in

  3. Glycolonitrile oligomerization: structure of isolated oxazolines, potential heterocycles on the early earth

    NASA Technical Reports Server (NTRS)

    Arrhenius, G.; Baldridge, K. K.; Richards-Gross, S.; Siegel, J. S.; Bada, J. L. (Principal Investigator)

    1997-01-01

    A study of glycolonitrile polymerization has led to the isolation and characterization of two 2,5-dihydro-4-aminooxazoles, 4 and 5. Previous reports have misassigned these structures as s-triazines or pyrimidines. X-ray diffraction analysis of crystals of 4 and an acetylated oxazole derivative of 5 (6) confirm the proposed structures. Ab initio computations are used to assess the relative thermodynamic stability of three trimer isomers (an s-triazine, an aminohydroxypyrimidine, and an aminooxazoline), and the results indicate that 4 is a novel kinetic product. Mechanistic considerations rationalize kinetic oxazole formation over the more customary triazine or pyrimidine trimers.

  4. Contribution of spoligotyping to the characterization of the population structure of Mycobacterium tuberculosis isolates in Portugal.

    PubMed

    David, Suzana; Ribeiro, Diana Raposo; Antunes, Abílio; Portugal, Clara; Sancho, Luísa; de Sousa, José Germano

    2007-09-01

    Tuberculosis is a major health problem in Portugal. To begin characterizing the population structure of Mycobacterium tuberculosis, spoligotyping was used for the systematic typing, through consecutive sampling, of patient isolates from the Amadora-Sintra area of Greater Lisbon. Distribution amongst major spoligotype families, including the Latin American Mediterranean (LAM), T, Haarlem and Beijing, was compared to that of the international spoligotype database SpolDB4 and to the European countries of traditional Portuguese immigration represented in SpolDB4. Spoligotypes from 665 isolates were analyzed and 97 shared international types (SITs) identified. In SpolDB4 Portugal is represented by part of the spoligotypes from this study explaining the reduced number of unidentified patterns. The importance of the LAM family, and especially of LAM1 and LAM9 sub-families that alone represented 38% of all the isolates in this study as compared to 8% relative to the European sub group, led us to believe that at least in this respect the population structure was closer to that of Africa and South America than to Europe. Spoligotypes characteristic of Portugal or Portuguese related settings were identified. These included SIT244 a T1 sub-family predominant in Portugal and Bangladesh, SIT64 a LAM 6 sub-family common to Portugal and Brazil, and SIT1106 a LAM 9 sub-family. These studies were the first in Portugal stressing the importance of monitoring the population structure of M. tuberculosis isolates, an important step towards gaining an understanding of tuberculosis and the dynamics of this disease.

  5. Structure of an isolated unglycosylated antibody C{sub H}2 domain

    SciTech Connect

    Prabakaran, Ponraj; Vu, Bang K.; Gan, Jianhua; Feng, Yang; Dimitrov, Dimiter S.; Ji, Xinhua

    2008-10-01

    The crystal structure of an isolated unglycosylated antibody C{sub H}2 domain has been determined at 1.7 Å resolution. The C{sub H}2 (C{sub H}3 for IgM and IgE) domain of an antibody plays an important role in mediating effector functions and preserving antibody stability. It is the only domain in human immunoglobulins (Igs) which is involved in weak interchain protein–protein interactions with another C{sub H}2 domain solely through sugar moieties. The N-linked glycosylation at Asn297 is conserved in mammalian IgGs as well as in homologous regions of other antibody isotypes. To examine the structural details of the C{sub H}2 domain in the absence of glycosylation and other antibody domains, the crystal structure of an isolated unglycosylated antibody γ1 C{sub H}2 domain was determined at 1.7 Å resolution and compared with corresponding C{sub H}2 structures from intact Fc, IgG and Fc receptor complexes. Furthermore, the oligomeric state of the protein in solution was studied using size-exclusion chromatography. The results suggested that the unglycosylated human antibody C{sub H}2 domain is a monomer and that its structure is similar to that found in the intact Fc, IgG and Fc receptor complex structures. However, certain structural variations were observed in the Fc receptor-binding sites. Owing to its small size, stability and non-immunogenic Ig template, the C{sub H}2-domain structure could be useful for the development by protein design of antibody domains exerting effector functions and/or antigen specificity and as a robust scaffold in protein-engineering applications.

  6. Isolation of synaptic junctional complexes of high structural integrity from rat brain

    PubMed Central

    1976-01-01

    A new method has been developed for isolating synaptic junctional complexes (SJC) of high structural integrity. The major step in the isolation involves homogenization of a synaptosomal membrane (SM) fraction in a biphasic system consisting of Freon 113 and an aqueous phase containing 0.2% Triton X-100. Well-preserved SJCs, along with membrane vesicles, were recovered in the aqueous phase after low-speed centrifugation of the homogenate. The membranes were subsequently separated from the SJCs by centrifugation on a discontinuous sucrose density gradient. The purity and identity of subcellular fractions were monitored by thin sectioning electron microscopy, using specific and nonspecific staining methods. From the electron microscope studies we conclude that SJCs and their components occupy about 65% of the area covered by structures in this fraction. The assay of enzyme activities indicates that homogenization in Triton-Freon and subsequent steps of the isolation procedure affect the activities of Na, K-ATPase, cytochrome oxidase, and acid phosphatase to different extents, but do not cause total inactivation. Electrophoresis of the SJC-enriched fraction on sodium dodecyl sulfate-polyacrylamide gels has demonstrated that a polypeptide which co-migrates with tubulin is the major component in this fraction, and that a polypeptide co-migrating with actin is also present. PMID:186464

  7. Qualitative Fault Isolation of Hybrid Systems: A Structural Model Decomposition-Based Approach

    NASA Technical Reports Server (NTRS)

    Bregon, Anibal; Daigle, Matthew; Roychoudhury, Indranil

    2016-01-01

    Quick and robust fault diagnosis is critical to ensuring safe operation of complex engineering systems. A large number of techniques are available to provide fault diagnosis in systems with continuous dynamics. However, many systems in aerospace and industrial environments are best represented as hybrid systems that consist of discrete behavioral modes, each with its own continuous dynamics. These hybrid dynamics make the on-line fault diagnosis task computationally more complex due to the large number of possible system modes and the existence of autonomous mode transitions. This paper presents a qualitative fault isolation framework for hybrid systems based on structural model decomposition. The fault isolation is performed by analyzing the qualitative information of the residual deviations. However, in hybrid systems this process becomes complex due to possible existence of observation delays, which can cause observed deviations to be inconsistent with the expected deviations for the current mode in the system. The great advantage of structural model decomposition is that (i) it allows to design residuals that respond to only a subset of the faults, and (ii) every time a mode change occurs, only a subset of the residuals will need to be reconfigured, thus reducing the complexity of the reasoning process for isolation purposes. To demonstrate and test the validity of our approach, we use an electric circuit simulation as the case study.

  8. Chromosome-specific segmentation revealed by structural analysis of individually isolated chromosomes.

    PubMed

    Kitada, Kunio; Taima, Akira; Ogasawara, Kiyomoto; Metsugi, Shouichi; Aikawa, Satoko

    2011-04-01

    Analysis of structural rearrangements at the individual chromosomal level is still technologically challenging. Here we optimized a chromosome isolation method using fluorescent marker-assisted laser-capture and laser-beam microdissection and applied it to structural analysis of two aberrant chromosomes found in a lung cancer cell line. A high-density array-comparative genomic hybridization (array-CGH) analysis of DNA samples prepared from each of the chromosomes revealed that these two chromosomes contained 296 and 263 segments, respectively, ranging from 1.5 kb to 784.3 kb in size, derived from different portions of chromosome 8. Among these segments, 242 were common in both aberrant chromosomes, but 75 were found to be chromosome-specific. Sequences of 263 junction sites connecting the ends of segments were determined using a PCR/Sanger-sequencing procedure. Overlapping microhomologies were found at 169 junction sites. Junction partners came from various portions of chromosome 8 and no biased pattern in the positional distribution of junction partners was detected. These structural characteristics suggested the occurrence of random fragmentation of the entire chromosome 8 followed by random rejoining of these fragments. Based on that, we proposed a model to explain how these aberrant chromosomes are formed. Through these structural analyses, it was demonstrated that the optimized chromosome isolation method described here can provide high-quality chromosomal DNA for high resolution array-CGH analysis and probably for massively parallel sequencing analysis.

  9. Chemical constituents isolated from the Mongolian medicinal plant Sophora alopecuroides L. and their inhibitory effects on LPS-induced nitric oxide production in RAW 264.7 macrophages.

    PubMed

    Kwon, Jaeyoung; Basnet, Sunita; Lee, Jin Woo; Seo, Eun-Kyoung; Tsevegsuren, Nanzad; Hwang, Bang Yeon; Lee, Dongho

    2015-08-15

    Three new flavonostilbenes, alopecurones M-O (1-3), were isolated from the root bark of Sophora alopecuroides L. together with 21 known compounds. The structures of the isolated compounds were elucidated by using NMR, MS, and CD spectroscopic data. All isolates were evaluated for their potential to inhibit LPS-induced nitric oxide production in RAW 264.7 cells.

  10. Population genetic structure of Theileria parva field isolates from indigenous cattle populations of Uganda.

    PubMed

    Muwanika, Vincent; Kabi, Fredrick; Masembe, Charles

    2016-03-01

    Theileria parva causes East Coast Fever (ECF) a protozoan infection which manifests as a non-symptomatic syndrome among endemically stable indigenous cattle populations. Knowledge of the current genetic diversity and population structure of T. parva is critical for predicting pathogen evolutionary trends to inform development of effective control strategies. In this study the population genetic structure of 78 field isolates of T. parva from indigenous cattle (Ankole, n=41 and East African shorthorn Zebu (EASZ), n=37) sampled from the different agro ecological zones (AEZs) of Uganda was investigated. A total of eight mini- and micro-satellite markers encompassing the four chromosomes of T. parva were used to genotype the study field isolates. The genetic diversity of the surveyed T. parva populations was observed to range from 0.643±0.55 to 0.663±0.41 among the Central and Western AEZs respectively. The overall Wright's F index showed significant genetic variation between the surveyed T. parva populations based on the different AEZs and indigenous cattle breeds (FST=0.133, p<0.01) and (FST=0.101, p<0.01) respectively. Significant pairwise population genetic differentiations (p<0.05) were observed with FST values ranging from 0.048 to 0.173 between the eastern and northern, eastern and western populations respectively. The principal component analysis (PCA) showed a high level of genetic and geographic sub-structuring among populations. Linkage disequilibrium was observed when populations from all the study AEZs were treated as a single population and when analysed separately. On the overall, the significant genetic diversity and geographic sub-structuring exhibited among the study T. parva isolates has critical implications for ECF control.

  11. Isolation and structure of whiskey polyphenols produced by oxidation of oak wood ellagitannins.

    PubMed

    Fujieda, Miho; Tanaka, Takashi; Suwa, Yoshihide; Koshimizu, Seiichi; Kouno, Isao

    2008-08-27

    Three new phenolic compounds named whiskey tannins A and B and carboxyl ellagic acid were isolated from commercial Japanese whiskey, along with gallic acid, ellagic acid, brevifolin carboxylic acid, three galloyl glucoses, a galloyl ester of phenolic glucoside, 2,3-(S)-hexahydroxydiphenoylglucose, and castacrenin B. Whiskey tannins A and B were oxidation products of a major oak wood ellagitannin, castalagin, in which the pyrogallol ring at the glucose C-1 position of castalagin was oxidized to a cyclopentenone moiety. These tannins originated from ellagitannins contained in the oak wood used for barrel production; however, the original oak wood ellagitannins were not detected in the whiskey. To examine whether the whiskey tannins were produced during the charring process of barrel production, pyrolysis products of castalagin were investigated. Dehydrocastalagin and a new phenolcarboxylic acid trislactone having an isocoumarin structure were isolated, along with castacrenin F and ellagic acid. However, whiskey tannins were not detected in the products.

  12. Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast

    PubMed Central

    Jeffares, Daniel C.; Jolly, Clemency; Hoti, Mimoza; Speed, Doug; Shaw, Liam; Rallis, Charalampos; Balloux, Francois; Dessimoz, Christophe; Bähler, Jürg; Sedlazeck, Fritz J.

    2017-01-01

    Large structural variations (SVs) within genomes are more challenging to identify than smaller genetic variants but may substantially contribute to phenotypic diversity and evolution. We analyse the effects of SVs on gene expression, quantitative traits and intrinsic reproductive isolation in the yeast Schizosaccharomyces pombe. We establish a high-quality curated catalogue of SVs in the genomes of a worldwide library of S. pombe strains, including duplications, deletions, inversions and translocations. We show that copy number variants (CNVs) show a variety of genetic signals consistent with rapid turnover. These transient CNVs produce stoichiometric effects on gen