Sample records for isomer shift paramagnetic

  1. The Demonstration of the Feasibility of the Tuning and Stimulation of Nuclear Radiation.

    DTIC Science & Technology

    1988-10-31

    line, or the center of a resonance pattern, is called the isomer shift. It is due to the electrostatic interaction of the nucleus with the electron ...magnetic moment due to the presence of unpaired electrons , the material is either paramagnetic or ferromagnetic. In paramagnetic materials these moments...capture and fission.4,5,8 A very fertile interdisciplinary area of nuclear quantum electronics 7 appeared to be developing, encouraged by the

  2. Study on Separation of Structural Isomer with Magneto-Archimedes method

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Mori, T.; Akiyama, Y.; Mishima, F.; Nishijima, S.

    2017-09-01

    Organic compounds are refined by separating their structural isomers, however each separation method has some problems. For example, distillation consumes large energy. In order to solve these problems, new separation method is needed. Considering organic compounds are diamagnetic, we focused on magneto-Archimedes method. With this method, particle mixture dispersed in a paramagnetic medium can be separated in a magnetic field due to the difference of the density and magnetic susceptibility of the particles. In this study, we succeeded in separating isomers of phthalic acid as an example of structural isomer using MnCl2 solution as the paramagnetic medium. In order to use magneto-Archimedes method for separating materials for food or medicine, we proposed harmless medium using oxygen and fluorocarbon instead of MnCl2 aqueous solution. As a result, the possibility of separating every structural isomer was shown.

  3. Why Is Benzene Unique? Screening Magnetic Properties of C6 H6 Isomers.

    PubMed

    Janda, Tomáš; Foroutan-Nejad, Cina

    2018-05-25

    Magnetic properties are commonly used to identify new aromatic molecules because it is generally believed that magnetization and energetic stability are correlated. To verify the potential correlation between the energy and magnetic response properties, we examined a set of 198 isomers of C 6 H 6 . The energy and magnetic properties of these molecules can be directly compared with no need to invoke any arbitrary reference state because the studied systems are all isomers. Benzene is the global minimum on the potential energy surface of C 6 H 6 , 35 kcal mol -1 lower in energy than the second most stable isomer, fulvene. Unlike its electronic energy, isotropic magnetizability of benzene is slightly lower than the average magnetizability of its isomers. Altogether, 44 isomers of C 6 H 6 were identified to have more negative magnetic susceptibility than benzene but were between 67.0 to 168.6 kcal mol -1 higher in energy than benzene. However, benzene is unique in two ways. Analyzing the paramagnetic contribution to the magnetic susceptibility as originally suggested by Bilde and Hansen (Mol. Phys., 1997, 92, 237) revealed that 53 molecules have lower paramagnetic susceptibility than benzene but among monocyclic systems benzene has the least paramagnetic susceptibility. Furthermore, benzene has the largest out-of-plane magnetic susceptibility that originates from the strongest ring current among all studied species. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The Microscopic Magnetic Properties of W-type Hexaferrite Powder Prepared by A Sol-Gel Route

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jotania, Rajshree; Chauhan, Chetna; Sharma, Pooja

    2010-12-01

    Magnetic particles of W-type barium-calcium hexaferrite (BaCa{sub 2}Fe{sub 16}O{sub 27}) have been synthesized using a Stearic acid gel route. The gel precursors were dried at 100 deg. C for 2 hrs and then calcinated at 650 deg. C, 750 deg. C, 850 deg. C and 950 deg. C for 4 hrs in a furnace and slowly cooled to room temperature in order to obtain barium-calcium hexaferrite particles. The microscopic magnetic properties of prepared samples studying using Moessbauer spectroscopy. Moessbauer spectra of all samples were recorded at room temperature. Mossbauer parameters like Isomer shift, Quadruple splitting etc. were calculated with respectmore » to iron foil. Barium calcium hexaferrite samples heated at 650 deg. C, 750 deg. C, 850 deg. C show relaxation type Moessbauer spectra along with paramagnetic doublet. The intensity of paramagnetic doublet increases with temperature confirm the presence of ferrous ions in the samples, where as sample calcinated at 950 deg. C confirm the presence of ferrimagnetic phase with partial super paramagnetic nature of prepared hexaferrite sample.« less

  5. Determination of the chirality of the saturated pyrrole in sulfmyoglobin using the nuclear Overhauser effect.

    PubMed

    Parker, W O; Chatfield, M J; La Mar, G N

    1989-02-21

    The interproton nuclear Overhauser effect (NOE) and paramagnetic dipolar relaxation rates for hyperfine-shifted resonances in the proton NMR spectra of sperm whale met-cyano sulfmyoglobin have led to the location and assignment of the proton signals of the heme pocket residue isoleucine 99 (FG5) in two sulfmyoglobin isomers. Dipolar relaxation rates of these protein signals indicate a highly conserved geometry of the heme pocket upon sulfmyoglobin formation, while the similar upfield direction of dipolar shifts for this residue to that observed in native sperm whale myoglobin reflects largely retained magnetic properties. Dipolar connectivity of this protein residue to the substituents of the reacted heme pyrrole ring B defines the stereochemistry of the puckered thiolene ring found in one isomer, with the 3-CH3 tilted out of the heme plane proximally. The chirality of the saturated carbons of pyrrole ring B in both the initial sulfmyoglobin product and the terminal alkaline product is consistent with a mechanism of formation in which an atom of sulfur is incorporated distally to form an episulfide across ring B, followed by reaction of the vinyl group to yield the thiolene ring that retains the C3 chirality.

  6. Synthesis and Mossbauer spectroscopy of macrocyclic complexes of iron(III)

    NASA Astrophysics Data System (ADS)

    Mishra, A.; Sura, Kamaljeet S.; Sharma, P.

    2016-10-01

    The article deals with a fresh series of the complexes of the type: [Fe(III)(TML)Cl]Cl2; where TML is a tetra-dentate macrocyclic ligand; has been synthesized by condensation of o-phenylenediamine, diethyl malonate and diazonium ion in the ethanolic medium, through refluxing with FeCl3.The synthesized metal complexes were characterized by Mossbauer spectroscopy. Mossbauer measurements were carried out using standard PC-based spectrometer equipped with Weissel velocity drive operating in the constant acceleration mode. Mossbauer study interprets paramagnetic nature of complexes. Mossbauer measurement of complex 1 and 2 has been taken to find out the value of isomer shift and quadrapole splitting and oxidation state after complaxsation.

  7. Monitoring changes of paramagnetically-shifted 31P signals in phospholipid vesicles

    NASA Astrophysics Data System (ADS)

    Joyce, Rebecca E.; Williams, Thomas L.; Serpell, Louise C.; Day, Iain J.

    2016-03-01

    Phospholipid vesicles are commonly used as biomimetics in the investigation of the interaction of various species with cell membranes. In this letter we present a 31P NMR investigation of a simple vesicle system using a paramagnetic shift reagent to probe the inner and outer layers of the lipid bilayer. Time-dependent changes in the 31P NMR signal are observed, which differ whether the paramagnetic species is inside or outside the vesicle, and on the choice of buffer solution used. An interpretation of these results is given in terms of the interaction of the paramagnetic shift reagent with the lipids.

  8. Theoretical and experimental NMR study of protopine hydrochloride isomers.

    PubMed

    Tousek, Jaromír; Malináková, Katerina; Dostál, Jirí; Marek, Radek

    2005-07-01

    The 1H and 13C NMR chemical shifts of cis- and trans-protopinium salts were measured and calculated. The calculations of the chemical shifts consisted of conformational analysis, geometry optimization (RHF/6-31G** method) and shielding constants calculations (B3LYP/6-31G** method). Based on the results of the quantum chemical calculations, two sets of experimental chemical shifts were assigned to the particular isomers. According to the experimental results, the trans-isomer is more stable and its population is approximately 68%. Copyright 2005 John Wiley & Sons, Ltd

  9. Perovskite oxides: Oxygen electrocatalysis and bulk structure

    NASA Technical Reports Server (NTRS)

    Carbonio, R. E.; Fierro, C.; Tryk, D.; Scherson, D.; Yeager, Ernest

    1987-01-01

    Perovskite type oxides were considered for use as oxygen reduction and generation electrocatalysts in alkaline electrolytes. Perovskite stability and electrocatalytic activity are studied along with possible relationships of the latter with the bulk solid state properties. A series of compounds of the type LaFe(x)Ni1(-x)O3 was used as a model system to gain information on the possible relationships between surface catalytic activity and bulk structure. Hydrogen peroxide decomposition rate constants were measured for these compounds. Ex situ Mossbauer effect spectroscopy (MES), and magnetic susceptibility measurements were used to study the solid state properties. X ray photoelectron spectroscopy (XPS) was used to examine the surface. MES has indicated the presence of a paramagnetic to magnetically ordered phase transition for values of x between 0.4 and 0.5. A correlation was found between the values of the MES isomer shift and the catalytic activity for peroxide decomposition. Thus, the catalytic activity can be correlated to the d-electron density for the transition metal cations.

  10. Perovskite-type oxides - Oxygen electrocatalysis and bulk structure

    NASA Technical Reports Server (NTRS)

    Carbonio, R. E.; Fierro, C.; Tryk, D.; Scherson, D.; Yeager, E.

    1988-01-01

    Perovskite type oxides were considered for use as oxygen reduction and generation electrocatalysts in alkaline electrolytes. Perovskite stability and electrocatalytic activity are studied along with possible relationships of the latter with the bulk solid state properties. A series of compounds of the type LaFe(x)Ni1(-x)O3 was used as a model system to gain information on the possible relationships between surface catalytic activity and bulk structure. Hydrogen peroxide decomposition rate constants were measured for these compounds. Ex situ Mossbauer effect spectroscopy (MES), and magnetic susceptibility measurements were used to study the solid state properties. X ray photoelectron spectroscopy (XPS) was used to examine the surface. MES has indicated the presence of a paramagnetic to magnetically ordered phase transition for values of x between 0.4 and 0.5. A correlation was found between the values of the MES isomer shift and the catalytic activity for peroxide decomposition. Thus, the catalytic activity can be correlated to the d-electron density for the transition metal cations.

  11. Isomer Shift and Magnetic Moment of the Long-Lived 1/2^{+} Isomer in _{30}^{79}Zn_{49}: Signature of Shape Coexistence near ^{78}Ni.

    PubMed

    Yang, X F; Wraith, C; Xie, L; Babcock, C; Billowes, J; Bissell, M L; Blaum, K; Cheal, B; Flanagan, K T; Garcia Ruiz, R F; Gins, W; Gorges, C; Grob, L K; Heylen, H; Kaufmann, S; Kowalska, M; Kraemer, J; Malbrunot-Ettenauer, S; Neugart, R; Neyens, G; Nörtershäuser, W; Papuga, J; Sánchez, R; Yordanov, D T

    2016-05-06

    Collinear laser spectroscopy is performed on the _{30}^{79}Zn_{49} isotope at ISOLDE-CERN. The existence of a long-lived isomer with a few hundred milliseconds half-life is confirmed, and the nuclear spins and moments of the ground and isomeric states in ^{79}Zn as well as the isomer shift are measured. From the observed hyperfine structures, spins I=9/2 and I=1/2 are firmly assigned to the ground and isomeric states. The magnetic moment μ (^{79}Zn)=-1.1866(10)μ_{N}, confirms the spin-parity 9/2^{+} with a νg_{9/2}^{-1} shell-model configuration, in excellent agreement with the prediction from large scale shell-model theories. The magnetic moment μ (^{79m}Zn)=-1.0180(12)μ_{N} supports a positive parity for the isomer, with a wave function dominated by a 2h-1p neutron excitation across the N=50 shell gap. The large isomer shift reveals an increase of the intruder isomer mean square charge radius with respect to that of the ground state, δ⟨r_{c}^{2}⟩^{79,79m}=+0.204(6)  fm^{2}, providing first evidence of shape coexistence.

  12. Solvation effect on isomer stability and electronic structures of protonated serotonin

    NASA Astrophysics Data System (ADS)

    Omidyan, Reza; Amanollahi, Zohreh; Azimi, Gholamhassan

    2017-07-01

    Microsolvation effect on geometry and transition energies of protonated serotonin has been investigated by MP2 and CC2 quantum chemical methods. Also, conductor-like screening model, implemented recently in the MP2 and ADC(2) methods, was examined to address the bulk water environment's effect on the isomer stability and electronic transition energies of protonated serotonin. It has been predicted that the dipole moment of gas phase isomers plays the main role on the isomer stabilization in water solution and electronic transition shifts. Also, both red- and blue-shift effects have been predicted to take place on electronic transition energies, upon hydration.

  13. A Mössbauer effect study of the bonding in several organoiron carbonyl clusters

    NASA Astrophysics Data System (ADS)

    Long, Gary J.; O'Brien, James F.

    1988-02-01

    After a brief review of the applications of the Mössbauer effect to cyclopentadienyl containing compounds, the chemistry and spectral properties of the various iron carbonyl complexes are described. The electronic properties of a series of trinuclear and tetranuclear organoiron clusters have been investigated through Fenske-Hall self-consistent field molecular orbital calculations, and the results are compared with the Mössbauer effect isomer shifts. A linear correlation is found between the Slater effective nuclear charge, as calculated from the Fenske-Hall partial orbital occupancy factors, and the isomer shift. In these compounds the 4s orbital populations are rather constant. However, the cis and trans isomers of [CpFe(CO)2]2 have a significantly lower 4s orbital populations. In this case, the reduced 4s population must be accounted for by adding it to the effective nuclear charge to obtain a good correlation with the isomer shift.

  14. Chemical Mass Shifts in a Digital Linear Ion Trap as Analytical Identity of o-, m-, and p-Xylene.

    PubMed

    Sun, Lulu; Xue, Bing; Huang, Zhengxu; Cheng, Ping; Ma, Li; Ding, Li; Zhou, Zhen

    2018-07-01

    Chemical mass shifts between isomeric ions of o-, m-, and p-xylene were measured using a digital linear ion trap, and the directions and values of the shifts were found to be correlated to the collision cross sections of the isomers. Both forward and reverse scans were used and the chemical shifts for each pair of isomers in scans of opposite directions were in opposite signs. Using different voltage settings (namely the voltage dividing ratio-VDR) of the ion trap allows adding high order field components in the quadrupole field and results in larger chemical mass shifts. The differential chemical mass shift which combined the shifts from forward and reverse scans doubled the amount of chemical shift, e.g., 0.077 Th between o- and p-xylene, enough for identification of the type of isomer without using an additional ion mobility spectrometer. The feature of equal and opposite chemical mass shifts also allowed to null out the chemical mass shift by calculating the mean m/z value between the two opposite scans and remove or reduce the mass error caused by chemical mass shift. Graphical Abstract ᅟ.

  15. Chemical Mass Shifts in a Digital Linear Ion Trap as Analytical Identity of o-, m-, and p-Xylene

    NASA Astrophysics Data System (ADS)

    Sun, Lulu; Xue, Bing; Huang, Zhengxu; Cheng, Ping; Ma, Li; Ding, Li; Zhou, Zhen

    2018-04-01

    Chemical mass shifts between isomeric ions of o-, m-, and p-xylene were measured using a digital linear ion trap, and the directions and values of the shifts were found to be correlated to the collision cross sections of the isomers. Both forward and reverse scans were used and the chemical shifts for each pair of isomers in scans of opposite directions were in opposite signs. Using different voltage settings (namely the voltage dividing ratio-VDR) of the ion trap allows adding high order field components in the quadrupole field and results in larger chemical mass shifts. The differential chemical mass shift which combined the shifts from forward and reverse scans doubled the amount of chemical shift, e.g., 0.077 Th between o- and p-xylene, enough for identification of the type of isomer without using an additional ion mobility spectrometer. The feature of equal and opposite chemical mass shifts also allowed to null out the chemical mass shift by calculating the mean m/z value between the two opposite scans and remove or reduce the mass error caused by chemical mass shift. [Figure not available: see fulltext.

  16. Preparation of a Cobalt(II) Cage: An Undergraduate Laboratory Experiment That Produces a ParaSHIFT Agent for Magnetic Resonance Spectroscopy

    ERIC Educational Resources Information Center

    Burns, Patrick J.; Tsitovich, Pavel B.; Morrow, Janet R.

    2016-01-01

    Laboratory experiments that demonstrate the effect of paramagnetic complexes on chemical shifts and relaxation times of protons are a useful way to introduce magnetic resonance spectroscopy (MRS) probes or magnetic resonance imaging (MRI) contrast agents. In this undergraduate inorganic chemistry experiment, a paramagnetic Co(II) cage complex is…

  17. Oxygen-17 NMR Shifts Caused by Cr{Sup ++} in Aqueous Solutions

    DOE R&D Accomplishments Database

    Jackson, J. A.; Lemons, J. F.; Taube, H.

    1962-01-01

    Cr{sup ++} in solution produces a paramagnetic shift in the NMR absorption of O{sup 17} in ClO{sub 4}{sup -}, as well as the expected paramagnetic shift for O{sup 17} in H{sub 2}O. As the concentration of ClO{sub 4}{sup -} increases, the shift in the H{sub 2}O{sup 17} absorption is diminished, and eventually changes sign. The effects are ascribed to preferential replacement by ClO{sub 4}{sup -} of water molecules from the axial positions in the first coordination sphere about Cr{sup ++}.

  18. Synthesis, NMR, FT-IR, X-ray structural characterization, DFT analysis and isomerism aspects of 5-(2,6-dichlorobenzylidene)pyrimidine-2,4,6(1H,3H,5H)-trione.

    PubMed

    Barakat, Assem; Al-Najjar, Hany J; Al-Majid, Abdullah Mohammed; Soliman, Saied M; Mabkhot, Yahia Nasser; Shaik, Mohammed Rafi; Ghabbour, Hazem A; Fun, Hoong-Kun

    2015-08-05

    The synthesis and spectral characterization of the 5-(2,6-dichlorobenzylidene)pyrimidine-2,4,6(1H,3H,5H)-trione;3 was reported. The solid state molecular structure of 3 was studied using X-ray crystallography. The relative stabilities of the seven possible isomers of 3 were calculated by DFT/B3LYP method using 6-311 G(d,p) basis set. The calculated total energies and thermodynamic parameters were used to predict the relative stabilities of these isomers. The effect of solvent polarity on the relative stability of these isomers was studied at the same level of theory using PCM. It was found that the keto form, (T0), is the most stable isomer both in the gaseous state and solution. In solution, the calculated total energies of all isomers are decreased indicating that all isomers are stabilized by the solvent effect. The vibrational spectra of the most stable isomer, 3(T0) are calculated using the same level of theory and the results are compared with the experimentally measured FTIR spectra. Good correlation was obtained between the experimental and calculated vibrational frequencies (R(2)=0.9992). The electronic spectra of 3(T0) in gas phase as well as in solutions were calculated using the TD-DFT method. All the predicted electronic transitions showed very little spectral shifts and increase in the intensity of absorption due to solvent effect. Also the (1)H- and (13)C-NMR chemical shifts of the stable isomer were calculated and the results were correlated with the experimental data. Good correlations between the experimental and calculated chemical shifts were obtained. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Superparamagnetic behavior of heat treated Mg{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} ferrite nanoparticles studied by Mössbauer spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srinivas, Ch., E-mail: srinivas.chintoju75@gmail.com; Prasad, S. A. V.; Singh, S. B.

    2016-05-23

    Nanoparticles of Mg{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} ferrite have been synthesized by co-precipitation method. XRD and Mössbauer spectroscopic results of Mg{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} annealed at 200 °C, 500 °C and 800 °C are reported. It was observed that the crystallite size increases and the lattice parameter decreases with increase in annealing temperature. The observed decrease in lattice strain supports the increase in crystallite size. The Mössbauer spectra of the samples annealed at 200 °C and 500 °C exhibits superparamagnetic doublets whereas the Mössbauer spectrum of the sample annealed at 800 °C exhibits paramagnetic doublet along with weak sextetmore » of hyperfine interaction. The values of isomer shift resemble the presence of high spin iron ions. The studied ferrite nanoparticles are suitable for biomedical applications. The results are incorporated employing core-shell model and cation redistribution.« less

  20. Large-Scale Computation of Nuclear Magnetic Resonance Shifts for Paramagnetic Solids Using CP2K.

    PubMed

    Mondal, Arobendo; Gaultois, Michael W; Pell, Andrew J; Iannuzzi, Marcella; Grey, Clare P; Hutter, Jürg; Kaupp, Martin

    2018-01-09

    Large-scale computations of nuclear magnetic resonance (NMR) shifts for extended paramagnetic solids (pNMR) are reported using the highly efficient Gaussian-augmented plane-wave implementation of the CP2K code. Combining hyperfine couplings obtained with hybrid functionals with g-tensors and orbital shieldings computed using gradient-corrected functionals, contact, pseudocontact, and orbital-shift contributions to pNMR shifts are accessible. Due to the efficient and highly parallel performance of CP2K, a wide variety of materials with large unit cells can be studied with extended Gaussian basis sets. Validation of various approaches for the different contributions to pNMR shifts is done first for molecules in a large supercell in comparison with typical quantum-chemical codes. This is then extended to a detailed study of g-tensors for extended solid transition-metal fluorides and for a series of complex lithium vanadium phosphates. Finally, lithium pNMR shifts are computed for Li 3 V 2 (PO 4 ) 3 , for which detailed experimental data are available. This has allowed an in-depth study of different approaches (e.g., full periodic versus incremental cluster computations of g-tensors and different functionals and basis sets for hyperfine computations) as well as a thorough analysis of the different contributions to the pNMR shifts. This study paves the way for a more-widespread computational treatment of NMR shifts for paramagnetic materials.

  1. Shape evolution for neutron-deficient bismuth isotopes studied by resonance laser ionization spectroscopy

    NASA Astrophysics Data System (ADS)

    Molkanov, P. L.; Barzakh, A. E.; Fedorov, D. V.; Ivanov, V. S.; Moroz, F. V.; Orlov, S. Yu.; Panteleev, V. N.; Seliverstov, M. D.; Volkov, Yu. M.

    2017-11-01

    In-source laser spectroscopy experiments for bismuth isotopes at the 306.77 nm atomic transition has been carried out at the IRIS (Investigation of Radioactive Isotopes at Synchrocyclotron) facility of Petersburg Nuclear Physics Institute. New data on isotope shifts for 189-198,211Bi isotopes and isomers have been obtained. The changes in the mean-square charge radii were deduced. The large isomer shift has been observed for the intruder isomer states of Bi with spin I = 1/2 ( A = 193, 195, 197). This testifies to the shape coexistence in these nuclei with the intruder isomer states more deformed than the ground states. Marked deviation from the nearly spherical behavior for ground states of the even-neutron Bi isotopes at N < 109 is demonstrated, in contrast to the Pb and Tl isotopic chains.

  2. The Effect of Electronic Paramagnetism on Nuclear Magnetic Resonance Frequencies in Metals

    DOE R&D Accomplishments Database

    Townes, C. H.; Herring, C.; Knight, W. D.

    1950-09-22

    Observations on the shifts of nuclear resonances in metals ( Li{sup 7}, Na{sup 23}, Cu {sup 63}, Be{sup 9}, Pb{sup 207}, Al{sup 27}, and Ca{sup 69} ) due to free electron paramagnetism; comparison with theoretical values.

  3. Solution 1H NMR characterization of the axial bonding of the two His in oxidized human cytoglobin

    PubMed Central

    Bondarenko, Vasyl; Dewilde, Sylvia; Moens, Luc; La Mar, Gerd N.

    2008-01-01

    Solution 1H NMR spectroscopy has been used to determine the relative strengths (covalency) of the two axial His-Fe bonds in paramagnetic, S = 1/2, human met-cytoglobin. The sequence specific assignments of crucial portions of the proximal and distal helices, together with the magnitude of hyperfine shifts and paramagnetic relaxation, establish that His81 and His113, at the canonical positions E7 and F8 in the myoglobin fold, respectively, are ligated to the iron. The characterized complex (~90%) in solution has protohemin oriented as in crystals, with the remaining ~10% exhibiting the hemin orientation rotated 180° about the α-, γ-meso axis. No evidence could be obtained for any five-coordinate complex (<1%) in equilibrium with the six-coordinate complexes. Extensive sequence-specific assignments on other dipolar shifted helical fragments and loops, together with available alternate crystal coordinates for the complex, allowed the robust determination of the orientation and anisotropies of the paramagnetic susceptibility tensor. The tilt of the major axis is controlled by the His-Fe-His vector, and the rhombic axes by the mean of the imidazole orientations for the two His. The anisotropy of the paramagnetic susceptibility tensor allowed the quantitative factoring of the hyperfine shifts for the two axial His to reveal indistinguishable pattern and magnitudes of the contact shifts or π spin densities, and hence, indistinguishable Fe-imidazole covalency for both Fe-His bonds. PMID:17002396

  4. Ar(n)HF van der Waals clusters revisited: II. Energetics and HF vibrational frequency shifts from diffusion Monte Carlo calculations on additive and nonadditive potential-energy surfaces for n=1-12.

    PubMed

    Jiang, Hao; Xu, Minzhong; Hutson, Jeremy M; Bacić, Zlatko

    2005-08-01

    The ground-state energies and HF vibrational frequency shifts of Ar(n)HF clusters have been calculated on the nonadditive potential-energy surfaces (PESs) for n=2-7 and on the pairwise-additive PESs for the clusters with n=1-12, using the diffusion Monte Carlo (DMC) method. For n>3, the calculations have been performed for the lowest-energy isomer and several higher-lying isomers which are the closest in energy. They provide information about the isomer dependence of the HF redshift, and enable direct comparison with the experimental data recently obtained in helium nanodroplets. The agreement between theory and experiment is excellent, in particular, for the nonadditive DMC redshifts. The relative, incremental redshifts are reproduced accurately even at the lower level of theory, i.e., the DMC and quantum five-dimensional (rigid Ar(n)) calculations on the pairwise-additive PESs. The nonadditive interactions make a significant contribution to the frequency shift, on the order of 10%-12%, and have to be included in the PESs in order for the theory to yield accurate magnitude of the HF redshift. The energy gaps between the DMC ground states of the cluster isomers are very different from the energy separation of their respective minima on the PES, due to the considerable variations in the intermolecular zero-point energy of different Ar(n)HF isomers.

  5. Study of the oxidized and non- oxidized bitumen modified with additive «Adgezolin» by using electron paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Mukhamatdinov, I.; Gafurov, M.; Kemalov, A.; Rodionov, A.; Mamin, G.; Fakhretdinov, P.

    2018-05-01

    Cationic surfactant (adhesion additive) «Adgezolin» has been developed. It is shown that introduction of «Adgezolin» into the oxidized bitumen increases the relative amount of asphaltenes and monocyclearomatic hydrocarbons. By means of electron paramagnetic resonance (EPR) it is demonstrated that the introduction of additive «Adgezolin» increases the number of paramagnetic «free» carbon radicals (FR) in the oxidized bitumen and decreases that in the unoxidized species. In both types of bitumen shift from the Lorentzian to Gaussian EPR lineshape of FR is obtained that could be connected with as an increase of the samples homogeneity. It is supposed that while in the oxygenated bitumens introduction of additives leads to the disaggregation of asphaltene-resins compounds, in the unoxidized samples the balance is shifted towards formation of di-radicals.

  6. Mechanistic analysis of water oxidation catalyst cis-[Ru(bpy) 2(H 2O) 2] 2+: Effect of dimerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erdman, Darren; Pineda-Galvan, Yuliana; Pushkar, Yulia

    While the catalytic activity of some Ru-based polypyridine complexes in water oxidation is well established, the relationship between their chemical structure and activity is less known. In this work, the single site Ru complex [Ru(bpy) 2(H 2O) 2] 2+ (bpy = 2,20-bipyridine)—which can exist as either a cis isomer or a trans isomer—is investigated. While a difference in the catalytic activity of these two isomers is well established, with cis-[Ru(bpy) 2(H 2O) 2] 2+ being much more active, no mechanistic explanation of this fact has been presented. The oxygen evolving capability of both isomers at multiple concentrations has been investigated,more » with cis-[Ru(bpy) 2(H 2O) 2] 2+ showing a second-order dependence of O2 evolution activity with increased catalyst concentration. Measurement of the electron paramagnetic resonance (EPR) spectrum of cis-[Ru(bpy) 2(H 2O) 2] 2+, shortly after oxidation with CeIV, showed the presence of a signal matching that of cis,cis-[Ru III(bpy) 2(H 2O)ORu IV(bpy) 2(OH)] 4+, also known as “blue dimer”. The formation of dimers is a concentration-dependent process, which could serve to explain the greater than first order increase in catalytic activity. The trans isomer showed a first-order dependence of O 2 evolution on catalyst concentration. As a result, behavior of [Ru(bpy) 2(H 2O) 2] 2+ isomers is compared with other Ru-based catalysts, in particular [Ru(tpy)(bpy)(H 2O)] 2+ (tpy = 2,20;6,20 0-terpyridine).« less

  7. Mechanistic analysis of water oxidation catalyst cis-[Ru(bpy) 2(H 2O) 2] 2+: Effect of dimerization

    DOE PAGES

    Erdman, Darren; Pineda-Galvan, Yuliana; Pushkar, Yulia

    2017-01-25

    While the catalytic activity of some Ru-based polypyridine complexes in water oxidation is well established, the relationship between their chemical structure and activity is less known. In this work, the single site Ru complex [Ru(bpy) 2(H 2O) 2] 2+ (bpy = 2,20-bipyridine)—which can exist as either a cis isomer or a trans isomer—is investigated. While a difference in the catalytic activity of these two isomers is well established, with cis-[Ru(bpy) 2(H 2O) 2] 2+ being much more active, no mechanistic explanation of this fact has been presented. The oxygen evolving capability of both isomers at multiple concentrations has been investigated,more » with cis-[Ru(bpy) 2(H 2O) 2] 2+ showing a second-order dependence of O2 evolution activity with increased catalyst concentration. Measurement of the electron paramagnetic resonance (EPR) spectrum of cis-[Ru(bpy) 2(H 2O) 2] 2+, shortly after oxidation with CeIV, showed the presence of a signal matching that of cis,cis-[Ru III(bpy) 2(H 2O)ORu IV(bpy) 2(OH)] 4+, also known as “blue dimer”. The formation of dimers is a concentration-dependent process, which could serve to explain the greater than first order increase in catalytic activity. The trans isomer showed a first-order dependence of O 2 evolution on catalyst concentration. As a result, behavior of [Ru(bpy) 2(H 2O) 2] 2+ isomers is compared with other Ru-based catalysts, in particular [Ru(tpy)(bpy)(H 2O)] 2+ (tpy = 2,20;6,20 0-terpyridine).« less

  8. Probing the Watson-Crick, wobble, and sugar-edge hydrogen bond sites of uracil and thymine.

    PubMed

    Müller, Andreas; Frey, Jann A; Leutwyler, Samuel

    2005-06-16

    The nucleobases uracil (U) and thymine (T) offer three hydrogen-bonding sites for double H-bond formation via neighboring N-H and C=O groups, giving rise to the Watson-Crick, wobble and sugar-edge hydrogen bond isomers. We probe the hydrogen bond properties of all three sites by forming hydrogen bonded dimers of U, 1-methyluracil (1MU), 3-methyluracil (3MU), and T with 2-pyridone (2PY). The mass- and isomer-specific S1 <-- S0 vibronic spectra of 2PY.U, 2PY.3MU, 2PY.1MU, and 2PY.T were measured using UV laser resonant two-photon ionization (R2PI). The spectra of the Watson-Crick and wobble isomers of 2PY.1MU were separated using UV-UV spectral hole-burning. We identify the different isomers by combining three different diagnostic tools: (1) Selective methylation of the uracil N3-H group, which allows formation of the sugar-edge isomer only, and methylation of the N1-H group, which leads to formation of the Watson-Crick and wobble isomers. (2) The experimental S1 <-- S0 origins exhibit large spectral blue shifts relative to the 2PY monomer. Ab initio CIS calculations of the spectral shifts of the different hydrogen-bonded dimers show a linear correlation with experiment. This correlation allows us to identify the R2PI spectra of the weakly populated Watson-Crick and wobble isomers of both 2PY.U and 2PY.T. (3) PW91 density functional calculation of the ground-state binding and dissociation energies De and D0 are in agreement with the assignment of the dominant hydrogen bond isomers of 2PY.U, 2PY.3MU and 2PY.T as the sugar-edge form. For 2PY.U, 2PY.T and 2PY.1MU the measured wobble:Watson-Crick:sugar-edge isomer ratios are in good agreement with the calculated ratios, based on the ab initio dissociation energies and gas-phase statistical mechanics. The Watson-Crick and wobble isomers are thereby determined to be several kcal/mol less strongly bound than the sugar-edge isomers. The 36 observed intermolecular frequencies of the nine different H-bonded isomers give detailed insight into the intermolecular force field.

  9. Quantum-Chemical Approach to NMR Chemical Shifts in Paramagnetic Solids Applied to LiFePO4 and LiCoPO4.

    PubMed

    Mondal, Arobendo; Kaupp, Martin

    2018-04-05

    A novel protocol to compute and analyze NMR chemical shifts for extended paramagnetic solids, accounting comprehensively for Fermi-contact (FC), pseudocontact (PC), and orbital shifts, is reported and applied to the important lithium ion battery cathode materials LiFePO 4 and LiCoPO 4 . Using an EPR-parameter-based ansatz, the approach combines periodic (hybrid) DFT computation of hyperfine and orbital-shielding tensors with an incremental cluster model for g- and zero-field-splitting (ZFS) D-tensors. The cluster model allows the use of advanced multireference wave function methods (such as CASSCF or NEVPT2). Application of this protocol shows that the 7 Li shifts in the high-voltage cathode material LiCoPO 4 are dominated by spin-orbit-induced PC contributions, in contrast with previous assumptions, fundamentally changing interpretations of the shifts in terms of covalency. PC contributions are smaller for the 7 Li shifts of the related LiFePO 4 , where FC and orbital shifts dominate. The 31 P shifts of both materials finally are almost pure FC shifts. Nevertheless, large ZFS contributions can give rise to non-Curie temperature dependences for both 7 Li and 31 P shifts.

  10. Stable and rigid DTPA-like paramagnetic tags suitable for in vitro and in situ protein NMR analysis.

    PubMed

    Chen, Jia-Liang; Zhao, Yu; Gong, Yan-Jun; Pan, Bin-Bin; Wang, Xiao; Su, Xun-Cheng

    2018-02-01

    Organic synthesis of a ligand with high binding affinities for paramagnetic lanthanide ions is an effective way of generating paramagnetic effects on proteins. These paramagnetic effects manifested in high-resolution NMR spectroscopy are valuable dynamic and structural restraints of proteins and protein-ligand complexes. A paramagnetic tag generally contains a metal chelating moiety and a reactive group for protein modification. Herein we report two new DTPA-like tags, 4PS-PyDTTA and 4PS-6M-PyDTTA that can be site-specifically attached to a protein with a stable thioether bond. Both protein-tag adducts form stable lanthanide complexes, of which the binding affinities and paramagnetic tensors are tunable with respect to the 6-methyl group in pyridine. Paramagnetic relaxation enhancement (PRE) effects of Gd(III) complex on protein-tag adducts were evaluated in comparison with pseudocontact shift (PCS), and the results indicated that both 4PS-PyDTTA and 4PS-6M-PyDTTA tags are rigid and present high-quality PREs that are crucially important in elucidation of the dynamics and interactions of proteins and protein-ligand complexes. We also show that these two tags are suitable for in-situ protein NMR analysis.

  11. Bonding in Some Zintl Phases: A Study by Tin-119 Mössbauer Spectroscopy

    NASA Astrophysics Data System (ADS)

    Asbrand, M.; Berry, F. J.; Eisenmann, B.; Kniep, R.; Smart, L. E.; Thied, R. C.

    1995-09-01

    The 119Sn Mössbauer parameters for a range of Zintl phase compounds are reported. The compounds containing tetrahedrally coordinated tin of composition M5SnX3 (M = Na, K; X = P, As, Sb) have chemical isomer shifts close to that of grey-tin and can be considered to be covalently bonded species. The layer structures of composition KSnX (X = As, Sb) and double-layer compounds M Sn2X2 (M = Na, Sr; X = As, Sb) have tin in a distorted octahedral environment. The chemical isomer shifts are closer to that of white-tin and can be interpreted in terms of metallic bonding.

  12. 1,5-Diamido-9,10-anthraquinone, a Centrosymmetric Redox-Active Bridge with Two Coupled β-Ketiminato Chelate Functions: Symmetric and Asymmetric Diruthenium Complexes.

    PubMed

    Ansari, Mohd Asif; Mandal, Abhishek; Paretzki, Alexa; Beyer, Katharina; Fiedler, Jan; Kaim, Wolfgang; Lahiri, Goutam Kumar

    2016-06-06

    The dinuclear complexes {(μ-H2L)[Ru(bpy)2]2}(ClO4)2 ([3](ClO4)2), {(μ-H2L)[Ru(pap)2]2}(ClO4)2 ([4](ClO4)2), and the asymmetric [(bpy)2Ru(μ-H2L)Ru(pap)2](ClO4)2 ([5](ClO4)2) were synthesized via the mononuclear species [Ru(H3L)(bpy)2]ClO4 ([1]ClO4) and [Ru(H3L)(pap)2]ClO4 ([2]ClO4), where H4L is the centrosymmetric 1,5-diamino-9,10-anthraquinone, bpy is 2,2'-bipyridine, and pap is 2-phenylazopyridine. Electrochemistry of the structurally characterized [1]ClO4, [2]ClO4, [3](ClO4)2, [4](ClO4)2, and [5](ClO4)2 reveals multistep oxidation and reduction processes, which were analyzed by electron paramagnetic resonance (EPR) of paramagnetic intermediates and by UV-vis-NIR spectro-electrochemistry. With support by time-dependent density functional theory (DFT) calculations the redox processes could be assigned. Significant results include the dimetal/bridging ligand mixed spin distribution in 3(3+) versus largely bridge-centered spin in 4(3+)-a result of the presence of Ru(II)-stabilizig pap coligands. In addition to the metal/ligand alternative for electron transfer and spin location, the dinuclear systems allow for the observation of ligand/ligand and metal/metal site differentiation within the multistep redox series. DFT-supported EPR and NIR absorption spectroscopy of the latter case revealed class II mixed-valence behavior of the oxidized asymmetric system 5(3+) with about equal contributions from a radical bridge formulation. In comparison to the analogues with the deprotonated 1,4-diaminoanthraquinone isomer the centrosymmetric H2L(2-) bridge shows anodically shifted redox potentials and weaker electronic coupling between the chelate sites.

  13. Substitution effects on the absorption spectra of nitrophenolate isomers.

    PubMed

    Wanko, Marius; Houmøller, Jørgen; Støchkel, Kristian; Suhr Kirketerp, Maj-Britt; Petersen, Michael Åxman; Nielsen, Mogens Brøndsted; Nielsen, Steen Brøndsted; Rubio, Angel

    2012-10-05

    Charge-transfer excitations highly depend on the electronic coupling between the donor and acceptor groups. Nitrophenolates are simple examples of charge-transfer systems where the degree of coupling differs between ortho, meta and para isomers. Here we report the absorption spectra of the isolated anions in vacuo to avoid the complications of solvent effects. Gas-phase action spectroscopy was done with two different setups, an electrostatic ion storage ring and an accelerator mass spectrometer. The results are interpreted on the basis of CC2 quantum chemical calculations. We identified absorption maxima at 393, 532, and 399 nm for the para, meta, and ortho isomer, respectively, with the charge-transfer transition into the lowest excited singlet state. In the meta isomer, this π-π* transition is strongly redshifted and its oscillator strength reduced, which is related to the pronounced charge-transfer character, as a consequence of the topology of the conjugated π-system. Each isomer's different charge distribution in the ground state leads to a very different solvent shift, which in acetonitrile is bathochromic for the para and ortho, but hypsochromic for the meta isomer.

  14. Relativistically corrected nuclear magnetic resonance chemical shifts calculated with the normalized elimination of the small component using an effective potential-NMR chemical shifts of molybdenum and tungsten

    NASA Astrophysics Data System (ADS)

    Filatov, Michael; Cremer, Dieter

    2003-07-01

    A new method for relativistically corrected nuclear magnetic resonance (NMR) chemical shifts is developed by combining the individual gauge for the localized orbital approach for density functional theory with the normalized elimination of a small component using an effective potential. The new method is used for the calculation of the NMR chemical shifts of 95Mo and 183W in various molybdenum and tungsten compounds. It is shown that quasirelativistic corrections lead to an average improvement of calculated NMR chemical shift values by 300 and 120 ppm in the case of 95Mo and 183W, respectively, which is mainly due to improvements in the paramagnetic contributions. The relationship between electronic structure of a molecule and the relativistic paramagnetic corrections is discussed. Relativistic effects for the diamagnetic part of the magnetic shielding caused by a relativistic contraction of the s,p orbitals in the core region concern only the shielding values, however, have little consequence for the shift values because of the large independence from electronic structure and a cancellation of these effects in the shift values. It is shown that the relativistic corrections can be improved by level shift operators and a B3LYP hybrid functional, for which Hartree-Fock exchange is reduced to 15%.

  15. Isoprene Peroxy Radical Dynamics.

    PubMed

    Teng, Alexander P; Crounse, John D; Wennberg, Paul O

    2017-04-19

    Approximately 500 Tg of 2-methyl-1,3-butadiene (isoprene) is emitted by deciduous trees each year. Isoprene oxidation in the atmosphere is initiated primarily by addition of hydroxyl radicals (OH) to C 4 or C 1 in a ratio 0.57 ± 0.03 (1σ) to produce two sets of distinct allylic radicals. Oxygen (O 2 ) adds to these allylic radicals either δ (Z or E depending on whether the allylic radical is cis or trans) or β to the OH group forming six distinct peroxy radical isomers. Due to the enhanced stability of the allylic radical, however, these peroxy radicals lose O 2 in competition with bimolecular reactions. In addition, the Z-δ hydroxy peroxy radical isomers undergo unimolecular 1,6 H-shift isomerization. Here, we use isomer-resolved measurements of the reaction products of the peroxy radicals to diagnose this complex chemistry. We find that the ratio of δ to β hydroxy peroxy radicals depends on their bimolecular lifetime (τ bimolecular ). At τ bimolecular ≈ 0.1 s, a transition occurs from a kinetically to a largely thermodynamically controlled distribution at 297 K. Thus, in nature, where τ bimolecular > 10 s, the distribution of isoprene hydroxy peroxy radicals will be controlled primarily by the difference in the relative stability of the peroxy radical isomers. In this regime, β hydroxy peroxy radical isomers comprise ∼95% of the radical pool, a much higher fraction than in the nascent (kinetic) distribution. Intramolecular 1,6 H-shift isomerization of the Z-δ hydroxy peroxy radical isomers produced from OH addition to C 4 is estimated to be ∼4 s -1 at 297 K. While the Z-δ isomer is initially produced in low yield, it is continually reformed via decomposition of the β hydroxy peroxy radicals. As a result, unimolecular chemistry from this isomer contributes about half of the atmospheric fate of the entire pool of peroxy radicals formed via addition of OH at C 4 for typical atmospheric conditions (τ bimolecular = 100 s and T = 25 C). In contrast, unimolecular chemistry following OH addition at C 1 is slower and less important.

  16. Structural characterization of two novel potential anticholinesterasic agents

    NASA Astrophysics Data System (ADS)

    Oliveira, Paulo R.; Wiectzycosky, Franciele; Basso, Ernani A.; Gonçalves, Regina A. C.; Pontes, Rodrigo M.

    2003-09-01

    Two novel compounds with possible anticholinesterase activity have been synthesized containing a carbamate and a dimethylamine group in 1,2-positions of a cyclohexane ring ( cis and trans isomers). Conformer populations were established by a combination of NMR 1H coupling constant analysis and DFT (B3LYP/6-311+G(d,p)) calculations. 13C chemical shifts were calculated in order to confirm signal attributions. The cis isomer adopts a conformation in which the carbamate group lies at the axial position (>99%), whereas the trans isomer adopts a diequatorial arrangement (98%). These preferences have been explained in terms of syn-1,3-diaxial interactions of the individual groups.

  17. Computation of Chemical Shifts for Paramagnetic Molecules: A Laboratory Experiment for the Undergraduate Curriculum

    ERIC Educational Resources Information Center

    Pritchard, Benjamin P.; Simpson, Scott; Zurek, Eva; Autschbach, Jochen

    2014-01-01

    A computational experiment investigating the [superscript 1]H and [superscript 13]C nuclear magnetic resonance (NMR) chemical shifts of molecules with unpaired electrons has been developed and implemented. This experiment is appropriate for an upper-level undergraduate laboratory course in computational, physical, or inorganic chemistry. The…

  18. Research on high Tc superconducting compounds

    NASA Technical Reports Server (NTRS)

    Oliver, Frederick W. (Principal Investigator)

    1996-01-01

    Mossbauer research using the 21.54 kev resonance radiation of Eu-151 on the high temperature superconductors Bi(2)Ca(0.5)Eu(0.5)Sr(2)CU2O(x), and EuBa(2)CU(3)O(7-x) is performed. For the Bismuth compound the Mossbauer measurements gave a weak signal at room temperature but improved at lower temperatures. Experimental data indicated that europium is located at only one crystallographic site. Isomer shift measurements were .69 + 0.02 mm/s with respect to EuF(3). The linewidth at room temperature was found to be 2.54 mm/s. This value falls within the values observed by other researchers on Eu based 1,2,3 high-Tc compounds. Our results also show the Eu to be trivalent with no trace of divalent europium present. Superconducting europium based 1,2,3 compounds were prepared and measurements completed. Our results show the Eu to be trivalent with no trace of divalent europium present. These compounds had an average isomer shift of .73 mm/s +/- O.02 for all samples made. One of these was irradiated with 3.5 X 10(exp 16) neutrons and a comparison made of the Mossbauer parameters for the irradiated and non-irradiated samples. Experimental results showed no difference between linewidths but a measurable effect was seen for the isomer shift.

  19. ATR-FTIR spectroscopic investigation of the cis- and trans-bis-(α-amino acids) copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Berestova, Tatyana V.; Kuzina, Lyudmila G.; Amineva, Natalya A.; Faizrakhmanov, Ilshat S.; Massalimov, Ismail A.; Mustafin, Akhat G.

    2017-06-01

    The crystalline phases of the trans-(a) and cis-(b)-isomers of bis-(α-amino acids) copper(II) complexes [Cu(bL)2] 1-5 (bL - bidentate ligand: gly (1), S-ala (2), R,S-val (3), (±)-thr (4), R,S-phe (5)) were studied by ATR-FTIR spectroscopy in the mid region IR spectrum. It was established that asymmetric νas(COO) and symmetric νs(COO) stretching vibrations of carboxylic groups of 1-5 are sensitive to change of the geometric structure and have a different maxima for the trans(a)- and cis(b)-isomers. It found that νas(COO) and νs(COO) stretching vibrations of cis-isomers are broadened and shifted to longer wavelengths (b) as compared with trans-isomers (a). Shown that peculiarities of crystal packing molecules of geometric isomers may affect on carboxylate stretching vibration bis-α-amino acids complexes copper(II) 1-5 a,b.

  20. Isomers and shell evolution in neutron-rich nuclei below the doubly magic nucleus 132Sn

    NASA Astrophysics Data System (ADS)

    Watanabe, Hiroshi

    2018-05-01

    The level structures of the very neutron-rich nuclei 128Pd82 and 126Pd80 have been investigated for the first time. A new isomer with a half-life of 5.8(8) μs in 128Pd is proposed to have a spin and parity of 8+ and is associated with a maximally aligned configuration arising from the g9/2Pd proton subshell with seniority υ = 2. The level sequence below the 8+ isomer is similar to that in the N = 82 isotone 130Cd, but the electric quadrupole transition that depopulates the 8+ isomer is more hindered in 128Pd than in 130Cd, as expected in the seniority scheme for a semi-magic, spherical nucleus. For 126Pd, three new isomers with Jπ = (5-), (7-), and (10+) have been identified with half-lives of 0.33(4) μs, 0.44(3) μs, and 23.0(8) ms, respectively. The smaller energy difference between the 10+ and 7- isomers in 126Pd than in the heavier N = 80 isotones can be interpreted as being ascribed to the monopole shift of the h11/2 neutron orbit. The nature of the N = 82 shell closure scrutinized with these characteristic isomers is discussed.

  1. A Paramagnetic Molecular Voltmeter

    PubMed Central

    Surek, Jack T.; Thomas, David D.

    2008-01-01

    We have developed a general electron paramagnetic resonance (EPR) method to measure electrostatic potential at spin labels on proteins to millivolt accuracy. Electrostatic potential is fundamental to energy-transducing proteins like myosin, because molecular energy storage and retrieval is primarily electrostatic. Quantitative analysis of protein electrostatics demands a site-specific spectroscopic method sensitive to millivolt changes. Previous electrostatic potential studies on macromolecules fell short in sensitivity, accuracy and/or specificity. Our approach uses fast-relaxing charged and neutral paramagnetic relaxation agents (PRAs) to increase nitroxide spin label relaxation rate solely through collisional spin exchange. These PRAs were calibrated in experiments on small nitroxides of known structure and charge to account for differences in their relaxation efficiency. Nitroxide longitudinal (R1) and transverse (R2) relaxation rates were separated by applying lineshape analysis to progressive saturation spectra. The ratio of measured R1 increases for each pair of charged and neutral PRAs measures the shift in local PRA concentration due to electrostatic potential. Voltage at the spin label is then calculated using the Boltzmann equation. Measured voltages for two small charged nitroxides agree with Debye-Hückel calculations. Voltage for spin-labeled myosin fragment S1 also agrees with calculation based on the pK shift of the reacted cysteine. PMID:17964835

  2. Monopole-driven shell evolution below the doubly magic nucleus 132Sn explored with the long-lived isomer in 126Pd.

    PubMed

    Watanabe, H; Lorusso, G; Nishimura, S; Otsuka, T; Ogawa, K; Xu, Z Y; Sumikama, T; Söderström, P-A; Doornenbal, P; Li, Z; Browne, F; Gey, G; Jung, H S; Taprogge, J; Vajta, Zs; Wu, J; Yagi, A; Baba, H; Benzoni, G; Chae, K Y; Crespi, F C L; Fukuda, N; Gernhäuser, R; Inabe, N; Isobe, T; Jungclaus, A; Kameda, D; Kim, G D; Kim, Y K; Kojouharov, I; Kondev, F G; Kubo, T; Kurz, N; Kwon, Y K; Lane, G J; Moon, C-B; Montaner-Pizá, A; Moschner, K; Naqvi, F; Niikura, M; Nishibata, H; Nishimura, D; Odahara, A; Orlandi, R; Patel, Z; Podolyák, Zs; Sakurai, H; Schaffner, H; Simpson, G S; Steiger, K; Suzuki, H; Takeda, H; Wendt, A; Yoshinaga, K

    2014-07-25

    A new isomer with a half-life of 23.0(8) ms has been identified at 2406 keV in (126)Pd and is proposed to have a spin and parity of 10(+) with a maximally aligned configuration comprising two neutron holes in the 1h(11/2) orbit. In addition to an internal-decay branch through a hindered electric octupole transition, β decay from the long-lived isomer was observed to populate excited states at high spins in (126)Ag. The smaller energy difference between the 10(+) and 7(-) isomers in (126)Pd than in the heavier N=80 isotones can be interpreted as being ascribed to the monopole shift of the 1h(11/2) neutron orbit. The effects of the monopole interaction on the evolution of single-neutron energies below (132)Sn are discussed in terms of the central and tensor forces.

  3. Tautomeric preferences of the cis and trans isomers of axitinib

    NASA Astrophysics Data System (ADS)

    Mirzaei, M. Saeed; Taherpour, Avat Arman

    2018-05-01

    The tautomeric preferences of axitinib, a potent anticancer drug, as tyrosine kinase inhibitor have been investigated using quantum chemical calculations and docking methods. The energy differences between the two tautomers of trans-isomer are around 4 and 3 kcal mol-1 in vacuo and water, respectively, and for its cis-isomer (major photochemical isomerization product) this equilibrium reversed completely in favour of the second tautomer (not considered previously), which is about 7-8 kcal mol-1 more stable in both gas and aqueous media. The results indicate a very high activation energy for proton exchange for both [1,2] and [1,5] H-shift (around 50 kcal mol-1) in the gas phase, but inclusion of protic solvents (e.g. water) decrease this barrier to around 14 and 35 kcal mol-1 for the both hydrogen shift processes, respectively. In order to have better insight about the electronic structure of axitinib tautomers, the NBO, HOMO-LUMO, NICS and molecular electrostatic potential surfaces (MESP) calculations have been carried out. Docking investigations on the two more stable tautomers revealed that binding of the trans isomer of tautomer I to the active site of the receptor is the most favourable in the terms of energy and structure. This more stability could be attributed to the more hydrogen bonding of this tautomer with the protein residues in comparison to the second tautomer.

  4. Utilizing tagged paramagnetic shift reagents to monitor protein dynamics by NMR.

    PubMed

    Ye, Libin; Van Eps, Ned; Li, Xiang; Ernst, Oliver P; Prosser, R Scott

    2017-11-01

    Calmodulin is a ubiquitous calcium sensor protein, known to serve as a critical interaction hub with a wide range of signaling partners. While the holo form of calmodulin (CaM-4Ca 2+ ) has a well-defined ground state structure, it has been shown to undergo exchange, on a millisecond timescale, to a conformation resembling that of the peptide bound state. Tagged paramagnetic relaxation agents have been previously used to identify long-range dipolar interactions through relaxation effects on nuclear spins of interest. In the case of calmodulin, this lead to the determination of the relative orientation of the N- and C-terminal domains and the presence of a weakly populated peptide bound like state. Here, we make use of pseudocontact shifts from a tagged paramagnetic shift reagent which allows us to define minor states both in 13 C and 15 N NMR spectra and through 13 C- and 15 N-edited 1 H-CPMG relaxation dispersion measurements. This is validated by pulsed EPR (DEER) spectroscopy which reveals an ensemble consisting of a compact peptide-bound like conformer, an intermediate peptide-bound like conformer, and a (dumbbell-like) extended ground state conformer of CaM-4Ca 2+ , where addition of the MLCK peptide increases the population of the peptide-bound conformers. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. NH NMR shifts of new structurally characterized fac-[Re(CO)3(polyamine)]n+ complexes probed via outer-sphere hydrogen-bonding interactions to anions, including the paramagnetic [Re(IV)Br6]2- anion.

    PubMed

    Perera, Theshini; Marzilli, Patricia A; Fronczek, Frank R; Marzilli, Luigi G

    2010-06-21

    fac-[Re(I)(CO)(3)L](n) complexes serve as models for short-lived fac-[(99m)Tc(I)(CO)(3)L](n) imaging tracers (L = tridentate ligands forming two five-membered chelate rings defining the L face). Dangling groups on L, needed to achieve desirable biodistribution, complicate the NMR spectra, which are not readily understood. Using less complicated L, we found that NH groups (exo-NH) projecting toward the L face sometimes showed an upfield shift attributable to steric shielding of the exo-NH group from the solvent by the chelate rings. Our goal is to advance our ability to relate these spectral features to structure and solution properties. To investigate whether exo-NH groups in six-membered rings exhibit the same effect and whether the presence of dangling groups alters the effect, we prepared new fac-[Re(CO)(3)L](n+) complexes that allow direct comparisons of exo-NH shifts for six-membered versus five-membered chelate rings. New complexes were structurally characterized with the following L: dipn [N-3-(aminopropyl)-1,3-propanediamine], N'-Medipn (3,3'-diamino-N-methyldipropylamine), N,N-Me(2)dipn (N,N-dimethyldipropylenetriamine), aepn [N-2-(aminoethyl)-1,3-propanediamine], trpn [tris-(3-aminopropyl)amine], and tren [tris-(2-aminoethyl)amine]. In DMSO-d(6), the upfield exo-NH signals were exhibited by all complexes, indicating that the rings sterically shield the exo-NH groups from bulky solvent molecules. This interpretation was supported by exo-NH signal shift changes caused by added halide and [ReBr(6)](2-) anions, consistent with outer-sphere hydrogen-bond interactions between these anions and the exo-NH groups. For fac-[Re(CO)(3)(dipn)]PF(6) in acetonitrile-d(3), the exo-NH signal shifted further downfield in the series, Cl(-) > Br(-) > I(-), and the plateau in the shift change required a lower concentration for smaller anions. These results are consistent with steric shielding of the exo-NH groups by the chelate rings. Nevertheless, despite its size, the shape and charge of [ReBr(6)](2-) allowed the dianion to induce large upfield paramagnetic shifts of the exo-NH signal of fac-[Re(CO)(3)(dipn)]PF(6). This dianion shows promise as an outer-sphere hydrogen-bonding paramagnetic shift reagent.

  6. Total enantioselectivity in the DNA binding of the dinuclear ruthenium(II) complex [[Ru(Me2bpy)2]2(mu-bpm)]4+ [bpm = 2,2'-bipyrimidine; Me2bpy = 4,4'-dimethyl-2,2'-bipyridine].

    PubMed

    Smith, Jayden A; Collins, J Grant; Patterson, Bradley T; Keene, F Richard

    2004-05-07

    The binding of the three stereoisomers (DeltaDelta-, LambdaLambda- and DeltaLambda-) of the dinuclear ruthenium(II) complex [[Ru(Me2bpy)2]2(mu-bpm)]4+ [Me2bpy = 4,4'-dimethyl-2,2'-bipyridine; bpm = 2,2'-bipyrimidine] to a tridecanucleotide containing a single adenine bulge has been studied by 1H NMR spectroscopy. The addition of the DeltaDelta-isomer to d(CCGAGAATTCCGG)2 induced significant chemical shift changes for the base and sugar resonances of the residues at the bulge site (G3A4G5/C11C10), whereas small shifts were observed upon addition of the enantiomeric LambdaLambda-form. NOESY spectra of the tridecanucleotide bound with the DeltaDelta-isomer revealed intermolecular NOE's between the metal complex and the nucleotide residues at the bulge site, while only weak NOE's were observed to terminal residues to the LambdaLambda-form. Competitive binding studies were performed where both enantiomers were simultaneously added to the tridecanucleotide, and for all ratios of the two stereoisomers the DeltaDelta-isomer remained selectively bound at the bulge site with the LambdaLambda-enantiomer localised at the terminal regions of the tridecanucleotide. The meso-diastereoisomer (DeltaLambda) was found to bind to the tridecanucleotide with characteristics intermediate between the DeltaDelta- and LambdaLambda-enantiomers of the rac form. Two distinct sets of metal complex resonances were observed, with one set having essentially the same shift as the free metal complex, whilst the other set of resonances exhibited significant shifts. The NOE data indicated that the meso-diastereoisomer does not bind as selectively as the DeltaDelta-isomer, with NOE's observed to a greater number of nucleotide residues compared to the DeltaDelta-form. This study provides a rare example of total enantioselectivity in the binding of an inert transition metal complex to DNA, produced by the shape recognition of both ruthenium(II) centres.

  7. Changes in the mean square charge radii and electromagnetic moments of neutron-deficient Bi isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barzakh, A. E., E-mail: barzakh@mail.ru; Batist, L. Kh.; Fedorov, D. V.

    In-source laser spectroscopy experiments for neutron deficient bismuth isotopes at the 306.77 nm atomic transition were carried out at the IRIS (Investigation of Radioactive Isotopes on Synchrocyclotron) facility of Petersburg Nuclear Physics Institute (PNPI). New data on isotope shifts and hyperfine structure for {sup 189–198,} {sup 211}Bi isotopes and isomers were obtained. The changes in the mean-square charge radii and the magnetic moment values were deduced. Marked deviation from the nearly spherical behavior for ground states of bismuth isotopes at N < 109 is demonstrated, in contrast to the lead and thallium isotopic chains. The big isomer shift between Imore » = 1/2 (intruder) and I = 9/2 (normal) states for odd Bi isotopes (A = 193, 195, 197) was found.« less

  8. Investigation of Room Temperature Mössbauer Spectroscopy and Initial Permeability Properties of Al3+ Substituted Cobalt Ferrites

    NASA Astrophysics Data System (ADS)

    Pandit, Rabia; Kaur, Pawanpreet; Sharma, K. K.; Hashim, Mohd.; Kumar, Ravi

    In the present work, Al3+ substituted cobalt ferrites (CoFe2‑xAlxO4, x=0.2, 0.4, 0.6, 0.8) have been synthesized via standard solid-state reaction technique. The incorporation of Al3+ ions in cobalt ferrite has been shown to play an important role in modifying the magnetic properties. The room temperature (300K) 57Fe Mössbauer spectra reveals that the studied samples show two characteristic ferromagnetic zeeman sextets at A and B-sites at lower Al3+ ion concentration (i.e., up to x=0.4). However, a paramagnetic relaxation has been noted for higher Al3+ substitution (for x=0.6 and 0.8) samples. The dependence of the Mössbauer parameters such as isomer shift, quadrupole splitting, line width and magnetic hyperfine field on Al3+ ion concentration has also been noted. The variations in initial permeability over a wide frequency range (125kHz to 30MHz) at 300K have been recorded. The fairly constant values of initial permeability and the low values of the relative loss factor of the order of 10‑4 to 10‑5 over the wide frequency range are the important findings of the present work. The observed low values of relative loss factor at high frequencies suggest that the studied ferrites are promising materials to be used in microwave applications.

  9. Mössbauer spectroscopy of ZnxMg1-x Fe2O4 (0 ≤ x ≤ 0.74) nanostructures crystallized from borate glasses

    NASA Astrophysics Data System (ADS)

    El Shabrawy, S.; Miglierini, M.; Schaaf, P.; Tzankov, D.; Georgieva, M.; Harizanova, R.; Rüssel, C.

    2018-03-01

    Glasses in the system 51.7 B2O3/9.3 K2O/1 P2O5/10.4 Fe2O3/(27.6 - y) MgO/y ZnO (with y = 0, 1, 2.5, 5, 7.5, 10, 13.8, and 20) were prepared by the conventional melt quenching method. The glass samples were thermally treated at 560 °C for 3 h in ambient conditions. Using 57Fe Mössbauer spectroscopy, the effect of the substitution of MgO by ZnO in the glass network and the effect on the precipitated crystallized phase was studied. The results showed that the ratio of Zn2+:Mg2+ in the precipitated crystals increases with the ZnO concentration in the glass. The isomer shift values indicated that iron occurs as Fe3+, which is distributed at the tetrahedral (A) and the octahedral [B] sites. Introducing ZnO leads to a relative increase of the Fe3+ concentration at the B sites at the expense of that occupying the A sites. This indicates the precipitation of ZnxMg1-x Fe2O4 nanoparticles, where Zn2+ ions favorably occupy the A sites. The average hyperfine field of the samples showed a strong dependence on the Zn concentration. At the highest Zn concentration of 13.8 and 20 mol%, the samples are paramagnetic, while for the smaller ones, the samples are superparamagnetic.

  10. Quantification of the Influence of Extracellular Laccase and Intracellular Reactions on the Isomer-Specific Biotransformation of the Xenoestrogen Technical Nonylphenol by the Aquatic Hyphomycete Clavariopsis aquatica▿

    PubMed Central

    Martin, Claudia; Corvini, Philippe F. X.; Vinken, Ralph; Junghanns, Charles; Krauss, Gudrun; Schlosser, Dietmar

    2009-01-01

    The aquatic hyphomycete Clavariopsis aquatica was used to quantify the effects of extracellular laccase and intracellular reactions on the isomer-specific biotransformation of technical nonylphenol (t-NP). In laccase-producing cultures, maximal removal rates of t-NP and the isomer 4-(1-ethyl-1,4-dimethylpentyl)phenol (NP112) were about 1.6- and 2.4-fold higher, respectively, than in laccase-lacking cultures. The selective suppression of either laccase or intracellular reactions resulted in essentially comparable maximal removal rates for both compounds. Evidence for an unspecific oxidation of t-NP isomers was consistently obtained from laccase-expressing fungal cultures when intracellular biotransformation was suppressed and from reaction mixtures containing isolated laccase. This observation contrasts with the selective degradation of t-NP isomers by bacteria and should prevent the enrichment of highly estrogenic isomers in remaining t-NP. In contrast with laccase reactions, intracellular fungal biotransformation caused a significant shift in the isomeric composition of remaining t-NP. As a result, certain t-NP constituents related to more estrogenic isomers were less efficiently degraded than others. In contrast to bacterial degradation via ipso-hydroxylation, the substitution pattern of the quaternary α-carbon of t-NP isomers does not seem to be very important for intracellular transformation in C. aquatica. As-yet-unknown intracellular enzymes are obviously induced by nonylphenols. Mass spectral data of the metabolites resulting from the intracellular oxidation of t-NP, NP112, and 4-(1-ethyl-1,3-dimethylpentyl)phenol indicate nonyl chain hydroxylation, further oxidation into keto or aldehyde compounds, and the subsequent formation of carboxylic acid derivatives. Further metabolites suggest nonyl chain desaturation and methylation of carboxylic acids. The phenolic moieties of the nonylphenols remained unchanged. PMID:19429559

  11. A theoretical DFT study on the structural parameters and azide-tetrazole equilibrium in substituted azidothiazole systems.

    PubMed

    Abu-Eittah, Rafie H; El-Kelany, Khaled E

    2012-12-01

    Azido-tetrazole equilibrium is sensitive to: substitution, solvent, temperature and phase. In this work, the effects of the type and position of substitution on the thiazole ring of azidothiazoles on its structural parameters and on the azido-tetrazole equilibrium have been theoretically investigated using the density functional procedures at the B3LYP/6-311G(∗∗) level of theory. This study includes the investigation of the equilibrium geometry, the transformation of the trans-conformer to the cis one then the ring closure to the tetrazole isomer. The transition states of the two steps were located, confirmed and the structural parameters were calculated. In all the steps of calculations, geometry optimization was considered. The results obtained indicate that substitution by: -NO(2) and -CN group shifts the equilibrium to the azide side and in some cases the tetrazole isomer is not obtained. On the other hand, substitution by: -NH(2) and -OH groups shifts the equilibrium to the tetrazole side and in some cases the azide isomer is not obtained and if formed changes spontaneously to the tetrazole isomer. The decisive parameters which determine the position of the equilibrium are: charge density on atoms N3 and N8, rearrangement of bond length and bond angles during the process of cyclization and variation of dipole moment as a result of cyclization. Results of this work indicate that substitution on C5 is more efficient than substitution on C4 of the thiazole ring. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. A comparison of the bonding in organoiron clusters

    NASA Astrophysics Data System (ADS)

    Buhl, Margaret L.; Long, Gary J.

    1994-12-01

    The Mössbauer effect hyperfine parameters and the results of the Fenske-Hall molecular orbit (mo) calculations have been used to study the electronic properties of trinuclear iron, tetranuclear iron butterfly, Fe-Co, and Fe-Cu carbonyl clusters. The more negative Fe charge and the larger Fe 4s population in an Fe(CO)4 fragment as compared with that in an Fe(CO)3 or an Fe(CO)2 fragment is a result of the CO ligands rather than the near-neighbor metals. The clusters which contain heterometals have more negative isomer shifts. The isomer shift correlated well with the sum of the Fe 4s orbital population and the Zeff these electrons experience. The mo wave functions and the atomic charges generally give a larger calculated Δ E Q than is observed, indicating the need to include Sternheimer factors in the calculation. The valence contribution dominates the EFG.

  13. Infrared Spectroscopy of NaCl(CH3OH)n Complexes in Helium Nanodroplets.

    PubMed

    Sadoon, Ahmed M; Sarma, Gautam; Cunningham, Ethan M; Tandy, Jon; Hanson-Heine, Magnus W D; Besley, Nicholas A; Yang, Shengfu; Ellis, Andrew M

    2016-10-10

    Infrared (IR) spectra of complexes between NaCl and methanol have been recorded for the first time. These complexes were formed in liquid helium nanodroplets by consecutive pick-up of NaCl and CH 3 OH molecules. For the smallest NaCl(CH 3 OH) n , complexes where n = 1-3, the IR data suggest that the lowest-energy isomer is the primary product in each case. The predominant contribution to the binding comes from ionic hydrogen bonds between the OH in each methanol molecule and the chloride ion in the NaCl, as established by the large red shift of the OH stretching bands compared with the isolated CH 3 OH molecule. For n ≥ 4, there is a dramatic shift from discrete vibrational bands to very broad absorption envelopes, suggesting a profound change in the structural landscape and, in particular, access to multiple low-energy isomers.

  14. Computational Study of the Malonic Acid Tautomerization Products in Highly Concentrated Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dick-Pérez, Marilú; Windus, Theresa L.

    Knowing the tautomeric form of malonic acid (MA) in concentrated particles is critical to understanding its effect on the atmosphere. Energies and vibrational modes of hydrated MA particles were calculated using density functional theory (DFT) at the B3LYP/6-31G(d,p) level and the effective fragment potential (EFP) method. Visualization of the keto and enol isomer vibrational modes enabled the assignment of keto isomer peaks in the 1710–1750 cm –1 range, and previously unidentified experimental IR peaks in the 1690–1710 cm –1 can now be attributed to the enol isomer. Furthermore, a comparison of calculated spectra of pure hydrated enol or keto isomersmore » confirm recent experimental evidence, of a shift in the keto–enol tautomer equilibrium when MA exists as concentrated particles.« less

  15. Computational Study of the Malonic Acid Tautomerization Products in Highly Concentrated Particles

    DOE PAGES

    Dick-Pérez, Marilú; Windus, Theresa L.

    2017-03-09

    Knowing the tautomeric form of malonic acid (MA) in concentrated particles is critical to understanding its effect on the atmosphere. Energies and vibrational modes of hydrated MA particles were calculated using density functional theory (DFT) at the B3LYP/6-31G(d,p) level and the effective fragment potential (EFP) method. Visualization of the keto and enol isomer vibrational modes enabled the assignment of keto isomer peaks in the 1710–1750 cm –1 range, and previously unidentified experimental IR peaks in the 1690–1710 cm –1 can now be attributed to the enol isomer. Furthermore, a comparison of calculated spectra of pure hydrated enol or keto isomersmore » confirm recent experimental evidence, of a shift in the keto–enol tautomer equilibrium when MA exists as concentrated particles.« less

  16. Identification and characterization of isomeric N-glycans of human alfa-acid-glycoprotein by stable isotope labelling and ZIC-HILIC-MS in combination with exoglycosidase digestion.

    PubMed

    Mancera-Arteu, Montserrat; Giménez, Estela; Barbosa, José; Sanz-Nebot, Victòria

    2016-10-12

    In this study, a ZIC-HILIC-MS methodology for the analysis of N-glycan isomers was optimized to obtain greater detection sensitivity and thus identify more glycan structures in hAGP. In a second step, this method was combined with glycan reductive isotope labelling (GRIL) through [(12)C6]/[(13)C6]-aniline and exoglycosidase digestion to characterize the different glycan isomers. The GRIL method allows the peak areas resulting from two different labelled samples to be compared, since neither retention time shifts nor variations in the ionization of glycans between these samples are obtained. First, sialic acid linkage assignations were performed for most hAGP glycan isomers with α2-3 sialidase digestion. Bi-, tri- and tetraantennary glycan isomers with different terminal sialic acid linkages to galactose (α2-3 or α2-6) were assigned, and the potential of this technique for the structural characterization of isobaric isomers was therefore demonstrated. Furthermore, fucose linkage isomers of hAGP glycans were also characterized using this isotope-labelling approach in combination with α1-3,4 fucosidase and β1-4 galactosidase digestion. α1-3 antennary fucoses and α1-6 core fucosylation were detected in hAGP fucosylated glycans. These established methodologies can be extremely useful for patho-glycomic studies to characterize glycoproteins of biomedical interest and find novel glycan isomers that could be used as biomarkers in cancer research. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Paramagnetic species on catalytic surfaces--DFT investigations into structure sensitivity of the hyperfine coupling constants.

    PubMed

    Sojka, Zbigniew; Pietrzyk, Piotr

    2004-05-01

    Structure sensitivity of the hyperfine coupling constants was investigated by means of DFT calculations for selected surface paramagnetic species. A *CH2OH radical trapped on silica and intrazeolite copper nitrosyl adducts encaged in ZSM-5 were taken as the examples. The surface of amorphous silica was modeled with a [Si5O8H10] cluster, whereas the zeolite hosting sites were epitomized by [Si4AlO5(OH)10]- cluster. Three different coordination modes of the *CH2OH radical were considered and the isotropic 13C and 1H hyperfine constants of the resultant van der Waals complexes, calculated with B3LYP/6-311G(d), were discussed in terms of the angular deformations caused by hydrogen bonds with the cluster. The magnetic parameters of the eta1-N[CuNO]11 and eta1-O[CuNO]11 linkage isomers were calculated at the BPW91/LanL2DZ and 6-311G(df) level. For the most stable eta1-N adduct a clear dependence of the spin density distribution within the Cu-NO moiety on changes in the Cu-N-O angle and the Cu-N bond distance was observed and accounted for by varying spin polarization and delocalization contributions.

  18. The effect of pi-stacking, h-bonding, and electrostatic interactions on the ionization energies of nucleic acid bases: adenine-adenine, thymine-thymine and adenine-thymine dimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bravaya, Ksenia B.; Kostko, Oleg; Ahmed, Musahid

    A combined theoretical and experimental study of the ionized dimers of thymine and adenine, TT, AA, and AT, is presented. Adiabatic and vertical ionization energies(IEs) for monomers and dimers as well as thresholds for the appearance of the protonated species are reported and analyzed. Non-covalent interactions stronglyaffect the observed IEs. The magnitude and the nature of the effect is different for different isomers of the dimers. The computations reveal that for TT, the largestchanges in vertical IEs (0.4 eV) occur in asymmetric h-bonded and symmetric pi- stacked isomers, whereas in the lowest-energy symmetric h-bonded dimer the shiftin IEs is muchmore » smaller (0.1 eV). The origin of the shift and the character of the ionized states is different in asymmetric h-bonded and symmetric stacked isomers. Inthe former, the initial hole is localized on one of the fragments, and the shift is due to the electrostatic stabilization of the positive charge of the ionized fragment by thedipole moment of the neutral fragment. In the latter, the hole is delocalized, and the change in IE is proportional to the overlap of the fragments' MOs. The shifts in AAare much smaller due to a less effcient overlap and a smaller dipole moment. The ionization of the h-bonded dimers results in barrierless (or nearly barrierless) protontransfer, whereas the pi-stacked dimers relax to structures with the hole stabilized by the delocalization or electrostatic interactions.« less

  19. Estimation of Δ R/ R values by benchmark study of the Mössbauer Isomer shifts for Ru, Os complexes using relativistic DFT calculations

    NASA Astrophysics Data System (ADS)

    Kaneko, Masashi; Yasuhara, Hiroki; Miyashita, Sunao; Nakashima, Satoru

    2017-11-01

    The present study applies all-electron relativistic DFT calculation with Douglas-Kroll-Hess (DKH) Hamiltonian to each ten sets of Ru and Os compounds. We perform the benchmark investigation of three density functionals (BP86, B3LYP and B2PLYP) using segmented all-electron relativistically contracted (SARC) basis set with the experimental Mössbauer isomer shifts for 99Ru and 189Os nuclides. Geometry optimizations at BP86 theory of level locate the structure in a local minimum. We calculate the contact density to the wavefunction obtained by a single point calculation. All functionals show the good linear correlation with experimental isomer shifts for both 99Ru and 189Os. Especially, B3LYP functional gives a stronger correlation compared to BP86 and B2PLYP functionals. The comparison of contact density between SARC and well-tempered basis set (WTBS) indicated that the numerical convergence of contact density cannot be obtained, but the reproducibility is less sensitive to the choice of basis set. We also estimate the values of Δ R/ R, which is an important nuclear constant, for 99Ru and 189Os nuclides by using the benchmark results. The sign of the calculated Δ R/ R values is consistent with the predicted data for 99Ru and 189Os. We obtain computationally the Δ R/ R values of 99Ru and 189Os (36.2 keV) as 2.35×10-4 and -0.20×10-4, respectively, at B3LYP level for SARC basis set.

  20. Combined experimental and computational investigation of the absorption spectra of E- and Z-cinnamic acids in solution: The peculiarity of Z-cinnamics.

    PubMed

    Salum, María L; Arroyo Mañez, Pau; Luque, F Javier; Erra-Balsells, Rosa

    2015-07-01

    Cinnamic acids are present in all kinds of plant tissues and hence in herbs and derived medicines, cosmetics and foods. The interest in their role in plants and their therapeutic applications has grown exponentially. Because of their molecular structure they can exist in E- and Z-forms, which are both found in plants. However, since only the E-forms are commercially available, very few in vitro and in vivo studies of the Z-form have been reported. In this work the physico-chemical properties of Z-cinnamic acids in solution have been examined by means of UV-absorption spectroscopy and high-level quantum mechanical computations. For each isomer similar absorption spectra were obtained in methanol and acetonitrile. However, distinct trends were found for Z- and E forms of cinnamic acids in water, where a higher hypsochromic shift of the Z-isomer relative to the E-form was observed. In general the wavelength of maximal absorption of the Z-form is dramatically blue shifted (-30 to -40 nm) to λ<280 nm, while a slightly blue shift of the absorption maxima for the corresponding E-form (+3 to -4 nm) was observed. This difference is associated with the non-planar, largely distorted, Z-structure and to the almost complete flat structure of the E-form. The results provide a basis for the study of functional and biotechnological roles of cinnamic acids and for the analysis of samples containing mixture of both geometric isomers. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. The NMR contribution to protein-protein networking in Fe-S protein maturation.

    PubMed

    Banci, Lucia; Camponeschi, Francesca; Ciofi-Baffoni, Simone; Piccioli, Mario

    2018-03-22

    Iron-sulfur proteins were among the first class of metalloproteins that were actively studied using NMR spectroscopy tailored to paramagnetic systems. The hyperfine shifts, their temperature dependencies and the relaxation rates of nuclei of cluster-bound residues are an efficient fingerprint of the nature and the oxidation state of the Fe-S cluster. NMR significantly contributed to the analysis of the magnetic coupling patterns and to the understanding of the electronic structure occurring in [2Fe-2S], [3Fe-4S] and [4Fe-4S] clusters bound to proteins. After the first NMR structure of a paramagnetic protein was obtained for the reduced E. halophila HiPIP I, many NMR structures were determined for several Fe-S proteins in different oxidation states. It was found that differences in chemical shifts, in patterns of unobserved residues, in internal mobility and in thermodynamic stability are suitable data to map subtle changes between the two different oxidation states of the protein. Recently, the interaction networks responsible for maturing human mitochondrial and cytosolic Fe-S proteins have been largely characterized by combining solution NMR standard experiments with those tailored to paramagnetic systems. We show here the contribution of solution NMR in providing a detailed molecular view of "Fe-S interactomics". This contribution was particularly effective when protein-protein interactions are weak and transient, and thus difficult to be characterized at high resolution with other methodologies.

  2. An unprecedented up-field shift in the 13C NMR spectrum of the carboxyl carbons of the lantern-type dinuclear complex TBA[Ru2(O2CCH3)4Cl2] (TBA+ = tetra(n-butyl)ammonium cation).

    PubMed

    Hiraoka, Yuya; Ikeue, Takahisa; Sakiyama, Hiroshi; Guégan, Frédéric; Luneau, Dominique; Gillon, Béatrice; Hiromitsu, Ichiro; Yoshioka, Daisuke; Mikuriya, Masahiro; Kataoka, Yusuke; Handa, Makoto

    2015-08-14

    A large up-field shift (-763 ppm) has been observed for the carboxyl carbons of the dichlorido complex TBA[Ru(2)(O(2)CCH(3))(4)Cl(2)] (TBA(+) = tetra(n-butyl)ammonium cation) in the (13)C NMR spectrum (CD(2)Cl(2) at 25 °C). The DFT calculations showed spin delocalization from the paramagnetic Ru(2)(5+) core to the ligands, in agreement with the large up-field shift.

  3. Fully conjugated tri(perylene bisimides): an approach to the construction of n-type graphene nanoribbons.

    PubMed

    Qian, Hualei; Negri, Fabrizia; Wang, Chunru; Wang, Zhaohui

    2008-12-31

    We present an experimental study encompassing synthesis and characterization of fully conjugated tri(perylene bisimides) (triPBIs), having 19 six-membered carbon rings in the core and six imide groups at the edges. Two structural isomers of triPBIs resulting from the two probable coupling positions were successfully separated by HPLC. To assist the identification of the two structural isomers, quantum-chemical calculations of electronic structure, NMR, and optical spectra were carried out. Calculations predict stable helical and nonhelical configurations for both triPBIs isomers and allow the assignment of triPBIs 6 unequivocally to the most bathochromically shifted absorption spectrum. Increasing the number of PBI units in oligo-PBIs leads to an expansion of the pi system, in turn associated with a reduction of the transport and optical band gaps, and a remarkable increase in electron affinities, which make oligo-PBIs promising n-type functional components in optoelectronic devices.

  4. Sum-over-states density functional perturbation theory: Prediction of reliable 13C, 15N, and 17O nuclear magnetic resonance chemical shifts

    NASA Astrophysics Data System (ADS)

    Olsson, Lars; Cremer, Dieter

    1996-11-01

    Sum-over-states density functional perturbation theory (SOS-DFPT) has been used to calculate 13C, 15N, and 17O NMR chemical shifts of 20 molecules, for which accurate experimental gas-phase values are available. Compared to Hartree-Fock (HF), SOS-DFPT leads to improved chemical shift values and approaches the degree of accuracy obtained with second order Møller-Plesset perturbation theory (MP2). This is particularly true in the case of 15N chemical shifts where SOS-DFPT performs even better than MP2. Additional improvements of SOS-DFPT chemical shifts can be obtained by empirically correcting diamagnetic and paramagnetic contributions to compensate for deficiencies which are typical of DFT.

  5. Toward the laboratory identification of the not-so-simple NS2 neutral and anion isomers

    NASA Astrophysics Data System (ADS)

    Fortenberry, Ryan C.; Thackston, Russell; Francisco, Joseph S.; Lee, Timothy J.

    2017-08-01

    The NS2 radical is a simple arrangement of atoms with a complex electronic structure. This molecule was first reported by Hassanzadeh and Andrew's group [J. Am. Chem. Soc. 114, 83 (1992)] through Ar matrix isolation experiments. In the quarter century since this seminal work was published, almost nothing has been reported about nitrogen disulfide even though NS2 is isovalent with the common NO2. The present study aims to shed new insight into possible challenges with the characterization of this radical. No less than three potential energy surfaces all intersect in the C2v region of the SNS radical isomer. A type-C Renner-Teller molecule is present for the linear 2Πu state where the potential energy surface is fully contained within the 2.05 kcal/mol lower energy X ˜ 2A1 state. A C2v, 1 2B1 state is present in this same region, but a double excitation is required to access this state from the X ˜ 2A1 state of SNS. Additionally, a 1 2A' NSS isomer is also present but with notable differences in the geometry from the global minimum. Consequently, the rovibronic spectrum of these NS2 isomers is quite complicated. While the present theory and previous Ar matrix experiments agree well on isotopic shifts, they differ notably for the absolute fundamental vibrational frequency transitions. These differences are likely a combination of matrix shifts and issues associated with the neglect of non-adiabatic coupling in the computations. In either case, it is clear that high-resolution gas phase experimental observations will be complicated to sort. The present computations should aid in their analysis.

  6. Electron impact elastic and excitation cross-sections of the isomers of C4F6 molecule for plasma modeling

    NASA Astrophysics Data System (ADS)

    Gupta, Dhanoj; Song, Mi-Young; Baluja, K. L.; Choi, Heechol; Yoon, Jung-Sik

    2018-06-01

    We report the calculations of elastic (along with its symmetry components) and electronic excitation cross sections by electron impact of the three isomers of C4F6, namely, hexafluoro-1,3-butadiene (1,3-C4F6), hexafluoro-2-butyne (2-C4F6), and hexafluorocyclobutene (c-C4F6) belonging to the point groups C2, D3d, and C2v, respectively, using the R-matrix approach. The electron energy range is from 0.01 eV to 12 eV. We have employed the cc-pVTZ basis set for C and F atoms to generate self-consistent field molecular orbitals to construct the target states for all the isomers included in our calculations. All the target states are constructed by including correlation effects in a configuration interaction (CI) approach. The target properties such as vertical excitation energies and dipole moment of all the isomers are in reasonable agreement with the literature values. Differences in the cross sections of these isomers are strongly influenced by the effect of correlation and polarization effects and their geometrical extent. We have included the ground state and many excited states of each isomer in the trial wave function of the entire scattering system. The resulting elastic cross sections are compared with the available experimental results. The agreement is reasonably good for energies above 5 eV. The shape resonances detected at 2.57, 2.95, and 3.20 eV for c-C4F6, 1,3-C4F6, and 2-C4F6 isomers are associated with the negative anion formation of C3F3- as observed in the mass spectrometry experiments. We have also performed 1-state CI calculation for all the isomers that include only the correlated ground state. The position of resonances shifts to lower energies as the number of target states is increased compared to 1-state calculation for all the isomers. The elastic cross section for 2-C4F6 isomer is larger than the other isomers because of its larger spatial extent. The present cross section data are important for plasma simulation and modeling, especially related to fluorocarbon plasma.

  7. Identification of the altered pyrrole in the isomeric sulfmyoglobins: hyperfine shift patterns as indicators of ring saturation in ferric chlorins.

    PubMed

    Chatfield, M J; La Mar, G N; Smith, K M; Leung, H K; Pandey, R K

    1988-03-08

    Analysis of the 1H NMR hyperfine shift patterns of isomeric sulfmyoglobins is carried out in the met-aquo and met-cyano states to determine the site of saturation in each protein. The utility of the patterns for structure elucidation is established by specific deuterium labeling of the heme methyls of the terminal base product. On the basis of the known saturation of ring B in this isomer [Chatfield, M.J., La Mar, G.N., Lecomte, J.T.J., Balch, A.L., Smith, K.M., & Langry, K.C. (1986) J. Am. Chem. Soc. 108, 7108-7110], the methyl resonance of the saturated ring is found to have strongly attenuated contact shift. Thus, the heme methyl contact shift pattern is diagnostic for the saturated pyrrole in the high-spin state. This rationale is then applied to analyze the assigned NMR spectra of the initial and terminal acid sulfmyoglobin products, revealing that the same ring B is saturated in each isomer. In contrast, the heme methyl contact shift pattern in low-spin ferric complexes reveals that the methyls both on the affected pyrrole and on the trans pyrrole are influenced similarly on sulfmyoglobin formation, precluding the use of this methyl shift pattern as a unique indicator of the site of saturation. Identification of exchangeable proximal histidine resonances for met-aquo sulfmyoglobin complexes with shifts similar to that in native myoglobin dictates inconsequential axial alterations in the sulfmyoglobins, while location of downfield meso proton resonances analogous to those of the native protein demonstrates the retention of the coordinate water in the active site of met-sulfmyoglobin.

  8. Stability and electronic spectra of C76N2 isomers

    PubMed Central

    Teng, Qi-wen; Wu, Shi

    2005-01-01

    Study of geometries of 16 possible isomers for C76N2 based on C78(C 2v) by intermediate neglect of differential overlap (INDO) series of methods indicated that the most stable geometry 25,78-C76N2 where two nitrogen atoms substitute two apexes C(25) and C(78) near the shortest X axis and Y axis formed by two hexagons and a pentagon. Electronic structures and spectra of C76N2 were investigated. The reason for the red-shift for absorptions of C76N2 compared with that of C78(C 2v) is discussed. PMID:15909352

  9. Advantages of paramagnetic CEST complexes having slow-to-intermediate water exchange properties as responsive MRI agents

    PubMed Central

    Soesbe, Todd C.; Wu, Yunkou; Sherry, A. Dean

    2012-01-01

    Paramagnetic saturation transfer chemical exchange (PARACEST) complexes are exogenous contrast agents that have great potential to further extend the functional and molecular imaging capabilities of magnetic resonance. Due to the presence of a central paramagnetic lanthanide ion (Ln3+ ≠ La3+, Gd3+, Lu3+) within the chelate, the resonance frequencies of protons and water molecules bound to the PARACEST agent are shifted far away from the bulk water frequency. This large chemical shift combined with an extreme sensitivity to the chemical exchange rate make PARACEST agents ideally suited for reporting significant biological metrics such as temperature, pH, and the presence of metabolites. Also, the ability to turn PARACEST agents “off” and “on” using a frequency selective saturation pulse gives them a distinct advantage over Gd3+-based contrast agents. A current challenge for PARACEST research is translating the promising in vitro results into in vivo systems. This short review article first describes the basic theory behind PARACEST contrast agents, their benefits over other contrast agents, and their applications to magnetic resonance imaging. It then describes some of the recent PARACEST research results. Specifically, pH measurements using water molecule exchange rate modulation, T2-exchange contrast due to water molecule exchange, the use of ultra-short echo times (TE<10 μs) to overcome T2-exchange line-broadening, and the potential application of T2-exchange as a new contrast mechanism for magnetic resonance imaging. PMID:23055299

  10. The coordination chemistry of the neutral tris-2-pyridyl silicon ligand [PhSi(6-Me-2-py)3].

    PubMed

    Plajer, Alex J; Colebatch, Annie L; Enders, Markus; García-Romero, Álvaro; Bond, Andrew D; García-Rodríguez, Raúl; Wright, Dominic S

    2018-05-22

    Difficulties in the preparation of neutral ligands of the type [RSi(2-py)3] (where 2-py is an unfunctionalised 2-pyridyl ring unit) have thwarted efforts to expand the coordination chemistry of ligands of this type. However, simply switching the pyridyl substituents to 6-methyl-pyridyl groups (6-Me-2-py) in the current paper has allowed smooth, high-yielding access to the [PhSi(6-Me-2-py)3] ligand (1), and the first exploration of its coordination chemistry with transition metals. The synthesis, single-crystal X-ray structures and solution dynamics of the new complexes [{PhSi(6-Me-2-py)3}CuCH3CN][PF6], [{PhSi(6-Me-2-py)3}CuCH3CN][CuCl2], [{PhSi(6-Me-2-py)3}FeCl2], [{PhSi(6-Me-2-py)3}Mo(CO)3] and [{PhSi(6-Me-2-py)3}CoCl2] are reported. The paramagnetic Fe2+ and Co2+ complexes show strongly shifted NMR resonances for the coordinated pyridyl units due to large Fermi-contact shifts. However, magnetic anisotropy also leads to considerable pseudo-contact shifts so that both contributions have to be included in the paramagnetic NMR analysis.

  11. Density Functional Calculations for Prediction of 57Fe Mössbauer Isomer Shifts and Quadrupole Splittings in β-Diketiminate Complexes

    PubMed Central

    2017-01-01

    The relative ease of Mössbauer spectroscopy and of density functional theory (DFT) calculations encourages the use of Mössbauer parameters as a validation method for calculations, and the use of calculations as a double check on crystallographic structures. A number of studies have proposed correlations between the computationally determined electron density at the iron nucleus and the observed isomer shift, but deviations from these correlations in low-valent iron β-diketiminate complexes encouraged us to determine a new correlation for these compounds. The use of B3LYP/def2-TZVP in the ORCA platform provides an excellent balance of accuracy and speed. We provide here not only this new correlation and a clear guide to its use but also a systematic analysis of the limitations of this approach. We also highlight the impact of crystallographic inaccuracies, DFT model truncation, and spin states, with intent to assist experimentalists to use Mössbauer spectroscopy and calculations together. PMID:28691111

  12. Reaction between peroxynitrite and triphenylphosphonium-substituted arylboronic acid isomers–Identification of diagnostic marker products and biological implications

    PubMed Central

    Sikora, Adam; Zielonka, Jacek; Adamus, Jan; Debski, Dawid; Dybala-Defratyka, Agnieszka; Michalowski, Bartosz; Joseph, Joy; Hartley, Richard C.; Murphy, Michael P.; Kalyanaraman, Balaraman

    2013-01-01

    Aromatic boronic acids react rapidly with peroxynitrite (ONOO−) to yield phenols as major products. This reaction was used to monitor ONOO− formation in cellular systems. Previously, we proposed that the reaction between ONOO− and arylboronates (PhB(OH)2) yields a phenolic product (major pathway) and a radical pair PhB(OH)2O•−…•NO2 (minor pathway). [Sikora A. et al., Chem Res Toxicol 24, 687-97, 2011]. In this study, we investigated the influence of a bulky triphenylphosphonium (TPP) group on the reaction between ONOO− and mitochondria-targeted arylboronate isomers (o-, m-, and p-MitoPhB(OH)2). Results from the electron paramagnetic resonance (EPR) spin-trapping experiments unequivocally showed the presence of a phenyl radical intermediate from meta and para isomers, and not from the ortho isomer. The yield of o-MitoPhNO2 formed from the reaction between o-MitoPhB(OH)2 and ONOO− was not diminished by phenyl radical scavengers, suggesting a rapid fragmentation of the o-MitoPhB(OH)2O•− radical anion with subsequent reaction of the resulting phenyl radical with •NO2 in the solvent cage. The DFT quantum mechanical calculations showed that the energy barrier for the dissociation of o-MitoPhB(OH)2O•− radical anion is significantly lower than that of m-MitoPhB(OH)2O•− and p-MitoPhB(OH)2O•− radical anions. The nitrated product, o-MitoPhNO2, is not formed by nitrogen dioxide radical generated by myeloperoxidase in the presence of nitrite anion and hydrogen peroxide, indicating that this specific nitrated product may be used as a diagnostic marker product for ONOO−. Incubation of o-MitoPhB(OH)2 with RAW 264.7 macrophages activated to produce ONOO− yielded the corresponding phenol o-MitoPhOH as well as the diagnostic nitrated product, o-MitoPhNO2. We conclude that the ortho isomer probe reported here is most suitable for specific detection of ONOO− in biological systems. PMID:23611338

  13. Endohedral metallofullerene Sc3NC@C84: a theoretical prediction.

    PubMed

    Wang, Dong-Lai; Xu, Hong-Liang; Su, Zhong-Min; Xin, Guang

    2012-11-21

    Very recently, two novel Sc(3)NC-based cluster fullerenes Sc(3)NC@C(80) (Wang et. al. J. Am. Chem. Soc. 2010, 132, 16362) and Sc(3)NC@C(78) (Wu et. al. J. Phys. Chem. C 2011, 115, 23755) were prepared and characterized, respectively. Inspired by these findings, the possibility of encapsulating Sc(3)NC cluster in the C(84) fullerene is performed using density functional theory (DFT). Firstly, the isolated pentagon rule (IPR) D(2d) (23) C(84) fullerene is employed to encase the Sc(3)NC cluster: four possible endohedral metallofullerene isomers a-d are designed. The large binding energies (ranging from 163.7 to 210.0 kcal mol(-1)) indicate that the planar quinary cluster Sc(3)NC can be stably encapsulated in the C(84) (isomer 23) cage. Further, we consider the incorporation of Sc(3)NC into the non-IPR C(s) (51365) C(84) cage leading to isomer e and show the high stability of isomer e, which has a larger binding energy, larger HOMO-LUMO gap, higher adiabatic (vertical) ionization potential, and lower adiabatic (vertical) electron affinity than the former four Sc(3)NC@C(84) (isomer 23). Significantly, the predicted binding energy (294.2 kcal mol(-1)) of isomer e is even larger than that (289.2 and 277.7 kcal mol(-1), respectively) of the synthesized Sc(3)NC@C(80) and Sc(3)NC@C(78,) suggesting a considerable possibility for experimental realization. The (13)C NMR chemical shifts and Raman spectra of this a new endofullerene have been explored to assist future experimental characterization.

  14. Paramagnetic liposomes as innovative contrast agents for magnetic resonance (MR) molecular imaging applications.

    PubMed

    Terreno, Enzo; Delli Castelli, Daniela; Cabella, Claudia; Dastrù, Walter; Sanino, Alberto; Stancanello, Joseph; Tei, Lorenzo; Aime, Silvio

    2008-10-01

    This article illustrates some innovative applications of liposomes loaded with paramagnetic lanthanide-based complexes in MR molecular imaging field. When a relatively high amount of a Gd(III) chelate is encapsulated in the vesicle, the nanosystem can simultaneously affect both the longitudinal (R(1)) and the transverse (R(2)) relaxation rate of the bulk H2O H-atoms, and this finding can be exploited to design improved thermosensitive liposomes whose MRI response is not longer dependent on the concentration of the probe. The observation that the liposome compartmentalization of a paramagnetic Ln(III) complex induce a significant R(2) enhancement, primarily caused by magnetic susceptibility effects, prompted us to test the potential of such agents in cell-targeting MR experiments. The results obtained indicated that these nanoprobes may have a great potential for the MR visualization of cellular targets (like the glutamine membrane transporters) overexpressing in tumor cells. Liposomes loaded with paramagnetic complexes acting as NMR shift reagents have been recently proposed as highly sensitive CEST MRI agents. The main peculiarity of CEST probes is to allow the MR visualization of different agents present in the same region of interest, and this article provides an illustrative example of the in vivo potential of liposome-based CEST agents.

  15. Computation provides chemical insight into the diverse hydride NMR chemical shifts of [Ru(NHC)4(L)H]0/+ species (NHC = N-heterocyclic carbene; L = vacant, H2, N2, CO, MeCN, O2, P4, SO2, H-, F- and Cl-) and their [Ru(R2PCH2CH2PR2)2(L)H]+ congeners.

    PubMed

    Häller, L Jonas L; Mas-Marzá, Elena; Cybulski, Mateusz K; Sanguramath, Rajashekharayya A; Macgregor, Stuart A; Mahon, Mary F; Raynaud, Christophe; Russell, Christopher A; Whittlesey, Michael K

    2017-02-28

    Relativistic density functional theory calculations, both with and without the effects of spin-orbit coupling, have been employed to model hydride NMR chemical shifts for a series of [Ru(NHC) 4 (L)H] 0/+ species (NHC = N-heterocyclic carbene; L = vacant, H 2 , N 2 , CO, MeCN, O 2 , P 4 , SO 2 , H - , F - and Cl - ), as well as selected phosphine analogues [Ru(R 2 PCH 2 CH 2 PR 2 ) 2 (L)H] + (R = i Pr, Cy; L = vacant, O 2 ). Inclusion of spin-orbit coupling provides good agreement with the experimental data. For the NHC systems large variations in hydride chemical shift are shown to arise from the paramagnetic term, with high net shielding (L = vacant, Cl - , F - ) being reinforced by the contribution from spin-orbit coupling. Natural chemical shift analysis highlights the major orbital contributions to the paramagnetic term and rationalizes trends via changes in the energies of the occupied Ru d π orbitals and the unoccupied σ* Ru-H orbital. In [Ru(NHC) 4 (η 2 -O 2 )H] + a δ-interaction with the O 2 ligand results in a low-lying LUMO of d π character. As a result this orbital can no longer contribute to the paramagnetic shielding, but instead provides additional deshielding via overlap with the remaining (occupied) d π orbital under the L z angular momentum operator. These two effects account for the unusual hydride chemical shift of +4.8 ppm observed experimentally for this species. Calculations reproduce hydride chemical shift data observed for [Ru( i Pr 2 PCH 2 CH 2 P i Pr 2 ) 2 (η 2 -O 2 )H] + (δ = -6.2 ppm) and [Ru(R 2 PCH 2 CH 2 PR 2 ) 2 H] + (ca. -32 ppm, R = i Pr, Cy). For the latter, the presence of a weak agostic interaction trans to the hydride ligand is significant, as in its absence (R = Me) calculations predict a chemical shift of -41 ppm, similar to the [Ru(NHC) 4 H] + analogues. Depending on the strength of the agostic interaction a variation of up to 18 ppm in hydride chemical shift is possible and this factor (that is not necessarily readily detected experimentally) can aid in the interpretation of hydride chemical shift data for nominally unsaturated hydride-containing species. The synthesis and crystallographic characterization of the BAr F 4 - salts of [Ru(IMe 4 ) 4 (L)H] + (IMe 4 = 1,3,4,5-tetramethylimidazol-2-ylidene; L = P 4 , SO 2 ; Ar F = 3,5-(CF 3 ) 2 C 6 H 3 ) and [Ru(IMe 4 ) 4 (Cl)H] are also reported.

  16. Monovacancy paramagnetism in neutron-irradiated graphite probed by 13C NMR

    NASA Astrophysics Data System (ADS)

    Zhang, Z. T.; Xu, C.; Dmytriieva, D.; Molatta, S.; Wosnitza, J.; Wang, Y. T.; Helm, M.; Zhou, Shengqiang; Kühne, H.

    2017-11-01

    We report on the magnetic properties of monovacancy defects in neutron-irradiated graphite, probed by 13C nuclear magnetic resonance spectroscopy. The bulk paramagnetism of the defect moments is revealed by the temperature dependence of the NMR frequency shift and spectral linewidth, both of which follow a Curie behavior, in agreement with measurements of the macroscopic magnetization. Compared to pristine graphite, the fluctuating hyperfine fields generated by the defect moments lead to an enhancement of the 13C nuclear spin-lattice relaxation rate 1/T1 by about two orders of magnitude. With an applied magnetic field of 7.1 T, the temperature dependence of 1/T1 below about 10 K can well be described by a thermally activated form, \

  17. Boomerang-type substitution reaction: reactivity of fullerene epoxides and a halofullerenol.

    PubMed

    Jia, Zhenshan; Zhang, Xiang; Zhang, Gaihong; Huang, Shaohua; Fang, Hao; Hu, Xiangqing; Li, Yuliang; Gan, Liangbing; Zhang, Shiwei; Zhu, Daoben

    2007-02-05

    The C(s)-symmetric fullerene chlorohydrin C60(Cl)(OH)(OOtBu)4 reacts with 4-dimethylaminopyridine (DMAP) and 1,4-diazabicyclo[2.2.2]octane (DABCO) to yield two isomers with the formula C60(O)(OOtBu)4 in good yields. These isomers differ with respect to the location of the epoxy functionality. The one from DMAP is C(s) symmetric, whereas that from DABCO is C1 symmetric with the epoxy group on the central pentagon. Two different mechanisms are proposed to explain the chemoselectivity of these reactions. The reaction with DMAP involves single-electron transfer as the key step; DMAP acts as the electron donor. A combination of an oxygen-atom shift and S(N)2'' processes (boomerang substitution) are responsible for the formation of isomer with DACBO. Various related reactions support the proposed mechanisms. The structures of new fullerene derivatives were determined by spectroscopy, single-crystal X-ray analysis, and chemical correlation experiments.

  18. Calculation of NMR chemical shifts. 7. Gauge-invariant INDO method

    NASA Astrophysics Data System (ADS)

    Fukui, H.; Miura, K.; Hirai, A.

    A gauge-invariant INDO method based on the coupled Hartree-Fuck perturbation theory is presented and applied to the calculation of 1H and 13C chemical shifts of hydrocarbons including ring compounds. Invariance of the diamagnetic and paramagnetic shieldings with respect to displacement of the coordinate origin is discussed. Comparison between calculated and experimental results exhibits fairly good agreement, provided that the INDO parameters of Ellis et al. (J. Am. Chem. Soc.94, 4069 (1972)) are used with the inclusion of all multicenter one-electron integrals.

  19. Solution NMR characterization of magnetic/electronic properties of azide and cyanide-inhibited substrate complexes of human heme oxygenase: implications for steric ligand tilt.

    PubMed

    Peng, Dungeng; Ogura, Hiroshi; Ma, Li-Hua; Evans, John P; de Montellano, Paul R Ortiz; La Mar, Gerd N

    2013-04-01

    Solution 2D (1)H NMR was carried out on the azide-ligated substrate complex of human heme oxygenase, hHO, to provide information on the active site molecular structure, chromophore electronic/magnetic properties, and the distal H-bond network linked to the exogenous ligand by catalytically relevant oriented water molecules. While 2D NMR exhibited very similar patterns of two-dimensional nuclear Overhauser spectroscopy cross peaks of residues with substrate and among residues as the previously characterized cyanide complex, significant, broadly distributed chemical shift differences were observed for both labile and non-labile protons. The anisotropy and orientation of the paramagnetic susceptibility tensor, χ, were determined for both the azide and cyanide complexes. The most significant difference observed is the tilt of the major magnetic axes from the heme normal, which is only half as large for the azide than cyanide ligand, with each ligand tilted toward the catalytically cleaved α-meso position. The difference in chemical shifts is quantitatively correlated with differences in dipolar shifts in the respective complexes for all but the distal helix. The necessity of considering dipolar shifts, and hence determination of the orientation/anisotropy of χ, in comparing chemical shifts involving paramagnetic complexes, is emphasized. The analysis shows that the H-bond network cannot detect significant differences in H-bond acceptor properties of cyanide versus azide ligands. Lastly, significant retardation of distal helix labile proton exchange upon replacing cyanide with azide indicates that the dynamic stability of the distal helix is increased upon decreasing the steric interaction of the ligand with the distal helix. Copyright © 2013. Published by Elsevier Inc.

  20. Raman and surface enhanced Raman spectroscopy of amino acids and peptide

    NASA Astrophysics Data System (ADS)

    Yuan, Xiaojuan; Gu, Huaimin; Wu, Jiwei; Kang, Jian; Dong, Xiao

    2009-08-01

    Surface enhanced Raman scattering (SERS) is potentially tool in the characterization of biomolecules such as amino acids, complicated peptides and proteins, and even tissues or living cells. Amino acids and short peptides contain different functional groups. Therefore, they are suitable for the investigations of the competitive-interactions of these functional groups with colloidal silver surfaces. In this paper, Normal Raman and SERS of amino acids Leucine and Isoleucine and short peptide Leu-Leu were measured on the silver colloidal substrate. Raman shifts that stem from different vibrational mode in the molecular inner structure, and the variations of SERS of the samples were analyzed in this study. The results show that different connection of one methyl to the main chains of the isomer amino acids resulted in different vibration modes in the Normal Raman spectra of Leucine and Isoleucine. In the SERS spectra of the isomer amino acids, all frequency shifts are expressed more differently than those in Normal Raman spectra of solid state. Orientation of this isomer amino acids, as well as specific-competitive interactions of their functional groups with the colloidal silver surface, were speculated by detailed spectral analysis of the obtained SERS spectra. In addition, the dipeptide Leu-Leu, as the corresponding homodipeptide of Leucine, was also measured adsorbed on the colloidal silver surface. The SERS spectrum of Leu-Leu is different from its corresponding amino acid Leucine but both of them are adsorbed on the silver surface through the carboxylate moiety.

  1. Advantages of paramagnetic chemical exchange saturation transfer (CEST) complexes having slow to intermediate water exchange properties as responsive MRI agents.

    PubMed

    Soesbe, Todd C; Wu, Yunkou; Dean Sherry, A

    2013-07-01

    Paramagnetic chemical exchange saturation transfer (PARACEST) complexes are exogenous contrast agents that have great potential to further extend the functional and molecular imaging capabilities of magnetic resonance. As a result of the presence of a central paramagnetic lanthanide ion (Ln(3+) ≠ La(3+) , Gd(3+) , Lu(3+) ) within the chelate, the resonance frequencies of exchangeable protons bound to the PARACEST agent are shifted far away from the bulk water frequency. This large chemical shift, combined with an extreme sensitivity to the chemical exchange rate, make PARACEST agents ideally suited for the reporting of significant biological metrics, such as temperature, pH and the presence of metabolites. In addition, the ability to turn PARACEST agents 'off' and 'on' using a frequency-selective saturation pulse gives them a distinct advantage over Gd(3+) -based contrast agents. A current challenge for PARACEST research is the translation of the promising in vitro results into in vivo systems. This short review article first describes the basic theory behind PARACEST contrast agents, their benefits over other contrast agents and their applications to MRI. It then describes some of the recent PARACEST research results: specifically, pH measurements using water molecule exchange rate modulation, T2 exchange contrast caused by water molecule exchange, the use of ultrashort TEs (TE < 10 µs) to overcome T2 exchange line broadening and the potential application of T2 exchange as a new contrast mechanism for MRI. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Backbone-only restraints for fast determination of the protein fold: The role of paramagnetism-based restraints. Cytochrome b562 as an example

    NASA Astrophysics Data System (ADS)

    Banci, Lucia; Bertini, Ivano; Felli, Isabella C.; Sarrou, Josephine

    2005-02-01

    CH α residual dipolar couplings (Δ rdc's) were measured for the oxidized cytochrome b562 from Escherichia coli as a result of its partial self-orientation in high magnetic fields due to the anisotropy of the overall magnetic susceptibility tensor. Both the low spin iron (III) heme and the four-helix bundle fold contribute to the magnetic anisotropy tensor. CH α Δ rdc's, which span a larger range than the analogous NH values (already available in the literature) sample large space variations at variance with NH Δ rdc's, which are largely isooriented within α helices. The whole structure is now significantly refined with the chemical shift index and CH α Δ rdc's. The latter are particularly useful also in defining the molecular magnetic anisotropy parameters. It is shown here that the backbone folding can be conveniently and accurately determined using backbone restraints only, which include NOEs, hydrogen bonds, residual dipolar couplings, pseudocontact shifts, and chemical shift index. All these restraints are easily and quickly determined from the backbone assignment. The calculated backbone structure is comparable to that obtained by using also side chain restraint. Furthermore, the structure obtained with backbone only restraints is, in its whole, very similar to that obtained with the complete set of restraints. The paramagnetism based restraints are shown to be absolutely relevant, especially for Δ rdc's.

  3. Isotonic similarities in isotope shifts from Hg to Ra.

    NASA Astrophysics Data System (ADS)

    Stroke, H. H.

    2003-04-01

    Isotope shifts (IS) in atomic spectra of heavy elements reflect largely the variation in of the nuclear charge distribution. Our early systematic measurements of IS for an extended range of stable and radioactive isotopes and nuclear isomers in Tl and Hg^1 showed that by displaying the relative IS, normalized to a chosen pair of isotopes, there was a striking similarity for the IS of isotones. This essentially divides out the electronic factor in the IS and allows the comparison of Δ for neighboring Z as N is varied. Following our further studies on Pb and Bi^2 and those on Fr at ISOLDE by the Orsay spectroscopy group^3, we found that the isotonic similarity extended to these elements. Since then, many additional measurements were made, principally at ISOLDE^4, extending to Ra the elements studied. The isotonic shift similarities persist from Z=80 to 88. We noted that the relative isotope and isomer shifts can be used to investigate the polarization of the nucleus by the added neutrons, a model used in a calculation by Barrett.^5 . The new data may serve further in this direction. ^1W,J.Tomlinson, H.H. Stroke, Nucl.Phys. 60, 614 (1964). ^2M. Barboza-Flores et al., Z.Phys. A 321, 85 (1985), ^3S. Liberman et al., Phys .Rev. A 22, 2732 (1980). ^4E,g. M.R. Pearson et al., J.Phys. G 26, 1829 (2000). ^5R.C. Barrett, Nucl. Phys. 88, 128 (1966).

  4. Influence of high hydrostatic pressure on Alq3, Gaq3, and Inq3 (q = 8-hydroxyquinoline).

    PubMed

    Hernández, Ignacio; Gillin, William P

    2009-10-29

    We have studied the spectroscopic properties of OLED materials Alq(3), Gaq(3) and Inq(3) (q = 8-hydroxyquinoline) under pressure. We discuss the results in terms of the influence of structural modifications, the isomeric state and the enhancement of the intermolecular interaction. As-grown Alq(3), Gaq(3), Inq(3) containing meridional (mer) isomer experience a red shift of nearly 90 nm (2400 cm(-1)) in the 0-8 GPa range. Abrupt changes in the photoluminescence occur during compression at intermediate pressures for all materials. We assign them to a phase transition, its critical pressure depending on the central cation. All three samples experience an amorphization at P approximately 6 GPa, with associated changes in the spectroscopic properties. The pressure-induced phase transitions present hysteresis to ambient conditions. Photoluminescence lifetime decreases in all cases in the explored pressure range. In the case of facial isomer containing polymorphs of Alq(3), luminescence does not change its energy significantly. The most significant spectroscopic change observed in fac-isomer containing materials corresponds to gamma-Alq(3), which presents a low energy component that gains relative importance when pressure is increased. We ascribe this phenomenon to the presence of sensitized mer isomer impurities.

  5. Loss of intramolecular electrostatic interactions and limited conformational ensemble may promote self-association of cis-tau peptide.

    PubMed

    Barman, Arghya; Hamelberg, Donald

    2015-03-01

    Self-association of proteins can be triggered by a change in the distribution of the conformational ensemble. Posttranslational modification, such as phosphorylation, can induce a shift in the ensemble of conformations. In the brain of Alzheimer's disease patients, the formation of intra-cellular neurofibrillary tangles deposition is a result of self-aggregation of hyper-phosphorylated tau protein. Biochemical and NMR studies suggest that the cis peptidyl prolyl conformation of a phosphorylated threonine-proline motif in the tau protein renders tau more prone to aggregation than the trans isomer. However, little is known about the role of peptidyl prolyl cis/trans isomerization in tau aggregation. Here, we show that intra-molecular electrostatic interactions are better formed in the trans isomer. We explore the conformational landscape of the tau segment containing the phosphorylated-Thr(231)-Pro(232) motif using accelerated molecular dynamics and show that intra-molecular electrostatic interactions are coupled to the isomeric state of the peptidyl prolyl bond. Our results suggest that the loss of intra-molecular interactions and the more restricted conformational ensemble of the cis isomer could favor self-aggregation. The results are consistent with experiments, providing valuable complementary atomistic insights and a hypothetical model for isomer specific aggregation of the tau protein. © 2014 Wiley Periodicals, Inc.

  6. Detailed solvent, structural, quantum chemical study and antimicrobial activity of isatin Schiff base

    NASA Astrophysics Data System (ADS)

    Brkić, Dominik R.; Božić, Aleksandra R.; Marinković, Aleksandar D.; Milčić, Miloš K.; Prlainović, Nevena Ž.; Assaleh, Fathi H.; Cvijetić, Ilija N.; Nikolić, Jasmina B.; Drmanić, Saša Ž.

    2018-05-01

    The ratios of E/Z isomers of sixteen synthesized 1,3-dihydro-3-(substituted phenylimino)-2H-indol-2-one were studied using experimental and theoretical methodology. Linear solvation energy relationships (LSER) rationalized solvent influence of the solvent-solute interactions on the UV-Vis absorption maxima shifts (νmax) of both geometrical isomers using the Kamlet-Taft equation. Linear free energy relationships (LFER) in the form of single substituent parameter equation (SSP) was used to analyze substituent effect on pKa, NMR chemical shifts and νmax values. Electron charge density was obtained by the use of Quantum Theory of Atoms in Molecules, i.e. Bader's analysis. The substituent and solvent effect on intramolecular charge transfer (ICT) were interpreted with the aid of time-dependent density functional (TD-DFT) method. Additionally, the results of TD-DFT calculations quantified the efficiency of ICT from the calculated charge-transfer distance (DCT) and amount of transferred charge (QCT). The antimicrobial activity was evaluated using broth microdilution method. 3D QSAR modeling was used to demonstrate the influence of substituents effect as well as molecule geometry on antimicrobial activity.

  7. Lanthanide paramagnetic probes for NMR spectroscopic studies of fast molecular conformational dynamics and temperature control. Effective six-site proton exchange in 18-crown-6 by exchange spectroscopy.

    PubMed

    Babailov, Sergey P

    2012-02-06

    (1)H and (13)C NMR measurements are reported for the CDCl(3) and CD(2)Cl(2) solutions of [La(18-crown-6)(NO(3))(3)] (I), [Pr(18-crown-6) (NO(3))(3)] (II), [Ce(18-crown-6)(NO(3))(3)] (III), and [Nd(18-crown-6)(NO(3))(3)] (IV) complexes. Temperature dependencies of the (1)H NMR spectra of paramagnetic II-IV have been analyzed using the dynamic NMR (DNMR) methods for six-site exchange. Two types of conformational dynamic processes were identified (the first one is conditioned by interconversion of complex enantiomeric forms and pseudorotation of a macrocycle molecule upon the C(2) symmetry axis; the second one is conditioned by macrocycle molecule inversion). Application of exchange spectroscopy (2D-EXSY) of DNMR for investigation of this dynamic system (II-IV) simplifies the assignment of the NMR signals and represents the first experimental study of multisite exchange. In the present work, the methodology of paramagnetic 4f (Ce, Pr, and Nd) probe applications for the study of free-energy, enthalpy, and entropy changes in chemical exchange processes, as well as the advantages of this method in a comparison with DNMR studies of diamagnetic substances, is discussed. In particular, as a result of paramagnetic chemical shifts in 4f complexes, the range of measurable rate constants expands considerably compared to the analogous range in diamagnetic compounds. Coordination compounds investigated in the paper represent new types of thermometric NMR sensors and lanthanide paramagnetic probes for in situ temperature control in solution.

  8. Metal substitution in the active site of nitrogenase MFe(7)S(9) (M = Mo(4+), V(3+), Fe(3+)).

    PubMed

    Lovell, Timothy; Torres, Rhonda A; Han, Wen-Ge; Liu, Tiqing; Case, David A; Noodleman, Louis

    2002-11-04

    The unifying view that molybdenum is the essential component in nitrogenase has changed over the past few years with the discovery of a vanadium-containing nitrogenase and an iron-only nitrogenase. The principal question that has arisen for the alternative nitrogenases concerns the structures of their corresponding cofactors and their metal-ion valence assignments and whether there are significant differences with that of the more widely known molybdenum-iron cofactor (FeMoco). Spin-polarized broken-symmetry (BS) density functional theory (DFT) calculations are used to assess which of the two possible metal-ion valence assignments (4Fe(2+)4Fe(3+) or 6Fe(2+)2Fe(3+)) for the iron-only cofactor (FeFeco) best represents the resting state. For the 6Fe(2+)2Fe(3+) oxidation state, the spin coupling pattern for several spin state alignments compatible with S = 0 were generated and assessed by energy criteria. The most likely BS spin state is composed of a 4Fe cluster with spin S(a) = (7)/(2) antiferromagnetically coupled to a 4Fe' cluster with spin S(b) = (7)/(2). This state has the lowest DFT energy for the isolated FeFeco cluster and displays calculated Mössbauer isomer shifts consistent with experiment. Although the S = 0 resting state of FeFeco has recently been proposed to have metal-ion valencies of 4Fe(2+)4Fe(3+) (derived from experimental Mössbauer isomer shifts), our isomer shift calculations for the 4Fe(2+)4Fe(3+) oxidation state are in poorer agreement with experiment. Using the Mo(4+)6Fe(2+)Fe(3+) oxidation level of the cofactor as a starting point, the structural consequences of replacement of molybdenum (Mo(4+)) with vanadium (V(3+)) or iron (Fe(3+)) in the cofactor have been investigated. The size of the cofactor cluster shows a dependency on the nature of the heterometal and increases in the order FeMoco < FeVco < FeFeco.

  9. Quantum chemical calculations of anion complex [B12Hx(CF3)12-x]2-, x = 9 - 12

    NASA Astrophysics Data System (ADS)

    Koblova, Elena A.; Saldin, Vitaly I.; Ustinov, Alexander Yu.

    2016-12-01

    The geometric, energetic, spectral and electronic properties of the most stable isomers of B12Hx(CF3)12-X2- anion complex with x = 9 - 12 have been studied using Density Functional Theory (B3LYP/6-311++G**). It was shown that these isomers are characterized by the preference to form the most symmetric structures with uniformly distributed charge densities. However, when replacing a hydrogen atom with fluoromethyl group, an inductive effect occurs. Blue shifts in the IR spectrum compared to the vibrations of the free CF3 molecule are in the range of 2 - 69 cm-1 and points to the stability of B12Hx(CF3)12-x2- anions.

  10. Hyperfine structure in 229gTh3+ as a probe of the 229gTh→ 229mTh nuclear excitation energy.

    PubMed

    Beloy, K

    2014-02-14

    We identify a potential means to extract the 229gTh→ 229mTh nuclear excitation energy from precision microwave spectroscopy of the 5F(5/2,7/2) hyperfine manifolds in the ion 229gTh3+. The hyperfine interaction mixes this ground fine structure doublet with states of the nuclear isomer, introducing small but observable shifts to the hyperfine sublevels. We demonstrate how accurate atomic structure calculations may be combined with the measurement of the hyperfine intervals to quantify the effects of this mixing. Further knowledge of the magnetic dipole decay rate of the isomer, as recently reported, allows an indirect determination of the nuclear excitation energy.

  11. Iron oxide particles in large pore zeolites

    NASA Astrophysics Data System (ADS)

    García, J. L.; López, A.; Lázaro, F. J.; Martínez, C.; Corma, A.

    1996-05-01

    The magnetic properties of iron-containing ETS-10 zeolite and its calcined variety have been studied by magnetic measurements. The results are consistent with the presence of paramagnetic ions and superparamagnetic clusters. Calcination results in a shift of the blocking temperatures, although their frequency dependence cannot be ascribed to non-interacting clusters. The hypothesis of cluster-glass like behaviour is discussed.

  12. Quantum fluctuations of a fullerene cage modulate its internal magnetic environment.

    PubMed

    Kawatsu, Tsutomu; Tachikawa, Masanori

    2018-01-17

    To investigate the effect of quantum fluctuations on the magnetic environment inside a C 60 fullerene cage, we have calculated the nuclear magnetic shielding constant of protons in H 2 @C 60 and HD@C 60 systems by on-the-fly ab initio path integral simulation, including both thermal and nuclear quantum effects. The most dominant upfield from an isolated hydrogen molecule occurs due to the diamagnetic current of the C 60 cage, which is partly cancelled by the paramagnetic current, where the paramagnetic contribution is enlarged by the zero-point vibrational fluctuation of the C 60 carbon backbone structure via a widely distributed HOMO-LUMO gap. This quantum modulation mechanism of the nuclear magnetic shielding constant is newly proposed. Because this quantum effect is independent of the difference between H 2 and HD, the H 2 /HD isotope shift occurs in spite of the C 60 cage. The nuclear magnetic constants computed for H 2 @C 60 and HD@C 60 are 32.047 and 32.081 ppm, respectively, which are in reasonable agreement with the corresponding values of 32.19 and 32.23 ppm estimated from the experimental values of the chemical shifts.

  13. The 13C nuclear magnetic resonance in graphite intercalation compounds

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Resing, H. A.

    1985-01-01

    The (13)C NMR chemical shifts of graphite intercalation compounds were calculated. For acceptor types, the shifts come mainly from the paramagnetic (Ramsey) intra-atomic terms. They are related to the gross features of the two-dimensional band structures. The calculated anisotropy is about -140 ppm and is independent of the finer details such as charge transfer. For donor types, the carbon 2p pi orbitals are spin-polarized because of mixing with metal conduction electrons, thus there is an additional dipolar contribution which may be correlated with the electronic specific heat. The general agreement with experimental data is satisfactory.

  14. C-13 nuclear magnetic resonance in graphite intercalation compounds

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Resing, H. A.

    1985-01-01

    The C-13 NMR chemical shifts of graphite intercalation compounds have been calculated. For acceptor types, the shifts come mainly from the paramagnetic (Ramsey) intra-atomic terms. They are related to the gross features of the two-dimensional band structures. The calculated anisotropy is about - 140 ppm and is independent of the finer details such as charge transfer. For donor types, the carbon 2p pi orbitals are spin-polarized because of mixing with metal-conduction electrons, thus there is an additional dipolar contribution which may be correlated with the electronic specific heat. The general agreement with experimental data is satisfactory.

  15. Photoisomerization action spectroscopy of the carbocyanine dye DTC+ in the gas phase.

    PubMed

    Adamson, Brian D; Coughlan, Neville J A; da Silva, Gabriel; Bieske, Evan J

    2013-12-19

    Molecular photoisomerization plays a crucial role in diverse biological and technological contexts. Here, we combine ion mobility spectrometry and laser spectroscopy to characterize the photoisomerization of molecular cations in the gas phase. The target molecular ions, polymethine dye cations 3,3'-diethylthiacarbocyanine (DTC(+)), are propelled through helium buffer gas by an electric field and are photoisomerized by light from a tunable laser. Photoexcitation over the 450-570 nm range converts trans-DTC(+) to cis-DTC(+), noticeably modifying the ions' arrival time distribution. The photoisomerization action spectrum, which has a maximum at 535 nm, resembles the absorption spectrum of DTC(+) in solution but is shifted 25 nm to shorter wavelength. Comparisons between measured and calculated mobilities suggest that the photoisomer involves a twist about the second C-C bond in the methine chain (8,9-cis isomer) rather than a twist about the first methine C-C bond (2,8-cis isomer). It is postulated that the excited gas-phase ions internally convert from the S1 Franck-Condon region to the S0 manifold and explore the conformational landscape as they cool through He buffer gas collisions. Master equation simulations of the relaxation process in the S0 manifold suggest that the 8,9-cis isomer is preferred over the 2,8-cis isomer because it lies lower in energy and because it is separated from the trans isomer by a substantially higher barrier. The study demonstrates that the photoisomerization of molecular ions can be probed selectively in the gas phase, providing insights into photoisomerization mechanisms and information on the solvent-free absorption spectrum.

  16. Combined experimental and theoretical study of the benzocaine/Ar van der Waals system in supersonic expansions.

    PubMed

    León, Iker; Aguado, Edurne; Lesarri, Alberto; Fernández, José A; Castaño, Fernando

    2009-02-12

    The electronic spectra of Benzocaine x Ar(n), n = 0-4 were obtained using two-color resonance enhanced multiphoton ionization; the 1:1 and 1:2 clusters were investigated by ultraviolet/ultraviolet hole burning, stimulated emission pumping, and other laser spectroscopies. A single isomer was found for the 1:1 cluster, while two isomers of the 1:2 cluster were found: one with the two Ar atoms on the same side of the chromophore, and the other with the two Ar atoms sitting on opposite sides of the chromophore. The observed shifts point to the existence of a single isomer for the 1:3 and 1:4 species. Dissociation energies for the neutral ground and first excited electronic state and the ion ground electronic state of the complexes have been determined by the fragmentation threshold method and by ab initio calculations conducted at the MP2 level with 6-31++g(2d, p), 6-311++g(2d, p) and AUG-cc-pVTZ basis sets. The results are compared with those obtained for other similar systems.

  17. Feeding-induced rearrangement of green leaf volatiles reduces moth oviposition

    PubMed Central

    Allmann, Silke; Späthe, Anna; Bisch-Knaden, Sonja; Kallenbach, Mario; Reinecke, Andreas; Sachse, Silke; Baldwin, Ian T; Hansson, Bill S

    2013-01-01

    The ability to decrypt volatile plant signals is essential if herbivorous insects are to optimize their choice of host plants for their offspring. Green leaf volatiles (GLVs) constitute a widespread group of defensive plant volatiles that convey a herbivory-specific message via their isomeric composition: feeding of the tobacco hornworm Manduca sexta converts (Z)-3- to (E)-2-GLVs thereby attracting predatory insects. Here we show that this isomer-coded message is monitored by ovipositing M. sexta females. We detected the isomeric shift in the host plant Datura wrightii and performed functional imaging in the primary olfactory center of M. sexta females with GLV structural isomers. We identified two isomer-specific regions responding to either (Z)-3- or (E)-2-hexenyl acetate. Field experiments demonstrated that ovipositing Manduca moths preferred (Z)-3-perfumed D. wrightii over (E)-2-perfumed plants. These results show that (E)-2-GLVs and/or specific (Z)-3/(E)-2-ratios provide information regarding host plant attack by conspecifics that ovipositing hawkmoths use for host plant selection. DOI: http://dx.doi.org/10.7554/eLife.00421.001 PMID:23682312

  18. Quantum chemical calculations of anion complex [B12Hx(NF2)12-x]2-, x = 9 - 12

    NASA Astrophysics Data System (ADS)

    Koblova, E. A.; Saldin, V. I.; Ustinov, A. Yu

    2017-01-01

    The geometric, energetic, spectral and electronic properties of various isomers of B12Hх(NF2)12-х 2- anion complex with x = 9 - 12 have been studied using Density Functional Theory (B3LYP/6-311++G**). It was shown that the most stable isomers are characterized by the preference to form the most symmetric structures with uniformly distributed charge densities. However, when replacing a hydrogen atom with difluoramino group, an inductive effect occurs. NF2 group pulls a part of electron density that leads to the polarization of the boron core. Blue shifts in the IR spectrum compared to the vibrations of the free radical NF2 ranging from 5 to 69 cm-1 for the most stable isomers with the minimum total energy are characteristic and points to the stability of B12Hх(NF2)12-х 2- anions. The obtained results broaden the idea of aromaticity of B12H12 2- anion and will be useful in synthesis of new B12H12 2- derivatives.

  19. How different is the borazine-acetylene dimer from the benzene-acetylene dimer? A matrix isolation infrared and ab initio quantum chemical study

    NASA Astrophysics Data System (ADS)

    Verma, Kanupriya; Viswanathan, K. S.; Majumder, Moumita; Sathyamurthy, N.

    2017-11-01

    The 1:1 dimer of borazine-acetylene has been studied for the first time, both experimentally and computationally. The borazine-acetylene dimer was trapped in Ar and N2 matrices, and studied using infrared spectroscopy. Our experiments clearly revealed two isomers of the borazine-acetylene complex, one in which the N-H of borazine interacted with the carbon of acetylene, and another in which the C-H of acetylene formed a hydrogen bond with a nitrogen atom of borazine. The formation of both isomers in the matrix was evidenced by shifts in the vibrational frequencies of the appropriate modes. Reassuringly, the experimental observations were corroborated by our computations using the second-order Møller-Plesset perturbation theoretic method and coupled-cluster singles, doubles and perturbative triples method in conjunction with different Dunning basis sets, which indicated both these isomers to be stable minima, with the N-HṡṡṡC complex being the global minimum. Atoms-in-molecules and energy decomposition analysis were also carried out for the different isomers of the dimer. These studies reveal that replacing the three C-C linkages in benzene with three B-N linkages in borazine modifies the interaction in the dimer sufficiently, to result in a different potential energy landscape for the borazine-acetylene system when compared with the benzene-acetylene system.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herojit Singh, L.; Govindaraj, R., E-mail: govind@igcar.gov.in; Rajagopalan, S.

    Mössbauer spectroscopic studies have been carried out at different temperatures across ferromagnetic to paramagnetic transition in Ni{sub 50}Fe{sub 35}Co{sub 15} and the evolution of hyperfine parameters such as centre shift and magnetic hyperfine fields with temperature has been studied. Mössbauer spectrum obtained at 300 K in Ni{sub 50}Fe{sub 35}Co{sub 15} exhibiting fcc crystal structure is a six line pattern with the mean value of the hyperfine field close to 33 Tesla. Ferromagnetic to paramagnetic transition has been observed to occur in this system around 895 K matching with that of magnetization results. Debye temperature of this nickel rich alloy ismore » deduced to be around 470 K matching with that of Ni. Effect of prolonged annealing at 750 K on the magnetic property is also investigated with respect to the thermal stability of the alloy.« less

  1. The water hexamer: three-body interactions, structures, energetics, and OH-stretch spectroscopy at finite temperature.

    PubMed

    Tainter, C J; Skinner, J L

    2012-09-14

    Using a newly developed and recently parameterized classical empirical simulation model for water that involves explicit three-body interactions, we determine the eleven most stable isomers of the water hexamer. We find that the lowest energy isomer is one of the cage structures, in agreement with far-IR and microwave experiments. The energy ordering for the binding energies is cage > glove > book > bag > chair > boat > chaise, and energies relative to the cage are in good agreement with CCSD(T) calculations. The three-body contributions to the cage, book, and chair are also in reasonable agreement with CCSD(T) results. The energy of each isomer results from a delicate balance involving the number of hydrogen bonds, the strain of these hydrogen bonds, and cooperative and anti-cooperative three-body interactions, whose contribution we can understand simply from the form of the three-body interactions in the simulation model. Oxygen-oxygen distances in the cage and book isomers are in good agreement with microwave experiments. Hydrogen-bond distances depend on both donor and acceptor, which can again be understood from the three-body model. Fully anharmonic OH-stretch spectra are calculated for these low-energy structures, and compared with shifted harmonic results from ab initio and density functional theory calculations. Replica-exchange molecular dynamics simulations were performed from 40 to 194 K, which show that the cage isomer has the lowest free energy from 0 to 70 K, and the book isomer has the lowest free energy from 70 to 194 K. OH-stretch spectra were calculated between 40 and 194 K, and results at 40, 63, and 79 K were compared to recent experiments, leading to re-assignment of the peaks in the experimental spectra. We calculate local OH-stretch cumulative spectral densities for different donor-acceptor types and compare to analogous results for liquid water.

  2. Laboratory Studies on the Formation of Three C2H4O Isomers-Acetaldehyde (CH3CHO), Ethylene Oxide (c-C2H4O), and Vinyl Alcohol (CH2CHOH)-in Interstellar and Cometary Ices

    NASA Astrophysics Data System (ADS)

    Bennett, Chris J.; Osamura, Yoshihiro; Lebar, Matt D.; Kaiser, Ralf I.

    2005-11-01

    Laboratory experiments were conducted to unravel synthetic routes to form three C2H4O isomers-acetaldehyde (CH3CHO), ethylene oxide (c-C2H4O), and vinyl alcohol (CH2CHOH)-in extraterrestrial ices via electronic energy transfer processes initiated by electrons in the track of MeV ion trajectories. Here we present the results of electron irradiation on a 2:1 mixture of carbon dioxide (CO2) and ethylene (C2H4). Our studies suggest that suprathermal oxygen atoms can add to the carbon-carbon π bond of an ethylene molecule to form initially an oxirene diradical (addition to one carbon atom) and the cyclic ethylene oxide molecule (addition to two carbon atoms) at 10 K. The oxirene diradical can undergo a [1, 2]-H shift to the acetaldehyde molecule. Both the ethylene oxide and the acetaldehyde isomers can be stabilized in the surrounding ice matrix. To a minor amount, suprathermal oxygen atoms can insert into a carbon-hydrogen bond of the ethylene molecule, forming vinyl alcohol. Once these isomers have been synthesized inside the ice layers of the coated grains in cold molecular clouds, the newly formed molecules can sublime as the cloud reaches the hot molecular core stage. These laboratory investigations help to explain astronomical observations by Nummelin et al. and Ikeda et al. toward massive star-forming regions and hot cores, where observed fractional abundances of these isomers are higher than can be accounted for by gas-phase reactions alone. Similar synthetic routes could help explain the formation of acetaldehyde and ethylene oxide in comet C/1995 O1 (Hale-Bopp) and also suggest a presence of both isomers in Titan's atmosphere.

  3. Increased α-tocotrienol content in seeds of transgenic rice overexpressing Arabidopsis γ-tocopherol methyltransferase.

    PubMed

    Zhang, Gui-Yun; Liu, Ru-Ru; Xu, Geng; Zhang, Peng; Li, Yin; Tang, Ke-Xuan; Liang, Guo-Hua; Liu, Qiao-Quan

    2013-02-01

    Vitamin E comprises a group of eight lipid soluble antioxidant compounds that are an essential part of the human diet. The α-isomers of both tocopherol and tocotrienol are generally considered to have the highest antioxidant activities. γ-tocopherol methyltransferase (γ-TMT) catalyzes the final step in vitamin E biosynthesis, the methylation of γ- and δ-isomers to α- and β-isomers. In present study, the Arabidopsis γ-TMT (AtTMT) cDNA was overexpressed constitutively or in the endosperm of the elite japonica rice cultivar Wuyujing 3 (WY3) by Agrobacterium-mediated transformation. HPLC analysis showed that, in brown rice of the wild type or transgenic controls with empty vector, the α-/γ-tocotrienol ratio was only 0.7, much lower than that for tocopherol (~19.0). In transgenic rice overexpressing AtTMT driven by the constitutive Ubi promoter, most of the γ-isomers were converted to α-isomers, especially the γ- and δ-tocotrienol levels were dramatically decreased. As a result, the α-tocotrienol content was greatly increased in the transgenic seeds. Similarly, over-expression of AtTMT in the endosperm also resulted in an increase in the α-tocotrienol content. The results showed that the α-/γ-tocopherol ratio also increased in the transgenic seeds, but there was no significant effect on α-tocopherol level, which may reflect the fact that γ-tocopherol is present in very small amounts in wild type rice seeds. AtTMT overexpression had no effect on the absolute total content of either tocopherols or tocotrienols. Taken together, these results are the first demonstration that the overexpression of a foreign γ-TMT significantly shift the tocotrienol synthesis in rice, which is one of the world's most important food crops.

  4. Protein Structure Determination from Pseudocontact Shifts Using ROSETTA

    PubMed Central

    Schmitz, Christophe; Vernon, Robert; Otting, Gottfried; Baker, David; Huber, Thomas

    2013-01-01

    Paramagnetic metal ions generate pseudocontact shifts (PCSs) in nuclear magnetic resonance spectra that are manifested as easily measurable changes in chemical shifts. Metals can be incorporated into proteins through metal binding tags, and PCS data constitute powerful long-range restraints on the positions of nuclear spins relative to the coordinate system of the magnetic susceptibility anisotropy tensor (Δχ-tensor) of the metal ion. We show that three-dimensional structures of proteins can reliably be determined using PCS data from a single metal binding site combined with backbone chemical shifts. The program PCS-ROSETTA automatically determines the Δχ-tensor and metal position from the PCS data during the structure calculations, without any prior knowledge of the protein structure. The program can determine structures accurately for proteins of up to 150 residues, offering a powerful new approach to protein structure determination that relies exclusively on readily measurable backbone chemical shifts and easily discriminates between correctly and incorrectly folded conformations. PMID:22285518

  5. Magnetization hysteresis electron paramagnetic resonance. A new null phase insensitive saturation transfer EPR technique with high sensitivity to slow motion.

    PubMed Central

    Vistnes, A I

    1983-01-01

    In electron paramagnetic resonance (EPR) nonlinear phenomena with respect to magnetic-field modulation are often studied by out-of-phase spectra recordings. The existence of a nonzero out-of-phase signal implies that the EPR signal is phase shifted relative to the modulation signal. This phase shift is called a magnetization hysteresis. The hysteresis angle varies during a sweep through the resonance conditions for a free radical. By recording this variation, a magnetization hysteresis (MH) spectrum results. In practice, a MH spectrum is computer calculated from two EPR spectra detected with a 90 degree difference in phase setting. There is no need for a careful null-phase calibration like that in traditional analysis of nonlinearities. The MH spectra calculated from second harmonic EPR spectra of spin labels were highly dependent on the rotational correlation time. The technique can therefore be used to study slow molecular motion. In the present work MH spectra and Hemminga and deJager's magnitude saturation transfer EPR spectra (Hemminga, M. A., and P. A. deJager, 1981, J. Magn. Reson., 43:324-327) have been analyzed to define parameters that can describe variations in the rotational correlation time. A novel modification of the sample holder and temperature regulation equipment is described. PMID:6309263

  6. ^17O NMR Study of Sr_2CuO_2Cl_2, a Single-Layer Parent Compound of a High Tc Superconductor

    NASA Astrophysics Data System (ADS)

    Thurber, Kent; Hunt, Allen; Imai, Takashi; Chou, Fang-Cheng; Lee, Young

    1997-03-01

    We report NMR measurements of the ^17O nuclear spin-lattice relaxation rate 1/T_1, and the ^17O Knight shift of Sr_2CuO_2Cl2 (TN = 257 K) in the paramagnetic state from the Néel temperature up to 700 K. This establishes, for the first time, the temperature and frequency dependence of ^17O NMR in the paramagnetic state of a clean, single-layer, undoped parent compound of a high Tc superconductor. The ^17O NMR results test the nature of elementary spin excitations around q = 0 and give insight into the spin wave damping, Γ. The observation, ^17 1/T1 ~ a T^3 [ 1 + O(T/J) ], agrees semi-quantitatively with theoretical predictions based on spin waves in the spin S=1/2 2D Heisenberg model. electronically.

  7. Elemental, morphological, structural, optical, and magnetic properties of erbium doped ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Poornaprakash, B.; Chalapathi, U.; Purusottam Reddy, B.; Prabhakar Vattikuti, S. V.; Siva Pratap Reddy, M.; Park, Si-Hyun

    2018-03-01

    The sensible tuning of the structural, optical, and magnetic properties of ZnO nanoparticles (NPs) with suitable doping can enhance their applicability in diverse fields. In this study, we synthesized ZnO NPs with Er (0-4 at%) doping and their elemental, structural, optical, and magnetic properties were studied. Both field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM) studies of the suspensions consist of hexagonal shaped NPs. All the prepared NPs exhibited hexagonal phase as demonstrated by powder x-ray diffraction studies. A blue shift was observed in the Er doped ZnO NPs compared to pure ZnO, indicating the increased optical bandgap. Vibrating sample magnetometer studies exhibited the pure ZnO NPs was typical diamagnetic feature whereas all the Er doped ZnO NPs were paramagnetic feature at 300 K. This is the first paramagnetic report on Er doped ZnO NPs.

  8. W-band EPR of vanadyl complexes aggregates on the surface of Al2O3

    NASA Astrophysics Data System (ADS)

    Mamin, G.; Gafurov, M.; Galukhin, A.; Gracheva, I.; Murzakhanov, F.; Rodionov, A.; Orlinskii, S.

    2018-05-01

    Structural characterization of metalloporphyrins, asphaltenes and their aggregates in complex systems such as native hydrocarbons is in the focus of scientific and industrial interests since many years. We present W-band (95 GHz) electron paramagnetic resonance (EPR) study in the magnetic field of about 3.4 T and temperature of 100 K for Karmalinskoe oil, asphaltens and asphaltenes deposited on the surface of Al2O3. Features of the obtained spectra are described. Shift to the higher frequencies allows to separate spectrally the contributions from paramagnetic complexes of different origin and define the EPR parameters more accurately comparing to the conventional X-band (9 GHz). Changes of the EPR parameters are tracked. We suggest that the proposed approach can be used for the investigation of structure of vanadyl complexes aggregates in crude oil and their fractions.

  9. Monovacancy paramagnetism in neutron-irradiated graphite probed by 13C NMR.

    PubMed

    Zhang, Z T; Xu, C; Dmytriieva, D; Molatta, S; Wosnitza, J; Wang, Y T; Helm, M; Zhou, Shengqiang; Kühne, H

    2017-10-20

    We report on the magnetic properties of monovacancy defects in neutron-irradiated graphite, probed by 13 C nuclear magnetic resonance spectroscopy. The bulk paramagnetism of the defect moments is revealed by the temperature dependence of the NMR frequency shift and spectral linewidth, both of which follow a Curie behavior, in agreement with measurements of the macroscopic magnetization. Compared to pristine graphite, the fluctuating hyperfine fields generated by the defect moments lead to an enhancement of the 13 C nuclear spin-lattice relaxation rate [Formula: see text] by about two orders of magnitude. With an applied magnetic field of 7.1 T, the temperature dependence of [Formula: see text] below about 10 K can well be described by a thermally activated form, [Formula: see text], yielding a singular Zeeman energy of ([Formula: see text]) meV, in excellent agreement with the sole presence of polarized, non-interacting defect moments.

  10. Excited stilbene: intramolecular vibrational redistribution and solvation studied by femtosecond stimulated Raman spectroscopy.

    PubMed

    Weigel, A; Ernsting, N P

    2010-06-17

    Excited-state relaxation of cis- and trans-stilbene is traced with femtosecond stimulated Raman spectroscopy, exploiting S(n) <-- S(1) resonance conditions. For both isomers, decay in Raman intensity, shift of spectral positions, and broadening of the bands indicate intramolecular vibrational redistribution (IVR). In n-hexane this process effectively takes 0.5-0.7 ps. Analysis of the intensity decay allows us to further distinguish two phases for trans-stilbene: fast IVR within a subset of modes (approximately 0.3 ps) followed by slower equilibration over the full vibrational manifold (approximately 0.9 ps). In acetonitrile IVR completes with 0.15 ps; this acceleration may originate from symmetry breakage induced by the polar solvent. Another process, dynamic solvation by acetonitrile, is seen as spectral narrowing and characteristic band shifts of the C=C stretch and phenyl bending modes with 0.69 ps. Wavepacket motion is observed in both isomers as oscillation of low-frequency bands with their pertinent mode frequency (90 or 195 cm(-1) in trans-stilbene; 250 cm(-1) in cis-stilbene). Anharmonic coupling shows up as a modulation of high-frequency peak positions by phenyl/ethylene torsion modes of 57 and 90 cm(-1). Decay and shift of the 90 cm(-1) inverse Raman band within the first 0.3 ps suggests a gradual involvement of phenyl/ethylene torsion in relaxation. In cis- and trans-stilbene, low-frequency spectral changes are found within 0.15 ps, indicating an additional ultrafast process.

  11. Fluorinated Paramagnetic Complexes: Sensitive and Responsive Probes for Magnetic Resonance Spectroscopy and Imaging

    NASA Astrophysics Data System (ADS)

    Peterson, Katie L.; Srivastava, Kriti; Pierre, Valérie C.

    2018-05-01

    Fluorine magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) of chemical and physiological processes is becoming more widespread. The strength of this technique comes from the negligible background signal in in vivo 19F MRI and the large chemical shift window of 19F that enables it to image concomitantly more than one marker. These same advantages have also been successfully exploited in the design of responsive 19F probes. Part of the recent growth of this technique can be attributed to novel designs of 19F probes with improved imaging parameters due to the incorporation of paramagnetic metal ions. In this review, we provide a description of the theories and strategies that have been employed successfully to improve the sensitivity of 19F probes with paramagnetic metal ions. The Bloch-Wangsness-Redfield theory accurately predicts how molecular parameters such as distance, geometry, rotational correlation times, as well as the nature, oxidation state, and spin state of the metal ion affect the sensitivity of the fluorine-based probes. The principles governing the design of responsive 19F probes are subsequently described in a “how to” guide format. Examples of such probes and their advantages and disadvantages are highlighted through a synopsis of the literature.

  12. Dehydrogenation reactions of cyclic C(2)B(2)N(2)H(12) and C(4)BNH(12) isomers.

    PubMed

    Matus, Myrna H; Liu, Shih-Yuan; Dixon, David A

    2010-02-25

    The energetics for different dehydrogenation pathways of C(2)B(2)N(2)H(12) and C(4)BNH(12) cycles were calculated at the B3LYP/DGDZVP2 and G3(MP2) levels with additional calculations at the CCSD(T)/complete basis set level. The heats of formation of the different isomers were calculated from the G3(MP2) relative energies and the heats of formation of the most stable isomers of c-C(2)B(2)N(2)H(6), c-C(2)B(2)N(2)H(12), and c-C(4)BNH(12) at the CCSD(T)/CBS including additional corrections together with the previously reported value for c-C(4)BNH(6). Different isomers were analyzed for c-C(2)B(2)N(2)H(x) and c-C(4)BNH(x) (x = 6 and 12), and the most stable cyclic structures were those with C-C-B-N-B-N and C-C-C-C-B-N sequences, respectively. The energetics for the stepwise loss of three H(2) were predicted, and the most feasible thermodynamic pathways were found. Dehydrogenation of the lowest energy c-C(2)B(2)N(2)H(12) isomer (6-H(12)) is almost thermoneutral with DeltaH(3dehydro) = 3.4 kcal/mol at the CCSD(T)/CBS level and -0.6 kcal/mol at the G3(MP2) level at 298 K. Dehydrogenation of the lowest energy c-C(4)BNH(12) isomer (7-H(12)) is endothermic with DeltaH(3dehydro) = 27.9 kcal/mol at the CCSD(T)/CBS level and 23.5 kcal/mol at the G3(MP2) level at 298 K. Dehydrogenation across the B-N bond is more favorable as opposed to dehydrogenation across the B-C, N-C, and C-C bonds. Resonance stabilization energies in relation to that of benzene are reported as are NICS NMR chemical shifts for correlating with the potential aromatic character of the rings.

  13. Active sites of the cytochrome p450cam (CYP101) F87W and F87A mutants. Evidence for significant structural reorganization without alteration of catalytic regiospecificity.

    PubMed

    Tuck, S F; Graham-Lorence, S; Peterson, J A; Ortiz de Montellano, P R

    1993-01-05

    Ferricyanide oxidation of the aryl-iron complexes formed by the reaction of cytochrome P450 enzymes with arylhydrazines causes in situ migration of the aryl group from the iron to the porphyrin nitrogen atoms. The regiochemistry of this migration, defined by the ratio of the four possible N-arylprotoporphyrin IX isomers, provides a method for mapping the topologies of cytochrome P450 active sites. The method has been validated by using it to examine the active site of cytochrome P450cam (CYP101), for which a crystal structure is available. In agreement with the crystal structure, reaction with phenylhydrazine gives a 5:25:70 ratio of the NA:NC:ND (subscript indicates pyrrole ring) N-phenylprotoporphyrin IX isomers. Naphthylhydrazine, however, yields exclusively the NC regioisomer and 4-(phenyl)phenylhydrazine the NA:NC:ND isomers in a 14:40:46 ratio. These isomer ratio differences are readily explained by topological differences between the upper and lower reaches of the active site. Having validated the aryl-iron shift as a topological probe, we used it to investigate the structural changes caused by mutation of Phe-87, a residue that provides the ceiling over pyrrole ring D in the crystal structure of cytochrome P450cam. Mutation of Phe-87 to a tryptophan causes no detectable change in the regiochemistry of camphor hydroxylation and only minor changes in the N-aryl isomer ratios. However, mutation of Phe-87 to an alanine, which was expected to open up the region above pyrrole ring D, severely decreased the proportion of the ND in favor of the NA isomer. Less rather than more space is therefore available over pyrrole ring D in the F87A mutant despite the fact that the regiochemistry of camphor hydroxylation remains unchanged. These results provide evidence for significant structural reorganization in the upper regions of the substrate binding site without alteration of the camphor hydroxylation regiospecificity in the F87A mutant.

  14. Calix[4]arenes as selective extracting agents. An NMR dynamic and conformational investigation of the lanthanide(III) and thorium(IV) complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, B.; Jacques, V.; Shivanyuk, A.

    The lanthanide and Th{sup 4+} complexes with calix[4]arene ligands substituted either on the narrow or at the wide rim by four coordinating groups behave totally differently as shown by an NMR investigation of the dia- and paramagnetic complexes. Solutions of complexes were prepared by reacting anhydrous metal perchlorate salts with the ligands in dry acetonitrile (CAUTION). Relaxation time T{sub 1} titrations of acetonitrile solutions of Gd{sup 3+} by calixarenes indicate that ligands substituted on the narrow rim form stable 1:1 complexes whether they feature four amide groups (1) or four phosphine oxide functions. In contrast, a ligand substituted by fourmore » (carbamoylmethyl)-diphenylphosphine oxide moieties on the wide rim (3) and its derivatives form polymeric species even at a 1:1 ligand/metal concentration ratio. Nuclear magnetic relaxation dispersion (NMRD) curves (relaxation rates 1/T{sub 1} vs magnetic field strength) of Gd{sup 3+}, Gd{sup 3+}{center_dot}1 and Gd{sup 3+}{center_dot}3 perchlorates in acetonitrile are analyzed by an extended version of the Solomon-Bloembergen-Morgan equations. A comparison of the calculated rotational correlation times {tau}{sub r} shows that ligand 3 forms oligomeric Gd{sup 3+} species. The chelates of ligand 1 are axially symmetric (C{sub 4} symmetry), and the paramagnetic shifts induced by the Yb{sup 3+} ion are accounted for quantitatively. The addition of water or of nitrate ions does not modify the geometry of the complex. The metal chelates of 3 and its derivatives adopt a C{sub 2} symmetry, and the paramagnetic shifts are interpreted on a semiquantitative basis only. Water and NO{sub 3}{sup {minus}} ions completely labilize the complexes of the heavy lanthanides. The very high selectivity of ligand 3 through the lanthanide series stems from a complex interplay of factors.« less

  15. Correlations among experimental and theoretical NMR data to determine the absolute stereochemistry of darcyribeirine, a pentacyclic indole alkaloid isolated from Rauvolfia grandiflora

    NASA Astrophysics Data System (ADS)

    Cancelieri, Náuvia Maria; Ferreira, Thiago Resende; Vieira, Ivo José Curcino; Braz-Filho, Raimundo; Piló-Veloso, Dorila; Alcântara, Antônio Flávio de Carvalho

    2015-10-01

    Darcyribeirine (1) is a pentacyclic indole alkaloid isolated from Rauvolfia grandiflora. Stereochemistry of 1 was previously proposed based on 1D (coupling constant data) and 2D (NOESY correlations) NMR techniques, having been established a configuration 3R, 15S, and 20R (isomer 1a). Stereoisomers of 1 (i.e., 1a-1h) can be grouped into four sets of enantiomers. Carbon chemical shifts and hydrogen coupling constants were calculated using BLYP/6-31G* theory level for the eight isomers of 1. Calculated NMR data of 1a-1h were correlated with the corresponding experimental data of 1. The best correlations between theoretical and experimental carbon chemical shift data were obtained for the set of enantiomers 1e/1f to structures in the gaseous phase and considering solvent effects (using PCM and explicit models). Similar results were obtained when the same procedure was performed to correlations between theoretical and experimental coupling constant data. Finally, optical rotation calculations indicate 1e as its absolute stereochemistry. Orbital population analysis indicates that the hydrogen bonding between N-H of 1e and DMSO is due to contributions of its frontier unoccupied molecular orbitals, mainly LUMO+1, LUMO+2, and LUMO+3.

  16. Urinary excretion of the metabolites of n-hexane and its isomers during occupational exposure.

    PubMed Central

    Perbellini, L; Brugnone, F; Faggionato, G

    1981-01-01

    Environmental exposure to commercial hexane (n-hexane, 2-methylpentane, and 3-methylpentane) was tested in several work places in five shoe factories by taking three grap-air samples during the afternoon shift. Individual exposure ranges were 32-500 mg/m3 for n-hexane, 11-250 mg/m3 for 2-methylpentane, and 10-204 mg/m3 for 3-methylpentane. The metabolites of commercial hexane in the urine of 41 workers were measured at the end of the work shift. 2-Hexanol, 2,5-hexanedione, 2,5-dimethylfuran, and gamma-valerolactone were found as n-hexane metabolites and 2-methyl-2-pentanol and 3-methyl-2-pentanol as 2-methylpentane and 3-methylpentane metabolites. The presence of metabolites in the urine was correlated with occupational exposure to solvents. n-Hexane exposure was correlated more positively with 2-hexanol and 2,5-hexanedione than with 2,5-dimethylfuran and gamma-valerolactone. A good correlation was also found between total n-hexane metabolites and n-hexane exposure. 2-Methyl-2-pentanol and 3-methyl-2-pentanol were highly correlated with 2-methylpentane and 3-methylpentane exposure. The results suggest that the urinary excretion of hexane metabolites may be used for monitoring occupational exposure to n-hexane and its isomers. PMID:7470400

  17. Curie-type paramagnetic NMR relaxation in the aqueous solution of Ni(II).

    PubMed

    Mareš, Jiří; Hanni, Matti; Lantto, Perttu; Lounila, Juhani; Vaara, Juha

    2014-04-21

    Ni(2+)(aq) has been used for many decades as a model system for paramagnetic nuclear magnetic resonance (pNMR) relaxation studies. More recently, its magnetic properties and also nuclear magnetic relaxation rates have been studied computationally. We have calculated electron paramagnetic resonance and NMR parameters using quantum-mechanical (QM) computation of molecular dynamics snapshots, obtained using a polarizable empirical force field. Statistical averages of hyperfine coupling, g- and zero-field splitting tensors, as well as the pNMR shielding terms, are compared to the available experimental and computational data. In accordance with our previous work, the isotropic hyperfine coupling as well as nuclear shielding values agree well with experimental measurements for the (17)O nuclei of water molecules in the first solvation shell of the nickel ion, whereas larger deviations are found for (1)H centers. We report, for the first time, the Curie-type contribution to the pNMR relaxation rate using QM calculations together with Redfield relaxation theory. The Curie relaxation mechanism is analogous to chemical shift anisotropy relaxation, well-known in diamagnetic NMR. Due to the predominance of other types of paramagnetic relaxation mechanisms for this system, it is possible to extract the Curie term only computationally. The Curie mechanism alone would result in around 16 and 20 s(-1) of relaxation rates (R1 and R2 respectively) for the (1)H nuclei of water molecules bonded to the Ni(2+) center, in a magnetic field of 11.7 T. The corresponding (17)O relaxation rates are around 33 and 38 s(-1). We also report the Curie contribution to the relaxation rate for molecules beyond the first solvation shell in a 1 M solution of Ni(2+) in water.

  18. Model-free nuclear magnetic resonance study of intermolecular free energy landscapes in liquids with paramagnetic Ln3+ spotlights: theory and application to Arg-Gly-Asp.

    PubMed

    Fries, Pascal H

    2012-01-28

    We propose an easily applicable method for investigating the pair distribution function of a lanthanide Ln(3+) complex LnL (L = ligand) with respect to any solvent or solute molecule A carrying observable nuclear spins. Let r be the distance of Ln(3+) to the observed nuclear spin I. We derive a simple expression of the experimental value of the configurational average of 1/r(6) in terms of longitudinal paramagnetic relaxation (rate) enhancements (PREs) of the spin I measured on a standard high-resolution NMR spectrometer and due to well-chosen concentrations of LnL complexes in which Ln(3+) is a fast-relaxing paramagnetic lanthanide or the slowly-relaxing gadolinium Gd(3+). The derivation is justified in the general case of a molecule A which is by turns in a bound state where it follows the complex and a free state where it moves independently. It rests on the expression of the underlying PRE theory in terms of the angle-dependent pair distribution function of LnL and A. The simplifications of this theory in the high-field regime and under the condition of fast exchange between bound and free states are carefully discussed. We also show that original information on the angle dependence of the molecular pair distribution function can be gained from the measured paramagnetic dipolar shifts induced by complexed fast-relaxing Ln(3+) ions. The method is illustrated by the case study of the anionic Lnttha(3-) = [Ln(3+)(ttha)](3-) (ttha(6-) = triethylene tetraamine hexacetate) complex interacting with the biologically important tripeptide Arg-Gly-Asp (RGD) which carries peripheral ionic groups. The usefulness of an auxiliary reference outer sphere probe solute is emphasized. © 2012 American Institute of Physics

  19. Investigations on the Crystal-Chemical Behavior of Transition-Metal-Bearing Aluminosilicate Garnet Solid Solutions Using 27Al and 29Si NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Palke, A. C.; Geiger, C. A.; Stebbins, J. F.

    2015-12-01

    The petrological importance of silicate garnet is derived from the presence of three distinct cation sites of varying size and coordination number. This allows for a wide range of trace, minor, and major element substitutions. However, a full and precise crystal-chemical understanding of the nature of transition metals in garnet is not at hand. Possible mechanisms of various charge-balanced substitutions (e.g. octahedral Ti4+ or tetrahedral Al3+) and the structural state of solid solutions (i.e. short- to long-range ordering) need study. We report on ongoing efforts in these directions using 27Al and 29Si Magic-Angle Spinning Nuclear Magnetic Resonance (MAS-NMR) spectroscopy. Early work on synthetic and natural Fe- and Mn-bearing pyrope- and grossular-rich garnets focused on the effect these paramagnetic transition metals have in measuring and interpreting NMR spectra. These results have been expanded with NMR measurements on synthetic pyrope-rich garnets containing other paramagnetic transition metals including Cr3+, V3+, Co2+, and Ni2+ as well as diamagnetic Ti4+. NMR peaks are severely broadened in the presence of even small concentrations of Cr3+, Mn2+, and Fe3+ leading to a loss of spectral resolution. On the other hand, the spectra of garnet containing V3+, Fe2+, Co2+, and Ni2+ have better resolution and show separate paramagnetically shifted NMR peaks. In some cases, crystal-chemical information can be obtained because of the large frequency separations between the NMR peaks that can be assigned to various local atomic configurations around Al and Si. Furthermore, the 27Al NMR spectrum of a synthetic pyrope garnet with about 2% diamagnetic Ti4+ on the octahedral site showed the absence of any tetrahedral Al3+, which rules out the substitution mechanism VITi + IVAl = VIAl + IVSi in the solid solution. Our NMR investigations on garnet are now being made at the exploratory level. We think that NMR spectra of diamagnetic garnet can provide information on a number of crystal-chemical properties. Spectra of garnet containing various paramagnetic transition elements can also, in some cases, give local structural information. With a better understanding of paramagnetic effects in NMR spectroscopy, this type of study can possibly be expanded to other geologically important paramagnetic minerals and phases.

  20. Mechanically-induced disorder in CaFe 2As 2: A 57Fe Mössbauer study

    DOE PAGES

    Ma, Xiaoming; Ran, Sheng; Canfield, Paul C.; ...

    2015-10-17

    57Fe Mössbauer spectroscopy was used to perform a microscopic study on the extremely pressure and strain sensitive compound, CaFe 2As 2, with different degrees of strain introduced by grinding and annealing. At the base temperature, in the antiferromagnetic/orthorhombic phase, compared to a sharp sextet Mössbauer spectrum of single crystal CaFe 2As 2, which is taken as an un-strained sample, an obviously broadened sextet and an extra doublet were observed for ground CaFe 2As 2 powders with different degrees of strain. The Mössbauer results suggest that the magnetic phase transition of CaFe 2As 2 can be inhomogeneously suppressed by the grindingmore » induced strain to such an extent that the antiferromagnetic order in parts of the grains forming the powdered sample remain absent all the way down to 4.6 K. However, strain has almost no effect on the temperature dependent hyperfine magnetic field in the grains with magnetic order. Additional electronic and asymmetry information was obtained from the isomer shift and quadrupole splitting. Similar isomer shift values in the magnetic phase for samples with different degrees of strain, indicate that the stain does not bring any significant variation of the electronic density at 57Fe nucleus position. As a result, the absolute values of quadrupole shift in the magnetic phase decrease and approach zero with increasing degrees of strain, indicating that the strain reduces the average lattice asymmetry at Fe atom position.« less

  1. CP/MAS 13C NMR characterization of the isomeric states and intermolecular packing in tris(8-hydroxyquinoline) aluminum(III) (Alq3).

    PubMed

    Kaji, Hironori; Kusaka, Yasunari; Onoyama, Goro; Horii, Fumitaka

    2006-04-05

    The isomeric states and intermolecular packing of tris(8-hydroxyquinoline) aluminum(III) (Alq(3)) in the alpha-, gamma-, and delta-crystalline forms and in the amorphous state, which are important for understanding the light-emitting and electron-transport properties, have been analyzed by CP/MAS (13)C NMR. This simple NMR experiment shows that the isomeric state of alpha- and amorphous Alq(3) is meridional, whereas that of gamma- and delta-Alq(3) is facial. In the amorphous Alq(3), the inclusion of facial isomers has been under debate. Our experiments show that meridional isomers are dominant in the amorphous Alq(3), although the existence of facial isomers cannot be completely denied. The local structure of amorphous Alq(3) is similar to that of alpha-Alq(3) and is significantly different from those of gamma- and delta-Alq(3). Among these Alq(3) samples, the effect of intermolecular interaction is not found only for gamma-Alq(3). This finding can explain the good solvent solubility of gamma-Alq(3), compared with the other crystalline forms. It is also shown that the structures are locally disordered not only for amorphous Alq(3) but also for alpha-Alq(3), although clear X-ray diffraction peaks are observed for alpha-Alq(3). In contrast, the local structures of gamma- and delta-Alq(3) are well defined. A clear relation is found between the spectral patterns of CP/MAS (13)C NMR and the fluorescence wavelengths; the samples, which consist of facial isomers, show blue-shifted fluorescence compared with those of meridionals.

  2. Incorporation of chromium into TiO{sub 2} nanopowders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kollbek, Kamila, E-mail: biernack@agh.edu.pl; AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Al. Mickiewicza 30, 30-059 Krakow; Sikora, Marcin

    2015-04-15

    Highlights: • Nanopowders of TiO{sub 2}:Cr with different amount of Cr dopant were obtained by flame spray synthesis, FSS. • Increase in the optical absorption and a shift of the absorption edge were observed upon Cr doping. • HERFD-XANES measurements indicated that the average valence state of titanium ions was preserved. • Increasing magnetic susceptibility of a paramagnetic character was observed upon Cr doping. - Abstract: The paper reports on the results of a study of optical, electronic and magnetic properties of TiO{sub 2} nanopowders doped with Cr ions. Diffused reflectance spectra reveal an increase in the optical absorption andmore » a shift of the absorption edge towards lower energies upon Cr doping. Direct information on the Ti electronic state and the symmetry of its nearest environment is obtained from XANES Ti K-edge spectra. Magnetic behaviour is probed by means of the temperature dependence of DC magnetic susceptibility. Increasing magnetic susceptibility of a paramagnetic character is observed upon increasing chromium doping. The Curie constant of TiO{sub 2}:10 at.% Cr sample (0.12 emu K/mol Oe) is lower than that expected for Cr{sup 3+} (0.1875 emu K/mol Oe) possibly due to the appearance of Cr{sup 4+} or the presence of the orbital contribution to the magnetic moment.« less

  3. Osmotically shrunken LIPOCEST agents: an innovative class of magnetic resonance imaging contrast media based on chemical exchange saturation transfer.

    PubMed

    Terreno, Enzo; Delli Castelli, Daniela; Violante, Elisabetta; Sanders, Honorius M H F; Sommerdijk, Nico A J M; Aime, Silvio

    2009-01-01

    The peculiar properties of osmotically shrunken liposomes acting as magnetic resonance imaging-chemical exchange saturation transfer (MRI-CEST) contrast agents have been investigated. Attention has been primarily devoted to assessing the contribution arising from encapsulated and incorporated paramagnetic lanthanide(III)-based shift reagents in determining the chemical shift of the intraliposomal water protons, which is a relevant factor for generating the CEST contrast. It is demonstrated that a highly shifted resonance for the encapsulated water can be attained by increasing the percentage of the amphiphilic shift reagent incorporated in the liposome bilayer. It is also demonstrated that the shift contribution arising from the bulk magnetic susceptibility can be optimized through the modulation of the osmotic shrinkage. In terms of sensitivity, it is shown that the saturation transfer efficiency can be significantly improved by increasing the size of the vesicle, thus allowing a high number of exchangeable protons to be saturated. In addition, the role played by the intensity of the saturating radiofrequency field has also been highlighted.

  4. Structure, spectroscopy, and dynamics of the phenol-(water)2 cluster at low and high temperatures

    NASA Astrophysics Data System (ADS)

    Samala, Nagaprasad Reddy; Agmon, Noam

    2017-12-01

    Aqueous solutions are complex due to hydrogen bonding (HBing). While gas-phase clusters could provide clues on the solution behavior, most neutral clusters were studied at cryogenic temperatures. Recent results of Shimamori and Fujii provide the first IR spectrum of warm phenol-(H2O)2 clusters. To understand the temperature (T) effect, we have revisited the structure and spectroscopy of phenol-(H2O)2 at all T. While older quantum chemistry work concluded that the cyclic isomers are the most stable, the inclusion of dispersion interactions reveals that they are nearly isoenergetic with isomers forming π-HBs with the phenyl ring. Whereas the OH-stretch bands were previously assigned to purely local modes, we show that at low T they involve a concerted component. We have calculated the (static) anharmonic IR spectra for all low-lying isomers, showing that at the MP2 level, one can single out one isomer (udu) as accounting for the low-T spectrum to 3 cm-1 accuracy. Yet no isomer can explain the substantial blueshift of the phenyl-OH band at elevated temperatures. We describe the temperature effect using ab initio molecular dynamics with a density functional and basis-set (B3LYP-D3/aug-cc-pVTZ) that provide a realistic description of OH⋯O vs. OH⋯π HBing. From the dipole moment autocorrelation function, we obtain good description for both low- and high-T spectra. Trajectory visualization suggests that the ring structure remains mostly intact even at high T, with intermittent switching between OH⋯O and OH⋯π HBing and lengthening of all 3 HBs. The phenyl-OH blueshift is thus attributed to strengthening of its OH bond. A model for three beads on a ring suggests that this shift is partly offset by the elimination of coupling to the other OH bonds in the ring, whereas for the two water molecules these two effects nearly cancel.

  5. A theoretical study of the hydrogen bonding between the vic-, cis- and trans-C 2H 2F 2 isomers and hydrogen fluoride

    NASA Astrophysics Data System (ADS)

    Rusu, Victor H.; da Silva, João Bosco P.; Ramos, Mozart N.

    2009-04-01

    MP2/6-31++G(d,p) and B3LYP/6-31++G(d,p) theoretical calculations have been employed to investigate the hydrogen bonding formation involving the vic-, cis- and trans-C 2H 2F 2 isomers and hydrogen fluoride. Our calculations have revealed for each isomer the preferential existence of two possible hydrogen-bonded complexes: a non-cyclic complex and a cyclic complex. For all the three isomers the binding energies for the non-cyclic and cyclic hydrogen complexes are essentially equal using both the MP2 and B3LYP calculations, being that the cyclic structure is slightly more stable. For instance, the binding energies including BSSE and ZPE corrections for the non-cyclic and cyclic structures of cis-C 2H 2F···HF are 8.7 and 9.0 kJ mol -1, respectively, using B3LYP calculations. The cyclic complex formation reduces the polarity, in contrast to what occurs with the non-cyclic complex. This result is more accentuated in vic-C 2H 2F 2···HF. In this latter, Δ μ(cyclic) is -3.07 D, whereas Δ μ(non-cyclic) is +1.92 D using B3LYP calculations. Their corresponding MP2 values are +0.44 D and -1.89 D, respectively. As expected, the complexation produces an H sbnd F stretching frequency downward shift, whereas its IR intensity is enhanced. On the other hand, the vibrational modes of the vic-, cis- and trans-C 2H 2F 2 isomers are little affected by complexation. The new vibrational modes due to hydrogen bonding formation show several interesting features, in particular the HF bending modes which are pure rotations in the free molecule.

  6. The binding of manganese(II) and zinc(II) to the synthetic oligonucleotide d(C-G-C-G-A-A-T-T-C-G-C-G)2. A 1H NMR study.

    PubMed

    Frøystein, N A; Sletten, E

    1991-03-01

    The interaction of the synthetic oligonucleotide d(C-G-C-G-A-A-T-T-C-G-C-G)2 with two different transition-metal ions has been investigated in aqueous solution by means of 1H NMR spectroscopy. The effects on the DNA due to the presence of manganese(II) or zinc(II) have been monitored by observing the paramagnetic broadening and diamagnetic shifts of the non-exchangeable proton resonance lines, respectively. The 1H NMR spectra acquired during the course of the manganese(II) titration show very distinct broadening effects on certain DNA resonance lines. Primarily, the H8 resonance of G4 is affected, but also the H5 and H6 resonances of C3 are clearly affected by the metal. The results imply that the binding of manganese(II) to DNA is sequence specific. The 1H spectra obtained during the zinc(II) titration reveal diamagnetic shift effects which largely conform with the paramagnetic broadening effects due to the presence of manganese(II), although this picture is somewhat more complex. The H8 resonance of G4 displays a clearly visible high-field shift, while for the other guanosine H8 protons this effect is absent. The H1' and H2' protons of C3 show an effect of similar strength, although in the opposite direction, while H5 and H6 of C3 are only slightly affected. Local differences in the structure of the DNA and the basicities of potential binding sites on different base steps in the sequence might account for the observed sequence selectivity.

  7. In vivo three-dimensional molecular imaging with Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) at high spatiotemporal resolution.

    PubMed

    Coman, Daniel; de Graaf, Robin A; Rothman, Douglas L; Hyder, Fahmeed

    2013-11-01

    Spectroscopic signals which emanate from complexes between paramagnetic lanthanide (III) ions (e.g. Tm(3+)) and macrocyclic chelates (e.g. 1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate, or DOTMA(4-)) are sensitive to physiology (e.g. temperature). Because nonexchanging protons from these lanthanide-based macrocyclic agents have relaxation times on the order of a few milliseconds, rapid data acquisition is possible with chemical shift imaging (CSI). Thus, Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) which originate from nonexchanging protons of these paramagnetic agents, but exclude water proton detection, can allow molecular imaging. Previous two-dimensional CSI experiments with such lanthanide-based macrocyclics allowed acquisition from ~12-μL voxels in rat brain within 5 min using rectangular encoding of k space. Because cubical encoding of k space in three dimensions for whole-brain coverage increases the CSI acquisition time to several tens of minutes or more, a faster CSI technique is required for BIRDS to be of practical use. Here, we demonstrate a CSI acquisition method to improve three-dimensional molecular imaging capabilities with lanthanide-based macrocyclics. Using TmDOTMA(-), we show datasets from a 20 × 20 × 20-mm(3) field of view with voxels of ~1 μL effective volume acquired within 5 min (at 11.7 T) for temperature mapping. By employing reduced spherical encoding with Gaussian weighting (RESEGAW) instead of cubical encoding of k space, a significant increase in CSI signal is obtained. In vitro and in vivo three-dimensional CSI data with TmDOTMA(-), and presumably similar lanthanide-based macrocyclics, suggest that acquisition using RESEGAW can be used for high spatiotemporal resolution molecular mapping with BIRDS. Copyright © 2013 John Wiley & Sons, Ltd.

  8. A lanthanide complex with dual biosensing properties: CEST (chemical exchange saturation transfer) and BIRDS (biosensor imaging of redundant deviation in shifts) with europium DOTA-tetraglycinate.

    PubMed

    Coman, Daniel; Kiefer, Garry E; Rothman, Douglas L; Sherry, A Dean; Hyder, Fahmeed

    2011-12-01

    Responsive contrast agents (RCAs) composed of lanthanide(III) ion (Ln3R) complexes with a variety of1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate (DOTA4S) derivatives have shown great potential as molecular imaging agents for MR. A variety of LnDOTA–tetraamide complexes have been demonstrated as RCAs for molecular imaging using chemical exchange saturation transfer (CEST). The CEST method detects proton exchange between bulk water and any exchangeable sites on the ligand itself or an inner sphere of bound water that is shifted by a paramagnetic Ln3R ion bound in the core of the macrocycle. It has also been shown that molecular imaging is possible when the RCA itself is observed (i.e. not its effect on bulk water) using a method called biosensor imaging of redundant deviation in shifts (BIRDS). The BIRDS method utilizes redundant information stored in the nonexchangeable proton resonances emanating from the paramagnetic RCA for ambient factors such as temperature and/or pH.Thus, CEST and BIRDS rely on exchangeable and nonexchangeable protons, respectively, for biosensing. We posited that it would be feasible to combine these two biosensing features into the same RCA (i.e. dual CEST and BIRDS properties). A complex between europium(III) ion (Eu3R) and DOTA–tetraglycinate [DOTA–(gly)S4] was used to demonstrate that its CEST characteristics are preserved, while its BIRDS properties are also detectable. The in vitro temperature sensitivity of EuDOTA–(gly)S4 was used to show that qualitative MR contrast with CEST can be calibrated using quantitative MR mapping with BIRDS, thereby enabling quantitative molecular imaging at high spatial resolution.

  9. Towards Longitudinal Mapping of Extracellular pH in Gliomas

    PubMed Central

    Huang, Yuegao; Coman, Daniel; Herman, Peter; Rao, Jyotsna U.; Maritim, Samuel; Hyder, Fahmeed

    2016-01-01

    Biosensor Imaging of Redundant Deviation in Shifts (BIRDS), an ultrafast chemical shift imaging technique, requires infusion of paramagnetic probes like 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methylene phosphonate (DOTP8−) complexed with thulium (Tm3+) ion (i.e., TmDOTP5−), where the pH-sensitive resonances of hyperfine-shifted nonexchangeable protons contained within the paramagnetic magnetic resonance probe are detected. While imaging extracellular pH (pHe) with BIRDS meets an important cancer research need by mapping the intratumoral-peritumoral pHe gradient, the surgical intervention used to raise the probe’s plasma concentration limits longitudinal scans on the same subject. Here we describe using probenecid (i.e., an organic anion transporter inhibitor) to temporarily restrict renal clearance of TmDOTP5−, thereby facilitating molecular imaging by BIRDS without surgical intervention. Co-infusion of probenecid with TmDOTP5− increased the probe’s distribution into various organs, including the brain, compared with when infusing TmDOTP5− alone. In vivo BIRDS data using probenecid/TmDOTP5− co-infusion method in rats bearing RG2, 9L, and U87 brain tumors showed intratumoral-peritumoral pHe gradients that were unaffected by the probe dose. This co-infusion method can be used for pHe mapping with BIRDS in preclinical models for tumor characterization and therapeutic monitoring given the possibility of repeated scans with BIRDS (e.g., over days and even weeks) in the same subject. The longitudinal pHe readout by probenecid/TmDOTP5− co-infusion method for BIRDS adds translational value in tumor assessment and treatment. PMID:27472471

  10. Eu9Cd4-xCM2+x-y□ySb9: Ca9Mn4Bi9-type structure stuffed with coinage metals (Cu, Ag, and Au) and the challenges with classical valence theory in describing these possible zintl phases.

    PubMed

    Kazem, Nasrin; Hurtado, Antonio; Klobes, Benedikt; Hermann, Raphaël P; Kauzlarich, Susan M

    2015-02-02

    The synthesis, crystal structure, magnetic properties, and europium Mössbauer spectroscopy of the new members of the 9-4-9 Zintl family of Eu(9)Cd(4-x)CM(2+x-y)□(y)Sb(9) (CM = coinage metal: Au, Ag, and Cu) are reported. These compounds crystallize in the Ca(9)Mn(4)Bi(9) structure type (9-4-9) with the 4g interstitial site almost half-occupied by coinage metals; these are the first members in the 9-4-9 family where the interstitial positions are occupied by a monovalent metal. All previously known compounds with this structure type include divalent interstitials where these interstitials are typically the same as the transition metals in the anionic framework. Single-crystal magnetic susceptibility data indicate paramagnetic behavior for all three compounds with antiferromagnetic ordering below 10 K (at 100 Oe) that shifts to lower temperature (<7 K) by applying a 3 T magnetic field. (151)Eu Mössbauer spectra were collected on polycrystalline powder samples of Eu(9)Cd(4-x)CM(2+x-y)□(y)Sb(9) at 50 and 6.5 K in order to evaluate the valence of Eu cations. Although the Zintl formalism states that the five crystallographically distinct Eu sites in Eu(9)Cd(4-x)CM(2+x-y)□(y)Sb9 should bear Eu(2+), the Mössbauer spectral isomer shifts are clearly indicative of both 2+ and 3+ valence of the Eu cations with the Cu- and Au-containing compounds showing higher amounts of Eu(3+). This electronic configuration leads to an excess of negative charge in these compounds that contradicts the expected valence-precise requirement of Zintl phases. The spectra obtained at 6.5 K reveal magnetic ordering for both Eu(2+) and Eu(3+). The field dependence of Eu(2+) indicates two distinct magnetic sublattices, with higher and lower fields, and of a small field for Eu(3+). The site symmetry of the five Eu sites is not distinguishable from the Mössbauer data.

  11. Redox-dependent structure change and hyperfine nuclear magnetic resonance shifts in cytochrome c

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Yiquing; Roder, H.; Englander, S.W.

    1990-04-10

    Proton nuclear magnetic resonance assignments for reduced and oxidized equine cytochrome c show that many individual protons exhibit different chemical shifts in the two protein forms, reflecting diamagnetic shift effects due to structure change, and in addition contact and pseudocontact shifts that occur only in the paramagnetic oxidized form. To evaluate the chemical shift differences for structure change, the authors removed the pseudocontact shift contribution by a calculation based on knowledge of the electron spin g tensor. The g-tensor calculation, when repeated using only 12 available C{sub {alpha}}H proton resonances for cytochrom c from tuna, proved to be remarkably stable.more » The derived g tensor was then used together with spatial coordinates for the oxidized form to calculate the pseudocontact shift contribution to proton resonances at 400 identifiable sites throughout the protein, so that the redox-dependent chemical shift discrepancy, could be evaluated. Large residual changes in chemical shift define the Fermi contact shifts, where are found as expected to be limited to the immediate covalent structure of the heme and its ligands and to be asymmetrically distributed over the heme. The chemical shift discrepancies observed appear in the main to reflect structure-dependent diamagnetic shifts rather than hyperfine effects due to displacements in the pseudocontact shift field. Although 51 protons in 29 different residues exhibit significant chemical shift changes, the general impressions one of small structural adjustments to redox-dependent strain rather than sizeable structural displacements or rearrangements.« less

  12. Determining the Orientation and Localization of Membrane-Bound Peptides

    PubMed Central

    Hohlweg, Walter; Kosol, Simone; Zangger, Klaus

    2012-01-01

    Many naturally occurring bioactive peptides bind to biological membranes. Studying and elucidating the mode of interaction is often an essential step to understand their molecular and biological functions. To obtain the complete orientation and immersion depth of such compounds in the membrane or a membrane-mimetic system, a number of methods are available, which are separated in this review into four main classes: solution NMR, solid-state NMR, EPR and other methods. Solution NMR methods include the Nuclear Overhauser Effect (NOE) between peptide and membrane signals, residual dipolar couplings and the use of paramagnetic probes, either within the membrane-mimetic or in the solvent. The vast array of solid state NMR methods to study membrane-bound peptide orientation and localization includes the anisotropic chemical shift, PISA wheels, dipolar waves, the GALA, MAOS and REDOR methods and again the use of paramagnetic additives on relaxation rates. Paramagnetic additives, with their effect on spectral linewidths, have also been used in EPR spectroscopy. Additionally, the orientation of a peptide within a membrane can be obtained by the anisotropic hyperfine tensor of a rigidly attached nitroxide label. Besides these magnetic resonance techniques a series of other methods to probe the orientation of peptides in membranes has been developed, consisting of fluorescence-, infrared- and oriented circular dichroism spectroscopy, colorimetry, interface-sensitive X-ray and neutron scattering and Quartz crystal microbalance. PMID:22044140

  13. Temperature-dependent electron paramagnetic resonance detect oxygen vacancy defects and Cr valence of tetragonal Ba(Ti1-xCrx)O3 ceramics

    NASA Astrophysics Data System (ADS)

    Han, Dan-Dan; Lu, Da-Yong; Meng, Fan-Ling; Yu, Xin-Yu

    2018-03-01

    Temperature-dependent electron paramagnetic resonance (EPR) study was employed to detect oxygen vacancy defects in the tetragonal Ba(Ti1-xCrx)O3 (x = 5%) ceramic for the first time. In the rhombohedral phase below -150 °C, an EPR signal at g = 1.955 appeared in the insulating Ba(Ti1-xCrx)O3 (x = 5%) ceramic with an electrical resistivity of 108 Ω cm and was assigned to ionized oxygen vacancy defects. Ba(Ti1-xCrx)O3 ceramics exhibited a tetragonal structure except Ba(Ti1-xCrx)O3 (x = 10%) with a tetragonal-hexagonal mixed phase and a first-order phase transition dielectric behavior (ε‧m > 11,000). Mixed valence Cr ions could coexist in ceramics, form CrTi‧-VOrad rad or CrTirad-TiTi‧ defect complexes and make no contribution to a dielectric peak shift towards low temperature.

  14. Monovacancy paramagnetism in neutron-irradiated graphite probed by 13C NMR.

    PubMed

    Zhang, Zhi Tao; Xu, C; Dmytriieva, Daryna; Molatta, Sebastian; Wosnitza, J; Wang, Y T; Helm, Manfred; Zhou, Shengqiang; Kuehne, Hannes

    2017-09-18

    We report on the magnetic properties of monovacancy defects in neutron-irradiated graphite, probed by $^{13}$C nuclear magnetic resonance spectroscopy. The bulk paramagnetism of the defect moments is revealed by the temperature dependence of the NMR frequency shift and spectral linewidth, both of which follow a Curie behavior, in agreement with measurements of the macroscopic magnetization. Compared to pristine graphite, the fluctuating hyperfine fields generated by the defect moments lead to an enhancement of the $^{13}$C nuclear spin-lattice relaxation rate $1/T_{1}$ by about two orders of magnitude. With an applied magnetic field of 7.1 T, the temperature dependence of $1/T_{1}$ below about 10 K can well be described by a thermally activated form, $1/T_{1}\\propto\\exp(-\\Delta/k_{B}T)$, yielding a singular Zeeman energy of ($0.41\\pm0.01$) meV, in excellent agreement with the sole presence of polarized, non-interacting defect moments. © 2017 IOP Publishing Ltd.

  15. Nuclear relaxation behavior of the superconducting cuprates: Bi2Sr2CaCu2O8

    NASA Astrophysics Data System (ADS)

    Walstedt, R. E.; Bell, R. F.; Mitzi, D. B.

    1991-10-01

    Nuclear-magnetic-resonance data are presented and analyzed for the high-Tc compound Bi2Sr2CaCu2O8 for two oxygen doping levels. Both sample conditions lead to spin-gap behavior for the NMR shift, with a precursive downturn in the data at T>Tc. In addition, the relaxation times T1 obey the relation (T1T)-1~Ks(T) at low temperatures (T<~100 K), where Ks(T) is the spin paramagnetic shift. This relation, which is also obeyed by other superconductors, is argued to be related to the spin-gap effects and thus incompatible with a Fermi-liquid approach to the understanding of these systems.

  16. Mixed-valent dicobalt and iron-cobalt complexes with high-spin configurations and short metal-metal bonds.

    PubMed

    Zall, Christopher M; Clouston, Laura J; Young, Victor G; Ding, Keying; Kim, Hyun Jung; Zherebetskyy, Danylo; Chen, Yu-Sheng; Bill, Eckhard; Gagliardi, Laura; Lu, Connie C

    2013-08-19

    Cobalt-cobalt and iron-cobalt bonds are investigated in coordination complexes with formally mixed-valent [M2](3+) cores. The trigonal dicobalt tris(diphenylformamidinate) compound, Co2(DPhF)3, which was previously reported by Cotton, Murillo, and co-workers (Inorg. Chim. Acta 1996, 249, 9), is shown to have an energetically isolated, high-spin sextet ground-state by magnetic susceptibility and electron paramagnetic resonance (EPR) spectroscopy. A new tris(amidinato)amine ligand platform is introduced. By tethering three amidinate donors to an apical amine, this platform offers two distinct metal-binding sites. Using the phenyl-substituted variant (abbreviated as L(Ph)), the isolation of a dicobalt homobimetallic and an iron-cobalt heterobimetallic are demonstrated. The new [Co2](3+) and [FeCo](3+) cores have high-spin sextet and septet ground states, respectively. Their solid-state structures reveal short metal-metal bond distances of 2.29 Å for Co-Co and 2.18 Å for Fe-Co; the latter is the shortest distance for an iron-cobalt bond to date. To assign the positions of iron and cobalt atoms as well as to determine if Fe/Co mixing is occurring, X-ray anomalous scattering experiments were performed, spanning the Fe and Co absorption energies. These studies show only a minor amount of metal-site mixing in this complex, and that FeCoL(Ph) is more precisely described as (Fe0.94(1)Co0.06(1))(Co0.95(1)Fe0.05(1))L(Ph). The iron-cobalt heterobimetallic has been further characterized by Mössbauer spectroscopy. Its isomer shift of 0.65 mm/s and quadrupole splitting of 0.64 mm/s are comparable to the related diiron complex, Fe2(DPhF)3. On the basis of spectroscopic data and theoretical calculations, it is proposed that the formal [M2](3+) cores are fully delocalized.

  17. Magnetism and Hyperfine Parameters in Iron Rich Gd_2Fe_{17-x}Si_x Intermetallics

    NASA Astrophysics Data System (ADS)

    Nouri, K.; Bartoli, T.; Chrobak, A.; Moscovici, J.; Bessais, L.

    2018-04-01

    Gd_2Fe_{17-x}Si_x (x = 0.25 , 0.5 and 1) samples were synthesized by arc melting and annealed at 1073 K for 1 week. X-ray diffraction analysis by the Rietveld method has shown that these materials crystallize in the rhombohedral Th_2Zn_{17} -type structure (space group R\\bar{3}m ). The Curie temperature increases with Si content x, whereas the unit-cell parameters decrease slightly. The temperature dependence of magnetization data revealed that Gd_2Fe_{17-x}Si_x exhibits a second-order ferromagnetic to paramagnetic phase transition in the vicinity of the Curie temperature. Exchange coupling parameters of R-R, M-M and R-M (R—rare earth, M—transition metal) have been determined from M(T) magnetization curves based on the mean field theory calculation. The magnetic entropy change Δ S_M and the relative cooling power were estimated from isothermal magnetization curves for all samples. In the proximity of {T}_C and in an applied field of 1.56 T, Δ S_M reached a maximum values of 1.38, 1.67 and 3.07 J/kg K for x = 0.25, 0.5 and 1, respectively. We have calculated the magnetic moment per Fe atom from magnetization measurements at 293 K up to 17 kOe, and it decreases with Si content. These results are verified by the Mössbauer spectrometry measurements obtained at the same temperature. The Mössbauer spectra analysis is based on the correlation between the Wigner-Seitz volume and the isomer-shift evolution of each specific site 6c, 9d, 18f, and 18h of the R\\bar{3} m structure. For all Si concentrations, the magnitude of the hyperfine fields are {H_HF}{6c} > {H_HF}{9d} > {H_HF}{18f} > {H_HF}{18h} . The mean hyperfine field decreases with the Si content.

  18. Mixed-Valent Dicobalt and Iron-Cobalt Complexes with High-Spin Configurations and Short Metal-Metal Bonds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zall, Christopher M.; Clouston, Laura J.; Young, Jr., Victor G.

    2013-09-23

    Cobalt–cobalt and iron–cobalt bonds are investigated in coordination complexes with formally mixed-valent [M 2] 3+ cores. The trigonal dicobalt tris(diphenylformamidinate) compound, Co 2(DPhF) 3, which was previously reported by Cotton, Murillo, and co-workers (Inorg. Chim. Acta 1996, 249, 9), is shown to have an energetically isolated, high-spin sextet ground-state by magnetic susceptibility and electron paramagnetic resonance (EPR) spectroscopy. A new tris(amidinato)amine ligand platform is introduced. By tethering three amidinate donors to an apical amine, this platform offers two distinct metal-binding sites. Using the phenyl-substituted variant (abbreviated as L Ph), the isolation of a dicobalt homobimetallic and an iron–cobalt heterobimetallic aremore » demonstrated. The new [Co 2] 3+ and [FeCo] 3+ cores have high-spin sextet and septet ground states, respectively. Their solid-state structures reveal short metal–metal bond distances of 2.29 Å for Co–Co and 2.18 Å for Fe–Co; the latter is the shortest distance for an iron–cobalt bond to date. To assign the positions of iron and cobalt atoms as well as to determine if Fe/Co mixing is occurring, X-ray anomalous scattering experiments were performed, spanning the Fe and Co absorption energies. These studies show only a minor amount of metal-site mixing in this complex, and that FeCoL Ph is more precisely described as (Fe 0.94(1)Co 0.06(1))(Co 0.95(1)Fe 0.05(1))L Ph. The iron–cobalt heterobimetallic has been further characterized by Mössbauer spectroscopy. Its isomer shift of 0.65 mm/s and quadrupole splitting of 0.64 mm/s are comparable to the related diiron complex, Fe 2(DPhF) 3. On the basis of spectroscopic data and theoretical calculations, it is proposed that the formal [M 2] 3+ cores are fully delocalized.« less

  19. Magnetism and Hyperfine Parameters in Iron Rich Gd_2Fe_{17-x}Si_x Intermetallics

    NASA Astrophysics Data System (ADS)

    Nouri, K.; Bartoli, T.; Chrobak, A.; Moscovici, J.; Bessais, L.

    2018-07-01

    Gd_2Fe_{17-x}Si_x (x = 0.25, 0.5 and 1) samples were synthesized by arc melting and annealed at 1073 K for 1 week. X-ray diffraction analysis by the Rietveld method has shown that these materials crystallize in the rhombohedral Th_2Zn_{17}-type structure (space group R\\bar{3}m). The Curie temperature increases with Si content x, whereas the unit-cell parameters decrease slightly. The temperature dependence of magnetization data revealed that Gd_2Fe_{17-x}Si_x exhibits a second-order ferromagnetic to paramagnetic phase transition in the vicinity of the Curie temperature. Exchange coupling parameters of R- R, M- M and R- M ( R—rare earth, M—transition metal) have been determined from M( T) magnetization curves based on the mean field theory calculation. The magnetic entropy change Δ S_M and the relative cooling power were estimated from isothermal magnetization curves for all samples. In the proximity of {T}_C and in an applied field of 1.56 T, Δ S_M reached a maximum values of 1.38, 1.67 and 3.07 J/kg K for x = 0.25, 0.5 and 1, respectively. We have calculated the magnetic moment per Fe atom from magnetization measurements at 293 K up to 17 kOe, and it decreases with Si content. These results are verified by the Mössbauer spectrometry measurements obtained at the same temperature. The Mössbauer spectra analysis is based on the correlation between the Wigner-Seitz volume and the isomer-shift evolution of each specific site 6 c, 9 d, 18 f, and 18 h of the R\\bar{3}m structure. For all Si concentrations, the magnitude of the hyperfine fields are {H_HF}{6c} > {H_HF}{9d} > {H_HF}{18f} > {H_HF}{18h}. The mean hyperfine field decreases with the Si content.

  20. Structural Changes Correlated with Magnetic Spin State Isomorphism in the S2 State of the Mn4CaO5 Cluster in the Oxygen-Evolving Complex of Photosystem II

    PubMed Central

    Chatterjee, Ruchira; Han, Guangye; Kern, Jan; Gul, Sheraz; Fuller, Franklin D.; Garachtchenko, Anna; Young, Iris; Weng, Tsu-Chien; Nordlund, Dennis; Alonso-Mori, Roberto; Bergmann, Uwe; Sokaras, Dimosthenis; Hatakeyama, Makoto; Yachandra, Vittal K.; Yano, Junko

    2016-01-01

    The Mn4CaO5 cluster in Photosystem II catalyzes the four-electron redox reaction of water oxidation in natural photosynthesis. This catalytic reaction cycles through four intermediate states (Si, i = 0 to 4), involving changes in the redox state of the four Mn atoms in the cluster. Recent studies suggest the presence and importance of isomorphous structures within the same redox/intermediate S-state. It is highly likely that geometric and electronic structural flexibility play a role in the catalytic mechanism. Among the catalytic intermediates that have been identified experimentally thus far, there is clear evidence of such isomorphism in the S2 state, with a high-spin (5/2) (HS) and a low spin (1/2) (LS) form, identified and characterized by their distinct electron paramagnetic resonance (EPR spectroscopy) signals. We studied these two S2 isomers with Mn extended X-ray absorption fine structure (EXAFS) and absorption and emission spectroscopy (XANES/XES) to characterize the structural and electronic structural properties. The geometric and electronic structure of the HS and LS S2 states are different as determined using Mn EXAFS and XANES/XES, respectively. The Mn K-edge XANES and XES for the HS form are different from the LS and indicate a slightly lower positive charge on the Mn atoms compared to the LS form. Based on the EXAFS results which are clearly different, we propose possible structural differences between the two spin states. Such structural and magnetic redox-isomers if present at room temperature, will likely play a role in the mechanism for water-exchange/oxidation in photosynthesis. PMID:28044099

  1. Structural changes correlated with magnetic spin state isomorphism in the S 2 state of the Mn 4CaO 5 cluster in the oxygen-evolving complex of photosystem II

    DOE PAGES

    Chatterjee, Ruchira; Han, Guangye; Kern, Jan; ...

    2016-05-09

    The Mn 4CaO 5 cluster in photosystem II catalyzes the four-electron redox reaction of water oxidation in natural photosynthesis. This catalytic reaction cycles through four intermediate states (S i, i = 0 to 4), involving changes in the redox state of the four Mn atoms in the cluster. Recent studies suggest the presence and importance of isomorphous structures within the same redox/intermediate S-state. It is highly likely that geometric and electronic structural flexibility play a role in the catalytic mechanism. Among the catalytic intermediates that have been identified experimentally thus far, there is clear evidence of such isomorphism in themore » S2 state, with a high-spin (5/2) (HS) and a low spin (1/2) (LS) form, identified and characterized by their distinct electron paramagnetic resonance (EPR spectroscopy) signals. We studied these two S2 isomers with Mn extended X-ray absorption fine structure (EXAFS) and absorption and emission spectroscopy (XANES/XES) to characterize the structural and electronic structural properties. The geometric and electronic structure of the HS and LS S2 states are different as determined using Mn EXAFS and XANES/XES, respectively. The Mn K-edge XANES and XES for the HS form are different from the LS and indicate a slightly lower positive charge on the Mn atoms compared to the LS form. Based on the EXAFS results which are clearly different, we propose possible structural differences between the two spin states. As a result, such structural and magnetic redox-isomers if present at room temperature, will likely play a role in the mechanism for water-exchange/oxidation in photosynthesis.« less

  2. Assessments of Tumor Extracellular pH with PARACEST MRI

    DTIC Science & Technology

    2012-01-01

    of the spectra were calibrated by setting the resonance of TSP to 0.0 ppm. The pH was determined from the chemical shift of the...Matlab R2009B (Eq. [7G]) to measure each CEST effect (Eq. [1]). The value of M0 for the amine was determined from the value at +ω0 (the MR frequency of ...series to assess the determinants of the efficacy of paramagnetic chemical exchange saturation transfer agents for magnetic resonance imaging

  3. Chiral recognition of pinacidil and its 3-pyridyl isomer by canine cardiac and smooth muscle: Antagonism by sulfonylureas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinberg, M.I.; Wiest, S.A.; Zimmerman, K.M.

    1991-01-01

    Pinacidil, a potassium channel opener (PCO), relaxes vascular smooth muscle by increasing potassium ion membrane conductance, thereby causing membrane hyperpolarization. PCOs also act on cardiac muscle to decrease action potential duration (APD) selectively. To examine the enantiomeric selectivity of pinacidil, the stereoisomers of pinacidil (a 4-pyridylcyanoguanidine) and its 3-pyridyl isomer (LY222675) were synthesized and studied in canine Purkinje fibers and cephalic veins. The (-)-enantiomers of both pinacidil and LY222675 were more potent in relaxing phenylephrine-contracted cephalic veins and decreasing APD than were their corresponding (+)-enantiomers. The EC50 values for (-)-pinacidil and (-)-LY222675 in relaxing cephalic veins were 0.44 and 0.09more » microM, respectively. In decreasing APD, the EC50 values were 3.2 microM for (-)-pinacidil and 0.43 microM for (-)-LY222675. The eudismic ratio was greater for the 3-pyridyl isomer than for pinacidil in both cardiac (71 vs. 22) and vascular (53 vs. 17) tissues. (-)-LY222675 and (-)-pinacidil (0.1-30 microM) also increased 86Rb efflux from cephalic veins to a greater extent than did their respective optical antipodes. The antidiabetic sulfonylurea, glyburide (1-30 microM), shifted the vascular concentration-response curve of (-)-pinacidil to the right by a similar extent at each inhibitor concentration. Glipizide also antagonized the response to (-)-pinacidil, but was about 1/10 as potent with a maximal shift occurring at 10 and 30 microM. Glyburide antagonized the vascular relaxant effects of 0.3 microM (-)-LY222675 (EC50, 2.3 microM) and reversed the decrease in APD caused by 3 microM (-)-LY222675 (EC50, 1.9 microM). Nitroprusside did not alter 86Rb efflux, and vascular relaxation induced by sodium nitroprusside was unaffected by sulfonylureas.« less

  4. Description of the behavior of dichloroalkanes-containing solutions with three [bXmpy][BF4] isomers, using the experimental information of thermodynamic properties, 1H NMR spectral and the COSMO-RS-methodology.

    PubMed

    Fernández, Luis; Ortega, Juan; Palomar, José; Toledo, Francisco; Marrero, Elena

    2015-02-26

    This work studies the binaries of 1-butyl-X-methylpyridinium tetrafluoroborate [bXmpy][BF4] (X = 2, 3, and 4) with four 1,ω-dichloroalkanes, ω = 1-4, using the results obtained for the mixing properties h(E) and v(E) at two temperatures. The three isomers of the ionic liquid (IL) are weakly miscible with the 1,ω-dichloroalkanes when ω ≥ 5 and moderately soluble for ω = 4. The v(E)s of all the binaries present contractive effects, v(E) < 0, which are more pronounced with increasing temperature; the variation in v(E) with ω is positive, although this changes after ω = 4 due to problems of immiscibility. The energetic effects of the mixing process are exothermic in the solutions with the shorter dichloroalkanes, ω = 1 and 2, and this effect increases slightly with temperature. However, mildly exothermic effects are found in the binaries with larger halides, where (dh(E)/dT) > 0. The experimental data are correlated with a suitable equation. The study is completed with (1)H NMR measurements of both the pure compounds and some of the solutions, which showed minor diamagnetic shifts with increasing IL compositions, related to the anisotropy of the pyridine ring. The variation in h(E) with ω for a same IL, due to an increase in the contact surfaces, is related to the reduction in polarity which, in turn, depends on the smaller chemical shifts of the pure dihalide compounds. The COSMO-RS method determines the energetic effects of the mixing process and predicts an exothermic contribution for the electrostatic Misfit-interaction which is quantitatively very similar for the three IL isomers. The differences proposed by the model are mainly reflected in the van der Waals interactions, which are exothermic and clearly influenced by the position of the methylene group in the IL. The contribution made by hydrogen bonds is negligible.

  5. Transition to collapsed tetragonal phase in CaFe2As2 single crystals as seen by 57Fe Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Bud'ko, Sergey L.; Ma, Xiaoming; Tomić, Milan; Ran, Sheng; Valentí, Roser; Canfield, Paul C.

    2016-01-01

    Temperature dependent measurements of 57Fe Mössbauer spectra on CaFe2As2 single crystals in the tetragonal and collapsed tetragonal phases are reported. Clear features in the temperature dependencies of the isomer shift, relative spectra area, and quadrupole splitting are observed at the transition from the tetragonal to the collapsed tetragonal phase. From the temperature dependent isomer shift and spectral area data, an average stiffening of the phonon modes in the collapsed tetragonal phase is inferred. The quadrupole splitting increases by ˜25 % on cooling from room temperature to ˜100 K in the tetragonal phase and is only weakly temperature dependent at low temperatures in the collapsed tetragonal phase, in agreement with the anisotropic thermal expansion in this material. In order to gain microscopic insight about these measurements, we perform ab initio density functional theory calculations of the electric field gradient and the electron density of CaFe2As2 in both phases. By comparing the experimental data with the calculations we are able to fully characterize the crystal structure of the samples in the collapsed-tetragonal phase through determination of the As z coordinate. Based on the obtained temperature dependent structural data we are able to propose charge saturation of the Fe-As bond region as the mechanism behind the stabilization of the collapsed-tetragonal phase at ambient pressure.

  6. NMR spectroscopic studies of a TAT-derived model peptide in imidazolium-based ILs: influence on chemical shifts and the cis/trans equilibrium state.

    PubMed

    Wiedemann, Christoph; Ohlenschläger, Oliver; Mrestani-Klaus, Carmen; Bordusa, Frank

    2017-09-13

    NMR spectroscopy was used to study systematically the impact of imidazolium-based ionic liquid (IL) solutions on a TAT-derived model peptide containing Xaa-Pro peptide bonds. The selected IL anions cover a wide range of the Hofmeister series of ions. Based on highly resolved one- and two-dimensional NMR spectra individual 1 H and 13 C peptide chemical shift differences were analysed and a classification of IL anions according to the Hofmeister series was derived. The observed chemical shift changes indicate significant interactions between the peptide and the ILs. In addition, we examined the impact of different ILs towards the cis/trans equilibrium state of the Xaa-Pro peptide bonds. In this context, the IL cations appear to be of exceptional importance for inducing an alteration of the native cis/trans equilibrium state of Xaa-Pro bonds in favour of the trans-isomers.

  7. Pulsed EPR measurements on reaction rate constants for addition of photo-generated radicals to double bonds of diethyl fumarate and diethyl maleate

    NASA Astrophysics Data System (ADS)

    Takahashi, Hirona; Hagiwara, Kenta; Kawai, Akio

    2016-11-01

    Addition reaction of photo-generated radicals to double bonds of diethyl fumarate (deF) and diethyl maleate (deM), which are geometrical isomers, was studied by means of time-resolved- (TR-) and pulsed-electron paramagnetic resonance (EPR). Analysis of TR-EPR spectra indicates that adduct radicals from deF and deM should have the same structure. The double bonds of these monomers are converted to single ones by addition reaction, which allows hindered internal rotation to give the same structure of adduct radical. The rate constants for addition reaction of photo-generated radicals were determined by Stern-Volmer analysis of the decay time of electron spin-echo intensity of these radicals measured by the pulsed EPR method. Rate constants for deF were found to be larger than those for deM. This relation is in good consistent with efficiency of polymerisation of deF and deM. Experimentally determined rate constants were evaluated by introducing the addition reaction model on the basis of two important factors enthalpy and polar effects.

  8. Unexpected complexes from meta-phenylene bis(tert-butyl nitroxides) and gadolinium(III) 1,1,1,5,5,5-hexafluoropentane-2,4-dionate

    NASA Astrophysics Data System (ADS)

    Sekine, Hiroyasu; Ishida, Takayuki

    2018-01-01

    Coordination reaction of the stable ground triplet biradical biphenyl-3,5-diyl bis(tert-butyl nitroxide) and [Gd(hfac)3(H2O)2] unexpectedly gave complexes containing a dimerized diamagnetic ligand via a [3+3] cycloaddition of the benzene rings (hfac = 1,1,1,5,5,5-hexafluoropentane-2,4-dionate). To avoid such dimerization, we introduced a bulkier substituent into the ligand; namely, a new ground triplet biradical 5-mesityl-1,3-phenylene bis(tert-butyl nitroxide) was applied to this complexation scheme. However, an unexpected complex was again obtained in a different way, and the magnetic study revealed that the novel ligand involved was diamagnetic. The crystallographic analysis of the product clarified isomerization from the paramagnetic ligand to a diamagnetic N-tert-butylaminoquinone imine N-oxide ligand as a result of disproportionation from two open-shell nitroxide groups to closed-shell groups, an amine and a nitrone. The present paper reports the first structural evidence for a diamagnetic isomer of m-phenylene-bridged bisnitroxde compounds.

  9. Paramagnetic defects and charge trapping behavior of ZrO2 films deposited on germanium by plasma-enhanced CVD

    NASA Astrophysics Data System (ADS)

    Mahata, C.; Bera, M. K.; Bose, P. K.; Maiti, C. K.

    2009-02-01

    Internal photoemission and magnetic resonance studies have been performed to investigate the charge trapping behavior and chemical nature of defects in ultrathin (~14 nm) high-k ZrO2 dielectric films deposited on p-Ge (1 0 0) substrates at low temperature (<200 °C) by plasma-enhanced chemical vapor deposition (PECVD) in a microwave (700 W, 2.45 GHz) plasma at a pressure of ~65 Pa. Both the band and defect-related electron states have been characterized using electron paramagnetic resonance, internal photoemission, capacitance-voltage and current-voltage measurements under UV illumination. Capacitance-voltage and photocurrent-voltage measurements were used to determine the centroid of oxide charge within the high-k gate stack. The observed shifts in photocurrent response of the Al/ZrO2/GeO2/p-Ge metal-insulator-semiconductor (MIS) capacitors indicate the location of the centroids to be within the ZrO2 dielectric near to the gate electrode. Moreover, the measured flat band voltage and photocurrent shifts also indicate a large density of traps in the dielectric. The impact of plasma nitridation on the interfacial quality of the oxides has been investigated. Different N sources, such as NO and NH3, have been used for nitrogen engineering. Oxynitride samples show a lower defect density and trapping over the non-nitrided samples. The charge trapping and detrapping properties of MIS capacitors under stressing in constant current and voltage modes have been investigated in detail.

  10. QUESP and QUEST revisited - fast and accurate quantitative CEST experiments.

    PubMed

    Zaiss, Moritz; Angelovski, Goran; Demetriou, Eleni; McMahon, Michael T; Golay, Xavier; Scheffler, Klaus

    2018-03-01

    Chemical exchange saturation transfer (CEST) NMR or MRI experiments allow detection of low concentrated molecules with enhanced sensitivity via their proton exchange with the abundant water pool. Be it endogenous metabolites or exogenous contrast agents, an exact quantification of the actual exchange rate is required to design optimal pulse sequences and/or specific sensitive agents. Refined analytical expressions allow deeper insight and improvement of accuracy for common quantification techniques. The accuracy of standard quantification methodologies, such as quantification of exchange rate using varying saturation power or varying saturation time, is improved especially for the case of nonequilibrium initial conditions and weak labeling conditions, meaning the saturation amplitude is smaller than the exchange rate (γB 1  < k). The improved analytical 'quantification of exchange rate using varying saturation power/time' (QUESP/QUEST) equations allow for more accurate exchange rate determination, and provide clear insights on the general principles to execute the experiments and to perform numerical evaluation. The proposed methodology was evaluated on the large-shift regime of paramagnetic chemical-exchange-saturation-transfer agents using simulated data and data of the paramagnetic Eu(III) complex of DOTA-tetraglycineamide. The refined formulas yield improved exchange rate estimation. General convergence intervals of the methods that would apply for smaller shift agents are also discussed. Magn Reson Med 79:1708-1721, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  11. Revisiting HgCl 2: A solution- and solid-state 199Hg NMR and ZORA-DFT computational study

    NASA Astrophysics Data System (ADS)

    Taylor, R. E.; Carver, Colin T.; Larsen, Ross E.; Dmitrenko, Olga; Bai, Shi; Dybowski, C.

    2009-07-01

    The 199Hg chemical-shift tensor of solid HgCl 2 was determined from spectra of polycrystalline materials, using static and magic-angle spinning (MAS) techniques at multiple spinning frequencies and field strengths. The chemical-shift tensor of solid HgCl 2 is axially symmetric ( η = 0) within experimental error. The 199Hg chemical-shift anisotropy (CSA) of HgCl 2 in a frozen solution in dimethylsulfoxide (DMSO) is significantly smaller than that of the solid, implying that the local electronic structure in the solid is different from that of the material in solution. The experimental chemical-shift results (solution and solid state) are compared with those predicted by density functional theory (DFT) calculations using the zeroth-order regular approximation (ZORA) to account for relativistic effects. 199Hg spin-lattice relaxation of HgCl 2 dissolved in DMSO is dominated by a CSA mechanism, but a second contribution to relaxation arises from ligand exchange. Relaxation in the solid state is independent of temperature, suggesting relaxation by paramagnetic impurities or defects.

  12. Radical-cationic gaseous amino acids: a theoretical study.

    PubMed

    Sutherland, Kailee N; Mineau, Philippe C; Orlova, Galina

    2007-08-16

    Three major forms of gaseous radical-cationic amino acids (RCAAs), keto (COOH), enolic (C(OH)OH), and zwitterionic (COO(-)), as well as their tautomers, are examined for aliphatic Ala(.+), Pro(.+), and Ser(.+), sulfur-containing Cys(.+), aromatic Trp(.+), Tyr(.+), and Phe(.+), and basic His(.+). The hybrid B3LYP exchange-correlation functional with various basis sets along with the highly correlated CCSD(T) method is used. For all RCAAs considered, the main stabilizing factor is spin delocalization; for His(.+), protonation of the basic side chain is equally important. Minor stabilizing factors are hydrogen bonding and 3e-2c interactions. An efficient spin delocalization along the N-C(alpha)-C(O-)O moiety occurs upon H-transfer from C(alpha) to the carboxylic group to yield the captodative enolic form, which is the lowest-energy isomer for Ala(.+), Pro(.+), Ser(.+), Cys(.+), Tyr(.+), and Phe(.+). This H-transfer occurs in a single step as a 1,3-shift through the sigma-system. For His(.+), the lowest-energy isomer is formed upon H-transfer from C(alpha) to the basic side chain, which results in a keto form, with spin delocalized along the N-C(alpha)-C=O fragment. Trp(.+) is the only RCAA that favors spin delocalization over an aromatic system given the low ionization energy of indole. The lowest-energy isomer of Trp(.+) is a keto form, with no H-transfer.

  13. A CCSD (T) investigation of carbonyl oxide and dioxirane. Equilibrium geometries, dipole moments, infrared spectra, heats of formation and isomerization energies

    NASA Astrophysics Data System (ADS)

    Cremer, Dieter; Gauss, Jürgen; Kraka, Elfi; Stanton, John F.; Bartlett, Rodney J.

    1993-07-01

    A CCSD and CCSD (T) investigation of carbonyl oxide ( 1) and its cyclic isomer dioxirane ( 2) has been carried out employing DZ + P and TZ + 2P basis sets. Calculated geometries, charge distributions, and dipole moments suggest that 1 possesses more zwitterionic character (CCSD (T) dipole moment 4 D) than has been predicted. 1 can be distinguished from 2 by its infrared spectrum as indicated by CCSD (T) frequencies, intensities, and isotopic shifts. The heats of formation Δ H0f (298) for 1 and 2 are 30.2 and 6.0 kcal/mol, respectively; the CCSD (T) barrier to isomerization from 1 to 2 is 19.2 kcal/mol. Decomposition of 1 and 2 can lead to CO, CO 2, H 2O, H 2 but not to free CH 2, O 2 or O. Both isomers should be powerful epoxidation agents in the presence of alkenes, but they should differ in their ability to form cyclopropanes with alkenes.

  14. Laser-induced hydrogen radical removal in UV MALDI-MS allows for the differentiation of flavonoid monoglycoside isomers.

    PubMed

    Yamagaki, Tohru; Watanabe, Takehiro; Tanaka, Masaki; Sugahara, Kohtaro

    2014-01-01

    Negative-ion matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectra and tandem mass spectra of flavonoid mono-O-glycosides showed the irregular signals that were 1 and/or 2 Da smaller than the parent deprotonated molecules ([M - H](-)) and the sugar-unit lost fragment ions ([M - Sugar - H](-)). The 1 and/or 2 Da mass shifts are generated with the removing of a neutral hydrogen radical (H*), and/or with the homolytic cleavage of the glycosidic bond, such as [M - H* - H](-), [M - Sugar - H* - H](-), and [M - Sugar - 2H* - H](-). It was revealed that the hydrogen radical removes from the phenolic hydroxy groups on the flavonoids, not from the sugar moiety, because the flavonoid backbones themselves absorb the laser. The glycosyl positions depend on the extent of the hydrogen radical removals and that of the homolytic cleavage of the glycosidic bonds. Flavonoid mono-glycoside isomers were distinguished according to their TOF MS and tandem mass spectra.

  15. Local geometric and electronic structures and origin of magnetism in Co-doped BaTiO3 multiferroics

    NASA Astrophysics Data System (ADS)

    Phan, The-Long; Thang, P. D.; Ho, T. A.; Manh, T. V.; Thanh, Tran Dang; Lam, V. D.; Dang, N. T.; Yu, S. C.

    2015-05-01

    We have prepared polycrystalline samples BaTi1-xCoxO3 (x = 0-0.1) by solid-state reaction. X-ray diffraction and Raman-scattering studies reveal the phase separation in crystal structure as changing Co-doping content (x). The samples with x = 0-0.01 are single phase in a tetragonal structure. At higher doping contents (x > 0.01), there is the formation and development of a secondary hexagonal phase. Magnetization measurements at room temperature indicate a coexistence of paramagnetic and weak-ferromagnetic behaviors in BaTi1-xCoxO3 samples with x > 0, while pure BaTiO3 is diamagnetic. Both these properties increase with increasing x. Analyses of X-ray absorption spectra recorded from BaTi1-xCoxO3 for the Co and Ti K-edges indicate the presence of Co2+ and Co3+ ions. They locate in the Ti4+ site of the tetragonal and hexagonal BaTiO3 structures. Particularly, there is a shift of oxidation state from Co2+ to Co3+ when Co-doping content increases. We believe that the paramagnetic nature in BaTi1-xCoxO3 samples is due to isolated Co2+ and Co3+ centers. The addition of Co3+ ions enhances the paramagnetic behavior. Meanwhile, the origin of ferromagnetism is due to lattice defects, which is less influenced by the changes caused by the variation in concentration of Co2+ and Co3+ ions.

  16. Optical manifestation of the Stoner ferromagnetic transition in two-dimensional electron systems

    NASA Astrophysics Data System (ADS)

    Van'kov, A. B.; Kaysin, B. D.; Kukushkin, I. V.

    2017-12-01

    We perform a magneto-optical study of a two-dimensional electron systems in the regime of the Stoner ferromagnetic instability for even quantum Hall filling factors on MgxZn1 -xO /ZnO heterostructures. Under conditions of Landau-level crossing, caused by enhanced spin susceptibility in combination with the tilting of the magnetic field, the transition between two rivaling phases, paramagnetic and ferromagnetic, is traced in terms of optical spectra reconstruction. Synchronous sharp transformations are observed both in the photoluminescence structure and parameters of collective excitations upon transition from paramagnetic to ferromagnetic ordering. Based on these measurements, a phase diagram is constructed in terms of the two-dimensional electron density and tilt angle of the magnetic field. Apart from stable paramagnetic and ferromagnetic phases, an instability region is found at intermediate parameters with the Stoner transition occurring at ν ≈2 . The spin configuration in all cases is unambiguously determined by means of inelastic light scattering by spin-sensitive collective excitations. One indicator of the spin ordering is the intra-Landau-level spin exciton, which acquires a large spectral weight in the ferromagnetic phases. The other is an abrupt energy shift of the intersubband charge density excitation due to reconstruction of the many-particle energy contribution. From our analysis of photoluminescence and light scattering data, we estimate the ratio of surface areas occupied by the domains of the two phases in the vicinity of a transition point. In addition, the thermal smearing of a phase transition is characterized.

  17. A systematic study of 25Mg NMR in paramagnetic transition metal oxides: applications to Mg-ion battery materials.

    PubMed

    Lee, Jeongjae; Seymour, Ieuan D; Pell, Andrew J; Dutton, Siân E; Grey, Clare P

    2016-12-21

    Rechargeable battery systems based on Mg-ion chemistries are generating significant interest as potential alternatives to Li-ion batteries. Despite the wealth of local structural information that could potentially be gained from Nuclear Magnetic Resonance (NMR) experiments of Mg-ion battery materials, systematic 25 Mg solid-state NMR studies have been scarce due to the low natural abundance, low gyromagnetic ratio, and significant quadrupole moment of 25 Mg (I = 5/2). This work reports a combined experimental 25 Mg NMR and first principles density functional theory (DFT) study of paramagnetic Mg transition metal oxide systems Mg 6 MnO 8 and MgCr 2 O 4 that serve as model systems for Mg-ion battery cathode materials. Magnetic parameters, hyperfine shifts and quadrupolar parameters were calculated ab initio using hybrid DFT and compared to the experimental values obtained from NMR and magnetic measurements. We show that the rotor assisted population transfer (RAPT) pulse sequence can be used to enhance the signal-to-noise ratio in paramagnetic 25 Mg spectra without distortions in the spinning sideband manifold. In addition, the value of the predicted quadrupolar coupling constant of Mg 6 MnO 8 was confirmed using the RAPT pulse sequence. We further apply the same methodology to study the NMR spectra of spinel compounds MgV 2 O 4 and MgMn 2 O 4 , candidate cathode materials for Mg-ion batteries.

  18. Isomer-Specific Hydrogen Bonding as a Design Principle for Bidirectionally Quantitative and Redshifted Hemithioindigo Photoswitches.

    PubMed

    Zweig, Joshua E; Newhouse, Timothy R

    2017-08-16

    A new class of bidirectionally quantitative photoswitches based on the hemithioindigo (HTI) scaffold is reported. Incorporation of a pyrrole hydrogen-bond donor leads to a bathochromic shift allowing for quantitative bidirectional isomerization. Additionally, extending conjugation from the electron-rich pyrrole results in quantitative visible-light photoswitches, as well as photoswitches that isomerize with red and near-infrared light. The presence of the hydrogen bond leading to the observed redshift is supported by computational and spectroscopic evidence.

  19. Thermodynamic and kinetic data for adduct formation, cis-trans isomerization and redox reactions of ML4 complexes: a case study with rhodium- and iridium-tropp complexes in d8, d9 and d10 valence electron configurations (tropp=dibenzotropylidene phosphanes).

    PubMed

    Breher, Frank; Rüegger, Heinz; Mlakar, Marina; Rudolph, Manfred; Deblon, Stephan; Schönberg, Hartmut; Boulmaâz, Souad; Thomaier, Jörg; Grützmacher, Hansjörg

    2004-02-06

    The formation of adducts of the square-planar 16-electron complexes trans-[M(tropp(ph))(2)](+) and cis-[M(tropp(ph))(2)](+) (M=Rh, Ir; tropp(Ph)=5-diphenylphosphanyldibenzo[a,d]cycloheptene) with acetonitrile (acn) and Cl(-), and the redox chemistry of these complexes was investigated by various physical methods (NMR and UV-visible spectroscopy, square-wave voltammetry), in order to obtain some fundamental thermodynamic and kinetic data for these systems. A trans/cis isomerization cannot be detected for [M(tropp(ph))(2)](+) in non-coordinating solvents. However, both isomers are connected through equilibria of the type trans-[M(tropp(ph))(2)](+)+L<==>[ML(tropp(ph))(2)](n)<==>cis-[M(tropp(ph))(2)](+)+L, involving five-coordinate intermediates [ML(tropp(ph))(2)](n) (L=acn, n=+1; L=Cl(-), n=0). Values for K(d) (K(f)), that is, the dissociation (formation) equilibrium constant, and k(d) (k(f)), that is, the dissociation (formation) rate constant, were obtained. The formation reactions are fast, especially with the trans isomers (k(f)>1x10(5) m(-1) s(-1)). The reaction with the sterically more hindered cis isomers is at least one order of magnitude slower. The stability of the five-coordinate complexes [ML(tropp(ph))(2)](n) increases with Ir>Rh and Cl(-)>acn. The dissociation reaction has a pronounced influence on the square-wave (SW) voltammograms of trans/cis-[Ir(tropp(ph))(2)](+). With the help of the thermodynamic and kinetic data independently determined by other physical means, these reactions could be simulated and allowed the setting up of a reaction sequence. Examination of the data obtained showed that the trans/cis isomerization is a process with a low activation barrier for the four-coordinate 17-electron complexes [M(tropp(ph))(2)](0) and especially that a disproportionation reaction 2 trans/cis-[M(tropp(ph))(2)](0)-->[M(tropp(ph))(2)](+)+[M(tropp(ph))(2)](-) may be sufficiently fast to mask the true reactivity of the paramagnetic species, which are probably less reactive than their diamagnetic equilibrium partners.

  20. Framework fluxionality of organometallic oxides: synthesis, crystal structure, EXAFS, and DFT studies on [[Ru(eta6-arene)]4Mo4O16] complexes.

    PubMed

    Laurencin, Danielle; Garcia Fidalgo, Eva; Villanneau, Richard; Villain, Françoise; Herson, Patrick; Pacifico, Jessica; Stoeckli-Evans, Helen; Bénard, Marc; Rohmer, Marie-Madeleine; Süss-Fink, Georg; Proust, Anna

    2004-01-05

    Reactions of the molybdates Na(2)MoO4.2 H2O and (nBu(4)N)2[Mo2O7] with [[Ru(arene)Cl(2)](2)] (arene=C(6)H5CH3, 1,3,5-C6H3(CH3)(3), 1,2,4,5-C6H2(CH3)4) in water or organic solvents led to formation of the triple-cubane organometallic oxides [[Ru(eta(6)-arene)](4)Mo4O16], whose crystal and molecular structures were determined. Refluxing triple cubane [[Ru(eta(6)-C6H5CH3)](4)Mo4O16] in methanol caused partial isomerization to the windmill form. The two isomers of [[Ru(eta(6)-C6H5CH3)](4)Mo4O16] were characterized by Raman and Mo K-edge X-ray absorption spectroscopy (XAS), both in the solid-state and in solution. This triple-cubane isomer was also used as a spectroscopic model to account for isomerization of the p-cymene windmill [[Ru(eta(6)-1,4-CH3C6H4CH(CH3)2)](4)Mo4O16] in solution. Using both Raman and XAS techniques, we were then able to determine the ratio between the windmill and triple-cubane isomers in dichloromethane and in chloroform. Density functional calculations on [[Ru(eta(6)-arene)](4)Mo4O16] (arene=C6H6, C6H5CH3, 1,3,5-C6H3(CH3)3, 1,4-CH3C6H4CH(CH3)2, C6(CH3)6) suggest that the windmill form is intrinsically more stable, provided the complexes are assumed to be isolated. Intramolecular electrostatic interactions and steric bulk induced by substituted arenes were found to modulate but not to reverse the energy difference between the isomers. The stability of the triple-cubane isomers should therefore be accounted for by effects of the surroundings that induce a shift in the energy balance between both forms.

  1. Characterization of the HSiN HNSi system in its electronic ground state

    NASA Astrophysics Data System (ADS)

    Lind, Maria C.; Pickard, Frank C.; Ingels, Justin B.; Paul, Ankan; Yamaguchi, Yukio; Schaefer, Henry F.

    2009-03-01

    The electronic ground states (X˜Σ+1) of HSiN, HNSi, and the transition state connecting the two isomers were systematically studied using configuration interaction with single and double (CISD) excitations, coupled cluster with single and double (CCSD) excitations, CCSD with perturbative triple corrections [CCSD(T)], multireference complete active space self-consistent field (CASSCF), and internally contracted multireference configuration interaction (ICMRCI) methods. The correlation-consistent polarized valence (cc-pVXZ), augmented correlation-consistent polarized valence (aug-cc-pVXZ) (X=T,Q,5), correlation-consistent polarized core-valence (cc-pCVYZ), and augmented correlation-consistent polarized core-valence (aug-cc-pCVYZ) (Y=T,Q) basis sets were used. Via focal point analyses, we confirmed the HNSi isomer as the global minimum on the ground state HSiN HNSi zero-point vibrational energy corrected surface and is predicted to lie 64.7kcalmol-1 (22640cm-1, 2.81eV) below the HSiN isomer. The barrier height for the forward isomerization reaction (HSiN→HNSi) is predicted to be 9.7kcalmol-1, while the barrier height for the reverse process (HNSi→HSiN) is determined to be 74.4kcalmol-1. The dipole moments of the HSiN and HNSi isomers are predicted to be 4.36 and 0.26D, respectively. The theoretical vibrational isotopic shifts for the HSiN/DSiN and HNSi/DNSi isotopomers are in strong agreement with the available experimental values. The dissociation energy for HSiN [HSiN(X˜Σ+1)→H(S2)+SiN(XΣ+2)] is predicted to be D0=59.6kcalmol-1, whereas the dissociation energy for HNSi [HNSi(X˜Σ+1)→H(S2)+NSi(XΣ+2)] is predicted to be D0=125.0kcalmol-1 at the CCSD(T)/aug-cc-pCVQZ level of theory. Anharmonic vibrational frequencies computed using second order vibrational perturbation theory are in good agreement with available matrix isolation experimental data for both HSiN and HNSi isomers root mean squared derivation (RMSD=9cm-1).

  2. Distribution, fate and formation of non-extractable residues of a nonylphenol isomer in soil with special emphasis on soil derived organo-clay complexes.

    PubMed

    Riefer, Patrick; Klausmeyer, Timm; Schäffer, Andreas; Schwarzbauer, Jan; Schmidt, Burkhard

    2011-01-01

    Anthropogenic contaminants like nonylphenols (NP) are added to soil, for instance if sewage-sludge is used as fertilizer in agriculture. A commercial mixture of NP consists of more than 20 isomers. For our study, we used one of the predominate isomers of NP mixtures, 4-(3,5-dimethylhept-3-yl)phenol, as a representative compound. The aim was to investigate the fate and distribution of the isomer within soil and soil derived organo-clay complexes. Therefore, (14)C- and (13)C-labeled NP was added to soil samples and incubated up to 180 days. Mineralization was measured and soil samples were fractionated into sand, silt and clay; the clay fraction was further separated in humic acids, fulvic acids and humin. The organo-clay complexes pre-incubated for 90 or 180 days were re-incubated with fresh soil for 180 days, to study the potential of re-mobilization of incorporated residues. The predominate incorporation sites of the nonylphenol isomer in soil were the organo-clay complexes. After 180 days of incubation, 22 % of the applied (14)C was mineralized. The bioavailable, water extractable portion was low (9 % of applied (14)C) and remained constant during the entire incubation period, which could be explained by an incorporation/release equilibrium. Separation of organo-clay complexes, after extraction with solvents to release weakly incorporated, bioaccessible portions, showed that non-extractable residues (NER) were preferentially located in the humic acid fraction, which was regarded as an effect of the chemical composition of this fraction. Generally, 27 % of applied (14)C was incorporated into organo-clay complexes as NER, whereas 9 % of applied (14)C was bioaccessible after 180 days of incubation. The re-mobilization experiments showed on the one hand, a decrease of the bioavailability of the nonylphenol residues due to stronger incorporation, when the pre-incubation period was increased from 90 to 180 days. On the other hand, a shift of these residues from the clay fraction to other soil fractions was observed, implying a dynamic behavior of incorporated residues, which may result in bioaccessibility of the NER of nonylphenol.

  3. 29Si nuclear magnetic resonance study of URu 2Si 2 under pressure

    DOE PAGES

    Shirer, K. R.; Dioguardi, A. P.; Bush, B. T.; ...

    2015-12-01

    Here, we report 29Si nuclear magnetic resonance measurements of single crystals and aligned powders of URu 2Si 2 under pressure in the hidden order and paramagnetic phases. We find evidence for a reduction of the Knight shift with applied pressure, consistent with previous measurements of the static magnetic susceptibility. Previous measurements of the spin lattice relaxation time revealed a partial suppression of the density of states below 30 K. Here, we find that the temperature at which this suppression occurs is enhanced with applied pressure.

  4. Temperature dependent magnon-phonon coupling in bcc Fe from theory and experiment.

    PubMed

    Körmann, F; Grabowski, B; Dutta, B; Hickel, T; Mauger, L; Fultz, B; Neugebauer, J

    2014-10-17

    An ab initio based framework for quantitatively assessing the phonon contribution due to magnon-phonon interactions and lattice expansion is developed. The theoretical results for bcc Fe are in very good agreement with high-quality phonon frequency measurements. For some phonon branches, the magnon-phonon interaction is an order of magnitude larger than the phonon shift due to lattice expansion, demonstrating the strong impact of magnetic short-range order even significantly above the Curie temperature. The framework closes the previous simulation gap between the ferro- and paramagnetic limits.

  5. Bifunctional Catalysts for CO2 Reduction

    DTIC Science & Technology

    2014-09-30

    hexane soluble material was crystallized at –35 ºC permitting characterization by X-ray diffraction to identify [(tbsL) Co3 (µ 3- N)]NBu4 as the product...of the trinuclear core and make atom and group-transfer processes even more facile. To probe this we investigated the reactivity of (tbsL) Co3 (py...Reaction of (tbsL) Co3 (py) with with Bu4N[N3] yields the azide adduct Bu4N[( tbsL) Co3 (µ 3-N3)] which features a C3-symmetric, paramagnetically shifted

  6. Ultrasound-assisted synthesis of santalbic acid and a study of triacylglycerol species in Santalum album (Linn.) seed oil.

    PubMed

    Lie Ken Jie, M S; Pasha, M K; Ahmad, F

    1996-10-01

    Methyl ricinoleate (1) was treated with bromine and the dibromo derivative (2) was reacted with ethanolic KOH under ultrasonic irradiation to give 12-hydroxy-octadec-9-ynoic acid upon acidification with dil. HCI. The latter compound was methylated with BF3/methanol to give methyl 12-hydroxy-octadec-9-ynoate (3). Compound 3 was treated with methanesulfonyl chloride in the presence of triethylamine in CH2Cl2 to give methyl 12-mesyloxy-octadec-9-ynoate (4). Reaction of methyl 12-mesyloxy-octadec-9-ynoate with aqueous KOH under ultrasonic irradiation (20 kHz) gave (11E)-octadecen-9-ynoic acid (5, santalbic acid, 40%) and (11Z)-octadecen-9-ynoic acid (6, 60%) on acidification with dil. HCI. These isomers were separated by urea fractionation. The 13C nuclear magnetic resonance (NMR) spectroscopic properties of the methyl ester and the triacylglycerol (TAG) esters of these enynoic fatty acid isomers were studied. The carbon shifts of the unsaturated carbon nuclei of the methyl ester of the E-isomer were unambiguously assigned as 88.547 (C-9), 79.287 (C-10), 109.760 (C-11), and 143.450 (C-12) ppm, while the unsaturated carbon shifts of the (Z)-enynoate isomer appeared at 94.277 (C-9), 77.561 (C-10), 109.297 (C-11), and 142.668 (C-12) ppm. In the 13C NMR spectral analysis of the TAG molecules of type AAA containing either the (Z)- or (E)-enyne fatty acid, the C-1 to C-6 carbon atoms on the alpha- and beta-acyl positions were differentiated. The unsaturated carbon atoms in the alpha- and beta-acyl chains were also resolved into two signals except that of the C-11 olefinic carbon. Sandal (Santalum album) wood seed oil (a source of santalbic acid) was separated by silica chromatography into three fractions. The least polar fraction (7.2 wt%) contained TAG which had a random distribution of saturated and unsaturated fatty acids, of which oleic acid (69%) was the predominant component. The second fraction (3.8 wt%) contained santalbic acid (58%) and oleic acid (28%) together with some other normal fatty acids. Santalbic acid in this fraction was found in both the alpha- and beta-acyl positions of the glycerol "backbone." The most polar fraction (89 wt%) consisted of TAG containing santalbic acid only. The distribution of the various fatty acids on the glycerol "backbone" was supported by the results from the 13C NMR spectroscopic analysis.

  7. The effect of PVP on morphology, optical properties and electron paramagnetic resonance of Zn0.5Co0.5Fe2-xPrxO4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Bitar, Z.; El-Said Bakeer, D.; Awad, R.

    2017-07-01

    Zinc Cobalt nano ferrite doped with Praseodymium, Zn0.5Co0.5Fe2-xPrxO4 (0 ≤ x ≤ 0.2), were prepared by co-precipitation method from an aqueous solution containing metal chlorides and two concentrations of poly(vinylpyrrolidone) (PVP) 0 and 30g/L as capping agent. The samples were characterized using X-ray powder diffraction (XRD), Transmission Electron Microscope (TEM), UV-visible optical spectroscopy, Fourier transform infrared (FTIR) and Electron Paramagnetic Resonance (EPR). XRD results display the formation of cubic spinel structure with space group Fd3m and the lattice parameter (a) is slightly decreased for PVP capping samples. The particle size that determined by TEM, decreases for PVP capping samples. The optical band energy Eg increases for PVP capping samples, confirming the variation of energy gap with the particle size. The FTIR results indicate that the metal oxide bands were shifted for the PVP capping samples. EPR data shows that the PVP addition increases the magnetic resonance field and hence decreases the g-factor.

  8. The ground state of metallic nano-structures in heavily irradiated NaCl-KBF4

    NASA Astrophysics Data System (ADS)

    Cherkasov, F. G.; L'Vov, S. G.; Tikhonov, D. A.; den Hartog, H. W.; Vainshtein, D. I.

    ESR, NMR and static magnetic susceptibility measurements of heavily irradiated NaCl-K and NaCl-KBF4 are reported. Up to 10% of the NaCl-molecules are transformed into metallic Na nanoparticles and Cl-2 precipitates. In addition, there are paramagnetic F- and F-aggregates, which are coupled by exchange interactions to the conduction electrons in the nanoparticles. Above 160 K the NMR and ESR signals of NaCl-K and NaCl-KBF4 show Pauli paramagnetism and the properties of the Na nanoparticles are similar to bulk sodium. A single ESR line is observed revealing exchange interaction between conduction electrons in the nano-particles and F-aggregates. The observed decrease of the ESR susceptibility with decreasing temperature is due to a metal-insulator transition. The conduction electrons are localized below 40 K and the above mentioned F-aggregate centers contribute significantly to the overall ESR signal. For NaCl-KBF4 we observed that with decreasing temperature the ESR line shifts towards lower fields due to antiferromagnetic ordering and internal magnetic fields.

  9. Influence of Sn on the magnetic ordering of Ni-Sn alloy synthesized using chemical reduction method

    NASA Astrophysics Data System (ADS)

    Dhanapal, K.; Narayanan, V.; Stephen, A.

    2016-05-01

    The Ni-Sn alloy was synthesized using borohydride assisted chemical reduction method. The composition of the synthesized alloy was determined using atomic absorption spectroscopy which revealed that the observed composition of Sn is high when compared to the initial composition. The ultrafine particles are clearly observed from field emission scanning electron microscope for all the sample. The X-ray diffraction measurement confirmed that the as-synthesized samples are of amorphous like nature while the samples annealed at 773 K showed crystalline nature. The Fourier transform infrared spectroscopy confirmed metallic bond stretching in the alloy samples. The crystallization and phase transition temperature was observed from differential scanning calorimetry. The shift in the crystallization temperature of Ni with increasing percentage of Sn was observed. The vibrating sample magnetometer was employed to understand the magnetic behavior of the Ni-Sn alloy. As-synthesized alloy samples showed paramagnetic nature while the annealed ones exhibit the soft ferromagnetic, antiferromagnetic and paramagnetic nature. The saturation magnetization value and magnetic ordering in the Ni-Sn alloys depend on the percentage of Sn present in the alloy.

  10. Covalent modification and time-dependent inhibition of human CYP2E1 by the meta-isomer of acetaminophen.

    PubMed

    Harrelson, John P; Stamper, Brendan D; Chapman, John D; Goodlett, David R; Nelson, Sidney D

    2012-08-01

    The hypothesis that N-acetyl-m-aminophenol (AMAP), the meta isomer of acetaminophen, will covalently bind to and inhibit human CYP2E1 in a time- and NADPH-dependent manner was investigated. Liquid chromatography/electrospray ionization-mass spectrometry analysis indicated that AMAP metabolites (i.e., AMAP*) selectively and covalently modified CYP2E1 apoprotein in a ratio of 1.4:1 (AMAP*/CYP2E1) in a reconstituted system. The deconvoluted spectra of CYP2E1 apoprotein from incubations containing NADPH and AMAP displayed mass shifts of 167.2 ± 7.1 and 334.4 ± 6.5 Da, suggesting the addition of one and two hydroxylated AMAP metabolites to CYP2E1, respectively. Mass shifts in cytochrome P450 reductase, cytochrome b(5), and heme from these samples were not observed. CYP2E1 inhibition by AMAP increased with time in the presence of NADPH; a reversible inhibition component was also observed. The results support a bioactivation process that involves formation of a hydroquinone metabolite that undergoes further oxidation to a quinone, which reacts with CYP2E1 nucleophilic residues. The data are consistent with evidence from previous studies that identified hydroxylated AMAP glutathione conjugates collected from mice and indicate that cysteine residues are the most likely sites for adduct formation. This study reports the first direct evidence of AMAP-derived hydroquinone metabolites bound to human CYP2E1.

  11. Transition to collapsed tetragonal phase in CaFe 2As 2 single crystals as seen by 57Fe Mössbauer spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bud'ko, Sergey L.; Ma, Xiaoming; Tomić, Milan

    Temperature dependent measurements of 57Fe Mössbauer spectra on CaFe 2As 2 single crystals in the tetragonal and collapsed tetragonal phases are reported. Clear features in the temperature dependencies of the isomer shift, relative spectra area, and quadrupole splitting are observed at the transition from the tetragonal to the collapsed tetragonal phase. From the temperature dependent isomer shift and spectral area data, an average stiffening of the phonon modes in the collapsed tetragonal phase is inferred. The quadrupole splitting increases by ~25% on cooling from room temperature to ~100 K in the tetragonal phase and is only weakly temperature dependent atmore » low temperatures in the collapsed tetragonal phase, in agreement with the anisotropic thermal expansion in this material. In order to gain microscopic insight about these measurements, we perform ab initio density functional theory calculations of the electric field gradient and the electron density of CaFe 2As 2 in both phases. By comparing the experimental data with the calculations we are able to fully characterize the crystal structure of the samples in the collapsed-tetragonal phase through determination of the As z coordinate. Furthermore, based on the obtained temperature dependent structural data we are able to propose charge saturation of the Fe-As bond region as the mechanism behind the stabilization of the collapsed-tetragonal phase at ambient pressure.« less

  12. Mössbauer studies of iron hydride at high pressure

    NASA Astrophysics Data System (ADS)

    Choe, I.; Ingalls, R.; Brown, J. M.; Sato-Sorensen, Y.; Mills, R.

    1991-07-01

    We have measured in situ Mössbauer spectra of iron hydride made in a diamond anvil cell at high pressure and room temperature. The spectra show a sudden change at 3.5+/-0.5 GPa from a single hyperfine pattern to a superposition of three. The former pattern results from normal α-iron with negligible hydrogen content, and the latter from residual α-iron plus newly formed iron hydride. Between 3.5 and 10.4 GPa, the extra hydride pattern have hyperfine fields for one ranging from 276 to 263 kOe, and the other, from 317 to 309 kOe. Both have isomer shifts of about 0.4 mm/sec, and negligible quadrupole splittings. X-ray studies on quenched samples have shown that iron hydride is of double hexagonal close-packed structure, whose two nonequivalent iron sites may account for the observation of two different patterns. Even allowing for the effect of volume expansion, the observed isomer shifts for the hydride are considerably more positive than those of other metallic phases of iron. At the same time, the hyperfine fields are slightly smaller than that of α-iron. As a possible explanation, one may expect a bonding of hydrogen with iron, which would result in a small reduction of 4s electrons, possibly accompanied by a small increase of 3d electrons compared with the neutral atom in metallic iron. The difference between the hyperfine fields in the two spectra are presumably due to the different symmetry at the two iron sites.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, R.E.; Bennett, L.H.

    This review is concerned with similarities and differences between noble and transition metal alloying. Two classes of experiments are inspected: impurity Moessbauer isomer shifts and photoemission of core and valence electron levels. At first glance they would appear to be in conflict concerning the direction of any charge transfer. In noble metal alloys this is associated with changes in d-electron count which are compensated by the non-d electrons. The sign of the change in d occupation is readily understood in terms of d band hybridization. The normalized isomer shifts show that the balance of d and non-d transfer terms mustmore » vary across a transition metal row and that while the noble metals, when acting as impurities, act much like the transition elements immediately adjacent to them, the charge transfer, when the noble metals are hosts, is quite different. These observations, taken with recent band theory population analyses, indicate that three charge transfer terms, those associated with d, s and p-like charge, have visible effects on alloying properties. The review also considers the long standing discrepancy between the elemental fcc-bcc structural energy differences of Kaufman and Bernstein which are standardly employed in phase diagram constructs versus those appropriate to the Engel-Brewer model of transition and noble metals. Comparison with recent 5d metal estimates, based on electron band theory total energy calculations, show one region of agreement with the Engel-Brewer values and another of agreement with Kaufman and Bernstein.« less

  14. Isolating isomers of perfluorocarboxylates in polar bears (Ursus maritimus) from two geographical locations.

    PubMed

    De Silva, Amila O; Mabury, Scott A

    2004-12-15

    The source of involatile, anthropogenic perfluorocarboxylate anions (PFCAs) in biota from remote regions is of heightened interest due to the persistence, toxicity, and bioaccumulation of these materials. Large-scale production of fluorinated compounds is carried out primarily by one of two methods: electrochemical fluorination (ECF) and telomerization. Products of the two processes may be distinguished based on constitutional isomer pattern as ECF products are characteristically comprised of a variety of constitutional isomers. The objective of this research was to develop a method for identifying the constitutional isomer profile of PFCAs in environmental samples and to apply the method to polar bear livers from two different locations. Resolution of constitutional isomers of derivatized PFCAs (8-13 carbons) was accomplished via GC-MS. Seven isomers of an authentic ECF perfluorooctanoate (PFOA) standard were separated. The linear isomer comprised 78% of this standard. Isomer profiles of PFCAs in liver samples of 15 polar bears (Ursus maritimus) from the Canadian Arctic and eastern Greenland were determined by GC-MS. The PFOA isomer pattern in Greenland polar bear samples showed a variety of branched isomers while only the linear PFOA isomer was determined in Canadian samples. Samples of both locations had primarily (>99%) linear isomers of perfluorononanoate and perfluorotridecanoate. Branched isomers of perfluorodecanoate, perfluoroundecanoate, and perfluorododecanoate were determined in the polar bear samples. Unlike the PFOA isomer signature, only a single branched isomer peak on the chromatograms was observed for these longer chain PFCAs. The presence of branched isomers suggests some contribution from ECF sources. However, in comparison to the amount of branched isomers in the ECF PFOA standard, such minor percentages of branched PFCAs may suggest additional input from an exclusively linear isomer source.

  15. Stabilization of Reduced Molybdenum-Iron-Sulfur Single and Double Cubane Clusters by Cyanide Ligation

    PubMed Central

    Pesavento, Russell P.; Berlinguette, Curtis P.; Holm, R. H.

    2008-01-01

    Recent work has shown that cyanide ligation increases the redox potentials of Fe4S4 clusters, enabling the isolation of [Fe4S4(CN)4]4−, the first synthetic Fe4S4 cluster obtained in the all-ferrous oxidation state (Scott, T. A.; Berlinguette, C. P.; Holm, R. H.; Zhou, H.-C., Proc. Natl. Acad. Sci. USA 2005, 102, 9741). The generality of reduced cluster stabilization has been examined with MoFe3S4 clusters. Reaction of single cubane [(Tp)MoFe3S4(PEt3)3]1+ and edge-bridged double cubane [(Tp)2Mo2Fe6S8(PEt3)4] with cyanide in acetonitrile affords [(Tp)MoFe3S4(CN)3]2− (2) and [(Tp)2Mo2Fe6S8(CN)4]4− (5), respectively. Reduction of 2 with KC14H10 yields [(Tp)MoFe3S4(CN)3]3− (3). Clusters were isolated in ca. 70–90% yields as Et4N+ or Bu4N+ salts; Clusters 3 and 5 contain all-ferrous cores; 3 is the first [MoFe3S4]1+ cluster isolated in substance. The structures of 2 and 3 are very similar; the volume of the reduced cluster core is slightly larger (2.5%), a usual effect upon reduction of cubane-type Fe4S4 and MFe3S4 clusters. Redox potentials and 57Fe isomer shifts of [(Tp)MoFe3S4L3]2−,3 and [(Tp)2Mo2Fe6S8L4]4−,3− clusters with L = CN, PhS, halide, and PEt3 are compared. Clusters with π-donor ligands (L = halide, PhS) exhibit larger isomer shifts and lower (more negative) redox potentials while π-acceptor ligands (L = CN, PEt3) induce smaller isomer shifts and higher (less negative) redox potentials. When potentials of 3/2 and [(Tp)MoFe3S4(SPh)3]3−/2− are compared, cyanide stabilizes 3 by 270 mV vs. the reduced thiolate cluster, commensurate with the 310 mV stabilization of [Fe4S4(CN)4]4− vs. [Fe4S4(SPh)4]4− where four ligands differ. These results demonstrate the efficacy of cyanide stabilization of lower cluster oxidation states. (Tp = hydrotris(pyrazolyl)borate(1−)). PMID:17279830

  16. Stabilization of reduced molybdenum-iron-sulfur single- and double-cubane clusters by cyanide ligation.

    PubMed

    Pesavento, Russell P; Berlinguette, Curtis P; Holm, R H

    2007-01-22

    Recent work has shown that cyanide ligation increases the redox potentials of Fe(4)S(4) clusters, enabling the isolation of [Fe(4)S(4)(CN)4]4-, the first synthetic Fe(4)S(4) cluster obtained in the all-ferrous oxidation state (Scott, T. A.; Berlinguette, C. P.; Holm, R. H.; Zhou, H.-C. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 9741). The generality of reduced cluster stabilization has been examined with MoFe(3)S(4) clusters. Reaction of single-cubane [(Tp)MoFe(3)S(4)(PEt(3))3]1+ and edge-bridged double-cubane [(Tp)2Mo(2)Fe(6)S(8)(PEt(3))4] with cyanide in acetonitrile affords [(Tp)MoFe(3)S(4)(CN)3]2- (2) and [(Tp)2Mo(2)Fe(6)S(8)(CN)4]4- (5), respectively. Reduction of 2 with KC(14)H(10) yields [(Tp)MoFe(3)S(4)(CN)3]3- (3). Clusters were isolated in approximately 70-90% yields as Et(4)N+ or Bu(4)N+ salts; clusters 3 and 5 contain all-ferrous cores, and 3 is the first [MoFe(3)S(4)]1+ cluster isolated in substance. The structures of 2 and 3 are very similar; the volume of the reduced cluster core is slightly larger (2.5%), a usual effect upon reduction of cubane-type Fe(4)S(4) and MFe(3)S(4) clusters. Redox potentials and 57Fe isomer shifts of [(Tp)MoFe(3)S(4)L3]2-,3- and [(Tp)2Mo(2)Fe(6)S(8)L(4)]4-,3- clusters with L = CN-, PhS-, halide, and PEt3 are compared. Clusters with pi-donor ligands (L = halide, PhS) exhibit larger isomer shifts and lower (more negative) redox potentials, while pi-acceptor ligands (L = CN, PEt3) induce smaller isomer shifts and higher (less-negative) redox potentials. When the potentials of 3/2 and [(Tp)MoFe(3)S(4)(SPh)3]3-/2- are compared, cyanide stabilizes 3 by 270 mV versus the reduced thiolate cluster, commensurate with the 310 mV stabilization of [Fe(4)S(4)(CN)4]4- versus [Fe(4)S(4)(SPh)4]4- where four ligands differ. These results demonstrate the efficacy of cyanide stabilization of lower cluster oxidation states. (Tp = hydrotris(pyrazolyl)borate(1-)).

  17. Calculation of nuclear spin-spin coupling constants using frozen density embedding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Götz, Andreas W., E-mail: agoetz@sdsc.edu; Autschbach, Jochen; Visscher, Lucas, E-mail: visscher@chem.vu.nl

    2014-03-14

    We present a method for a subsystem-based calculation of indirect nuclear spin-spin coupling tensors within the framework of current-spin-density-functional theory. Our approach is based on the frozen-density embedding scheme within density-functional theory and extends a previously reported subsystem-based approach for the calculation of nuclear magnetic resonance shielding tensors to magnetic fields which couple not only to orbital but also spin degrees of freedom. This leads to a formulation in which the electron density, the induced paramagnetic current, and the induced spin-magnetization density are calculated separately for the individual subsystems. This is particularly useful for the inclusion of environmental effects inmore » the calculation of nuclear spin-spin coupling constants. Neglecting the induced paramagnetic current and spin-magnetization density in the environment due to the magnetic moments of the coupled nuclei leads to a very efficient method in which the computationally expensive response calculation has to be performed only for the subsystem of interest. We show that this approach leads to very good results for the calculation of solvent-induced shifts of nuclear spin-spin coupling constants in hydrogen-bonded systems. Also for systems with stronger interactions, frozen-density embedding performs remarkably well, given the approximate nature of currently available functionals for the non-additive kinetic energy. As an example we show results for methylmercury halides which exhibit an exceptionally large shift of the one-bond coupling constants between {sup 199}Hg and {sup 13}C upon coordination of dimethylsulfoxide solvent molecules.« less

  18. Revisiting shape selectivity in liquid chromatography for polycyclic aromatic hydrocarbons (PAHs) - six-ring and seven-ring Cata-condensed PAH isomers of molecular mass 328 Da and 378 Da.

    PubMed

    Oña-Ruales, Jorge O; Sander, Lane C; Wilson, Walter B; Wise, Stephen A

    2018-01-01

    The relationship of reversed-phase liquid chromatography (RPLC) retention on a polymeric C 18 stationary phase and the shape of polycyclic aromatic hydrocarbons (PAHs) was investigated for three-ring to seven-ring cata-condensed isomers. We report the first RPLC separation for six-ring and seven-ring cata-condensed PAH isomers. Correlations of LC retention and shape parameters (length-to-breath ratio, L/B and thickness, T) were investigated for 2 three-ring isomers (molecular mass 178 Da), 5 four-ring isomers (molecular mass 228 Da), 11 five-ring isomers (molecular mass 278 Da), 17 six-ring isomers (molecular mass 328 Da), and 20 seven-ring isomers (molecular mass 378 Da). Significant linear correlations were found for all isomer groups (r = 0.71 to 0.94). Nonplanarity of the PAH isomers was found to influence retention (i.e., nonplanar isomers eluting earlier than expected based on L/B) and linear correlations of retention vs. T for isomer groups containing nonplanar isomers were significant (r = 0.71 to 0.86). Graphical abstract.

  19. Clathrate Structure Determination by Combining Crystal Structure Prediction with Computational and Experimental 129Xe NMR Spectroscopy

    PubMed Central

    Selent, Marcin; Nyman, Jonas; Roukala, Juho; Ilczyszyn, Marek; Oilunkaniemi, Raija; Bygrave, Peter J.; Laitinen, Risto; Jokisaari, Jukka

    2017-01-01

    Abstract An approach is presented for the structure determination of clathrates using NMR spectroscopy of enclathrated xenon to select from a set of predicted crystal structures. Crystal structure prediction methods have been used to generate an ensemble of putative structures of o‐ and m‐fluorophenol, whose previously unknown clathrate structures have been studied by 129Xe NMR spectroscopy. The high sensitivity of the 129Xe chemical shift tensor to the chemical environment and shape of the crystalline cavity makes it ideal as a probe for porous materials. The experimental powder NMR spectra can be used to directly confirm or reject hypothetical crystal structures generated by computational prediction, whose chemical shift tensors have been simulated using density functional theory. For each fluorophenol isomer one predicted crystal structure was found, whose measured and computed chemical shift tensors agree within experimental and computational error margins and these are thus proposed as the true fluorophenol xenon clathrate structures. PMID:28111848

  20. A complete vibrational study on a potential environmental toxicant agent, the 3,3',4,4'-tetrachloroazobenzene combining the FTIR, FTRaman, UV-Visible and NMR spectroscopies with DFT calculations.

    PubMed

    Castillo, María V; Pergomet, Jorgelina L; Carnavale, Gustavo A; Davies, Lilian; Zinczuk, Juan; Brandán, Silvia A

    2015-01-05

    In this study 3,3',4,4'-tetrachloroazobenzene (TCAB) was prepared and then characterized by infrared, Raman, multidimensional nuclear magnetic resonance (NMR) and ultraviolet-visible spectroscopies. The density functional theory (DFT) together with the 6-31G(*) and 6-311++G(**) basis sets were used to study the structures and vibrational properties of the two cis and trans isomers of TCAB. The harmonic vibrational wavenumbers for the optimized geometries were calculated at the same theory levels. A complete assignment of all the observed bands in the vibrational spectra of TCAB was performed combining the DFT calculations with the scaled quantum mechanical force field (SQMFF) methodology. The molecular electrostatic potentials, atomic charges, bond orders and frontier orbitals for the two isomers of TCAB were compared and analyzed. The comparison of the theoretical ultraviolet-visible spectrum with the corresponding experimental demonstrates a good concordance while the calculated (1)H and (13)C chemicals shifts are in good conformity with the corresponding experimental NMR spectra of TCAB in solution. The npp(*) transitions for both forms were studied by natural bond orbital (NBO) while the topological properties were calculated by employing Bader's Atoms in the Molecules (AIM) theory. This study shows that the cis and trans isomers exhibit different structural and vibrational properties and absorption bands. Copyright © 2014. Published by Elsevier B.V.

  1. Computer programming for nucleic acid studies. II. Total chemical shifts calculation of all protons of double-stranded helices.

    PubMed

    Giessner-Prettre, C; Ribas Prado, F; Pullman, B; Kan, L; Kast, J R; Ts'o, P O

    1981-01-01

    A FORTRAN computer program called SHIFTS is described. Through SHIFTS, one can calculate the NMR chemical shifts of the proton resonances of single and double-stranded nucleic acids of known sequences and of predetermined conformations. The program can handle RNA and DNA for an arbitrary sequence of a set of 4 out of the 6 base types A,U,G,C,I and T. Data files for the geometrical parameters are available for A-, A'-, B-, D- and S-conformations. The positions of all the atoms are calculated using a modified version of the SEQ program [1]. Then, based on this defined geometry three chemical shift effects exerted by the atoms of the neighboring nucleotides on the protons of each monomeric unit are calculated separately: the ring current shielding effect: the local atomic magnetic susceptibility effect (including both diamagnetic and paramagnetic terms); and the polarization or electric field effect. Results of the program are compared with experimental results for a gamma (ApApGpCpUpU) 2 helical duplex and with calculated results on this same helix based on model building of A'-form and B-form and on graphical procedure for evaluating the ring current effects.

  2. The solution structure of Ln (DOTP) 5- complexxes. A comparison of lanthanide-induced paramagnetic shifts with the MMX energy-minimized structure

    NASA Astrophysics Data System (ADS)

    Geraldes, Carlos F. G. C.; Sherry, A. Dean; Kiefer, Garry E.

    Complexes between the trivalent lanthanide ions and the macrocyclic chelate 1,4,7,10-tetraazacyclododecane- N,N',N″,N‴-tetra(methylene phosphonate) (DOTP) have been examined by high-resolution NMR spectroscopy. The proton spectra of the diamagnetic La(DOTP) 5- and Lu(DOTP) 5- complexes provide evidence for very rigid chelate structures with the ethylenediamine-containing chelate rings essentially locked into a single conformation at room temperature. The activation energy for ethylenediamine chelate ring interconversions in these complexes is approximately 100 kJ mol -1, considerably higher than that reported previously for the corresponding Ln(DOTA) - complexes (DOTA is the tetraacetate analog of DOTP). Lanthanide-induced shifts are reported for all 1H, 13C, and 31P nuclei in 11 Ln(DOTP) 5- complexes. The proton spectra of these complexes display unusually large lanthanide-induced shifts, one showing a spectrum in which the 1H resonances span 900 ppm. The contact and pseudocontact contributions to these shifts were separated using Reilley's temperature-independent method and the resulting pseudocontact lanthanide-induced NMR shifts were in excellent agreement with those calculated for a structure derived using MMX molecular modeling methods. The pseudocontact shifts provide evidence for Ln (DOTP) 5- chelates which have virtually identical structures along the lanthanide series, with the possible exception of Tm(DOTP) 5-.

  3. Power optimization in logic isomers

    NASA Technical Reports Server (NTRS)

    Panwar, Ramesh; Rennels, David; Alkalaj, Leon

    1993-01-01

    Logic isomers are labeled, 2-isomorphic graphs that implement the same logic function. Logic isomers may have significantly different power requirements even though they have the same number of transistors in the implementation. The power requirements of the isomers depend on the transition activity of the input signals. The power requirements of isomorphic graph isomers of n-input NAND and NOR gates are shown. Choosing the less power-consuming isomer instead of the others can yield significant power savings. Experimental results on a ripple-carry adder are presented to show that the implementation using the least power-consuming isomers requires approximately 10 percent less power than the implementation using the most power-consuming isomers. Simulations of other random logic designs also confirm that designs using less power-consuming isomers can reduce the logic power demand by approximately 10 percent as compared to designs using more power-consuming isomers.

  4. Hydride Conformers of the Nitrogenase FeMo-cofactor Two-Electron Reduced State E2(2H), Assigned Using Cryogenic Intra Electron Paramagnetic Resonance Cavity Photolysis.

    PubMed

    Lukoyanov, Dmitriy A; Khadka, Nimesh; Yang, Zhi-Yong; Dean, Dennis R; Seefeldt, Lance C; Hoffman, Brian M

    2018-03-24

    Early studies in which nitrogenase was freeze-trapped during enzymatic turnover revealed the presence of high-spin ( S = 3 / 2 ) electron paramagnetic resonance (EPR) signals from the active-site FeMo-cofactor (FeMo-co) in electron-reduced intermediates of the MoFe protein. Historically denoted as 1b and 1c, each of the signals is describable as a fictitious spin system, S' = 1 / 2 , with anisotropic g' tensor, 1b with g' = [4.21, 3.76, ?] and 1c with g' = [4.69, ∼3.20, ?]. A clear discrepancy between the magnetic properties of 1b and 1c and the kinetic analysis of their appearance during pre-steady-state turnover left their identities in doubt, however. We subsequently associated 1b with the state having accumulated 2[e - /H + ], denoted as E 2 (2H), and suggested that the reducing equivalents are stored on the catalytic FeMo-co cluster as an iron hydride, likely an [Fe-H-Fe] hydride bridge. Intra-EPR cavity photolysis (450 nm; temperature-independent from 4 to 12 K) of the E 2 (2H)/1b state now corroborates the identification of this state as storing two reducing equivalents as a hydride. Photolysis converts E 2 (2H)/1b to a state with the same EPR spectrum, and thus the same cofactor structure as pre-steady-state turnover 1c, but with a different active-site environment. Upon annealing of the photogenerated state at temperature T = 145 K, it relaxes back to E 2 (2H)/1b. This implies that the 1c signal comes from an E 2 (2H) hydride isomer of E 2 (2H)/1b that stores its two reducing equivalents either as a hydride bridge between a different pair of iron atoms or an Fe-H terminal hydride.

  5. Determination of ortho-cresyl phosphate isomers of tricresyl phosphate used in aircraft turbine engine oils by gas chromatography and mass spectrometry.

    PubMed

    De Nola, G; Kibby, J; Mazurek, W

    2008-07-25

    Tricresyl phosphate (TCP) is used as an anti-wear additive in aircraft turbine engine oil. Concerns about its toxicity are largely based on the tri-o-cresyl phosphate isomer content. However, the presence of other and more toxic isomers has been previously suggested. In this work, the structural isomers of TCP have been determined by two methods (experimental and semi-theoretical). First, the TCP isomers were separated by gas chromatography (GC) and identified by mass spectrometry (MS). Second, after base cleavage of TCP, GC was used to quantify the cresol precursors. These results were used to calculate the TCP isomer distribution based on the assumption of a statistical distribution of the TCP isomers. The results from the two determinations showed reasonable agreement for three of the four oils studied. The o-cresyl isomers were found to be present almost exclusively as the more toxic mono-o-cresyl isomers in the concentration range 13-150 mg/L. The ability to analyse for the mono-o-cresyl isomers allows the toxicity of TCP to be based on the latter isomers rather than on the less toxic tri-o-cresyl phosphate isomer.

  6. Properties of the Only Thorium Fullerene, Th@C84, Uncovered.

    PubMed

    Kaminský, Jakub; Vícha, Jan; Bouř, Petr; Straka, Michal

    2017-04-27

    Only a single thorium fullerene, Th@C 84 , has been reported to date (Akiyama, K.; et al. J. Nucl. Radiochem. Sci. 2002, 3, 151-154). Although the system was characterized by UV-vis and XANES (X-ray absorption near edge structure) spectra, its structure and properties remain unknown. In this work we used the density functional calculations to identify molecular and electronic structure of the Th@C 84 . Series of molecular structures satisfying the ThC 84 stoichiometric formula were studied comprising 24 IPR and 110 non-IPR Th@C 84 isomers as well as 9 ThC 2 @C 82 IPR isomers. The lowest energy structure is Th@C 84 -C s (10) with the singlet ground state. Its predicted electronic absorption spectra are in agreement with the experimentally observed ones. The bonding between the cage and Th was characterized as polar covalent with Th in formal oxidation state IV. The NMR chemical shifts of Th@C 84 -C s (10) were predicted to guide the future experimental efforts in identification of this compound.

  7. Defects in Semiconductors 16: Proceedings of the International Conference (16th) Held in Bethlehem, Pennsylvania on 22-26 July 1991. Part 3

    DTIC Science & Technology

    1992-01-01

    Because of the dislocations, one expects to see steps or extra atomic rows. In figure 1, the black to white scale corresponds to 0.2 nm, which is the...that the shift of the Ge and Si g-values from the free electron value (g) scales with the spin crbit coupling parameters as expected . Also pertinent...Paramagnetic defects in SiC based materials 1201 0. Chauvet, L. Zuppiroli, J. Ardonceau, 1. Solomon, Y.C. Wang and R.F. Davis Acceptors in silicon car1hide

  8. Can honey bees discriminate between floral-fragrance isomers?

    PubMed

    Aguiar, João Marcelo Robazzi Bignelli Valente; Roselino, Ana Carolina; Sazima, Marlies; Giurfa, Martin

    2018-05-24

    Many flowering plants present variable complex fragrances, which usually include different isomers of the same molecule. As fragrance is an essential cue for flower recognition by pollinators, we ask if honey bees discriminate between floral-fragrance isomers in an appetitive context. We used the olfactory conditioning of the proboscis extension response (PER), which allows training a restrained bee to an odor paired with sucrose solution. Bees were trained under an absolute (a single odorant rewarded) or a differential conditioning regime (a rewarded vs. a non-rewarded odorant) using four different pairs of isomers. One hour after training, discrimination and generalization between pairs of isomers were tested. Bees trained under absolute conditioning exhibited high generalization between isomers and discriminated only one out of four isomer pairs; after differential conditioning, they learned to differentiate between two out of four pairs of isomers but in all cases generalization responses to the non-rewarding isomer remained high. Adding an aversive taste to the non-rewarded isomer facilitated discrimination of isomers that otherwise seemed non-discriminable, but generalization remained high. Although honey bees discriminated isomers under certain conditions, they achieved the task with difficulty and tended to generalize between them, thus showing that these molecules were perceptually similar to them. We conclude that the presence of isomers within floral fragrances might not necessarily contribute to a dramatic extent to floral odor diversity. © 2018. Published by The Company of Biologists Ltd.

  9. Determination of Debye temperatures and Lamb-Mössbauer factors for LnFeO3 orthoferrite perovskites (Ln  =  La, Nd, Sm, Eu, Gd)

    NASA Astrophysics Data System (ADS)

    Scrimshire, A.; Lobera, A.; Bell, A. M. T.; Jones, A. H.; Sterianou, I.; Forder, S. D.; Bingham, P. A.

    2018-03-01

    Lanthanide orthoferrites have wide-ranging industrial uses including solar, catalytic and electronic applications. Here a series of lanthanide orthoferrite perovskites, LnFeO3 (Ln  =  La Nd; Sm; Eu; Gd), prepared through a standard stoichiometric wet ball milling route using oxide precursors, has been studied. Characterisation through x-ray diffraction and x-ray fluorescence confirmed the synthesis of phase-pure or near-pure LnFeO3 compounds. 57Fe Mössbauer spectroscopy was performed over a temperature range of 10 K-293 K to observe hyperfine structure and to enable calculation of the recoil-free fraction and Debye temperature (θ D) of each orthoferrite. Debye temperatures (Ln  =  La 474 K Nd 459 K Sm 457 K Eu 452 K Gd 473 K) and recoil-free fractions (Ln  =  La 0.827; Nd 0.817; Sm 0.816; Eu 0.812; Gd 0.826) were approximated through minimising the difference in the temperature dependent experimental centre shift and theoretical isomer shift, by allowing the Debye temperature and isomer shift values to vary. This method of minimising the difference between theoretical and actual values yields Debye temperatures consistent with results from other studies determined through thermal analysis methods. This displays the ability of variable-temperature Mössbauer spectroscopy to approximate Debye temperatures and recoil-free fractions, whilst observing temperature induced transitions over the temperature range observed. X-ray diffraction and Rietveld refinement show an inverse relationship between FeO6 octahedral volume and approximated Debye temperatures. Raman spectroscopy show an increase in the band positions attributed to soft modes of Ag symmetry, Ag(3) and Ag(5) from La to GdFeO3 corresponding to octahedral rotations and tilts in the [0 1 0] and [1 0 1] planes respectively.

  10. Water diffusion-exchange effect on the paramagnetic relaxation enhancement in off-resonance rotating frame

    NASA Astrophysics Data System (ADS)

    Zhang, Huiming; Xie, Yang; Ji, Tongyu

    2007-06-01

    The off-resonance rotating frame technique based on the spin relaxation properties of off-resonance T1 ρ can significantly increase the sensitivity of detecting paramagnetic labeling at high magnetic fields by MRI. However, the in vivo detectable dimension for labeled cell clusters/tissues in T1 ρ-weighted images is limited by the water diffusion-exchange between mesoscopic scale compartments. An experimental investigation of the effect of water diffusion-exchange between compartments on the paramagnetic relaxation enhancement of paramagnetic agent compartment is presented for in vitro/ in vivo models. In these models, the size of paramagnetic agent compartment is comparable to the mean diffusion displacement of water molecules during the long RF pulses that are used to generate the off-resonance rotating frame. The three main objectives of this study were: (1) to qualitatively correlate the effect of water diffusion-exchange with the RF parameters of the long pulse and the rates of water diffusion, (2) to explore the effect of water diffusion-exchange on the paramagnetic relaxation enhancement in vitro, and (3) to demonstrate the paramagnetic relaxation enhancement in vivo. The in vitro models include the water permeable dialysis tubes or water permeable hollow fibers embedded in cross-linked proteins gels. The MWCO of the dialysis tubes was chosen from 0.1 to 15 kDa to control the water diffusion rate. Thin hollow fibers were chosen to provide sub-millimeter scale compartments for the paramagnetic agents. The in vivo model utilized the rat cerebral vasculatures as a paramagnetic agent compartment, and intravascular agents (Gd-DTPA) 30-BSA were administrated into the compartment via bolus injections. Both in vitro and in vivo results demonstrate that the paramagnetic relaxation enhancement is predominant in the T1 ρ-weighted image in the presence of water diffusion-exchange. The T1 ρ contrast has substantially higher sensitivity than the conventional T1 contrast in detecting paramagnetic agents, especially at low paramagnetic agent volumetric fractions, low paramagnetic agent concentrations, and low RF amplitudes. Short pulse duration, short pulse recycle delay and efficient paramagnetic relaxation can reduce the influence of water diffusion-exchange on the paramagnetic enhancement. This study paves the way for the design of off-resonance rotating experiments to detect labeled cell clusters/tissue compartments in vivo at a sub-millimeter scale.

  11. NMR Knight shifts and the electronic properties of Rb{sub 8}Na{sub 16}Si{sub 136} clathrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latturner, Susan; Iversen, Bo B.; Sepa, Jelena

    2001-03-15

    A silicon framework clathrate type-II compound was synthesized with rubidium and sodium atoms in cages. A single crystal of this material was characterized by both conventional and synchrotron x-ray diffraction; the structure belongs to the cubic space group Fd-3m, with a cell edge of 14.738(1) Aa. The alkali metals are ordered in the structure, with the small cages containing sodium, and the large cages containing rubidium. Variable temperature magic-angle-spinning NMR of all three nuclei show large Knight shifts with a strong temperature dependence, unlike conventional metals. The low conductivity (200 S/cm) and high paramagnetic susceptibility (5x10{sup -6}emu/g) indicate that asmore » the temperature is lowered, the electrons become more localized on the alkali atoms, resulting in properties consistent with a correlated narrow band metal system.« less

  12. [INVITED] Magnetic field vector sensor by a nonadiabatic tapered Hi-Bi fiber and ferrofluid nanoparticles

    NASA Astrophysics Data System (ADS)

    Layeghi, Azam; Latifi, Hamid

    2018-06-01

    A magnetic field vector sensor based on super-paramagnetic fluid and tapered Hi-Bi fiber (THB) in fiber loop mirror (FLM) is proposed. A two-dimensional detection of external magnetic field (EMF) is experimentally demonstrated and theoretically simulated by Jones matrix to analyze the physical operation in detail. A birefringence is obtained due to magnetic fluid (MF) in applied EMF. By surrounding the THB with MF, a tunable birefringence of MF affect the transmission of the sensor. Slow and fast axes of this obtained birefringence are determined by the direction of applied EMF. In this way, the transmission response of the sensor is depended on the angle between the EMF orientation and the main axes of polarization maintaining fiber (PMF) in FLM. The wavelength shift and intensity shift versus EMF orientation show a sinusoidal behavior, while the applied EMF is constant. Also, the changes in the intensity of EMF in a certain direction results in wavelength shift in the sensor spectrum. The maximum wavelength sensitivity of 214 pm/mT is observed.

  13. Structure-biodegradability relationship of nonylphenol isomers during biological wastewater treatment process.

    PubMed

    Hao, Ruixia; Li, Jianbing; Zhou, Yuwen; Cheng, Shuiyuan; Zhang, Yi

    2009-05-01

    The relationship between nonylphenol (NP) isomer structure and its biodegradability within the wastewater treatment process of sequencing batch reactor (SBR) was investigated. The GC-MS method was used for detecting the NP isomers existing in the SBR influent, activated sludge and effluent. Fifteen NP isomers were detected in the influent, with significant biodegradability variations being observed among these isomers. It was found that the NP isomers associated with retention time of 10.553, 10.646, 10.774, and 10.906 min in the GC-MS analysis showed higher biodegradability, while the isomers with retention time of 10.475, 10.800, and 10.857 min illustrated lower biodegradability. Through analyzing the mass spectrograms, the chemical structures of four selected NP isomers in the wastewater were further deduced. The higher correlation coefficients of 0.9421 and 0.9085 were observed between the NP isomer biodegradation rates and the molecular connectivity indexes with the order of two and four, respectively. Such correlation analysis indicated that a more complex side branch structure (such as a larger side carbon-chain branch or more branches in the nonyl) of NP isomer would lead to lower biodegradability, and a longer nonyl chain of the isomer would result in a higher biodegradability.

  14. Exposure of aircraft maintenance technicians to organophosphates from hydraulic fluids and turbine oils: a pilot study.

    PubMed

    Schindler, Birgit Karin; Koslitz, Stephan; Weiss, Tobias; Broding, Horst Christoph; Brüning, Thomas; Bünger, Jürgen

    2014-01-01

    Hydraulic fluids and turbine oils contain organophosphates like tricresyl phosphate isomers, triphenyl phosphate and tributyl phosphate from very small up to high percentages. The aim of this pilot study was to determine if aircraft maintenance technicians are exposed to relevant amounts of organophosphates. Dialkyl and diaryl phosphate metabolites of seven organophosphates were quantified in pre- and post-shift spot urine samples of technicians (N=5) by GC-MS/MS after solid phase extraction and derivatization. Pre- and post shift values of tributyl phosphate metabolites (dibutyl phosphate (DBP): median pre-shift: 12.5 μg/L, post-shift: 23.5 μg/L) and triphenyl phosphate metabolites (diphenyl phosphate (DPP): median pre-shift: 2.9 μg/L, post-shift: 3.5 μg/L) were statistically higher than in a control group from the general population (median DBP: <0.25 μg/L, median DPP: 0.5 μg/L). No tricresyl phosphate metabolites were detected. The aircraft maintenance technicians were occupationally exposed to tributyl and triphenyl phosphate but not to tricresyl phosphate, tri-(2-chloroethyl)- and tri-(2-chloropropyl)-phosphate. Further studies are necessary to collect information on sources, routes of uptake and varying exposures during different work tasks, evaluate possible health effects and to set up appropriate protective measures. Copyright © 2013 Elsevier GmbH. All rights reserved.

  15. The porphyrin-fullerene nanoparticles to promote the ATP overproduction in myocardium: 25Mg2+-magnetic isotope effect.

    PubMed

    Rezayat, S M; Boushehri, S V S; Salmanian, B; Omidvari, A H; Tarighat, S; Esmaeili, S; Sarkar, S; Amirshahi, N; Alyautdin, R N; Orlova, M A; Trushkov, I V; Buchachenko, A L; Liu, K C; Kuznetsov, D A

    2009-04-01

    This is a first case ever reported on the fullerene-based low toxic nanocationite particles (porphyrin adducts of cyclohexyl fullerene-C(60)) designed for targeted delivery of the paramagnetic magnesium stable isotope to the heart muscle providing a sharp clinical effect close to about 80% recovery of the tissue hypoxia symptoms in less than 24 h after a single injection (0.03-0.1 LD(50)). A whole principle of this therapy is novel: (25)Mg(2+)-magnetic isotope effect selectively stimulates the ATP overproduction in the oxygen-depleted cells due to (25)Mg(2+) released by the nanoparticles. Being membranotropic cationites, these "smart nanoparticles" release the overactivating paramagnetic cations only in response to the metabolic acidic shift. The resulting positive changes in the heart cell energy metabolism may help to prevent and/or treat the local myocardial hypoxic disorders and, hence, protect the heart muscle from a serious damage in a vast variety of the hypoxia-caused clinical situations including both doxorubicin and 1-methylnicotineamide cardiotoxic side effects. Both pharmacokinetics and pharmacodynamics of the drug proposed make it suitable for safe and efficient administration in either single or multi-injection (acute or chronic) therapeutic schemes.

  16. Characterization of the Antinociceptive Effects of the Individual Isomers of Methadone Following Acute and Chronic Administration

    PubMed Central

    Morgan, Richard W.; Nicholson, Katherine L.

    2011-01-01

    Methadone is a long-acting opioid used in the treatment of various pain states and substitution therapy in heroin addiction. Extensive behavioral characterization has been carried out utilizing the racemate, but limited investigation has been performed with the individual isomers. While the l-isomer is a potent opioid agonist, the d-isomer has weak μ opioid activity and has also been shown to possess N-methyl-d-aspartate (NMDA) antagonist properties in vitro. The acute antinociceptive effects of the isomers were evaluated in rats using a warm water tail withdrawal procedure at two stimulus intensities (50° and 55° C). Increasing dose ratios of d- to l-methadone were administered chronically to determine the ability of the d-isomer to modulate antinociceptive tolerance to the l-isomer. Acutely, both l- (0.1-5.6 mg/kg, sc) and d- (3.0-56.0 mg/kg, sc) methadone produced antinociception though the efficacy of the d-isomer was limited at 55° C. These effects were dose-dependently blocked by naltrexone (0.01-1.0 mg/kg, sc). Administered chronically, d-methadone (1.7-10 mg/kg, sc) dose-dependently blocked tolerance development to the l-isomer (1.7 mg/kg, sc). These findings support the antinociceptive effects of the isomers being opioid receptor mediated with the l-isomer functioning as a full efficacy agonist whereas the d-isomer appears to have lower efficacy. The ability of nonracemic doses of the d-isomer to prevent tolerance development to the l-isomer may be attributed to partial μ agonist activity however NMDA antagonist activity cannot be discounted. PMID:21836464

  17. Kinetics of photoirradiation-induced synthesis of soy oil-conjugated linoleic acid isomers.

    PubMed

    Jain, Vishal P; Proctor, Andrew

    2007-02-07

    Photoirradiation of soy oil with UV/visible light has been shown to produce significant amounts of trans,trans conjugated linoleic acid (CLA) isomers through conversion of various synthesized intermediate cis,trans isomers. The objective of this study was to determine the kinetics of CLA isomers synthesis to better understand the production of various isomers. Soy oil was irradiated with UV/visible light for 144 h in the presence of an iodine catalyst and CLA isomers analyzed by gas chromatography (GC). Arrhenius plots were developed for the conversion of soy oil linoleic acid (A) to form cis-, trans/trans-, cis-CLA (B), conversion of cis-, trans/trans-, cis-CLA to form trans,trans-CLA (C) with respect to B, and formation of trans,trans-CLA isomers with respect to C. The kinetics of consumption of linoleic acid (LA) to form cis-, trans/trans-, cis-CLA was found to be of second-order with a rate constant of 9.01 x 10-7 L/mol s. The rate of formation of cis-, trans/trans-, cis-CLA isomers depends on the rate of formation from LA and its rate of consumption to form trans,trans-CLA isomers. The conversion of cis-, trans/trans-, cis-CLA isomers to trans,trans-CLA isomers was found to be of first-order with a rate constant of 2.75 x 10-6 s-1. However, the formation of thermodynamically stable trans,trans-CLA isomers (C) with respect to C was found to be a zero-order reaction with a rate constant of 10.66 x 10-7 mol/L s. The consumption of LA was found to be the rate-determining step in the CLA isomers formation reaction mechanism. The findings provide a better understanding of the mechanism of CLA isomers synthesis by photoirradiation and the factors controlling the ratio of various isomers.

  18. Design principles and theory of paramagnetic fluorine-labelled lanthanide complexes as probes for (19)F magnetic resonance: a proof-of-concept study.

    PubMed

    Chalmers, Kirsten H; De Luca, Elena; Hogg, Naomi H M; Kenwright, Alan M; Kuprov, Ilya; Parker, David; Botta, Mauro; Wilson, J Ian; Blamire, Andrew M

    2010-01-04

    The synthesis and spectroscopic properties of a series of CF(3)-labelled lanthanide(III) complexes (Ln=Gd, Tb, Dy, Ho, Er, Tm) with amide-substituted ligands based on 1,4,7,10-tetraazacyclododecane are described. The theoretical contributions of the (19)F magnetic relaxation processes in these systems are critically assessed and selected volumetric plots are presented. These plots allow an accurate estimation of the increase in the rates of longitudinal and transverse relaxation as a function of the distance between the Ln(III) ion and the fluorine nucleus, the applied magnetic field, and the re-rotational correlation time of the complex, for a given Ln(III) ion. Selected complexes exhibit pH-dependent chemical shift behaviour, and a pK(a) of 7.0 was determined in one example based on the holmium complex of an ortho-cyano DO3A-monoamide ligand, which allowed the pH to be assessed by measuring the difference in chemical shift (varying by over 14 ppm) between two (19)F resonances. Relaxation analyses of variable-temperature and variable-field (19)F, (17)O and (1)H NMR spectroscopy experiments are reported, aided by identification of salient low-energy conformers by using density functional theory. The study of fluorine relaxation rates, over a field range of 4.7 to 16.5 T allowed precise computation of the distance between the Ln(III) ion and the CF(3) reporter group by using global fitting methods. The sensitivity benefits of using such paramagnetic fluorinated probes in (19)F NMR spectroscopic studies are quantified in preliminary spectroscopic and imaging experiments with respect to a diamagnetic yttrium(III) analogue.

  19. CIS-TRANS ISOMERS OF VITAMIN A AND RETINENE IN THE RHODOPSIN SYSTEM

    PubMed Central

    Hubbard, Ruth; Wald, George

    1952-01-01

    Vitamin A and retinene, the carotenoid precursors of rhodopsin, occur in a variety of molecular shapes, cis-trans isomers of one another. For the synthesis of rhodopsin a specific cis isomer of vitamin A is needed. Ordinary crystalline vitamin A, as also the commercial synthetic product, both primarily all-trans, are ineffective. The main site of isomer specificity is the coupling of retinene with opsin. It is this reaction that requires a specific cis isomer of retinene. The oxidation of vitamin A to retinene by the alcohol dehydrogenase-cozymase system displays only a low degree of isomer specificity. Five isomers of retinene have been isolated in crystalline condition: all-trans; three apparently mono-cis forms, neoretinenes a and b and isoretinene a; and one apparently di-cis isomer, isoretinene b. Neoretinenes a and b were first isolated in our laboratory, and isoretinenes a and b in the Organic Research Laboratory of Distillation Products Industries. Each of these substances is converted to an equilibrium mixture of stereoisomers on simple exposure to light. For this reaction, light is required which retinene can absorb; i.e., blue, violet, or ultraviolet light. Yellow, orange, or red light has little effect. The single geometrical isomers of retinene must therefore be protected from low wave length radiation if their isomerization is to be avoided. By incubation with opsin in the dark, the capacity of each of the retinene isomers to synthesize rhodopsin was examined. All-trans retinene and neoretinene a are inactive. Neoretinene b yields rhodopsin indistinguishable from that extracted from the dark-adapted retina (λmax· 500 mµ). Isoretinene a yields a similar light-sensitive pigment, isorhodopsin, the absorption spectrum of which is displaced toward shorter wave lengths (λmax· 487 mµ). Isoretinene b appears to be inactive, but isomerizes preferentially to isoretinene a, which in the presence of opsin is removed to form isorhodopsin before the isomerization can go further. The synthesis of rhodopsin in solution follows the course of a bimolecular reaction, as though one molecule of neoretinene b combines with one of opsin. The synthesis of isorhodopsin displays similar kinetics. The bleaching of rhodopsin, whether by chemical means or by exposure to yellow or orange (i.e., non-isomerizing) light, yields primarily or exclusively all-trans retinene. The same appears to be true of isorhodopsin. The process of bleaching is therefore intrinsically irreversible. The all-trans retinene which results must be isomerized to active configurations before rhodopsin or isorhodopsin can be regenerated. A cycle of isomerization is therefore an integral part of the rhodopsin system. The all-trans retinene which emerges from the bleaching of rhodopsin must be isomerized to neoretinene b before it can go back; or if first reduced to all-trans vitamin A, this must be isomerized to neovitamin Ab before it can regenerate rhodopsin. The retina obtains new supplies of the neo-b isomer: (a) by the isomerization of all-trans retinene in the eye by blue or violet light; (b) by exchanging all-trans vitamin A for new neovitamin Ab from the blood circulation; and (c) the eye tissues may contain enzymes which catalyze the isomerization of retinene and vitamin A in situ. When the all-trans retinene which results from bleaching rhodopsin in orange or yellow light is exposed to blue or violet light, its isomerization is accompanied by a fall in extinction and a shift of absorption spectrum about 5 mµ toward shorter wave lengths. This is a second photochemical step in the bleaching of rhodopsin. It converts the inactive, all-trans isomer of retinene into a mixture of isomers, from which mixtures of rhodopsin and isorhodopsin can be regenerated. Isorhodopsin, however, is an artefact. There is no evidence that it occurs in the retina; nor has isovitamin Aa or b yet been identified in vivo. In rhodopsin and isorhodopsin, the prosthetic groups appear to retain the cis configurations characteristic of their retinene precursors. In accord with this view, the β-bands in the absorption spectra of both pigments appear to be cis peaks. The conversion to the all-trans configuration occurs during the process of bleaching. The possibility is discussed that rhodopsin may represent a halochromic complex of a retinyl ion with opsin. The increased resonance associated with the ionic state of retinene might then be responsible both for the color of rhodopsin and for the tendency of retinene to assume the all-trans configuration on its release from the complex. A distinction must be made between the immediate precursor of rhodopsin, neovitamin Ab, and the vitamin A which must be fed in order that rhodopsin be synthesized in vivo. Since vitamin A isomerizes in the body, it is probable that any geometrical isomer can fulfill all the nutritional needs for this vitamin. PMID:13011282

  20. Ab initio/GIAO-CCSD(T) (13)C NMR study of the rearrangement and dynamic aspects of rapidly equilibrating tertiary carbocations, C6H13(+) and C7H15(+).

    PubMed

    Olah, George A; Prakash, G K Surya; Rasul, Golam

    2016-01-05

    The rearrangement pathways of the equilibrating tertiary carbocations, 2,3-dimethyl-2-butyl cation (C6H13(+), 1), 2,3,3-trimethyl-2-butyl cation (C7H15(+), 5) and 2,3-dimethyl-2-pentyl cation (C7H15(+), 8 and 9) were investigated using the ab initio/GIAO-CCSD(T) (13)C NMR method. Comparing the calculated and experimental (13)C NMR chemical shifts of a series of carbocations indicates that excellent prediction of δ(13)C could be achieved through scaling. In the case of symmetrical equilibrating cations (1 and 5) the Wagner-Meerwein 1,2-hydride and 1,2-methide shifts, respectively, produce the same structure. This indicates that the overall (13)C NMR chemical shifts are conserved and independent of temperature. However, in the case of unsymmetrical equilibrating cations (8 and 9) the Wagner-Meerwein shift produces different tertiary structures, which have slightly different thermodynamic stabilities and, thus, different spectra. At the MP4(SDTQ)/cc-pVTZ//MP2/cc-pVTZ + ZPE level structure 8 is only 90 calories/mol more stable than structure 9. Based on computed (13)C NMR chemical shift calculations, mole fractions of these isomers were determined by assuming the observed chemical shifts are due to the weighted average of the chemical shifts of the static ions. © 2015 Wiley Periodicals, Inc.

  1. Distribution of perfluorooctane sulfonate isomers and predicted risk of thyroid hormonal perturbation in drinking water.

    PubMed

    Yu, Nanyang; Wang, Xiaoxiang; Zhang, Beibei; Yang, Jingping; Li, Meiying; Li, Jun; Shi, Wei; Wei, Si; Yu, Hongxia

    2015-06-01

    We documented the distribution of seven perfluorooctane sulfonate (PFOS) isomers in drinking water in Jiangsu Province, China. Compared to the 30% proportion of branched PFOS in technical PFOS, the levels of branched PFOS in drinking water increased to 31.8%-44.6% of total PFOS. Because of previous risk assessment without considering the PFOS isomer profile and the toxicity of individual PFOS isomers, here we performed a new health risk assessment of PFOS for thyroid hormonal perturbation in drinking water with the contribution from individual PFOS isomers. The risk quotients (RQs) of individual PFOS isomers indicated that linear PFOS contributed most to the risk among all the target PFOS isomers (83.0%-90.2% of the total PFOS RQ), and that risk from 6m-PFOS (5.2%-11.9% of the total PFOS RQ) was higher than that from other branched PFOS isomers. We found that the risks associated with PFOS in drinking water would be overestimated by 10.0%-91.7% if contributions from individual PFOS isomers were not considered. The results revealed that the PFOS isomer profile and the toxicity of individual PFOS isomers were important factors in health risk assessment of PFOS and should be considered in the future risk assessments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Magnetic resonance conditional paramagnetic choke for suppression of imaging artifacts during magnetic resonance imaging.

    PubMed

    Wu, Kevin J; Gregory, T Stan; Boland, Brian L; Zhao, Wujun; Cheng, Rui; Mao, Leidong; Tse, Zion Tsz Ho

    2018-06-01

    Higher risk patient populations require continuous physiological monitoring and, in some cases, connected life-support systems, during magnetic resonance imaging examinations. While recently there has been a shift toward wireless technology, some of the magnetic resonance imaging devices are still connected to the outside using cabling that could interfere with the magnetic resonance imaging's radio frequency during scanning, resulting in excessive heating. We developed a passive method for radio frequency suppression on cabling that may assist in making some of these devices magnetic resonance imaging compatible. A barrel-shaped strongly paramagnetic choke was developed to suppress induced radio frequency signals which are overlaid onto physiological monitoring leads during magnetic resonance imaging. It utilized a choke placed along the signal lines, with a gadolinium solution core. The choke's magnetic susceptibility was modeled, for a given geometric design, at increasing chelate concentration levels, and measured using a vibrating sample magnetometer. Radio frequency noise suppression versus frequency was quantified with network-analyzer measurements and tested using cabling placed in the magnetic resonance imaging scanner. Temperature-elevation and image-quality reduction due to the device were measured using American Society for Testing and Materials phantoms. Prototype chokes with gadolinium solution cores exhibited increasing magnetic susceptibility, and insertion loss (S21) also showed higher attenuation as gadolinium concentration increased. Image artifacts extending <4 mm from the choke were observed during magnetic resonance imaging, which agreed well with the predicted ∼3 mm artifact from the electrochemical machining simulation. An accompanying temperature increase of <1 °C was observed in the magnetic resonance imaging phantom trial. An effective paramagnetic choke for radio frequency suppression during magnetic resonance imaging was developed and its performance demonstrated.

  3. 21 CFR 1308.11 - Schedule I.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... nervous system, including its salts, isomers, and salts of isomers whenever the existence of such salts... on the central nervous system, including its salts, isomers, and salts of isomers: (1) Aminorex (Some...

  4. Halochromism, ionochromism, solvatochromism and density functional study of a synthesized copper(II) complex containing hemilabile amide derivative ligand.

    PubMed

    Golchoubian, Hamid; Moayyedi, Golasa; Reisi, Neda

    2015-03-05

    This study investigates chromotropism of newly synthesized 3,3'-(ethane-1,2-diylbis(benzylazanediyl))dipropanamide copper(II) perchlorate complex. The compound was structurally characterized by physico-chemical and spectroscopic methods. X-ray crystallography of the complex showed that the copper atom achieved a distorted square pyramidal environment through coordination of two amine N atoms and two O atoms of the amide moieties. The pH effect on the visible absorption spectrum of the complex was studied which functions as pH-induced "off-on-off" switches through protonation and deprotonation of amide moieties along with the CuO to CuN bond rearrangement at room temperature. The complex was also observed to show solvatochromism and ionochromism. The distinct solution color changes mainly associated with hemilability of the amide groups. The solvatochromism of the complex was investigated with different solvent parameter models using stepwise multiple linear regression method. The results suggested that the basicity power of the solvent has a dominant contribution to the shift of the d-d absorption band of the complex. Density functional theory, DFT calculations were performed in order to study the electronic structure of the complex, the relative stabilities of the CuN/CuO isomers, and to understand the nature of the halochromism processes taking place. DFT computational results buttressed the experimental observations indicating that in the natural pH (5.8) the CuO isomer is more stable than its linkage isomer and conversely in alkaline aqueous solution. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Energetics of the S 2 state spin isomers of the oxygen-evolving complex of Photosystem II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinyard, David J.; Khan, Sahr; Askerka, Mikhail

    Here, the S 2 redox intermediate of the oxygen-evolving complex in Photosystem II is present as two spin isomers. The S = 1/2 isomer gives rise to a multiline EPR signal at g = 2, while the S = 5/2 isomer exhibits a broad EPR signal at g = 4.1. The electronic structures of these isomers are known, but their role in the catalytic cycle of water oxidation remains unclear. We show that formation of the S = 1/2 state from the S = 5/2 state is exergonic at temperatures above 160 K. However, the S = 1/2 isomer decaysmore » to S 1 more slowly than the S = 5/2 isomer. These differences support the hypotheses that the S 3 state is formed via the S 2 state S = 5/2 isomer and that the stabilized S 2 state S = 1/2 isomer plays a role in minimizing S 2Q A- decay in light-limiting conditions.« less

  6. Energetics of the S 2 state spin isomers of the oxygen-evolving complex of Photosystem II

    DOE PAGES

    Vinyard, David J.; Khan, Sahr; Askerka, Mikhail; ...

    2017-01-12

    Here, the S 2 redox intermediate of the oxygen-evolving complex in Photosystem II is present as two spin isomers. The S = 1/2 isomer gives rise to a multiline EPR signal at g = 2, while the S = 5/2 isomer exhibits a broad EPR signal at g = 4.1. The electronic structures of these isomers are known, but their role in the catalytic cycle of water oxidation remains unclear. We show that formation of the S = 1/2 state from the S = 5/2 state is exergonic at temperatures above 160 K. However, the S = 1/2 isomer decaysmore » to S 1 more slowly than the S = 5/2 isomer. These differences support the hypotheses that the S 3 state is formed via the S 2 state S = 5/2 isomer and that the stabilized S 2 state S = 1/2 isomer plays a role in minimizing S 2Q A- decay in light-limiting conditions.« less

  7. A chiral HPLC method for the simultaneous separation of configurational isomers of the predominant cis/trans forms of astaxanthin.

    PubMed

    Abu-Lafi, S; Turujman, S A

    1997-01-01

    We report an HPLC method that allows the simultaneous separation of configurational isomers of the predominant cis/trans forms of astaxanthin. The configurational isomers of the all-trans-, and most of the configurational isomers of the 9-cis-, 13-cis- and 15-cis-astaxanthin were separated on a Sumichiral OA-2000 column, which is manufactured and packed in Japan with a Pirkle covalent D-phenylglycine chiral stationary phase (CSP). The large separation of the cis isomers from the all-trans isomers that we report here ensure the suitability of this method for the routine determination of the ratio of the configurational isomers of all-trans-astaxanthin.

  8. Preferential polymerization and adsorption of L-optical isomers of amino acids relative to D-optical isomers on kaolinite templates.

    NASA Technical Reports Server (NTRS)

    Jackson, T. A.

    1971-01-01

    Experiments on the polymerization of the L- and D-optical isomers of aspartic acid and serine using kaolinite as a catalyst showed that the L-optical isomers were polymerized at a much higher rate than the D-optical isomers; racemic (DL-) mixtures were polymerized at an intermediate rate. The peptides formed from the L-monomers were preferentially adsorbed by the clay. In the absence of kaolinite, no significant or consistent difference in the behavior of the L- and D-optical isomers was observed. In experiments on the adsorption of L- and D-phenylalanine by kaolinite, the L-optical isomer was preferentially adsorbed.

  9. Docking based design of diastereoisomeric MTCA as GPIIb/IIIa receptor inhibitor.

    PubMed

    Wang, Xiaozhen; Wang, Yuji; Wu, Jianhui; Gui, Lin; Zhang, Xiaoyi; Zheng, Meiqing; Wang, Yaonan; Zhao, Shurui; Li, Ze; Zhao, Ming; Peng, Shiqi

    2017-12-01

    In GPIIb/IIIa mediated arterial thrombosis platelet activation plays a central role. To discover platelet activation inhibitor the pharmacophores of GPIIb/IIIa receptor inhibitors and anti-thrombotic agents were analyzed. This led to the design of (1R,3S)- and (1S,3S)-1-methyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acids as GPIIb/IIIa inhibitors. Comparing to (1S,3S)-isomer (1R,3S)-isomer had lower cdocker interaction energy. AFM image showed that the minimal effective concentration of (1S,3S)-isomer and (1R,3S)-isomer inhibiting platelet activation were 10 -5  M and 10 -6  M, respectively. In vivo 1 μmol/kg of oral (1S,3S)-isomer effectively inhibited the rats to form arterial thrombus and down regulated GPIIb/IIIa expression, but the activities were significantly lower than those of 1 μmol/kg of oral (1R,3S)-isomer. Both (1S,3S)-isomer and (1R,3S)-isomer can be safely used for structural modifications, but (1R,3S)-isomer should be superior to (1S,3S)-isomer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Structural Identification of 19 Purified Isomers of the OPV Acceptor Material bisPCBM by 13C NMR and UV-Vis Absorption Spectroscopy and High-Performance Liquid Chromatography.

    PubMed

    Liu, Tong; Abrahams, Isaac; Dennis, T John S

    2018-04-26

    The molecular structures of 19 purified isomers of bis-phenyl-C 62 -butyric acid methyl ester were identified by a combination of 13 C NMR and UV-vis absorption spectroscopies and high-performance liquid chromatography (HPLC) retention time analysis. All 19 isomers are dicyclopropafullerenes (none are homofullerenes). There were seven isomers with C 1 molecular point-group symmetry, four with C s , six with C 2 , one with C 2 v , and one with C 2 h symmetry. The C 2 h , C 2 v , and all five nonequatorial C 1 isomers were unambiguously assigned to their respective HPLC fractions. For the other 12 isomers, the 13 C NMR and UV-vis spectra placed them in six groups of two same-symmetry isomers. On the basis of the widely spaced HPLC retention times of the two isomers within each of these six groups, and the empirical inverse correlation between retention time and addend spacing, each isomer was assigned to its corresponding HPLC fraction. In addition, the missing trans-1 isomer was found, purified, and characterized.

  11. Dynamics of paramagnetic agents by off-resonance rotating frame technique in the presence of magnetization transfer effect

    NASA Astrophysics Data System (ADS)

    Zhang, Huiming; Xie, Yang

    2007-02-01

    The simple method for measuring the rotational correlation time of paramagnetic ion chelates via off-resonance rotating frame technique is challenged in vivo by the magnetization transfer effect. A theoretical model for the spin relaxation of water protons in the presence of paramagnetic ion chelates and magnetization transfer effect is described. This model considers the competitive relaxations of water protons by the paramagnetic relaxation pathway and the magnetization transfer pathway. The influence of magnetization transfer on the total residual z-magnetization has been quantitatively evaluated in the context of the magnetization map and various difference magnetization profiles for the macromolecule conjugated Gd-DTPA in cross-linked protein gels. The numerical simulations and experimental validations confirm that the rotational correlation time for the paramagnetic ion chelates can be measured even in the presence of strong magnetization transfer. This spin relaxation model also provides novel approaches to enhance the detection sensitivity for paramagnetic labeling by suppressing the spin relaxations caused by the magnetization transfer. The inclusion of the magnetization transfer effect allows us to use the magnetization map as a simulation tool to design efficient paramagnetic labeling targeting at specific tissues, to design experiments running at low RF power depositions, and to optimize the sensitivity for detecting paramagnetic labeling. Thus, the presented method will be a very useful tool for the in vivo applications such as molecular imaging via paramagnetic labeling.

  12. The129I hyperfine interaction in fatty acids studied by Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Burda, K.; Strzałka, K.; Stanek, J.

    1993-12-01

    Oleic acid substituted by iodine and saponified by Ca2+ cations has been studied by129I Mössbauer spectroscopy. The quadrupole coupling constants and isomer shifts, determined from the γ-resonance spectra recorded at 4.2 K, have been described by 5p and 5s orbital populations of iodine. It was also found that saponification of the fatty acid has no significant influence on the measured iodine bonds. However, the increased order of fatty acids in soap form is reflected by narrowing of the resonant linewidth due to the reduction of the electric field gradient distribution.

  13. Quantum size effects in the size-temperature phase diagram of gallium: structural characterization of shape-shifting clusters.

    PubMed

    Steenbergen, Krista G; Gaston, Nicola

    2015-02-09

    Finite temperature analysis of cluster structures is used to identify signatures of the low-temperature polymorphs of gallium, based on the results of first-principle Born-Oppenheimer molecular dynamics simulations. Pre-melting structural transitions proceed from either the β- and/or the δ-phase to the γ- or δ-phase, with a size- dependent phase progression. We relate the stability of each isomer to the electronic structures of the different phases, giving new insight into the origin of polymorphism in this complicated element. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Mössbauer spectroscopy of human liver ferritin and its analogue, Ferrum Lek, in the temperature range of 295-90 K: Comparison within the homogeneous iron core model

    NASA Astrophysics Data System (ADS)

    Alenkina, Irina V.; Oshtrakh, Michael I.; Klencsár, Zoltán; Kuzmann, Ernő; Semionkin, Vladimir A.

    2014-10-01

    Human liver ferritin and its pharmaceutical analogue, Ferrum Lek, containing nanosized hydrous ferric oxides cores in the forms of ferrihydrite and akaganéite, respectively, were studied using Mössbauer spectroscopy with a high velocity resolution in the temperature range of 295-90 K. To simplify comparison, these spectra were fitted using one quadrupole doublet within the homogeneous iron core model. An unusual line broadening with a temperature decrease was observed in this way for human liver ferritin below ˜150 K and for Ferrum Lek below ˜130 K. Some anomalies were also observed below these temperatures for spectral area and quadrupole splitting. The Debye temperature for both iron cores was evaluated from temperature dependence of isomer shift using the temperature dependence of the second-order Doppler shift.

  15. Optical rotation based chirality detection of enantiomers via weak measurement in frequency domain

    NASA Astrophysics Data System (ADS)

    Li, Dongmei; Guan, Tian; Liu, Fang; Yang, Anping; He, Yonghong; He, Qinghua; Shen, Zhiyuan; Xin, Meiguo

    2018-05-01

    A transmission optical rotation detection scheme based on a weak measurement was proposed for the chirality detection of enantiomers. In this transmission weak measurement system in the frequency domain, the optical activity of the chiral liquid sample was estimated with the central wavelength shift, by modifying the preselected polarization state with the optical rotation (OR). The central wavelength shift of output spectra is sensitive to the OR angle but immune to the interference of the refractive index change caused by measuring circumstances. Two isomers of chiral amino acid acquired opposite responses with this system, and a resolution of 2.17 × 10-9 mol/ml for Proline detection could be obtained. Such a resolution is about 2 orders of magnitude higher than that of common methods, which shows a high sensitivity. This proposed weak measurement scenario suggested an approach to polarimetry and provided a way to accurately assess molecular chirality.

  16. Nuclear magnetic resonance, vibrational spectroscopic studies, physico-chemical properties and computational calculations on (nitrophenyl) octahydroquinolindiones by DFT method.

    PubMed

    Pasha, M A; Siddekha, Aisha; Mishra, Soni; Azzam, Sadeq Hamood Saleh; Umapathy, S

    2015-02-05

    In the present study, 2'-nitrophenyloctahydroquinolinedione and its 3'-nitrophenyl isomer were synthesized and characterized by FT-IR, FT-Raman, (1)H NMR and (13)C NMR spectroscopy. The molecular geometry, vibrational frequencies, (1)H and (13)C NMR chemical shift values of the synthesized compounds in the ground state have been calculated by using the density functional theory (DFT) method with the 6-311++G (d,p) basis set and compared with the experimental data. The complete vibrational assignments of wave numbers were made on the basis of potential energy distribution using GAR2PED programme. Isotropic chemical shifts for (1)H and (13)C NMR were calculated using gauge-invariant atomic orbital (GIAO) method. The experimental vibrational frequencies, (1)H and (13)C NMR chemical shift values were found to be in good agreement with the theoretical values. On the basis of vibrational analysis, molecular electrostatic potential and the standard thermodynamic functions have been investigated. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Analysis, toxicity, occurrence and biodegradation of nonylphenol isomers: a review.

    PubMed

    Lu, Zhijiang; Gan, Jay

    2014-12-01

    Over the last two decades, nonylphenols (NPs) have become to be known as a priority hazardous substance due primarily to its estrogenicity and ubiquitous occurrence in the environment. Nonylphenols are commonly treated as a single compound in the evaluation of their environmental occurrence, fate and transport, treatment or toxicity. However, technical nonylphenols (tNPs) are in fact a mixture of more than 100 isomers and congeners. Recent studies showed that some of these isomers behaved significantly differently in occurrence, estrogenicity and biodegradability. The most estrogenic isomer was about 2 to 4 times more active than tNP. Moreover, the half lives of the most recalcitrant isomers were about 3 to 4 times as long as those of readily-biodegradable isomers. Negligence of NP's isomer specificity may result in inaccurate assessment of its ecological and health effects. In this review, we summarized the recent publications on the analysis, occurrence, toxicity and biodegradation of NP at the isomer level and highlighted future research needs to improve our understanding of isomer-specificity of NP. Copyright © 2014. Published by Elsevier Ltd.

  18. Treatment of isomers in nucleosynthesis codes

    NASA Astrophysics Data System (ADS)

    Reifarth, René; Fiebiger, Stefan; Göbel, Kathrin; Heftrich, Tanja; Kausch, Tanja; Köppchen, Christoph; Kurtulgil, Deniz; Langer, Christoph; Thomas, Benedikt; Weigand, Mario

    2018-03-01

    The decay properties of long-lived excited states (isomers) can have a significant impact on the destruction channels of isotopes under stellar conditions. In sufficiently hot environments, the population of isomers can be altered via thermal excitation or de-excitation. If the corresponding lifetimes are of the same order of magnitude as the typical time scales of the environment, the isomers have to be treated explicitly. We present a general approach to the treatment of isomers in stellar nucleosynthesis codes and discuss a few illustrative examples. The corresponding code is available online at http://exp-astro.de/isomers/.

  19. Demonstrating Paramagnetism Using Liquid Nitrogen.

    ERIC Educational Resources Information Center

    Simmonds, Ray; And Others

    1994-01-01

    Describes how liquid nitrogen is attracted to the poles of neodymium magnets. Nitrogen is not paramagnetic, so the attraction suggests that the liquid nitrogen contains a small amount of oxygen, which causes the paramagnetism. (MVL)

  20. Gaussian and linear deconvolution of LC-MS/MS chromatograms of the eight aminobutyric acid isomers

    PubMed Central

    Vemula, Harika; Kitase, Yukiko; Ayon, Navid J.; Bonewald, Lynda; Gutheil, William G.

    2016-01-01

    Isomeric molecules present a challenge for analytical resolution and quantification, even with MS-based detection. The eight-aminobutyric acid (ABA) isomers are of interest for their various biological activities, particularly γ-aminobutyric acid (GABA) and the d- and l-isomers of β-aminoisobutyric acid (β-AIBA; BAIBA). This study aimed to investigate LC-MS/MS-based resolution of these ABA isomers as their Marfey's (Mar) reagent derivatives. HPLC was able to separate three Mar-ABA isomers l-β-ABA (l-BABA), and l- and d-α-ABA (AABA) completely, with three isomers (GABA, and d/l-BAIBA) in one chromatographic cluster, and two isomers (α-AIBA (AAIBA) and d-BABA) in a second cluster. Partially separated cluster components were deconvoluted using Gaussian peak fitting except for GABA and d-BAIBA. MS/MS detection of Marfey's derivatized ABA isomers provided six MS/MS fragments, with substantially different intensity profiles between structural isomers. This allowed linear deconvolution of ABA isomer peaks. Combining HPLC separation with linear and Gaussian deconvolution allowed resolution of all eight ABA isomers. Application to human serum found a substantial level of l-AABA (13 μM), an intermediate level of l-BAIBA (0.8 μM), and low but detectable levels (<0.2 μM) of GABA, l-BABA, AAIBA, d-BAIBA, and d-AABA. This approach should be useful for LC-MS/MS deconvolution of other challenging groups of isomeric molecules. PMID:27771391

  1. Invisible Electronic States and Their Dynamics Revealed by Perturbations

    NASA Astrophysics Data System (ADS)

    Merer, Anthony J.

    2011-06-01

    Sooner or later everyone working in the field of spectroscopy encounters perturbations. These can range in size from a small shift of a single rotational level to total destruction of the vibrational and rotational patterns of an electronic state. To some workers perturbations are a source of terror, but to others they are the most fascinating features of molecular spectra, because they give information about molecular dynamics, and about states that would otherwise be invisible as a result of unfavorable selection rules. An example of the latter is the essentially complete characterization of the tilde{b}^3A_2 state of SO_2 from the vibronic perturbations it causes in the tilde{a}^3B_1 state. The S_1-trans state of acetylene is a beautiful example of dynamics in action. The level patterns of the three bending vibrations change dramatically with increasing vibrational excitation as a result of the vibrational angular momentum and the approach to the isomerization barrier. Several vibrational levels of the S_1-cis isomer, previously thought to be unobservable, can now be assigned. They obtain their intensity through interactions with nearby levels of the trans isomer.

  2. Hydrogen bonding in microsolvation: photoelectron imaging and theoretical studies on Au(x)(-)-(H2O)(n) and Au(x)(-)-(CH3OH)(n) (x = 1, 2; n = 1, 2) complexes.

    PubMed

    Wu, Xia; Tan, Kai; Tang, Zichao; Lu, Xin

    2014-03-14

    We have combined photoelectron velocity-map imaging (VMI) spectroscopy and theoretical calculations to elucidate the geometry and energy properties of Aux(-)(Solv)n clusters with x = 1, 2; n = 1, 2; and Solv = H2O and CH3OH. Besides the blue-shifted vertical electron detachment energies (VDEs) of the complexes Au1,2(-)(Solv)n with the increase of the solvation number (n), we independently probed two distinct Au(-)(CH3OH)2 isomers, which combined with MP2/aug-cc-pVTZ(pp) calculations represent a competition between O···H-O hydrogen bonds (HBs) and Au···H-O nonconventional hydrogen bonds (NHBs). Complementary calculations provide the total binding energies of the low-energy isomers. Moreover, the relationship between the total binding energies and total VDEshift is discussed. We found that the Au1,2(-) anions exhibit halide-analogous behavior in microsolvation. These findings also demonstrate that photoelectron velocity map imaging spectroscopy with the aid of the ab initio calculations is an effective tool for investigating weak-interaction complexes.

  3. Isomeric discrimination of synthetic cannabinoids by GC-EI-MS: 1-adamantyl and 2-adamantyl isomers of N-adamantyl carboxamides.

    PubMed

    Asada, Akiko; Doi, Takahiro; Tagami, Takaomi; Takeda, Akihiro; Sawabe, Yoshiyuki

    2017-03-01

    N-(1-adamantyl)-1-pentyl-1H-indazole-3-carboxamide (APINACA) and N-(1-adamantyl)-1-pentyl-1H-indole-3-carboxamide (APICA) are carboxamide-type synthetic cannabinoids comprising indazole/indole-3-carboxylic acid and adamantan-1-amine moieties. However, in the case of compounds like APINACA or APICA, adamantyl positional isomers exist, wherein either adamantan-1-amine or adamantan-2-amine is present. These adamantyl positional isomers have not been reported in previous studies, and no analytical data are available. To avoid misidentification of adamantyl carboxamide-type synthetic cannabinoids, it is important to develop methods to discriminate these adamantyl positional isomers. In this study, we report the analytical characterization by gas chromatography-electron ionization-mass spectrometry (GC-EI-MS). For providing analytical standards, we synthesized eight carboxamide-type synthetic cannabinoids (APINACA 2-adamantyl isomer, APICA 2-adamantyl isomer, 5 F-APINACA 2-adamantyl isomer, 5 F-APICA 2-adamantyl isomer, 5Cl-APINACA, 5Cl-APINACA 2-adamantyl isomer, adamantyl-THPINACA, 2-adamantyl-THPINACA) and purchased four 1-adamantyl derivatives (APINACA, APICA, 5 F-APINACA, 5 F-APICA). Although the retention times of the isomers are similar, 1-adamantyl carboxamides can be clearly discriminated from their 2-adamantyl isomers based on their different fragmentation patterns in the EI-MS spectra. Specifically, EI-MS spectra for adamantylindazole carboxamides showed remarkable differences between the 1-adamantyl and 2-adamantyl isomers. On the other hand, EI-MS spectra for adamantylindole carboxamides were similar, but the diagnostic ions of the 2-adamantyl isomers were observed. The method described herein was applicable to all compounds tested in this study and is expected to be of use for isomeric differentiation between other untested adamantyl carboxamide-type synthetic cannabinoids. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. PAH chemistry at eV internal energies. 1. H-shifted isomers

    NASA Astrophysics Data System (ADS)

    Trinquier, Georges; Simon, Aude; Rapacioli, Mathias; Gadéa, Florent Xavier

    2017-06-01

    The PAH family of organic compounds (polycyclic aromatic hydrocarbons), involved in several fields of chemistry, has received particular attention in astrochemistry, where their vibrational spectroscopy, thermodynamics, dynamics, and fragmentation properties are now abundantly documented. This survey aims at drawing trends for low spin-multiplicity surfaces of PAHs bearing internal energies in the range 1-10 eV. It addresses some typical alternatives to the ground-state regular structures of PAHs, making explicit possible intramolecular rearrangements leading to high-lying minima. These isomerisations should be taken into consideration when addressing PAH processing in astrophysical conditions. The first part of this double-entry study focuses on the hydrogen-shifted forms, which bear both a carbene center and a saturated carbon. It rests upon DFT calculations mainly performed on two emblematic PAH representatives, coronene and pyrene, in their neutral and mono- and multi-cationic states. Systematically searched for in neutral species, these H-shifted minima are lying 4-5 eV above the regular all-conjugated forms, and are separated by barriers of about 1 eV. General hydrogen-shifting is found to be easier for cationic species as the relative energies of their H-shifted minima are 1-1.5 eV lower than those for neutral species. As much as possible, classical knowledge and concepts of organic chemistry such as aromaticity and Clar's rules are invoked for result interpretation.

  5. 21 CFR 1308.12 - Schedule II.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... nervous system, including its salts, isomers, and salts of isomers whenever the existence of such salts... which contains any quantity of the following substances having a stimulant effect on the central nervous system: (1) Amphetamine, its salts, optical isomers, and salts of its optical isomers 1100 (2...

  6. 21 CFR 1308.12 - Schedule II.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... nervous system, including its salts, isomers, and salts of isomers whenever the existence of such salts... which contains any quantity of the following substances having a stimulant effect on the central nervous system: (1) Amphetamine, its salts, optical isomers, and salts of its optical isomers 1100 (2...

  7. 21 CFR 1308.12 - Schedule II.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... nervous system, including its salts, isomers, and salts of isomers whenever the existence of such salts... which contains any quantity of the following substances having a stimulant effect on the central nervous system: (1) Amphetamine, its salts, optical isomers, and salts of its optical isomers 1100 (2...

  8. 21 CFR 1308.12 - Schedule II.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... nervous system, including its salts, isomers, and salts of isomers whenever the existence of such salts... which contains any quantity of the following substances having a stimulant effect on the central nervous system: (1) Amphetamine, its salts, optical isomers, and salts of its optical isomers 1100 (2...

  9. 21 CFR 1308.12 - Schedule II.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... nervous system, including its salts, isomers, and salts of isomers whenever the existence of such salts... which contains any quantity of the following substances having a stimulant effect on the central nervous system: (1) Amphetamine, its salts, optical isomers, and salts of its optical isomers 1100 (2...

  10. Separation of the isomers of benzene poly(carboxylic acid)s by quaternary ammonium salt via formation of deep eutectic solvents.

    PubMed

    Hou, Yucui; Li, Jian; Ren, Shuhang; Niu, Muge; Wu, Weize

    2014-11-26

    Because of similar properties and very low volatility, isomers of benzene poly(carboxylic acid)s (BPCAs) are very difficult to separate. In this work, we found that isomers of BPCAs could be separated efficiently by quaternary ammonium salts (QASs) via formation of deep eutectic solvents (DESs). Three kinds of QASs were used to separate the isomers of BPCAs, including the isomers of benzene tricarboxylic acids (trimellitic acid, trimesic acid, and hemimellitic acid) and the isomers of benzene dicarboxylic acids (phthalic acid and isophthalic acid). Among the QASs, tetraethylammonium chloride was found to have the best performance, which could completely separate BPCA isomers in methyl ethyl ketone solutions. It was found that the hydrogen bond forming between QAS and BPCA results in the selective separation of BPCA isomers. QAS in DES was regenerated effectively by the antisolvent method, and the regenerated QAS was reused four times with the same high efficiency.

  11. [Cytotoxicity of lysomustine and its isomers, and their potential use for selection of cells].

    PubMed

    Rozov, F N; Grinenko, T S; Levit, G L; Grishakov, A N; Beliavskiĭ, A V; Krasnov, V P

    2011-01-01

    N epsilon-Nitroso-N epsilon- [N'-(2-chloroethyl)carbamoyl]-L-lysine (I) and N epsilon- [N'-(2-chloroethyl)-N'-nitrosocarbamoyl]-L-lysine (II), the isomers being the constituents of antitumor agent Lysomustine, were obtained by RFHPLC. The study of cytotoxicity of the above compounds against K562 cells showed that the lesions induced by isomer (II) produce a significant cytotoxic effect but can be efficiently repaired by the action of MGMT (O6-methylaguanine DNA methyltransferase). Under similar conditions, the lesions induced by isomer (I) produce substantially smaller effect but are weakly if at all repairable by MGMT. The effects of a clinically approved agent Lysomustine, which is the mixture of isomers (I) and (II), are similar to those of isomer (II). The results obtained point to a different chemical nature of DNA lesions induced by two Lysomustine isomers. Our data indicate that Lysomustine and its isomer (II) can be used for in vitro selection of cells expressing MGMT.

  12. Distribution of hexadecenoic, octadecenoic and octadecadienoic acid isomers in human tissue lipids.

    PubMed

    Adlof, R O; Emken, E A

    1986-09-01

    The trans 16:1, 18:1 and 18:2 fatty acid composition of various human organ lipids was studied to determine if isomers accumulated in specific tissues. "Trans" isomers are defined as those fatty acids containing one or more trans double bonds. Adipose, kidney, brain, heart and liver tissue lipids were analyzed. Gas chromatography with a 100-SP2560 capillary column was used to characterize the various positional and/or geometrical isomers. The distribution of trans 16:1 and 18:1 isomers ranged from 0.3% in the brain to 4.0% in adipose tissue, while trans 18:2 isomers ranged from 0.0% in the brain to 0.4% in adipose tissue. No trans 18:3 isomers were detected. Positional isomer ratios for cis 16:1 (delta 9 vs delta 7) and cis 18:1 (delta 11 vs delta 9) were also determined. Since these ratios are reproducible from one individual to the next, they might be useful for diagnosis of human metabolic disorders.

  13. Jet-cooled electronic and vibrational spectroscopy of crown ethers: benzo-15-crown-5 ether and 4'-amino-benzo-15-crown-5 ether.

    PubMed

    Shubert, V Alvin; James, William H; Zwier, Timothy S

    2009-07-16

    Laser-induced fluorescence (LIF), ultraviolet hole-burning (UVHB), and resonant ion-dip infrared (RIDIR) spectroscopies were carried out on isolated benzo-15-crown-5 ether (B15C) and 4'-amino-benzo-15-crown-5 ether (ABC) cooled in a supersonic expansion. Three conformational isomers of B15C and four of ABC were observed and spectroscopically characterized. Full optimizations and harmonic frequency calculations were undertaken for the full set of almost 1700 conformational minima identified in a molecular mechanics force field search. When compared with TDDFT predictions, the S(0)-S(1) origin positions serve as a useful diagnostic of the conformation of the crown ether near the phenyl ring responsible for the UV absorption and to the position of the NH(2) substituent. In-plane orientations for the beta carbons produce red-shifted S(0)-S(1) origins, while out-of-plane "buckling" produces substantial blue shifts of 600 cm(-1) or more. Comparison between the alkyl CH stretch spectra of B15C and ABC divide the spectra into common subgroups shared by the two molecules. The high-frequency CH stretch transitions (above 2930 cm(-1)) reflect the number of CH...O interactions, which in turn track in a general way the degree of buckling of the crown. On this basis, assignments of each of the observed conformational isomers to a class of structure can be made. All the observed structures have some degree of buckling to them, indicating that in the absence of a strong-binding partner, the crown folds in on itself to gain additional stabilization from weak dispersive and CH...O interactions.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCammon, C.; Dubrovinsky, L.; Narygina, O.

    We investigated the spin state of iron in Mg{sub 0.82}Fe{sub 0.18}SiO{sub 3} silicate perovskite using Moessbauer spectroscopy and nuclear forward scattering (NFS) at pressures up to 130 GPa and temperatures up to 1000 K. Majorite starting material was loaded into diamond anvil cells in three separate experiments, and transformed to silicate perovskite through laser heating. We found, in agreement with previous work, the predominance of a component with high isomer shift ({approx}1 mm/s relative to {alpha}-Fe) and high-quadrupole splitting (QS) (>4 mm/s) in Moessbauer and NFS spectra up to 115 GPa at room temperature, and in accordance with previous workmore » this component was assigned to intermediate-spin Fe{sup 2+}. At higher pressures, the intensity of the high QS component in the silicate perovskite spectrum decreased, while the intensity of a new component with low isomer shift ({approx}0 mm/s relative to {alpha}-Fe) and low quadrupole splitting (<0.5 mm/s) increased. This new component was assigned to low-spin Fe{sup 2+}, and its intensity increased with both increasing pressure and increasing temperature: at 120 GPa and 1000 K all Fe{sup 2+} was in the low-spin state. X-ray diffraction data showed well crystallized perovskite in all runs, and although the stable phase above 110 GPa is expected to be post-perovskite, sluggish transition kinetics likely preserved the perovskite phase in a metastable state. Our results combined with data in the literature and thermodynamic and topological considerations suggest that there may be a region where silicate perovskite containing low-spin Fe{sup 2+} is stable, which coincides with predicted pressure-temperature conditions near the D{double_prime} layer.« less

  15. First Observation and Analysis of OCS-C_4H_2 Dimer and (OCS)_2-C_4H_2 Trimer

    NASA Astrophysics Data System (ADS)

    Sheybani-Deloui, S.; Yousefi, Mahdi; Norooz Oliaee, Jalal; McKellar, Bob; Moazzen-Ahmadi, Nasser

    2014-06-01

    Infrared spectrum of a slipped near parallel isomer of OCS-C_4H_2 was observed in the region of νb{1} fundamental band of OCS monomer (˜2062 wn) using a diode laser to probe the supersonic slit jet expansion. The ab initio calculations at MP2 level indicate that the observed structure is the lowest energy isomer. The OCS-C_4H_2 band is composed of hybrid a/b-type transitions and was simulated by a conventional asymmetric top Hamiltonian with rotational constants of A=2892.15(10) MHz, B=1244.178(84) MHz, and C=868.692(52) MHz. The spectrum shows a relatively large red-shift of ˜6 wn with respect to the OCS monomer band origin. Also, one band for (OCS)_2-C_4H_2 trimer is observed around 2065 wn. This band is blue-shifted by 3 wn relative to the νb{1} fundamental band of OCS monomer. Our analysis shows that this trimer has C2 symmetry with rotational constants of A= 855.854(61) MHz, B=733.15(11) MHz, and C=610.10(38) MHz and c-type transitions. This structure is comparable with that of (OCS)_2-C_2H_2 where the OCS dimer unit within the trimer is non-polar. In addition to the normal isotoplogues, OCS-C_4D_2 and (OCS)_2-C_4D_2 were observed. In this talk, we discuss our observations and analysis on OCS-C_4H_2 dimer and (OCS)_2-C_4H_2 trimer. Mojtaba Rezaei, A. R. W. McKellar, and N. Moazzen-Ahmadi, J. Phys. Chem. A, 115, 10416 (2011).

  16. Influences of the propyl group on the van der Waals structures of 4-propylaniline complexes with one and two argon atoms studied by electronic and cationic spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhijun; Gu, Quanli; Department of Chemistry, University of Oklahoma, Norman, Oklahoma 73019

    2015-07-21

    4-propylaniline complexes with one and two argon atoms formed in the molecular beam were studied in the first excited electronic state, S{sub 1}, using resonance enhanced two-photon ionization spectroscopy and in the cation ground state, D{sub 0}, using mass analyzed threshold ionization spectroscopy. The combination of electronic and cationic spectra of the clusters allows two conformations to be identified in both aniline-Ar{sub 1} and aniline-Ar{sub 2}, which are assigned to either the gauche configuration or anti-configuration of 4-propylaniline. The gauche isomer exhibits complex bands shifted 29 cm{sup −1} and 89 cm{sup −1} from the S{sub 1} origin bands and 83more » cm{sup −1} and 148 cm{sup −1} from the ionization potential assigned to the Ar{sub 1} and Ar{sub 2} complexes, respectively. For the anti-rotamer, the corresponding shifts actually become nearly additive, 53 cm{sup −1} and 109 cm{sup −1} for the S{sub 1} origin bands, and 61 cm{sup −1} and 125 cm{sup −1} for the ionization potentials. Ab initio calculations provide insights into the influences of the propyl and amino groups on the positions of the argon atoms within the clusters. In addition, the binding energy of one argon with the gauche isomer of 4-propylaniline has been measured to be 550 ± 5 cm{sup −1} in the D{sub 0} state, 496 ± 5 cm{sup −1} in the S{sub 1} state, and 467 ± 5 cm{sup −1} in the neutral ground state, S{sub 0}.« less

  17. Mid-infrared signatures of hydroxyl containing water clusters: Infrared laser Stark spectroscopy of OH–H{sub 2}O and OH(D{sub 2}O){sub n} (n = 1-3)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez, Federico J.; INFIQC, Dpto. de Fisicoquímica, Facultad de Ciencias Químicas, Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Ciudad Universitaria, Pabellón, X5000HUA Córdoba; Brice, Joseph T.

    2015-10-28

    Small water clusters containing a single hydroxyl radical are synthesized in liquid helium droplets. The OH–H{sub 2}O and OH(D{sub 2}O){sub n} clusters (n = 1-3) are probed with infrared laser spectroscopy in the vicinity of the hydroxyl radical OH stretch vibration. Experimental band origins are qualitatively consistent with ab initio calculations of the global minimum structures; however, frequency shifts from isolated OH are significantly over-predicted by both B3LYP and MP2 methods. An effective Hamiltonian that accounts for partial quenching of electronic angular momentum is used to analyze Stark spectra of the OH–H{sub 2}O and OH–D{sub 2}O binary complexes, revealing amore » 3.70(5) D permanent electric dipole moment. Computations of the dipole moment are in good agreement with experiment when large-amplitude vibrational averaging is taken into account. Polarization spectroscopy is employed to characterize two vibrational bands assigned to OH(D{sub 2}O){sub 2}, revealing two nearly isoenergetic cyclic isomers that differ in the orientation of the non-hydrogen-bonded deuterium atoms relative to the plane of the three oxygen atoms. The dipole moments for these clusters are determined to be approximately 2.5 and 1.8 D for “up-up” and “up-down” structures, respectively. Hydroxyl stretching bands of larger clusters containing three or more D{sub 2}O molecules are observed shifted approximately 300 cm{sup −1} to the red of the isolated OH radical. Pressure dependence studies and ab initio calculations imply the presence of multiple cyclic isomers of OH(D{sub 2}O){sub 3}.« less

  18. Population and decay of a Kπ=8- two-quasineutron isomer in 244Pu

    NASA Astrophysics Data System (ADS)

    Hota, S. S.; Tandel, S. K.; Chowdhury, P.; Ahmad, I.; Carpenter, M. P.; Chiara, C. J.; Greene, J. P.; Hoffman, C. R.; Jackson, E. G.; Janssens, R. V. F.; Kay, B. P.; Khoo, T. L.; Kondev, F. G.; Lakshmi, S.; Lalkovski, S.; Lauritsen, T.; Lister, C. J.; McCutchan, E. A.; Moran, K.; Peterson, D.; Shirwadkar, U.; Seweryniak, D.; Stefanescu, I.; Toh, Y.; Zhu, S.

    2016-08-01

    The decay of a Kπ=8- isomer in 244Pu and the collective band structures populating the isomer were studied using deep inelastic excitations with 47Ti and 208Pb beams, respectively. Precise measurements of M 1 /E 2 branching ratios in the band confirm a 9 /2-[734] ν⊗7 /2+[624] ν configuration assignment for the isomer, validating the systematics of Kπ=8- , two-quasineutron isomers observed in even-Z , N =150 isotones. These isomers around the deformed shell gap at N =152 provide critical benchmarks for theoretical predictions of single-particle energies in this gateway region to superheavy nuclei.

  19. Separation behavior of octadecadienoic acid isomers and identification of cis- and trans-isomers using gas chromatography.

    PubMed

    Shibamoto, Shigeaki; Gooley, Andrew; Yamamoto, Kouhei

    2015-01-01

    Using a strongly polar cyanopropyl capillary column we have investigated the gas chromatography (GC) separation behaviors of 24 octadecadienoic acid methyl ester (18:2ME) isomers compared against saturated methyl stearate (18:0ME) and arachidic acid methyl ester (20:0ME), and the dependency on the GC column temperature. The 24 isomers were obtained by performing cis-to trans-isomerization of six regioisomers: five of the 18:2ME isomers were prepared by the partial reduction of methyl α-linolenate and methyl γ-linolenate C18 trienoic acids with different double bond positions, whereas the sixth isomer, 18:2ME (c5, c9), was obtained from a raw constituent fatty acid methyl ester (FAME) sample extracted from Japanese yew seeds. There are no reference standards commercially available for 18:2ME isomers, and in elucidating the elution order of these isomers this study should help the future identification of cis- and trans-type of 18:2ME. We also report the identification method of cis- and trans-type of FAME using equivalent chain lengths and attempt the identification of cis- and trans-type of 18:2ME isomers from partially hydrogenated canola oil.

  20. Point defects in crystalline zircon (zirconium silicate), ZrSiO4: electron paramagnetic resonance studies

    NASA Astrophysics Data System (ADS)

    Tennant, W. C.; Claridge, R. F. C.; Walsby, C. J.; Lees, N. S.

    This article outlines the present state of knowledge of paramagnetic defects in crystalline zircon as obtained mainly, but not exclusively, from electron paramagnetic resonance (EPR) studies in crystalline zircon (zirconium silicate, ZrSiO4). The emphasis is on single-crystal studies where, in principle, unambiguous analysis is possible. Firstly, the crystallography of zircon is presented. Secondly, the relationships between available crystal-site symmetries and the symmetries of observed paramagnetic species in zircon, and how these observations lead to unambiguous assignments of point-group symmetries for particular paramagnetic species are detailed. Next, spin-Hamiltonian (SH) analysis is discussed with emphasis on the symmetry relationships that necessarily exist amongst the Laue classes of the crystal sites in zircon, the paramagnetic species occupying those sites and the SH itself. The final sections of the article then survey the results of EPR studies on zircon over the period 1960-2002.

  1. Fe(III)-EDDHA and -EDDHMA sorption on Ca-montmorillonite, ferrihydrite, and peat.

    PubMed

    Hernández-Apaolaza, L; Lucena, J J

    2001-11-01

    The effectiveness of Fe chelates as Fe sources and carriers in soil can be severely limited by the adsorption of Fe chelates or chelating agents in the solid phase. To study this phenomenon, well-characterized peat, Ca-montmorillonite, and ferrihydrite were used as model compounds, and the adsorption of Fe-EDDHA and Fe-EDDHMA chelates were studied. Sorption isotherms for the meso and racemic isomers of these chelates on the soil materials are described. The variability of sorption with pH in peat and ferrihydrite was also determined because both have variable surface charge at different pH values. In montmorillonite, at low concentrations, the retention of Fe from the Fe-EDDHMA chelate is greater than the one of the Fe-EDDHA chelate. As well as the concentration increased, the inverse situation occurs. The behavior of both meso and racemic isomers of chelates in contact with Ca-montmorillonite is similar. The Fe-meso-EDDHA isomer was highly adsorbed on ferrihydrite, but the racemic isomer is not significantly retained by this oxide. For Fe-EDDHMA isomers, the racemic isomer was more retained by the oxide, but a small sorption of the racemic isomer was also observed. Results suggest that Fe-EDDHA chelates were more retained in peat than Fe-EDDHMA chelates. The most retained isomer of Fe-EDDHA was the meso isomer. For Fe-EDDHMA, the adsorption was very low for both racemic and meso isomers.

  2. An Isomer-Specific Approach to Endocrine-Disrupting Nonylphenol in Infant Food.

    PubMed

    Günther, Klaus; Räcker, Torsten; Böhme, Roswitha

    2017-02-15

    Nonylphenols (NPs) are persistent endocrine disruptors that are priority hazardous substances of the European Union Water Framework Directive. Their presence in the environment has caused growing concern regarding their impact on human health. Recent studies have shown that nonylphenol is ubiquitous in commercially available foodstuffs and is also present in human blood. The isomer distribution of 4-nonylphenol was analyzed by gas chromatography - mass spectrometry in 44 samples of infant food. Our study shows that the distribution of nonylphenol isomers is dependent on the foodstuff analyzed. Although some isomer groups prevail, different distributions are frequent. Variations are even found in the same food group. Nonylphenol is a complex mixture of isomers, and the estrogenic potentials of each of these isomers are very different. Consequently, to determine the potential toxicological impact of NP in food, an isomer-specific approach is necessary.

  3. Formation of melatonin and its isomer during bread dough fermentation and effect of baking.

    PubMed

    Yılmaz, Cemile; Kocadağlı, Tolgahan; Gökmen, Vural

    2014-04-02

    Melatonin is produced mainly by the pineal gland in vertebrates. Also, melatonin and its isomer are found in foods. Investigating the formation of melatonin and its isomer is of importance during bread dough fermentation and its degradation during baking since bread is widely consumed in high amounts. Formation of melatonin was not significant during dough fermentation. The melatonin isomer content of nonfermented dough was found to be 4.02 ng/g and increased up to 16.71 ng/g during fermentation. Lower amounts of isomer in crumb and crust than dough showed that the thermal process caused a remarkable degree of degradation in melatonin isomer. At the end of the 180 min fermentation Trp decreased by 58%. The results revealed for the first time the formation of a melatonin isomer in bread dough during yeast fermentation.

  4. The Effect of Geometrical Isomerism of 3,5-Dicaffeoylquinic Acid on Its Binding Affinity to HIV-Integrase Enzyme: A Molecular Docking Study.

    PubMed

    Makola, Mpho M; Dubery, Ian A; Koorsen, Gerrit; Steenkamp, Paul A; Kabanda, Mwadham M; du Preez, Louis L; Madala, Ntakadzeni E

    2016-01-01

    A potent plant-derived HIV-1 inhibitor, 3,5-dicaffeoylquinic acid (diCQA), has been shown to undergo isomerisation upon UV exposure where the naturally occurring 3 trans ,5 trans -diCQA isomer gives rise to the 3 cis ,5 trans -diCQA, 3 trans ,5 cis -diCQA, and 3 cis ,5 cis -diCQA isomers. In this study, inhibition of HIV-1 INT by UV-induced isomers was investigated using molecular docking methods. Here, density functional theory (DFT) models were used for geometry optimization of the 3,5-diCQA isomers. The YASARA and Autodock VINA software packages were then used to determine the binding interactions between the HIV-1 INT catalytic domain and the 3,5-diCQA isomers and the Discovery Studio suite was used to visualise the interactions between the isomers and the protein. The geometrical isomers of 3,5-diCQA were all found to bind to the catalytic core domain of the INT enzyme. Moreover, the cis geometrical isomers were found to interact with the metal cofactor of HIV-1INT, a phenomenon which has been linked to antiviral potency. Furthermore, the 3 trans ,5 cis -diCQA isomer was also found to interact with both LYS156 and LYS159 which are important residues for viral DNA integration. The differences in binding modes of these naturally coexisting isomers may allow wider synergistic activity which may be beneficial in comparison to the activities of each individual isomer.

  5. 40 CFR 721.10564 - Mixed amino diaryl sulfone isomers (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixed amino diaryl sulfone isomers... Specific Chemical Substances § 721.10564 Mixed amino diaryl sulfone isomers (generic). (a) Chemical... as mixed amino diaryl sulfone isomers (PMN P-08-39) is subject to reporting under this section for...

  6. 40 CFR 721.10564 - Mixed amino diaryl sulfone isomers (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixed amino diaryl sulfone isomers... Specific Chemical Substances § 721.10564 Mixed amino diaryl sulfone isomers (generic). (a) Chemical... as mixed amino diaryl sulfone isomers (PMN P-08-39) is subject to reporting under this section for...

  7. [KEEPING THE ELECTRON-DONOR PROPERTIES OF DRINKING WATER].

    PubMed

    Gibert, K K; Stekhin, A A; Iakovleva, G V; Sul'ina, Iu S

    2015-01-01

    In a study there was performed the experimental evaluation of long-term structural--physical changes of the phase of associated water in drinking water treated in hypomagnetic conditions according to the the technology providing the retention of of ortho/para isomers of water in the presence of a catalyst--triplet oxygen. According to the results of measurements ofparameters of nano-associates formed in the water there was found a series ofconsistencies, allowing to determine the mechanisms of the impact of hypomagnetic treatment on the catalytic properties ofwater and long-term stability of its activated state, that provides the long-term maintenance of high biological activity of drinking water. In particular, under hypomagnetic conditions of the treatment there is formed denser packing of amorphous ice--VI in the composition of associates peroxide, serving as a kind of "reservoir" of atmospheric gases. In such a "reservoir" there realized higher pressure, compared with normal geophysical conditions, that stimulates the gas-phase reactions with the formation of dimers and trimers of oxygen existing in the 2-electron--active configurations with binding energies of 0.3 eVand ~0.2 eV providing phase modulation, resulting in condensation of environment additional electrons on paramagnetic oxygen, which provides the long-term maintenance of the electron--donor ability of water and electrically non-equilibrium state.

  8. Radical-molecule reaction C3H+H2O: a mechanistic study.

    PubMed

    Dong, Hao; Ding, Yi-Hong; Sun, Chia-Chung

    2005-02-08

    Despite the importance of the C(3)H radical in both combustion and interstellar space, the reactions of C(3)H toward stable molecules have never been studied. In this paper, we report our detailed mechanistic study on the radical-molecule reaction C(3)H+H(2)O at the Becke's three parameter Lee-Yang-Parr-B3LYP6-311G(d,p) and coupled cluster with single, double, and triple excitations-CCSD(T)6-311G(2d,p) (single-point) levels. It is shown that the C(3)H+H(2)O reaction initially favors formation of the carbene-insertion intermediates HCCCHOH (1a,1b) rather than the direct H- or OH-abstraction process. Subsequently, the isomers (1a,1b) can undergo a direct H- extrusion to form the well-known product propynal HCCCHO (P(5)). Highly competitively, (1a,1b) can take the successive 1,4- and 1,2-H-shift interconversion to isomer H(2)CCCHO(2a,2b) and then to isomer H(2)CCHCO(3a,3b), which can finally take a direct C-C bond cleavage to give product C(2)H(3) and CO (P(1)). The other products are kinetically much less feasible. With the overall entrance barrier 10.6 kcal/mol, the title reaction can be important in postburning processes. Particularly, our calculations suggest that the title reaction may play a role in the formation of the intriguing interstellar molecule, propynal HCCCHO. The calculated results will also be useful for the analogous C(3)H reactions such as with ammonia and alkanes.

  9. Determination of ion mobility collision cross sections for unresolved isomeric mixtures using tandem mass spectrometry and chemometric deconvolution.

    PubMed

    Harper, Brett; Neumann, Elizabeth K; Stow, Sarah M; May, Jody C; McLean, John A; Solouki, Touradj

    2016-10-05

    Ion mobility (IM) is an important analytical technique for determining ion collision cross section (CCS) values in the gas-phase and gaining insight into molecular structures and conformations. However, limited instrument resolving powers for IM may restrict adequate characterization of conformationally similar ions, such as structural isomers, and reduce the accuracy of IM-based CCS calculations. Recently, we introduced an automated technique for extracting "pure" IM and collision-induced dissociation (CID) mass spectra of IM overlapping species using chemometric deconvolution of post-IM/CID mass spectrometry (MS) data [J. Am. Soc. Mass Spectrom., 2014, 25, 1810-1819]. Here we extend those capabilities to demonstrate how extracted IM profiles can be used to calculate accurate CCS values of peptide isomer ions which are not fully resolved by IM. We show that CCS values obtained from deconvoluted IM spectra match with CCS values measured from the individually analyzed corresponding peptides on uniform field IM instrumentation. We introduce an approach that utilizes experimentally determined IM arrival time (AT) "shift factors" to compensate for ion acceleration variations during post-IM/CID and significantly improve the accuracy of the calculated CCS values. Also, we discuss details of this IM deconvolution approach and compare empirical CCS values from traveling wave (TW)IM-MS and drift tube (DT)IM-MS with theoretically calculated CCS values using the projected superposition approximation (PSA). For example, experimentally measured deconvoluted TWIM-MS mean CCS values for doubly-protonated RYGGFM, RMFGYG, MFRYGG, and FRMYGG peptide isomers were 288.8 Å(2), 295.1 Å(2), 296.8 Å(2), and 300.1 Å(2); all four of these CCS values were within 1.5% of independently measured DTIM-MS values. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Ordered phases in the Holstein-Hubbard model: Interplay of strong Coulomb interaction and electron-phonon coupling

    NASA Astrophysics Data System (ADS)

    Murakami, Yuta; Werner, Philipp; Tsuji, Naoto; Aoki, Hideo

    2013-09-01

    We study the Holstein-Hubbard model at half filling to explore ordered phases including superconductivity (SC), antiferromagnetism (AF), and charge order (CO) in situations where the electron-electron and electron-phonon interactions are strong (comparable to the electronic bandwidth). The model is solved in the dynamical mean-field approximation with a continuous-time quantum Monte Carlo impurity solver. We determine the superconducting transition temperature Tc and the SC order parameter and show that the phonon-induced retardation or the strong Coulomb interaction leads to a significant reduction and shift of the Tc dome against the effective electron-electron interaction Ueff given by the Hubbard U reduced by the phonon-mediated attraction in the static limit. This behavior is analyzed by comparison to an effective static model in the polaron representation with a renormalized bandwidth. In addition, we discuss the superconducting gap Δ and 2Δ/Tc to reveal the effect of the retardation and the Coulomb interaction. We also determine the finite-temperature phase diagram including AF and CO. In the moderate-coupling regime, there is a hysteretic region of AF and CO around Ueff=0, while the two phases are separated by a paramagnetic metal in the weak-coupling regime and a paramagnetic insulator in the strong-coupling regime.

  11. Structural, optical and magnetic properties of gadolinium sesquioxide nanobars synthesized via thermal decomposition of gadolinium oxalate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manigandan, R.; Giribabu, K.; Suresh, R.

    2013-10-15

    Graphical abstract: - Highlights: • The cubic Gd{sub 2}O{sub 3} nanobars are synthesized by decomposition of C{sub 6}H{sub 20}Gd{sub 2}O{sub 22}. • The nanoparticles are rectangular bar shape with high porous surface. • The combination of magnetic and optical properties within a single particle. • The Gd{sub 2}O{sub 3} nanobars have tailorable nanostructure, wide bandgap and are paramagnetic. - Abstract: Gadolinium oxide nanobars were obtained by thermal decomposition of gadolinium oxalate, which was synthesized by the chemical precipitation method along with glycerol. The functional group analysis and formation of gadolinium oxide from gadolinium oxalate were characterized by the Fourier transformmore » infrared spectroscopy and thermo gravimetric analyzer. The crystal structure, average crystallite size, and lattice parameter were analyzed by X-ray diffraction technique. Moreover, Raman shifts, elemental composition and morphology of the gadolinium oxide was widely investigated by the laser Raman microscope, X-ray photoelectron spectroscopy, FE-SEM-EDAX and HR-TEM, respectively. Furthermore, the optical properties like band gap, absorbance measurement of the gadolinium oxide were extensively examined. In addition, the paramagnetic property of gadolinium oxide nanobars was explored by the vibrating sample magnetometer.« less

  12. Synthesis, structural and paramagnetic properties of SnO{sub 2} doped NiO nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Islam, I., E-mail: ishtihadahislam@gmail.com; Dwivedi, Sonam; Dar, Hilal A.

    2016-05-06

    In this work, Sn doped NiO nanoparticles were synthesized by co-precipitation route to explore the impact of doping on lattice structure, dielectric constant and magnetization. X-ray diffraction analysis confirmed cubic (Fd-3m) structure of Sn doped NiO. Average crystallite size decreases from 78.2 nm (Ni{sub 0.95}Sn{sub 0.05}O) to 64.23 nm (Ni{sub 0.8}Sn{sub 0.2}O). Scanning electron microscopy images confirm that nanocrystals have agglomerated spherical morphology. The Raman spectrum exhibits a strong, broad peak at 410 cm{sup -1} and is attributed to the Ni-O stretching mode and doped samples show a blue shift. The dielectric constants at about 1 Hz are measured to be about 1.795,more » 1.030, 0.442, and 0.302 × 10{sup 3} Ni{sub 1-x}Sn{sub x}O (x = 0.05, 0.1, 0.15, 0.2), respectively. The dielectric constant in nanoparticles of doped Ni{sub 1-x}Sn{sub x}O is three orders of magnitude higher as compared to pure NiO ceramics. The nature of magnetization - applied field (M-H) infers paramagnetic behaviour for Sn doped NiO nanoparticles.« less

  13. Population and decay of a K π = 8 – two-quasineutron isomer in Pu 244

    DOE PAGES

    Hota, S. S.; Tandel, S. K.; Chowdhury, P.; ...

    2016-08-22

    Here, the decay of a K π = 8 – isomer in 244Pu and the collective band structures populating the isomer were studied using deep inelastic excitations with 47Ti and 208Pb beams, respectively. Precise measurements of M1/E2 branching ratios in the band confirm a 9/2 –[734] νⓍ7/2 +[624] ν configuration assignment for the isomer, validating the systematics of K π = 8 –, two-quasineutron isomers observed in even-Z, N = 150 isotones. These isomers around the deformed shell gap at N = 152 provide critical benchmarks for theoretical predictions of single-particle energies in this gateway region to superheavy nuclei.

  14. Population and decay of a K π = 8 – two-quasineutron isomer in Pu 244

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hota, S. S.; Tandel, S. K.; Chowdhury, P.

    Here, the decay of a K π = 8 – isomer in 244Pu and the collective band structures populating the isomer were studied using deep inelastic excitations with 47Ti and 208Pb beams, respectively. Precise measurements of M1/E2 branching ratios in the band confirm a 9/2 –[734] νⓍ7/2 +[624] ν configuration assignment for the isomer, validating the systematics of K π = 8 –, two-quasineutron isomers observed in even-Z, N = 150 isotones. These isomers around the deformed shell gap at N = 152 provide critical benchmarks for theoretical predictions of single-particle energies in this gateway region to superheavy nuclei.

  15. 40 CFR 180.157 - Methyl 3-[(dimethoxyphos-phinyl) oxy]butenoate, alpha and beta isomers; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...]butenoate, alpha and beta isomers; tolerances for residues. 180.157 Section 180.157 Protection of...]butenoate, alpha and beta isomers; tolerances for residues. (a) General. Tolerances are established for residues of the insecticide methyl 3-[(dimethoxyphosphinyl)oxy]butenoate, alpha and beta isomers, in or on...

  16. 40 CFR 180.157 - Methyl 3-[(dimethoxyphos-phinyl) oxy]butenoate, alpha and beta isomers; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...]butenoate, alpha and beta isomers; tolerances for residues. 180.157 Section 180.157 Protection of...]butenoate, alpha and beta isomers; tolerances for residues. (a) General. Tolerances are established for residues of the insecticide methyl 3-[(dimethoxyphosphinyl)oxy]butenoate, alpha and beta isomers, in or on...

  17. Effect of thermal treatment and light irradiation on the stability of lycopene with high Z-isomers content.

    PubMed

    Murakami, Kazuya; Honda, Masaki; Takemura, Ryota; Fukaya, Tetsuya; Wahyudiono; Kanda, Hideki; Goto, Motonobu

    2018-06-01

    The stability of lycopene with high Z-isomers content during thermal treatment and light irradiation was investigated. Purified (all-E)-lycopene was thermally isomerized to the Z-isomers in dichloromethane (CH 2 Cl 2 ) at 50 °C for 24 h. The total content of the Z-isomers of lycopene reached 56.1%. Then, the mixture of lycopene isomers was stored in the dark at 4, 25, and 40 °C for 30 days, and under light irradiation using a fluorescent light at 4 °C for 336 h. The degradation rate of lycopene during thermal treatment rose with increasing temperature and the activation energy for decomposition of the mixture of lycopene isomers was calculated to be 71.0 kJ mol -1 . The degradation rate of lycopene isomers was almost the same under thermal treatment. On the other hand, during light irradiation, isomerization was promoted rather than decomposition, i.e. (9Z)- and (13Z)-lycopene converted to the (all-E)-isomer. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Decay and Fission Hindrance of Two- and Four-Quasiparticle K Isomers in Rf 254

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David, H. M.; Chen, J.; Seweryniak, D.

    2015-09-01

    Two isomers decaying by electromagnetic transitions with half-lives of 4.7(1.1) and 247 ( 73 ) μ s have been discovered in the heavy 254 Rf nucleus. The observation of the shorter-lived isomer was made possible by a novel application of a digital data acquisition system. The isomers were interpreted as the K π = 8 - , ν 2 ( 7 / 2 + [ 624 ] , 9 / 2 - [ 734 ] ) two-quasineutron and the K π = 1 6 + , 8 - ν 2 ( 7 / 2 + [ 624 ] , 9more » / 2 - [ 734 ] ) Ⓧ 8 - π 2 ( 7 / 2 -[ 514 ] , 9 / 2 + [ 624 ] ) four-quasiparticle configurations, respectively. Surprisingly, the lifetime of the two-quasiparticle isomer is more than 4 orders of magnitude shorter than what has been observed for analogous isomers in the lighter N = 150 isotones. The four-quasiparticle isomer is longer lived than the 254 Rf ground state that decays exclusively by spontaneous fission with a half-life of 23.2 ( 1.1 ) μ s . The absence of sizable fission branches from either of the isomers implies unprecedented fission hindrance relative to the ground state.« less

  19. Enumerating Substituted Benzene Isomers of Tree-Like Chemical Graphs.

    PubMed

    Li, Jinghui; Nagamochi, Hiroshi; Akutsu, Tatsuya

    2018-01-01

    Enumeration of chemical structures is useful for drug design, which is one of the main targets of computational biology and bioinformatics. A chemical graph with no other cycles than benzene rings is called tree-like, and becomes a tree possibly with multiple edges if we contract each benzene ring into a single virtual atom of valence 6. All tree-like chemical graphs with a given tree representation are called the substituted benzene isomers of . When we replace each virtual atom in with a benzene ring to obtain a substituted benzene isomer, distinct isomers of are caused by the difference in arrangements of atom groups around a benzene ring. In this paper, we propose an efficient algorithm that enumerates all substituted benzene isomers of a given tree representation . Our algorithm first counts the number of all the isomers of the tree representation by a dynamic programming method. To enumerate all the isomers, for each , our algorithm then generates the th isomer by backtracking the counting phase of the dynamic programming. We also implemented our algorithm for computational experiments.

  20. Decay and Fission Hindrance of Two- and Four-Quasiparticle K Isomers in ^{254}Rf.

    PubMed

    David, H M; Chen, J; Seweryniak, D; Kondev, F G; Gates, J M; Gregorich, K E; Ahmad, I; Albers, M; Alcorta, M; Back, B B; Baartman, B; Bertone, P F; Bernstein, L A; Campbell, C M; Carpenter, M P; Chiara, C J; Clark, R M; Cromaz, M; Doherty, D T; Dracoulis, G D; Esker, N E; Fallon, P; Gothe, O R; Greene, J P; Greenlees, P T; Hartley, D J; Hauschild, K; Hoffman, C R; Hota, S S; Janssens, R V F; Khoo, T L; Konki, J; Kwarsick, J T; Lauritsen, T; Macchiavelli, A O; Mudder, P R; Nair, C; Qiu, Y; Rissanen, J; Rogers, A M; Ruotsalainen, P; Savard, G; Stolze, S; Wiens, A; Zhu, S

    2015-09-25

    Two isomers decaying by electromagnetic transitions with half-lives of 4.7(1.1) and 247(73) μs have been discovered in the heavy ^{254}Rf nucleus. The observation of the shorter-lived isomer was made possible by a novel application of a digital data acquisition system. The isomers were interpreted as the K^{π}=8^{-}, ν^{2}(7/2^{+}[624],9/2^{-}[734]) two-quasineutron and the K^{π}=16^{+}, 8^{-}ν^{2}(7/2^{+}[624],9/2^{-}[734])⊗8^{-}π^{2}(7/2^{-}[514],9/2^{+}[624]) four-quasiparticle configurations, respectively. Surprisingly, the lifetime of the two-quasiparticle isomer is more than 4 orders of magnitude shorter than what has been observed for analogous isomers in the lighter N=150 isotones. The four-quasiparticle isomer is longer lived than the ^{254}Rf ground state that decays exclusively by spontaneous fission with a half-life of 23.2(1.1) μs. The absence of sizable fission branches from either of the isomers implies unprecedented fission hindrance relative to the ground state.

  1. Linear and branched perfluorooctane sulfonate (PFOS) isomer patterns differ among several tissues and blood of polar bears.

    PubMed

    Greaves, Alana K; Letcher, Robert J

    2013-09-01

    Perfluorooctane sulfonate (PFOS) is a globally distributed persistent organic pollutant that has been found to bioaccumulate and biomagnify in aquatic food webs. Although principally in its linear isomeric configuration, 21-35% of the PFOS manufactured via electrochemical fluorination is produced as a branched structural isomer. PFOS isomer patterns were investigated in multiple tissues of polar bears (Ursus maritimus) from East Greenland. The liver (n = 9), blood (n = 19), brain (n = 16), muscle (n = 5), and adipose (n = 5) were analyzed for linear PFOS (n-PFOS), as well as multiple mono- and di-trifluoromethyl-substituted branched isomers. n-PFOS accounted for 93.0 ± 0.5% of Σ-PFOS isomer concentrations in the liver, whereas the proportion was significantly lower (p<0.05) in the blood (85.4 ± 0.5%). Branched isomers were quantifiable in the liver and blood, but not in the brain, muscle, or adipose. In both the liver and blood, 6-perfluoromethylheptane sulfonate (P6MHpS) was the dominant branched isomer (2.61 ± 0.10%, and 3.26 ± 0.13% of Σ-PFOS concentrations, respectively). No di-trifluoromethyl-substituted isomers were detectable in any of the tissues analyzed. These tissue-specific isomer patterns suggest isomer-specific pharmacokinetics, perhaps due to differences in protein affinities, and thus differences in protein interactions, as well transport, absorption, and/or metabolism in the body. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  2. Isomer-Specific Binding Affinity of Perfluorooctanesulfonate (PFOS) and Perfluorooctanoate (PFOA) to Serum Proteins.

    PubMed

    Beesoon, Sanjay; Martin, Jonathan W

    2015-05-05

    Perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) are among the most prominent contaminants in human serum, and these were historically manufactured as technical mixtures of linear and branched isomers. The isomers display unique pharmacokinetics in humans and in animal models, but molecular mechanisms underlying isomer-specific PFOS and PFOA disposition have not previously been studied. Here, ultrafiltration devices were used to examine (i) the dissociation constants (Kd) of individual PFOS and PFOA isomers with human serum albumin (HSA) and (ii) relative binding affinity of isomers in technical mixtures spiked to whole calf serum and human serum. Measurement of HSA Kd's demonstrated that linear PFOS (Kd=8(±4)×10(-8) M) was much more tightly bound than branched PFOS isomers (Kd range from 8(±1)×10(-5) M to 4(±2)×10(-4) M). Similarly, linear PFOA (Kd=1(±0.9)×10(-4) M) was more strongly bound to HSA compared to branched PFOA isomers (Kd range from 4(±2)×10(-4) M to 3(±2)×10(-4) M). The higher binding affinities of linear PFOS and PFOA to total serum protein were confirmed when both calf serum and human serum were spiked with technical mixtures. Overall, these data provide a mechanistic explanation for the longer biological half-life of PFOS in humans, compared to PFOA, and for the higher transplacental transfer efficiencies and renal clearance of branched PFOS and PFOA isomers, compared to the respective linear isomer.

  3. Travelling-wave ion mobility and negative ion fragmentation of high mannose N-glycans

    PubMed Central

    Harvey, David J.; Scarff, Charlotte A.; Edgeworth, Matthew; Struwe, Weston B.; Pagel, Kevin; Thalassinos, Konstantinos; Crispin, Max; Scrivens, Jim

    2016-01-01

    The isomeric structure of high-mannose N-glycans can significantly impact biological recognition events. Here, the utility of travelling-wave ion mobility-mass spectrometry (TW IM-MS)for isomer separation of high-mannose N-glycans is investigated. Negative ion fragmentation using collision-induced dissociation (CID) gave more informative spectra than positive ion spectra with mass-different fragment ions characterizing many of the isomers. Isomer separation by ion mobility in both ionization modes was generally limited, with the arrival time distributions (ATD) often showing little sign of isomers. However, isomers could be partially resolved by plotting extracted fragment ATDs of the diagnostic fragment ions from the negative ion spectra and the fragmentation spectra of the isomers could be extracted by using ions from limited areas of the ATD peak. In some cases, asymmetric ATDs were observed but no isomers could be detected by fragmentation. In these cases, it was assumed that conformers were being separated. Collision cross sections (CCSs) of the isomers in positive and negative fragmentation mode were estimated from TW IM-MS data using dextran glycans as calibrant. More complete CCS data were achieved in negative ion mode by utilizing the diagnostic fragment ions. Examples of isomer separations are shown for N-glycans released from the well-characterized glycoproteins chicken ovalbumin, porcine thyroglobulin and gp120 from the human immunodeficiency virus. In addition to the cross sectional data, details of the negative ion collision-induced dissociation (CID) spectra of all resolved isomers are discussed. PMID:26956389

  4. Quantitative Analysis of the Distribution of cis-Eicosenoic Acid Positional Isomers in Marine Fishes from the Indian Ocean.

    PubMed

    Senarath, Samanthika; Yoshinaga, Kazuaki; Nagai, Toshiharu; Yoshida, Akihiko; Beppu, Fumiaki; Jayasinghe, Chamila; Devadawson, Chandravathany; Gotoh, Naohiro

    2017-02-01

    This study investigated the occurrence and distribution of cis-eicosenoic acid (c-20:1) positional isomers in fishes from the Indian Ocean and compared to those from the Pacific and Atlantic Ocean. Lipids were extracted from the edible part of the fish and then methylated. The eicosenoic acid methyl ester fraction was separated from total fatty acid methyl esters by reversed-phase HPLC and quantitatively analyzed using a GC-FID fitted with the SLB-IL111 highly polar GC column. c14-20:1 was used as an internal standard. The results indicated that the highest levels of c-20:1 positional isomers were found in fishes from the Pacific Ocean (saury, 166.95±12.4 mg/g of oil), followed by the Atlantic Ocean (capelin, 162.7±3.5 mg/g of oil), and lastly in fishes from the Indian Ocean (goatfish, 34.39 mg/g of oil). With only a few exceptions, the most abundant 20:1 positional isomer found in fishes of the Indian and Atlantic Ocean was the c11-20:1 isomer (>50%) followed by the c13-20:1 isomer (<25%). Unusually, the c7-20:1 isomer was predominantly found in a few fishes such as the tooth ponyfish, longface emperor, and commerson's sole. The c9, c5, and c15-20:1 isomers were the least occurring in fishes from the Indian and Atlantic Ocean. In contrast, the c9-20:1 isomer was the principal isomer identified in fishes from the Pacific Ocean. The results revealed that the content and distribution of c-20:1 positional isomers varied among fishes in different oceans. The data presented in the current study are the first to report on the distribution of c-20:1 positional isomers in fishes from the Indian Ocean.

  5. Molecular structure of the trans and cis isomers of metal-free phthalocyanine studied by gas-phase electron diffraction and high-level quantum chemical calculations: NH tautomerization and calculated vibrational frequencies.

    PubMed

    Strenalyuk, Tatyana; Samdal, Svein; Volden, Hans Vidar

    2008-05-29

    The molecular structure of the trans isomer of metal-free phthalocyanine (H2Pc) is determined using the gas electron diffraction (GED) method and high-level quantum chemical calculations. B3LYP calculations employing the basis sets 6-31G**, 6-311++G**, and cc-pVTZ give two tautomeric isomers for the inner H atoms, a trans isomer having D2h symmetry and a cis isomer having C2v symmetry. The trans isomer is calculated to be 41.6 (B3LYP/6-311++G**, zero-point corrected) and 37.3 kJ/mol (B3LYP/cc-pVTZ, not zero-point corrected) more stable than the cis isomer. However, Hartree-Fock (HF) calculations using different basis sets predict that cis is preferred and that trans does not exist as a stable form of the molecule. The equilibrium composition in the gas phase at 471 degrees C (the temperature of the GED experiment) calculated at the B3LYP/6-311++G** level is 99.8% trans and 0.2% cis. This is in very good agreement with the GED data, which indicate that the mole fraction of the cis isomer is close to zero. The transition states for two mechanisms of the NH tautomerization have been characterized. A concerted mechanism where the two H atoms move simultaneously yields a transition state of D2h symmetry and an energy barrier of 95.8 kJ/mol. A two-step mechanism where a trans isomer is converted to a cis isomer, which is converted into another trans isomer, proceeds via two transition states of C(s) symmetry and an energy barrier of 64.2 kJ/mol according to the B3LYP/6-311++G** calculation. The molecular geometry determined from GED is in very good agreement with the geometry obtained from the quantum chemical calculations. Vibrational frequencies, IR, and Raman intensities have been calculated using B3LYP/6-311++G**. These calculations indicate that the molecule is rather flexible with six vibrational frequencies in the range of 20-84 cm(-1) for the trans isomer. The cis isomer might be detected by infrared matrix spectroscopy since the N-H stretching frequencies are very different for the two isomers.

  6. Density functional calculations of the Mössbauer parameters in hexagonal ferrite SrFe12O19

    NASA Astrophysics Data System (ADS)

    Ikeno, Hidekazu

    2018-03-01

    Mössbauer parameters in a magnetoplumbite-type hexagonal ferrite, SrFe12O19, are computed using the all-electron band structure calculation based on the density functional theory. The theoretical isomer shift and quadrupole splitting are consistent with experimentally obtained values. The absolute values of hyperfine splitting parameters are found to be underestimated, but the relative scale can be reproduced. The present results validate the site-dependence of Mössbauer parameters obtained by analyzing experimental spectra of hexagonal ferrites. The results also show the usefulness of theoretical calculations for increasing the reliability of interpretation of the Mössbauer spectra.

  7. Raman intensity and vibrational modes of armchair CNTs

    NASA Astrophysics Data System (ADS)

    Hur, Jaewoong; Stuart, Steven J.

    2017-07-01

    Raman intensity changes and frequency patterns have been studied using the various armchair (n, n) to understand the variations of bond polarizability, in regard to changing diameters, lengths, and the number of atoms in the (n, n). The Raman intensity trends of the (n, n) are validated by those of Cn isomers. For frequency trends, similar frequency patterns and frequency inward shifts for the (n, n) are characterized. Also, VDOS trends of the (n, n) expressing Raman modes are interpreted. The decomposition of vibrational modes in the (n, n) into radial, longitudinal, and tangential mode is beneficially used to recognize the distinct characteristics of vibrational modes.

  8. Microstructure, hyperfine interaction and magnetic transition of Fe-25%Ni-5%Si-x%Co alloys

    NASA Astrophysics Data System (ADS)

    Gungunes, H.

    2016-12-01

    Morphological and magnetic properties in Fe-25%Ni-5%Si-x%Co (x = 0, 10, 15) alloys are investigated. Scanning electron microscopy (SEM), Mössbauer spectroscopy and AC magnetic susceptibility measurements are used to determine the physical properties of alloys. The martensite morphology changed depending on the Co content. The Mössbauer study shows that the volume fraction and hyperfine field of martensite increases while isomer shift values decrease with increasing Co content. On the other hand; AC susceptibility results showed that; Co is an effective element which can be used to control both the magnetic transition and martensitic transformation temperatures.

  9. Application of GC/MS Soft Ionization for Isomeric Biological Compound Analysis.

    PubMed

    Furuhashi, Takeshi; Okuda, Koji

    2017-09-03

    Isomers are compounds with the same molecular formula. Many different types of isomers are ubiquitous and play important roles in living organisms. Despite their early discovery, the actual analysis of isomers has been tricky and has confounded researchers. Using mass spectrometry (MS) to distinguish or identify isomers is an emergent topic and challenge for analytical chemists. We review some techniques for analyzing isomers with emphasis on MS, e.g., the roles of ion reaction, hydrogen-deuterium exchange, ion mobility mass spectrometry, ion spectroscopy, and energy change in producing isomer-specific fragments. In particular, soft ionization for gas chromatography-mass spectrometry (GC-MS) is a focus in this review. Awareness of the advantages and technical problems of these techniques would inspire innovation in future approaches.

  10. Double resonance calibration of g factor standards: Carbon fibers as a high precision standard

    NASA Astrophysics Data System (ADS)

    Herb, Konstantin; Tschaggelar, Rene; Denninger, Gert; Jeschke, Gunnar

    2018-04-01

    The g factor of paramagnetic defects in commercial high performance carbon fibers was determined by a double resonance experiment based on the Overhauser shift due to hyperfine coupled protons. Our carbon fibers exhibit a single, narrow and perfectly Lorentzian shaped ESR line and a g factor slightly higher than gfree with g = 2.002644 =gfree · (1 + 162ppm) with a relative uncertainty of 15ppm . This precisely known g factor and their inertness qualify them as a high precision g factor standard for general purposes. The double resonance experiment for calibration is applicable to other potential standards with a hyperfine interaction averaged by a process with very short correlation time.

  11. EPR and Ferromagnetism in Diluted Magnetic Semiconductor Quantum Wells

    NASA Astrophysics Data System (ADS)

    König, Jürgen; MacDonald, Allan H.

    2003-08-01

    Motivated by recent measurements of electron paramagnetic resonance spectra in modulation-doped CdMnTe quantum wells [

    F. J. Teran et al., Phys. Rev. Lett.PRLTAO0031-9007 91, 077201 (2003)
    ], we develop a theory of collective spin excitations in quasi-two-dimensional diluted magnetic semiconductors. Our theory explains the anomalously large Knight shift found in these experiments as a consequence of collective coupling between Mn-ion local moments and itinerant-electron spins. We use this theory to discuss the physics of ferromagnetism in (II,Mn)VI quantum wells and to speculate on the temperature at which it is likely to be observed in n-type modulation-doped systems.

  12. 40 CFR 180.1073 - Isomate-M; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Isomate-M; exemption from the... Exemptions From Tolerances § 180.1073 Isomate-M; exemption from the requirement of a tolerance. The oriental fruit moth pheromone (Isomate-M) (Z-8-dodecen-l-yl acetate, E-8-dodecen-l-yl acetate, Z-8-dodecen-l-ol...

  13. 40 CFR 180.1073 - Isomate-M; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Isomate-M; exemption from the... Exemptions From Tolerances § 180.1073 Isomate-M; exemption from the requirement of a tolerance. The oriental fruit moth pheromone (Isomate-M) (Z-8-dodecen-l-yl acetate, E-8-dodecen-l-yl acetate, Z-8-dodecen-l-ol...

  14. Electronic and spectroscopic characterizations of SNP isomers

    NASA Astrophysics Data System (ADS)

    Trabelsi, Tarek; Al Mogren, Muneerah Mogren; Hochlaf, Majdi; Francisco, Joseph S.

    2018-02-01

    High-level ab initio electronic structure calculations were performed to characterize SNP isomers. In addition to the known linear SNP, cyc-PSN, and linear SPN isomers, we identified a fourth isomer, linear PSN, which is located ˜2.4 eV above the linear SNP isomer. The low-lying singlet and triplet electronic states of the linear SNP and SPN isomers were investigated using a multi-reference configuration interaction method and large basis set. Several bound electronic states were identified. However, their upper rovibrational levels were predicted to pre-dissociate, leading to S + PN, P + NS products, and multi-step pathways were discovered. For the ground states, a set of spectroscopic parameters were derived using standard and explicitly correlated coupled-cluster methods in conjunction with augmented correlation-consistent basis sets extrapolated to the complete basis set limit. We also considered scalar and core-valence effects. For linear isomers, the rovibrational spectra were deduced after generation of their 3D-potential energy surfaces along the stretching and bending coordinates and variational treatments of the nuclear motions.

  15. 21 CFR 1308.14 - Schedule IV.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... such salts, isomers, and salts of isomers is possible: (1) Fenfluramine 1670 (e) Lorcaserin. Any... salts of isomers is possible: (1) Lorcaserin 1625 (f) Stimulants. Unless specifically excepted or unless...

  16. Structures of cage, prism, and book isomers of water hexamer from broadband rotational spectroscopy.

    PubMed

    Pérez, Cristóbal; Muckle, Matt T; Zaleski, Daniel P; Seifert, Nathan A; Temelso, Berhane; Shields, George C; Kisiel, Zbigniew; Pate, Brooks H

    2012-05-18

    Theory predicts the water hexamer to be the smallest water cluster with a three-dimensional hydrogen-bonding network as its minimum energy structure. There are several possible low-energy isomers, and calculations with different methods and basis sets assign them different relative stabilities. Previous experimental work has provided evidence for the cage, book, and cyclic isomers, but no experiment has identified multiple coexisting structures. Here, we report that broadband rotational spectroscopy in a pulsed supersonic expansion unambiguously identifies all three isomers; we determined their oxygen framework structures by means of oxygen-18-substituted water (H(2)(18)O). Relative isomer populations at different expansion conditions establish that the cage isomer is the minimum energy structure. Rotational spectra consistent with predicted heptamer and nonamer structures have also been identified.

  17. E/Z Isomers and Isomerization

    NASA Astrophysics Data System (ADS)

    Liaaen-Jensen, Synnøve; Lutnœes, Bjart Frode

    The natural occurrence of several carotenoid cis isomers and their biological significance were not anticipated in 1962, when the classical monograph on cis-trans isomeric carotenoids [1] was published. More recent research has demonstrated that various cis isomers occur naturally in bacteria plants, algae and invertebrate animals, and are present in human blood and tissues. The participation of cis isomers in the biosynthethic route to coloured carotenoids is well established (Volume 3, Chapter 2). Important biological functions of (15Z)-carotenoids in photosynthesis have been revealed [2]. In relation to health aspects of carotenoids, the bioavailability of cis isomers may be higher than that of the all-trans isomer [3], and accumulated evidence suggests that cis/trans isomerization may occur in biological tissues, particularly of lycopene (31) in human serum [4] (Volume 5, Chapter 7).

  18. Trispyrazolylborate Complexes: An Advanced Synthesis Experiment Using Paramagnetic NMR, Variable-Temperature NMR, and EPR Spectroscopies

    ERIC Educational Resources Information Center

    Abell, Timothy N.; McCarrick, Robert M.; Bretz, Stacey Lowery; Tierney, David L.

    2017-01-01

    A structured inquiry experiment for inorganic synthesis has been developed to introduce undergraduate students to advanced spectroscopic techniques including paramagnetic nuclear magnetic resonance and electron paramagnetic resonance. Students synthesize multiple complexes with unknown first row transition metals and identify the unknown metals by…

  19. Isomer profiling of perfluorinated substances as a tool for source tracking: a review of early findings and future applications.

    PubMed

    Benskin, Jonathan P; De Silva, Amila O; Martin, Jonathan W

    2010-01-01

    The two major manufacturing techniques for perfluorochemicals can be distinguished based on the isomeric profile of their products. ECF (major use from 1950s to 2002) results in a product containing both linear and branched isomers, while telomerization (major use from 2002 to present) typically yields an isomerically pure, linear product. Among the most important question today, which has implication for future regulation of these chemicals, is to what extent human and environmental exposure is from historical products (i.e., ECF) versus currently manufactured fluorochemicals (i.e., telomer). Perfluoroalkyl-chain branching can also affect the physical and chemical properties of these chemicals, which may influence their environmental transport and degradation, partitioning, bioaccumulation, pharmacokinetics, and toxicity. Unless perfluorinated substances are considered as individual isomers, much of this information will be overlooked or missed altogether, which could potentially lead to inaccuracies in human and environmental risk assessments. In this review, we have highlighted novel findings, current knowledge gaps, and areas for improvement based on early experiments on the disposition of PFA and PFA-precursor isomers in the environment. We have also emphasized the wealth of information that can potentially be gleaned from future work in this area, which renders routine adoption of isomer-specific methodologies an attractive and logical next step in the progression of fluorochemicals analysis. However, despite vast improvements in recent years, a fast and comprehensive method capable of separating all major PFA and PFA-precursor isomers, while removing interferences is still required before these methods becomes routine in most labs. Purified and characterized standards of PFOA and PFOS that have isomer profiles consistent with those of historically produced (i.e., 3M) PFOS and PFOA are also required. The limited data available on PFA isomer profiles that exist in the environment and the biological properties of each isomer suggest that examination of isomer profiles may yield clues on the source of PFA contamination to human and the environment. For example, contributions from historical versus current PFOA emissions can be quantified by examining the isomer profile in abiotic samples . Similarly, residual PFOS/PFOA in pre-2002 consumer products may be distinguished from directly emitted PFOS/PFOA by the existence of slight difference in isomer profile. PFOS signatures may also have the potential to distinguish between indirect exposure (via precursors) versus direct exposure (via the sulfonate), based on findings of isomer-specific and/or enantiospecific biotransformation in vitro. Isomer-specific monitoring extended to longer-chain PFAs may also be informative in determining current and historical exposure sources. Finally, given the recent increase of production of PFOSF-based chemicals, following their 2002 phase out, the ability of using isomer profiles to distinguish between historical and currently produced PFOS may also be possible.

  20. 28 CFR 76.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... containing a detectable among of marijuana; (vii) One gram of methamphetamine, its salts, isomers, and salts... methamphetamine, its salts, isomers, or salts of its isomers. (i) United States Attorney means the United States...

  1. Instrumental analysis of terminal-conjugated dienes for reexamination of the sex pheromone secreted by a nettle moth, Parasa lepida lepida.

    PubMed

    Islam, M D Azharul; Yamakawa, Rei; Do, Nguyen Duc; Numakura, Naoko; Suzuki, Toshiro; Ando, Tetsu

    2009-05-01

    Conjugated dienyl compounds make one of the main groups of lepidopteran sex pheromones, and GC has been frequently used to determine the configurations of the double bonds. However, the separation of two geometric isomers of a terminal-conjugated diene, such as 7,9-decadien-1-ol secreted by a nettle moth Parasa lepida lepida (Limacodidae), is assumed to be difficult. In order to clarify the chromatographic separation of the terminal dienes, 7,9-decadienyl and 9,11-dodecadienyl compounds (alcohols, acetates, and aldehydes) were analyzed by GC and HPLC. On a capillary GC column, the (E)-isomers flowed out slightly faster than the corresponding (Z)-isomers, but their peaks almost overlapped. On the other hand, HPLC equipped with an ODS column completely separated the two geometric isomers examined and the (Z)-isomers eluted from the column faster than the (E)-isomers without dependence on a functional group. In addition to undergoing direct HPLC analysis without derivatization, the dienyl alcohols were converted into 3,5-dinitrobenzoates and analyzed by LC-ESI-MS operated under the same reversed-phase condition. The two separated geometric isomers were sensitively monitored by negative ions at m/z 211, M, M+1, M+17, and M+31, which were characteristically derived from the benzoates. Based on these results, a pheromone extract of P. l. lepida was examined, and it was confirmed that the female moths exclusively produced the (Z)-isomer of the 7,9-diene. Furthermore, a GC-EAD analysis and a field evaluation with both geometrical isomers indicated that the mating communication of P. l. lepida is predominantly mediated with the (Z)-isomer.

  2. Identification of (2-aminopropyl)indole positional isomers in forensic samples.

    PubMed

    Scott, Kenneth R; Power, John D; McDermott, Seán D; O'Brien, John E; Talbot, Brian N; Barry, Michael G; Kavanagh, Pierce V

    2014-01-01

    In 2012, 5-(2-aminopropyl)indole (5-API, 5-IT) was reported by Norwegian authorities to the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) via the Early Warning System (EWS). The 3- isomer, 3-(2-aminopropyl)indole (3-API, AMT, alpha-methyltryptamine), has been available on the recreational drugs market for a somewhat longer time, having first been reported to the EMCDDA by Finnish authorities in 2001. Both isomers are available from online vendors of 'legal highs'. Recently, three forensic drug cases (two tablets and one powder) were presented for routine analysis and the active constituent was tentatively identified as an API isomer. The six positional isomers (2-, 3-, 4-, 5-, 6- and 7-(2-aminopropyl)indoles) were synthesized and analyses by a combination gas chromatography-mass spectrometry (GC-MS), and liquid chromatography-mass spectrometry (LC-MS) showed that these could be readily discriminated thus facilitating the identification of 3-API in the tablets and 5-API in the powder. With exception of 5- and 6-APIs, which co-eluted, it was found possible to separate the isomers by GC without derivatization. LC separation also proved to be a feasible method for the discrimination of the isomers. Although the 2- and 7- isomers were not fully resolved by LC, it was found possible to distinguish them using their product ion spectra as the 2- isomer produced the m/z 132 fragment ion formed by loss of vinylamine, whereas the 7- isomer formed m/z 158 through loss of methylamine. In the synthesis 2-API, a novel tricyclic by-product was formed in an annulation reaction where the reaction solvent, tetrahydrofuran, was incorporated into the molecule. Copyright © 2013 John Wiley & Sons, Ltd.

  3. Rapid In Situ Profiling of Lipid C═C Location Isomers in Tissue Using Ambient Mass Spectrometry with Photochemical Reactions.

    PubMed

    Tang, Fei; Guo, Chengan; Ma, Xiaoxiao; Zhang, Jian; Su, Yuan; Tian, Ran; Shi, Riyi; Xia, Yu; Wang, Xiaohao; Ouyang, Zheng

    2018-05-01

    Rapid and in situ profiling of lipids using ambient mass spectrometry (AMS) techniques has great potential for clinical diagnosis, biological studies, and biomarker discovery. In this study, the online photochemical reaction involving carbon-carbon double bonds was coupled with a surface sampling technique to develop a direct tissue-analysis method with specificity to lipid C═C isomers. This method enabled the in situ analysis of lipids from the surface of various tissues or tissue sections, which allowed the structural characterization of lipid isomers within 2 min. Under optimized reaction conditions, we have established a method for the relative quantitation of lipid C═C location isomers by comparing the abundances of the diagnostic ions arising from each isomer, which has been proven effective through the established linear relationship ( R 2 = 0.999) between molar ratio and diagnostic ion ratio of the FA 18:1 C═C location isomers. This method was then used for the rapid profiling of unsaturated lipid C═C isomers in the sections of rat brain, lung, liver, spleen, and kidney, as well as in normal and diseased rat tissues. Quantitative information on FA 18:1 and PC 16:0-18:1 C═C isomers was obtained, and significant differences were observed between different samples. To the best of our knowledge, this is the first study to report the direct analysis of lipid C═C isomers in tissues using AMS. Our results demonstrated that this method can serve as a rapid analytical approach for the profiling of unsaturated lipid C═C isomers in biological tissues and should contribute to functional lipidomics and clinical diagnosis.

  4. Isomer Profiles of Perfluorochemicals in Matched Maternal, Cord, and House Dust Samples: Manufacturing Sources and Transplacental Transfer

    PubMed Central

    Beesoon, Sanjay; Webster, Glenys M.; Shoeib, Mahiba; Harner, Tom; Benskin, Jonathan P.

    2011-01-01

    Background: Perfluorochemicals (PFCs) are detectable in the general population and in the human environment, including house dust. Sources are not well characterized, but isomer patterns should enable differentiation of historical and contemporary manufacturing sources. Isomer-specific maternal–fetal transfer of PFCs has not been examined despite known developmental toxicity of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in rodents. Objectives: We elucidated relative contributions of electrochemical (phased out in 2001) and telomer (contemporary) PFCs in dust and measured how transplacental transfer efficiency (TTE; based on a comparison of maternal and cord sera concentrations) is affected by perfluorinated chain length and isomer branching pattern. Methods: We analyzed matching samples of house dust (n = 18), maternal sera (n = 20), and umbilical cord sera (n = 20) by isomer-specific high-performance liquid chromatography tandem mass spectrometry. Results: PFOA isomer signatures revealed that telomer sources accounted for 0–95% of total PFOA in house dust (median, 31%). This may partly explain why serum PFOA concentrations are not declining in some countries despite the phase-out of electrochemical PFOA. TTE data indicate that total branched isomers crossed the placenta more efficiently than did linear isomers for both PFOS (p < 0.01) and PFOA (p = 0.02) and that placental transfer of branched isomers of PFOS increased as the branching point moved closer to the sulfonate (SO3–) end of the molecule. Conclusions: Results suggest that humans are exposed to telomer PFOA, but larger studies that also account for dietary sources should be conducted. The exposure profile of PFOS and PFOA isomers can differ between the mother and fetus—an important consideration for perinatal epidemiology studies of PFCs. PMID:21757419

  5. Investigation on structure, electronic and magnetic properties of Cr doped (ZnO)12 clusters: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Liu, Huan; Zhang, Jian-Min

    2018-05-01

    The structural, electronic, and magnetic properties of (ZnO)12 clusters doped with Cr atoms have been investigated by using spin-polarized first-principles calculations. The exohedral a3 isomer is favorable than endohedral a2 isomer. The isomer a1 and a5 respectively have the narrowest and biggest gap between highest unoccupied molecular orbital and the lowest unoccupied molecular orbital (HOMO-LUMO) of 0.473 and 1.291 eV among these five monodoped isomers. The magnetic moment may be related to the local environment around the Cr atom that the a2 isomer whose total magnetic moment is 6 μB while the other monodoped isomers which all isomers have nearly total magnetic moments 4 μB . For Cr-doped (ZnO)12 on a1 or a3 isomer, the DOS of spin-up channel cross the Fermi level EF showing a finite magnitude near the Fermi level which might be useful for half metallic character. For the bidoped cases, the exohedral isomers are found to be most favorable. Including all bipoed isomers of substitutional, exohedral and endohedral bidoped clusters, the total magnetic moment of the ferromagnetic (antiferromagnetic) state is 8 (0) μB and the HOMO-LUMO gap of antiferromagnetic state is slightly larger than that of ferromagnetic state. The magnetic coupling between the Cr atoms in bidoped configurations is mainly governed by the competition between direct Cr and Cr atoms antiferromagnetic interaction and the ferromagnetic interaction between two Cr atoms via O atom due to strong p-d hybridization. Most importantly, we show that the exohedral bidoped (ZnO)12 clusters favor the ferromagnetic state, which may have the future applications in spin-dependent magneto-optical and magneto-electrical devices.

  6. Nuclear magnetic resonance spectroscopy in the structure elucidation and biosynthesis of natural products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meksuriyen, D.

    1988-01-01

    Examination of a chloroform extract of Dracaena loureiri Gagnep (Agavaceae), a Thia medicinal plant possessing antibacterial activity, has led to the isolation of fifteen flavenoids. The biogenic relationships among these flavenoids isolated were briefly discussed. Definition of the skeleton and the unambiguous assignment of all of the protons of the isolates was achieved through extensive 2D-homonuclear chemical shift correlation, nuclear Overhauser effect (NOE) difference spectroscopy and 2D-NOE experiments. The {sup 1}H and {sup 13}C NMR spectra of staurosporine, a potent biologically active agent from Streptomyces staurosporeus, were unambiguously assigned by using 2D homonuclear chemical shift correlation, NOE, {sup 1}H-detected heteronuclearmore » multiple-quantum coherence via direct coupling and via multiple-bond coupling for resonance assignments of protonated and nonprotonated carbons, respectively. S. Staurosporeus was found to utilize endogenous and exogenous D- and L-isomers of trytophan in the production of staurosporine. The biosynthesis of staurosporine was examined by employing carbon-14, tritium, and carbon-13 labeled precursors.« less

  7. Disequilibrium, complexity, the Schottky effect, and q-entropies, in paramagnetism

    NASA Astrophysics Data System (ADS)

    Pennini, F.; Plastino, A.

    2017-12-01

    We investigate connections between statistical quantifiers and paramagnetism. More concretely, we apply the notions of (i) disequilibrium and (ii) statistical complexity, to a paramagnetic system of non-coupled dipoles. Interesting insights are thereby obtained. In particular, we encounter a kind of criticality, not associated to the temperature but to the disequilibrium.

  8. Three-quasiparticle isomer in 173Ta and the excitation energy dependence of K -forbidden transition rates

    NASA Astrophysics Data System (ADS)

    Wood, R. T.; Walker, P. M.; Lane, G. J.; Carroll, R. J.; Cullen, D. M.; Dracoulis, G. D.; Hota, S. S.; Kibédi, T.; Palalani, N.; Podolyák, Zs.; Reed, M. W.; Schiffl, K.; Wright, A. M.

    2017-05-01

    Using the 168Er(10B,5 n ) reaction at a beam energy of 68 MeV, new data have been obtained for the population and decay of a T1 /2=148 ns, Kπ=21 /2- three-quasiparticle isomer at 1717 keV in 173Ta. Revised decay energies and intensities have been determined, together with newly observed members of a rotational band associated with the isomer. By comparison with other isomers in the A ≈180 deformed region, the 173Ta isomer properties help to specify the key degrees of freedom that determine K -forbidden transition rates. In particular, when all three quasiparticles are of the same nucleon type, there is a strong dependence of the E 2 reduced hindrance factor on the isomer excitation energy.

  9. An extensive ab initio study of the structures, vibrational spectra, quadratic force fields, and relative energetics of three isomers of Cl2O2

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Rohlfing, Celeste MCM.; Rice, Julia E.

    1992-01-01

    Quantum mechanical computational methods are employed for an ab initio investigation of: (1) the molecular properties of the lowest isomers of the ClO dimer; and (2) predicted molecular and thermochemical properties. Techniques employed include electron correlation and particularly singles and doubles coupled-cluster (CCSD) theory with or without perturbational estimates of the effects of connected triple excitations. The isomers ClOClO and ClClO2 are found to have higher energies than the ClOOCl isomer, and the theoretical vibrational frequencies of the isomers are well correlated with experimental data. Experimental values of the heat of formation for the isomers are also compared with calculations based on an isodesmic reaction with Cl2O, H2O, and HOOH.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loomis, Ryan A.; McGuire, Brett A.; Remijan, Anthony J.

    Recently, Lattelais et al. have interpreted aggregated observations of molecular isomers to suggest that there exists a ''minimum energy principle'', such that molecular formation will favor more stable molecular isomers for thermodynamic reasons. To test the predictive power of this principle, we have fully characterized the spectra of the three isomers of C{sub 3}H{sub 2}O toward the well-known molecular region Sgr B2(N). Evidence for the detection of the isomers cyclopropenone (c-C{sub 3}H{sub 2}O) and propynal (HCCCHO) is presented, along with evidence for the non-detection of the lowest zero-point energy isomer, propadienone (CH{sub 2}CCO). We interpret these observations as evidence that chemicalmore » formation pathways, which may be under kinetic control, have a more pronounced effect on final isomer abundances than thermodynamic effects such as the minimum energy principle.« less

  11. Mechanical membrane for the separation of a paramagnetic constituent from a fluid

    DOEpatents

    Maurice, David

    2017-05-02

    The disclosure provides an apparatus and method for the separation of a paramagnetic component from a mixture using a mechanical membrane apparatus. The mechanical membrane comprises a supporting material having a plurality of pores where each pore is surrounded by a plurality of magnetic regions. The magnetic regions augment a magnetic field on one side of the supporting material while mitigating the field to near zero on the opposite side. In operation, a flow of fluid such as air comprising a paramagnetic component such as O.sub.2 is directed toward the mechanical membrane, and the paramagnetic component is typically attracted toward a magnetic field surrounding a pore while dimagnetic components such as N.sub.2 are generally repelled. As some portion of the fluid passes through the plurality of magnetic apertures to the opposite side of the mechanical membrane, the mechanical membrane generates a fluid enriched in the paramagnetic component. Alternately, the magnetic field may act to repel the paramagnetic component while diamagnetic components such as N.sub.2 are generally unaffected and pass to the opposite side of the mechanical membrane.

  12. The influence of isomer purity on trap states and performance of organic thin-film transistors.

    PubMed

    Diemer, Peter J; Hayes, Jacori; Welchman, Evan; Hallani, Rawad; Pookpanratana, Sujitra J; Hacker, Christina A; Richter, Curt A; Anthony, John E; Thonhauser, Timo; Jurchescu, Oana D

    2017-01-01

    Organic field-effect transistor (OFET) performance is dictated by its composition and geometry, as well as the quality of the organic semiconductor (OSC) film, which strongly depends on purity and microstructure. When present, impurities and defects give rise to trap states in the bandgap of the OSC, lowering device performance. Here, 2,8-difluoro-5,11-bis(triethylsilylethynyl)-anthradithiophene is used as a model system to study the mechanism responsible for performance degradation in OFETs due to isomer coexistence. The density of trapping states is evaluated through temperature dependent current-voltage measurements, and it is discovered that OFETs containing a mixture of syn - and anti -isomers exhibit a discrete trapping state detected as a peak located at ~ 0.4 eV above the valence-band edge, which is absent in the samples fabricated on single-isomer films. Ultraviolet photoelectron spectroscopy measurements and density functional theory calculations do not point to a significant difference in electronic band structure between individual isomers. Instead, it is proposed that the dipole moment of the syn -isomer present in the host crystal of the anti -isomer locally polarizes the neighboring molecules, inducing energetic disorder. The isomers can be separated by applying gentle mechanical vibrations during film crystallization, as confirmed by the suppression of the peak and improvement in device performance.

  13. A debranching enzyme IsoM of Corallococcus sp. strain EGB with potential in starch processing.

    PubMed

    Li, Zhoukun; Ji, Kai; Zhou, Jie; Ye, Xianfeng; Wang, Ting; Luo, Xue; Huang, Yan; Cao, Hui; Cui, Zhongli; Kong, Yi

    2017-12-01

    Interest in use of resistant starch and maltooligosaccharides as functional foods and biopreservatives has grown in recent years. In this research, a novel debranching enzyme IsoM from Corallococcus sp. strain EGB was identified and expressed in P. pastoris GS115. Sequence alignments showed that IsoM was typical isoamylase with the specific activity up to 70,600U/mg, which belongs to glycoside hydrolase family 13 (GH 13). Enzymatic reaction pattern demonstrated that IsoM has high debranching efficiency against α-1,6-glycosidic bond of branched starch, and exhibited no activity towards α-1,4-glycosidic bond. The potential application of IsoM in starch processing was determined. IsoM was a potential candidate for the production of RS (70.9%) from raw starch, which was comparable with the commercial pullulanase (Promozyme ® D2). IsoM also improved the maltohexaose yield in combination with maltohexaose-producing α-amylase AmyM (KM114206), the maltohexaose yield was improved by 63.3% compared with 21.9% improvement of Promozyme ® D2. The results of RS production and combination with other amylases suggesting that IsoM is a potential candidate for the efficient conversion of starch. Copyright © 2017. Published by Elsevier B.V.

  14. Influence of photoisomers in bilirubin determinations on Kodak Ektachem and Hitachi analysers in neonatal specimens study of the contribution of structural and configurational isomers.

    PubMed

    Gulian, J M; Dalmasso, C; Millet, V; Unal, D; Charrel, M

    1995-08-01

    We compared data obtained with the Kodak Ektachem and Hitachi 717 Analysers and HPLC from 83 neonates under phototherapy. Total bilirubin values determined with the Kodak and Hitachi are in good agreement, but we observed a large discrepancy in the results for conjugated (Kodak) and direct (Hitachi) bilirubin. HPLC revealed that all the samples contained configurational isomers, while only 7.7% and 30.8% contained conjugated bilirubin and structural isomers, respectively. We developed a device for the specific and quantitative production of configurational or structural isomers, by irradiation with blue or green light. In vitro, total bilirubin values are coherent for the routine analysers in the presence of configurational or structural isomers. With configurational isomers, unconjugated bilirubin (Kodak) is lower than total bilirubin (Kodak), and conjugated bilirubin (Kodak) is always equal to zero, so the apparatus gives a false positive response for delta bilirubin. In contrast, the direct bilirubin (Hitachi) is constant. Furthermore, in the presence of structural isomers, unconjugated bilirubin (Kodak) is unexpectedly higher than total bilirubin (Kodak), conjugated bilirubin (Kodak) is proportional to the quantity of these isomers, and direct bilirubin (Hitachi) is constant. The contribution of photoisomers in bilirubin measurements is discussed.

  15. Identification of absolute geometries of cis and trans molecular isomers by Coulomb Explosion Imaging.

    PubMed

    Ablikim, Utuq; Bomme, Cédric; Xiong, Hui; Savelyev, Evgeny; Obaid, Razib; Kaderiya, Balram; Augustin, Sven; Schnorr, Kirsten; Dumitriu, Ileana; Osipov, Timur; Bilodeau, René; Kilcoyne, David; Kumarappan, Vinod; Rudenko, Artem; Berrah, Nora; Rolles, Daniel

    2016-12-02

    An experimental route to identify and separate geometric isomers by means of coincident Coulomb explosion imaging is presented, allowing isomer-resolved photoionization studies on isomerically mixed samples. We demonstrate the technique on cis/trans 1,2-dibromoethene (C 2 H 2 Br 2 ). The momentum correlation between the bromine ions in a three-body fragmentation process induced by bromine 3d inner-shell photoionization is used to identify the cis and trans structures of the isomers. The experimentally determined momentum correlations and the isomer-resolved fragment-ion kinetic energies are matched closely by a classical Coulomb explosion model.

  16. Identification of absolute geometries of cis and trans molecular isomers by Coulomb Explosion Imaging

    PubMed Central

    Ablikim, Utuq; Bomme, Cédric; Xiong, Hui; Savelyev, Evgeny; Obaid, Razib; Kaderiya, Balram; Augustin, Sven; Schnorr, Kirsten; Dumitriu, Ileana; Osipov, Timur; Bilodeau, René; Kilcoyne, David; Kumarappan, Vinod; Rudenko, Artem; Berrah, Nora; Rolles, Daniel

    2016-01-01

    An experimental route to identify and separate geometric isomers by means of coincident Coulomb explosion imaging is presented, allowing isomer-resolved photoionization studies on isomerically mixed samples. We demonstrate the technique on cis/trans 1,2-dibromoethene (C2H2Br2). The momentum correlation between the bromine ions in a three-body fragmentation process induced by bromine 3d inner-shell photoionization is used to identify the cis and trans structures of the isomers. The experimentally determined momentum correlations and the isomer-resolved fragment-ion kinetic energies are matched closely by a classical Coulomb explosion model. PMID:27910943

  17. Identification of absolute geometries of cis and trans molecular isomers by Coulomb Explosion Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ablikim, Utuq; Bomme, Cédric; Xiong, Hui

    An experimental route to identify and separate geometric isomers by means of coincident Coulomb explosion imaging is presented, allowing isomer-resolved photoionization studies on isomerically mixed samples. We demonstrate the technique on cis/trans 1,2-dibromoethene (C 2H 2Br 2). The momentum correlation between the bromine ions in a three-body fragmentation process induced by bromine 3d inner-shell photoionization is used to identify the cis and trans structures of the isomers. Lastly, the experimentally determined momentum correlations and the isomer-resolved fragment-ion kinetic energies are matched closely by a classical Coulomb explosion model.

  18. Identification of absolute geometries of cis and trans molecular isomers by Coulomb Explosion Imaging

    DOE PAGES

    Ablikim, Utuq; Bomme, Cédric; Xiong, Hui; ...

    2016-12-02

    An experimental route to identify and separate geometric isomers by means of coincident Coulomb explosion imaging is presented, allowing isomer-resolved photoionization studies on isomerically mixed samples. We demonstrate the technique on cis/trans 1,2-dibromoethene (C 2H 2Br 2). The momentum correlation between the bromine ions in a three-body fragmentation process induced by bromine 3d inner-shell photoionization is used to identify the cis and trans structures of the isomers. Lastly, the experimentally determined momentum correlations and the isomer-resolved fragment-ion kinetic energies are matched closely by a classical Coulomb explosion model.

  19. Structural Elucidation of cis / trans Dicaffeoylquinic Acid Photoisomerization Using Ion Mobility Spectrometry-Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Xueyun; Renslow, Ryan S.; Makola, Mpho M.

    Due to the recently uncovered health benefits and anti-HIV activities of dicaffeoylquinic acids (diCQAs), understanding their structures and functions is of great interest for drug discovery efforts. DiCQAs are analytically challenging to identify and quantify since they commonly exist as a diverse mixture of positional and geometric (cis/trans) isomers. In this work, we utilized ion mobility spectrometry coupled with mass spectrometry to separate the various isomers before and after UV irradiation. The experimental collision cross sections were then compared with theoretical structures to differentiate and identify the diCQA isomers. Our analyses found that naturally the diCQAs existed predominantly as trans/transmore » isomers, but after 3 h of UV irradiation, cis/cis, cis/trans, trans/cis, and trans/trans isomers were all present in the mixture. This is the first report of successful differentiation of cis/trans diCQA isomers individually, which shows the great promise of IMS coupled with theoretical calculations for determining the structure and activity relationships of different isomers in drug discovery studies.« less

  20. Preferential hydrophobic interactions are responsible for a preference of D-amino acids in the aminoacylation of 5'-AMP with hydrophobic amino acids

    NASA Technical Reports Server (NTRS)

    Lacey, J. C. Jr; Wickramasinghe, N. S.; Sabatini, R. S.

    1992-01-01

    We have studied the chemistry of aminoacyl AMP to model reactions at the 3' terminus of aminoacyl tRNA for the purpose of understanding the origin of protein synthesis. The present studies relate to the D, L preference in the esterification of 5'-AMP. All N-acetyl amino acids we studied showed faster reaction of the D-isomer, with a generally decreasing preference for D-isomer as the hydrophobicity of the amino acid decreased. The beta-branched amino acids, Ile and Val, showed an extreme preference for D-isomer. Ac-Leu, the gamma-branched amino acid, showed a slightly low D/L ratio relative to its hydrophobicity. The molecular basis for these preferences for D-isomer is understandable in the light of our previous studies and seems to be due to preferential hydrophobic interaction of the D-isomer with adenine. The preference for hydrophobic D-amino acids can be decreased by addition of an organic solvent to the reaction medium. Conversely, peptidylation with Ac-PhePhe shows a preference for the LL isomer over the DD isomer.

  1. Isolation and spectral characterization of thermally generated multi-Z-isomers of lycopene and the theoretically preferred pathway to di-Z-isomers.

    PubMed

    Honda, Masaki; Kudo, Tatsuya; Kuwa, Takahiro; Higashiura, Takuma; Fukaya, Tetsuya; Inoue, Yoshinori; Kitamura, Chitoshi; Takehara, Munenori

    2017-02-01

    Lycopene has a large number of geometric isomers caused by E/Z isomerization at arbitrary sites within the 11 conjugated double bonds, offering varying characteristics related to features such as antioxidant capacity and bioavailability. However, the geometric structures of only a few lycopene Z-isomers have been thoroughly identified from natural sources. In this study, seven multi-Z-isomers of lycopene, (9Z,13'Z)-, (5Z,13Z,9'Z)-, (9Z,9'Z)-, (5Z,13'Z)-, (5Z,9'Z)-, (5Z,9Z,5'Z)-, and (5Z,9Z)-lycopene, were obtained from tomato samples by thermal isomerization, and then isolated by elaborate chromatography, and fully assigned using proton nuclear magnetic resonance. Moreover, the theoretically preferred pathway from (all-E)-lycopene to di-Z-isomers was examined with a computational approach using a Gaussian program. Fine-tuning of the HPLC separation conditions led to the discovery of novel multi-Z-isomers, and whose formation was supported by advanced theoretical calculations.

  2. Separation of diamagnetic and paramagnetic anisotropy by high-field, low-temperature torque measurements

    NASA Astrophysics Data System (ADS)

    Schmidt, Volkmar; Hirt, Ann M.; Rosselli, Pascal; Martín-Hernández, Fátima

    2007-01-01

    The anisotropy of magnetic susceptibility (AMS) of rocks can be composed of contributions from ferromagnetic, paramagnetic and diamagnetic minerals. However, in general the AMS of only one fraction is of interest. While there are several approaches to isolate the ferromagnetic contribution to the AMS, the separation of the diamagnetic from the paramagnetic contribution is still problematic. A new method for the separation of these two contributions based on high-field torque measurements at room and low-temperature is presented. The paramagnetic anisotropy increases at low temperature according to the Curie-Weiss law, whereas the diamagnetic contribution is temperature independent. If the paramagnetic AMS is due to perfectly oblate or prolate minerals and the ratio of the susceptibility differences at two temperatures is known, paramagnetic and diamagnetic AMS can be separated. When measuring in fields high enough to saturate the ferromagnetic phases all three contributions to the AMS can be separated. The separation of paramagnetic and diamagnetic AMS is demonstrated on natural crystals and synthetic calcite-muscovite aggregates. A high-field torque magnetometer, equipped with a cryostat for measurements at 77 K, allows sensitive measurements at two different temperatures. The sensitivity at 77 K is 3 × 10-7 J and standard-sized (palaeomagnetic) samples of 11.4 cm3 can be measured. This new method is especially suited for the investigation of diamagnetic fabrics of impure carbonate rocks.

  3. Aqueous phase partitioning of hexachlorocyclohexane (HCH) isomers by biosurfactant produced by Pseudomonas aeruginosa WH-2.

    PubMed

    Sharma, Suman; Singh, Partapbir; Raj, Mayil; Chadha, Bhupinder Singh; Saini, Harvinder Singh

    2009-11-15

    The different isomers of technical-grade hexachlorocyclohexane (t-HCH) including the insecticidal gamma-isomer, commonly known as lindane, have been reported to be toxic, carcinogenic and endocrine disrupters. The spatial arrangements of the chlorine atoms on different isomers and low aqueous phase solubility contribute to their persistence in environment, beta-HCH being the most resistance to transformation. The biosurfactant preparation of Pseudomonas aeruginosa isolate WH-2 was evaluated for its ability to improve the aqueous phase partitioning of different isomers of HCH-muck. Further, the ability of biosurfactant preparation to emulsify HCH and n-hexadecane was checked under different conditions, usually characteristic of sites contaminated with pollutants viz. wide range of pH, temperature, and salinity. The data obtained from this study will be helpful in designing suitable bioremediation strategies for huge stock piles of HCH-muck and sites polluted by reckless use/disposal of HCH-isomers.

  4. Microsolvation of the pyrrole cation (Py+) with nonpolar and polar ligands: infrared spectra of Py+-Ln with L = Ar, N2, and H2O (n ≤ 3).

    PubMed

    Schütz, Markus; Matsumoto, Yoshiteru; Bouchet, Aude; Öztürk, Murat; Dopfer, Otto

    2017-02-01

    The solvation of aromatic (bio-)molecular building blocks has a strong impact on the intermolecular interactions and function of supramolecular assemblies, proteins, and DNA. Herein we characterize the initial microsolvation process of the heterocyclic aromatic pyrrole cation (Py + ) in its 2 A 2 ground electronic state with nonpolar, quadrupolar, and dipolar ligands (L = Ar, N 2 , and H 2 O) by infrared photodissociation (IRPD) spectroscopy of cold mass-selected Py + -L n (n ≤ 3) clusters in a molecular beam and dispersion-corrected density functional theory calculations at the B3LYP-D3/aug-cc-pVTZ level. Size- and isomer-specific shifts in the NH stretch frequency (Δν NH ) unravel the competition between various ligand binding sites, the strength of the respective intermolecular bonds, and the cluster growth. In Py + -Ar, linear H-bonding of Ar to the acidic NH group (NHAr) is competitive with π-stacking to the aromatic ring, and both Py + -Ar(H) and Py + -Ar(π) are observed. For L = N 2 and H 2 O, the linear NHL H-bond is much more stable than any other binding site and the only observed binding motif. For the Py + -Ar 2 and Py + -(N 2 ) 2 trimers, the H/π isomer with one H-bonded and one π-bonded ligand strongly competes with a 2H isomer with two bifurcated nonlinear NHL bonds. The latter are equivalent for Ar but nonequivalent for N 2 . Py + -H 2 O exhibits a strong and linear NHO H-bond with charge-dipole configuration and C 2v symmetry. IRPD spectra of cold Py + -H 2 O-L clusters with L = Ar and N 2 reveal that Ar prefers π-stacking to the Py + ring, while N 2 forms an OHN 2 H-bond to the H 2 O ligand. The Δν NH frequency shifts in Py + -L n are correlated with the strength of the NHL H-bond and the proton affinity (PA) of L, and a monotonic correlation between Δν NH of the Py + -L(H) dimers and PA is established. Comparison with neutral Py-L dimers reveals the strong impact of the positive charge on the acidity of the NH group, the strength of the NHL H-bond, and the preferred ligand binding motif.

  5. Isomer spectroscopy using RI beam

    NASA Astrophysics Data System (ADS)

    Odahara, Atsuko

    2009-10-01

    We have studied systematically high-spin oblate shape isomers in the N=83 isotones, which have revealed the characteristics of nuclear structure, such as the preserving pairing interactions at high-spin states, decrease of Z=64 proton shell gap energy as the decrease of proton number from 64 to 60 and so on. Recently, it became possible to search for isomers by the secondary fusion reaction at high-spin states in nuclei, which could not be populated by the stable beam and stable target, using RCNP RI beam line at Osaka University. RI beams enable us to study high-spin states in nuclei in wide mass region. By using the RI beams delivered by RIBF and the high-efficiency γ-ray detection system GRETINA, it will be possible to investigate nuclei far from the stability line. Single-particle energies and nucleon-nucleon interactions of these nuclei close to drip line are expected to be the test ground of nuclear models, such as shell structures. We have a plan to search for isomers with half lives of ˜μsec to ˜msec and to explore the decay mechanism of isomers in the proton-rich nuclei along N=Z line with 80< A<100. Moreover we try to search for nuclei beyond the proton drip line, which could be defined that isomeric states would be bound by the centrifugal potential although the ground states would be unbound against the proton emission. Isomers are expected to reveal the following characteristics of these nuclei. (1) Existence of isomers could prove the magicity of N=Z=50 and the large neutron-proton interaction, as one of the candidates of isomers is spin-gap isomer which is caused by the lowering of excitation energies resulting from the stretch coupling of spins of high-j (g9/2) holes of the ^100Sn core. (2) Isomers could prove the nuclear deformation which is caused by the evolution of shell structure. One of spin-gap isomers in ^94Ag was reported to have large prolate deformation. (3) This mass region is on the way of the rapid proton (rp) synthesis pass. Recently, neutrino reactions in the super novae were reported to play a role of the synthesis of the rp-process nuclei. In the case of no path or slow down of rp process, isomers could contribute to synthesis of rp-nuclei with larger Z, although the production rates of isomers are small.

  6. 1H NMR study of the effect of variable ligand on heme oxygenase electronic and molecular structure

    PubMed Central

    Ma, Li-Hua; Liu, Yangzhong; Zhang, Xuhong; Yoshida, Tadashi; La Mar, Gerd N.

    2009-01-01

    Heme oxygenase carries out stereospecific catabolism of protohemin to yield iron, CO and biliverdin. Instability of the physiological oxy complex has necessitated the use of model ligands, of which cyanide and azide are amenable to solution NMR characterization. Since cyanide and azide are contrasting models for bound oxygen, it is of interest to characterize differences in their molecular and/or electronic structures. We report on detailed 2D NMR comparison of the azide and cyanide substrate complexes of heme oxygenase from Neisseria meningitidis, which reveals significant and widespread differences in chemical shifts between the two complexes. To differentiate molecular from electronic structural changes between the two complexes, the anisotropy and orientation of the paramagnetic susceptibility tensor were determined for the azide complex for comparison with those for the cyanide complex. Comparison of the predicted and observed dipolar shifts reveals that shift differences are strongly dominated by differences in electronic structure and do not provide any evidence for detectable differences in molecular structure or hydrogen bonding except in the immediate vicinity of the distal ligand. The readily cleaved C-terminus interacts with the active site and saturation-transfer allows difficult heme assignments in the high-spin aquo complex. PMID:18976815

  7. Methyl group reorientation under ligand binding probed by pseudocontact shifts.

    PubMed

    Lescanne, Mathilde; Ahuja, Puneet; Blok, Anneloes; Timmer, Monika; Akerud, Tomas; Ubbink, Marcellus

    2018-06-02

    Liquid-state NMR spectroscopy is a powerful technique to elucidate binding properties of ligands on proteins. Ligands binding in hydrophobic pockets are often in close proximity to methyl groups and binding can lead to subtle displacements of methyl containing side chains to accommodate the ligand. To establish whether pseudocontact shifts can be used to characterize ligand binding and the effects on methyl groups, the N-terminal domain of HSP90 was tagged with caged lanthanoid NMR probe 5 at three positions and titrated with a ligand. Binding was monitored using the resonances of leucine and valine methyl groups. The pseudocontact shifts (PCS) caused by ytterbium result in enhanced dispersion of the methyl spectrum, allowing more resonances to be observed. The effects of tag attachment on the spectrum and ligand binding are small. Significant changes in PCS were observed upon ligand binding, indicating displacements of several methyl groups. By determining the cross-section of PCS iso-surfaces generated by two or three paramagnetic centers, the new position of a methyl group can be estimated, showing displacements in the range of 1-3 Å for methyl groups in the binding site. The information about such subtle but significant changes may be used to improve docking studies and can find application in fragment-based drug discovery.

  8. Toward structural dynamics: protein motions viewed by chemical shift modulations and direct detection of C'N multiple-quantum relaxation.

    PubMed

    Mori, Mirko; Kateb, Fatiha; Bodenhausen, Geoffrey; Piccioli, Mario; Abergel, Daniel

    2010-03-17

    Multiple quantum relaxation in proteins reveals unexpected relationships between correlated or anti-correlated conformational backbone dynamics in alpha-helices or beta-sheets. The contributions of conformational exchange to the relaxation rates of C'N coherences (i.e., double- and zero-quantum coherences involving backbone carbonyl (13)C' and neighboring amide (15)N nuclei) depend on the kinetics of slow exchange processes, as well as on the populations of the conformations and chemical shift differences of (13)C' and (15)N nuclei. The relaxation rates of C'N coherences, which reflect concerted fluctuations due to slow chemical shift modulations (CSMs), were determined by direct (13)C detection in diamagnetic and paramagnetic proteins. In well-folded proteins such as lanthanide-substituted calbindin (CaLnCb), copper,zinc superoxide dismutase (Cu,Zn SOD), and matrix metalloproteinase (MMP12), slow conformational exchange occurs along the entire backbone. Our observations demonstrate that relaxation rates of C'N coherences arising from slow backbone dynamics have positive signs (characteristic of correlated fluctuations) in beta-sheets and negative signs (characteristic of anti-correlated fluctuations) in alpha-helices. This extends the prospects of structure-dynamics relationships to slow time scales that are relevant for protein function and enzymatic activity.

  9. NMR and TRLFS studies of Ln(iii) and An(iii) C5-BPP complexes.

    PubMed

    Adam, Christian; Beele, Björn B; Geist, Andreas; Müllich, Udo; Kaden, Peter; Panak, Petra J

    2015-02-01

    C5-BPP is a highly efficient N-donor ligand for the separation of trivalent actinides, An(iii), from trivalent lanthanides, Ln(iii). The molecular origin of the selectivity of C5-BPP and many other N-donor ligands of the BTP-type is still not entirely understood. We present here the first NMR studies on C5-BPP Ln(iii) and An(iii) complexes. C5-BPP is synthesized with 10% 15 N labeling and characterized by NMR and LIFDI-MS methods. 15 N NMR spectroscopy gives a detailed insight into the bonding of C5-BPP with lanthanides and Am(iii) as a representative for trivalent actinide cations, revealing significant differences in 15 N chemical shift for coordinating nitrogen atoms compared to Ln(iii) complexes. The temperature dependence of NMR chemical shifts observed for the Am(iii) complex indicates a weak paramagnetism. This as well as the observed large chemical shift for coordinating nitrogen atoms show that metal-ligand bonding in Am(C5-BPP) 3 has a larger share of covalence than in lanthanide complexes, confirming earlier studies. The Am(C5-BPP) 3 NMR sample is furthermore spiked with Cm(iii) and characterized by time-resolved laser fluorescence spectroscopy (TRLFS), yielding important information on the speciation of trace amounts of minor complex species.

  10. Symbol interval optimization for molecular communication with drift.

    PubMed

    Kim, Na-Rae; Eckford, Andrew W; Chae, Chan-Byoung

    2014-09-01

    In this paper, we propose a symbol interval optimization algorithm in molecular communication with drift. Proper symbol intervals are important in practical communication systems since information needs to be sent as fast as possible with low error rates. There is a trade-off, however, between symbol intervals and inter-symbol interference (ISI) from Brownian motion. Thus, we find proper symbol interval values considering the ISI inside two kinds of blood vessels, and also suggest no ISI system for strong drift models. Finally, an isomer-based molecule shift keying (IMoSK) is applied to calculate achievable data transmission rates (achievable rates, hereafter). Normalized achievable rates are also obtained and compared in one-symbol ISI and no ISI systems.

  11. Structure and magnetic properties of ScFe 10Si 2

    NASA Astrophysics Data System (ADS)

    Bodak, O. I.; Stȩpień-Damm, J.; Drulis, H.; Kotur, B.; Suski, W.; Vagizov, F. G.; Wochowski, K.; Mydlarz, T.

    1995-02-01

    ScFe 10Si 2 crystallizes in the ThMn 12-type tetragonal structure with the space group I4/mmm and the lattice parameters: a = 0.8280 (1) nm, c = 0.4706 (1) nm and c/ a = 0.57. In the refinement performed for 317 independent reflections and 10 variable parameters, a final discrepancy factor R = 4.69% has been reached. The compound is ferromagnetic below 506 K ( 57Fe ME) and 560 K (magnetic). The distribution of the Fe atoms in the 8( i), 8( j) and 8( f) positions corresponds to 40, 31 and 29%, respectively. The Debye temperature determined from the temperature dependence of the isomer shift is 340 K.

  12. The interstellar chemistry of H2C3O isomers

    PubMed Central

    Loison, Jean-Christophe; Agúndez, Marcelino; Marcelino, Núria; Wakelam, Valentine; Hickson, Kevin M.; Cernicharo, José; Gerin, Maryvonne; Roueff, Evelyne; Guélin, Michel

    2016-01-01

    We present the detection of two H2C3O isomers, propynal and cyclopropenone, toward various starless cores and molecular clouds, together with upper limits for the third isomer propadienone. We review the processes controlling the abundances of H2C3O isomers in interstellar media showing that the reactions involved are gas-phase ones. We show that the abundances of these species are controlled by kinetic rather than thermodynamic effects. PMID:27013768

  13. Biorelevant physicochemical profiling of (E)- and (Z)-resveratrol determined from isomeric mixtures.

    PubMed

    Orgován, Gábor; Gonda, Imre; Noszál, Béla

    2017-05-10

    Biorelevant, isomer-specific physicochemical parameters of resveratrol, a multifunctional component in red wines, with cardioprotective, anti-Alzheimer and several other pharmacologic activities were determined. The parameters include site-specific basicities, lipophilicities, solubilities and diffusion constants for the two geometric isomers. The protonation equilibria of (E)- and (Z)-resveratrol were monitored by 1 H NMR-pH titrations. Five closely related auxiliary compounds ((E)-pinostilbene, (Z)-pinostilbene, (E)-pterostilbene, (Z)-pterostilbene and resorcinol) were also studied. Combining the datasets, the group-specific protonation constants of resveratrol isomers were determined. The results show that (Z)-resveratrol is more basic at every protonation site than the (E)-isomer. Lipophilicities are quantified in terms of logP values and were determined by octanol/water partition experiments and quantitative NMR spectroscopy: (E)-resveratrol was found to be more lipophilic. Since the molecular geometries of the isomers differ, diffusion ordered NMR spectroscopy (DOSY) experiments were also carried out to quantify the diffusion capabilities of the isomers: (Z)-resveratrol of bent shape has a slightly higher diffusion coefficient than its extended (E) counterpart. A striking 10-fold difference of water solubility was found in favor of the (Z) isomer, due obviously to the reduced water-repellent character in the more compact molecule. This is so far the greatest recorded solubility difference between geometric isomers of any compounds. Copyright © 2016. Published by Elsevier B.V.

  14. Isomer-Specific IR Spectroscopy of BENZENE-(WATER)N Clusters with N=1-8: New Insights from the Water Bend Fundamentals and Isotopically Substituted Clusters

    NASA Astrophysics Data System (ADS)

    Kusaka, Ryoji; Walsh, Patrick S.; Zwier, Timothy S.

    2014-06-01

    This talk will focus on the isomer-specific IR spectra of benzene-(water)n (BWn) clusters with n = 1-8, returning to a topic studied by our group some 20 years ago, but now with higher resolution (OH stretch region), with inclusion of data from isotopically substituted clusters, and with extension into the HOH bending mode region. Spectra are recorded using resonant ion-dip infrared spectroscopy, an IR-UV double resonance method. Isomer-specific IR spectra in the regions of OH, OD stretches and HOH, HOD bend of benzene-H_2O, -D_2O, -HOD, -(H_2O)_2, -(D_2O)_2, -HOD-DOD were recorded in order to investigate in greater detail the intermolecular potential energy surface between water and benzene. These spectra show strong combination bands in addition to the OH/OD stretch fundamentals arising from large-amplitude "tumbling" and tunneling along internal rotation and torsion coordinates of water(s) on the surface of benzene. Interestingly, the number of extra bands and spectral patterns change dramatically depending on cluster size, the kind of deuterated isomer, and the spectral region probed. In larger clusters with n=3-8, the water HOH bending region is explored for the first time. The prominent bending mode transitions in BW1-8 are spread over a relatively small range (1610-1660 wn), and shift with cluster size in a way that reflects the known structural changes that accompany the increase in size. By comparison of experiment with calculation, it is possible to assign the experimentally observed 1614 wn transition of BW1 and 1615 wn of BW2 bands to the π-bound water molecule. The 1620-1660 wn bands of BW3-8 are due to water molecules that can be categorized as single-acceptor, single-donor (AD) hydrogen-bonded waters. In the case of single-acceptor, double-donor (ADD) water molecules, which are expected to be seen from BW6,a they show higher-frequency bending vibrations and weaker IR intensity, which would correspond to very weakly observed bands in 1660-1750 wn for BW6-8. R. N. Pribble and T. S. Zwier, Science, 1994, 265, 75-79.

  15. Photochemistry in a 3D metal-organic framework (MOF): monitoring intermediates and reactivity of the fac-to-mer photoisomerization of Re(diimine)(CO)3Cl incorporated in a MOF.

    PubMed

    Easun, Timothy L; Jia, Junhua; Calladine, James A; Blackmore, Danielle L; Stapleton, Christopher S; Vuong, Khuong Q; Champness, Neil R; George, Michael W

    2014-03-03

    The mechanism and intermediates in the UV-light-initiated ligand rearrangement of fac-Re(diimine)(CO)3Cl to form the mer isomer, when incorporated into a 3D metal-organic framework (MOF), have been investigated. The structure hosting the rhenium diimine complex is a 3D network with the formula {Mn(DMF)2[LRe(CO)3Cl]}∞ (ReMn; DMF = N,N-dimethylformamide), where the diimine ligand L, 2,2'-bipyridine-5,5'-dicarboxylate, acts as a strut of the MOF. The incorporation of ReMn into a KBr disk allows spatial distribution of the mer-isomer photoproduct in the disk to be mapped and spectroscopically characterized by both Fourier transform infrared and Raman microscopy. Photoisomerization has been monitored by IR spectroscopy and proceeds via dissociation of a CO to form more than one dicarbonyl intermediate. The dicarbonyl species are stable in the solid state at 200 K. The photodissociated CO ligand appears to be trapped within the crystal lattice and, upon warming above 200 K, readily recombines with the dicarbonyl intermediates to form both the fac-Re(diimine)(CO)3Cl starting material and the mer-Re(diimine)(CO)3Cl photoproduct. Experiments over a range of temperatures (265-285 K) allow estimates of the activation enthalpy of recombination for each process of ca. 16 (±6) kJ mol(-1) (mer formation) and 23 (±4) kJ mol(-1) (fac formation) within the MOF. We have compared the photochemistry of the ReMn MOF with a related alkane-soluble Re(dnb)(CO)3Cl complex (dnb = 4,4'-dinonyl-2,2'-bipyridine). Time-resolved IR measurements clearly show that, in an alkane solution, the photoinduced dicarbonyl species again recombines with CO to both re-form the fac-isomer starting material and form the mer-isomer photoproduct. Density functional theory calculations of the possible dicarbonyl species aids the assignment of the experimental data in that the ν(CO) IR bands of the CO loss intermediate are, as expected, shifted to lower energy when the metal is bound to DMF rather than to an alkane and both solution data and calculations suggest that the ν(CO) band positions in the photoproduced dicarbonyl intermediates of ReMn are consistent with DMF binding.

  16. Competition between quasi-planar and cage-like structures in the B29- cluster: photoelectron spectroscopy and ab initio calculations.

    PubMed

    Li, Hai-Ru; Jian, Tian; Li, Wei-Li; Miao, Chang-Qing; Wang, Ying-Jin; Chen, Qiang; Luo, Xue-Mei; Wang, Kang; Zhai, Hua-Jin; Li, Si-Dian; Wang, Lai-Sheng

    2016-10-26

    Size-selected boron clusters have been found to be predominantly planar or quasi-planar (2D) in the small size regime with the appearance of three-dimensional (3D) borospherene cages of larger sizes. A seashell-like B 28 - cluster was previously shown to be the smallest borospherene, which competes with a quasi-planar isomer for the global minimum. Here we report a study on the structures and bonding of the B 29 - and B 29 clusters using photoelectron spectroscopy (PES) and first-principles calculations and demonstrate the continued competition between the 2D and borospherene structures. The PES spectrum of B 29 - displays a complex pattern with evidence of low-lying isomers. Global-minimum searches and extensive theoretical calculations revealed a complicated potential energy surface for B 29 - with five low-lying isomers, among which the lowest three were shown to contribute to the experimental spectrum. A 3D seashell-like C s (2, 1 A') isomer, featuring two heptagons on the waist and one octagon at the bottom, is the global minimum for B 29 - , followed by a 2D C 1 (3, 1 A) isomer with a hexagonal hole and a stingray-shaped 2D C s (1, 1 A') isomer with a pentagonal hole. However, by taking into account the entropic effects, the stingray-shaped isomer 1 was shown to be the lowest in energy at room temperature and was found to dominate the PES spectrum. Isomers 2 and 3, which have lower electron binding energies, were also found to be present in the experiment. Chemical bonding analyses showed that isomer 1 is an all-boron analogue of benzo[ghi]fluoranthene (C 18 H 10 ), whereas the borospherene isomer 2 possesses 18π electrons, conforming to the 2(N + 1) 2 electron counting rule for spherical aromaticity. For the B 29 neutral cluster, the seashell-like borospherene isomer is the global minimum, significantly lower in energy than the stingray-shaped quasi-planar structure.

  17. Electron paramagnetic resonance of several lunar rock samples

    NASA Technical Reports Server (NTRS)

    Marov, P. N.; Dubrov, Y. N.; Yermakov, A. N.

    1974-01-01

    The results are presented of investigating lunar rock samples returned by the Luna 16 automatic station, using electron paramagnetic resonance (EPR). The EPR technique makes it possible to detect paramagnetic centers and investigate their nature, with high sensitivity. Regolith (finely dispersed material) and five particles from it, 0.3 mm in size, consisting mostly of olivine, were investigated with EPR.

  18. Freestanding silicon quantum dots: origin of red and blue luminescence.

    PubMed

    Gupta, Anoop; Wiggers, Hartmut

    2011-02-04

    In this paper, we studied the behavior of silicon quantum dots (Si-QDs) after etching and surface oxidation by means of photoluminescence (PL) measurements, Fourier transform infrared spectroscopy (FTIR) and electron paramagnetic resonance spectroscopy (EPR). We observed that etching of red luminescing Si-QDs with HF acid drastically reduces the concentration of defects and significantly enhances their PL intensity together with a small shift in the emission spectrum. Additionally, we observed the emergence of blue luminescence from Si-QDs during the re-oxidation of freshly etched particles. Our results indicate that the red emission is related to the quantum confinement effect, while the blue emission from Si-QDs is related to defect states at the newly formed silicon oxide surface.

  19. Synthesis and Properties of Water-Soluble Blue-Emitting Mn-Alloyed CdTe Quantum Dots

    NASA Astrophysics Data System (ADS)

    Tynkevych, Olena; Karavan, Volodymyr; Vorona, Igor; Filonenko, Svitlana; Khalavka, Yuriy

    2018-05-01

    In this work, we prepared CdTe quantum dots, and series of Cd1-xMnxTe-alloyed quantum dots with narrow size distribution by an ion-exchange reaction in water solution. We found that the photoluminescence peaks are shifted to higher energies with the increasing Mn2+ content. So far, this is the first report of blue-emitting CdTe-based quantum dots. By means of cyclic voltammetry, we detected features of electrochemical activity of manganese energy levels formed inside the Cd1-xMnxTe-alloyed quantum dot band gap. This allowed us to estimate their energy position. We also demonstrate paramagnetic behavior for Cd1-xMnxTe-alloyed quantum dots which confirmed the successful ion-exchange reaction.

  20. Neutron and X-ray investigations of the Jahn–Teller switch in partially deuterated ammonium copper Tutton salt, (NH 4 ) 2 [Cu(H 2 O) 6 ](SO 4 ) 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jørgensen, Mads R. V.; Piccoli, Paula M. B.; Hathwar, Venkatesha R.

    2017-01-31

    The structural phase transition accompanied by a Jahn–Teller switch has been studied over a range of H/D ratios in (NH 4) 2[Cu(H 2O) 6](SO 4) 2(ACTS). In particular, single-crystal neutron diffraction investigations of crystals with deuteration in the range 50 to 82% are shown to be consistent with previous electron paramagnetic resonance (EPR) experiments exhibiting a phase boundary at 50% deuteration under ambient pressure. Polycrystalline samples show that the two phases can co-exist. In addition, single-crystal neutron and polycrystalline X-ray diffraction pressure experiments show a shift to lower pressure at 60% deuterationversusprevious measurements at 100% deuteration.

  1. Characterization of cis- and trans-octadecenoic acid positional isomers in edible fat and oil using gas chromatography-flame ionisation detector equipped with highly polar ionic liquid capillary column.

    PubMed

    Yoshinaga, Kazuaki; Asanuma, Masaharu; Mizobe, Hoyo; Kojima, Koichi; Nagai, Toshiharu; Beppu, Fumiaki; Gotoh, Naohiro

    2014-10-01

    In this study, the characterisation of all cis- and trans-octadecenoic acid (C18:1) positional isomers in partially hydrogenated vegetable oil (PHVO) and milk fat, which contain several cis- and trans-C18:1 positional isomers, was achieved by gas chromatography-flame ionisation detector equipped with a highly polar ionic liquid capillary column (SLB-IL111). Prior to analysis, the cis- and trans-C18:1 fractions in PHVO and milk fat were separated using a silver-ion cartridge. The resolution of all cis-C18:1 positional isomers was successfully accomplished at the optimal isothermal column temperature of 120 °C. Similarly, the positional isomers of trans-C18:1, except for trans-6-C18:1 and trans-7-C18:1, were separated at 120 °C. The resolution of trans-6-C18:1 and trans-7-C18:1 isomers was made possible by increasing the column temperature to 160 °C. This analytical method is suitable for determining the cis- and trans-C18:1 positional isomers in edible fats and oils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Absorption Kinetics of the Main Conjugated Linoleic Acid Isomers in Commercial-Rich Oil after Oral Administration in Rats.

    PubMed

    Rodríguez-Alcalá, Luís M; Ares, Irma; Fontecha, Javier; Martínez-Larrañaga, María-Rosa; Anadón, Arturo; Martínez, María-Aránzazu

    2017-09-06

    This study aimed to assess the oral absorption and plasma kinetics of two main isomers contained in commercial conjugated linoleic acid (CLA)-rich oil (Tonalin TG-80), rumenic acid (RA), and C18:2 trans-10, cis-12. The isomer plasma disposition after the single oral dose of 3000 mg of Tonalin TG-80/kg, containing 1200 mg/kg of each isomer, was studied in rats. The isomer plasma concentrations were determined by gas chromatography with flame ionization detection. The plasma kinetics showed rapid oral absorption of RA and C18:2 trans-10, cis-12 (t 1/2a 0.34 ± 0.09 and 0.53 ± 0.01 h) and slow elimination (t 1/2β 25.68 ± 3.29 and 18.12 ± 1.71 h); the maximal isomer plasma concentrations (C max ) of 8.48 ± 0.98 and 7.67 ± 0.80 μg mL -1 , respectively, were estimated at 2.08 ± 0.14 and 2.26 ± 0.11 h. Our results from a preclinical kinetic study in rats help to design future studies in humans for evaluating the CLA isomer dose-response.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dracoulis, G. D.; Walker, P. M.; Kondev, F. G.

    Here, the structure of nuclear isomeric states is reviewed in the context of their role in contemporary nuclear physics research. Emphasis is given to high-spin isomers in heavy nuclei, with A ≳ 150. The possibility to exploit isomers to study some of the most exotic nuclei is a recurring theme. In spherical nuclei, the role of octupole collectivity is discussed in detail, while in deformed nuclei the limitations of the K quantum number are addressed. Isomer targets and isomer beams are considered, along with applications related to energy storage, astrophysics, medicine, and experimental advances.

  4. Schedule of controlled substances; placement of fospropofol into schedule IV. Final rule.

    PubMed

    2009-10-06

    With the issuance of this final rule, the Deputy Administrator of the Drug Enforcement Administration (DEA) places the substance fospropofol, including its salts, isomers and salts of isomers whenever the existence of such salts, isomers, and salts of isomers is possible, into schedule IV of the Controlled Substances Act (CSA). As a result of this rule, the regulatory controls and criminal sanctions of schedule IV will be applicable to the manufacture, distribution, dispensing, importation, and exportation of fospropofol and products containing fospropofol.

  5. Trans- and cis-octadecenoic acid isomers in the hump and milk lipids from Camelus dromedarius.

    PubMed

    Wolff, R L; Precht, D; Nasser, B; El Kebbaj, M S

    2001-10-01

    The distribution profiles of individual trans- as well as cis-18:1 isomers from the fat prepared from the hump adipose tissue and the milk from Camelus dromedarius (the single-humped Arabian species) are described. Gas-liquid chromatography on two capillary columns with different polarities and lengths were used for this purpose in combination with argentation thin-layer chromatography. A comparison of the profiles established is made with that of true ruminant fats. In the fats from the dromedarius as well as from true ruminants, the trans-18:1 isomers have their ethylenic bonds in all positions between delta4 and delta16. The prominent trans isomer is the 11-18:1 (vaccenic) acid in all species, and the complete distribution profiles are quite similar. Concerning the cis isomers, the prominent isomer is oleic acid, followed by cis-vaccenic acid, as in true ruminant fats. Other cis isomers encompass the delta6-8 and the delta12 to delta15 isomers. Camelidae (suborder Tylopoda) and Bovidae (suborder Ruminantia) have evolved independently since the Eocene, that is for approximately 50 million years. Despite this considerable period, and the profound differences in anatomy, morphology, physiology, ecological and dietary habits between the extant species of these suborders, the rumen microflora has continued to synthesize the same trans- and cis-octadecenoic acid isomers, in comparable proportions, at least as deduced from their composition profiles. We conclude that the trans-18:1 acid profile is not intrinsically species-dependent, but it can be affected by the nature and the proportions of dietary unsaturated fatty acids that themselves depend on the feed, and that may be species-specific.

  6. Fundamental Issues Related to the Origin of Melatonin and Melatonin Isomers during Evolution: Relation to Their Biological Functions

    PubMed Central

    Tan, Dun-Xian; Zheng, Xiaodong; Kong, Jin; Manchester, Lucien C.; Hardeland, Ruediger; Kim, Seok Joong; Xu, Xiaoying; Reiter, Russel J.

    2014-01-01

    Melatonin and melatonin isomers exist and/or coexist in living organisms including yeasts, bacteria and plants. The levels of melatonin isomers are significantly higher than that of melatonin in some plants and in several fermented products such as in wine and bread. Currently, there are no reports documenting the presence of melatonin isomers in vertebrates. From an evolutionary point of view, it is unlikely that melatonin isomers do not exist in vertebrates. On the other hand, large quantities of the microbial flora exist in the gut of the vertebrates. These microorganisms frequently exchange materials with the host. Melatonin isomers, which are produced by these organisms inevitably enter the host’s system. The origins of melatonin and its isomers can be traced back to photosynthetic bacteria and other primitive unicellular organisms. Since some of these bacteria are believed to be the precursors of mitochondria and chloroplasts these cellular organelles may be the primary sites of melatonin production in animals or in plants, respectively. Phylogenic analysis based on its rate-limiting synthetic enzyme, serotonin N-acetyltransferase (SNAT), indicates its multiple origins during evolution. Therefore, it is likely that melatonin and its isomer are also present in the domain of archaea, which perhaps require these molecules to protect them against hostile environments including extremely high or low temperature. Evidence indicates that the initial and primary function of melatonin and its isomers was to serve as the first-line of defence against oxidative stress and all other functions were acquired during evolution either by the process of adoption or by the extension of its antioxidative capacity. PMID:25207599

  7. Differential Degradation of Nonylphenol Isomers by Sphingomonas xenophaga Bayram

    PubMed Central

    Gabriel, Frédéric L. P.; Giger, Walter; Guenther, Klaus; Kohler, Hans-Peter E.

    2005-01-01

    Sphingomonas xenophaga Bayram, isolated from the activated sludge of a municipal wastewater treatment plant, was able to utilize 4-(1-ethyl-1,4-dimethylpentyl)phenol, one of the main isomers of technical nonylphenol mixtures, as a sole carbon and energy source. The isolate degraded 1 mg of 4-(1-ethyl-1,4-dimethylpentyl)phenol/ml in minimal medium within 1 week. Growth experiments with five nonylphenol isomers showed that the three isomers with quaternary benzylic carbon atoms [(1,1,2,4-tetramethylpentyl)phenol, 4-(1-ethyl-1,4-dimethylpentyl)phenol, and 4-(1,1-dimethylheptyl)phenol] served as growth substrates, whereas the isomers containing one or two hydrogen atoms in the benzylic position [4-(1-methyloctyl)phenol and 4-n-nonylphenol] did not. However, when the isomers were incubated as a mixture, all were degraded to a certain degree. Differential degradation was clearly evident, as isomers with more highly branched alkyl side chains were degraded much faster than the others. Furthermore, the C9 alcohols 2,3,5-trimethylhexan-2-ol, 3,6-dimethylheptan-3-ol, and 2-methyloctan-2-ol, derived from the three nonylphenol isomers with quaternary benzylic carbon atoms, were detected in the culture fluid by gas chromatography-mass spectrometry, but no analogous metabolites could be found originating from 4-(1-methyloctyl)phenol and 4-n-nonylphenol. We propose that 4-(1-methyloctyl)phenol and 4-n-nonylphenol were cometabolically transformed in the growth experiments with the mixture but that, unlike the other isomers, they did not participate in the reactions leading to the detachment of the alkyl moiety. This hypothesis was corroborated by the observed accumulation in the culture fluid of an as yet unidentified metabolite derived from 4-(1-methyloctyl)phenol. PMID:15746308

  8. Structural and magnetic properties of Ni-doped SnO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwivedi, Sonam, E-mail: vdinesh33@rediffmail.com, E-mail: sonam.dwivedi88@gmail.com; Kumar, Ashwini; Dar, Mashkoor A.

    2015-06-24

    Samples of Ni doped SnO{sub 2} nanocrystalline were successfully prepared by chemical co-precipitation method. X-ray diffraction pattern infers that Sn{sub 1-x}Ni{sub x}O{sub 2} (x=0.00, 0.10, 0.15 and 0.20) samples are in single phase with tetragonal structure (P4{sub 2}/mnm). Raman spectroscopy reveals the observed phonon modes of SnO{sub 2} are at about 387-397, and 559 - 572 cm{sup −1}. For Sn{sub 0.9}Ni{sub 0.1}O{sub 2}, these peaks are shifted to higher wave numbers, while to that for Sn{sub 0.85}Ni{sub 0.15}O{sub 2} and Sn{sub 0.8}Ni{sub 0.2}O{sub 2}, peaks are shifted to the lower wave numbers. The frequency dependent dielectric constant decreases with the increasemore » in the frequency and becomes constant at high frequencies for all compositions of Ni substituted SnO{sub 2}. The magnetization curve confirms the paramagnetic nature of all Ni doped SnO{sub 2} samples.« less

  9. 29Si-NMR study of magnetic anisotropy and hyperfine interactions in the uranium-bsed ferromagnet UNiSi2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, Hironori; Baek, Seung H; Bauer, Eric D

    2009-01-01

    UNiSi{sub 2} orders ferromagnetically below T{sub Curie} = 95 K. This material crystallizes in the orthorhombic CeNiSi{sub 2}-type structure. The uranium atoms form double-layers, which are stacked along the crystallographic b axis (the longest axis). From magnetization measurement the easy (hard) magnetization axis is found to be the c axis (b axis). {sup 29}Si-NMR measurements have been performed in the paramagnetic state. In UNiSi{sub 2}, two crystallographic Si sites exist with orthorhombic local symmetry. The Knight shifts on each Si site have been estimated from the spectra of random and oriented powders. The transferred hyperfine couplings have been also derived.more » It is found that the transferred hyperfine coupling constants on each Si site are nearly isotropic, and that their Knight shift anisotropy comes from that of the bulk susceptibility. The nuclear-spin lattice relaxation rate 1/T{sub 1} shows temperature-independent behavior, which indicates the existence of localized 5f electron.« less

  10. The Creation and Destruction of Hf-178m2 Isomer by Neutron Interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Hsiao-Hua; Talbert, Willard L.; Ward, Tom

    The property of the isomer state in 178m2Hf was an interesting topic in nuclear structure studies during the time period 1970 to 1980. The state at 2.446 MeV with spin and parity K π = 16 +, has a half-life of 31 years. The isomer is described as a four-quasi-particle state. The K forbidden deexcitatiion by gamma emission is the reason for long half-life. During 1980, the isomer became a troublesome issue for radiation safety workers, because this isomer can also be produced in the first wall of a fussion reactor containing tungsten and also in a tungsten beam stopmore » of a high-energy accelerator.« less

  11. In vitro interaction study of retinoic acid isomers with telmisartan and amlodipine by equilibrium dialysis method using UV spectroscopy

    NASA Astrophysics Data System (ADS)

    Varghese, Susheel John; Johny, Sojimol K.; Paul, David; Ravi, Thengungal Kochupappy

    2011-07-01

    The in vitro protein binding of retinoic acid isomers (isotretinoin and tretinoin) and the antihypertensive drugs (amlodipine and telmisartan) was studied by equilibrium dialysis method. In this study, free fraction of drugs and the % of binding of drugs in the mixture to bovine serum albumin (BSA) were calculated. The influence of retinoic acid isomers on the % of protein binding of telmisartan and amlodipine at physiological pH (7.4) and temperature (37 ± 0.5 °C) was also evaluated. The in vitro displacement interaction study of drugs telmisartan and amlodipine on retinoic acid isomers and also interaction of retinoic acid isomers on telmisartan and amlodipine were carried out.

  12. Computational Docking of the Isomers of Nonylphenol to the Ligand Binding Domain of the Estrogen Receptor

    EPA Science Inventory

    Nonylphenols are environmentally persistent endocrine disrupting chemicals. They exist in the environment as complex mixtures containing many nonylphenol isomers. Environmental mixtures of nonylphenols, along with a few single isomers have been tested for their capacity to inte...

  13. Lipid and glycolipid isomer analyses using ultra-high resolution ion mobility spectrometry separations

    DOE PAGES

    Wojcik, Roza; Webb, Ian K.; Deng, Liulin; ...

    2017-01-18

    Understanding the biological mechanisms related to lipids and glycolipids is challenging due to the vast number of possible isomers. Mass spectrometry (MS) measurements are currently the dominant approach for studying and providing detailed information on lipid and glycolipid structures. However, difficulties in distinguishing many structural isomers (e.g. distinct acyl chain positions, double bond locations, as well as glycan isomers) inhibit the understanding of their biological roles. Here we utilized ultra-high resolution ion mobility spectrometry (IMS) separations based upon the use of traveling waves in a serpentine long path length multi-pass Structures for Lossless Manipulations (SLIM) to enhance isomer resolution. Themore » multi-pass arrangement allowed separations ranging from ~16 m (1 pass) to ~470 m (32 passes) to be investigated for the distinction of lipids and glycolipids with extremely small structural differences. Lastly, these ultra-high resolution SLIM IMS-MS analyses provide a foundation for exploring and better understanding isomer specific biological and disease processes.« less

  14. Revealing the structure of isolated peptides: IR-IR predissociation spectroscopy of protonated triglycine isomers

    NASA Astrophysics Data System (ADS)

    Voss, Jonathan M.; Fischer, Kaitlyn C.; Garand, Etienne

    2018-05-01

    We report an isomer specific IR-IR double resonance study of the mass-selected protonated triglycine peptide. Comparison of experimental spectra with calculations reveals the presence of two isomers, with protonation occurring at either the terminal amine site or one of the amide oxygen sites. The amine protonated isomer identified in our experiment contains an atypical cis amide configuration as well as a more typical trans amide. The amide protonated peptide, on the other hand, contains two trans amide moieties. Both isomers are found to be the lowest energy structures for their respective protonation site, but it is unclear, from experiments and calculations, which one is the global minimum. The presence of both in our experiments likely points to kinetic trapping of a higher energy structure. Finally, the observed frequencies of the Nsbnd H and Osbnd H stretch vibrations are used to estimate the hydrogen-bond strengths present in each isomer, accounting for the relative stabilities of these structures.

  15. Revealing the structure of isolated peptides: IR-IR predissociation spectroscopy of protonated triglycine isomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voss, Jonathan M.; Fischer, Kaitlyn C.; Garand, Etienne

    Here, we report an isomer specific IR-IR double resonance study of the mass-selected protonated triglycine peptide. Comparison of experimental spectra with calculations reveals the presence of two isomers, with protonation occurring at either the terminal amine site or one of the amide oxygen sites. The amine protonated isomer identified in our experiment contains an atypical cis amide configuration as well as a more typical trans amide. The amide protonated peptide, on the other hand, contains two trans amide moieties. Both isomers are found to be the lowest energy structures for their respective protonation site, but it is unclear, from experimentsmore » and calculations, which one is the global minimum. The presence of both in our experiments likely points to kinetic trapping of a higher energy structure. Lastly, the observed frequencies of the NH and OH stretch vibrations are used to estimate the hydrogen-bond strengths present in each isomer, accounting for the relative stabilities of these structures.« less

  16. Revealing the structure of isolated peptides: IR-IR predissociation spectroscopy of protonated triglycine isomers

    DOE PAGES

    Voss, Jonathan M.; Fischer, Kaitlyn C.; Garand, Etienne

    2018-03-08

    Here, we report an isomer specific IR-IR double resonance study of the mass-selected protonated triglycine peptide. Comparison of experimental spectra with calculations reveals the presence of two isomers, with protonation occurring at either the terminal amine site or one of the amide oxygen sites. The amine protonated isomer identified in our experiment contains an atypical cis amide configuration as well as a more typical trans amide. The amide protonated peptide, on the other hand, contains two trans amide moieties. Both isomers are found to be the lowest energy structures for their respective protonation site, but it is unclear, from experimentsmore » and calculations, which one is the global minimum. The presence of both in our experiments likely points to kinetic trapping of a higher energy structure. Lastly, the observed frequencies of the NH and OH stretch vibrations are used to estimate the hydrogen-bond strengths present in each isomer, accounting for the relative stabilities of these structures.« less

  17. Simple Preparation and NMR Analysis of mer and fac Isomers of Tris(1,1,1-trifluoro-2,4-pentanedionato)cobalt(III). An Experiment for the Inorganic Chemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Jensen, Ashley W.; O'Brien, Brian A.

    2001-07-01

    A one-step procedure for the preparation of tris(1,1,1-trifluoro-2,4-pentanedionato)cobalt(III) from hydrated cobalt(II) carbonate and 10% hydrogen peroxide, in which tert-butyl alcohol is used as a component of the solvent, is described. The procedure is short, simple, and less hazardous than procedures reported in the literature, and the starting materials are readily available and inexpensive. The product is a mixture of mer and fac isomers that can be separated by silica gel chromatography with toluene as the eluent. Thin-layer chromatography is used to obtain a collective class sample of each isomer for 1H, 13C, and 19F NMR analysis. The NMR analyses clearly illustrate the threefold rotational symmetry of the fac isomer and the lack of symmetry of the mer isomer. Detailed NMR data are provided for each isomer.

  18. Separation and conversion dynamics of nuclear-spin isomers of gaseous methanol

    PubMed Central

    Sun, Zhen-Dong; Ge, Meihua; Zheng, Yujun

    2015-01-01

    All symmetrical molecules with non-zero nuclear spin exist in nature as nuclear-spin isomers (NSIs). However, owing to the lack of experimental information, knowledge is rare about interconversions of NSIs of gaseous molecules with torsional symmetry. Here we report our separation and conversion observations on NSI-torsion-specific transition systems of gaseous methanol from a light-induced drift experiment involving partially spatial separation of the ortho and para isomers. We find that vibrationally excited molecules of the methanol spin isomer have a smaller collision cross-section than their ground-state counterparts. Interconversion of the enriched ortho isomer with the para isomer, which is generally considered improbable, has been quantitatively studied by sensitive detections of the spectral intensities. Rather counterintuitively, this reveals that the interconversion is inhibited with increasing pressure. Our results suggest that the spin conversion mechanism in methanol is via a quantum relaxation process with the quantum Zeno effect induced by molecular collisions. PMID:25880882

  19. Preparation, Separation, and Conformational Analysis of Differentially Sulfated Heparin Octasaccharide Isomers using Ion Mobility Mass Spectrometry

    PubMed Central

    Seo, Youjin; Andaya, Armann; Leary, Julie A.

    2012-01-01

    Heparin is a linear sulfated polysaccharide widely used in medicine because of its anticoagulant properties. The various sulfation and/or acetylation patterns on heparin impart different degrees of conformational change around the glycosidic bonds and subsequently alter its function as an anticoagulant, anticancer, or antiviral drug. Characterization of these structures is important for eventual elucidation of its function but presents itself as an analytical challenge due to the inherent heterogeneity of the carbohydrates. Heparin octasaccharide structural isomers of various sulfation patterns were investigated using ion mobility mass spectrometry (IMMS). In addition to distinguishing the isomers, we report the preparation and tandem mass spectrometry analysis for multiple sulfated or acetylated oligosaccharides. Herein, our data indicate that heparin octasaccharide isomers were separated based on their structural conformations in the ion mobility cell. Subsequent to this separation, isomers were further distinguished using product ions resulting from tandem mass spectrometry. Overall, IMMS analysis was used to successfully characterize and separate individual isomers and subsequently measure their conformations. PMID:22283665

  20. The fingerprint nature of PCDD in iron ore sinter strand emissions, the effect of suppressants and alternative fuels, and the potential for comparison with the isomer profile of PCDF.

    PubMed

    Ooi, Tze C; Thompson, Dennis; Anderson, David R; Fisher, Ray

    2018-01-01

    It has been previously shown that the isomer profile of PCDF emissions from iron ore sinter plant only varies within limits even when suppressants or alternative fuels are added, to the extent that it can be said to have a 'fingerprint'. The isomer profiles of PCDD from tetra- to hexacholrodibenzo-p-dioxin from the same samples examined for PCDF emissions have been obtained, and show the same tendency for a 'fingerprint ' isomer distribution to occur. Occasional exceptionally high isomer abundances are observed, but these are uncommon. The potential for comparison of the abundances of PCDF and PCDD isomers with similar chlorination patterns to determine whether the same formation process is involved has been examined. It is found that co-elutions prevent extensive comparisons irrespective of whether the SP2331 or DB5ms column is used in the analyses for separation of isomers to provide the results used for comparisons, although they allow limited results to be obtained. It is suggested that analyses using the two chromatography columns to analyse the same sample in parallel could provide more resolution of the isomer profiles for use in comparisons. A pilot study using samples analysed using each column is limited because of detailed differences in the emissions profiles, but demonstrates that greater resolution is possible if the two columns are used to analyse one sample. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Paramagnetic Spin Seebeck Effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Stephen M.; Pearson, John E.; Bhattacharya, Anand

    2015-05-01

    We report the observation of the longitudinal spin Seebeck effect in paramagnetic insulators. By using a microscale on-chip local heater, we generate a large thermal gradient confined to the chip surface without a large increase in the total sample temperature. Using this technique at low temperatures (< 20 K), we resolve the paramagnetic spin Seebeck effect in the insulating paramagnets Gd3Ga5O12 (gadolinium gallium garnet) and DyScO3 (DSO), using either W or Pt as the spin detector layer. By taking advantage of the strong magnetocrystalline anisotropy of DSO, we eliminate contributions from the Nernst effect in W or Pt, which producesmore » a phenomenologically similar signal.« less

  2. Paramagnetic NMR Investigation of Dendrimer-Based Host-Guest Interactions

    PubMed Central

    Wang, Fei; Shao, Naimin; Cheng, Yiyun

    2013-01-01

    In this study, the host-guest behavior of poly(amidoamine) (PAMAM) dendrimers bearing amine, hydroxyl, or carboxylate surface functionalities were investigated by paramagnetic NMR studies. 2,2,6,6-Tetramethylpiperidinyloxy (TEMPO) derivatives were used as paramagnetic guest molecules. The results showed that TEMPO-COOH significantly broaden the 1H NMR peaks of amine- and hydroxyl-terminated PAMAM dendrimers. In comparison, no paramagnetic relaxation enhancement (PRE) was observed between TEMPO-NH2, TEMPO-OH and the three types of PAMAM dendrimers. The PRE phenomenon observed is correlated with the encapsulation of TEMPO-COOH within dendrimer pockets. Protonation of the tertiary amine groups within PAMAM dendrimers plays an important role during this process. Interestingly, the absence of TEMPO-COOH encapsulation within carboxylate-terminated PAMAM dendrimer is observed due to the repulsion of TEMPO-COO- anion and anionic dendrimer surface. The combination of paramagnetic probes and 1H NMR linewidth analysis can be used as a powerful tool in the analysis of dendrimer-based host-guest systems. PMID:23762249

  3. Retrospective Reconstruction of Radiation Doses of Chernobyl Liquidators by Electron Paramagnetic Resonance

    DTIC Science & Technology

    1997-12-01

    Armed Forces Rad I Research Institute Retrospective Reconstruction of Radiation Doses of Chernobyl Liquidators by Electron Paramagnetic Resonance A...of Radiation Doses of Chernobyl Liquidators by Electron Paramagnetic Resonance Authored by Scientific Center of Radiation Medicine Academy of Medical...libraries associated with the U.S. Government’s Depository Library System. Preface On April 26, 1986, Reactor #4 at the Chernobyl Nuclear Power Plant near

  4. Characterization of Luminescent Materials with 151Eu Mössbauer Spectroscopy

    PubMed Central

    Johnson, Charles E.; Schweizer, Stefan

    2018-01-01

    The application of Mössbauer spectroscopy to luminescent materials is described. Many solids doped with europium are luminescent, i.e., when irradiated with light they emit light of a longer wavelength. These materials therefore have practical applications in tuning the light output of devices like light emitting diodes. The optical properties are very different for the two possible valence states Eu2+ and Eu3+, the former producing ultraviolet/visible light that shifts from violet to red depending on the host and the latter red light, so it is important to have a knowledge of their behavior in a sample environment. Photoluminescence spectra cannot give a quantitative analysis of Eu2+ and Eu3+ ions. Mössbauer spectroscopy, however, is more powerful and gives a separate spectrum for each oxidation state enabling the relative amount present to be estimated. The oxidation state can be identified from its isomer shift which is between −12 and −15 mm/s for Eu2+ compared to around 0 mm/s for Eu3+. Furthermore, within each oxidation state, there are changes depending on the ligands attached to the europium: the shift is more positive for increased covalency of the bonding ligand X, or Eu concentration, and decreases for increasing Eu–X bond length. PMID:29772832

  5. Inefficient Metabolism of the Human Milk Oligosaccharides Lacto-N-tetraose and Lacto-N-neotetraose Shifts Bifidobacterium longum subsp. infantis Physiology

    PubMed Central

    Özcan, Ezgi; Sela, David A.

    2018-01-01

    Human milk contains a high concentration of indigestible oligosaccharides, which likely mediated the coevolution of the nursing infant with its gut microbiome. Specifically, Bifidobacterium longum subsp. infantis (B. infantis) often colonizes the infant gut and utilizes these human milk oligosaccharides (HMOs) to enrich their abundance. In this study, the physiology and mechanisms underlying B. infantis utilization of two HMO isomers lacto-N-tetraose (LNT) and lacto-N-neotetraose (LNnT) was investigated in addition to their carbohydrate constituents. Both LNT and LNnT utilization induced a significant shift in the ratio of secreted acetate to lactate (1.7–2.0) in contrast to the catabolism of their component carbohydrates (~1.5). Inefficient metabolism of LNnT prompts B. infantis to shunt carbon toward formic acid and ethanol secretion. The global transcriptome presents genomic features differentially expressed to catabolize these two HMO species that vary by a single glycosidic linkage. Furthermore, a measure of strain-level variation exists between B. infantis isolates. Regardless of strain, inefficient HMO metabolism induces the metabolic shift toward formic acid and ethanol production. Furthermore, bifidobacterial metabolites reduced LPS-induced inflammation in a cell culture model. Thus, differential metabolism of milk glycans potentially drives the emergent physiology of host-microbial interactions to impact infant health. PMID:29900174

  6. Evaluation of Enhanced Comprehensive 2-D Gas Chromatography-Time-Of-Flight Mass Spectrometry for the Separation of Recalcitrant Polychlorinated Biphenyl Isomers

    EPA Science Inventory

    The separation of some recalcitrant polychlorinated biphenyl (PCB) isomers in extracts from environmental compartments has been a daunting task for environmental chemists. Summed quantitation values for coeluting PCB isomers are often reported. This composite data obscures the ac...

  7. 27 CFR 21.120 - Nitropropane, mixed isomers of.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Nitropropane, mixed isomers of. 21.120 Section 21.120 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Denaturants § 21.120 Nitropropane, mixed isomers of. (a) Nitropropane content. A minimum of 94 percent by...

  8. 27 CFR 21.120 - Nitropropane, mixed isomers of.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Nitropropane, mixed isomers of. 21.120 Section 21.120 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Denaturants § 21.120 Nitropropane, mixed isomers of. (a) Nitropropane content. A minimum of 94 percent by...

  9. 27 CFR 21.120 - Nitropropane, mixed isomers of.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Nitropropane, mixed isomers of. 21.120 Section 21.120 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Denaturants § 21.120 Nitropropane, mixed isomers of. (a) Nitropropane content. A minimum of 94 percent by...

  10. 27 CFR 21.120 - Nitropropane, mixed isomers of.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Nitropropane, mixed isomers of. 21.120 Section 21.120 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Denaturants § 21.120 Nitropropane, mixed isomers of. (a) Nitropropane content. A minimum of 94 percent by...

  11. 27 CFR 21.120 - Nitropropane, mixed isomers of.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Nitropropane, mixed isomers of. 21.120 Section 21.120 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Denaturants § 21.120 Nitropropane, mixed isomers of. (a) Nitropropane content. A minimum of 94 percent by...

  12. Review of metastable states in heavy nuclei

    DOE PAGES

    Dracoulis, G. D.; Walker, P. M.; Kondev, F. G.

    2016-05-31

    Here, the structure of nuclear isomeric states is reviewed in the context of their role in contemporary nuclear physics research. Emphasis is given to high-spin isomers in heavy nuclei, with A ≳ 150. The possibility to exploit isomers to study some of the most exotic nuclei is a recurring theme. In spherical nuclei, the role of octupole collectivity is discussed in detail, while in deformed nuclei the limitations of the K quantum number are addressed. Isomer targets and isomer beams are considered, along with applications related to energy storage, astrophysics, medicine, and experimental advances.

  13. Comparative Pharmacodynamics and Plasma Concentrations of D-Threo-Methylphenidate Hydrochloride after Single Doses of D-Threo-Methylphenidate Hydrochloride and D,l-Threo-Methylphenidate Hydrochloride in a Double-Blind, Placebo-Controlled, Crossover Laboratory School Study in Children with Attention-Deficit/hyperactivity Disorder

    ERIC Educational Resources Information Center

    Quinn, Declan; Wigal, Sharon; Swanson, James; Hirsch, Sharon; Ottolini, Yvonne; Dariani, Maghsoud; Roffman, Mark; Zeldis, Jerome; Cooper, Thomas

    2004-01-01

    Objective: Methylphenidate has four optical isomers due to two asymmetries (erythro-threo and dextro-levo). The initial commercial formulation eliminated the erythro isomer, but the dextro-levo asymmetry was racemic, with equal amounts of d and l-threo isomers (d,l-MPH). Previous work has suggested that the d-threo isomer methylphenidate (d-MPH)…

  14. Theoretical studies of possible toroidal high-spin isomers in the light-mass region

    DOE PAGES

    Staszczak, A.; Wong, Cheuk-Yin

    2016-05-11

    We review our theoretical knowledge of possible toroidal high-spin isomers in the light mass region in 28≤A≤52 obtained previously in cranked Skyrme-Hartree-Fock calculations. We report additional toroidal high-spin isomers in 56Ni with I=114ℏ and 140ℏ, which follow the same (multi-particle) (multi-hole) systematics as other toroidal high-spin isomers. We examine the production of these exotic nuclei by fusion of various projectiles on 20Ne or 28Si as an active target in time-projection-chamber (TPC) experiments.

  15. Catalytic properties of an expressed and purified higher plant type zeta-carotene desaturase from Capsicum annuum.

    PubMed

    Breitenbach, J; Kuntz, M; Takaichi, S; Sandmann, G

    1999-10-01

    The zeta-carotene desaturase from Capsicum annuum (EC 1.14.99.-) was expressed in Escherichia coli, purified and characterized biochemically. The enzyme acts as a monomer with lipophilic quinones as cofactors. Km values for the substrate zeta-carotene or the intermediate neurosporene in the two-step desaturation reaction are almost identical. Product analysis showed that different lycopene isomers are formed, including substantial amounts of the all-trans form, together with 7,7',9,9'-tetracis prolycopene via the corresponding neurosporene isomers. The application of different geometric isomers as substrates revealed that the zeta-carotene desaturase has no preference for certain isomers and that the nature of the isomers formed during catalysis depends strictly on the isomeric composition of the substrate.

  16. In vitro interaction study of retinoic acid isomers with telmisartan and amlodipine by equilibrium dialysis method using UV spectroscopy.

    PubMed

    Varghese, Susheel John; Johny, Sojimol K; Paul, David; Ravi, Thengungal Kochupappy

    2011-07-01

    The in vitro protein binding of retinoic acid isomers (isotretinoin and tretinoin) and the antihypertensive drugs (amlodipine and telmisartan) was studied by equilibrium dialysis method. In this study, free fraction of drugs and the % of binding of drugs in the mixture to bovine serum albumin (BSA) were calculated. The influence of retinoic acid isomers on the % of protein binding of telmisartan and amlodipine at physiological pH (7.4) and temperature (37±0.5°C) was also evaluated. The in vitro displacement interaction study of drugs telmisartan and amlodipine on retinoic acid isomers and also interaction of retinoic acid isomers on telmisartan and amlodipine were carried out. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Molecular structure of uranium carbides: Isomers of UC3

    NASA Astrophysics Data System (ADS)

    Zalazar, M. Fernanda; Rayón, Víctor M.; Largo, Antonio

    2013-03-01

    In this article, the most relevant isomers of uranium tricarbide are studied through quantum chemical methods. It is found that the most stable isomer has a fan geometry in which the uranium atom is bonded to a quasilinear C3 unit. Both, a rhombic and a ring CU(C2) structures are found about 104-125 kJ/mol higher in energy. Other possible isomers including linear geometries are located even higher. For each structure, we provide predictions for those molecular properties (vibrational frequencies, IR intensities, dipole moments) that could eventually help in their experimental detection. We also discuss the possible routes for the formation of the different UC3 isomers as well as the bonding situation by means of a topological analysis of the electron density.

  18. Molecular structure of uranium carbides: isomers of UC3.

    PubMed

    Zalazar, M Fernanda; Rayón, Víctor M; Largo, Antonio

    2013-03-21

    In this article, the most relevant isomers of uranium tricarbide are studied through quantum chemical methods. It is found that the most stable isomer has a fan geometry in which the uranium atom is bonded to a quasilinear C3 unit. Both, a rhombic and a ring CU(C2) structures are found about 104-125 kJ/mol higher in energy. Other possible isomers including linear geometries are located even higher. For each structure, we provide predictions for those molecular properties (vibrational frequencies, IR intensities, dipole moments) that could eventually help in their experimental detection. We also discuss the possible routes for the formation of the different UC3 isomers as well as the bonding situation by means of a topological analysis of the electron density.

  19. Nucleoside adducts from the in vitro reaction of benzo[a]pyrene-7,8-dihydrodiol 9,10-oxide or benzo[a]pyrene 4,5-oxide with nucleic acids.

    PubMed

    Jennette, K W; Jeffrey, A M; Blobstein, S H; Beland, F A; Harvey, R G; Weinstein, I B

    1977-03-08

    The covalent binding of benzo[a]pyrene 4,5-oxide and benzo[a]pyrene-7,8-dihydrodiol 9,10-oxide isomer I and isomer II to nucleic acids in aqueous acetone solution has been investigated. Benzo[a]pyrene 4,5-oxide reacted preferentially with guanosine residues. On the other hand, benzo[a]pyrene-7,8-dihydrodiol 9,10-oxide isomer I and II reacted extensively with guanosine, adenosine, and cytidine residues. Time course studies showed that the reactivity of isomer I or isomer II with homopolyribonucleotides followed the order poly(G) greater than poly(A) greater than poly(C). Alkaline or enzymatic hydrolysis of the modified nucleic acids and subsequent chromatography on Sephadex LH-20 columns yielded benzo[a]pyrene-nucleotide adducts. These were enzymatically converted to the corresponding nucleosides which were resolved into several distinct components by high-pressure liquid chromatography. Evidence was obtained for the presence of multiple nucleoside adducts of guanosine, adenosine, cytidine, deoxyguanosine, deoxyadenosine, and deoxycytidine. The HPLC profiles of adducts formed with isomer I were different from the corresponding profiles of adducts formed with isomer II. Structural aspects of these nucleoside adducts are discussed.

  20. Surfactant mediated enhanced biodegradation of hexachlorocyclohexane (HCH) isomers by Sphingomonas sp. NM05.

    PubMed

    Manickam, Natesan; Bajaj, Abhay; Saini, Harvinder S; Shanker, Rishi

    2012-09-01

    Environmental biodegradation of several chlorinated pesticides is limited by their low solubility and sorption to soil surfaces. To mitigate this problem we quantified the effect of three biosurfactant viz., rhamnolipid, sophorolipid and trehalose-containing lipid on the dissolution, bioavailability, and biodegradation of HCH-isomers in liquid culture and in contaminated soil. The effect of biosurfactants was evaluated through the critical micelle concentration (CMC) value as determined for each isomer. The surfactant increased the solubilization of HCH isomers by 3-9 folds with rhamnolipid and sophorolipid being more effective and showing maximum solubilization of HCH isomers at 40 μg/mL, compared to trehalose-containing lipid showing peak solubilization at 60 μg/mL. The degradation of HCH isomers by Sphingomonas sp. NM05 in surfactant-amended liquid mineral salts medium showed 30% enhancement in 2 days as compared to degradation in 10 days in the absence of surfactant. HCH-spiked soil slurry incubated with surfactant also showed around 30-50% enhanced degradation of HCH which was comparable to the corresponding batch culture experiments. Among the three surfactants, sophorolipid offered highest solubilization and enhanced degradation of HCH isomers both in liquid medium and soil culture. The results of this study suggest the effectiveness of surfactants in improving HCH degradation by increased bioaccessibility.

  1. Stereoselective bioaccumulation of syn- and anti-Dechlorane plus isomers in different tissues of common carp (Cyprinus carpio).

    PubMed

    Tang, Bin; Luo, Xiao-Jun; Huang, Chen-Chen; Sun, Run-Xia; Wang, Tao; Zeng, Yan-Hong; Mai, Bi-Xian

    2018-03-01

    Common carps (Cyprinus carpio) were exposed to syn- and anti-Dechlorane Plus (DP) isomers to investigate absorption, tissue distribution, and stereoselective bioaccumulation of DP isomers. The absorption efficiencies of anti-DP in the gastrointestinal system were higher than those of syn-DP. A linear accumulation was found for both isomers in all fish tissues except for serum; and the liver and gill exhibited the highest and lowest DP assimilation efficiency, respectively. The elimination of DP isomers in all tissues followed first-order kinetics, with the fastest depuration rate occurring in the liver and serum. The biomagnification factors (BMFs) of both isomers were less than one in all tissues, except for serum. Anti-DP was preferably accumulated in the liver, gill, and serum, whereas syn-DP was selectively accumulated in the carcass and gastrointestinal tract. As a whole, fish did not show selective accumulation of the syn- or anti-DP isomer in the uptake stage, whereas a selective accumulation of syn-DP in fish was observed during the depuration period, which could be due to a selective excretion of anti-DP. Metabolism cannot be ruled out as a possible reason considering the high f anti values and the high elimination rate of DPs in the liver. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Structure, stability, and cluster-cage interactions in nitride clusterfullerenes M3N@C2n (M = Sc, Y; 2n = 68-98): a density functional theory study.

    PubMed

    Popov, Alexey A; Dunsch, Lothar

    2007-09-26

    Extensive semiempirical calculations of the hexaanions of IPR (isolated pentagon rule) and non-IPR isomers of C(68)-C(88) and IPR isomers of C(90)-C(98) followed by DFT calculations of the lowest energy structures were performed to find the carbon cages that can provide the most stable isomers of M(3)N@C(2n) clusterfullerenes (M = Sc, Y) with Y as a model for rare earth ions. DFT calculations of isomers of M(3)N@C(2n) (M = Sc, Y; 2n = 68-98) based on the most stable C(2n)(6-) cages were also performed. The lowest energy isomers found by this methodology for Sc(3)N@C(68), Sc(3)N@C(78), Sc(3)N@C(80), Y(3)N@C(78), Y(3)N@C(80), Y(3)N@C(84), Y(3)N@C(86), and Y(3)N@C(88) are those that have been shown to exist by single-crystal X-ray studies as Sc(3)N@C(2n) (2n = 68, 78, 80), Dy(3)N@C(80), and Tb(3)N@C(2n) (2n = 80, 84, 86, 88) clusterfullerenes. Reassignment of the carbon cage of Sc(2)@C(76) to the non-IPR Cs: 17490 isomer is also proposed. The stability of nitride clusterfullerenes was found to correlate well with the stability of the empty 6-fold charged cages. However, the dimensions of the cage in terms of its ability to encapsulate M(3)N clusters were also found to be an important factor, especially for the medium size cages and the large Y(3)N cluster. In some cases the most stable structures are based on the different cage isomers for Sc(3)N and Y(3)N clusters. Up to the cage size of C(84), non-IPR isomers of C(2n)(6-) and M(3)N@C(2n) were found to compete with or to be even more stable than IPR isomers. However, the number of adjacent pentagon pairs in the most stable non-IPR isomers decreases as cage size increases: the most stable M(3)N@C(2n) isomers have three such pairs for 2n = 68-72, two pairs for n = 74-80, and only one pair for n = 82, 84. For C(86) and C(88) the lowest energy IPR isomers are much more stable than any non-IPR isomer. The trends in the stability of the fullerene isomers and the cluster-cage binding energies are discussed, and general rules for stability of clusterfullerenes are established. Finally, the high yield of M(3)N@C(80) (Ih) clusterfullerenes for any metal is explained by the exceptional stability of the C(80)(6-) (Ih: 31924) cage, rationalized by the optimum distribution of the pentagons leading to the minimization of the steric strain, and structural similarities of C(80) (Ih: 31924) with the lowest energy non-IPR isomers of C(760(6-), C(78)(6-), C(82)(6-), and C(84)(6-) pointed out.

  3. NARROW LINE ABSORPTION IN CACO3.

    DTIC Science & Technology

    CARBONATES), (*CALCIUM COMPOUNDS, (*ABSORPTION SPECTRA, CALCITE), (*CALCITE, RADIATION EFFECTS), ELECTRON PARAMAGNETIC RESONANCE, SINGLE CRYSTALS , NEUTRONS, X RAYS, GAMMA RAYS, IONS, CRYSTAL DEFECTS, PARAMAGNETIC RESONANCE.

  4. Deformations of Quantum Field Theories on Curved Spacetimes

    NASA Astrophysics Data System (ADS)

    Maher, Christopher Andrew

    With the ubiquity of electronic devices, finding ways to improve quality or fabrication methods of components is an important area of study. This dissertation looks at two sets of materials that may be used to address this need. The first is a series of disordered perovskites of the form Nd⅔--xLi3 xTiO3. These materials are notable for the way the lithium becomes spontaneously patterned during synthesis into square planar regions, the dimensions of which are only dependent upon the initial concentration of lithium. Through the use of point-charge calculations, the paramagnetic and first-order quadrupole interaction tensors for each of the 28 unique lithium sites of the x = 0.083 concentration were calculated and used to accurately simulate the experimental spectra. From this, it was observed that the 28 crystallographically distinct sites present in that particular concentration could be grouped into three sets based on the principal values of the paramagnetic interaction tensors. Qualitative analysis of spectra from the other concentrations suggests that this grouping holds for other concentrations, with only the relative number of sites in each group changing. Additionally, jump dynamics were incorporated into the simulations of one of the sites in order to explain the broadening that occurs at lower temperatures. The second study included in this dissertation is focused on lithium in a pair of high-dielectric microwave ceramics, Ca(Li1/3Nb 2/3)O3 and (Ca2/3La1/3)(Li1/3 Nb2/3)O3. Experimental results are reported for the temperature-dependence of both the spin-lattice relaxation rate and the isotropic chemical shift for each material. For both samples, the isotropic shift was linear with temperature, with the isotropic shift of Ca(Li 1/3Nb2/3)O3 having a stronger temperature dependence (3.53 Hz·K-1 compared to 2.65 Hz·K -1). The spin-lattice relaxation rates of both samples follow an Arrhenius relationship with temperature, with Ca(Li1/3Nb 2/3)O3 sample having an activation energy of 5.08 kJ · (mol · K)-1 and (Ca2/3La1/3)(Li 1/3Nb2/3)O3 having an activation energy of 2.21kJ · (mol · K)-1. In addition to the lithium study, there were also spectra acquired that observed the niobium nucleus in each material, which has a noticeably more complex spectrum. For the (Ca2/3 La1/3)(Li1/3Nb2/3)O3 sample, a double-quantum satellite-transition magic angle spinning pulse sequence was used to determine the isotropic chemical shift as well as the quadrupole product of each of the five resolved sites.

  5. C5H9N isomers: pointers to possible branched chain interstellar molecules

    NASA Astrophysics Data System (ADS)

    Etim, Emmanuel E.; Gorai, Prasanta; Das, Ankan; Arunan, Elangannan

    2017-04-01

    The astronomical observation of isopropyl cyanide further stresses the link between the chemical composition of the interstellar medium (ISM) and molecular composition of the meteorites in which there is a dominance of branched chain amino acids as compared to the straight. However, observations of more branched chain molecules in ISM will firmly establish this link. In the light of this, we have considered C5H9N isomeric group in which the next higher member of the alkyl cyanide and other branched chain isomers belong. High-level quantum chemical calculations have been employed in estimating accurate energies of these isomers. From the results, the only isomer of the group that has been astronomically searched, n-butyl cyanide is not the most stable isomer and therefore, which might explain why its search could only yield upper limits of its column density without a successful detection. Rather, the two most stable isomers of the group are the branched chain isomers; tert-butylnitrile and isobutyl cyanide. Based on the rotational constants of these isomers, it is found that the expected intensity of tert-butylnitrile is the maximum among this isomeric group. Thus, this is proposed as the most probable candidate for astronomical observation. A simple LTE (local thermodynamic equilibrium) modelling has also been carried out to check the possibility of detecting tert-butyl cyanide in the millimetre-wave region. Contribution to the Topical Issue "Low-Energy Interactions related to Atmospheric and Extreme Conditions", edited by S. Ptasinska, M. Smialek-Telega, A. Milosavljevic and B. Sivaraman.

  6. Determination of nonylphenol isomers in landfill leachate and municipal wastewater using steam distillation extraction coupled with comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry

    USGS Publications Warehouse

    Zhang, Caixiang; Eganhouse, Robert P.; Pontolillo, James; Cozzarelli, Isabelle M.; Wang, Yanxin

    2012-01-01

    4-Nonylphenols (4-NPs) are known endocrine disruptors and by-products of the microbial degradation of nonylphenol polyethoxylate surfactants. One of the challenges to understanding the toxic effects of nonylphenols is the large number of isomers that may exist in environmental samples. In order to attribute toxic effects to specific compounds, a method is needed for the separation and quantitation of individual nonylphenol isomers. The pre-concentration methods of solvent sublimation, solid-phase extraction or liquid–liquid extraction prior to chromatographic analysis can be problematic because of co-extraction of thousands of compounds typically found in complex matrices such as municipal wastewater or landfill leachate. In the present study, steam distillation extraction (SDE) was found to be an effective pre-concentration method for extraction of 4-NPs from leachate and wastewater, and comprehensive two-dimensional gas chromatography (GC × GC) coupled with fast mass spectral data acquisition by time-of-flight mass spectrometry (ToFMS) enhanced the resolution and identification of 4-NP isomers. Concentrations of eight 4-NP isomers were determined in leachate from landfill cells of different age and wastewater influent and effluent samples. 4-NP isomers were about 3 times more abundant in leachate from the younger cell than the older one, whereas concentrations in wastewater effluent were either below detection limits or <1% of influent concentrations. 4-NP isomer distribution patterns were found to have been altered following release to the environment. This is believed to reflect isomer-specific degradation and accumulation of 4-NPs in the aquatic environment.

  7. Hyperfine Interactions in the Electron Paramagnetic Resonance Spectra of Point Defects in Wide-Band-Gap Semiconductors

    DTIC Science & Technology

    2014-09-18

    compensation) during growth due to their preferred trivalent charge states. The electron paramagnetic resonance spectrum of the singly ionized chromium ...neutral nitrogen acceptor in ZnO . . . . . . . . . . . . . . . . . . 45 16 Spectrum of the singly ionized chromium acceptor in TiO2 . . . . . . . . . 49...is a single crystal of magnesium oxide that has been doped with chromium . Chromium Cr3+ substitutes for magnesium Mg2+ and creates a paramagnetic

  8. SEPARATION OF ISOMERS OF NONYLPHENOL AND SELECT NONPHENYL POLYETHOXYLATES BY HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY ON A GRAPHITIC CARBON COLUMN

    EPA Science Inventory

    p-Nonylphenol (NP) is ubiquitous degradation product of nonylphenol polyethoxylate (NPE) surfactants and has been reported to be an endocrine disrupter. It is composed of numerous structural isomers resulting from ;the various branching patterns of the C-9 group. Twenty-two isome...

  9. Methods for the Syntheses of Mono-, Di-, Tri- and Tetranitro Derivatives of Diphenylamine.

    DTIC Science & Technology

    1986-01-01

    condensation of the relevant nitroaniline (2- and 4- isomers) with bromobenzene (solvent) or nitroacetanilide (3- isomer) with bromobenzene in...Goldberg(ref.6) gave the 3- isomer. WSRL-0436-TR - 8 - A well agitated mixture of 3- nitroacetanilide (12.0 g, 0.067 mol), bromobenzene (21.0 g, 0.134

  10. Metabolism of a- and y-hexabromocyclododecane and enantioselective fractions of a-, ß-, y-isomers in mice

    USDA-ARS?s Scientific Manuscript database

    Commercial HBCD is a mixture of three major isomers, a, ß, and ', with the '-diastereoisomer predominating (>70%). Thus, the prevalence of the a-isomer as an environmental contaminant must be explained by either different pharmacokinetics, or by isomerization of the '-diastereoisomer. a- and '-[14...

  11. Toward the Development of Aluminum Cluster-Containing Materials for Propulsion Applications

    DTIC Science & Technology

    2011-02-22

    our main example. Photoelectron spectroscopy revealed that Al13H - has two isomers and for both provided vertical detachment energies ( VDE ) for their...The relative energies for both isomers in their anionic and their neutral charge states as well as EAa and VDE values for both isomers were also

  12. 21 CFR 184.1212 - Calcium pantothenate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...-isomer, 137-08-6) is a salt of pantothenic acid, one of the vitamins of the B complex. Only the D-isomer of pantothenic acid has vitamin activity, although both the D-isomer and the DL- racemic mixture of....archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html. (c) In accordance with § 184...

  13. Bond-bending isomerism of Au 2I 3 -: Competition between covalent bonding and aurophilicity

    DOE PAGES

    Li, Wan -Lu; Liu, Hong -Tao; Jian, Tian; ...

    2015-10-13

    We report a joint photoelectron spectroscopy and theoretical investigation of the gaseous Au 2I 3 – cluster, which is found to exhibit two types of isomers due to competition between Au–I covalent bonding and Au–Au aurophilic interactions. The covalent bonding favors a bent IAuIAuI – structure with an obtuse Au–I–Au angle (100.7°), while aurophilic interactions pull the two Au atoms much closer, leading to an acutely bent structure (72.0°) with an Au–Au distance of 3.08 Å. The two isomers are separated by a small barrier and are nearly degenerate with the obtuse isomer being slightly more stable. At low temperature,more » only the obtuse isomer is observed; distinct experimental evidence is observed for the co-existence of a combination of isomers with both acute and obtuse bending angles at room temperature. As a result, the two bond-bending isomers of Au 2I 3 – reveal a unique example of one molecule being able to oscillate between different structures as a result of two competing chemical forces.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, Norman C.; Leyden, Matthew C.; Moore, Michael C.

    Assignments of the vibrational fundamentals of cis- and trans-1,3,5-hexatriene are reevaluated with new infrared and Raman spectra and with quantum chemical predictions of intensities and anharmonic frequencies. The rotational structure is analyzed in the high-resolution (0.0013-0.0018 cm -1) infrared spectra of three C-type bands of the trans isomer and two C-type bands of the cis isomer. The bands for the trans isomer are at 1010.96 cm-1 (v14), 900.908 cm-1 (v16), and 683.46 cm-1 (v17). Ground state (GS) rotational constants have been fitted to the combined ground state combination differences (GSCDs) for the three bands of the trans isomer. The bandsmore » for the cis isomer are at 907.70 cm-1 (v33) and 587.89 cm-1 (v35). GS rotational constants have been fitted to the combined GSCDs for the two bands of the cis isomer and compared with those obtained from microwave spectroscopy. Small inertial defects in the GSs confirm that both molecules are planar. Upper state rotational constants were fitted for all five bands.« less

  15. Bond-bending isomerism of Au 2I 3 -: Competition between covalent bonding and aurophilicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wan -Lu; Liu, Hong -Tao; Jian, Tian

    We report a joint photoelectron spectroscopy and theoretical investigation of the gaseous Au 2I 3 – cluster, which is found to exhibit two types of isomers due to competition between Au–I covalent bonding and Au–Au aurophilic interactions. The covalent bonding favors a bent IAuIAuI – structure with an obtuse Au–I–Au angle (100.7°), while aurophilic interactions pull the two Au atoms much closer, leading to an acutely bent structure (72.0°) with an Au–Au distance of 3.08 Å. The two isomers are separated by a small barrier and are nearly degenerate with the obtuse isomer being slightly more stable. At low temperature,more » only the obtuse isomer is observed; distinct experimental evidence is observed for the co-existence of a combination of isomers with both acute and obtuse bending angles at room temperature. As a result, the two bond-bending isomers of Au 2I 3 – reveal a unique example of one molecule being able to oscillate between different structures as a result of two competing chemical forces.« less

  16. High-K isomers and rotational structures in {sup 174}W

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tandel, S.K.; Chowdhury, P.; Seabury, E.H.

    2006-04-15

    High-spin states in {sup 174}W (Z = 74) have been populated using the reaction {sup 128}Te({sup 50}Ti, 4n){sup 174}W at beam energies of 215 and 225 MeV. The Gammasphere array was used to detect the {gamma} rays emitted by the evaporation residues. Four previously known collective band structures have been extended, and 16 new rotational sequences observed. Two are built upon isomeric states, one corresponding to a two-quasiparticle K = 8 isomer, the other to a four-quasiparticle K = 12 isomer, with the latter exhibiting strong K-violating {delta}K=12 decays to the ground state band. Nucleonic configurations for the two- andmore » four-quasiparticle excitations are proposed, and Woods-Saxon cranking calculations are presented to understand the rotational structures. Decay mechanisms of multi-quasiparticle K isomers are discussed in terms of the prevalent phenomenological models, with special emphasis on {gamma}-tunneling calculations. Surprisingly, the latter underpredict the decay hindrance for the K = 12 isomer by three orders of magnitude, unlike all other isomer decays in this mass region.« less

  17. Differentiating Positional Isomers of Nucleoside Modifications by Higher-Energy Collisional Dissociation Mass Spectrometry (HCD MS)

    NASA Astrophysics Data System (ADS)

    Jora, Manasses; Burns, Andrew P.; Ross, Robert L.; Lobue, Peter A.; Zhao, Ruoxia; Palumbo, Cody M.; Beal, Peter A.; Addepalli, Balasubrahmanyam; Limbach, Patrick A.

    2018-06-01

    The analytical identification of positional isomers (e.g., 3-, N 4-, 5-methylcytidine) within the > 160 different post-transcriptional modifications found in RNA can be challenging. Conventional liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) approaches rely on chromatographic separation for accurate identification because the collision-induced dissociation (CID) mass spectra of these isomers nearly exclusively yield identical nucleobase ions (BH2 +) from the same molecular ion (MH+). Here, we have explored higher-energy collisional dissociation (HCD) as an alternative fragmentation technique to generate more informative product ions that can be used to differentiate positional isomers. LC-MS/MS of modified nucleosides characterized using HCD led to the creation of structure- and HCD energy-specific fragmentation patterns that generated unique fingerprints, which can be used to identify individual positional isomers even when they cannot be separated chromatographically. While particularly useful for identifying positional isomers, the fingerprinting capabilities enabled by HCD also offer the potential to generate HPLC-independent spectral libraries for the rapid analysis of modified ribonucleosides. [Figure not available: see fulltext.

  18. Spectroscopic evidence of β-turn in N-glycated peptidomimetics related to leucine-enkephalin

    NASA Astrophysics Data System (ADS)

    Vass, E.; Hollósi, M.; Kveder, M.; Kojić-Prodić, B.; Čudić, M.; Horvat, Š.

    2000-11-01

    The conformational differences caused by N-glycation of the amide bond in endogenous opioid pentapeptide leucine-enkephalin (Tyr-Gly-Gly-Phe-Leu) have been explored in solution using FTIR spectroscopy, NMR and molecular modelling. The compounds studied include protected and unprotected enkephalin analogues N-alkylated at the second (Gly 2) amino acid residue with a 6-deoxy- D-galactose moiety ( 1- 3). Comparison of the amide I component bands in the FTIR spectra, measured in trifluoroethanol (TFE), CHCl 3 and DMSO, revealed significant differences in the intensity as well as shifts in component band frequencies for glycopeptides 1- 3. We found that only the FTIR spectrum of the fully protected compound 1 indicated the presence of a higher population of β-turns, while the spectra of the partially protected and unprotected glycopeptides 2 and 3 reflected the dominance of unordered or open structures, with some low population of turns. The observed NOE connectivities in CDCl 3 for both isomers of the fully protected compound 1, the all-trans one and another with Tyr 1-Gly 2 peptide bond in cis conformation, indicate the presence of a β-like turn conformation. Molecular dynamics simulations of the glycopeptide 1 obtained by unconstrained energy minimization of trans- and cis- 1 shows that one of trans form conformations is consistent with β-turn whereas cis isomer has revealed less-compact turn.

  19. A case of Z/E-isomers elution order inversion caused by cosolvent percentage change in supercritical fluid chromatography.

    PubMed

    Pokrovskiy, Oleg I; Ustinovich, Konstantin B; Usovich, Oleg I; Parenago, Olga O; Lunin, Valeriy V; Ovchinnikov, Denis V; Kosyakov, Dmitry S

    2017-01-06

    A case of elution order inversion caused by cosolvent percentage change in supercritical fluid chromatography was observed and investigated in some detail. Z- and E-isomers of phenylisobutylketone oxime experience an elution order reversal on most columns if the mobile phase consists of CO 2 and alcohol. At lower percentages of alcohol Z-oxime is retained less, somewhere at 2-5% coelution occurs and at larger cosolvent volume elution order reverses - Z-oxime is eluted later than E-oxime. We suppose inversion with CO 2 -ROH phases happens due to a shift in balance between two main interactions governing retention. At low ROH percentages stationary phase surface is only slightly covered by ROH molecules so oximes primarily interact with adsorption sites via hydrogen bond formation. Due to intramolecular sterical hindrance Z-oxime is less able to form hydrogen bonds and consequently is eluted first. At higher percentages alcohols occupy most of strong hydrogen bonding sites on silica surface thus leaving non-specific electrostatic interactions predominantly responsible for Z/E selectivity. Z-oxime has a much larger dipole moment than E-oxime and at these conditions it is eluted later. Additional experimental data with CO 2 -CH 3 CN, hexane-iPrOH and CHF 3 -ROH mobile phases supporting this explanation are presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Far-infrared spectra of yttrium-doped gold clusters Au(n)Y (n=1-9).

    PubMed

    Lin, Ling; Claes, Pieterjan; Gruene, Philipp; Meijer, Gerard; Fielicke, André; Nguyen, Minh Tho; Lievens, Peter

    2010-06-21

    The geometric, spectroscopic, and electronic properties of neutral yttrium-doped gold clusters Au(n)Y (n=1-9) are studied by far-infrared multiple photon dissociation (FIR-MPD) spectroscopy and quantum chemical calculations. Comparison of the observed and calculated vibrational spectra allows the structures of the isomers present in the molecular beam to be determined. Most of the isomers for which the IR spectra agree best with experiment are calculated to be the energetically most stable ones. Attachment of xenon to the Au(n)Y cluster can cause changes in the IR spectra, which involve band shifts and band splittings. In some cases symmetry changes, as a result of the attachment of xenon atoms, were also observed. All the Au(n)Y clusters considered prefer a low spin state. In contrast to pure gold clusters, which exhibit exclusively planar lowest-energy structures for small sizes, several of the studied species are three-dimensional. This is particularly the case for Au(4)Y and Au(9)Y, while for some other sizes (n=5, 8) the 3D structures have an energy similar to that of their 2D counterparts. Several of the lowest-energy structures are quasi-2D, that is, slightly distorted from planar shapes. For all the studied species the Y atom prefers high coordination, which is different from other metal dopants in gold clusters.

  1. Conformational Properties, Spectroscopy and Structure of ISATIN-(WATER)_{n=1-3} Clusters

    NASA Astrophysics Data System (ADS)

    Singh, Milind K.; Upadhya, D. M.; Singh, Vipin B.

    2009-06-01

    The structure, stability and vibrational characteristics of Isatin-(Water)_n clusters with n=1=3 have been investigated using second order Moller-Plesset (MP2) perturbation tehory and Density Functional Theory (with B3LYP) methods employing the basis set 6-31+G(d). The vertical excitation energies for these complexes have been also computed using the time-dependent density functional theory. The three stable conformational isomers, each for Isatin-(Water)_1 and Isatin-(Water)_2 clusters were obtained. It is shown that in the most stable isomer of Isatin-(Water)_1 cluster hydrogen bond between amide hydrogen and oxygen of water is found stronger as compared to the H-bond in Indole-(Water)_1 cluster. For a particular position of complexation of water, between the carbonyl oxygen's, results an unusual increase in the dipole moment due to an electronic charge displacement from the N atom to the C atom of the neighboring carbonyl bond. This causes a large separation between the effective charges forming the dipole. The complexes involving this position of water are expected to show a small charge transfer character. The experimentally observed electronic absorption peaks are reasonably reproduced by the TD-DFT calculations and it is found that the longest wavelength absorption peak of isatin at 406 nm is significantly red shifted after addition of a water molecule.

  2. Degradation of crude 4-MCHM (4-methylcyclohexanemethanol) in sediments from Elk River, West Virginia

    USGS Publications Warehouse

    Cozzarelli, Isabelle M.; Akob, Denise M.; Baedecker, Mary; Spencer, Tracey; Jaeschke, Jeanne B.; Dunlap, Darren S.; Mumford, Adam C.; Poret-Peterson, Amisha T.; Chambers, Douglas B.

    2017-01-01

    In January 2014, approximately 37 800 L of crude 4-methylcyclohexanemethanol (crude MCHM) spilled into the Elk River, West Virginia. To understand the long-term fate of 4-MCHM, we conducted experiments under environmentally relevant conditions to assess the potential for the 2 primary compounds in crude MCHM (1) to undergo biodegradation and (2) for sediments to serve as a long-term source of 4-MCHM. We developed a solid phase microextraction (SPME) method to quantify the cis- and trans-isomers of 4-MCHM. Autoclaved Elk River sediment slurries sorbed 17.5% of cis-4-MCHM and 31% of trans-4-MCHM from water during the 2-week experiment. Sterilized, impacted, spill-site sediment released minor amounts of cis- and up to 35 μg/L of trans-4-MCHM into water, indicating 4-MCHM was present in sediment collected 10 months post spill. In anoxic microcosms, 300 μg/L cis- and 150 μg/L trans-4-MCHM degraded to nondetectable levels in 8–13 days in both impacted and background sediments. Under aerobic conditions, 4-MCHM isomers degraded to nondetectable levels within 4 days. Microbial communities at impacted sites differed in composition compared to background samples, but communities from both sites shifted in response to crude MCHM amendments. Our results indicate that 4-MCHM is readily biodegradable under environmentally relevant conditions.

  3. Fingerprints of Both Watson-Crick and Hoogsteen Isomers of the Isolated (Cytosine-Guanine)H+ Pair.

    PubMed

    Cruz-Ortiz, Andrés F; Rossa, Maximiliano; Berthias, Francis; Berdakin, Matías; Maitre, Philippe; Pino, Gustavo A

    2017-11-16

     Gas phase protonated guanine-cytosine (CGH + ) pair was generated using an electrospray ionization source from solutions at two different pH (5.8 and 3.2). Consistent evidence from MS/MS fragmentation patterns and differential ion mobility spectra (DIMS) point toward the presence of two isomers of the CGH + pair, whose relative populations depend strongly on the pH of the solution. Gas phase infrared multiphoton dissociation (IRMPD) spectroscopy in the 900-1900 cm -1 spectral range further confirms that the Watson-Crick isomer is preferentially produced (91%) at pH = 5.8, while the Hoogsteen isomer predominates (66%) at pH = 3.2). These fingerprint signatures are expected to be useful for the development of new analytical methodologies and to trigger isomer selective photochemical studies of protonated DNA base pairs.

  4. Structural characterization of cevimeline and its trans-impurity by single crystal XRD.

    PubMed

    Stepanovs, Dmitrijs; Tetere, Zenta; Rāviņa, Irisa; Kumpiņš, Viktors; Zicāne, Daina; Bizdēna, Ērika; Bogans, Jānis; Novosjolova, Irina; Grigaloviča, Agnese; Meri, Remo Merijs; Fotins, Juris; Čerkasovs, Maksims; Mishnev, Anatoly; Turks, Māris

    2016-01-25

    Cevimeline is muscarinic receptor agonist which increases secretion of exocrine glands. Cevimeline base is a liquid (m.p. 20-25 °C) at ambient conditions, therefore its pharmaceutical formulation as a solid hydrochloride hemihydrate has been developed. The synthesis of cevimeline yields its cis- and trans-isomers and only the cis-isomer is recognized as the API and used in the finished formulation. In this study structural and physicochemical investigations of hydrochloride hemihydrates of cis- and trans-cevimelines have been performed. Single crystal X-ray analyses of both cis- and trans-isomers of cevimeline are reported here for the first time. It was found that the cis-isomer, the API, has less dense crystal packing, lower melting point and higher solubility in comparison to the trans-isomer. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. An isomer-specific study of solid nitromethane decomposition pathways - Detection of aci-nitromethane (H2CNO(OH)) and nitrosomethanol (HOCH2NO) intermediates

    NASA Astrophysics Data System (ADS)

    Maksyutenko, Pavlo; Förstel, Marko; Crandall, Parker; Sun, Bing-Jian; Wu, Mei-Hung; Chang, Agnes H. H.; Kaiser, Ralf I.

    2016-08-01

    An isomer specific study of energetic electron exposed nitromethane ices was performed via photoionization - reflectron time of flight mass spectrometry (PI-ReTOF-MS) of the subliming products employing tunable vacuum ultraviolet light for ionization. Supported by electronic structure calculations, nitromethane (CH3NO2) was found to isomerize to methyl nitrite (CH3ONO) and also via hydrogen migration to the hitherto elusive aci-nitromethane isomer (H2CNO(OH)). The latter isomerizes to nitrosomethanol (HOCH2NO) through hydroxyl group (OH) migration, and, probably, ring closure to the cyclic 2-hydroxy-oxaziridine isomer (c-H2CON(OH)) as well. The importance of hydrogen migrations was also verified via the nitrosomethane (CH3NO) - formaldehyde oxime isomer (CH2NOH) pair.

  6. Low-energy electron collisions with C{sub 4}H{sub 6} isomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopes, A.R.; Bettega, M.H.F.; Lima, M.A.P.

    2004-01-01

    We report integral, differential, and momentum-transfer cross sections for elastic scattering of low-energy electrons by C{sub 4}H{sub 6} isomers, namely, 1,3-butadiene, 2-butyne, and cyclobutene. We use the Schwinger multichannel method with pseudopotentials [M. H. F. Bettega, L. G. Ferreira, and M. A. P. Lima, Phys. Rev. A 47, 1111 (1993)] at the static-exchange approximation to compute the cross sections for energies from 10 to 60 eV. In particular, we discuss the isomer effect, reported by experimental studies for isomers of C{sub 3}H{sub 4} and C{sub 4}H{sub 6}. We also calculate the total ionization cross section using the binary-encounter-Bethe model formore » 2-butyne and 1,3-butadiene, and estimate the inelastic cross section for these two isomers.« less

  7. Impurity-defect complexes in non-implanted aluminum

    NASA Astrophysics Data System (ADS)

    Pedersen, F. T.; Grann, H.; Weyer, G.

    1986-02-01

    The formation of impurity-defect complexes in ion-implanted aluminum has been studied in the temperature interval 100 400K. Radioactive119In isotopes have been implanted. Mössbauer spectra have been measured for the 24 keV γ-radiation emitted after the decay to119Sn. The spectra could be analysed satisfactorily with two lines, one of which is known to be due to substitutional Sn. A second line, which has a higher isomer shift and lower Debye temperature, is tentatively assigned to vacancy-associated Sn, formed by trapping of thermally mobile (multi-)vacancies. Comparison to similar DPAC experiments suggests that cubic Sn-V4 complexes are formed. Some indication (˜15%) for an athermal formation of impurity defects below 175K is obtained.

  8. S-Amlodipine: An Isomer with Difference—Time to Shift from Racemic Amlodipine

    PubMed Central

    Mohan, J. C.; Iyengar, S. S.; Hiremath, Jagdish; Sathyamurthy, Immaneni; Bansal, Sandeep; Kahali, Dhiman; Dasbiswas, Arup

    2018-01-01

    Calcium channel blockers are among the first-line drugs for treatment of hypertension (HTN). S-amlodipine (S-AM), an S-enantiomer of amlodipine, is available in India and in other countries like China, Korea, Russia, Ukraine, and Nepal. Being clinically researched for nearly two decades, we performed in-depth review of S-AM. This review discusses clinical evidence from total 42 studies (26 randomized controlled trials, 14 observational studies, and 2 meta-analyses) corroborating over 7400 patients treated with S-AM. Efficacy and safety of S-AM in HTN in comparison to racemic amlodipine, used as monotherapy and in combination with other antihypertensives, efficacy in angina, and pleiotropic benefits with S-AM, are discussed in this review. PMID:29887996

  9. Infrared photodissociation spectroscopy of M(N2)n(+) (M = Y, La, Ce; n = 7-8) in the gas phase.

    PubMed

    Xie, Hua; Shi, Lei; Xing, Xiaopeng; Tang, Zichao

    2016-02-14

    M(N2)n(+) (M = Y, La, Ce; n = 7-8) complexes have been studied by infrared photodissociation (IRPD) spectroscopy and density functional theory (DFT) calculations. The experimental results indicate that the N-N stretching vibrational frequencies are red-shifted from the gas-phase N2 value. The π back-donation is found to be a main contributor in these systems. IRPD spectra and DFT calculations reveal the coexistence of two isomers in the seven-coordinate M(N2)7(+) and eight-coordinate M(N2)8(+) complexes, respectively. The present studies on these metal-nitrogen complexes shed light on the interactions and coordinations toward N2 with transition and lanthanide metals.

  10. Evidence for cis-trans isomerization of a double bond in the fatty acids of the psychrophilic bacterium Vibrio sp. strain ABE-1.

    PubMed

    Morita, N; Shibahara, A; Yamamoto, K; Shinkai, K; Kajimoto, G; Okuyama, H

    1993-02-01

    Vibrio sp. strain ABE-1 was grown in a medium that contained as its stable isotope tracer either [2,2-2H2]cis-9-hexadecenoic or [2,2-2H2]trans-9-hexadecenoic acid. Gas chromatographic-mass spectrometric analysis of the cis-9-hexadecenoic and trans-9-hexadecenoic acid fractions from the cells revealed the formation of an intracellularly isomerized 2,2-2H2-fatty acid which differed from the tracer only in the geometrical configuration of the double bond. This observation shows that cis-trans isomerization without a shift in double-bond position between these two geometric hexadecenoic acid isomers can occur in the cells.

  11. Evidence for cis-trans isomerization of a double bond in the fatty acids of the psychrophilic bacterium Vibrio sp. strain ABE-1.

    PubMed Central

    Morita, N; Shibahara, A; Yamamoto, K; Shinkai, K; Kajimoto, G; Okuyama, H

    1993-01-01

    Vibrio sp. strain ABE-1 was grown in a medium that contained as its stable isotope tracer either [2,2-2H2]cis-9-hexadecenoic or [2,2-2H2]trans-9-hexadecenoic acid. Gas chromatographic-mass spectrometric analysis of the cis-9-hexadecenoic and trans-9-hexadecenoic acid fractions from the cells revealed the formation of an intracellularly isomerized 2,2-2H2-fatty acid which differed from the tracer only in the geometrical configuration of the double bond. This observation shows that cis-trans isomerization without a shift in double-bond position between these two geometric hexadecenoic acid isomers can occur in the cells. PMID:8423164

  12. Identification, characterization and quantitation of pyrogenic polycylic aromatic hydrocarbons and other organic compounds in tire fire products.

    PubMed

    Wang, Zhendi; Li, K; Lambert, P; Yang, Chun

    2007-01-12

    On 15 August 2001, a tire fire took place at the Pneu Lavoie Facility in Gatineau, Quebec, in which 4000 to 6000 new and recycled tires were stored along with other potentially hazardous materials. Comprehensive gas chromatography-mass spectrometry (GC-MS) analyses were performed on the tire fire samples to facilitate detailed chemical composition characterization of toxic polycyclic aromatic hydrocarbons (PAHs) and other organic compounds in samples. It is found that significant amounts of PAHs, particularly the high-ring-number PAHs, were generated during the fire. In total, 165 PAH compounds including 13 isomers of molecular weight (MW) 302, 10 isomers of MW 278, 10 isomers of MW 276, 7 isomers of MW 252, 7 isomers of MW 228, and 8 isomers of MW 216 PAHs were positively identified in the tire fire wipe samples for the first time. Numerous S-, O-, and N-containing PAH compounds were also detected. The identification and characterization of the PAH isomers was mainly based on: (1) a positive match of mass spectral data of the PAH isomers with the NIST authentic mass spectra database; (2) a positive match of the GC retention indices (I) of PAHs with authentic standards and with those reported in the literature; (3) agreement of the PAH elution order with the NIST (US National Institute of Standards and Technology) Standard Reference Material 1597 for complex mixture of PAHs from coal tar; (4) a positive match of the distribution patterns of PAH isomers in the SIM mode between the tire fire samples and the NIST Standard Reference Materials and well-characterized reference oils. Quantitation of target PAHs was done on the GC-MS in the selected ion monitoring (SIM) mode using the internal standard method. The relative response factors (RRF) for target PAHs were obtained from analyses of authentic PAH standard compounds. Alkylated PAH homologues were quantitated using straight baseline integration of each level of alkylation.

  13. Five isomers of C 60 generated in microwave plasma of chloroform

    NASA Astrophysics Data System (ADS)

    Xie, Su-Yuan; Deng, Shun-Liu; Huang, Rong-Bin; Yu, La-Jia; Zheng, Lan-Sun

    2001-08-01

    In addition to Ih symmetry buckminsterfullerene, four other isomers of C 60 were generated in a microwave plasma of chloroform. The newly observed isomers, separated and identified by a high performance liquid chromatography coupled with mass spectrometry (HPLC-MS), were found to be stable at room temperature but transform to buckminsterfullerene when heated. With regards to the generation of various fully chlorinated carbon clusters as well as the C 60 isomers, which may be attributed to the rapidly cooling of the synthetic reaction, a modified Pentagon Road scheme is suggested for fullerene formation.

  14. Electron Reconfiguration and Enhanced Phonon Activation in the Superconducting State of a FeSe0.3Te0.7 Single Crystal, as Evidenced by Mössbauer Spectroscopy

    NASA Astrophysics Data System (ADS)

    Greculeasa, Simona; Miu, Lucica; Badica, Petre; Nie, Jiacai; Tolea, Mugurel; Kuncser, Victor

    2015-01-01

    The Mössbauer spectra of a FeSe0.3Te0.7 single crystal grown by the Bridgman method were analysed across the superconducting transition by considering the interplay between the structure and electron configuration of the transition metal. The magnetically determined superconducting critical temperature is TC ˜ 14 K. The 57Fe Mössbauer spectra collected in the temperature range from 5 to 200 K mainly have an asymmetric doublet pattern, which was conveniently fitted by the full Hamiltonian method. No effective magnetic moment ascribed to the superconducting phase was observed down to 5 K. The unusual behaviour observed below ˜17 K for the chemical isomer shift and quadrupole splitting may be associated with an electron reconfiguration process intimately related to an unusual lattice distortion accompanying the superconducting transition. The decreasing trend of the total absorption spectral area and second-order Doppler shift during cooling the sample below the critical temperature, point to enhanced phonon activation in the superconducting state.

  15. Simplifying Logistics and Avoiding the Unnecessary in Patients With Breast Cancer Undergoing Sentinel Node Biopsy. A Prospective Feasibility Trial of the Preoperative Injection of Super Paramagnetic Iron Oxide Nanoparticles.

    PubMed

    Karakatsanis, A; Olofsson, H; Stålberg, P; Bergkvist, L; Abdsaleh, S; Wärnberg, F

    2018-06-01

    Sentinel node is routinely localized with the intraoperative use of a radioactive tracer, involving challenging logistics. Super paramagnetic iron oxide nanoparticle is a non-radioactive tracer with comparable performance that could allow for preoperative localization, would simplify the procedure, and possibly be of value in axillary mapping before neoadjuvant treatment. The current trial aimed to determine the a priori hypothesis that the injection of super paramagnetic iron oxide nanoparticles in the preoperative period for the localization of the sentinel node is feasible. This is a prospective feasibility trial, conducted from 9 September 2014 to 22 October 2014 at Uppsala University Hospital. In all, 12 consecutive patients with primary breast cancer planned for resection of the primary and sentinel node biopsy were recruited. Super paramagnetic iron oxide nanoparticles were injected in the preoperative visit in the outpatient clinic. The radioactive tracer ( 99 mTc) and the blue dye were injected perioperatively in standard fashion. A volunteer was injected with super paramagnetic iron oxide nanoparticles to follow the decline in the magnetic signal in the sentinel node over time. The primary outcome was successful sentinel node detection. Super paramagnetic iron oxide nanoparticles' detection after preoperative injection (3-15 days) was successful in all cases (100%). In the volunteer, axillary signal was presented for 4 weeks. No adverse effects were noted. Conclusion and relevance: Preoperative super paramagnetic iron oxide nanoparticles' injection is feasible and leads to successful detection of the sentinel node. That may lead to simplified logistics as well as the identification, sampling, and marking of the sentinel node in patients planned for neoadjuvant treatment.

  16. Roles of the tyrosine isomers meta-tyrosine and ortho-tyrosine in oxidative stress.

    PubMed

    Ipson, Brett R; Fisher, Alfred L

    2016-05-01

    The damage to cellular components by reactive oxygen species, termed oxidative stress, both increases with age and likely contributes to age-related diseases including Alzheimer's disease, atherosclerosis, diabetes, and cataract formation. In the setting of oxidative stress, hydroxyl radicals can oxidize the benzyl ring of the amino acid phenylalanine, which then produces the abnormal tyrosine isomers meta-tyrosine or ortho-tyrosine. While elevations in m-tyrosine and o-tyrosine concentrations have been used as a biological marker of oxidative stress, there is emerging evidence from bacterial, plant, and mammalian studies demonstrating that these isomers, particularly m-tyrosine, directly produce adverse effects to cells and tissues. These new findings suggest that the abnormal tyrosine isomers could in fact represent mediators of the effects of oxidative stress. Consequently the accumulation of m- and o-tyrosine may disrupt cellular homeostasis and contribute to disease pathogenesis, and as result, effective defenses against oxidative stress can encompass not only the elimination of reactive oxygen species but also the metabolism and ultimately the removal of the abnormal tyrosine isomers from the cellular amino acid pool. Future research in this area is needed to clarify the biologic mechanisms by which the tyrosine isomers damage cells and disrupt the function of tissues and organs and to identify the metabolic pathways involved in removing the accumulated isomers after exposure to oxidative stress. Published by Elsevier B.V.

  17. Roles of the tyrosine isomers meta-tyrosine and ortho-tyrosine in oxidative stress

    PubMed Central

    Ipson, Brett R.; Fisher, Alfred L.

    2016-01-01

    The damage to cellular components by reactive oxygen species, termed oxidative stress, both increases with age and likely contributes to age-related diseases including Alzheimer’s disease, atherosclerosis, diabetes, and cataract formation. In the setting of oxidative stress, hydroxyl radicals can oxidize the benzyl ring of the amino acid phenylalanine, which then produces the abnormal tyrosine isomers meta-tyrosine or ortho-tyrosine. While elevations in m-tyrosine and o-tyrosine concentrations have been used as a biological marker of oxidative stress, there is emerging evidence from bacterial, plant, and mammalian studies demonstrating that these isomers, particularly m-tyrosine, directly produce adverse effects to cells and tissues. These new findings suggest that the abnormal tyrosine isomers could in fact represent mediators of the effects of oxidative stress. Consequently the accumulation of m- and o-tyrosine may disrupt cellular homeostasis and contribute to disease pathogenesis, and as result, effective defenses against oxidative stress can encompass not only the elimination of reactive oxygen species but also the metabolism and ultimately the removal of the abnormal tyrosine isomers from the cellular amino acid pool. Future research in this area is needed to clarify the biologic mechanisms by which the tyrosine isomers damage cells and disrupt the function of tissues and organs, and to identify the metabolic pathways involved in removing the accumulated isomers after exposure to oxidative stress. PMID:27039887

  18. Investigation of cis-trans isomer dependent dermatotoxicokinetics of UV filter ethylhexyl methoxycinnamate through stratum corneum in vivo.

    PubMed

    Sharma, Anežka; Bányiová, Katarína; Vrana, Branislav; Justan, Ivan; Čupr, Pavel

    2017-11-01

    2-Ethylhexyl methoxycinnamate (EHMC) is one of the most used ultraviolet filters in personal care products. It undergoes cis/trans isomerization in sunlight, and there is limited toxicological understanding of the effects of the cis-isomer. It is known that two geometric isomers of one compound can have different physico-chemical properties and effects. However, there are no studies focusing on toxicokinetics of EHMC isomerization products to compare their potential difference in dermal exposure to cis-EHMC and trans-EHMC due to the difference in their dermatotoxicokinetics. In this study, dermal absorption of the parental trans-EHMC and its cis isomer was studied. A commercially available sunscreen lotion containing trans-EHMC and spiked with laboratory-prepared cis-EHMC was locally applied on the forearm skin of two volunteers. After 8 h of skin exposure, the stratum corneum (SC) layer was removed by tape stripping. The removed thickness of the SC was determined spectrophotometrically using a total protein assay. The concentration of both isomers in the removed SC was measured by HPLC-DAD. A new diffusion and permeability coefficient of both EHMC isomers in SC were determined by Fick's second law of diffusion in vivo. The difference in dermatotoxicokinetic parameters between the two isomers was not statistically significant. However, separate toxicological studies of isomeric forms and the determination of their dermatotoxicokinetic parameters are crucial for refinement of human risk assessment.

  19. Proton NMR study of α-MnH 0.06

    NASA Astrophysics Data System (ADS)

    Soloninin, A. V.; Skripov, A. V.; Buzlukov, A. L.; Antonov, V. E.; Antonova, T. E.

    2004-07-01

    Proton nuclear magnetic resonance (NMR) spectra and spin-lattice relaxation rates for the solid solution α-MnH 0.06 have been measured over the temperature range 11-297 K and the resonance frequency range 20-90 MHz. A considerable shift and broadening of the proton NMR line and a sharp peak of the spin-lattice relaxation rate are observed near 130 K. These effects are attributed to the onset of antiferromagnetic ordering below the Néel temperature TN≈130 K. The proton NMR line does not disappear in the antiferromagnetic phase; this suggests a small magnitude of the local magnetic fields at H-sites in α-MnH 0.06. The spin-lattice relaxation rate in the paramagnetic phase is dominated by the effects of spin fluctuations.

  20. Double resonance calibration of g factor standards: Carbon fibers as a high precision standard.

    PubMed

    Herb, Konstantin; Tschaggelar, Rene; Denninger, Gert; Jeschke, Gunnar

    2018-04-01

    The g factor of paramagnetic defects in commercial high performance carbon fibers was determined by a double resonance experiment based on the Overhauser shift due to hyperfine coupled protons. Our carbon fibers exhibit a single, narrow and perfectly Lorentzian shaped ESR line and a g factor slightly higher than g free with g=2.002644=g free ·(1+162ppm) with a relative uncertainty of 15ppm. This precisely known g factor and their inertness qualify them as a high precision g factor standard for general purposes. The double resonance experiment for calibration is applicable to other potential standards with a hyperfine interaction averaged by a process with very short correlation time. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  1. 133Cs-NMR Study on the Ground State of the Equilateral Triangular Spin Tube CsCrF4

    NASA Astrophysics Data System (ADS)

    Matsui, K.; Goto, T.; Manaka, H.; Miura, Y.

    2018-03-01

    We have investigated the hyperfine coupling between Cs and Cr on the S = 3/2 equilateral triangular spin tube CsCrF4, utilizing 133Cs-NMR. At paramagnetic state above 80 K, we have obtained spectra containing a single peak, which reflects the single crystallographic Cs site. From the temperature dependence of the peak shift and peak width, we evaluated effective values of the isotropic and the anisotropic part of hyperfine coupling. The latter was compared with the calculated dipole contribution. Using obtained parameters with assumed spin structure, we tried to reproduce the broadened spectrum in the ordered state at 2.0 K. The preliminary analysis shows the 120-degree structure does not accord with the observed spectra at the ordered state.

  2. The growth rates of KDP crystals in solutions with potassium permanganate additives

    NASA Astrophysics Data System (ADS)

    Egorova, A. E.; Vorontsov, D. A.; Nezhdanov, A. V.; Noskova, A. N.; Portnov, V. N.

    2017-01-01

    We have found that growth of the {101} faces of a KDP (KH2PO4) crystal is suppressed, and the growth rate of the {100} faces passes through the maximum with increasing addition of KMnO4 to a solution with pH=4.7. We have concluded that the [MnH2PO4]2+ complex and MnO2 particles affect the growth kinetics. The X-ray and electronic paramagnetic resonance data show that manganese is incorporated into the crystal in the form of Mn3+ and Mn4+. The local excess of a positive charge in the area with incorporated [MnH2PO4]2+ complex can be compensated by the shift of the hydrogen atoms in the KDP structure.

  3. Synthesis and Properties of Water-Soluble Blue-Emitting Mn-Alloyed CdTe Quantum Dots.

    PubMed

    Tynkevych, Olena; Karavan, Volodymyr; Vorona, Igor; Filonenko, Svitlana; Khalavka, Yuriy

    2018-05-02

    In this work, we prepared CdTe quantum dots, and series of Cd 1-x Mn x Te-alloyed quantum dots with narrow size distribution by an ion-exchange reaction in water solution. We found that the photoluminescence peaks are shifted to higher energies with the increasing Mn 2+ content. So far, this is the first report of blue-emitting CdTe-based quantum dots. By means of cyclic voltammetry, we detected features of electrochemical activity of manganese energy levels formed inside the Cd 1-x Mn x Te-alloyed quantum dot band gap. This allowed us to estimate their energy position. We also demonstrate paramagnetic behavior for Cd 1-x Mn x Te-alloyed quantum dots which confirmed the successful ion-exchange reaction.

  4. Optical detection of paramagnetic centres: From crystals to glass-ceramics

    NASA Astrophysics Data System (ADS)

    Rogulis, Uldis

    2016-07-01

    An unambiguous attribution of the absorption spectra to definite paramagnetic centres identified by the EPR techniques in the most cases is problematic. This problem may be solved by applying of a direct measurement techniques—the EPR detected via the magnetic circular dichroism, or briefly MCD-EPR. The present survey reports on the advantages and disadvantages applying the MCD-EPR techniques to simple and complex paramagnetic centres in crystals as well as glasses and glass-ceramics.

  5. Application of Electron Paramagnetic Resonance to Study of Gallstones

    NASA Astrophysics Data System (ADS)

    Kiselev, S. A.; Tsyro, L. V.; Afanasiev, D. A.; Unger, F. G.; Soloviev, M. M.

    2014-03-01

    We present the results of an electron paramagnetic resonance (EPR) study of mixed cholesterol gallstones. We have established that free radicals are distributed nonuniformly within the interior of the stone. The type and number of paramagnetic centers depend on the pigment content in the selected layer. We show that the parameters of the sextet lines in the EPR spectrum of the pigment are close to the parameters of lines in the spectrum of a brown pigment stone.

  6. CW EPR and 9 GHz EPR imaging investigation of stable paramagnetic species and their antioxidant activities in dry shiitake mushroom (Lentinus edodes).

    PubMed

    Nakagawa, Kouichi; Hara, Hideyuki

    2016-01-01

    We investigated the antioxidant activities and locations of stable paramagnetic species in dry (or drying) shiitake mushroom (Lentinus edodes) using continuous wave (CW) electron paramagnetic resonance (EPR) and 9 GHz EPR imaging. CW 9 GHz EPR detected paramagnetic species (peak-to-peak linewidth (ΔHpp) = 0.57 mT) in the mushroom. Two-dimensional imaging of the sharp line using a 9 GHz EPR imager showed that the species were located in the cap and shortened stem portions of the mushroom. No other location of the species was found in the mushroom. However, radical locations and concentrations varied along the cap of the mushroom. The 9 GHz EPR imaging determined the exact location of stable paramagnetic species in the shiitake mushroom. Distilled water extracts of the pigmented cap surface and the inner cap of the mushroom showed similar antioxidant activities that reduced an aqueous solution of 0.1 mM 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl. The present results suggest that the antioxidant activities of the edible mushroom extracts are much weaker than those of ascorbic acid. Thus, CW EPR and EPR imaging revealed the location and distribution of stable paramagnetic species and the antioxidant activities in the shiitake mushroom for the first time.

  7. Stereospecific Synthesis of the Geometrical Isomers of a Natural Product

    ERIC Educational Resources Information Center

    Grove, T.; DiLella, D.; Volker, E.

    2006-01-01

    Stereospecific synthesis of a geometrical isomer is not a common topic for the introductory organic chemistry laboratory. We have developed and tested an experiment for the synthesis of (Z) and (E) isomers that has been performed successfully by undergraduate students. The experiment is presented to the students as a puzzle in which they must…

  8. Helium Tagging Infrared Photodissociation Spectroscopy of Reactive Ions.

    PubMed

    Roithová, Jana; Gray, Andrew; Andris, Erik; Jašík, Juraj; Gerlich, Dieter

    2016-02-16

    The interrogation of reaction intermediates is key for understanding chemical reactions; however their direct observation and study remains a considerable challenge. Mass spectrometry is one of the most sensitive analytical techniques, and its use to study reaction mixtures is now an established practice. However, the information that can be obtained is limited to elemental analysis and possibly to fragmentation behavior, which is often challenging to analyze. In order to extend the available experimental information, different types of spectroscopy in the infrared and visible region have been combined with mass spectrometry. Spectroscopy of mass selected ions usually utilizes the powerful sensitivity of mass spectrometers, and the absorption of photons is not detected as such but rather translated to mass changes. One approach to accomplish such spectroscopy involves loosely binding a tag to an ion that will be removed by absorption of one photon. We have constructed an ion trapping instrument capable of reaching temperatures that are sufficiently low to enable tagging by helium atoms in situ, thus permitting infrared photodissociation spectroscopy (IRPD) to be carried out. While tagging by larger rare gas atoms, such as neon or argon is also possible, these may cause significant structural changes to small and reactive species, making the use of helium highly beneficial. We discuss the "innocence" of helium as a tag in ion spectroscopy using several case studies. It is shown that helium tagging is effectively innocent when used with benzene dications, not interfering with their structure or IRPD spectrum. We have also provided a case study where we can see that despite its minimal size there are systems where He has a huge effect. A strong influence of the He tagging was shown in the IRPD spectra of HCCl(2+) where large spectral shifts were observed. While the presented systems are rather small, they involve the formation of mixtures of isomers. We have therefore implemented two-color experiments where one laser is employed to selectively deplete a mixture by one (or more) isomer allowing helium tagging IRPD spectra of the remaining isomer(s) to be recorded via the second laser. Our experimental setup, based on a linear wire quadrupole ion trap, allows us to deplete almost 100% of all helium tagged ions in the trap. Using this special feature, we have developed attenuation experiments for determination of absolute photofragmentation cross sections. At the same time, this approach can be used to estimate the representation of isomers in a mixture. The ultimate aim is the routine use of this instrument and technique to study a wide range of reaction intermediates in catalysis. To this end, we present a study of hypervalent iron(IV)-oxo complexes ([(L)Fe(O)(NO3)](+)). We show that we can spectroscopically differentiate iron complexes with S = 1 and S = 2 according to the stretching vibrations of a nitrate counterion.

  9. Physicochemical characterization, and relaxometry studies of micro-graphite oxide, graphene nanoplatelets, and nanoribbons.

    PubMed

    Paratala, Bhavna S; Jacobson, Barry D; Kanakia, Shruti; Francis, Leonard Deepak; Sitharaman, Balaji

    2012-01-01

    The chemistry of high-performance magnetic resonance imaging contrast agents remains an active area of research. In this work, we demonstrate that the potassium permanganate-based oxidative chemical procedures used to synthesize graphite oxide or graphene nanoparticles leads to the confinement (intercalation) of trace amounts of Mn(2+) ions between the graphene sheets, and that these manganese intercalated graphitic and graphene structures show disparate structural, chemical and magnetic properties, and high relaxivity (up to 2 order) and distinctly different nuclear magnetic resonance dispersion profiles compared to paramagnetic chelate compounds. The results taken together with other published reports on confinement of paramagnetic metal ions within single-walled carbon nanotubes (a rolled up graphene sheet) show that confinement (encapsulation or intercalation) of paramagnetic metal ions within graphene sheets, and not the size, shape or architecture of the graphitic carbon particles is the key determinant for increasing relaxivity, and thus, identifies nano confinement of paramagnetic ions as novel general strategy to develop paramagnetic metal-ion graphitic-carbon complexes as high relaxivity MRI contrast agents.

  10. Physicochemical Characterization, and Relaxometry Studies of Micro-Graphite Oxide, Graphene Nanoplatelets, and Nanoribbons

    PubMed Central

    Paratala, Bhavna S.; Jacobson, Barry D.; Kanakia, Shruti; Francis, Leonard Deepak; Sitharaman, Balaji

    2012-01-01

    The chemistry of high-performance magnetic resonance imaging contrast agents remains an active area of research. In this work, we demonstrate that the potassium permanganate-based oxidative chemical procedures used to synthesize graphite oxide or graphene nanoparticles leads to the confinement (intercalation) of trace amounts of Mn2+ ions between the graphene sheets, and that these manganese intercalated graphitic and graphene structures show disparate structural, chemical and magnetic properties, and high relaxivity (up to 2 order) and distinctly different nuclear magnetic resonance dispersion profiles compared to paramagnetic chelate compounds. The results taken together with other published reports on confinement of paramagnetic metal ions within single-walled carbon nanotubes (a rolled up graphene sheet) show that confinement (encapsulation or intercalation) of paramagnetic metal ions within graphene sheets, and not the size, shape or architecture of the graphitic carbon particles is the key determinant for increasing relaxivity, and thus, identifies nano confinement of paramagnetic ions as novel general strategy to develop paramagnetic metal-ion graphitic-carbon complexes as high relaxivity MRI contrast agents. PMID:22685555

  11. An EPR study on tea: Identification of paramagnetic species, effect of heat and sweeteners

    NASA Astrophysics Data System (ADS)

    Bıyık, Recep; Tapramaz, Recep

    2009-10-01

    Tea ( Camellia Sinensis) is the most widely consumed beverage in the world, and is known to be having therapeutic, antioxidant and nutritional effects. Electron paramagnetic resonance (EPR) spectral studies made on the tea cultivated along the shore of Black Sea, Turkey, show Mn 2+ and Fe 3+ centers in green tea leaves and in black tea extract. Dry black tea flakes and dry extract show additional sharp line attributed to semiquinone radical. The origins of the paramagnetic species in black tea are defined and discussed. Effect of humidity and heat are investigated. It is observed that dry extract of black tea melts at 100 °C and the semiquinone radical lives up to 140 °C while Mn 2+ sextet disappears just above 100 °C in tea extract. Natural and synthetics sweeteners have different effects on the paramagnetic centers. White sugar (sucrose) quenches the Mn 2+ and semiquinone lines in black tea EPR spectrum, and glucose, fructose, lactose and maltose quench Fe 3+ line while synthetic sweeteners acesulfam potassium, aspartame and sodium saccharine do not have any effect on paramagnetic species in tea.

  12. An EPR study on tea: identification of paramagnetic species, effect of heat and sweeteners.

    PubMed

    Biyik, Recep; Tapramaz, Recep

    2009-10-15

    Tea (Camellia Sinensis) is the most widely consumed beverage in the world, and is known to be having therapeutic, antioxidant and nutritional effects. Electron paramagnetic resonance (EPR) spectral studies made on the tea cultivated along the shore of Black Sea, Turkey, show Mn(2+) and Fe(3+) centers in green tea leaves and in black tea extract. Dry black tea flakes and dry extract show additional sharp line attributed to semiquinone radical. The origins of the paramagnetic species in black tea are defined and discussed. Effect of humidity and heat are investigated. It is observed that dry extract of black tea melts at 100 degrees C and the semiquinone radical lives up to 140 degrees C while Mn(2+) sextet disappears just above 100 degrees C in tea extract. Natural and synthetics sweeteners have different effects on the paramagnetic centers. White sugar (sucrose) quenches the Mn(2+) and semiquinone lines in black tea EPR spectrum, and glucose, fructose, lactose and maltose quench Fe(3+) line while synthetic sweeteners acesulfam potassium, aspartame and sodium saccharine do not have any effect on paramagnetic species in tea.

  13. Electron paramagnetic resonance of natural and gamma-irradiated alunite and kaolin mineral powders

    NASA Astrophysics Data System (ADS)

    Koksal, F.; Koseoglu, R.; Saka, I.; Basaran, E.; Sener, F.

    2004-06-01

    Natural alunite and kaolin minerals obtained from West Anatolia were investigated by electron paramagnetic resonance (EPR) in natural and gamma-irradiated states at room temperature and at 113 K. The paramagnetic centres at ambient temperature in natural alunite were attributed to the (C) over dot H 2OH, (C) over dot O-3(-), (S) over dot O-2(-), (C) over dot O-2(-) and [AlO4 ](0) radicals. In natural kaolin, the paramagnetic centres were attributed to the (C) over dot O-3(-), (S) over dot O-2(-) (C) over dot O-2(-) and [AlO4](0) radicals. The gamma-irradiation does not produce any detectable effects on these radicals. At 113 K, the lines for (C) over dot H2OH could not be observed well, probably due to the anisotropic behaviour of the hyperfine interaction of the methylene protons, but the lines for [AlO4](0) centres were found to be perfectly observable at above 20 mW microwave power in both alunite and kaolin powders before and after gamma-irradiation. The EPR parameters of the observed paramagnetic centres were reported.

  14. Quasiclassical Theory on Third-Harmonic Generation in Conventional Superconductors with Paramagnetic Impurities

    NASA Astrophysics Data System (ADS)

    Jujo, Takanobu

    2018-02-01

    We investigate the third-harmonic generation (THG) of s-wave superconductors under microwave pulse irradiation. We consider the effect of paramagnetic impurities on the THG intensity of dirty superconductors. The nonlinear response function is calculated using the method of the quasiclassical Green function. It is shown that the amplitude mode is included as the vertex correction and makes a predominant contribution to the THG intensity. When the effect of paramagnetic impurities is weak, the THG intensity shows a peak at the temperature at which the superconducting gap is about the same as the frequency of the incident pulse, similarly to in experiments. As the effect of paramagnetic impurities is strengthened, the peak of the THG intensity disappears. This indicates that time-reversal symmetry breaking due to paramagnetic impurities eliminates the well-defined amplitude mode. The result of our calculation shows that the existence of the amplitude mode can be confirmed through the THG intensity. The result of a semiquantitative calculation is in good agreement with the experimental result, and it also shows that the diamagnetic term is negligible.

  15. Bioavailability of astaxanthin stereoisomers from wild (Oncorhynchus spp.) and aquacultured (Salmo salar) salmon in healthy men: a randomised, double-blind study.

    PubMed

    Rüfer, Corinna E; Moeseneder, Jutta; Briviba, Karlis; Rechkemmer, Gerhard; Bub, Achim

    2008-05-01

    The objective of the present study was to investigate the bioavailability and the configurational isomer distribution of the carotenoid astaxanthin (AST) in human plasma after ingestion of wild (Oncorhynchus spp.) and aquacultured (Salmo salar) salmon. In a randomised and double-blind trial, twenty-eight healthy men consumed 250 g wild or aquacultured salmon daily for 4 weeks which provided 5 mug AST/g salmon flesh. The plasma AST concentrations as well as the isomer distribution were measured by HPLC using a reversed and a chiral stationary phase. After 6 d of intervention with salmon, plasma AST concentrations reached a plateau of 39 nmol/l after consumption of wild salmon and of 52 nmol/l after administration of aquacultured salmon. At days 3, 6, 10 and 14 -- but not at day 28 -- the AST concentrations in human plasma were significantly greater after ingestion of aquacultured salmon. After administration of wild salmon, the (3S,3'S) isomer predominated in plasma (80 %), whereas after intake of aquacultured salmon the meso form (3R,3'S) prevailed (48 %). Therefore, the AST isomer pattern in human plasma resembles that of the ingested salmon. However, after consumption of both wild and aquacultured salmon for 28 d the relative proportion of the (3S,3'S) isomer was slightly higher and the (3R,3'R) form lower in human plasma compared with the isomer distribution in salmon flesh. A selective process of isomer absorption could be responsible for the observed differences in the relative proportions of the (3S,3'S) and (3R,3'R) isomers in human plasma compared with salmon flesh.

  16. Comparative study of hypocholesterolemic and hypolipidemic effects of conjugated linolenic acid isomers against induced biochemical perturbations and aberration in erythrocyte membrane fluidity.

    PubMed

    Saha, Siddhartha S; Chakraborty, Anirban; Ghosh, Santinath; Ghosh, Mahua

    2012-06-01

    The purpose of the study was to evaluate hypolipidemic and hypocholesterolemic activities of conjugated linolenic acid (CLnA) isomers, present in bitter gourd and snake gourd seed, in terms of amelioration of plasma lipid profile, lipoprotein oxidation and erythrocyte membrane fluidity after oral administration. Male albino rats were divided into six groups. Group 1 was control, and others were induced with oxidative stress by oral gavage of sodium arsenite (Sa). Group 2 was kept as treated control, and groups 3-6 were further treated with different oral doses of seed oils to maintaining definite concentration of CLnA isomers (0.5 and 1.0% of total lipid for each CLnA isomer). CLnA isomers normalized cholesterol, LDL-cholesterol, HDL-cholesterol and triglyceride contents in plasma and body weight of experimental rats and decreased cholesterol synthesis by reducing hepatic HMG-CoA reductase activity. Administration of Sa caused alteration in erythrocyte membrane fluidity due to increase in cholesterol and decrease in phospholipid content. Tissue cholesterol and lipid contents were also increased by Sa administration. These altered parameters were reversed by experimental oil administration. Protective effect of CLnA isomers on erythrocyte morphology was observed by atomic force microscopy (AFM). Fatty acid composition of erythrocyte membrane showed decrease in polyunsaturated fatty acid (PUFA) and increase in arachidonic acid content after Sa administration, which was normalized with the treatment of these oils. Supplementation of CLnA isomers restored erythrocyte membrane (EM) lipid peroxidation and lipoprotein oxidation. CLnA isomers, present in vegetable oils, showed potent hypolipidemic and hypocholesterolemic activities against biochemical perturbations.

  17. Determination of nonylphenol isomers in landfill leachate and municipal wastewater using steam distillation extraction coupled with comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry.

    PubMed

    Zhang, Caixiang; Eganhouse, Robert P; Pontolillo, James; Cozzarelli, Isabelle M; Wang, Yanxin

    2012-03-23

    4-Nonylphenols (4-NPs) are known endocrine disruptors and by-products of the microbial degradation of nonylphenol polyethoxylate surfactants. One of the challenges to understanding the toxic effects of nonylphenols is the large number of isomers that may exist in environmental samples. In order to attribute toxic effects to specific compounds, a method is needed for the separation and quantitation of individual nonylphenol isomers. The pre-concentration methods of solvent sublimation, solid-phase extraction or liquid-liquid extraction prior to chromatographic analysis can be problematic because of co-extraction of thousands of compounds typically found in complex matrices such as municipal wastewater or landfill leachate. In the present study, steam distillation extraction (SDE) was found to be an effective pre-concentration method for extraction of 4-NPs from leachate and wastewater, and comprehensive two-dimensional gas chromatography (GC×GC) coupled with fast mass spectral data acquisition by time-of-flight mass spectrometry (ToFMS) enhanced the resolution and identification of 4-NP isomers. Concentrations of eight 4-NP isomers were determined in leachate from landfill cells of different age and wastewater influent and effluent samples. 4-NP isomers were about 3 times more abundant in leachate from the younger cell than the older one, whereas concentrations in wastewater effluent were either below detection limits or <1% of influent concentrations. 4-NP isomer distribution patterns were found to have been altered following release to the environment. This is believed to reflect isomer-specific degradation and accumulation of 4-NPs in the aquatic environment. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Computational Screening of Nanoporous Materials for Hexane and Heptane Isomer Separation

    DOE PAGES

    Chung, Yongchul G.; Bai, Peng; Haranczyk, Maciej; ...

    2017-07-05

    Computational high-throughput screening was carried out to assess a large number of experimentally reported metal–organic frameworks (MOFs) and zeolites for their utility in hexane isomer separation. Through the paper, we identified many MOFs and zeolites with high selectivity (S L+M > 10) for the group of n-hexane, 2-methylpentane, and 3-methylpentane (linear and monobranched isomers) versus 2,2-dimethylbutane and 2,3-dimethylbutane (dibranched isomers). This group of selective sorbents includes VICDOC (Fe 2(BDP) 3), a MOF with triangular pores that is known to exhibit high isomer selectivity and capacity. For three of these structures, the adsorption isotherms for a 10-component mixture of hexane andmore » heptane isomers were calculated. Subsequent simulations of column breakthrough curves showed that the DEYVUA MOF exhibits a longer process cycle time than VICDOC MOF or MRE zeolite, which are previously reported, high-performing materials, illustrating the importance of capacity in designing MOFs for practical applications. Among the identified candidates, we synthesized and characterized a MOF in a new copper form with high predicted adsorbent capacity (q L+M > 1.2 mol/L) and moderately high selectivity (S L+M ≈ 10). In conclusion, we examined the role of pore shape in hexane isomer separations, especially of triangular-shaped pores. We show through the potential energy surface and three-dimensional siting analyses that linear alkanes do not populate the corners of narrow triangular channels and that structures with nontriangular pores can efficiently separate hexane isomers. Detailed thermodynamic analysis illustrates how differences in the free energy of adsorption contribute to shape-selective separation in nanoporous materials.« less

  19. Computational Screening of Nanoporous Materials for Hexane and Heptane Isomer Separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Yongchul G.; Bai, Peng; Haranczyk, Maciej

    Computational high-throughput screening was carried out to assess a large number of experimentally reported metal–organic frameworks (MOFs) and zeolites for their utility in hexane isomer separation. Through the paper, we identified many MOFs and zeolites with high selectivity (S L+M > 10) for the group of n-hexane, 2-methylpentane, and 3-methylpentane (linear and monobranched isomers) versus 2,2-dimethylbutane and 2,3-dimethylbutane (dibranched isomers). This group of selective sorbents includes VICDOC (Fe 2(BDP) 3), a MOF with triangular pores that is known to exhibit high isomer selectivity and capacity. For three of these structures, the adsorption isotherms for a 10-component mixture of hexane andmore » heptane isomers were calculated. Subsequent simulations of column breakthrough curves showed that the DEYVUA MOF exhibits a longer process cycle time than VICDOC MOF or MRE zeolite, which are previously reported, high-performing materials, illustrating the importance of capacity in designing MOFs for practical applications. Among the identified candidates, we synthesized and characterized a MOF in a new copper form with high predicted adsorbent capacity (q L+M > 1.2 mol/L) and moderately high selectivity (S L+M ≈ 10). In conclusion, we examined the role of pore shape in hexane isomer separations, especially of triangular-shaped pores. We show through the potential energy surface and three-dimensional siting analyses that linear alkanes do not populate the corners of narrow triangular channels and that structures with nontriangular pores can efficiently separate hexane isomers. Detailed thermodynamic analysis illustrates how differences in the free energy of adsorption contribute to shape-selective separation in nanoporous materials.« less

  20. Differences in Dihydrotetrabenazine Isomer Concentrations Following Administration of Tetrabenazine and Valbenazine.

    PubMed

    Skor, Heather; Smith, Evan B; Loewen, Gordon; O'Brien, Christopher F; Grigoriadis, Dimitri E; Bozigian, Haig

    2017-09-01

    Tetrabenazine (TBZ) activity is thought to result from four isomeric dihydrotetrabenazine (HTBZ) metabolites ([+]-α-HTBZ, [-]-α-HTBZ, [+]-β-HTBZ, [-]-β-HTBZ). Each isomer has a unique profile of vesicular monoamine transporter 2 (VMAT2) inhibition and off-target binding. Previously published data only report total isomer (α) and (β) concentrations. We developed a method to quantify the individual HTBZ isomers in samples from patients with Huntington's disease receiving TBZ. For comparison, concentrations of [+]-α-HTBZ, the single active metabolite shared by valbenazine (VBZ) and TBZ, were determined in samples from patients with tardive dyskinesia receiving VBZ. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for quantitation of the four individual HTBZ isomers. Concentrations were determined in serum from patients with Huntington's disease administered TBZ and plasma from patients with tardive dyskinesia administered VBZ once daily. In patients administered TBZ, [-]-α-HTBZ and [+]-β-HTBZ were the most abundant HTBZ isomers while [-]-β-HTBZ and [+]-α-HTBZ were present as minor metabolites. Only [+]-α-HTBZ was observed in patients administered VBZ. Based on relative abundance and potency, [+]-β-HTBZ appears to be the primary contributor to VMAT2 inhibition by TBZ, a finding in contrast with the generally held assertion that [+]-α-HTBZ is the major contributor. [-]-α-HTBZ, the other abundant TBZ metabolite, has much lower VMAT2 inhibitory potency than [+]-β-HTBZ, but increased affinity for other CNS targets, which may contribute to off-target effects of TBZ. In contrast, pharmacological activity for VBZ is derived primarily from [+]-α-HTBZ. Individual HTBZ isomer concentrations provide a more clinically relevant endpoint for assessing on- and off-target effects of TBZ than total isomer concentrations.

  1. EPR Characterization of Dinitrosyl Iron Complexes with Thiol-Containing Ligands as an Approach to Their Identification in Biological Objects: An Overview.

    PubMed

    Vanin, Anatoly F

    2018-06-01

    The overview demonstrates how the use of only one physico-chemical approach, viz., the electron paramagnetic resonance method, allowed detection and identification of dinitrosyl iron complexes with thiol-containing ligands in various animal and bacterial cells. These complexes are formed in biological objects in the paramagnetic (electron paramagnetic resonance-active) mononuclear and diamagnetic (electron paramagnetic resonance-silent) binuclear forms and control the activity of nitrogen monoxide, one of the most universal regulators of metabolic processes in the organism. The analysis of electronic and spatial structures of dinitrosyl iron complex sheds additional light on the mechanism whereby dinitrosyl iron complex with thiol-containing ligands function in human and animal cells as donors of nitrogen monoxide and its ionized form, viz., nitrosonium ions (NO + ).

  2. Translesion synthesis across the (6-4) photoproduct and its Dewar valence isomer by the Y-family and engineered DNA polymerases.

    PubMed

    Yamamoto, Junpei; Loakes, David; Masutani, Chikahide; Simmyo, Shizu; Urabe, Kumiko; Hanaoka, Fumio; Holliger, Philipp; Iwai, Shigenori

    2008-01-01

    We analyzed the translesion synthesis across the UV-induced lesions, the (6-4) photoproduct and its Dewar valence isomer, by using human DNA polymerases eta and iota in vitro. The primer extension experiments revealed that pol eta tended to incorporate dG opposite the 3' component of both lesions, but the incorporation efficiency for the Dewar isomer was higher than that for the (6-4) photoproduct. On the other hand, pol iota was likely to incorporate dA opposite the 3' components of the (6-4) photoproduct and its Dewar isomer with a similar efficiency. Elongation after the incorporation opposite the UV lesions was not observed for these Y-family polymerases. We further analyzed the bypass ability of an engineered polymerase developed from Thermus DNA polymerase for the amplification of ancient DNA. This polymerase could bypass the Dewar isomer more efficiently than the (6-4) photoproduct.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wojcik, Roza; Webb, Ian K.; Deng, Liulin

    Understanding the biological mechanisms related to lipids and glycolipids is challenging due to the vast number of possible isomers. Mass spectrometry (MS) measurements are currently the dominant approach for studying and providing detailed information on lipid and glycolipid structures. However, difficulties in distinguishing many structural isomers (e.g. distinct acyl chain positions, double bond locations, as well as glycan isomers) inhibit the understanding of their biological roles. Here we utilized ultra-high resolution ion mobility spectrometry (IMS) separations based upon the use of traveling waves in a serpentine long path length multi-pass Structures for Lossless Manipulations (SLIM) to enhance isomer resolution. Themore » multi-pass arrangement allowed separations ranging from ~16 m (1 pass) to ~470 m (32 passes) to be investigated for the distinction of lipids and glycolipids with extremely small structural differences. Lastly, these ultra-high resolution SLIM IMS-MS analyses provide a foundation for exploring and better understanding isomer specific biological and disease processes.« less

  4. Production of isotopes and isomers with irradiation of Z = 47–50 targets by 23-MeV bremsstrahlung

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karamian, S. A., E-mail: karamian@nrmail.jinr.ru; Carroll, J. J.; Aksenov, N. V.

    2015-09-15

    The irradiations of Ag to Sn targets by bremsstrahlung generated with 23-MeV electron beams are performed at the MT-25 microtron. Gamma spectra of the induced activities have been measured and the yields of all detected radionuclides and isomers are carefully measured and analyzed. A regular dependence of yields versus changed reaction threshold is confirmed. Many isomers are detected and the suppression of the production probability is observed with growing product spin. Special peculiarities for the isomer-to-ground state ratios were deduced for the {sup 106m}Ag, {sup 108m}Ag, {sup 113m}In, {sup 115m}In, and {sup 123m}Sn isomers. The production of such nuclides asmore » {sup 108m}Ag, {sup 115m}In, {sup 117g}In, and {sup 113m}Cd is of interest for applications, especially when economic methods are available.« less

  5. Structural isomers of C2N(+) - A selected-ion flow tube study

    NASA Technical Reports Server (NTRS)

    Knight, J. S.; Petrie, S. A. H.; Freeman, C. G.; Mcewan, M. J.; Mclean, A. D.

    1988-01-01

    Reactivities of the structural isomers CCN(+) and CNC(+) were examined in a selected-ion flow tube at 300 + or - 5 K. The less reactive CNC(+) isomer was identified as the product of the reactions of C(+) + HCN and C(+) + C2N2; in these reactions only CNC(+) can be produced because of energy constraints. Rate coefficients and branching ratios are reported for the reactions of each isomer with H2, CH4, NH3, H2O, C2H2, HCN, N2, O2, N2O, and CO2. Ab initio calculations are presented for CCN(+) and CNC(+); a saddle point for the reaction CCN(+) yielding CNC(+) is calculated to be 195 kJ/mol above CNC(+). The results provide evidence that the more reactive CCN(+) isomer is unlikely to be present in measurable densities in interstellar clouds.

  6. New isomer in 96Y marking the onset of deformation at N = 57

    NASA Astrophysics Data System (ADS)

    Iskra, Ł. W.; Fornal, B.; Leoni, S.; Bocchi, G.; Petrovici, A.; Porzio, C.; Blanc, A.; De France, G.; Jentschel, M.; Köster, U.; Mutti, P.; Régis, J.-M.; Simpson, G.; Soldner, T.; Ur, C. A.; Urban, W.; Bazzacco, D.; Benzoni, G.; Bottoni, S.; Bruce, A.; Cieplicka-Oryńczak, N.; Crespi, F. C. L.; Fraile, L. M.; Korten, W.; Kröll, T.; Lalkovski, S.; Márginean, N.; Michelagnoli, C.; Melon, B.; Mengoni, D.; Million, B.; Nannini, A.; Napoli, D.; Podolyák, Zs.; Regan, P. H.; Szpak, B.

    2017-01-01

    The level scheme of 96Y was significantly extended and a new 201 ns isomer was located at 1655 keV excitation energy, with spin-parity assignment of 5± or 6-. The isomer decays to spherical low-spin structure by transitions with large hindrance and is fed by a short cascade which resembles the beginning of a rotational band. This is in analogy with the feeding and decay pattern of the 4- isomer in 98Y, here confirmed, by lifetime analysis, as a bandhead of a rotational structure with sizable deformation. It is suggested that the new isomer in 96Y arises from a shape change between deformed and spherical configurations, which indicates the appearance of deformation already at N = 57 in the yttrium chain. The experimental findings for 96Y are strengthened by theoretical calculations based on the complex Excited Vampir model.

  7. Two conformers of 10,11-dihydro-5H-dibenzo[a,d]cycloheptene spiro-linked with homobenzoquinone epoxide.

    PubMed

    Asahara, Haruyasu; Koizumi, Takuya; Mochizuki, Eiko; Oshima, Takumi

    2006-03-01

    The crystal structures of the two thermally equilibrated conformational isomers of the epoxide 1',5'-dimethylspiro[10,11-dihydro-5H-dibenzo[a,d]cycloheptene-5,8'-4'-oxatricyclo[5.1.0.0(3,5)]octane]-2',6'-dione, C23H20O3, have been determined by X-ray diffraction. In the tricyclic dione skeleton, the oxirane and cyclopropane rings adopt an anti structure with respect to the conjunct quinone frame. The spiro-linked 10,11-dihydro-5H-dibenzo[a,d]cycloheptene ring of the major isomer has a fairly twisted boat form, folding opposite to the adjoining cyclopropane methyl substituent, whereas the seven-membered ring of the minor isomer has an almost ideal twist-boat form, inversely folding to the side of the relevant methyl group. The conformational structures of these isomers have been compared with those of the corresponding isomers of the unepoxidized homobenzoquinone.

  8. Ab initio correlated study of the Al13H- anion: Isomers, their kinetic stability and vertical detachment energies

    NASA Astrophysics Data System (ADS)

    Moc, Jerzy

    2012-01-01

    We report correlated ab initio calculations for the Al13H- cluster anion isomers, their kinetic stability and vertical detachment energies (VDEs). Of the two most energetically favored anion structures involving H atom in terminal and threefold bridged sites of the icosahedral Al13-, the higher energy ‘threefold bridged' isomer is shown to be of low kinetic stability. Our results are consistent with the recent photoelectron spectroscopy (PE) study of Grubisic et al. who observed two distinct Al13H- isomers, one of them identified as ‘metastable'. The VDE energies computed at the CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVDZ level for the ‘terminal' and ‘threefold bridged' Al13H- isomers of 3.21 and 2.32 eV are in good agreement with those determined in the PE study.

  9. Van vleck paramagnetism in orthorhombic TiO2 (Brookite)

    USGS Publications Warehouse

    Senftle, F.E.; Thorpe, A.N.

    1968-01-01

    The magnetic susceptibility of the orthorhombic form of titanium dioxide has been measured from 5 to 300??K. After deducting the temperature-dependent component, which is probably due to defects or impurities, and the free-ion diamagnetic component, the Van Vleck paramagnetism was estimated to be 33??10-6 emu/mole. Comparison is made between this value and the Van Vleck paramagnetism of strontium titanate and the two tetragonal forms of titanium dioxide: rutile and anatase. ?? 1968 The American Physical Society.

  10. Heterometal cubane-type MFe(3)S(4) clusters (M = Mo, V) trigonally symmetrized with hydrotris(pyrazolyl)borate(1-) and tris(pyrazolyl)methanesulfonate(1-) capping ligands.

    PubMed

    Fomitchev, Dmitry V; McLauchlan, Craig C; Holm, R H

    2002-02-25

    A series of heterometal cubane-type clusters containing [VFe(3)S(4)](2+) and [MoFe(3)S(4)](3+,2+) cores has been prepared. Ligand substitution of [(DMF)(3)VFe(3)S(4)Cl(3)](-) affords [(Tpms)VFe(3)S(4)L(3)](2)(-) (L = Cl(-) (8), EtS(-) (9), p-MeC(6)H(4)S(-), p-MeC(6)H(4)O(-)). A new procedure for the preparation of molybdenum single cubanes is introduced by the reaction of recently reported [(Tp)MoS(S(4))](-) with FeCl(2)/NaSEt to afford [(Tp)MoFe(3)S(4)Cl(3)](-) (1, 75% yield). This procedure is more efficient that the existing multistep synthesis of single cubanes, which generally affords clusters of mirror symmetry. Also prepared were [(Tp)MoFe(3)S(4)L(3)](-) (L = EtS(-) (2), p-MeC(6)H(4)S(-)). Reduction of 1 with borohydride gives [(Tp)MoFe(3)S(4)Cl(3)](2-) (5, 67%). Owing to the nature of the heterometal ligand, all clusters have idealized trigonal symmetry, reflected in their (1)H NMR spectra. Trigonal structures are demonstrated by crystallography of (Bu(4)N)[1,2], (Bu(4)N)(2)[5] x MeCN, and (Me(4)N)(2)[8,9]. The availability of 1 and 5 allows the first comparison of structures and (57)Fe isomer shifts of [MoFe(3)S(4)](3+,2+) in a constant ligand environment. Small increases in most bond distances indicate that an antibonding electron is added in the reduction of 1. Collective synthetic and electrochemical results from this and other studies demonstrate the existence of the series of oxidation states [VFe(3)S(4)](3+,2+,1+) and [MoFe(3)S(4)](4+,3+,2+) whose relative stabilities within a given series are strongly ligand dependent. Isomer shifts indicate that the reduction of 1 largely affects the Fe(3) subcluster and are consistent with the formal descriptions [MoFe(3+)(2)Fe(2+)S(4)](3+) (1) and [MoFe(3+)Fe(2+)(2)S(4)](2+) (5). Reaction of 1 with excess Li(2)S in acetonitrile affords the double cubane [[(Tp)MoFe(3)S(4)Cl(2)](2)(mu(2)(-)S)](2)(-), whose sulfide-bridged structure is supported by two sequential reductions separated by 290 mV, in analogy with previously reported double cubanes of higher charge. Trigonally symmetric single cubanes eliminate isomers in the formation of double cubanes and other cluster structures, and may be of considerable value in the preparation of new types of M-Fe-S clusters. (Tpms = tris(pyrazolyl)methanesulfonate(1-); Tp = hydrotris(pyrazolyl)borate(1-).)

  11. 21 CFR 184.1212 - Calcium pantothenate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ((C9H16NO5)2Ca, CAS Reg. No. of the D-isomer, 137-08-6) is a salt of pantothenic acid, one of the vitamins of the B complex. Only the D-isomer of pantothenic acid has vitamin activity, although both the D-isomer...)(2) of the Act. (d) Prior sanctions for this ingredient different from the uses established in this...

  12. Search for IR spectral features of less-abundant diisopropylnaphthalenes based on comparison of theoretical and experimental spectra

    NASA Astrophysics Data System (ADS)

    Jamróz, Michał H.; Brzozowski, Robert; Dobrowolski, Jan Cz.

    2004-01-01

    Experimental and theoretical B3PW91/6-31G* spectra of diisopropylnaphthalene (DIPN) were compared. For the 1,3- and 2,6-DIPN isomers, which were isolated as pure compounds, the theoretical IR spectra were scaled down and were shown to fit the experimental spectra very well. The same scaling factor was used for comparison theoretical and experimental spectra of isomers present in unresolved mixtures of isomers, i.e. 1,4-, 1,5-, 1,6-, 1,7-, and 2,7-DIPNs. For three isomers, 1,2-, 1,8-, and 2,3-DIPN, the experimental IR spectra, unknown so far, were predicted.

  13. Structural Characterization of Monomers and Oligomers of D-Amino Acid-Containing Peptides Using T-Wave Ion Mobility Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Pang, Xueqin; Jia, Chenxi; Chen, Zhengwei; Li, Lingjun

    2017-01-01

    The D-residues are crucial to biological function of D-amino acid containing peptides (DAACPs). Previous ion mobility mass spectrometry (IM-MS) studies revealing oligomerization patterns of amyloid cascade demonstrated conversion from native soluble unstructured assembly to fibril ß-sheet oligomers, which has been implicated in amyloid diseases, such as Alzheimer's disease and type 2 diabetes. Although neuropeptides are typically present at very low concentrations in circulation, their local concentrations could be much higher in large dense core vesicles, forming dimers or oligomers. We studied the oligomerization of protonated and metal-adducted achatin I and dermorphin peptide isomers with IM-MS. Our results suggested that dimerization, oligomerization, and metal adduction augment the structural differences between D/L peptide isomers compared to protonated monomers. Dimers and oligomers enhanced the structural differences between D/L peptide isomers in both aqueous and organic solvent system. Furthermore, some oligomer forms were only observed for either D- or L-isomers, indicating the importance of chiral center in oligomerization process. The oligomerization patterns of D/L isomers appear to be similar. Potassium adducts were detected to enlarge the structural differences between D/L isomers.

  14. Importance of many-body dispersion and temperature effects on gas-phase gold cluster (meta)stability

    NASA Astrophysics Data System (ADS)

    Goldsmith, Bryan R.; Gruene, Philipp; Lyon, Jonathan T.; Rayner, David M.; Fielicke, André; Scheffler, Matthias; Ghiringhelli, Luca M.

    Gold clusters in the gas phase exhibit many structural isomers that are shown to intercovert frequently, even at room temperature. We performed ab initio replica-exchange molecular dynamics (REMD) calculations on gold clusters (of sizes 5-14 atoms) to identify metastable states and their relative populations at finite temperature, as well as to examine the importance of temperature and van der Waals (vdW) on their isomer energetic ordering. Free energies of the gold cluster isomers are optimally estimated using the Multistate Bennett Acceptance Ratio. The distribution of bond coordination numbers and radius of gyration are used to address the challenge of discriminating isomers along their dynamical trajectories. Dispersion effects are important for stabilizing three-dimensional structures relative to planar structures and brings isomer energetic predictions to closer quantitative agreement compared with RPA@PBE calculations. We find that higher temperatures typically stabilize metastable three-dimensional structures relative to planar/quasiplanar structures. Computed IR spectra of low free energy Au9, Au10, and Au12 isomers are in agreement with experimental spectra obtained by far-IR multiple photon dissociation in a molecular beam at 100 K.

  15. The thermal Z-isomerization-induced change in solubility and physical properties of (all-E)-lycopene.

    PubMed

    Murakami, Kazuya; Honda, Masaki; Takemura, Ryota; Fukaya, Tetsuya; Kubota, Mitsuhiro; Wahyudiono; Kanda, Hideki; Goto, Motonobu

    2017-09-16

    The effect of Z-isomerization of (all-E)-lycopene on its solubility in organic solvents and physical properties was investigated. Lycopene samples containing different Z-isomer contents (23.8%, 46.9%, and 75.6% of total lycopene) were prepared from high-purity (all-E)-lycopene by thermal Z-isomerization in dichloromethane (CH 2 Cl 2 ). As the Z-isomer content increased, the relative solubility of lycopene significantly improved. Although (all-E)-lycopene barely dissolved in ethanol (0.6 mg/L), the solubilities of lycopene containing 23.8%, 46.9%, and 75.6% Z-isomers were 484.5, 914.7, and 2401.7 mg/L, respectively. Furthermore, differential scanning calorimetry (DSC), powder X-ray diffraction (XRD), and scanning electron microscopy (SEM) analyses clearly indicated that (all-E)-lycopene was present in the crystal state, while Z-isomers of lycopene were present in amorphous states. A number of studies have suggested that Z-isomers of lycopene are better absorbed in the human body than the all-E-isomer. This may be due to the change in solubility and physical properties of lycopene by the Z-isomerization. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Implication for using heme methyl hyperfine shifts as indicators of heme seating as related to stereoselectivity in the catabolism of heme by heme oxygenase: in-plane heme versus axial his rotation.

    PubMed

    Ogura, Hiroshi; Evans, John P; de Montellano, Paul R Ortiz; La Mar, Gerd N

    2008-01-08

    The triple mutant of the solubilized, 265-residue construct of human heme oxygenase, K18E/E29K/R183E-hHO, has been shown to redirect the exclusive alpha-regioselectivity of wild-type hHO to primarily beta,delta-selectivity in the cleavage of heme (Wang, J., Evans, J. P., Ogura, H., La Mar, G. N., and Ortiz de Montellano, P. R. (2006) Biochemistry 45, 61-73). The 1H NMR hyperfine shift pattern for the substrate and axial His CbetaH's and the substrate-protein contacts of the cyanide-inhibited protohemin and 2,4-dimethyldeuterohemin complexes of the triple mutant have been analyzed in detail and compared to data for the WT complex. It is shown that protein contacts for the major solution isomers for both substrates in the mutant dictate approximately 90 degrees in-plane clockwise rotation relative to that in the WT. The conventional interpretation of the pattern of substrate methyl hyperfine shifts, however, indicates substrate rotations of only approximately 50 degrees . This paradox is resolved by demonstrating that the axial His25 imidazole ring also rotates counterclockwise with respect to the protein matrix in the mutant relative to that in the WT. The axial His25 CbetaH hyperfine shifts are shown to serve as independent probes of the imidazole plane orientation relative to the protein matrix. The analysis indicates that the pattern of heme methyl hyperfine shifts cannot be used alone to determine the in-plane orientation of the substrate as it relates to the stereospecificity of heme cleavage, without explicit consideration of the orientation of the axial His imidazole plane relative to the protein matrix.

  17. Shape coexistence in the odd-odd nucleus Y 98 : The role of the g 9 / 2 neutron extruder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urban, W.; Czerwiński, M.; Kurpeta, J.

    Excited states in Y-98, populated in neutron-induced fission of U-235 and in spontaneous fission of Cm-248 and Cf-252, have been studied by means of gamma spectroscopy using the Lohengrin fission-fragment separator at ILL Grenoble and the EXILL, Eurogam2, and Gammasphere Ge arrays. Two new isomers have been found in Y-98: a deformed one with T-1/2 = 180(7) ns and a rotational band on top of it, and a spherical one with T-1/2 = 0.45(15) mu s, analogous to the 8(+) isomer in Y-96, corresponding to the (nu g(7/2), pi g(9/2))(8+) spherical configuration. Using the JYFLTRAP Penning trap, an accurate excitationmore » energy of 465.7(7) keV has been determined for the 2.36-s isomer in Y-98. This result and the studies of excited levels in Zr-98, populated in beta-decay of the isomer, indicate a new spin-parity, I-pi = (7)(+) for the isomer. The high spin and the decay properties of this isomer suggest the presence of the 9/2(+)[ 404] neutron extruder orbital in its structure. This is consistent with the large deformation of the isomer, reported recently. The present work does not provide arguments to support the special role of the nu g(7/2)-pi g(9/2) interaction (the spin-orbit-partner, or SOP, mechanism).« less

  18. Anaerobic Degradation of Phthalate Isomers by Methanogenic Consortia

    PubMed Central

    Kleerebezem, Robbert; Pol, Look W. Hulshoff; Lettinga, Gatze

    1999-01-01

    Three methanogenic enrichment cultures, grown on ortho-phthalate, iso-phthalate, or terephthalate were obtained from digested sewage sludge or methanogenic granular sludge. Cultures grown on one of the phthalate isomers were not capable of degrading the other phthalate isomers. All three cultures had the ability to degrade benzoate. Maximum specific growth rates (μSmax) and biomass yields (YXtotS) of the mixed cultures were determined by using both the phthalate isomers and benzoate as substrates. Comparable values for these parameters were found for all three cultures. Values for μSmax and YXtotS were higher for growth on benzoate compared to the phthalate isomers. Based on measured and estimated values for the microbial yield of the methanogens in the mixed culture, specific yields for the phthalate and benzoate fermenting organisms were calculated. A kinetic model, involving three microbial species, was developed to predict intermediate acetate and hydrogen accumulation and the final production of methane. Values for the ratio of the concentrations of methanogenic organisms, versus the phthalate isomer and benzoate fermenting organisms, and apparent half-saturation constants (KS) for the methanogens were calculated. By using this combination of measured and estimated parameter values, a reasonable description of intermediate accumulation and methane formation was obtained, with the initial concentration of phthalate fermenting organisms being the only variable. The energetic efficiency for growth of the fermenting organisms on the phthalate isomers was calculated to be significantly smaller than for growth on benzoate. PMID:10049876

  19. Liquid chromatography fractionation with gas chromatography/mass spectrometry and preparative gas chromatography-nuclear magnetic resonance analysis of selected nonylphenol polyethoxylates.

    PubMed

    Wu, Ze-ying; Rühle, Christian P G; Marriott, Philip J

    2011-07-01

    Commercial nonylphenol polyethoxylates, designated as NPnEOs, where n is the number of ethoxy groups, comprise a range of ethoxylate groups. According to the starting material nonylphenol, they may also be composed of a complex mix of isomeric nonyl substituents. In order to study more fully the heterogeneity arising from both the ethoxylate and nonyl groups, a mixture of NPnEOs is first fractionated by normal phase liquid chromatography (NPLC) into separate fractions comprising individual ethoxymers, n. Preparative collection of each early elution ethoxymer fraction allows further separation of different isomeric nonyl group components by using analytical gas chromatography/mass spectrometry (GC/MS). The nonyl isomers are not resolved in the NPLC method. The distribution of the isomeric nonyl side chain of different ethoxymers bears close resemblance with each other, and also with the original nonylphenol starting material, although separation efficiency of the nonyl isomers for each ethoxymer decreases with increasing ethoxymer number. Mass spectrometry of the separated isomers display close similarity for presumed equivalent isomers in each fraction, based on elution order of the nonyl isomers. This suggests that each corresponding peak has the same isomer structure. Mass spectra are interpreted based on branching within the nonyl side chain. Preparative GC coupled with MS and nuclear magnetic resonance spectroscopy elucidated the molecular structure of one of the resolved isomers as 4-(1,3-dimethyl-1-propyl-butyl)-phenol diethoxylate. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Biochemistry of Microbial Degradation of Hexachlorocyclohexane and Prospects for Bioremediation

    PubMed Central

    Lal, Rup; Pandey, Gunjan; Sharma, Pooja; Kumari, Kirti; Malhotra, Shweta; Pandey, Rinku; Raina, Vishakha; Kohler, Hans-Peter E.; Holliger, Christof; Jackson, Colin; Oakeshott, John G.

    2010-01-01

    Summary: Lindane, the γ-isomer of hexachlorocyclohexane (HCH), is a potent insecticide. Purified lindane or unpurified mixtures of this and α-, β-, and δ-isomers of HCH were widely used as commercial insecticides in the last half of the 20th century. Large dumps of unused HCH isomers now constitute a major hazard because of their long residence times in soil and high nontarget toxicities. The major pathway for the aerobic degradation of HCH isomers in soil is the Lin pathway, and variants of this pathway will degrade all four of the HCH isomers although only slowly. Sequence differences in the primary LinA and LinB enzymes in the pathway play a key role in determining their ability to degrade the different isomers. LinA is a dehydrochlorinase, but little is known of its biochemistry. LinB is a hydrolytic dechlorinase that has been heterologously expressed and crystallized, and there is some understanding of the sequence-structure-function relationships underlying its substrate specificity and kinetics, although there are also some significant anomalies. The kinetics of some LinB variants are reported to be slow even for their preferred isomers. It is important to develop a better understanding of the biochemistries of the LinA and LinB variants and to use that knowledge to build better variants, because field trials of some bioremediation strategies based on the Lin pathway have yielded promising results but would not yet achieve economic levels of remediation. PMID:20197499

  1. Discrimination of Isomers of Released N- and O-Glycans Using Diagnostic Product Ions in Negative Ion PGC-LC-ESI-MS/MS

    NASA Astrophysics Data System (ADS)

    Ashwood, Christopher; Lin, Chi-Hung; Thaysen-Andersen, Morten; Packer, Nicolle H.

    2018-03-01

    Profiling cellular protein glycosylation is challenging due to the presence of highly similar glycan structures that play diverse roles in cellular physiology. As the anomericity and the exact linkage type of a single glycosidic bond can influence glycan function, there is a demand for improved and automated methods to confirm detailed structural features and to discriminate between structurally similar isomers, overcoming a significant bottleneck in the analysis of data generated by glycomics experiments. We used porous graphitized carbon-LC-ESI-MS/MS to separate and detect released N- and O-glycan isomers from mammalian model glycoproteins using negative mode resonance activation CID-MS/MS. By interrogating similar fragment spectra from closely related glycan isomers that differ only in arm position and sialyl linkage, product fragment ions for discrimination between these features were discovered. Using the Skyline software, at least two diagnostic fragment ions of high specificity were validated for automated discrimination of sialylation and arm position in N-glycan structures, and sialylation in O-glycan structures, complementing existing structural diagnostic ions. These diagnostic ions were shown to be useful for isomer discrimination using both linear and 3D ion trap mass spectrometers when analyzing complex glycan mixtures from cell lysates. Skyline was found to serve as a useful tool for automated assessment of glycan isomer discrimination. This platform-independent workflow can potentially be extended to automate the characterization and quantitation of other challenging glycan isomers. [Figure not available: see fulltext.

  2. On the Relative Stability of Cumulenone and Aldehyde Isomers: when we HEAT345(Q) Things UP

    NASA Astrophysics Data System (ADS)

    Lee, Kelvin; McCarthy, Michael C.; Stanton, John F.

    2017-06-01

    Isomers of H_2C_{2n+1}O are examples of complex organic molecules that are either known or proposed to exist in the interstellar medium. For the smallest of these chains (H_2C_3O) only two of three isomers are observed in space: propynal (HC(O)CCH) and cyclopropenone (c-C_3H_2O), while evidence for the remaining isomer propadienone (H_2C_3O) is currently lacking. Potentially, this behaviour may be rationalised by a thermodynamic argument: several studies have provided quantum chemical calculations in an effort to determine the relative thermodynamic stability between these three isomers. An early study by Radom, at the SCF/6-31G** level ranked HC(O)CCH as the thermodynamic minimum, followed by H_2C_3O, and c-C_3H_2O. The most recent determination by Karton and Talbi, using W2-F12 theory, places H_2C_3O as the lowest energy isomer; 2.5 kJ mol^{-1} lower than the HC(O)CCH form. In an attempt to resolve this long-standing ambiguity, we were motivated to provide high level calculations based on the HEAT protocol. In this talk, we will discuss the relative stability of H_2C_3O and H_2C_5O isomers, along with their sulfur analogues, as revealed by HEAT345(Q) theory.

  3. Paramagnetic Europium Salen Complex and Sickle-Cell Anemia

    NASA Astrophysics Data System (ADS)

    Wynter, Clive I.; Ryan, D. H.; May, Leopold; Oliver, F. W.; Brown, Eugene; Hoffman, Eugene J.; Bernstein, David

    2005-04-01

    A new europium salen complex, Eu(salen)2NH4, was synthesized, and its composition was confirmed by chemical analysis and infrared spectroscopy. Further characterization was carried out by 151 Eu Mössbauer spectroscopy and magnetic susceptibility measurements. Mössbauer spectroscopic measurements were made at varying temperatures between 9 K and room temperature and a value of Debye temperature of 133 ±5 K was computed. Both Mössbauer and magnetic susceptibility measurements confirmed the paramagnetic behavior of this complex and the trivalent state of the europium ion. In view of the fact that the "odd" paramagnetic molecule NO has been shown to reverse sickling of red blood cells in sickle cell anemia, the interaction between the paramagnetic europium salen complex and sickle cells was examined after incubation with this europium complex and shown to have similar effects.

  4. High-gradient permanent magnet apparatus and its use in particle collection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Mengdawn; Ludtka, Gerard Michael; Avens, Larry R.

    A high-gradient permanent magnet apparatus for capturing paramagnetic particles, the apparatus comprising: (i) at least two permanent magnets positioned with like poles facing each other; (ii) a ferromagnetic spacer separating the like poles; and (iii) a magnetizable porous filling material in close proximity to the at least two permanent magnets. Also described is a method for capturing paramagnetic particles in which a gas or liquid sample containing the paramagnetic particles is contacted with the high-gradient permanent magnet apparatus described above; wherein, during the contacting step, the gas or liquid sample contacts the magnetizable porous filling material of the high-gradient permanentmore » magnet apparatus, and at least a portion of the paramagnetic particles in the gas or liquid sample is captured on the magnetizable porous filling material.« less

  5. 21 CFR 184.1212 - Calcium pantothenate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ((C9H16NO5)2Ca, CAS Reg. No. of the D-isomer, 137-08-6) is a salt of pantothenic acid, one of the vitamins of the B complex. Only the D-isomer of pantothenic acid has vitamin activity, although both the D-isomer..._regulations/ibr_locations.html. (c) In accordance with § 184.1(b)(1), the ingredient is used in food with no...

  6. 21 CFR 184.1212 - Calcium pantothenate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ((C9H16NO5)2Ca, CAS Reg. No. of the D-isomer, 137-08-6) is a salt of pantothenic acid, one of the vitamins of the B complex. Only the D-isomer of pantothenic acid has vitamin activity, although both the D-isomer..._regulations/ibr_locations.html. (c) In accordance with § 184.1(b)(1), the ingredient is used in food with no...

  7. Compartmental and noncompartmental modeling of ¹³C-lycopene absorption, isomerization, and distribution kinetics in healthy adults.

    PubMed

    Moran, Nancy E; Cichon, Morgan J; Riedl, Kenneth M; Grainger, Elizabeth M; Schwartz, Steven J; Novotny, Janet A; Erdman, John W; Clinton, Steven K

    2015-12-01

    Lycopene, which is a red carotenoid in tomatoes, has been hypothesized to mediate disease-preventive effects associated with tomato consumption. Lycopene is consumed primarily as the all-trans geometric isomer in foods, whereas human plasma and tissues show greater proportions of cis isomers. With the use of compartmental modeling and stable isotope technology, we determined whether endogenous all-trans-to-cis-lycopene isomerization or isomeric-bioavailability differences underlie the greater proportion of lycopene cis isomers in human tissues than in tomato foods. Healthy men (n = 4) and women (n = 4) consumed (13)C-lycopene (10.2 mg; 82% all-trans and 18% cis), and plasma was collected over 28 d. Unlabeled and (13)C-labeled total lycopene and lycopene-isomer plasma concentrations, which were measured with the use of high-performance liquid chromatography-mass spectrometry, were fit to a 7-compartment model. Subjects absorbed a mean ± SEM of 23% ± 6% of the lycopene. The proportion of plasma cis-(13)C-lycopene isomers increased over time, and all-trans had a shorter half-life than that of cis isomers (5.3 ± 0.3 and 8.8 ± 0.6 d, respectively; P < 0.001) and an earlier time to reach maximal plasma concentration than that of cis isomers (28 ± 7 and 48 ± 9 h, respectively). A compartmental model that allowed for interindividual differences in cis- and all-trans-lycopene bioavailability and endogenous trans-to-cis-lycopene isomerization was predictive of plasma (13)C and unlabeled cis- and all-trans-lycopene concentrations. Although the bioavailability of cis (24.5% ± 6%) and all-trans (23.2% ± 8%) isomers did not differ, endogenous isomerization (0.97 ± 0.25 μmol/d in the fast-turnover tissue lycopene pool) drove tissue and plasma isomeric profiles. (13)C-Lycopene combined with physiologic compartmental modeling provides a strategy for following complex in vivo metabolic processes in humans and reveals that postabsorptive trans-to-cis-lycopene isomerization, and not the differential bioavailability of isomers, drives tissue and plasma enrichment of cis-lycopene. This trial was registered at clinicaltrials.gov as NCT01692340. © 2015 American Society for Nutrition.

  8. Superbasic amidine monodentate ligands in fac-[Re(CO)3(5,5'-Me2bipy)(amidine)]BF4 complexes: dependence of amidine configuration on the remote nitrogen substituents.

    PubMed

    Perera, Theshini; Fronczek, Frank R; Marzilli, Patricia A; Marzilli, Luigi G

    2010-08-02

    Addition of various RNH(2) to fac-[Re(CO)(3)(5,5'-Me(2)bipy)(CH(3)CN)]BF(4) (1) converts the acetonitrile ligand to the amidine ligand (a superbase) in fac-[Re(CO)(3)(5,5'-Me(2)bipy)(HNC(CH(3))NHR)]BF(4) products. Each complex has four conceivable isomers (E, E', Z, and Z') because the amidine CN bonds have double-bond character, and the two remote NHR group substituents are different. The reaction of 1 in acetonitrile is complete in 6 to 96 h (25 degrees C) and forms fac-[Re(CO)(3)(5,5'-Me(2)bipy)(HNC(CH(3))NHR)]BF(4) E' and Z isomers. Only the E' isomer formed crystals (R = methyl, isopropyl, isobutyl, tert-butyl, and benzyl). Upon dissolution of such crystals in acetonitrile-d(3), NMR spectra with highly dominant E' signals gradually changed (approximately 15 min at room temperature) to spectra with signals for an equilibrium mixture of E' and Z isomers. Such slow E'-to-Z isomer interchange is also indicated by 2D ROESY NMR data used primarily to assign solution structure. Equilibrium ratios (E':Z) of approximately 65:35 for R = methyl, isopropyl, and isobutyl and 83:17 for R = tert-butyl demonstrate that increasing the remote NHR group steric bulk above a threshold size favors the E' isomer. Consistent with this trend, fac-[Re(CO)(3)(5,5'-Me(2)bipy)(HNC(CH(3))NH(2))]BF(4), with a remote NH(2) (low bulk) group, favors the Z isomer. In contrast, although the remote NH(benzyl) group in fac-[Re(CO)(3)(5,5'-Me(2)bipy)(HNC(CH(3))NH(CH(2)C(6)H(5))]BF(4) has only moderate bulk, the E' isomer has high abundance as a result of favorable 5,5'-Me(2)bipy/benzyl stacking, evidence for which is present in both solid and solution states. The fac-[Re(CO)(3)(5,5'-Me(2)bipy)(HNC(CH(3))NHR)]BF(4) E isomer can be detected in solvents of low polarity. However, the Z' isomer was not observed, undoubtedly because unfavorable remote-group clashes with the equatorial ligands destabilize this isomer. Challenge studies with a 5-fold excess of 4-dimethylaminopyridine in acetonitrile-d(3) establish that fac-[Re(CO)(3)(5,5'-Me(2)bipy)(HNC(CH(3))NHCH(CH(3))(2))]BF(4) is robust because the isopropylamidine ligand was not displaced, consistent with the superbase character of amidine ligands.

  9. A naphthalimide fluorophore with efficient intramolecular PET and ICT processes: application in molecular logic.

    PubMed

    Wang, Haixia; Wu, Haixia; Xue, Lin; Shi, Yan; Li, Xiyou

    2011-08-07

    A novel 4-amino-1,8-naphthalimide (NDI) with two different metal cation receptors connected at 4-amino or imide nitrogen positions respectively was designed and prepared. Significant internal charge transfer (ICT) as well as photoinduced electron transfer (PET) from the receptors to NDI is revealed by the shifted UV-vis absorption spectra and significant fluorescence quenching. Both Zn(2+) and Cu(2+) can coordinate selectively with the two cation receptors in this molecule with different affinities. The coordination of Zn(2+) with the receptor at imide nitrogen hindered the PET process and accordingly restored the quenched fluorescence of NDI. But the coordination of Zn(2+) at 4-amino position blocked the ICT process and caused significant blue-shift on the absorption peak with the fluorescence intensity unaffected. Similarly, coordination of Cu(2+) with the receptor at imide nitrogen can block the PET process, but can not restore the quenched fluorescence of compound 3 due to the paramagnetic properties of Cu(2+), which quench the fluorescence significantly instead. With Cu(2+) and Zn(2+) as two chemical inputs and absorption or fluorescence as output, several logic gate operations, such as OR, NOR and INHIBIT, can be achieved.

  10. A molecular heterojunction of zinc phthalocyanine and peanut-shaped fullerene polymer: A density functional study

    NASA Astrophysics Data System (ADS)

    Tanikawa, Kousei; Ohno, Kaoru; Noda, Yusuke; Ono, Shota; Kuwahara, Riichi; Takashima, Akito; Nakaya, Masato; Onoe, Jun

    2017-10-01

    We have performed first-principles density functional calculations of a molecular heterojunction of a zinc phthalocyanine (ZnPc) molecule and a peanut-shaped fullerene polymer (PSFP) made from several coalesced cross-linked C60 molecules. The PSFP has many isomers and all have both spatially localized (near ZnPc) and metallic conducting levels. Here we consider four typical isomers. From the resulting electronic structure, we discuss the applicability of these isomers to organic photovoltaics (OPV), electrodes, and light harvesting materials. If one of the isomers called T3, which has the largest energy gap, is used together with ZnPc for OPV, this system shows more than 20% energy conversion efficiency.

  11. Ortho-to-para abundance ratios of NH2 in 26 comets: implications for the real meaning of OPRs

    NASA Astrophysics Data System (ADS)

    Shinnaka, Yoshiharu; Kawakita, Hideyo; Jehin, Emmanuël; Decock, Alice; Hutsemékers, Damien; Manfroid, Jean

    2016-11-01

    Abundance ratios of nuclear-spin isomers for cometary molecules having identical protons, such as water and ammonia, have been measured and discussed from the viewpoint that they are primordial characters in comet. In the case of ammonia, its ortho-to-para abundance ratio (OPR) is usually estimated from OPRs of NH2 because of difficulty in measuring OPR of ammonia directly. We report our survey for OPRs of NH2 in 26 comets. A weighted mean of ammonia OPRs for the comets is 1.12 ± 0.01 and no significant difference is found between the Oort Cloud comets and the Jupiter-family comets. These values correspond to ˜30 K as nuclear-spin temperatures. The OPRs of ammonia in comets probably reflect the physicochemical conditions in coma, rather than the conditions for the molecular formation or condensation in the pre-solar molecular cloud/the solar nebula, based on comparison of OPRs (and nuclear-spin temperatures) of ammonia with those of water, 14N/15N ratios in ammonia, and D/H ratios in water. The OPRs could be reset to a nuclear-spin weights ratio in solid phase and modified by interactions with protonated ions like H3O+, water clusters (H2O)n, ice grains, and paramagnetic impurities (such as O2 molecules and grains) in the inner coma gas. Relationship between the OPRs of ammonia and water is a clue to understanding the real meaning of the OPRs.

  12. TRANSFORMER APPARATUS

    DOEpatents

    Wolfgang, F.; Nicol, J.

    1962-11-01

    Transformer apparatus is designed for measuring the amount of a paramagnetic substance dissolved or suspended in a diamagnetic liquid. The apparatus consists of a cluster of tubes, some of which are closed and have sealed within the diamagnetic substance without any of the paramagnetic material. The remaining tubes are open to flow of the mix- ture. Primary and secondary conductors are wrapped around the tubes in such a way as to cancel noise components and also to produce a differential signal on the secondaries based upon variations of the content of the paramagnetic material. (AEC)

  13. Measurement of electron paramagnetic resonance using terahertz time-domain spectroscopy.

    PubMed

    Kozuki, Kohei; Nagashima, Takeshi; Hangyo, Masanori

    2011-12-05

    We present a frequency-domain electron spin resonance (ESR) measurement system using terahertz time-domain spectroscopy. A crossed polarizer technique is utilized to increase the sensitivity in detecting weak ESR signals of paramagnets caused by magnetic dipole transitions between magnetic sublevels. We demonstrate the measurements of ESR signal of paramagnetic copper(II) sulfate pentahydrate with uniaxial anisotropy of the g-factor under magnetic fields up to 10 T. The lineshape of the obtained ESR signals agrees well with the theoretical predictions for a powder sample with the uniaxial anisotropy.

  14. The EPR of the triplet state of aryl cations in crystals of diazonium salts

    NASA Astrophysics Data System (ADS)

    Kondratenko, P. A.; Shrubovich, E. V.; Shulga, S. Z.

    The spectra of the electron paramagnetic resonance (EPR) of aryl cations possessing a principle triplet ground-state and orientated in a monocrystal of diazonium salts is studied. It is shown that two nonequivalent paramagnetic centers, which differ in orientation are formed within the crystal. A theoretic description of experimental results is possible only when allowing for the effect of low symmetry. This symmetry is invoked by the interactivity of the paramagnetic center of symmetry C(sub 2v) with the crystal field of symmetry C(sub i).

  15. Low-energy electron scattering from C{sub 4}H{sub 9}OH isomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bettega, M. H. F.; Winstead, C.; McKoy, V.

    2010-12-15

    We present differential, integral, and momentum-transfer cross sections for elastic scattering of low-energy electrons by three butanol isomers, isobutanol, t-butanol, and 2-butanol. Our results were calculated with the Schwinger multichannel method in the static-exchange plus polarization approximation for collision energies from 1 to 50 eV. The present results are compared with previous calculations and measurements for the remaining C{sub 4}H{sub 9}OH isomer, n-butanol [Khakoo et al., Phys. Rev. A 78, 062714 (2008)]. Distinctive behavior is observed in the differential cross sections at collision energies between 5 and 10 eV. In particular, whereas n-butanol exhibits an f-wave scattering pattern, the othermore » isomers exhibit d-wave behavior. A similar pattern is found in the related alkanes when comparing straight-chain versus branched isomers. We discuss the possible connection of this behavior to shape resonances that influence the scattering.« less

  16. Prospects for measuring the 229Th isomer energy using a metallic magnetic microcalorimeter.

    PubMed

    Kazakov, G A; Schauer, V; Schwestka, J; Stellmer, S P; Sterba, J H; Fleischmann, A; Gastaldo, L; Pabinger, A; Enss, C; Schumm, T

    2014-01-21

    The Thorium-229 isotope features a nuclear isomer state with an extremely low energy. The currently most accepted energy value, 7.8±0.5 eV, was obtained from an indirect measurement using a NASA x-ray microcalorimeter with an instrumental resolution 26 eV. We study, how state-of-the-art magnetic metallic microcalorimeters with an energy resolution down to a few eV can be used to measure the isomer energy. In particular, resolving the 29.18 keV doublet in the γ-spectrum following the α-decay of Uranium-233, corresponding to the decay into the ground and isomer state, allows to measure the isomer transition energy without additional theoretical input parameters, and increase the energy accuracy. We study the possibility of resolving the 29.18 keV line as a doublet and the dependence of the attainable precision of the energy measurement on the signal and background count rates and the instrumental resolution.

  17. Weak hydrogen bond topology in 1,1-difluoroethane dimer: A rotational study

    NASA Astrophysics Data System (ADS)

    Chen, Junhua; Zheng, Yang; Wang, Juan; Feng, Gang; Xia, Zhining; Gou, Qian

    2017-09-01

    The rotational spectrum of the 1,1-difluoroethane dimer has been investigated by pulsed-jet Fourier transform microwave spectroscopy. Two most stable isomers have been detected, which are both stabilized by a network of three C—H⋯F—C weak hydrogen bonds: in the most stable isomer, two difluoromethyl C—H groups and one methyl C—H group act as the weak proton donors whilst in the second isomer, two methyl C—H groups and one difluoromethyl C—H group act as the weak proton donors. For the global minimum, the measurements have also been extended to its four 13C isotopologues in natural abundance, allowing a precise, although partial, structural determination. Relative intensity measurements on a set of μa-type transitions allowed estimating the relative population ratio of the two isomers as NI/NII ˜ 6/1 in the pulsed jet, indicating a much larger energy gap between these two isomers than that expected from ab initio calculation, consistent with the result from pseudo-diatomic dissociation energies estimation.

  18. Prospects for measuring the 229Th isomer energy using a metallic magnetic microcalorimeter☆

    PubMed Central

    Kazakov, G.A.; Schauer, V.; Schwestka, J.; Stellmer, S.P.; Sterba, J.H.; Fleischmann, A.; Gastaldo, L.; Pabinger, A.; Enss, C.; Schumm, T.

    2014-01-01

    The Thorium-229 isotope features a nuclear isomer state with an extremely low energy. The currently most accepted energy value, 7.8±0.5 eV, was obtained from an indirect measurement using a NASA x-ray microcalorimeter with an instrumental resolution 26 eV. We study, how state-of-the-art magnetic metallic microcalorimeters with an energy resolution down to a few eV can be used to measure the isomer energy. In particular, resolving the 29.18 keV doublet in the γ-spectrum following the α-decay of Uranium-233, corresponding to the decay into the ground and isomer state, allows to measure the isomer transition energy without additional theoretical input parameters, and increase the energy accuracy. We study the possibility of resolving the 29.18 keV line as a doublet and the dependence of the attainable precision of the energy measurement on the signal and background count rates and the instrumental resolution. PMID:25844000

  19. High-spin yrast structure of 204Hg from the decay of a four-hole, 22+ isomer

    NASA Astrophysics Data System (ADS)

    Wrzesiński, J.; Lane, G. J.; Maier, K. H.; Janssens, R. V. F.; Dracoulis, G. D.; Broda, R.; Byrne, A. P.; Carpenter, M. P.; Clark, R. M.; Cromaz, M.; Fornal, B.; Lauritsen, T.; Macchiavelli, A. O.; Rejmund, M.; Szpak, B.; Vetter, K.; Zhu, S.

    2015-10-01

    A high-spin isomer with τ >700 ns has been found in 204Hg , populated in reactions of 1360-MeV 208Pb and 330-MeV 48Ca beams with a thick 238U target and a 1450-MeV 208Pb beam on a thick 208Pb target. The observed γ -ray decay of the isomer has established the yrast states below it, including another isomer with τ =33 (3 ) ns. The experimental results are compared with shell-model calculations that include four holes in the configuration space between 132Sn and 208Pb . The available spectroscopic information, including transition strengths, total conversion, and angular correlation coefficients, together with the observed agreement with the calculations, allows spin, parity, and configuration assignments to be proposed for the experimental states. The τ >700 ns isomer is the 22+ state of maximum spin available from the alignment of the four valence holes with the configuration π h11/2 -2ν i13/2 -2 .

  20. Enantioselective separation of defined endocrine-disrupting nonylphenol isomers.

    PubMed

    Acir, Ismail-Hakki; Wüst, Matthias; Guenther, Klaus

    2016-08-01

    Nonylphenol is in the focus of worldwide endocrine-disrupter research and accounted for as a priority hazardous substance of the Water Framework Directive of the European Union. Technical nonylphenol consists of a very complex mixture of isomers and enantiomers. As estrogenic effect and degradation behavior in environmental processes of single nonylphenols are heavily dependent on the structure of the nonyl side chain, it is absolutely necessary to consider the nonylphenol problem from an isomer and enantiomer-specific viewpoint. In this study, an enantiomer-specific separation of eight defined synthesized nonylphenol isomers by five different special chiral cyclodextrin columns was performed underivatized and after methylation, silylation, and acylation. This work demonstrates that three columns out of the investigated five show an excellent separation behavior for the studied different nonylphenol isomers and can be used for the enantiomer-specific determination of nonylphenols in food, other biological matrices, and environmental samples in the future. Graphical abstract Enantiomeric pair of 4-NP170 (4-[1-ethyl-1,3,3-trimethylbutyl]phenol).

  1. Basic medium oxidation of aromatic α-hydroxy-ketones: A free radical mechanism

    NASA Astrophysics Data System (ADS)

    Gómez-Vidales, Virginia; Vargas, Marina; Meléndez, Iván; Salmón, Manuel; Sansón-O, Carmen; Zaragoza, I. P.; Zolotukhin, Mikhail; Salcedo, Roberto

    2010-01-01

    A systematic study was undertaken of the EPR of sodium hydroxide solutions of Benzoin, Anisoin and Thenoin in both ethanol and DMSO as well as their corresponding ionised species of varying colours. In all cases, the EPR consist of symmetric spectra, resulting from the generation of a free radical-anion. Furthermore, theoretical DFT methods were applied in order to study the radical anions, revealing the reason for the colour change in the solutions and in the case of benzoin, found to be related to the interaction between the cis and trans-isomers with the molecules in the two solvents. We have defined the structure of the cis-isomer and for the first time we have described how the adduct between the cis-isomer and the solvent molecule, results in a stable conformer. This corresponds with the EPR results which indicated a significant difference between the cis and trans-isomers. Both the theoretical and experimental results inspired similar descriptions of the significant differences between the cis and trans-isomers in solution.

  2. A Systematic Theoretical Study of UC6: Structure, Bonding Nature, and Spectroscopy.

    PubMed

    Du, Jiguang; Jiang, Gang

    2017-11-20

    The study of uranium carbides has received renewed attention in recent years due to the potential use of these compounds as fuels in new generations of nuclear reactors. The isomers of the UC 6 cluster were determined by DFT and ab initio methods. The structures obtained using SC-RECP for U were generally consistent with those obtained using an all-electron basis set (ZORA-SARC). The CCSD(T) calculations indicated that two isomers had similar energies and may coexist in laser evaporation experiments. The nature of the U-C bonds in the different isomers was examined via a topological analysis of the electron density, and the results indicated that the U-C bonds are predominantly closed-shell (ionic) interactions with a certain degree of covalent character in all cases, particularly in the linear species. The IR and UV-vis spectra of the isomers were theoretically simulated to provide information that can be used to identify the isomers of UC 6 in future experiments.

  3. Compounds, compositions, pharmaceutical compositions, and methods of use

    DOEpatents

    Hammond, Gerald B.; Jin, Zhuang; Bates, Paula J.; Reyes-Reyes, Elsa Merit

    2016-11-15

    Certain embodiments of the invention include compositions comprising a compound of Formula (I), and salts, isomers, and derivatives thereof. Pharmaceutical compositions of some embodiments of the present invention comprise a compound of Formula (I), and salts, isomers, and derivatives thereof. Other embodiments of this invention include methods for treating disease (e.g., cancer) and methods for administering a compound of Formula (I), and salts, isomers, and derivatives thereof.

  4. Clomiphene and Its Isomers Block Ebola Virus Particle Entry and Infection with Similar Potency: Potential Therapeutic Implications

    PubMed Central

    Nelson, Elizabeth A.; Barnes, Alyson B.; Wiehle, Ronald D.; Fontenot, Gregory K.; Hoenen, Thomas; White, Judith M.

    2016-01-01

    The 2014 outbreak of Ebola virus (EBOV) in Western Africa highlighted the need for anti-EBOV therapeutics. Clomiphene is a U.S. Food and Drug Administration (FDA)-approved drug that blocks EBOV entry and infection in cells and significantly protects EBOV-challenged mice. As provided, clomiphene is, approximately, a 60:40 mixture of two stereoisomers, enclomiphene and zuclomiphene. The pharmacokinetic properties of the two isomers vary, but both accumulate in the eye and male reproductive tract, tissues in which EBOV can persist. Here we compared the ability of clomiphene and its isomers to inhibit EBOV using viral-like particle (VLP) entry and transcription/replication-competent VLP (trVLP) assays. Clomiphene and its isomers inhibited the entry and infection of VLPs and trVLPs with similar potencies. This was demonstrated with VLPs bearing the glycoproteins from three filoviruses (EBOV Mayinga, EBOV Makona, and Marburg virus) and in two cell lines (293T/17 and Vero E6). Visual problems have been noted in EBOV survivors, and viral RNA has been isolated from semen up to nine months post-infection. Since the clomiphene isomers accumulate in these affected tissues, clomiphene or one of its isomers warrants consideration as an anti-EBOV agent, for example, to potentially help ameliorate symptoms in EBOV survivors. PMID:27490565

  5. A comparative study of the infrared and Raman spectra of aniline and o-, m-, p-phenylenediamine isomers.

    PubMed

    Badawi, Hassan M; Förner, Wolfgang; Ali, Shaikh A

    2013-08-01

    The structural stabilities of o-, m- and p-phenylenediamine (PDA) isomers were investigated by DFT-B3LYP and ab initio MP2 calculations with the 6-311G(**) basis set. From the calculations the three isomers were predicted to exist predominantly in an anti (transoid) structure. In the o-isomer, the syn (cisoid) form is calculated to turn to the anti (transoid) form with the two HNCC torsional angles of about 44 and 10° and the NH2 inversion barrier of 3-4 kcal/mol. The CCNH torsional angles in the m-PDA and p-PDA isomers were calculated to be about 25-26° as compared to 20° in aniline. A comparison of the Raman spectra of the three PDA-s with those of aniline shows the high sensitivity of the ring breathing mode to the nature of substituents in the aniline ring. The vibrational wavenumbers were computed at the DFT-B3LYP for aniline and the o-, m- and p-PDA isomers for the purpose of comparison. Complete vibrational assignments were made on the basis of normal coordinate analyses and potential energy distributions for aniline and the o-, m- and p-PDA molecules. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Clomiphene and Its Isomers Block Ebola Virus Particle Entry and Infection with Similar Potency: Potential Therapeutic Implications.

    PubMed

    Nelson, Elizabeth A; Barnes, Alyson B; Wiehle, Ronald D; Fontenot, Gregory K; Hoenen, Thomas; White, Judith M

    2016-08-02

    The 2014 outbreak of Ebola virus (EBOV) in Western Africa highlighted the need for anti-EBOV therapeutics. Clomiphene is a U.S. Food and Drug Administration (FDA)-approved drug that blocks EBOV entry and infection in cells and significantly protects EBOV-challenged mice. As provided, clomiphene is, approximately, a 60:40 mixture of two stereoisomers, enclomiphene and zuclomiphene. The pharmacokinetic properties of the two isomers vary, but both accumulate in the eye and male reproductive tract, tissues in which EBOV can persist. Here we compared the ability of clomiphene and its isomers to inhibit EBOV using viral-like particle (VLP) entry and transcription/replication-competent VLP (trVLP) assays. Clomiphene and its isomers inhibited the entry and infection of VLPs and trVLPs with similar potencies. This was demonstrated with VLPs bearing the glycoproteins from three filoviruses (EBOV Mayinga, EBOV Makona, and Marburg virus) and in two cell lines (293T/17 and Vero E6). Visual problems have been noted in EBOV survivors, and viral RNA has been isolated from semen up to nine months post-infection. Since the clomiphene isomers accumulate in these affected tissues, clomiphene or one of its isomers warrants consideration as an anti-EBOV agent, for example, to potentially help ameliorate symptoms in EBOV survivors.

  7. An efficient self-organizing map designed by genetic algorithms for the traveling salesman problem.

    PubMed

    Jin, Hui-Dong; Leung, Kwong-Sak; Wong, Man-Leung; Xu, Z B

    2003-01-01

    As a typical combinatorial optimization problem, the traveling salesman problem (TSP) has attracted extensive research interest. In this paper, we develop a self-organizing map (SOM) with a novel learning rule. It is called the integrated SOM (ISOM) since its learning rule integrates the three learning mechanisms in the SOM literature. Within a single learning step, the excited neuron is first dragged toward the input city, then pushed to the convex hull of the TSP, and finally drawn toward the middle point of its two neighboring neurons. A genetic algorithm is successfully specified to determine the elaborate coordination among the three learning mechanisms as well as the suitable parameter setting. The evolved ISOM (eISOM) is examined on three sets of TSP to demonstrate its power and efficiency. The computation complexity of the eISOM is quadratic, which is comparable to other SOM-like neural networks. Moreover, the eISOM can generate more accurate solutions than several typical approaches for TSP including the SOM developed by Budinich, the expanding SOM, the convex elastic net, and the FLEXMAP algorithm. Though its solution accuracy is not yet comparable to some sophisticated heuristics, the eISOM is one of the most accurate neural networks for the TSP.

  8. Isomer profiles of perfluoroalkyl substances in water and soil surrounding a chinese fluorochemical manufacturing park.

    PubMed

    Jin, Hangbiao; Zhang, Yifeng; Zhu, Lingyan; Martin, Jonathan W

    2015-04-21

    Despite that China is the largest global manufacturer of perfluoroalkyl substances (PFASs), the manufacturing methods and isomer purity of these chemicals are generally unknown. Here, sampling was conducted around a major fluorochemical manufacturing park in China in 2012, including soil and water collection inside the park, including from a wastewater treatment plant (WWTP), as well as in surrounding rivers and soil (∼15 km radius). Perfluoroalkyl sulfonates (PFSAs) were lower than perfluoroalkyl carboxylates (PFCAs) in all samples, and short-chain (C4-C6) PFCAs were predominant. Perfluoroalkyl phosphonates and phosphate diesters were occasionally detected, but at low detection frequency. Branched isomers of perfluorobutanesulfonate (PFBS) are reported for the first time, accounting for 15-27% of total PFBS in water. An enrichment of isopropyl-PFOA (28%) was found in WWTP influent, suggesting its manufacturing primarily by isopropyl telomerization. More numerous branched isomers were observed for the longer C9-C13 PFCAs (e.g., C12 PFCA had 16 branched isomers), including high proportions of one major branched isomer (likely isopropyl), possibly as impurities from isopropyl-PFOA manufacturing. Overall, short-chain perfluorinated acids were the predominant PFASs being released, but PFOA was still a major chemical in use at this site, primarily from isopropyl telomerization.

  9. Efficacy of Fe(o,o-EDDHA) and Fe(o,p-EDDHA) isomers in supplying Fe to strategy I plants differs in nutrient solution and calcareous soil.

    PubMed

    Rojas, Carmen L; Romera, Francisco J; Alcántara, Esteban; Pérez-Vicente, Rafael; Sariego, Cristina; Garcaí-Alonso, J Ignacio; Boned, Javier; Marti, Gabriel

    2008-11-26

    The FeEDDHA [iron(3+) ethylenediamine di(o-hydroxyphenylacetic) acid] is one of the most efficient iron chelates employed in the correction of iron clorosis in calcareous soils. FeEDDHA presents different positional isomers: the ortho-ortho (o,o), the ortho-para (o,p), and the para-para (p,p). Of these isomers, the p,p cannot chelate Fe in soil solution in a wide range of pH values, while both o,o and o,p can. The objective of this work was to compare the efficiency of both isomers (o,o and o,p) to provide Fe to two Strategy I plants (tomato and peach) in nutrient solution (pH approximately 6.0), as well as in calcareous soil (pH approximately 8.4; CALCIXEREPT). For this, chelates of both o,o-EDDHA and o,p-EDDHA with 57Fe (a nonradioactive isotope of Fe) were used, where the 57Fe acts as a tracer. The results obtained showed that the o,o isomer is capable of providing sufficient Fe to plants in both nutrient solution and calcareous soil. However, the o,p isomer is capable of providing sufficient Fe to plants in nutrient solution but not in calcareous soil.

  10. The electric field gradient in natural iron-doped chrysoberyl Al2BeO4 and sinhalite MgAlBO4 single crystals

    NASA Astrophysics Data System (ADS)

    Lottermoser, Werner; Redhammer, Günther J.; Weber, Sven-Ulf; Litterst, Fred Jochen; Tippelt, Gerold; Dlugosz, Stephen; Bank, Hermann; Amthauer, Georg; Grodzicki, Michael

    2011-12-01

    This work reports on the evaluation of the electric field gradient (EFG) in natural chrysoberyl Al2BeO4 and sinhalite MgAlBO4 using two different procedures: (1) experimental, with single crystal Mössbauer spectroscopy (SCMBS) on the three principal sections of each sample and (2) a "fully quantitative" method with cluster molecular orbital calculations based on the density functional theory. Whereas the experimental and theoretical results for the EFG tensor are in quantitative agreement, the calculated isomer shifts and optical d-d-transitions exhibit systematic deviations from the measured values. These deviations indicate that the substitution of Al and Mg with iron should be accompanied by considerable local expansion of the coordination octahedra.

  11. Mossbauer effect in dilute iron alloys

    NASA Technical Reports Server (NTRS)

    Singh, J. J.

    1975-01-01

    The effects of variable concentration, x, of Aluminum, Germanium, and Lanthanum atoms in Iron lattice on various Mossbauer parameters was studied. Dilute binary alloys of (Fe-Al), (Fe-Ge), (Fe-Al) containing up to x = 2 a/o of the dilute constituent were prepared in the form of ingots and rolled to a thickness of 0.001 in. Mossbauer spectra of these targets were then studied in transmission geometry to measure changes in the hyperfine field, peak widths isomer shifts as well as the ratio of the intensities of peaks (1,6) to the intensities of peaks (2,5). It was shown that the concept of effective hyperfine structure field in very dilute alloys provides a useful means of studying the effects of progressively increasing the solute concentration on host lattice properties.

  12. Mössbauer spectroscopic characterization of iron methyl pyropheophorbide a and its derivatives

    NASA Astrophysics Data System (ADS)

    Inoue, H.; Soeda, K.; Akahori, H.; Nonomura, Y.; Yoshioka, N.

    1994-12-01

    Two kinds of iron chlorophylls, i.e. (methyl pyropheophorbide a)iron(III) chloride and its bis-pyridine adduct, were prepared and characterized by57Fe Mössbauer spectroscopy. (Methyl pyropheophorbide a)iron(III) chloride gave an asymmetric quadrupole-split doublet typical of high-spin iron(III) chlorophylls, while its bis-pyridine adduct showed a symmetric quadrupole-split doublet characteristic of low-spin iron(II) chlorophylls. The isomer shift and quadrupole splitting obtained for (methyl pyropheophorbide a)iron(III) chloride and its bis-pyridine adduct have led to the following conclusions. The substitution of the bulky phytyl group for the methyl group hardly affects the electronic state of the iron(II,III) ion, but the elimination of the methoxycarbonyl group increases the planarity of the macrocyclic chlorin ligand.

  13. Study of 57Fe Mössbauer effect in RFe 2Zn 20 ( R = Lu, Yb, Gd)

    DOE PAGES

    Bud’ko, Sergey L.; Kong, Tai; Ma, Xiaoming; ...

    2015-08-04

    In this document we report measurements of 57Fe Mössbauer spectra for RFe 2Zn 20 ( R = Lu, Yb, Gd) from ~ 4.5 K to room temperature. The obtained isomer shift values are very similar for all three compounds, their temperature dependence was analyzed within the Debye model and resulted in an estimate of the Debye temperatures of 450-500 K. The values of quadrupole splitting at room temperature change with the cubic lattice constant a in a linear fashion. For GdFe 2Zn 20, ferromagnetic order is seen as an appearance of a sextet in the spectra. The 57Fe site hyperfinemore » field for T → 0 was evaluated to be ~ 2.4 T.« less

  14. Infrared Fingerprints of nN → σ*NH Hyperconjugation in Hydrazides.

    PubMed

    Andrade, Laize A F; Silla, Josué M; Cormanich, Rodrigo A; Freitas, Matheus P

    2017-12-01

    An earlier study demonstrated that hyperconjugation operates in hydrazides by analyzing the N-H stretching mode in gas phase infrared (IR) spectroscopy, and then observing two very distinct bands corresponding to isolated isomers experiencing or not the n N → σ* N-H electron delocalization. The present work reports a chemical method to obtain insight on the hyperconjugation in hydrazide derivatives from solution IR spectroscopy. The analogous amides did not show a ν N-H red-shifted band, as the electron donor orbital in the above hyperconjugative interaction does not exist. In addition, the effect of electron withdrawing groups bonded to a nitrogen atom, namely the trifluoroacetyl and the methanesulfonyl groups, was analyzed on the conformational isomerism and on the ability to induce a stronger hyperconjugation in the resulting compounds.

  15. Dynamics of paramagnetic agents by off-resonance rotating frame technique

    NASA Astrophysics Data System (ADS)

    Zhang, Huiming; Xie, Yang

    2006-12-01

    Off-resonance rotating frame technique offers a novel tool to explore the dynamics of paramagnetic agents at high magnetic fields ( B0 > 3 T). Based on the effect of paramagnetic relaxation enhancement in the off-resonance rotating frame, a new method is described here for determining the dynamics of paramagnetic ion chelates from the residual z-magnetizations of water protons. In this method, the dynamics of the chelates are identified by the difference magnetization profiles, which are the subtraction of the residual z-magnetization as a function of frequency offset obtained at two sets of RF amplitude ω1 and pulse duration τ. The choices of ω1 and τ are guided by a 2-D magnetization map that is created numerically by plotting the residual z-magnetization as a function of effective field angle θ and off-resonance pulse duration τ. From the region of magnetization map that is the most sensitive to the alteration of the paramagnetic relaxation enhancement efficiency R1 ρ/ R1, the ratio of the off-resonance rotating frame relaxation rate constant R1 ρ verse the laboratory frame relaxation rate constant R1, three types of difference magnetization profiles can be generated. The magnetization map and the difference magnetization profiles are correlated with the rotational correlation time τR of Gd-DTPA through numerical simulations, and further validated by the experimental data for a series of macromolecule conjugated Gd-DTPA in aqueous solutions. Effects of hydration water number q, diffusion coefficient D, magnetic field strength B0 and multiple rotational correlation times are explored with the simulations of the magnetization map. This method not only provides a simple and reliable approach to determine the dynamics of paramagnetic labeling of molecular/cellular events at high magnetic fields, but also a new strategy for spectral editing in NMR/MRI based on the dynamics of paramagnetic labeling in vivo.

  16. Infrared spectra of two isomers of protonated carbonyl sulfide (HOCS+ and HSCO+) and t-HOCS in solid para-hydrogen.

    PubMed

    Tsuge, Masashi; Lee, Yuan-Pern

    2016-10-28

    We report infrared (IR) spectra of HOCS + , HSCO + , t-HOCS, and other species produced on electron bombardment of a mixture of carbonyl sulfide (OCS) and para-hydrogen (p-H 2 ) during deposition at 3.2 K. After maintenance of the matrix in darkness for 15 h, the intensities of absorption features of HOCS + at 2945.9 (ν 1 ), 1875.3 (ν 2 ), and 1041.9 (ν 3 ) cm -1 and those of HSCO + at 2506.9 (ν 1 ) and 2074.2 (ν 2 ) cm -1 decreased through neutralization with trapped electrons. Lines observed at 3563.4, 1394.8, and 1199.0 cm -1 , which decreased slightly in intensity after maintenance in darkness and were nearly depleted after irradiation at 373 nm, are assigned to a t-HOCS radical. The corresponding spectra of their 13 C- and D-isotopologues were observed. The IR spectra of HSCO + and t-HOCS and those of modes ν 2 and ν 3 of HOCS + are new. The assignments were made according to the expected chemical behavior and a comparison of experimental and calculated wavenumbers and 13 C- and D-isotopic shifts. The wavenumber of the OH stretching mode (2945.9 cm -1 ) of HOCS + in solid p-H 2 is significantly red-shifted from that (3435.16 cm -1 ) reported for gaseous HOCS + ; this shift is attributed to partial sharing of a proton between OCS and H 2 . The corresponding p-H 2 induced shift is small in HSCO + because of a much weaker interaction between HSCO + and H 2 .

  17. Differentiation of isomeric 2-aryldimethyltetrahydro-5-quinolinones by electron ionization and electrospray ionization mass spectrometry.

    PubMed

    Kumar, Ch Dinesh; Chary, V Naresh; Dinesh, A; Reddy, P S; Srinivas, K; Gayatri, G; Sastry, G N; Prabhakar, S

    2011-10-15

    A series of isomeric 2-aryl-6,6-dimethyltetrahydro-5-quinolinones (set I) and 2-aryl-7,7-dimethyltetrahydro-5-quinolinones (set II) were studied under positive ion electron ionization (EI) and electrospray ionization (ESI) techniques. Under EI conditions, the molecular ions were found to be less stable in set I isomers, and they resulted in abundant fragment ions, i.e., [M-CH(3)](+), [M-CO](+.), [M-HCO](+), [M-(CH(3),CO)](+), and [M-(CH(3),CH(2)O)](+), when compared with set II isomers. In addition, the set I isomers showed specific fragment ions corresponding to [M-OH](+) and [M-OCH(3)](+). The retro-Diels-Alder (RDA) product ion was always higher in set II isomers. The ESI mass spectra produced [M + H](+) ions, and their decomposition showed favorable loss of CH(3) radical, CH(4) and C(2)H(6) molecules in set I isomers. The set II isomers, however, showed predominant RDA product ions, and specific loss of H(2)O. The selectivity in EI and ESI was attributed to the instability of set I isomers by the presence of a gem-dimethyl group at the α-position, and it was supported by the data from model compounds without a gem-dimethyl group. Density functional theory (DFT) calculations successfully corroborated the fragmentation pathways for diagnostic ions. This study revealed the effect of a gem-dimethyl group located at the α-position to the carbonyl having aromatic/unsaturated carbon on the other side of the carbonyl group. Copyright © 2011 John Wiley & Sons, Ltd.

  18. New K isomers in the neutron-rich N =100 isotones 162Sm, 163Eu, and 164Gd

    NASA Astrophysics Data System (ADS)

    Yokoyama, R.; Go, S.; Kameda, D.; Kubo, T.; Inabe, N.; Fukuda, N.; Takeda, H.; Suzuki, H.; Yoshida, K.; Kusaka, K.; Tanaka, K.; Yanagisawa, Y.; Ohtake, M.; Sato, H.; Shimizu, Y.; Baba, H.; Kurokawa, M.; Nishimura, D.; Ohnishi, T.; Iwasa, N.; Chiba, A.; Yamada, T.; Ideguchi, E.; Fujii, T.; Nishibata, H.; Ieki, K.; Murai, D.; Momota, S.; Sato, Y.; Hwang, J. W.; Kim, S.; Tarasov, O. B.; Morrissey, D. J.; Sherrill, B. M.; Simpson, G.; Praharaj, C. R.

    2017-03-01

    Very neutron-rich Z ˜60 isotopes produced by in-flight fission of a 345 MeV/nucleon 238U beam at the RI Beam Factory, RIKEN Nishina Center, have been studied by delayed γ -ray spectroscopy. New isomers were discovered in the neutron-rich N =100 isotones 162Sm, 163Eu, and 164Gd. Half-lives, γ -ray energies, and relative intensities of these isomers were obtained. Level schemes were proposed for these nuclei and the first 2+ and 4+ states were assigned for the even-even nuclei. The first 2+ and 4+ state energies decrease as the proton numbers get smaller. The energies and the half-lives of the new isomers are very similar to those of 4- isomers known in less neutron-rich N =100 isotones 168Er and 170Yb. A deformed Hartree-Fock with angular momentum projection model suggests Kπ=4- two-quasiparticle states with ν 7 /2 [633 ]⊗ν 1 /2 [521 ] configurations with similar excitation energy. The results suggest that neutron-rich N =100 nuclei are well deformed and the deformation gets larger as Z decreases to 62. The onset of K isomers with the same configuration at almost the same energy in N =100 isotones indicates that the neutron single-particle structures of neutron-rich isotones down to Z =62 do not change significantly from those of the Z =70 stable nuclei. Systematics of the excitation energies of new isomers can be explained without the predicted N =100 shell gap.

  19. Resolution and Assignment of Differential Ion Mobility Spectra of Sarcosine and Isomers.

    PubMed

    Berthias, Francis; Maatoug, Belkis; Glish, Gary L; Moussa, Fathi; Maitre, Philippe

    2018-04-01

    Due to their central role in biochemical processes, fast separation and identification of amino acids (AA) is of importance in many areas of the biomedical field including the diagnosis and monitoring of inborn errors of metabolism and biomarker discovery. Due to the large number of AA together with their isomers and isobars, common methods of AA analysis are tedious and time-consuming because they include a chromatographic separation step requiring pre- or post-column derivatization. Here, we propose a rapid method of separation and identification of sarcosine, a biomarker candidate of prostate cancer, from isomers using differential ion mobility spectrometry (DIMS) interfaced with a tandem mass spectrometer (MS/MS) instrument. Baseline separation of protonated sarcosine from α- and β-alanine isomers can be easily achieved. Identification of DIMS peak is performed using an isomer-specific activation mode where DIMS- and mass-selected ions are irradiated at selected wavenumbers allowing for the specific fragmentation via an infrared multiple photon dissociation (IRMPD) process. Two orthogonal methods to MS/MS are thus added, where the MS/MS(IRMPD) is nothing but an isomer-specific multiple reaction monitoring (MRM) method. The identification relies on the comparison of DIMS-MS/MS(IRMPD) chromatograms recorded at different wavenumbers. Based on the comparison of IR spectra of the three isomers, it is shown that specific depletion of the two protonated α- and β-alanine can be achieved, thus allowing for clear identification of the sarcosine peak. It is also demonstrated that DIMS-MS/MS(IRMPD) spectra in the carboxylic C=O stretching region allow for the resolution of overlapping DIMS peaks. Graphical Abstract ᅟ.

  20. Ab initio investigation of structure, stability, thermal behavior, bonding, and infrared spectra of ionized water cluster (H2O)6+

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Hu, Cui-E.; Tang, Mei; Chen, Xiang-Rong; Cai, Ling-Cang

    2016-10-01

    The low-lying isomers of cationic water cluster (H2O)6+ have been globally explored by using particle swarm optimization algorithm in conjunction with quantum chemical calculations. Compared with previous results, our searching method covers a wide range of structural isomers of (H2O)6+ and therefore turns out to be more effective. With these local minima, geometry optimization and vibrational analysis are performed for the most interesting clusters at second-order Møller-Plesset (MP2)/aug-cc-pVDZ level, and their energies are further refined at MP2/aug-cc-pVTZ and coupled-cluster theory with single, double, and perturbative triple excitations/aug-cc-pVDZ level. The interaction energies using the complete basis set limits at MP2 level are also reported. The relationships between their structure arrangement and their energies are discussed. Based on the results of thermal simulation, structural change from a four-numbered ring to a tree-like structure occurs at T ≈ 45 K, and the relative population of six lowest-free-energy isomers is found to exceed 4% at some point within the studied temperature range. Studies reveal that, among these six isomers, two new-found isomers constitute 10% of isomer population at 180 K, and the experimental spectra can be better explained with inclusions of the two isomers. The molecular orbitals for six representative cationic water clusters are also studied. Through topological and reduced density gradient analysis, we investigated the structural characteristics and the bonding strengths of these water cluster radical cations.

  1. All-d-Enantiomer of β-Amyloid Peptide Forms Ion Channels in Lipid Bilayers

    PubMed Central

    2012-01-01

    Alzheimer’s disease (AD) is the most common type of senile dementia in aging populations. Amyloid β (Aβ)-mediated dysregulation of ionic homeostasis is the prevailing underlying mechanism leading to synaptic degeneration and neuronal death. Aβ-dependent ionic dysregulation most likely occurs either directly via unregulated ionic transport through the membrane or indirectly via Aβ binding to cell membrane receptors and subsequent opening of existing ion channels or transporters. Receptor binding is expected to involve a high degree of stereospecificity. Here, we investigated whether an Aβ peptide enantiomer, whose entire sequence consists of d-amino acids, can form ion-conducting channels; these channels can directly mediate Aβ effects even in the absence of receptor–peptide interactions. Using complementary approaches of planar lipid bilayer (PLB) electrophysiological recordings and molecular dynamics (MD) simulations, we show that the d-Aβ isomer exhibits ion conductance behavior in the bilayer indistinguishable from that described earlier for the l-Aβ isomer. The d isomer forms channel-like pores with heterogeneous ionic conductance similar to the l-Aβ isomer channels, and the d-isomer channel conductance is blocked by Zn2+, a known blocker of l-Aβ isomer channels. MD simulations further verify formation of β-barrel-like Aβ channels with d- and l-isomers, illustrating that both d- and l-Aβ barrels can conduct cations. The calculated values of the single-channel conductance are approximately in the range of the experimental values. These findings are in agreement with amyloids forming Ca2+ leaking, unregulated channels in AD, and suggest that Aβ toxicity is mediated through a receptor-independent, nonstereoselective mechanism. PMID:22423218

  2. Investigating the Distribution of Stable Paramagnetic Species in an Apple Seed Using X-Band EPR and EPR Imaging.

    PubMed

    Nakagawa, Kouichi; Epel, Boris

    2017-03-01

    This study investigated the location and distribution of paramagnetic species in apple seeds using electron paramagnetic resonance (EPR) and X-band (9 GHz) EPR imaging (EPRI). EPR primarily detected two paramagnetic species per measured seed. These two different radical species were assigned as stable radicals and Mn 2+ species based on the g values and hyperfine components. The signal from the stable radical was noted at g ≈ 2.00 and was strong and relatively stable. The subsequent noninvasive EPRI of the radical present in each seed revealed that the stable radicals were located primarily in the seed coat, with very few radicals observed in the cotyledon of the seed. These results indicate that the stable radical species were only found within the seed coat, and few radical species were found in other seed parts.

  3. Buckling of paramagnetic chains in soft gels

    NASA Astrophysics Data System (ADS)

    Huang, Shilin; Pessot, Giorgio; Cremer, Peet; Weeber, Rudolf; Holm, Christian; Nowak, Johannes; Odenbach, Stefan; Menzel, Andreas M.; Auernhammer, Günter K.

    We study the magneto-elastic coupling behavior of paramagnetic chains in soft polymer gels exposed to external magnetic fields. To this end, a laser scanning confocal microscope is used to observe the morphology of the paramagnetic chains together with the deformation field of the surrounding gel network. The paramagnetic chains in soft polymer gels show rich morphological shape changes under oblique magnetic fields, in particular a pronounced buckling deformation. The details of the resulting morphological shapes depend on the length of the chain, the strength of the external magnetic field, and the modulus of the gel. Based on the observation that the magnetic chains are strongly coupled to the surrounding polymer network, a simplified model is developed to describe their buckling behavior. A coarse-grained molecular dynamics simulation model featuring an increased matrix stiffness on the surfaces of the particles leads to morphologies in agreement with the experimentally observed buckling effects.

  4. Paramagnetic resonance and susceptibility of ilmenite, FeTiO3 crystal

    NASA Technical Reports Server (NTRS)

    Mcdonald, P. F.; Parasiris, A.; Pandey, R. K.; Gries, B. L.; Kirk, W. P.

    1991-01-01

    Large high-purity single crystals of FeTiO3 with ilmenite structure have been grown from a stoichiometric melt of Fe2O3 and TiO2 under an inert atmosphere using the modified Czochralski technique. Susceptibility and X-band paramagnetic resonance studies have been performed. Susceptibility measurements indicate a Neel temperature of about 59 K. The paramagnetic resonance spectrum for magnetic field perpendicular to the crystal c axis consists of a portion of a single, very intense approximately Lorentzian absorption line with its peak at about 600 G and half width at half maximum almost 1200 G. The absorption extends to zero magnetic field. For magnetic field approximately parallel to the c axis, the paramagnetic absorption is much smaller and may be considered a superposition of two approximately Lorentzian line shapes. The magnetic resonance measurements indicate a weak temperature dependence and large angular anisotropy.

  5. [Detection of the lethal process in plankton noctiluca by means of a forbidden transition of ESR of Mn2+ ion].

    PubMed

    Kamenev, S E; Kopvillem, U Kh; Pasynkov, A S; Sharipov, R Z

    1981-01-01

    A forbidden ESR line of Mn2+ that is connected with the penetration of Mn into the plancton organism and binding it to a marcomolecule is selected from the experiment. A method for saturating the plancton organism with paramagnetic ions is proposed. It is shown that the constant of the axial electric field in the spin hamiltonian of Mn2+ ion described the dynamics of a selforganizing system. It is tested that the lethal process in the plancton with paramagnetic ion enrichment originated from boson avalanche. Experiments are performed with plancton noctiluca which illustrate the occurrence of avalancheline lethal process in the case of paramagnetic ion enrichment with limiting concentration. The meaning of these results for the problems of oceanology and pollution-ocean inhabitants interaction in the case of paramagnetic ions is discussed.

  6. Influence of paravertebral muscles training on brain plasticity and postural control in chronic low back pain.

    PubMed

    Massé-Alarie, Hugo; Beaulieu, Louis-David; Preuss, Richard; Schneider, Cyril

    2016-07-01

    Isometric activation (ISOM) of deep multifidi muscles (MF) can influence postural adjustments and primary motor cortex (M1) function in chronic low back pain (CLBP). In order to better understand how ISOM impacts on CLBP condition, the present study contrasted ISOM after-effects on M1 function, MF postural activation and pain with another training, the global activation of paravertebral muscles (GLOB, hip extension). The main objective of this study was to compare the effects of ISOM and GLOB (3-week training each) on MF postural activation and M1 function in a CLBP population. Twenty-four people with CLBP were randomly allocated to ISOM and GLOB groups for a 3-week daily practice. Pre/post-training after-effects were assessed by the onset of superficial MF (MF-S) activation during ballistic limb movements (bilateral shoulder flexion in standing; unilateral hip extension in prine lying), MF-S corticomotor control tested by transcranial magnetic stimulation of M1, and assessment of pain, kinesiophobia and disability by standardized questionnaires. Both ISOM and GLOB improved pain and disability. However, only ISOM influenced M1 function (decreased corticospinal excitability and increased intracortical inhibition), fastened MF-S postural activation and decreased kinesiophobia. Changes of corticospinal excitability and of MF-S postural adjustments suggest that ISOM better influenced brain plasticity. Future studies should further test whether our novel findings relate to an influence of the exercises on the lumbopelvic control of different muscles and on cognitive function. Clinically, individual's evaluation remains warranted before prescribing one or the other of these two conventional exercises for reducing pain. This original study presents how motor control exercises can influence brain plasticity and postural control in chronic low back pain. This knowledge will impact on the decision of clinicians to prescribe specific exercises with a view of improving motor control in this musculoskeletal condition. Copyright © 2016 Scandinavian Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  7. Feeding of Rh and Ag isomers in fast-neutron-induced reactions

    DOE PAGES

    Fotiades, Nikolaos; Devlin, Matthew James; Nelson, Ronald Owen; ...

    2016-10-17

    In (n,n') reactions on stable Ir and Au isotopes in the mass A=190 region, the experimentally established feeding of the isomers relative to the feeding of the corresponding ground states increases with increasing neutron energy, up to the neutron energy where the (n,2n) reaction channel opens up, and then decreases. In order to check for similar behavior in the mass A=100 region, the feeding of isomers and ground states in fast-neutron-induced reactions on stable isotopes in this mass region was studied. This is of especial interest for Rh which can be used as a radiochemical detector. Here, excited states weremore » studied using the (n,n'γ), (n,2nγ), and (n,3nγ) reactions on 103Rh and 109Ag. A germanium detector array for γ-ray detection and the broad-spectrum pulsed neutron source of the Los Alamos Neutron Science Center's Weapons Neutron Research facility were used for the measurement. The energy of the incident neutrons was determined using the time-of-flight technique. Absolute partial γ-ray cross sections were measured for 57 transitions feeding isomers and ground states in 101,102,103Rh and 107,108,109Ag. The feeding of the isomers was found to be very similar in the corresponding reaction channels and it is compared to the feeding determined for the ground states. In conclusion, the opening of reaction channels at higher neutron energies removes angular momentum from the residual nucleus and reduces the population of the higher-spin isomers relative to the feeding of the lower-spin ground states. Similar behavior was observed in the mass A=190 region in the feeding of higher-spin isomers, but the reverse behavior was observed in 176Lu with a lower-spin isomer and a higher-spin ground state.« less

  8. Feeding of Rh and Ag isomers in fast-neutron-induced reactions

    NASA Astrophysics Data System (ADS)

    Fotiades, N.; Devlin, M.; Nelson, R. O.; Kawano, T.; Carroll, J. J.

    2016-10-01

    Background: In (n ,n' ) reactions on stable Ir and Au isotopes in the mass A =190 region, the experimentally established feeding of the isomers relative to the feeding of the corresponding ground states increases with increasing neutron energy, up to the neutron energy where the (n ,2 n ) reaction channel opens up, and then decreases. Purpose: In order to check for similar behavior in the mass A =100 region, the feeding of isomers and ground states in fast-neutron-induced reactions on stable isotopes in this mass region was studied. This is of especial interest for Rh which can be used as a radiochemical detector. Methods: Excited states were studied using the (n ,n'γ ), (n ,2 n γ ), and (n ,3 n γ ) reactions on 103Rh and 109Ag. A germanium detector array for γ -ray detection and the broad-spectrum pulsed neutron source of the Los Alamos Neutron Science Center's Weapons Neutron Research facility were used for the measurement. The energy of the incident neutrons was determined using the time-of-flight technique. Results: Absolute partial γ -ray cross sections were measured for 57 transitions feeding isomers and ground states in 101,102,103Rh and 107,108,109Ag. The feeding of the isomers was found to be very similar in the corresponding reaction channels and it is compared to the feeding determined for the ground states. Conclusions: The opening of reaction channels at higher neutron energies removes angular momentum from the residual nucleus and reduces the population of the higher-spin isomers relative to the feeding of the lower-spin ground states. Similar behavior was observed in the mass A =190 region in the feeding of higher-spin isomers, but the reverse behavior was observed in 176Lu with a lower-spin isomer and a higher-spin ground state.

  9. Feeding of Rh and Ag isomers in fast-neutron-induced reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fotiades, Nikolaos; Devlin, Matthew James; Nelson, Ronald Owen

    In (n,n') reactions on stable Ir and Au isotopes in the mass A=190 region, the experimentally established feeding of the isomers relative to the feeding of the corresponding ground states increases with increasing neutron energy, up to the neutron energy where the (n,2n) reaction channel opens up, and then decreases. In order to check for similar behavior in the mass A=100 region, the feeding of isomers and ground states in fast-neutron-induced reactions on stable isotopes in this mass region was studied. This is of especial interest for Rh which can be used as a radiochemical detector. Here, excited states weremore » studied using the (n,n'γ), (n,2nγ), and (n,3nγ) reactions on 103Rh and 109Ag. A germanium detector array for γ-ray detection and the broad-spectrum pulsed neutron source of the Los Alamos Neutron Science Center's Weapons Neutron Research facility were used for the measurement. The energy of the incident neutrons was determined using the time-of-flight technique. Absolute partial γ-ray cross sections were measured for 57 transitions feeding isomers and ground states in 101,102,103Rh and 107,108,109Ag. The feeding of the isomers was found to be very similar in the corresponding reaction channels and it is compared to the feeding determined for the ground states. In conclusion, the opening of reaction channels at higher neutron energies removes angular momentum from the residual nucleus and reduces the population of the higher-spin isomers relative to the feeding of the lower-spin ground states. Similar behavior was observed in the mass A=190 region in the feeding of higher-spin isomers, but the reverse behavior was observed in 176Lu with a lower-spin isomer and a higher-spin ground state.« less

  10. Accurate ab initio Quartic Force Fields of Cyclic and Bent HC2N Isomers

    NASA Technical Reports Server (NTRS)

    Inostroza, Natalia; Huang, Xinchuan; Lee, Timothy J.

    2012-01-01

    Highly correlated ab initio quartic force field (QFFs) are used to calculate the equilibrium structures and predict the spectroscopic parameters of three HC2N isomers. Specifically, the ground state quasilinear triplet and the lowest cyclic and bent singlet isomers are included in the present study. Extensive treatment of correlation effects were included using the singles and doubles coupled-cluster method that includes a perturbational estimate of the effects of connected triple excitations, denoted CCSD(T). Dunning s correlation-consistent basis sets cc-pVXZ, X=3,4,5, were used, and a three-point formula for extrapolation to the one-particle basis set limit was used. Core-correlation and scalar relativistic corrections were also included to yield highly accurate QFFs. The QFFs were used together with second-order perturbation theory (with proper treatment of Fermi resonances) and variational methods to solve the nuclear Schr dinger equation. The quasilinear nature of the triplet isomer is problematic, and it is concluded that a QFF is not adequate to describe properly all of the fundamental vibrational frequencies and spectroscopic constants (though some constants not dependent on the bending motion are well reproduced by perturbation theory). On the other hand, this procedure (a QFF together with either perturbation theory or variational methods) leads to highly accurate fundamental vibrational frequencies and spectroscopic constants for the cyclic and bent singlet isomers of HC2N. All three isomers possess significant dipole moments, 3.05D, 3.06D, and 1.71D, for the quasilinear triplet, the cyclic singlet, and the bent singlet isomers, respectively. It is concluded that the spectroscopic constants determined for the cyclic and bent singlet isomers are the most accurate available, and it is hoped that these will be useful in the interpretation of high-resolution astronomical observations or laboratory experiments.

  11. Critical Assessment of Photoionization Efficiency Measurements for Characterization of Soot-Precursor Species

    DOE PAGES

    Johansson, K. Olof; Z?dor, Judit; Elvati, Paolo; ...

    2017-05-18

    We present a critical evaluation of photoionization efficiency (PIE) measurements coupled with aerosol mass spectrometry for the identification of condensed soot-precursor species extracted from a premixed atmospheric-pressure ethylene/oxygen/nitrogen flame. Definitive identification of isomers by any means is complicated by the large number of potential isomers at masses likely to comprise particles at flame temperatures. This problem is compounded using PIE measurements by the similarity in ionization energies and PIE-curve shapes among many of these isomers. Nevertheless, PIE analysis can provide important chemical information. For example, our PIE curves show that neither pyrene nor fluoranthene alone can describe the signal frommore » C 16H 10 isomers and that coronene alone cannot describe the PIE signal from C 24H 12 species. A linear combination of the reference PIE curves for pyrene and fluoranthene yields good agreement with flame-PIE curves measured at 202 u, which is consistent with pyrene and fluoranthene being the two major C 16H 10 isomers in the flame samples, but does not provide definite proof. The suggested ratio between fluoranthene and pyrene depends on the sampling conditions. We calculated the values of the adiabatic-ionization energy (AIE) of 24 C 16H 10 isomers. Despite the small number of isomers considered, the calculations show that the differences in AIEs between several of the isomers can be smaller than the average thermal energy at room temperature. The calculations also show that PIE analysis can sometimes be used to separate hydrocarbon species into those that contain mainly aromatic rings and those that contain significant aliphatic content for species sizes investigated in this study. Our calculations suggest an inverse relationship between AIE and the number of aromatic rings. We have demonstrated that further characterization of precursors can be facilitated by measurements that test species volatility.« less

  12. Experimental and density functional theoretical investigations of linkage isomerism in six-coordinate FeNO(6) iron porphyrins with axial nitrosyl and nitro ligands.

    PubMed

    Novozhilova, Irina V; Coppens, Philip; Lee, Jonghyuk; Richter-Addo, George B; Bagley, Kimberly A

    2006-02-15

    A critical component of the biological activity of NO and nitrite involves their coordination to the iron center in heme proteins. Irradiation (330 < lambda < 500 nm) of the nitrosyl-nitro compound (TPP)Fe(NO)(NO(2)) (TPP = tetraphenylporphyrinato dianion) at 11 K results in changes in the IR spectrum associated with both nitro-to-nitrito and nitrosyl-to-isonitrosyl linkage isomerism. Only the nitro-to-nitrito linkage isomer is obtained at 200 K, indicating that the isonitrosyl linkage isomer is less stable than the nitrito linkage isomer. DFT calculations reveal two ground-state conformations of (porphine)Fe(NO)(NO(2)) that differ in the relative axial ligand orientations (i.e., GS parallel and GS perpendicular). In both conformations, the FeNO group is bent (156.4 degrees for GS parallel, 159.8 degrees for GS perpendicular) for this formally {FeNO}(6) compound. Three conformations of the nitrosyl-nitrito isomer (porphine)Fe(NO)(ONO) (MSa parallel, MSa perpendicular, and MSa(L)) and two conformations of the isonitrosyl-nitro isomer (porphine)Fe(ON)(NO(2)) (MSb parallel and MSb perpendicular) are identified, as are three conformations of the double-linkage isomer (porphine)Fe(ON)(ONO) (MSc parallel, MSc perpendicular, MSc(L)). Only 2 of the 10 optimized geometries contain near-linear FeNO (MSa(L)) and FeON (MSc(L)) bonds. The energies of the ground-state and isomeric structures increase in the order GS < MSa < MSb < MSc. Vibrational frequencies for all of the linkage isomers have been calculated, and the theoretical gas-phase absorption spectrum of (porphine)Fe(NO)(NO(2)) has been analyzed to obtain information on the electronic transitions responsible for the linkage isomerization. Comparison of the experimental and theoretical IR spectra does not provide evidence for the existence of a double linkage isomer of (TPP)Fe(NO)(NO(2)).

  13. Effects of side-chain orientation on the backbone conformation of the dehydrophenylalanine residue. Theoretical and X-ray study.

    PubMed

    Buczek, Aneta; Siodłak, Dawid; Bujak, Maciej; Broda, Małgorzata A

    2011-04-21

    Two E isomers of α,β-dehydro-phenylalanine, Ac-(E)-ΔPhe-NHMe (1a) and Ac-(E)-ΔPhe-NMe(2) (2a), have been synthesized and their low temperature structures determined by single-crystal X-ray diffraction. A systematic theoretical analysis was performed on these molecules and their Z isomers (1b and 2b). The ϕ,ψ potential energy surfaces were calculated at the MP2/6-31+G(d,p) and B3LYP/6-31+G(d,p) levels in the gas phase and at the B3LYP/6-31+G(d,p) level in the chloroform and water solutions with the SCRF-PCM method. All minima were fully optimized by the MP2 and DFT methods, and their relative stabilities were analyzed in terms of π-conjugation, internal H-bonds, and dipole-dipole interactions between carbonyl groups. The results indicate that all the studied compounds can adopt the conformation H (ϕ, ψ ≈ ±40°, ∓120°) which is atypical for standard amino acids residues. A different arrangement of the side chain in the E and Z isomers causes them to have different conformational preferences. In the presence of a polar solvent both Z isomers of ΔPhe (1b and 2b) are found to adopt the 3(10)-helical conformation (left- and right-handed are equally likely). On the other hand, this conformation is not accessible or highly energetic for E isomers of ΔPhe (1a and 2a). Those isomers have an intrinsic inclination to have an extended conformation. The conformational space of the Z isomers is much more restricted than that of the E derivative both in the gas phase and in solution. In the gas phase the E isomers of ΔPhe have lower energies than the Z ones, but in the aqueous solution the energy order is reversed.

  14. Critical Assessment of Photoionization Efficiency Measurements for Characterization of Soot-Precursor Species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johansson, K. Olof; Z?dor, Judit; Elvati, Paolo

    We present a critical evaluation of photoionization efficiency (PIE) measurements coupled with aerosol mass spectrometry for the identification of condensed soot-precursor species extracted from a premixed atmospheric-pressure ethylene/oxygen/nitrogen flame. Definitive identification of isomers by any means is complicated by the large number of potential isomers at masses likely to comprise particles at flame temperatures. This problem is compounded using PIE measurements by the similarity in ionization energies and PIE-curve shapes among many of these isomers. Nevertheless, PIE analysis can provide important chemical information. For example, our PIE curves show that neither pyrene nor fluoranthene alone can describe the signal frommore » C 16H 10 isomers and that coronene alone cannot describe the PIE signal from C 24H 12 species. A linear combination of the reference PIE curves for pyrene and fluoranthene yields good agreement with flame-PIE curves measured at 202 u, which is consistent with pyrene and fluoranthene being the two major C 16H 10 isomers in the flame samples, but does not provide definite proof. The suggested ratio between fluoranthene and pyrene depends on the sampling conditions. We calculated the values of the adiabatic-ionization energy (AIE) of 24 C 16H 10 isomers. Despite the small number of isomers considered, the calculations show that the differences in AIEs between several of the isomers can be smaller than the average thermal energy at room temperature. The calculations also show that PIE analysis can sometimes be used to separate hydrocarbon species into those that contain mainly aromatic rings and those that contain significant aliphatic content for species sizes investigated in this study. Our calculations suggest an inverse relationship between AIE and the number of aromatic rings. We have demonstrated that further characterization of precursors can be facilitated by measurements that test species volatility.« less

  15. Fac and mer isomers of Ru(II) tris(pyrazolyl-pyridine) complexes as models for the vertices of coordination cages: structural characterisation and hydrogen-bonding characteristics.

    PubMed

    Metherell, Alexander J; Cullen, William; Stephenson, Andrew; Hunter, Christopher A; Ward, Michael D

    2014-01-07

    We have prepared a series of mononuclear fac and mer isomers of Ru(II) complexes containing chelating pyrazolyl-pyridine ligands, to examine their differing ability to act as hydrogen-bond donors in MeCN. This was prompted by our earlier observation that octanuclear cube-like coordination cages that contain these types of metal vertex can bind guests such as isoquinoline-N-oxide (K = 2100 M(-1) in MeCN), with a significant contribution to binding being a hydrogen-bonding interaction between the electron-rich atom of the guest and a hydrogen-bond donor site on the internal surface of the cage formed by a convergent set of CH2 protons close to a 2+ metal centre. Starting with [Ru(L(H))3](2+) [L(H) = 3-(2-pyridyl)-1H-pyrazole] the geometric isomers were separated by virtue of the fact that the fac isomer forms a Cu(I) adduct which the mer isomer does not. Alkylation of the pyrazolyl NH group with methyl iodide or benzyl bromide afforded [Ru(L(Me))3](2+) and [Ru(L(bz))3](2+) respectively, each as their fac and mer isomers; all were structurally characterised. In the fac isomers the convergent group of pendant -CH2R or -CH3 protons defines a hydrogen-bond donor pocket; in the mer isomer these protons do not converge and any hydrogen-bonding involving these protons is expected to be weaker. For both [Ru(L(Me))3](2+) and [Ru(L(bz))3](2+), NMR titrations with isoquinoline-N-oxide in MeCN revealed weak 1 : 1 binding (K ≈ 1 M(-1)) between the guest and the fac isomer of the complex that was absent with the mer isomer, confirming a difference in the hydrogen-bond donor capabilities of these complexes associated with their differing geometries. The weak binding compared to the cage however occurs because of competition from the anions, which are free to form ion-pairs with the mononuclear complex cations in a way that does not happen in the cage complexes. We conclude that (i) the presence of fac tris-chelate sites in the cage to act as hydrogen-bond donors, and (ii) exclusion of counter-ions from the central cavity leaving these hydrogen-bonding sites free to interact with guests, are both important design criteria for future coordination cage hosts.

  16. Framework Stability of Nanocrystalline NaY in Aqueous Solution at Varying pH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petushkov, Anton; Freeman, Jasmine; Larsen, Sarah C.

    Nanocrystalline zeolites (with crystal sizes of less than 50 nm) are versatile, porous nanomaterials with potential applications in a broad range of areas including bifunctional catalysis, drug delivery, environmental protection, and sensing, to name a few. The characterization of the properties of nanocrystalline zeolites on a fundamental level is critical to the realization of these innovative applications. Nanocrystalline zeolites have unique surface chemistry that is distinct from conventional microcrystalline zeolite materials and that will result in novel applications. In the proposed work, magnetic resonance techniques (solid state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR)) will be used tomore » elucidate the structure and reactivity of nanocrystalline zeolites and to motivate bifunctional applications. Density functional theory (DFT) calculations will enhance data interpretation through chemical shift, quadrupole coupling constant, g-value and hyperfine calculations.« less

  17. Effect of the lattice dynamics on the electronic structure of paramagnetic NiO within the disordered local moment picture

    NASA Astrophysics Data System (ADS)

    Mozafari, Elham; Alling, Björn; Belov, Maxim P.; Abrikosov, Igor A.

    2018-01-01

    Using the disordered local moments approach in combination with the ab initio molecular dynamics method, we simulate the behavior of a paramagnetic phase of NiO at finite temperatures to investigate the effect of magnetic disorder, thermal expansion, and lattice vibrations on its electronic structure. In addition, we study its lattice dynamics. We verify the reliability of our theoretical scheme via comparison of our results with available experiment and earlier theoretical studies carried out within static approximations. We present the phonon dispersion relations for the paramagnetic rock-salt (B1) phase of NiO and demonstrate that it is dynamically stable. We observe that including the magnetic disorder to simulate the paramagnetic phase has a small yet visible effect on the band gap. The amplitude of the local magnetic moment of Ni ions from our calculations for both antiferromagnetic and paramagnetic phases agree well with other theoretical and experimental values. We demonstrate that the increase of temperature up to 1000 K does not affect the electronic structure strongly. Taking into account the lattice vibrations and thermal expansion at higher temperatures have a major impact on the electronic structure, reducing the band gap from ˜3.5 eV at 600 K to ˜2.5 eV at 2000 K. We conclude that static lattice approximations can be safely employed in simulations of the paramagnetic state of NiO up to relatively high temperatures (˜1000 K), but as we get closer to the melting temperature vibrational effects become quite large and therefore should be included in the calculations.

  18. Interaction of model aryl- and alkyl-boronic acids and 1,2-diols in aqueous solution.

    PubMed

    Marinaro, William A; Prankerd, Richard; Kinnari, Kaisa; Stella, Valentino J

    2015-04-01

    The goal of this work was to quantitate ester formation between alkyl and aryl boronic acids and vicinal-diols or 1,2-diols in aqueous solution. As used here, 1,2-diols includes polyols with one or more 1,2-diol pairs. Multiple techniques were used including apparent pKa shifts of the boronic acids using UV spectrophotometry (for aryl acids) and titration (for aryl and alkyl acids). Isothermal microcalorimetry was also used, with all reactions being enthalpically favored. For all the acids and 1,2-diols and the conditions studied, evidence only supported 1:1 ester formation. All the esters formed were found to be significantly more acidic, as Lewis acids, by 3-3.5 pKa units than the corresponding nonesterified boronic acid. The equilibrium constants for ester formation increased with increasing number of 1,2-diol pairs but stereochemistry may also play a role as sorbitol with five possible 1,2-diol pairs and five isomers (taking into account the stereochemistry of the alcohol groups) was twice as efficient at ester formation compared with mannitol, also with five possible 1,2-diol pairs but only three isomers. Alkyl boronic acids formed esters to a greater extent than aryl acids. Although some quantitative differences were seen between the various techniques used, rank ordering of the structure/reactivity was consistent. Formulation implications of ester formation between boronic acids and 1,2-diols are discussed. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  19. Human Milk Glycomics and Gut Microbial Genomics in Infant Feces Show a Correlation between Human Milk Oligosaccharides and Gut Microbiota: A Proof-of-Concept Study

    PubMed Central

    2015-01-01

    Human milk oligosaccharides (HMOs) play a key role in shaping and maintaining a healthy infant gut microbiota. This article demonstrates the potential of combining recent advances in glycomics and genomics to correlate abundances of fecal microbes and fecal HMOs. Serial fecal specimens from two healthy breast-fed infants were analyzed by bacterial DNA sequencing to characterize the microbiota and by mass spectrometry to determine abundances of specific HMOs that passed through the intestinal tract without being consumed by the luminal bacteria. In both infants, the fecal bacterial population shifted from non-HMO-consuming microbes to HMO-consuming bacteria during the first few weeks of life. An initial rise in fecal HMOs corresponded with bacterial populations composed primarily of non-HMO-consuming Enterobacteriaceae and Staphylococcaeae. This was followed by decreases in fecal HMOs as the proportion of HMO-consuming Bacteroidaceae and Bifidobacteriaceae increased. Analysis of HMO structures with isomer differentiation revealed that HMO consumption is highly structure-specific, with unique isomers being consumed and others passing through the gut unaltered. These results represent a proof-of-concept and are consistent with the highly selective, prebiotic effect of HMOs in shaping the gut microbiota in the first weeks of life. The analysis of selective fecal bacterial substrates as a measure of alterations in the gut microbiota may be a potential marker of dysbiosis. PMID:25300177

  20. Gene cloning, protein characterization, and alteration of product selectivity for the trehalulose hydrolase and trehalulose synthase from "Pseudomonas mesoacidophila" MX-45.

    PubMed

    Watzlawick, Hildegard; Mattes, Ralf

    2009-11-01

    The naturally occurring structural isomer of sucrose, trehalulose, is produced by sucrose isomerase (SI). Screening of chromosomal DNA from "Pseudomonas mesoacidophila" MX-45 with an SI-specific probe facilitated the cloning of two adjacent gene homologs, mutA and mutB. Both genes were expressed separately in Escherichia coli, and their enzyme products were characterized. MutA hydrolyzed the substrates trehalulose, isomaltulose, and sucrose into glucose and fructose. Due to its highest activity on trehalulose, MutA was referred to as trehalulase. mutB encodes the SI (trehalulose synthase) and catalyzes the isomerization of sucrose to mainly trehalulose. From Northern blot analysis it is apparent that the mutB gene is not transcribed as part of an operon and was transcriptionally upregulated when P. mesoacidophila MX-45 cells were grown in sucrose medium, whereas under investigated conditions no transcript for mutA was detected. Mutants of mutB were created by a random mutagenesis approach in order to alter the product specificity of MutB. Two types of mutants have emerged, one type that prefers the hydrolytic reaction on sucrose and another type that still acts as an SI but with a significant shift in the product from trehalulose to isomaltulose. The hydrolytic character of MutB R311C was demonstrated through its higher catalytic efficiency for glucose production over trehalulose production. MutB D442N favored the transfer reaction, with an isomer preference for isomaltulose.

Top