Science.gov

Sample records for isoscalar giant dipole

  1. Direct neutron decay of the isoscalar giant dipole resonance

    SciTech Connect

    Hunyadi, M. Berg, A. M. van den; Davids, B.; Harakeh, M. N.; Huu, M. A. de; Woertche, H. J.; Csatlos, M.; Gulyas, J.; Krasznahorkay, A.; Sohler, D.; Garg, U.; Fujiwara, M.; Blasi, N.

    2007-08-15

    The direct and statistical neutron decay of the isoscalar giant dipole resonance has been studied in {sup 90}Zr, {sup 116}Sn, and {sup 208}Pb using the ({alpha}, {alpha}' n) reaction at a bombarding energy of 200 MeV. The spectra of fast decay neutrons populating valence hole states of the Z, N - 1 nuclei were analyzed, and estimates for the branching ratios were determined. The observation of the nucleon-direct-decay channels helped to select giant-resonance strengths and suppress the underlying background and continuum, which led to an indication of the existence of a new mode with L 2 character, presumably the overtone of the isoscalar giant quadrupole resonance.

  2. Investigation of the isoscalar giant dipole resonance in Pb-208

    NASA Astrophysics Data System (ADS)

    Davis, Benny Fay

    1997-11-01

    An investigation of the Isoscalar Giant Dipole Resonance in 208Pb is described in the present dissertation. The 208Pb(/alpha,/alpha/sp/prime) reaction was employed using a high resolution spectrometer (K600) and a 200 MeV α beam at the Indiana University Cyclotron Facility in Bloomington, Indiana. The K600 spectrometer yielded measurements of particle identification (ΔE vs. E), energy/momentum, timing with the cyclotron frequency and slope of the particle track. This latter characteristic permitted us to perform ray-tracing back through the spectrometer to the Lead target and hence, learn the scattering angle associated with each event. The 2o acceptance of the spectrometer and software cuts allowed us to measure angular distributions around 0o. Based on the present study, we have identified a previously known but unresolved Isoscalar Giant Dipole Resonance (ISGDR). This ISGDR remained unresolved for years due to the fact that a competing resonance, namely the High Energy Octupole Resonance (HEOR), sat at roughly the same energy in all of the finite angle spectra taken previously. Our method solved the problem by utilizing the fact that the only differences in angular distributions of a dipole (L = 1) and an octupole (L = 3) resonance occur around a scattering angle of 0o. In the 0o to 2o angular range, the angular distribution of the HEOR is nearly flat. Therefore, the HEOR's contribution can be removed using a 'difference-of- spectra' technique where a 0o to 1o angular cut is subtracted from a 1o to 2o angular cut (normalized for solid angle differences) removing any effect in the spectra possessing a flat angular distribution, namely the HEOR and most of the experimental background. From these measurements, we have obtained the first conclusive evidence for the ISGDR and have extracted the value of KA, the incompressibility of nuclear matter.

  3. The Isoscalar Giant Dipole Resonance in {sup 20}Pb, {sup 90}Zr and the Nuclear Compressibility

    SciTech Connect

    Yildirim, Serbulent; Koeroglu, Ulas

    2008-11-11

    The isoscalar giant dipol resonance (ISGDR) in finite nuclei is studied within the framework of a relativistic transport approach. The excitation energies of spherical {sup 90}Zr and {sup 208}Pb nuclei are obtained for different quantum hydrodynamical Lagrangian parametrization. The sensitivity of ISGDR excitation energy on the nuclear bulk to surface properties are also investigated.

  4. Proton decay from the isoscalar giant dipole resonance in {sup 58}Ni

    SciTech Connect

    Hunyadi, M.; Hashimoto, H.; Fujimura, H.; Fujiwara, M.; Hara, K.; Itoh, M.; Nakanishi, K.; Okumura, S.; Li, T.; Garg, U.; Hoffman, J.; Nayak, B. K.; Akimune, H.; Gacsi, Z.; Harakeh, M. N.

    2009-10-15

    Proton decay from the 3({Dirac_h}/2{pi}){omega} isoscalar giant dipole resonance (ISGDR) in {sup 58}Ni has been measured using the ({alpha},{alpha}{sup '}p) reaction at a bombarding energy of 386 MeV to investigate its decay properties. We have extracted the ISGDR strength under the coincidence condition between inelastically scattered {alpha} particles at forward angles and decay protons emitted at backward angles. Branching ratios for proton decay to low-lying states of {sup 57}Co have been determined, and the results compared with predictions of recent continuum-RPA calculations. The final-state spectra of protons decaying to the low-lying states in {sup 57}Co were analyzed for a more detailed understanding of the structure of the ISGDR. It is found that there are differences in the structure of the ISGDR as a function of excitation energy.

  5. Charged-particle Decay of the Isoscalar giant dipole resonance in ^58Ni

    NASA Astrophysics Data System (ADS)

    Li, Tao; Hunyadi, Matyas; Garg, Umesh; Hoffman, Joe; Nayak, B. K.; Fujiwara, M.; Hara, K.; Hashimoto, H.; Itoh, M.; Murakami, T.; Nakanishi, K.; Kishi, S.; Sakaguchi, H.; Terashima, S.; Uchida, M.; Yasuda, Y.; Yosoi, M.; Akimune, H.; Harakeh, M. N.

    2004-10-01

    The isoscalar giant dipole resonance(ISGDR) has been measured by single experiments with the use of inelastic α-scattering in many nuclei[1]. However, information on its decay properties is scarce. The decay properties, especially the relative population and total strength of hole states in the (A-1) nucleus resulting from particle decay of giant resonance in nuclei can provide crucial tests for the microscopic model calculations. Caculations based on continuum-RPA approach have recently become abailable and provide results on partial branching ratios for direct neutron and proton decay of ISGDR [2]. We report on a coincidence experiment searching for these direct particle decay branches from the ISGDR in the nucleus ^58Ni. The experiment was performed at the RCNP, Osaka University, using inelastic α-scattering at a beam energy of 400 MeV. The inelastically scattered α particles were detected by the magnetic spectrometer ``Grand Raiden'' at 2.5^rc, with the decay protons detected by a set of sixteen Si(Li) detectors with a thickness of 5.0 mm and an effective area of 400 mm^2 each placed at backward angles. The result for the observed final states in ^57Co will be presented and compared with the theoretical calculations. References: [1] M.Uchida et al., Phys.Rev. C 69, 051301 (2004), [2] M.L. Gorelik et al., Phys. Rev. C 69, 054322 (2004)

  6. Isoscalar giant dipole resonance in {sup 90}Zr, {sup 116}Sn, and {sup 208}Pb

    SciTech Connect

    Clark, H. L.; Lui, Y.-W.; Youngblood, D. H.

    2001-03-01

    Strength functions for isoscalar dipole excitations in {sup 90}Zr, {sup 116}Sn, and {sup 208}Pb have been measured with inelastic scattering of 240 MeV {alpha} particles at small angles. The isoscalar E1 strength distribution in each nucleus is found to consist of a broad component at E{sub x}{approx}114/A{sup 1/3}MeV containing approximately 100% of the E1 EWSR and a narrower one at E{sub x}{approx}72/A{sup 1/3}MeV containing 15--28% of the total isoscalar E1 strength. The higher component is the compression mode E1 strength previously reported only in {sup 208}Pb, whereas the lower component may be a new mode not reported previously, but suggested by recent RPA-HF and relativistic mean field calculations.

  7. Isoscalar monopole and dipole excitations of cluster states and giant resonances in 12C

    NASA Astrophysics Data System (ADS)

    Kanada-En'yo, Yoshiko

    2016-05-01

    The isoscalar monopole (ISM) and dipole (ISD) excitations in 12C are investigated theoretically with the shifted antisymmetrized molecular dynamics (AMD) plus 3 α -cluster generator coordinate method (GCM). The small-amplitude vibration modes are described by coherent one-particle one-hole excitations expressed by a small shift of single-nucleon Gaussian wave functions within the AMD framework, whereas the large-amplitude cluster modes are incorporated by superposing 3 α -cluster wave functions in the GCM. The coupling of the excitations in the intrinsic frame with the rotation and parity transformation is taken into account microscopically by the angular-momentum and parity projections. The present a calculation that describes the ISM and ISD excitations over a wide energy region covering cluster modes in the low-energy region and the giant resonances in the high-energy region, although the quantitative description of the high-energy part is not satisfactory. The low-energy ISM and ISD strengths of the cluster modes are enhanced by the distance motion between α clusters, and they split into a couple of states because of the angular motion of α clusters. The low-energy ISM strengths exhaust 26% of the energy-weighted sum rule, which is consistent with the experimental data for the 12C(02+; 7.65 MeV) and 12C(03+; 10.3 MeV) measured by (e ,e') ,(α ,α') , and (6Li,6Li' ) scatterings. In the calculated low-energy ISD strengths, two 1- states (the 11- and 12- states) with the significant strengths are obtained over E =10 -15 MeV. The results indicate that the ISD excitations can be a good probe to experimentally search for new cluster states such as the 12C(12-) obtained in the present calculation.

  8. Isoscalar giant resonances in {sup 48}Ca

    SciTech Connect

    Lui, Y.-W.; Youngblood, D. H.; Shlomo, S.; Chen, X.; Tokimoto, Y.; Krishichayan,; Anders, M.; Button, J.

    2011-04-15

    The giant resonance region from 9.5 MeV < E{sub x} < 40 MeV in {sup 48}Ca has been studied with inelastic scattering of 240-MeV {alpha} particles at small angles, including 0 deg. 95{sub -15}{sup +11}% of E0 energy-weighted sum rule (EWSR), 83{sub -16}{sup +10}% of E2 EWSR, and 137 {+-} 20% of E1 EWSR were located below E{sub x}=40 MeV. A comparison of the experimental data with calculated results for the isoscalar giant monopole resonance, obtained within the mean-field-based random-phase approximation, is also given.

  9. Thermal effects on isoscalar giant resonance energies in hot nuclei

    SciTech Connect

    Wen, W.; Dai, G.; Jin, G.

    1995-07-01

    The thermal effects on the energies of the isoscalar giant multipole resonances of hot nuclei are discussed and an approximate formula for the energy as a function of temperature is derived via a hydrodynamic theory. The energy difference between the isoscalar giant multipole resonance of a hot nucleus and its ground-state resonance depends on the competition between the volume expansion and the increase of the average kinetic energy per nucleon of hot nuclei, which lower and raise the resonance energy, respectively, and nearly counteract each other in magnitude. The variaiton of the isoscalar giant resonance energy with temperature is very small.

  10. Observation of isoscalar and isovector dipole excitations in neutron-rich 20O

    NASA Astrophysics Data System (ADS)

    Nakatsuka, N.; Baba, H.; Aumann, T.; Avigo, R.; Banerjee, S. R.; Bracco, A.; Caesar, C.; Camera, F.; Ceruti, S.; Chen, S.; Derya, V.; Doornenbal, P.; Giaz, A.; Horvat, A.; Ieki, K.; Inakura, T.; Imai, N.; Kawabata, T.; Kobayashi, N.; Kondo, Y.; Koyama, S.; Kurata-Nishimura, M.; Masuoka, S.; Matsushita, M.; Michimasa, S.; Million, B.; Motobayashi, T.; Murakami, T.; Nakamura, T.; Ohnishi, T.; Ong, H. J.; Ota, S.; Otsu, H.; Ozaki, T.; Saito, A.; Sakurai, H.; Scheit, H.; Schindler, F.; Schrock, P.; Shiga, Y.; Shikata, M.; Shimoura, S.; Steppenbeck, D.; Sumikama, T.; Syndikus, I.; Takeda, H.; Takeuchi, S.; Tamii, A.; Taniuchi, R.; Togano, Y.; Tscheuschner, J.; Tsubota, J.; Wang, H.; Wieland, O.; Wimmer, K.; Yamaguchi, Y.; Yoneda, K.; Zenihiro, J.

    2017-05-01

    The isospin characters of low-energy dipole excitations in neutron-rich unstable nucleus 20O were investigated, for the first time in unstable nuclei. Two spectra obtained from a dominant isovector probe (20O + Au) and a dominant isoscalar probe (20O + α) were compared and analyzed by the distorted-wave Born approximation to extract independently the isovector and isoscalar dipole strengths. Two known 1- states with large isovector dipole strengths at energies of 5.36(5) MeV (11-) and 6.84(7) MeV (12-) were also excited by the isoscalar probe. These two states were found to have different isoscalar dipole strengths, 2.70(32)% (11-) and 0.67(12)% (12-), respectively, in exhaustion of the isoscalar dipole-energy-weighted sum rule. The difference in isoscalar strength indicated that they have different underlying structures.

  11. Isoscalar giant resonance strength in {sup 24}Mg

    SciTech Connect

    Youngblood, D. H.; Lui, Y.-W.; Chen, X. F.; Clark, H. L.

    2009-12-15

    The giant resonance region from 9 MeV Isoscalar E0, E1, E2, and E3 strength was identified from 9 MeV

  12. Isoscalar giant resonance strength in {sup 28}Si

    SciTech Connect

    Youngblood, D. H.; Lui, Y.-W.; Clark, H. L.

    2007-08-15

    Data taken previously covering the giant resonance region from 9 MeV giant resonance peaks containing 74 {+-} 7% of the isoscalar E0 energy weighted sum rule (EWSR), 102 {+-} 11% of the E2 EWSR, and 84 {+-} 8% of the E3 EWSR were identified.

  13. Isovector and isoscalar dipole excitations in 9Be and 10Be studied with antisymmetrized molecular dynamics

    NASA Astrophysics Data System (ADS)

    Kanada-En'yo, Yoshiko

    2016-02-01

    Isovector and isoscalar dipole excitations in 9Be and 10Be are investigated in the framework of antisymmetrized molecular dynamics, in which angular-momentum and parity projections are performed. In the present method, 1p-1h excitation modes built on the ground state and a large amplitude α -cluster mode are taken into account. The isovector giant dipole resonance (GDR) in E >20 MeV shows the two-peak structure, which is understood from the dipole excitation in the 2 α core part with the prolate deformation. Because of valence neutron modes against the 2 α core, low-energy E 1 resonances appear in E <20 MeV, exhausting about 20 % of the Thomas-Reiche-Kuhn sum rule and 10 % of the calculated energy-weighted sum. The dipole resonance at E ˜15 MeV in 10Be can be interpreted as the parity partner of the ground state having a 6He+α structure and has remarkable E 1 strength because of the coherent contribution of two valence neutrons. The isoscalar dipole strength for some low-energy resonances is significantly enhanced by the coupling with the α -cluster mode. For the E 1 strength of 9Be, the calculation overestimates the energy-weighted sum (EWS) in the low-energy (E <20 MeV) and GDR (20

  14. Study of Isoscalar Giant Resonances in Exotic Nuclei by Means of Inverse Reactions

    NASA Astrophysics Data System (ADS)

    Harakeh, M. N.

    2015-11-01

    Isoscalar giant resonances in exotic nuclei can be studied using inelastic alpha scattering in inverse kinematics. In particular, the compression modes, i.e. isoscalar giant monopole and dipole resonances, are very interesting because they can furnish information on the different terms of the nuclear incompressibility, especially if measured in long isotopic chains including nuclei far from the valley of stability. As beams of exotic nuclei have relatively low intensities thick targets have to be used in order to get a reasonable yield. However, this leads to degradation of the energy resolution and stops low-energy recoil particles. Two good alternatives exist. The first method is to use an active target, such as MAYA, which is a time-projection chamber and therefore can be used for detection of low-energy recoil particles. Furthermore, its thickness can be increased by increasing the length of the detection volume or the gas pressure without severe loss of energy resolution. The second method is to use a storage ring for storing the exotic nuclei, which then interact with target nuclei from a gas-jet target. Here, the luminosity and hence the yield are increased because the exotic nuclei circulate in the ring at a frequency of around 106 turns/s. Low-energy recoil particles traverse the gas-jet with little loss of energy and can be detected in solid-state detectors. Pioneering experiments with both methods have been performed for inelastic scattering of secondary 56Ni beam off helium nuclei. Here, preliminary results of the experiment with the active target MAYA will be presented.

  15. Asymmetric cluster structure and isoscalar monopole/dipole transitions of 28Si

    NASA Astrophysics Data System (ADS)

    Chiba, Y.; Taniguchi, Y.; Kimura, M.

    2017-06-01

    The asymmetric cluster states in 28Si are discussed on the basis of antisymmetrized molecular dynamics. It is found that the inversion doublet bands having the 24Mg+α, 20Ne+8Be and 16O+12C cluster configurations appear in the energy range of Ex = 10 ∼ 15 MeV. It is demonstrated that the 24Mg+α, 20Ne+8Be cluster states have pronounced isoscalar monopole (IS0) and dipole (IS1) transition strengths from the ground state. This result suggests that the IS0 and IS1 strength are good probe for these cluster states.

  16. Evidence of Soft Dipole Resonance in 11Li with Isoscalar Character

    SciTech Connect

    Kanungo, R.; Sanetullaev, A.; Jansen, Gustav R.; Tanaka, J.; Ishimoto, S.; Myo, T.; Suzuki, T.; Andreoiu, C.; Bender, P.; Chen, A. A.; Davids, B.; Fallis, J.; Fortin, J. P.; Galinski, N.; Gallant, A. T.; Garrett, P. E.; Hackman, G.; Hadinia, B.; Hagen, Gaute; Keefe, M.; Krucken, R.; Lighthall, J.; McNeice, E.; Miller, D.; Otsuka, T.; Purcell, J.; Randhawa, J. S.; Roger, T.; Rojas, A.; Savajols, H.; Shotter, A.; Tanihata, I.; Thompson, I. J.; Unsworth, C.; Voss, P.; Wang, Z.

    2015-05-12

    The first conclusive evidence of a dipole resonance in 11Li having isoscalar character observed from inelastic scattering with a novel solid deuteron target is reported. The experiment was performed at the newly commissioned IRIS facility at TRIUMF. The results show a resonance peak at an excitation energy of 1.03±0.03 MeV with a width of 0.51±0.11 MeV (FWHM). The angular distribution is consistent with a dipole excitation in the distorted-wave Born approximation framework. The observed resonance energy together with shell model calculations show the first signature that the monopole tensor interaction is important in 11Li. The first ab initio calculations in the coupled cluster framework are also included.

  17. Evidence of Soft Dipole Resonance in 11Li with Isoscalar Character

    DOE PAGES

    Kanungo, R.; Sanetullaev, A.; Jansen, Gustav R.; ...

    2015-05-12

    The first conclusive evidence of a dipole resonance in 11Li having isoscalar character observed from inelastic scattering with a novel solid deuteron target is reported. The experiment was performed at the newly commissioned IRIS facility at TRIUMF. The results show a resonance peak at an excitation energy of 1.03±0.03 MeV with a width of 0.51±0.11 MeV (FWHM). The angular distribution is consistent with a dipole excitation in the distorted-wave Born approximation framework. The observed resonance energy together with shell model calculations show the first signature that the monopole tensor interaction is important in 11Li. The first ab initio calculations inmore » the coupled cluster framework are also included.« less

  18. Giant Primeval Magnetic Dipoles

    NASA Astrophysics Data System (ADS)

    Thompson, Christopher

    2017-07-01

    Macroscopic magnetic dipoles are considered cosmic dark matter. Permanent magnetism in relativistic field structures can involve some form of superconductivity, one example being current-carrying string loops (“springs”) with vanishing net tension. We derive the cross-section for free classical dipoles to collide, finding it depends weakly on orientation when mutual precession is rapid. The collision rate of “spring” loops with tension { T }˜ {10}-8{c}4/G in galactic halos approaches the measured rate of fast radio bursts (FRBs) if the loops compose most of the dark matter. A large superconducting dipole (LSD) with mass ˜1020 g and size ˜1 mm will form a ˜100 km magnetosphere moving through interstellar plasma. Although hydromagnetic drag is generally weak, it is strong enough to capture some LSDs into long-lived rings orbiting supermassive black holes (SMBHs) that form by the direct collapse of massive gas clouds. Repeated collisions near young SMBHs could dominate the global collision rate, thereby broadening the dipole mass spectrum. Colliding LSDs produce tiny, hot electromagnetic explosions. The accompanying paper shows that these explosions couple effectively to propagating low-frequency electromagnetic modes, with output peaking at 0.01-1 THz. We describe several constraints on, and predictions of, LSDs as cosmic dark matter. The shock formed by an infalling LSD triggers self-sustained thermonuclear burning in a C/O (ONeMg) white dwarf (WD) of mass ≳1 M ⊙ (1.3 M ⊙). The spark is generally located off the center of the WD. The rate of LSD-induced explosions matches the observed rate of Type Ia supernovae.

  19. Isoscalar giant resonances for nuclei with mass between 56 and 60

    SciTech Connect

    Lui, Y.-W.; Youngblood, D.H.; Clark, H.L.; Tokimoto, Y.; John, B.

    2006-01-15

    The giant resonance region from 10 MeV isoscalar E0 and E2 strength has been identified below E{sub x}=40 MeV. Between 56 and 72% of the isoscalar E1 strength has been located in these nuclei. The mass dependence of the giant monopole energy between A=40 and 90 is compared to relativistic and nonrelativistic calculations for interactions with compressibility of nuclear matter K{sub NM}{approx}211-225 MeV.

  20. First measurement of isoscalar giant resonances in a stored-beam experiment

    NASA Astrophysics Data System (ADS)

    Zamora, J. C.; Aumann, T.; Bagchi, S.; Bönig, S.; Csatlós, M.; Dillmann, I.; Dimopoulou, C.; Egelhof, P.; Eremin, V.; Furuno, T.; Geissel, H.; Gernhäuser, R.; Harakeh, M. N.; Hartig, A.-L.; Ilieva, S.; Kalantar-Nayestanaki, N.; Kiselev, O.; Kollmus, H.; Kozhuharov, C.; Krasznahorkay, A.; Kröll, Th.; Kuilman, M.; Litvinov, S.; Litvinov, Yu. A.; Mahjour-Shafiei, M.; Mutterer, M.; Nagae, D.; Najafi, M. A.; Nociforo, C.; Nolden, F.; Popp, U.; Rigollet, C.; Roy, S.; Scheidenberger, C.; von Schmid, M.; Steck, M.; Streicher, B.; Stuhl, L.; Thürauf, M.; Uesaka, T.; Weick, H.; Winfield, J. S.; Winters, D.; Woods, P. J.; Yamaguchi, T.; Yue, K.; Zenihiro, J.

    2016-12-01

    A new technique developed for measuring nuclear reactions at low momentum transfer with stored beams in inverse kinematics was successfully used to study isoscalar giant resonances. The experiment was carried out at the experimental heavy-ion storage ring (ESR) at the GSI facility using a stored 58Ni beam at 100 MeV/u and an internal helium gas-jet target. In these measurements, inelastically scattered α-recoils at very forward center-of-mass angles (θcm ≤ 1.5 °) were detected with a dedicated setup, including ultra-high vacuum compatible detectors. Experimental results indicate a dominant contribution of the isoscalar giant monopole resonance at this very forward angular range. It was found that the monopole contribution exhausts 79-11+12% of the energy-weighted sum rule (EWSR), which agrees with measurements performed in normal kinematics. This opens up the opportunity to investigate the giant resonances in a large domain of unstable and exotic nuclei in the near future. It is a fundamental milestone towards new nuclear reaction studies with stored ion beams.

  1. Inversion doublets of reflection-asymmetric clustering in 28Si and their isoscalar monopole and dipole transitions

    NASA Astrophysics Data System (ADS)

    Chiba, Y.; Taniguchi, Y.; Kimura, M.

    2017-04-01

    Background: Various cluster states of astrophysical interest are expected to exist in the excited states of 28Si. However, they have not been identified firmly, because of the experimental and theoretical difficulties. Purpose: To establish the 24Mg+α ,16O+12C , and 20Ne+2 α cluster bands, we theoretically search for the negative-parity cluster bands that are paired with the positive-parity bands to constitute the inversion doublets. We also offer the isoscalar monopole and dipole transitions as a promising probe for the clustering. We numerically show that these transition strengths from the ground state to the cluster states are very much enhanced. Method: The antisymmetrized molecular dynamics with Gogny D1S effective interaction is employed to calculate the excited states of 28Si. The isoscalar monopole and dipole transition strengths are directly evaluated from wave functions of the ground and excited states. Results: Negative-parity bands having 24Mg+α and 16O+12C cluster configurations are obtained in addition to the newly calculated 20Ne+2 α cluster bands. All of them are paired with the corresponding positive-parity bands to constitute the inversion doublets with various cluster configurations. The calculation shows that the bandheads of the 24Mg+α and 20Ne+2 α cluster bands are strongly excited by the isoscalar monopole and dipole transitions. Conclusions: The present calculation suggests the existence of inversion doublets with the 24Mg+α ,16O+12C , and 20Ne+2 α configurations. Because of the enhanced transition strengths, we offer the isoscalar monopole and dipole transitions as good probe for the 24Mg+α and 20Ne+2 α cluster bands.

  2. Fine structure of the isoscalar giant quadrupole resonance in 28Si and 27Al

    NASA Astrophysics Data System (ADS)

    Usman, I. T.; Buthelezi, Z.; Carter, J.; Cooper, G. R. J.; Fearick, R. W.; Förtsch, S. V.; Fujita, H.; Fujita, Y.; von Neumann-Cosel, P.; Neveling, R.; Papakonstantinou, P.; Pysmenetska, I.; Richter, A.; Roth, R.; Sideras-Haddad, E.; Smit, F. D.

    2016-08-01

    The isoscalar giant quadrupole resonance in 28Si and 27Al has been investigated with high-energy-resolution proton inelastic scattering at Ep=200 MeV and at scattering angles close to the maximum of Δ L =2 angular distributions with the K600 magnetic spectrometer of iThemba LABS, South Africa. Characteristic scales are extracted from the observed fine structure with a wavelet analysis and compared for 28Si with random-phase approximation and second random phase approximation calculations with an interaction derived from the Argonne V18 potential by a unitary transformation. A recent extension of the method to deformed nuclei provides the best description of the data, suggesting the significance of Landau damping.

  3. Isoscalar response of 68Ni to α -particle and deuteron probes

    NASA Astrophysics Data System (ADS)

    Vandebrouck, M.; Gibelin, J.; Khan, E.; Achouri, N. L.; Baba, H.; Beaumel, D.; Blumenfeld, Y.; Caamaño, M.; Càceres, L.; Colò, G.; Delaunay, F.; Fernandez-Dominguez, B.; Garg, U.; Grinyer, G. F.; Harakeh, M. N.; Kalantar-Nayestanaki, N.; Keeley, N.; Mittig, W.; Pancin, J.; Raabe, R.; Roger, T.; Roussel-Chomaz, P.; Savajols, H.; Sorlin, O.; Stodel, C.; Suzuki, D.; Thomas, J. C.

    2015-08-01

    Isoscalar giant resonances have been measured in the unstable 68Ni nucleus using inelastic alpha and deuteron scattering at 50 A MeV in inverse kinematics with the active target MAYA at GANIL. Using alpha scattering, the extracted isoscalar giant monopole resonance (ISGMR) centroid was determined to be 21.1 ±1.9 MeV and the isoscalar giant quadrupole resonance (ISGQR) to be 15.9 ±1.3 MeV. Indications for soft isoscalar monopole and dipole modes are provided. Results obtained with both (α ,α' ) and (d ,d' ) probes are compatible. The evolution of isoscalar giant resonances along the Ni isotopic chain from 56Ni to 68Ni is discussed.

  4. The Electric Giant Resonances

    NASA Astrophysics Data System (ADS)

    van der Woude, A.

    The following sections are included: * Introduction * Experimental Methods to Study Giant Resonances * Introduction * The Tools * Introduction * Tools for Isoscalar Scattering * INELASTIC α-SCATTERING * INELASTIC PROTON SCATTERING * Tools for Isovector Excitations * γ-ABSORPTION AND PARTICLE CAPTURE REACTIONS * CHARGE EXCHANGE REACTIONS - THE (π+, π0) REACTION * Tools For Isoscalar And Isovector Excitations * INELASTIC ELECTRON SCATTERING * GIANT RESONANCE EXCITATION BY FAST HEAVY IONS * From Multipole Cross Section To Multipole Strength * The Electric Isoscalar Resonances * The Isoscalar Giant Monopole Resonance * Systematics on the GMR * Compressibility and the Giant Monopole Resonance * Introduction * The Compressibility of nuclear matter from the GMR energies * Discussion * The Isoscalar Giant Quadrupole Resonance * General Trends In Medium-Heavy and Heavy Nuclei * The GQR In Light Nuclei * The Isoscalar 3- Strength, LEOR and HEOR * Isoscalar 4+ Strength * Miscellaneous; Isoscalar 1- and L > 4-Strength * The Electric Isovector Giant Resonances * The Isovector Giant Dipole Resonance: GDR * The Isovector Giant Monopole Resonances: IVGMR * The Isovector Quadrupole Resonance: IVGQR * The Effect of Ground State Deformation on the Shape of Giant Resonance: Microscopic Picture * Giant Resonances Built on Excited States * Introduction * Capture Reactions on Light Nuclei * Statistical decay of GDR γ Emission in Heavy Compound Systems * Introduction * Theoretical Predictions * Some Experimental Results * Summary and Outlook * Acknowledgements * General References * References

  5. Global investigation of the fine structure of the isoscalar giant quadrupole resonance

    SciTech Connect

    Shevchenko, A.; Burda, O.; Kalmykov, Y.; Neumann-Cosel, P. von; Ponomarev, V. Yu.; Richter, A.; Wambach, J.; Carter, J.; Sideras-Haddad, E.; Cooper, G. R. J.; Fearick, R. W.; Foertsch, S. V.; Lawrie, J. J.; Neveling, R.; Smit, F. D.; Fujita, H.; Fujita, Y.; Lacroix, D.

    2009-04-15

    Fine structure in the region of the isoscalar giant quadrupole resonance (ISGQR) in {sup 58}Ni, {sup 89}Y, {sup 90}Zr, {sup 120}Sn, {sup 166}Er, and {sup 208}Pb has been observed in high-energy-resolution ({delta}E{sub 1/2}{approx_equal}35-50 keV) inelastic proton scattering measurements at E{sub 0}=200 MeV at iThemba LABS. Calculations of the corresponding quadrupole excitation strength functions performed within models based on the random-phase approximation (RPA) reveal similar fine structure when the mixing of one-particle one-hole states with two-particle two-hole states is taken into account. A detailed comparison of the experimental data is made with results from the quasiparticle-phonon model (QPM) and the extended time-dependent Hartree-Fock (ETDHF) method. For {sup 208}Pb, additional theoretical results from second RPA and the extended theory of finite Fermi systems (ETFFS) are discussed. A continuous wavelet analysis of the experimental and the calculated spectra is used to extract dominant scales characterizing the fine structure. Although the calculations agree with qualitative features of these scales, considerable differences are found between the model and experimental results and amongst different models. Within the framework of the QPM and ETDHF calculations it is possible to decompose the model spaces into subspaces approximately corresponding to different damping mechanisms. It is demonstrated that characteristic scales mainly arise from the collective coupling of the ISGQR to low-energy surface vibrations.

  6. Giant dipole resonance parameters with uncertainties from photonuclear cross sections

    NASA Astrophysics Data System (ADS)

    Plujko, V. A.; Capote, R.; Gorbachenko, O. M.

    2011-09-01

    Updated values and corresponding uncertainties of isovector giant dipole resonance (IVGDR or GDR) model parameters are presented that are obtained by the least-squares fitting of theoretical photoabsorption cross sections to experimental data. The theoretical photoabsorption cross section is taken as a sum of the components corresponding to excitation of the GDR and quasideuteron contribution to the experimental photoabsorption cross section. The present compilation covers experimental data as of January 2010.

  7. Capillary-induced giant elastic dipoles in thin nematic films

    PubMed Central

    Jeridi, Haifa; Gharbi, Mohamed A.; Othman, Tahar; Blanc, Christophe

    2015-01-01

    Directed and true self-assembly mechanisms in nematic liquid crystal colloids rely on specific interactions between microparticles and the topological defects of the matrix. Most ordered structures formed in thin nematic cells are thus based on elastic multipoles consisting of a particle and nearby defects. Here, we report, for the first time to our knowledge, the existence of giant elastic dipoles arising from particles dispersed in free nematic liquid crystal films. We discuss the role of capillarity and film thickness on the dimensions of the dipoles and explain their main features with a simple 2D model. Coupling of capillarity with nematic elasticity could offer ways to tune finely the spatial organization of complex colloidal systems. PMID:26554001

  8. Excitonic giant-dipole potentials in cuprous oxide

    NASA Astrophysics Data System (ADS)

    Kurz, Markus; Grünwald, Peter; Scheel, Stefan

    2017-06-01

    In this paper we predict the existence of a novel species of Wannier excitons when exposed to crossed electric and magnetic fields. In particular, we present a theory of giant-dipole excitons in Cu2O in crossed fields. Within our theoretical approach we perform a pseudoseparation of the center-of-mass motion for the field-dressed excitonic species, thereby obtaining an effective single-particle Hamiltonian for the relative motion. For arbitrary gauge fields we exactly separate the gauge-dependent kinetic-energy terms from the effective single-particle interaction potential. Depending on the applied field strengths and the specific field orientation, the potential for the relative motion of electron and hole exhibits an outer well at spatial separations up to several micrometers and depths up to 380 μ eV , leading to possible permanent excitonic electric dipole moments of around 3 ×106 D.

  9. The Giant Dipole Resonance at Very High Temperatures

    NASA Astrophysics Data System (ADS)

    Suomijärvi, T.; Le Faou, J. H.; Blumenfeld, Y.; Piattelli, P.; Agodi, C.; Alamanos, N.; Alba, R.; Auger, F.; Bellia, G.; Chomaz, Ph.; Coniglione, R.; Del Zoppo, A.; Finocchiaro, P.; Frascaria, N.; Gaardhøje, J. J.; Garron, J. P.; Gillibert, A.; Lamehi-Rachti, M.; Liguori-Neto, R.; Loukachine, K.; Maiolino, C.; Migneco, E.; Montironi, S.; Russo, G.; Roynette, J. C.; Santonocito, D.; Sapienza, P.; Scarpaci, J. A.; Smerzi, A.

    1995-02-01

    Gamma-rays emitted from hot nuclei of mass around 115 and excitation energies above 300 MeV, formed in the 36Ar + 90Zr at 27 MeV/u, 36Ar + 94Zr at 32 MeV/u and 36Ar + 98Mo at 37 MeV/u, have been measured with the MEDEA multidetector in coincidence with evaporation residues. The γ-ray yield from the decay of the Giant Dipole Resonance is independent of excitation energy and of bombarding energy.

  10. Giant dipole resonance in 201Tl at low temperature

    NASA Astrophysics Data System (ADS)

    Dang, N. Dinh; Hung, N. Quang

    2012-10-01

    The thermal pairing gap obtained by embedding the exact solutions of the pairing problem into the canonical ensemble is employed to calculate the width and strength function of the giant dipole resonance (GDR) within the phonon damping model. The results of calculations describe reasonably well the data for the GDR width as well as the GDR linearized strength function, recently obtained for 201Tl in the temperature region between 0.8 and 1.2 MeV, for which other approaches that neglect the effect of nonvanishing thermal pairing fail to describe.

  11. Excitation-energy dependence of the giant dipole resonance width

    NASA Astrophysics Data System (ADS)

    Enders, G.; Berg, F. D.; Hagel, K.; Kühn, W.; Metag, V.; Novotny, R.; Pfeiffer, M.; Schwalb, O.; Charity, R. J.; Gobbi, A.; Freifelder, R.; Henning, W.; Hildenbrand, K. D.; Holzmann, R.; Mayer, R. S.; Simon, R. S.; Wessels, J. P.; Casini, G.; Olmi, A.; Stefanini, A. A.

    1992-07-01

    High-energy γ rays have been measured in coincidence with heavy fragents in deeply inelastic reactions of 136Xe+48Ti at 18.5 MeV/nucleon. The giant dipole resonance (GDR) strength function is deduced from an analysis of the photon spectra within the statistical model. The GDR width Γ is studied as a function of the fragment excitation energy E*. A saturation at about Γ=10 MeV is observed for E*/A>=1.0 MeV/nucleon.

  12. Observation of isoscalar multipole strengths in exotic doubly-magic 56Ni in inelastic α scattering in inverse kinematics

    NASA Astrophysics Data System (ADS)

    Bagchi, S.; Gibelin, J.; Harakeh, M. N.; Kalantar-Nayestanaki, N.; Achouri, N. L.; Akimune, H.; Bastin, B.; Boretzky, K.; Bouzomita, H.; Caamaño, M.; Càceres, L.; Damoy, S.; Delaunay, F.; Fernández-Domínguez, B.; Fujiwara, M.; Garg, U.; Grinyer, G. F.; Kamalou, O.; Khan, E.; Krasznahorkay, A.; Lhoutellier, G.; Libin, J. F.; Lukyanov, S.; Mazurek, K.; Najafi, M. A.; Pancin, J.; Penionzhkevich, Y.; Perrot, L.; Raabe, R.; Rigollet, C.; Roger, T.; Sambi, S.; Savajols, H.; Senoville, M.; Stodel, C.; Suen, L.; Thomas, J. C.; Vandebrouck, M.; Van de Walle, J.

    2015-12-01

    The Isoscalar Giant Monopole Resonance (ISGMR) and the Isoscalar Giant Dipole Resonance (ISGDR) compression modes have been studied in the doubly-magic unstable nucleus 56Ni. They were measured by inelastic α-particle scattering in inverse kinematics at 50 MeV/u with the MAYA active target at the GANIL facility. The centroid of the ISGMR has been obtained at Ex = 19.1 ± 0.5 MeV. Evidence for the low-lying part of the ISGDR has been found at Ex = 17.4 ± 0.7 MeV. The strength distribution for the dipole mode shows similarity with the prediction from the Hartree-Fock (HF) based random-phase approximation (RPA) [1]. These measurements confirm inelastic α-particle scattering as a suitable probe for exciting the ISGMR and the ISGDR modes in radioactive isotopes in inverse kinematics.

  13. Evolution of the giant dipole resonance properties with excitation energy

    NASA Astrophysics Data System (ADS)

    Santonocito, D.; Blumenfeld, Y.

    2006-10-01

    The studies of the evolution of the hot Giant Dipole Resonance (GDR) properties as a function of excitation energy are reviewed. The discussion will mainly focus on the A ˜ 100-120 mass region where a large amount of data concerning the width and the strength evolution with excitation energy are available. Models proposed to interpret the main features and trends of the experimental results will be presented and compared to the available data in order to extract a coherent scenario on the limits of the development of the collective motion in nuclei at high excitation energy. Experimental results on the GDR built in hot nuclei in the mass region A ˜ 60-70 will be also shown, allowing to investigate the mass dependence of the main GDR features. The comparison between limiting excitation energies for the collective motion and critical excitation energies extracted from caloric curve studies will suggest a possible link between the disappearance of collective motion and the liquid-gas phase transition.

  14. Photon scattering studies of the giant dipole resonance in medium weight nuclei

    SciTech Connect

    Bowles, T.J.; Holt, R.J.; Jackson, H.E.; Laszewski, R.M.; McKeown, R.D.; Nathan, A.M.; Specht, J.R.

    1981-11-01

    Quasimonochromatic photons have been used to measure elastic and inelastic photon scattering cross sections in the giant dipole resonance region of /sup 52/Cr, Fe, /sup 60/Ni, /sup 92/Mo, and /sup 96/Mo in an experiment in which the elastic and inelastic scattering are resolved. The elastic scattering cross sections show clear evidence for isospin splitting of the giant dipole resonance. The inelastic scattering to low-lying vibrational levels, which is a measure of the coupling between the giant dipole resonance and collective surface vibrations, is in qualitative agreement with the predictions of the dynamic collective model. However, when examined in detail, this model does not provide an adequate description of the scattering data.

  15. Dipole Excitation of Soft and Giant Resonances in 132Sn and neighboring unstable nuclei

    NASA Astrophysics Data System (ADS)

    Boretzky, Konstanze

    2006-04-01

    The evolution of dipole-strength distributions above the one-neutron threshold was investigated for exotic neutron-rich nuclei in a series of experiments using the electromagnetic projectile excitation at beam energies around 500 MeV/u. For halo nuclei, the large observed dipole strength (shown here for 11Be) is explained within the direct-breakup model to be of non-collective character. For neutron-rich oxygen isotopes, the origin of the observed low-lying strength is concluded to be due to single-particle transitions on theoretical grounds. The dipole strength spectra for 130,132Sn exhibit resonance-like structures observed at energies around 10 MeV exhausting a few percent of the Thomas-Reiche-Kuhn (TRK) sum rule, separated clearly from the dominant Giant Dipole Resonance (GDR). The data agree with predictions for a new dipole mode related to the oscillation of excess neutrons versus the core nucleons ("pygmy resonance").

  16. Properties of high-energy isoscalar monopole excitations in medium-heavy mass spherical nuclei

    SciTech Connect

    Gorelik, M. L. Shlomo, Sh. Tulupov, B. A. Urin, M. H.

    2015-07-15

    The recently developed particle-hole dispersive optical model is applied to describe properties of high-energy isoscalar monopole excitations in medium-heavy mass spherical nuclei. In particular, the double transition density averaged over the energy of the isoscalar monopole excitations is considered for {sup 208}Pb in a wide energy interval, which includes the isoscalar giant monopole resonance and its overtone. The energy-averaged strength functions of these resonances are also analyzed.

  17. Coupled-Channel Models of Direct-Semidirect Capture via Giant-Dipole Resonances

    NASA Astrophysics Data System (ADS)

    Thompson, I. J.; Escher, J. E.; Arbanas, G.

    2014-04-01

    Semidirect capture, a two-step process that excites a giant-dipole resonance followed by its radiative de-excitation, is a dominant process near giant-dipole resonances, that is, for incoming neutron energies within 5-20 MeV. At lower energies such processes may affect neutron capture rates that are relevant to astrophysical nucleosynthesis models. We implement a semidirect capture model in the coupled-channel reaction code Fresco and validate it by comparing the cross section for direct-semidirect capture 208Pb(n,γ)209Pb to experimental data. We also investigate the effect of low-energy electric dipole strength in the pygmy resonance. We use a conventional single-particle direct-semidirect capture code Cupido for comparison. Furthermore, we present and discuss our results for direct-semidirect capture reaction 130Sn(n,γ)131Sn, the cross section of which is known to have a significant effect on nucleosynthesis models.

  18. Coupled-Channel Models of Direct-Semidirect Capture via Giant-Dipole Resonances

    SciTech Connect

    Thompson, I J; Escher, Jutta E; Arbanas, Goran

    2013-01-01

    Semidirect capture, a two-step process that excites a giant-dipole resonance followed by its radiative de-excitation, is a dominant process near giant-dipole resonances, that is, for incoming neutron energies within 5 20 MeV. At lower energies such processes may affect neutron capture rates that are relevant to astrophysical nucleosynthesis models. We implement a semidirect capture model in the coupled-channel reaction code Fresco and validate it by comparing the cross section for direct-semidirect capture 208Pb(n,g)209Pb to experimental data. We also investigate the effect of low-energy electric dipole strength in the pygmy resonance. We use a conventional single-particle direct-semidirect capture code Cupido for comparison. Furthermore, we present and discuss our results for direct-semidirect capture reaction 130Sn(n,g)131Sn, the cross section of which is known to have a significant effect on nucleosynthesis models.

  19. Recent results on giant dipole resonance decays in highly excited nuclei

    SciTech Connect

    Snover, K.A.

    1991-12-31

    Some recent results on Giant Dipole Resonance (GDR) decays in highly excited, equilibrated nuclei, are discussed based primarily on work done at Seattle. Four sections address the following topics: oblate shapes of rotating, highly excited Zr--Mo nuclei; adiabatic versus `motionally narrowed` GDR decay; large spin-driven deformations observed in hot medium-mass nuclei; and search for entrance channel effects in GDR decay following {sup 58}Ni {plus} {sup 92}Zr fusion. 22 refs.

  20. Recent results on giant dipole resonance decays in highly excited nuclei

    SciTech Connect

    Snover, K.A.

    1991-01-01

    Some recent results on Giant Dipole Resonance (GDR) decays in highly excited, equilibrated nuclei, are discussed based primarily on work done at Seattle. Four sections address the following topics: oblate shapes of rotating, highly excited Zr--Mo nuclei; adiabatic versus motionally narrowed' GDR decay; large spin-driven deformations observed in hot medium-mass nuclei; and search for entrance channel effects in GDR decay following [sup 58]Ni [plus] [sup 92]Zr fusion. 22 refs.

  1. Comment on "Thermal shape fluctuation model study of the giant dipole resonance in 152Gd"

    NASA Astrophysics Data System (ADS)

    Chakrabarty, D. R.; Datar, V. M.

    2016-10-01

    A recent paper [A. K. Rhine Kumar and P. Arumugam, Phys. Rev. C 92, 044314 (2015), 10.1103/PhysRevC.92.044314] presented calculations of the giant dipole resonance width and γ -ray absorption cross sections for 152Gd at various temperatures and angular momenta and compared these with the experimental data. In the comparison of the cross sections, the authors used the linearized representations of the experimental spectra which actually represent the absorption cross sections divided by the γ -ray energy. In this Comment we make the comparison with the appropriate absorption cross sections derived from the data. The comparison shows a reasonable agreement if the higher value of the dipole-dipole interaction parameter, mentioned in the paper, is used in the calculation.

  2. Investigation of the energy-averaged double transition density of isoscalar monopole excitations in medium-heavy mass spherical nuclei

    NASA Astrophysics Data System (ADS)

    Gorelik, M. L.; Shlomo, S.; Tulupov, B. A.; Urin, M. H.

    2016-11-01

    The particle-hole dispersive optical model, developed recently, is applied to study properties of high-energy isoscalar monopole excitations in medium-heavy mass spherical nuclei. The energy-averaged strength functions of the isoscalar giant monopole resonance and its overtone in 208Pb are analyzed. In particular, we analyze the energy-averaged isoscalar monopole double transition density, the key quantity in the description of the hadron-nucleus inelastic scattering, and studied the validity of the factorization approximation using semi classical and microscopic one body transition densities, respectively, in calculating the cross sections for the excitation of isoscalar giant resonances by inelastic alpha scattering.

  3. Dipole modes with depressed amplitudes in red giants are mixed modes

    NASA Astrophysics Data System (ADS)

    Mosser, B.; Belkacem, K.; Pinçon, C.; Takata, M.; Vrard, M.; Barban, C.; Goupil, M.-J.; Kallinger, T.; Samadi, R.

    2017-02-01

    Context. Seismic observations with the space-borne Kepler mission have shown that a number of evolved stars exhibit low-amplitude dipole modes, which is referred to as depressed modes. Recently, these low amplitudes have been attributed to the presence of a strong magnetic field in the stellar core of those stars. Subsequently, and based on this scenario, the prevalence of high magnetic fields in evolved stars has been inferred. It should be noted, however, that this conclusion remains indirect. Aims: We intend to study the properties of mode depression in evolved stars, which is a necessary condition before reaching conclusions about the physical nature of the mechanism responsible for the reduction of the dipole mode amplitudes. Methods: We perform a thorough characterization of the global seismic parameters of depressed dipole modes and show that these modes have a mixed character. The observation of stars showing dipole mixed modes that are depressed is especially useful for deriving model-independent conclusions on the dipole mode damping. We use a simple model to explain how mode visibilities are connected to the extra damping seen in depressed modes. Results: Observations prove that depressed dipole modes in red giants are not pure pressure modes but mixed modes. This result, observed in more than 90% of the bright stars (mV ≤ 11), invalidates the hypothesis that depressed dipole modes result from the suppression of the oscillation in the radiative core of the stars. Observations also show that, except for visibility, seismic properties of the stars with depressed modes are equivalent to those of normal stars. The measurement of the extra damping that is responsible for the reduction of mode amplitudes, without any prior on its physical nature, potentially provides an efficient tool for elucidating the mechanism responsible for the mode depression. Conclusions: The mixed nature of the depressed modes in red giants and their unperturbed global seismic

  4. Giant dipole resonance in very hot nuclei of mass A~=115

    NASA Astrophysics Data System (ADS)

    Suomijärvi, T.; Blumenfeld, Y.; Piattelli, P.; Le Faou, J. H.; Agodi, C.; Alamanos, N.; Alba, R.; Auger, F.; Bellia, G.; Chomaz, Ph.; Coniglione, R.; del Zoppo, A.; Finocchiaro, P.; Frascaria, N.; Gaardhøje, J. J.; Garron, J. P.; Gillibert, A.; Lamehi-Rachti, M.; Liguori-Neto, R.; Maiolino, C.; Migneco, E.; Russo, G.; Roynette, J. C.; Santonocito, D.; Sapienza, P.; Scarpaci, J. A.; Smerzi, A.

    1996-05-01

    Gamma rays, light charged particles, and evaporation residues emitted from hot nuclei formed in the 36Ar+90Zr reaction at 27 MeV/nucleon have been measured at the GANIL facility with the 4π barium fluoride multidetector MEDEA. The combination of the residue and particle measurements shows that nuclei with masses around 115 and excitation energies between 350 and 550 MeV are produced. The γ spectra measured in coincidence with the evaporation residues exhibit three components: a low-energy statistical component, a high-energy contribution due to nucleon-nucleon bremsstrahlung during the initial stages of the collision, and a contribution from the decay of the giant dipole resonance built on highly excited states. The characteristics of the bremsstrahlung component are in agreement with previously published systematics. The γ yield from the decay of the giant dipole resonance remains constant over the excitation energy range studied. A comparison with other experiments shows that the N/Z asymmetry in the entrance channel does not affect the γ yield. Statistical calculations performed using the code CASCADE and supposing a fixed width and full sum rule strength for the dipole resonance strongly overpredict the data. The hypothesis of a continuously increasing width of the resonance with temperature gives a better agreement with experiment near the centroid of the resonance but overpredicts the γ spectra at higher energies. The best account of the data is given by assuming a cutoff of γ emission from the resonance above an excitation energy of approximately 250 MeV. This cutoff is discussed in terms of the time necessary to equilibrate the dipole oscillations with the hot compound nucleus. Finally, some evidence is given for a possible new low-energy component of the dipole strength at very high temperatures.

  5. Limiting Temperatures for Collective Motion: The Giant Dipole Resonance in Very Hot Nuclei

    NASA Astrophysics Data System (ADS)

    Piattelli, P.; Blumenfeld, Y.; Le Faou, J. H.; Suomijärvi, T.; Agodi, C.; Alamanos, N.; Alba, R.; Auger, F.; Bellia, G.; Chomaz, Ph.; Coniglione, R.; Del Zoppo, A.; Finocchiaro, P.; Frascaria, N.; Gaardhøje, J. J.; Garron, J. P.; Gillibert, A.; Lamehi-Rachti, M.; Liguori-Neto, R.; Loukachine, K.; Maiolino, C.; Migneco, E.; Roynette, J. C.; Santonocito, D.; Sapienza, P.; Scarpaci, J. A.

    1996-02-01

    The study of the Giant Dipole Resonance (GDR) excited in hot nuclei allows to follow the evolution of collective motion with increasing nuclear temperature. A brief review of the characteristics of the GDR excited in nuclei with excitation energies up to ˜ 500 MeV is given. The results of recent experiments in which very hot nuclei have been studied with a nearly 4π detector are presented. Gamma-rays, light charged particles and evaporation residues emitted from hot nuclei of mass around 115 and excitation energies above 300 MeV, formed in the 36Ar + 90Zr at 27 MeV/u and 36Ar + 98Mo at 37 MeV/u reactions, have been measured with the MEDEA multidetector. The γ-ray yield from the decay of the Giant Dipole Resonance in these nuclei has been found to be independent of excitation energy and bombarding energy. The measured γ-ray spectra are compared with statistical calculations encompassing several recent theoretical models for the quenching of gamma-ray emission from the dipole resonance at very high temperatures. The best agreement with the data is obtained by assuming a cut-off of the resonance γ-emission above an excitation energy of 250 MeV.

  6. The Giant Dipole Resonance built on highly excited states — results of the MEDEA experiment

    NASA Astrophysics Data System (ADS)

    Suomijärvi, T.; Le Faou, J. H.; Blumenfeld, Y.; Piattelli, P.; Agodi, C.; Alamanos, N.; Alba, R.; Auger, F.; Bellia, G.; Chomaz, Ph.; Coniglione, R.; Del Zoppo, A.; Finocchiaro, P.; Frascaria, N.; Gaardhøje, J. J.; Garron, J. P.; Gillibert, A.; Lamehi-Rachti, M.; Liguori-Neto, R.; Maiolino, C.; Migneco, E.; Russo, G.; Roynette, J. C.; Santonocito, D.; Sapienza, P.; Scarpaci, J. A.; Smerzi, A.

    1994-03-01

    Gamma-rays, light charged particles and evaporation residues emitted from hot nuclei formed in the 36Ar + 90Zr reaction at 27 MeV/u have been measured with a nearly 4π barium fluoride multidetector. It is shown that hot Sn-like nuclei with a range of excitation energies between 300 and 600 MeV are produced. The γ-ray yield from the decay of the Giant Dipole Resonance in these nuclei is shown to remain constant over this excitation energy range. The measured γ-ray spectra are compared with statistical calculations encompassing several recent theoretical models for the quenching of gamma-ray emission from the dipole resonance at very high temperatures.

  7. Giant dipole resonance in proton capture reactions using an extended quantum molecular dynamics model

    NASA Astrophysics Data System (ADS)

    Wang, K.; Ma, Y. G.; Zhang, G. Q.; Cao, X. G.; He, W. B.; Shen, W. Q.

    2017-01-01

    Proton capture reaction is an important process concerning the astrophysical origin of the elements. In present work, we focus on giant dipole resonance (GDR) in proton capture reactions, such as 11B(p ,γ )12C , 27Al(p ,γ )28Si , 39K(p ,γ )40Ca , and 67Co(p ,γ )68Ni in a framework of an extended quantum molecular dynamics model. The systematic properties of GDR parameters including the peak energy, the strength, and full width at half maximum (FWHM) have been studied. The dependence of FWHM on temperature has also been discussed. Some comparisons with experimental data have been presented.

  8. Nucleon-nucleon symmetry potential term and giant dipole resonance {gamma}-ray emission

    SciTech Connect

    Giuliani, G.; Papa, M.

    2006-03-15

    A study of the dependence of the giant dipole resonance {gamma}-ray yield from different functional forms of the symmetry term for the nucleon-nucleon interaction potential has been performed through the semiclassical molecular dynamics approach CoMD-II. We studied central and midperipheral reactions in the charge/mass asymmetric system {sup 40}Ca+{sup 48}Ca at 45 MeV/nucleon. The calculations show that the balance between the dynamical and the statistical emission is very sensitive to the 'stiffness' of the symmetry term. This sensitivity could be highlighted by measuring the degree of coherence and the anisotropy ratio related to the dynamically emitted radiation.

  9. Neutron-skin thickness from the study of the anti-analog giant dipole resonance

    SciTech Connect

    Krasznahorkay, A.; Stuhl, L.; Csatlos, M.; Algora, A.; and others

    2012-10-20

    The {gamma}-decay of the anti-analog of the giant dipole resonance (AGDR) to the isobaric analog state has been measured following the p({sup 124}Sn,n) reaction at a beam energy of 600 MeV/nucleon. The energy of the transition was also calculated with state-of-the-art self-consistent relativistic random-phase approximation (RPA) and turned out to be very sensitive to the neutronskin thickness ({Delta}R{sub pn}). By comparing the theoretical results with the measured one, the {Delta}R{sub pn} value for {sup 124}Sn was deduced to be 0.21 {+-} 0.07 fm, which agrees well with the previous results. The present method offers new possibilities for measuring the neutron-skin thicknesses of very exotic isotopes.

  10. Inhomogeneous and intrinsic damping of giant dipole resonance in hot rotating nuclei with A ~ 150

    NASA Astrophysics Data System (ADS)

    Chakrabarty, D. R.; Datar, V. M.; Kumar, Suresh; Mirgule, E. T.; Mitra, A.; Nanal, V.; Pillay, R. G.; Rout, P. C.

    2010-05-01

    High-energy gamma rays in the range of ~4-28 MeV were measured in the reaction 28Si+124Sn at E(28Si) ~ 185 MeV in coincidence with low-energy gamma ray multiplicities and evaporation residues. The centroid energy and width of the giant dipole resonance were extracted for various multiplicity windows from the statistical model analysis. These extracted widths, along with those from an earlier measurement at E(28Si) ~ 149 MeV, show a discrepancy with the results of a calculation under the thermal shape fluctuation model which describes the inhomogeneous damping of the resonance. An empirical form of the temperature and angular momentum dependence of the width, describing the data at both the beam energies, has been derived. The present results suggest that the contributions from both the inhomogeneous damping and the intrinsic collisional damping processes should be included.

  11. Giant dipole resonance and shape transitions in hot and rotating 88Mo

    NASA Astrophysics Data System (ADS)

    Rhine Kumar, A. K.; Arumugam, P.; Dang, N. Dinh; Mazumdar, I.

    2017-08-01

    The giant dipole resonance (GDR) observables are calculated within the thermal shape fluctuation model by considering the probability distributions of different angular momentum (I ) and temperature (T ) values estimated recently in the deexcitation process of the compound nucleus 88Mo. These results are found to be very similar to the results obtained with the average T (Tave) and average I (Iave) corresponding to those distributions. The shape transitions in 88Mo at different T and I are also studied through the free energy surfaces calculated within the microscopic-macroscopic approach. The deformation of 88Mo is found to increase considerably with T and I , leading to the Jacobi shape transition at I ˜50 ℏ . The combined effect of increasing deformation, larger fluctuations at higher T , and larger Coriolis splitting of GDR components at higher I , leads to a rapid increase in the GDR width.

  12. Giant permanent dipole moment of two-dimensional excitons bound to a single stacking fault

    NASA Astrophysics Data System (ADS)

    Karin, Todd; Linpeng, Xiayu; Glazov, M. M.; Durnev, M. V.; Ivchenko, E. L.; Harvey, Sarah; Rai, Ashish K.; Ludwig, Arne; Wieck, Andreas D.; Fu, Kai-Mei C.

    2016-07-01

    We investigate the magneto-optical properties of excitons bound to single stacking faults in high-purity GaAs. We find that the two-dimensional stacking fault potential binds an exciton composed of an electron and a heavy hole, and we confirm a vanishing in-plane hole g -factor, consistent with the atomic-scale symmetry of the system. The unprecedented homogeneity of the stacking-fault potential leads to ultranarrow photoluminescence emission lines (with a full width at half-maximum ≲80 μ eV ) and reveals a large magnetic nonreciprocity effect that originates from the magneto-Stark effect for mobile excitons. These measurements unambiguously determine the direction and magnitude of the giant electric dipole moment (≳e ×10 nm ) of the stacking-fault exciton, making stacking faults a promising new platform to study interacting excitonic gases.

  13. Dipole-dipole-induced giant Goos-Hänchen shift in a photonic crystal doped with quantum dot nanostructures

    NASA Astrophysics Data System (ADS)

    Panahi, M.; Solookinejad, G.; Ahmadi Sangachin, E.; Hossein Asadpour, Seyyed

    2016-07-01

    The impact of the dipole-dipole interaction on the Goo-Hänchen (GH) shifts in reflected and transmitted lights is investigated. A weak probe beam is incident on a cavity containing the donor and acceptor quantum dots embedded in a nonlinear photonic crystal. We deduced that the GH shifts can be easily adjusted via controlling the corresponding parameters of the system in the presence or absence of dipole-dipole interaction. Our proposed model may be useful to developing the all-optical devices based on photonic materials doped with nanoparticles.

  14. Nonlinear SU(2,1) Model of Multiple Giant Dipole Resonance Coulomb Excitation

    NASA Astrophysics Data System (ADS)

    Hussein, Mahir; de Toledo Piza, Antonio; Vorov, Oleg

    2000-10-01

    We construct a three-dimensional analytically soluble model of the nonlinear effects in Coulomb excitation of multiphonon Giant Dipole Resonances (GDR) based on the SU(2,1) algebra^1. Analytical expressions for the multi-phonon transition probabilities are derived. For reasonably small magnitude of nonlinearity x~= 0.15-0.3, the enhancement factor for the Double Giant Resonance excitation probabilities and the cross sections reaches values 1.3-2 compatible^1,2 with experimental data from relativistic ion collision experiments^3. The full 3-dimensional model predicts enhancement of the multiple GDR cross sections at low and high bombarding energies (with the minimum at ~= 1.3 GeV for the Pb+Pb colliding system). Enhancement factors for Double GDR measured in thirteen different processes with various projectiles and targets at different bombarding energies are well reproduced with the same value of the nonlinearity parameter with the exception of the anomalous case of ^136Xe which requires a larger value. The work has been supported by the FAPESP and by the CNPq. References ^1 M. S. Hussein, A. F. R. de Toledo Piza and O. K.Vorov, Ann. Phys. (N.Y.), 2000, to appear. ^2 M. S. Hussein, A. F. R. de Toledo Piza and O. K.Vorov, Phys. Rev. C59,R1242 (1999). ^3 T. Aumann, P.F. Bortignon, and H. Emling, Annu. Rev. Nucl. Part. Sci. 48, 351 (1998).

  15. Double Photon Decay of the Electromagnetically Excited Double Giant Dipole Resonance in LEAD-208

    NASA Astrophysics Data System (ADS)

    Ritman, James Lambrecht

    In this work the electromagnetic excitation of high lying collective states has been studied in relativistic heavy ion collisions. The interaction in peripheral collisions is dominated by the exchange of high energy virtual photons. Heavy systems near 1cdotA GeV produce a virtual photon field that is highly luminous and of sufficiently short duration to enable the multiple excitation of Giant Resonances with high probability. In particular, the double excitation of the Giant Dipole Resonance (GDR) has been studied in this work by measuring the photons emitted in peripheral reactions with the system 1.A GeV ^ {209}Bi on ^{208} Pb. This study concentrated on the photon decay of Coulomb excited collective states. Despite the relatively small ground state gamma-decay branching ratio, investigation of this channel provides several advantages compared to measuring statistical particle decay. The most important advantage is the strong enhancement of E1 transitions with respect to higher multipolarities; therefore, study of gamma-decay provides a highly selective measurement of the GDR. Photons in the Giant Resonance region were measured both as singles and as gamma- gamma pairs. For symmetry reasons the target and projectile nuclei can be mutually Coulomb excited. In order to insure that both photons in the gamma -gamma pairs came from the same nucleus, the large Doppler shift of photons emitted from the moving projectile has been exploited. Appropriate placement of the gamma detectors permitted a complete separation of the GDR photons emitted by either the target or projectile nucleus. This work provides the first experimental evidence of the gamma-gamma decay of the Coulomb excited double GDR (GDR2). The position of the resonance indicates harmonicity of the T_{<} multi-GDR. However, the increase of the GDR2 width over the GDR's width by only about a factor of sqrt{2} is significantly less than expected. Finally, the GDR2 excitation cross section is compared with model

  16. Finite amplitude method applied to the giant dipole resonance in heavy rare-earth nuclei

    NASA Astrophysics Data System (ADS)

    Oishi, Tomohiro; Kortelainen, Markus; Hinohara, Nobuo

    2016-03-01

    Background: The quasiparticle random phase approximation (QRPA), within the framework of nuclear density functional theory (DFT), has been a standard tool to access the collective excitations of atomic nuclei. Recently, the finite amplitude method (FAM) was developed in order to perform the QRPA calculations efficiently without any truncation on the two-quasiparticle model space. Purpose: We discuss the nuclear giant dipole resonance (GDR) in heavy rare-earth isotopes, for which the conventional matrix diagonalization of the QRPA is numerically demanding. A role of the Thomas-Reiche-Kuhn (TRK) sum rule enhancement factor, connected to the isovector effective mass, is also investigated. Methods: The electric dipole photoabsorption cross section was calculated within a parallelized FAM-QRPA scheme. We employed the Skyrme energy density functional self-consistently in the DFT calculation for the ground states and FAM-QRPA calculation for the excitations. Results: The mean GDR frequency and width are mostly reproduced with the FAM-QRPA, when compared to experimental data, although some deficiency is observed with isotopes heavier than erbium. A role of the TRK enhancement factor in actual GDR strength is clearly shown: its increment leads to a shift of the GDR strength to higher-energy region, without a significant change in the transition amplitudes. Conclusions: The newly developed FAM-QRPA scheme shows remarkable efficiency, which enables one to perform systematic analysis of GDR for heavy rare-earth nuclei. The theoretical deficiency of the photoabsorption cross section could not be improved by only adjusting the TRK enhancement factor, suggesting the necessity of an approach beyond self-consistent QRPA and/or a more systematic optimization of the energy density functional (EDF) parameters.

  17. Galilean Invariance and Pion Production with Excitation of Giant Dipole States.

    NASA Astrophysics Data System (ADS)

    Ho, Hing Wah

    1982-03-01

    The role of Galilean invariance in a nonrelativistic theory of pion production is examined. A nonrelativistic pion-nuclear interaction H(,(pi)N)('eff) is one which in perturbation theory gives the same matrix element for a physical reaction as the limit of small nuclear velocities of the relativistic matrix element. The latter matric elements are always Galilean invariant, but this does not require that H(,(pi)N)('eff) be Galilean invariant. If a pion is emitted or absorbed by a nucleon moving in a potential, then the Galilean correction term can be shown to be ambiguously of order v/c or of order v('2)/c('2). It is shown that H(,(pi)N)('eff) cannot always reproduce the nonrelativistic limit of a relativistic matrix. It is suggested that pion production by nucleons on nuclei with excitation of giant dipole and quadrapole states may be particularly sensitive to the presence of a Galilean correction term in the production matrix. A DWBA two nucleon mode (TNM) s-wave pion production model is developed to investigate the sensitivity of the Galilean correction term. The TNM pion production process includes pion production by one nucleon, using the Galilean invariant pion production interaction, with the pion rescattered by the second nucleon. The TNM model employs a finite range approximation. The finite range approximation assumes that the contribution to the matrix element is small when the distance between the two involved nucleons is large. The pion production reaction ('12)C(p,(pi)('+))('13C)(,g.d.), with excitation of the giant dipole state, thought to be a good candidate for an experimental investigation of the sensitivity of the Galilean correction term, is investigated. The calculated cross sections are 0.4 nb/sr and 0.13 nb/sr, respectively, at the forward angle with and without the contribution from the Galilean correction term. The smallness of these values is primarily due to the vanishing of the contribution from a diagram having a large coupling

  18. Intense {gamma}-Ray Source in the Giant-Dipole-Resonance Range Driven by 10-TW Laser Pulses

    SciTech Connect

    Giulietti, A.; Gamucci, A.; Gizzi, L. A.; Labate, L.; Bourgeois, N.; Marques, J. R.; Ceccotti, T.; Dobosz, S.; D'Oliveira, P.; Monot, P.; Popescu, H.; Reau, F.; Martin, P.; Galy, J.; Hamilton, D. J.; Giulietti, D.

    2008-09-05

    A {gamma}-ray source with an intense component around the giant dipole resonance for photonuclear absorption has been obtained via bremsstrahlung of electron bunches driven by a 10-TW tabletop laser. 3D particle-in-cell simulation proves the achievement of a nonlinear regime leading to efficient acceleration of several sequential electron bunches per each laser pulse. The rate of the {gamma}-ray yield in the giant dipole resonance region (8

  19. Temperature dependence of quantal and thermal dampings of the hot giant dipole resonance

    NASA Astrophysics Data System (ADS)

    Nguyen, Dinh Dang; Arima, Akito

    1998-07-01

    A systematic study of the damping of the giant dipole resonance (GDR) in 90Zr, 120Sn and 208Pb as a function of temperature T is performed. The double-time Green function technique is employed to determine the single-particle and GDR dampings. The single-particle energies, obtained in the Woods-Saxon potential for these nuclei, are used in the calculations. The results show that the coupling of collective vibration to the pp and hh excitations, which causes the thermal damping width, is responsible for the enlargement of the total width with increasing temperature up to T ≈ 3MeV and its saturation at higher temperatures. The quantal width, which arises from the coupling of the collective mode to the ph excitations decreases slowly with increasing temperature. The effect of single-particle damping on the GDR width is small. The results are found in an overall agreement with the experimental data for the GDR width, obtained in the inelastic α scattering and heavy-ion fusion reactions at excitation energies E* ⩽ 450 MeV. At high excitation energies (E* > 400 MeV) a behavior similar to the transition from zero to ordinary sounds is observed.

  20. Contribution of higher-order processes to the damping of hot giant dipole resonance

    NASA Astrophysics Data System (ADS)

    Dinh Dang, Nguyen; Tanabe, Kosai; Arima, Akito

    1998-12-01

    A systematic study is presented for three characteristics of the giant dipole resonance (GDR): (i) its width, (ii) its shape, and (iii) the integrated yield of emitted γ rays in 120Sn and 208Pb as a function of temperature T. The double-time Green's function method has been used to derive a complete set of equations, which allow one to calculate explicitly the GDR width due to coupling to all forward-going processes up to two-phonon ones at most in the second order of the interaction strength. The numerical calculations have been performed using the single-particle energies defined from the Woods-Saxon potentials. An overall agreement between theory and experiment is found for all three characteristics. The results show that the total width of the GDR due to coupling of the GDR phonon to all ph, pp, and hh configurations increases sharply at low temperatures up to T~ 3 MeV and saturates at T~4-6 MeV. The quantal width ΓQ due to coupling to ph configurations decreases slowly with increasing T. It becomes almost independent of T only when the contribution of two-phonon processes at T≠0 is omitted. The observed saturation of the integrated yield above E*~300 MeV is reproduced in both the GDR region and the region above it.

  1. The temperature dependence of the width of the giant dipole resonance

    SciTech Connect

    Ormand, W.E. |; Bortignon, P.F. |; Broglia, R.A. ||

    1995-12-31

    A systematic study of the full-width-at-half-maximum (FWHM) of the giant-dipole resonance (GDR) as a function of temperature for the nuclei {sup 120}Sn and {sup 208}Pb confirms the overall theoretical picture of the GDR in hot nuclei; in particular, the role played by large-amplitude thermal fluctuations of the nuclear shape. This is confirmed by the good agreement between theory and experiment achieved over a range of temperatures from 1.25--32 MeV and by the differences in the behavior of the FWHM for {sup 120}Sn and {sup 208}Pb, which can be attributed to the presence of strong shell corrections favoring spherical shapes in {sup 208}Pb that are absent in {sup 120}Sn. Finally, the increase in the FWHM over that expected from thermal averaging at temperatures of the order 3.0 MeV is in accordance with the increase expected from the particle evaporation of the compound system.

  2. Extreme nuclear shapes examined via giant dipole resonance lineshapes in hot light-mass systems

    SciTech Connect

    Pandit, Deepak; Mukhopadhyay, S.; Pal, Surajit; Bhattacharya, S.; Bhattacharya, C.; Banerjee, K.; Kundu, S.; Rana, T. K.; Dey, A.; Mukherjee, G.; Ghosh, T.; Banerjee, S. R.; De, A.; Gupta, D.

    2010-06-15

    The influence of alpha clustering on nuclear reaction dynamics is investigated using the giant dipole resonance (GDR) lineshape studies in the reactions {sup 20}Ne (E{sub lab}=145,160 MeV) + {sup 12}C and {sup 20}Ne (E{sub lab}=160 MeV) + {sup 27}Al, populating {sup 32}S and {sup 47}V, respectively. The GDR lineshapes from the two systems are remarkably different from each other. Whereas, the non-alpha-like {sup 47}V undergoes Jacobi shape transition and matches exceptionally well with the theoretical GDR lineshape estimated under the framework rotating liquid drop model (RLDM) and thermal shape fluctuation model (TSFM) signifying shape equilibration, for the alpha cluster {sup 32}S an extended prolate kind of shape is observed. This unusual deformation, seen directly via gamma decay for the first time, is predicted to be due to the formation of orbiting dinuclear configuration or molecular structure of {sup 16}O + {sup 16}O in the {sup 32}S superdeformed band.

  3. Giant dipole resonance width in nuclei near Sn at low temperature and high angular momentum

    SciTech Connect

    Bhattacharya, Srijit; Mukhopadhyay, S.; Pandit, Deepak; Pal, Surajit; Bhattacharya, S.; Bhattacharya, C.; Banerjee, K.; Kundu, S.; Rana, T. K.; Dey, A.; Mukherjee, G.; Ghosh, T.; Gupta, D.; Banerjee, S. R.

    2008-02-15

    High energy {gamma} rays in coincidence with low energy yrast {gamma} rays have been measured from {sup 113}Sb, at excitation energies of 109 and 122 MeV, formed by bombarding {sup 20}Ne on {sup 93}Nb at projectile energies of 145 and 160 MeV, respectively, to study the role of angular momentum (J) and temperature (T) over giant dipole resonance (GDR) width ({gamma}). The maximum populated angular momenta for fusion were 67({Dirac_h}/2{pi}) and 73({Dirac_h}/2{pi}), respectively, for the above-mentioned beam energies. The high energy photons were detected using a Large Area Modular BaF{sub 2} Detector Array (LAMBDA) along with a 24-element multiplicity filter. After pre-equilibrium corrections, the excitation energy E* was averaged over the decay steps of the compound nucleus (CN). The average values of temperature, angular momentum, CN mass, etc., have been calculated using the statistical model code CASCADE. Using those average values, results show the systematic increase of GDR width with T, which is consistent with Kusnezov parametrization and the thermal shape fluctuation model (TSFM). The rise of GDR width with temperature also supports the assumptions of adiabatic coupling in the TSFM. But the GDR widths and corresponding reduced plots with J are not consistent with those of the theoretical model at high spins.

  4. Temperature dependence of the giant dipole resonance width in 152Gd

    NASA Astrophysics Data System (ADS)

    Ghosh, C.; Mishra, G.; Rhine Kumar, A. K.; Dokania, N.; Nanal, V.; Pillay, R. G.; Kumar, Suresh; Rout, P. C.; Joshi, Sandeep; Arumugam, P.

    2016-07-01

    To investigate the dependence of giant dipole resonance (GDR) width on temperature (T ) and angular momentum (J ), high energy γ -ray spectra were measured in the reaction 28Si+124Sn at E28Si=135 MeV. The J information was deduced from multiplicity of low-energy γ rays. The GDR parameters, namely, the centroid energy and width are extracted using statistical model analysis. The observed variation of the GDR width for T ˜1.2 -1.37 MeV and J ˜20 ℏ -40 ℏ is consistent with the universal scaling given by Kusnezov et al., which is applicable in the liquid-drop regime. The GDR input cross sections extracted from the statistical model best fits are compared with thermal shape fluctuation model (TSFM) calculations and are found to be in good agreement. The TSFM calculations predominantly favor the noncollective oblate shape, while the statistical model fit with both prolate and oblate shapes describes the data. The present data together with earlier measurements indicate a very slow variation of the GDR width for T ˜1.2 to 1.5 MeV. The observed trend is well explained by the TSFM calculations, although the calculated values are ˜4 %-13% higher than the data.

  5. Quenching of the Giant Dipole Resonance Strength at High Excitation Energy

    NASA Astrophysics Data System (ADS)

    Santonocito, D.; Blumenfeld, Y.; Agodi, C.; Alba, R.; Bellia, G.; Coniglione, R.; Delaunay, F.; Del Zoppo, A.; Finocchiaro, P.; Frascaria, N.; Hongmei, F.; Lima, V.; Maiolino, C.; Migneco, E.; Piattelli, P.; Sapienza, P.; Scarpaci, J. A.

    2007-05-01

    The evolution with excitation energy of the Giant Dipole Resonance features in nuclei of mass A≈108-136 is reviewed. We first discuss the results of the experiments performed with MEDEA studying the GDR gamma decay from hot nuclei populated at excitation energies above 300 MeV. The focus of the paper is on the excitation energy region between 160 and 290 MeV. This region has been investigated through the study of the reactions 116Sn + 12C at 17 and 23 A MeV, and 116Sn + 24Mg at 17 A MeV. Gamma-rays were detected using MEDEA in coincidence with evaporation residues detected in MACISTE. The analysis of the gamma-ray spectra and their comparison with statistical calculations are presented. The comparison with γ-ray spectra from the reaction 36Ar + 98Mo at higher excitation energies shows a coherent scenario where a progressive reduction of γ multiplicity relative to predictions for 100% of the Energy Weighted Sum Rule is observed above 200 MeV excitation energy. Finally, the existence of a link between disappearance of collective motion and the liquid-gas phase transitions is discussed.

  6. Giant dipole resonance studies in Ba isotopes at E /A ≈5 MeV

    NASA Astrophysics Data System (ADS)

    Ghosh, C.; Kumar, A. K. Rhine; Dey, Balaram; Nanal, V.; Pillay, R. G.; Arumugam, P.; Anoop, K. V.; Dokania, N.; Garai, Abhijit; Gupta, Ghnashyam; Mirgule, E. T.; Mishra, G.; Mondal, Debasish; Pal, S.; Pose, M. S.; Rout, P. C.

    2017-07-01

    Exclusive measurements of high-energy γ rays have been performed in 124Ba and 136Ba at the same excitation energy (˜49 MeV ) to study the properties of the giant dipole resonance (GDR) over a wide N /Z range. The high-energy γ rays are measured in coincidence with the multiplicity of low-energy γ rays to disentangle the effect of temperature (T ) and angular momentum (J ). The GDR parameters are extracted employing a simulated Monte Carlo statistical model analysis. The observed γ -ray spectra of 124Ba can be explained with prolate deformation, whereas a single-component Lorentzian function which corresponds to a spherical shape could explain the γ -ray spectra of 136Ba. The observed GDR width in 136Ba is narrower compared to that of 124Ba. The statistical model best-fit GDR cross sections are found to be in reasonable agreement with the thermal shape fluctuation model (TSFM) calculations. Further, it is shown that the variation of GDR width with T is well reproduced by the TSFM calculations over the temperature range of 1.1-1.7 MeV.

  7. Effects of thermal shape fluctuations and pairing fluctuations on the giant dipole resonance in warm nuclei

    NASA Astrophysics Data System (ADS)

    Rhine Kumar, A. K.; Arumugam, P.; Dang, N. Dinh

    2015-04-01

    Apart from the higher limits of isospin and temperature, the properties of atomic nuclei are intriguing and less explored at the limits of lowest but finite temperatures. At very low temperatures there is a strong interplay between the shell (quantal fluctuations), statistical (thermal fluctuations), and residual pairing effects as evidenced from the studies on giant dipole resonance (GDR). In our recent work [Phys. Rev. C 90, 044308 (2014), 10.1103/PhysRevC.90.044308], we have outlined some of our results from a theoretical approach for such warm nuclei where all these effects are incorporated along within the thermal shape fluctuation model (TSFM) extended to include the fluctuations in the pairing field. In this article, we present the complete formalism based on the microscopic-macroscopic approach for determining the deformation energies and a macroscopic approach which links the deformation to GDR observables. We discuss our results for the nuclei 97Tc,120Sn,179Au, and 208Pb, and corroborate with the experimental data available. The TSFM could explain the data successfully at low temperature only with a proper treatment of pairing and its fluctuations. More measurements with better precision could yield rich information about several phase transitions that can happen in warm nuclei.

  8. Signature of clustering in quantum many-body systems probed by the giant dipole resonance

    NASA Astrophysics Data System (ADS)

    Pandit, Deepak; Mondal, Debasish; Dey, Balaram; Bhattacharya, Srijit; Mukhopadhyay, S.; Pal, Surajit; De, A.; Banerjee, S. R.

    2017-03-01

    The present experimental study illustrates how large deformations attained by nuclei due to cluster formation are perceived through the giant dipole resonance (GDR) strength function. The high energy GDR γ rays have been measured from 32S at different angular momenta (J ) but similar temperatures in the reactions 4He(Elab=45 MeV )+28Si and 20Ne(Elab=145 MeV )+12C . The experimental data at lower J (˜10 ℏ ) suggests a normal deformation, similar to the ground state value, showing no potential signature of clustering. However, it is found that the GDR lineshape is fragmented into two prominent peaks at high J (˜20 ℏ ) providing a direct measurement of the large deformation developed in the nucleus. The observed lineshape is also completely different from the ones seen for Jacobi shape transition at high J pointing towards the formation of cluster structure in superdeformed states of 32S at such high spin. Thus, the GDR can be regarded as a unique tool to study cluster formation at high excitation energies and angular momenta.

  9. Experimental study of the isovector giant dipole resonance in 80Zr and 81Rb

    NASA Astrophysics Data System (ADS)

    Ceruti, S.; Camera, F.; Bracco, A.; Mentana, A.; Avigo, R.; Benzoni, G.; Blasi, N.; Bocchi, G.; Bottoni, S.; Brambilla, S.; Crespi, F. C. L.; Giaz, A.; Leoni, S.; Million, B.; Morales, A. I.; Nicolini, R.; Pellegri, L.; Riboldi, S.; Wieland, O.; Bazzacco, D.; Ciemala, M.; Farnea, E.; Gottardo, A.; Kmiecik, M.; Maj, A.; Mengoni, D.; Michelagnoli, C.; Modamio, V.; Montanari, D.; Napoli, D.; Recchia, F.; Sahin, E.; Ur, C.; Valiente-Dobón, J. J.; Wasilewska, B.; Zieblinski, M.

    2017-01-01

    The isovector giant dipole resonance (IVGDR) γ decay was measured in the compound nuclei 80Zr and 81Rb at an excitation energy of E*=54 MeV. The fusion reaction 40Ca+40Ca at Ebeam=136 MeV was used to form the compound nucleus 80Zr, while the reaction 37Cl+44Ca at Ebeam=95 MeV was used to form the compound nucleus 81Rb at the same excitation energy. The IVGDR parameters extracted from the analysis were compared with the ones found at higher excitation energy (E*=83 MeV). The comparison allows one to observe two different nuclear mechanisms: (i) the IVGDR intrinsic width remains constant with the excitation energy in the nucleus 81Rb; (ii) the isospin-violating spreading width (i.e., Coulomb spreading width) remains constant with the excitation energy in the nucleus 80Zr. The experimental setup used for the γ -ray detection was composed by the AGATA demonstrator array coupled to the large-volume LaBr3:Ce detectors of the HECTOR+ array.

  10. Excitation and photon decay of giant multipole resonances - the role and future of medium-energy heavy ions

    SciTech Connect

    Bertrand, F.E.; Beene, J.R.; Horen, D.J.

    1988-01-01

    Inelastic scattering of medium energy heavy ions provides very large cross sections and peak-to-continuum ratios for excitation of giant resonances. For energies above about 50 MeV/nucleon, giant resonances are excited primarily through Coulomb excitation, which is indifferent to isospin, thus providing a good probe for the study of isovector giant resonances. The extremely large cross sections available from heavy ion excitation permit the study of rare decay modes of the photon decay of giant resonances following excitation by 22 and 84 MeV/nucleon /sup 17/O projectiles. The singles results at 84 MeV/nucleon yield peak cross sections for the isoscalar giant quadrupole resonance and the isovector giant dipole resonance of approximately 0.8 and 3 barns/sr, respectively. Data on the ground state decay of the isoscalar giant quadrupole and isovector giant dipole resonances are presented and compared with calculations. Decays to low-lying excited states are also discussed. Preliminary results from an experiment to isolate the /sup 208/Pb isovector quadrupole resonance using its gamma decay are presented.

  11. Properties of isoscalar-pair condensates

    NASA Astrophysics Data System (ADS)

    Van Isacker, P.; Macchiavelli, A. O.; Fallon, P.; Zerguine, S.

    2016-08-01

    It is pointed out that the ground state of n neutrons and n protons in a single-j shell, interacting through an isoscalar (T =0 ) pairing force, is not paired, J =0 , but rather spin aligned, J =n . This observation is explained in the context of a model of isoscalar P (J =1 ) pairs, which is mapped onto a system of p bosons, leading to an approximate analytic solution of the isoscalar-pairing limit in j j coupling.

  12. Onset of quenching of the giant dipole resonance at high excitation energies

    NASA Astrophysics Data System (ADS)

    Santonocito, D.; Blumenfeld, Y.; Agodi, C.; Alba, R.; Bellia, G.; Coniglione, R.; Delaunay, F.; Del Zoppo, A.; Finocchiaro, P.; Hongmei, F.; Lima, V.; Maiolino, C.; Migneco, E.; Piattelli, P.; Sapienza, P.; Scarpaci, J. A.; Wieland, O.

    2014-11-01

    The evolution of the giant dipole resonance (GDR) properties in nuclei of mass A =120 to 132 has been investigated in an excitation energy range between 150 and 270 MeV through the study of complete and nearly complete fusion reactions using 116Sn beams at 17 A and 23 A MeV from the cyclotron of the Laboratorio Nazionale del Sud impinging on 12C and 24Mg targets. γ rays and light charged particles were detected using the multi-element detector array MEDEA in coincidence with evaporation residues detected by using mass and charge identification spectrometry with telescope (MACISTE). Light-charged-particle energy spectra were analyzed within the framework of a multiple-source-emission scenario by using a fitting procedure to determine the amount of pre-equilibrium emission and deduce the excitation energies reached in the compound nuclei. A detailed analysis of the γ -ray spectra and their comparison with statistical model calculations is presented. Evidence of a quenching of the GDR gamma yield was found at 270 MeV excitation energy. The quenching effect becomes progressively more important with increasing excitation energy, as observed when the comparison is extended to data from the reaction 36Ar+96Mo at 37 A MeV where hot nuclei were populated up to 430 MeV excitation energy. A coherent scenario emerges indicating the existence of a limiting excitation energy for the collective motion of about E*/A =2.1 MeV for systems of mass A =105 to 111 while a slightly lower value was observed for nuclei of mass A ˜132 . The existence of a possible link between GDR disappearance and the liquid-gas phase transition is discussed.

  13. Effect of angular momentum on giant dipole resonance observables in the 28Si+116Cd reaction

    NASA Astrophysics Data System (ADS)

    Mukul, Ish; Roy, A.; Sugathan, P.; Gehlot, J.; Mohanto, G.; Madhavan, N.; Nath, S.; Dubey, R.; Mazumdar, I.; Gothe, D. A.; Kaur, Maninder; Kumar, A. K. Rhine; Arumugam, P.

    2013-08-01

    Background: Giant dipole resonance (GDR) has been used as an important tool for studying nuclear properties in hot rotating nuclei. Exclusive measurements using low-energy γ-ray multiplicity filters provide more control over angular momentum selection in such measurements.Purpose: Study the effect of angular momentum and temperature on nuclear deformations and GDR widths at high excitation energies in 144Sm.Methods: Exclusive measurements of GDR γ rays were carried out in the 28Si+116Cd reaction populated at two different excitation energies. Beam energies of 125 and 140 MeV pumped the nuclei to average temperatures of 1.1 to 1.5 MeV. The high-energy γ rays were measured using the large NaI(Tl) detector in coincidence with the sum-spin multiplicity filter consisting of 32 NaI(Tl) detectors covering nearly 4π sr of solid angle.Results: The average angular momentum spanned the range of 25ℏ to 60ℏ. The GDR centroid energies, widths, and deformation parameter (β) were extracted as a function of at three different bins of 1.1, 1.3, and 1.5 MeV. The thermal shape fluctuation model (TSFM) calculations have been performed incorporating the fluctuations induced due to temperature and deformation in the nucleus using a numerically exact method. The calculations showed evidence of deformation throughout the experimental range. The GDR width data have been interpreted in terms of reduced width as a function of reduced angular momentum.Conclusions: The nucleus evolves to a deformed shape from spherical shape in ground state in the extracted temperature range as predicted by the theoretical calculations. Kusnezov's parametrization also holds good for the large experimental J range.

  14. Search for magnetic dipole strength and giant spin-flip resonances in heavy nuclei. [120 to 200 MeV

    SciTech Connect

    Horen, D J

    1980-01-01

    A description is given of the use of high-resolution (n,n) scattering and the (p,n) reaction as tools to investigate highly excited states, with emphasis on information pertaining to magnetic dipole strength and giant spin-flip resonances in heavy nuclei. It is shown how the ability to determine uniquely the spins and parities of resonances observed in neutron scattering has been instrumental to an understanding of the distribution of M1 strength in /sup 207/ /sup 208/Pb. Some recent results of (p,n) studies with intermediate energy protons are discussed. Energy systematics of the giant Gamow-Teller (GT) resonance as well as new ..delta..l = ..delta..S = 1 resonance with J/sup ..pi../ = (1,2)/sup -/ are presented. It is shown how the (p,n) reaction might be useful in locating M1 strength in heavy nuclei. 20 figures.

  15. Giant Dipole Moments of Submicron Ice Crystallites Nucleated on Dust Particles Cause Polarization Catastrophe, Sprites

    NASA Astrophysics Data System (ADS)

    Handel, P. H.

    2007-05-01

    Supersaturation of water vapor in the atmosphere is known to be low, limited to just a few percent, because the nucleation processes of water aggregates and ice crystallites are heterogeneous. Nucleation is on dust particles, known as aerosol particles. Ice nuclei are often sub-micron SiO2 particles. The ice crystallite formed on such a nucleus is different from bulk ice, which has a hindered ferroelectric transition at 78 K, according to Hentschel's calculation and to other, Japanese studies. At this transition temperature the free energy difference between the ordered and disordered states is zero, DF=0. However, the thin ice layer deposited on the nucleus has a preferential direction, the radial direction, roughly perpendicular to the surface. This spoils in the crystallite the isotropy characterizing bulk ice. Therefore, in the free energy difference DF=DU- TDS, between the entropy difference DS that tries to lower the transition temperature, and the internal energy difference DU, the entropy term looses much of its importance. Therefore, the ferroelectric transition temperature of a sub-micron, heterogeneously nucleated, ice crystallite will be much higher, close to the melting temperature of bulk ice. For temperatures below 253 K this could remain valid even for slightly larger crystallites, almost up to 10 microns. The present paper is focused on this collective ordering effect. The ferroelectric transition is never observed in bulk ice, because the activation energy needed to achieve ferroelectric ordering is prohibitive, and causes the transition time to be infinite. On the other hand, at the much higher temperature estimated for the small, defect ridden, ice crystallites, the transition time is finite and the crystallites grow from the beginning with a ferroelectric saturation polarization. This causes each crystallite to have a giant dipole moment, and causes the whole cloud of crystallites to lapse into a Clausius-Mossotti type polarization catastrophe

  16. Giant dipole resonance built on hot rotating nuclei produced during evaporation of light particles from the 88Mo compound nucleus

    NASA Astrophysics Data System (ADS)

    Ciemała, M.; Kmiecik, M.; Maj, A.; Mazurek, K.; Bracco, A.; Kravchuk, V. L.; Casini, G.; Barlini, S.; Baiocco, G.; Bardelli, L.; Bednarczyk, P.; Benzoni, G.; Bini, M.; Blasi, N.; Brambilla, S.; Bruno, M.; Camera, F.; Carboni, S.; Cinausero, M.; Chbihi, A.; Chiari, M.; Corsi, A.; Crespi, F. C. L.; D'Agostino, M.; Degerlier, M.; Fornal, B.; Giaz, A.; Gramegna, F.; Krzysiek, M.; Leoni, S.; Marchi, T.; Matejska-Minda, M.; Mazumdar, I.; Meczyński, W.; Million, B.; Montanari, D.; Morelli, L.; Myalski, S.; Nannini, A.; Nicolini, R.; Pasquali, G.; Piantelli, S.; Prete, G.; Roberts, O. J.; Schmitt, Ch.; Styczeń, J.; Szpak, B.; Valdré, S.; Wasilewska, B.; Wieland, O.; Wieleczko, J. P.; Ziebliński, M.; Dudek, J.; Dinh Dang, N.

    2015-05-01

    High-energy giant dipole resonance (GDR) γ rays were measured following the decay of the hot, rotating compound nucleus of 88Mo, produced at excitation energies of 124 and 261 MeV. The reaction 48Ti + 40Ca at 300 and 600 MeV bombarding energies has been used. The data were analyzed using the statistical model Monte Carlo code gemini++. It allowed extracting the giant dipole resonance parameters by fitting the high-energy γ -ray spectra. The extracted GDR widths were compared with the available data at lower excitation energy and with theoretical predictions based on (i) The Lublin-Strasbourg drop macroscopic model, supplemented with thermal shape fluctuations analysis, and (ii) The phonon damping model. The theoretical predictions were convoluted with the population matrices of evaporated nuclei from the statistical model gemini++. Also a comparison with the results of a phenomenological expression based on the existing systematics, mainly for lower temperature data, is presented and discussed. A possible onset of a saturation of the GDR width was observed around T =3 MeV.

  17. Probing nuclear shapes close to the fission limit with the giant dipole resonance in {sup 216}Rn

    SciTech Connect

    Kmiecik, M.; Maj, A.; Brekiesz, M.; Krolas, W.; Meczynski, W.; Styczen, J.; Zieblinski, M.; Million, B.; Bracco, A.; Camera, F.; Benzoni, G.; Leoni, S.; Wieland, O.; Brambilla, S.; Herskind, B.; Kicinska-Habior, M.; Dubray, N.; Dudek, J.; Schunck, N.

    2004-12-01

    The gamma-ray decay of the giant dipole resonance (GDR) in the compound nucleus {sup 216}Rn formed with the reaction {sup 18}O+{sup 198}Pt at the bombarding energy of 96 MeV was investigated. High-energy gamma-ray spectra in coincidence with both prompt and delayed low-energy transitions were measured. The obtained GDR width at the average temperature {approx_equal}1 MeV was found to be larger than that at T=0 MeV and to be approximately constant as a function of spin. The measured width value of 7 MeV is found to be consistent with the predictions based on calculations of the nuclear shape distribution using the newest approach for the treatment of the fission barrier within the liquid drop model. The present study is the first investigation of the giant dipole resonance width from the fusion-evaporation decay channel in this nuclear mass range.

  18. Isoscalar meson spectroscopy from lattice QCD

    SciTech Connect

    Jozef Dudek, Robert Edwards, David Richards, Christopher Thomas, Balint Joo, Michael Peardon

    2011-06-01

    We extract to high statistical precision an excited spectrum of single-particle isoscalar mesons using lattice QCD, including states of high spin and, for the first time, light exotic JPC isoscalars. The use of a novel quark field construction has enabled us to overcome the long-standing challenge of efficiently including quark-annihilation contributions. Hidden-flavor mixing angles are extracted and while most states are found to be close to ideally flavor mixed, there are examples of large mixing in the pseudoscalar and axial sectors in line with experiment. The exotic JPC isoscalar states appear at a mass scale comparable to the exotic isovector states.

  19. Information Content of the Low-Energy Electric Dipole Strength: Correlation Analysis

    SciTech Connect

    Reinhard, P.-G.; Nazarewicz, Witold

    2013-01-01

    Background: Recent experiments on the electric dipole (E1) polarizability in heavy nuclei have stimulated theoretical interest in the low-energy electric dipole strength, both isovector and isoscalar. Purpose: We study the information content carried by the electric dipole strength with respect to isovector and isoscalar indicators characterizing bulk nuclear matter and finite nuclei. To separate isoscalar and isovector modes, and low-energy strength and giant resonances, we analyze the E1 strength as a function of the excitation energy E and momentum transfer q. Methods: We use the self-consistent nuclear density functional theory with Skyrme energy density functionals, augmented by the random phase approximation, to compute the E1 strength and covariance analysis to assess correlations between observables. Calculations are performed for the spherical, doubly magic nuclei 208Pb and 132Sn. Results: We demonstrate that E1 transition densities in the low-energy region below the giant dipole resonance exhibit appreciable state dependence and multinodal structures, which are fingerprints of weak collectivity. The correlation between the accumulated low-energy strength and the symmetry energy is weak, and dramatically depends on the energy cutoff assumed. On the other hand, a strong correlation is predicted between isovector indicators and the accumulated isovector strength at E around 20 MeV and momentum transfer q 0.65 fm 1. Conclusions: Momentum- and coordinate-space patterns of the low-energy dipole modes indicate a strong fragmentation into individual particle-hole excitations. The global measure of low-energy dipole strength correlates poorly with the nuclear symmetry energy and other isovector characteristics. Consequently, our results do not support the suggestion that there exists a collective pygmy dipole resonance, which is a strong indicator of nuclear isovector properties. By considering nonzero values of momentum transfer, one can isolate individual

  20. Electric dipole strength distribution below the E1 giant resonance in N = 82 nuclei

    NASA Astrophysics Data System (ADS)

    Guliyev, Ekber; Kuliev, Ali; Guner, Mehmet

    2010-12-01

    In this study quasiparticle random-phase approximation with the translational invariant Hamiltonian using deformed mean field potential has been conducted to describe electric dipole excitations in 136Xe, 138Ba, 140Ce, 142Nd, 144Sm and 146Gd isotones. The distribution of the calculated E1 strength shows a resonance like structure at energies between 6-8 MeV exhausting up to 1% of the isovector electric dipole Energy Weighted Sum Rule and in some aspects nicely confirms the experimental data. It has been shown that the main part of E1 strength, observed below the threshold in these nuclei may be interpreted as main fragments of the Pygmy Dipole resonance. The agreement between calculated mean excitation energies as well as summed B(E1) value of the 1- excitations and the available experimental data is quite good. The calculations indicate the presence of a few prominent positive parity 1+ States in heavy N = 82 isotones in the energy interval 6-8 MeV which shows not all dipole excitations were of electric character in this energy range.

  1. Electric dipole strength distribution below the E1 giant resonance in N = 82 nuclei

    NASA Astrophysics Data System (ADS)

    Guliyev, Ekber; Kuliev, Ali; Guner, Mehmet

    2010-12-01

    In this study quasiparticle random-phase approximation with the translational invariant Hamiltonian using deformed mean field potential has been conducted to describe electric dipole excitations in 136Xe, 138Ba, 140Ce, 142Nd, 144Sm and 146Gd isotones. The distribution of the calculated E1 strength shows a resonance like structure at energies between 6-8 MeV exhausting up to 1% of the isovector electric dipole Energy Weighted Sum Rule and in some aspects nicely confirms the experimental data. It has been shown that the main part of E1 strength, observed below the threshold in these nuclei may be interpreted as main fragments of the Pygmy Dipole resonance. The agreement between calculated mean excitation energies as well as summed B( E1) value of the 1- excitations and the available experimental data is quite good. The calculations indicate the presence of a few prominent positive parity 1+ States in heavy N = 82 isotones in the energy interval 6-8 MeV which shows not all dipole excitations were of electric character in this energy range.

  2. Neutron-skin thickness of 208Pb from the energy of the anti-analogue giant dipole resonance

    NASA Astrophysics Data System (ADS)

    Krasznahorkay, A.; Paar, N.; Vretenar, D.; Harakeh, M. N.

    2013-05-01

    The energy of the charge-exchange anti-analogue giant dipole resonance (AGDR) has been calculated for the 208Pb isotope using the state-of-the-art fully self-consistent relativistic proton-neutron quasiparticle random-phase approximation based on the relativistic Hartree-Bogoliubov model. It is shown that the AGDR centroid energy is very sensitively related to the corresponding neutron-skin thickness. The neutron-skin thickness of 208Pb has been determined very precisely by comparing the theoretical results with the available experimental data on E(AGDR). The result ΔRpn = 0.161 ± 0.042 agrees nicely with the previous experimental results.

  3. Signature to detect the isovector giant quadrupole resonance

    NASA Astrophysics Data System (ADS)

    Speth, J.; Cha, D.; Klemt, V.; Wambach, J.

    1985-06-01

    We calculate the γ decay from the isoscalar and isovector giant quadrupole resonances in 208Pb into the low-lying spectrum. Whereas the γ decay from the isoscalar giant quadrupole resonance into the first excited 3- state is very small, the corresponding transition from the isovector giant quadrupole resonance is strongly enhanced. According to preliminary calculations, these results hold rather generally for other heavy mass nuclei. We suggest using this property in experimental investigation of the isovector giant quadrupole resonance.

  4. Structure of the pygmy dipole resonance in 124Sn

    NASA Astrophysics Data System (ADS)

    Endres, J.; Savran, D.; Butler, P. A.; Harakeh, M. N.; Harissopulos, S.; Herzberg, R.-D.; Krücken, R.; Lagoyannis, A.; Litvinova, E.; Pietralla, N.; Ponomarev, V. Yu.; Popescu, L.; Ring, P.; Scheck, M.; Schlüter, F.; Sonnabend, K.; Stoica, V. I.; Wörtche, H. J.; Zilges, A.

    2012-06-01

    Background: In atomic nuclei, a concentration of electric dipole strength around the particle threshold, commonly denoted as pygmy dipole resonance, may have a significant impact on nuclear structure properties and astrophysical scenarios. A clear identification of these states and the structure of this resonance is still under discussion.Purpose: We present an experimental and theoretical study of the isospin character of the pygmy dipole resonance and investigation of a splitting of the electric dipole strength previously observed in experiments on N=82 nuclei.Method: The pygmy dipole resonance has been studied in the semi-magic Z=50 nucleus 124Sn by means of the (α,α'γ) coincidence method at Eα=136MeV using the Big-Bite Spectrometer at the Kernfysisch Versneller Instituut in Groningen, The Netherlands.Results: A splitting of the low-energy part of the electric dipole strength was identified in 124Sn by comparing the differential cross sections measured in (α,α'γ) to results stemming from (γ,γ') photon-scattering experiments. While an energetically lower-lying group of states is observed in both kinds of experiments, a higher-lying group of states is only excited in the (γ,γ') reaction. In addition, theoretical calculations using the self-consistent relativistic quasiparticle time-blocking approximation and the quasiparticle-phonon model have been performed. Both calculations show a qualitative agreement with the experimental data and predict a low-lying isoscalar component that is dominated by neutron-skin oscillations as expected for the pygmy dipole resonance. Furthermore, the states at higher energies show a pronounced isovector component and a different radial dependence of the corresponding transition densities as expected for the tail of the giant dipole resonance.Conclusions: An experimental signature of the neutron-skin oscillation of the pygmy dipole resonance has been corroborated. The combination of the presented reactions might make it

  5. Excited light isoscalar mesons from lattice QCD

    SciTech Connect

    Christopher Thomas

    2011-07-01

    I report a recent lattice QCD calculation of an excited spectrum of light isoscalar mesons, something that has up to now proved challenging for lattice QCD. With novel techniques we extract an extensive spectrum with high statistical precision, including spin-four states and, for the first time, light isoscalars with exotic quantum numbers. In addition, the hidden flavour content of these mesons is determined, providing a window on annihilation dynamics in QCD. I comment on future prospects including applications to the study of resonances.

  6. TESTING CONVECTIVE-CORE OVERSHOOTING USING PERIOD SPACINGS OF DIPOLE MODES IN RED GIANTS

    SciTech Connect

    Montalban, J.; Noels, A.; Dupret, M.-A.; Scuflaire, R.; Miglio, A.; Ventura, P.

    2013-04-01

    Uncertainties on central mixing in main-sequence (MS) and core He-burning (He-B) phases affect key predictions of stellar evolution such as late evolutionary phases, chemical enrichment, ages, etc. We propose a test of the extension of extra-mixing in two relevant evolutionary phases based on period spacing ({Delta}P) of solar-like oscillating giants. From stellar models and their corresponding adiabatic frequencies (respectively, computed with ATON and LOSC codes), we provide the first predictions of the observable {Delta}P for stars in the red giant branch and in the red clump (RC). We find (1) a clear correlation between {Delta}P and the mass of the helium core (M{sub He}); the latter in intermediate-mass stars depends on the MS overshooting, and hence it can be used to set constraints on extra-mixing during MS when coupled with chemical composition; and (2) a linear dependence of the average value of the asymptotic period spacing (({Delta}P){sub a}) on the size of the convective core during the He-B phase. A first comparison with the inferred asymptotic period spacing for Kepler RC stars also suggests the need for extra-mixing during this phase, as evinced from other observational facts.

  7. Isomeric ratios in photonuclear reactions of molybdenum isotopes induced by bremsstrahlung in the giant dipole resonance region

    NASA Astrophysics Data System (ADS)

    Thiep, Tran Duc; An, Truong Thi; Cuong, Phan Viet; Vinh, Nguyen The; Hue, Bui Minh; Belov, A. G.; Maslov, O. D.; Mishinsky, G. V.; Zhemenik, V. I.

    2017-01-01

    We have determined the isomeric ratios of isomeric pairs 97m,gNb, 95m,gNb and 91m,gMo produced in 98Mo(γ, p)97m,gNb, 96Mo(γ, p)95m,gNb and 92Mo(γ, n)91m,gMo photonuclear reactions in the giant dipole resonance (GDR) region by the activation method. The results were analyzed, discussed and compared with the similar data from literature to examine the role of excitation energy, neutron configuration, channel effect and direct and pre-equilibrium processes in (γ, p) photonuclear reactions. In this work the isomeric ratios for 97m,gNb from 14 to 19 MeV, for 195m,gNb from14 to 24 MeV except 20 and 23.5 MeV and for 91m,gMo at 14 and 15 MeV are the first time measurements.

  8. Giant Dipole Resonance in the hot and thermalized 132Ce nucleus: damping of collective modes at finite temperature

    SciTech Connect

    Wieland, O; Bracco, A; Camera, F; Benzoni, G; Blasi, N; Brambilla, S; Crespi, F; Giussani, A; Leoni, S; Million, B; Moroni, A; Barlini, S; Kravchuk, V L; Gramegna, F; Lanchais, A; Mastinu, P; Maj, A; Brekiesz, M; Kmiecik, M; Bruno, M; Geraci, E; Vannini, G; Casini, G; Chiari, M; Nannini, A; Ordine, A; Ormand, W E

    2006-06-16

    The {gamma} decay of the Giant Dipole Resonance in the {sup 132}Ce compound nucleus with temperature up to {approx} 4 MeV has been measured. The symmetric {sup 64}Ni + {sup 68}Zn at E{sub beam} = 300, 400, 500 MeV and the asymmetric reaction {sup 16}O + {sup 116}Sn at E{sub beam} = 130, 250 MeV have been investigated. Light charged particles and {gamma} rays have been detected in coincidence with the recoiling compound system. In the case of the mass symmetric {sup 64}Ni induced reaction the {gamma} and charged particle spectral shapes are found to be consistent with the emission from a fully equilibrated compound nuclei and the GDR parameters are extracted from the data using a statistical model analysis. The GDR width is found to increase almost linear with temperature. This increase is rather well reproduced within a model which includes both the thermal fluctuation of the nuclear shape and the lifetime of the compound nucleus.

  9. Role of deformation on giant resonances within the quasiparticle random-phase approximation and the Gogny force

    SciTech Connect

    Peru, S.; Goutte, H.

    2008-04-15

    Fully consistent axially-symmetric-deformed quasiparticle random phase approximation (QRPA) calculations have been performed, in which the same Gogny D1S effective force has been used for both the Hartree-Fock-Bogolyubov mean field and the QRPA approaches. Giant resonances calculated in deformed {sup 26-28}Si and {sup 22-24}Mg nuclei as well as in the spherical {sup 30}Si and {sup 28}Mg isotopes are presented. Theoretical results for isovector-dipole and isoscalar monopole, quadrupole, and octupole responses are presented and the impact of the intrinsic nuclear deformation is discussed.

  10. Calculations of the giant-dipole-resonance photoneutrons using a coupled EGS4-morse code

    SciTech Connect

    Liu, J.C.; Nelson, W.R.; Kase, K.R.; Mao, X.S.

    1995-10-01

    The production and transport of the photoneutrons from the giant-dipoleresonance reaction have been implemented in a coupled EGS4-MORSE code. The total neutron yield (including both the direct neutron and evaporation neutron components) is calculated by folding the photoneutron yield cross sections with the photon track length distribution in the target. Empirical algorithms based on the measurements have been developed to estimate the fraction and energy of the direct neutron component for each photon. The statistical theory in the EVAP4 code, incorporated as a MORSE subroutine, is used to determine the energies of the evaporation neutrons. These represent major improvements over other calculations that assumed no direct neutrons, a constant fraction of direct neutrons, monoenergetic direct neutron, or a constant nuclear temperature for the evaporation neutrons. It was also assumed that the slow neutrons (< 2.5 MeV) are emitted isotropically and the fast neutrons are emitted anisotropically in the form of 1+Csin{sup 2}{theta}, which have a peak emission at 900. Comparisons between the calculated and the measured photoneutron results (spectra of the direct, evaporation and total neutrons; nuclear temperatures; direct neutron fractions) for materials of lead, tungsten, tantalum and copper have been made. The results show that the empirical algorithms, albeit simple, can produce reasonable results over the interested photon energy range.

  11. Elastic dipole response of spherical nuclei

    SciTech Connect

    Bastrukov, S.I.

    1992-10-01

    Within the framework of the nuclear fluid-dynamics the isoscalar dipole response of spherical nuclei is studied. Two kinds of elastic-like transverse oscillations of incompressible nucleus are found to be result in E1, T = 0 and M1, T = 0 spin-independent resonances. The isoscalar electric mode is accompanied by excitation in the nucleus volume of the torus-like current structure, known in the continuum theory as a poloidal dipole or spherical vortex of Hill. The dipole magnetic resonance belongs to the excitation of axially symmetric differential rotations. These motions are described by the toroidal dipole field harmonic in time. The estimates of energies and PWBA-computed form-factors for these modes are presented. 28 refs., 3 figs.

  12. Measurement of the isoscalar monopole response in the neutron-rich nucleus 68Ni.

    PubMed

    Vandebrouck, M; Gibelin, J; Khan, E; Achouri, N L; Baba, H; Beaumel, D; Blumenfeld, Y; Caamaño, M; Càceres, L; Colò, G; Delaunay, F; Fernandez-Dominguez, B; Garg, U; Grinyer, G F; Harakeh, M N; Kalantar-Nayestanaki, N; Keeley, N; Mittig, W; Pancin, J; Raabe, R; Roger, T; Roussel-Chomaz, P; Savajols, H; Sorlin, O; Stodel, C; Suzuki, D; Thomas, J C

    2014-07-18

    The isoscalar monopole response has been measured in the unstable nucleus (68)Ni using inelastic alpha scattering at 50A  MeV in inverse kinematics with the active target MAYA at GANIL. The isoscalar giant monopole resonance (ISGMR) centroid was determined to be 21.1 ± 1.9 MeV and indications for a soft monopole mode are provided for the first time at 12.9 ± 1.0 MeV. Analysis of the corresponding angular distributions using distorted-wave-born approximation with random-phase approximation transition densities indicates that the L = 0 multipolarity dominates the cross section for the ISGMR and significantly contributes to the low-energy mode. The L=0 part of this low-energy mode, the soft monopole mode, is dominated by neutron excitations. This demonstrates the relevance of inelastic alpha scattering in inverse kinematics in order to probe both the ISGMR and isoscalar soft modes in neutron-rich nuclei.

  13. Measurement of the Isoscalar Monopole Response in the Neutron-Rich Nucleus Ni68

    NASA Astrophysics Data System (ADS)

    Vandebrouck, M.; Gibelin, J.; Khan, E.; Achouri, N. L.; Baba, H.; Beaumel, D.; Blumenfeld, Y.; Caamaño, M.; Càceres, L.; Colò, G.; Delaunay, F.; Fernandez-Dominguez, B.; Garg, U.; Grinyer, G. F.; Harakeh, M. N.; Kalantar-Nayestanaki, N.; Keeley, N.; Mittig, W.; Pancin, J.; Raabe, R.; Roger, T.; Roussel-Chomaz, P.; Savajols, H.; Sorlin, O.; Stodel, C.; Suzuki, D.; Thomas, J. C.

    2014-07-01

    The isoscalar monopole response has been measured in the unstable nucleus Ni68 using inelastic alpha scattering at 50A MeV in inverse kinematics with the active target MAYA at GANIL. The isoscalar giant monopole resonance (ISGMR) centroid was determined to be 21.1±1.9 MeV and indications for a soft monopole mode are provided for the first time at 12.9±1.0 MeV. Analysis of the corresponding angular distributions using distorted-wave-born approximation with random-phase approximation transition densities indicates that the L =0 multipolarity dominates the cross section for the ISGMR and significantly contributes to the low-energy mode. The L=0 part of this low-energy mode, the soft monopole mode, is dominated by neutron excitations. This demonstrates the relevance of inelastic alpha scattering in inverse kinematics in order to probe both the ISGMR and isoscalar soft modes in neutron-rich nuclei.

  14. Isoscalar [ital M]1 strength in lead

    SciTech Connect

    Alarcon, R.; Choi, S. ); Laszewski, R.M.; Dale, D.S. )

    1993-09-01

    Highly polarized tagged photons were used to measure the distribution of [ital M]1 transition strength in [sup 206]Pb at excitations between 5.5 and 6.9 MeV. The total [ital M]1 strength found in this energy range is consistent with that reported in [sup 208]Pb. For the isoscalar state at 5.8 MeV in [sup 206]Pb, [ital B]([ital M]1[up arrow])=(0.72[plus minus]0.15)[mu][sub [ital N

  15. Effective restoration of dipole sum rules within the renormalized random-phase approximation

    NASA Astrophysics Data System (ADS)

    Hung, N. Quang; Dang, N. Dinh; Hao, T. V. Nhan; Phuc, L. Tan

    2016-12-01

    The dipole excitations for calcium and zirconium isotopes are studied within the fully self-consistent Hartree-Fock mean field incorporated with the renormalized random-phase approximation (RRPA) using the Skyrme interaction SLy5. The RRPA takes into account the effect of ground-state correlations beyond RPA owing to the Pauli principle between the particle-hole pairs that form the RPA excitations as well as the correlations due to the particle-particle and hole-hole transitions, whose effects are treated here in an effective way. By comparing the RPA results with the RRPA ones, which are obtained for isoscalar (IS) and isovector (IV) dipole excitations in 48,52,58Ca and 90,96,110Zr, it is shown that ground-state correlations beyond the RPA reduce the IS transition strengths. They also shift up the energy of the lowest IV dipole state and slightly push down the peak energy of the IV giant dipole resonance. As the result, the energy-weighted sums of strengths of both IS and IV modes decrease, causing the violation of the corresponding energy-weighted sum rules (EWSR). It is shown that this sum rule violation can be eliminated by taking into account the contribution of the particle-particle and hole-hole excitations together with the particle-hole ones in a simple and perturbative way. Consequently, the ratio of the energy-weighted sum of strengths of the pygmy dipole resonance to that of the giant dipole resonance increases.

  16. Investigation of giant-dipole-resonance decay in the ({gamma}, n) reactions on {sup 52}Cr and {sup 51}V nuclei

    SciTech Connect

    Verbitsky, S. S.; Lapic, A.M. Ratner, B. S.; Rusakov, A. V.; Tikanov, M. A.; Tulupov, B. A.; Tzelebrovsky, A. N.

    2009-03-15

    The cross sections for the emission of fast neutrons ({epsilon}{sub n} > 3.7 MeV) in the reactions {sup 52}Cr({gamma}, n){sup 51}Cr and {sup 51}V({gamma}, n){sup 50}V at incident-photon energies in the range between 16.0 and 25.8 MeV were studied. The neutron energy spectra were measured at the bremsstrahlung-photon endpoint energies of 18.5, 21.0, and 23.0 MeV for the {sup 52}Cr and {sup 51}V nuclei and at the bremsstrahlung-photon energy of 25.5 MeV for the {sup 51}V nucleus. Special features of giant-dipole-resonance decay that are associated with the existence of a structure in photoneutron cross sections and spectra are discussed.

  17. Light Charged Particles Emission and the Giant Dipole Resonance in Highly Excited Ce Nucleus Formed in Reactions with Different Mass Asymmetries

    SciTech Connect

    Barlini, S.; Kravchuk, V. L.; Gramegna, F.; Lanchais, A.; Mastinu, P. F.; Wieland, O.; Bracco, A.; Airoldi, A.; Benzoni, G.; Blasi, N.; Brambilla, S.; Camera, F.; Leoni, S.; Million, B.; Moroni, A.; Sacchi, R.; Brekiesz, M.; Kmiecik, M.; Maj, A.; Bruno, M.

    2006-08-14

    Recent measurements have been performed at the National Laboratoty of Legnaro using mass-symmetric (400, 500 MeV 64Ni + 68Zn) and mass-asymmetric (250 MeV 16O + 116Sn) entrance channel reactions to form {sup 132}Ce compound nucleus at different excitation energies (E*=150, 200 and 200 MeV, respectively). The decay of the composite system has been followed studying the {gamma}-rays and Light Charged Particles (LCP) spectra emitted in coincidence with the Evaporation Residues (ER). In this way the emission mechanism of the LCP, depending on the mass-asymmetry at the entrance channel and on the projectile energy, and the results of the Full Width Half-Maximum (FWHM) of the Giant Dipole Resonance as a function of the nuclear temperature have been studied.

  18. Measurement of the Isoscalar Monopole Response in the Neutron-Rich Nucleus 68Ni using the Active Target MAYA

    NASA Astrophysics Data System (ADS)

    Vandebrouck, M.; Gibelin, J.; Khan, E.; Achouri, N. L.; Baba, H.; Beaumel, D.; Blumenfeld, Y.; Caamaño, M.; Càceres, L.; Colò, G.; Delaunay, F.; Fernandez-Dominguez, B.; Garg, U.; Grinyer, G. F.; Harakeh, M. N.; Kalantar-Nayestanaki, N.; Keeley, N.; Mittig, W.; Pancin, J.; Raabe, R.; Roger, T.; Roussel-Chomaz, P.; Savajols, H.; Sorlin, O.; Stodel, C.; Suzuki, D.; Thomas, J. C.

    We report the measurement of the isoscalar monopole strength in the unstable nucleus 68Ni using inelastic alpha scattering at 50A MeV in inverse kinematics. This experiment has been performed at GANIL with LISE spectrometer using a dedicated detector: the active target MAYA. A part of the isoscalar giant monopole resonance (ISGMR) has been measured at 21.1 ± 1.9 MeV and indications for a soft monopole mode are provided for the first time at 12.9 ± 1.0 MeV. Distorted-wave born approximation (DWBA) with random-phase approximation (RPA) transition densities have been used to study angular distribution and indicate that the L = 0 multipolarity dominates the cross-section for the ISGMR, and significantly contributes to the soft mode.

  19. Internal Pair Decay of Giant Resonances in Hot LEAD-200.

    NASA Astrophysics Data System (ADS)

    Adami, Susan

    Electron-positron pairs emitted during the de -excitation of the hot ^{200}Pb were detected with the Stony Brook pair detector, a phoswich array, in order to observe the internal pair decay of giant resonances (GR) built on excited states. These collective excitations are particularly well defined in heavy nuclei, and the full GR sum rule had been found in the ground state excitations of both the giant dipole resonance and the isoscalar monopole resonance. The excited compound nucleus was formed by bombarding a ^{181} Ta target with a 95 MeV pulsed ^ {19}F beam. While the gamma-decay from giant resonances of multipolarities L >=q 1 results in cross-sections 3-4 orders of magnitudes bigger than the internal pair decay, the decay of giant monopole resonances via a collective E0 transition can only be observed in the e^+ - e^ --decay channel. Another advantage of investigating electro-magnetic transitions via the pair decay channel is the fact that the correlation angle (and also the energy sharing) between the electron and the positron provides insight in the multipolarity of the observed transition. Especially the angular correlation distribution of an L = 0 transition is easily distinguished from the L >=q 1 cases. In the data analysis, the pair spectra were compared to calculations using the statistical model code CASCADE, which was modified to include the internal pair decay of giant resonances from the compound nucleus as well as from the fission fragments. In addition, gamma measurements from the same reaction at a comparable excitation energy (93 MeV) were available. The extracted pair spectra confirmed the CASCADE prediction that the giant dipole resonance dominates the pair decay from a hot, heavy nucleus. Superior statistics would be necessary in order to extract weaker modes like the monopole or quadrupole resonances and due to the lack in statistics this work can only offer a rough estimate for the width and position of the isoscalar giant monopole

  20. Elasticity of nuclear medium as a principal macrodynamical promoter of electric pygmy dipole resonance

    NASA Astrophysics Data System (ADS)

    Bastrukov, S. I.; Molodtsova, I. V.; Podgainy, D. V.; Mişicu, Ş.; Chang, H.-K.

    2008-06-01

    Motivated by arguments of the nuclear core-layer model formulated in [S.I. Bastrukov, J.A. Maruhn, Z. Phys. A 335 (1990) 139], the macroscopic excitation mechanism of the electric pygmy dipole resonance (PDR) is considered as owing its origin to perturbation-induced effective decomposition of a nucleus into two spherical domains-undisturbed inner region treated as a static core and dynamical layer undergoing elastic shear vibrations. The elastic restoring force is central to the excitation mechanism under consideration and has the same physical meaning as in macroscopic model of nuclear giant resonances involving distortions of the Fermi-sphere providing unified description of isoscalar giant electric and magnetic resonances of multipole degree ℓ ⩾ 2 in terms of two fundamental vibrational modes in an elastic sphere, to wit, as spheroidal (electric) and torsional (magnetic) modes of shear elastic oscillations of the nodeless field of material displacements excited in the entire nucleus volume. In the present Letter focus is placed on the emergence of dipole overtone in the frequency spectrum of spheroidal elastic vibrations as Goldstone soft mode. To emphasis this feature of dipole resonant excitation imprinted in the core-layer model we regain spectral equation for the frequency of spheroidal elastic vibrations trapped in the finite-depth layer, derived in the above paper, but using canonical equation of an elastic continuous medium. The obtained analytic equations for the frequency of dipole vibrational state in question and its excitation strength lead to the following estimates for the PDR energy centroid EPDR (E 1) = [ 31 ± 1 ]A - 1 / 3 MeV and the total excitation probability BPDR (E 1) = [ 1.85 ± 0.05 ]10-3Z2A - 2 / 3e2fm2 throughout the nuclear chart exhibiting fundamental character of this soft dipole mode of nuclear resonant response.

  1. Nature of low-lying electric dipole resonance excitations in 74Ge

    NASA Astrophysics Data System (ADS)

    Negi, D.; Wiedeking, M.; Lanza, E. G.; Litvinova, E.; Vitturi, A.; Bark, R. A.; Bernstein, L. A.; Bleuel, D. L.; Bvumbi, S.; Bucher, T. D.; Daub, B. H.; Dinoko, T. S.; Easton, J. L.; Görgen, A.; Guttormsen, M.; Jones, P.; Kheswa, B. V.; Khumalo, N. A.; Larsen, A. C.; Lawrie, E. A.; Lawrie, J. J.; Majola, S. N. T.; Masiteng, L. P.; Nchodu, M. R.; Ndayishimye, J.; Newman, R. T.; Noncolela, S. P.; Orce, J. N.; Papka, P.; Pellegri, L.; Renstrøm, T.; Roux, D. G.; Schwengner, R.; Shirinda, O.; Siem, S.

    2016-08-01

    Isospin properties of dipole excitations in 74Ge are investigated using the (α ,α'γ ) reaction and compared to (γ ,γ' ) data. The results indicate that the dipole excitations in the energy region of 6 to 9 MeV adhere to the scenario of the recently found splitting of the region of dipole excitations into two separated parts: one at low energy, being populated by both isoscalar and isovector probes, and the other at high energy, excited only by the electromagnetic probe. Relativistic quasiparticle time blocking approximation (RQTBA) calculations show a reduction in the isoscalar E 1 strength with an increase in excitation energy, which is consistent with the measurement.

  2. Ratio of isoscalar to isovector core polarization for magnetic moments

    SciTech Connect

    Zamick, L.; Sharon, Y. Y.; Robinson, S. J. Q.

    2010-12-15

    In calculations of isoscalar magnetic moments of odd-odd N=Z nuclei, it was found that, for medium- to heavy-mass nuclei, large-scale shell-model calculations yielded results that were very close to those obtained with the much simpler single-j shell model. To understand this, we compare isoscalar and isovector core-polarization configuration-mixing contributions to the magnetic moments of mirror pairs in first-order perturbation theory, using a spin-dependent {delta} interaction. We fit the strength of the {delta} interaction by looking at isovector and isoscalar mirror pairs. We then use the same interaction to calculate corrections due to first-order core polarization of the magnetic moments of odd-odd nuclei.

  3. Spin observables for the isovector spin-dipole giant resonance excited in (p,n) reactions at medium energies.

    NASA Astrophysics Data System (ADS)

    Watson, J. W.

    1996-10-01

    For charge-exchange reactions at medium energies, one of the dominant features of small-angle spectra is the excitation of the ΔT = 1, ΔL = 1, ΔS = 1 isovector "spin-dipole" resonance (SDR). We describe how polarization-transfer measurements can be used to identify the overlapping J^π = 0^-, 1^-, and 2^- components of the SDR. Results for ^16O(p,n) and ^40Ca(p,n) using data (J. W. Watson et al.), Nucl. Phys. A577, 79c (1994). (J. W. Watson et al.), Nucl. Phys. A599, 211c (1996). for the transverse polarization-transfer coefficient D_NN' are presented and compared with distorted-wave impulse approximation (DWIA) calculations with theory of finite Fermi systems (TFFS) wavefunctions. (F. A. Gareev et al.), Sov. J. Part. Nucl. 19, 373 (1988). Future experiments will utilize complete sets of polarization-transfer data to extract the longitudinal and transverse spin responses,(M. Ichimura and K. Kawahigashi, Phys. Rev. C45), 1822 (1992). which will provide a more definitive separation of the different J^πs in the SDR. footnote Supported by NSF PHY 94-09265

  4. Study of the soft dipole modes in 140Ce via inelastic scattering of 17O

    NASA Astrophysics Data System (ADS)

    Krzysiek, M.; Kmiecik, M.; Maj, A.; Bednarczyk, P.; Ciemała, M.; Fornal, B.; Grȩbosz, J.; Mazurek, K.; Mȩczyński, W.; Ziȩbliński, M.; Crespi, F. C. L.; Bracco, A.; Benzoni, G.; Blasi, N.; Boiano, C.; Bottoni, S.; Brambilla, S.; Camera, F.; Giaz, A.; Leoni, S.; Million, B.; Morales, A. I.; Nicolini, R.; Pellegri, L.; Riboldi, S.; Vandone, V.; Wieland, O.; De Angelis, G.; Napoli, D. R.; Valiente-Dobon, J. J.; Bazzacco, D.; Farnea, E.; Gottardo, A.; Lenzi, S.; Lunardi, S.; Mengoni, D.; Michelagnoli, C.; Recchia, F.; Ur, C.; Gadea, A.; Huyuk, T.; Barrientos, D.; Birkenbach, B.; Geibel, K.; Hess, H.; Reiter, P.; Steinbach, T.; Wiens, A.; Bürger, A.; Görgen, A.; Guttormsen, M.; Larsen, A. C.; Siem, S.

    2014-05-01

    The main aim of this study was a deeper understanding of the nuclear structure properties of the soft dipole modes in 140Ce, excited via inelastic scattering of weakly bound 17O projectiles. An important aim was to investigate the ‘splitting’ of the PDR into two parts: a low-energy isoscalar component dominated by neutron-skin oscillations and a higher-energy component lying on the tail of the giant dipole resonance of a rather isovector character. This was already observed for this nucleus, investigated in (α, α‧) and (γ, γ‧) experiments. The experiment was performed at Laboratori Nazionali di Legnaro, Italy. Inelastic scattering of 17O ion beam at 20 MeV A-1 was used to excite the resonance modes in the 140Ce target. Gamma-rays were registered by five triple clusters of AGATA-Demonstrator and nine large volume scintillators (LaBr3). The scattered 17O ions were identified by two ΔE - E Si telescopes of the TRACE array mounted inside the scattering chamber. The telescopes consisted of two segmented Si-pad detectors, each of 60 pixels. Very preliminary data have shown a strong domination of the E1 transitions in the ‘pygmy’ region with a character more similar to the one obtained in alpha scattering experiment.

  5. Pygmy dipole resonance and dipole polarizability in {sup 90}Zr

    SciTech Connect

    Iwamoto, C.; Tamii, A.; Shima, T.; Hashimoto, T.; Suzuki, T.; Fujita, H.; Hatanaka, K.; Utsunomiya, H.; Akimune, H.; Yamagata, T.; Okamoto, A.; Kondo, T.; Nakada, H.; Kawabata, T.; Fujita, Y.; Matsubara, H.; Shimbara, Y.; Nagashima, M.; Sakuda, M.; Mori, T.; and others

    2014-05-02

    Electric dipole (E1) reduced transition probability B(E1) of {sup 90}Zr was obtained by the inelastic proton scattering near 0 degrees using a 295 MeV proton beam and multipole decomposition analysis of the angular distribution by the distorted-wave Born approximation with the Hartree-Fock plus random-phase approximation model and inclusion of El Coulomb excitation, and the E1 strength of the pygmy dipole resonance was found in the vicinity of the neutron threshold in the low-energy tail of the giant dipole resonance. Using the data, we plan to determine the precise dipole polarizability α{sub D} which is defined as an inversely energy-weighted sum value of the elecrric dipole strength. The dipole polarizability is expected to constrain the symmetry energy term of the neutron matter equation of state. Thus systematical measurement of the dipole polarizability is important.

  6. Pygmy dipole resonance and dipole polarizability in 90Zr

    NASA Astrophysics Data System (ADS)

    Iwamoto, C.; Tamii, A.; Utsunomiya, H.; Akimune, H.; Nakada, H.; Shima, T.; Hashimoto, T.; Yamagata, T.; Kawabata, T.; Fujita, Y.; Matsubara, H.; Suzuki, T.; Fujita, H.; Shimbara, Y.; Nagashima, M.; Sakuda, M.; Mori, T.; Izumi, T.; Okamoto, A.; Kondo, T.; Lui, T.-W.; Bilgier, B.; Kozer, H. C.; Hatanaka, K.

    2014-05-01

    Electric dipole (E1) reduced transition probability B(E1) of 90Zr was obtained by the inelastic proton scattering near 0 degrees using a 295 MeV proton beam and multipole decomposition analysis of the angular distribution by the distorted-wave Born approximation with the Hartree-Fock plus random-phase approximation model and inclusion of El Coulomb excitation, and the E1 strength of the pygmy dipole resonance was found in the vicinity of the neutron threshold in the low-energy tail of the giant dipole resonance. Using the data, we plan to determine the precise dipole polarizability αD which is defined as an inversely energy-weighted sum value of the elecrric dipole strength. The dipole polarizability is expected to constrain the symmetry energy term of the neutron matter equation of state. Thus systematical measurement of the dipole polarizability is important.

  7. Isospin properties of electric dipole excitations in 48Ca

    NASA Astrophysics Data System (ADS)

    Derya, V.; Savran, D.; Endres, J.; Harakeh, M. N.; Hergert, H.; Kelley, J. H.; Papakonstantinou, P.; Pietralla, N.; Ponomarev, V. Yu.; Roth, R.; Rusev, G.; Tonchev, A. P.; Tornow, W.; Wörtche, H. J.; Zilges, A.

    2014-03-01

    Two different experimental approaches were combined to study the electric dipole strength in the doubly-magic nucleus 48Ca below the neutron threshold. Real-photon scattering experiments using bremsstrahlung up to 9.9 MeV and nearly mono-energetic linearly polarized photons with energies between 6.6 and 9.51 MeV provided strength distribution and parities, and an (α,α‧γ) experiment at Eα=136 MeV gave cross sections for an isoscalar probe. The unexpected difference observed in the dipole response is compared to calculations using the first-order random-phase approximation and points to an energy-dependent isospin character. A strong isoscalar state at 7.6 MeV was identified for the first time supporting a recent theoretical prediction.

  8. Toroidal, compressive, and E 1 properties of low-energy dipole modes in 10Be

    NASA Astrophysics Data System (ADS)

    Kanada-En'yo, Yoshiko; Shikata, Yuki

    2017-06-01

    We studied dipole excitations in 10Be based on an extended version of the antisymmetrized molecular dynamics, which can describe 1p-1h excitations and large amplitude cluster modes. Toroidal and compressive dipole operators are found to be good proves to separate the low-energy and high-energy parts of the isoscalar dipole excitations, respectively. Two low-energy 1- states, the toroidal dominant 11- state at E ˜8 MeV and the E 1 dominant 12- state at E ˜16 MeV, were obtained. By analysis of transition current densities, the 11- state is understood as a toroidal dipole mode with exotic toroidal neutron flow caused by rotation of a deformed 6He cluster, whereas the 12- state is regarded as a neutron-skin oscillation mode, which are characterized by surface neutron flow with inner isoscalar flow caused by the surface neutron oscillation against the 2 α core.

  9. Giant halos in medium nuclei within modified relativistic mean field (MRMF) model

    SciTech Connect

    Nugraha, A. M. Sulaksono, A.; Sumaryada, T.

    2016-04-19

    The large number of neutrons in a region beyond a closed shell core indicates the presence of giant halos in nuclei. In this work, by using the Rotival method within a modified relativistic mean field (MRMF) model, we predict theoretically the formation of giant halos in Cr and Zr isotopes. The MRMF model is a modification of standard RMF model augmented with isoscalar and isovector tensor terms, isovector-isoscalar vector cross coupling term and electromagnetic exchange term for Coulomb interaction in local density approximation (LDA).

  10. Toward the excited isoscalar meson spectrum from lattice QCD

    SciTech Connect

    Dudek, Jozef J.; Edwards, Robert G.; Guo, Peng; Thomas, Christopher E.

    2013-11-18

    We report on the extraction of an excited spectrum of isoscalar mesons using lattice QCD. Calculations on several lattice volumes are performed with a range of light quark masses corresponding to pion masses down to about ~400 MeV. The distillation method enables us to evaluate the required disconnected contributions with high statistical precision for a large number of meson interpolating fields. We find relatively little mixing between light and strange in most JPC channels; one notable exception is the pseudoscalar sector where the approximate SU(3)F octet, singlet structure of the η, η' is reproduced. We extract exotic JPC states, identified as hybrid mesons in which an excited gluonic field is coupled to a color-octet qqbar pair, along with non-exotic hybrid mesons embedded in a qq¯-like spectrum.

  11. Toward the excited isoscalar meson spectrum from lattice QCD

    DOE PAGES

    Dudek, Jozef J.; Edwards, Robert G.; Guo, Peng; ...

    2013-11-18

    We report on the extraction of an excited spectrum of isoscalar mesons using lattice QCD. Calculations on several lattice volumes are performed with a range of light quark masses corresponding to pion masses down to about ~400 MeV. The distillation method enables us to evaluate the required disconnected contributions with high statistical precision for a large number of meson interpolating fields. We find relatively little mixing between light and strange in most JPC channels; one notable exception is the pseudoscalar sector where the approximate SU(3)F octet, singlet structure of the η, η' is reproduced. We extract exotic JPC states, identifiedmore » as hybrid mesons in which an excited gluonic field is coupled to a color-octet qqbar pair, along with non-exotic hybrid mesons embedded in a qq¯-like spectrum.« less

  12. Toward the excited isoscalar meson spectrum from lattice QCD

    NASA Astrophysics Data System (ADS)

    Dudek, Jozef J.; Edwards, Robert G.; Guo, Peng; Thomas, Christopher E.

    2013-11-01

    We report on the extraction of an excited spectrum of isoscalar mesons using lattice QCD. Calculations on several lattice volumes are performed with a range of light quark masses corresponding to pion masses down to ˜400MeV. The distillation method enables us to evaluate the required disconnected contributions with high statistical precision for a large number of meson interpolating fields. We find relatively little mixing between (1)/(2)(uu¯+dd¯) and ss¯ in most JPC channels; one notable exception is the pseudoscalar sector where the approximate SU(3)F octet, singlet structure of the η, η' is reproduced. We extract exotic JPC states, identified as hybrid mesons in which an excited gluonic field is coupled to a color-octet qq¯ pair, along with nonexotic hybrid mesons embedded in a qq¯-like spectrum.

  13. Analogs of the giant dipole and spin-dipole resonances in {sup 4}He and in {alpha} clusters of {sup 6,7}Li studied by the {sup 4}He,{sup 6,7}Li({sup 7}Li,{sup 7}Be{gamma}) reactions

    SciTech Connect

    Nakayama, S.; Matsumoto, E.; Fushimi, K.; Hayami, R.; Kawasuso, H.; Yasuda, K.; Yamagata, T.; Akimune, H.; Ikemizu, H.; Asaji, S.; Ishida, T.; Kudoh, T.; Sagara, K.; Fujiwara, M.; Hashimoto, H.; Kawase, K.; Nakanishi, K.; Oota, T.; Yosoi, M.; Greenfield, M. B.

    2008-07-15

    We studied analogs of the giant dipole resonance (GDR) and spin-dipole resonance (SDR) in {sup 4}He and in the {alpha} clusters of {sup 6,7}Li via the ({sup 7}Li,{sup 7}Be{gamma}) reactions on {sup 4}He, {sup 6}Li, and {sup 7}Li at an incident energy of 455 MeV and at a scattering angle of 0 deg. by measuring spin-nonflip and spin-flip spectra. The reaction Q-values for the analogs of the GDR and SDR in the {alpha} clusters of {sup 6,7}Li were found to be more negative than those in {sup 4}He by 2.0{+-}0.5 MeV. The ratios of the cross section for the analog of the GDR to that for the analog of the SDR in {sup 4}He and in the {alpha} clusters of {sup 6}Li and {sup 7}Li were found to be the same within errors, 0.5{+-}0.1. The cross sections for the analogs of the GDR as well as those for the analogs of the SDR in the {alpha} clusters of {sup 6,7}Li were 0.6{approx}0.8 times smaller than those in {sup 4}He. These results suggest that excitations of {alpha} clusters embedded in nuclei are suppressed as compared with excitations of free {alpha} particles.

  14. Photoresponse of 60Ni below 10-MeV excitation energy: Evolution of dipole resonances in fp-shell nuclei near N=Z

    NASA Astrophysics Data System (ADS)

    Scheck, M.; Ponomarev, V. Yu.; Fritzsche, M.; Joubert, J.; Aumann, T.; Beller, J.; Isaak, J.; Kelley, J. H.; Kwan, E.; Pietralla, N.; Raut, R.; Romig, C.; Rusev, G.; Savran, D.; Schorrenberger, L.; Sonnabend, K.; Tonchev, A. P.; Tornow, W.; Weller, H. R.; Zilges, A.; Zweidinger, M.

    2013-10-01

    Background: Within the last decade, below the giant dipole resonance the existence of a concentration of additional electric dipole strength has been established. This accumulation of low-lying E1 strength is commonly referred to as pygmy dipole resonance (PDR).Purpose: The photoresponse of 60Ni has been investigated experimentally and theoretically to test the evolution of the PDR in a nucleus with only a small neutron excess. Furthermore, the isoscalar and isovector M1 resonances were investigated.Method: Spin-1 states were excited by exploiting the (γ,γ') nuclear resonance fluorescence technique with unpolarized continuous bremsstrahlung as well as with fully linearly polarized, quasimonochromatic, Compton-backscattered laser photons in the entrance channel of the reaction.Results: Up to 10 MeV a detailed picture of J=1 levels was obtained. For the preponderant number of the individual levels spin and parity were firmly assigned. Furthermore, branching ratios, transition widths, and reduced B(E1) or B(M1) excitation probability were calculated from the measured scattering cross sections. A comparison with theoretical results obtained within the quasiparticle phonon model allows an insight into the microscopic structure of the observed states.Conclusions: Below 10 MeV the directly observed E1 strength [∑B(E1)↑=(153.8±9.5) e2(fm)2] exhausts 0.5% of the Thomas-Reiche-Kuhn sum rule. This value increases to 0.8% of the sum rule [∑B(E1)↑=(250.9±31.1) e2(fm)2] when indirectly observed branches to lower-lying levels are considered. Two accumulations of M1 excited spin-1 states near 8 and 9 MeV excitation energy are identified as isoscalar and isovector M1 resonances dominated by proton and neutron f7/2→f5/2 spin-flip excitations. The B(M1)↑ strength of these structures accumulates to 3.94(27)μN2.

  15. Pygmy dipole mode in deformed neutron-rich Mg isotopes close to the drip line

    NASA Astrophysics Data System (ADS)

    Yoshida, Kenichi

    2009-10-01

    We investigate the microscopic structure of the low-lying isovector-dipole excitation mode in neutron-rich Mg36,38,40 close to the drip line by means of the deformed quasiparticle random-phase approximation employing the Skyrme and the local pairing energy-density functionals. It is found that the low-lying bump structure above the neutron emission-threshold energy develops when the drip line is approached, and that the isovector dipole strength at Ex<10 MeV exhausts about 6.0% of the classical Thomas-Reiche-Kuhn dipole sum rule in Mg40. We obtained the collective dipole modes at around 8-10 MeV in Mg isotopes, that consist of many two-quasiparticle excitations of the neutron. The transition density clearly shows an oscillation of the neutron skin against the isoscalar core. We found significant coupling effects between the dipole and octupole excitation modes due to the nuclear deformation. It is also found that the responses for the compressional dipole and isoscalar octupole excitations are much enhanced in the lower energy region.

  16. Dipole nanolaser

    NASA Astrophysics Data System (ADS)

    Protsenko, I. E.; Uskov, A. V.; Zaimidoroga, O. A.; Samoilov, V. N.; O'Reilly, E. P.

    2005-06-01

    A “dipole” laser is proposed consisting of a nanoparticle and a two-level system with population inversion. If the threshold conditions are fulfilled, the dipole interaction between the two-level system and the nanoparticle leads to coherent oscillations in the polarization of the particles, even in the absence of an external electromagnetic field. The emitted radiation has a dipolar distribution. It does not need an optical cavity, and has a very small volume, ˜0.1μm3 , which can be important for applications in microelectronics. Estimates of the threshold conditions are carried out for a dipole laser composed of a quantum dot and a silver nanoparticle.

  17. Giant Hedge-Hogs: Spikes on Giant Gravitons

    SciTech Connect

    Sadri, D

    2004-01-28

    We consider giant gravitons on the maximally supersymmetric plane-wave background of type IIB string theory. Fixing the light-cone gauge, we work out the low energy effective light-cone Hamiltonian of the three-sphere giant graviton. At first order, this is a U(1) gauge theory on R x S{sup 3}. We place sources in this effective gauge theory. Although non-vanishing net electric charge configurations are disallowed by Gauss' law, electric dipoles can be formed. From the string theory point of view these dipoles can be understood as open strings piercing the three-sphere, generalizing the usual BIons to the giant gravitons, BIGGons. Our results can be used to give a two dimensional (worldsheet) description of giant gravitons, similar to Polchinski's description for the usual D-branes, in agreement with the discussions of hep-th/0204196.

  18. Phase-space exploration in nuclear giant resonance decay

    SciTech Connect

    Drozdz, S.; Nishizaki, S.; Wambach, J.; Speth, J. Institute of Nuclear Physics, PL-31-342 Krakow Department of Physics, University of Illinois at Urbana, Illinois 61801 College of Humanities and Social Sciences, Iwate University, Ueda 3-18-34, Morioka 020 )

    1995-02-13

    The rate of phase-space exploration in the decay of isovector and isoscalar giant quadrupole resonances in [sup 40]Ca is analyzed. The study is based on the time dependence of the survival probability and of the spectrum of generalized entropies evaluated in the space of one-particle--one-hole (1p-1h) and 2p-2h states. Three different cases for the level distribution of 2p-2h background states, corresponding to (a) high degeneracy, (b) classically regular motion, and (c) classically chaotic motion, are studied. In the latter case the isovector excitation evolves almost statistically while the isoscalar excitation remains largely localized, even though it penetrates the whole available phase space.

  19. Low-lying dipole modes in 26,28Ne in the quasiparticle relativistic random phase approximation

    NASA Astrophysics Data System (ADS)

    Cao, Li-Gang; Ma, Zhong-Yu

    2005-03-01

    The low-lying isovector dipole strengths in the neutron-rich nuclei 26Ne and 28Ne are investigated in the quasiparticle relativistic random phase approximation. Nuclear ground-state properties are calculated in an extended relativistic mean field theory plus Bardeen-Cooper-Schrieffer (BCS) method where the contribution of the resonant continuum to pairing correlations is properly treated. Numerical calculations are tested in the case of isovector dipole and isoscalar quadrupole modes in the neutron-rich nucleus 22O. It is found that in the present calculation, low-lying isovector dipole strengths at Ex<10MeV in nuclei 26Ne and 26Ne exhaust about 4.9% and 5.8% of the Thomas-Reiche-Kuhn dipole sum rule, respectively. The centroid energy of the low-lying dipole excitation is located at 8.3 MeV in 26Ne and 7.9 MeV in 28Ne.

  20. Charge-independent trend of isoscalar matrix elements along the N˜Z line

    NASA Astrophysics Data System (ADS)

    Orce, J. N.; Velázquez, V.

    2006-01-01

    Shell model calculations have been carried out using the m-scheme numerical code ANTOINE in order to elucidate the particular trend of the isoscalar matrix elements, M, for A=4n+2 isobaric triplets ranging from A=18 to A=42. The 21+(T=1)→01+(T=1) transition energies, reduced transition probabilities and isoscalar matrix elements are predicted to a high degree of accuracy. The general agreement of M between those from mirror pairs and those from T=0 nuclides support our shell model calculations. The predicted results tie together recent experimental data, and the trend of M strength along the sd and beginning of the fp shells is interpreted in terms of the dynamic shell structure. Certain discrepancies arise at A=18 and A=38 isobaric triplets, which might be explained in terms of core polarization effects and the low occupancy of the orbits at the extremes of the sd shell.

  1. Dipole Resonances in 4He

    SciTech Connect

    Matsumoto, E.; Nakayama, S.; Hayami, R.; Fushimi, K.; Kawasuso, H.; Yasuda, K.; Yamagata, T.; Akimune, H.; Ikemizu, H.; Fujiwara, M.; Yosoi, M.; Nakanishi, K.; Kawase, K.; Hashimoto, H.; Oota, T.; Sagara, K.; Kudoh, T.; Asaji, S.; Ishida, T.; Tanaka, M.

    2007-02-26

    We investigated the analogs of the giant dipole resonance (GDR) and spin-dipole resonance (SDR) of 4He by using the 4He(7Li,7Be) reaction at an incident energy of 455 MeV and at forward scattering angles. The {delta}S=0 and {delta}S=1 spectra for 4He were obtained by measuring the 0.43-MeV 7Be {gamma}-ray in coincidence with the scattered 7Be. From the {delta}S=0 and {delta}S=1 spectra thus obtained, the strength distributions of the GDR and SDR in 4He can be derived and the results are compared with the previous data.

  2. Isoscalar-vector interaction and hybrid quark core in massive neutron stars

    NASA Astrophysics Data System (ADS)

    Shao, G. Y.; Colonna, M.; Di Toro, M.; Liu, Y. X.; Liu, B.

    2013-05-01

    The hadron-quark phase transition in the core of massive neutron stars is studied with a newly constructed two-phase model. For nuclear matter, a nonlinear Walecka type model with general nucleon-meson and meson-meson couplings, recently calibrated by Steiner, Hemper and Fischer, is taken. For quark matter, a modified Polyakov-Nambu—Jona-Lasinio model, which gives consistent results with lattice QCD data, is used. Most importantly, we introduce an isoscalar-vector interaction in the description of quark matter, and we study its influence on the hadron-quark phase transition in the interior of massive neutron stars. With the constraints of neutron star observations, our calculation shows that the isoscalar-vector interaction between quarks is indispensable if massive hybrids star exist in the universe, and its strength determines the onset density of quark matter, as well as the mass-radius relations of hybrid stars. Furthermore, as a connection with heavy-ion-collision experiments we give some discussions about the strength of isoscalar-vector interaction and its effect on the signals of hadron-quark phase transition in heavy-ion collisions, in the energy range of the NICA at JINR-Dubna and FAIR at GSI-Darmstadt facilities.

  3. New Insight into the Pygmy Dipole Resonance in Stable Nuclei

    SciTech Connect

    Neumann-Cosel, P. von

    2008-11-11

    Two examples of recent work on the structure of low-energy electric dipole modes are presented. The first part discusses the systematics of the pygmy dipole resonance (PDR) in stable tin isotopes deduced from high-resolution ({gamma},{gamma}') experiments. These help to distinguish between microscopic QRPA calculations based on either a relativistic or a nonrelativistic mean-field description, predicting significantly different properties of the PDR. The second part presents attempts to unravel the structure of dipoles modes at energies below the giant dipole resonance (GDR) in {sup 208}Pb with a high-resolution measurement of the (p-vector,p-vector') reaction under 0 deg.

  4. Pygmy Dipole Strength and Neutron Skins in Exotic Nuclei

    NASA Astrophysics Data System (ADS)

    Klimkiewicz, A.; Paar, N.; Adrich, P.; Fallot, M.; Boretzky, K.; Aumann, T.; Cortina-Gil, D.; Pramanik, U. Datta; Elze, Th. W.; Emling, H.; Geissel, H.; Hellström, M.; Jones, K. L.; Kratz, J. V.; Kulessa, R.; Nociforo, C.; Palit, R.; Simon, H.; Surówka, G.; Sümmerer, K.; Vretenar, D.; Waluś, W.

    2008-05-01

    Dipole strength distributions were determined for the neutron-rich nuclei 129-132Sn and 133,134Sb from electromagnetic excitation in an experiment using the FRS-LAND setup. For all nuclei, a sizeable fraction of ``pygmy'' dipole strength at excitation energies well below the giant dipole resonance was observed. The integrated low-lying dipole strength of the nuclei with low neutron separation energies can be compared to results for stable nuclei (e.g. N = 82 isotopes) determined for the energy regime of 5-9 MeV. A clear increase of the dipole strength with increasing asymmetry of the nuclei is observed. Comparing the ratio of the low-lying dipole over the giant dipole strength to recent relativistic mean field calculations, values for the parameters a4 and p0 of the symmetry energy and for the neutron skin thickness are derived. Averaged over 130Sn and 132Sn we extract a4 = 31.8+/-1.3 MeV and p0 = 2.2+/-0.5 MeV/fm3. The neutron skin sizes are determined to Rn-Rp = 0.23+/-0.03 fm and 0.24+/-0.03 fm for 130Sn and 132Sn, respectively. For 208Pb a neutron skin thickness of Rn-Rp = 0.18+/-0.035 fm follows, when applying the same method and using earlier published experimental findings on the dipole strength.

  5. Giant resonances in {sup 112}Sn and {sup 124}Sn: Isotopic dependence of monopole resonance energies

    SciTech Connect

    Lui, Y.-W.; Youngblood, D.H.; Tokimoto, Y.; Clark, H.L.; John, B.

    2004-07-01

    The giant resonance region from 10 MeVisoscalar E0-E3 strength was located in both nuclei. The isotopic dependence of the giant monopole resonance energies was found to be consistent with relativistic and nonrelativistic calculations for interactions with K{sub NM}{approx}220-240 MeV.

  6. Isoscalar π π Scattering and the σ Meson Resonance from QCD

    NASA Astrophysics Data System (ADS)

    Briceño, Raul A.; Dudek, Jozef J.; Edwards, Robert G.; Wilson, David J.; Hadron Spectrum Collaboration

    2017-01-01

    We present for the first time a determination of the energy dependence of the isoscalar π π elastic scattering phase shift within a first-principles numerical lattice approach to QCD. Hadronic correlation functions are computed including all required quark propagation diagrams, and from these the discrete spectrum of states in the finite volume defined by the lattice boundary is extracted. From the volume dependence of the spectrum, we obtain the S -wave phase shift up to the K K ¯ threshold. Calculations are performed at two values of the u , d quark mass corresponding to mπ=236 ,391 MeV , and the resulting amplitudes are described in terms of a σ meson which evolves from a bound state below the π π threshold at the heavier quark mass to a broad resonance at the lighter quark mass.

  7. Isoscalar ππ Scattering and the σ Meson Resonance from QCD.

    PubMed

    Briceño, Raul A; Dudek, Jozef J; Edwards, Robert G; Wilson, David J

    2017-01-13

    We present for the first time a determination of the energy dependence of the isoscalar ππ elastic scattering phase shift within a first-principles numerical lattice approach to QCD. Hadronic correlation functions are computed including all required quark propagation diagrams, and from these the discrete spectrum of states in the finite volume defined by the lattice boundary is extracted. From the volume dependence of the spectrum, we obtain the S-wave phase shift up to the KK[over ¯] threshold. Calculations are performed at two values of the u, d quark mass corresponding to m_{π}=236,391  MeV, and the resulting amplitudes are described in terms of a σ meson which evolves from a bound state below the ππ threshold at the heavier quark mass to a broad resonance at the lighter quark mass.

  8. Isoscalar ππ Scattering and the σ Meson Resonance from QCD

    DOE PAGES

    Briceño, Raul A.; Dudek, Jozef J.; Edwards, Robert G.; ...

    2017-01-09

    Here, we present for the first time a determination of the energy dependence of the isoscalar ππ elastic scattering phase-shift within a first-principles numerical lattice approach to QCD. We also compute the hadronic correlation functions including all required quark propagation diagrams. From these the discrete spectrum of states in the finite volume defined by the lattice boundary is extracted. From the volume dependence of the spectrum we obtain the S-wave phase-shift up to the Kmore » $$\\bar{K}$$ threshold. Calculations are performed at two values of the u, d quark mass corresponding to mπ = 236, 391 MeV and the resulting amplitudes are described in terms of a σ meson which evolves from a bound-state below ππ threshold at the heavier quark mass, to a broad resonance at the lighter quark mass.« less

  9. Isoscalar monopole resonance of the alpha particle: a prism to nuclear Hamiltonians.

    PubMed

    Bacca, Sonia; Barnea, Nir; Leidemann, Winfried; Orlandini, Giuseppina

    2013-01-25

    We present an ab initio study of the isoscalar monopole excitations of (4)He using different realistic nuclear interactions, including modern effective field theory potentials. In particular we concentrate on the transition form factor F(M) to the narrow 0(+) resonance close to threshold. F(M) exhibits a strong potential model dependence, and can serve as a kind of prism to distinguish among different nuclear force models. Compared to the measurements obtained from inelastic electron scattering off ^{4}He, one finds that the state-of-the-art theoretical transition form factors are at variance with experimental data, especially in the case of effective field theory potentials. We discuss some possible reasons for such a discrepancy, which still remains a puzzle.

  10. Ratio of Isoscalar to Isovector Core Polarization Contributions to Magnetic Moments

    NASA Astrophysics Data System (ADS)

    Robinson, Shadow; Zamick, Larry; Sharon, Yitzhak

    2010-11-01

    We found that large scale calculations of isoscalar magnetic moments of odd-odd N=Z nuclei yielded results remarkably similar to those of simple single j calculations. To understand why we use a delta interaction times (1+xPs) where Ps is the spin exchange operator, to calculate the ratio IS/IV of the core polarization contributions to the magnetic moments. The spin exchange contributes a factor (1-2x) to this ratio. A popular choice is x=1/3 for which (1-2x) is also 1/3. Another contribution comes from the fact that the coupling of j=l+1/2 to j'=l-1/2 via the magnetic moment operator is proportional to (gs-gl). The IS values are gl=0.5 gs=0.88; the IV values are 0.5 and 4.71. This yields a (gs-gl) ratio of 0.09 which together with the 1/3 from spin exchange tells us that the isoscalar core polarization is a mere 3% of isovector. If we further divide by single j values to get effective charge corrections then the ration IS/IV ends up being 0.06 (or 6%). We thus gain understanding of the resuts in ref [1] of the near equality of large scale and single j results for IS moments.[4pt] [1] S.Yeager, S.J.Q. Robinson, L.Zamick and Y.Y.Sharon, EPL 88, 52001 (2009)

  11. Formation of vortex dipoles

    NASA Astrophysics Data System (ADS)

    Afanasyev, Y. D.

    2006-03-01

    Evolution of a two-dimensional flow induced by a jet ejected from a nozzle of finite size is studied experimentally. Vortex dipole forms at the front of the developing flow while a trailing jet establishes behind the dipole. The dynamics of the flow is discussed on the basis of detailed measurements of vorticity and velocity fields which are obtained using particle image velocimetry. It is found that dipoles do not separate (pinch-off) from the trailing jet for values of the stroke ratio up to 15, which fact can be contrasted with the behavior of vortex rings reported previously by other authors. A characteristic time scale that is defined differently from the formation time of vortex rings can be introduced. This time scale (startup time) indicates the moment when the dipole starts translating after an initial period when it mainly grows absorbing the jet from the nozzle. A simple model that considers the competing effects of expansion and translation is developed to obtain an estimate of the dimensionless startup time. The dynamics of a dipole after the formation is characterized by a reduced flux of vorticity from the jet. The dipole moves forward with constant speed such that a value of the ratio of the speed of propagation of the dipole to the mean velocity of the jet is found to be 0.5. A universality of this ratio is explained in the framework of a model based on conservation of mass and momentum for the moving dipole.

  12. a Survey of Giant Resonance Excitations with 200 Mev Protons

    NASA Astrophysics Data System (ADS)

    Tinsley, James Royce

    The giant resonance region in ('60)Ni, ('90)Zr, ('120)Sn, and ('208)Pb has been studied using inelastic scattering of 200 MeV protons. Angular distributions were obtained for the giant quadrupole resonance, giant octupole resonance, and for the combined giant dipole and giant monopole resonance between 4 and 20 degrees. The 2(H/2PI)(omega) component of the giant hexadecapole resonance has been directly observed for the first time in ('208)Pb. In the other nuclei, upper limits on the amount of hexadecapole strength contained within the giant quadrupole resonance have been obtained. Peaks are observed in ('60)Ni and ('90)Zr that are consistent with recently reported M1 states. Discrepancies between sum rules extracted from this data and from previous work are discussed. Possible explanations include DWBA breakdown or difficulties in estimating the magnitude of the continuum. Systematics obtained for the giant resonances are compared to earlier work.

  13. Changes in earth's dipole.

    PubMed

    Olson, Peter; Amit, Hagay

    2006-11-01

    The dipole moment of Earth's magnetic field has decreased by nearly 9% over the past 150 years and by about 30% over the past 2,000 years according to archeomagnetic measurements. Here, we explore the causes and the implications of this rapid change. Maps of the geomagnetic field on the core-mantle boundary derived from ground-based and satellite measurements reveal that most of the present episode of dipole moment decrease originates in the southern hemisphere. Weakening and equatorward advection of normal polarity magnetic field by the core flow, combined with proliferation and growth of regions where the magnetic polarity is reversed, are reducing the dipole moment on the core-mantle boundary. Growth of these reversed flux regions has occurred over the past century or longer and is associated with the expansion of the South Atlantic Anomaly, a low-intensity region in the geomagnetic field that presents a radiation hazard at satellite altitudes. We address the speculation that the present episode of dipole moment decrease is a precursor to the next geomagnetic polarity reversal. The paleomagnetic record contains a broad spectrum of dipole moment fluctuations with polarity reversals typically occurring during dipole moment lows. However, the dipole moment is stronger today than its long time average, indicating that polarity reversal is not likely unless the current episode of moment decrease continues for a thousand years or more.

  14. Tevatron AC dipole system

    SciTech Connect

    Miyamoto, R.; Kopp, S.E.; Jansson, A.; Syphers, M.J.; /Fermilab

    2007-06-01

    The AC dipole is an oscillating dipole magnet which can induce large amplitude oscillations without the emittance growth and decoherence. These properties make it a good tool to measure optics of a hadron synchrotron. The vertical AC dipole for the Tevatron is powered by an inexpensive high power audio amplifier since its operating frequency is approximately 20 kHz. The magnet is incorporated into a parallel resonant system to maximize the current. The use of a vertical pinger magnet which has been installed in the Tevatron made the cost relatively inexpensive. Recently, the initial system was upgraded with a more powerful amplifier and oscillation amplitudes up to 2-3{sigma} were achieved with the 980 GeV proton beam. This paper discusses details of the Tevatron AC dipole system and also shows its test results.

  15. Laboratory Dipole Plasma Physics

    NASA Astrophysics Data System (ADS)

    Kesner, Jay

    2011-10-01

    Modern laboratory studies of plasma confined by a strong dipole magnet originated twenty years ago when it was learned that planetary magnetospheres have centrally-peaked plasma pressure profiles that form naturally when solar wind drives plasma circulation and heating. Unlike other internal rings devices, like spherators and octupoles, the magnetic flux tubes of the dipole field expand rapidly with radius. Unlike plasma confinement devices that obtain stability from magnetic shear and average good curvature, like tokamaks and levitrons, the dipole-confined plasma obtains stability from plasma compressibility. These two geometric characteristics of the dipole field have profound consequences: (i) plasma can be stable with local beta exceeding unity, (ii) fluctuations can drive either heat or particles inward to create stationary profiles that are strongly peaked, and (iii) the confinement of particles and energy can decouple. During the past decade, several laboratory dipole experiments and modeling efforts have lead to new understanding of interchange, centrifugal and entropy modes, nonlinear gyrokinetics, and plasma transport. Two devices, the LDX experiment at MIT and RT-1 at the University of Tokyo, operate with levitated superconducting dipole magnets. With a levitated dipole, not only is very high-beta plasma confined in steady state but, also, levitation produces high-temperature at low input power and demonstrates that toroidal magnetic confinement of plasma does not require a toroidal field. Modeling has explained many of the processes operative in these experiments, including the observation of a strong inward particle pinch. Turbulent low-frequency fluctuations in dipole confined plasma cause adiabatic transport and form a fundamental linkage between the radial variation of flux-tube volume and the centrally peaked density and pressure profiles. In collaboration with M.E. Mauel and D.T. Garnier; supported by DoE FG02-98ER54458.

  16. Electromagnetic moments and electric dipole transitions in carbon isotopes

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshio; Sagawa, Hiroyuki; Hagino, Kouichi

    2003-07-01

    We carry out shell model calculations to study electromagnetic moments and electric dipole transitions of C isotopes. We point out the configuration dependence of the quadrupole and magnetic moments of the odd C isotopes, which will be useful to find out the deformations and the spin parities of the ground states of these nuclei. We also study the electric dipole states of C isotopes, focusing on the interplay between low energy pigmy strength and giant dipole resonances. As far as the energies of the resonances are concerned, reasonable agreement is obtained with available experimental data for the photoreaction cross sections in 12C, 13C, and 14C, both in the low energy region below ħω=14 MeV and in the high energy giant resonance region (14 MeV <ħω⩽30 MeV). The calculated transition strength below the giant dipole resonance (ħω⩽14 MeV) in C isotopes heavier than 15C is found to exhaust about 12 16 % of the classical Thomas-Reiche-Kuhn sum rule value and 50 80 % of the cluster sum rule value.

  17. Multiplicities of charged kaons from deep-inelastic muon scattering off an isoscalar target

    NASA Astrophysics Data System (ADS)

    Adolph, C.; Aghasyan, M.; Akhunzyanov, R.; Alexeev, M. G.; Alexeev, G. D.; Amoroso, A.; Andrieux, V.; Anfimov, N. V.; Anosov, V.; Augsten, K.; Augustyniak, W.; Austregesilo, A.; Azevedo, C. D. R.; Badełek, B.; Balestra, F.; Ball, M.; Barth, J.; Beck, R.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E. R.; Birsa, R.; Bodlak, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Büchele, M.; Capozza, L.; Chang, W.-C.; Chatterjee, C.; Chiosso, M.; Choi, I.; Chung, S.-U.; Cicuttin, A.; Crespo, M. L.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S. S.; Dasgupta, S.; Denisov, O. Yu.; Dhara, L.; Donskov, S. V.; Doshita, N.; Dreisbach, Ch.; Duic, V.; Dünnweber, W.; Dziewiecki, M.; Efremov, A.; Eversheim, P. D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; Finger, M.; Fischer, H.; Franco, C.; du Fresne von Hohenesche, N.; Friedrich, J. M.; Frolov, V.; Fuchey, E.; Gautheron, F.; Gavrichtchouk, O. P.; Gerassimov, S.; Giordano, F.; Gnesi, I.; Gorzellik, M.; Grabmüller, S.; Grasso, A.; Grosse Perdekamp, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; Hahne, D.; Hamar, G.; von Harrach, D.; Heinsius, F. H.; Heitz, R.; Herrmann, F.; Horikawa, N.; d'Hose, N.; Hsieh, C.-Y.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jary, V.; Joosten, R.; Jörg, P.; Kabuß, E.; Ketzer, B.; Khaustov, G. V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J. H.; Kolosov, V. N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V. F.; Kotzinian, A. M.; Kouznetsov, O. M.; Krämer, M.; Kremser, P.; Krinner, F.; Kroumchtein, Z. V.; Kulinich, Y.; Kunne, F.; Kurek, K.; Kurjata, R. P.; Lednev, A. A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lian, Y.-S.; Lichtenstadt, J.; Longo, R.; Maggiora, A.; Magnon, A.; Makins, N.; Makke, N.; Mallot, G. K.; Marianski, B.; Martin, A.; Marzec, J.; Matoušek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G. V.; Meyer, M.; Meyer, W.; Mikhailov, Yu. V.; Mikhasenko, M.; Mitrofanov, E.; Mitrofanov, N.; Miyachi, Y.; Nagaytsev, A.; Nerling, F.; Neyret, D.; Nový, J.; Nowak, W.-D.; Nukazuka, G.; Nunes, A. S.; Olshevsky, A. G.; Orlov, I.; Ostrick, M.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peng, J.-C.; Pereira, F.; Pešek, M.; Peshekhonov, D. V.; Pierre, N.; Platchkov, S.; Pochodzalla, J.; Polyakov, V. A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Riedl, C.; Roskot, M.; Rossiyskaya, N. S.; Ryabchikov, D. I.; Rybnikov, A.; Rychter, A.; Salac, R.; Samoylenko, V. D.; Sandacz, A.; Santos, C.; Sarkar, S.; Savin, I. A.; Sawada, T.; Sbrizzai, G.; Schiavon, P.; Schmidt, K.; Schmieden, H.; Schönning, K.; Seder, E.; Selyunin, A.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Smolik, J.; Sozzi, F.; Srnka, A.; Steffen, D.; Stolarski, M.; Subrt, O.; Sulc, M.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Tasevsky, M.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Thiel, A.; Tosello, F.; Tskhay, V.; Uhl, S.; Veloso, J.; Virius, M.; Vondra, J.; Wallner, S.; Weisrock, T.; Wilfert, M.; Windmolders, R.; ter Wolbeek, J.; Zaremba, K.; Zavada, P.; Zavertyaev, M.; Zemlyanichkina, E.; Zhuravlev, N.; Ziembicki, M.; Zink, A.

    2017-04-01

    Precise measurements of charged-kaon multiplicities in deep inelastic scattering were performed. The results are presented in three-dimensional bins of the Bjorken scaling variable x, the relative virtual-photon energy y, and the fraction z of the virtual-photon energy carried by the produced hadron. The data were obtained by the COMPASS Collaboration by scattering 160 GeV muons off an isoscalar 6LiD target. They cover the kinematic domain 1(GeV / c)2 5 GeV /c2 in the invariant mass of the hadronic system. The results from the sum of the z-integrated K+ and K- multiplicities at high x point to a value of the non-strange quark fragmentation function larger than obtained by the earlier DSS fit.

  18. Ice Giant Exploration

    NASA Astrophysics Data System (ADS)

    Rymer, A. M.; Arridge, C. S.; Masters, A.; Turtle, E. P.; Simon, A. A.; Hofstadter, M. D.; Turrini, D.; Politi, R.

    2015-12-01

    The Ice Giants in our solar system, Uranus and Neptune, are fundamentally different from their Gas Giant siblings Jupiter and Saturn, from the different proportions of rock and ice to the configuration of their planetary magnetic fields. Kepler space telescope discoveries of exo-planets indicate that planets of this type are among the most ubiquitous universally and therefore a future mission to explore the nature of the Ice Giants in our own solar system will provide insights into the nature of extra-solar system objects in general. Uranus has the smallest self- luminosity of all the planets, potentially related to catastrophic events early in the planet's history, which also may explain Uranus' large obliquity. Uranus' atmosphere is subject to extreme seasonal forcing making it unique in the Solar System. Neptune is also unique in a number of ways, notably its large moon Triton which is likely a captured Kuiper Belt Object and one of only two moons in the solar system with a robustly collisional atmosphere. Similar to Uranus, the angle between the solar wind and the magnetic dipole axis is subject to large-amplitude variations on both diurnal and seasonal timescales, but peculiarly it has one of the quietest magnetospheres of the solar system, at least according to Voyager 2, the only spacecraft to encounter Neptune to date. A comprehensive mission, as advocated in the Decadal Survey, would provide enormous science return but is also challenging and expensive. In this presentation we will discuss mission scenarios and suggest how collaboration between disciplines and internationally can help us to pursue a mission that includes Ice Giant exploration.

  19. Soft dipole resonance and halo structure of 11Li

    NASA Astrophysics Data System (ADS)

    Kanungo, Rituparna

    2016-03-01

    The discovery of the nuclear halo in rare isotopes has ushered a new era in nuclear science breaking the boundaries of conventional concepts. The halo properties elucidate new features that till date remain a challenge to decipher from fundamental principles. Our knowledge on the halo is still gradually unfolding and reaching new levels of precision as efforts continue towards new experimental developments. In recent times, low-energy reactions in inverse kinematics have become possible providing a wealth of new structure information. In this presentation we will introduce a new reaction spectroscopy facility, IRIS, with a novel thin windowless solid H2/D2 target for studying transfer and inelastic scattering reactions of rare isotopes with very low yields. It was postulated that the loosely bound halo of two neutrons may lead to a core-halo oscillation resulting in dipole resonance(s) at very low excitation energy, called soft dipole resonance. Despite decades of search for this new phenomenon using various techniques, such as, no firm conclusion was reached. The presentation will discuss new results from IRIS that shows evidence of a soft dipole resonance state and further unveils its isoscalar character. New results of neutron transfer from 11Li will be presented showing resonance state(s) in the neutron unbound 10Li subsystem hence facilitating a description of the wavefunction of 11Li. NSERC, Canada Foundation for Innovation, Nova Scotia Research and Innovation Trust, grant-in-aid program of the Japanese government under Contract No. 23224008, US DOE Contract No. DE-AC52-07NA27344.

  20. Isospin character of low-lying pygmy dipole states in 208Pb via inelastic scattering of 17O ions.

    PubMed

    Crespi, F C L; Bracco, A; Nicolini, R; Mengoni, D; Pellegri, L; Lanza, E G; Leoni, S; Maj, A; Kmiecik, M; Avigo, R; Benzoni, G; Blasi, N; Boiano, C; Bottoni, S; Brambilla, S; Camera, F; Ceruti, S; Giaz, A; Million, B; Morales, A I; Vandone, V; Wieland, O; Bednarczyk, P; Ciemała, M; Grebosz, J; Krzysiek, M; Mazurek, K; Zieblinski, M; Bazzacco, D; Bellato, M; Birkenbach, B; Bortolato, D; Calore, E; Cederwall, B; Charles, L; de Angelis, G; Désesquelles, P; Eberth, J; Farnea, E; Gadea, A; Görgen, A; Gottardo, A; Isocrate, R; Jolie, J; Jungclaus, A; Karkour, N; Korten, W; Menegazzo, R; Michelagnoli, C; Molini, P; Napoli, D R; Pullia, A; Recchia, F; Reiter, P; Rosso, D; Sahin, E; Salsac, M D; Siebeck, B; Siem, S; Simpson, J; Söderström, P-A; Stezowski, O; Theisen, Ch; Ur, C; Valiente-Dobón, J J

    2014-07-04

    The properties of pygmy dipole states in 208Pb were investigated using the 208Pb(17O, 17O'γ) reaction at 340 MeV and measuring the γ decay with high resolution with the AGATA demonstrator array. Cross sections and angular distributions of the emitted γ rays and of the scattered particles were measured. The results are compared with (γ, γ') and (p, p') data. The data analysis with the distorted wave Born approximation approach gives a good description of the elastic scattering and of the inelastic excitation of the 2+ and 3- states. For the dipole transitions a form factor obtained by folding a microscopically calculated transition density was used for the first time. This has allowed us to extract the isoscalar component of the 1- excited states from 4 to 8 MeV.

  1. Isospin Character of Low-Lying Pygmy Dipole States in Pb208 via Inelastic Scattering of O17 Ions

    NASA Astrophysics Data System (ADS)

    Crespi, F. C. L.; Bracco, A.; Nicolini, R.; Mengoni, D.; Pellegri, L.; Lanza, E. G.; Leoni, S.; Maj, A.; Kmiecik, M.; Avigo, R.; Benzoni, G.; Blasi, N.; Boiano, C.; Bottoni, S.; Brambilla, S.; Camera, F.; Ceruti, S.; Giaz, A.; Million, B.; Morales, A. I.; Vandone, V.; Wieland, O.; Bednarczyk, P.; Ciemała, M.; Grebosz, J.; Krzysiek, M.; Mazurek, K.; Zieblinski, M.; Bazzacco, D.; Bellato, M.; Birkenbach, B.; Bortolato, D.; Calore, E.; Cederwall, B.; Charles, L.; de Angelis, G.; Désesquelles, P.; Eberth, J.; Farnea, E.; Gadea, A.; Görgen, A.; Gottardo, A.; Isocrate, R.; Jolie, J.; Jungclaus, A.; Karkour, N.; Korten, W.; Menegazzo, R.; Michelagnoli, C.; Molini, P.; Napoli, D. R.; Pullia, A.; Recchia, F.; Reiter, P.; Rosso, D.; Sahin, E.; Salsac, M. D.; Siebeck, B.; Siem, S.; Simpson, J.; Söderström, P.-A.; Stezowski, O.; Theisen, Ch.; Ur, C.; Valiente-Dobón, J. J.

    2014-07-01

    The properties of pygmy dipole states in Pb208 were investigated using the Pb208(O17, O17'γ) reaction at 340 MeV and measuring the γ decay with high resolution with the AGATA demonstrator array. Cross sections and angular distributions of the emitted γ rays and of the scattered particles were measured. The results are compared with (γ, γ') and (p, p') data. The data analysis with the distorted wave Born approximation approach gives a good description of the elastic scattering and of the inelastic excitation of the 2+ and 3- states. For the dipole transitions a form factor obtained by folding a microscopically calculated transition density was used for the first time. This has allowed us to extract the isoscalar component of the 1- excited states from 4 to 8 MeV.

  2. Optical Dipole Noise.

    NASA Astrophysics Data System (ADS)

    Bacon, Allan Mclain

    1995-01-01

    Optical dipole fluctuations in atoms play an important role in diverse physical phenomena: they limit the signal to background ratio in spectroscopic measurements, and thus limit the accuracy of atomic clocks; they determine the minimum temperature that can be obtained in laser cooling and in optical traps; and, they place a limit on squeezed state experiments. Although there have been many theoretical and experimental studies of noise in radiating atomic systems, the previous work has not provided a complete physical picture of the distinct sources of optical dipole noise. Hence, a detailed study of optical dipole fluctuations in a simple radiating system is of fundamental and pedagogical value. This dissertation presents measurements of optical dipole noise in a particularly simple system consisting of long-lived, coherently driven two-level atoms in an atomic beam. We use atoms with a long radiative lifetime, because the small spontaneous emission rate permits analysis of the noise spectra in terms of a simple fluctuating Bloch vector picture, without decay. The observed noise spectra exhibit manifestly different structure for radiation which is in-phase or out-of-phase with the driving field. The spectra and corresponding analysis afford clear insights into the roles played by three distinct sources of atomic noise: Spontaneous emission, phase-dependent Bloch vector projection noise, and phase-dependent mean dipole Poisson noise. Spontaneous emission and phase-dependent Bloch vector projection noise arise from quantum fluctuations in the optical dipole moment of single atoms. Phase-dependent mean dipole Poisson noise arises from fluctuations in the number of radiating atoms. Two novel experimental techniques permit sensitive measurement of optical dipole noise. First, the signals from two identically prepared experimental regions are subtracted. This method cancels the excess noise in the measured quadrature signal in addition to canceling the excess noise in

  3. Giant Cell Arteritis

    MedlinePlus

    ... Patient / Caregiver Diseases & Conditions Giant Cell Arteritis Giant Cell Arteritis Fast Facts Giant cell arteritis (GCA) is ... polymyalgia rheumatica (also called PMR). What is giant cell arteritis? GCA is a type of vasculitis or ...

  4. Dipole-dipole dispersion interactions between neutrons

    NASA Astrophysics Data System (ADS)

    Babb, James F.; Higa, Renato; Hussein, Mahir S.

    2017-06-01

    We investigate the long-range interactions between two neutrons utilizing recent data on the neutron static and dynamic electric and magnetic dipole polarizabilities. The resulting long-range potentials are used to make quantitative comparisons between the collisions of a neutron with a neutron and a neutron with a proton. We also assess the importance of the first pion production threshold and first excited state of the nucleon, the Δ-resonance (J^{π} = +3/2, I = 3/2). We found both dynamical effects to be quite relevant for distances r between ˜ 50 fm up to ˜ 103 fm in the nn system, the neutron-wall system and in the wall-neutron-wall system, reaching the expected asymptotic limit beyond that. Relevance of our findings to the confinement of ultra cold neutrons inside bottles is discussed.

  5. Experiments with Dipole Antennas

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2009-01-01

    Employment of a data-acquisition system for data collection and calculations makes experiments with antennas more convenient and less time consuming. The determined directional patterns of the dipole antennas of different lengths are in reasonable agreement with theory. The enhancement of the signal by using a reflector is demonstrated, and a…

  6. Dipole soliton-vortices.

    PubMed

    Kartashov, Yaroslav V; Ferrando, Albert; García-March, Miguel-Angel

    2007-08-01

    On universal symmetry grounds, we analyze the existence of a new type of discrete-symmetry vortex solitons that can be considered as coherent states of dipole solitons carrying a nonzero topological charge. Remarkably, they can be also interpreted as excited angular Bloch states. The stability of new soliton states is elucidated numerically.

  7. Experiments with Dipole Antennas

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2009-01-01

    Employment of a data-acquisition system for data collection and calculations makes experiments with antennas more convenient and less time consuming. The determined directional patterns of the dipole antennas of different lengths are in reasonable agreement with theory. The enhancement of the signal by using a reflector is demonstrated, and a…

  8. Average Description of Dipole Gamma Transitions in Hot Atomic Nuclei

    NASA Astrophysics Data System (ADS)

    Plujko, V. A.; Gorbachenko, O. M.; Rovenskykh, E. P.; Zheltonozhskii, V. A.

    2014-04-01

    A new version of the modified Lorentzian approach for radiative strength function is proposed. It is based on renewed systematics for giant dipole resonance (GDR) parameters. The gamma-decay strength functions are calculated using new GDR parameters and compared with experimental data. It is demonstrated that closed-form approaches with energy-dependent width of the gamma strength, as a rule, provide a reliable simple method for description of gamma-decay processes.

  9. Geometrical Simplification of the Dipole-Dipole Interaction Formula

    ERIC Educational Resources Information Center

    Kocbach, Ladislav; Lubbad, Suhail

    2010-01-01

    Many students meet dipole-dipole potential energy quite early on when they are taught electrostatics or magnetostatics and it is also a very popular formula, featured in encyclopedias. We show that by a simple rewriting of the formula it becomes apparent that, for example, by reorienting the two dipoles, their attraction can become exactly twice…

  10. Geometrical Simplification of the Dipole-Dipole Interaction Formula

    ERIC Educational Resources Information Center

    Kocbach, Ladislav; Lubbad, Suhail

    2010-01-01

    Many students meet dipole-dipole potential energy quite early on when they are taught electrostatics or magnetostatics and it is also a very popular formula, featured in encyclopedias. We show that by a simple rewriting of the formula it becomes apparent that, for example, by reorienting the two dipoles, their attraction can become exactly twice…

  11. Giant resonances in {sup 46,48}Ti

    SciTech Connect

    Tokimoto, Y.; Lui, Y.-W.; Clark, H. L.; John, B.; Chen, X.; Youngblood, D. H.

    2006-10-15

    The giant resonance region from 9 MeV Isoscalar monopole strength in {sup 46}Ti ({sup 48}Ti) was found corresponding to have 71+15/-12% (96+14/-12%) of the E0 energy weighted sum rule (EWSR) with a centroid of 18.66+0.65/-0.25% MeV (18.80+0.45/-0.18% MeV), respectively. In {sup 46}Ti ({sup 48}Ti), 46{+-}12% (56{+-}12%) of the E1, and 60{+-}11% (87{+-}11%) of the E2 EWSR were identified.

  12. Dipole defects in beryl

    NASA Astrophysics Data System (ADS)

    Holanda, B. A.; Cordeiro, R. C.; Blak, A. R.

    2010-11-01

    Dipole defects in gamma irradiated and thermally treated beryl (Be3Al2Si6O18) samples have been studied using the Thermally Stimulated Depolarization Currents (TSDC) technique. TSDC experiments were performed in pink (morganite), green (emerald), blue (aquamarine) and colourless (goshenite) natural beryl. TSDC spectra present dipole peaks at 190K, 220K, 280K and 310K that change after gamma irradiation and thermal treatments. In morganite samples, for thermal treatments between 700K and 1100K, the 280K peak increase in intensity and the band at 220K disappears. An increase of the 280K peak and a decrease of the 190K peak were observed in the TSDC spectra of morganite after a gamma irradiation of 25kGy performed after the thermal treatments. In the case of emerald samples, thermal treatments enhanced the 280K peak and gamma irradiation partially destroyed this band. The goshenite TSDC spectra present only one band at 280K that is not affected either by thermal treatments or by gamma irradiation. All the observed peaks are of dipolar origin because the intensity of the bands is linearly dependent on the polarization field, behaviour of dipole defects. The systematic study, by means of TSDC measurements, of ionizing irradiation effects and thermal treatments in these crystals makes possible a better understanding of the role played by the impurities in beryl crystals.

  13. Visualizing dipole radiation

    NASA Astrophysics Data System (ADS)

    Girwidz, Raimund V.

    2016-11-01

    The Hertzian dipole is fundamental to the understanding of dipole radiation. It provides basic insights into the genesis of electromagnetic waves and lays the groundwork for an understanding of half-wave antennae and other types. Equations for the electric and magnetic fields of such a dipole can be derived mathematically. However these are very abstract descriptions. Interpreting these equations and understanding travelling electromagnetic waves are highly limited in that sense. Visualizations can be a valuable supplement that vividly present properties of electromagnetic fields and their propagation. The computer simulation presented below provides additional instructive illustrations for university lectures on electrodynamics, broadening the experience well beyond what is possible with abstract equations. This paper refers to a multimedia program for PCs, tablets and smartphones, and introduces and discusses several animated illustrations. Special features of multiple representations and combined illustrations will be used to provide insight into spatial and temporal characteristics of field distributions—which also draw attention to the flow of energy. These visualizations offer additional information, including the relationships between different representations that promote deeper understanding. Finally, some aspects are also illustrated that often remain unclear in lectures.

  14. First Measurement of the Giant Monopole and Quadrupole Resonances in a Short-Lived Nucleus: {sup 56}Ni

    SciTech Connect

    Monrozeau, C.; Khan, E.; Blumenfeld, Y.; Beaumel, D.; Ebran, J. P.; Frascaria, N.; Gupta, D.; Marechal, F.; Scarpaci, J-A.; Mittig, W.; Roussel-Chomaz, P.; Gelin, M.; Garg, U.; Gillibert, A.; Keeley, N.; Obertelli, A.

    2008-02-01

    The isoscalar giant monopole resonance (GMR) and giant quadrupole resonance (GQR) have been measured in the {sup 56}Ni unstable nucleus by inducing the {sup 56}Ni(d,d{sup '}) reaction at 50A MeV in the Maya active target at the GANIL facility. The GMR and GQR centroids are measured at 19.3{+-}0.5 MeV and 16.2{+-}0.5 MeV, respectively. The corresponding angular distributions are extracted from 3 deg. to 7 deg. A multipole decomposition analysis using distorted wave Born approximation with random phase approximation transition densities shows that both the GMR and the GQR exhaust a large fraction of the energy-weighted sum rule. The demonstration of this new method opens a broad range of giant resonance studies at intermediate-energy radioactive beam facilities.

  15. Analysis of giant resonances in proton, 3He, and α scattering and the spin-flip strength in 208Pb

    NASA Astrophysics Data System (ADS)

    Morsch, H. P.; Cha, D.; Wambach, J.

    1985-05-01

    In an attempt to study isovector spin-flip excitations and to find a consistent picture of giant resonances in 208Pb, we analyzed giant resonance data from 172 MeV α scattering, 140 MeV 3He scattering, and 200 MeV proton scattering. Using spectroscopic information from α scattering, a good description of recent 3He scattering data is obtained. A detailed analysis of results from different probes reveals differences between complex particle and proton spectra which are interpreted as due to spin-flip contributions. The spin-flip strength is estimated in a microscopic p-h model. At the scattering angles considered it gives resonant strength at ~9 MeV dominated by 2- excitations and further gives an increasing continuum yield towards higher excitation energies. The cross sections of these spin-flip excitations in (p,p') are comparable to giant resonance yields and have to be considered in order to obtain a description consistent with complex particle spectra. The continuum part of isoscalar excitations is rather different from that of isovector spin-flip excitations. These features are qualitatively understood from the nuclear matter response. Calculations using the semi-infinite nuclear slab model of Esbensen and Bertsch give an almost quantitative description of isoscalar and spin-isospin continuum.

  16. Low-energy dipole excitations in neon isotopes and N=16 isotones within the quasiparticle random-phase approximation and the Gogny force

    SciTech Connect

    Martini, M.; Peru, S.; Dupuis, M.

    2011-03-15

    Low-energy dipole excitations in neon isotopes and N=16 isotones are calculated with a fully consistent axially-symmetric-deformed quasiparticle random phase approximation (QRPA) approach based on Hartree-Fock-Bogolyubov (HFB) states. The same Gogny D1S effective force has been used both in HFB and QRPA calculations. The microscopical structure of these low-lying resonances, as well as the behavior of proton and neutron transition densities, are investigated in order to determine the isoscalar or isovector nature of the excitations. It is found that the N=16 isotones {sup 24}O, {sup 26}Ne, {sup 28}Mg, and {sup 30}Si are characterized by a similar behavior. The occupation of the 2s{sub 1/2} neutron orbit turns out to be crucial, leading to nontrivial transition densities and to small but finite collectivity. Some low-lying dipole excitations of {sup 28}Ne and {sup 30}Ne, characterized by transitions involving the {nu}1d{sub 3/2} state, present a more collective behavior and isoscalar transition densities. A collective proton low-lying excitation is identified in the {sup 18}Ne nucleus.

  17. Retardation effects in induced atomic dipole-dipole interactions

    NASA Astrophysics Data System (ADS)

    Graham, S. D.; McGuirk, J. M.

    2017-02-01

    We present mean-field calculations of azimuthally averaged retarded dipole-dipole interactions in a Bose-Einstein condensate induced by a laser, at both long and short wavelengths. Our calculations demonstrate that dipole-dipole interactions become significantly stronger at shorter wavelengths, by as much as 30-fold, due to retardation effects. This enhancement, along with the inclusion of the dynamic polarizability, indicate a method of inducing long-range interatomic interactions in neutral atom condensates at significantly lower intensities than previously realized.

  18. Lithium electric dipole polarizability

    SciTech Connect

    Puchalski, M.; KePdziera, D.; Pachucki, K.

    2011-11-15

    The electric dipole polarizability of the lithium atom in the ground state is calculated including relativistic and quantum electrodynamics corrections. The obtained result {alpha}{sub E}=164.0740(5) a.u. is in good agreement with the less accurate experimental value of 164.19(1.08) a.u. The small uncertainty of about 3 parts per 10{sup 6} comes from the approximate treatment of quantum electrodynamics corrections. Our theoretical result can be considered as a benchmark for more general atomic structure methods and may serve as a reference value for the relative measurement of polarizabilities of the other alkali-metal atoms.

  19. Superconducting dipole electromagnet

    DOEpatents

    Purcell, John R.

    1977-07-26

    A dipole electromagnet of especial use for bending beams in particle accelerators is wound to have high uniformity of magnetic field across a cross section and to decrease evenly to zero as the ends of the electromagnet are approached by disposing the superconducting filaments of the coil in the crescent-shaped nonoverlapping portions of two intersecting circles. Uniform decrease at the ends is achieved by causing the circles to overlap increasingly in the direction of the ends of the coil until the overlap is complete and the coil is terminated.

  20. Multiplicities of charged pions and charged hadrons from deep-inelastic scattering of muons off an isoscalar target

    NASA Astrophysics Data System (ADS)

    Adolph, C.; Aghasyan, M.; Akhunzyanov, R.; Alexeev, G. D.; Alexeev, M. G.; Amoroso, A.; Andrieux, V.; Anfimov, N. V.; Anosov, V.; Augsten, K.; Augustyniak, W.; Austregesilo, A.; Azevedo, C. D. R.; Badełek, B.; Balestra, F.; Barth, J.; Beck, R.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E. R.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Büchele, M.; Capozza, L.; Chang, W.-C.; Chatterjee, C.; Chiosso, M.; Choi, I.; Chung, S.-U.; Cicuttin, A.; Crespo, M. L.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S. S.; Dasgupta, S.; Denisov, O. Yu.; Dhara, L.; Donskov, S. V.; Doshita, N.; Duic, V.; Dünnweber, W.; Dziewiecki, M.; Efremov, A.; Eversheim, P. D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; Finger, M.; Fischer, H.; Franco, C.; du Fresne von Hohenesche, N.; Friedrich, J. M.; Frolov, V.; Fuchey, E.; Gautheron, F.; Gavrichtchouk, O. P.; Gerassimov, S.; Giordano, F.; Gnesi, I.; Gorzellik, M.; Grabmüller, S.; Grasso, A.; Grosse Perdekamp, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; Hahne, D.; von Harrach, D.; Hashimoto, R.; Heinsius, F. H.; Heitz, R.; Herrmann, F.; Hinterberger, F.; Horikawa, N.; d'Hose, N.; Hsieh, C.-Y.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Joosten, R.; Jörg, P.; Kabuß, E.; Ketzer, B.; Khaustov, G. V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J. H.; Kolosov, V. N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V. F.; Kotzinian, A. M.; Kouznetsov, O. M.; Krämer, M.; Kremser, P.; Krinner, F.; Kroumchtein, Z. V.; Kuhn, R.; Kulinich, Y.; Kunne, F.; Kurek, K.; Kurjata, R. P.; Lednev, A. A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lian, Y.-S.; Lichtenstadt, J.; Longo, R.; Maggiora, A.; Magnon, A.; Makins, N.; Makke, N.; Mallot, G. K.; Marchand, C.; Marianski, B.; Martin, A.; Marzec, J.; Matoušek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G. V.; Meyer, M.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Mikhasenko, M.; Mitrofanov, E.; Mitrofanov, N.; Miyachi, Y.; Montuenga, P.; Nagaytsev, A.; Nerling, F.; Neyret, D.; Nikolaenko, V. I.; Nový, J.; Nowak, W.-D.; Nukazuka, G.; Nunes, A. S.; Olshevsky, A. G.; Orlov, I.; Ostrick, M.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peng, J.-C.; Pereira, F.; Pešek, M.; Peshekhonov, D. V.; Pierre, N.; Platchkov, S.; Pochodzalla, J.; Polyakov, V. A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Riedl, C.; Roskot, M.; Rossiyskaya, N. S.; Ryabchikov, D. I.; Rybnikov, A.; Rychter, A.; Salac, R.; Samoylenko, V. D.; Sandacz, A.; Santos, C.; Sarkar, S.; Savin, I. A.; Sawada, T.; Sbrizzai, G.; Schiavon, P.; Schmidt, K.; Schmieden, H.; Schönning, K.; Schopferer, S.; Seder, E.; Selyunin, A.; Shevchenko, O. Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Smolik, J.; Sozzi, F.; Srnka, A.; Steffen, D.; Stolarski, M.; Sulc, M.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Tasevsky, M.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Tosello, F.; Tskhay, V.; Uhl, S.; Veloso, J.; Virius, M.; Vondra, J.; Weisrock, T.; Wilfert, M.; Windmolders, R.; ter Wolbeek, J.; Zaremba, K.; Zavada, P.; Zavertyaev, M.; Zemlyanichkina, E.; Zhuravlev, N.; Ziembicki, M.; Zink, A.

    2017-01-01

    Multiplicities of charged pions and charged hadrons produced in deep-inelastic scattering were measured in three-dimensional bins of the Bjorken scaling variable x, the relative virtual-photon energy y and the relative hadron energy z. Data were obtained by the COMPASS Collaboration using a 160GeV muon beam and an isoscalar target (6LiD). They cover the kinematic domain in the photon virtuality Q2 > 1(GeV / c) 2, 0.004 < x < 0.4, 0.2 < z < 0.85 and 0.1 < y < 0.7. In addition, a leading-order pQCD analysis was performed using the pion multiplicity results to extract quark fragmentation functions.

  1. Enhancement of high-spin collectivity in N = Z nuclei by the isoscalar neutron-proton pairing

    NASA Astrophysics Data System (ADS)

    Kaneko, K.; Sun, Y.; de Angelis, G.

    2017-01-01

    Pairing from different fermions, neutrons and protons, is unique in nuclear physics. The fingerprint for the isoscalar T = 0 neutron-proton (np) pairing has however remained a question. We study this exotic pairing mode in excited states of rotating N ≈ Z nuclei by applying the state-of-the-art shell-model calculations for 88Ru and the neighboring 90,92Ru isotopes. We show that the T = 0 np pairing is responsible for the distinct rotational behavior between the N = Z and N > Z nuclei. Our calculation suggests a gradual crossover from states with mixed T = 1 and T = 0 pairing near the ground state to those dominated by the T = 0 np pairing at high spins. It is found that the T = 0 np pairing plays an important role in enhancing the high-spin collectivity, thereby reducing shape variations along the N = Z line.

  2. The dipole repeller

    NASA Astrophysics Data System (ADS)

    Hoffman, Yehuda; Pomarède, Daniel; Tully, R. Brent; Courtois, Hélène M.

    2017-01-01

    Our Local Group of galaxies is moving with respect to the cosmic microwave background (CMB) with a velocity 1 of V CMB = 631 ± 20 km s‑1 and participates in a bulk flow that extends out to distances of ~20,000 km s‑1 or more 2-4 . There has been an implicit assumption that overabundances of galaxies induce the Local Group motion 5-7 . Yet underdense regions push as much as overdensities attract 8 , but they are deficient in light and consequently difficult to chart. It was suggested a decade ago that an underdensity in the northern hemisphere roughly 15,000 km s‑1 away contributes significantly to the observed flow 9 . We show here that repulsion from an underdensity is important and that the dominant influences causing the observed flow are a single attractor — associated with the Shapley concentration — and a single previously unidentified repeller, which contribute roughly equally to the CMB dipole. The bulk flow is closely anti-aligned with the repeller out to 16,000 ± 4,500 km s‑1. This 'dipole repeller' is predicted to be associated with a void in the distribution of galaxies.

  3. Ferrofluid Photonic Dipole Contours

    NASA Astrophysics Data System (ADS)

    Snyder, Michael; Frederick, Jonathan

    2008-03-01

    Understanding magnetic fields is important to facilitate magnetic applications in diverse fields in industry, commerce, and space exploration to name a few. Large electromagnets can move heavy loads of metal. Magnetic materials attached to credit cards allow for fast, accurate business transactions. And the Earth's magnetic field gives us the colorful auroras observed near the north and south poles. Magnetic fields are not visible, and therefore often hard to understand or characterize. This investigation describes and demonstrates a novel technique for the visualization of magnetic fields. Two ferrofluid Hele-Shaw cells have been constructed to facilitate the imaging of magnetic field lines [1,2,3,4]. We deduce that magnetically induced photonic band gap arrays similar to electrostatic liquid crystal operation are responsible for the photographed images and seek to mathematically prove the images are of exact dipole nature. We also note by comparison that our photographs are very similar to solar magnetic Heliosphere photographs.

  4. Highly Automated Dipole EStimation (HADES)

    PubMed Central

    Campi, C.; Pascarella, A.; Sorrentino, A.; Piana, M.

    2011-01-01

    Automatic estimation of current dipoles from biomagnetic data is still a problematic task. This is due not only to the ill-posedness of the inverse problem but also to two intrinsic difficulties introduced by the dipolar model: the unknown number of sources and the nonlinear relationship between the source locations and the data. Recently, we have developed a new Bayesian approach, particle filtering, based on dynamical tracking of the dipole constellation. Contrary to many dipole-based methods, particle filtering does not assume stationarity of the source configuration: the number of dipoles and their positions are estimated and updated dynamically during the course of the MEG sequence. We have now developed a Matlab-based graphical user interface, which allows nonexpert users to do automatic dipole estimation from MEG data with particle filtering. In the present paper, we describe the main features of the software and show the analysis of both a synthetic data set and an experimental dataset. PMID:21437232

  5. Highly Automated Dipole EStimation (HADES).

    PubMed

    Campi, C; Pascarella, A; Sorrentino, A; Piana, M

    2011-01-01

    Automatic estimation of current dipoles from biomagnetic data is still a problematic task. This is due not only to the ill-posedness of the inverse problem but also to two intrinsic difficulties introduced by the dipolar model: the unknown number of sources and the nonlinear relationship between the source locations and the data. Recently, we have developed a new Bayesian approach, particle filtering, based on dynamical tracking of the dipole constellation. Contrary to many dipole-based methods, particle filtering does not assume stationarity of the source configuration: the number of dipoles and their positions are estimated and updated dynamically during the course of the MEG sequence. We have now developed a Matlab-based graphical user interface, which allows nonexpert users to do automatic dipole estimation from MEG data with particle filtering. In the present paper, we describe the main features of the software and show the analysis of both a synthetic data set and an experimental dataset.

  6. Density-dependent covariant energy density functionals

    SciTech Connect

    Lalazissis, G. A.

    2012-10-20

    Relativistic nuclear energy density functionals are applied to the description of a variety of nuclear structure phenomena at and away fromstability line. Isoscalar monopole, isovector dipole and isoscalar quadrupole giant resonances are calculated using fully self-consistent relativistic quasiparticle randomphase approximation, based on the relativistic Hartree-Bogoliubovmodel. The impact of pairing correlations on the fission barriers in heavy and superheavy nuclei is examined. The role of pion in constructing desnity functionals is also investigated.

  7. Magnetic Field of a Dipole and the Dipole-Dipole Interaction

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2007-01-01

    With a data-acquisition system and sensors commercially available, it is easy to determine magnetic fields produced by permanent magnets and to study the dipole-dipole interaction for different separations and angular positions of the magnets. For sufficiently large distances, the results confirm the 1/R[superscript 3] law for the magnetic field…

  8. Magnetic Field of a Dipole and the Dipole-Dipole Interaction

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2007-01-01

    With a data-acquisition system and sensors commercially available, it is easy to determine magnetic fields produced by permanent magnets and to study the dipole-dipole interaction for different separations and angular positions of the magnets. For sufficiently large distances, the results confirm the 1/R[superscript 3] law for the magnetic field…

  9. Probing surface quantum flows in deformed pygmy dipole modes

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Kortelainen, M.; Pei, J. C.

    2017-09-01

    To explore the nature of collective modes in weakly bound nuclei, we have investigated deformation effects and surface flow patterns of isovector dipole modes in a shape-coexisting nucleus, 40Mg. The calculations were done in a fully self-consistent continuum finite-amplitude quasiparticle random phase approximation in a large deformed spatial mesh. An unexpected result of pygmy and giant dipole modes having disproportionate deformation splittings in strength functions was obtained. Furthermore, the transition current densities demonstrate that the long-sought core-halo oscillation in pygmy resonances is collective and compressional, corresponding to the lowest excitation energy and the simplest quantum flow topology. Our calculations show that surface flow patterns become more complicated as excitation energies increase.

  10. Molecular Dipole Osmosis Based on Induced Charge Electro-Osmosis

    NASA Astrophysics Data System (ADS)

    Sugioka, Hideyuki

    2016-09-01

    We propose a novel mechanism of producing a large nonlinear electrokinetic vortex flow around a nonconductive polar molecule in an electrolyte. That is, a large nonlinear electrokinetic slip velocity is derived by considering a local giant permittivity due to a molecular electric dipole moment with induced-charge electro-osmosis (ICEO). Different from the conventional ICEO theory, our theory predicts that a nonconductive biomaterial, such as a base of a deoxyribonucleic acid (DNA) molecule, has a significantly high ICEO flow velocity because of its large local permittivity. We consider that our findings will contribute markedly to promising biomedical applications.

  11. Observation of Stueckelberg oscillations in dipole-dipole interactions

    SciTech Connect

    Ditzhuijzen, C. S. E. van; Tauschinsky, Atreju; Van Linden van den Heuvell, H. B.

    2009-12-15

    We have observed Stueckelberg oscillations in the dipole-dipole interaction between Rydberg atoms with an externally applied radio-frequency field. The oscillating rf field brings the interaction between cold Rydberg atoms in two separated volumes into resonance. We observe multiphoton transitions when varying the amplitude of the rf field and the static electric field offset. The angular momentum states we use show a quadratic Stark shift, which leads to a fundamentally different behavior than linearly shifting states. Both cases are studied theoretically using the Floquet approach and are compared. The amplitude of the sidebands, related to the interaction strength, is given by the Bessel function in the linearly shifting case and by the generalized Bessel function in the quadratically shifting case. The oscillatory behavior of both functions corresponds to Stueckelberg oscillations, an interference effect described by the semiclassical Landau-Zener-Stueckelberg model. The measurements prove coherent dipole-dipole interaction during at least 0.6 mus.

  12. Giant Magnons Meet Giant Gravitons

    SciTech Connect

    Hofman, Diego M.

    2008-07-28

    We study the worldsheet reflection matrix of a string attached to a D-brane in AdS{sub 5}xS{sup 5}. The D-brane corresponds to a maximal giant graviton that wraps an S{sup 3} inside S{sup 5}. In the gauge theory, the open string is described by a spin chain with boundaries. We focus on open strings with a large SO(6) charge and define an asymptotic boundary reflection matrix. Using the symmetries of the problem, we review the computation of the boundary reflection matrix, up to a phase. We also discuss weak and strong coupling computations where we obtain the overall phase factor and test our exact results.

  13. Fermion dipole moment and holography

    NASA Astrophysics Data System (ADS)

    Kulaxizi, Manuela; Rahman, Rakibur

    2015-12-01

    In the background of a charged AdS black hole, we consider a Dirac particle endowed with an arbitrary magnetic dipole moment. For non-zero charge and dipole coupling of the bulk fermion, we find that the dual boundary theory can be plagued with superluminal modes. Requiring consistency of the dual CFT amounts to constraining the strength of the dipole coupling by an upper bound. We briefly discuss the implications of our results for the physics of holographic non-Fermi liquids.

  14. Dipole-dipole interaction between rubidium Rydberg atoms

    SciTech Connect

    Altiere, Emily; Fahey, Donald P.; Noel, Michael W.; Smith, Rachel J.; Carroll, Thomas J.

    2011-11-15

    Ultracold Rydberg atoms in a static electric field can exchange energy via the dipole-dipole interaction. The Stark effect shifts the energy levels of the atoms which tunes the energy exchange into resonance at specific values of the electric field (Foerster resonances). We excite rubidium atoms to Rydberg states by focusing either a 480 nm beam from a tunable dye laser or a pair of diode lasers into a magneto-optical trap. The trap lies at the center of a configuration of electrodes. We scan the electric field by controlling the voltage on the electrodes while measuring the fraction of atoms that interact. Dipole-dipole interaction spectra are presented for initially excited rubidium nd states for n=31 to 46 and for four different pairs of initially excited rubidium ns states. We also present the dipole-dipole interaction spectra for individual rubidium 32d (j, m{sub j}) fine structure levels that have been selectively excited. The data are compared to calculated spectra.

  15. Dipole-dipole interaction in electronic article surveillance system

    NASA Astrophysics Data System (ADS)

    Pan, H. L.; Li, X.; Zhang, Q.; Wang, J. T.; Xie, W. H.; Zhao, Z. J.

    2017-08-01

    The dipole-dipole interaction in electronic article surveillance system is studied in this paper. The acoustic magnetic properties investigations were performed on amorphous ribbon Fe24Co11.82Ni47.3Si1.47B15 with a size of 38.5 mm  ×  6 mm  ×  0.03 mm at room temperature. The results showed that the dependence of resonance amplitude and frequency on the external magnetic field varied with the number of ribbons. To understand the mechanism, hysteresis loops in arrays of N ribbons with and without a bias magnet have been performed. A theoretical model was used to calculate the dipolar fields among the ribbons and the magnet. The ribbons without a bias magnet exhibited a higher anisotropy field as the number of ribbons increased, which arises from the dipole-dipole interaction between them. The plateau and kink in hysteresis loops with bias magnets also change with the number of ribbons because of the dipole-dipole interactions among the ribbons themselves, and the interaction between the ribbons and the bias magnet also. The superimposed dipolar field affects the acoustic magnetic properties of the ribbons in electronic article surveillance system.

  16. Isovector and isoscalar tensor charges of the nucleon from lattice QCD

    DOE PAGES

    Bhattacharya, Tanmoy; Cirigliano, Vincenzo; Cohen, Saul D.; ...

    2015-11-01

    Here, we present results for the isovector and flavor diagonal tensor charges gu–dT, guT, gdT, and gsT needed to probe novel tensor interactions at the TeV scale in neutron and nuclear β-decays and the contribution of the quark electric dipole moment (EDM) to the neutron EDM. The lattice QCD calculations were done using nine ensembles of gauge configurations generated by the MILC collaboration using the HISQ action with 2+1+1 dynamical flavors. These ensembles span three lattice spacings a ≈ 0.06, 0.09 and 0.12 fm and three quark masses corresponding to the pion masses Mπ ≈ 130, 220 and 310 MeV.more » Using estimates from these ensembles, we quantify all systematic uncertainties and perform a simultaneous extrapolation in the lattice spacing, volume and light quark masses for the connected contributions. The final estimates of the connected nucleon (proton) tensor charge for the isovector combination is gu–dT = 1.020(76) in the MS¯ scheme at 2 GeV. The additional disconnected quark loop contributions needed for the flavor-diagonal matrix elements are calculated using a stochastic estimator employing the truncated solver method with the all-mode-averaging technique. We find that the size of the disconnected contribution is smaller than the statistical error in the connected contribution. This allows us to bound the disconnected contribution and include it as an additional uncertainty in the flavor-diagonal charges. After a continuum extrapolation, we find guT = 0.774(66), gdT = –0.233(28) and gu+dT = 0.541(67). The strangeness tensor charge, that can make a significant contribution to the neutron EDM due to the large ratio ms/mu,d, is gsT = 0.008(9) in the continuum limit.« less

  17. RHIC VERTICAL AC DIPOLE COMMISSIONING.

    SciTech Connect

    BAI,M.; DELONG,J.; HOFF,L.; PAI,C.; PEGGS,S.; PIACENTINO,J.; OERTER,B.; ODDO,P.; ROSER,T.; SATOGATA,T.; TRBOJEVIC,D.; ZALTSMAN,A.

    2002-06-02

    The RHIC vertical ac dipole was installed in the summer of 2001. The magnet is located in the interaction region between sector 3 and sector 4 common to both beams. The resonant frequency of the ac dipole was first configured to be around half of the beam revolution frequency to act as a spin flipper. At the end of the RHIC 2002 run, the ac dipole frequency was reconfigured for linear optics studies. A 0.35 mm driven betatron oscillation was excited with the vertical ac dipole and the vertical betatron functions and phase advances at each beam position monitor (BPM) around the RHIC yellow ring were measured using the excited coherence. We also recorded horizontal turn-by-turn beam positions at each BPM location to investigate coupling effects. Analysis algorithms and measurement results are presented.

  18. NONLINEAR DIAGNOSTICS USING AC DIPOLES.

    SciTech Connect

    PEGGS,S.

    1999-03-29

    There are three goals in the accurate nonlinear diagnosis of a storage ring. First, the beam must be moved to amplitudes many times the natural beam size. Second, strong and long lasting signals must be generated. Third, the measurement technique should be non-destructive. Conventionally, a single turn kick moves the beam to large amplitudes, and turn-by-turn data are recorded from multiple beam position monitors (BPMs) [1-6]. Unfortunately, tune spread across the beam causes the center of charge beam signal to ''decohere'' on a time scale often less than 100 turns. Filamentation also permanently destroys the beam emittance (in a hadron ring). Thus, the ''strong single turn kick'' technique successfully achieves only one out of the three goals. AC dipole techniques can achieve all three. Adiabatically excited AC dipoles slowly move the beam out to large amplitudes. The coherent signals then recorded last arbitrarily long. The beam maintains its original emittance if the AC dipoles are also turned off adiabatically, ready for further use. The AGS already uses an RF dipole to accelerate polarized proton beams through depolarizing resonances with minimal polarization loss [7]. Similar AC dipoles will be installed in the horizontal and vertical planes of both rings in RHIC [8]. The RHIC AC dipoles will also be used as spin flippers, and to measure linear optical functions [9].

  19. Measuring the Forces between Magnetic Dipoles

    ERIC Educational Resources Information Center

    Gayetsky, Lisa E.; Caylor, Craig L.

    2007-01-01

    We describe a simple undergraduate lab in which students determine how the force between two magnetic dipoles depends on their separation. We consider the case where both dipoles are permanent and the case where one of the dipoles is induced by the field of the other (permanent) dipole. Agreement with theoretically expected results is quite good.

  20. Isovector and isoscalar tensor charges of the nucleon from lattice QCD

    SciTech Connect

    Bhattacharya, Tanmoy; Cirigliano, Vincenzo; Cohen, Saul D.; Gupta, Rajan; Joseph, Anosh; Lin, Huey -Wen; Yoon, Boram

    2015-11-01

    Here, we present results for the isovector and flavor diagonal tensor charges gu–dT, guT, gdT, and gsT needed to probe novel tensor interactions at the TeV scale in neutron and nuclear β-decays and the contribution of the quark electric dipole moment (EDM) to the neutron EDM. The lattice QCD calculations were done using nine ensembles of gauge configurations generated by the MILC collaboration using the HISQ action with 2+1+1 dynamical flavors. These ensembles span three lattice spacings a ≈ 0.06, 0.09 and 0.12 fm and three quark masses corresponding to the pion masses Mπ ≈ 130, 220 and 310 MeV. Using estimates from these ensembles, we quantify all systematic uncertainties and perform a simultaneous extrapolation in the lattice spacing, volume and light quark masses for the connected contributions. The final estimates of the connected nucleon (proton) tensor charge for the isovector combination is gu–dT = 1.020(76) in the MS¯ scheme at 2 GeV. The additional disconnected quark loop contributions needed for the flavor-diagonal matrix elements are calculated using a stochastic estimator employing the truncated solver method with the all-mode-averaging technique. We find that the size of the disconnected contribution is smaller than the statistical error in the connected contribution. This allows us to bound the disconnected contribution and include it as an additional uncertainty in the flavor-diagonal charges. After a continuum extrapolation, we find guT = 0.774(66), gdT = –0.233(28) and gu+dT = 0.541(67). The strangeness tensor charge, that can make a significant contribution to the neutron EDM due to the large ratio ms/mu,d, is gsT = 0.008(9) in the continuum limit.

  1. Transforming giants.

    PubMed

    Kanter, Rosabeth Moss

    2008-01-01

    Large corporations have long been seen as lumbering, inflexible, bureaucratic--and clueless about global developments. But recently some multinationals seem to be transforming themselves: They're engaging employees, moving quickly, and introducing innovations that show true connection with the world. Harvard Business School's Kanter ventured with a research team inside a dozen global giants--including IBM, Procter & Gamble, Omron, CEMEX, Cisco, and Banco Real--to discover what has been driving the change. After conducting more than 350 interviews on five continents, she and her colleagues came away with a strong sense that we are witnessing the dawn of a new model of corporate power: The coordination of actions and decisions on the front lines now appears to stem from widely shared values and a sturdy platform of common processes and technology, not from top-down decrees. In particular, the values that engage the passions of far-flung workforces stress openness, inclusion, and making the world a better place. Through this shift in what might be called their guidance systems, the companies have become as creative and nimble as much smaller ones, even while taking on social and environmental challenges of a scale that only large enterprises could attempt. IBM, for instance, has created a nonprofit partnership, World Community Grid, through which any organization or individual can donate unused computing power to research projects and see what is being done with the donation in real time. IBM has gained an inspiring showcase for its new technology, helped business partners connect with the company in a positive way, and offered individuals all over the globe the chance to contribute to something big.

  2. SEISMIC DIAGNOSTICS OF RED GIANTS: FIRST COMPARISON WITH STELLAR MODELS

    SciTech Connect

    Montalban, J.; Miglio, A.; Noels, A.; Scuflaire, R.; Ventura, P.

    2010-10-01

    The clear detection with CoRoT and KEPLER of radial and non-radial solar-like oscillations in many red giants paves the way for seismic inferences on the structure of such stars. We present an overview of the properties of the adiabatic frequencies and frequency separations of radial and non-radial oscillation modes for an extended grid of models. We highlight how their detection allows a deeper insight into the internal structure and evolutionary state of red giants. In particular, we find that the properties of dipole modes constitute a promising seismic diagnostic tool of the evolutionary state of red giant stars. We compare our theoretical predictions with the first 34 days of KEPLER data and predict the frequency diagram expected for red giants in the CoRoT exofield in the galactic center direction.

  3. Dipole response of neutron-rich Sn isotopes

    NASA Astrophysics Data System (ADS)

    Klimkiewicz, A.; Adrich, P.; Boretzky, K.; Fallot, M.; Aumann, T.; Cortina-Gil, D.; Datta Pramanik, U.; Elze, Th. W.; Emling, H.; Geissel, H.; Hellstroem, M.; Jones, K. L.; Kratz, J. V.; Kulessa, R.; Leifels, Y.; Nociforo, C.; Palit, R.; Simon, H.; Surowka, G.; Sümmerer, K.; Typel, S.; Walus, W.

    2007-05-01

    The neutron-rich isotopes 129-133Sn were studied in a Coulomb excitation experiment at about 500 AMeV using the FRS-LAND setup at GSI. From the exclusive measurement of all projectile-like particles following the excitation and decay of the projectile in a high-Z target, the energy differential cross section can be extracted. At these beam energies dipole transitions are dominating, and within the semi-classical approach the Coulomb excitation cross sections can be transformed into photoabsorption cross sections. In contrast to stable Sn nuclei, a substantial fraction of dipole strength is observed at energies below the giant dipole resonance (GDR). For 130Sn and 132Sn this strength is located in a peak-like structure around 10 MeV excitation energy and exhibits a few percent of the Thomas-Reiche Kuhn (TRK) sum-rule strength. Several calculations predict the appearance of dipole strength at low excitation energies in neutron-rich nuclei. This low-lying strength is often referred to as pygmy dipole resonance (PDR) and, in a macroscopic picture, is discussed in terms of a collective oscillation of excess neutrons versus the core nucleons. Moreover, a sharp rise is observed at the neutron separation threshold around 5 MeV for the odd isotopes. A possible contribution of 'threshold strength', which can be described within the direct-breakup model is discussed. The results for the neutron-rich Sn isotopes are confronted with results on stable nuclei investigated in experiments using real photons.

  4. Systematics of the Electric and Magnetic Dipole Response in N=82 Isotones Below the Neutron Separation Energy

    NASA Astrophysics Data System (ADS)

    Tonchev, A. P.; Kwan, E.; Raut, R.; Rusev, G.; Tornow, W.; Hammond, S.; Kelley, J. H.; Tsoneva, N.; Lenske, H.

    2013-03-01

    In stable and weakly bound neutron-rich nuclei, a resonance-like concentration of dipole states has been observed for excitation energies around the neutron separation energy. This clustering of strong dipole states has been named the pygmy dipole resonance in contrast to the giant dipole resonance that dominates the E1 response. Understanding the pygmy resonance is presently of great interest in nuclear structure and nuclear astrophysics. High-sensitivity studies of E1 and M1 transitions in N=82 nuclei using the quasi monoenergetic and 100% linearly-polarized photon beams from High-Intensity-Gamma-Ray Source facility is presented. The nuclear dipole-strength distribution of the pygmy resonance has been measured and novel information about the character of this mode of excitation has been obtained. The data are compared with predictions from statistical and quasiparticle random-phase approximation models.

  5. Giant Cell Arteritis

    MedlinePlus

    Giant cell arteritis is a disorder that causes inflammation of your arteries, usually in the scalp, neck, and arms. ... arteries, which keeps blood from flowing well. Giant cell arteritis often occurs with another disorder called polymyalgia ...

  6. Giant impacts on giant planets

    NASA Astrophysics Data System (ADS)

    de Pater, Imke

    2013-10-01

    The 2009 impact and recent superbolides on Jupiter caught the world by surprise and cast doubt on impactor flux estimates for the outer solar system. Enhanced amateur planetary imaging techniques yield both high spatial resolution {enabling the 2009 impact debris field detection} and rapid frame rates {enabling the 2010/2012 impact flash detections and lightcurve measurements}.We propose a ToO program to image future impacts on Jupiter and Saturn. To remove the possibility of impact cloud non-detections, the program will be triggered only if an existing impact debris field is seen, an object on a collision course with Jupiter or Saturn is discovered, or an impact light curve is measured with an estimated total energy large enough to generate an impact cloud in a giant planet atmosphere {10^20 J}.HST provides the only way to image these events in the ultraviolet, providing information on aerosol altitudes and on smaller particles that are less visible to ground-based infrared observations. High-resolution imaging with proper timing {not achievable from the ground} is required to measure precisely both the velocity fields of impact sites and the optical spectrum of impact debris. HST observations of past impacts on Jupiter have also served both as cornerstones of science investigations at other wavelengths and as vehicles for effective public outreach.Large outer solar system impacts are governed by the same physics as in the terrestrial events that dominate the impact threat to humans. Studying the behavior of impactors of various sizes and compositions, as they enter the atmosphere at varying angles and speeds, will better quantify terrestrial impact hazards.

  7. Giant impacts on giant planets

    NASA Astrophysics Data System (ADS)

    de Pater, Imke

    2014-10-01

    The 2009 impact and recent superbolides on Jupiter caught the world by surprise and cast doubt on impactor flux estimates for the outer solar system. Enhanced amateur planetary imaging techniques yield both high spatial resolution (enabling the 2009 impact debris field detection) and rapid frame rates (enabling the 2010/2012 impact flash detections and lightcurve measurements).We propose a ToO program to image future impacts on Jupiter and Saturn. To remove the possibility of impact cloud non-detections, the program will be triggered only if an existing impact debris field is seen, an object on a collision course with Jupiter or Saturn is discovered, or an impact light curve is measured with an estimated total energy large enough to generate an impact cloud in a giant planet atmosphere (10^20 J).HST provides the only way to image these events in the ultraviolet, providing information on aerosol altitudes and on smaller particles that are less visible to ground-based infrared observations. High-resolution imaging with proper timing (not achievable from the ground) is required to measure precisely both the velocity fields of impact sites and the optical spectrum of impact debris. HST observations of past impacts on Jupiter have also served both as cornerstones of science investigations at other wavelengths and as vehicles for effective public outreach.Large outer solar system impacts are governed by the same physics as in the terrestrial events that dominate the impact threat to humans. Studying the behavior of impactors of various sizes and compositions, as they enter the atmosphere at varying angles and speeds, will better quantify terrestrial impact hazards.

  8. Giant impacts on giant planets

    NASA Astrophysics Data System (ADS)

    de Pater, Imke

    2012-10-01

    The 2009 impact on Jupiter caught the world by surprise and cast doubt on impactor flux estimates for the outer solar system. Enhanced amateur planetary imaging techniques yield both high spatial resolution {enabling the 2009 impact debris field detection} and rapid frame rates {enabling the 2010 impact flash detections and lightcurve measurements}.We propose a Target of Opportunity program to image future impacts on Jupiter and Saturn. To remove the possibility of impact cloud non-detections, the program will be triggered only if an existing impact debris field is seen, an object on a collision course with Jupiter or Saturn is discovered, or an impact light curve is measured with an estimated total energy large enough to generate an impact cloud in a giant planet atmosphere.HST provides the only way to image these events in the ultraviolet, providing information on aerosol altitudes and on smaller particles that are less visible to ground-based infrared observations. High-resolution imaging with proper timing {not achievable from the ground} is required to measure precisely both the velocity fields of impact sites and the optical spectrum of impact debris. HST observations of past impacts on Jupiter have also served both as cornerstones of science investigations at other wavelengths and as vehicles for effective public outreach.Large outer solar system impacts are governed by the same physics as in the terrestrial events that dominate the impact threat to humans. Studying the behavior of impactors of various sizes and compositions, as they enter the atmosphere at varying angles and speeds, will better quantify terrestrial impact hazards.

  9. Fluctuation properties of the strength function associated with the giant quadrupole resonance in {sup 208}Pb

    SciTech Connect

    Aiba, Hirokazu; Matsuo, Masayuki; Nishizaki, Shigeru; Suzuki, Toru

    2011-02-15

    We performed fluctuation analysis by means of the local scaling dimension for the strength function of the isoscalar (IS) giant quadrupole resonance (GQR) in {sup 208}Pb where the strength function is obtained by the shell model calculation including 1p1h and 2p2h configurations. It is found that at almost all energy scales, fluctuation of the strength function obeys the Gaussian orthogonal ensemble (GOE) random matrix theory limit. This is contrasted with the results for the GQR in {sup 40}Ca, where at the intermediate energy scale of about 1.7 MeV, a deviation from the GOE limit was detected. It is found that the physical origin for this different behavior of the local scaling dimension is ascribed to the difference in the properties of the damping process.

  10. Giant resonances in {sup 116}Sn from 240 MeV {sup 6}Li scattering

    SciTech Connect

    Chen, X.; Lui, Y.-W.; Clark, H. L.; Tokimoto, Y.; Youngblood, D. H.

    2009-02-15

    Giant resonances in {sup 116}Sn were measured by inelastic scattering of {sup 6}Li ions at E{sub {sup 6}Li}=240 MeV over the angle range 0 deg. - 6 deg. Isoscalar E0-E3 strength distributions were obtained with a double folding model analysis. A total of 106{sub -11}{sup +27}% of the E0 EWSR was found in the excitation energy range from 8 MeV to 30 MeV with a centroid (m{sub 1}/m{sub 0}) energy 15.39{sub -0.20}{sup +0.35} MeV in agreement with results obtained with {alpha} inelastic scattering.

  11. Integral characteristic parameters of the giant {ital M}1 resonance

    SciTech Connect

    Bastrukov, S.I.; Molodtsova, I.V.; Shilov, V.M.

    1995-08-01

    The dipole magnetization of a heavy spherical nucleus is studied with macroscopic standpoint. The semiclassical model under consideration focuses on the giant {ital M}1 resonance as a result of long wavelength oscillations of the collective magnetization current induced in the surface massive layer of finite depth. The macroscopic picture of the excited collective flow is found to be like that for the torsional elastic vibrations of the peripheral layer against the central spherical region inert with respect to external perturbation. The emphasis is placed on calculation of scaling behavior of integral characteristic parameters of magnetic dipole resonance.

  12. On the dipole polarisability and dipole sum rules of ozone

    NASA Astrophysics Data System (ADS)

    Kalugina, Yulia N.; Thakkar, Ajit J.

    2015-10-01

    Ab initio calculations of the dipole polarisability and other Cauchy moments of the dipole oscillator strength distribution (DOSD) of ozone are reported to help resolve discrepancies between theory and experiment. A number of coupled-cluster methods based on a Hartree-Fock reference function, multiconfiguration-reference configuration interaction methods, and perturbatively corrected, complete-active-space self-consistent field methods are used. The C DOSD of Kumar and Thakkar is probably preferable to their B1 distribution. Our best estimate of the mean polarisability is ? atomic units.

  13. Remote Sensing of Dipole Rings

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B.; Mied, Richard P.; Brown, James W.; Kirwan, A. D., Jr.

    1997-01-01

    Historical satellite-derived sea surface temperature (SST) data are reanalyzed with a zebra color palette and a thermal separatrix method. The new results from this reanalysis are as follows: (a) Thirteen observational sequences of six rings from the Gulf Stream and the Brazil Current, which have historically been interpreted as solitary vortices or monopoles are shown to have a dipolar character; (b) some of these dipole rings have been observed in the open ocean, thereby eliminating the possibility that they are sustained by topographic interactions with the continental slope; (c) whether interacting with other features or evolving as isolated circulations, dipoles are seen to rotate within a relatively narrow range of approximately 4-8 deg/day (interacting) and 10-11 deg/day (isolated); and (d) feature tracking delineates energetic fluid in both vortices and eliminates the possibility of interpreting dipole rings as transient features produced by active monopoles and patches of entrained fluid.

  14. Dipole oscillations in fermionic mixtures

    SciTech Connect

    Chiacchiera, S.; Macri, T.; Trombettoni, A.

    2010-03-15

    We study dipole oscillations in a general fermionic mixture. Starting from the Boltzmann equation, we classify the different solutions in the parameter space through the number of real eigenvalues of the small oscillations matrix. We discuss how this number can be computed using the Sturm algorithm and its relation with the properties of the Laplace transform of the experimental quantities. After considering two components in harmonic potentials having different trapping frequencies, we study dipole oscillations in three-component mixtures. Explicit computations are done for realistic experimental setups using the classical Boltzmann equation without intraspecies interactions. A brief discussion of the application of this classification to general collective oscillations is also presented.

  15. Coherent and incoherent dipole-dipole interactions between atoms

    NASA Astrophysics Data System (ADS)

    Robicheaux, Francis

    2016-05-01

    Results will be presented on the collective interaction between atoms due to the electric dipole-dipole coupling between states of different parity on two different atoms. A canonical example of this effect is when the electronic state of one atom has S-character and the state of another atom has P-character. The energy difference between the two states plays an important role in the interaction since the change in energy determines the wave number of a photon that would cause a transition between the states. If the atoms are much closer than the wave length of this photon, then the dipole-dipole interaction is in the near field and has a 1 /r3 dependence on atomic separation. If the atoms are farther apart than the wave length, then the interaction is in the far field and has a 1 / r dependence. When many atoms interact, collective effects can dominate the system with the character of the collective effect depending on whether the atomic separation leads to near field or far field coupling. As an example of the case where the atoms are in the far field, the line broadening of transitions and strong deviations from the Beer-Lambert law in a diffuse gas will be presented. As an example of near field collective behavior, the radiative properties of a Rydberg gas will be presented. Based upon work supported by the National Science Foundation under Grant No. 1404419-PHY in collaboration with R.T. Sutherland.

  16. Calculation of the energy loss for an electron passing near giant fullerenes

    NASA Astrophysics Data System (ADS)

    Henrard, L.; Lambin, Ph

    1996-11-01

    We present a theoretical analysis of the electron energy-loss spectra of isolated giant fullerenes. We use a macroscopic dielectric description of spherical onion-like fullerenes and a discrete dipole approximation (DDA) framework for tubular fullerenes. In the DDA model, an anisotropic dynamical polarizability is assigned to each carbon site. We stress the fundamental importance of the hollow character of giant fullerenes in the electron energy-loss resonances.

  17. Induced dipole-dipole interactions in light diffusion from point dipoles

    NASA Astrophysics Data System (ADS)

    Cherroret, Nicolas; Delande, Dominique; van Tiggelen, Bart A.

    2016-07-01

    We develop a perturbative treatment of induced dipole-dipole interactions in the diffusive transport of electromagnetic waves through disordered atomic clouds. The approach is exact at order 2 in the atomic density and accounts for the vector character of light. It is applied to the calculations of the electromagnetic energy stored in the atomic cloud, which modifies the energy transport velocity, and of the light scattering and transport mean free paths. Results are compared to those obtained from a purely scalar model for light.

  18. Dipole polarizabilities of charged pions

    NASA Astrophysics Data System (ADS)

    Fil'kov, L. V.; Kashevarov, V. L.

    2017-01-01

    We discuss main experimental works, where dipole polarizabilities of charged pions have been determined. Possible reasons for the differences between the experimental data are discussed. In particular, it is shown that the account of the -meson gives a significant correction to the value of the polarizability obtained in the latest experiment of the COMPASS collaboration.

  19. On the color dipole picture

    NASA Astrophysics Data System (ADS)

    Schildknecht, Dieter

    2017-03-01

    We give a brief representation of the theoretical results from the color dipole picture, covering the total photoabsorption cross section, high-energy J/ψ photoproduction with respect to recent experimental data from the LHCb Collaboration at CERN, and ultra-high energy neutrino scattering, relevant for the ICE-CUBE experiment.

  20. Dipole-mode vector solitons

    PubMed

    Garcia-Ripoll; Perez-Garcia; Ostrovskaya; Kivshar

    2000-07-03

    We find a new type of optical vector soliton that originates from trapping of a dipole mode by the soliton-induced waveguides. These solitons, which appear as a consequence of the vector nature of the two-component system, are more stable than the previously found optical vortex solitons and represent a new type of extremely robust nonlinear vector structure.

  1. Damping of the dipole vortex.

    PubMed

    Li, Xin; Pierce, Donna M; Arnoldus, Henk F

    2011-05-01

    When a circular electric dipole moment, rotating in the x-y plane, is embedded in a material with relative permittivity ε(r) and relative permeability μ(r), the field lines of energy flow of the emitted radiation are dramatically influenced by the surrounding material. For emission in free space, the field lines swirl around the z axis and lie on a cone. The direction of rotation of the field lines around the z axis is the same as the direction of rotation of the dipole moment. We found that when the real part of ε(r) is negative, the rotation of the field lines changes direction, and hence the energy counter-rotates the dipole moment. When there is damping in the material, due to an imaginary part of ε(r), the cone turns into a funnel, and the density of the field lines diminishes near the location of the source. In addition, all radiation is emitted along the z axis and the x-y plane, whereas for emission in free space, the radiation is emitted in all directions. It is also shown that the displacement of the dipole image in the far field depends on the material parameters and that the shift can be much larger than the shift of the image in free space.

  2. Sensory ecology: giant eyes for giant predators?

    PubMed

    Partridge, Julian C

    2012-04-24

    Mathematical models suggest the enormous eyes of giant and colossal squid evolved to see the bioluminescence induced by the approach of predatory whales. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Study of multipole giant resonances in /sup 90/Zr and /sup 120/Sn in scattering of 93-MeV /sup 6/Li ions

    SciTech Connect

    Venikov, N.I.; Glukhov, Y.A.; Dem'yanova, A.S.; Drozdov, S.I.; Novatskii, V.G.; Ogloblin, A.A.; Sakuta, S.B.; Stepanov, D.N.; Unezhev, V.N.; Yupinov, Y.L.; Brynkush, M.; Grama, K.; Lazer, I.

    1981-04-01

    In the inelastic scattering of /sup 6/Li ions with energy 93 MeV we have investigated the regions of quadrupole and octupole giant isoscalar resonances (E/sub x/approx.63A/sup -1/3/ and E/sub x/approx.30A/sup -13/ MeV, respectively) in the nuclei /sup 90/Zr and /sup 120/Sn. The angular distributions of the resonance groups obtained in the region of angles 12--24/sup 0/ are analyzed by the distorted wave Born approximation. Detailed study of the group at E/sub x/approx.63A/sup -1/3/ favors existence of a monopole giant resonance which is located at an excitation energy approx.76A/sup -1/3/ MeV on the left wing of the quadrupole resonance.

  4. Dipole rescattering and the nuclear structure function

    SciTech Connect

    Carvalho, F.; Goncalves, V. P.; Navarra, F. S.; Oliveira, E. G.

    2013-03-25

    In the framework of the dipole model, we study the effects of the dipole multiple scatterings in a nuclear target and compute the nuclear structure function. We compare different unitarization schemes and confront our results with the E665 data.

  5. VizieR Online Data Catalog: KIC red giants showing depressed mixed modes (Mosser+, 2017)

    NASA Astrophysics Data System (ADS)

    Mosser, B.; Belkacem, K.; Pincon, C.; Takata, M.; Vrard, M.; Barban, C.; Goupil, M.-J.; Kallinger, T.; Samadi, R.

    2017-05-01

    We performed a thorough study of red giants showing low dipole-mode visibility, based on the identification of their dipole mode pattern and the characterization of their global seismic properties. We have shown that these stars share the same global seismic parameters as other stars, regardless of the value of the dipole mode visibilities. This analysis sustains the fact that the mechanism responsible for the damping does not significantly impact the stellar structure and does not change the property of the cavity where gravity waves propagate. (1 data file).

  6. Electric Dipole Moments of Light Nuclei and the Implications for CP Violation

    NASA Astrophysics Data System (ADS)

    Gibson, B. F.; Afnan, I. R.

    2013-03-01

    A definitive measurement of an electric dipole moment (EDM) would likely imply new physics beyond the standard model. Although the standard model strong interaction term could theoretically produce an EDM of any size, that it is constrained by the current neutron EDM limit to be some 10 orders of magnitude smaller than 1 suggests that the electroweak sector and CP violation will be the source of a measurable EDM. The weak interaction standard model EDM is itself orders of magnitude smaller than contemporary experiments can measure. Direct measurement of the neutron EDM lies in the next decade; measurement of the proton EDM could well come first. A BNL proposal for an electrostatic storage ring measurement lies in the offing. Unless the EDM proves to be an isoscalar, one will need other measurements to separate the isoscalar, isovector, and isotensor components. Measurement of a nuclear EDM will be required: 2H, 3H, or 3He being the simplest nuclear systems. A storage ring measurement of the triton EDM could be accomplished in a manner analogous to that proposed for the proton. However, the deuteron EDM measurement offers certain advantages, even though the experiment would be more complex, involving electric and magnetic fields, than that required for the proton and triton. The COSY facility in the Forschungszentrum Juelich is almost an ideal facility to house such an experiment; one could also measure in the same ring the EDM for the proton and He. The deuteron is the one nucleus for which exact model calculations can easily be performed. We briefly explore the model dependence of deuteron EDM calculations. Using a separable potential formulation of the Hamiltonian, we examine the sensitivity of the deuteron EDM to variations in the nucleon-nucleon interaction, including contemporary potential models, and we explore the dependence upon intermediate state multiple scattering in the 3P1 channel. We investigate the tensor force contribution to the model results and

  7. New bound on neutrino dipole moments from globular-cluster stars

    NASA Technical Reports Server (NTRS)

    Raffelt, Georg G.

    1990-01-01

    Neutrino dipole moments mu(nu) would increase the core mass of red giants at the helium flash by delta(Mc) = 0.015 solar mass x mu(nu)/10 to the -12th muB (where muB is the Bohr magneton) because of enhanced neutrino losses. Existing measurements of the bolometric magnitudes of the brightest red giants in 26 globular clusters, number counts of horizontal-branch stars and red giants in 15 globular clusters, and statistical parallax determinations of field RR Lyr luminosities yield delta(Mc) = 0.009 + or - 0.012 solar mass, so that conservatively mu(nu) is less than 3 x 10 to the -12th muB.

  8. New bound on neutrino dipole moments from globular-cluster stars

    NASA Technical Reports Server (NTRS)

    Raffelt, Georg G.

    1990-01-01

    Neutrino dipole moments mu(nu) would increase the core mass of red giants at the helium flash by delta(Mc) = 0.015 solar mass x mu(nu)/10 to the -12th muB (where muB is the Bohr magneton) because of enhanced neutrino losses. Existing measurements of the bolometric magnitudes of the brightest red giants in 26 globular clusters, number counts of horizontal-branch stars and red giants in 15 globular clusters, and statistical parallax determinations of field RR Lyr luminosities yield delta(Mc) = 0.009 + or - 0.012 solar mass, so that conservatively mu(nu) is less than 3 x 10 to the -12th muB.

  9. Relativistic Dipole Matrix Element Zeros

    NASA Astrophysics Data System (ADS)

    Lajohn, L. A.; Pratt, R. H.

    2002-05-01

    There is a special class of relativistic high energy dipole matrix element zeros (RZ), whose positions with respect to photon energy ω , only depend on the bound state l quantum number according to ω^0=mc^2/(l_b+1) (independent of primary quantum number n, nuclear charge Z, central potential V and dipole retardation). These RZ only occur in (n,l_b,j_b)arrow (ɛ , l_b+1,j_b) transitions such as ns_1/2arrow ɛ p_1/2; np_3/2arrow ɛ d_3/2: nd_5/2arrow ɛ f_5/2 etc. The nonrelativistic limit of these matrix elements can be established explicitly in the Coulomb case. Within the general matrix element formalism (such as that in [1]); when |κ | is substituted for γ in analytic expressions for matrix elements, the zeros remain, but ω^0 now becomes dependent on n and Z. When the reduction to nonrelativistic form is completed by application of the low energy approximation ω mc^2 mc^2, the zeros disappear. This nonzero behavior was noted in nonrelativistic dipole Coulomb matrix elements by Fano and Cooper [2] and later proven by Oh and Pratt[3]. (J. H. Scofield, Phys. Rev. A 40), 3054 (1989 (U. Fano and J. W. Cooper, Rev. Mod. Phys. 40), 441 (1968). (D. Oh and R. H. Pratt, Phys. Rev. A 34), 2486 (1986); 37, 1524 (1988); 45, 1583 (1992).

  10. Efficient treatment of induced dipoles

    PubMed Central

    Simmonett, Andrew C.; Pickard, Frank C.; Shao, Yihan; Cheatham, Thomas E.; Brooks, Bernard R.

    2015-01-01

    Most existing treatments of induced dipoles in polarizable molecular mechanics force field calculations use either the self-consistent variational method, which is solved iteratively, or the “direct” approximation that is non-iterative as a result of neglecting coupling between induced dipoles. The variational method is usually implemented using assumptions that are only strictly valid under tight convergence of the induced dipoles, which can be computationally demanding to enforce. In this work, we discuss the nature of the errors that result from insufficient convergence and suggest a strategy that avoids such problems. Using perturbation theory to reintroduce the mutual coupling into the direct algorithm, we present a computationally efficient method that combines the precision of the direct approach with the accuracy of the variational approach. By analyzing the convergence of this perturbation series, we derive a simple extrapolation formula that delivers a very accurate approximation to the infinite order solution at the cost of only a few iterations. We refer to the new method as extrapolated perturbation theory. Finally, we draw connections to our previously published permanent multipole algorithm to develop an efficient implementation of the electric field and Thole terms and also derive some necessary, but not sufficient, criteria that force field parameters must obey. PMID:26298123

  11. Monolayer patterning using ketone dipoles.

    PubMed

    Kim, Min Kyoung; Xue, Yi; Pašková, Tereza; Zimmt, Matthew B

    2013-08-14

    The self-assembly of multi-component monolayers with designed patterns requires molecular recognition among components. Dipolar interactions have been found to influence morphologies of self-assembled monolayers and can affect molecular recognition functions. Ketone groups have large dipole moments (2.6 D) and are easily incorporated into molecules. The potential of ketone groups for dipolar patterning has been evaluated through synthesis of two 1,5-disubstituted anthracenes bearing mono-ketone side chains, STM characterization of monolayers self-assembled from their single and two component solutions and molecular mechanics simulations to determine their self-assembly energetics. The results reveal that (i) anthracenes bearing self-repulsive mono-ketone side chains assemble in an atypical monolayer morphology that establishes dipolar attraction, instead of repulsion, between ketones in adjacent side chains; (ii) pairs of anthracene molecules whose self-repulsive ketone side chains are dipolar complementary spontaneously assemble compositionally patterned monolayers, in which the two components segregate into neighboring, single component columns, driven by side chain dipolar interactions; (iii) compositionally patterned monolayers also assemble from dipolar complementary anthracene pairs that employ different dipolar groups (ketones or CF2 groups) in their side chains; (iv) the ketone group, with its larger dipole moment and size, provides comparable driving force for patterned monolayer formation to that of the smaller dipole, and smaller size, CF2 group.

  12. Dipole collectivity in S YRa

    SciTech Connect

    Ennis, J.F.

    1984-01-01

    While cluster models have had by far their greatest use, apart from natural radioactivity, in light nuclei in the region from YBe to UCa, Iachello and Jackson recently suggested that even in heavy nuclei, just above closed shells, four valence nucleons could form a valence alpha particle cluster orbiting the remaining core. In heavy nuclei, as opposed to light, reflecting the neutron excess (N > Z), such cluster separation results in a separation of the centers of charge and mass and thus generate a static electric dipole moment. The author has undertaken a detailed experimental study of this question using a wide range of techniques and focussing upon the S YRa nucleus. Using a SYPb target and a TC beam at Yale and the reverse reaction at GSI, the author has identified the quadrupole and dipole band members in the level spectrum of this nucleus. From measurements of the absolute lifetimes of many states ranging up to that having J = 15h, the author has shown that the electromagnetic deexcitation matrix elements are indeed enhanced and that they exhaust as much as 15% of molecular sum rule appropriate for these cluster configurations. Having measured many of the pertinent parameters, the author has shown that the Iachello-Jackson dipole model can reproduce what the author has found in S YRa. The new data also provides a stringent test of the spectrum generating algebraic and other approaches to this understanding.

  13. The Olsen Rotating Dipole, Revisited

    NASA Astrophysics Data System (ADS)

    Svalgaard, L.; Gough, D. O.; Scherrer, P. H.

    2016-12-01

    Olsen (1948) and Wilcox & Gonzales (1971) reported evidence of a solar equatorial magnetic dipole with a stable (synodic) rotation period of 26 7/8 days maintaining its phase over 15 years (1926-1941, Olsen) and possibly to 1968 as well (1963-1968, Wilcox & Gonzales). Using a composite series of Interplanetary Magnetic Sector Polarities covering the interval 1844-2016 (derived from geomagnetic data before the space age and direct measurements during 1963-2016) we find that 1) the response of geomagnetic activity to passage (at Earth) of a sector boundary has been consistently the same in every solar cycle from 9 through 24, thus validating the inferred times of sector boudary passages over the past 173 years, and 2) the 'Olsen' dipole can be traced back the 16 cycles to the year 1844, albeit with a slightly different synodic rotation period of 26.86 days (431 nHz). Olsen ended his paper with "The persistence of a fixed period during 15 years points to the possibility that the origin of the effect is to be found in a layer on the Sun with a fixed rotation-period during a long time" and Wilcox & Gonzales noted that "A rotating magnetic dipole may be lurking within the sun". We compare the Olsen-period with other evidence for rotation periods in the deep interior and for the existence of a relic magnetic field.

  14. Giant resonances of endohedral atoms

    NASA Astrophysics Data System (ADS)

    Amusia, M. Ya.; Baltenkov, A. S.; Chernysheva, L. V.

    2008-04-01

    It is demonstrated for the first time that the effect of a fullerene shell on the photoionization of a “caged” atom in an endohedral can result in the formation of giant endohedral resonances or GER. This is illustrated by the concrete case of the Xe@C60 photoionization cross section that, at 17 eV, exhibits a powerful resonance with total oscillator strengths of about 25. The prominent modification of the 5 p 6 electron photoionization cross section of Xe@C60 takes place due to the strong fullerene shell polarization under the action of the incoming electromagnetic wave and the oscillation of this cross section due to the reflection of the photoelectron from Xe by the C60. These two factors transform the smoothly decreasing 5 p 6 cross section of Xe into a rather complex curve with a powerful maximum for Xe@C60, with the oscillator strength of it being equal to 25. We also present the results for the dipole angular anisotropy parameter that is strongly affected by the reflection of the photoelectron waves, but not modified by C60 polarization.

  15. Giant resonances of endohedral atoms

    NASA Astrophysics Data System (ADS)

    Amusia, M. Ya.; Baltenkov, Arkadiy; Chernysheva, Larissa

    2008-05-01

    We demonstrate for that the effect of fullerene shell upon photoionization of the ``caged'' atom in an endohedral can result in formation of Giant Endohedral Resonances or GER. This is illustrated by the concrete case of Xe@C60 photoionization cross-section that exhibits at 17 eV a powerful resonance with total oscillator strengths of about 25. The prominent modification of the 5p^6 electron photoionization cross-section of Xe@C60 takes place due to strong fullerene shell polarization under the action of the incoming electromagnetic wave and oscillation of this cross-section due to the reflection of the photoelectron from Xe by the C60. These two factors transform the smoothly decreasing 5p^6 cross-section of Xe into a rather complex curve with a powerful maximum for Xe@C60, with the oscillator strength of it being equal to 25! We present also the results for the dipole angular anisotropy parameter that is strongly affected by the reflection of the photoelectron waves but not modified by C60 polarization.

  16. RHIC spin flipper AC dipole controller

    SciTech Connect

    Oddo, P.; Bai, M.; Dawson, C.; Gassner, D.; Harvey, M.; Hayes, T.; Mernick, K.; Minty, M.; Roser, T.; Severino, F.; Smith, K.

    2011-03-28

    The RHIC Spin Flipper's five high-Q AC dipoles which are driven by a swept frequency waveform require precise control of phase and amplitude during the sweep. This control is achieved using FPGA based feedback controllers. Multiple feedback loops are used to and dynamically tune the magnets. The current implementation and results will be presented. Work on a new spin flipper for RHIC (Relativistic Heavy Ion Collider) incorporating multiple dynamically tuned high-Q AC-dipoles has been developed for RHIC spin-physics experiments. A spin flipper is needed to cancel systematic errors by reversing the spin direction of the two colliding beams multiple times during a store. The spin flipper system consists of four DC-dipole magnets (spin rotators) and five AC-dipole magnets. Multiple AC-dipoles are needed to localize the driven coherent betatron oscillation inside the spin flipper. Operationally the AC-dipoles form two swept frequency bumps that minimize the effect of the AC-dipole dipoles outside of the spin flipper. Both AC bumps operate at the same frequency, but are phase shifted from each other. The AC-dipoles therefore require precise control over amplitude and phase making the implementation of the AC-dipole controller the central challenge.

  17. Electric dipole response of neutron-rich calcium isotopes in relativistic quasiparticle time blocking approximation

    NASA Astrophysics Data System (ADS)

    Egorova, Irina A.; Litvinova, Elena

    2016-09-01

    New results for electric dipole strength in the chain of even-even calcium isotopes with the mass numbers A =40 -54 are presented. Starting from the covariant Lagrangian of quantum hadrodynamics, spectra of collective vibrations (phonons) and phonon-nucleon coupling vertices for J ≤6 and natural parity were computed in a self-consistent relativistic quasiparticle random-phase approximation (RQRPA). These vibrations coupled to Bogoliubov two-quasiparticle configurations (2 q ⊗phonon ) formed the model space for the calculations of the dipole response function in the relativistic quasiparticle time blocking approximation. The calculations in the latter approach were performed for the giant dipole resonance (GDR) and compared to those obtained with the RQRPA and to available data. The evolution of the dipole strength with the neutron number is investigated for both high-frequency GDRs and low-lying strengths. The development of a pygmy resonant structure on the low-energy shoulder of the GDR is traced and analyzed in terms of transition densities. A dependence of the pygmy dipole strength on the isospin asymmetry parameter is extracted.

  18. The sign of the dipole-dipole potential by axion exchange

    NASA Astrophysics Data System (ADS)

    Daido, Ryuji; Takahashi, Fuminobu

    2017-09-01

    We calculate a dipole-dipole potential between fermions mediated by a light pseudoscalar, axion, paying a particular attention to the overall sign. While the sign of the potential is physical and important for experiments to discover or constrain the axion coupling to fermions, there is often a sign error in the literature. The purpose of this short note is to clarify the sign issue of the axion-mediated dipole-dipole potential. As a by-product, we find a sign change of the dipole-dipole potenital due to the different spin of the mediating particle.

  19. Electric dipole excitation of 208Pb by polarized electron impact

    NASA Astrophysics Data System (ADS)

    Jakubassa-Amundsen, D. H.; Ponomarev, V. Yu.

    2016-03-01

    The cross sections and spin asymmetries for the excitation of 1- states in 208Pb by transversely polarized electrons with collision energy of 30-180MeV have been examined within the DWBA scattering formalism. As examples, we have considered a low-lying 1- state and also states belonging to the pygmy dipole and giant dipole resonances. The structure of these states and their corresponding transition charge and current densities have been taken from an RPA calculation within the quasiparticle phonon model. The complex-plane rotation method has been applied to achieve the convergence of the radial DWBA integrals for backward scattering. We have studied the behaviour of the cross sections and spin asymmetries as a function of electron energy and scattering angle. The role of the longitudinal and transversal contributions to the excitation has been thoroughly studied. We conclude that the spin asymmetry S, related to unpolarized outgoing electrons, is mostly well below 1% even at the backward scattering angles and its measurement provides a challenge for future experiments with polarized electrons.

  20. NLO evolution of color dipoles

    SciTech Connect

    Ian Balitsky; Giovanni Chirilli

    2008-01-01

    The small-x deep inelastic scattering in the saturation region is governed by the non-linear evolution of Wilson-lines operators. In the leading logarithmic approximation it is given by the BK equation for the evolution of color dipoles. In the next-to-leaing order the BK equation gets contributions from quark and gluon loops as well as from the tree gluon diagrams with quadratic and cubic nonlinearities. We calculate the gluon contribution to small-x evolution of Wilson lines (the quark part was obtained earlier).

  1. Rotating Vortex Dipoles in Ferromagnets

    SciTech Connect

    Komineas, S.

    2007-09-14

    Vortex-antivortex pairs are spontaneously created in magnetic elements. In the case of opposite vortex polarities the pair has a nonzero topological charge, and it behaves as a rotating vortex dipole. We find theoretically and confirm numerically its energy as a function of angular momentum and the associated rotation frequencies. The annihilation process of the pair changes the topological charge while the energy is monotonically decreasing. The change of topological charge affects the dynamics profoundly. We finally discuss the implications of our results for Bloch point dynamics.

  2. Rotating vortex dipoles in ferromagnets.

    PubMed

    Komineas, S

    2007-09-14

    Vortex-antivortex pairs are spontaneously created in magnetic elements. In the case of opposite vortex polarities the pair has a nonzero topological charge, and it behaves as a rotating vortex dipole. We find theoretically and confirm numerically its energy as a function of angular momentum and the associated rotation frequencies. The annihilation process of the pair changes the topological charge while the energy is monotonically decreasing. The change of topological charge affects the dynamics profoundly. We finally discuss the implications of our results for Bloch point dynamics.

  3. Is there correlation between fine structure and dark energy cosmic dipoles?

    NASA Astrophysics Data System (ADS)

    Mariano, Antonio; Perivolaropoulos, Leandros

    2012-10-01

    We present a detailed analysis (including redshift tomography) of the cosmic dipoles in the Keck+VLT quasar absorber and in the Union2 SnIa samples. We show that the fine structure constant cosmic dipole obtained through the Keck+VLT quasar absorber sample at 4.1σ level is anomalously aligned with the corresponding dark energy dipole obtained through the Union2 sample at 2σ level. The angular separation between the two dipole directions is 11.3°±11.8°. We use Monte Carlo simulations to find the probability of obtaining the observed dipole magnitudes with the observed alignment, in the context of an isotropic cosmological model with no correlation between dark energy and fine structure constant α. We find that this probability is less than one part in 106. We propose a simple physical model (extended topological quintessence) which naturally predicts a spherical inhomogeneous distribution for both dark energy density and fine structure constant values. The model is based on the existence of a recently formed giant global monopole with Hubble scale core which also couples nonminimally to electromagnetism. Aligned dipole anisotropies would naturally emerge for an off-center observer for both the fine structure constant and for dark energy density. This model smoothly reduces to ΛCDM for proper limits of its parameters. Two predictions of this model are (a) a correlation between the existence of strong cosmic electromagnetic fields and the value of α and (b) the existence of a dark flow on Hubble scales due to the repulsive gravity of the global defect core (“Great Repulser”) aligned with the dark energy and α dipoles. The direction of the dark flow is predicted to be towards the spatial region of lower accelerating expansion. Existing data about the dark flow are consistent with this prediction.

  4. Electric dipole polarizability from first principles calculations

    NASA Astrophysics Data System (ADS)

    Miorelli, M.; Bacca, S.; Barnea, N.; Hagen, G.; Jansen, G. R.; Orlandini, G.; Papenbrock, T.

    2016-09-01

    The electric dipole polarizability quantifies the low-energy behavior of the dipole strength and is related to critical observables such as the radii of the proton and neutron distributions. Its computation is challenging because most of the dipole strength lies in the scattering continuum. In this paper we combine integral transforms with the coupled-cluster method and compute the dipole polarizability using bound-state techniques. Employing different interactions from chiral effective field theory, we confirm the strong correlation between the dipole polarizability and the charge radius, and study its dependence on three-nucleon forces. We find good agreement with data for the 4He,40Ca, and 16O nuclei, and predict the dipole polarizability for the rare nucleus 22O.

  5. Electric dipole polarizability from first principles calculations

    DOE PAGES

    Miorelli, M.; Bacca, S.; Barnea, N.; ...

    2016-09-19

    The electric dipole polarizability quantifies the low-energy behavior of the dipole strength and is related to critical observables such as the radii of the proton and neutron distributions. Its computation is challenging because most of the dipole strength lies in the scattering continuum. In our paper we combine integral transforms with the coupled-cluster method and compute the dipole polarizability using bound-state techniques. Furthermore, employing different interactions from chiral effective field theory, we confirm the strong correlation between the dipole polarizability and the charge radius, and study its dependence on three-nucleon forces. Finally, we find good agreement with data for themore » 4He, 40Ca, and 16O nuclei, and predict the dipole polarizability for the rare nucleus 22O.« less

  6. Electric dipole polarizability from first principles calculations

    SciTech Connect

    Miorelli, M.; Bacca, S.; Barnea, N.; Hagen, G.; Jansen, G. R.; Orlandini, G.; Papenbrock, T.

    2016-09-19

    The electric dipole polarizability quantifies the low-energy behavior of the dipole strength and is related to critical observables such as the radii of the proton and neutron distributions. Its computation is challenging because most of the dipole strength lies in the scattering continuum. In our paper we combine integral transforms with the coupled-cluster method and compute the dipole polarizability using bound-state techniques. Furthermore, employing different interactions from chiral effective field theory, we confirm the strong correlation between the dipole polarizability and the charge radius, and study its dependence on three-nucleon forces. Finally, we find good agreement with data for the 4He, 40Ca, and 16O nuclei, and predict the dipole polarizability for the rare nucleus 22O.

  7. Electric dipole polarizability from first principles calculations

    SciTech Connect

    Miorelli, M.; Bacca, S.; Barnea, N.; Hagen, G.; Jansen, G. R.; Orlandini, G.; Papenbrock, T.

    2016-09-19

    The electric dipole polarizability quantifies the low-energy behavior of the dipole strength and is related to critical observables such as the radii of the proton and neutron distributions. Its computation is challenging because most of the dipole strength lies in the scattering continuum. In our paper we combine integral transforms with the coupled-cluster method and compute the dipole polarizability using bound-state techniques. Furthermore, employing different interactions from chiral effective field theory, we confirm the strong correlation between the dipole polarizability and the charge radius, and study its dependence on three-nucleon forces. Finally, we find good agreement with data for the 4He, 40Ca, and 16O nuclei, and predict the dipole polarizability for the rare nucleus 22O.

  8. Nanophotonic control of circular dipole emission

    NASA Astrophysics Data System (ADS)

    Le Feber, B.; Rotenberg, N.; Kuipers, L.

    2015-04-01

    Controlling photon emission by single emitters with nanostructures is crucial for scalable on-chip information processing. Nowadays, nanoresonators can affect the lifetime of linear dipole emitters, while nanoantennas can steer the emission direction. Expanding this control to the emission of orbital angular momentum-changing transitions would enable a future coupling between solid state and photonic qubits. As these transitions are associated with circular dipoles, such control requires knowledge of the interaction of a complex dipole with optical eigenstates containing local helicity. We experimentally map the coupling of classical, circular dipoles to photonic modes in a photonic crystal waveguide. We show that, depending on the combination of the local helicity of the mode and the dipole helicity, circular dipoles can couple to left- or rightwards propagating modes with a near-unity directionality. The experimental maps are in excellent agreement with calculations. Our measurements, therefore, demonstrate the possibility of coupling the spin to photonic pathway.

  9. Electric dipole radiation near a mirror

    SciTech Connect

    Li Xin; Arnoldus, Henk F.

    2010-05-15

    The emission of radiation by a linearly oscillating electric dipole is drastically altered when the dipole is close to the surface of a mirror. The energy is not emitted along optical rays, as for a free dipole, but as a set of four optical vortices. The field lines of energy flow spiral around a set of two lines through the dipole. At a larger distance from the dipole, singularities and isolated vortices appear. It is shown that these interference vortices are due to the vanishing of the magnetic field at their centers. In the plane of the mirror there is a singular circle with a diameter which is proportional to the distance between the dipole and the mirror. Inside this circle, all energy flows to a singularity on the mirror surface.

  10. Giant prostatic calculi

    PubMed Central

    Najoui, Mohammed; Qarro, Abdelmounaim; Ammani, Abdelghani; Alami, Mohammed

    2013-01-01

    Prostatic parenchymal calculi are common, usually incidental, findings on morphological examinations. They are typically asymptomatic and may be present in association with normal glands, benign prostatic hyperplasia, and prostate cancer. However giant prostatic calculi are rare. Less than 20 cases have been reported in the literature. We present the case of a 35-year-old man with two giant prostatic calculi that replaced the entire gland. He underwent an open cystolithotomy, two giant stones were removed from the prostate, and we used a lithotripsy in situ for extraction of stone fragments. PMID:23565316

  11. Unstable giant gravitons

    SciTech Connect

    Mello Koch, Robert de; Ives, Norman; Smolic, Jelena; Smolic, Milena

    2006-03-15

    We find giant graviton solutions in Frolov's three parameter generalization of the Lunin-Maldacena background. The background we study has {gamma}-tilde{sub 1}=0 and {gamma}-tilde{sub 2}={gamma}-tilde{sub 3}={gamma}-tilde. This class of backgrounds provides a nonsupersymmetric example of the gauge theory/gravity correspondence that can be tested quantitatively, as recently shown by Frolov, Roiban, and Tseytlin. The giant graviton solutions we find have a greater energy than the point gravitons, making them unstable states. Despite this, we find striking quantitative agreement between the gauge theory and gravity descriptions of open strings attached to the giant.

  12. Broad-band UHF dipole array

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.

    1985-01-01

    A 6X6 array of fan-dipoles was designed to operate in the 510 to 660 MHz frequency range for aircraft flight test and evaluation of a UHF radiometer system. A broad-band dipole design operating near the first resonance is detailed. Measured VSWR and radiation patterns for the dipole array demonstrate achievable bandwidths in the 35 percent to 40 percent range.

  13. On Dipole Moment of Impurity Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Konobeeva, N. N.; Ten, A. V.; Belonenko, M. B.

    2017-04-01

    Propagation of a two-dimensional electromagnetic pulse in an array of semiconductor carbon nanotubes with impurities is investigated. The parameters of dipole moments of impurities are determined. The Maxwell equation and the equation of motion for dipole polarization are jointly solved. The dynamics of the electromagnetic pulse is examined as a function of the dipole moment. It is shown that taking polarization into account does not have a substantial effect on the propagation process, but alters the optical pulse shape.

  14. Spectral Distortions of the CMB Dipole

    NASA Astrophysics Data System (ADS)

    Balashev, S. A.; Kholupenko, E. E.; Chluba, J.; Ivanchik, A. V.; Varshalovich, D. A.

    2015-09-01

    We consider the distortions of the cosmic microwave background (CMB) dipole anisotropy related to primordial recombination radiation (PRR) and primordial y- and μ-distortions. The signals arise due to our motion relative to the CMB restframe and appear as a frequency-dependent distortion of the CMB temperature dipole. To leading order, the expected relative distortion of the CMB dipole does not depend on the particular observation directions and reaches the level of 10-6 for the PRR- and μ-distortions and 10-5 for the y-distortion in the frequency range 1-700 GHz. The temperature differences arising from the dipole anisotropy of the relic CMB distortions depend on the observation directions. For mutually opposite directions, collinear to the CMB dipole axis, the temperature differences due to the PRR- and μ-dipole anisotropy attain values {{Δ }}T≃ 10 {nK} in the considered range. The temperature difference arising from the y-dipole anisotropy may reach values of up to 1 μ {{K}}. The key features of the considered effect are as follow: (i) an observation of the effect does not require absolute calibration; (ii) patches of sky with minimal foreground contamination can be chosen. Future measurements of the CMB dipole distortion thus will provide an alternative method for direct detection of the PRR-, y-, and μ-distortions. The y-distortion dipole may be detectable with PIXIE at a few standard deviations.

  15. Which dipole are you studying in lab?

    NASA Astrophysics Data System (ADS)

    Binder, P.-M.; Tate, Reuben B.; Crowder, Callie K.

    2017-01-01

    We explore the similarities and differences between the electric dipole studied in introductory physics and the purportedly equivalent elementary experiment in which the electric potential is measured on a conductive sheet as a current flows. The former is a three-dimensional electrostatic dipole while the latter is a two-dimensional steady-state dipole. In spite of these differences, and as shown in this work, the potentials due to these dipoles look very similar. This may be misleading to either students or unaware instructors.

  16. Spin dephasing in a magnetic dipole field.

    PubMed

    Ziener, C H; Kampf, T; Reents, G; Schlemmer, H-P; Bauer, W R

    2012-05-01

    Transverse relaxation by dephasing in an inhomogeneous field is a general mechanism in physics, for example, in semiconductor physics, muon spectroscopy, or nuclear magnetic resonance. In magnetic resonance imaging the transverse relaxation provides information on the properties of several biological tissues. Since the dipole field is the most important part of the multipole expansion of the local inhomogeneous field, dephasing in a dipole field is highly important in relaxation theory. However, there have been no analytical solutions which describe the dephasing in a magnetic dipole field. In this work we give a complete analytical solution for the dephasing in a magnetic dipole field which is valid over the whole dynamic range.

  17. Spin dephasing in a magnetic dipole field

    NASA Astrophysics Data System (ADS)

    Ziener, C. H.; Kampf, T.; Reents, G.; Schlemmer, H.-P.; Bauer, W. R.

    2012-05-01

    Transverse relaxation by dephasing in an inhomogeneous field is a general mechanism in physics, for example, in semiconductor physics, muon spectroscopy, or nuclear magnetic resonance. In magnetic resonance imaging the transverse relaxation provides information on the properties of several biological tissues. Since the dipole field is the most important part of the multipole expansion of the local inhomogeneous field, dephasing in a dipole field is highly important in relaxation theory. However, there have been no analytical solutions which describe the dephasing in a magnetic dipole field. In this work we give a complete analytical solution for the dephasing in a magnetic dipole field which is valid over the whole dynamic range.

  18. Enhanced and tunable electric dipole-dipole interactions near a planar metal film

    NASA Astrophysics Data System (ADS)

    Zhou, Lei-Ming; Yao, Pei-Jun; Zhao, Nan; Sun, Fang-Wen

    2017-08-01

    We investigate the enhanced electric dipole-dipole interaction of surface plasmon polaritons (SPPs) supported by a planar metal film waveguide. By taking two nitrogen-vacancy (NV) center electric dipoles in diamond as an example, both the coupling strength and collective relaxation of two dipoles are studied with the numerical Green Function method. Compared to two-dipole coupling on a planar surface, metal film provides stronger and tunable coupling coefficients. Enhancement of the interaction between coupled NV center dipoles could have applications in both quantum information and energy transfer investigation. Our investigation provides systematic results for experimental applications based on a dipole-dipole interaction mediated with SPPs on a planar metal film.

  19. Probing weak dipole-dipole interaction using phase-modulated nonlinear spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Zeng-Zhao; Bruder, Lukas; Stienkemeier, Frank; Eisfeld, Alexander

    2017-05-01

    Phase-modulated nonlinear spectroscopy with higher harmonic demodulation has recently been suggested to provide information on many-body excitations. In the present work we theoretically investigate the application of this method to infer the interaction strength between two particles that interact via weak dipole-dipole interaction. To this end we use a full numerical solution of the Schrödinger equation with time-dependent pulses. For interpretation purposes we also derive analytical expressions in perturbation theory. We find one can detect dipole-dipole interaction via peak intensities (in contrast to line-shifts which typically are used in conventional spectroscopy). We provide a detailed study on the dependence of these intensities on the parameters of the laser pulse and the dipole-dipole interaction strength. Interestingly, we find that there is a phase between the first and second harmonic demodulated signal whose value depends on the sign of the dipole-dipole interaction.

  20. Hyperfine dipole-dipole broadening of selective reflection spectroscopy at the gas-solid interface

    NASA Astrophysics Data System (ADS)

    Meng, Tengfei; Ji, Zhonghua; Zhao, Yanting; Xiao, Liantuan; Jia, Suotang

    2016-09-01

    We theoretically and experimentally investigate hyperfine dipole-dipole broadening in the selective reflection (SR) spectroscopy at the gas-solid interface with the atomic density of 1014-1015 cm-3. The two-level SR theory considering pump beam and dipole-dipole interaction between excited-state atom and ground-state atom is presented. The numerical simulation of the SR spectrum is in agreement with experimental results. The reduction of spectral width is observed by introducing a pump beam which is an effective technique to improve the resolution of spectroscopy. We analyze the dependence of dipole-dipole broadening on atomic density and pump beam power. This study is helpful for the description of the SR spectroscopy at the gas-solid interface where the Doppler broadening is comparable with dipole-dipole broadening.

  1. Testing of a Single 11 T $Nb_3Sn$ Dipole Coil Using a Dipole Mirror Structure

    SciTech Connect

    Zlobin, Alexander; Andreev, Nicolai; Barzi, Emanuela; Chlachidze, Guram; Kashikhin, Vadim; Nobrega, Alfred; Novitski, Igor; Turrioni, Daniele; Karppinen, Mikko; Smekens, David

    2014-07-01

    FNAL and CERN are developing an 11 T Nb3Sn dipole suitable for installation in the LHC. To optimize coil design parameters and fabrication process and study coil performance, a series of 1 m long dipole coils is being fabricated. One of the short coils has been tested using a dipole mirror structure. This paper describes the dipole mirror magnetic and mechanical designs, and reports coil parameters and test results.

  2. Tracks of a Giant

    NASA Image and Video Library

    2010-08-25

    The giant, 70-meter-wide antenna at NASA Deep Space Network complex in Goldstone, Calif., tracks a spacecraft on Nov. 17, 2009. This antenna, officially known as Deep Space Station 14, is also nicknamed the Mars antenna.

  3. The Next Giant Step

    NASA Image and Video Library

    Artist Robert McCall painted "The Next Giant Step" in 1979 to commemorate the heroism and courage of spaceflight pioneers. Located in the lobby of Johnson's building 2, the mural depicts America's ...

  4. Silvics of Giant Sequoia

    Treesearch

    C. Phillip Weatherspoon

    1986-01-01

    Ecological relationships-including habitat and life history---of giant sequoia (Sequoiadendron giganteum [Lindl.] Buchholz) in natural stands are summarized. Such silvical information provides an important foundation for sound management of the species.

  5. The Giant Cell.

    ERIC Educational Resources Information Center

    Stockdale, Dennis

    1998-01-01

    Provides directions for the construction of giant plastic cells, including details for building and installing the organelles. Also contains instructions for preparing the ribosomes, nucleolus, nucleus, and mitochondria. (DDR)

  6. Giant Earlobe Epidermoid Cyst

    PubMed Central

    Pérez-Guisado, Joaquín; Scilletta, Alessandra; Cabrera-Sánchez, Emilio; Rioja, Luis F; Perrotta, Rosario

    2012-01-01

    Epidermoid cysts represent the most common cutaneous cysts. They are usually small and benign; however, sometimes they can grow to giant epidermoid cists, and occasionally malignancies develop. Giant epidermoid cysts at the earlobe have never been described but in other locations. We describe a case of a giant epidermoid cyst at the earlobe, a location where such a large cyst has never been reported before. The mass was completely resected and the wound of the pedunculated base was sutured with four stitches of nylon 5/0. Histopathology confirmed the presumptive diagnosis of an epidermoid cyst. Six months after the resection, the patient did not have any relapse of the epidermoid cyst. The earlobe is a potential location for giant epidermoid cysts. Although the clinical diagnosis could be enough, due to the possibility of malignancy and to ensure appropriate diagnosis, we consider that all cysts should be sent to the anatomic pathology laboratory for histological evaluation. PMID:22557855

  7. The Giant Cell.

    ERIC Educational Resources Information Center

    Stockdale, Dennis

    1998-01-01

    Provides directions for the construction of giant plastic cells, including details for building and installing the organelles. Also contains instructions for preparing the ribosomes, nucleolus, nucleus, and mitochondria. (DDR)

  8. Giant Cell Arteritis and Polymyalgia Rheumatica

    MedlinePlus

    ... Controlfamilydoctor.org editorial staff Home Diseases and Conditions Giant Cell Arteritis and Polymyalgia Rheumatica Condition Giant Cell Arteritis and Polymyalgia Rheumatica Share Print Giant ...

  9. Capella: Separating the Giants

    NASA Astrophysics Data System (ADS)

    Young, P. R.; Dupree, A. K.

    2002-01-01

    Images from the Faint Object Camera (FOC) on the Hubble Space Telescope (HST) are used to spatially separate the two giants of Capella (α Aurigae; HD 34029) for the first time at ultraviolet wavelengths. The images were obtained with broadband filters that isolate the wavelength regions 2500-3000 Å and 1300-1500 Å. The cool G8 giant is found to be weaker than the hot G1 giant by factors of around 4 and 17, respectively, in these bands. The latter factor is largely due to the much stronger G1 continuum at short wavelengths. No evidence is found for material lying between the two stars in the images. In addition, the objective prisms of the FOC were used to obtain low-resolution spectra from 1200 to 3000 Å, allowing individual emission lines from each star to be spatially separated. Cool-to-hot star ratios for the emission lines H I Lyα, O I λ1305, Si II λ1816, C II λ1335, He II λ1640, and Si IV λ1393 are presented, showing that the cool giant is weaker than the hot giant by factors of 5-10 in these lines. The O I emission is only a factor of 2.5 weaker in the cool giant, most probably resulting from fluorescence in the extended atmosphere of the cool giant. The line ratios are compared with values derived from International Ultraviolet Explorer and HST/Goddard High Resolution Spectrograph spectra, which could separate the stars spectrally but not spatially. Reasonable agreement is found although the FOC ratios generally imply lower contributions from the cool giant. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.

  10. Low-lying dipole resonance in neutron-rich Ne isotopes

    NASA Astrophysics Data System (ADS)

    Yoshida, Kenichi; van Giai, Nguyen

    2008-07-01

    Microscopic structure of the low-lying isovector dipole excitation mode in neutron-rich Ne26,28,30 is investigated by performing deformed quasiparticle-random-phase-approximation (QRPA) calculations. The particle-hole residual interaction is derived from a Skyrme force through a Landau-Migdal approximation. We obtain the low-lying resonance in Ne26 at around 8.6 MeV. It is found that the isovector dipole strength at Ex<10 MeV exhausts about 6.0% of the classical Thomas-Reiche-Kuhn dipole sum rule. This excitation mode is composed of several QRPA eigenmodes, one is generated by a ν(2s1/2-12p3/2) transition dominantly and the other mostly by a ν(2s1/2-12p1/2) transition. The neutron excitations take place outside of the nuclear surface reflecting the spatially extended structure of the 2s1/2 wave function. In Ne30, the deformation splitting of the giant resonance is large, and the low-lying resonance overlaps with the giant resonance.

  11. Dipole Engineering for Conducting Polymers

    NASA Astrophysics Data System (ADS)

    McClain, William Edward

    A method for the growth of a TiO2 adhesion layer on PEDOT:PSS (poly[3,4- ethylenedioxythiophene]: poly[styrenesulfonate]) and for further functionalization with self-assembled monolayers of phosphonates (SAMPs) was developed. The TiO2 adhesion layer was grown via chemical vapor deposition using a titanium(IV) t-butoxide precursor, and was characterized by goniometry and X-ray photoelectron spectroscopy. TiO 2 grown on a model system, H-terminated silicon, indicated that the surface was t-butoxide terminated. Phenylphosphonic acids were synthesized with a variety of molecular dipoles and were used to change the work function of PEDOT:PSS through the formation of an aggregate surface dipole. Good correlation was found between the z-component of the molecular dipole and the change in work function, indicating that the film was well-ordered and dense. The magnitude of the changes in work function and goniometry measurements were similar to measurements on ITO, a substrate on which phosphonates form well-ordered monolayers. As-grown PEDOT:PSS/TiO 2 electrodes showed a lower work function compared to PEDOT:PSS, which is attributed to residual t-butoxide groups on the TiO 2 surface. UPS measurements revealed that reductions in work function in the modified electrodes lowered the difference in energy between the Fermi energy (EF) of the conducting polymer and the LUMO of PCBM ([6,6]-phenyl-C 61-butyric acid methyl ester). A reduction of this energy difference should translate into increased electron injection in electron-only diodes; however, devices with modified electrodes showed decreased current densities. UPS/IPES measurements show that TiO2 grown using this method has a much larger band gap than bulk or nanocrystalline TiO2, which is likely responsible for this decrease in device currents. At high bias, device currents increase dramatically, and the effects of the phosphonates or t-butoxide terminated TiO2 vanish. This is attributed to a reduction of the TiO2 to

  12. The giant gamow-teller resonance

    NASA Astrophysics Data System (ADS)

    Arima, A.

    2001-01-01

    I will review the history and recent developments in the following fields: 1) Isoscalar magnetic moments, 2) Isovector magnetic moments and superallowed Gamow-Teller β-decay, 3) Gamow-Teller transitions in (p,n) reactions, 4) The Landau-Migdal parameter g‧ NΔ, and 5) Precursor phenomena of pion condensation.

  13. Dipole-induced electromagnetic transparency.

    PubMed

    Puthumpally-Joseph, Raiju; Sukharev, Maxim; Atabek, Osman; Charron, Eric

    2014-10-17

    We determine the optical response of a thin and dense layer of interacting quantum emitters. We show that, in such a dense system, the Lorentz redshift and the associated interaction broadening can be used to control the transmission and reflection spectra. In the presence of overlapping resonances, a dipole-induced electromagnetic transparency (DIET) regime, similar to electromagnetically induced transparency (EIT), may be achieved. DIET relies on destructive interference between the electromagnetic waves emitted by quantum emitters. Carefully tuning material parameters allows us to achieve narrow transmission windows in, otherwise, completely opaque media. We analyze in detail this coherent and collective effect using a generalized Lorentz model and show how it can be controlled. Several potential applications of the phenomenon, such as slow light, are proposed.

  14. Radiating dipoles in photonic crystals

    PubMed

    Busch; Vats; John; Sanders

    2000-09-01

    The radiation dynamics of a dipole antenna embedded in a photonic crystal are modeled by an initially excited harmonic oscillator coupled to a non-Markovian bath of harmonic oscillators representing the colored electromagnetic vacuum within the crystal. Realistic coupling constants based on the natural modes of the photonic crystal, i.e., Bloch waves and their associated dispersion relation, are derived. For simple model systems, well-known results such as decay times and emission spectra are reproduced. This approach enables direct incorporation of realistic band structure computations into studies of radiative emission from atoms and molecules within photonic crystals. We therefore provide a predictive and interpretative tool for experiments in both the microwave and optical regimes.

  15. Final Report: Levitated Dipole Experiment

    SciTech Connect

    Kesner, Jay; Mauel, Michael

    2013-03-10

    Since the very first experiments with the LDX, research progress was rapid and significant. Initial experiments were conducted with the high-field superconducting coil suspended by three thin rods. These experiments produced long-pulse, quasi-steady-state microwave discharges, lasting more than 10 s, having peak beta values of 20% [Garnier et al., Physics of Plasmas, 13 (2006) 056111]. High- beta, near steady-state discharges have been maintained in LDX for more than 20 seconds, and this capability made LDX the longest pulse fusion confinement experiment operating in the U.S. fusion program. A significant measure of progress in the LDX research program was the routine investigation of plasma confinement with a magnetically-levitated dipole and the resulting observations of confinement improvement. In both supported and levitated configurations, detailed measurements were made of discharge evolution, plasma dynamics and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. High-temperature plasma was created by multi frequency electron cyclotron resonance heating at 2.45 GHz, 6.4 GHz, 10.5 GHz and 28 GHz allowing control of heating profiles. Depending upon neutral fueling rates, the LDX discharges contain a fraction of energetic electrons, with mean energies above 50 keV. Depending on whether or not the superconducting dipole was levitated or supported, the peak thermal electron temperature was estimated to exceed 500 eV and peak densities to approach 1e18 m-3. We have found that levitation causes a strong inwards density pinch [Boxer et al., Nature Physics, 6 (2010) 207] and we have observed the central plasma density increase dramatically indicating a significant improvement in the confinement of a thermal plasma species.

  16. Dipole Relaxation in an Electric Field.

    ERIC Educational Resources Information Center

    Neumann, Richard M.

    1980-01-01

    Derives an expression for the orientational entropy of a rigid rod (electric dipole) from Boltzmann's equation. Subsequent application of Newton's second law of motion produces Debye's classical expression for the relaxation of an electric dipole in a viscous medium. (Author/GS)

  17. Classical and quantum interaction of the dipole

    PubMed

    Anandan

    2000-08-14

    A unified and fully relativistic treatment of the interaction of the electric and magnetic dipole moments of a particle with the electromagnetic field is given. New forces on the particle due to the combined effect of electric and magnetic dipoles are obtained. Several new experiments are proposed, which include observation of topological phase shifts.

  18. Dipole Relaxation in an Electric Field.

    ERIC Educational Resources Information Center

    Neumann, Richard M.

    1980-01-01

    Derives an expression for the orientational entropy of a rigid rod (electric dipole) from Boltzmann's equation. Subsequent application of Newton's second law of motion produces Debye's classical expression for the relaxation of an electric dipole in a viscous medium. (Author/GS)

  19. How to Introduce the Magnetic Dipole Moment

    ERIC Educational Resources Information Center

    Bezerra, M.; Kort-Kamp, W. J. M.; Cougo-Pinto, M. V.; Farina, C.

    2012-01-01

    We show how the concept of the magnetic dipole moment can be introduced in the same way as the concept of the electric dipole moment in introductory courses on electromagnetism. Considering a localized steady current distribution, we make a Taylor expansion directly in the Biot-Savart law to obtain, explicitly, the dominant contribution of the…

  20. How to Introduce the Magnetic Dipole Moment

    ERIC Educational Resources Information Center

    Bezerra, M.; Kort-Kamp, W. J. M.; Cougo-Pinto, M. V.; Farina, C.

    2012-01-01

    We show how the concept of the magnetic dipole moment can be introduced in the same way as the concept of the electric dipole moment in introductory courses on electromagnetism. Considering a localized steady current distribution, we make a Taylor expansion directly in the Biot-Savart law to obtain, explicitly, the dominant contribution of the…

  1. Graphene-based optically transparent dipole antenna

    NASA Astrophysics Data System (ADS)

    Kosuga, Shohei; Suga, Ryosuke; Hashimoto, Osamu; Koh, Shinji

    2017-06-01

    We fabricated an optically transparent dipole antenna based on chemical vapor deposition (CVD)-grown monolayer graphene on an optically transparent quartz substrate and characterized its properties in microwave bands. The measurements of the reflection coefficients for the dipole antenna revealed that ˜90% of the microwave power transmitted to the CVD monolayer graphene of the antenna element. By measuring transmission coefficients, we demonstrated that the graphene dipole antenna radiated microwave power around the operational frequency (˜20.7 GHz). The operational frequency of the graphene dipole antenna (˜20.7 GHz) shifted to a higher frequency than that of the Au dipole antenna with the same structure (˜9.2 GHz), which suggests that monolayer graphene behaves not as a metal but as a dielectric material.

  2. High-field dipoles for future accelerators

    SciTech Connect

    Wipf, S.L.

    1984-09-01

    This report presents the concept for building superconducting accelerator dipoles with record high fields. Economic considerations favor the highest possible current density in the windings. Further discussion indicates that there is an optimal range of pinning strength for a superconducting material and that it is not likely for multifilamentary conductors to ever equal the potential performance of tape conductors. A dipole design with a tape-wound, inner high-field winding is suggested. Methods are detailed to avoid degradation caused by flux jumps and to overcome problems with the dipole ends. Concerns for force support structure and field precision are also addressed. An R and D program leading to a prototype 11-T dipole is outlined. Past and future importance of superconductivity to high-energy physics is evident from a short historical survey. Successful dipoles in the 10- to 20-T range will allow interesting options for upgrading present largest accelerators.

  3. Critical Dipole Length for the Wetting Transition Due to Collective Water-dipoles Interactions

    PubMed Central

    Wang, Chunlei; Zhou, Bo; Tu, Yusong; Duan, Manyi; Xiu, Peng; Li, Jingye; Fang, Haiping

    2012-01-01

    The wetting behavior of water on the solid surfaces is fundamental to various physical, chemical and biological processes. Conventionally, the surface with charges or charge dipoles is hydrophilic, whereas the non-polar surface is hydrophobic though some exceptions were recently reported. Using molecular dynamics simulations, we show that there is a critical length of the charge dipoles on the solid surface. The solid surface still exhibited hydrophobic behavior when the dipole length was less than the critical value, indicating that the water molecules on the solid surface seemed not “feel” attractive interactions from the charge dipoles on the solid surface. Those unexpected observations result from the collective interactions between the water molecules and charge dipoles on the solid surface, where the steric exclusion effect between water molecules greatly reduces the water-dipole interactions. Remarkably, the steric exclusion effect is also important for surfaces with charge dipole lengths greater than this critical length. PMID:22496954

  4. Dipole oscillator strengths, dipole properties and dispersion energies for SiF4

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Kumar, Mukesh; Meath, William J.

    2003-01-01

    A recommended isotropic dipole oscillator strength distribution (DOSD) has been constructed for the silicon tetrafluoride (SiF4) molecule through the use of quantum mechanical constraint techniques and experimental dipole oscillator strength data. The constraints are furnished by experimental molar refractivity data and the Thomas-Reiche-Kuhn sum rule. The DOSD is used to evaluate a variety of isotropic dipole oscillator strength sums, logarithmic dipole oscillator strength sums and mean excitation energies for the molecule. A pseudo-DOSD for SiF4 is also presented which is used to obtain reliable results for the isotropic dipole-dipole dispersion energy coefficients C6, for the interaction of SiF4 with itself and with 43 other species and the triple-dipole dispersion energy coefficient C9 for (SiF4)3.

  5. Giant congenital melanocytic nevus.

    PubMed

    Viana, Ana Carolina Leite; Gontijo, Bernardo; Bittencourt, Flávia Vasques

    2013-01-01

    Giant congenital melanocytic nevus is usually defined as a melanocytic lesion present at birth that will reach a diameter ≥ 20 cm in adulthood. Its incidence is estimated in <1:20,000 newborns. Despite its rarity, this lesion is important because it may associate with severe complications such as malignant melanoma, affect the central nervous system (neurocutaneous melanosis), and have major psychosocial impact on the patient and his family due to its unsightly appearance. Giant congenital melanocytic nevus generally presents as a brown lesion, with flat or mammilated surface, well-demarcated borders and hypertrichosis. Congenital melanocytic nevus is primarily a clinical diagnosis. However, congenital nevi are histologically distinguished from acquired nevi mainly by their larger size, the spread of the nevus cells to the deep layers of the skin and by their more varied architecture and morphology. Although giant congenital melanocytic nevus is recognized as a risk factor for the development of melanoma, the precise magnitude of this risk is still controversial. The estimated lifetime risk of developing melanoma varies from 5 to 10%. On account of these uncertainties and the size of the lesions, the management of giant congenital melanocytic nevus needs individualization. Treatment may include surgical and non-surgical procedures, psychological intervention and/or clinical follow-up, with special attention to changes in color, texture or on the surface of the lesion. The only absolute indication for surgery in giant congenital melanocytic nevus is the development of a malignant neoplasm on the lesion.

  6. Giant congenital melanocytic nevus*

    PubMed Central

    Viana, Ana Carolina Leite; Gontijo, Bernardo; Bittencourt, Flávia Vasques

    2013-01-01

    Giant congenital melanocytic nevus is usually defined as a melanocytic lesion present at birth that will reach a diameter ≥ 20 cm in adulthood. Its incidence is estimated in <1:20,000 newborns. Despite its rarity, this lesion is important because it may associate with severe complications such as malignant melanoma, affect the central nervous system (neurocutaneous melanosis), and have major psychosocial impact on the patient and his family due to its unsightly appearance. Giant congenital melanocytic nevus generally presents as a brown lesion, with flat or mammilated surface, well-demarcated borders and hypertrichosis. Congenital melanocytic nevus is primarily a clinical diagnosis. However, congenital nevi are histologically distinguished from acquired nevi mainly by their larger size, the spread of the nevus cells to the deep layers of the skin and by their more varied architecture and morphology. Although giant congenital melanocytic nevus is recognized as a risk factor for the development of melanoma, the precise magnitude of this risk is still controversial. The estimated lifetime risk of developing melanoma varies from 5 to 10%. On account of these uncertainties and the size of the lesions, the management of giant congenital melanocytic nevus needs individualization. Treatment may include surgical and non-surgical procedures, psychological intervention and/or clinical follow-up, with special attention to changes in color, texture or on the surface of the lesion. The only absolute indication for surgery in giant congenital melanocytic nevus is the development of a malignant neoplasm on the lesion. PMID:24474093

  7. Dumbbell dipole model and its application in UXO discrimination

    NASA Astrophysics Data System (ADS)

    Sun, K.; O'Neill, K.; Barrowes, B. E.; Fernández, J. P.; Shubitidze, F.; Shamatava, I.; Paulsen, K. D.

    2006-05-01

    Electromagnetic Induction (EMI) is one of the most promising techniques for UXO discrimination. Target discrimination is usually formulated as an inverse problem typically requiring fast forward models for efficiency. The most successful and widely applied EMI forward model is the simple dipole model, which works well for simple objects when the observation points are not close to the target. For complicated cases, a single dipole is not sufficient and a number of dipoles (displaced dipoles) has been suggested. However, once more than one dipole is needed, it is difficult to infer a unique set of model parameters from measurement data, which is usually limited. Inspired by the displaced dipole model, we developed the dumbbell dipole model, which consists of a special combination of dipoles. We placed a center dipole and two anti-symmetric side dipoles on the target axis. The center dipole functions like the traditional single dipole model and the two side dipoles provide the non-symmetric response of the target. When the distance between dipoles is small, this model is essentially a dipole plus a quadrupole. The advantage of the dumbbell model is that the model parameters can be inferred more easily from measurement data. The center dipole represents the main response of the target, the side dipoles act as additional backup in case a simple dipole is not sufficient. Regularization terms are applied so that the dumbbell dipole model automatically reduces to the simple dipole model in degenerate cases. Preliminary test shows that the dumbbell model can fit the measurement data better than the simple dipole model, and the inferred model parameters are unique for a given UXO. This suggests that the model parameters can be used as a discriminator for UXO. In this paper the dumbbell dipole model is introduced and its performance is compared with that of both the simple dipole model and the displaced dipole model.

  8. Final Report: Levitated Dipole Experiment

    SciTech Connect

    Kesner, Jay; Mauel, Michael

    2013-03-10

    Since the very first experiments with the LDX, research progress was rapid and significant. Initial experiments were conducted with the high-field superconducting coil suspended by three thin rods. These experiments produced long-pulse, quasi-steady-state microwave discharges, lasting more than 10 s, having peak beta values of 20% [Garnier, Phys. Plasmas, v13, p. 056111, 2006]. High-beta, near steady-state discharges have been maintained in LDX for more than 20 seconds, and this capability makes LDX the longest pulse fusion confinement experiment now operating in the U.S. fusion program. In both supported and levitated configurations, detailed measurements are made of discharge evolution, plasma dynamics and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. High-temperature plasma is created by multifrequency electron cyclotron resonance heating allowing control of heating profiles. Depending upon neutral fueling rates, the LDX discharges contain a fraction of energetic electrons, with mean energies above 50 keV. Depending on whether or not the superconducting dipole is levitated or supported, the peak thermal electron temperature is estimated to exceed 500 eV and peak densities reach 1.0E18 (1/m3). Several significant discoveries resulted from the routine investigation of plasma confinement with a magnetically-levitated dipole. For the first time, toroidal plasma with pressure approaching the pressure of the confining magnetic field was well-confined in steady-state without a toroidal magnetic field. Magnetic levitation proved to be reliable and is now routine. The dipole's cryostat allows up to three hours of "float time" between re-cooling with liquid helium and providing scientists unprecedented access to the physics of magnetizd plasma. Levitation eliminates field-aligned particle sources and sinks and results in a toroidal, magnetically-confined plasma where profiles are determined by cross

  9. Dipole response in 208Pb within a self-consistent multiphonon approach

    NASA Astrophysics Data System (ADS)

    Knapp, F.; Lo Iudice, N.; Veselý, P.; Andreozzi, F.; De Gregorio, G.; Porrino, A.

    2015-11-01

    Background: The electric dipole strength detected around the particle threshold and commonly associated with the pygmy dipole resonance offers unique information on neutron skin and symmetry energy, and is of astrophysical interest. The nature of such a resonance is still under debate. Purpose: We intend to describe the giant and pygmy resonances in 208Pb by enhancing their fragmentation with respect to the random-phase approximation. Method: We adopt the equation of motion phonon method to perform a fully self-consistent calculation in a space spanned by one-phonon and two-phonon basis states using an optimized chiral two-body potential. A phenomenological density-dependent term, derived from a contact three-body force, is added to get single-particle spectra more realistic than the ones obtained by using the chiral potential only. The calculation takes into full account the Pauli principle and is free of spurious center-of-mass admixtures. Results: We obtain a fair description of the giant resonance and obtain a dense low-lying spectrum in qualitative agreement with the experimental data. The transition densities as well as the phonon and particle-hole composition of the most strongly excited states support the pygmy nature of the low-lying resonance. Finally, we obtain realistic values for the dipole polarizability and the neutron skin radius. Conclusions: The results emphasize the role of the two-phonon states in enhancing the fragmentation of the strength in the giant resonance region and at low energy, consistently with experiments. For a more detailed agreement with the data, the calculation suggests the inclusion of the three-phonon states as well as a fine tuning of the single-particle spectrum to be obtained by a refinement of the nuclear potential.

  10. The ROSAT X-ray background dipole

    NASA Astrophysics Data System (ADS)

    Plionis, M.; Georgantopoulos, I.

    1999-06-01

    We estimate the dipole of the diffuse 1.5-keV X-ray background from the ROSAT all-sky survey map of Snowden et al. We first subtract the diffuse Galactic emission by fitting an exponential scaleheight, finite-radius, disc model to the data. We further exclude regions of low galactic latitudes, of local X-ray emission (e.g. the North Polar Spur) and model them using two different methods. We find that the ROSAT X-ray background dipole points towards (l,b) ~ (288 deg 25 deg) +/- 19 deg in consistency with the cosmic microwave background (within ~ 30 deg) its direction is also in good agreement with the HEAO-1 X-ray dipole at harder energies. The normalized amplitude of the ROSAT XRB dipole is ~ 1.7 per cent. Subtracting from the ROSAT map the expected X-ray background dipole resulting from the reflex motion of the observer with respect to the cosmic rest frame (Compton-Getting effect) we find the large-scale dipole of the X-ray emitting extragalactic sources having an amplitude D_LSS ~ 0.9 D_XRB, in general agreement with the predictions of Lahav et al. We finally estimate that the Virgo cluster is responsible for ~ 20 per cent of the total measured XRB dipole amplitude.

  11. Dipole strength from first principles calculations

    NASA Astrophysics Data System (ADS)

    Miorelli, Mirko; Bacca, Sonia; Barnea, Nir; Hagen, Gaute; Jansen, Gustav R.; Papenbrock, Thomas; Orlandini, Giuseppina

    2016-09-01

    The electric dipole polarizability quantifies the low-energy behavior of the dipole strength. It is related to the proton and neutron distributions of the nucleus, and thereby can be used to constrain the neutron equation of state and the physics of neutron stars. Only recently however, new developments in ab initio methods finally allowed first principles studies of the dipole strength in medium-mass nuclei. Using the Lorentz integral transform coupled cluster method with the newly developed chiral interaction NNLOsat we study the low energy behavior of the dipole strength in 4He, 16O and 22O. For the exotic 22O we observe large contributions to the dipole strength at very low energy, indicating the presence of a pygmy dipole resonance, in agreement with what experimentally found by Leistenschneider et al.. We then study correlations between the electric dipole polarizability and the charge radius in 16O and 40Ca using a variety of realistic Hamiltonians, showing the importance of three-nucleon forces. We aknowledge NRC and NSERC.

  12. Giant star seismology

    NASA Astrophysics Data System (ADS)

    Hekker, S.; Christensen-Dalsgaard, J.

    2017-06-01

    The internal properties of stars in the red-giant phase undergo significant changes on relatively short timescales. Long near-uninterrupted high-precision photometric timeseries observations from dedicated space missions such as CoRoT and Kepler have provided seismic inferences of the global and internal properties of a large number of evolved stars, including red giants. These inferences are confronted with predictions from theoretical models to improve our understanding of stellar structure and evolution. Our knowledge and understanding of red giants have indeed increased tremendously using these seismic inferences, and we anticipate that more information is still hidden in the data. Unraveling this will further improve our understanding of stellar evolution. This will also have significant impact on our knowledge of the Milky Way Galaxy as well as on exo-planet host stars. The latter is important for our understanding of the formation and structure of planetary systems.

  13. Constraints on exotic dipole-dipole couplings between electrons at the micron scale

    NASA Astrophysics Data System (ADS)

    Kotler, Shlomi; Ozeri, Roee; Jackson Kimball, Derek

    2015-05-01

    Until recently, the magnetic dipole-dipole coupling between electrons had not been directly observed experimentally. This is because at the atomic scale dipole-dipole coupling is dominated by the exchange interaction and at larger distances the dipole-dipole coupling is overwhelmed by ambient magnetic field noise. In spite of these challenges, the magnetic dipole-dipole interaction between two electron spins separated by 2.4 microns was recently measured using the valence electrons of trapped Strontium ions [S. Kotler, N. Akerman, N. Navon, Y. Glickman, and R. Ozeri, Nature 510, 376 (2014)]. We have used this measurement to directly constrain exotic dipole-dipole interactions between electrons at the micron scale. For light bosons (mass 0.1 eV), we find that coupling constants describing pseudoscalar and axial-vector mediated interactions must be | gPegPe/4 πℏc | <= 1 . 5 × 10-3 and | gAegAe/4 πℏc | <= 1 . 2 × 10-17 , respectively, at the 90% confidence level. These bounds significantly improve on previous constraints in this mass range: for example, the constraints on axial-vector interactions are six orders of magnitude stronger than electron-positron constraints based on positronium spectroscopy. Supported by the National Science Foundation, I-Core: the Israeli excellence center, and the European Research Council.

  14. Magnetic Field Generation and Zonal Flows in the Gas Giants

    NASA Astrophysics Data System (ADS)

    Duarte, L.; Wicht, J.; Gastine, T.

    2013-12-01

    The surface dynamics of Jupiter and Saturn is dominated by a banded system of fierce zonal winds. The depth of these winds remains unclear but they are thought to be confined to the very outer envelopes where hydrogen remains molecular and the electrical conductivity is negligible. The dynamo responsible for the dipole dominated magnetic fields of both Gas Giants, on the other hand, likely operates in the deeper interior where hydrogen assumes a metallic state. We present numerical simulations that attempt to model both the zonal winds and the interior dynamo action in an integrated approach. Using the anelastic version of the MHD code MagIC, we explore the effects of density stratification and radial electrical conductivity variations. The electrical conductivity is assumed to remain constant in the thicker inner metallic region and decays exponentially towards the outer boundary throughout the molecular envelope. Our results show that the combination of stronger density stratification (Δρ≈55) and a weaker conducting outer layer is essential for reconciling dipole dominated dynamo action and a fierce equatorial zonal jet. Previous simulations with homogeneous electrical conductivity show that both are mutually exclusive, with solutions either having strong zonal winds and multipolar magnetic fields or weak zonal winds and dipole dominated magnetic fields. The particular setup explored here allows the equatorial jet to remain confined to the weaker conducting region where is does not interfere with the deeper seated dynamo action. The equatorial jet can afford to remain geostrophic and reaches throughout the whole shell. This is not an option for the additional mid to higher latitude jets, however. In dipole dominated dynamo solutions, appropriate for the Gas Giants, zonal flows remain very faint in the deeper dynamo region but increase in amplitude in the weakly conducting outer layer in some of our simulations. This suggests that the mid to high latitude jets

  15. Formation number for vortex dipoles

    NASA Astrophysics Data System (ADS)

    Sadri, Vahid; Krueger, Paul S.

    2016-11-01

    This investigation considers the axisymmetric formation of two opposite sign concentric vortex rings from jet ejection between concentric cylinders. This arrangement is similar to planar flow in that the vortex rings will travel together when the gap between the cylinders is small, similar to a vortex dipole, but it has the advantage that the vortex motion is less constrained than the planar case (vortex stretching and vortex line curvature is allowed). The flow was simulated numerically at a jet Reynolds number of 1,000 (based on ΔR and the jet velocity), jet pulse length-to-gap ratio (L / ΔR) in the range 10-20, and gap-to-outer radius ratio (ΔR /Ro) in the range 0.01-0.1. Small gap ratios were chosen for comparison with 2D results. In contrast with 2D results, the closely paired vortices in this study exhibited pinch-off from the generating flow and finite formation numbers. The more complex flow evolution afforded by the axisymmetric model and its influence on the pinch-off process will be discussed. This material is based on work supported by the National Science Foundation under Grant No. 1133876 and SMU. This supports are gratefully acknowledged.

  16. Collisional blockade in microscopic optical dipole traps.

    PubMed

    Schlosser, N; Reymond, G; Grangier, P

    2002-07-08

    We analyze the operating regimes of a very small optical dipole trap, loaded from a magneto-optical trap, as a function of the atom loading rate, i.e., the number of atoms per second entering the dipole trap. We show that, when the dipole trap volume is small enough, a "collisional blockade" mechanism locks the average number of trapped atoms on the value 0.5 over a large range of loading rates. We also discuss the "weak loading" and "strong loading" regimes outside the blockade range, and we demonstrate experimentally the existence of these three regimes.

  17. Axion induced oscillating electric dipole moments

    DOE PAGES

    Hill, Christopher T.

    2015-06-24

    In this study, the axion electromagnetic anomaly induces an oscillating electric dipole for any magnetic dipole. This is a low energy theorem which is a consequence of the space-time dependent cosmic background field of the axion. The electron will acquire an oscillating electric dipole of frequency ma and strength ~ 10-32 e-cm, within four orders of magnitude of the present standard model DC limit, and two orders of magnitude above the nucleon, assuming standard axion model and dark matter parameters. This may suggest sensitive new experimental venues for the axion dark matter search.

  18. Axion induced oscillating electric dipole moments

    SciTech Connect

    Hill, Christopher T.

    2015-06-24

    In this study, the axion electromagnetic anomaly induces an oscillating electric dipole for any magnetic dipole. This is a low energy theorem which is a consequence of the space-time dependent cosmic background field of the axion. The electron will acquire an oscillating electric dipole of frequency ma and strength ~ 10-32 e-cm, within four orders of magnitude of the present standard model DC limit, and two orders of magnitude above the nucleon, assuming standard axion model and dark matter parameters. This may suggest sensitive new experimental venues for the axion dark matter search.

  19. An Innocent Giant

    PubMed Central

    Solanki, Lakhan Singh; Dhingra, Mandeep; Raghubanshi, Gunjan; Thami, Gurvinder Pal

    2014-01-01

    A cutaneous horn (cornu cutaneum) is a protrusion from the skin composed of a cornified material. It may be associated with a benign, premalignant, or malignant lesion at the base, masking numerous dermatoses. In a 24-year-old female, a giant cutaneous horn arising from a seborrheic keratosis located on the leg is presented. This case has been reported to emphasize that a giant cutaneous horn may also occur in young patients, even in photoprotected areas, and are not always associated with malignancy. PMID:25484426

  20. Giant M1 resonance in /sup 140/Ce

    SciTech Connect

    Laszewski, R.M.; Rullhusen, P.; Hoblit, S.D.; LeBrun, S.F.

    1986-11-01

    Highly polarized tagged photons were used to measure the distribution of M1 transition strength in /sup 140/Ce at excitations between 6.7 and 8.7 MeV. A strength of summationgGAMMA/sub 0//sup 2/(M1)/GAMMA = 11.2/sub -3.1/ /sup +4.5/ eV corresponding to a B(M1up-arrow) of about 7.5..mu../sub 0//sup 2/ was observed centered at an excitation of 7.95 MeV. This distribution of M1 strength can account for the giant magnetic dipole resonance predicted in /sup 140/Ce.

  1. Coupled and uncoupled dipole models of nonlinear scattering.

    PubMed

    Balla, Naveen K; Yew, Elijah Y S; Sheppard, Colin J R; So, Peter T C

    2012-11-05

    Dipole models are one of the simplest numerical models to understand nonlinear scattering. Existing dipole model for second harmonic generation, third harmonic generation and coherent anti-Stokes Raman scattering assume that the dipoles which make up a scatterer do not interact with one another. Thus, this dipole model can be called the uncoupled dipole model. This dipole model is not sufficient to describe the effects of refractive index of a scatterer or to describe scattering at the edges of a scatterer. Taking into account the interaction between dipoles overcomes these short comings of the uncoupled dipole model. Coupled dipole model has been primarily used for linear scattering studies but it can be extended to predict nonlinear scattering. The coupled and uncoupled dipole models have been compared to highlight their differences. Results of nonlinear scattering predicted by coupled dipole model agree well with previously reported experimental results.

  2. Dipole-fiber systems: radiation field patterns, effective magnetic dipoles, and induced cavity modes

    NASA Astrophysics Data System (ADS)

    Atakaramians, Shaghik; Miroshnichenko, Andrey E.; Shadrivov, Ilya V.; Monro, Tanya M.; Kivshar, Yuri S.; Afshar, Shahraam V.

    2015-12-01

    We study the radiation patterns produced by a dipole placed at the surface of a nanofiber and oriented perpendicular to it, either along the radial (r-oriented) or azimuthal (Φ-oriented) directions. We find that the dipole induces an effective circular cavity-like leaky mode in the nanofiber. The first radiation peak of the Φ-oriented dipole contributes only to TE radiation modes, while the radiation of the r-oriented dipole is composed of both TE and TM radiation modes, with relative contribution depending on the refractive index of the nanofiber. We reveal that the field pattern of the first resonance of a Φ-oriented dipole is associated with a magnetic dipole mode and strong magnetic response of an optical nanofiber.

  3. Tevatron optics measurements using an AC dipole

    SciTech Connect

    Miyamoto, R.; Kopp, S.E.; Jansson, A.; Syphers, M.J.; /Fermilab

    2007-06-01

    The AC dipole is a device to study beam optics of hadron synchrotrons. It can produce sustained large amplitude oscillations with virtually no emittance growth. A vertical AC dipole for the Tevatron is recently implemented and a maximum oscillation amplitude of 2{sigma} (4{sigma}) at 980 GeV (150 GeV) is achieved [1]. When such large oscillations are measured with the BPM system of the Tevatron (20 {micro}m resolution), not only linear but even nonlinear optics can be directly measured. This paper shows how to measure {beta} function using an AC dipole and the result is compared to the other measurement. The paper also shows a test to detect optics changes when small changes are made in the Tevatron. Since an AC dipole is nondestructive, it allows frequent measurements of the optics which is necessary for such an test.

  4. Testing the dipole modulation model in CMBR

    SciTech Connect

    Rath, Pranati K.; Jain, Pankaj E-mail: pkjain@iitk.ac.in

    2013-12-01

    The hemispherical power asymmetry, observed in the CMBR data, has generally been interpreted in terms of the dipole modulation model for the temperature fluctuations. Here we point out that this model leads to several predictions, which can be directly tested in the current data. We suggest tests of the hemispherical power asymmetry both in real and multipole space. We find a significant signal of the dipole modulation model in WMAP and PLANCK data with our tests. The dipole amplitude and direction also agrees, within errors, with earlier results based on hemispherical analysis in multipole space. We also find evidence that the effective dipole modulation amplitude increases with the multipole l in the range l = 2−64.

  5. Dynamical coupling of pygmy and giant resonances in relativistic Coulomb excitation

    DOE PAGES

    Brady, N. S.; Aumann, T.; Bertulani, C. A.; ...

    2016-04-20

    We study the Coulomb excitation of pygmy dipole resonances (PDR) in heavy ion reactions at 100 MeV/nucleon and above. The reactions Ni-68 + Au-197 and Ni-68 + Pb-208 are taken as practical examples. Our goal is to address the question of the influence of giant resonances on the PDR as the dynamics of the collision evolves. We show that the coupling to the giant resonances affects considerably the excitation probabilities of the PDR, a result that indicates the need of an improved theoretical treatment of the reaction dynamics at these bombarding energies. (C) 2016 The Authors. Published by Elsevier B.V.

  6. Spreading widths of giant resonances in spherical nuclei: Damped transient response

    NASA Astrophysics Data System (ADS)

    Severyukhin, A. P.; Åberg, S.; Arsenyev, N. N.; Nazmitdinov, R. G.

    2017-06-01

    We propose a general approach to describe spreading widths of monopole, dipole, and quadrupole giant resonances in heavy and superheavy spherical nuclei. Our approach is based on the ideas of the random matrix distribution of the coupling between one-phonon and two-phonon states generated in the random-phase approximation. We use the Skyrme interaction SLy4 as our model Hamiltonian to create a single-particle spectrum and to analyze excited states of the doubly magic nuclei 132Sn, 208Pb, and 310126. Our results demonstrate that the approach enables to us to describe a gross structure of the spreading widths of the giant resonances considered.

  7. Magnetic dipole interactions in crystals

    DOE PAGES

    Johnston, David

    2016-01-13

    The influence of magnetic dipole interactions (MDIs) on the magnetic properties of local-moment Heisenberg spin systems is investigated. A general formulation is presented for calculating the eigenvalues λ and eigenvectors μ ˆ of the MDI tensor of the magnetic dipoles in a line (one dimension, 1D), within a circle (2D) or a sphere (3D) of radius r surrounding a given moment μ → i for given magnetic propagation vectors k for collinear and coplanar noncollinear magnetic structures on both Bravais and non-Bravais spin lattices. Results are calculated for collinear ordering on 1D chains, 2D square and simple-hexagonal (triangular) Bravais lattices,more » 2D honeycomb and kagomé non-Bravais lattices, and 3D cubic Bravais lattices. The λ and μ ˆ values are compared with previously reported results. Calculations for collinear ordering on 3D simple tetragonal, body-centered tetragonal, and stacked triangular and honeycomb lattices are presented for c/a ratios from 0.5 to 3 in both graphical and tabular form to facilitate comparison of experimentally determined easy axes of ordering on these Bravais lattices with the predictions for MDIs. Comparisons with the easy axes measured for several illustrative collinear antiferromagnets (AFMs) are given. The calculations are extended to the cycloidal noncollinear 120 ° AFM ordering on the triangular lattice where λ is found to be the same as for collinear AFM ordering with the same k. The angular orientation of the ordered moments in the noncollinear coplanar AFM structure of GdB 4 with a distorted stacked 3D Shastry-Sutherland spin-lattice geometry is calculated and found to be in disagreement with experimental observations, indicating the presence of another source of anisotropy. Similar calculations for the undistorted 2D and stacked 3D Shastry-Sutherland lattices are reported. The thermodynamics of dipolar magnets are calculated using the Weiss molecular field theory for quantum spins, including the magnetic

  8. Magnetic dipole interactions in crystals

    SciTech Connect

    Johnston, David

    2016-01-13

    The influence of magnetic dipole interactions (MDIs) on the magnetic properties of local-moment Heisenberg spin systems is investigated. A general formulation is presented for calculating the eigenvalues λ and eigenvectors μ ˆ of the MDI tensor of the magnetic dipoles in a line (one dimension, 1D), within a circle (2D) or a sphere (3D) of radius r surrounding a given moment μ i for given magnetic propagation vectors k for collinear and coplanar noncollinear magnetic structures on both Bravais and non-Bravais spin lattices. Results are calculated for collinear ordering on 1D chains, 2D square and simple-hexagonal (triangular) Bravais lattices, 2D honeycomb and kagomé non-Bravais lattices, and 3D cubic Bravais lattices. The λ and μ ˆ values are compared with previously reported results. Calculations for collinear ordering on 3D simple tetragonal, body-centered tetragonal, and stacked triangular and honeycomb lattices are presented for c/a ratios from 0.5 to 3 in both graphical and tabular form to facilitate comparison of experimentally determined easy axes of ordering on these Bravais lattices with the predictions for MDIs. Comparisons with the easy axes measured for several illustrative collinear antiferromagnets (AFMs) are given. The calculations are extended to the cycloidal noncollinear 120 ° AFM ordering on the triangular lattice where λ is found to be the same as for collinear AFM ordering with the same k. The angular orientation of the ordered moments in the noncollinear coplanar AFM structure of GdB 4 with a distorted stacked 3D Shastry-Sutherland spin-lattice geometry is calculated and found to be in disagreement with experimental observations, indicating the presence of another source of anisotropy. Similar calculations for the undistorted 2D and stacked 3D Shastry-Sutherland lattices are reported. The thermodynamics of dipolar magnets are calculated using the Weiss molecular field theory for quantum spins

  9. Magnetic dipole interactions in crystals

    NASA Astrophysics Data System (ADS)

    Johnston, David C.

    2016-01-01

    The influence of magnetic dipole interactions (MDIs) on the magnetic properties of local-moment Heisenberg spin systems is investigated. A general formulation is presented for calculating the eigenvalues λ and eigenvectors μ ̂ of the MDI tensor of the magnetic dipoles in a line (one dimension, 1D), within a circle (2D) or a sphere (3D) of radius r surrounding a given moment μ⃗i for given magnetic propagation vectors k for collinear and coplanar noncollinear magnetic structures on both Bravais and non-Bravais spin lattices. Results are calculated for collinear ordering on 1D chains, 2D square and simple-hexagonal (triangular) Bravais lattices, 2D honeycomb and kagomé non-Bravais lattices, and 3D cubic Bravais lattices. The λ and μ ̂ values are compared with previously reported results. Calculations for collinear ordering on 3D simple tetragonal, body-centered tetragonal, and stacked triangular and honeycomb lattices are presented for c /a ratios from 0.5 to 3 in both graphical and tabular form to facilitate comparison of experimentally determined easy axes of ordering on these Bravais lattices with the predictions for MDIs. Comparisons with the easy axes measured for several illustrative collinear antiferromagnets (AFMs) are given. The calculations are extended to the cycloidal noncollinear 120∘ AFM ordering on the triangular lattice where λ is found to be the same as for collinear AFM ordering with the same k. The angular orientation of the ordered moments in the noncollinear coplanar AFM structure of GdB4 with a distorted stacked 3D Shastry-Sutherland spin-lattice geometry is calculated and found to be in disagreement with experimental observations, indicating the presence of another source of anisotropy. Similar calculations for the undistorted 2D and stacked 3D Shastry-Sutherland lattices are reported. The thermodynamics of dipolar magnets are calculated using the Weiss molecular field theory for quantum spins, including the magnetic transition

  10. Shadows on a Giant

    NASA Image and Video Library

    2012-07-02

    Saturn rings cast wide shadows on the planet, and the shadow of a moon also graces the gas giant in this scene from NASA Cassini spacecraft. The moon Enceladus is not shown in this view, but it does cast a small, elongated shadow.

  11. Giant scrotal elephantiasis.

    PubMed

    Kuepper, Daniel

    2005-02-01

    How much can a man carry? Penoscrotal elephantiasis is a debilitating syndrome. This is a case report of a patient with giant genital elephantiasis secondary to long-standing lymphogranuloma venereum infection in Ethiopia. Complete surgical resection of the pathologic tissue and penile reconstruction was undertaken with good cosmetic and functional results.

  12. [Giant retroperitoneal liposarcoma].

    PubMed

    Mezzour, Mohamed Hicham; El Messaoudi, Yasser Arafat; Fekak, Hamid; Rabii, Redouane; Marnissi, Farida; Karkouri, Mehdi; Salam, Siham; Iraki, Moulay Ahmed; Joual, Abdenbi; Meziane, Fathi

    2006-02-01

    The authors report a case of giant retroperitoneal liposarcoma. The diagnosis was suspected after scanography and magnetic resonance imaging and confirmed by the histological analysis of the extracted piece after surgical treatment. Postoperative evolution was favourable after one year without recurrence or distant metastasis. The authors discuss the pathologic and therapeutic aspects and the prognosis of retroperitoneal liposarcoma.

  13. Electroluminescence of Giant Stretchability.

    PubMed

    Yang, Can Hui; Chen, Baohong; Zhou, Jinxiong; Chen, Yong Mei; Suo, Zhigang

    2016-06-01

    A new type of electroluminescent device achieves giant stretchability by integrating electronic and ionic components. The device uses phosphor powders as electroluminescent materials, and hydrogels as stretchable and transparent ionic conductors. Subject to cyclic voltage, the phosphor powders luminesce, but the ionic conductors do not electrolyze. The device produces constant luminance when stretched up to an area strain of 1500%.

  14. Dipole Bands in {sup 196}Hg

    SciTech Connect

    Lawrie, J. J.; Lawrie, E. A.; Newman, R. T.; Sharpey-Schafer, J. F.; Smit, F. D.; Msezane, B.; Benatar, M.; Mabala, G. K.; Mutshena, K. P.; Federke, M.; Mullins, S. M.; Ncapayi, N. J.; Vymers, P.

    2011-10-28

    High spin states in {sup 196}Hg have been populated in the {sup 198}Pt({alpha},6n) reaction at 65 MeV and the level scheme has been extended. A new dipole band has been observed and a previously observed dipole has been confirmed. Excitation energies, spins and parities of these bands were determined from DCO ratio and linear polarization measurements. Possible quasiparticle excitations responsible for these structures are discussed.

  15. On the dipole moment of CO/+/.

    NASA Technical Reports Server (NTRS)

    Certain, P. R.; Woods, R. C.

    1973-01-01

    Results of self-consistent field calculations on neutral CO, its positive ion, and on neutral CN to verify an earlier estimate of the dipole moment of CO(+) in its ground super 2 Sigma state. Based on the above-mentioned calculations, direct evidence is obtained that the dipole moment (relative to the center of mass) is approximately 2.5 plus or minus 0.5 C, as previously determined by Kopelman and Klemperer (1962).

  16. Magnetic dipole moments for composite dark matter

    SciTech Connect

    Aranda, Alfredo; Barajas, Luis; Cembranos, Jose A.R. E-mail: luisedua@buffalo.edu

    2016-03-01

    We study neutral dark matter candidates with a nonzero magnetic dipole moment. We assume that they are composite states of new fermions related to the strong phase of a new gauge interaction. In particular, invoking a dark flavor symmetry, we analyze the composition structure of viable candidates depending on the assignations of hypercharge and the multiplets associated to the fundamental constituents of the extended sector. We determine the magnetic dipole moments for the neutral composite states in terms of their constituents masses.

  17. LOG PERIODIC DIPOLE ARRAY WITH PARASITIC ELEMENTS

    DTIC Science & Technology

    The design and measured characteristics of dipole and monopole versions of a log periodic array with parasitic elements are discussed. In a dipole...for the elements to obtain log periodic performance of the anntenna. This design with parasitic elements lends itself to a monopole version of the...antenna which has a simplified feeding configuration. The result is a log periodic antenna design that can be used from high frequencies through microwave frequencies.

  18. Controlling dipole-dipole frequency shifts in a lattice-based optical atomic clock

    SciTech Connect

    Chang, D.E.; Lukin, M.D.; Ye Jun

    2004-02-01

    Motivated by the ideas of using cold alkaline-earth atoms trapped in an optical lattice for realization of optical atomic clocks, we investigate theoretically the perturbative effects of atom-atom interactions on a clock transition frequency. These interactions are mediated by the dipole fields associated with the optically excited atoms. We predict resonancelike features in the frequency shifts when constructive interference among atomic dipoles occur. We theoretically demonstrate that by fine tuning the coherent dipole-dipole couplings in appropriately designed lattice geometries, the undesirable frequency shifts can be greatly suppressed.

  19. electric dipole superconductor in bilayer exciton system

    NASA Astrophysics Data System (ADS)

    Sun, Qing-Feng; Jiang, Qing-Dong; Bao, Zhi-Qiang; Xie, X. C.

    Recently, it was reported that the bilayer exciton systems could exhibit many new phenomena, including the large bilayer counterflow conductivity, the Coulomb drag, etc. These phenomena imply the formation of exciton condensate superfluid state. On the other hand, it is now well known that the superconductor is the condensate superfluid state of the Cooper pairs, which can be viewed as electric monopoles. In other words, the superconductor state is the electric monopole condensate superfluid state. Thus, one may wonder whether there exists electric dipole superfluid state. In this talk, we point out that the exciton in a bilayer system can be considered as a charge neutral electric dipole. And we derive the London-type and Ginzburg-Landau-type equations of electric dipole superconductivity. From these equations, we discover the Meissner-type effect (against spatial variation of magnetic fields), and the dipole current Josephson effect. The frequency in the AC Josephson effect of the dipole current is equal to that in the normal (monopole) superconductor. These results can provide direct evidence for the formation of exciton superfluid state in the bilayer systems and pave new ways to obtain the electric dipole current. We gratefully acknowledge the financial support by NBRP of China (2012CB921303 and 2015CB921102) and NSF-China under Grants Nos. 11274364 and 11574007.

  20. Recent advances in discrete dipole approximation

    NASA Astrophysics Data System (ADS)

    Flatau, P. J.

    2012-12-01

    I will describe recent advances and results related to Discrete Dipole Approximation. I will concentrate on Discrete Dipole Scattering (DDSCAT) code which has been jointly developed by myself and Bruce T. Draine. Discussion will concentrate on calculation of scattering and absorption by isolated particles (e.g., dust grains, ice crystals), calculations of scattering by periodic structures with applications to studies of scattering and absorption by periodic arrangement of finite cylinders, cubes, etc), very fast near field calculation, ways to display scattering targets and their composition using three dimensional graphical codes. I will discuss possible extensions. References Flatau, P. J. and Draine, B. T., 2012, Fast near field calculations in the discrete dipole approximation for regular rectilinear grids, Optics Express, 20, 1247-1252. Draine B. T. and Flatau P. J., 2008, Discrete-dipole approximation for periodic targets: theory and tests , J. Opt. Soc. Am. A., 25, 2693-2703. Draine BT and Flatau PJ, 2012, User Guide for the Discrete Dipole Approximation Code DDSCAT 7.2, arXiv:1202.3424v3.ear field calculations (Fast near field calculations in the discrete dipole approximation for regular rectilinear grids P. J. Flatau and B. T. Draine, Optics Express, Vol. 20, Issue 2, pp. 1247-1252 (2012))

  1. Dipole-moment-driven cooperative supramolecular polymerization.

    PubMed

    Kulkarni, Chidambar; Bejagam, Karteek K; Senanayak, Satyaprasad P; Narayan, K S; Balasubramanian, S; George, Subi J

    2015-03-25

    While the mechanism of self-assembly of π-conjugated molecules has been well studied to gain control over the structure and functionality of supramolecular polymers, the intermolecular interactions underpinning it are poorly understood. Here, we study the mechanism of self-assembly of perylene bisimide derivatives possessing dipolar carbonate groups as linkers. It was observed that the combination of carbonate linkers and cholesterol/dihydrocholesterol self-assembling moieties led to a cooperative mechanism of self-assembly. Atomistic molecular dynamics simulations of an assembly in explicit solvent strongly suggest that the dipole-dipole interaction between the carbonate groups imparts a macro-dipolar character to the assembly. This is confirmed experimentally through the observation of a significant polarization in the bulk phase for molecules following a cooperative mechanism. The cooperativity is attributed to the presence of dipole-dipole interaction in the assembly. Thus, anisotropic long-range intermolecular interactions such as dipole-dipole interaction can serve as a way to obtain cooperative self-assembly and aid in rationalizing and predicting the mechanisms in various synthetic supramolecular polymers.

  2. A Dipole Assisted IEC Neutron Source

    SciTech Connect

    Prajakti Joshi Shrestha

    2005-11-28

    A potential opportunity to enhance Inertial Electrostatic Confinement (IEC) fusion exists by augmenting it with a magnetic dipole configuration. The theory is that the dipole fields will enhance the plasma density in the center region of the IEC and the combined IEC and dipole confinement properties will reduce plasma losses. To demonstrate that a hybrid Dipole-IEC configuration can provide an improved neutron source vs. a stand alone IEC, a first model Dipole-IEC experiment was benchmarked against a reference IEC. A triple Langmuir probe was used to find the electron temperature and density. It was found that the magnetic field increases the electron density by a factor of 16, the electron temperature decreases in the presence of a magnetic field, the discharge voltage decreases in the presence of a magnetic field, the potential of the dipole strongly influences the densities obtained in the center. The experimental set-up and plasma diagnostics are discussed in detail, as well as the results, and the developmental issues.

  3. Radiation patterns of interfacial dipole antennas

    NASA Technical Reports Server (NTRS)

    Engheta, N.; Papas, C. H.; Elachi, C.

    1982-01-01

    The radiation pattern of an infinitesimal electric dipole is calculated for the case where the dipole is vertically located on the plane interface of two dielectric half spaces and for the case where the dipole is lying horizontally along the interface. For the vertical case, it is found that the radiation pattern has nulls at the interface and along the dipole axis. For the horizontal case, it is found that the pattern has a null at the interface; that the pattern in the upper half space, whose index of refraction is taken to be less than that of the lower half space, has a single lobe whose maximum is normal to the interface; and that in the lower half space, in the plane normal to the interface and containing the dipole, the pattern has three lobes, whereas in the plane normal to the interface and normally bisecting the dipole, the pattern has two maxima located symmetrically about a minimum. Interpretation of these results in terms of the Cerenkov effect is given.

  4. Random-phase approximation based on relativistic point-coupling models

    SciTech Connect

    Niksic, T.; Vretenar, D.; Ring, P.

    2005-07-01

    The matrix equations of the random-phase approximation (RPA) are derived for the point-coupling Lagrangian of the relativistic mean-field (RMF) model. Fully consistent RMF plus (quasiparticle) RPA illustrative calculations of the isoscalar monopole, isovector dipole, and isoscalar quadrupole response of spherical medium-heavy and heavy nuclei test the phenomenological effective interactions of the point-coupling RMF model. A comparison with experiment shows that the best point-coupling effective interactions accurately reproduce not only ground-state properties but also data on excitation energies of giant resonances.

  5. Confidence limits of dipole source reconstruction results.

    PubMed

    Fuchs, Manfred; Wagner, Michael; Kastner, Jörn

    2004-06-01

    Equivalent dipole models are widely used in electro-encephalo-graphic (EEG) and magneto-encephalo-graphic (MEG) source reconstruction. Despite their point-like definition, the best-fit solutions have a certain probability volume depending on the source position and orientation as well as on the actually used sensor set-up and the signal-to-noise ratio (SNR). In order to avoid the misleading impression of exact localization results, a measure of the SD of the dipole localization is desirable. This measure can be obtained by performing a deviation scan around the best-fit positions, where the explainable field is determined and compared to the best-fit field. Using a linear approximation, confidence ellipsoids can then be computed and their axes and volumes can be determined by relating the field differences to the noise of the measured data. Test-dipoles inside of a 3 spherical shells volume conductor model were used to simulate EEG- and MEG-data with sources of known positions, orientations, and noise levels. Confidence ellipsoids were computed for these test-dipole solutions and deviation scans around the best-fit dipole positions were performed in order to compare the size and the shape of the confidence ellipsoids with the real error-hypersurface. SDs of repeated dipole localizations at different depths were computed to show the validity of the linear approximation over the whole eccentricity range. The size of the axes of the confidence ellipsoids is inversely proportional to the SNR of the measured data, thus the confidence volume is inversely proportional to the third power of the SNR. Good agreement between SDs of repeated dipole localizations and the confidence ellipsoids was found for both EEG- and MEG-cases. The new method adds a new and important dimension to dipole source reconstruction results by characterizing their reliability. It is also very helpful in deciding how many dipoles are necessary to explain the measured data, since superfluous dipoles

  6. Separation of contributions of isovector E2 and E1 giant resonances in direct and inverse reactions with real and virtual photons

    NASA Astrophysics Data System (ADS)

    Dzhilavyan, L. Z.; Lapik, A. M.; Nedorezov, V. G.; Tulupov, B. A.

    2017-01-01

    A brief overview of the methods for separating the contributions of isovector electric quadrupole ( E2) and dominant dipole ( E1) giant resonances in atomic nuclei, which are excited in direct and inverse reactions with photons (real and virtual), is given. The basic parameters of isovector giant resonance E2, which were declared to date by applying some of these methods to the results with 208Pb, are also presented.

  7. Asteroseismology can reveal strong internal magnetic fields in red giant stars.

    PubMed

    Fuller, Jim; Cantiello, Matteo; Stello, Dennis; Garcia, Rafael A; Bildsten, Lars

    2015-10-23

    Internal stellar magnetic fields are inaccessible to direct observations, and little is known about their amplitude, geometry, and evolution. We demonstrate that strong magnetic fields in the cores of red giant stars can be identified with asteroseismology. The fields can manifest themselves via depressed dipole stellar oscillation modes, arising from a magnetic greenhouse effect that scatters and traps oscillation-mode energy within the core of the star. The Kepler satellite has observed a few dozen red giants with depressed dipole modes, which we interpret as stars with strongly magnetized cores. We find that field strengths larger than ~10(5) gauss may produce the observed depression, and in one case we infer a minimum core field strength of ≈10(7) gauss. Copyright © 2015, American Association for the Advancement of Science.

  8. Asteroseismology can reveal strong internal magnetic fields in red giant stars

    NASA Astrophysics Data System (ADS)

    Fuller, Jim; Cantiello, Matteo; Stello, Dennis; Garcia, Rafael A.; Bildsten, Lars

    2015-10-01

    Internal stellar magnetic fields are inaccessible to direct observations, and little is known about their amplitude, geometry, and evolution. We demonstrate that strong magnetic fields in the cores of red giant stars can be identified with asteroseismology. The fields can manifest themselves via depressed dipole stellar oscillation modes, arising from a magnetic greenhouse effect that scatters and traps oscillation-mode energy within the core of the star. The Kepler satellite has observed a few dozen red giants with depressed dipole modes, which we interpret as stars with strongly magnetized cores. We find that field strengths larger than ~105 gauss may produce the observed depression, and in one case we infer a minimum core field strength of ≈107 gauss.

  9. Direct summation of dipole-dipole interactions using the Wolf formalism.

    PubMed

    Stenqvist, Björn; Trulsson, Martin; Abrikosov, Alexei I; Lund, Mikael

    2015-07-07

    We present an expanded Wolf formalism for direct summation of long-range dipole-dipole interactions and rule-of-thumbs how to choose optimal spherical cutoff (Rc) and damping parameter (α). This is done by comparing liquid radial distribution functions, dipole-dipole orientation correlations, particle energies, and dielectric constants, with Ewald sums and the Reaction field method. The resulting rule states that ασ < 1 and αRc > 3 for reduced densities around ρ(∗) = 1 where σ is the particle size. Being a pair potential, the presented approach scales linearly with system size and is applicable to simulations involving point dipoles such as the Stockmayer fluid and polarizable water models.

  10. The influence of vibrations of polyatomic molecules on dipole moment and static dipole polarizability: theoretical study

    NASA Astrophysics Data System (ADS)

    Sharipov, Alexander S.; Loukhovitski, Boris I.; Starik, Alexander M.

    2017-08-01

    Dipole moment and static dipole polarizability surfaces for 50 polyatomic molecules, that are important for material science, combustion, and atmospheric chemistry, are explored in the vicinity of their equilibrium nuclear configurations by using density functional theory. The effective values of dipole moment and static polarizability of these molecules in individual vibrational states are determined using the calculated data on the electric properties and potential energy surfaces. Special attention is paid to the effect of the zero-point vibrations on the electric properties. The simple approximation scheme, allowing low-cost estimation of the zero-point vibrational corrections to polarizability, applicable for wide range of polyatomic compounds, are developed on the basis of the obtained data. The influence of the excitation of vibrational states on the dipole moment and dipole polarizability of polyatomic molecules are discussed with respect to the possible change of some important properties of molecular gases, such as refractive index, diffusion coefficients, and rates of chemical reactions.

  11. Plasmon-Induced Resonant Energy Transfer: a coherent dipole-dipole coupling mechanism

    NASA Astrophysics Data System (ADS)

    Bristow, Alan D.; Cushing, Scott K.; Li, Jiangtian; Wu, Nianqiang

    Metal-insulator-semiconductor core-shell nanoparticles have been used to demonstrate a dipole-dipole coupling mechanism that is entirely dependent on the dephasing time of the localized plasmonic resonance. Consequently, the short-time scale of the plasmons leads to broad energy uncertainty that allows for excitation of charge carriers in the semiconductor via stimulation of photons with energies below the energy band gap. In addition, this coherent energy transfer process overcomes interfacial losses often associated with direct charge transfer. This work explores the efficiency of the energy transfer process, the dipole-dipole coupling strength with dipole separation, shell thickness and plasmonic resonance overlap. We demonstrate limits where the coherent nature of the coupling is switched off and charge transfer processes can dominate. Experiments are performed using transient absorption spectroscopy. Results are compared to calculations using a quantum master equation. These nanostructures show strong potential for improving solar light-harvesting for power and fuel generation.

  12. Electric dipole transition moments and permanent dipole moments for spin-orbit configuration interaction wave functions

    NASA Astrophysics Data System (ADS)

    Roostaei, B.; Ermler, W. C.

    2012-03-01

    A procedure for calculating electric dipole transition moments and permanent dipole moments from spin-orbit configuration interaction (SOCI) wave functions has been developed in the context of the COLUMBUS ab initio electronic structure programs. The SOCI procedure requires relativistic effective core potentials and their corresponding spin-orbit coupling operators to define the molecular Hamiltonian, electric dipole transition moment and permanent dipole moment matrices. The procedure can be used for any molecular system for which the COLUMBUS SOCI circuits are applicable. Example applications are reported for transition moments and dipole moments for a series of electronic states of LiBe and LiSr defined in diatomic relativistic ωω-coupling.

  13. Giant cell arteritis

    PubMed Central

    Calvo-Romero, J

    2003-01-01

    Giant cell arteritis (GCA), temporal arteritis or Horton's arteritis, is a systemic vasculitis which involves large and medium sized vessels, especially the extracranial branches of the carotid arteries, in persons usually older than 50 years. Permanent visual loss, ischaemic strokes, and thoracic and abdominal aortic aneurysms are feared complications of GCA. The treatment consists of high dose steroids. Mortality, with a correct treatment, in patients with GCA seems to be similar that of controls. PMID:13679546

  14. Giant Cell Arteritis.

    PubMed

    Hoffman, Gary S

    2016-11-01

    This issue provides a clinical overview of giant cell arteritis, focusing on diagnosis, treatment, and practice improvement. The content of In the Clinic is drawn from the clinical information and education resources of the American College of Physicians (ACP), including MKSAP (Medical Knowledge and Self-Assessment Program). Annals of Internal Medicine editors develop In the Clinic in collaboration with the ACP's Medical Education and Publishing divisions and with the assistance of additional science writers and physician writers.

  15. Unusual Giant Prostatic Urethral Calculus

    PubMed Central

    Bello, A.; Maitama, H. Y.; Mbibu, N. H.; Kalayi, G. D.; Ahmed, A.

    2010-01-01

    Giant vesico-prostatic urethral calculus is uncommon. Urethral stones rarely form primarily in the urethra, and they are usually associated with urethral strictures, posterior urethral valve or diverticula. We report a case of a 32-year-old man with giant vesico-prostatic (collar-stud) urethral stone presenting with sepsis and bladder outlet obstruction. The clinical presentation, management, and outcome of the giant prostatic urethral calculus are reviewed. PMID:22091328

  16. Bunched beam longitudinal instability: Coherent dipole motion

    SciTech Connect

    Zhang, S.Y.; Weng, W.T.

    1993-04-23

    In this paper, the authors present a new formulation for the longitudinal coherent dipole motion, where a quadrature response of the environmental impedance is shown to be the effective longitudinal impedance for the beam instability. The Robinson-Pedersen formulation for the longitudinal dipole motion is also presented, the difference of the two approaches is discussed in the comparison. The results by using the Sacherer integral equation for the coherent dipole motion can generate the same results as by using the other two approaches, except for a scaling difference. The formulation is further generalized to the rigid bunch motion using signal analysis method, where a form factor shows up naturally. Finally, the formulation is applied to solve the coupled bunch instabilities. Examples of the AGS Booster and the AGS coupled bunch instabilities are used to illustrate the applications of the formulation.

  17. Thermodynamics of systems of aligned dipoles

    NASA Astrophysics Data System (ADS)

    Daily, K. M.; Blume, D.

    2013-05-01

    The high-temperature thermodynamics of two-component Fermi gases with interspecies s-wave scattering length is well described by the virial equation of state. This work determines the virial equation of state of weakly-interacting dipolar Bose and Fermi gases under external spherically symmetric confinement. The second-order virial coefficients for two identical dipolar bosons, two identical dipolar fermions and two distinguishable dipoles are calculated from the trap energy spectra. Away from resonance, we employ the Born approximation and find that the virial coefficient for two identical fermions depends quadratically on the dipole length. This suggests that dipolar effects are suppressed in the high temperature limit. Fine tuning the scattering properties of two identical fermions, we identify conditions in which the second-order virial coefficient depends linearly on the dipole length. Analytical expressions are derived and corroborated by numerical calculations. We acknowledge support from the NSF.

  18. Sound scattering by a vortex dipole.

    PubMed

    Naugolnykh, Konstantin

    2013-04-01

    Sound scattering by a system of two counter-rotating vortices (Lamb dipole) is considered, using the effective approach of Pitaevskii [J. Exp. Theor. Phys (USSR) 35, 1271-1275 (1958); Sov. Phys. JETP 85, 888-890 (1959)], based on application of the asymptotic representation of the scattering Green function, the Dirac delta function modeling of the vortex, and the Fourier transformation of the vector of scattering. The sound frequency is supposed to be low. The directivity pattern of the radiation, scattered by the Lamb dipole is obtained. There is no singularity in scattering field in this case as it must be for the vorticity with zero circulation, so the dipole is a more appropriate object for the approximation used.

  19. Dipole antenna in space - Time periodic media.

    NASA Technical Reports Server (NTRS)

    Elachi, C.

    1972-01-01

    Study and solution of the problem of dipole radiation in sinusoidally space-time periodic media. The space-time periodicity can be considered as due to a strong pump wave and is expressed as a traveling-wave type change in the dielectric constant or the plasma density. The solution also covers the limit case of a sinusoidally stratified medium. The solution is formulated in a matrix form such that the basic results and diagrams apply, with minor changes, to the different cases studied: electric and magnetic dipole in a dielectric, plasma, and uniaxial plasma. The wave-vector diagram is used extensively in studying and presenting the different properties of the solution: caustics, effect of the disturbance (pump wave) motion, harmonics, radiation outside the allowed cone in a uniaxial plasma. Many dipole radiation patterns are given, and their features are explained physically. Finally, the solution and results obtained are extended to certain generally space-time periodic media.

  20. Dipole hearing measurements in elasmobranch fishes.

    PubMed

    Casper, Brandon M; Mann, David A

    2007-01-01

    The hearing thresholds of the horn shark Heterodontus francisci and the white-spotted bamboo shark Chiloscyllium plagiosum were measured using auditory evoked potentials (AEP) in response to a dipole sound stimulus. The audiograms were similar between the two species with lower frequencies yielding lower particle acceleration thresholds. The particle acceleration audiograms showed more sensitive hearing at low frequencies than previous elasmobranch audiograms, except for the lemon shark Negaprion brevirsotris. Auditory evoked potential signals were also recorded while the dipole stimulus was moved to different locations above the head and body. The strongest AEP signals were recorded from the area around the parietal fossa, supporting previous experiments that suggested this region is important for elasmobranch hearing. This is the first time that hearing experiments have been conducted using a dipole stimulus with elasmobranchs, which more closely mimics the natural sounds of swimming prey.

  1. Variable-field permanent magnet dipole

    SciTech Connect

    Barlow, D.B.; Kraus, R.H. Jr.; Meyer, R.E.

    1993-10-01

    A new concept for a variable-field permanent-magnet dipole (VFPMD) has been designed, fabricated, and tested at Los Alamos. The VFPMD is a C-shaped sector magnet with iron poles separated by a large block of magnet material (SmCo). The central field can be continuously varied from 0.07 T to 0.3 T by moving an iron shunt closer or further away from the back of the magnet. The shunt is specially shaped to make the dependence of the dipole field strength on the shunt position as linear as possible. The dipole has a 2.8 cm high by 8 cm wide aperture with {approximately}10 cm long poles.

  2. Color dipole cross section and inelastic structure function

    NASA Astrophysics Data System (ADS)

    Jeong, Yu Seon; Kim, C. S.; Luu, Minh Vu; Reno, Mary Hall

    2014-11-01

    Instead of starting from a theoretically motivated form of the color dipole cross section in the dipole picture of deep inelastic scattering, we start with a parametrization of the deep inelastic structure function for electromagnetic scattering with protons, and then extract the color dipole cross section. Using the parametrizations of F 2(ξ = x or W 2 , Q 2) by Donnachie-Landshoff and Block et al., we find the dipole cross section from an approximate form of the presumed dipole cross section convoluted with the perturbative photon wave function for virtual photon splitting into a color dipole with massless quarks. The color dipole cross section determined this way reproduces the original structure function within about 10% for 0 .1 GeV2 ≤ Q 2 ≤10 GeV2. We discuss the dipole cross section at large and small dipole sizes and compare our results with other parametrizations.

  3. Photoelectron spectroscopy and the dipole approximation

    SciTech Connect

    Hemmers, O.; Hansen, D.L.; Wang, H.

    1997-04-01

    Photoelectron spectroscopy is a powerful technique because it directly probes, via the measurement of photoelectron kinetic energies, orbital and band structure in valence and core levels in a wide variety of samples. The technique becomes even more powerful when it is performed in an angle-resolved mode, where photoelectrons are distinguished not only by their kinetic energy, but by their direction of emission as well. Determining the probability of electron ejection as a function of angle probes the different quantum-mechanical channels available to a photoemission process, because it is sensitive to phase differences among the channels. As a result, angle-resolved photoemission has been used successfully for many years to provide stringent tests of the understanding of basic physical processes underlying gas-phase and solid-state interactions with radiation. One mainstay in the application of angle-resolved photoelectron spectroscopy is the well-known electric-dipole approximation for photon interactions. In this simplification, all higher-order terms, such as those due to electric-quadrupole and magnetic-dipole interactions, are neglected. As the photon energy increases, however, effects beyond the dipole approximation become important. To best determine the range of validity of the dipole approximation, photoemission measurements on a simple atomic system, neon, where extra-atomic effects cannot play a role, were performed at BL 8.0. The measurements show that deviations from {open_quotes}dipole{close_quotes} expectations in angle-resolved valence photoemission are observable for photon energies down to at least 0.25 keV, and are quite significant at energies around 1 keV. From these results, it is clear that non-dipole angular-distribution effects may need to be considered in any application of angle-resolved photoelectron spectroscopy that uses x-ray photons of energies as low as a few hundred eV.

  4. Giant bulla mimicking tension pneumothorax.

    PubMed

    Gökçe, Mertol; Saydam, Ozkan; Altin, Remzi; Kart, Levent

    2009-01-01

    In the chest X-ray, we observe tension pneumothorax (TPX) as wide radiolucent view in a hemithorax and pushing the mediastinal structures contralateral. Giant bulla may mimic TPX with wide radiolucent view and mediastinal shift. The present report includes giant pulmonary bulla in 35-year-old woman. The giant bulla was diagnosed as a TPX in emergency, and chest tube was performed. The differentiation between TPX and a giant bulla may be very difficult. The therapies of these two similar entities are completely different. So that, we must be careful about anamnesis, physical examination and radiology for true diagnosis.

  5. Photoinduced dipoles and charge pairs in condensed phase. Progress report, November 14, 1993--November 15, 1994

    SciTech Connect

    Not Available

    1994-12-31

    Efforts during the past year centered on expanding the understanding of the photocurrent transients produced by photoinduced dipoles in solution. In addition to exploring intramolecular charge transfer in a molecule which exhibits a giant dipole, the authors began an intensive look at intermolecular electron transfer between photoexcited electron donors and acceptors. The three projects which are farthest along are described in abstract form in the paragraphs which follow. The first makes use of the generous gift from Dr. Michael Wasielewski (Argonne National Laboratory) of a carefully constructed molecular triad which exemplifies artificial photosynthesis. Measurements reveal that the triad possesses a substantial ground state dipole moment as well as the long-lived charge separation which was expected for the excited state. The second and third abstracts describe the quantification of fractional charge transfer in excited state complexes (exciplexes). All exciplexes are not the same and the authors found that the fractional electron transfer increases with reaction exoergicity. The first and second abstracts describe work which is nearly ready to be submitted. The third outlines the mechanistically fascinating story of how one donor replaces another in an excited state complex. Their tentative conclusion is that the mechanism depends on reaction exoergicity.

  6. Pygmy Dipole Strength in Exotic Nuclei and the Equation of State

    SciTech Connect

    Klimkiewicz, A.; Adrich, P.; Paar, N.; Vretenar, D.; Fallot, M.; Boretzky, K.; Aksouh, F.; Chatillon, A.; Pramanik, U. Datta; Emling, H.; Ershova, O.; Geissel, H.; Gorska, M.; Heil, M.; Hellstroem, M.; Jones, K. L.; Kurz, N.; Litvinov, Y.; Mahata, K.; Simon, H.

    2009-08-26

    A concentration of dipole strength at energies below the giant dipole resonance was observed in neutron-rich nuclei around {sup 132}Sn in an experiment using the FRS-LAND setup. This so-called 'pygmy' dipole strength can be related to the parameters of the symmetry energy and to the neutron skin thickness on the grounds of a relativistic quasiparticle random-phase approximation. Using this ansatz and the experimental findings for {sup 130}Sn and {sup 132}Sn, we derive a value of the symmetry energy pressure of p-bar{sub 0} = 2.2+-0.5 MeV/fm{sup 3}. Neutron skin thicknesses of R{sub n}-R{sub p} 0.23+-0.03 fm and 0.24+-0.03 fm for {sup 130}Sn and {sup 132}Sn, respectively, have been determined. Preliminary results on {sup 68}Ni from a similar experiment using an improved setup indicate an enhanced cross section at low energies, while the results for {sup 58}Ni are in accordance with results from photoabsorption measurements.

  7. Electron-pinned defect-dipoles for high-performance colossal permittivity materials.

    PubMed

    Hu, Wanbiao; Liu, Yun; Withers, Ray L; Frankcombe, Terry J; Norén, Lasse; Snashall, Amanda; Kitchin, Melanie; Smith, Paul; Gong, Bill; Chen, Hua; Schiemer, Jason; Brink, Frank; Wong-Leung, Jennifer

    2013-09-01

    The immense potential of colossal permittivity (CP) materials for use in modern microelectronics as well as for high-energy-density storage applications has propelled much recent research and development. Despite the discovery of several new classes of CP materials, the development of such materials with the required high performance is still a highly challenging task. Here, we propose a new electron-pinned, defect-dipole route to ideal CP behaviour, where hopping electrons are localized by designated lattice defect states to generate giant defect-dipoles and result in high-performance CP materials. We present a concrete example, (Nb+In) co-doped TiO₂ rutile, that exhibits a largely temperature- and frequency-independent colossal permittivity (> 10(4)) as well as a low dielectric loss (mostly < 0.05) over a very broad temperature range from 80 to 450 K. A systematic defect analysis coupled with density functional theory modelling suggests that 'triangular' In₂(3+)Vo(••)Ti(3+) and 'diamond' shaped Nb₂(5+)Ti(3+)A(Ti) (A = Ti(3+)/In(3+)/Ti(4+)) defect complexes are strongly correlated, giving rise to large defect-dipole clusters containing highly localized electrons that are together responsible for the excellent CP properties observed in co-doped TiO₂. This combined experimental and theoretical work opens up a promising feasible route to the systematic development of new high-performance CP materials via defect engineering.

  8. Electron-pinned defect-dipoles for high-performance colossal permittivity materials

    NASA Astrophysics Data System (ADS)

    Hu, Wanbiao; Liu, Yun; Withers, Ray L.; Frankcombe, Terry J.; Norén, Lasse; Snashall, Amanda; Kitchin, Melanie; Smith, Paul; Gong, Bill; Chen, Hua; Schiemer, Jason; Brink, Frank; Wong-Leung, Jennifer

    2013-09-01

    The immense potential of colossal permittivity (CP) materials for use in modern microelectronics as well as for high-energy-density storage applications has propelled much recent research and development. Despite the discovery of several new classes of CP materials, the development of such materials with the required high performance is still a highly challenging task. Here, we propose a new electron-pinned, defect-dipole route to ideal CP behaviour, where hopping electrons are localized by designated lattice defect states to generate giant defect-dipoles and result in high-performance CP materials. We present a concrete example, (Nb+In) co-doped TiO2 rutile, that exhibits a largely temperature- and frequency-independent colossal permittivity (> 104) as well as a low dielectric loss (mostly < 0.05) over a very broad temperature range from 80 to 450 K. A systematic defect analysis coupled with density functional theory modelling suggests that ‘triangular’ In23+VO••Ti3+ and ‘diamond’ shaped Nb25+Ti3+ATi (A  =  Ti3+/In3+/Ti4+) defect complexes are strongly correlated, giving rise to large defect-dipole clusters containing highly localized electrons that are together responsible for the excellent CP properties observed in co-doped TiO2. This combined experimental and theoretical work opens up a promising feasible route to the systematic development of new high-performance CP materials via defect engineering.

  9. The effect of a permanent dipole moment on the polar molecule cavity quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Jing-Yun, Zhao; Li-Guo, Qin; Xun-Ming, Cai; Qiang, Lin; Zhong-Yang, Wang

    2016-04-01

    A dressed-state perturbation theory beyond the rotating wave approximation (RWA) is presented to investigate the interaction between a two-level electronic transition of polar molecules and a quantized cavity field. Analytical expressions can be explicitly derived for both the ground- and excited-state-energy spectrums and wave functions of the system, where the contribution of permanent dipole moments (PDM) and the counter-rotating wave term (CRT) can be shown separately. The validity of these explicit results is discussed by comparison with the direct numerical simulation. Compared to the CRT coupling, PDM results in the coupling of more dressed states and the energy shift is proportional to the square of the normalized permanent dipole difference, and a greater Bloch-Siegert shift can be produced in the giant dipole molecule cavity QED. In addition, our method can also be extended to the solution of the two-level atom Rabi model Hamiltonian beyond the RWA. Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB01010200), the Hundred Talents Program of the Chinese Academy of Sciences (Grant No. Y321311401), the National Natural Science Foundation of China (Grant Nos. 61475139, 11347147, and 11247014), the National Basics Research Program of China (Grant No. 2013CB329501), and the Zhejiang Provincial Natural Science Foundation (Grant No. LQ13A040006).

  10. Waves in space plasma dipole antenna subsystem

    NASA Technical Reports Server (NTRS)

    Thomson, Mark

    1993-01-01

    The Waves In Space Plasma (WISP) flight experiment requires a 50-meter-long deployable dipole antenna subsystem (DASS) to radiate radio frequencies from the STS Orbiter cargo bay. The transmissions are to excite outer ionospheric plasma between the dipole and a free-flying receiver (Spartan) for scientific purposes. This report describes the singular DASS design requirements and how the resulting design satisfies them. A jettison latch is described in some detail. The latch releases the antenna in case of any problems which might prevent the bay doors from closing for re-entry and landing of the Orbiter.

  11. Half wavelength dipole antennas over stratified media

    NASA Technical Reports Server (NTRS)

    Latorraca, G. A.

    1972-01-01

    Theoretical solutions of the fields induced by half-wavelength, horizontal, electric field dipoles (HEDS) are determined based on studies of infinitesimal, horizontal, electric field dipoles over low loss plane-stratified media. To determine these solutions, an approximation to the current distribution of a half-wavelength HED is derived and experimentally verified. Traverse and antenna measurements obtained on the Athabasca Glacier in the summer of 1971 are related to the characteristics of the transmitting antenna design, and the measurement techniques and field equipment used in the glacier trials are described and evaluated.

  12. The viscous modulation of Lamb's dipole vortex

    NASA Astrophysics Data System (ADS)

    van de Fliert, B. W.

    1996-07-01

    A description of the adiabatic decay of the Lamb dipolar vortex is motivated by a variational characterization of the dipole. The parameters in the description are the values of the entrophy and linear momentum integrals, which change in time due to the dissipation. It is observed that the dipole dilates during the decay process [radius R˜(νt)1/2], while the amplitude of the vortex and its translation speed diminish in time proportional to (νt)-3/2 and (νt)-1.

  13. Gravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars.

    PubMed

    Bedding, Timothy R; Mosser, Benoit; Huber, Daniel; Montalbán, Josefina; Beck, Paul; Christensen-Dalsgaard, Jørgen; Elsworth, Yvonne P; García, Rafael A; Miglio, Andrea; Stello, Dennis; White, Timothy R; De Ridder, Joris; Hekker, Saskia; Aerts, Conny; Barban, Caroline; Belkacem, Kevin; Broomhall, Anne-Marie; Brown, Timothy M; Buzasi, Derek L; Carrier, Fabien; Chaplin, William J; Di Mauro, Maria Pia; Dupret, Marc-Antoine; Frandsen, Søren; Gilliland, Ronald L; Goupil, Marie-Jo; Jenkins, Jon M; Kallinger, Thomas; Kawaler, Steven; Kjeldsen, Hans; Mathur, Savita; Noels, Arlette; Aguirre, Victor Silva; Ventura, Paolo

    2011-03-31

    Red giants are evolved stars that have exhausted the supply of hydrogen in their cores and instead burn hydrogen in a surrounding shell. Once a red giant is sufficiently evolved, the helium in the core also undergoes fusion. Outstanding issues in our understanding of red giants include uncertainties in the amount of mass lost at the surface before helium ignition and the amount of internal mixing from rotation and other processes. Progress is hampered by our inability to distinguish between red giants burning helium in the core and those still only burning hydrogen in a shell. Asteroseismology offers a way forward, being a powerful tool for probing the internal structures of stars using their natural oscillation frequencies. Here we report observations of gravity-mode period spacings in red giants that permit a distinction between evolutionary stages to be made. We use high-precision photometry obtained by the Kepler spacecraft over more than a year to measure oscillations in several hundred red giants. We find many stars whose dipole modes show sequences with approximately regular period spacings. These stars fall into two clear groups, allowing us to distinguish unambiguously between hydrogen-shell-burning stars (period spacing mostly ∼ 50 seconds) and those that are also burning helium (period spacing ∼ 100 to 300 seconds).

  14. Suppression of Quadrupole and Octupole Modes in Red Giants Observed by Kepler *

    NASA Astrophysics Data System (ADS)

    Stello, Dennis; Cantiello, Matteo; Fuller, Jim; Garcia, Rafael A.; Huber, Daniel

    2016-03-01

    An exciting new theoretical result shows that observing suppression of dipole oscillation modes in red giant stars can be used to detect strong magnetic fields in the stellar cores. A fundamental facet of the theory is that nearly all the mode energy leaking into the core is trapped by the magnetic greenhouse effect. This results in clear predictions for how the mode visibility changes as a star evolves up the red giant branch, and how that depends on stellar mass, spherical degree, and mode lifetime. Here, we investigate the validity of these predictions with a focus on the visibility of different spherical degrees. We find that mode suppression weakens for higher degree modes with a reduction in the quadrupole mode visibility of up to 49%, and no detectable suppression of octupole modes, in agreement with theory. We find evidence for the influence of increasing mode lifetimes on the visibilities along the red giant branch, in agreement with previous independent observations. These results support the theory that strong internal magnetic fields cause suppression of non-radial modes in red giants. We also find preliminary evidence that stars with suppressed dipole modes on average have slightly lower metallicity than normal stars.

  15. Dipole-dipole interaction in a quantum dot and metallic nanorod hybrid system

    NASA Astrophysics Data System (ADS)

    Singh, Mahi R.; Schindel, Daniel G.; Hatef, Ali

    2011-10-01

    We have studied quantum coherence and interference phenomena in a quantum dot (QD)-metallic nanorod (MNR) hybrid system. Probe and control laser fields are applied to the hybrid system. Induced dipole moments are created in the QD and the MNR, and they interact with each other via the dipole-dipole interaction. Using the density matrix method, it was found that the power spectrum of MNR has two transparent, states and they can be switched to one transparent state by the control field. Ultrafast switching and sensing nanodevices could be produced using this model.

  16. Dynamo action and magnetic activity of the giant star Pollux

    NASA Astrophysics Data System (ADS)

    Brun, Allan Sacha; Palacios, Ana

    2015-08-01

    Recent spectropolarimetric observations of the giant star Pollux have revealed that it possesses a weak global magnetic field of the order of a Gauss. Using 3-D nonlinear MHD simulations performed with the ASH code we study the source of this global magnetic field in this slowly rotating giant star (Omega*=Omega_sun/20). We find that the extended convective envelope is able to generate a multi-scales magnetic field reaching of the order of 10% of the kinetic energy contained in the envelope. This global field acts such as to suppress the strong differential rotation present in the purely hydrodynamical progenitor simulation. When filtering the large scale magnetic field components (dipole, quadrupole) we find magnetic field of the order of a few Gauss, hence in qualitative agreeement with observations. Our study confirms that such slowly rotating convective giants are likely to possess global magnetic field maintained through contemporaneous dynamo action and not as the vestige of their past main sequence activity.

  17. A precise measurement of the muon neutrino-nucleon inclusive charged current cross section off an isoscalar target in the energy range 2.5

    NASA Astrophysics Data System (ADS)

    Wu, Q.; Mishra, S. R.; Godley, A.; Petti, R.; Alekhin, S.; Astier, P.; Autiero, D.; Baldisseri, A.; Baldo-Ceolin, M.; Banner, M.; Bassompierre, G.; Benslama, K.; Besson, N.; Bird, I.; Blumenfeld, B.; Bobisut, F.; Bouchez, J.; Boyd, S.; Bueno, A.; Bunyatov, S.; Camilleri, L.; Cardini, A.; Cattaneo, P. W.; Cavasinni, V.; Cervera-Villanueva, A.; Challis, R.; Chukanov, A.; Collazuol, G.; Conforto, G.; Conta, C.; Contalbrigo, M.; Cousins, R.; Degaudenzi, H.; Del Prete, T.; de Santo, A.; di Lella, L.; Do Couto E Silva, E.; Dumarchez, J.; Ellis, M.; Feldman, G. J.; Ferrari, R.; Ferrère, D.; Flaminio, V.; Fraternali, M.; Gaillard, J.-M.; Gangler, E.; Geiser, A.; Geppert, D.; Gibin, D.; Gninenko, S.; Gomez-Cadenas, J.-J.; Gosset, J.; Gößling, C.; Gouanère, M.; Grant, A.; Graziani, G.; Guglielmi, A.; Hagner, C.; Hernando, J.; Hurst, P.; Hyett, N.; Iacopini, E.; Joseph, C.; Juget, F.; Kent, N.; Kim, J. J.; Kirsanov, M.; Klimov, O.; Kokkonen, J.; Kovzelev, A.; Krasnoperov, A.; Kulagin, S.; Lacaprara, S.; Lachaud, C.; Lakić, B.; Lanza, A.; La Rotonda, L.; Laveder, M.; Letessier-Selvon, A.; Levy, J.-M.; Ling, J.; Linssen, L.; Ljubič, A.; Long, J.; Lupi, A.; Lyubushkin, V.; Marchionni, A.; Martelli, F.; Méchain, X.; Mendiburu, J.-P.; Meyer, J.-P.; Mezzetto, M.; Moorhead, G. F.; Naumov, D.; Nédélec, P.; Nefedov, Yu.; Nguyen-Mau, C.; Orestano, D.; Pastore, F.; Peak, L. S.; Pennacchio, E.; Pessard, H.; Placci, A.; Polesello, G.; Pollmann, D.; Polyarush, A.; Poulsen, C.; Popov, B.; Rebuffi, L.; Rico, J.; Riemann, P.; Roda, C.; Rubbia, A.; Salvatore, F.; Samoylov, O.; Schahmaneche, K.; Schmidt, B.; Schmidt, T.; Sconza, A.; Seaton, M.; Sevior, M.; Sillou, D.; Soler, F. J. P.; Sozzi, G.; Steele, D.; Stiegler, U.; Stipčević, M.; Stolarczyk, Th.; Tareb-Reyes, M.; Taylor, G. N.; Tereshchenko, V.; Toropin, A.; Touchard, A.-M.; Tovey, S. N.; Tran, M.-T.; Tsesmelis, E.; Ulrichs, J.; Vacavant, L.; Valdata-Nappi, M.; Valuev, V.; Vannucci, F.; Varvell, K. E.; Veltri, M.; Vercesi, V.; Vidal-Sitjes, G.; Vieira, J.-M.; Vinogradova, T.; Weber, F. V.; Weisse, T.; Wilson, F. F.; Winton, L. J.; Yabsley, B. D.; Zaccone, H.; Zuber, K.; Zuccon, P.; NOMAD Collaboration

    2008-02-01

    We present a measurement of the muon neutrino-nucleon inclusive charged current cross section, off an isoscalar target, in the neutrino energy range 2.5 ⩽Eν ⩽ 40 GeV. The significance of this measurement is its precision, ±4% in 2.5 ⩽Eν ⩽ 10 GeV, and ±2.6% in 10 ⩽Eν ⩽ 40 GeV regions, where significant uncertainties in previous experiments still exist, and its importance to the current and proposed long baseline neutrino oscillation experiments.

  18. A precise measurement of the muon neutrino nucleon inclusive charged current cross section off an isoscalar target in the energy range 2.5

    NASA Astrophysics Data System (ADS)

    NOMAD Collaboration; Wu, Q.; Mishra, S. R.; Godley, A.; Petti, R.; Alekhin, S.; Astier, P.; Autiero, D.; Baldisseri, A.; Baldo-Ceolin, M.; Banner, M.; Bassompierre, G.; Benslama, K.; Besson, N.; Bird, I.; Blumenfeld, B.; Bobisut, F.; Bouchez, J.; Boyd, S.; Bueno, A.; Bunyatov, S.; Camilleri, L.; Cardini, A.; Cattaneo, P. W.; Cavasinni, V.; Cervera-Villanueva, A.; Challis, R.; Chukanov, A.; Collazuol, G.; Conforto, G.; Conta, C.; Contalbrigo, M.; Cousins, R.; Degaudenzi, H.; Del Prete, T.; de Santo, A.; di Lella, L.; Do Couto E Silva, E.; Dumarchez, J.; Ellis, M.; Feldman, G. J.; Ferrari, R.; Ferrère, D.; Flaminio, V.; Fraternali, M.; Gaillard, J.-M.; Gangler, E.; Geiser, A.; Geppert, D.; Gibin, D.; Gninenko, S.; Gomez-Cadenas, J.-J.; Gosset, J.; Gößling, C.; Gouanère, M.; Grant, A.; Graziani, G.; Guglielmi, A.; Hagner, C.; Hernando, J.; Hurst, P.; Hyett, N.; Iacopini, E.; Joseph, C.; Juget, F.; Kent, N.; Kim, J. J.; Kirsanov, M.; Klimov, O.; Kokkonen, J.; Kovzelev, A.; Krasnoperov, A.; Kulagin, S.; Lacaprara, S.; Lachaud, C.; Lakić, B.; Lanza, A.; La Rotonda, L.; Laveder, M.; Letessier-Selvon, A.; Levy, J.-M.; Ling, J.; Linssen, L.; Ljubič, A.; Long, J.; Lupi, A.; Lyubushkin, V.; Marchionni, A.; Martelli, F.; Méchain, X.; Mendiburu, J.-P.; Meyer, J.-P.; Mezzetto, M.; Moorhead, G. F.; Naumov, D.; Nédélec, P.; Nefedov, Yu.; Nguyen-Mau, C.; Orestano, D.; Pastore, F.; Peak, L. S.; Pennacchio, E.; Pessard, H.; Placci, A.; Polesello, G.; Pollmann, D.; Polyarush, A.; Poulsen, C.; Popov, B.; Rebuffi, L.; Rico, J.; Riemann, P.; Roda, C.; Rubbia, A.; Salvatore, F.; Samoylov, O.; Schahmaneche, K.; Schmidt, B.; Schmidt, T.; Sconza, A.; Seaton, M.; Sevior, M.; Sillou, D.; Soler, F. J. P.; Sozzi, G.; Steele, D.; Stiegler, U.; Stipčević, M.; Stolarczyk, Th.; Tareb-Reyes, M.; Taylor, G. N.; Tereshchenko, V.; Toropin, A.; Touchard, A.-M.; Tovey, S. N.; Tran, M.-T.; Tsesmelis, E.; Ulrichs, J.; Vacavant, L.; Valdata-Nappi, M.; Valuev, V.; Vannucci, F.; Varvell, K. E.; Veltri, M.; Vercesi, V.; Vidal-Sitjes, G.; Vieira, J.-M.; Vinogradova, T.; Weber, F. V.; Weisse, T.; Wilson, F. F.; Winton, L. J.; Yabsley, B. D.; Zaccone, H.; Zuber, K.; Zuccon, P.

    2008-02-01

    We present a measurement of the muon neutrino nucleon inclusive charged current cross section, off an isoscalar target, in the neutrino energy range 2.5⩽E⩽40 GeV. The significance of this measurement is its precision, ±4% in 2.5⩽E⩽10 GeV, and ±2.6% in 10⩽E⩽40 GeV regions, where significant uncertainties in previous experiments still exist, and its importance to the current and proposed long baseline neutrino oscillation experiments.

  19. Imaging Extrasolar Giant Planets

    NASA Astrophysics Data System (ADS)

    Bowler, Brendan P.

    2016-10-01

    High-contrast adaptive optics (AO) imaging is a powerful technique to probe the architectures of planetary systems from the outside-in and survey the atmospheres of self-luminous giant planets. Direct imaging has rapidly matured over the past decade and especially the last few years with the advent of high-order AO systems, dedicated planet-finding instruments with specialized coronagraphs, and innovative observing and post-processing strategies to suppress speckle noise. This review summarizes recent progress in high-contrast imaging with particular emphasis on observational results, discoveries near and below the deuterium-burning limit, and a practical overview of large-scale surveys and dedicated instruments. I conclude with a statistical meta-analysis of deep imaging surveys in the literature. Based on observations of 384 unique and single young (≈5-300 Myr) stars spanning stellar masses between 0.1 and 3.0 M ⊙, the overall occurrence rate of 5-13 M Jup companions at orbital distances of 30-300 au is {0.6}-0.5+0.7 % assuming hot-start evolutionary models. The most massive giant planets regularly accessible to direct imaging are about as rare as hot Jupiters are around Sun-like stars. Dividing this sample into individual stellar mass bins does not reveal any statistically significant trend in planet frequency with host mass: giant planets are found around {2.8}-2.3+3.7 % of BA stars, <4.1% of FGK stars, and <3.9% of M dwarfs. Looking forward, extreme AO systems and the next generation of ground- and space-based telescopes with smaller inner working angles and deeper detection limits will increase the pace of discovery to ultimately map the demographics, composition, evolution, and origin of planets spanning a broad range of masses and ages.

  20. Giant left ventricular pseudoaneurysm.

    PubMed

    Prakash, Sumi; Garg, Nadish; Xie, Gong-Yuan; Dellsperger, Kevin C

    2010-01-01

    Left ventricular (LV) pseudoaneurysm (PS) is an uncommon, often fatal complication associated with myocardial infarction, cardiothoracic surgery, trauma, and, rarely, infective endocarditis. A 28-year-old man with prior history of bioprosthetic mitral valve replacement presented with congestive heart failure and bacteremia with Abiotrophia granulitica. Transesophageal echocardiogram showed bioprosthesis dysfunction, large vegetations, mitral regurgitation, and probable PS. Cardiac and chest CT confirmed a PS communicating with the left ventricle Patient had pulseless electrical activity and died. Autopsy showed a giant PS with layered thrombus and pseudo-endothelialized cavity. Our case highlights the importance of multimodality imaging as an important tool in management of PS.

  1. Giant mesenteric cyst

    PubMed Central

    Guraya, Salman Yousuf; Salman, Shaista; Almaramhy, Hamdi H.

    2011-01-01

    Mesenteric cysts are uncommon benign abdominal lesions with no classical clinical features. The preoperative diagnosis requires the common imaging modalities but the final diagnosis is established only during surgery or histological analysis. The treatment of choice is complete surgical excision. We report an 18-year-old female with a non-specific abdominal pain and discomfort since 3 weeks. Her CT scan showed a huge cystic swelling, which necessitated surgical exploration. Preoperatively, a giant cyst was encountered with displacement of bowel loops. The cyst was completely removed and histology report confirmed mesenteric cyst without evidence of malignancy. PMID:24765349

  2. Giant mesenteric cyst.

    PubMed

    Guraya, Salman Yousuf; Salman, Shaista; Almaramhy, Hamdi H

    2011-09-28

    Mesenteric cysts are uncommon benign abdominal lesions with no classical clinical features. The preoperative diagnosis requires the common imaging modalities but the final diagnosis is established only during surgery or histological analysis. The treatment of choice is complete surgical excision. We report an 18-year-old female with a non-specific abdominal pain and discomfort since 3 weeks. Her CT scan showed a huge cystic swelling, which necessitated surgical exploration. Preoperatively, a giant cyst was encountered with displacement of bowel loops. The cyst was completely removed and histology report confirmed mesenteric cyst without evidence of malignancy.

  3. A Giant Urethral Calculus.

    PubMed

    Sigdel, G; Agarwal, A; Keshaw, B W

    2014-01-01

    Urethral calculi are rare forms of urolithiasis. Majority of the calculi are migratory from urinary bladder or upper urinary tract. Primary urethral calculi usually occur in presence of urethral stricture or diverticulum. In this article we report a case of a giant posterior urethral calculus measuring 7x3x2 cm in a 47 years old male. Patient presented with acute retention of urine which was preceded by burning micturition and dribbling of urine for one week. The calculus was pushed in to the bladder through the cystoscope and was removed by suprapubic cystolithotomy.

  4. Conductor Development for High Field Dipole Magnets

    SciTech Connect

    Scanlan, R.M.; Dietderich, D.R.; Higley, H.C.

    2000-03-01

    Historically, improvements in dipole magnet performance have been paced by improvements in the superconductor available for use in these magnets. The critical conductor performance parameters for dipole magnets include current density, piece length, effective filament size, and cost. Each of these parameters is important for efficient, cost effective dipoles, with critical current density being perhaps the most important. Several promising magnet designs for the next hadron collider or a muon collider require fields of 12 T or higber, i.e. beyond the reach of NbTi. The conductor options include Nb{sub 3}Sn, Nb{sub 3}Al, or the high temperature superconductors. Although these conductors have the potential to provide the combination of performance and cost required, none of them have been developed sufficiently at this point to satisfy all the requirements. This paper will review the status of each class of advanced conductor and discuss the remaining problems that require solutions before these new conductors can be considered as practical. In particular, the plans for a new program to develop Nb{sub 3}Sn and Nb{sub 3}Al conductors for high energy physics applications will be presented. Also, the development of a multikiloamp Bi-2212 cable for dipole magnet applications will be reported.

  5. The Case of the Disappearing Magnetic Dipole

    ERIC Educational Resources Information Center

    Gough, W.

    2008-01-01

    The problem of an oscillating magnetic dipole at the centre of a lossless dielectric spherical shell is considered. For simplicity, the free-space wavelength is taken to be much greater than the shell radii, but the relative permittivity [epsilon][subscript r] of the shell is taken as much greater than unity, so the wavelength in the shell could…

  6. A Microstrip Reflect Array Using Crossed Dipoles

    NASA Technical Reports Server (NTRS)

    Pozar, David M.; Targonski, Stephen D.

    1998-01-01

    Microstrip reflect arrays offer a flat profile and light weight, combined with many of the electrical characteristics of reflector antennas. Previous work [1]-[7] has demonstrated a variety of microstrip reflect arrays, using different elements at a range of frequencies. In this paper we describe the use of crossed dipoles as reflecting elements in a microstrip reflectarray. Theory of the solution will be described, with experimental results for a 6" square reflectarray operating at 28 GHz. The performance of crossed dipoles will be directly compared with microstrip patches, in terms of bandwidth and loss. We also comment on the principle of operation of reflectarray elements, including crossed dipoles, patches of variable length, and patch elements with tuning stubs. This research was prompted by the proposed concept of overlaying a flat printed reflectarray on the surface of a spacecraft solar panel. Combining solar panel and antenna apertures in this way would lead to a reduction in weight and simpler deployment, with some loss of flexibility in independently pointing the solar panel and the antenna. Using crossed dipoles as reflectarray elements will minimize the aperture blockage of the solar cells, in contrast to the use of elements such as microstrip patches.

  7. Electromagnetic Force on a Moving Dipole

    ERIC Educational Resources Information Center

    Kholmetskii, Alexander L.; Missevitch, Oleg V.; Yarman, T.

    2011-01-01

    We analyse the force acting on a moving dipole due to an external electromagnetic field and show that the expression derived in Vekstein (1997 "Eur. J. Phys." 18 113) is erroneous and suggest the correct equation for the description of this force. We also discuss the physical meaning of the relativistic transformation of current for a closed…

  8. Electromagnetic Force on a Moving Dipole

    ERIC Educational Resources Information Center

    Kholmetskii, Alexander L.; Missevitch, Oleg V.; Yarman, T.

    2011-01-01

    We analyse the force acting on a moving dipole due to an external electromagnetic field and show that the expression derived in Vekstein (1997 "Eur. J. Phys." 18 113) is erroneous and suggest the correct equation for the description of this force. We also discuss the physical meaning of the relativistic transformation of current for a closed…

  9. Hertzian Dipole Radiation over Isotropic Magnetodielectric Substrates

    DTIC Science & Technology

    2015-03-01

    public release; distribution unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT This report investigates dipole antennas printed on grounded...engineering of thin planar antennas . Since these materials often require complicated constitutive equations to describe their properties rigorously, the...material properties and substrate thickness. 15. SUBJECT TERMS Magnetodielectrics, planar antennas , boundary value problems, contour integration, branch

  10. Conceptual design of Dipole Research Experiment (DREX)

    NASA Astrophysics Data System (ADS)

    Qingmei, XIAO; Zhibin, WANG; Xiaogang, WANG; Chijie, XIAO; Xiaoyi, YANG; Jinxing, ZHENG

    2017-03-01

    A new terrella-like device for laboratory simulation of inner magnetosphere plasmas, Dipole Research Experiment, is scheduled to be built at the Harbin Institute of Technology (HIT), China, as a major state scientific research facility for space physics studies. It is designed to provide a ground experimental platform to reproduce the inner magnetosphere to simulate the processes of trapping, acceleration, and transport of energetic charged particles restrained in a dipole magnetic field configuration. The scaling relation of hydromagnetism between the laboratory plasma of the device and the geomagnetosphere plasma is applied to resemble geospace processes in the Dipole Research Experiment plasma. Multiple plasma sources, different kinds of coils with specific functions, and advanced diagnostics are designed to be equipped in the facility for multi-functions. The motivation, design criteria for the Dipole Research Experiment experiments and the means applied to generate the plasma of desired parameters in the laboratory are also described. Supported by National Natural Science Foundation of China (Nos. 11505040, 11261140326 and 11405038), China Postdoctoral Science Foundation (Nos. 2016M591518, 2015M570283) and Project Supported by Natural Scientific Research Innovation Foundation in Harbin Institute of Technology (No. 2017008).

  11. Formation of dipole vortex in the ionosphere

    SciTech Connect

    Shukla, P.K.; Yu, M.Y.

    1985-04-01

    It is shown that isolated dipole vortices can exist in the F-region of the ionosphere. These are associated with the Rayleigh-Taylor and E x B/sub 0/ gradient drift instabilities. The vortices may be responsible for the rapid structuring of barium clouds as well as other phenomena observed in the upper ionosphere.

  12. Conceptual design of Dipole Research Experiment (DREX)

    NASA Astrophysics Data System (ADS)

    Xiao, Qingmei; Wang, Zhibin; Wang, Xiaogang; Xiao, Chijie; Yang, Xiaoyi; Zheng, Jinxing

    2017-03-01

    A new terrella-like device for laboratory simulation of inner magnetosphere plasmas, Dipole Research Experiment, is scheduled to be built at the Harbin Institute of Technology (HIT), China, as a major state scientific research facility for space physics studies. It is designed to provide a ground experimental platform to reproduce the inner magnetosphere to simulate the processes of trapping, acceleration, and transport of energetic charged particles restrained in a dipole magnetic field configuration. The scaling relation of hydromagnetism between the laboratory plasma of the device and the geomagnetosphere plasma is applied to resemble geospace processes in the Dipole Research Experiment plasma. Multiple plasma sources, different kinds of coils with specific functions, and advanced diagnostics are designed to be equipped in the facility for multi-functions. The motivation, design criteria for the Dipole Research Experiment experiments and the means applied to generate the plasma of desired parameters in the laboratory are also described. Supported by National Natural Science Foundation of China (Nos. 11505040, 11261140326 and 11405038), China Postdoctoral Science Foundation (Nos. 2016M591518, 2015M570283) and Project Supported by Natural Scientific Research Innovation Foundation in Harbin Institute of Technology (No. 2017008).

  13. The Case of the Disappearing Magnetic Dipole

    ERIC Educational Resources Information Center

    Gough, W.

    2008-01-01

    The problem of an oscillating magnetic dipole at the centre of a lossless dielectric spherical shell is considered. For simplicity, the free-space wavelength is taken to be much greater than the shell radii, but the relative permittivity [epsilon][subscript r] of the shell is taken as much greater than unity, so the wavelength in the shell could…

  14. Dipole nano-laser: Theory and properties

    SciTech Connect

    Ghannam, T.

    2014-03-31

    In this paper we outline the main quantum properties of the system of nano-based laser called Dipole Nano-Laser emphasizing mainly on its ability to produce coherent light and for different configurations such as different embedding materials and subjecting it to an external classical electric field.

  15. BKT phase transition in a 2D system with long-range dipole-dipole interaction

    NASA Astrophysics Data System (ADS)

    Fedichev, P. O.; Men'shikov, L. I.

    2012-01-01

    We consider phase transitions in 2D XY-like systems with long-range dipole-dipole interactions and demonstrate that BKT-type phase transition always occurs separating the ordered (ferroelectric) and the disordered (paraelectric) phases. The low-temperature phase corresponds to a thermal state with bound vortex-antivortex pairs characterized by linear attraction at large distances. Using the Maier-Schwabl topological charge model, we show that bound vortex pairs polarize and screen the vortex-antivortex interaction, leaving only the logarithmic attraction at sufficiently large separations between the vortices. At higher temperatures the pairs dissociate and the phase transition similar to BKT occurs, though at a larger temperature than in a system without the dipole-dipole interaction.

  16. Master equation with quantized atomic motion including dipole-dipole interactions

    NASA Astrophysics Data System (ADS)

    Damanet, François; Braun, Daniel; Martin, John

    2016-05-01

    We derive a markovian master equation for the internal dynamics of an ensemble of two-level atoms including all effects related to the quantization of their motion. Our equation provides a unifying picture of the consequences of recoil and indistinguishability of atoms beyond the Lamb-Dicke regime on both their dissipative and conservative dynamics, and is relevant for experiments with ultracold trapped atoms. We give general expressions for the decay rates and the dipole-dipole shifts for any motional states, and we find analytical formulas for a number of relevant states (Gaussian states, Fock states and thermal states). In particular, we show that the dipole-dipole interactions and cooperative photon emission can be modulated through the external state of motion. The effects predicted should be experimentally observable with Rydberg atoms. FD would like to thank the F.R.S.-FNRS for financial support. FD is a FRIA Grant holder of the Fonds de la Recherche Scientifique-FNRS.

  17. Pygmy and core polarization dipole modes in 206Pb: Connecting nuclear structure to stellar nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Tonchev, A. P.; Tsoneva, N.; Bhatia, C.; Arnold, C. W.; Goriely, S.; Hammond, S. L.; Kelley, J. H.; Kwan, E.; Lenske, H.; Piekarewicz, J.; Raut, R.; Rusev, G.; Shizuma, T.; Tornow, W.

    2017-10-01

    A high-resolution study of the electromagnetic response of 206Pb below the neutron separation energy is performed using a (γ → ,γ‧) experiment at the HI γ → S facility. Nuclear resonance fluorescence with 100% linearly polarized photon beams is used to measure spins, parities, branching ratios, and decay widths of excited states in 206Pb from 4.9 to 8.1 MeV. The extracted ΣB (E 1) ↑ and ΣB (M 1) ↑ values for the total electric and magnetic dipole strength below the neutron separation energy are 0.9 ± 0.2 e2fm2 and 8.3 ± 2.0 μN2, respectively. These measurements are found to be in very good agreement with the predictions from an energy-density functional (EDF) plus quasiparticle phonon model (QPM). Such a detailed theoretical analysis allows to separate the pygmy dipole resonance from both the tail of the giant dipole resonance and multi-phonon excitations. Combined with earlier photonuclear experiments above the neutron separation energy, one extracts a value for the electric dipole polarizability of 206Pb of αD = 122 ± 10 mb /MeV. When compared to predictions from both the EDF+QPM and accurately calibrated relativistic EDFs, one deduces a range for the neutron-skin thickness of Rskin206 = 0.12- 0.19 fm and a corresponding range for the slope of the symmetry energy of L = 48- 60 MeV. This newly obtained information is also used to estimate the Maxwellian-averaged radiative cross section 205Pb (n , γ)206Pb at 30 keV to be σ = 130 ± 25 mb. The astrophysical impact of this measurement-on both the s-process in stellar nucleosynthesis and on the equation of state of neutron-rich matter-is discussed.

  18. Giant extragenital Bowen's disease.

    PubMed

    Bakardzhiev, Ilko; Chokoeva, Anastasiya Atanasova; Tchernev, Georgi

    2015-12-01

    Giant extragenital forms of Morbus Bowen are extremely rare. The already described cases in the word literature are most commonly with periungual localization, as well as located on the foot and neck area. The clinical manifestation is presented most commonly by non-specific erythematous to erythematous-squamous plaques or papules, which is confusing to the clinician. From the pathogenic point of view, it is important to be confirmed or rejected the presence of human papilloma viruses (HPVs) in each case of affected patient, as this information is mandatory in respect to the adequate selection of the subsequent regimen. If HPVs are detected, systemic antiviral therapy could be initiated to reduce the size of the lesions before subsequent surgical eradication. A postoperative prevention through vaccination could be also considered additionally. In cases of HPV-negative giant extragenital forms of Morbus Bowen (as in the described patient), the focus should be on local immunomodulation by substances such as imiquimod, which reduce the size of the lesions, thereby creating optimal opportunities for their future surgical eradication. Other possible options described in the literature include topical application of 5-fluorouracil, photodynamic therapy, cryotherapy, and laser therapy (carbon dioxide laser). The choice of the most appropriate regimen should have been an individual decision of the clinician, considering also the location and the extent of the lesion.

  19. Gas Giants Form Quickly

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This is an artist's concept of a hypothetical 10-million-year-old star system. The bright blur at the center is a star much like our sun. The other orb in the image is a gas-giant planet like Jupiter. Wisps of white throughout the image represent traces of gas.

    Astronomers using NASA's Spitzer Space Telescope have found evidence showing that gas-giant planets either form within the first 10 million years of a sun-like star's life, or not at all. The lifespan for sun-like stars is about 10 billion years.

    The scientists came to this conclusion after searching for traces of gas around 15 different sun-like stars, most with ages ranging from 3 million to 30 million years. With the help of Spitzer's Infrared Spectrometer instrument, they were able to search for relatively warm gas in the inner regions of these star systems, an area comparable to the zone between Earth and Jupiter in our own solar system. They also used ground-based radio telescopes to search for cooler gas in the outer regions of these systems, an area comparable to the zone around Saturn and beyond.

  20. Giant papillary conjunctivitis.

    PubMed Central

    Donshik, P C

    1994-01-01

    Giant papillary conjunctivitis is a syndrome found frequently as a complication of contact lenses. Many variables can affect the onset and severity of the presenting signs and symptoms. Rigid gas permeable contact lenses appear to result in less severe signs and symptoms, with a longer time before the development of giant papillary conjunctivitis. Nonionic, low-water-content soft contact lenses tend to produce less severe signs and symptoms than ionic, low-water-content soft contact lenses. Enzymatic treatment appears to lessen the severity of signs and symptoms. The association of an allergy appears to play a role in the onset of the severity of the signs and symptoms but does not appear to affect the final ability of the individual to wear contact lenses. Using multiple treatment options, such as changing the polymer to a glyceryl methyl methacrylate or a rigid lens, or utilizing a soft lens on a frequent-replacement basis, can result in a success rate of over 90%. In individuals who still have a return of symptoms, the use of topical mast cell stabilizers or a nonsteroidal anti-inflammatory drug as an adjunctive therapy offers the added possibility of keeping these patients in contact lenses. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 11 A FIGURE 11 B FIGURE 11 C FIGURE 11 D PMID:7886881

  1. Gas Giants Form Quickly

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This is an artist's concept of a hypothetical 10-million-year-old star system. The bright blur at the center is a star much like our sun. The other orb in the image is a gas-giant planet like Jupiter. Wisps of white throughout the image represent traces of gas.

    Astronomers using NASA's Spitzer Space Telescope have found evidence showing that gas-giant planets either form within the first 10 million years of a sun-like star's life, or not at all. The lifespan for sun-like stars is about 10 billion years.

    The scientists came to this conclusion after searching for traces of gas around 15 different sun-like stars, most with ages ranging from 3 million to 30 million years. With the help of Spitzer's Infrared Spectrometer instrument, they were able to search for relatively warm gas in the inner regions of these star systems, an area comparable to the zone between Earth and Jupiter in our own solar system. They also used ground-based radio telescopes to search for cooler gas in the outer regions of these systems, an area comparable to the zone around Saturn and beyond.

  2. Giant Intradiverticular Bladder Tumor

    PubMed Central

    Noh, Mohamad Syafeeq Faeez Md; Aziz, Ahmad Fuad Abdul; Ghani, Khairul Asri Mohd; Siang, Christopher Lee Kheng; Yunus, Rosna; Yusof, Mubarak Mohd

    2017-01-01

    Patient: Male, 74 Final Diagnosis: Giant intradiverticular bladder tumor with metastasis Symptoms: Hematuria Medication:— Clinical Procedure: — Specialty: Urology Objective: Rare disease Background: Intradiverticular bladder tumors are rare. This renders diagnosis of an intradiverticular bladder tumor difficult. Imaging plays a vital role in achieving the diagnosis, and subsequently staging of the disease. Case Report: A 74-year-old male presented to our center with a few months history of constitutional symptoms. Upon further history, he reported hematuria two months prior to presentation, which stopped temporarily, only to recur a few days prior to coming to the hospital. The patient admitted to having lower urinary tract symptoms. However, there was no dysuria, no sandy urine, and no fever. Palpation of his abdomen revealed a vague mass at the suprapubic region, which was non tender. In view of his history and the clinical examination findings, an ultrasound of the abdomen and computed tomography (CT) was arranged. These investigations revealed a giant tumor that seemed to be arising from a bladder diverticulum, with a mass effect and hydronephrosis. He later underwent operative intervention. Conclusions: Intradiverticular bladder tumors may present a challenge to the treating physician in an atypical presentation; thus requiring a high index of suspicion and knowledge of tumor pathophysiology. As illustrated in our case, CT with its wide availability and multiplanar imaging capabilities offers a useful means for diagnosis, disease staging, operative planning, and follow-up. PMID:28246375

  3. Reinflating Giant Planets

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-01-01

    Two new, large gas-giant exoplanets have been discovered orbiting close to their host stars. A recent study examining these planets and others like them may help us to better understand what happens to close-in hot Jupiters as their host stars reach the end of their main-sequence lives.OversizedGiantsUnbinned transit light curves for HAT-P-65b. [Adapted from Hartman et al. 2016]The discovery of HAT-P-65b and HAT-P-66b, two new transiting hot Jupiters, is intriguing. These planets have periods of just under 3 days and masses of roughly 0.5 and 0.8 times that of Jupiter, but their sizes are whats really interesting: they have inflated radii of 1.89 and 1.59 times that of Jupiter.These two planets, discovered using the Hungarian-made Automated Telescope Network (HATNet) in Arizona and Hawaii, mark the latest in an ever-growing sample of gas-giant exoplanets with radii larger than expected based on theoretical planetary structure models.What causes this discrepancy? Did the planets just fail to contract to the expected size when they were initially formed, or were they reinflated later in their lifetimes? If the latter, how? These are questions that scientists are only now starting to be able to address using statistics of the sample of close-in, transiting planets.Unbinned transit light curves for HAT-P-66b. [Hartman et al. 2016]Exploring Other PlanetsLed by Joel Hartman (Princeton University), the team that discovered HAT-P-65b and HAT-P-66b has examined these planets observed parameters and those of dozens of other known close-in, transiting exoplanets discovered with a variety of transiting exoplanet missions: HAT, WASP, Kepler, TrES, and KELT. Hartman and collaborators used this sample to draw conclusions about what causes some of these planets to have such large radii.The team found that there is a statistically significant correlation between the radii of close-in giant planets and the fractional ages of their host stars (i.e., the stars age divided by its full

  4. Bound free electron-positron pair production accompanied by giant dipole resonances

    SciTech Connect

    Senguel, M. Y.; Gueclue, M. C.

    2011-01-15

    At the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC), for example, virtual photons produce many particles. At small impact parameters where the colliding nuclei make peripheral collisions, photon fluxes are very large and these are responsible for the multiple photonuclear interactions. Free pair productions, bound free pair productions, and nuclear Coulomb excitations are important examples of such interactions, and these processes play important roles in the beam luminosity at RHIC and LHC. Here we obtained the impact parameter dependence of bound free pair production cross sections and by using this probability we obtained bound free electron-positron pair production with nuclear breakup for heavy ion collisions at RHIC and LHC. We also compared our results to the other calculations.

  5. Allometry indicates giant eyes of giant squid are not exceptional.

    PubMed

    Schmitz, Lars; Motani, Ryosuke; Oufiero, Christopher E; Martin, Christopher H; McGee, Matthew D; Gamarra, Ashlee R; Lee, Johanna J; Wainwright, Peter C

    2013-02-18

    The eyes of giant and colossal squid are among the largest eyes in the history of life. It was recently proposed that sperm whale predation is the main driver of eye size evolution in giant squid, on the basis of an optical model that suggested optimal performance in detecting large luminous visual targets such as whales in the deep sea. However, it is poorly understood how the eye size of giant and colossal squid compares to that of other aquatic organisms when scaling effects are considered. We performed a large-scale comparative study that included 87 squid species and 237 species of acanthomorph fish. While squid have larger eyes than most acanthomorphs, a comparison of relative eye size among squid suggests that giant and colossal squid do not have unusually large eyes. After revising constants used in a previous model we found that large eyes perform equally well in detecting point targets and large luminous targets in the deep sea. The eyes of giant and colossal squid do not appear exceptionally large when allometric effects are considered. It is probable that the giant eyes of giant squid result from a phylogenetically conserved developmental pattern manifested in very large animals. Whatever the cause of large eyes, they appear to have several advantages for vision in the reduced light of the deep mesopelagic zone.

  6. Allometry indicates giant eyes of giant squid are not exceptional

    PubMed Central

    2013-01-01

    Background The eyes of giant and colossal squid are among the largest eyes in the history of life. It was recently proposed that sperm whale predation is the main driver of eye size evolution in giant squid, on the basis of an optical model that suggested optimal performance in detecting large luminous visual targets such as whales in the deep sea. However, it is poorly understood how the eye size of giant and colossal squid compares to that of other aquatic organisms when scaling effects are considered. Results We performed a large-scale comparative study that included 87 squid species and 237 species of acanthomorph fish. While squid have larger eyes than most acanthomorphs, a comparison of relative eye size among squid suggests that giant and colossal squid do not have unusually large eyes. After revising constants used in a previous model we found that large eyes perform equally well in detecting point targets and large luminous targets in the deep sea. Conclusions The eyes of giant and colossal squid do not appear exceptionally large when allometric effects are considered. It is probable that the giant eyes of giant squid result from a phylogenetically conserved developmental pattern manifested in very large animals. Whatever the cause of large eyes, they appear to have several advantages for vision in the reduced light of the deep mesopelagic zone. PMID:23418818

  7. Competition between finite-size effects and dipole-dipole interactions in few-atom systems

    NASA Astrophysics Data System (ADS)

    Damanet, François; Martin, John

    2016-11-01

    In this paper, we study the competition between finite-size effects (i.e. discernibility of particles) and dipole-dipole interactions in few-atom systems coupled to the electromagnetic field in vacuum. We consider two hallmarks of cooperative effects, superradiance and subradiance, and compute for each the rate of energy radiated by the atoms and the coherence of the atomic state during the time evolution. We adopt a statistical approach in order to extract the typical behaviour of the atomic dynamics and average over random atomic distributions in spherical containers with prescribed {k}0R with k 0 the radiation wavenumber and R the average interatomic distance. Our approach allows us to highlight the tradeoff between finite-size effects and dipole-dipole interactions in superradiance/subradiance. In particular, we show the existence of an optimal value of {k}0R for which the superradiant intensity and coherence pulses are the less affected by dephasing effects induced by dipole-dipole interactions and finite-size effects.

  8. Pygmy dipole response of proton-rich argon nuclei in random-phase approximation and no-core shell model

    SciTech Connect

    Barbieri, C.; Martinez-Pinedo, G.; Caurier, E.; Langanke, K.

    2008-02-15

    The occurrence of a pygmy dipole resonance in proton rich {sup 32,34}Ar is studied using the unitary correlator operator method interaction V{sub UCOM}, based on Argonne V18. Predictions from the random-phase approximation (RPA) and the shell model in a no-core basis are compared. It is found that the inclusion of configuration mixing up to two-particles-two-holes broadens the pygmy strength slightly and reduces sensibly its strength, as compared to the RPA predictions. For {sup 32}Ar, a clear peak associated with a pygmy resonance is found. For {sup 34}Ar, the pygmy states are obtained close to the giant dipole resonance and mix with it.

  9. Evidence of dynamical dipole excitation in the fusion-evaporation of the 40Ca+152Sm heavy system

    NASA Astrophysics Data System (ADS)

    Parascandolo, C.; Pierroutsakou, D.; Alba, R.; Del Zoppo, A.; Maiolino, C.; Santonocito, D.; Agodi, C.; Baran, V.; Boiano, A.; Colonna, M.; Coniglione, R.; De Filippo, E.; Di Toro, M.; Emanuele, U.; Farinon, F.; Guglielmetti, A.; Inglima, G.; La Commara, M.; Martin, B.; Mazzocchi, C.; Mazzocco, M.; Rizzo, C.; Romoli, M.; Sandoli, M.; Signorini, C.; Silvestri, R.; Soramel, F.; Strano, E.; Torresi, D.; Trifirò, A.; Trimarchi, M.

    2016-04-01

    The excitation of the dynamical dipole mode along the fusion path was investigated for the first time in the formation of a heavy compound nucleus in the A ˜190 mass region. The compound nucleus was formed at identical conditions of excitation energy and spin from two entrance channels: the charge-asymmetric 40Ca+152Sm and the nearly charge-symmetric 48Ca+144Sm at Elab=11 and 10.1 MeV/nucleon, respectively. High-energy γ rays and light charged particles were measured in coincidence with evaporation residues by means of the MEDEA multidetector array (Laboratori Nazionali del Sud, Italy) coupled to four parallel plate avalanche counters. The charged particle multiplicity spectra and angular distributions were used to pin down the average excitation energy, the average mass, and the average charge of the compound nucleus. The γ -ray multiplicity spectrum and angular distribution related to the nearly charge-symmetric channel were employed to obtain new data on the giant dipole resonance in the compound nucleus. The dynamical dipole mode excitation in the charge-asymmetric channel was evidenced, in a model-independent way, by comparing the γ -ray multiplicity spectra and angular distributions of the two entrance channels with each other. Calculations of the dynamical dipole mode in the 40Ca+152Sm channel, based on a collective bremsstrahlung analysis of the reaction dynamics, are presented. Possible interesting implications in the superheavy-element quest are discussed.

  10. Electromagnetic dipole and Gamow-Teller responses of even and odd 90-94 40Zr isotopes in QRPA calculations with the D1M Gogny force

    NASA Astrophysics Data System (ADS)

    Deloncle, I.; Péru, S.; Martini, M.

    2017-08-01

    In this paper we present theoretical results on the dipole response in the proton spin-saturated 90-94Zr isotopes. The electric and magnetic dipole excitations are obtained in Hartree-Fock-Bogolyubov plus Quasi-particle Random Phase Approximation (QRPA) calculations performed with the D1M Gogny force. A pnQRPA charge exchange code is used to study the Gamow-Teller response. The results on the pygmy, the giant dipole resonances as well as those on the magnetic nuclear spin-flip excitation and the Gamow-Teller transitions are compared with available experimental or theoretical information. In our approach, the proton pairing plays a role in the phonon excitations, in particular in the M1 nuclear spin-flip resonance.

  11. Giant magnetostrictive composites

    NASA Astrophysics Data System (ADS)

    Duenas, Terrisa Ann

    The limitation of magnetostrictive composites has been in their low magnetostrictive response when compared to their monolithic counterparts. In this dissertation research is presented describing the methods and analysis used to create a giant magnetostrictive composite (GMC) producing giant strains at low fields, exhibiting magnetization ``jumping'' and the ΔE effect. This composite combines the giant magnetostrictive material, Terfenol-D (Tb0.3Dy0.7Fe2) in particle form, with a nonmetallic binder and is capable of producing strains (at room temperature) exceeding 1000 ppm at a nominal field of 1.5 kOe mechanically unloaded and 1200 ppm at 8 MPa preload (2.5 kOe). Several studies leading to the high response of this composite are presented. A connectivity study shows that a [1-3] connected composite produces 50% more strain than a [0-3] composite. A resin study indicates that the lower the viscosity of the resin, the greater the magnetostrictive response; this is attributed to the removal of voids during degassing. A void study correlates the increase in voids to the decrease in strain response. A model is used to correlate analysis with experimental results within 10% accuracy and shows that an optimal volume fraction exists based on the properties of the binder. Using a Polyscience Spurr low- viscosity (60 cps) binder this volume fraction is nominally 20%; this optimum is attributed to the balance of epoxy contracting on the particle (built-in preload) and the actuation delivered by the magnetostrictive material. In addition to the connectivity, resin, void, and volume-fraction study, particle size and gradation studies are presented. Widely dispersed (<106, <212, <300 μm), narrowly dispersed (<45, (90-106), (275-300) μm), and an optimized bimodal (18.7% of (45-90) μm with 81.3% of (250-300) μm) particle distributions are studied. Results show that the larger the particle size, the higher the magnetostrictive response; this is attributed to the reduction of

  12. A new method for the asteroseismic determination of the evolutionary state of red-giant stars

    NASA Astrophysics Data System (ADS)

    Elsworth, Yvonne; Hekker, Saskia; Basu, Sarbani; Davies, Guy R.

    2017-04-01

    Determining the ages of red-giant stars is a key problem in stellar astrophysics. One of the difficulties in this determination is to know the evolutionary state of the individual stars - i.e. have they started to burn Helium in their cores? That is the topic of this paper. Asteroseismic data provide a route to achieving this information. What we present here is a highly autonomous way of determining the evolutionary state from an analysis of the power spectrum of the light curve. The method is fast and efficient and can provide results for a large number of stars. It uses the structure of the dipole-mode oscillations, which have a mixed character in red-giant stars, to determine some measures that are used in the categorization. It does not require that all the individual components of any given mode be separately characterized. Some 6604 red-giant stars have been classified. Of these, 3566 are determined to be on the red-giant branch, 2077 are red-clump and 439 are secondary-clump stars. We do not specifically identify the low-metallicity, horizontal-branch stars. The difference between red-clump and secondary-clump stars is dependent on the manner in which Helium burning is first initiated. We discuss that the way the boundary between these classifications is set may lead to mis-categorization in a small number of stars. The remaining 522 stars were not classified either because they lacked sufficient power in the dipole modes (so-called depressed dipole modes) or because of conflicting values in the parameters.

  13. On to the Ice Giants

    NASA Astrophysics Data System (ADS)

    Reh, Kim; Hofstdater, Mark; Simon, Amy; Elliott, John

    2017-04-01

    Voyager 2 mission flew by Uranus in 1986 and Neptune in 1989 resulting in stunning remote observations not previously accessible from the ground. There have been no follow-up space flight missions to examine ice giants and, as a result there are significant gaps in our understanding of planetary formation and evolution. This gap not only affects our understanding of our own solar system but also our understanding of exoplanets; the majority of planets discovered around other stars are thought to be ice giants. Ice Giants are likely to be far more abundant in our galaxy than previously thought. The U.S. 2011 Planetary Science Decadal Survey committee recognized the importance of Uranus and Neptune, and prioritized the exploration of the Ice Giants. Following from this, NASA and ESA have recently completed a study of candidate missions to Uranus and Neptune, the so-called ice giant planets. The intent was to examine what could be accomplished within the budget realities of the predictable future. This "Pre-Decadal Study," focused on opportunities for missions launching in the 2020's and early 2030's. This paper presents results from the Ice Giants study (science, architectures and technologies) and concludes that compelling and affordable missions to the Ice Giants are within our reach.

  14. Giant magnetofossils and hyperthermal events

    NASA Astrophysics Data System (ADS)

    Chang, Liao; Roberts, Andrew P.; Williams, Wyn; Fitz Gerald, John D.; Larrasoaña, Juan C.; Jovane, Luigi; Muxworthy, Adrian R.

    2012-10-01

    Magnetotactic bacteria biomineralize magnetic minerals with precisely controlled size, morphology, and stoichiometry. These cosmopolitan bacteria are widely observed in aquatic environments. If preserved after burial, the inorganic remains of magnetotactic bacteria act as magnetofossils that record ancient geomagnetic field variations. They also have potential to provide paleoenvironmental information. In contrast to conventional magnetofossils, giant magnetofossils (most likely produced by eukaryotic organisms) have only been reported once before from Paleocene-Eocene Thermal Maximum (PETM; 55.8 Ma) sediments on the New Jersey coastal plain. Here, using transmission electron microscopic observations, we present evidence for abundant giant magnetofossils, including previously reported elongated prisms and spindles, and new giant bullet-shaped magnetite crystals, in the Southern Ocean near Antarctica, not only during the PETM, but also shortly before and after the PETM. Moreover, we have discovered giant bullet-shaped magnetite crystals from the equatorial Indian Ocean during the Mid-Eocene Climatic Optimum (˜40 Ma). Our results indicate a more widespread geographic, environmental, and temporal distribution of giant magnetofossils in the geological record with a link to "hyperthermal" events. Enhanced global weathering during hyperthermals, and expanded suboxic diagenetic environments, probably provided more bioavailable iron that enabled biomineralization of giant magnetofossils. Our micromagnetic modelling indicates the presence of magnetic multi-domain (i.e., not ideal for navigation) and single domain (i.e., ideal for navigation) structures in the giant magnetite particles depending on their size, morphology and spatial arrangement. Different giant magnetite crystal morphologies appear to have had different biological functions, including magnetotaxis and other non-navigational purposes. Our observations suggest that hyperthermals provided ideal conditions for

  15. [Giant esophageal fibrovascular polyp].

    PubMed

    Palacios, Fernando; Contardo, Carlos; Guevara, Jorge; Vera, Augusto; Aguilar, Luis; Huamán, Manuel; Palomino, Américo; Yabar, Alejandro

    2003-01-01

    Fibrovascular polyps are extremely rare benign neoplasias of the esophagus, which usually originate in the lower cricoid area. They do not produce any discomfort in the patient for a long time, however it may make itself evident by the patient's regurgitation of the polyp, producing asphyxia or, more frequently, dysphagia. The case of a 58 year old male patient is presented herein, with a 9 month record of dysphagia, weight loss and intermittent melena. The barium x-ray showed a distended esophagus, with a tumor running from the upper esophageal sphincter to the cardia. The endoscopy confirmed the presence of a pediculated tumor, implanted in the cervical esophagus. Surgeons suspected the potential malignancy of the tumor and performed a transhiatal esophagectomy. The final pathologic diagnosis was giant fibrovascular esophageal polyp.

  16. Revisiting the NVSS number count dipole

    SciTech Connect

    Tiwari, Prabhakar; Nusser, Adi E-mail: adi@physics.technion.ac.il

    2016-03-01

    We present a realistic modeling of the dipole component of the projected sky distribution of NVSS radio galaxies. The modeling relies on mock catalogs generated within the context of ΛCDM cosmology, in the linear regime of structure formation. After removing the contribution from the solar motion, the mocks show that the remaining observed signal is mostly (70%) due to structures within z ∼< 0.1. The amplitude of the model signal depends on the bias factor b of the NVSS mock galaxies. For sources with flux density, S > 15 mJy, the bias recipe inferred from higher order moments is consistent with the observed dipole signal at 2.12σ. Flux thresholds above 20 mJy yield a disagreement close to the 3σ level. A constant high bias, b = 3 is needed to mitigate the tension to the ∼ 2.3σ level.

  17. THE SNS RING DIPOLE MAGNETIC FIELD QUALITY.

    SciTech Connect

    WANDERER,P.; JACKSON,J.; JAIN,A.; LEE,Y.Y.; MENG,W.; PAPAPHILIPPOU,I.; SPATARO,C.; TEPIKIAN,S.; TSOUPAS,N.; WEI,J.

    2002-06-03

    The large acceptance and compact size of the Spallation Neutron Source (SNS) ring implies the use of short, large aperture dipole magnets, with significant end field errors. The SNS will contain 32 such dipoles. We report magnetic field measurements of the first 16 magnets. The end field errors have been successfully compensated by the use of iron bumps. For 1.0 GeV protons, the magnets have been shimmed to meet the 0.01% specification for rms variation of the integral field. At 1.3 GeV, the rms variation is 0.036%. The load on the corrector system at 1.3 GeV will be reduced by the use of sorting.

  18. 3-wave mixing Josephson dipole element

    NASA Astrophysics Data System (ADS)

    Frattini, N. E.; Vool, U.; Shankar, S.; Narla, A.; Sliwa, K. M.; Devoret, M. H.

    2017-05-01

    Parametric conversion and amplification based on three-wave mixing are powerful primitives for efficient quantum operations. For superconducting qubits, such operations can be realized with a quadrupole Josephson junction element, the Josephson Ring Modulator, which behaves as a loss-less three-wave mixer. However, combining multiple quadrupole elements is a difficult task so it would be advantageous to have a three-wave dipole element that could be tessellated for increased power handling and/or information throughput. Here, we present a dipole circuit element with third-order nonlinearity, which implements three-wave mixing. Experimental results for a non-degenerate amplifier based on the proposed third-order nonlinearity are reported.

  19. Generation of squeezing: magnetic dipoles on cantilevers

    NASA Astrophysics Data System (ADS)

    Seok, Hyojun; Singh, Swati; Steinke, Steven; Meystre, Pierre

    2011-05-01

    We investigate the generation of motional squeezed states in a nano-mechanical cantilever. Our model system consists of a nanoscale cantilever - whose center-of-mass motion is initially cooled to its quantum mechanical ground state - magnetically coupled a classically driven mechanical tuning fork. We show that the magnetic dipole-dipole interaction can produce significant phonon squeezing of the center-of-mass motion of the cantilever, and evaluate the effect of various dissipation channels, including the coupling of the cantilever to a heat bath and phase and amplitude fluctuations in the oscillating field driving the tuning fork. US National Science Foundation, the US Army Research Office, DARPA ORCHID program through a grant from AFOSR.

  20. The Antarctic dipole and its predictability

    NASA Astrophysics Data System (ADS)

    Yuan, Xiaojun; Martinson, Douglas G.

    This study investigates the nature of interannual variability of Antarctic sea ice and its relationship with the tropical climate. We find that the dominant interannual variance structure in the sea ice edge and surface air temperature fields is organized as a quasi-stationary wave which we call the “Antarctic Dipole” (ADP). It is characterized by an out-of-phase relationship between the ice and temperature anomalies in the central/eastern Pacific and Atlantic sectors of the Antarctic. The dipole consists of a strong standing mode and a weaker propagating motion within each basin's ice field. It has the same wavelength as the Antarctic Circumpolar Wave (ACW) and dominates the ACW variance. The dipole is clearly associated with tropical ENSO events; it can be predicted with moderate skill using linear regression involving surface temperature two to four months ahead. The prediction performs better in extreme warm/cold years, and best in La Niña years.

  1. Revisiting the NVSS number count dipole

    NASA Astrophysics Data System (ADS)

    Tiwari, Prabhakar; Nusser, Adi

    2016-03-01

    We present a realistic modeling of the dipole component of the projected sky distribution of NVSS radio galaxies. The modeling relies on mock catalogs generated within the context of ΛCDM cosmology, in the linear regime of structure formation. After removing the contribution from the solar motion, the mocks show that the remaining observed signal is mostly (70%) due to structures within z lesssim 0.1. The amplitude of the model signal depends on the bias factor b of the NVSS mock galaxies. For sources with flux density, S > 15 mJy, the bias recipe inferred from higher order moments is consistent with the observed dipole signal at 2.12σ. Flux thresholds above 20 mJy yield a disagreement close to the 3σ level. A constant high bias, b = 3 is needed to mitigate the tension to the ~ 2.3σ level.

  2. RHIC AC DIPOLE DESIGN AND CONSTRUCTION.

    SciTech Connect

    BAI,M.; METH,M.; PAI,C.; PARKER,B.; PEGGS,S.; ROSER,T.; SANDERS,R.; TRBOJEVIC,D.; ZALTSMAN,A.

    2001-06-18

    Two ac dipoles with vertical and horizontal magnetic field have been proposed at RHIC for applications in linear and non-linear beam dynamics and spin manipulations. A magnetic field amplitude of 380 Gm is required to produce a coherent oscillation of 5 times the rms beam size at the top energy. We take the ac dipole frequency to be 1.0% of the revolution frequency away from the betatron frequency. To achieve the strong magnetic field with minimum power loss, an air-core magnet with two seven turn winding of low loss Litz wire resonating at 64 kHz is designed. The system is also designed to allow one to connect the two magnet winding in series to resonate at 37 kHz for the spin manipulation. Measurements of a half length prototype magnet are also presented.

  3. Sedimentation equilibrium of magnetic nanoparticles with strong dipole-dipole interactions

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Andrey A.; Pshenichnikov, Alexander F.

    2017-03-01

    Langevin dynamics simulation is used to study the suspension of interacting magnetic nanoparticles (dipolar spheres) in a zero applied magnetic field and in the presence of a gravitational (centrifugal) field. A particular emphasis is placed on the equilibrium vertical distribution of particles in the infinite horizontal slab. An increase in the dipolar coupling constant λ (the ratio of dipole-dipole interaction energy to thermal energy) from zero to seven units causes an increase in the particle segregation coefficient by several orders of magnitude. The effect of anisotropic dipole-dipole interactions on the concentration profile of particles is the same as that of the isotropic van der Waals attraction modeled by the Lennard-Jones potential. In both cases, the area with a high-density gradient separating the area with high and low particle concentration is formed on the profiles. Qualitative difference between two potentials manifests itself only in the fact that in the absence of a gravitational field the dipole-dipole interactions do not lead to the "gas-liquid" phase transition: no separation of the system into weakly and highly concentrated phases is observed. At high particle concentration and at large values of λ , the orientational ordering of magnetic dipoles takes place in the system. Magnetic structure of the system strongly depends on the imposed boundary conditions. Spontaneous magnetization occurs in the infinite horizontal slab (i.e., in the rectangular cell with two-dimensional periodic boundary conditions). Replacement of the infinite slab by the finite-size hard-wall vertical cylinder leads to the formation of azimuthal (vortex-like) order. The critical values of the coupling constant corresponding to the transition into an ordered state are very close for two geometries.

  4. Sedimentation equilibrium of magnetic nanoparticles with strong dipole-dipole interactions.

    PubMed

    Kuznetsov, Andrey A; Pshenichnikov, Alexander F

    2017-03-01

    Langevin dynamics simulation is used to study the suspension of interacting magnetic nanoparticles (dipolar spheres) in a zero applied magnetic field and in the presence of a gravitational (centrifugal) field. A particular emphasis is placed on the equilibrium vertical distribution of particles in the infinite horizontal slab. An increase in the dipolar coupling constant λ (the ratio of dipole-dipole interaction energy to thermal energy) from zero to seven units causes an increase in the particle segregation coefficient by several orders of magnitude. The effect of anisotropic dipole-dipole interactions on the concentration profile of particles is the same as that of the isotropic van der Waals attraction modeled by the Lennard-Jones potential. In both cases, the area with a high-density gradient separating the area with high and low particle concentration is formed on the profiles. Qualitative difference between two potentials manifests itself only in the fact that in the absence of a gravitational field the dipole-dipole interactions do not lead to the "gas-liquid" phase transition: no separation of the system into weakly and highly concentrated phases is observed. At high particle concentration and at large values of λ, the orientational ordering of magnetic dipoles takes place in the system. Magnetic structure of the system strongly depends on the imposed boundary conditions. Spontaneous magnetization occurs in the infinite horizontal slab (i.e., in the rectangular cell with two-dimensional periodic boundary conditions). Replacement of the infinite slab by the finite-size hard-wall vertical cylinder leads to the formation of azimuthal (vortex-like) order. The critical values of the coupling constant corresponding to the transition into an ordered state are very close for two geometries.

  5. A giant Ordovician anomalocaridid.

    PubMed

    Van Roy, Peter; Briggs, Derek E G

    2011-05-26

    Anomalocaridids, giant lightly sclerotized invertebrate predators, occur in a number of exceptionally preserved early and middle Cambrian (542-501 million years ago) biotas and have come to symbolize the unfamiliar morphologies displayed by stem organisms in faunas of the Burgess Shale type. They are characterized by a pair of anterior, segmented appendages, a circlet of plates around the mouth, and an elongate segmented trunk lacking true tergites with a pair of flexible lateral lobes per segment. Disarticulated body parts, such as the anterior appendages and oral circlet, had been assigned to a range of taxonomic groups--but the discovery of complete specimens from the middle Cambrian Burgess Shale showed that these disparate elements all belong to a single kind of animal. Phylogenetic analyses support a position of anomalocaridids in the arthropod stem, as a sister group to the euarthropods. The anomalocaridids were the largest animals in Cambrian communities. The youngest unequivocal examples occur in the middle Cambrian Marjum Formation of Utah but an arthropod retaining some anomalocaridid characteristics is present in the Devonian of Germany. Here we report the post-Cambrian occurrence of anomalocaridids, from the Early Ordovician (488-472 million years ago) Fezouata Biota in southeastern Morocco, including specimens larger than any in Cambrian biotas. These giant animals were an important element of some marine communities for about 30 million years longer than previously realized. The Moroccan specimens confirm the presence of a dorsal array of flexible blades attached to a transverse rachis on the trunk segments; these blades probably functioned as gills.

  6. Giant resonances: Progress, new directions, new challenges

    SciTech Connect

    Bertrand, J.R.; Beene, J.R.

    1989-01-01

    A review of some recent developments in the field of giant multipole resonances is presented. Particular emphasis is placed on directions that the authors feel will be followed in this field during the next several years. In particular, the use of high-energy heavy ions to excite the giant resonances is shown to provide exciting new capabilities for giant resonance studies. Among subjects covered are: Coulomb excitation of giant resonances, photon decay of giant resonances, the recent controversy over the identity of the giant monopole resonance, the most recent value for incompressibility of nuclear matter from analysis of giant monopole data, the isospin character of the 63 A/sup /minus/1/3/ GQR, agreement between (e,e/prime/) and (hadron, hadron/prime/) excitation of the giant quadrupole resonance, prospects for multiphonon giant resonance observation, and isolation of the isovector giant quadrupole resonance. 55 refs., 23 figs., 4 tabs.

  7. Search for the electron electric dipole moment

    SciTech Connect

    De Mille, D.; Bickman, S.; Hamilton, P.; Jiang, Y.; Prasad, V.; Kawall, D.; Paolino, R.

    2006-07-11

    Extensions to the Standard Model (SM) typically include new heavy particles and new mechanisms for CP violation. These underlying phenomena can give rise to electric dipole moments of the electron and other particles. Tabletop-scale experiments used to search for these effects are described. Present experiments are already sensitive to new physics at the TeV scale, and new methods could extend this range dramatically. Such experiments could be among the first to show evidence for physics beyond the SM.

  8. Black Saturn with a dipole ring

    SciTech Connect

    Yazadjiev, Stoytcho S.

    2007-09-15

    We present a new stationary, asymptotically flat solution of 5D Einstein-Maxwell gravity describing a Saturn-like black object: a rotating black hole surrounded by a rotating dipole black ring. The solution is generated by combining the vacuum black Saturn solution and the vacuum black ring solution with appropriately chosen parameters. Some basic properties of the solution are analyzed and the basic quantities are calculated.

  9. Trapped field internal dipole superconducting motor generator

    DOEpatents

    Hull, John R.

    2001-01-01

    A motor generator including a high temperature superconductor rotor and an internally disposed coil assembly. The motor generator superconductor rotor is constructed of a plurality of superconductor elements magnetized to produce a dipole field. The coil assembly can be either a conventional conductor or a high temperature superconductor. The superconductor rotor elements include a magnetization direction and c-axis for the crystals of the elements and which is oriented along the magnetization direction.

  10. Single-layer high field dipole magnets

    SciTech Connect

    Vadim V. Kashikhin and Alexander V. Zlobin

    2001-07-30

    Fermilab is developing high field dipole magnets for post-LHC hadron colliders. Several designs with a nominal field of 10-12 T, coil bore size of 40-50 mm based on both shell-type and block-type coil geometry are currently under consideration. This paper presents a new approach to magnet design, based on simple and robust single-layer coils optimized for the maximum field, good field quality and minimum number of turns.

  11. Electric dipole moment of light nuclei

    NASA Astrophysics Data System (ADS)

    Afnan, Iraj R.; Gibson, Benjamin F.

    2010-07-01

    We examine the sensitivity of the deuteron Electric Dipole Moment (EDM) to variation in the nucleon-nucleon interaction. In particular, we write the EDM as a sum of two terms, one depends on the target wave function, the second on intermediate multiple scattering states in the 3P1 channel. This second contribution is sensitive to off-shell behavior of the 3P1 amplitude.

  12. Observation of dipole-mode vector solitons

    PubMed

    Krolikowski; Ostrovskaya; Weilnau; Geisser; McCarthy; Kivshar; Denz; Luther-Davies

    2000-08-14

    We report on the first experimental observation of a novel type of optical vector soliton, a dipole-mode soliton, recently predicted theoretically. We show that these vector solitons can be generated in a photorefractive medium employing two different processes: a phase imprinting, and a symmetry-breaking instability of a vortex-mode vector soliton. The experimental results display remarkable agreement with the theory, and confirm the robust nature of these radially asymmetric two-component solitary waves.

  13. Pygmy dipole response in 238U nucleus

    NASA Astrophysics Data System (ADS)

    Guliyev, Ekber; Kuliev, Ali Akbar; Quliyev, Huseynqulu

    2017-02-01

    The presence of the El pygmy dipole resonance (PDR) in the actinide nucleus 238U was shown via QRPA. Below the particle threshold energy, 24 excitation states were calculated. The calculations, is demonstrating the presence of a PDR with evidence for K splitting. The calculations further suggest that the PDR in 238U is predominantly K=0. The obtained results show universality of the PDR in atomic nuclei.

  14. Toroidal Dipole Moment of a Massless Neutrino

    SciTech Connect

    Cabral-Rosetti, L. G.; Mondragon, M.; Perez, E. Reyes

    2009-04-20

    We obtain the toroidal dipole moment of a massless neutrino {tau}{sub v{sub I}}{sup M} using the results for the anapole moment of a massless Dirac neutrino a{sub v{sub I}}{sup D}, which was obtained in the context of the Standard Model of the electroweak interactions (SM)SU(2){sub L} x U(1){sub Y}.

  15. 15 T And Beyond - Dipoles and Quadrupoles

    SciTech Connect

    Sabbi, GianLuca

    2008-05-19

    Starting with the invention of the cyclotron by Lawrence, accelerator-based experiments have been the primary source of new discoveries in particle physics. In order to progress toward higher energy and luminosity, higher field magnets are required. R&D programs are underway to take advantage of new developments in superconducting materials, achieve better efficiency and simplify magnet fabrication while preserving accelerator-class field quality. A review of recent progress on high field dipole and quadrupole magnets is presented.

  16. Electric dipole moment of light nuclei

    SciTech Connect

    Gibson, Benjamin; Afnan, I R

    2010-01-01

    We examine the sensitivity of the deuteron Electric Dipole Moment (EDM) to variation in the nucleon-nucleon interaction. In particular, we write the EDM as a sum of two terms, one depends on the target wave function, the second on intermediate multiple scattering states in the {sup 3}P{sub 1} channel. This second contribution is sensitive to off-shell behavior of the {sup 3}P{sub 1} amplitude.

  17. The midpoint between dipole and parton showers

    SciTech Connect

    Höche, Stefan; Prestel, Stefan

    2015-09-28

    We present a new parton-shower algorithm. Borrowing from the basic ideas of dipole cascades, the evolution variable is judiciously chosen as the transverse momentum in the soft limit. This leads to a very simple analytic structure of the evolution. A weighting algorithm is implemented that allows one to consistently treat potentially negative values of the splitting functions and the parton distributions. Thus, we provide two independent, publicly available implementations for the two event generators PYTHIA and SHERPA.

  18. Bent Solenoids with Superimposed Dipole Fields

    SciTech Connect

    Meinke, Rainer, B.; Goodzeit, Carl, L.

    2000-03-21

    A conceptual design and manufacturing technique were developed for a superconducting bent solenoid magnet with a superimposed dipole field that would be used as a dispersion device in the cooling channel of a future Muon Collider. The considered bent solenoid is equivalent to a 180° section of a toroid with a major radius of ~610 mm and a coil aperture of ~416 mm. The required field components of this magnet are 4 tesla for the solenoid field and 1 tesla for the superimposed dipole field. A magnet of this size and shape, operating at these field levels, has to sustain large Lorentz forces resulting in a maximum magnetic pressure of about 2,000 psi. A flexible round mini-cable with 37 strands of Cu-NbTi was selected as the superconductor. Detailed magnetic analysis showed that it is possible to obtain the required superimposed dipole field by tilting the winding planes of the solenoid by ~25°. A complete structural analysis of the coil support system and the helium containment vessel under thermal, pressure, and Lorentz force loads was carried out using 3D finite element models of the structures. The main technical issues were studied and solutions were worked out so that a highly reliable magnet of this type can be produced at an affordable cost.

  19. Sextupole correction coils for SSC model dipoles

    SciTech Connect

    Rechen, J.B.; Gilbert, W.S.; Hassenzahl, W.V.

    1985-05-01

    Local correction of the sextupole error field is proposed for the dipoles of the SSC. This requirement is imposed on the design by the high field quality required both during injection at low fields and during colliding beam operation at high fields. Error fields in the main dipole windings due to superconductor magnetization and conductor misplacements and unwanted sextupole and decapole magnetic field terms. To correct the sextupole error field we have constructed sextupole coils made of a single layer of superconducting wire and have mounted them with high precision on the stainless steel bore tube. These correction coils have been operated with 1 meter long SSC model dipoles in both the self-powered and externally-powered modes. The sextupole field in the bore has been reduced by as much as a factor of 50. The level of correction depends strongly on the angular alignment of the correction coil with respect to the sextupole error field it is to correct. Results of tests, performance of the correction coils and alignment requirements for the system are presented.

  20. Local electric dipole moments: A generalized approach.

    PubMed

    Groß, Lynn; Herrmann, Carmen

    2016-09-30

    We present an approach for calculating local electric dipole moments for fragments of molecular or supramolecular systems. This is important for understanding chemical gating and solvent effects in nanoelectronics, atomic force microscopy, and intensities in infrared spectroscopy. Owing to the nonzero partial charge of most fragments, "naively" defined local dipole moments are origin-dependent. Inspired by previous work based on Bader's atoms-in-molecules (AIM) partitioning, we derive a definition of fragment dipole moments which achieves origin-independence by relying on internal reference points. Instead of bond critical points (BCPs) as in existing approaches, we use as few reference points as possible, which are located between the fragment and the remainder(s) of the system and may be chosen based on chemical intuition. This allows our approach to be used with AIM implementations that circumvent the calculation of critical points for reasons of computational efficiency, for cases where no BCPs are found due to large interfragment distances, and with local partitioning schemes other than AIM which do not provide BCPs. It is applicable to both covalently and noncovalently bound systems. © 2016 Wiley Periodicals, Inc.

  1. Dynamics of two-dimensional dipole systems

    SciTech Connect

    Golden, Kenneth I.; Kalman, Gabor J.; Hartmann, Peter; Donko, Zoltan

    2010-09-15

    Using a combined analytical/molecular dynamics approach, we study the current fluctuation spectra and longitudinal and transverse collective mode dispersions of the classical two-dimensional (point) dipole system (2DDS) characterized by the {phi}{sub D}(r)={mu}{sup 2}/r{sup 3} repulsive interaction potential; {mu} is the electric dipole strength. The interest in the 2DDS is twofold. First, the quasi-long-range 1/r{sup 3} interaction makes the system a unique classical many-body system, with a remarkable collective mode behavior. Second, the system may be a good model for a closely spaced semiconductor electron-hole bilayer, a system that is in the forefront of current experimental interest. The longitudinal collective excitations, which are of primary interest for the liquid phase, are acoustic at long wavelengths. At higher wave numbers and for sufficiently high coupling strength, we observe the formation of a deep minimum in the dispersion curve preceded by a sharp maximum; this is identical to what has been observed in the dispersion of the zero-temperature bosonic dipole system, which in turn emulates so-called roton-maxon excitation spectrum of the superfluid {sup 4}He. The analysis we present gives an insight into the emergence of this apparently universal structure, governed by strong correlations. We study both the liquid and the crystalline solid state. We also observe the excitation of combination frequencies, resembling the roton-roton, roton-maxon, etc. structures in {sup 4}He.

  2. Theories of Giant Planet Formation

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Young, Richard E. (Technical Monitor)

    1998-01-01

    An overview of current theories of planetary formation, with emphasis on giant planets, is presented. The most detailed models are based upon observations of our own Solar System and of young stars and their environments. While these models predict that rocky planets should form around most single stars, the frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth as do terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. Most models for extrasolar giant planets suggest that they formed as did Jupiter and Saturn (in nearly circular orbits, far enough from the star that ice could), and subsequently migrated to their current positions, although some models suggest in situ formation.

  3. Lichens On Galapagos Giant Tortoises.

    PubMed

    Hendrickson, J R; Weber, W A

    1964-06-19

    The association of Physcia picta with the giant Galdpagos tortoise is believed to be the first reported occurrence of lichens on land animals. The habitat is restricted to specific sites on the carapace of male tortoises.

  4. Landscape of the lost giants

    NASA Astrophysics Data System (ADS)

    2013-09-01

    The Pleistocene megafauna extinction erased a group of remarkable animals. Whether humans had a prominent role in the extinction remains controversial, but it is emerging that the disappearance of the giants has markedly affected the environment.

  5. What Is Giant Cell Arteritis?

    MedlinePlus

    ... 01, 2017 Giant cell arteritis (GCA) is an inflammation (swelling) of the arteries, which are the blood ... help nourish your eyes, reduced blood flow can cause sudden, painless vision loss. This condition is called ...

  6. Pharma giants swap research programs.

    PubMed

    2014-07-01

    Pharmaceutical giants Novartis and GlaxoSmithKline (GSK) agreed in late April to swap some assets, with Novartis handing off its vaccine business to GSK and getting most of the British company's cancer portfolio in return.

  7. Giant sacrolumbar meningioma. Case report.

    PubMed

    Feldenzer, J A; McGillicuddy, J E; Hopkins, J W

    1990-06-01

    A case of giant sacral meningioma with presacral and lumbar extension is presented. The difficulties in diagnosis and management are emphasized including the staged multidisciplinary surgical approaches and preoperative tumor embolization.

  8. Atmospheres of Extrasolar Giant Planets

    NASA Technical Reports Server (NTRS)

    Marley, Mark

    2006-01-01

    The next decade will almost certainly see the direct imaging of extrasolar giant planets around nearby stars. Unlike purely radial velocity detections, direct imaging will open the door to characterizing the atmosphere and interiors of extrasola planets and ultimately provide clues on their formation and evolution through time. This process has already begun for the transiting planets, placing new constraints on their atmospheric structure, composition, and evolution. Indeed the key to understanding giant planet detectability, interpreting spectra, and constraining effective temperature and hence evolution-is the atmosphere. I will review the universe of extrasolar giant planet models, focusing on what we have already learned from modeling and what we will likely be able to learn from the first generation of direct detection data. In addition to these theoretical considerations, I will review the observations and interpretation of the - transiting hot Jupiters. These objects provide a test of our ability to model exotic atmospheres and challenge our current understanding of giant planet evolution.

  9. Theories of Giant Planet Formation

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Young, Richard E. (Technical Monitor)

    1998-01-01

    An overview of current theories of planetary formation, with emphasis on giant planets, is presented. The most detailed models are based upon observations of our own Solar System and of young stars and their environments. While these models predict that rocky planets should form around most single stars, the frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth as do terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. Most models for extrasolar giant planets suggest that they formed as did Jupiter and Saturn (in nearly circular orbits, far enough from the star that ice could), and subsequently migrated to their current positions, although some models suggest in situ formation.

  10. Multipole excitations in hot nuclei within the finite temperature quasiparticle random phase approximation framework

    NASA Astrophysics Data System (ADS)

    Yüksel, E.; Colò, G.; Khan, E.; Niu, Y. F.; Bozkurt, K.

    2017-08-01

    The effect of temperature on the evolution of the isovector dipole and isoscalar quadrupole excitations in 68Ni and 120Sn nuclei is studied within the fully self-consistent finite temperature quasiparticle random phase approximation framework, based on the Skyrme-type SLy5 energy density functional. The new low-energy excitations emerge due to the transitions from thermally occupied states to the discretized continuum at finite temperatures, whereas the isovector giant dipole resonance is not strongly impacted by the increase of temperature. The radiative dipole strength at low energies is also investigated for the 122Sn nucleus, becoming compatible with the available experimental data when the temperature is included. In addition, both the isoscalar giant quadrupole resonance and low-energy quadrupole states are sensitive to the temperature effect: while the centroid energies decrease in the case of the isoscalar giant quadrupole resonance, the collectivity of the first 2+ state is quenched and the opening of new excitation channels fragments the low-energy strength at finite temperatures.

  11. Giant cell arteritis: a review

    PubMed Central

    Patil, Pravin; Karia, Niral; Jain, Shaifali; Dasgupta, Bhaskar

    2013-01-01

    Giant cell arteritis is the most common vasculitis in Caucasians. Acute visual loss in one or both eyes is by far the most feared and irreversible complication of giant cell arteritis. This article reviews recent guidelines on early recognition of systemic, cranial, and ophthalmic manifestations, and current management and diagnostic strategies and advances in imaging. We share our experience of the fast track pathway and imaging in associated disorders, such as large-vessel vasculitis. PMID:28539785

  12. Giant resonances in {sup 238}U within the quasiparticle random-phase approximation with the Gogny force

    SciTech Connect

    Peru, S.; Gosselin, G.; Martini, M.; Dupuis, M.; Hilaire, S.

    2011-01-15

    Fully consistent axially-symmetric deformed quasiparticle random-phase approximation (QRPA) calculations have been performed, using the same Gogny D1S effective force for both the Hartree-Fock-Bogolyubov mean field and QRPA matrix. New implementation of this approach leads to the applicability of QRPA to heavy deformed nuclei. Giant resonances and low-energy collective states for monopole, dipole, quadrupole, and octupole modes are predicted for the heavy deformed nucleus {sup 238}U and compared with experimental data.

  13. Isovector dipole resonance and shear viscosity in low energy heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Guo, C. Q.; Ma, Y. G.; He, W. B.; Cao, X. G.; Fang, D. Q.; Deng, X. G.; Zhou, C. L.

    2017-05-01

    The ratio of shear viscosity over entropy density in low energy heavy-ion collision has been calculated by using the Green-Kubo method in the framework of an extended quantum molecular dynamics model. After the system almost reaches a local equilibration for a head-on 40Ca+100Mo collision, thermodynamic and transport properties are extracted. Meanwhile, the isovector giant dipole resonance (IVGDR) of the collision system also is studied. By the Gaussian fits to the IVGDR photon spectra, the peak energies of the IVGDR are extracted at different incident energies. The result shows that the IVGDR peak energy has a positive correlation with the ratio of shear viscosity over entropy density. This is a quantum effect and indicates a difference between nuclear matter and classical fluid.

  14. Extra γ-ray strength for 116,117Sn arising from pygmy dipole resonance

    NASA Astrophysics Data System (ADS)

    Kamata, M.; Utsunomiya, H.; Akimune, H.; Yamagata, T.; Itoh, O.; Iwamoto, C.; Kondo, T.; Toyokawa, H.; Lui, Y.-W.; Goriely, S.

    2010-06-01

    Photoneutron cross sections were measured for 117Sn and 116Sn near neutron thresholds with quasi-monochromatic laser Compton scattering γ-rays. The measured cross sections for 117Sn and 116Sn are strongly enhanced from the threshold behavior expected for L = 1 neutron emissions after E1 photoexcitation. This suggests the presence of extra γ-ray strength in the low-energy tail of the giant dipole resonance. The present cross sections were analyzed together with radiative neutron capture cross sections for 116Sn within the framework of the statistical model calculation. It is shown that the extra γ-ray strength can be interpreted as pygmy E1 resonance which was previously reported in the nuclear resonance fluorescence experiment for 116Sn and 124Sn.

  15. Extra gamma-ray strength for {sup 116,117}Sn arising from pygmy dipole resonance

    SciTech Connect

    Kamata, M.; Utsunomiya, H.; Akimune, H.; Yamagata, T.; Itoh, O.; Iwamoto, C.; Kondo, T.; Toyokawa, H.; Lui, Y.-W.; Goriely, S.

    2010-06-01

    Photoneutron cross sections were measured for {sup 117}Sn and {sup 116}Sn near neutron thresholds with quasi-monochromatic laser Compton scattering gamma-rays. The measured cross sections for {sup 117}Sn and {sup 116}Sn are strongly enhanced from the threshold behavior expected for L = 1 neutron emissions after E1 photoexcitation. This suggests the presence of extra gamma-ray strength in the low-energy tail of the giant dipole resonance. The present cross sections were analyzed together with radiative neutron capture cross sections for {sup 116}Sn within the framework of the statistical model calculation. It is shown that the extra gamma-ray strength can be interpreted as pygmy E1 resonance which was previously reported in the nuclear resonance fluorescence experiment for {sup 116}Sn and {sup 124}Sn.

  16. Local geometry of isoscalar surfaces.

    PubMed

    Dopazo, César; Martín, Jesús; Hierro, Juan

    2007-11-01

    An inert dynamically passive scalar in a constant density fluid forced by a statistically homogeneous field of turbulence has been investigated using the results of a 256(3) grid direct numerical simulation. Mixing characteristics are characterized in terms of either principal curvatures or mean and Gauss curvatures. The most probable small-scale scalar geometries are flat and tilelike isosurfaces. Preliminary correlations between flow and scalar small-scale structures associate highly curved saddle points with large-strain regions and elliptic points with vorticity-dominated zones. The concavity of the scalar profiles along the isosurface normal coordinate xn correlates well with negative mean curvatures, Gauss curvatures displaying any sign, which correspond to scalar minima, tiles, or saddle points; on the other hand, convexity along xn is associated with positive mean curvatures, Gauss curvatures ranging from negative to positive signs, featuring maxima, tiles, or saddle points; inflection points along xn correlate well with small values of the mean curvature and zero or negative values of kg, corresponding to plane isosurfaces or saddle points with curvatures of equal and opposite signs. Small values of the scalar gradient are associated with elliptic points, either concave or convex (kg>0) , for both concave and convex scalar profiles along xn. Large values of the scalar gradient (or, equivalently, scalar fluctuation dissipation rates) are generally connected with small values of the Gauss curvature (either flat or moderate-curvature tilelike local geometries), with both concave and convex scalar profiles along xn equally probable. Vortical local flow structures correlate well with small and moderate values of the scalar gradient, while strain-dominated regions are associated with large values.

  17. Giants in the Local Region

    NASA Astrophysics Data System (ADS)

    Luck, R. Earle; Heiter, Ulrike

    2007-06-01

    We present parameter and abundance data for a sample of 298 nearby giants. The spectroscopic data for this work have a resolution of R~60,000, S/N>150, and spectral coverage from 475 to 685 nm. Overall trends in the Z>10 abundances are dominated by Galactic chemical evolution, while the light-element abundances are influenced by stellar evolution, as well as Galactic evolution. We find several super-Li stars in our sample and confirm that Li abundances in the first giant branch are related to mixing depths. Once astration of lithium on the main sequence along with the overall range of main-sequence lithium abundances are taken into account, the lithium abundances of the giants are not dramatically at odds with the predictions of standard stellar evolution. We find the giants to be carbon-diluted in accord with standard stellar evolution and that the carbon and oxygen abundances determined for the local giants are consistent with those found in local field dwarfs. We find that there is evidence for systematic carbon variations in the red giant clump in the sense that the blue side of the clump is carbon-poor (more diluted) than the red side.

  18. Kuiper Prize: Giant Planet Atmospheres

    NASA Astrophysics Data System (ADS)

    Ingersoll, Andrew P.

    2007-10-01

    The study of giant planet atmospheres is near and dear to me, for several reasons. First, the giant planets are photogenic; the colored clouds are great tracers, and one can make fantastic movies of the atmosphere in motion. Second, the giant planets challenge us with storms that last for hundreds of years and winds that blow faster the farther you go from the sun. Third, they remind us of Earth with their hurricanes, auroras, and lightning, but they also are the link to the 200 giant planets that have been discovered around other stars. This talk will cover the past, present, and future (one hopes) of giant planet research. I will review the surprises of the Voyager and Galileo eras, and will discuss what we are learning now from the Cassini orbiter. I will review the prospects for answering the outstanding questions like: Where's the water? What is providing the colors of the clouds? How deep do the features extend? Where do the winds get their energy? What is the role of the magnetic field? Finally, I will briefly discuss how extrasolar giant planets compare with objects in our own solar system.

  19. Dipole Density Solitons and Solitary Dipole Vortices in an Inhomogeneous Space Plasma

    SciTech Connect

    Wu, D.J.; Huang, G.L.; Wang, D.Y.

    1996-11-01

    A new type of density soliton, a dipole density soliton, as well as single dip and hump density solitons, were discovered in recent satellite observations of space plasmas. Moreover, these three kinds of density solitons are all associated with similar local electromagnetic fluctuations with Alfv{acute e}n characteristics and have the similar spatial scale comparable with the electron inertial length. This indicates that they originate from the same physical mechanism. We propose that the solitary plasma dipole vortex model can consistently account for these three kinds of density solitons, with the differences in their appearances attributed to the differences in the positions and directions at which the satellite crosses the solitary dipole vortex. {copyright} {ital 1996 The American Physical Society.}

  20. The Giant Magnetocaloric Effect

    NASA Astrophysics Data System (ADS)

    Pecharsky, Vitalij K.

    1998-03-01

    Since the discovery of the magnetocaloric effect in pure iron by E.Warburg in 1881, it has been measured experimentally on many magnetic metals and compounds. The majority of the materials studied order magnetically undergoing a second order phase transformation. The magnetocaloric effect, typically peaking near the Curie or the Néel temperature, generally ranges from 0.5 to 2 K (in terms of adiabatic temperature change) or at 1 to 4 J/kg K (in terms of isothermal magnetic entropy change) per 1 T magnetic field change. The giant magnetocaloric effect recently discovered in Gd_5(Si_xGe_1-x)4 alloys, where x <= 0.5, is associated with a first order magnetic phase transition and it reaches values of 3 to 4 K and 6 to 10 J/kg K per 1 T field change, respectively. The refrigerant capacity, which is the measure of how much heat can be transferred from a cold to a hot reservoir in one ideal thermodynamic cycle, is larger than that of the best second order phase transition materials by 25 to 100%. When the Gd_5(Si_xGe_1-x)4 alloys are compared with other known materials, which show first order magnetic phase transition, such as Dy, Ho, Er, HoCo_2, NdMn_2Si_2, Fe_0.49Rh_0.51, and (Hf_0.83Ta_0.17)Fe_2+x, only Fe_0.49Rh_0.51 has comparable magnetocaloric properties. However, the first order magnetic phase transition in Fe_0.49Rh_0.51 is irreversible, and the magnetocaloric effect disappears after one magnetizing/demagnetizing cycle. A study of the crystal structure, thermodynamics, and magnetism of the Gd_5(Si_xGe_1-x)4 alloys, where 0 <= x <= 1 allowed us to obtain a qualitative understanding of the basic relations between the composition, the crystal structure, and the change in thermodynamics and magnetocaloric properties, which occur in the Gd_5(Si_xGe_1-x)4 system, and which brings about the giant magnetocaloric effect when x <= 0.5.

  1. The asteroseismic signature of strong magnetic fields in the cores of red giant stars

    NASA Astrophysics Data System (ADS)

    Fuller, Jim; Cantiello, Matteo; Stello, Dennis; Garcia, Rafael; Bildsten, Lars

    2016-01-01

    Internal stellar magnetic fields are inaccessible to direct observations and little is known about their amplitude, geometry and evolution. I will discuss how strong magnetic fields in the cores of red giant stars can be identified with asteroseismology. The fields manifest themselves via depressed dipole stellar oscillation modes, which arises from a magnetic greenhouse effect that scatters and traps oscillation mode energy within the core of the star. Physically, the effect stems from magnetic tension forces created by sufficiently strong fields, which break the spherical symmetry of the wave propagation cavity. The loss of wave energy within the core reduces the mode visibility at the stellar surface, and we find that our predicted visibilities are in excellent agreement with a class of red giants exhibiting depressed dipole oscillation modes. The Kepler satellite has already observed hundreds of these red giants, which we identify as stars with strongly magnetized cores. Field strengths larger than roughly 10^5 G can produce the observed depression, and in one case we measure a core field strength of 10^7 G.

  2. Electric dipoles vs. magnetic dipoles —For two molecules in a harmonic trap

    NASA Astrophysics Data System (ADS)

    Górecki, Wojciech; Rzążewski, Kazimierz

    2017-06-01

    We study energy levels of two heteronuclear molecules moving in a spherically symmetric harmonic trap. A role of electric dipole interactions is compared and contrasted with our earlier results (Ołdziejewski R. et al., EPL, 114 (2016) 46003) for two magnetic dipolar atoms. We stress the importance of a rotational energy with its value which is very high compared to the energy of a dipolar interaction. We show that dipolar forces do not play a significant role in the ground state of the system under typical experimental conditions. However, there exist excited states that exhibit anticrossings similar to the ones observed for magnetic dipoles.

  3. Joint inversion of Wenner and dipole-dipole data to study a gasoline-contaminated soil

    NASA Astrophysics Data System (ADS)

    de la Vega, Matías; Osella, Ana; Lascano, Eugenia

    2003-11-01

    The goal of this work was to study a contaminated soil due to a gasoline spill produced by fissures in a concrete purge chamber located along a gas transmission line. A monitoring well drilled 16 m down gradient from the purge chamber revealed the presence of a gasoline layer of 0.5 m thick at 1.5 m depth, floating on top of the water table. A second well, drilled 30 m away from the first well, and in the same direction, did not show any evidence of contamination. To investigate this problem, a geoelectrical survey was conducted, combining dipole-dipole and Wenner arrays. First, four dipole-dipole profiles in a direction perpendicular to the longitudinal axis joining the wells were carried out. The electrical tomographies obtained from the 2D inversion of the data showed that the contaminated region was characterized by a resistive plume located at a depth between 1 to 2 m and had lateral extent of about 6-8 m. The longitudinal extension was less than 20 m, since the last profile located 30 m farther from the chamber did not show this kind of anomaly. To better determine the longitudinal extension, we performed a dipole-dipole profile along a line in this direction. The inverse model confirmed that the extension of the contaminated section was about 16 m. To complete the study of the deeper layer, we carried out Wenner soundings. The results of the inversion process indicated that to a depth of 20 m the soil was very conductive, because of the presence of clays as the main constituents, which confine the contaminant within this impermeable surrounding. To improve the inverse model, we performed a joint inversion of dipole-dipole and Wenner data. Analysis of the depth of penetration showed that it increased to 25 m and comparing the resulting model with the ones obtained from each array separately, we concluded that the joint inversion improves the depth obtained by the survey, while maintaining the shallow lateral resolution.

  4. Influence of medium chirality on electric dipole-dipole resonance energy transfer

    NASA Astrophysics Data System (ADS)

    Rodriguez, Justo J.; Salam, A.

    2010-09-01

    Electric dipole-dipole resonance energy transfer taking place between two chromophores in an absorptive and dispersive chiral medium is studied. Quantized electromagnetic field operators in this environment are first obtained from the time-harmonic Maxwell equations and the Drude-Born-Fedorov equations. Second-order time-dependent perturbation theory and the Fermi Golden rule are used to calculate the transfer rate. A complicated dependence on the permittivity, permeability and chirality admittance of the medium is found. In the near-zone, the rate is amplified in a medium with negligible absorption comprised of one enantiomer relative to that in a racemic mixture.

  5. Elastic deuteron scattering and optical model parameters at 100 MeV/u

    NASA Astrophysics Data System (ADS)

    Patel, D.; Garg, U.; Itoh, M.; Akimune, H.; Iwamoto, C.; Okamoto, A.; Berg, G. P. A.; Howard, K.; Matta, J. T.; Morgan, E.; Schlax, K. W.; White, M.; Fujiwara, M.; Takahashi, F.; Yosoi, M.; Harakeh, M. N.; Kawabata, T.; Murakami, T.; Kawase, K.; Sako, T.

    2014-09-01

    The advent of the radioactive ion beam facilities would render possible the measurement of giant resonances in nuclei far from the stability line. The centroid energy of the isoscalar giant monopole resonance and the isoscalar giant dipole resonance play an important role in constraining the nuclear incompressibility, an important parameter in nuclear equation of state. However, these experiments would have to be done in inverse kinematics and the most appropriate target appears to be deuteron gas in an AT-TPC. It thus becomes important to explore the features of deuteron optical model at high energy with a view of obtaining higher cross-sections. Elastic scattering measurements have been made on 24Mg, 28Si, 58Ni, 90Zr, 116Sn and 208Pb nuclei using 100 MeV/u deuteron beam at RCNP, Osaka University, Japan. Various features of the optical model parameters will be discussed. The advent of the radioactive ion beam facilities would render possible the measurement of giant resonances in nuclei far from the stability line. The centroid energy of the isoscalar giant monopole resonance and the isoscalar giant dipole resonance play an important role in constraining the nuclear incompressibility, an important parameter in nuclear equation of state. However, these experiments would have to be done in inverse kinematics and the most appropriate target appears to be deuteron gas in an AT-TPC. It thus becomes important to explore the features of deuteron optical model at high energy with a view of obtaining higher cross-sections. Elastic scattering measurements have been made on 24Mg, 28Si, 58Ni, 90Zr, 116Sn and 208Pb nuclei using 100 MeV/u deuteron beam at RCNP, Osaka University, Japan. Various features of the optical model parameters will be discussed. This work has been supported in part by the National Science Foundation (Grants No. PHY1068192 and No. PHY0822648).

  6. Probing the Lipid Membrane Dipole Potential by Atomic Force Microscopy

    PubMed Central

    Yang, Yi; Mayer, Kathryn M.; Wickremasinghe, Nissanka S.; Hafner, Jason H.

    2008-01-01

    The electrostatic properties of biological membranes can be described by three parameters: the transmembrane potential, the membrane surface potential, and the membrane dipole potential. The first two are well characterized in terms of their magnitudes and biological effects. The dipole potential, however, is not well characterized. Various methods to measure the membrane dipole potential indirectly yield different values, and there is not even agreement on the source of the membrane dipole moment. This ambiguity impedes investigations into the biological effects of the membrane dipole moment, which should be substantial considering the large interfacial fields with which it is associated. Electrostatic analysis of phosphatidylcholine lipid membranes with the atomic force microscope reveals a repulsive force between the negatively charged probe tips and the zwitterionic lipids. This unexpected interaction has been analyzed quantitatively to reveal that the repulsion is due to a weak external field created by the internal membrane dipole potential. The analysis yields a dipole moment of 1.5 Debye per lipid with a dipole potential of +275 mV for supported phosphatidylcholine membranes. This new ability to quantitatively measure the membrane dipole moment in a noninvasive manner with nanometer scale spatial resolution will be useful in identifying the biological effects of the dipole potential. PMID:18805919

  7. Passive synchronization of finite dipoles in a doubly periodic domain

    NASA Astrophysics Data System (ADS)

    Tsang, Alan Cheng Hou; Kanso, Eva

    2012-11-01

    We consider the interaction dynamics of finite dipoles in a doubly periodic domain. A finite dipole is a pair of equal and opposite strength point vortices separated by a finite distance throughout its time evolution. The finite dipole dynamical system has been proposed as a model that captures the far-field hydrodynamics interactions in fish schools or collections of swimming bodies in an inviscid fluid. In this work, we formulate the equations of motion governing the dynamics of finite dipoles in a doubly periodic domain. We show that a single dipole in a doubly-periodic box exhibits either regular or chaotic behavior, depending on the initial angle of orientation of the dipole. In the case of the two dipoles, we identify a variety of interesting interaction modes including collision, switching, and passive synchronization of the dipoles. In the case of three dipoles, we observe the formation of relative equilibrium in finite time when the dipoles move together in a way reminiscent to that of flocking behavior.

  8. On mechanisms of BEC stability and fermions instability for electric dipolar quantum gases with the exchange part of dipole-dipole interaction

    NASA Astrophysics Data System (ADS)

    Andreev, Pavel

    2015-05-01

    In spite of the long-range nature of the dipole-dipole interaction, the self-consistent field part of the dipole-dipole interaction in BECs equals to zero. Hence the dipole-dipole interaction is related to the exchange part of the dipole-dipole interaction in BECs. However the exchange part of the dipole-dipole interaction in BECs coincides with the result of the formal application of the self-consistent field to dipolar BECs. Considering the electric dipole-dipole interaction in accordance with the Maxwell equations we obtain the positive and stable contribution of dipoles in the Bogoliubov spectrum. We obtain a different picture at the study of dipolar degenerate fermions, where there are both parts of the dipole-dipole interaction. The self-consistent field part gives the anisotropic positive contribution and the exchange part gives the negative isotropic contribution. The sing of the full contribution of dipoles depends on the direction of wave propagation. Hence the dipolar part of the spectrum of fermions brings the instability at large enough dipole moment, when the dipolar part overcomes the Fermi pressure. Strong dependence of the electric dipole-dipole interaction on the spin polarization is described as well.

  9. Giant necrotic pituitary apoplexy.

    PubMed

    Fanous, Andrew A; Quigley, Edward P; Chin, Steven S; Couldwell, William T

    2013-10-01

    Apoplexy of the pituitary gland is a rare complication of pituitary adenomas, involving hemorrhage with or without necrosis within the tumor. This condition may be either asymptomatic or may present with severe headache, visual impairment, ophthalmoplegia, and pituitary failure. Transsphenoidal surgery is the treatment of choice, and early intervention is usually required to ensure reversal of visual impairment. Reports of pituitary apoplectic lesions exceeding 60.0mm in diameter are very rare. A 39-year-old man with long-standing history of nasal congestion, decreased libido and infertility presented with a sudden onset of severe headache and diplopia. MRI of the head demonstrated a massive skull base lesion of 70.0 × 60.0 × 25.0mm, compatible with a giant pituitary macroadenoma. The lesion failed to enhance after administration of a contrast agent, suggesting complete necrotic apoplexy. Urgent surgical decompression was performed, and the lesion was resected via a transnasal transsphenoidal approach. Pathological analysis revealed evidence of necrotic pituitary apoplexy. At the 2 month follow-up, the patient had near-complete to complete resolution of his visual impairment. To the authors' knowledge, this report is unique as the patient demonstrated complete necrotic apoplexy and it underlines the diagnostic dilemma in such a case. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Recurrent renal giant leiomyosarcoma

    PubMed Central

    Öziş, Salih Erpulat; Gülpınar, Kamil; Şahlı, Zafer; Konak, Baha Burak; Keskin, Mete; Özdemir, Süleyman; Ataoğlu, Ömür

    2016-01-01

    Primary renal leiomyosarcomas are rare, aggressive tumors. They constitute 1–2% of adult malignant renal tumors. Although leiomyosarcomas are the most common histological type (50–60%) of renal sarcomas, information on renal leiomyosarcoma is limited. Local or systemic recurrences are common. The radiological appearance of renal leiomyosarcomas is not specific, therefore renal leiomyosarcoma cannot be distinguished from renal cell carcinoma by imaging methods in all patients. A 74-year-old female patient presented to our clinic complaining of a palpable mass on the right side of her abdomen in November 2012. The abdominal magnetic resonance imaging revealed a mass, 25 × 24 × 23 cm in size. Her past medical history revealed that she has undergone right radical nephrectomy in 2007, due to a 11 × 12 × 13 cm renal mass that was then reported as renal cell carcinoma on abdominal magnetic resonance imaging, but the pathological diagnosis was low-grade renal leiomyosarcoma. The most recent follow-up of the patient was in 2011, with no signs of local recurrence or distant metastases within this four-year period. The patient underwent laparotomy on November 2012, and a 35 cm retroperitoneal mass was excised. The pathological examination of the mass was reported as high-grade leiomyosarcoma. The formation of this giant retroperitoneal mass in 1 year can be explained by the transformation of the lesion’s pathology from low-grade to a high-grade tumor. PMID:27436926

  11. Giant cell arteritis.

    PubMed

    Ninan, Jem; Lester, Susan; Hill, Catherine

    2016-02-01

    Giant cell arteritis (GCA) is the most common vasculitis of the elderly. The diagnosis can be challenging at times because of the limitation of the American Rheumatology Association (ARA) classification criteria and the significant proportion of biopsy-negative patients with GCA. We discuss the role of advanced imaging techniques, including positron emission tomography (PET) scanning, in establishing diagnosis and improved histopathology techniques to improve the sensitivity of temporal artery biopsy. There have been significant advances in the understanding of the pathogenesis of GCA, particularly the role of cytokine pathways such as the interleukins, IL-6-IL-17 axis, and the IL-12-interferon-γ axis and their implication for new therapies. We highlight that glucocorticoids remain the primary treatment for GCA, but recognize the risk of steroid-induced side effects. A number of pharmacotherapies to enable glucocorticoid dose reduction and prevent relapse have been studied. Early diagnosis and fast-track pathways have improved outcomes by encouraging adherence to evidence-based practice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. A unique advantage for giant eyes in giant squid.

    PubMed

    Nilsson, Dan-Eric; Warrant, Eric J; Johnsen, Sönke; Hanlon, Roger; Shashar, Nadav

    2012-04-24

    Giant and colossal deep-sea squid (Architeuthis and Mesonychoteuthis) have the largest eyes in the animal kingdom [1, 2], but there is no explanation for why they would need eyes that are nearly three times the diameter of those of any other extant animal. Here we develop a theory for visual detection in pelagic habitats, which predicts that such giant eyes are unlikely to evolve for detecting mates or prey at long distance but are instead uniquely suited for detecting very large predators, such as sperm whales. We also provide photographic documentation of an eyeball of about 27 cm with a 9 cm pupil in a giant squid, and we predict that, below 600 m depth, it would allow detection of sperm whales at distances exceeding 120 m. With this long range of vision, giant squid get an early warning of approaching sperm whales. Because the sonar range of sperm whales exceeds 120 m [3-5], we hypothesize that a well-prepared and powerful evasive response to hunting sperm whales may have driven the evolution of huge dimensions in both eyes and bodies of giant and colossal squid. Our theory also provides insights into the vision of Mesozoic ichthyosaurs with unusually large eyes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Development of the new gamma-ray calorimeter for the measurement of Pigmy Dipole Resonance

    NASA Astrophysics Data System (ADS)

    Shikata, Mizuki; Nakamura, Takashi; Togano, Yasuhiro; Kondo, Yosuke

    2014-09-01

    A new γ-ray calorimeter CATANA (CAlorimeter for gamma γ-ray Transition in Atomic Nuclei at high isospin Asynmetry) has been developed to measure highly excited states like the pygmy dipole resonance and the giant dipole resonance. CATANA will be used with the SAMURAI spectrometer at RIBF. The excitation energy spectrum will be reconstructed combining the invariant mass of the reaction products measured by SAMURAI and γ-ray energies from CATANA. CATANA has focused on achieving a high detection efficiency. It is calculated as 56% for 1 MeV γ-rays from beam with a velocity of β = 0.6. The CATANA array consists of 200 CsI(Na) crystals and covers angles from 10 to 120 degrees along the beam axis. In this study, we have tested prototype crystals of CATANA to evaluate their performance. A position dependence of the light input have been measured and compared with a Monte-Carlo simulation based on GEANT4. In this talk, we will report the design of CATANA and the result of the tests and the simulation.

  14. Clump Giants in the Hyades

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard F. (Technical Monitor); Brickhouse, Nancy

    2003-01-01

    The project is entitled 'Clump Giants in the Hyades.' This observation of one of the late-type Hyades giants (Gamma Tau) has implications for understanding the formation of late-type stellar coronae as a function of the evolutionary state of the star. The Hyades giants are interesting because they are all clump giants in the Helium burning phase, similar to the cool primary of Capella. The Hyades giants show significantly more magnetic activity than expected from their state of evolution (and slowed-down rotation). Thus these systems provide an important clue to dynamo action. The data were obtained by the satellite on 13 March 2001 for a total RGS exposure of 58220 seconds. These data were delivered to the PI on 7 August 2001. The data could not be reprocessed until SAS Version 5.3.3 which became available 7 June 2002. Although the guidelines for assessing background rates suggested that half the data were contaminated, it does not appear that the spectral region of the RGS was adversely affected by unusually high background. The spectra show strong lines of Fe XVII and XVIII, O VII and VIII, Ne IX and X, along with numerous weaker lines. The emission measure distribution is highly reminiscent of Capella; if anything, the emission measure distribution is steeper at 6 million K than for Capella. Gamma Tau is the second brightest of the Hyades clump giants. Pallavicini et al. have shown that the luminosity of the brightest Hyades giant (Theta Tau) is remarkably similar to its luminosity as measured by Einstein. Short-term variability is also modest. We are addressing the variability issue now for Gamma Tau. Initial results were reported at the 2003 Seattle AAS meeting. A paper is in preparation for submission to the Astrophysical Journal.

  15. Formation of the giant planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    2006-01-01

    The observed properties of giant planets, models of their evolution and observations of protoplanetary disks provide constraints on the formation of gas giant planets. The four largest planets in our Solar System contain considerable quantities of hydrogen and helium, which could not have condensed into solid planetesimals within the protoplanetary disk. All three (transiting) extrasolar giant planets with well determined masses and radii also must contain substantial amounts of these light gases. Jupiter and Saturn are mostly hydrogen and helium, but have larger abundances of heavier elements than does the Sun. Neptune and Uranus are primarily composed of heavier elements. HD 149026 b, which is slightly more massive than is Saturn, appears to have comparable quantities of light gases and heavy elements. HD 209458 b and TrES-1 are primarily hydrogen and helium, but may contain supersolar abundances of heavy elements. Spacecraft flybys and observations of satellite orbits provide estimates of the gravitational moments of the giant planets in our Solar System, which in turn provide information on the internal distribution of matter within Jupiter, Saturn, Uranus and Neptune. Atmospheric thermal structure and heat flow measurements constrain the interior temperatures of planets. Internal processes may cause giant planets to become more compositionally differentiated or alternatively more homogeneous; high-pressure laboratory .experiments provide data useful for modeling these processes. The preponderance of evidence supports the core nucleated gas accretion model. According to this model, giant planets begin their growth by the accumulation of small solid bodies, as do terrestrial planets. However, unlike terrestrial planets, the growing giant planet cores become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. The primary questions regarding the core nucleated growth model is under what conditions

  16. Clump Giants in the Hyades

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard F. (Technical Monitor); Brickhouse, Nancy

    2003-01-01

    The project is entitled 'Clump Giants in the Hyades.' This observation of one of the late-type Hyades giants (Gamma Tau) has implications for understanding the formation of late-type stellar coronae as a function of the evolutionary state of the star. The Hyades giants are interesting because they are all clump giants in the Helium burning phase, similar to the cool primary of Capella. The Hyades giants show significantly more magnetic activity than expected from their state of evolution (and slowed-down rotation). Thus these systems provide an important clue to dynamo action. The data were obtained by the satellite on 13 March 2001 for a total RGS exposure of 58220 seconds. These data were delivered to the PI on 7 August 2001. The data could not be reprocessed until SAS Version 5.3.3 which became available 7 June 2002. Although the guidelines for assessing background rates suggested that half the data were contaminated, it does not appear that the spectral region of the RGS was adversely affected by unusually high background. The spectra show strong lines of Fe XVII and XVIII, O VII and VIII, Ne IX and X, along with numerous weaker lines. The emission measure distribution is highly reminiscent of Capella; if anything, the emission measure distribution is steeper at 6 million K than for Capella. Gamma Tau is the second brightest of the Hyades clump giants. Pallavicini et al. have shown that the luminosity of the brightest Hyades giant (Theta Tau) is remarkably similar to its luminosity as measured by Einstein. Short-term variability is also modest. We are addressing the variability issue now for Gamma Tau. Initial results were reported at the 2003 Seattle AAS meeting. A paper is in preparation for submission to the Astrophysical Journal.

  17. Formation of the giant planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    2006-01-01

    The observed properties of giant planets, models of their evolution and observations of protoplanetary disks provide constraints on the formation of gas giant planets. The four largest planets in our Solar System contain considerable quantities of hydrogen and helium, which could not have condensed into solid planetesimals within the protoplanetary disk. All three (transiting) extrasolar giant planets with well determined masses and radii also must contain substantial amounts of these light gases. Jupiter and Saturn are mostly hydrogen and helium, but have larger abundances of heavier elements than does the Sun. Neptune and Uranus are primarily composed of heavier elements. HD 149026 b, which is slightly more massive than is Saturn, appears to have comparable quantities of light gases and heavy elements. HD 209458 b and TrES-1 are primarily hydrogen and helium, but may contain supersolar abundances of heavy elements. Spacecraft flybys and observations of satellite orbits provide estimates of the gravitational moments of the giant planets in our Solar System, which in turn provide information on the internal distribution of matter within Jupiter, Saturn, Uranus and Neptune. Atmospheric thermal structure and heat flow measurements constrain the interior temperatures of planets. Internal processes may cause giant planets to become more compositionally differentiated or alternatively more homogeneous; high-pressure laboratory .experiments provide data useful for modeling these processes. The preponderance of evidence supports the core nucleated gas accretion model. According to this model, giant planets begin their growth by the accumulation of small solid bodies, as do terrestrial planets. However, unlike terrestrial planets, the growing giant planet cores become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. The primary questions regarding the core nucleated growth model is under what conditions

  18. Deuteron dipole polarizabilities and sum rules

    SciTech Connect

    Friar, J.L.; Payne, G.L.

    2005-07-01

    The scalar, vector, and tensor components of the (generalized) deuteron electric dipole polarizability are calculated, as well as their logarithmic modifications. Several of these quantities arise in the treatment of the nuclear corrections to the deuterium Lamb shift and the deuterium hyperfine structure. A variety of second-generation potential models are used, and a (subjective) error is assigned to the calculations. The zero-range approximation is used to analyze a subset of the results, and a simple relativistic version of this approximation is developed.

  19. Lift-induced vortex dipole collapse

    NASA Astrophysics Data System (ADS)

    Ravichandran, S.; Dixit, Harish N.; Govindarajan, Rama

    2017-03-01

    Two vortices of opposite sign in two dimensions merely move along parallel lines. We show that even a small buoyancy completely changes this dynamics. When the vortices are of different density from their surroundings, buoyancy produces a lateral drift by Kutta lift. This causes the density patches to merge, and the vortex dipole to collapse. This is followed by a rapid upward (for light vortices) ejection and creation of small-scale structures by baroclinic torque. Our simple analytical equation explains the trajectory of the vortices. We show that these events occur in viscous simulations of many buoyant vortices.

  20. Dipole Magnet for Beam Line Switching

    NASA Astrophysics Data System (ADS)

    Yoshida, Jun

    We are developing a Bi-2223 HTS dipole magnet for beam line switching for use in the cyclotron facility of RCNP, Osaka University. Exit beam lines are periodically switched by increasing and decreasing of the magnetic field between 0 T and 1.6 T with a switching time of 10 sec. A Bi-2223 coil assembly was designed with the electromagnetic force support and the suppression of temperature rise by AC loss and eddy current loss. In this chapter, we introduce this magnet as a practical example of conduction-cooled Bi-2223-HTS magnet for accelerator application.

  1. Multilayer Microstrip Slot And Dipole Array Antenna

    NASA Technical Reports Server (NTRS)

    Tulintseff, Ann N.

    1994-01-01

    Multilayer antenna structure contains interleaved linear subarrays of microstrip dipole and slot radiating antenna elements to provide compact, dual-band antenna. Structure also contains associated microstrip transmission lines, plus high-power amplifiers for transmission and low-noise amplifiers for reception. Overall function is to transmit in horizontal polarization at frequency of 29.634 GHz and receive in vertical polarization at 19.914 GHz, in direction 44 degrees from broadside to antenna. Antenna structure is part of apparatus described in "Steerable K/Ka-band Antenna for Land-Mobile Satellite Applications," NPO-18772.

  2. The universal function in color dipole model

    NASA Astrophysics Data System (ADS)

    Jalilian, Z.; Boroun, G. R.

    2017-10-01

    In this work we review color dipole model and recall properties of the saturation and geometrical scaling in this model. Our primary aim is determining the exact universal function in terms of the introduced scaling variable in different distance than the saturation radius. With inserting the mass in calculation we compute numerically the contribution of heavy productions in small x from the total structure function by the fraction of universal functions and show the geometrical scaling is established due to our scaling variable in this study.

  3. Dynamical dipole mode in fusion reactions at 16 MeV/nucleon and beam energy dependence

    NASA Astrophysics Data System (ADS)

    Pierroutsakou, D.; Martin, B.; Agodi, C.; Alba, R.; Baran, V.; Boiano, A.; Cardella, G.; Colonna, M.; Coniglione, R.; Filippo, E. De; Zoppo, A. Del; Toro, M. Di; Inglima, G.; Glodariu, T.; Commara, M. La; Maiolino, C.; Mazzocco, M.; Pagano, A.; Parascandolo, C.; Piattelli, P.; Pirrone, S.; Rizzo, C.; Romoli, M.; Sandoli, M.; Santonocito, D.; Sapienza, P.; Signorini, C.

    2009-08-01

    High-energy γ rays and light charged particles from the Ar36+Zr96 and Ar40+Zr92 reactions at Elab=16 and 15.1 MeV/nucleon, respectively, were measured in coincidence with evaporation residues by means of the MEDEA multidetector array coupled to four parallel plate avalanche counters. The aim of this experiment was to investigate the prompt γ radiation, emitted in the decay of the dynamical dipole mode, in the ~16 MeV/nucleon energy range and to map its beam energy dependence, comparing the present results with our previous ones obtained at lower energies. The studied reactions populate, through entrance channels having different charge asymmetries, a compound nucleus in the region of Ce under the same conditions of excitation energy and spin. Light charged particle energy spectra were used to pin down the average excitation energy and the average mass of the system. By studying the γ-ray spectra of the charge symmetric reaction Ar40+Zr92, the statistical giant dipole resonance (GDR) parameters and angular distribution were extracted, and a comparison of the linearized 90°γ-ray spectra of the two reactions revealed a 12% extra yield in the GDR energy region for the more charge asymmetric system. The center-of-mass angular distribution data of this extra γ yield, compatible with a dipole oscillating along the symmetry axis of the dinuclear system, support its dynamical nature. The experimental findings are compared with theoretical predictions performed within a Boltzmann-Nordheim-Vlasov transport model and based on a collective bremsstrahlung analysis of the entrance channel reaction dynamics. An interesting sensitivity to the symmetry term of the equation of state and to in-medium effects on nucleon-nucleon (nn) cross sections is finally discussed.

  4. A plasmonic dipole optical antenna coupled quantum dot infrared photodetector

    NASA Astrophysics Data System (ADS)

    Mojaverian, Neda; Gu, Guiru; Lu, Xuejun

    2015-12-01

    In this paper, we report a full-wavelength plasmonic dipole optical antenna coupled quantum dot infrared photodetector (QDIP). The plasmonic dipole optical antenna can effectively modify the EM wave distribution and convert free-space propagation infrared light to localized surface plasmonic resonance (SPR) within the nanometer (nm) gap region of the full-wavelength dipole antenna. The plasmonic dipole optical antenna coupled QDIP shows incident-angle-dependent photocurrent enhancement. The angular dependence follows the far-field pattern of a full-wavelength dipole antenna. The directivity of the plasmonic dipole optical antenna is measured to be 1.8 dB, which agrees well with the antenna simulation. To our best knowledge, this is the first report of the antenna far-field and directivity measurement. The agreement of the detection pattern and the directivity with antenna theory confirms functions of an optical antenna are similar to that of a RF antenna.

  5. AN INVESTIGATION OF THE VARIABLE FREQUENCY DIPOLE-DIPOLE METHOD FOR DETERMINING SUBSURFACE RESISTIVITIES.

    DTIC Science & Technology

    resistivity curves are developed and compared with the equivalent curves one would obtain using the DC dipole method and the magnetotelluric method. It...Basin, near Pecos, Texas is analyzed by comparison to layered models. The resulting models are compared to models obtained from well-logs and magnetotelluric data. (Author)

  6. Angle-dependent quantum Otto heat engine based on coherent dipole-dipole coupling

    NASA Astrophysics Data System (ADS)

    Su, Shan-He; Luo, Xiao-Qing; Chen, Jin-Can; Sun, Chang-Pu

    2016-08-01

    Electromagnetic interactions between molecules or within a molecule have been widely observed in biological systems and exhibit broad application for molecular structural studies. Quantum delocalization of molecular dipole moments has inspired researchers to explore new avenues to utilize this physical effect for energy harvesting devices. Herein, we propose a simple model of the angle-dependent quantum Otto heat engine which seeks to facilitate the conversion of heat to work. Unlike previous studies, the adiabatic processes are accomplished by varying only the directions of the magnetic field. We show that the heat engine continues to generate power when the angle relative to the vector r joining the centres of coupled dipoles departs from the magic angle θm where the static coupling vanishes. A significant improvement in the device performance has to be attributed to the presence of the quantum delocalized levels associated with the coherent dipole-dipole coupling. These results obtained may provide a promising model for the biomimetic design and fabrication of quantum energy generators.

  7. Ozone: Unresolved discrepancies for dipole oscillator strength distributions, dipole sums, and van der Waals coefficients

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Thakkar, Ajit J.

    2011-08-01

    Dipole oscillator strength distributions (DOSDs) for ozone are constructed from experimental photoabsorption cross-sections combined with constraints provided by the Kuhn-Reiche-Thomas sum rule, the high-energy behavior of the dipole-oscillator-strength density, and molar refractivity data. A lack of photoabsorption data in the intermediate energy region from 24 to 524 eV necessitates the use of a mixture rule in that region. For this purpose, a DOSD for O2 is constructed first. The dipole properties for O2 are essentially the same as those obtained in earlier work even though most of the input data is from more recent experiments. A discrepancy is found between the refractivity data and photoabsorption data in the 10-20.6 eV range for ozone. A reliable ozone DOSD of the sort obtained for many other species remains out of reach. However, it is suggested that the true dipole properties of ozone lie between those predicted by two distributions that we present.

  8. Numerical simulations of magnetic suspensions with hydrodynamic and dipole-dipole magnetic interactions

    NASA Astrophysics Data System (ADS)

    Gontijo, R. G.; Cunha, F. R.

    2017-06-01

    This work describes a numerical model to compute the translational and rotational motion of N spherical magnetic particles settling in a quiescent viscous fluid under creeping flow condition. The motion of the particles may be produced by the action of gravitational forces, Brownian thermal fluctuations, magnetic dipole-dipole interactions, external magnetic field, and hydrodynamic interactions. In order to avoid particle overlap, we consider a repulsive force based on a variation of a screened-Coulomb potential mixed with Hertz contact forces. The inertia of the particles is neglected so that a mobility approach to describe the hydrodynamic interactions is used. The magnetic dipoles are fixed with respect to the particles themselves. Thus they can only interact magnetically between them and with an external applied magnetic field. Therefore the effect of magnetic field moment rotation relative to the particle as a consequence of a finite amount of particle anisotropy is neglected in this work. On the other hand, the inclusion of particle viscous hydrodynamic interactions and dipolar interactions is considered in our model. Both long-range hydrodynamic and magnetic interactions are accounted by a sophisticated technique of lattice sums. This work considers several possibilities of periodic and non-periodic particle interaction schemes. This paper intends to show the benefits and disadvantages of the different approaches, including a hybrid possibility of computing periodic and non-periodic particle interactions. The well-known mean sedimentation velocity and the equilibrium magnetization of the suspension are computed to validate the numerical scheme. The comparison is performed with the existent theoretical models valid for dilute suspensions and several empirical correlations available in the current literature. In the presence of dipole-dipole particle interactions, the simulations show a non-monotonic behavior of the mean sedimentation velocity as the particle

  9. Hybrid of Quantum Phases for Induced Dipole Moments

    NASA Astrophysics Data System (ADS)

    Ma, Kai

    2016-09-01

    The quantum phase effects for induced electric and magnetic dipole moments are investigated. It is shown that the phase shift received by induced electric dipole has the same form with the one induced by magnetic dipole moment, therefore the total phase is a hybrid of these two types of phase. This feature indicates that in order to have a decisive measurement on either one of these two phases, it is necessary to measure the velocity dependence of the observed phase.

  10. Vanishing of dipole matrix elements at level crossings.

    NASA Technical Reports Server (NTRS)

    Kocher, C. A.

    1972-01-01

    Demonstration that the vanishing of certain coupling matrix elements at level crossings follow from angular momentum commutation relations. A magnetic dipole transition having delta M = plus or minus 1, induced near a crossing of the levels in a nonzero magnetic field, is found to have a dipole matrix element comparable to or smaller than the quotient of the level separation and the field. This result also applies in the analogous electric field electric dipole case.

  11. Lunar magnetic field - Permanent and induced dipole moments

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Coleman, P. J., Jr.; Schubert, G.

    1974-01-01

    Apollo 15 subsatellite magnetic field observations have been used to measure both the permanent and the induced lunar dipole moments. Although only an upper limit of 1.3 x 10 to the 18th gauss-cubic centimeters has been determined for the permanent dipole moment in the orbital plane, there is a significant induced dipole moment which opposes the applied field, indicating the existence of a weak lunar ionosphere.

  12. Propagation of magnetic dipole radiation through a medium.

    PubMed

    Arnoldus, Henk F; Xu, Zhangjin

    2016-05-01

    An oscillating magnetic dipole moment emits radiation. We assume that the dipole is embedded in a medium with relative permittivity ϵr and relative permeability μr, and we have studied the effects of the surrounding material on the flow lines of the emitted energy. For a linear dipole moment in free space the flow lines of energy are straight lines, coming out of the dipole. When located in a medium, these field lines curve toward the dipole axis, due to the imaginary part of μr. Some field lines end on the dipole axis, giving a nonradiating contribution to the energy flow. For a rotating dipole moment in free space, each field line of energy flow lies on a cone around the axis perpendicular to the plane of rotation of the dipole moment. The field line pattern is an optical vortex. When embedded in a material, the cone shape of the vortex becomes a funnel shape, and the windings are much less dense than for the pattern in free space. This is again due to the imaginary part of μr. When the real part of μr is negative, the field lines of the vortex swirl around the dipole axis opposite to the rotation direction of the dipole moment. For a near-single-negative medium, the spatial extent of the vortex becomes huge. We compare the results for the magnetic dipole to the case of an embedded electric dipole.

  13. Dipole characterization of single neurons from their extracellular action potentials

    PubMed Central

    Victor, Jonathan D.

    2011-01-01

    The spatial variation of the extracellular action potentials (EAP) of a single neuron contains information about the size and location of the dominant current source of its action potential generator, which is typically in the vicinity of the soma. Using this dependence in reverse in a three-component realistic probe + brain + source model, we solved the inverse problem of characterizing the equivalent current source of an isolated neuron from the EAP data sampled by an extracellular probe at multiple independent recording locations. We used a dipole for the model source because there is extensive evidence it accurately captures the spatial roll-off of the EAP amplitude, and because, as we show, dipole localization, beyond a minimum cell-probe distance, is a more accurate alternative to approaches based on monopole source models. Dipole characterization is separable into a linear dipole moment optimization where the dipole location is fixed, and a second, nonlinear, global optimization of the source location. We solved the linear optimization on a discrete grid via the lead fields of the probe, which can be calculated for any realistic probe + brain model by the finite element method. The global source location was optimized by means of Tikhonov regularization that jointly minimizes model error and dipole size. The particular strategy chosen reflects the fact that the dipole model is used in the near field, in contrast to the typical prior applications of dipole models to EKG and EEG source analysis. We applied dipole localization to data collected with stepped tetrodes whose detailed geometry was measured via scanning electron microscopy. The optimal dipole could account for 96% of the power in the spatial variation of the EAP amplitude. Among various model error contributions to the residual, we address especially the error in probe geometry, and the extent to which it biases estimates of dipole parameters. This dipole characterization method can be applied to

  14. Mutual impedance of nonplanar-skew sinusoidal dipoles

    NASA Technical Reports Server (NTRS)

    Richmond, J. H.; Geary, N. H.

    1975-01-01

    The mutual impedance expressions for parallel dipoles in terms of sine-integrals and cosine-integrals have been published by King (1957). The investigation reported provides analogous expressions for nonparallel dipoles. The expressions presented are most useful when the monopoles are close together. The theory of moment methods shows an approach for employing the mutual impedance of filamentary sinusoidal dipoles to calculate the impedance and scattering properties of straight and bent wires with small but finite diameter.

  15. Open questions about giant viruses.

    PubMed

    Claverie, Jean-Michel; Abergel, Chantal

    2013-01-01

    The recent discovery of giant viruses exhibiting double-stranded DNA genomes larger than a million base pairs, encoding more than a thousand proteins and packed in near micron-sized icosahedral particles, opened a new and unexpected chapter in virology. As of today, these giant viruses and their closest relatives of lesser dimensions infect unicellular eukaryotes found in aquatic environments, but belonging to a wide diversity of early branching phyla. This broad phylogenetic distribution of hosts is consistent with the hypothesis that giant viruses originated prior to the radiation of the eukaryotic domain and/or might have been involved in the partition of nuclear versus cytoplasmic functions in ancestral cells. The distinctive features of the known giant viruses, in particular the recurrent presence of components of the translation apparatus in their proteome, raise a number of fundamental questions about their origin, their mode of evolution, and the relationship they may entertain with other dsDNA viruses, the genome size of which exhibits the widest distribution among all biological entities, from less than 5 kb to more than 1.25 Mb (a ratio of 1:250). At a more conceptual level, the convergence between the discovery of increasingly reduced parasitic cellular organisms and that of giant viruses exhibiting a widening array of cellular-like functions may ultimately abolish the historical discontinuity between the viral and the cellular world. 2013 Elsevier Inc. All rights reserved

  16. Gravitational scattering by giant planets

    NASA Astrophysics Data System (ADS)

    Laakso, T.; Rantala, J.; Kaasalainen, M.

    2006-09-01

    We seek to characterize giant-planet systems by their gravitational scattering properties. We do this to a given system by integrating it numerically along with a large number of hypothetical small bodies that are initially in eccentric habitable zone (HZ)-crossing orbits. Our analysis produces a single number, the escape rate, which represents the rate at which the small-body flux is perturbed away by the giant planets into orbits that no longer pose a threat to terrestrial planets inside the HZ. Obtaining the escape rate this way is similar to computing the largest Liapunov exponent as the exponential rate of divergence of two nearby orbits. For a terrestrial planet inside the HZ, the escape rate value quantifies the "protective" effect that the studied giant-planet system offers. Therefore, escape rates could provide information on whether certain giant-planet configurations produce a more desirable environment for life than the others. We present some computed escape rates on selected planetary systems, focusing on effects of varying the masses and semi-major axes of the giant planets. In the case of our Solar System we find rather surprisingly that Jupiter, in its current orbit, may provide a minimal amount of protection to the Earth.

  17. Giant Magellan Telescope: overview

    NASA Astrophysics Data System (ADS)

    Johns, Matt; McCarthy, Patrick; Raybould, Keith; Bouchez, Antonin; Farahani, Arash; Filgueira, Jose; Jacoby, George; Shectman, Steve; Sheehan, Michael

    2012-09-01

    The Giant Magellan Telescope (GMT) is a 25-meter optical/infrared extremely large telescope that is being built by an international consortium of universities and research institutions. It will be located at the Las Campanas Observatory, Chile. The GMT primary mirror consists of seven 8.4-m borosilicate honeycomb mirror segments made at the Steward Observatory Mirror Lab (SOML). Six identical off-axis segments and one on-axis segment are arranged on a single nearly-paraboloidal parent surface having an overall focal ratio of f/0.7. The fabrication, testing and verification procedures required to produce the closely-matched off-axis mirror segments were developed during the production of the first mirror. Production of the second and third off-axis segments is underway. GMT incorporates a seven-segment Gregorian adaptive secondary to implement three modes of adaptive-optics operation: natural-guide star AO, laser-tomography AO, and ground-layer AO. A wide-field corrector/ADC is available for use in seeing-limited mode over a 20-arcmin diameter field of view. Up to seven instruments can be mounted simultaneously on the telescope in a large Gregorian Instrument Rotator. Conceptual design studies were completed for six AO and seeing-limited instruments, plus a multi-object fiber feed, and a roadmap for phased deployment of the GMT instrument suite is being developed. The partner institutions have made firm commitments for approximately 45% of the funds required to build the telescope. Project Office efforts are currently focused on advancing the telescope and enclosure design in preparation for subsystem- and system-level preliminary design reviews which are scheduled to be completed in the first half of 2013.

  18. Rotation of Giant Stars

    NASA Astrophysics Data System (ADS)

    Kissin, Yevgeni; Thompson, Christopher

    2015-07-01

    The internal rotation of post-main sequence stars is investigated, in response to the convective pumping of angular momentum toward the stellar core, combined with a tight magnetic coupling between core and envelope. The spin evolution is calculated using model stars of initial mass 1, 1.5, and 5 {M}⊙ , taking into account mass loss on the giant branches. We also include the deposition of orbital angular momentum from a sub-stellar companion, as influenced by tidal drag along with the excitation of orbital eccentricity by a fluctuating gravitational quadrupole moment. A range of angular velocity profiles {{Ω }}(r) is considered in the envelope, extending from solid rotation to constant specific angular momentum. We focus on the backreaction of the Coriolis force, and the threshold for dynamo action in the inner envelope. Quantitative agreement with measurements of core rotation in subgiants and post-He core flash stars by Kepler is obtained with a two-layer angular velocity profile: uniform specific angular momentum where the Coriolis parameter {Co}\\equiv {{Ω }}{τ }{con}≲ 1 (here {τ }{con} is the convective time), and {{Ω }}(r)\\propto {r}-1 where {Co}≳ 1. The inner profile is interpreted in terms of a balance between the Coriolis force and angular pressure gradients driven by radially extended convective plumes. Inward angular momentum pumping reduces the surface rotation of subgiants, and the need for a rejuvenated magnetic wind torque. The co-evolution of internal magnetic fields and rotation is considered in Kissin & Thompson, along with the breaking of the rotational coupling between core and envelope due to heavy mass loss.

  19. Mesoscopic supersolid of dipoles in a trap

    SciTech Connect

    Golomedov, A. E.; Astrakharchik, G. E.; Lozovik, Yu. E.

    2011-09-15

    A mesoscopic system of dipolar bosons trapped by a harmonic potential is considered. The system has a number of physical realizations including dipole excitons, atoms with large dipolar moment, polar molecules, and Rydberg atoms in inhomogeneous electric field. We carry out a diffusion Monte Carlo simulation to define the quantum properties of a two-dimensional system of trapped dipoles at zero temperature. In dimensionless units the system is described by two control parameters, namely, the number of particles and the strength of the interparticle interaction. We have shown that when the interparticle interaction is strong enough a mesoscopic crystal is formed. As the strength of interactions is decreased a multistage melting takes place. Off-diagonal order in the system is tested using natural-orbitals analysis. We have found that the system might be Bose condensed even in the case of strong interparticle interactions. There is a set of parameters for which a spatially ordered structure is formed while simultaneously the fraction of Bose-condensed particles is nonzero. This might be considered as a realization of a mesoscopic supersolid.

  20. Projected Dipole Model for Quantum Plasmonics.

    PubMed

    Yan, Wei; Wubs, Martijn; Asger Mortensen, N

    2015-09-25

    Quantum effects of plasmonic phenomena have been explored through ab initio studies, but only for exceedingly small metallic nanostructures, leaving most experimentally relevant structures too large to handle. We propose instead an effective description with the computationally appealing features of classical electrodynamics, while quantum properties are described accurately through an infinitely thin layer of dipoles oriented normally to the metal surface. The nonlocal polarizability of the dipole layer-the only introduced parameter-is mapped from the free-electron distribution near the metal surface as obtained with 1D quantum calculations, such as time-dependent density-functional theory (TDDFT), and is determined once and for all. The model can be applied in two and three dimensions to any system size that is tractable within classical electrodynamics, while capturing quantum plasmonic aspects of nonlocal response and a finite work function with TDDFT-level accuracy. Applying the theory to dimers, we find quantum corrections to the hybridization even in mesoscopic dimers, as long as the gap itself is subnanometric.

  1. Projected Dipole Model for Quantum Plasmonics

    NASA Astrophysics Data System (ADS)

    Yan, Wei; Wubs, Martijn; Asger Mortensen, N.

    2015-09-01

    Quantum effects of plasmonic phenomena have been explored through ab initio studies, but only for exceedingly small metallic nanostructures, leaving most experimentally relevant structures too large to handle. We propose instead an effective description with the computationally appealing features of classical electrodynamics, while quantum properties are described accurately through an infinitely thin layer of dipoles oriented normally to the metal surface. The nonlocal polarizability of the dipole layer—the only introduced parameter—is mapped from the free-electron distribution near the metal surface as obtained with 1D quantum calculations, such as time-dependent density-functional theory (TDDFT), and is determined once and for all. The model can be applied in two and three dimensions to any system size that is tractable within classical electrodynamics, while capturing quantum plasmonic aspects of nonlocal response and a finite work function with TDDFT-level accuracy. Applying the theory to dimers, we find quantum corrections to the hybridization even in mesoscopic dimers, as long as the gap itself is subnanometric.

  2. An alternate end design for SSC dipoles

    SciTech Connect

    Peters, C.; Caspi, S.; Taylor, C.

    1989-02-01

    Experience in the SSC dipole program has shown that fabrication of cylindrical coil ends is difficult. Cable stiffness requires large forces to maintain the proper position of the conductors in the end during winding. After winding, the coil ends remain distorted nd significant motion of the need conductors is required to force the coil end into the molding cavity. Local mechanical stresses are high during this process and extra pieces of insulation are required to prevent turn-to-turn shorts from developing during the winding and molding steps. Prior to assembly the coil end is compressed in a mold cavity and injected with a filler material to correct surface irregularities and fill voids in the end. LBL has developed an alternate design which permits the conductors to be wound over the end using minimal force and technician coerosion. The conductors are placed on a conical surface where the largest diameter over the outer layer conductors is 10 cm. No coil end spaces or insulation pieces between turns are required. The conductor geometry was analytically optimized to meet SSC multipole requirements for the ends. The first 1-m dipole utilizing this end geometry has been constructed and successfully tested. Design and construction data are presented. Also model test results, including training and multipole measurements of the end are given. 1 ref., 12 figs., 3 tabs.

  3. Progress toward 10 tesla accelerator dipoles

    SciTech Connect

    Hassenzahl, W.; Gilbert, G.; Taylor, C.; Meuser, R.

    1983-08-01

    A 9.1 T central field has been achieved in a Nb-Ti dipole operating in pressurized helium II at 1.8 K. Three different Nb-Ti dipoles, without iron yokes, have achieved central fields of 8.0, 8.6, and 9.1 T - all short sample performance for the conductors at 1.8 K. In helium I, at 4.3 K, the maximum central fields are from 1.5 to 2.0 T lower. Ten-tesla magnets have been designed for both Nb-Ti operating at 1.8 K and Nb/sub 3/Sn operating at 4.2 K. They are based on a very small beam aperture, (40 to 45 mm), very high current density in the superconductors (over 1000 A/mm/sup 2/), and a very low ratio of stabilizing copper to superconductor (about 1). Both layer and block designs have been developed that utilize Rutherford Cable. Magnet cycling from 0 to 6 T has been carried out for field change rate up to 1 T/s; the cyclic heating at 1 T/s is 36 W per meter. At a more representative rate of 0.2 T/s the heating rate is only 2 W/m. Progress in the program to use Nb/sub 3/Sn and NbTi superconductor, in 10 T accelerator magnets is also discussed.

  4. Dipole Alignment in Rotating MHD Turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.; Fu, Terry; Morin, Lee

    2012-01-01

    We present numerical results from long-term CPU and GPU simulations of rotating, homogeneous, magnetohydrodynamic (MHD) turbulence, and discuss their connection to the spherically bounded case. We compare our numerical results with a statistical theory of geodynamo action that has evolved from the absolute equilibrium ensemble theory of ideal MHD turbulence, which is based on the ideal MHD invariants are energy, cross helicity and magnetic helicity. However, for rotating MHD turbulence, the cross helicity is no longer an exact invariant, although rms cross helicity becomes quasistationary during an ideal MHD simulation. This and the anisotropy imposed by rotation suggests an ansatz in which an effective, nonzero value of cross helicity is assigned to axisymmetric modes and zero cross helicity to non-axisymmetric modes. This hybrid statistics predicts a large-scale quasistationary magnetic field due to broken ergodicity , as well as dipole vector alignment with the rotation axis, both of which are observed numerically. We find that only a relatively small value of effective cross helicity leads to the prediction of a dipole moment vector that is closely aligned (less than 10 degrees) with the rotation axis. We also discuss the effect of initial conditions, dissipation and grid size on the numerical simulations and statistical theory.

  5. SPEAR3 Gradient Dipole Core Fabrication

    SciTech Connect

    Li, Nanyang

    2003-07-29

    Traditional means of core fabrication are to glue the laminations or weld them to form the yoke structure. These means result in good yoke assemblies for shorter (<0.6m) magnets. However, because of weld distortions or mechanical strength limitations, welding and/or gluing techniques are difficult to gain high mechanical precision for longer cores. The SPEAR3 gradient dipoles are up to 1.45m long and require distortions of <0.05mm. Therefore, the SPEAR3 gradient dipole core design incorporated an assembly technique, originally devised for the PEPII insertion quadrupoles and later adapted for the ALS gradient magnets. This technique involved fabricating a rigid frame for the core, precisely stacking and compressing the laminations using hydraulic jacks and granite surfaces and straight edges, and fixing the laminations in the frame by filling the grooves between the laminations and frame using steel loaded epoxy. Although this technique has been used in the past, it has never been fully described and published. This paper is written to provide a detailed description of the procedure and to present measurement data demonstrating the mechanical precision and stiffness of the resulting product.

  6. Detecting the dipole moment of a single carbon monoxide molecule

    SciTech Connect

    Schwarz, A. Köhler, A.; Grenz, J.; Wiesendanger, R.

    2014-07-07

    Using non-contact atomic force microscopy with metallic tips enabled us to detect the electrostatic dipole moment of single carbon monoxide (CO) molecules adsorbed on three very different substrates. The observed distance dependent contrast can be explained by an interplay between the attractive van der Waals interaction and the repulsive electrostatic interaction, respectively, with the latter stemming from antiparallel aligned dipoles in tip and molecule. Our results suggest that metallic as well as CO-functionalized tips are able to probe electrostatic properties of polar molecules and that repulsive dipole-dipole interactions have to be considered when interpreting complex contrast patterns.

  7. Retardation of quantum uncertainty of two radiative dipoles

    NASA Astrophysics Data System (ADS)

    Shishkov, V. Yu.; Andrianov, E. S.; Pukhov, A. A.; Vinogradov, A. P.

    2017-06-01

    In this paper we consider the excitation of one quantum dipole by another in the deep quantum limit. We use a full quantum mechanical theory to describe the interaction of the dipoles through the electromagnetic field. Our nonperturbative analytical calculations result in the exact solution. We show that minimal quantum uncertainty of the dipole oscillation amplitudes, taken at different times, have a retarded character. It is demonstrated that the commutator of the dipole oscillation amplitudes becomes nonzero inside the light cone only. Moreover, due to radiation in free space the value of the commutator has a global maximum.

  8. International geomagnetic reference field 1965.0 in dipole coordinates

    NASA Technical Reports Server (NTRS)

    Mead, G. D.

    1970-01-01

    Computer program transforming spherical harmonic coefficients into arbitrarily tilted coordinate systems, tabulating coefficients of International Geomagnetic Reference Field 1965 in dipole coordinate system

  9. Giant perpendicular magnetocrystalline anisotropy of 3d transition-metal thin films on MgO

    SciTech Connect

    Nakamura, Kohji Ikeura, Yushi; Akiyama, Toru; Ito, Tomonori

    2015-05-07

    Magnetocrystalline anisotropy (MCA) of the Fe-based transition-metal thin films was investigated by means of first principles full-potential linearized augmented plane wave method. A giant perpendicular MCA (PMCA), up to 3 meV, was confirmed in a 7-layer Fe-Ni film/MgO(001), where an Fe{sub 2}/Ni/Fe/Ni/Fe{sub 2} atomic-layer alignment with a bcc-like-layer stacking and the Fe/MgO interfaces play key roles for leading to the large PMCA. Importantly, we find that the PMCA overcomes enough over the magnetic dipole-dipole anisotropy that favors the in-plane magnetization even when the film thickness increases.

  10. Ultrafast fluorescent decay induced by metal-mediated dipole-dipole interaction in two-dimensional molecular aggregates.

    PubMed

    Hu, Qing; Jin, Dafei; Xiao, Jun; Nam, Sang Hoon; Liu, Xiaoze; Liu, Yongmin; Zhang, Xiang; Fang, Nicholas X

    2017-09-19

    Two-dimensional molecular aggregate (2DMA), a thin sheet of strongly interacting dipole molecules self-assembled at close distance on an ordered lattice, is a fascinating fluorescent material. It is distinctively different from the conventional (single or colloidal) dye molecules and quantum dots. In this paper, we verify that when a 2DMA is placed at a nanometric distance from a metallic substrate, the strong and coherent interaction between the dipoles inside the 2DMA dominates its fluorescent decay at a picosecond timescale. Our streak-camera lifetime measurement and interacting lattice-dipole calculation reveal that the metal-mediated dipole-dipole interaction shortens the fluorescent lifetime to about one-half and increases the energy dissipation rate by 10 times that expected from the noninteracting single-dipole picture. Our finding can enrich our understanding of nanoscale energy transfer in molecular excitonic systems and may designate a unique direction for developing fast and efficient optoelectronic devices.

  11. Simulation of an Ice Giant-style Dynamo

    NASA Astrophysics Data System (ADS)

    Soderlund, K. M.; Aurnou, J. M.

    2010-12-01

    The Ice Giants, Uranus and Neptune, are unique in the solar system. These planets are the only known bodies to have multipolar magnetic fields where the quadrupole and octopole components have strengths comparable to or greater than that of the dipole. Cloud layer observations show that the planets also have zonal (east-west) flows that are fundamentally different from the banded winds of Jupiter and Saturn. The surface winds are characterized by strong retrograde equatorial jets that are flanked on either side by prograde jets at high latitudes. Thermal emission measurements of Neptune show that the surface energy flux pattern peaks in the equatorial and polar regions with minima at mid-latitudes. (The measurements for Uranus cannot adequately resolve the emission pattern.) The winds and magnetic fields are thought to be the result of convection in the planetary interior, which will also affect the heat flux pattern. Typically, it is implicitly assumed that the zonal winds are generated in a shallow layer, separate from the dynamo generation region. However, if the magnetic fields are driven near the surface, a single region can simultaneously generate both the zonal flows and the magnetic fields. Here, we present a novel numerical model of an Ice Giant-style dynamo to investigate this possibility. An order unity convective Rossby number (ratio of buoyancy to Coriolis forces) has been chosen because retrograde equatorial jets tend to occur in spherical shells when the effects of rotation are relatively weak. Our modeling results qualitatively reproduce all of the structural features of the global dynamical observations. Thus, a self-consistent model can generate magnetic field, zonal flow, and thermal emission patterns that agree with those of Uranus and Neptune. This model, then, leads us to hypothesize that the Ice Giants' zonal flows and magnetic fields are generated via dynamically coupled deep convection processes.

  12. Polymyalgia Rheumatica and Giant Cell Arteritis

    MedlinePlus

    ... Clinical Trial Journal Articles Polymyalgia Rheumatica and Giant Cell Arteritis May 2016 Questions and Answers about Polymyalgia Rheumatica and Giant Cell Arteritis This publication contains general information about polymyalgia ...

  13. Giant cell tumour of the mandibular condyle.

    PubMed

    Della Sala, S W; Recla, M; Campolongo, F; Bortot, G; Bauer, M; Peterlongo, P

    1996-01-01

    The authors report a case of giant cell tumour of the mandibular condyle, which is a rare finding. This tumour, studied using the main three radiological modalities (plain radiography, CT and MRI) showed characteristic radiological features of "giant cell tumour".

  14. Giant lobelias exemplify convergent evolution.

    PubMed

    Givnish, Thomas J

    2010-01-14

    Giant lobeliads on tropical mountains in East Africa and Hawaii have highly unusual, giant-rosette growth forms that appear to be convergent on each other and on those of several independently evolved groups of Asteraceae and other families. A recent phylogenetic analysis by Antonelli, based on sequencing the widest selection of lobeliads to date, raises doubts about this paradigmatic example of convergent evolution. Here I address the kinds of evidence needed to test for convergent evolution and argue that the analysis by Antonelli fails on four points. Antonelli's analysis makes several important contributions to our understanding of lobeliad evolution and geographic spread, but his claim regarding convergence appears to be invalid. Giant lobeliads in Hawaii and Africa represent paradigmatic examples of convergent evolution.

  15. Structure of giant muscle proteins

    PubMed Central

    Meyer, Logan C.; Wright, Nathan T.

    2013-01-01

    Giant muscle proteins (e.g., titin, nebulin, and obscurin) play a seminal role in muscle elasticity, stretch response, and sarcomeric organization. Each giant protein consists of multiple tandem structural domains, usually arranged in a modular fashion spanning 500 kDa to 4 MDa. Although many of the domains are similar in structure, subtle differences create a unique function of each domain. Recent high and low resolution structural and dynamic studies now suggest more nuanced overall protein structures than previously realized. These findings show that atomic structure, interactions between tandem domains, and intrasarcomeric environment all influence the shape, motion, and therefore function of giant proteins. In this article we will review the current understanding of titin, obscurin, and nebulin structure, from the atomic level through the molecular level. PMID:24376425

  16. CMB lensing and giant rings

    SciTech Connect

    Rathaus, Ben; Itzhaki, Nissan E-mail: ben.rathaus@gmail.com

    2012-05-01

    We study the CMB lensing signature of a pre-inationary particle (PIP), assuming it is responsible for the giant rings anomaly that was found recently in the WMAP data. Simulating Planck-like data we find that generically the CMB lensing signal to noise ratio associated with such a PIP is quite small and it would be difficult to cross correlate the temperature giant rings with the CMB lensing signal. However, if the pre-inationary particle is also responsible for the bulk flow measured from the local large scale structure, which happens to point roughly at the same direction as the giant rings, then the CMB lensing signal to noise ratio is fairly significant.

  17. Giant lobelias exemplify convergent evolution

    PubMed Central

    2010-01-01

    Giant lobeliads on tropical mountains in East Africa and Hawaii have highly unusual, giant-rosette growth forms that appear to be convergent on each other and on those of several independently evolved groups of Asteraceae and other families. A recent phylogenetic analysis by Antonelli, based on sequencing the widest selection of lobeliads to date, raises doubts about this paradigmatic example of convergent evolution. Here I address the kinds of evidence needed to test for convergent evolution and argue that the analysis by Antonelli fails on four points. Antonelli's analysis makes several important contributions to our understanding of lobeliad evolution and geographic spread, but his claim regarding convergence appears to be invalid. Giant lobeliads in Hawaii and Africa represent paradigmatic examples of convergent evolution. PMID:20074322

  18. Atmospheres of Extrasolar Giant Planets

    NASA Astrophysics Data System (ADS)

    Marley, M. S.; Fortney, J.; Seager, S.; Barman, T.

    The key to understanding an extrasolar giant planet's spectrum - and hence its detectability and evolution - lies with its atmosphere. Now that direct observations of thermal emission from extrasolar giant planets (EGPs) are in hand, atmosphere models can be used to constrain atmospheric composition, thermal structure, and ultimately the formation and evolution of detected planets. We review the important physical processes that influence the atmospheric structure and evolution of EGPs and consider what has already been learned from the first generation of observations and modeling. We pay particular attention to the roles of cloud structure, metallicity, and atmospheric chemistry in affecting detectable properties through Spitzer Space Telescope observations of the transiting giant planets. Our review stresses the uncertainties that ultimately limit our ability to interpret EGP observations. Finally we will conclude with a look to the future as characterization of multiple individual planets in a single stellar system leads to the study of comparative planetary architectures.

  19. Some requirements for the future giant low frequency ground based radio telescopes

    NASA Astrophysics Data System (ADS)

    Konovalenko, A. A.; Falkovich, I. S.; Gridin, A. A.; Lecheux, A.; Rosolen, C.; Rucker, H.

    2003-04-01

    During last years the interest to the low frequency radio astronomy is growing considerably. The projects of space-borne and ground-based new generation giant radio telescope (i.e. LOFAR) are discussed actively. The largest existing low frequency systems, at first, UTR-2 and URAN Ukraine) and NDA (France) are useful for the probing of new astrophysical ideas as well as of new technical approaches and requirements including future giant radio telescopes and solar system radio astronomy purposes. The 30 elements array with active dipoles was created on UTR-2 observatory for the test of some principal requirements. The investigations of the array confirmed the sensitivity, frequency range, interference immunity and low cost what need for the future instruments.

  20. Review of Giant cell arteritis

    PubMed Central

    Chacko, Joseph G.; Chacko, J. Anthony; Salter, Michael W.

    2014-01-01

    Giant-cell arteritis (GCA) is a systemic autoimmune disease affecting primarily the elderly. Giant cell arteritis can cause sudden and potentially bilateral sequential vision loss in the elderly. Therefore, it is considered a medical emergency in ophthalmology and a significant cause of morbidity in an increasingly aging population. Ophthalmologists need to be able to recognize the classic symptoms and signs of this disease, and then be able to work-up and treat these patients in an efficient manner. An in-depth review of GCA from the literature as well as personal clinical experience follows. PMID:25859139

  1. Molecular Line and Continuum Opacities for Modeling of Extrasolar Giant Planet and Cool Stellar Atmospheres

    NASA Technical Reports Server (NTRS)

    Weck, P. F.; Schweitzer, A.; Stancil, P. C.; Hauschildt, P. H.; Kirby, K.; Yamaguchi, Y.; Allen, W. D.

    2002-01-01

    The molecular line and continuum opacities are investigated in the atmospheres of cool stars and Extrasolar Giant Planets (EGPs). Using a combination of ab inito and experimentally derived potential curves and dipole transition moments, accurate data have been calculated for rovibrationally-resolved oscillator strengths and photodissociation cross sections in the B' (sup 2)Sigma+ (left arrow) X (sup 2)Sigma+ and A (sup 2)Pi (left arrow) X (sup 2)Sigma+ band systems in MgH. We also report our progress on the study of the electronic structure of LiCl and FeH.

  2. Charting the Giants

    NASA Astrophysics Data System (ADS)

    2004-06-01

    zero expansion asymptotically after an infinite time and has a flat geometry). All three observational tests by means of supernovae (green), the cosmic microwave background (blue) and galaxy clusters converge at a Universe around Ωm ~ 0.3 and ΩΛ ~ 0.7. The dark red region for the galaxy cluster determination corresponds to 95% certainty (2-sigma statistical deviation) when assuming good knowledge of all other cosmological parameters, and the light red region assumes a minimum knowledge. For the supernovae and WMAP results, the inner and outer regions corespond to 68% (1-sigma) and 95% certainty, respectively. References: Schuecker et al. 2003, A&A, 398, 867 (REFLEX); Tonry et al. 2003, ApJ, 594, 1 (supernovae); Riess et al. 2004, ApJ, 607, 665 (supernovae) Galaxy clusters are far from being evenly distributed in the Universe. Instead, they tend to conglomerate into even larger structures, "super-clusters". Thus, from stars which gather in galaxies, galaxies which congregate in clusters and clusters tying together in super-clusters, the Universe shows structuring on all scales, from the smallest to the largest ones. This is a relict of the very early (formation) epoch of the Universe, the so-called "inflationary" period. At that time, only a minuscule fraction of one second after the Big Bang, the tiny density fluctuations were amplified and over the eons, they gave birth to the much larger structures. Because of the link between the first fluctuations and the giant structures now observed, the unique REFLEX catalogue - the largest of its kind - allows astronomers to put considerable constraints on the content of the Universe, and in particular on the amount of dark matter that is believed to pervade it. Rather interestingly, these constraints are totally independent from all other methods so far used to assert the existence of dark matter, such as the study of very distant supernovae (see e.g. ESO PR 21/98) or the analysis of the Cosmic Microwave background (e

  3. Giant right atrial thrombi treated with thrombolysis

    PubMed Central

    Ruiz-Bailén, Manuel; López-Caler, Carmen; Castillo-Rivera, Ana; Rucabado-Aguilar, Luis; Cuadra, José Ángel Ramos; Toral, Juan Lara; Cabezas, Cristobal Lozano; Guerrero, Juan Carlos Fernández

    2008-01-01

    The present report describes giant atrial thrombi that were treated with thrombolysis in a community hospital. Two patients with giant atrial thrombi whose treatment involved complications are presented. Both patients developed cardiogenic shock and were treated unsuccessfully with thrombolysis. Because thrombolysis of giant thrombi may be ineffective, patients in this situation may require surgery. PMID:18401474

  4. Cabergoline treatment in invasive giant prolactinoma.

    PubMed

    Alsubaie, Sadeem; Almalki, Mussa H

    2014-01-01

    Patients with invasive giant prolactinoma suffer from a constellation of symptoms including headache, blurred vision, lethargy, and sexual dysfunction. Cabergoline, a potent dopamine agonist, is a known medication prescribed for the treatment of invasive giant prolactinoma. Here, we report a case of invasive giant prolactinoma in a 52-year-old Saudi male with dramatic response to cabergoline treatment clinically, biochemically, and radiologically.

  5. Giant right atrial thrombi treated with thrombolysis.

    PubMed

    Ruiz-Bailén, Manuel; López-Caler, Carmen; Castillo-Rivera, Ana; Rucabado-Aguilar, Luis; Ramos Cuadra, José Angel; Lara Toral, Juan; Lozano Cabezas, Cristobal; Fernández Guerrero, Juan Carlos

    2008-04-01

    The present report describes giant atrial thrombi that were treated with thrombolysis in a community hospital. Two patients with giant atrial thrombi whose treatment involved complications are presented. Both patients developed cardiogenic shock and were treated unsuccessfully with thrombolysis. Because thrombolysis of giant thrombi may be ineffective, patients in this situation may require surgery.

  6. Concentric Titled Double-Helix Dipole Magnets

    SciTech Connect

    Rainer Meinke, Ph.D; Carl Goodzeit; Millicent Ball, Ph.D

    2003-09-05

    The high magnetic fields required for future accelerator magnets can only be achieved with Nb3Sn, other A15 or HTS type conductors, which are brittle and sensitive to mechanical strain. The traditional ''cosine-theta'' dipole configuration has intrinsic drawbacks that make it difficult and expensive to employ such conductors in these designs. Some of these problems involve (1) difficulty in applying enough pre-stress to counteract Lorentz forces without compromising conductor performance; (2) small minimum bend radii of the conductor necessitating the intricate wind-and-react coil fabrication; (3) complex spacers in particular for coil ends and expensive tooling for coil fabrication; (4) typically only 2/3 of the coil aperture can be used with achievable field uniformity.

  7. SSC collider dipole magnets field angle data

    SciTech Connect

    Kuchnir, M.; Bleadon, M.; Schmidt, E.; Bossert, R.; Carson, J.; Delchamps, S.W.; Gourlay, S.; Hanft, R.; Koska, W.; Lamm, M.J.; Mazur, P.O.; Orris, D.; Ozelis, J.; Strait, J.; Wake, M. ); DiMarco, J.; Devred, A.; Kuzminski, J.; Yu, Y.; Zheng, H. ); Ogitsu, T. (Superconducting Super Collider

    1992-09-01

    In the fabrication of both 40 and 50 mm collider dipole superconducting magnets, surveys of the direction of the magnetic field along their length have been taken. This data besides being used for certifying compliance with the specifications for the finished magnet, yields interesting information on the straightness and rigidity of the coil placement between some stages in their manufacture and testing. A discussion on the measuring equipment and procedures is given. All of the 40 mm magnets that were built or cryostat at Fermilab have at least one of these surveys, and a summary of the data on them is presented. Most of the 50 mm magnets built and cold tested at Fermilab have been surveyed before and after insertion in the cryostat and before and after being cold tested. A summary of this data is also presented.

  8. Nuclear electric dipole moment of 3He

    SciTech Connect

    Stetcu, Ionel; Friar, J L; Hayes, A C; Liu, C P; Navratil, P

    2008-01-01

    In the no-core shell model (NCSM) framework, we calculate the {sup 3}He electric dipole moment (EDM) generated by parity- and time-reversal violation in the nucleon-nucleon interaction. While the results are somehow sensitive to the interaction model chosen for the strong two- and three-body interactions, we demonstrate the pion-exchange dominance to the EDM of {sup 3}He, if the coupling constants for {pi}, {rho} and {omega}-exchanges are of comparable magnitude, as expected. Finally, our results suggest that a measurement of {sup 3}He EDM would be complementary to the currently planned neutron and deuteron experiments, and would constitute a powerful constraint to the models of the pion P- and T-violating interactions.

  9. Active flutter suppression using dipole filters

    NASA Technical Reports Server (NTRS)

    Srinathkumar, S.; Waszak, Martin R.

    1992-01-01

    By using traditional control concepts of gain root locus, the active suppression of a flutter mode of a flexible wing is examined. It is shown that the attraction of the unstable mode towards a critical system zero determines the degree to which the flutter mode can be stabilized. For control situations where the critical zero is adversely placed in the complex plane, a novel compensation scheme called a 'Dipole' filter is proposed. This filter ensures that the flutter mode is stabilized with acceptable control energy. The control strategy is illustrated by designing flutter suppression laws for an active flexible wing (AFW) wind-tunnel model, where minimal control effort solutions are mandated by control rate saturation problems caused by wind-tunnel turbulence.

  10. BEAM MANIPULATION WITH AN RF DIPOLE.

    SciTech Connect

    BAI,M.

    1999-03-29

    Coherent betatron motion adiabatically excited by an RF dipole has been successfully employed to overcome strong intrinsic spin depolarization resonances in the AGS, while a solenoid partial snake has been used to correct imperfection spin resonances. The experimental results showed that a full spin flip was obtained in passing through an intrinsic spin resonance when all the beam particles were forced to oscillate coherently at a large amplitude without diluting the beam emittance. With this method, we have successfully accelerated polarized beam up to 23.5 GeV/c. A new type of second order spin resonances was also discovered. As a non-destructive manipulation, this method can also be used for nonlinear beam dynamics studies and beam diagnosis such as measuring phase advance and betatron amplitude function.

  11. Near-Field Magnetic Dipole Moment Analysis

    NASA Technical Reports Server (NTRS)

    Harris, Patrick K.

    2003-01-01

    This paper describes the data analysis technique used for magnetic testing at the NASA Goddard Space Flight Center (GSFC). Excellent results have been obtained using this technique to convert a spacecraft s measured magnetic field data into its respective magnetic dipole moment model. The model is most accurate with the earth s geomagnetic field cancelled in a spherical region bounded by the measurement magnetometers with a minimum radius large enough to enclose the magnetic source. Considerably enhanced spacecraft magnetic testing is offered by using this technique in conjunction with a computer-controlled magnetic field measurement system. Such a system, with real-time magnetic field display capabilities, has been incorporated into other existing magnetic measurement facilities and is also used at remote locations where transport to a magnetics test facility is impractical.

  12. Magnetic field decay in model SSC dipoles

    SciTech Connect

    Gilbert, W.S.; Althaus, R.F.; Barale, P.J.; Benjegerdes, R.W.; Green, M.A.; Green, M.I.; Scanlan, R.M.

    1988-08-01

    We have observed that some of our model SSC dipoles have long time constant decays of the magnetic field harmonics with amplitudes large enough to result in significant beam loss, if they are not corrected. The magnets were run at constant current at the SSC injection field level of 0.3 tesla for one to three hours and changes in the magnetic field were observed. One explanation for the observed field decay is time dependent superconductor magnetization. Another explanation involves flux creep or flux flow. Data are presented on how the decay changes with previous flux history. Similar magnets with different Nb-Ti filament spacings and matrix materials have different long time field decay. A theoretical model using proximity coupling and flux creep for the observed field decay is discussed. 10 refs., 5 figs., 2 tabs.

  13. Quench propagation in the SSC dipole magnets

    SciTech Connect

    Lopez, G.; Snitchler, G.

    1990-09-01

    The effects of quench propagation are modeled in 40mm and 50mm diameter collider dipole magnet designs. A comparative study of the cold diode (passive) and quench heater (active) protection schemes will be presented. The SSCQ modeling program accurately simulates the axial quench velocity and uses phenomenological time delays for turn-to-turn transverse propagation. The axial quench velocity is field dependent and consequently, each conductor's quench profile is tracked separately. No symmetry constraints are employed and the distribution of the temperatures along the conductor differs from the adiabatic approximation. A single magnet has a wide margin of self protection which suggests that passive protection schemes must be considered. 6 refs., 3 figs., 1 tab.

  14. Nonlinear light scattering by a dipole monolayer

    NASA Astrophysics Data System (ADS)

    Averbukh, B. B.; Averbukh, I. B.

    2013-08-01

    Scattering of a strong p-polarized monochromatic field by a dipole monolayer is considered. It is shown that a triplet should be observed at incident angles (between the wave vector of the incident wave and the normal to the monolayer surface) not too close to π/2 in the spectrum of the scattered radiation. For grazing incidence of a strong field on the monolayer, waves with frequencies of the strong field and the high-frequency component of the triplet scatter forward and backward. In this case, radiation with frequency of the low-frequency component of the triplet propagates in the form of two inhomogeneous waves along the monolayer on both sides of it, exponentially decaying with distance from the monolayer.

  15. Electric dipole moments: A global analysis

    NASA Astrophysics Data System (ADS)

    Chupp, Timothy; Ramsey-Musolf, Michael

    2015-03-01

    We perform a global analysis of searches for the permanent electric dipole moments (EDMs) of the neutron, neutral atoms, and molecules in terms of six leptonic, semileptonic, and nonleptonic interactions involving photons, electrons, pions, and nucleons. By translating the results into fundamental charge-conjugation-parity symmetry (CP) violating effective interactions through dimension six involving standard model particles, we obtain rough lower bounds on the scale of beyond the standard model CP-violating interactions ranging from 1.5 TeV for the electron EDM to 1300 TeV for the nuclear spin-independent electron-quark interaction. We show that planned future measurements involving systems or combinations of systems with complementary sensitivities to the low-energy parameters may extend the mass reach by an order of magnitude or more.

  16. Intrinsic surface dipole in topological insulators.

    PubMed

    Fregoso, Benjamin M; Coh, Sinisa

    2015-10-28

    We calculate the local density of states of two prototypical topological insulators (Bi2Se3 and Bi2Te2Se) as a function of distance from the surface within density functional theory. We find that, in the absence of disorder or doping, there is a 2 nm thick surface dipole the origin of which is the occupation of the topological surface states above the Dirac point. As a consequence, the bottom of the conduction band is bent upward by about 75 meV near the surface, and there is a hump-like feature associated with the top of the valence band. We expect that band bending will occur in all pristine topological insulators as long as the Fermi level does not cross the Dirac point. Our results show that topological insulators are intrinsic Schottky barrier solar cells.

  17. Helical dipole magnets for polarized protons in RHIC

    SciTech Connect

    Syphers, M.; Courant, E.; Fischer, W.

    1997-07-01

    Superconducting helical dipole magnets will be used in the Brookhaven Relativistic Heavy Ion Collider (RHIC) to maintain polarization of proton beams and to perform localized spin rotations at the two major experimental detector regions. Requirements for the helical dipole system are discussed, and magnet prototype work is reported.

  18. Electric dipole moment of the electron and of the neutron

    NASA Technical Reports Server (NTRS)

    Barr, S. M.; Zee, A.

    1990-01-01

    It is shown that if Higgs-boson exchange mediates CP violation a significant electric dipole moment for the electron can result. Analogous effects can contribute to the neutron's electric dipole moment at a level competitive with Weinberg's three-gluon operator.

  19. Plasma expansion in the presence of a dipole magnetic field

    SciTech Connect

    Winske, D.; Omidi, N.

    2005-07-15

    Simulations of the initial expansion of a plasma injected into a stationary magnetized background plasma in the presence of a dipole magnetic field are carried out in two dimensions with a kinetic ion, massless fluid electron (hybrid) electromagnetic code. For small values of the magnetic dipole, the injected ions have large gyroradii compared to the scale length of the dipole field and are essentially unmagnetized. As a result, these ions expand, excluding the ambient magnetic field and plasma to form a diamagnetic cavity. However, for stronger magnetic dipoles, the ratio of the gyroradii of the injected ions to the dipole field scale length is small so that they remain magnetized, and hence trapped in the dipole field, as they expand. The trapping and expansion then lead to additional plasma currents and resulting magnetic fields that not only exclude the background field but also interact with the dipole field in a more complex manner that stretches the closed dipole field lines. A criterion to distinguish between the two regimes is derived and is then briefly discussed in the context of applying the results to the plasma sail scheme for the propulsion of small spacecraft in the solar wind.

  20. Dipole power supply for National Synchrotron Light Source Booster upgrade

    SciTech Connect

    Olsen, R.; Dabrowski, J.; Murray, J.

    1992-12-31

    The booster at the NSLS is being upgraded from .75 to 2 pulses per second. To accomplish this, new power supplies for the dipole, quadrupole, and sextupole magnets have been designed and are being constructed. This paper will outline the design of the dipole power supply and control system, and will present results obtained thus far.