Science.gov

Sample records for isospin dependent pairing

  1. Effect of isospin dependence of radius on transverse flow and fragmentation in isobaric pairs

    NASA Astrophysics Data System (ADS)

    Gautam, Sakshi

    2013-11-01

    We study the role of nuclear structure effects through radius in reaction dynamics via transverse flow and multifragmentation of isobaric colliding pairs. Our study reveals that isospin-dependent radius [proposed by Royer and Rousseau [Eur. Phys. J. A10.1140/epja/i2008-10745-8 42, 541 (2009)] has significant effect towards isospin effects. The collective flow behavior and fragmentation pattern of neutron-rich system with respect to neutron-deficient system is found to get reversed with isospin-dependent radius compared to that with liquid drop radius.

  2. Isospin Dependent Pairing Interactions and BCS-BEC crossover

    SciTech Connect

    Sagawa, H.; Margueron, J.; Hagino, K.

    2008-11-11

    We propose new types of density dependent contact pairing interaction which reproduce the pairing gaps in symmetric and neutron matters obtained by a microscopic treatment based on the realistic nucleon-nucleon interaction. The BCS-BEC crossover of neutrons pairs in symmetric and asymmetric nuclear matters is studied by using these contact interactions. It is shown that the bare and screened pairing interactions lead to different features of the BCS-BEC crossover in symmetric nuclear matter. We perform Hartree-Fock-Bogoliubov (HFB) calculations for semi-magic Calcium, Nickel, Tin and Lead isotopes and N = 20, 28, 50 and 82 isotones using these density-dependent pairing interactions. Our calculations well account for the experimental data for the neutron number dependence of binding energy, two neutrons separation energy, and odd-even mass staggering of these isotopes. Especially the interaction IS+IV Bare without the medium polarization effect gives satisfactory results for all the isotopes.

  3. Isospin Dependence of Pion Absorption on Nucleon Pairs at Tπ=65 MeV

    NASA Astrophysics Data System (ADS)

    Moinester, M. A.; Gill, D. R.; Vincent, J.; Ashery, D.; Levenson, S.; Alster, J.; Altman, A.; Lichtenstadt, J.; Piasetzky, E.; Aniol, K. A.; Johnson, R. R.; Roser, H. W.; Tacik, R.; Gyles, W.; Barnett, B.; Sobie, R. J.; Gubler, H. P.

    1984-04-01

    Angular distributions of differential cross sections were measured for the first time for pion absorption on a T=1, S=0 nucleon pair and for absorption on a T=0, S=1 pair in the 3He nucleus. A large isospin dependence is observed in the differential cross sections. The ratio of cross sections σ(3He(π+,2p))σ(3He(π-,pn)) is 15.2+/-1.2. The results show evidence of an isoscalar component of the final state in the reaction 3He(π-,pn)n, which cannot be mediated by Δ resonance formation.

  4. Isospin dependence of the three-nucleon force

    SciTech Connect

    Evgeny Epelbaum; Ulf-G. Meissner; Juan Palomar

    2004-07-01

    We classify A--nucleon forces according to their isospin dependence and discuss the most general isospin structure of the three--nucleon force. We derive the leading and subleading isospin--breaking corrections to the three--nucleon force using the framework of chiral effective field theory.

  5. Dependence of fusion on isospin dynamics

    NASA Astrophysics Data System (ADS)

    Godbey, K.; Umar, A. S.; Simenel, C.

    2017-01-01

    We introduce a new microscopic approach to calculate the dependence of fusion barriers and cross sections on isospin dynamics. The method is based on the time-dependent Hartree-Fock theory and the isoscalar and isovector properties of the energy density functional (EDF). The contribution to the fusion barriers originating from the isoscalar and isovector parts of the EDF is calculated. It is shown that, for nonsymmetric systems, the isovector dynamics influence the subbarrier fusion cross sections. For most systems this results in an enhancement of the subbarrier cross sections, while for others we observe differing degrees of hindrance. We use this approach to provide an explanation of recently measured fusion cross sections which show a enhancement at low Ec .m . energies for the system 40Ca+132Sn as compared with the more neutron-rich system 48Ca+132Sn and discuss the dependence of subbarrier fusion cross sections on transfer.

  6. Dependence on Spin and Isospin of Short-Range Nuclear Forces in Modified OPEG

    NASA Astrophysics Data System (ADS)

    Tamagaki, R.; Takatsuka, T.

    2001-06-01

    Dependence on spin and isospin of nucleon-nucleon potentials at small inernucleon distances is studied by observing the operator forms deduced from two modified versions of OPEG potentials with the OPEP-tail and Gaussian core terms. A significant difference between their spin- and isospin-dependent features in the core region is noted.

  7. Isospin asymmetry dependence of the α spectroscopic factor for heavy nuclei

    NASA Astrophysics Data System (ADS)

    Seif, W. M.; Shalaby, M.; Alrakshy, M. F.

    2011-12-01

    Both the valence nucleons (holes) and the isospin asymmetry dependencies of the preformation probability of an α-cluster inside parents radioactive nuclei are investigated. The calculations are employed in the framework of the density-dependent cluster model of an α-decay process for the even-even spherical parents nuclei with protons number around the closed shell Z0 = 82 and neutrons number around the closed shells Z0 = 82 and Z0 = 126. The microscopic α-daughter nuclear interaction potential is calculated in the framework of the Hamiltonian energy density approach based on the SLy4 Skyrme-like effective interaction. Also, the calculations based on the realistic effective M3Y-Paris nucleon-nucleon force have been used to confirm the results. The calculations then proceed to find the assault frequency and the α penetration probability within the WKB approximation. The half-lives of the different mentioned α decays are then determined and have been used in turn to find the α spectroscopic factor. We found that the spectroscopic factor increases with increasing the isospin asymmetry of the parent nuclei if they have valence protons and neutrons. When the parent nuclei have neutron or proton holes in addition to the valence protons or neutrons, then the spectroscopic factor is found to decrease with increasing isospin asymmetry. The obtained results show also that the deduced spectroscopic factors follow individual linear behaviors as a function of the multiplication of the valence proton (Np) and neutron (Nn) numbers. These linear dependencies are correlated with the closed shells core (Z0,N0). The same individual linear behaviors are obtained as a function of the multiplication of NpNn and the isospin asymmetry parameter, NpNnI. Moreover, the whole deduced spectroscopic factors are found to exhibit a nearly general linear trend with the function NpNn/(Z0+N0).

  8. Valley-isospin dependence of the quantum Hall effect in a graphene p-n junction

    NASA Astrophysics Data System (ADS)

    Tworzydło, J.; Snyman, I.; Akhmerov, A. R.; Beenakker, C. W. J.

    2007-07-01

    We calculate the conductance G of a bipolar junction in a graphene nanoribbon, in the high-magnetic-field regime where the Hall conductance in the p -doped and n -doped regions is 2e2/h . In the absence of intervalley scattering, the result G=(e2/h)(1-cosΦ) depends only on the angle Φ between the valley isospins ( =Bloch vectors representing the spinor of the valley polarization) at the two opposite edges. This plateau in the conductance versus Fermi energy is insensitive to electrostatic disorder, while it is destabilized by the dispersionless edge state which may exist at a zigzag boundary. A strain-induced vector potential shifts the conductance plateau up or down by rotating the valley isospin.

  9. Isospin Dependence of Incomplete Fusion Reactions at 25 MeV/Nucleon

    SciTech Connect

    Amorini, F.; Agodi, C.; Alba, R.; Anzalone, A.; Coniglione, R.; Di Pietro, A.; Figuera, P.; Maiolino, C.; Santonocito, D.; Sapienza, P.; Cardella, G.; Papa, M.; De Filippo, E.; Pagano, A.; Pirrone, S.; Verde, G.; Giuliani, G.; Berceanu, I.; Pop, A.; Cavallaro, S.

    2009-03-20

    {sup 40}Ca+{sup 40,48}Ca,{sup 46}Ti reactions at 25 MeV/nucleon have been studied using the 4{pi} CHIMERA detector. An isospin effect on the competition between fusionlike and binarylike reaction mechanisms has been observed. The probability of producing a heavy residue is lower in the case of N{approx_equal}Z colliding systems as compared to the case of reactions induced on the neutron rich {sup 48}Ca target. Predictions based on constrained molecular dynamics II calculations show that the competition between fusionlike and binary reactions in the selected centrality bins can constrain the parametrization of the symmetry energy and its density dependence in the nuclear equation of state.

  10. Exploring the extended density-dependent Skyrme effective forces for normal and isospin-rich nuclei to neutron stars

    SciTech Connect

    Agrawal, B.K.; Dhiman, Shashi K.; Kumar, Raj

    2006-03-15

    We parametrize the recently proposed generalized Skyrme effective force (GSEF) containing extended density dependence. The parameters of the GSEF are determined by the fit to several properties of the normal and isospin-rich nuclei. We also include in our fit a realistic equation of state for the pure neutron matter up to high densities so that the resulting Skyrme parameters can be suitably used to model the neutron star with the 'canonical' mass ({approx}1.4M{sub {center_dot}}). For the appropriate comparison, we generate a parameter set for the standard Skyrme effective force (SSEF) using exactly the same set data as employed to determine the parameters of the GSEF. We find that the GSEF yields larger values for the neutron skin thickness which are closer to the recent predictions based on the isospin diffusion data. The Skyrme parameters so obtained are employed to compute the strength function for the isoscalar giant monopole, dipole, and quadrupole resonances. It is found that in the case of GSEF, because of the larger value of the nucleon effective mass, the values of centroid energies for the isoscalar giant resonances are in better agreement with the corresponding experimental data than those obtained using the SSEF. We also present results for some of the key properties associated with the neutron star of canonical mass and for the one with the maximum mass.

  11. Global analysis of isospin dependent microscopic nucleon-nucleus optical potentials in a Dirac-Brueckner-Hartree-Fock approach

    NASA Astrophysics Data System (ADS)

    Xu, Ruirui; Ma, Zhongyu; Zhang, Yue; Tian, Yuan; van Dalen, E. N. E.; Müther, H.

    2016-09-01

    Background: For the study of exotic nuclei it is important to have an optical model potential that is reliable not only for stable nuclei but can also be extrapolated to nuclear systems with exotic numbers of protons and neutrons. An efficient way to obtain such a potential is to develop a microscopic optical potential (MOP) based on a fundamental theory with a minimal number of free parameters, which are adjusted to describe stable nuclei all over the nuclide chart. Purpose: The choice adopted in the present work is to develop the MOP within a relativistic scheme which provides a natural and consistent relation between the spin-orbit part and the central part of the potential. The Dirac-Brueckner-Hartree-Fock (DBHF) approach provides such a microscopic relativistic scheme, which is based on a realistic nucleon-nucleon interaction and reproduces the saturation properties of symmetric nuclear matter without any adjustable parameter. Its solution using the projection technique within the subtracted T -matrix representation provides a reliable extension to asymmetric nuclear matter, which is important to describe the features of isospin asymmetric nuclei. The present work performs a global analysis of the isospin dependent nucleon-nucleus MOP based on the DBHF calculation in symmetric and asymmetric nuclear matter. Methods: The DBHF approach is used to evaluate the relativistic structure of the nucleon self-energies in nuclear matter at various densities and asymmetries. The Schrödinger equivalent potentials of finite nuclei are derived from these Dirac components by a local density approximation (LDA). The density distributions of finite nuclei are taken from the Hartree-Fock-Bogoliubov approach with Gogny D1S force. An improved LDA approach (ILDA) is employed to get a better prediction of the scattering observables. A χ2 assessment system based on the global simulated annealing algorithm is developed to optimize the very few free components in this study. Results

  12. Neutron-proton effective mass splitting in neutron-rich matter at normal density from analyzing nucleon-nucleus scattering data within an isospin dependent optical model

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Hua; Guo, Wen-Jun; Li, Bao-An; Chen, Lie-Wen; Fattoyev, Farrukh J.; Newton, William G.

    2015-04-01

    The neutron-proton effective mass splitting in asymmetric nucleonic matter of isospin asymmetry δ and normal density is found to be mn-p* ≡ (mn* - mp*) / m = (0.41 ± 0.15) δ from analyzing globally 1088 sets of reaction and angular differential cross sections of proton elastic scattering on 130 targets with beam energies from 0.783 MeV to 200 MeV, and 1161 sets of data of neutron elastic scattering on 104 targets with beam energies from 0.05 MeV to 200 MeV within an isospin dependent non-relativistic optical potential model. It sets a useful reference for testing model predictions on the momentum dependence of the nucleon isovector potential necessary for understanding novel structures and reactions of rare isotopes.

  13. Isospinning baby Skyrmion solutions

    NASA Astrophysics Data System (ADS)

    Battye, Richard A.; Haberichter, Mareike

    2013-12-01

    We perform full two-dimensional (2D) numerical relaxations of isospinning soliton solutions in the baby Skyrme model in which the global O(3) symmetry is broken by the 2D analogue of the pion mass term in the Skyrme model. In our calculations we explicitly allow the isospinning solitons to deform and to break the symmetries of the static configurations. We find that stable isospinning baby Skyrme solutions can be constructed numerically for all angular frequencies ω≤min⁡(μ,1), where μ is the mass parameter of the model. Stable, rotationally symmetric baby Skyrmion solutions for higher angular velocities are simply an artefact of the hedgehog approximation. Isospinning multisoliton solutions of topological charge B turn out to be unstable to break up into their B charge-1 constituents at some critical breakup frequency value. Furthermore, we find that for μ sufficiently large the rotational symmetry of charge-2 baby Skyrmions becomes broken at a critical angular frequency ω.

  14. Ginocchio model with isospin

    NASA Astrophysics Data System (ADS)

    Okai, Tadashi; Otsuka, Takaharu; Arima, Akito

    1992-02-01

    We study the sp(8) subgroup of the isospin-invariant Ginnocchio model. The allowed quantum numbers are determined in terms of Young's diagrams. Using this result, we discuss the excitation energy of a model hamiltonian.

  15. Spatial dependence of pairing in deformed nuclei

    SciTech Connect

    Balbutsev, E. B.; Malov, L. A.; Schuck, P.

    2011-11-15

    The solution of time-dependent Hartree-Fock-Bogoliubov equations by the Wignerfunction-moments method leads to the appearance of refined low-lying modes whose description requires the accurate knowledge of the anomalous density matrix. It is shown that calculations with Woods-Saxon potential satisfy this requirement, producing an anomalous density matrix of the same quality as more complicated calculations with realistic forces.

  16. Pair supersolid with atom-pair hopping on the state-dependent triangular lattice

    NASA Astrophysics Data System (ADS)

    Zhang, Wanzhou; Yin, Ruoxi; Wang, Yancheng

    2013-11-01

    degeneracy of pair solids in classical limits. We describe the experimental realization of pair tunneling on state dependent lattice.

  17. Exotic Paired States with Anisotropic Spin-Dependent Fermi Surfaces

    SciTech Connect

    Feiguin, Adrian E.; Fisher, Matthew P. A.

    2009-07-10

    We propose a model for realizing exotic paired states in cold Fermi gases by using a spin-dependent optical lattice to engineer mismatched Fermi surfaces for each hyperfine species. The BCS phase diagram shows a stable paired superfluid state with coexisting pockets of momentum space with gapless unpaired carriers, similar to the Sarma state in polarized mixtures, but in our case the system is unpolarized. We propose the possible existence of an exotic 'Cooper-pair Bose-metal' phase, which has a gap for single fermion excitations but gapless and uncondensed 'Cooper-pair' excitations residing on a 'Bose surface' in momentum space.

  18. Age-dependent trajectories differ between within-pair and extra-pair paternity success.

    PubMed

    Hsu, Y-H; Simons, M J P; Schroeder, J; Girndt, A; Winney, I S; Burke, T; Nakagawa, S

    2017-02-24

    Reproductive success is associated with age in many taxa, increasing in early life followed by reproductive senescence. In socially monogamous but genetically polygamous species, this generates the interesting possibility of differential trajectories of within-pair and extra-pair siring success with age in males. We investigate these relationships simultaneously using within-individual analyses with 13 years of data from an insular house sparrow (Passer domesticus) population. As expected, we found that both within- and extra-pair paternity success increased with age, followed by a senescence-like decline. However, the age trajectories of within- and extra-pair paternity successes differed significantly, with the extra-pair paternity success increasing faster, although not significantly, in early life, and showing a delayed decline by 1.5 years on average later in life compared to within-pair paternity success. These different trajectories indicate that the two alternative mating tactics should have age-dependent pay-offs. Males may partition their reproductive effort between within- and extra-pair matings depending on their current age to reap the maximal combined benefit from both strategies. The interplay between these mating strategies and age-specific mortality may explain the variation in rates of extra-pair paternity observed within and between species.

  19. Isovector spin-singlet (T = 1, S = 0) and isoscalar spin-triplet (T = 0, S = 1) pairing interactions and spin-isospin response

    NASA Astrophysics Data System (ADS)

    Sagawa, H.; Bai, C. L.; Colò, G.

    2016-08-01

    We review several experimental and theoretical advances that emphasize common aspects of the study of spin-singlet, T = 1, and spin-triplet, T = 0, pairing correlations in nuclei. We first discuss various empirical evidence of the special role played by the T = 1 pairing interaction. In particular, we show the peculiar features of the nuclear pairing interaction in the low-density regime, and possible outcomes such as the BCS-BEC crossover in nuclear matter and, in an analogous way, in loosely bound nuclei. We then move to the competition between T = 1 and T = 0 pairing correlations. The effect of such competition on the low-lying spectra is studied in N = Z odd-odd nuclei by using a three-body model; in this case, it is shown that the inversion of the {J}π ={0}+ and {J}π ={1}+ states near the ground state, and the strong magnetic dipole transitions between them, can be considered as a clear manifestation of strong T = 0 pairing correlations in these nuclei. The effect of T = 0 pairing correlations is also quite evident if one studies charge-changing transitions. The Gamow-Teller (GT) states in N=Z+2 nuclei are studied here by using self-consistent Hartree-Fock-Bogoliubov (HFB) plus quasiparticle random-phase approximation calculations in which the T = 0 pairing interaction is taken into account. Strong GT states are found, near the ground state of daughter nuclei; these are compared with available experimental data from charge-exchange reactions, and such comparison can pinpoint the value of the strength of the T = 0 interaction. Pair transfer reactions are eventually discussed. While two-neutron transfer has long been proposed as a tool to measure the T = 1 superfluidity in the nuclear ground states, the study of deuteron transfer is still in its infancy, despite its potential interest for revealing effects coming from both T = 1 and T = 0 interactions. We also point out that the reaction mechanism may mask the strong pair transfer amplitudes predicted by the

  20. Observer dependence of bubble nucleation and Schwinger pair production

    SciTech Connect

    Garriga, Jaume; Kanno, Sugumi; Vilenkin, Alexander; Sasaki, Misao; Soda, Jiro E-mail: sugumi@cosmos.phy.tufts.edu E-mail: jiro@tap.scphys.kyoto-u.ac.jp

    2012-12-01

    Pair production in a constant electric field is closely analogous to bubble nucleation in a false vacuum. The classical trajectories of the pairs are Lorentz invariant, but it appears that this invariance should be broken by the nucleation process. Here, we use a model detector, consisting of other particles interacting with the pairs, to investigate how pair production is seen by different Lorentzian observers. We focus on the idealized situation where a constant external electric field is present for an infinitely long time, and we consider the in-vacuum state for a charged scalar field that describes the nucleating pairs. The in-vacuum is defined in terms of modes which are positive frequency in the remote past. Even though the construction uses a particular reference frame and a gauge where the vector potential is time dependent, we show explicitly that the resulting quantum state is Lorentz invariant. We then introduce a ''detector'' particle which interacts with the nucleated pairs, and show that all Lorentzian observers will see the particles and antiparticles nucleating preferentially at rest in the detector's rest frame. Similar conclusions are expected to apply to bubble nucleation in a sufficiently long lived vacuum. We also comment on certain unphysical aspects of the Lorentz invariant in-vacuum, associated with the fact that it contains an infinite density of particles. This can be easily remedied by considering Lorentz breaking initial conditions.

  1. Classically spinning and isospinning solitons

    NASA Astrophysics Data System (ADS)

    Battye, Richard A.; Haberichter, Mareike

    2012-09-01

    We investigate classically spinning topological solitons in (2+1)- and (3+1)-dimensional models; more explicitely spinning sigma model solitons in 2+1 dimensions and Skyrme solitons in 2+1 and 3+1 dimensions. For example, such types of solitons can be used to describe quasiparticle excitations in ferromagnetic quantum Hall systems or to model spin and isospin states of nuclei. The standard way to obtain solitons with quantised spin and isospin is the semiclassical quantization procedure: One parametrizes the zero-mode space - the space of energy-degenerate soliton configurations generated from a single soliton by spatial translations and rotations in space and isospace - by collective coordinates which are then taken to be time-dependent. This gives rise to additional dynamical terms in the Hamiltonian which can then be quantized following semiclassical quantization rules. A simplification which is often made in the literature is to apply a simple adiabatic approximation to the (iso)rotational zero modes of the soliton by assuming that the soliton's shape is rotational frequency independent. Our numerical results on classically spinning arbitrarily deforming soliton solutions clearly show that soliton deformation cannot be ignored.

  2. Spin and isospin fluctuations in heavy ion collisions and their dependence upon the shape of the dinuclear complex

    SciTech Connect

    Moretto, L.G.

    1980-08-01

    The relevance of higher multipoles of giant isovector modes in the charge distribution of deep inelastic fragments is discussed and found to depend strongly on mass asymmetry. The sources of angular momentum fluctuations are investigated. Quantal effects are considered as well as effects arising from non-equilibrium and equilibrium statistical fluctuations. A model based upon equilibrium statistical mechanics is considered in detail, and used to predict both 2nd moments of the angular momentum distributions and the angular momentum misalignment. Analytical expressions are derived to calculate the angular distributions of sequentially emitted particles, fission fragments, as well as gamma rays in terms of the angular momentum misalignment. Recent data on the angular distributions of sequential alphas, fission and gamma rays are analyzed in terms of the model. 29 figures, 1 table.

  3. Isospin effect of Coulomb interaction on the dissipation and fragmentation in intermediate energy heavy ion collisions

    SciTech Connect

    Liu Jianye; Guo Wenjun; Gao Yuanyi; Xing Yongzhong; Li Xiguo

    2004-09-01

    We investigate separately the isospin effects of Coulomb interaction and symmetry potential on the dissipation and fragmentation in the intermediate energy heavy ion collisions by using isospin-dependent quantum molecular dynamics model. The calculated results show that the Coulomb interaction induces the reductions of both isospin fractionation ratio and nuclear stopping (momentum dissipation). However, the Coulomb interaction not only does not change obviously the strong isospin effect of the symmetry potential on the isospin fractionation ratio but also does not change obviously that of in-medium two-body collision on the nuclear stopping. On the contrary, the symmetry potential induces the enhancement of the isospin fractionation ratio but it is insensitive to the nuclear stopping. Finally, the competition between the Coulomb interaction and symmetry potential induces the reductions of both isospin fractionation ratio and nuclear stopping for two forms of symmetry potentials in this paper.

  4. Nuclear inertia from the time dependent pairing equations

    NASA Astrophysics Data System (ADS)

    Mirea, M.

    2016-10-01

    In a dynamical system, the momenta of inertia and the effective masses are not adiabatic quantities, but are dynamical ones that depend on the dissipated energy accumulated during motion. However, these parameters are calculated for adiabatic nuclear systems, leaving no room for dissipated energy. In this work, a formalism is elaborated in order to derive simultaneously the nuclear momenta of inertia and the effective masses by taking into account the appearance of dissipated energy for large amplitude motion of the nuclear system. The expressions that define the inertia are obtained from the variational principle. The same principle manages the time dependent pairing equations, offering estimations of the averaged dissipation energy for large amplitude motions. The model is applied to 232Th fission. The fission barrier was calculated along the least action trajectory. The dissipation energy, effective mass and moment of inertia are determined for different values of the collective velocities. The dissipation increases with the internuclear velocity in binary disintegration processes and modifies the effective mass parameters. We observed that the inertia decreases as long as the collective velocity increases to some moderate values and begins to grow for larger collective velocities. So, a dependence between the cranking mass parameters and the intrinsic excitation energy is evidenced. In order to investigate the overall effect, the half-lives are predicted for adiabatic and dynamics simulations.

  5. Conservation of Isospin in Neutron-rich Fission Fragments

    SciTech Connect

    Jain, A.K.; Choudhury, D.; Maheshwari, B.

    2014-06-15

    On the occasion of the 75{sup th} anniversary of the fission phenomenon, we present a surprisingly simple result which highlights the important role of isospin and its conservation in neutron rich fission fragments. We have analysed the fission fragment mass distribution from two recent heavyion reactions {sup 238}U({sup 18}O,f) and {sup 208}Pb({sup 18}O,f) as well as a thermal neutron fission reaction {sup 245}Cm(n{sup th},f). We find that the conservation of the total isospin explains the overall trend in the observed relative yields of fragment masses in each fission pair partition. The isospin values involved are very large making the effect dramatic. The findings open the way for more precise calculations of fission fragment distributions in heavy nuclei and may have far reaching consequences for the drip line nuclei, HI fusion reactions, and calculation of decay heat in the fission phenomenon.

  6. Transverse isospin response function of asymmetric nuclear matter from a local isospin density functional

    NASA Astrophysics Data System (ADS)

    Lipparini, Enrico; Pederiva, Francesco

    2016-08-01

    The time dependent local isospin density approximation (TDLIDA) has been extended to the study of the transverse isospin response function in nuclear matter with an arbitrary neutron-proton asymmetry parameter ξ . The energy density functional has been chosen in order to fit existing accurate quantum Monte Carlo calculations with a density dependent potential. The evolution of the response with ξ in the Δ Tz=±1 channels is quite different. While the strength of the Δ Tz=+1 channel disappears rather quickly by increasing the asymmetry, the Δ Tz=-1 channel develops a stronger and stronger collective mode that in the regime typical of neutron star matter at β equilibrium almost completely exhausts the excitation spectrum of the system. The neutrino mean free paths obtained from the TDLIDA responses are strongly dependent on ξ and on the presence of collective modes, leading to a sizable difference with respect to the prediction of the Fermi gas model.

  7. Isospin dependence of relative yields of K{sup +} and K{sup 0} mesons at 1.528A GeV

    SciTech Connect

    Lopez, X.; Kim, Y. J.; Andronic, A.; Hartmann, O. N.; Hildenbrand, K. D.; Koczon, P.; Leifels, Y.; Reisdorf, W.; Schuettauf, A.; Herrmann, N.; Benabderrahmane, M. L.; Cordier, E.; Merschmeyer, M.; Pelte, D.; Barret, V.; Bastid, N.; Crochet, P.; Dupieux, P.

    2007-01-15

    Results on K{sup +} and K{sup 0} meson production in {sub 44}{sup 96}Ru + {sub 44}{sup 96}Ru and {sub 40}{sup 96}Zr + {sub 40}{sup 96}Zr collisions at a beam kinetic energy of 1.528A GeV, measured with the FOPI detector at GSI-Darmstadt, are investigated as a possible probe of isospin effects in high-density nuclear matter. The measured double ratio (K{sup +}/K{sup 0}){sub Ru}/(K{sup +}/K{sup 0}){sub Zr} is compared to the predictions of a thermal model and a relativistic mean field transport model using two different collision scenarios and under different assumptions on the stiffness of the symmetry energy. We find good agreement with the thermal model prediction and the assumption of a soft symmetry energy for infinite nuclear matter, while more realistic transport simulations of the collisions show a similar agreement with the data but also exhibit a reduced sensitivity to the symmetry term.

  8. Nuclear isospin asymmetry in α decay of heavy nuclei

    NASA Astrophysics Data System (ADS)

    Shin, Eunkyoung; Lim, Yeunhwan; Hyun, Chang Ho; Oh, Yongseok

    2016-08-01

    The effects of nuclear isospin asymmetry on α -decay lifetimes of heavy nuclei are investigated within various phenomenological models of the nuclear potential for the α particle. We consider the widely used simple square-well potential and Woods-Saxon potential and modify them by including an isospin asymmetry term. We then suggest a model for the potential of the α particle motivated by a microscopic phenomenological approach of the Skyrme force model, which naturally introduces the isospin-dependent form of the nuclear potential for the α particle. The empirical α -decay lifetime formula of Viola and Seaborg [J. Inorg. Nucl. Chem. 28, 741 (1966), 10.1016/0022-1902(66)80412-8] is also modified to include isospin asymmetry effects. The obtained α -decay half-lives are in good agreement with the experimental data, and we find that including the nuclear isospin effects somehow improves the theoretical results for α -decay half-lives. The implications of these results are discussed, and the predictions on the α -decay lifetimes of superheavy elements are also presented.

  9. Isobaric Multiplet Yrast Energies and Isospin Nonconserving Forces

    NASA Astrophysics Data System (ADS)

    Zuker, A. P.; Lenzi, S. M.; Martínez-Pinedo, G.; Poves, A.

    2002-09-01

    The isovector and isotensor energy differences between yrast states of isobaric multiplets in the lower half of the pf region are quantitatively reproduced in a shell model context. The isospin nonconserving nuclear interactions are found to be at least as important as the Coulomb potential. Their isovector and isotensor channels are dominated by J=2 and J=0 pairing terms, respectively. The results are sensitive to the radii of the states, whose evolution along the yrast band can be accurately followed.

  10. Temperature-dependent isovector pairing gap equations using a path integral approach

    SciTech Connect

    Fellah, M.; Allal, N. H.; Belabbas, M.; Oudih, M. R.; Benhamouda, N.

    2007-10-15

    Temperature-dependent isovector neutron-proton (np) pairing gap equations have been established by means of the path integral approach. These equations generalize the BCS ones for the pairing between like particles at finite temperature. The method has been numerically tested using the one-level model. It has been shown that the gap parameter {delta}{sub np} has a behavior analogous to that of {delta}{sub nn} and {delta}{sub pp} as a function of the temperature: one notes the presence of a critical temperature. Moreover, it has been shown that the isovector pairing effects remain beyond the critical temperature that corresponds to the pairing between like particles.

  11. Isospin diffusion in thermal AdS/CFT correspondence with flavor

    SciTech Connect

    Erdmenger, Johanna; Kaminski, Matthias; Rust, Felix

    2007-08-15

    We study the gauge/gravity dual of a finite temperature field theory at finite isospin chemical potential by considering a probe of two coincident D7-branes embedded in the AdS-Schwarzschild black hole background. The isospin chemical potential is obtained by giving a vacuum expectation value to the time component of the non-Abelian gauge field on the brane. The fluctuations of the non-Abelian gauge field on the brane are dual to the SU(2) flavor current in the field theory. For the embedding corresponding to vanishing quark mass, we calculate all Green functions corresponding to the components of the flavor current correlator. We discuss the physical properties of these Green functions, which go beyond linear response theory. In particular, we show that the isospin chemical potential leads to a frequency-dependent isospin diffusion coefficient.

  12. Incidence dependence of negative index in asymmetric cut wire pairs metamaterials

    NASA Astrophysics Data System (ADS)

    Burokur, Shah Nawaz; Lepetit, Thomas; Lustrac, André de

    2009-11-01

    Metamaterials made of asymmetric cut wire pairs have experimentally demonstrated a negative refractive index at microwave frequencies. In this letter, we begin by presenting the analogy between asymmetric cut wire pairs and S-shaped metamaterials by a simple unifying approach. Then, using simulations and experiments in the microwave domain, we investigate the dependence of resonances and retrieved effective index on the incident angle in asymmetric cut wire pairs. While it is found that resonances shift in frequency with increasing oblique incidence in the E-plane, it is shown that the structure is angle-independent in the H-plane.

  13. Temperature dependence of pair correlations and correlation entropy in a fluid

    SciTech Connect

    Sanchez-Castro, C.R.; Aidun, J.B.; Straub, G.K.; Wills, J.M.; Wallace, D.C. )

    1994-09-01

    For a system of atoms interacting through a pair potential, the entropy is evaluated by molecular dynamics at temperatures from the liquid to the gas. The pair potential represents aluminum in the liquid regime and the calculated entropy is in close agreement with experiment. The temperature dependence of the entropy is understood in terms of structural changes in the pair correlation function. Of the two approximate entropy expansions evaluated in low orders, the Nettleton-Raveche-Green expansion is more accurate at high temperatures, while the multiparticle irreducible correlation expansion is more accurate for the liquid.

  14. Temperature dependence of pair correlations and correlation entropy in a fluid

    NASA Astrophysics Data System (ADS)

    Sanchez-Castro, Carlos R.; Aidun, John B.; Straub, Galen K.; Wills, John M.; Wallace, Duane C.

    1994-09-01

    For a system of atoms interacting through a pair potential, the entropy is evaluated by molecular dynamics at temperatures from the liquid to the gas. The pair potential represents aluminum in the liquid regime and the calculated entropy is in close agreement with experiment. The temperature dependence of the entropy is understood in terms of structural changes in the pair correlation function. Of the two approximate entropy expansions evaluated in low orders, the Nettleton-Raveché-Green expansion is more accurate at high temperatures, while the multiparticle irreducible correlation expansion is more accurate for the liquid.

  15. Models of isospin violating ADM

    SciTech Connect

    Okada, Nobuchika; Seto, Osamu

    2014-06-24

    The isospin violating dark matter (IVDM) scenario offers an interesting possibility to reconcile conflicting results among direct dark matter search experiments for a mass range around 10 GeV. We consider two simple renormalizable IVDM models with a complex scalar dark matter and a Dirac fermion dark matter, respectively, whose stability is ensured by the conservation of “dark matter number.” Although both models successfully work as the IVDM scenario with destructive interference between effective couplings to proton and neutron, the dark matter annihilation cross section is found to exceed the cosmological/astrophysical upper bounds. Then, we propose a simple scenario to reconcile the IVDM scenario with the cosmological/astrophysical bounds, namely, the IVDM being asymmetric. We also discuss collider experimental constraints on the models and an implication to Higgs boson physics.

  16. Pairing context determines condition-dependence of song rate in a monogamous passerine bird

    PubMed Central

    David, Morgan; Auclair, Yannick; Dall, Sasha R. X.; Cézilly, Frank

    2013-01-01

    Condition-dependence of male ornaments is thought to provide honest signals on which females can base their sexual choice for genetic quality. Recent studies show that condition-dependence patterns can vary within populations. Although long-term association is thought to promote honest signalling, no study has explored the influence of pairing context on the condition-dependence of male ornaments. In this study, we assessed the influence of natural variation in body condition on song rate in zebra finches (Taeniopygia guttata) in three different situations: during short and long encounters with an unfamiliar female, and within heterosexual mated pairs. We found consistent individual differences in male directed and undirected song rate. Moreover, body condition had a positive effect on song rate in paired males. However, male song rate was not influenced by body condition during short or long encounters with unfamiliar females. Song rate appears to be an unreliable signal of condition to prospective females as even poor-condition birds can cheat and sing at a high rate. By contrast, paired females can reliably use song rate to assess their mate's body condition, and possibly the genetic quality. We propose that species' characteristics, such as mating system, should be systematically taken into account to generate relevant hypotheses about the evolution of condition-dependent male ornaments. PMID:23256191

  17. Dynamical isospin effects in nucleon-induced reactions

    SciTech Connect

    Ou Li; Li Zhuxia; Wu Xizhen

    2008-10-15

    The isospin effects in proton-induced reactions on isotopes of {sup 112-132}Sn and the corresponding {beta}-stable isobars are studied by means of the improved quantum molecular dynamics model and some sensitive probes for the density dependence of the symmetry energy at subnormal densities are proposed. The beam energy range is chosen to be 100-300 MeV. Our study shows that the system size dependence of the reaction cross sections for p+{sup 112-132}Sn deviates from the Carlson's empirical expression obtained by fitting the reaction cross sections for proton on nuclei along the {beta}-stability line and sensitively depends on the stiffness of the symmetry energy. We also find that the angular distribution of elastic scattering for p+{sup 132}Sn at large impact parameters is very sensitive to the density dependence of the symmetry energy, which is uniquely due to the effect of the symmetry potential with no mixture of the effect from the isospin dependence of the nucleon-nucleon cross sections. The isospin effects in neutron-induced reactions are also studied and it is found that the effects are just opposite to that in proton-induced reactions. We find that the difference between the peaks of the angular distributions of elastic scattering for p+{sup 132}Sn and n+{sup 132}Sn at E{sub p,n}=100 MeV and b=7.5 fm is positive for soft symmetry energy U{sub sym}{sup sf} and negative for super-stiff symmetry energy U{sub sym}{sup nlin} and close to zero for linear density dependent symmetry energy U{sub sym}{sup lin}, which seems very useful for constraining the density dependence of the symmetry energy at subnormal densities.

  18. Linear-response time-dependent density-functional theory with pairing fields.

    PubMed

    Peng, Degao; van Aggelen, Helen; Yang, Yang; Yang, Weitao

    2014-05-14

    Recent development in particle-particle random phase approximation (pp-RPA) broadens the perspective on ground state correlation energies [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013), Y. Yang, H. van Aggelen, S. N. Steinmann, D. Peng, and W. Yang, J. Chem. Phys. 139, 174110 (2013); D. Peng, S. N. Steinmann, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 104112 (2013)] and N ± 2 excitation energies [Y. Yang, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 224105 (2013)]. So far Hartree-Fock and approximated density-functional orbitals have been utilized to evaluate the pp-RPA equation. In this paper, to further explore the fundamentals and the potential use of pairing matrix dependent functionals, we present the linear-response time-dependent density-functional theory with pairing fields with both adiabatic and frequency-dependent kernels. This theory is related to the density-functional theory and time-dependent density-functional theory for superconductors, but is applied to normal non-superconducting systems for our purpose. Due to the lack of the proof of the one-to-one mapping between the pairing matrix and the pairing field for time-dependent systems, the linear-response theory is established based on the representability assumption of the pairing matrix. The linear response theory justifies the use of approximated density-functionals in the pp-RPA equation. This work sets the fundamentals for future density-functional development to enhance the description of ground state correlation energies and N ± 2 excitation energies.

  19. A pair-conformation-dependent scoring function for evaluating 3D RNA-protein complex structures

    PubMed Central

    Li, Haotian; Huang, Yangyu

    2017-01-01

    Computational prediction of RNA-protein complex 3D structures includes two basic steps: one is sampling possible structures and another is scoring the sampled structures to pick out the correct one. At present, constructing accurate scoring functions is still not well solved and the performances of the scoring functions usually depend on used benchmarks. Here we propose a pair-conformation-dependent scoring function, 3dRPC-Score, for 3D RNA-protein complex structure prediction by considering the nucleotide-residue pairs having the same energy if their conformations are similar, instead of the distance-only dependence of the most existing scoring functions. Benchmarking shows that 3dRPC-Score has a consistent performance in three test sets. PMID:28358834

  20. A pair-conformation-dependent scoring function for evaluating 3D RNA-protein complex structures.

    PubMed

    Li, Haotian; Huang, Yangyu; Xiao, Yi

    2017-01-01

    Computational prediction of RNA-protein complex 3D structures includes two basic steps: one is sampling possible structures and another is scoring the sampled structures to pick out the correct one. At present, constructing accurate scoring functions is still not well solved and the performances of the scoring functions usually depend on used benchmarks. Here we propose a pair-conformation-dependent scoring function, 3dRPC-Score, for 3D RNA-protein complex structure prediction by considering the nucleotide-residue pairs having the same energy if their conformations are similar, instead of the distance-only dependence of the most existing scoring functions. Benchmarking shows that 3dRPC-Score has a consistent performance in three test sets.

  1. Dual condensates at finite isospin chemical potential

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao; Miao, Qing

    2016-02-01

    The dual observables as order parameters for center symmetry are tested at finite isospin chemical potential μI in a Polyakov-loop enhanced chiral model of QCD with physical quark masses. As a counterpart of the dressed Polyakov-loop, the first Fourier moment of pion condensate is introduced for μI >mπ / 2 under the temporal twisted boundary conditions for quarks. We demonstrate that this dual condensate exhibits the similar temperature dependence as the conventional Polyakov-loop. We confirm that its rapid increase with T is driven by the evaporating of pion condensation. On the other hand, the dressed Polyakov-loop shows abnormal thermal behavior, which even decreases with T at low temperatures due to the influence of pion condensate. We also find that the dressed Polyakov-loop always rises most steeply at the chiral transition temperature, which is consistent with the previous results in Nambu-Jona-Lasinio (NJL) model and its variants without considering the center symmetry. Since both quantities are strongly affected by the chiral symmetry and pion condensation, we conclude that it is difficult to clarify the deconfinement transition from the dual condensates in this situation within this model.

  2. Optimized distance-dependent atom-pair-based potential DOOP for protein structure prediction.

    PubMed

    Chae, Myong-Ho; Krull, Florian; Knapp, Ernst-Walter

    2015-05-01

    The DOcking decoy-based Optimized Potential (DOOP) energy function for protein structure prediction is based on empirical distance-dependent atom-pair interactions. To optimize the atom-pair interactions, native protein structures are decomposed into polypeptide chain segments that correspond to structural motives involving complete secondary structure elements. They constitute near native ligand-receptor systems (or just pairs). Thus, a total of 8609 ligand-receptor systems were prepared from 954 selected proteins. For each of these hypothetical ligand-receptor systems, 1000 evenly sampled docking decoys with 0-10 Å interface root-mean-square-deviation (iRMSD) were generated with a method used before for protein-protein docking. A neural network-based optimization method was applied to derive the optimized energy parameters using these decoys so that the energy function mimics the funnel-like energy landscape for the interaction between these hypothetical ligand-receptor systems. Thus, our method hierarchically models the overall funnel-like energy landscape of native protein structures. The resulting energy function was tested on several commonly used decoy sets for native protein structure recognition and compared with other statistical potentials. In combination with a torsion potential term which describes the local conformational preference, the atom-pair-based potential outperforms other reported statistical energy functions in correct ranking of native protein structures for a variety of decoy sets. This is especially the case for the most challenging ROSETTA decoy set, although it does not take into account side chain orientation-dependence explicitly. The DOOP energy function for protein structure prediction, the underlying database of protein structures with hypothetical ligand-receptor systems and their decoys are freely available at http://agknapp.chemie.fu-berlin.de/doop/.

  3. Time-dependent pairing equations for seniority-one nuclear systems

    SciTech Connect

    Mirea, M.

    2008-10-15

    When the time-dependent Hartree-Fock-Bogoliubov intrinsic equations of motion are solved in the case of seniority-one nuclear systems, the unpaired nucleon remains on the same orbital. The blocking effect hinders the possibility to skip from one orbital to another. This unpleasant feature is by-passed with a new set of pairing time-dependent equations that allows the possibility that the unpaired nucleon changes its single-particle level. These equations generalize the time-dependent Hartree-Fock-Bogoliubov equations of motion by including the Landau-Zener effect. The derivation of these new equations is presented in detail. These equations are applied to the case of a superasymmetric fission process, that is, to explain the fine structure the {sup 14}C emission from {sup 233}Ra. In this context, a new version of the Woods-Saxon model extended for two-center potentials is used.

  4. Isospin Splittings of Doubly Heavy Baryons

    SciTech Connect

    Brodsky, Stanley J.; Guo, Feng-Kun; Hanhart, Christoph; Meissner, Ulf-G.; /Julich, Forschungszentrum /JCHP, Julich /IAS, Julich /Bonn U., HISKP /Bonn U.

    2011-08-18

    The SELEX Collaboration has reported a very large isospin splitting of doubly charmed baryons. We show that this effect would imply that the doubly charmed baryons are very compact. One intriguing possibility is that such baryons have a linear geometry Q-q-Q where the light quark q oscillates between the two heavy quarks Q, analogous to a linear molecule such as carbon dioxide. However, using conventional arguments, the size of a heavy-light hadron is expected to be around 0.5 fm, much larger than the size needed to explain the observed large isospin splitting. Assuming the distance between two heavy quarks is much smaller than that between the light quark and a heavy one, the doubly heavy baryons are related to the heavy mesons via heavy quark-diquark symmetry. Based on this symmetry, we predict the isospin splittings for doubly heavy baryons including {Xi}{sub cc}, {Xi}{sub bb} and {Xi}{sub bc}. The prediction for the {Xi}{sub cc} is much smaller than the SELEX value. On the other hand, the {Xi}{sub bb} baryons are predicted to have an isospin splitting as large as (6.3 {+-} 1.7) MeV. An experimental study of doubly bottomed baryons is therefore very important to better understand the structure of baryons with heavy quarks.

  5. Nuclear quantum effect and temperature dependency on the hydrogen-bonded structure of base pairs.

    PubMed

    Daido, Masashi; Kawashima, Yukio; Tachikawa, Masanori

    2013-10-30

    The structure of Watson-Crick-type adenine-thymine and guanine-cytosine pairs has been studied by hybrid Monte Carlo (HMC) and path integral hybrid Monte Carlo (PIHMC) simulations with the use of semiempirical PM6-DH+ method in the gas phase. We elucidated the nuclear quantum effect and temperature dependency on the hydrogen-bonded moiety of base pairs. It was shown that the contribution of nuclear quantum effect on the hydrogen-bonded structure is significant not only at low temperature 150 K but also at temperature as high as 450 K. The relative position of hydrogen-bonded proton between two heavy atoms and the nuclear quantum nature of the proton are also shown. Furthermore, we have applied principal component analysis to HMC and PIHMC simulations to analyze the nuclear quantum effect on intermolecular motions. We found that the ratio of Buckle mode (lowest vibrational mode from normal mode analysis) decreases due to the nuclear quantum effect, whereas that of Propeller mode (second lowest vibrational mode) increases. In addition, nonplanar structures of base pairs were found to become stable due to the nuclear quantum effect from two-dimensional free energy landscape along Buckle and Propeller modes.

  6. Isospin-symmetry-breaking effects in A∼70 nuclei within beyond-mean-field approach

    SciTech Connect

    Petrovici, A.; Andrei, O.

    2015-02-24

    Particular isospin-symmetry-breaking probes including Coulomb energy differences (CED), mirror energy differences (MED), and triplet energy differences (TED) manifest anomalies in the A∼70 isovector triplets of nuclei. The structure of proton-rich nuclei in the A∼70 mass region suggests shape coexistence and competition between pairing correlations in different channels. Recent results concerning the interplay between isospin-mixing and shape-coexistence effects on exotic phenomena in A∼70 nuclei obtained within the beyond-mean-field complex Excited Vampir variational model with symmetry projection before variation using a realistic effective interaction in a relatively large model space are presented. Excited Vampir predictions concerning the Gamow-Teller β decay to the odd-odd N=Z {sup 66}As and {sup 70}Br nuclei correlated with the pair structure analysis in the T=1 and T=0 channel of the involved wave functions are discussed.

  7. Inverse Temperature Dependence of Nuclear Quantum Effects in DNA Base Pairs

    PubMed Central

    2016-01-01

    Despite the inherently quantum mechanical nature of hydrogen bonding, it is unclear how nuclear quantum effects (NQEs) alter the strengths of hydrogen bonds. With this in mind, we use ab initio path integral molecular dynamics to determine the absolute contribution of NQEs to the binding in DNA base pair complexes, arguably the most important hydrogen-bonded systems of all. We find that depending on the temperature, NQEs can either strengthen or weaken the binding within the hydrogen-bonded complexes. As a somewhat counterintuitive consequence, NQEs can have a smaller impact on hydrogen bond strengths at cryogenic temperatures than at room temperature. We rationalize this in terms of a competition of NQEs between low-frequency and high-frequency vibrational modes. Extending this idea, we also propose a simple model to predict the temperature dependence of NQEs on hydrogen bond strengths in general. PMID:27195654

  8. Inverse Temperature Dependence of Nuclear Quantum Effects in DNA Base Pairs.

    PubMed

    Fang, Wei; Chen, Ji; Rossi, Mariana; Feng, Yexin; Li, Xin-Zheng; Michaelides, Angelos

    2016-06-02

    Despite the inherently quantum mechanical nature of hydrogen bonding, it is unclear how nuclear quantum effects (NQEs) alter the strengths of hydrogen bonds. With this in mind, we use ab initio path integral molecular dynamics to determine the absolute contribution of NQEs to the binding in DNA base pair complexes, arguably the most important hydrogen-bonded systems of all. We find that depending on the temperature, NQEs can either strengthen or weaken the binding within the hydrogen-bonded complexes. As a somewhat counterintuitive consequence, NQEs can have a smaller impact on hydrogen bond strengths at cryogenic temperatures than at room temperature. We rationalize this in terms of a competition of NQEs between low-frequency and high-frequency vibrational modes. Extending this idea, we also propose a simple model to predict the temperature dependence of NQEs on hydrogen bond strengths in general.

  9. Stokes phenomenon and schwinger vacuum pair production in time-dependent laser pulses.

    PubMed

    Dumlu, Cesim K; Dunne, Gerald V

    2010-06-25

    Particle production due to external fields (electric, chromoelectric, or gravitational) requires evolving an initial state through an interaction with a time-dependent background, with the rate being computed from a Bogoliubov transformation between the in and out vacua. When the background fields have temporal profiles with substructure, a semiclassical analysis of this problem confronts the full subtlety of the Stokes phenomenon: WKB solutions are only local, while the production rate requires global information. We give a simple quantitative explanation of the recently computed [Phys. Rev. Lett. 102, 150404 (2009)10.1103/PhysRevLett.102.150404] oscillatory momentum spectrum of e^{+}e^{-} pairs produced from vacuum subjected to a time-dependent electric field with subcycle laser pulse structure. This approach also explains naturally why for spinor and scalar QED these oscillations are out of phase.

  10. Stokes Phenomenon and Schwinger Vacuum Pair Production in Time-Dependent Laser Pulses

    SciTech Connect

    Dumlu, Cesim K.; Dunne, Gerald V.

    2010-06-25

    Particle production due to external fields (electric, chromoelectric, or gravitational) requires evolving an initial state through an interaction with a time-dependent background, with the rate being computed from a Bogoliubov transformation between the in and out vacua. When the background fields have temporal profiles with substructure, a semiclassical analysis of this problem confronts the full subtlety of the Stokes phenomenon: WKB solutions are only local, while the production rate requires global information. We give a simple quantitative explanation of the recently computed [Phys. Rev. Lett. 102, 150404 (2009)] oscillatory momentum spectrum of e{sup +}e{sup -} pairs produced from vacuum subjected to a time-dependent electric field with subcycle laser pulse structure. This approach also explains naturally why for spinor and scalar QED these oscillations are out of phase.

  11. 1-Anilino-8-naphthalene sulfonate anion-protein binding depends primarily on ion pair formation.

    PubMed Central

    Matulis, D; Lovrien, R

    1998-01-01

    The ANS- (1-anilino-8-naphthalene sulfonate) anion is strongly, dominantly bound to cationic groups of water-soluble proteins and polyamino acids through ion pair formation. This mode of ANS- binding, broad and pH dependent, is expressed by the quite rigorous stoichiometry of ANS- bound with respect to the available summed number of H+ titrated lysine, histidine, and arginine groups. By titration calorimetry, the integral or overall enthalpies of ANS- binding to four proteins, bovine serum albumin, lysozyme, papain, and protease omega, were arithmetic sums of individual ANS(-)-polyamino acid sidechain binding enthalpies (polyhistidine, polyarginine, polylysine), weighted by numbers of such cationic groups of each protein (additivity of binding enthalpies). ANS- binding energetics to both classes of macromolecules, cationic proteins and synthetic cationic polyamino acids, is reinforced by the organic moiety (anilinonaphthalene) of ANS-. In a much narrower range of binding, where ANS- is sometimes assumed to act as a hydrophobic probe, ANS- may become fluorescent. However, the broad overall range is sharply dependent on electrostatic, ion pair formation, where the organic sulfonate group is the major determinant of binding. PMID:9449342

  12. Time-Dependence of VHE Gamma-Ray induced Pair Cascades in Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Roustazadeh, Parisa; Boettcher, Markus; Thrush, Samantha

    2016-04-01

    Recently, several intermediate frequency peaked BL Lac objects (IBL), low frequency peaked BL Lac objects (LBL) and flat spectrum radio quasars (FSRQ) were detected as very high energy ( VHE, E > 100 ˜ GeV) γ-ray sources. These discoveries suggest that γγ absorption and pair cascades might occur in those objects, leading to excess γ-ray emission which may be observable also in off-axis viewing directions (i.e., like in radio galaxies) when deflected by moderately strong magnetic fields. Here, we investigate the time dependence of the Compton γ-ray emission from such VHE γ-ray induced pair cascades. We show that the cascade emission is variable on time scales much shorter than the light-crossing time across the characteristic extent of the external radiation field, depending on the viewing angle and γ-ray energy. Thus, we find that the cascade Compton interpretation for the Fermi γ-ray emission from radio galaxies is still consistent with the day-scale variability detected in the Fermi γ-ray emission of radio galaxies, such as NGC 1275, which we use as a specific example.

  13. Ferrocene-bis(thymine/uracil) conjugates: base pairing directed, spacer dependent self-assembly and supramolecular packing.

    PubMed

    Patwa, Amit N; Gonnade, Rajesh G; Kumar, Vaijayanti A; Bhadbhade, Mohan M; Ganesh, Krishna N

    2010-12-17

    X-ray crystallographic studies of methylene linked Ferrocene-bis(thymine/uracil) conjugates Fc(T:T)(M) and Fc(U:U)(M) reveal base dependent 2-D supramolecular assemblies generated via wobble self-pairing for bis-thymine and reverse wobble self-pairing for bis-uracil conjugates, differing in architecture from the corresponding butylene spacer linked conjugates.

  14. Dependence of the rate of LiF ion pairing on the description of molecular interaction

    SciTech Connect

    Pluharova, Eva; Baer, Marcel D.; Schenter, Gregory K.; Jungwirth, Pavel; Mundy, Christopher J.

    2016-03-03

    We present an analysis of the dynamics of ion-pairing of Lithium Fluoride (LiF) in aqueous solvent using both detailed molecular simulation as well as reduced models within a Gener- alized Langevin Equation (GLE) framework. We explored the sensitivity of the ion-pairing phenomena to the details of descriptions of molecular interaction, comparing two empirical potentials to explicit quantum based density functional theory. We find quantitative differences in the potentials of mean force for ion-pairing as well as time dependent frictions that lead to variations in the rate constant and reactive flux correlation functions. These details reflect differences in solvent response to ion-pairing between different representations of molecular interaction and influence anharmonicity of the dynamic response. We find that the short time anharmonic response is recovered with a GLE parameterization. Recovery of the details of long time response may require extensions to the reduced model. We show that the utility of using a reduced model leads to a straight forward application of variational transition state the- ory concepts to the condensed phase system. The significance of this is reflected in the analysis of committor distributions and the variation of planar hypersurfaces, leading to an improved understanding of factors that determine the rate of LiF ion-pairing. CJM and GKS are supported by the U.S. Department of Energy‘s (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest Na- tional Laboratory (PNNL) is operated for the Department of Energy by Battelle. MDB is grateful for the support of Laboratory Directed Research and Development funding under the auspices of PNNL’s Laboratory Initiative Materials Synthesis and Simulation across Scales (MS3). Additional computing resources were generously allocated by PNNL’s Institutional Computing program. EP acknowledges support from PNNL’s Alternate Sponsored

  15. The Isospin Admixture of The Ground State and The Properties of The Isobar Analog Resonances In Deformed Nuclei

    SciTech Connect

    Aygor, H. Ali; Maras, Ismail; Cakmak, Necla; Selam, Cevad

    2008-11-11

    Within quasiparticle random phase approximation (QRPA), Pyatov-Salamov method for the self-consistent determination of the isovector effective interaction strength parameter, restoring a broken isotopic symmetry for the nuclear part of the Hamiltonian, is used. The isospin admixtures in the ground state of the parent nucleus, and the isospin structure of the isobar analog resonance (IAR) state are investigated by including the pairing correlations between nucleons for {sup 72-80}Kr isotopes. Our results are compared with the spherical case and with other theoretical results.

  16. Light scalar susceptibilities and isospin breaking

    SciTech Connect

    Andres, R. Torres; Nicola, A. Gomez

    2010-12-28

    Making a thermal analysis in the context of NLO SU(3) Chiral Perturbation Theory we see that isospin breaking (IB) corrections (both electromagnetic and QCD ones) to quark condensates are of order O(e{sup 2}) and O({epsilon}), with {epsilon} the {pi}{sup 0}-{eta} mixing angle. However the combination {chi}{sub uu}-{chi}{sub ud} of flavour breaking susceptibilities, which vanishes in the isospin limit and can be identified essentially with the connected susceptibility, has an order O(1) contribution enhanced with T because of the {pi}{sup 0}-{eta}) mixing. Finally we present a thermal sum rule that relates quark condensate ratios and the light scalar susceptibility without IB, {chi}(T)-{chi}(0).

  17. A Pair of Pharyngeal Gustatory Receptor Neurons Regulates Caffeine-Dependent Ingestion in Drosophila Larvae

    PubMed Central

    Choi, Jaekyun; van Giesen, Lena; Choi, Min Sung; Kang, KyeongJin; Sprecher, Simon G.; Kwon, Jae Young

    2016-01-01

    The sense of taste is an essential chemosensory modality that enables animals to identify appropriate food sources and control feeding behavior. In particular, the recognition of bitter taste prevents animals from feeding on harmful substances. Feeding is a complex behavior comprised of multiple steps, and food quality is continuously assessed. We here examined the role of pharyngeal gustatory organs in ingestion behavior. As a first step, we constructed a gustatory receptor-to-neuron map of the larval pharyngeal sense organs, and examined corresponding gustatory receptor neuron (GRN) projections in the larval brain. Out of 22 candidate bitter compounds, we found 14 bitter compounds that elicit inhibition of ingestion in a dose-dependent manner. We provide evidence that certain pharyngeal GRNs are necessary and sufficient for the ingestion response of larvae to caffeine. Additionally, we show that a specific pair of pharyngeal GRNs, DP1, responds to caffeine by calcium imaging. In this study we show that a specific pair of GRNs in the pharyngeal sense organs coordinates caffeine sensing with regulation of behavioral responses such as ingestion. Our results indicate that in Drosophila larvae, the pharyngeal GRNs have a major role in sensing food palatability to regulate ingestion behavior. The pharyngeal sense organs are prime candidates to influence ingestion due to their position in the pharynx, and they may act as first level sensors of ingested food. PMID:27486388

  18. Isospin purity in the A=42 isobars

    SciTech Connect

    Orce, J.N.; McKay, C.J.; Choudry, S.N.; Lesher, S.L.; Mynk, M.; Bandyopadhyay, D.; Yates, S.W.; McEllistrem, M.T.; Petkov, P.

    2004-09-13

    The lifetime of the first 2{sub T=1}{sup +} state in 42Sc has been measured as 74(16) fs. This result gives a value for the isoscalar matrix element of M0=6.63(76). From the mirror nuclei, 42Ca and 42Ti, the isoscalar matrix element is given as 7.15(48) W.u., confirming isospin purity in the A=42 isobars.

  19. Orbital Dependent Nucleonic Pairing in the Lightest Known Isotopes of Tin

    SciTech Connect

    Darby, Iain; Grzywacz, R.; Batchelder, J. C.; Bingham, C. R.; Cartegni, L.; Gross, Carl J; Liddick, Sean; Nazarewicz, Witold; Padgett, Stephen; Papenbrock, T.; Rajabali, M. M.; Rotureau, J.; Rykaczewski, Krzysztof Piotr

    2010-01-01

    By studying the {sup 109}Xe {yields} {sup 105}Te {yields} {sup 101}Sn superallowed {alpha}-decay chain, we observe low-lying states in {sup 101}Sn, the one-neutron system outside doubly magic {sup 100}Sn. We find that the spins of the ground state (J=7/2) and first excited state (J=5/2) in {sup 101}Sn are reversed with respect to the traditional level ordering postulated for {sup 103}Sn and the heavier tin isotopes. Through simple arguments and state-of-the-art shell-model calculations we explain this unexpected switch in terms of a transition from the single-particle regime to the collective mode in which orbital-dependent pairing correlations dominate.

  20. Orbital Dependent Nucleonic Pairing in the Lightest Known Isotopes of Tin

    NASA Astrophysics Data System (ADS)

    Darby, I. G.; Grzywacz, R. K.; Batchelder, J. C.; Bingham, C. R.; Cartegni, L.; Gross, C. J.; Hjorth-Jensen, M.; Joss, D. T.; Liddick, S. N.; Nazarewicz, W.; Padgett, S.; Page, R. D.; Papenbrock, T.; Rajabali, M. M.; Rotureau, J.; Rykaczewski, K. P.

    2010-10-01

    By studying the Xe109→Te105→Sn101 superallowed α-decay chain, we observe low-lying states in Sn101, the one-neutron system outside doubly magic Sn100. We find that the spins of the ground state (J=7/2) and first excited state (J=5/2) in Sn101 are reversed with respect to the traditional level ordering postulated for Sn103 and the heavier tin isotopes. Through simple arguments and state-of-the-art shell-model calculations we explain this unexpected switch in terms of a transition from the single-particle regime to the collective mode in which orbital-dependent pairing correlations dominate.

  1. Variation after Spin-Isospin Projection in the Skyrme Model

    NASA Astrophysics Data System (ADS)

    Shiino, E.; Hosaka, A.; Toki, H.

    1987-07-01

    We calculate nucleon, delta and higher spin-isospin baryons by making variation of the hedgehog function after the spin-isospin projection. The nucleon and delta masses are lowered only a small amount as compared to the case of variation before spin-isospin projection. The axial coupling g_{A} of the nucleon is, however, changed from 1.33 to 1.20.

  2. Isospin properties of electric dipole excitations in 48Ca

    NASA Astrophysics Data System (ADS)

    Derya, V.; Savran, D.; Endres, J.; Harakeh, M. N.; Hergert, H.; Kelley, J. H.; Papakonstantinou, P.; Pietralla, N.; Ponomarev, V. Yu.; Roth, R.; Rusev, G.; Tonchev, A. P.; Tornow, W.; Wörtche, H. J.; Zilges, A.

    2014-03-01

    Two different experimental approaches were combined to study the electric dipole strength in the doubly-magic nucleus 48Ca below the neutron threshold. Real-photon scattering experiments using bremsstrahlung up to 9.9 MeV and nearly mono-energetic linearly polarized photons with energies between 6.6 and 9.51 MeV provided strength distribution and parities, and an (α,α‧γ) experiment at Eα=136 MeV gave cross sections for an isoscalar probe. The unexpected difference observed in the dipole response is compared to calculations using the first-order random-phase approximation and points to an energy-dependent isospin character. A strong isoscalar state at 7.6 MeV was identified for the first time supporting a recent theoretical prediction.

  3. NUCLEAR PHYSICS: Equation of State for Isospin Asymmetric Matter of Nucleons and Deltas

    NASA Astrophysics Data System (ADS)

    Lu, Xiao-Hua; Zhang, Ying-Xun; Li, Zhu-Xia; Zhao, Zhi-Xiang

    2008-11-01

    An investigation on the equation of state of the isospin asymmetric, hot, dense matter of nucleons and deltas is performed based on the relativistic mean Geld theory. The QHD-II-type effective Lagrangian extending to the delta degree of freedom is adopted. Our results show that the equation of state is softened due to the inclusion of the delta degree of freedom. The baryon resonance isomer may occur depending on the delta-meson coupling. The results show that the densities for appearing the baryon resonance isomer, the densities for starting softening the equation of state and the extent of the softening depend not only on the temperature, the coupling strengths but also the isospin asymmetry of the baryon matter.

  4. Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. I: Role of density dependence in pairing force

    NASA Astrophysics Data System (ADS)

    Samyn, M.; Goriely, S.; Pearson, J. M.

    2003-09-01

    The HFB-2 mass formula is generalized to make the δ-function pairing force density-dependent. It is shown that the mass data rule out the simple model of a pairing force that vanishes completely in the nuclear interior. Consistency with the mass data is found for a fairly wide range of δ-function pairing forces with a partial weakening in the nuclear interior. In particular, the form of density dependence determined by the realistic nuclear-matter calculations of Garrido et al. is shown to be compatible with the mass data, 2135 measured masses being fitted with an rms error of 0.656 MeV. On this basis we construct a new mass table, HFB-3, running from one drip line to the other. Shell quenching at the neutron-drip line is now somewhat stronger than before, but otherwise the new mass formula does not differ in any conspicuous way from the HFB-2 mass formula.

  5. How color difference formulas depend on reference pairs in the underlying constant stimuli experiment.

    PubMed

    Kirchner, Eric; Dekker, Niels; Lucassen, Marcel; Njo, Lan; van der Lans, Ivo; Koeckhoven, Pim; Urban, Philipp; Huertas, Rafael

    2015-12-01

    For calculating color differences, the CIEDE2000 and CIE94 equations are widely used and recommended. These equations were derived more than a decade ago, based for a large part on the RIT-Dupont set of visual data. This data was collected from a series of psychophysical tests that use the method of constant stimuli. In this method, observers need to compare the color difference within a sample pair to that between a reference pair. In the current investigation, we show that the color difference equation significantly changes if reference pairs are chosen in the underlying visual experiments that differ from what was used when creating the RIT-Dupont dataset. The investigation is done using metallic paint samples representing two color centers, red and yellow-green. We show that the reproducibility differs for three different reference pairs, and that for modeling the visual data for the yellow-green color center, extra model terms are required as compared to the CIEDE2000 equation. Our results suggest that observers differ in their ability to mentally convert a color difference recognized in a sample pair into an equivalent color difference along the color difference direction represented by the reference pair. We also find that in these tests the tolerance to lightness differences is widened by a factor of 1.3 to 1.6, and that for the red color center the tolerance ellipsoid is rotated by 30° as compared to the CIEDE2000 equation. The latter observations are possibly due to the metallic texture in the samples used for the current experiment.

  6. Isospin aspects in nuclear reactions involving Ca beams at 25 MeV/nucleon

    SciTech Connect

    Lombardo, I. Agodi, C.; Alba, R.; Amorini, F.; Anzalone, A.; Auditore, L.; Berceanu, I.; Cardella, G.; Cavallaro, S.; Chatterjee, M. B.; Filippo, E. De; Di Pietro, A.; Figuera, P.; Giuliani, G.; Geraci, E.; Grassi, L.; Grzeszczuk, A.; Han, J.; La Guidara, E.; Lanzalone, G.; and others

    2011-11-15

    Isospin dependence of dynamical and thermodynamical properties observed in reactions {sup 40}Ca+ {sup 40,48}Ca and {sup 40}Ca + {sup 46}Ti at 25 MeV/nucleon has been studied. We used the CHIMERA multi-detector array. Strong isospin effects are seen in the isotopic distributions of light nuclei and in the competition between different reaction mechanisms in semi-central collisions. We will show also preliminary results obtained in nuclear collision {sup 48}Ca + {sup 48}Ca at 25MeV/nucleon, having very high N/Z value in the entrance channel (N/Z = 1.4). The enhancement of evaporation residue production confirms the strong role played by the N/Z degree of freedom in nuclear dynamics.

  7. Condensates of p-Wave Pairs Are Exact Solutions for Rotating Two-Component Bose Gases

    SciTech Connect

    Papenbrock, T; Kavoulakis, G. M.

    2012-01-01

    We derive exact analytical results for the wave functions and energies of harmonically trapped two-component Bose-Einstein condensates with weakly repulsive interactions under rotation. The isospin symmetric wave functions are universal and do not depend on the matrix elements of the two-body interaction. The comparison with the results from numerical diagonalization shows that the ground state and low-lying excitations consist of condensates of p-wave pairs for repulsive contact interactions, Coulomb interactions, and the repulsive interactions between aligned dipoles.

  8. Condensates of p-wave pairs are exact solutions for rotating two-component Bose gases.

    PubMed

    Papenbrock, T; Reimann, S M; Kavoulakis, G M

    2012-02-17

    We derive exact analytical results for the wave functions and energies of harmonically trapped two-component Bose-Einstein condensates with weakly repulsive interactions under rotation. The isospin symmetric wave functions are universal and do not depend on the matrix elements of the two-body interaction. The comparison with the results from numerical diagonalization shows that the ground state and low-lying excitations consist of condensates of p-wave pairs for repulsive contact interactions, Coulomb interactions, and the repulsive interactions between aligned dipoles.

  9. Temporal Interval Discrimination Thresholds Depend on Perceived Synchrony for Audio-Visual Stimulus Pairs

    ERIC Educational Resources Information Center

    van Eijk, Rob L. J.; Kohlrausch, Armin; Juola, James F.; van de Par, Steven

    2009-01-01

    Audio-visual stimulus pairs presented at various relative delays, are commonly judged as being "synchronous" over a range of delays from about -50 ms (audio leading) to +150 ms (video leading). The center of this range is an estimate of the point of subjective simultaneity (PSS). The judgment boundaries, where "synchronous" judgments yield to a…

  10. Schistosome sex matters: a deep view into gonad-specific and pairing-dependent transcriptomes reveals a complex gender interplay

    PubMed Central

    Lu, Zhigang; Sessler, Florian; Holroyd, Nancy; Hahnel, Steffen; Quack, Thomas; Berriman, Matthew; Grevelding, Christoph G.

    2016-01-01

    As a key event for maintaining life cycles, reproduction is a central part of platyhelminth biology. In case of parasitic platyhelminths, reproductive processes can also contribute to pathology. One representative example is the trematode Schistosoma, which causes schistosomiasis, an infectious disease, whose pathology is associated with egg production. Among the outstanding features of schistosomes is their dioecious lifestyle and the pairing-dependent differentiation of the female gonads which finally leads to egg synthesis. To analyze the reproductive biology of Schistosoma mansoni in-depth we isolated complete ovaries and testes from paired and unpaired schistosomes for comparative RNA-seq analyses. Of >7,000 transcripts found in the gonads, 243 (testes) and 3,600 (ovaries) occurred pairing-dependently. Besides the detection of genes transcribed preferentially or specifically in the gonads of both genders, we uncovered pairing-induced processes within the gonads including stem cell-associated and neural functions. Comparisons to work on neuropeptidergic signaling in planarian showed interesting parallels but also remarkable differences and highlights the importance of the nervous system for flatworm gonad differentiation. Finally, we postulated first functional hints for 235 hypothetical genes. Together, these results elucidate key aspects of flatworm reproductive biology and will be relevant for basic as well as applied, exploitable research aspects. PMID:27499125

  11. Perturbative thermodynamics at nonzero isospin density for cold QCD

    NASA Astrophysics Data System (ADS)

    Graf, Thorben; Schaffner-Bielich, Juergen; Fraga, Eduardo S.

    2016-04-01

    We use next-to-leading order in perturbation theory to investigate the effects of a finite isospin density on the thermodynamics of cold strongly interacting matter. Our results include nonzero quark masses and are compared to lattice data.

  12. Shell Model Depiction of Isospin Mixing in sd Shell

    SciTech Connect

    Lam, Yi Hua; Smirnova, Nadya A.; Caurier, Etienne

    2011-11-30

    We constructed a new empirical isospin-symmetry breaking (ISB) Hamiltonian in the sd(1s{sub 1/2}, 0d{sub 5/2} and 0d{sub 3/2}) shell-model space. In this contribution, we present its application to two important case studies: (i){beta}-delayed proton emission from {sup 22}Al and (ii) isospin-mixing correction to superallowed 0{sup +}{yields}0{sup +}{beta}-decay ft-values.

  13. MHC-dependent survival in a wild population: evidence for hidden genetic benefits gained through extra-pair fertilizations.

    PubMed

    Brouwer, Lyanne; Barr, Iain; van de Pol, Martijn; Burke, Terry; Komdeur, Jan; Richardson, David S

    2010-08-01

    Females should prefer to be fertilized by males that increase the genetic quality of their offspring. In vertebrates, genes of the major histocompatibility complex (MHC) play a key role in the acquired immune response and have been shown to affect mating preferences. They are therefore important candidates for the link between mate choice and indirect genetic benefits. Higher MHC diversity may be advantageous because this allows a wider range of pathogens to be detected and combated. Furthermore, individuals harbouring rare MHC alleles might better resist pathogen variants that have evolved to evade common MHC alleles. In the Seychelles warbler, females paired with low MHC-diversity males elevate the MHC diversity of their offspring to levels comparable to the population mean by gaining extra-pair fertilizations. Here, we investigate whether increased MHC diversity results in higher life expectancy and whether there are any additional benefits of extra-pair fertilizations. Our 10-year study found a positive association between MHC diversity and juvenile survival, but no additional survival advantage of extra-pair fertilizations. In addition, offspring with a specific allele (Ase-ua4) had a fivefold longer life expectancy than offspring without this allele. Consequently, the interacting effects of sexual selection and pathogen-mediated viability selection appear to be important for maintaining MHC variation in the Seychelles warbler. Our study supports the prediction that MHC-dependent extra-pair fertilizations result in genetic benefits for offspring in natural populations. However, such genetic benefits might be hidden and not necessarily apparent in the widely used fitness comparison of extra- and within-pair offspring.

  14. A novel tubulin-dependent protein kinase forming a paired helical filament epitope on tau.

    PubMed

    Ishiguro, K; Ihara, Y; Uchida, T; Imahori, K

    1988-09-01

    From rat brain microtubule proteins, we purified a protein kinase that phosphorylated tau, one of microtubule-associated proteins. The electrophoretic mobility of the phosphorylated tau on SDS-polyacrylamide gel decreased. The enzyme was not activated by cyclic nucleotides, calmodulin, or phospholipids, and was inhibited by the calcium ions. The kinase bound to tau. The phosphorylation of tau was stimulated by tubulin under the condition of microtubule formation. From these results we propose an idea that the phosphorylation could occur concomitantly with microtubule formation in the brain. Human tau phosphorylated by the kinase carried an epitope of the paired helical filaments that accumulate in the brain in Alzheimer's disease.

  15. Unusual Isospin-Breaking and Isospin-Mixing Effects in the A=35 Mirror Nuclei

    NASA Astrophysics Data System (ADS)

    Ekman, J.; Rudolph, D.; Fahlander, C.; Zuker, A. P.; Bentley, M. A.; Lenzi, S. M.; Andreoiu, C.; Axiotis, M.; de Angelis, G.; Farnea, E.; Gadea, A.; Kröll, Th.; Mărginean, N.; Martinez, T.; Mineva, M. N.; Rossi-Alvarez, C.; Ur, C. A.

    2004-04-01

    Excited states have been studied in 35Ar following the 16O(24Mg,1α1n)35Ar fusion-evaporation reaction at 60MeV using the Ge-detector array GASP. A comparison with the mirror nucleus 35Cl shows two remarkable features: (i)A surprisingly large energy difference for the 13/2- states, in which the hitherto overlooked electromagnetic spin-orbit term is shown to play a major role, and (ii)a very different decay pattern for the 7/2- states, which provides direct evidence of isospin mixing.

  16. Unusual isospin-breaking and isospin-mixing effects in the A=35 mirror nuclei.

    PubMed

    Ekman, J; Rudolph, D; Fahlander, C; Zuker, A P; Bentley, M A; Lenzi, S M; Andreoiu, C; Axiotis, M; de Angelis, G; Farnea, E; Gadea, A; Kröll, Th; Mărginean, N; Martinez, T; Mineva, M N; Rossi-Alvarez, C; Ur, C A

    2004-04-02

    Excited states have been studied in 35Ar following the 16O(24Mg,1alpha1n)35Ar fusion-evaporation reaction at 60 MeV using the Ge-detector array GASP. A comparison with the mirror nucleus 35Cl shows two remarkable features: (i) A surprisingly large energy difference for the 13/2(-) states, in which the hitherto overlooked electromagnetic spin-orbit term is shown to play a major role, and (ii) a very different decay pattern for the 7/2(-) states, which provides direct evidence of isospin mixing.

  17. Accounting for dependence induced by weighted KNN imputation in paired samples, motivated by a colorectal cancer study.

    PubMed

    Suyundikov, Anvar; Stevens, John R; Corcoran, Christopher; Herrick, Jennifer; Wolff, Roger K; Slattery, Martha L

    2015-01-01

    Missing data can arise in bioinformatics applications for a variety of reasons, and imputation methods are frequently applied to such data. We are motivated by a colorectal cancer study where miRNA expression was measured in paired tumor-normal samples of hundreds of patients, but data for many normal samples were missing due to lack of tissue availability. We compare the precision and power performance of several imputation methods, and draw attention to the statistical dependence induced by K-Nearest Neighbors (KNN) imputation. This imputation-induced dependence has not previously been addressed in the literature. We demonstrate how to account for this dependence, and show through simulation how the choice to ignore or account for this dependence affects both power and type I error rate control.

  18. Solvent dependence of structure, charge distribution, and absorption spectrum in the photochromic merocyanine-spiropyran pair.

    PubMed

    Murugan, N Arul; Chakrabarti, Swapan; Ågren, Hans

    2011-04-14

    We have studied the structures and absorption spectra of merocyanine, the photoresponsive isomer of the spiropyran (SP)-merocyanine (MC) pair, in chloroform and in water solvents using a combined hybrid QM/MM Car-Parrinello molecular dynamics (CP-QM/MM) and ZINDO approach. We report remarkable differences in the molecular structure and charge distribution of MC between the two solvents; the molecular structure of MC remains in neutral form in chloroform while it becomes charge-separated, zwitterionic, in water. The dipole moment of MC in water is about 50% larger than in chloroform, while the value for SP in water is in between, suggesting that the solvent is more influential than the conformation itself in deciding the dipole moment for the merocyanine-spiropyran pair. The calculations could reproduce the experimentally reported blue shift in the absorption spectra of MC when going from the nonpolar to the polar solvent, though the actual value of the absorption maximum is overestimated in chloroform solvent. We find that the CP-QM/MM approach is appropriate for structure modeling of solvatochromic and thermochromic molecules as this approach is able to capture the solvent and thermal-induced structural changes within the solute important for an accurate assessment of the properties.

  19. Solitons and Rabi Oscillations in a Time-Dependent BCS Pairing Problem

    NASA Astrophysics Data System (ADS)

    Barankov, Roman; Levitov, Leonid; Spivak, Boris

    2004-03-01

    Motivated by recent efforts [1] to achieve fermion pairing in cold alkali atomic gases near a Feshbach resonance, we consider fast, nonadiabatic formation of the Bardeen-Cooper-Schrieffer (BCS) state after the coupling constant is turned on. In the nonadiabatic regime [2], the system oscillates between the normal and BCS states until BCS state settles down on time scales controlled by the quasiparticle energy relaxation. We study the collective oscillation of the BCS-Bogoliubov amplitudes u_p, v_p, along with the pairing function Δ. We demonstrate that it is an integrable dynamical problem, and obtain a family of exact solutions in the form of single solitons and soliton trains, describing periodic oscillations. We interpret the collective oscillations as Bloch precession of Anderson pseudospins [3], where each soliton causes a pseudospin a full 2π Rabi rotation. Numerical simulations of the Bloch dynamics indicate the ubiquity of the solitons, and demonstrate their robustness with respect to noise and damping. [1] B. DeMarco, et al., Phys. Rev. Lett. 82, 4208 (1999); A. G. Truscott et al., Science 291, 2570 (2001) [2] R. A. Barankov, L. S. Levitov, B. Z. Spivak, arXiv:cond-mat/0312053 [3] P. W. Anderson, Phys. Rev. 112, 1900 (1958)

  20. SATELLITES IN MILKY-WAY-LIKE HOSTS: ENVIRONMENT DEPENDENCE AND CLOSE PAIRS

    SciTech Connect

    Gonzalez, Roberto E.; Kravtsov, Andrey V.; Gnedin, Nickolay Y.

    2013-06-20

    Previous studies showed that an estimate of the likelihood distribution of the Milky Way (MW) halo mass can be derived using the properties of the satellites similar to the Large and Small Magellanic Clouds (LMC and SMC). However, it would be straightforward to interpret such an estimate only if the properties of the Magellanic Clouds (MCs) are fairly typical and are not biased by the environment. In this study, we explore whether the environment of the MW affects the properties of the SMC and LMC such as their velocities. To test for the effect of the environment, we compare velocity distributions for MC-sized subhalos around MW hosts in a sample selected simply by mass and in the second sample of such halos selected with additional restrictions on the distance to the nearest cluster and the local galaxy density, designed to mimic the environment of the Local Group (LG). We find that satellites in halos in the LG-like environments do have somewhat larger velocities, as compared to the halos of similar mass in the sample without environmental constraints. For example, the fraction of subhalos matching the velocity of the LMC is 23% {+-} 2% larger in the LG-like environments. We derive the host halo likelihood distribution for the samples in the LG-like environment and in the control sample and find that the environment does not significantly affect the derived likelihood. We use the updated properties of the SMC and LMC to derive the constraint on the MW halo mass of log(M{sub 200}/M{sub Sun }) = 12.06{sub -0.19}{sup +0.31} (90% confidence interval). We also explore the incidence of close pairs with relative velocities and separations similar to those of the LMC and SMC and find that such pairs are quite rare among {Lambda}CDM halos. Only 2% of halos in the MW mass range have a relatively close pair ({Delta}r < 40 kpc and {Delta}s < 160 km s{sup -1}) of subhalos with circular velocities v{sub circ} > 50 km s{sup -1}. Pairs with masses and separations similar to

  1. Isospin of topological defects in Dirac systems

    NASA Astrophysics Data System (ADS)

    Herbut, Igor F.

    2012-02-01

    We study the Dirac quasiparticles in d-dimensional lattice systems of electrons in the presence of domain walls (d=1), vortices (d=2), or hedgehogs (d=3) of superconducting and/or insulating, order parameters, which appear as mass terms in the Dirac equation. Such topological defects have been known to carry nontrivial quantum numbers, such as charge and spin. Here we discuss their additional internal degree of freedom: irrespective of the dimensionality of space and the nature of orders that support the defect, an extra mass order parameter is found to emerge in their core. Six linearly independent local orders, which close two mutually commuting three-dimensional Clifford algebras, are proven to be in general possible. We show how the particle-hole symmetry restricts the defects to always carry the quantum numbers of a single effective isospin 1/2, quite independently of the values of their electric charge or true spin. Examples of this new degree of freedom in graphene and on surfaces of topological insulators are discussed.

  2. Mechanistic insights into temperature-dependent regulation of the simple cyanobacterial hsp17 RNA thermometer at base-pair resolution.

    PubMed

    Wagner, Dominic; Rinnenthal, Jörg; Narberhaus, Franz; Schwalbe, Harald

    2015-06-23

    The cyanobacterial hsp17 ribonucleicacid thermometer (RNAT) is one of the smallest naturally occurring RNAT. It forms a single hairpin with an internal 1×3-bulge separating the start codon in stem I from the ribosome binding site (RBS) in stem II. We investigated the temperature-dependent regulation of hsp17 by mapping individual base-pair stabilities from solvent exchange nuclear magnetic resonance (NMR) spectroscopy. The wild-type RNAT was found to be stabilized by two critical CG base pairs (C14-G27 and C13-G28). Replacing the internal 1×3 bulge by a stable CG base pair in hsp17(rep) significantly increased the global stability and unfolding cooperativity as evidenced by circular dichroism spectroscopy. From the NMR analysis, remote stabilization and non-nearest neighbour effects exist at the base-pair level, in particular for nucleotide G28 (five nucleotides apart from the side of mutation). Individual base-pair stabilities are coupled to the stability of the entire thermometer within both the natural and the stabilized RNATs by enthalpy-entropy compensation presumably mediated by the hydration shell. At the melting point the Gibbs energies of the individual nucleobases are equalized suggesting a consecutive zipper-type unfolding mechanism of the RBS leading to a dimmer-like function of hsp17 and switch-like regulation behaviour of hsp17(rep). The data show how minor changes in the nucleotide sequence not only offset the melting temperature but also alter the mode of temperature sensing. The cyanobacterial thermosensor demonstrates the remarkable adjustment of natural RNATs to execute precise temperature control.

  3. Anomalous Fermi-Surface Dependent Pairing in a Self-Doped High-Tc Superconductor

    SciTech Connect

    Chen, Y.

    2010-05-03

    We report the discovery of a self-doped multi-layer high T{sub c} superconductor Ba{sub 2}Ca{sub 3}Cu{sub 4}O{sub 8}F{sub 2} (F0234) which contains distinctly different superconducting gap magnitudes along its two Fermi surface(FS) sheets. While formal valence counting would imply this material to be an undoped insulator, it is a self-doped superconductor with a T{sub c} of 60K, possessing simultaneously both electron- and hole-doped FS sheets. Intriguingly, the FS sheet characterized by the much larger gap is the electron-doped one, which has a shape disfavoring two electronic features considered to be important for the pairing mechanism: the van Hove singularity and the antiferromagnetic ({pi}/a, {pi}/a) scattering.

  4. Orbital dependent pairing and the structure of the lightest isotopes of tin

    NASA Astrophysics Data System (ADS)

    Grzywacz, Robert; Darby, Iain; Batchelder, Jon; Bingham, Carrol; Cartegni, Lucia; Gross, Carl; Hjorth-Jensen, Morten; Joss, David; Liddick, Sean; Nazarewicz, Witold; Page, Robert; Papenbrock, Thomas; Rajabali, Mustafa; Rotureau, Jimmy; Rykaczewski, Krzysztof; Padgett, Stephen

    2010-11-01

    The island of alpha radioactivity near doubly magic ^100Sn provides an opportunity to study properties of tin isotopes using the extreme selectivity of charge particle decay spectroscopy. In an experiment, which used the most advanced experimental spectroscopic techniques the ^109Xe->^105Te->^101Sn alpha decay chain was studied at the Holifield Radioactive Ion Beam Facility at Oak Ridge. The majority of the alpha decay branching ratio of the ^105Te populates not the ground state but the first excited state in ^101Sn leading to the revision of the established order of single particle levels. The in-depth analysis of this result with the state-of-the-art shell model calculations lead to surprising conclusions on the role of the pairing correlations in the lightest tin isotopes.

  5. Isospin symmetry breaking in the chiral quark model

    NASA Astrophysics Data System (ADS)

    Song, Huiying; Zhang, Xinyu; Ma, Bo-Qiang

    2010-12-01

    We discuss the isospin symmetry breaking (ISB) of the valence- and sea-quark distributions between the proton and the neutron in the framework of the chiral quark model. We assume that isospin symmetry breaking is the result of mass differences between isospin multiplets and then analyze the effects of isospin symmetry breaking on the Gottfried sum rule and the NuTeV anomaly. We show that, although both flavor asymmetry in the nucleon sea and the ISB between the proton and the neutron can lead to the violation of the Gottfried sum rule, the main contribution is from the flavor asymmetry in the framework of the chiral quark model. We also find that the correction to the NuTeV anomaly is in an opposite direction, so the NuTeV anomaly cannot be removed by isospin symmetry breaking in the chiral quark model. It is remarkable that our results of ISB for both valence- and sea-quark distributions are consistent with the Martin-Roberts-Stirling-Thorne parametrization of quark distributions.

  6. Doping-dependent critical Cooper-pair momentum pc in thin underdoped cuprate films

    NASA Astrophysics Data System (ADS)

    Lemberger, Thomas; Draskovic, John; Steers, Stanley; McJunkin, Thomas; Anmed, Adam

    2015-03-01

    We apply a low-field (<100 G) technique to measure the critical Cooper pair momentum pc in thin, underdoped films of Y0.7Ca0.3Ba2Cu3O7-δ and Bi2Sr2CaCu2O8+δ, where doping is effected by adjusting the oxygen stoichiometry through post-deposition annealing. The technique is based on applying a perpendicular magnetic field to the center of a superconducting film and measuring the field at which screening of the field catastrophically fails. Theory together with measurements on thin films of conventional superconductors Nb and MoGe argue for the validity of the technique. In underdoped cuprates, spectroscopy identifies multiple characteristic energy scales, e.g., the pseudogap and the ``nodal'' gap, neither of which is proportional to Tc. On general grounds, we expect to find that pc ~ 1/1ξ ξ is proportional to the characteristic superconducting energy scale. We observe that pc ~Tc as Tc decreases with underdoping, identifying kBTc as the characteristic energy. While this result is trivial in conventional superconductors whose spectroscopic gaps are proportional to Tc, it is significant in cuprates. Research supported by DOE-Basic Energy Sciences through Grant No. FG02-08ER46533.

  7. IrisCode decompression based on the dependence between its bit pairs.

    PubMed

    Kong, Adams Wai-Kin

    2012-03-01

    IrisCode is an iris recognition algorithm developed in 1993 and continuously improved by Daugman. Understanding IrisCode's properties is extremely important because over 60 million people have been mathematically enrolled by the algorithm. In this paper, IrisCode is proved to be a compression algorithm, which is to say its templates are compressed iris images. In our experiments, the compression ratio of these images is 1:655. An algorithm is designed to perform this decompression by exploiting a graph composed of the bit pairs in IrisCode, prior knowledge from iris image databases, and the theoretical results. To remove artifacts, two postprocessing techniques that carry out optimization in the Fourier domain are developed. Decompressed iris images obtained from two public iris image databases are evaluated by visual comparison, two objective image quality assessment metrics, and eight iris recognition methods. The experimental results show that the decompressed iris images retain iris texture that their quality is roughly equivalent to a JPEG quality factor of 10 and that the iris recognition methods can match the original images with the decompressed images. This paper also discusses the impacts of these theoretical and experimental findings on privacy and security.

  8. O⁶-carboxymethylguanine in DNA forms a sequence context-dependent wobble base-pair structure with thymine.

    PubMed

    Zhang, Fang; Tsunoda, Masaru; Kikuchi, Yuji; Wilkinson, Oliver; Millington, Christopher L; Margison, Geoffrey P; Williams, David M; Takénaka, Akio

    2014-06-01

    N-Nitrosation of glycine and its derivatives generates potent alkylating agents that can lead to the formation of O(6)-carboxymethylguanine (O(6)-CMG) in DNA. O(6)-CMG has been identified in DNA derived from human colon tissue and its occurrence has been linked to diets high in red and processed meats, implying an association with the induction of colorectal cancer. By analogy to O(6)-methylguanine, O(6)-CMG is expected to be mutagenic, inducing G-to-A mutations that may be the molecular basis of increased cancer risk. Previously, the crystal structure of the DNA dodecamer d(CGCG[O(6)-CMG]ATTCGCG) has been reported, in which O(6)-CMG forms a Watson-Crick-type pair with thymine similar to the canonical A:T pair. In order to further investigate the versatility of O(6)-CMG in base-pair formation, the structure of the DNA dodecamer d(CGC[O(6)-CMG]AATTTGCG) containing O(6)-CMG at a different position has been determined by X-ray crystallography using four crystal forms obtained under conditions containing different solvent ions (Sr(2+), Ba(2+), Mg(2+), K(+) or Na(+)) with and without Hoechst 33258. The most striking finding is that the pairing modes of O(6)-CMG with T are quite different from those previously reported. In the present dodecamer, the T bases are displaced (wobbled) into the major groove to form a hydrogen bond between the thymine N(3) N-H and the carboxyl group of O(6)-CMG. In addition, a water molecule is bridged through two hydrogen bonds between the thymine O(2) atom and the 2-amino group of O(6)-CMG to stabilize the pairing. These interaction modes commonly occur in the four crystal forms, regardless of the differences in crystallization conditions. The previous and the present results show that O(6)-CMG can form a base pair with T in two alternative modes: the Watson-Crick type and a high-wobble type, the nature of which may depend on the DNA-sequence context.

  9. Spike Timing-Dependent Plasticity in the Long-Latency Stretch Reflex Following Paired Stimulation from a Wearable Electronic Device

    PubMed Central

    Foysal, K. M. Riashad; de Carvalho, Felipe

    2016-01-01

    The long-latency stretch reflex (LLSR) in human elbow muscles probably depends on multiple pathways; one possible contributor is the reticulospinal tract. Here we attempted to induce plastic changes in the LLSR by pairing noninvasive stimuli that are known to activate reticulospinal pathways, at timings predicted to cause spike timing-dependent plasticity in the brainstem. In healthy human subjects, reflex responses in flexor muscles were recorded following extension perturbations at the elbow. Subjects were then fitted with a portable device that delivered auditory click stimuli through an earpiece, and electrical stimuli around motor threshold to the biceps muscle via surface electrodes. We tested the following four paradigms: biceps stimulus 10 ms before click (Bi-10ms-C); click 25 ms before biceps (C-25ms-Bi); click alone (C only); and biceps alone (Bi only). The average stimulus rate was 0.67 Hz. Subjects left the laboratory wearing the device and performed normal daily activities. Approximately 7 h later, they returned, and stretch reflexes were remeasured. The LLSR was significantly enhanced in the biceps muscle (on average by 49%) after the Bi-10ms-C paradigm, but was suppressed for C-25ms-Bi (by 31%); it was unchanged for Bi only and C only. No paradigm induced LLSR changes in the unstimulated brachioradialis muscle. Although we cannot exclude contributions from spinal or cortical pathways, our results are consistent with spike timing-dependent plasticity in reticulospinal circuits, specific to the stimulated muscle. This is the first demonstration that the LLSR can be modified via paired-pulse methods, and may open up new possibilities in motor systems neuroscience and rehabilitation. SIGNIFICANCE STATEMENT This report is the first demonstration that the long-latency stretch reflex can be modified by repeated, precisely timed pairing of stimuli known to activate brainstem pathways. Furthermore, pairing was achieved with a portable electronic device

  10. Estimates of isospin breaking contributions to baryon masses

    SciTech Connect

    Ha, Phuoc

    2007-10-01

    We estimate the isospin breaking contributions to the baryon masses which we analyzed recently using a loop expansion in the heavy-baryon chiral effective field theory. To one loop, the isospin breaking corrections come from the effects of the d, u quark mass difference, the Coulomb and magnetic moment interactions, and effective point interactions attributable to color-magnetic effects. The addition of the first meson loop corrections introduces new structure. We estimate the resulting low-energy, long-range contributions to the mass splittings by regularizing the loop integrals using connections to dynamical models for finite-size baryons. We find that the resulting contributions to the isospin breaking corrections are of the right general size, have the correct sign pattern, and agree with the experimental values within the margin of error.

  11. Attention can increase or decrease spike count correlations between pairs of neurons depending on their role in a task

    PubMed Central

    Ruff, Douglas A.; Cohen, Marlene R.

    2015-01-01

    Visual attention enhances the responses of visual neurons that encode the attended location. Several recent studies showed that attention also decreases correlations between fluctuations in the responses of pairs of neurons (termed spike count correlation or rSC). The previous results are consistent with two hypotheses. Attention–related changes in rate and rSC might be linked (perhaps through a common mechanism), so that attention always decreases rSC. Alternately, attention might either increase or decrease rSC, possibly depending on the role the neurons play in the behavioral task. We recorded simultaneously from dozens of neurons in area V4 while monkeys performed a discrimination task. We found strong evidence in favor of the second hypothesis, showing that attention can flexibly increase or decrease correlations, depending on whether the neurons provide evidence for the same or opposite perceptual decisions. These results place important constraints on models of the neuronal mechanisms underlying cognitive factors. PMID:25306550

  12. Higgs Boson Pair Production in Gluon Fusion at Next-to-Leading Order with Full Top-Quark Mass Dependence.

    PubMed

    Borowka, S; Greiner, N; Heinrich, G; Jones, S P; Kerner, M; Schlenk, J; Schubert, U; Zirke, T

    2016-07-01

    We present the calculation of the cross section and invariant mass distribution for Higgs boson pair production in gluon fusion at next-to-leading order (NLO) in QCD. Top-quark masses are fully taken into account throughout the calculation. The virtual two-loop amplitude has been generated using an extension of the program GoSam supplemented with an interface to Reduze for the integral reduction. The occurring integrals have been calculated numerically using the program SecDec. Our results, including the full top-quark mass dependence for the first time, allow us to assess the validity of various approximations proposed in the literature, which we also recalculate. We find substantial deviations between the NLO result and the different approximations, which emphasizes the importance of including the full top-quark mass dependence at NLO.

  13. Old Neutron Stars as Probes of Isospin-Violating Dark Matter

    NASA Astrophysics Data System (ADS)

    Zheng, Hao; Sun, Kai-Jia; Chen, Lie-Wen

    2015-02-01

    Isospin-violating dark matter (IVDM), which couples differently with protons and neutrons, provides a promising mechanism to ameliorate the tension among recent direct detection experiments. Assuming dark matter (DM) is non-interacting bosonic asymmetric IVDM, we investigate how the existence of old neutron stars limits the DM-proton scattering cross-section {{σ }p}, especially the effects of the isospin-violating DM-nucleon interactions and the symmetry energy in the equation of state (EOS) of isospin asymmetric nuclear matter. Our calculations are completely based on general relativity and the structure of neutron stars is obtained by solving the Tolman-Oppenheimer-Volkoff equations with nuclear matter EOS constrained by terrestrial experiments. We find that, by considering the more realistic neutron star model rather than a simple uniform neutron sphere as usual, the {{σ }p} bounds from old neutron stars can be varied by more than an order of magnitude depending on the specific values of the DM neutron-to-proton coupling ratio {{f}n}/{{f}p}, and they can be further varied by more than a factor of two depending on the density dependence of the symmetry energy. In particular, we demonstrate that the observed nearby isolated old neutron star PSR B1257+12 can set a very strong limit on {{σ }p} for low-mass DM particles (≤slant 20 GeV) that reaches a sensitivity beyond the current best limits from direct detection experiments and disfavors the DM interpretation of previously reported positive experimental results, including the IVDM.

  14. Temperature-dependence of phonons, solid state properties and liquid structure of noble metals: A comparison of pair-potentials

    NASA Astrophysics Data System (ADS)

    Januszko, A.; Bose, S. K.

    2015-02-01

    Two groups of effective pair-potentials are studied from the viewpoint of their suitability in being able to describe solid state properties and liquid state structure of noble metals Cu, Ag and Au over a wide temperature range. Since the effective pair-potentials are usually empirical in nature, with parameters obtained by fitting to some reference state properties, the objective of the present study is to determine whether a particular parametrization scheme has any definite advantage over another. We consider Morse potentials with parameters determined by equilibrium lattice parameter, cohesive/sublimation energies as well as bulk modulus values of the solid at low/room temperatures. The other group of potentials considered is Erkoç potentials, where the parameters were determined first by studying dimers and further modified using bulk stability condition and bulk cohesive energy values. The potentials were then used to study the energetics of microclusters containing 3-7 atoms. Quasiharmonic results for the solid obtained at different temperatures and Monte Carlo simulation for the liquid state show that phonon spectra, thermal expansion, temperature-dependence of specific heats and liquid structure are much better described by the latter group. The first group of potentials may have an advantage in reproducing the temperature-dependence of elastic constants and bulk moduli, since they are based on room temperature values of these properties, which show only weak temperature-dependence in general for all metals. It is argued that potentials based on parameters fitted to the properties at a single volume are less versatile in capturing the temperature-dependence of various thermodynamic properties over a wide range. Potentials capable of reproducing the energetics of clusters of different co-ordination numbers and volumes per atom may fare better in this regard.

  15. Spike Timing-Dependent Plasticity in the Long-Latency Stretch Reflex Following Paired Stimulation from a Wearable Electronic Device.

    PubMed

    Foysal, K M Riashad; de Carvalho, Felipe; Baker, Stuart N

    2016-10-19

    The long-latency stretch reflex (LLSR) in human elbow muscles probably depends on multiple pathways; one possible contributor is the reticulospinal tract. Here we attempted to induce plastic changes in the LLSR by pairing noninvasive stimuli that are known to activate reticulospinal pathways, at timings predicted to cause spike timing-dependent plasticity in the brainstem. In healthy human subjects, reflex responses in flexor muscles were recorded following extension perturbations at the elbow. Subjects were then fitted with a portable device that delivered auditory click stimuli through an earpiece, and electrical stimuli around motor threshold to the biceps muscle via surface electrodes. We tested the following four paradigms: biceps stimulus 10 ms before click (Bi-10ms-C); click 25 ms before biceps (C-25ms-Bi); click alone (C only); and biceps alone (Bi only). The average stimulus rate was 0.67 Hz. Subjects left the laboratory wearing the device and performed normal daily activities. Approximately 7 h later, they returned, and stretch reflexes were remeasured. The LLSR was significantly enhanced in the biceps muscle (on average by 49%) after the Bi-10ms-C paradigm, but was suppressed for C-25ms-Bi (by 31%); it was unchanged for Bi only and C only. No paradigm induced LLSR changes in the unstimulated brachioradialis muscle. Although we cannot exclude contributions from spinal or cortical pathways, our results are consistent with spike timing-dependent plasticity in reticulospinal circuits, specific to the stimulated muscle. This is the first demonstration that the LLSR can be modified via paired-pulse methods, and may open up new possibilities in motor systems neuroscience and rehabilitation.

  16. Evidence for a Mass Dependent Forward-Backward Asymmetry in Top Quark Pair Production

    SciTech Connect

    Aaltonen, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Apresyan, A.; Arisawa, T.; /Waseda U. /Dubna, JINR

    2011-01-01

    We present a new measurement of the inclusive forward-backward t{bar t} production asymmetry and its rapidity and mass dependence. The measurements are performed with data corresponding to an integrated luminosity of 5.3 fb{sup -1} of p{bar p} collisions at {radical}s = 1.96 TeV, recorded with the CDF II Detector at the Fermilab Tevatron. Significant inclusive asymmetries are observed in both the laboratory frame and the t{bar t} rest frame, and in both cases are found to be consistent with CP conservation under interchange of t and {bar t}. In the t{bar t} rest frame, the asymmetry is observed to increase with the t{bar t} rapidity difference, {Delta}y, and with the invariant mass M{sub t{bar t}} of the t{bar t} system. Fully corrected parton-level asymmetries are derived in two regions of each variable, and the asymmetry is found to be most significant at large {Delta}y and M{sub t{bar t}}. For M{sub t{bar t}} {ge} 450 GeV/c{sup 2}, the parton-level asymmetry in the t{bar t} rest frame is A{sup t{bar t}} = 0.475 {+-} 0.114 compared to a next-to-leading order QCD prediction of 0.088 {+-} 0.013.

  17. Differential stabilities and sequence-dependent base pair opening dynamics of Watson-Crick base pairs with 5-hydroxymethylcytosine, 5-formylcytosine, or 5-carboxylcytosine.

    PubMed

    Szulik, Marta W; Pallan, Pradeep S; Nocek, Boguslaw; Voehler, Markus; Banerjee, Surajit; Brooks, Sonja; Joachimiak, Andrzej; Egli, Martin; Eichman, Brandt F; Stone, Michael P

    2015-02-10

    5-Hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) form during active demethylation of 5-methylcytosine (5mC) and are implicated in epigenetic regulation of the genome. They are differentially processed by thymine DNA glycosylase (TDG), an enzyme involved in active demethylation of 5mC. Three modified Dickerson-Drew dodecamer (DDD) sequences, amenable to crystallographic and spectroscopic analyses and containing the 5'-CG-3' sequence associated with genomic cytosine methylation, containing 5hmC, 5fC, or 5caC placed site-specifically into the 5'-T(8)X(9)G(10)-3' sequence of the DDD, were compared. The presence of 5caC at the X(9) base increased the stability of the DDD, whereas 5hmC or 5fC did not. Both 5hmC and 5fC increased imino proton exchange rates and calculated rate constants for base pair opening at the neighboring base pair A(5):T(8), whereas 5caC did not. At the oxidized base pair G(4):X(9), 5fC exhibited an increase in the imino proton exchange rate and the calculated kop. In all cases, minimal effects to imino proton exchange rates occurred at the neighboring base pair C(3):G(10). No evidence was observed for imino tautomerization, accompanied by wobble base pairing, for 5hmC, 5fC, or 5caC when positioned at base pair G(4):X(9); each favored Watson-Crick base pairing. However, both 5fC and 5caC exhibited intranucleobase hydrogen bonding between their formyl or carboxyl oxygens, respectively, and the adjacent cytosine N(4) exocyclic amines. The lesion-specific differences observed in the DDD may be implicated in recognition of 5hmC, 5fC, or 5caC in DNA by TDG. However, they do not correlate with differential excision of 5hmC, 5fC, or 5caC by TDG, which may be mediated by differences in transition states of the enzyme-bound complexes.

  18. Metal Dependence on the Bidirectionality and Reversibility of the Singlet Energy Transfer in Artificial Special Pair-Containing Dyads.

    PubMed

    Langlois, Adam; Camus, Jean-Michel; Karsenti, Paul-Ludovic; Guilard, Roger; Harvey, Pierre D

    2017-02-13

    The demetalation of a precursor dyad, 3, built upon a zinc(II)-containing artificial special pair and free-base antenna, leads to a new dyad, 4, for singlet energy transfer composed of cofacial free-base porphyrins (acceptor), [Fb]2 bridged by a 1,4-C6H4 group to a free-base antenna (donor), [Fb]. This dyad exhibits the general structure [M]2-C6H4-[Fb], where [M]2 = [Fb]2, and completes a series reported earlier, where [M]2 = [Mg]2 (2) and [Zn]2 (3). The latter dyads exhibit a bidirectional energy-transfer process at 298 K for 2 and at 77 K for 3. Interestingly, a very scarce case of cycling process is observed for the zinc-containing dyad at 298 K. The newly reported compound 4 exhibits a quasi unidirectional process [Fb]*→[Fb]2 (major, kET = 2 × 10(11) s(-1) at 298 K), where the remaining is [Fb]2*→[Fb] (minor, kET = 8 × 10(9) s(-1) at 298 K), thus completing all possibilities. The results are analyzed in terms of molecular orbital couplings (density functional theory computations), Förster resonance energy transfer parameters, and temperature dependence of the decay traces. This study brings major insights about artificial special pair-containing dyads and clearly contributes to a better understanding of the communication between the two main components of our models and those already described in the literature.

  19. Time-dependent absorption of very high-energy gamma-rays from the Galactic center by pair-production

    SciTech Connect

    Abramowski, Attila; Horns, Dieter; Ripken, Joachim; Gillessen, Stefan; Eldik, Christopher van

    2008-12-24

    Very high energy (VHE) gamma-rays have been detected from the direction of the Galactic center. The H.E.S.S. Cherenkov telescopes have located this {gamma}-ray source with a preliminary position uncertainty of 8.5'' per axis (6'' statistic+6'' sytematic per axis). Within the uncertainty region several possible counterpart candidates exist: the Super Massive Black Hole Sgr A*, the Pulsar Wind Nebula candidate G359.95-0.04, the Low Mass X-Ray Binary-system J174540.0-290031, the stellar cluster IRS 13, as well as self-annihilating dark matter. It is experimentally very challenging to further improve the positional accuracy in this energy range and therefore, it may not be possible to clearly associate one of the counterpart candidates with the VHE-source. Here, we present a new method to investigate a possible link of the VHE-source with the near environment of Sgr A*(within approximately 1000 Schwarzschild radii). This method uses the time- and energy-dependent effect of absorption of VHE {gamma}-rays by pair-production (in the following named pair-eclipse) with low-energy photons of stars closely orbiting the SMBH Sgr A*.

  20. Frequency-dependent changes in the paired-pulse index in the hippocampus of the freely moving adult male rat.

    PubMed

    Yorns, W R; Blaise, J H; Bronzino, J D

    2004-03-01

    The paired-pulse index (PPI) has been widely used as a measure of modulation of cellular excitability in the hippocampal trisynaptic circuit. This paper presents a quantification of the changes in this measure of neuronal modulation as a result of the application of pulse trains having six different train frequencies (0.1, 1, 5, 8, 15, and 30 Hz) to one of the major efferent pathways to the dentate gyrus, the medial perforant path (MPP). Our findings indicate that the modulation of the first leg of the hippocampal trisynaptic circuit is dependent on the frequency of the "burst train" applied to the perforant pathway. This methodological finding is of importance to all investigators studying hippocampal plasticity via LTP or LTD approaches. The different synaptic mechanisms implicated in being responsible for the changes in the PPI are also discussed.

  1. A two-step Notch-dependant mechanism controls the selection of the polar cell pair in Drosophila oogenesis.

    PubMed

    Vachias, Caroline; Couderc, Jean-Louis; Grammont, Muriel

    2010-08-01

    Organisers control the patterning and growth of many tissues and organs. Correctly regulating the size of these organisers is crucial for proper differentiation to occur. Organiser activity in the epithelium of the Drosophila ovarian follicle resides in a pair of cells called polar cells. It is known that these two cells are selected from a cluster of equivalent cells. However, the mechanisms responsible for this selection are still unclear. Here, we present evidence that the selection of the two cells is not random but, by contrast, depends on an atypical two-step Notch-dependent mechanism. We show that this sequential process begins when one cell becomes refractory to Notch activation and is selected as the initial polar cell. This cell then produces a Delta signal that induces a high level of Notch activation in one other cell within the cluster. This Notch activity prevents elimination by apoptosis, allowing its selection as the second polar cell. Therefore, the mechanism used to select precisely two cells from among an equivalence group involves an inductive Delta signal that originates from one cell, itself unable to respond to Notch activation, and results in one other cell being selected to adopt the same fate. Given its properties, this two-step Notch-dependent mechanism represents a novel aspect of Notch action.

  2. No-core configuration-interaction model for the isospin- and angular-momentum-projected states

    NASA Astrophysics Data System (ADS)

    Satuła, W.; Båczyk, P.; Dobaczewski, J.; Konieczka, M.

    2016-08-01

    Background: Single-reference density functional theory is very successful in reproducing bulk nuclear properties like binding energies, radii, or quadrupole moments throughout the entire periodic table. Its extension to the multireference level allows for restoring symmetries and, in turn, for calculating transition rates. Purpose: We propose a new variant of the no-core-configuration-interaction (NCCI) model treating properly isospin and rotational symmetries. The model is applicable to any nucleus irrespective of its mass and neutron- and proton-number parity. It properly includes polarization effects caused by an interplay between the long- and short-range forces acting in the atomic nucleus. Methods: The method is based on solving the Hill-Wheeler-Griffin equation within a model space built of linearly dependent states having good angular momentum and properly treated isobaric spin. The states are generated by means of the isospin and angular-momentum projection applied to a set of low-lying (multi)particle-(multi)hole deformed Slater determinants calculated using the self-consistent Skyrme-Hartree-Fock approach. Results: The theory is applied to calculate energy spectra in N ≈Z nuclei that are relevant from the point of view of a study of superallowed Fermi β decays. In particular, a new set of the isospin-symmetry-breaking corrections to these decays is given. Conclusions: It is demonstrated that the NCCI model is capable of capturing main features of low-lying energy spectra in light and medium-mass nuclei using relatively small model space and without any local readjustment of its low-energy coupling constants. Its flexibility and a range of applicability makes it an interesting alternative to the conventional nuclear shell model.

  3. Nuclear response theory for spin-isospin excitations in a relativistic quasiparticle-phonon coupling framework

    NASA Astrophysics Data System (ADS)

    Robin, Caroline; Litvinova, Elena

    2016-07-01

    A new theoretical approach to spin-isospin excitations in open-shell nuclei is presented. The developed method is based on the relativistic meson-exchange nuclear Lagrangian of Quantum Hadrodynamics and extends the response theory for superfluid nuclear systems beyond relativistic quasiparticle random phase approximation in the proton-neutron channel (pn-RQRPA). The coupling between quasiparticle degrees of freedom and collective vibrations (phonons) introduces a time-dependent effective interaction, in addition to the exchange of pion and ρ -meson taken into account without retardation. The time-dependent contributions are treated in the resonant time-blocking approximation, in analogy to the previously developed relativistic quasiparticle time-blocking approximation (RQTBA) in the neutral (non-isospin-flip) channel. The new method is called proton-neutron RQTBA (pn-RQTBA) and is applied to the Gamow-Teller resonance in a chain of neutron-rich nickel isotopes 68-78Ni . A strong fragmentation of the resonance along with quenching of the strength, as compared to pn-RQRPA, is obtained. Based on the calculated strength distribution, beta-decay half-lives of the considered isotopes are computed and compared to pn-RQRPA half-lives and to experimental data. It is shown that a considerable improvement of the half-life description is obtained in pn-RQTBA because of the spreading effects, which bring the lifetimes to a very good quantitative agreement with data.

  4. Paired-Pulse Inhibition in the Auditory Cortex in Parkinson's Disease and Its Dependence on Clinical Characteristics of the Patients

    PubMed Central

    Lukhanina, Elena; Berezetskaya, Natalia; Karaban, Irina

    2011-01-01

    We aimed to determine the value of the paired-pulse inhibition (PPI) in the auditory cortex in patients with Parkinson's disease (PD) and analyze its dependence on clinical characteristics of the patients. The central (Cz) auditory evoked potentials were recorded in 58 patients with PD and 22 age-matched healthy subjects. PPI of the N1/P2 component was significantly (P < .001) reduced for interstimulus intervals 500, 700, and 900 ms in patients with PD compared to control subjects. The value of PPI correlated negatively with the age of the PD patients (P < .05), age of disease onset (P < .05), body bradykinesia score (P < .01), and positively with the Mini Mental State Examination (MMSE) cognitive score (P < .01). Negative correlation between value of PPI and the age of the healthy subjects (P < .05) was also observed. Thus, results show that cortical inhibitory processes are deficient in PD patients and that the brain's ability to carry out the postexcitatory inhibition is age-dependent. PMID:21052541

  5. Matching base-pair number dependence of the kinetics of DNA-DNA hybridization studied by surface plasmon fluorescence spectroscopy.

    PubMed

    Tawa, Keiko; Yao, Danfeng; Knoll, Wolfgang

    2005-08-15

    Two single-stranded DNA oligonucleotides consisting of complementary base-pairs can form double strands. This phenomenon is well studied in solutions, however, in order to clarify the physical mechanism of the hybridization occurring at a solid/solution interface, we studied the kinetics by surface plasmon fluorescence spectroscopy (SPFS): one single-stranded oligo-DNA (probe-DNA) was immobilized on the substrate, the other one (target-DNA) labelled with a fluorescent probe was added to the flow cell. After hybridization, the chromophores could be excited by the surface plasmon mode and their fluorescence detected with high sensitivity. The dependence of the k(on) and k(off) rate constants on the length of the hybridizing oligonucleotides was investigated by using a MM0 series (no mismatch) and the kinetics was found to be well described by a Langmuir adsorption model. From these measurements we found that also in the case of surface hybridization the affinity of the duplexes decreases as the number of matching base-pairs decreases from 15 to 10. In order to show that SPFS is the powerful technique with high sensitivity, the hybridization process for mixed target-oligos was measured by SPFS and analyzed by an expanded Langmuir model in which two components of target-oligo can bind to probe-DNA at the sensor surface competitively. Two sets of the k(on) and k(off) obtained from the experiment are successfully consistent with the k(on) and k(off) obtained from experiments for single (pure) target-DNA.

  6. Spin-orbit coupling and paramagnetic relaxation in micellized triplet radical pairs. Determination of relaxation parameters from magnetic field dependences of the decay kinetics

    NASA Astrophysics Data System (ADS)

    Levin, P. P.; Kuzmin, V. A.

    1990-01-01

    The geminate recombination kinetics of the radical pairs produced by quenching of triplet benzophenone or 4-bromobenzophenone by 4-phenylphenol and 4-phenylaniline in aqueous micellar solutions of sodium dodecyl sulfate has been examined using the laser flash technique. Application of an external magnetic field results in the retardation of geminate recombination up to 20 times. The magnetic field dependences are considered in terms of a simple kinetic scheme, which includes the singlet-triplet evolution in the separated states of a pair due to hyperfine coupling and relaxation mechanisms as well as intersystem recombination process due to the spin-orbit coupling in the contact states of a pair.

  7. Surface spectral function of momentum-dependent pairing potentials in a topological insulator: application to CuxBi2Se3.

    PubMed

    Chen, Liang; Wan, Shaolong

    2013-05-29

    We propose three possible momentum-dependent pairing potentials as candidates for topological superconductors (for example CuxBi2Se3), and calculate the surface spectral function and surface density of states with these pairing potentials. We find that the first two can give the same spectral functions as the fully gapped and node-contacted pairing potentials given by Fu and Berg (2010 Phys. Rev. Lett. 105 097001), and that the third one can obtain a topological non-trivial case in which there exists a flat Andreev bound state and which preserves the threefold rotation symmetry. We hope our proposals and results will be assessed by future experiment.

  8. Observation of Transverse Spin-Dependent Azimuthal Correlations of Charged Pion Pairs in p↑+p at √{s }=200 GeV

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandin, A. V.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cervantes, M. C.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, S.; Gupta, A.; Guryn, W.; Hamad, A.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, X.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jiang, K.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Koetke, D. D.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, C.; Li, W.; Li, Z. M.; Li, Y.; Li, X.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, Y. G.; Ma, G. L.; Ma, L.; Ma, R.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; Meehan, K.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V.; Olvitt, D.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Peterson, A.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, M. K.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B.; Sun, X.; Sun, Z.; Sun, X. M.; Sun, Y.; Surrow, B.; Svirida, N.; Szelezniak, M. A.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Tawfik, A. N.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, F.; Wang, Y.; Wang, H.; Wang, J. S.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z. G.; Xie, W.; Xin, K.; Xu, Q. H.; Xu, Z.; Xu, H.; Xu, N.; Xu, Y. F.; Yang, Q.; Yang, Y.; Yang, S.; Yang, Y.; Yang, C.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, X. P.; Zhang, J.; Zhang, Y.; Zhang, J.; Zhang, J. B.; Zhang, S.; Zhang, Z.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2015-12-01

    We report the observation of transverse polarization-dependent azimuthal correlations in charged pion pair production with the STAR experiment in p↑+p collisions at RHIC. These correlations directly probe quark transversity distributions. We measure signals in excess of 5 standard deviations at high transverse momenta, at high pseudorapidities η >0.5 , and for pair masses around the mass of the ρ meson. This is the first direct transversity measurement in p +p collisions.

  9. Observation of Transverse Spin-Dependent Azimuthal Correlations of Charged Pion Pairs in p^{↑}+p at sqrt[s]=200  GeV.

    PubMed

    Adamczyk, L; Adkins, J K; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Banerjee, A; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Bouchet, J; Brandin, A V; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Calderón de la Barca Sánchez, M; Campbell, J M; Cebra, D; Cervantes, M C; Chakaberia, I; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, J H; Chen, X; Cheng, J; Cherney, M; Christie, W; Contin, G; Crawford, H J; Das, S; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; di Ruzza, B; Didenko, L; Dilks, C; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Eppley, G; Esha, R; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Federic, P; Fedorisin, J; Feng, Z; Filip, P; Fisyak, Y; Flores, C E; Fulek, L; Gagliardi, C A; Garand, D; Geurts, F; Gibson, A; Girard, M; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, S; Gupta, A; Guryn, W; Hamad, A; Hamed, A; Haque, R; Harris, J W; He, L; Heppelmann, S; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, X; Huang, H Z; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Jiang, K; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Khan, Z H; Kikola, D P; Kisel, I; Kisiel, A; Kochenda, L; Koetke, D D; Kollegger, T; Kosarzewski, L K; Kraishan, A F; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; Li, X; Li, C; Li, W; Li, Z M; Li, Y; Li, X; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, Y G; Ma, G L; Ma, L; Ma, R; Magdy, N; Majka, R; Manion, A; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; Meehan, K; Minaev, N G; Mioduszewski, S; Mohanty, B; Mondal, M M; Morozov, D; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nigmatkulov, G; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Okorokov, V; Olvitt, D; Page, B S; Pak, R; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlik, B; Pei, H; Perkins, C; Peterson, A; Pile, P; Planinic, M; Pluta, J; Poljak, N; Poniatowska, K; Porter, J; Posik, M; Poskanzer, A M; Pruthi, N K; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Roy, A; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, M K; Sharma, B; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Sikora, R; Simko, M; Skoby, M J; Smirnov, D; Smirnov, N; Song, L; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stepanov, M; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Summa, B; Sun, X; Sun, Z; Sun, X M; Sun, Y; Surrow, B; Svirida, N; Szelezniak, M A; Tang, A H; Tang, Z; Tarnowsky, T; Tawfik, A N; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Tripathy, S K; Trzeciak, B A; Tsai, O D; Ullrich, T; Underwood, D G; Upsal, I; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Varma, R; Vasiliev, A N; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Voloshin, S A; Vossen, A; Wang, G; Wang, Y; Wang, F; Wang, Y; Wang, H; Wang, J S; Webb, J C; Webb, G; Wen, L; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z G; Xie, W; Xin, K; Xu, Q H; Xu, Z; Xu, H; Xu, N; Xu, Y F; Yang, Q; Yang, Y; Yang, S; Yang, Y; Yang, C; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Yu, N; Zbroszczyk, H; Zha, W; Zhang, X P; Zhang, J; Zhang, Y; Zhang, J; Zhang, J B; Zhang, S; Zhang, Z; Zhao, J; Zhong, C; Zhou, L; Zhu, X; Zoulkarneeva, Y; Zyzak, M

    2015-12-11

    We report the observation of transverse polarization-dependent azimuthal correlations in charged pion pair production with the STAR experiment in p^{↑}+p collisions at RHIC. These correlations directly probe quark transversity distributions. We measure signals in excess of 5 standard deviations at high transverse momenta, at high pseudorapidities η>0.5, and for pair masses around the mass of the ρ meson. This is the first direct transversity measurement in p+p collisions.

  10. Isospin-violating dark matter in the light of recent data

    NASA Astrophysics Data System (ADS)

    Yaguna, Carlos E.

    2017-03-01

    In scenarios where dark matter interacts differently with protons and neutrons (isospin-violating dark matter), the interpretation of the experimental limits on the dark matter spin-independent cross section may be significantly modified. On the one hand, the direct detection constraints are shifted depending on the target nucleus, possibly changing the hierarchy among different experiments. On the other hand, the relative strength between the bounds from neutrino detectors and those from direct detection experiments is altered, allowing the former to be more competitive. In this paper, the status of isospin-violating dark matter is assessed in the light of recent data, and the prospects for its detection in the near future are analyzed. We find, for example, that there are regions in the parameter space where IceCube currently provides the most stringent limits on the spin-independent cross section, or others where the expected sensitivity of DEAP-3600 is well above the LUX exclusion limit. Our results highlight the complementarity among different targets in direct detection experiments, and between direct detection and neutrino searches in the quest for a dark matter signal.

  11. Further study of α-decay in heavy isotopic chains considering the isospin effect

    NASA Astrophysics Data System (ADS)

    Qian, Yibin; Ren, Zhongzhou

    2016-06-01

    We have enhanced the deformed density-dependent cluster model to improve the quantitative description of α-decay in heavy even-even nuclei with 84≤slant Z≤slant 92. To preliminarily introduce the isospin effect into α-decay, the neutron excess term is added in the establishment of the crucial α-core potential. The proton and neutron density distributions are respectively considered in different parameterized formulas by combining them with available experimental data of both the charge radius and the neutron skin thickness. The calculated α-decay half-lives are found to be in somewhat better agreement with the experimental data as compared with our previous results. Strikingly, it is noted that the relatively large deviation between theory and experiment, along the tail of the isotopic chain, is obviously reduced and smoother. This may indicate the necessity of considering the isospin effect in α-decay, especially for extremely neutron-rich nuclei, which appears to be essential for the extended study of heaviest nuclei as well.

  12. Isospin quartic term in the kinetic energy of neutron-rich nucleonic matter

    NASA Astrophysics Data System (ADS)

    Cai, Bao-Jun; Li, Bao-An

    2015-07-01

    The energy of a free gas of neutrons and protons is well known to be approximately isospin parabolic with a negligibly small quartic term of only 0.45 MeV at the saturation density of nuclear matter ρ0=0.16 fm-3 . Using an isospin-dependent single-nucleon momentum distribution including a high (low) momentum tail (depletion) with its shape parameters constrained by recent high-energy electron scattering and medium-energy nuclear photodisintegration experiments as well as the state-of-the-art calculations of the deuteron wave function and the equation of state of pure neutron matter near the unitary limit within several modern microscopic many-body theories, we show for the first time that the kinetic energy of interacting nucleons in neutron-rich nucleonic matter has a significant quartic term of 7.18 ±2.52 MeV. Such a large quartic term has broad ramifications in determining the equation of state of neutron-rich nucleonic matter using observables of nuclear reactions and neutron stars.

  13. Isospin effects on neutrons as a probe of nuclear dissipation

    SciTech Connect

    Ye, W.

    2009-03-15

    Based on a dynamical Langevin equation coupled with a statistical decay model, we calculate the excess of the precision neutron multiplicity of the heavy nuclei {sup 240}Cf, {sup 246}Cf, {sup 252}Cf, and {sup 240}U over that predicted by the standard statistical model as a function of the postsaddle dissipation strength. We find that with increasing isospin of the system, the sensitivity of the excess to the dissipation strength decreases substantially. Moreover, for {sup 240}U, this excess is no longer sensitive to the nuclear dissipation. These results suggest that, on the experimental side, to accurately obtain information of the postsaddle dissipation strength by measuring the neutron multiplicity evaporated during the fission process of heavy nuclei, it is best to populate those compound systems with low isospin.

  14. Isospin-violating dark matter from a double portal

    SciTech Connect

    Bélanger, Geneviève; Goudelis, Andreas; Park, Jong-Chul; Pukhov, Alexander E-mail: andreas.goudelis@lapth.cnrs.fr E-mail: pukhov@lapth.cnrs.fr

    2014-02-01

    We study a simple model that can give rise to isospin-violating interactions of Dirac fermion asymmetric dark matter to protons and neutrons through the interference of a scalar and U(1)' gauge boson contribution. The model can yield a large suppression of the elastic scattering cross section off Xenon relative to Silicon thus reconciling CDMS-Si and LUX results while being compatible with LHC findings on the 126 GeV Higgs, electroweak precision tests and flavour constraints.

  15. Deconfinement transition at high isospin chemical potential and low temperature

    NASA Astrophysics Data System (ADS)

    Cohen, Thomas D.; Sen, Srimoyee

    2015-10-01

    We consider QCD with two degenerate flavors of light quarks (up and down) at asymptotically high isospin (μI) with zero baryon chemical potential (μB) and calculate for the first time a quantitative expression for the critical temperature of the deconfinement transition in this regime. At high isospin chemical potential and sufficiently low temperatures this theory becomes equivalent to a pure Yang-Mills theory and accordingly has a first order deconfinement phase transition. Although this was conjectured in a seminal paper by Son and Stephanov in the year 2001, the critical temperature of this deconfinement phase transition was not computed. This paper computes the energy scale associated with this transition as a function of the chemical potential μI by relating the parameters of the equivalent Yang-Mills theory to those of the underlying theory. We also relate the equation of state in one strongly interacting regime of QCD namely at finite isospin density to that in pure Yang-Mills, with the latter being amenable to straightforward numerical calculation. Our results for the critical temperature of deconfinement transition can be compared with future lattice calculations.

  16. Close, stable homolog juxtaposition during meiosis in budding yeast is dependent on meiotic recombination, occurs independently of synapsis, and is distinct from DSB-independent pairing contacts

    PubMed Central

    Peoples, Tamara L.; Dean, Eric; Gonzalez, Oscar; Lambourne, Lindsey; Burgess, Sean M.

    2002-01-01

    A site-specific recombination system that probes the relative probabilities that pairs of chromosomal loci collide with one another in living cells of budding yeast was used to explore the relative contributions of pairing, recombination, synaptonemal complex formation, and telomere clustering to the close juxtaposition of homologous chromosome pairs during meiosis. The level of Cre-mediated recombination between a pair of loxP sites located at an allelic position on homologous chromosomes was 13-fold greater than that between a pair of loxP sites located at ectopic positions on nonhomologous chromosomes. Mutations affecting meiotic recombination initiation and the processing of DNA double-strand breaks (DSBs) into single-end invasions (SEIs) reduced the levels of allelic Cre-mediated recombination levels by three- to sixfold. The severity of Cre/loxP phenotypes is presented in contrast to relatively weak DSB-independent pairing defects as assayed using fluorescence in situ hybridization for these mutants. Mutations affecting synaptonemal complex (SC) formation or crossover control gave wild-type levels of allelic Cre-mediated recombination. A delay in attaining maximum levels of allelic Cre-mediated recombination was observed for a mutant defective in telomere clustering. None of the mutants affected ectopic levels of recombination. These data suggest that stable, close homolog juxtaposition in yeast is distinct from pre-DSB pairing interactions, requires both DSB and SEI formation, but does not depend on crossovers or SC. PMID:12101126

  17. Excited States of DNA Base Pairs Using Long-Range Corrected Time-Dependent Density Functional Theory

    SciTech Connect

    Jensen, Lasse; Govind, Niranjan

    2009-09-10

    In this work we present a study of the excitation energies of adenine, cytosine, guanine, thymine and the adenine-thymine (AT) and guanine-cytosine (GC) base pairs using long-range corrected (LC) density functional theory. We compare three recent LC-functionals, BNL, CAM-B3LYP and LC-PBE0 with B3LYP and coupled cluster results from the literature. We find that the best overall performance is for the BNL functional based on LDA. However, in order to achieve this good agreement a smaller attenuation parameter was needed which leads to non-optimum performance for ground state properties. B3LYP, on the other hand, severely underestimates the charge transfer (CT) transitions in the base pairs. Surprisingly we also find that the CAM-B3LYP functional also underestimates the CT excitation energy for the GC base pair, but correctly describes the AT base pair. This illustrates the importance of retaining the full long-range exact exchange even at distances as short as that of the DNA base pairs. The worst overall performance was obtained with the LC-PBE0 functional which overestimates the excitations for the individual bases as well as the base pairs. It is therefore crucial to strike a good balance between the amount of local and long-range exact exchange.

  18. Isospin odd @pK scattering length [rapid communication

    NASA Astrophysics Data System (ADS)

    Schweizer, J.

    2005-10-01

    We make use of the chiral two-loop representation of the πK scattering amplitude [J. Bijnens, P. Dhonte, P. Talavera, JHEP 0405 (2004) 036] to investigate the isospin odd scattering length at next-to-next-to-leading order in the SU (3) expansion. This scattering length is protected against contributions of ms in the chiral expansion, in the sense that the corrections to the current algebra result are of order Mπ2. In view of the planned lifetime measurement on πK atoms at CERN it is important to understand the size of these corrections.

  19. Isospin symmetry breaking in 93Tc and statistical properties

    NASA Astrophysics Data System (ADS)

    Åberg, S.; Heine, A.; Mitchell, G. E.; Richter, A.

    2004-09-01

    We present a statistical analysis of proton resonances in the compound nucleus 93Tc in terms of random matrix theory (RMT). The fluctuation properties of energy levels and reduced widths from data measured by Bilpuch et al. [Phys. Rev. C 9 (1974) 1589] are studied. We conclude that one T> = 9 / 2 isobaric analog state does not affect the spectral correlations of a sequence of 124 T< = 7 / 2 states, and that the observed deviations from RMT are due to unobserved levels. For the reduced widths, however, certain deviations from Porter-Thomas statistics are attributed to the effect of isospin mixing.

  20. A novel concentration dependent amino acid ion pair strategy to mediate drug permeation using indomethacin as a model insoluble drug.

    PubMed

    ElShaer, Amr; Hanson, Peter; Mohammed, Afzal R

    2014-10-01

    Assessment of oral drug bioavailability is an important parameter for new chemical entities (NCEs) in drug development cycle. After evaluating the pharmacological response of these new molecules, the following critical stage is to investigate their in vitro permeability. Despite the great success achieved by prodrugs, covalent linking the drug molecule with a hydrophobic moiety might result in a new entity that might be toxic or ineffective. Therefore, an alternative that would improve the drug uptake without affecting the efficacy of the drug molecule would be advantageous. The aim of the current study is to investigate the effect of ion-pairing on the permeability profile of a model drug: indomethacin (IND) to understand the mechanism behind the permeability improvement across Caco-2 monolayers. Arginine and lysine formed ion-pairs with IND at various molar ratios 1:1, 1:2, 1:4 and 1:8 as reflected by the double reciprocal graphs. The partitioning capacities of the IND were evaluated using octanol/water partitioning studies and the apparent permeabilities (Papp) were measured across Caco-2 monolayers for the different formulations. Partitioning studies reflected the high hydrophobicity of IND (LogP=3) which dropped upon increasing the concentrations of arginine/lysine in the ion pairs. Nevertheless, the prepared ion pairs improved IND permeability especially after 60 min of the start of the experiment. Coupling partitioning and permeability results suggest a decrease in the passive transcellular uptake due to the drop in IND portioning capacities and a possible involvement of active carriers. Future work will investigate which transport gene might be involved in the absorption of the ion paired formulations using molecular biology technologies.

  1. Isospin constraints from/on B to ππ

    NASA Astrophysics Data System (ADS)

    Pivk, M.; Le Diberder, F. R.

    2005-02-01

    The Standard Model constraints on α which can be derived from the Brightarrowππ decays are revisited in some depth. As experimental inputs, the B^0rightarrowπ^ + π^-, B^ + rightarrowπ^ + π^0 decays complemented by the B^0rightarrowπ^0π^0 decays, the CP parameters S_{ππ} and C_{ππ}, and/or the value of α as determined by the global CKM fit are used. The constraints discussed here are model independent in the sense that they rely only on Isospin symmetry, following the Gronau-London proposal. A new bound on mathcal{B}^{00} and the function C_{00}(mathcal{B}^{00}) are introduced. While another bound applied to BABAR results is shown to imply that \\cos(2α_eff) is negative. The Grossman-Quinn bound is rediscussed. A close form expression is given for α as a function of the measurements. Various scenarios for the future of the isospin analysis are explored. To probe the Standard Model the (mathcal{B}^{00},C_{00}) plane is introduced.

  2. Paired Burst Stimulation Causes GABAA Receptor-Dependent Spike Firing Facilitation in CA1 of Rat Hippocampal Slices

    PubMed Central

    Tominaga, Takashi; Tominaga, Yoko

    2016-01-01

    The theta oscillation (4–8 Hz) is a pivotal form of oscillatory activity in the hippocampus that is intermittently concurrent with gamma (25–100 Hz) burst events. In in vitro preparation, a stimulation protocol that mimics the theta oscillation, theta burst stimulation (TBS), is used to induce long-term potentiation. Thus, TBS is thought to have a distinct role in the neural network of the hippocampal slice preparation. However, the specific mechanisms that make TBS induce such neural circuit modifications are still unknown. Using electrophysiology and voltage-sensitive dye imaging (VSDI), we have found that TBS induces augmentation of spike firing. The augmentation was apparent in the first couple of brief burst stimulation (100 Hz four pulses) on a TBS-train in a presence of NMDA receptor blocker (APV 50 μM). In this study, we focused on the characterizes of the NMDA independent augmentation caused by a pair of the brief burst stimulation (the first pair of the TBS; paired burst stimulation-PBS). We found that PBS enhanced membrane potential responses on VSDI signal and intracellular recordings while it was absent in the current recording under whole-cell clamp condition. The enhancement of the response accompanied the augmentation of excitatory postsynaptic potential (EPSP) to spike firing (E-S) coupling. The paired burst facilitation (PBF) reached a plateau when the number of the first burst stimulation (priming burst) exceeds three. The interval between the bursts of 150 ms resulted in the maximum PBF. Gabazine (a GABAA receptor antagonist) abolished PBF. The threshold for spike generation of the postsynaptic cells measured with a current injection to cells was not lowered by the priming burst of PBS. These results indicate that PBS activates the GABAergic system to cause short-term E-S augmentation without raising postsynaptic excitability. We propose that a GABAergic system of area CA1 of the hippocampus produce the short-term E-S plasticity that could

  3. Retention of nucleic acids in ion-pair reversed-phase high-performance liquid chromatography depends not only on base composition but also on base sequence.

    PubMed

    Qiao, Jun-Qin; Liang, Chao; Wei, Lan-Chun; Cao, Zhao-Ming; Lian, Hong-Zhen

    2016-12-01

    The study on nucleic acid retention in ion-pair reversed-phase high-performance liquid chromatography mainly focuses on size-dependence, however, other factors influencing retention behaviors have not been comprehensively clarified up to date. In this present work, the retention behaviors of oligonucleotides and double-stranded DNAs were investigated on silica-based C18 stationary phase by ion-pair reversed-phase high-performance liquid chromatography. It is found that the retention of oligonucleotides was influenced by base composition and base sequence as well as size, and oligonucleotides prone to self-dimerization have weaker retention than those not prone to self-dimerization but with the same base composition. However, homo-oligonucleotides are suitable for the size-dependent separation as a special case of oligonucleotides. For double-stranded DNAs, the retention is also influenced by base composition and base sequence, as well as size. This may be attributed to the interaction of exposed bases in major or minor grooves with the hydrophobic alky chains of stationary phase. In addition, no specific influence of guanine and cytosine content was confirmed on retention of double-stranded DNAs. Notably, the space effect resulted from the stereostructure of nucleic acids also influences the retention behavior in ion-pair reversed-phase high-performance liquid chromatography.

  4. Dirac-Hartree-Bogoliubov calculation for spherical and deformed hot nuclei: Temperature dependence of the pairing energy and gaps, nuclear deformation, nuclear radii, excitation energy, and entropy

    NASA Astrophysics Data System (ADS)

    Lisboa, R.; Malheiro, M.; Carlson, B. V.

    2016-02-01

    Background: Unbound single-particle states become important in determining the properties of a hot nucleus as its temperature increases. We present relativistic mean field (RMF) for hot nuclei considering not only the self-consistent temperature and density dependence of the self-consistent relativistic mean fields but also the vapor phase that takes into account the unbound nucleon states. Purpose: The temperature dependence of the pairing gaps, nuclear deformation, radii, binding energies, entropy, and caloric curves of spherical and deformed nuclei are obtained in self-consistent RMF calculations up to the limit of existence of the nucleus. Method: We perform Dirac-Hartree-Bogoliubov (DHB) calculations for hot nuclei using a zero-range approximation to the relativistic pairing interaction to calculate proton-proton and neutron-neutron pairing energies and gaps. A vapor subtraction procedure is used to account for unbound states and to remove long range Coulomb repulsion between the hot nucleus and the gas as well as the contribution of the external nucleon gas. Results: We show that p -p and n -n pairing gaps in the S10 channel vanish for low critical temperatures in the range Tcp≈0.6 -1.1 MeV for spherical nuclei such as 90Zr, 124Sn, and 140Ce and for both deformed nuclei 150Sm and 168Er. We found that superconducting phase transition occurs at Tcp=1.03 Δp p(0 ) for 90Zr, Tcp=1.16 Δp p(0 ) for 140Ce, Tcp=0.92 Δp p(0 ) for 150Sm, and Tcp=0.97 Δp p(0 ) for 168Er. The superfluidity phase transition occurs at Tcp=0.72 Δn n(0 ) for 124Sn, Tcp=1.22 Δn n(0 ) for 150Sm, and Tcp=1.13 Δn n(0 ) for 168Er. Thus, the nuclear superfluidity phase—at least for this channel—can only survive at very low nuclear temperatures and this phase transition (when the neutron gap vanishes) always occurs before the superconducting one, where the proton gap is zero. For deformed nuclei the nuclear deformation disappear at temperatures of about Tcs=2.0 -4.0 MeV , well above the

  5. Study of isospin nonconservation in the framework of spectral distribution theory

    NASA Astrophysics Data System (ADS)

    Kar, Kamales; Sarkar, Sukhendusekhar

    2015-05-01

    The observed isospin-symmetry breaking in light nuclei are caused not only by the Coulomb interaction but also by the isovector one- and two-body plus isotensor two- body nuclear interactions. Spectral distribution theory, which treats nuclear spectroscopy and other structural properties in a statistical framework, has been applied mostly to isospin conserving Hamiltonians. In this paper we extend that to include the nuclear interactions non-scalar in isospin and work out examples in the sd shell to calculate the linear term in the isobaric mass-multiplet equation originating from these non-isoscalar parts.

  6. Investigations of QCD at non-zero isospin density

    SciTech Connect

    Zhifeng Shi, William Detmold

    2011-12-01

    We investigate the QCD phase diagram as a function of isospin chemical potential at a fixed temperature by directly putting large numbers of {pi}{sup +}s into the system. Correlation functions of N {pi}{sup +}s systems involves N!N! contractions, and become extremely expensive when N is large. In order to alleviate this problem, a recursion relation of correlation functions has been derived in Ref. [1] that substantially reduces the number of independent contractions needed and makes the study of many pions systems be possible. In this proceeding this method is investigated numerically. We have also constructed a new method that is even more efficient, enabling us to study systems of up to 72 {pi}{sup +}s.

  7. QCD Phase Diagram at Finite Baryon and Isospin Chemical Potentials

    SciTech Connect

    Sasaki, T.; Sakai, Y.; Yahiro, M.; Kouno, H.

    2011-10-21

    The phase structure of two-flavor QCD is explored for finite temperature T and finite baryon- and isospin-chemical potentials, {mu}{sub B} and {mu}{sub I}, by using the Polyakov-loop extended Nambu-Jona-Lasinio (PNJL) model. The PNJL model with the scalar-type eight-quark interaction can reproduce lattice QCD data in the {mu}{sub I}-T plane at {mu}{sub B} = 0. In the {mu}{sub I}-{mu}{sub B}-T space, the critical endpoint of the chiral phase transition in the {mu}{sub B}-T plane at {mu}{sub I} = 0 moves to the tricritical point of the pion-superfluidity phase transition in the {mu}{sub I}-T plane at {mu}{sub B} = 0 as {mu}{sub I} increases.

  8. Isospin-mixing correction for fp-shell Fermi transitions

    SciTech Connect

    Ormand, W.E.; Brown, B.A.

    1995-10-01

    Isospin-mixing corrections for superallowed Fermi transitions in fp-shell nuclei are computed within the framework of the shelf model. The study includes a re-evaluation of three nuclei that are part of the set of nine accurately measured transitions and five new cases that are expected to be measured in the future at radioactive-beam facilities. For the heavier fp-shell nuclei, both the configuration mixing term, {delta}{sub IM}, and the radial-overlap mis-match correction, {delta}{sub RO}, are much larger than in the case of the previous nine transitions. For the nine accurately measured transitions, excellent agreement with the CVC hypothesis is found. but the CKM matrix is found to violate the unitarity condition at the level of 3 {sigma}.

  9. Trojan Penguins and Isospin Violation in Hadronic B Decays

    SciTech Connect

    Grossman, yuval

    1999-09-10

    Some rare hadronic decays of B mesons, such as B {yields} {pi}K, are sensitive to isospin-violating contributions from physics beyond the Standard Model. Although commonly referred to as electroweak penguins, such contributions can often arise through tree-level exchanges of heavy particles, or through strong-interaction loop diagrams. The Wilson coefficients of the corresponding electroweak penguin operators are calculated in a large class of New Physics models, and in many cases are found not to be suppressed with respect to the QCD penguin coefficients. Several tests for these effects using observables in B{sup {+-}} {yields} {pi}K decays are discussed, and nontrivial bounds on the couplings of the various New Physics models are derived.

  10. Post-accelerator issues at the IsoSpin Laboratory

    SciTech Connect

    Chattopadhyay, S.; Nitschke, J.M.

    1994-05-01

    The workshop on ``Post-Accelerator Issues at the Isospin Laboratory`` was held at the Lawrence Berkeley Laboratory from October 27--29, 1993. It was sponsored by the Center for Beam Physics in the Accelerator and Fusion Research Division and the ISL Studies Group in the Nuclear Science Division. About forty scientists from around the world participated vigorously in this two and a half day workshop, (c.f. Agenda, Appendix D). Following various invited review talks from leading practitioners in the field on the first day, the workshop focussed around two working groups: (1) the Ion Source and Separators working group and (2) the Radio Frequency Quadrupoles and Linacs working group. The workshop closed with the two working groups summarizing and outlining the tasks for the future. This report documents the proceedings of the workshop and includes the invited review talks, the two summary talks from the working groups and individual contributions from the participants. It is a complete assemblage of state-of-the-art thinking on ion sources, low-{beta}, low(q/A) accelerating structures, e.g. linacs and RFQS, isobar separators, phase-space matching, cyclotrons, etc., as relevant to radioactive beam facilities and the IsoSpin Laboratory. We regret to say that while the fascinating topic of superconducting low-velocity accelerator structure was covered by Dr. K. Shepard during the workshop, we can only reproduce the copies of the transparencies of his talk in the Appendix, since no written manuscript was available at the time of publication of this report. The individual report have been catologed separately elsewhere.

  11. Exact Solution of the Isovector Proton Neutron Pairing Hamiltonian

    SciTech Connect

    Dukelsky, J; Gueorguiev, V G; Van Isacker, P; Dimitrova, S S; Errea, B; H., S L

    2005-12-02

    The complete exact solution of the T = 1 neutron-proton pairing Hamiltonian is presented in the context of the SO(5) Richardson-Gaudin model with non-degenerate single-particle levels and including isospin-symmetry breaking terms. The power of the method is illustrated with a numerical calculation for {sup 64}Ge for a pf + g{sub 9/2} model space which is out of reach of modern shell-model codes.

  12. Population based study of prevalence of islet cell autoantibodies in monozygotic and dizygotic Danish twin pairs with insulin dependent diabetes mellitus.

    PubMed Central

    Petersen, J. S.; Kyvik, K. O.; Bingley, P. J.; Gale, E. A.; Green, A.; Dyrberg, T.; Beck-Nielsen, H.

    1997-01-01

    OBJECTIVE: To study the comparative importance of environment and genes in the development of islet cell autoimmunity associated with insulin dependent diabetes mellitus. DESIGN: Population based study of diabetic twins. SETTING: Danish population. SUBJECTS: 18 monozygotic and 36 dizygotic twin pairs with one or both partners having insulin dependent diabetes. MAIN OUTCOME MEASURES: Presence of islet cell antibodies, insulin autoantibodies, and autoantibodies to glutamic acid decarboxylase (GAD65) in serum samples from twin pairs 10 years (range 0-30 years) and 9.5 years (2-30 years) after onset of disease. RESULTS: In those with diabetes the prevalence of islet cell antibodies, insulin autoantibodies, and autoantibodies to glutamic acid decarboxylase in the 26 monozygotic twins was 38%, 85%, and 92%, respectively, and in the dizygotic twins was 57%, 70%, and 57%, respectively. In those without diabetes the proportions were 20%, 50%, and 40% in the 10 monozygotic twins and 26%, 49%, and 40% in the 35 dizygotic twins. CONCLUSION: There is no difference between the prevalence of islet cell autoantibodies in dizygotic and monozygotic twins without diabetes, suggesting that islet cell autoimmunity is environmentally rather than genetically determined. Furthermore, the prevalence of islet cell antibodies was higher in the non-diabetic twins than in other first degree relatives of patients with insulin dependent diabetes. This implies that the prenatal or early postnatal period during which twins are exposed to the same environment, in contrast with that experienced by first degree relatives, is of aetiological importance. PMID:9169400

  13. Nonperturbative charming penguin contributions to isospin asymmetries in radiative B decays

    SciTech Connect

    Kim, Chul; Mehen, Thomas; Leibovich, Adam K.

    2008-09-01

    Recent experimental data on the radiative decays B{yields}V{gamma}, where V is a light vector meson, find small isospin violation in B{yields}K*{gamma} while isospin asymmetries in B{yields}{rho}{gamma} are of order 20%, with large uncertainties. Using soft-collinear effective theory, we calculate isospin asymmetries in these radiative B decays up to O(1/m{sub b}), also including O(v{alpha}{sub s}) contributions from nonperturbative charming penguins (NPCP). In the absence of NPCP contributions, the theoretical predictions for the asymmetries are a few percent or less. Including the NPCP can significantly increase the isospin asymmetries for both B{yields}V{gamma} modes. We also consider the effect of the NPCP on the branching ratio and CP asymmetries in B{sup {+-}}{yields}V{sup {+-}}{gamma}.

  14. Solitons, Bäcklund transformations, Lax pair and conservation laws for the nonautonomous mKdV-sinh-Gordon equation with time-dependent coefficients

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Tian, Bo; Sun, Wen-Rong; Wang, Yu-Feng; Wang, Yun-Po

    2016-01-01

    The transition phenomenon of few-cycle-pulse optical solitons from a pure modified Korteweg-de Vries (mKdV) to a pure sine-Gordon regime can be described by the nonautonomous mKdV-sinh-Gordon equation with time-dependent coefficients. Based on the Bell polynomials, Hirota method and symbolic computation, bilinear forms and soliton solutions for this equation are obtained. Bäcklund transformations (BTs) in both the binary Bell polynomial and bilinear forms are obtained. By virtue of the BTs and Ablowitz-Kaup-Newell-Segur system, Lax pair and infinitely many conservation laws for this equation are derived as well.

  15. Sequence-Dependent T:G Base Pair Opening in DNA Double Helix Bound by Cren7, a Chromatin Protein Conserved among Crenarchaea

    PubMed Central

    Tian, Lei; Zhang, Zhenfeng; Wang, Hanqian; Zhao, Mohan; Dong, Yuhui; Gong, Yong

    2016-01-01

    T:G base pair arising from spontaneous deamination of 5mC or polymerase errors is a great challenge for DNA repair of hyperthermophilic archaea, especially Crenarchaea. Most strains in this phylum lack the protein homologues responsible for the recognition of the mismatch in the DNA repair pathways. To investigate whether Cren7, a highly conserved chromatin protein in Crenarchaea, serves a role in the repair of T:G mispairs, the crystal structures of Cren7-GTAATTGC and Cren7-GTGATCGC complexes were solved at 2.0 Å and 2.1 Å. In our structures, binding of Cren7 to the AT-rich DNA duplex (GTAATTGC) induces opening of T2:G15 but not T10:G7 base pair. By contrast, both T:G mispairs in the GC-rich DNA duplex (GTGATCGC) retain the classic wobble type. Structural analysis also showed DNA helical changes of GTAATTGC, especially in the steps around the open T:G base pair, as compared to GTGATCGC or the matched DNAs. Surface plasmon resonance assays revealed a 4-fold lower binding affinity of Cren7 for GTAATTGC than that for GTGATCGC, which was dominantly contributed by the decrease of association rate. These results suggested that binding of Cren7 to DNA leads to T:G mispair opening in a sequence dependent manner, and therefore propose the potential roles of Cren7 in DNA repair. PMID:27685992

  16. Photoionization and time-dependent stokes shift of coumarin 307 in soft matter: solvation and radical-ion pair recombination dynamics.

    PubMed

    Dhenadhayalan, Namasivayam; Selvaraju, Chellappan; Ramamurthy, Perumal

    2011-09-22

    Photoionization, fluorescence time-dependent Stokes shift (TDSS), and rotational dynamics of coumarin 307 (C307) have been investigated in soft matter system such as micelles using time-resolved transient absorption and fluorescence spectroscopy. Photoionization of C307 leads to the formation of coumarin radical cation and hydrated electron, which were characterized by their respective transient absorption. The photoionization yields are significantly higher in anionic sodium dodecyl sulfate (SDS) micelle than in cationic cetyltrimethylammonium bromide (CTAB) and neutral Triton X-100 (TX-100) micelles, indicating the influence of micellar surface charge on the efficient separation of radical cation-hydrated electron pair. The CTAB micelle favors the recombination of radical cation and hydrated electron leading to the formation of triplet state of C307, which causes a decrease in the photoionization yield. C307 exhibits TDSS in all micelles; the time evolution and the magnitude of the TDSS depend on nature of the micelle. In TX-100 micelles, the decay of the TDSS exhibits ultraslow component (165 ns) and is affected by the presence of electron scavengers. The ultraslow component in TX-100 micelle originates from the recombination of radical cation-hydrated electron, which results in the formation of twisted intramolecular charge transfer (TICT) state; such formation of TICT state was not observed in SDS and CTAB micelles. To the best of our knowledge, this is the first report where the radical-ion pair recombination dynamics is probed using TDSS in combination with time-resolved transient absorption studies. The activation energy for the solvent relaxation and radical-ion pair (solvent separated) recombination process was found to be 6.1 and 3.0 kcal mol(-1), respectively. Temperature effect on TDSS in TX-100 micelles confirmed the increase in the water hydration, and size of the micelle influences the relative contribution of the solvation and radical-ion pair

  17. Towards Temperature-Dependent Coarse-Grained Potentials of Side-Chain Interactions for Protein Folding Simulations. II. Molecular Dynamics Study of Pairs of Different Types of Interactions in Water at Various Temperatures

    PubMed Central

    Sobolewski, Emil; Ołdziej, Stanisław; Wiśniewska, Marta; Liwo, Adam; Makowski, Mariusz

    2012-01-01

    By means of molecular dynamics simulations of 15 pairs of molecules selected to model the interactions of nonpolar, nonpolar and polar, nonpolar and charged, polar, and polar and charged side chains in water, we determined the potentials of mean force (PMFs) of pairs of interacting molecules in water as functions of distance between the interacting particles or their distance and orientations at three temperatures: 283 K, 323 K and 373 K, respectively. The systems were found to fall into the following four categories as far as the temperature dependence of the potential of mean force is concerned: (i) pairs, for which association is entropy-driven (ii) pairs, for which association is energy-driven, (iii), pairs of positively-charged solute molecules, for which association is energy-driven with unfavorable entropy change, and (iv) the remaining systems for which temperature dependence is weak. For each pair of PMFs entropic and energetic contributions have been discussed. PMID:22475198

  18. Form factor effects in the direct detection of isospin-violating dark matter

    SciTech Connect

    Zheng, Hao; Zhang, Zhen; Chen, Lie-Wen E-mail: malkuth@sjtu.edu.cn

    2014-08-01

    Isospin-violating dark matter (IVDM) provides a possible mechanism to ameliorate the tension among recent direct detection experiments. For IVDM, we demonstrate that the results of direct detection experiments based on neutron-rich target nuclei may depend strongly on the density dependence of the symmetry energy which is presently largely unknown and controls the neutron skin thickness that reflects the relative difference of neutron and proton form factors in the neutron-rich nuclei. In particular, using the neutron and proton form factors obtained from Skyrme-Hartree-Fock calculations by varying the symmetry energy within the uncertainty region set by the latest model-independent measurement of the neutron skin thickness of {sup 208}Pb from PREX experiment at JLab, we find that, for IVDM with neutron-to-proton coupling ratio fixed to f{sub n}/f{sub p}=-0.7, the form factor effect may enhance the sensitivity of Xe-based detectors (e.g., XENON100 and LUX) to the DM-proton cross section by a factor of 3 in the DM mass region constrained by CMDS-II(Si) and even by more than an order of magnitude for heavy DM with mass larger than 80 GeV, compared with the results using the empirical Helm form factor. Our results further indicate that the form factor effect can significantly modify the recoil spectrum of Xe-based detectors for heavy IVDM with f{sub n}/f{sub p}=-0.7.

  19. Form factor effects in the direct detection of isospin-violating dark matter

    NASA Astrophysics Data System (ADS)

    Zheng, Hao; Zhang, Zhen; Chen, Lie-Wen

    2014-08-01

    Isospin-violating dark matter (IVDM) provides a possible mechanism to ameliorate the tension among recent direct detection experiments. For IVDM, we demonstrate that the results of direct detection experiments based on neutron-rich target nuclei may depend strongly on the density dependence of the symmetry energy which is presently largely unknown and controls the neutron skin thickness that reflects the relative difference of neutron and proton form factors in the neutron-rich nuclei. In particular, using the neutron and proton form factors obtained from Skyrme-Hartree-Fock calculations by varying the symmetry energy within the uncertainty region set by the latest model-independent measurement of the neutron skin thickness of 208Pb from PREX experiment at JLab, we find that, for IVDM with neutron-to-proton coupling ratio fixed to fn/fp=-0.7, the form factor effect may enhance the sensitivity of Xe-based detectors (e.g., XENON100 and LUX) to the DM-proton cross section by a factor of 3 in the DM mass region constrained by CMDS-II(Si) and even by more than an order of magnitude for heavy DM with mass larger than 80 GeV, compared with the results using the empirical Helm form factor. Our results further indicate that the form factor effect can significantly modify the recoil spectrum of Xe-based detectors for heavy IVDM with fn/fp=-0.7.

  20. QCD phase diagram at finite baryon and isospin chemical potentials

    SciTech Connect

    Sasaki, Takahiro; Sakai, Yuji; Yahiro, Masanobu; Kouno, Hiroaki

    2010-12-01

    The phase structure of two-flavor QCD is explored for thermal systems with finite baryon- and isospin-chemical potentials, {mu}{sub B} and {mu}{sub iso}, by using the Polyakov-loop extended Nambu-Jona-Lasinio (PNJL) model. The PNJL model with the scalar-type eight-quark interaction can reproduce lattice QCD data at not only {mu}{sub iso}={mu}{sub B}=0, but also {mu}{sub iso}>0 and {mu}{sub B}=0. In the {mu}{sub iso}-{mu}{sub B}-T space, where T is temperature, the critical endpoint of the chiral phase transition in the {mu}{sub B}-T plane at {mu}{sub iso}=0 moves to the tricritical point of the pion-superfluidity phase transition in the {mu}{sub iso}-T plane at {mu}{sub B}=0 as {mu}{sub iso} increases. The thermodynamics at small T is controlled by {radical}({sigma}{sup 2}+{pi}{sup 2}) defined by the chiral and pion condensates, {sigma} and {pi}.

  1. Isospin Symmetry at High Spin Studied via Nucleon Knockout from Isomeric States.

    PubMed

    Milne, S A; Bentley, M A; Simpson, E C; Baugher, T; Bazin, D; Berryman, J S; Bruce, A M; Davies, P J; Diget, C Aa; Gade, A; Henry, T W; Iwasaki, H; Lemasson, A; Lenzi, S M; McDaniel, S; Napoli, D R; Nichols, A J; Ratkiewicz, A; Scruton, L; Stroberg, S R; Tostevin, J A; Weisshaar, D; Wimmer, K; Winkler, R

    2016-08-19

    One-neutron knockout reactions have been performed on a beam of radioactive ^{53}Co in a high-spin isomeric state. The analysis is shown to yield a highly selective population of high-spin states in an exotic nucleus with a significant cross section, and hence represents a technique that is applicable to the planned new generation of fragmentation-based radioactive beam facilities. Additionally, the relative cross sections among the excited states can be predicted to a high level of accuracy when reliable shell-model input is available. The work has resulted in a new level scheme, up to the 11^{+} band-termination state, of the proton-rich nucleus ^{52}Co (Z=27, N=25). This has in turn enabled a study of mirror energy differences in the A=52 odd-odd mirror nuclei, interpreted in terms of isospin-nonconserving (INC) forces in nuclei. The analysis demonstrates the importance of using a full set of J-dependent INC terms to explain the experimental observations.

  2. Double-beta decay in pn-QRPA model with isospin and SU(4) symmetry constraints

    NASA Astrophysics Data System (ADS)

    Krmpotić, F.; Sharma, S. Shelly

    1994-05-01

    The transition matrix elements for the 0 + → 0 + double-beta decays are calculated for 48Ca, 76Ge, 82Se, 100Mo, 128Te and 130Te nuclei, using a δ-interaction. As a guide, to fix the particle-particle interaction strengths, we exploit the fact that the missing symmetries of the mean-field approximation are restored in the random phase approximation by the residual interaction. Thus, the T = 1, S = 0 and T = 0, S = 1 coupling strengths have been estimated by invoking the partial restoration of the isospin and Wigner SU(4) symmetries, respectively. When this recipe is strictly applied, the calculation is consistent with the experimental limit for the 2ν lifetime of 48Ca and it also correctly reproduces the 2ν lifetime of 82Se. In this way, however, the two-neutrino matrix elements for the remaining nuclei are either underestimated (for 76Ge and 100Mo) or overestimated (for 128Te and 130Te) approximately by a factor of 3. With a comparatively small variation (< 10%) of the spin-triplet parameter, near the value suggested by the SU(4) symmetry, it is possible to reproduce the measured T 2ν{1}/{2} all the cases. The upper limit for the effective neutrino mass, as obtained from the theoretical estimates of 0ν matrix elements, is < m> ˜- 1 eV. The dependence of the nuclear matrix elements on the size of the configuration space has been also analyzed.

  3. A large sample of finnish diabetic sib-pairs reveals no evidence for a non-insulin-dependent diabetes mellitus susceptibility locus at 2qter.

    PubMed Central

    Ghosh, S; Hauser, E R; Magnuson, V L; Valle, T; Ally, D S; Karanjawala, Z E; Rayman, J B; Knapp, J I; Musick, A; Tannenbaum, J; Te, C; Eldridge, W; Shapiro, S; Musick, T; Martin, C; So, A; Witt, A; Harvan, J B; Watanabe, R M; Hagopian, W; Eriksson, J; Nylund, S J; Kohtamaki, K; Tuomilehto-Wolf, E; Boehnke, M

    1998-01-01

    In the first reported positive result from a genome scan for non-insulin-dependent diabetes mellitus (NIDDM), Hanis et al. found significant evidence of linkage for NIDDM on chromosome 2q37 and named the putative disease locus NIDDM1 (Hanis et al. 1996. Nat. Genet. 13:161-166). Their total sample was comprised of 440 Mexican-American affected sib-pairs from 246 sibships. The strongest evidence for linkage was at marker D2S125 and best estimates of lambdas (risk to siblings of probands/population prevalence) using this marker were 1.37 under an additive model and 1.36 under a multiplicative model. We examined this chromosomal region using linkage analysis in a Finnish sample comprised of 709 affected sib-pairs from 472 sibships. We excluded this region in our sample (multipoint logarithm of odds score /= 1.37. We discuss possible reasons why linkage to 2q37 was not found and conclude that this region is unlikely to be playing a major role in NIDDM susceptibility in the Finnish Caucasian population. PMID:9710438

  4. Exact two-body quantum dynamics of an electron-hole pair in semiconductor coupled quantum wells: A time-dependent approach

    NASA Astrophysics Data System (ADS)

    Grasselli, Federico; Bertoni, Andrea; Goldoni, Guido

    2016-05-01

    We simulate the time-dependent coherent dynamics of a spatially indirect exciton—an electron-hole pair with the two particles confined in different layers—in a GaAs coupled quantum well system. We use a unitary wave-packet propagation method taking into account in full the four degrees of freedom of the two particles in a two-dimensional system, including both the long-range Coulomb attraction and arbitrary two-dimensional electrostatic potentials affecting the electron and/or the hole separately. The method has been implemented for massively parallel architectures to cope with the huge numerical problem, showing good scaling properties and allowing evolution for tens of picoseconds. We have investigated both transient time phenomena and asymptotic time transmission and reflection coefficients for potential profiles consisting of (i) extended barriers and wells and (ii) a single-slit geometry. We found clear signatures of the internal two-body dynamics, with transient phenomena in the picosecond time scale which might be revealed by optical spectroscopy. Exact results have been compared with mean-field approaches which, neglecting dynamical correlations by construction, turn out to be inadequate to describe the electron-hole pair evolution in realistic experimental conditions.

  5. Combinatorial DNA damage pairing model based on X-ray-induced foci predicts the dose and LET dependence of cell death in human breast cells.

    PubMed

    Vadhavkar, Nikhil; Pham, Christopher; Georgescu, Walter; Deschamps, Thomas; Heuskin, Anne-Catherine; Tang, Jonathan; Costes, Sylvain V

    2014-09-01

    In contrast to the classic view of static DNA double-strand breaks (DSBs) being repaired at the site of damage, we hypothesize that DSBs move and merge with each other over large distances (μm). As X-ray dose increases, the probability of having DSB clusters increases as does the probability of misrepair and cell death. Experimental work characterizing the X-ray dose dependence of radiation-induced foci (RIF) in nonmalignant human mammary epithelial cells (MCF10A) is used here to validate a DSB clustering model. We then use the principles of the local effect model (LEM) to predict the yield of DSBs at the submicron level. Two mechanisms for DSB clustering, namely random coalescence of DSBs versus active movement of DSBs into repair domains are compared and tested. Simulations that best predicted both RIF dose dependence and cell survival after X-ray irradiation favored the repair domain hypothesis, suggesting the nucleus is divided into an array of regularly spaced repair domains of ∼1.55 μm sides. Applying the same approach to high-linear energy transfer (LET) ion tracks, we are able to predict experimental RIF/μm along tracks with an overall relative error of 12%, for LET ranging between 30-350 keV/μm and for three different ions. Finally, cell death was predicted by assuming an exponential dependence on the total number of DSBs and of all possible combinations of paired DSBs within each simulated RIF. Relative biological effectiveness (RBE) predictions for cell survival of MCF10A exposed to high-LET showed an LET dependence that matches previous experimental results for similar cell types. Overall, this work suggests that microdosimetric properties of ion tracks at the submicron level are sufficient to explain both RIF data and survival curves for any LET, similarly to the LEM assumption. Conversely, high-LET death mechanism does not have to infer linear-quadratic dose formalism as done in the LEM. In addition, the size of repair domains derived in our

  6. Combinatorial DNA Damage Pairing Model Based on X-Ray-Induced Foci Predicts the Dose and LET Dependence of Cell Death in Human Breast Cells

    SciTech Connect

    Vadhavkar, Nikhil; Pham, Christopher; Georgescu, Walter; Deschamps, Thomas; Heuskin, Anne-Catherine; Tang, Jonathan; Costes, Sylvain V.

    2014-09-01

    In contrast to the classic view of static DNA double-strand breaks (DSBs) being repaired at the site of damage, we hypothesize that DSBs move and merge with each other over large distances (m). As X-ray dose increases, the probability of having DSB clusters increases as does the probability of misrepair and cell death. Experimental work characterizing the X-ray dose dependence of radiation-induced foci (RIF) in nonmalignant human mammary epithelial cells (MCF10A) is used here to validate a DSB clustering model. We then use the principles of the local effect model (LEM) to predict the yield of DSBs at the submicron level. Two mechanisms for DSB clustering, namely random coalescence of DSBs versus active movement of DSBs into repair domains are compared and tested. Simulations that best predicted both RIF dose dependence and cell survival after X-ray irradiation favored the repair domain hypothesis, suggesting the nucleus is divided into an array of regularly spaced repair domains of ~;;1.55 m sides. Applying the same approach to high-linear energy transfer (LET) ion tracks, we are able to predict experimental RIF/m along tracks with an overall relative error of 12percent, for LET ranging between 30 350 keV/m and for three different ions. Finally, cell death was predicted by assuming an exponential dependence on the total number of DSBs and of all possible combinations of paired DSBs within each simulated RIF. Relative biological effectiveness (RBE) predictions for cell survival of MCF10A exposed to high-LET showed an LET dependence that matches previous experimental results for similar cell types. Overall, this work suggests that microdosimetric properties of ion tracks at the submicron level are sufficient to explain both RIF data and survival curves for any LET, similarly to the LEM assumption. Conversely, high-LET death mechanism does not have to infer linear-quadratic dose formalism as done in the LEM. In addition, the size of repair domains derived in our model

  7. Pick a Pair. Pancake Pairs

    ERIC Educational Resources Information Center

    Miller, Pat

    2005-01-01

    Cold February weather and pancakes are a traditional pairing. Pancake Day began as a way to eat up the foods that were abstained from in Lent--traditionally meat, fat, eggs and dairy products. The best-known pancake event is The Pancake Day Race in Buckinghamshire, England, which has been run since 1445. This column describes pairs of books that…

  8. Effective Field Theory and Isospin Violation in Few-Nucleon Systems

    SciTech Connect

    Evgeny Epelbaum

    2004-08-01

    I discuss the leading and subleading isospin--breaking three--nucleon forces in the chiral effective field theory framework. I have discussed the leading and subleading isospin-violating 3NFs. The leading contributions are generated by one- and two-pion exchange diagrams with their strength given by the strong neutron-proton mass difference. The subleading corrections are again given by one- and two-pion exchange diagrams, driven largely by the charged-to-neutral pion mass difference and also by the electromagnetic neutron-proton mass difference and the dimension two electromagnetic LEC f{sub 1}. In the future, these isospin-breaking forces should be used to analyze few-nucleon systems based on chiral EFT.

  9. Thermodynamics of (2+1)-flavor strongly interacting matter at nonzero isospin

    NASA Astrophysics Data System (ADS)

    Stiele, Rainer; Fraga, Eduardo S.; Schaffner-Bielich, Jürgen

    2014-02-01

    We investigate the phase structure of strongly interacting matter at non-vanishing isospin before the onset of pion condensation in the framework of the unquenched Polyakov-Quark-Meson model with 2+1 quark flavors. We show results for the order parameters and all relevant thermodynamic quantities. In particular, we obtain a moderate change of the pressure with isospin at vanishing baryon chemical potential, whereas the chiral condensate decreases more appreciably. We compare the effective model to recent lattice data for the decrease of the pseudo-critical temperature with the isospin chemical potential. We also demonstrate the major role played by the value of the pion mass in the curvature of the transition line, and the need for lattice results with a physical pion mass. Limitations of the model at nonzero chemical potential are also discussed.

  10. Isospin-violating nucleon-nucleon forces using the method of unitary transformation

    SciTech Connect

    Evgeny Epelbaum; Ulf-G. Meissner

    2005-02-01

    Recently, we have derived the leading and subleading isospin-breaking three-nucleon forces using the method of unitary transformation. In the present work we extend this analysis and consider the corresponding two-nucleon forces using the same approach. Certain contributions to the isospin-violating one- and two-pion exchange potential have already been discussed by various groups within the effective field theory framework. Our findings agree with the previously obtained results. In addition, we present the expressions for the subleading charge-symmetry-breaking two-pion exchange potential which were not considered before. These corrections turn out to be numerically important. Together with the three-nucleon force results presented in our previous work, the results of the present study specify completely isospin-violating nuclear force up to the order {Lambda}{sup 5}.

  11. Study of isospin violating phi excitation in e+e- → ωπ0

    NASA Astrophysics Data System (ADS)

    Li, Gang; Zhang, Yuan-Jiang; Zhao, Qiang

    2009-08-01

    We study the reaction e+e- → ωπ0 in the vicinity of the phi mass region. The isospin-violating phi excitation is accounted for by two major mechanisms. One is electromagnetic transition and the other is strong isospin violations. For the latter, we consider contributions from the intermediate hadronic meson loops and phi-ρ0 mixing as the major mechanisms via the t- and s-channel transitions, respectively. By fitting the recent KLOE data, we succeed in constraining the model parameters and extracting the phi → ωπ0 branching ratio. It shows that the branching ratio is sensitive to the phi excitation line shape and background contributions. Some crucial insights into the correlation between isospin violation and Okubo-Zweig-Iizuka rule evading transitions are also learned.

  12. Experimental validation of the largest calculated isospin-symmetry-breaking effect in a superallowed Fermi decay.

    PubMed

    Melconian, D; Triambak, S; Bordeanu, C; García, A; Hardy, J C; Iacob, V E; Nica, N; Park, H I; Tabacaru, G; Trache, L; Towner, I S; Tribble, R E; Zhai, Y

    2011-10-28

    A precision measurement of the γ yields following the β decay of (32)Cl has determined its isobaric-analogue branch to be (22.47(-0.18)(+0.21))%. Since it is an almost pure-Fermi decay, we can also determine the amount of isospin-symmetry breaking in this superallowed transition. We find a very large value, δ(C) = 5.3(9)%, in agreement with a shell-model calculation. This result sets a benchmark for isospin-symmetry-breaking calculations and lends support for similarly calculated, yet smaller, corrections that are currently applied to 0+ → 0 + transitions for tests of the standard model.

  13. Mirror energy differences at large isospin studied through direct two-nucleon knockout.

    PubMed

    Davies, P J; Bentley, M A; Henry, T W; Simpson, E C; Gade, A; Lenzi, S M; Baugher, T; Bazin, D; Berryman, J S; Bruce, A M; Diget, C Aa; Iwasaki, H; Lemasson, A; McDaniel, S; Napoli, D R; Ratkiewicz, A; Scruton, L; Shore, A; Stroberg, R; Tostevin, J A; Weisshaar, D; Wimmer, K; Winkler, R

    2013-08-16

    The first spectroscopy of excited states in 52Ni (T(z)=-2) and 51Co (T(z)=-3/2) has been obtained using the highly selective two-neutron knockout reaction. Mirror energy differences between isobaric analogue states in these nuclei and their mirror partners are interpreted in terms of isospin nonconserving effects. A comparison between large-scale shell-model calculations and data provides the most compelling evidence to date that both electromagnetic and an additional isospin nonconserving interactions for J=2 couplings, of unknown origin, are required to obtain good agreement.

  14. Isospin-mixing corrections for {ital fp}-shell Fermi transitions

    SciTech Connect

    Ormand, W.E. |; Brown, B.A.

    1995-11-01

    Isospin-mixing corrections for superallowed Fermi transitions in {ital fp}-shell nuclei are computed within the framework of the shell model. The study includes three nuclei that are part of the set of nine accurately measured transitions as well as five cases that are expected to be measured in the future at radioactive-beam facilities. We also include some new calculations for {sup 10}C. With the isospin-mixing corrections applied to the nine accurately measured {ital ft} values, the conserved-vector-current hypothesis and the unitarity condition of the Cabbibo-Kobayashi-Maskawa matrix are tested.

  15. First {gamma}-ray spectroscopy of {sup 49}Fe and {sup 53}Ni: Isospin-breaking effects at large proton excess

    SciTech Connect

    Brown, J. R.; Bentley, M. A.; Taylor, M. J.; Adrich, P.; Bazin, D.; Cook, J. M.; Diget, C. A.; Gade, A.; Glasmacher, T.; McDaniel, S.; Ratkiewicz, A.; Siwek, K.; Weisshaar, D.; Lenzi, S. M.; Pritychenko, B.

    2009-07-15

    Isospin-breaking effects have been studied for the first time in T=(3/2) isobaric analog states. Gamma decays have been observed from T{sub z}=-(3/2) nuclei, {sup 49}Fe and {sup 53}Ni, presented here in new level schemes, and mirror energy differences have been computed following observation of analog states in {sup 49}V and {sup 53}Mn, respectively. Shell-model calculations in the fp shell are in good agreement with the data and reveal the importance of non-Coulomb isospin-breaking effects in T=(3/2) isobaric analog states. A two-step fragmentation process was developed to allow access to highly proton-rich nuclei and to produce each member of a mirror pair via mirrored fragmentation of a {sup 56}Ni secondary beam. This work represents the first study using this technique and demonstrates the power of this approach for future studies of isobaric analog states in very proton-rich systems.

  16. Impact of land-use on carbon storage as dependent on soil texture: evidence from a desertified dryland using repeated paired sampling design.

    PubMed

    Ye, Xuehua; Tang, Shuangli; Cornwell, William K; Gao, Shuqin; Huang, Zhenying; Dong, Ming; Cornelissen, Johannes H C

    2015-03-01

    Desertification resulting from land-use affects large dryland areas around the world, accompanied by carbon loss. However it has been difficult to interpret different land-use contributions to carbon pools owing to confounding factors related to climate, topography, soil texture and other original soil properties. To avoid such confounding effects, a unique systematic and extensive repeated design of paired sampling plots of different land-use types was adopted on Ordos Plateau, N China. The sampling enabled to quantify the effects of the predominant land-use types on carbon storage as dependent on soil texture, and to define the most promising land-use choices for carbon storage, both in grassland on sandy soil and in desert grassland on brown calcareous soil. The results showed that (1) desertification control should be an effective measure to improve the carbon sequestration in sandy grassland, and shrub planting should be better than grass planting; (2) development of man-made grassland should be a good choice to solve the contradictions of ecology and economy in desert grassland; (3) grassland on sandy soil is more vulnerable to soil degradation than desert grassland on brown calcareous soil. The results may be useful for the selection of land-use types, aiming at desertification prevention in drylands. Follow-up studies should directly investigate the role of soil texture on the carbon storage dynamic caused by land-use change.

  17. The tilt-dependent potential of mean force of a pair of DNA oligomers from all-atom molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Cortini, Ruggero; Cheng, Xiaolin; Smith, Jeremy C.

    2017-03-01

    Electrostatic interactions between DNA molecules have been extensively studied experimentally and theoretically, but several aspects (e.g. its role in determining the pitch of the cholesteric DNA phase) still remain unclear. Here, we performed large-scale all-atom molecular dynamics simulations in explicit water and 150 mM sodium chloride, to reconstruct the potential of mean force (PMF) of two DNA oligomers 24 base pairs long as a function of their interaxial angle and intermolecular distance. We find that the potential of mean force is dominated by total DNA charge, and not by the helical geometry of its charged groups. The theory of homogeneously charged cylinders fits well all our simulation data, and the fit yields the optimal value of the total compensated charge on DNA to  ≈65% of its total fixed charge (arising from the phosphorous atoms), close to the value expected from Manning’s theory of ion condensation. The PMF calculated from our simulations does not show a significant dependence on the handedness of the angle between the two DNA molecules, or its size is on the order of 1{{k}\\text{B}}T . Thermal noise for molecules of the studied length seems to mask the effect of detailed helical charge patterns of DNA. The fact that in monovalent salt the effective interaction between two DNA molecules is independent on the handedness of the tilt may suggest that alternative mechanisms are required to understand the cholesteric phase of DNA.

  18. Isospin breaking in the decay constants of heavy mesons from QCD sum rules

    NASA Astrophysics Data System (ADS)

    Lucha, Wolfgang; Melikhov, Dmitri; Simula, Silvano

    2017-02-01

    We present a study of the strong isospin-breaking (IB) effect, due in QCD to the difference between u- and d-quark masses, in the leptonic decay constants of charmed and beauty pseudoscalar and vector mesons using the method of QCD sum rules. We apply the sum-rule analysis to the decay constants of mesons containing one heavy quark and one light quark with the light mass in the range from the average u / d quark mass to the strange-quark mass. We then analyse the dependence of the decay constants on the light-quark mass and extract with good accuracy the IB ratios of decay constants at leading order in the mass difference (md -mu), obtaining: (fD+ -fD0) /fD = 0.0047 (6), (fD*+ -fD*0) /fD* = 0.0068 (9), (fB0 -fB+) /fB = 0.0047 (6), and (fB*0 -fB*+) /fB* = 0.0045 (5), which yield: fD+ -fD0 = 0.97 ± 0.13 MeV, fD*+ -fD*0 = 1.73 ± 0.27 MeV, fB0 -fB+ = 0.90 ± 0.13 MeV, fB*0 -fB*+ = 0.81 ± 0.11 MeV. In the case of the D-meson our finding is consistent with recent lattice QCD results, whereas it is much lower in the case of the B-meson showing a tension of ≈3 standard deviations.

  19. Constraining the Symmetry Energy:. a Journey in the Isospin Physics from Coulomb Barrier to Deconfinement

    NASA Astrophysics Data System (ADS)

    di Toro, M.; Colonna, M.; Greco, V.; Ferini, G.; Rizzo, C.; Rizzo, J.; Baran, V.; Gaitanos, T.; Prassa, V.; Wolter, H. H.; Zielinska-Pfabe, M.

    Heavy Ion Collisions (HIC) represent a unique tool to probe the in-medium nuclear interaction in regions away from saturation. In this work we present a selection of reaction observables in dissipative collisions particularly sensitive to the isovector part of the interaction, i.e.to the symmetry term of the nuclear Equation of State (EoS). At low energies the behavior of the symmetry energy around saturation influences dissipation and fragment production mechanisms. We will first discuss the recently observed Dynamical Dipole Radiation, due to a collective neutron-proton oscillation during the charge equilibration in fusion and deep-inelastic collisions. Important Iso - EOS are stressed. Reactions induced by unstable 132Sn beams appear to be very promising tools to test the sub-saturation Isovector EoS. New Isospin sensitive observables are also presented for deep-inelastic, fragmentation collisions and Isospin equilibration measurements (Imbalance Ratios). The high density symmetry term can be derived from isospin effects on heavy ion reactions at relativistic energies (few AGeV range), that can even allow a "direct" study of the covariant structure of the isovector interaction in the hadron medium. Rather sensitive observables are proposed from collective flows and from pion/kaon production. The possibility of the transition to a mixed hadron-quark phase, at high baryon and isospin density, is finally suggested. Some signatures could come from an expected "neutron trapping" effect. The importance of studying violent collisions with radioactive beams from low to relativistic energies is finally stressed.

  20. Effect of momentum dependent interactions and nucleonic cross-section on directed flow (v{sub 1})

    SciTech Connect

    Jain, Anupriya; Vinayak, Karan Singh; Kumar, Suneel

    2013-07-15

    The descriptive analysis for the effect of momentum dependent interactions and nucleonic cross-section (isospin dependent and isospin-independent) on the neutron–proton directed flow (v{sub 1}), within the framework of the isospin dependent quantum molecular dynamics model is presented. Our study shows that, the directed flow of both neutrons and protons is affected by the momentum dependence of nuclear equation of state and the isospin dependence of nucleon–nucleon cross-section. A soft momentum dependent (SM) equation of state is found to be more compatible with the experimental data. -- Highlights: •Role of rapidity cut on transverse flow has been explored. •p{sub t} differential flow for protons and neutrons has been studied. •Role of MDI on directed flow has been studied.

  1. Isospin Mixing and the Continuum Coupling in Weakly Bound Nuclei

    SciTech Connect

    Michel, N.; Nazarewicz, Witold; Ploszajczak, M.

    2010-01-01

    We investigate the near-threshold behavior of one-nucleon spectroscopic factors in mirror nuclei using the Gamow Shell Model, which simultaneously takes into account many-body correlations and continuum effects. We demonstrate that for weakly bound or unbound systems, the mirror symmetry-breaking effects are appreciable, and they manifest in large differences of spectroscopic factors in a mirror pair.

  2. Measurement of Branching Fractions, Isospin, and CP-Violating Asymmetries for Exclusive b→dγ Modes

    NASA Astrophysics Data System (ADS)

    Taniguchi, N.; Nakao, M.; Nishida, S.; Adachi, I.; Aihara, H.; Arinstein, K.; Aushev, T.; Aziz, T.; Bakich, A. M.; Balagura, V.; Bay, A.; Belous, K.; Bhardwaj, V.; Bitenc, U.; Bondar, A.; Bozek, A.; Bračko, M.; Browder, T. E.; Chang, M.-C.; Chang, P.; Chao, Y.; Chen, A.; Chen, K.-F.; Chen, W. T.; Cheon, B. G.; Chiang, C.-C.; Cho, I.-S.; Choi, Y.; Dalseno, J.; Dash, M.; Drutskoy, A.; Dungel, W.; Eidelman, S.; Golob, B.; Ha, H.; Haba, J.; Hara, T.; Hayasaka, K.; Hayashii, H.; Hazumi, M.; Hoshi, Y.; Hou, W.-S.; Hyun, H. J.; Iijima, T.; Inami, K.; Ishikawa, A.; Ishino, H.; Itoh, R.; Iwabuchi, M.; Iwasaki, M.; Iwasaki, Y.; Joshi, N. J.; Kah, D. H.; Kaji, H.; Kang, J. H.; Kawai, H.; Kawasaki, T.; Kichimi, H.; Kim, S. K.; Kim, Y. I.; Kim, Y. J.; Kinoshita, K.; Korpar, S.; Križan, P.; Krokovny, P.; Kumar, R.; Kuzmin, A.; Kwon, Y.-J.; Kyeong, S.-H.; Lange, J. S.; Lee, J. S.; Lee, S. E.; Lesiak, T.; Limosani, A.; Lin, S.-W.; Liu, C.; Liu, Y.; Liventsev, D.; Mandl, F.; McOnie, S.; Miyabayashi, K.; Miyazaki, Y.; Moloney, G. R.; Nagasaka, Y.; Nakamura, I.; Nakano, E.; Nakazawa, H.; Natkaniec, Z.; Nitoh, O.; Nozaki, T.; Ogawa, S.; Ohshima, T.; Okuno, S.; Olsen, S. L.; Ozaki, H.; Pakhlov, P.; Pakhlova, G.; Park, C. W.; Park, H.; Park, H. K.; Park, K. S.; Peak, L. S.; Piilonen, L. E.; Sahoo, H.; Sakai, Y.; Sasao, N.; Schneider, O.; Schümann, J.; Schwanda, C.; Schwartz, A. J.; Seidl, R.; Senyo, K.; Sevior, M. E.; Shapkin, M.; Shen, C. P.; Shiu, J.-G.; Shwartz, B.; Singh, J. B.; Sokolov, A.; Stanič, S.; Starič, M.; Sumisawa, K.; Sumiyoshi, T.; Suzuki, S. Y.; Tamura, N.; Taylor, G. N.; Teramoto, Y.; Tikhomirov, I.; Trabelsi, K.; Tsuboyama, T.; Uehara, S.; Uglov, T.; Unno, Y.; Uno, S.; Urquijo, P.; Varner, G.; Wang, C. H.; Wang, M.-Z.; Wang, P.; Wang, X. L.; Watanabe, Y.; Wedd, R.; Wicht, J.; Won, E.; Yabsley, B. D.; Yamashita, Y.; Yusa, Y.; Zhang, Z. P.; Zhilich, V.; Zhulanov, V.; Zivko, T.; Zupanc, A.; Zyukova, O.

    2008-09-01

    We report new measurements of the decays B+→ρ+γ, B0→ρ0γ, and B0→ωγ using a data sample of 657×106 B meson pairs accumulated with the Belle detector at the KEKB e+e- collider. We measure branching fractions B(B+→ρ+γ)=(8.7-2.7-1.1+2.9+0.9)×10-7, B(B0→ρ0γ)=(7.8-1.6-1.0+1.7+0.9)×10-7, and B(B0→ωγ)=(4.0-1.7+1.9±1.3)×10-7. We also report the isospin asymmetry Δ(ργ)=-0.48-0.19-0.09+0.21+0.08 and the first measurement of the direct CP-violating asymmetry ACP(B+→ρ+γ)=-0.11±0.32±0.09, where the first and second errors are statistical and systematic, respectively.

  3. Proton-neutron pairing and alpha-type condensation in nuclei

    SciTech Connect

    Sandulescu, N.; Negrea, D.; Gambacurta, D.

    2015-10-15

    We summarize a recent work (N. Sandulescu et al, arXiv:1507.04144) on isoscalar and isovector proton-neutron pairing treated in a formalism which conserves exactly the particle number and the isospin. The formalism is designed for self-conjugate (N=Z) systems of nucleons moving in an axially deformed mean field and interacting through the most general isovector and isoscalar pairing interactions. The ground state of these systems is described by a superposition of two types of condensates, i.e., condensates of isovector quartets, built by two isovector pairs coupled to the total isospin T=0, and condensates of isoscalar proton-neutron pairs. The comparison with the exact solutions of realistic isovector-isoscalar pairing Hamiltonians shows that this formalism is able to describe accurately the pairing correlations energies. It is also shown that, contrary to the majority of HFB calculations, in the present formalism the isovector and isoscalar pairing correlations coexist together for any pairing interactions.

  4. Excessive production of electron pairs by soft photons in low multiplicity ion interactions

    NASA Technical Reports Server (NTRS)

    Burnett, T. H.; Dake, S.; Fuki, M.; Gregory, J. C.; Hayashi, T.; Holynski, R.; Iwai, J.; Jones, W. V.; Jurak, A.; Lord, J. J.

    1985-01-01

    Three multiply charged primary cosmic ray interactions with carbon nuclei are reported, in which the number of materialized electron pairs within a distance of about 0.3 conversion length is larger than predicted from isospin considerations. These are the most energetic (sigma E gamma 4 TeV) of the low multiplicity ( 15 tracks) events observed in the Japanese-American Cooperative Experiment (JACEE-2) emulsion chamber.

  5. Reply to Comment on 'Excited states of DNA base pairs using long-range corrected time-dependent density functional theory

    SciTech Connect

    Jensen, Lasse; Govind, Niranjan

    2009-09-18

    In this work we present a study of the excitation energies of adenine, cytosine, guanine, thymine and the adenine-thymine (AT) and guanine-cytosine (GC) base pairs using long-range corrected (LC) density functional theory. We compare three recent LC-functionals, BNL, CAM-B3LYP and LC-PBE0 with B3LYP and coupled cluster results from the literature. We find that the best overall performance is for the BNL functional based on LDA. However, in order to achieve this good agreement a smaller attenuation parameter was needed which leads to non-optimum performance for ground state properties. B3LYP, on the other hand, severely underestimates the charge transfer (CT) transitions in the base pairs. Surprisingly we also find that the CAM-B3LYP functional also underestimates the CT excitation energy for the GC base pair, but correctly describes the AT base pair. This illustrates the importance of retaining the full long-range exact exchange even at distances as short as that of the DNA base pairs. The worst overall performance was obtained with the LC-PBE0 functional which overestimates the excitations for the individual bases as well as the base pairs. It is therefore crucial to strike a good balance between the amount of local and long-range exact exchange.

  6. The local post-perovskite structure and its temperature dependence : atom-pair distances in CalrO{sub 3} revealed through analysis of the total x-ray scattering at high temperatures.

    SciTech Connect

    Martin, C. D.; X-Ray Science Division

    2008-08-01

    The temperature-dependent post-perovskite structure model of MgSiO{sub 3} is reinvestigated through analysis of the atom-pair distances observed experimentally via Fourier transformation of X-ray diffraction and diffuse scattering, the total X-ray scattering, from CaIrO{sub 3}. In contrast to the results of a previous Rietveld structure refinement, which shows a negative or null thermal expansion of Ir-O and Ca-O bond lengths within the average long-range structure, visual inspection of these atom-pair distances in the pair-distribution function, in addition to structure models fitted through least-squares refinement to this local-structure data, strongly suggests that these distances between atom pairs increase with temperature. The average long-range structure of CaIrO{sub 3}, visible from Rietveld structure refinement, is distinct from the short-range structure ({le} 18 {angstrom}) at all of the temperatures examined in this study (325-1114 K) and is reproduced in structure models fitted to the pair-distribution function extending to sufficiently long atom-pair distances ({ge} 50 {angstrom}). While previous data obtained with Rietveld structure refinement show the iridium coordination octahedra to distort with increasing temperature, models of the short-range structure demonstrate that these polyhedra instead reduce distortion and rotate in a manner similar to that occurring in the perovskite structure.

  7. JAHN—A program for representing atomic and nuclear states within an isospin basis

    NASA Astrophysics Data System (ADS)

    Gaigalas, G.; Fritzsche, S.; Gaidamauskas, E.; Kiršanskas, G.; Žalandauskas, T.

    2006-07-01

    A computer program is presented to deal with atomic and nuclear state functions within an isospin-coupled basis. Apart from the classification of the isospin bases states, the program JAHN supports the computation of the corresponding coefficients of fractional parentage as well as of the transformation matrices going from a LS-coupled to an isospin-coupled basis. In the future, these features may facilitate the treatment of atomic systems in order to obtain a deeper insight into the coupling of open-shell atoms and ions. The JAHN program has been designed for interactive work and is distributed as a MAPLE module. Program summaryTitle of program:JAHN Catalogue identifier:ADXA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXA_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions:None Computers for which the program is designed: All computers with a valid license of the computer algebra package MAPLE which is a registered trademark of Waterloo Maple Inc. Installations: University of Kassel (Germany) Operating systems under which the program has been tested: Linux 8.1+ Program language used:MAPLE, Release 8 and 9 Memory required to execute with typical data: 30 MB Number of lines in distributed program, including test data, etc.: 38 158 Number of bytes in distributed program, including test data, etc.: 743 689 Distribution format: tar.gz Nature of the physical problem: The accurate computation of atomic (nuclear) properties and level structures requires a good understanding and implementation of the atomic (nuclear) shell model and, hence, a fast and reliable access to its classification, the coefficients of fractional parentage and the coefficients of fractional grandparentage. For open-shell atoms and ions, moreover, a reliable classification of the level structure often requires the knowledge of some transformation matrices in order to find the main components of the wave functions as well as

  8. Aminoxyl Radicals of B/P Frustrated Lewis Pairs: Refinement of the Spin-Hamiltonian Parameters by Field- and Temperature-Dependent Pulsed EPR Spectroscopy.

    PubMed

    de Oliveira, Marcos; Knitsch, Robert; Sajid, Muhammad; Stute, Annika; Elmer, Lisa-Maria; Kehr, Gerald; Erker, Gerhard; Magon, Claudio J; Jeschke, Gunnar; Eckert, Hellmut

    2016-01-01

    Q-band and X-band pulsed electron paramagnetic resonance spectroscopic methods (EPR) in the solid state were employed to refine the parameters characterizing the anisotropic interactions present in six nitroxide radicals prepared by N,N addition of NO to various borane-phosphane frustrated Lewis pairs (FLPs). The EPR spectra are characterized by the g-anisotropy as well as by nuclear hyperfine coupling between the unpaired electron and the 11B/10B, 14N and 31P nuclear magnetic moments. It was previously shown that continuous-wave spectra measured at X-band frequency (9.5 GHz) are dominated by the magnetic hyperfine coupling to 14N and 31P, whereas the g-tensor values and the 11B hyperfine coupling parameters cannot be refined with high precision from lineshape fitting. On the other hand, the X-band electron spin echo envelope modulation (ESEEM) and hyperfine sublevel correlation (HYSCORE) spectra are completely dominated by the nuclear hyperfine coupling to the 11B nuclei, allowing a selective determination of their interaction parameters. In the present work this analysis has been further validated by temperature dependent ESEEM measurements. In addition, pulsed EPR data measured in the Q-band (34 GHz) are reported, which present an entirely different situation: the g-tensor components can be measured with much higher precision, and the ESEEM and HYSCORE spectra contain information about all of the 10B, 11B, 14N and 31P hyperfine interaction parameters. Based on these new results, we report here high-accuracy and precision data of the EPR spin Hamiltonian parameters measured on six FLP-NO radical species embedded in their corresponding hydroxylamine host structures. While the ESEEM spectra at Q-band frequency turn out to be very complex (due to the multinuclear contribution to the overall signal) in the HYSCORE experiment the extension over two dimensions renders a better discrimination between the different nuclear species, and the signals arising from hyperfine

  9. Aminoxyl Radicals of B/P Frustrated Lewis Pairs: Refinement of the Spin-Hamiltonian Parameters by Field- and Temperature-Dependent Pulsed EPR Spectroscopy

    PubMed Central

    de Oliveira, Marcos; Knitsch, Robert; Sajid, Muhammad; Stute, Annika; Elmer, Lisa-Maria; Kehr, Gerald; Erker, Gerhard; Magon, Claudio J.; Jeschke, Gunnar; Eckert, Hellmut

    2016-01-01

    Q-band and X-band pulsed electron paramagnetic resonance spectroscopic methods (EPR) in the solid state were employed to refine the parameters characterizing the anisotropic interactions present in six nitroxide radicals prepared by N,N addition of NO to various borane-phosphane frustrated Lewis pairs (FLPs). The EPR spectra are characterized by the g-anisotropy as well as by nuclear hyperfine coupling between the unpaired electron and the 11B/10B, 14N and 31P nuclear magnetic moments. It was previously shown that continuous-wave spectra measured at X-band frequency (9.5 GHz) are dominated by the magnetic hyperfine coupling to 14N and 31P, whereas the g-tensor values and the 11B hyperfine coupling parameters cannot be refined with high precision from lineshape fitting. On the other hand, the X-band electron spin echo envelope modulation (ESEEM) and hyperfine sublevel correlation (HYSCORE) spectra are completely dominated by the nuclear hyperfine coupling to the 11B nuclei, allowing a selective determination of their interaction parameters. In the present work this analysis has been further validated by temperature dependent ESEEM measurements. In addition, pulsed EPR data measured in the Q-band (34 GHz) are reported, which present an entirely different situation: the g-tensor components can be measured with much higher precision, and the ESEEM and HYSCORE spectra contain information about all of the 10B, 11B, 14N and 31P hyperfine interaction parameters. Based on these new results, we report here high-accuracy and precision data of the EPR spin Hamiltonian parameters measured on six FLP-NO radical species embedded in their corresponding hydroxylamine host structures. While the ESEEM spectra at Q-band frequency turn out to be very complex (due to the multinuclear contribution to the overall signal) in the HYSCORE experiment the extension over two dimensions renders a better discrimination between the different nuclear species, and the signals arising from hyperfine

  10. On Adiabatic Pair Creation

    NASA Astrophysics Data System (ADS)

    Pickl, Peter; Dürr, Detlef

    2008-08-01

    We give here a rigorous proof of the well known prediction of pair creation as it arises from the Dirac equation with an external time dependent potential. Pair creation happens with probability one if the potential changes adiabatically in time and becomes overcritical, which means that an eigenvalue curve (as a function of time) bridges the gap between the negative and positive spectral continuum. The potential can be thought of as being zero at large negative and large positive times. The rigorous treatment of this effect has been lacking since the pioneering work of Beck, Steinwedel and Süßmann [1] in 1963 and Gershtein and Zeldovich [8] in 1970.

  11. Isospin effects on light charged particles as probes of nuclear dissipation

    SciTech Connect

    Ye, W.

    2009-07-15

    The multiplicities of postsaddle protons and {alpha} particles of the heavy systems {sup 234}Cf, {sup 240}Cf, {sup 246}Cf, and {sup 240}U as functions of the postsaddle dissipation strength are calculated in the framework of a dynamical Langevin model coupled with a statistical decay model. It is found that with increasing isospin of the Cf system, the sensitivity of the postsaddle proton and {alpha}-particle multiplicity to the dissipation strength decreases substantially, and it disappears for the {sup 240}U system. We suggest that on the experimental side, to accurately probe the postsaddle dissipation strength by measuring the prescission proton and {alpha}-particle multiplicity, it is best to populate heavy compound systems with low isospin.

  12. Isospin decomposition of γN→N* transitions within a dynamical coupled-channels model

    DOE PAGES

    Kamano, Hiroyuki; Nakamura, S. X.; Lee, T. -S. H.; ...

    2016-07-07

    Here, by extending the dynamical coupled-channels analysis performed in our previous work to include the available data of photoproduction of pi mesons off neutrons, the transition amplitudes for the photoexcitation of the neutron-to-nucleon resonances, γn → N*, at the resonance pole positions are determined. The combined fits to the data for both the proton- and neutron-target reactions also revise our results for the resonance pole positions and the γp → N* transition amplitudes. Our results allow an isospin decomposition of the γN → N* transition amplitudes for the isospin I = 1/2 N* resonances, which is necessary for testing hadronmore » structure models and gives crucial inputs for constructing models of neutrino-induced reactions in the nucleon resonance region.« less

  13. Precise Determination of 40Ti Mass by Measuring the 40Sc Isospin Analogue State

    NASA Astrophysics Data System (ADS)

    Liu, Wei-Ping; Hellström, M.; Collatz, R.; Benlliure, J.; Chulkov, L.; Cortina Gil, D.; Farget, F.; Grawe, H.; Z., Hu; Iwasa, N.; Pfützner, M.; Piechaczek, A.; Raabe, R.; Reusen, I.; Roeckl, E.; Vancraeynest, G.; Wöhr, A.

    2001-11-01

    The mass of 40Ti has been determined by using the isobaric multiplet mass equation method. The experimental data of the 40Ti β-decay were used to determine the level of the isospin analogue state of 40Sc. The ground-state mass excess and the QEC value for 40Ti were determined to be -9060+/-12 keV and 11 466 +/- 13 keV, respectively.

  14. A new Skyrme energy density functional for a better description of spin-isospin resonances

    SciTech Connect

    Roca-Maza, X.; Colò, G.; Cao, Li-Gang; Sagawa, H.

    2015-10-15

    A correct determination of the isospin and spin-isospin properties of the nuclear effective interaction should lead to an accurate description of the Gamow-Teller resonance (GT), the Spin Dipole Resonance (SDR), the Giant Dipole Resonance (GDR) or the Antianalog Giant Dipole Resonance (AGDR), among others. A new Skyrme energy density functional named SAMi is introduced with the aim of going a step forward in setting the bases for a more precise description of spin-isospin resonances [1, 2]. In addition, we will discuss some new features of our analysis on the AGDR in {sup 208}Pb [3] as compared with available experimental data on this resonance [4, 5, 6], and on the GDR [7]. Such study, guided by a simple yet physical pocket formula, has been developed by employing the so called SAMi-J family of systematically varied interactions. This set of interactions is compatible with experimental data for values of the symmetry energy at saturation J and slope parameter L falling in the ranges 31−33 MeV and 75−95 MeV, respectively.

  15. A new Skyrme energy density functional for a better description of spin-isospin resonances

    NASA Astrophysics Data System (ADS)

    Roca-Maza, X.; Colò, G.; Cao, Li-Gang; Sagawa, H.

    2015-10-01

    A correct determination of the isospin and spin-isospin properties of the nuclear effective interaction should lead to an accurate description of the Gamow-Teller resonance (GT), the Spin Dipole Resonance (SDR), the Giant Dipole Resonance (GDR) or the Antianalog Giant Dipole Resonance (AGDR), among others. A new Skyrme energy density functional named SAMi is introduced with the aim of going a step forward in setting the bases for a more precise description of spin-isospin resonances [1, 2]. In addition, we will discuss some new features of our analysis on the AGDR in 208Pb [3] as compared with available experimental data on this resonance [4, 5, 6], and on the GDR [7]. Such study, guided by a simple yet physical pocket formula, has been developed by employing the so called SAMi-J family of systematically varied interactions. This set of interactions is compatible with experimental data for values of the symmetry energy at saturation J and slope parameter L falling in the ranges 31-33 MeV and 75-95 MeV, respectively.

  16. Isospin and particle representations for quasi-bound state of kaonic clusters

    NASA Astrophysics Data System (ADS)

    Filikhin, Igor; Kezerashvili, Roman; Vlahovic, Branislav

    2017-01-01

    In the framework of the method of the Faddeev equations in configuration space, the NNK (I = 0) (and KK) kaonic cluster system including two identical particles is considered. We use the formalism of isospin and particle representations to describe the systems. The treatment of I = 1 and I = 0 isospin KN channels is discussed. The presence of the Coulomb force in ppK- channel violates the isospin symmetry of the NNK (I = 0) system. According to the particle representation, NNK is a two-level system of coupled ppK- and ppnl channels with and without the Coulomb energy, respectively. The results of calculations for the bound states with the phenomenological and chiral motivated KN potentials are given for different representations. In particular, new single channel calculations for the ppK- (and K-K- p) cluster are presented. It is shown that the exchange of identical particles plays an important role in the formation of a bound state of the systems. The relation of the exchange and the three-body mass rearrangement effects is discussed. This work is supported by the National Science Foundation grant Supplement to the NSF grant HRD-1345219 and NASA (NNX09AV07A).

  17. Isospin Symmetry Breaking within the HLS Model: A Full (rho, omega, phi) Mixing Scheme

    SciTech Connect

    O'Connell, Heath B

    2001-07-16

    We study the way isospin symmetry violation can be generated within the Hidden Local Symmetry (HLS) Model. We show that isospin symmetry breaking effects on pseudoscalar mesons naturally induces correspondingly effects within the physics of vector mesons, through kaon loops. In this way, one recovers all features traditionally expected from {rho}-{omega} mixing and one finds support for the Orsay phase modeling of the e{sup +}e{sup -} {yields} {pi}{sup +}{pi}{sup -} amplitude. We then examine an effective procedure which generates mixing in the whole {rho}, {omega}, {phi} sector of the HLS Model. The corresponding model allows us to account for all two body decays of light mesons accessible to the HLS model in modulus and phase, leaving aside the {rho} {yields} {pi}{pi} and K* {yields} K{pi} modes only, which raise a specific problem. Comparison with experimental data is performed and covers modulus and phase information; this represents 26 physics quantities successfully described with very good fit quality within a constrained model which accounts for SU(3) breaking, nonet symmetry breaking in the pseudoscalar sector and, now, isospin symmetry breaking.

  18. Probing the hadron-quark mixed phase at high isospin and baryon density. Sensitive observables

    NASA Astrophysics Data System (ADS)

    Di Toro, Massimo; Colonna, Maria; Greco, Vincenzo; Shao, Guo-Yun

    2016-08-01

    We discuss the isospin effect on the possible phase transition from hadronic to quark matter at high baryon density and finite temperatures. The two-Equation of State (Two-EoS) model is adopted to describe the hadron-quark phase transition in dense matter formed in heavy-ion collisions. For the hadron sector we use Relativistic Mean-Field (RMF) effective models, already tested on heavy-ion collision (HIC). For the quark phase we consider various effective models, the MIT-Bag static picture, the Nambu-Jona-Lasinio (NJL) approach with chiral dynamics and finally the NJL coupled to the Polyakov-loop field (PNJL), which includes both chiral and (de)confinement dynamics. The idea is to extract mixed phase properties which appear robust with respect to the model differences. In particular we focus on the phase transitions of isospin asymmetric matter, with two main results: i) an earlier transition to a mixed hadron-quark phase, at lower baryon density/chemical potential with respect to symmetric matter; ii) an "Isospin Distillation" to the quark component of the mixed phase, with predicted effects on the final hadron production. Possible observation signals are suggested to probe in heavy-ion collision experiments at intermediate energies, in the range of the NICA program.

  19. Isospin violation in ϕ, J/ψ, ψ'→ωπ0 via hadronic loops

    NASA Astrophysics Data System (ADS)

    Li, Gang; Zhao, Qiang; Zou, Bing-Song

    2008-01-01

    In this work, we study the isospin-violating decay of ϕ→ωπ0 and quantify the electromagnetic (EM) transitions and intermediate meson exchanges as two major sources of the decay mechanisms. In the EM decays, the present datum status allows a good constraint on the EM decay form factor in the vector meson dominance model, and it turns out that the EM transition can only account for about 1/4˜1/3 of the branching ratio for ϕ→ωπ0. The intermediate meson exchanges, KK¯(K*) (intermediate KK¯ interaction via K* exchanges), KK¯*(K) (intermediate KK¯* rescattering via kaon exchanges), and KK¯*(K*) (intermediate KK¯* rescattering via K* exchanges), which evade the naive Okubo-Zweig-Iizuka rule, serve as another important contribution to the isospin violations. They are evaluated with effective Lagrangians where explicit constraints from experiment can be applied. Combining these three contributions, we obtain results in good agreement with the experimental data. This approach is also extended to J/ψ(ψ')→ωπ0, where we find contributions from the KK¯(K*), KK¯*(K), and KK¯*(K*) loops are negligibly small, and the isospin violation is likely to be dominated by the EM transition.

  20. Pairing Learners in Pair Work Activity

    ERIC Educational Resources Information Center

    Storch, Neomy; Aldosari, Ali

    2013-01-01

    Although pair work is advocated by major theories of second language (L2) learning and research findings suggest that pair work facilitates L2 learning, what is unclear is how to best pair students in L2 classes of mixed L2 proficiency. This study investigated the nature of pair work in an English as a Foreign Language (EFL) class in a college in…

  1. A genome-wide linkage analysis for the personality trait neuroticism in the Irish affected sib-pair study of alcohol dependence.

    PubMed

    Kuo, Po-Hsiu; Neale, Michael C; Riley, Brien P; Patterson, Diana G; Walsh, Dermot; Prescott, Carol A; Kendler, Kenneth S

    2007-06-05

    Neuroticism is a personality trait which reflects individual differences in emotional stability and vulnerability to stress and anxiety. Consistent evidence shows substantial genetic influences on variation in this trait. The present study seeks to identify regions containing susceptibility loci for neuroticism using a selected sib-pair sample from Ireland. Using Merlin regress, we conducted a 4 cM whole-genome linkage analysis on 714 sib-pairs. Evidence for linkage to neuroticism was found on chromosomes 11p, 12q, and 15q. The highest linkage peak was on 12q at marker D12S1638 with a Lod score of 2.13 (-log p = 2.76, empirical P-value <0.001). Our data also support gender specific loci for neuroticism, with male specific linkage regions on chromosomes 1, 4, 11, 12, 15, 16, and 22, and female specific linkage regions on chromosomes 2, 4, 9, 12, 13, and 18. Some genome regions reported in the present study replicate findings from previous linkage studies of neuroticism. These results, together with prior studies, indicate several potential regions for quantitative trait loci for neuroticism that warrant further study.

  2. Binding of echinomycin to d(GCGC)2 and d(CCGG)2: distinct stacking interactions dictate the sequence-dependent formation of Hoogsteen base pairs.

    PubMed

    Gallego, J; Luque, F J; Orozco, M; Gago, F

    1994-08-01

    Molecular dynamics simulations have been used to explore the behavior of the complexes of echinomycin with the DNA tetramers d(GCGC)2 and d(CCGG)2 in which the terminal bases have been paired according to either a Hoogsteen or a Watson-Crick hydrogen bonding scheme. The energy of the four resulting complexes has been monitored along the dynamics trajectories and the interaction energy between echinomycin and DNA has been decomposed into contributions arising from the planar aromatic systems and the depsipeptide part of the antibiotic. Our calculations predict a large increase in overall stabilization upon protonation of the terminal cytosines and subsequent Hoogsteen pair formation in the complex of echinomycin with d(GCGC)2 but not with d(CCGG)2, in agreement with the experimental evidence [Gao and Patel, Quart. Rev. Biophys. 22, 93-138 (1989)]. The conformational preferences appear to arise mainly from differential stacking interactions in which the electrostatic component is shown to play a dominant role. Differences in hydrogen bonding patterns are also found among the complexes and these are compared in relation to available crystal structures. The binding of echinomycin to DNA appears as a complex process involving many interrelated variables.

  3. Comparative tests of isospin-symmetry-breaking corrections to superallowed 0+→0+ nuclear β decay

    NASA Astrophysics Data System (ADS)

    Towner, I. S.; Hardy, J. C.

    2010-12-01

    We present a test with which to evaluate the calculated isospin-symmetry-breaking corrections to superallowed 0+→0+ nuclear β decay. The test is based on the corrected experimental Ft values being required to satisfy conservation of the vector current (CVC). When applied to six sets of published calculations, the test demonstrates quantitatively that only one set, the one based on the shell model with Saxon-Woods radial wave functions, provides satisfactory agreement with CVC. This test can easily be applied to any sets of calculated correction terms that are produced in future.

  4. Electron spin polarization by isospin ordering in correlated two-layer quantum Hall systems.

    PubMed

    Tiemann, L; Wegscheider, W; Hauser, M

    2015-05-01

    Enhancement of the electron spin polarization in a correlated two-layer, two-dimensional electron system at a total Landau level filling factor of 1 is reported. Using resistively detected nuclear magnetic resonance, we demonstrate that the electron spin polarization of two closely spaced two-dimensional electron systems becomes maximized when interlayer Coulomb correlations establish spontaneous isospin ferromagnetic order. This correlation-driven polarization dominates over the spin polarizations of competing single-layer fractional quantum Hall states under electron density imbalances.

  5. On the splitting of nucleon effective masses at high isospin density: reaction observables

    SciTech Connect

    Di Toro, M.; Colonna, M.; Rizzo, J.

    2005-10-14

    We review the present status of the nucleon effective mass splitting puzzle in asymmetric matter, with controversial predictions within both non-relativistic and relativistic approaches to the effective in medium interactions. Based on microscopic transport rimulations we suggest some rather sensitive observables in collisions of asymmetric (unstable) ions at intermediate (RIA) energies: i) Energy systematics of Lane Potentials; ii) Isospin content of fast emitted nucleons; iii) Differential Collective Flows. Similar measurements for light isobars (like 3H-3He) could be also important.

  6. Unified analysis of spin isospin responses of nuclei

    NASA Astrophysics Data System (ADS)

    Wakasa, T.; Ichimura, M.; Sakai, H.

    2005-12-01

    We investigate the Gamow-Teller (GT) response functions at a momentum transfer of q=0fm-1 and the pionic response functions for quasielastic scattering (QES) at q≈1.7fm-1 using the continuum random phase approximation with the π+ρ+g' model interaction. The Landau-Migdal (LM) parameters, g'NN and g'NΔ, are estimated by comparing the calculations with recent experimental data. The peak of the GT resonance and the pionic response functions below the QES peak constrain g'NN, whereas the quenching of the GT total strength and the enhanced pionic strength around the QES peak provide information about g'NΔ. We obtained g'NN=0.6±0.1 and g'NΔ=0.35±0.16 at q=0fm-1 and g'NN=0.7±0.1 and g'NΔ=0.3±0.1 at q≈1.7fm-1. These results indicate that the q dependence of the LM parameters is weak.

  7. Age-Related Enhancement of a Protein Synthesis-Dependent Late Phase of LTP Induced by Low Frequency Paired-Pulse Stimulation in Hippocampus

    ERIC Educational Resources Information Center

    Huang, Yan-You; Kandel, Eric R.

    2006-01-01

    Protein synthesis-dependent late phase of LTP (L-LTP) is typically induced by repeated high-frequency stimulation (HFS). This form of L-LTP is reduced in the aged animal and is positively correlated with age-related memory loss. Here we report a novel form of protein synthesis-dependent late phase of LTP in the CA1 region of hippocampus induced by…

  8. Change of Electroweak Nuclear Reaction Rates by CP- and Isospin Symmetry Breaking - A Model Calculation

    NASA Astrophysics Data System (ADS)

    Stumpf, Harald

    2006-09-01

    Based on the assumption that electroweak bosons, leptons and quarks possess a substructure of elementary fermionic constituents, in previous papers the effect of CP-symmetry breaking on the effective dynamics of these particles was calculated. Motivated by the phenomenological procedure in this paper, isospin symmetry breaking will be added and the physical consequences of these calculations will be discussed. The dynamical law of the fermionic constituents is given by a relativistically invariant nonlinear spinor field equation with local interaction, canonical quantization, selfregularization and probability interpretation. The corresponding effective dynamics is derived by algebraic weak mapping theorems. In contrast to the commonly applied modifications of the quark mass matrices, CP-symmetry breaking is introduced into this algebraic formalism by an inequivalent vacuum with respect to the CP-invariant case, represented by a modified spinor field propagator. This leads to an extension of the standard model as effective theory which contains besides the "electric" electroweak bosons additional "magnetic" electroweak bosons and corresponding interactions. If furthermore the isospin invariance of the propagator is broken too, it will be demonstrated in detail that in combination with CP-symmetry breaking this induces a considerable modification of electroweak nuclear reaction rates.

  9. Holographic vector mesons from spectral functions at finite baryon or isospin density

    SciTech Connect

    Erdmenger, Johanna; Kaminski, Matthias; Rust, Felix

    2008-02-15

    We consider gauge/gravity duality with flavor for the finite-temperature field theory dual of the AdS-Schwarzschild black hole background with embedded D7-brane probes. In particular, we investigate spectral functions at finite baryon density in the black hole phase. We determine the resonance frequencies corresponding to meson-mass peaks as function of the quark mass over temperature ratio. We find that these frequencies have a minimum for a finite value of the quark mass. If the quotient of quark mass and temperature is increased further, the peaks move to larger frequencies. At the same time the peaks narrow, in agreement with the formation of nearly stable vector meson states which exactly reproduce the meson-mass spectrum found at zero temperature. We also calculate the diffusion coefficient, which has finite value for all quark mass to temperature ratios, and exhibits a first-order phase transition. Finally we consider an isospin chemical potential and find that the spectral functions display a resonance peak splitting, similar to the isospin meson-mass splitting observed in effective QCD models.

  10. Skyrmion semiclassical quantization in the presence of an isospin chemical potential

    SciTech Connect

    Cohen, Thomas D.; Ponciano, Juan A.; Scoccola, Norberto N.

    2008-08-01

    The semiclassical description of Skyrmions at small isospin chemical potential {mu}{sub I} is carefully analyzed. We show that when the calculation of the energy of a nucleon is performed using the straightforward generalization of the vacuum sector techniques ({mu}{sub I}=0), together with the 'natural' assumption {mu}{sub I}=O(N{sub c}{sup 0}), the proton and neutron masses are nonlinear in {mu}{sub I} in the regime |{mu}{sub I}|isospin, I{approx}N{sub c}.

  11. Isospin symmetry violating effects and scattering length extraction from kaon decays

    SciTech Connect

    Gevorkyan, S. R.

    2013-08-15

    The isospin symmetry breaking effects in the charged kaons decays to two or three pions are considered. In semileptonic decay K{sup {+-}} {yields} {pi}{sup +}{pi}{sup -}e{sup {+-}}{nu} (called K{sub e4}) these effects turn out to be crucial for correct extraction of {pi}{pi} scattering lengths. Taking in account electromagnetic interaction between the pions in the final state and isospin symmetry breaking due to different masses of charged and neutral pions allows to adjust the values of scattering lengths obtained from experimental data on K{sub e4} decay and predictions of Chiral Perturbation Theory (ChPT). Final state interactions of pions in the decay K{sup {+-}} {yields} {pi}{sup {+-}}{pi}{sup 0}{pi}{sup 0} leading to the anomaly (cusp) in the {pi}{sup 0}{pi}{sup 0} invariant mass distribution in the vicinity of charged pions' threshold are discussed and recent results of accounting of the electromagnetic interaction among charged pions leading to {pi}{sup +}{pi}{sup -} bound states (pioniumatom) just under the charged pions' threshold are presented.

  12. Observation of the dependence of the interference effect of identical pions on pion pair velocity in inclusive ¯pp-interactions at 22·4 GeV/c

    NASA Astrophysics Data System (ADS)

    Batyunya, B. V.; Boguslavsky, I. V.; Gramenitsky, I. M.; Lednický, R.; Tikhonova, L. A.; Valkárová, A.; Vrba, V.; Zlatanov, Z.; Levonian, S. V.; Ermilova, D. I.; Filippova, V. V.; Takibaev, Z. S.; Temiraliev, T.; Dumbrajs, S.; Ervanne, J.; Hannula, E.; Villanen, P.; Dementiev, R. K.; Korzhavina, I. A.; Leikin, E. M.; Rud, V. I.; Suk, M.; Herynek, I.; Reimer, P.; Řídký, J.; Šimák, V.; Khudzadze, A. M.; Kuratashvili, G. O.; Topuriya, T. P.; Tsintsadze, V. D.

    1981-05-01

    The Bose-Einstein interference effect is studied using 7333 events of ¯pp-interactions with n ch≧6 at 22·4 GeV/c. An essential dependence of the strength of this effect on the pion pair velocity is observed. An indication is obtained that processes with essentially different time characteristics (τ<1 fm and τ>2 fm) contribute to ¯pp-interactions at 22·4 GeV/c. The interpretation based on abundant resonance production in high energy collisions is discussed.

  13. Pairing in the BCS and LN approximations using continuum single particle level density

    NASA Astrophysics Data System (ADS)

    Id Betan, R. M.; Repetto, C. E.

    2017-04-01

    Understanding the properties of drip line nuclei requires to take into account the correlations with the continuum spectrum of energy of the system. This paper has the purpose to show that the continuum single particle level density is a convenient way to consider the pairing correlation in the continuum. Isospin mean-field and isospin pairing strength are used to find the Bardeen-Cooper-Schrieffer (BCS) and Lipkin-Nogami (LN) approximate solutions of the pairing Hamiltonian. Several physical properties of the whole chain of the Tin isotope, as gap parameter, Fermi level, binding energy, and one- and two-neutron separation energies, were calculated and compared with other methods and with experimental data when they exist. It is shown that the use of the continuum single particle level density is an economical way to include explicitly the correlations with the continuum spectrum of energy in large scale mass calculation. It is also shown that the computed properties are in good agreement with experimental data and with more sophisticated treatment of the pairing interaction.

  14. The pH-dependent Client Release from the Collagen-specific Chaperone HSP47 Is Triggered by a Tandem Histidine Pair.

    PubMed

    Oecal, Sinan; Socher, Eileen; Uthoff, Matthias; Ernst, Corvin; Zaucke, Frank; Sticht, Heinrich; Baumann, Ulrich; Gebauer, Jan M

    2016-06-10

    Heat shock protein 47 (HSP47) is an endoplasmic reticulum (ER)-resident collagen-specific chaperone and essential for proper formation of the characteristic collagen triple helix. It preferentially binds to the folded conformation of its clients and accompanies them from the ER to the Golgi compartment, where it releases them and is recycled back to the ER. Unlike other chaperones, the binding and release cycles are not governed by nucleotide exchange and hydrolysis, but presumably the dissociation of the HSP47-procollagen complex is triggered by the lower pH in the Golgi (pH 6.3) compared with the ER (pH 7.4). Histidine residues have been suggested as triggers due to their approximate textbook pKa value of 6.1 for their side chains. We present here an extensive theoretical and experimental study of the 14 histidine residues present in canine HSP47, where we have mutated all histidine residues in the collagen binding interface and additionally all of those that were predicted to undergo a significant change in protonation state between pH 7 and 6. These mutants were characterized by biolayer interferometry for their pH-dependent binding to a collagen model. One mutant (H238N) loses binding, which can be explained by a rearrangement of the Arg(222) and Asp(385) residues, which are crucial for specific collagen recognition. Most of the other mutants were remarkably silent, but a double mutant with His(273) and His(274) exchanged for asparagines exhibits a much less pronounced pH dependence of collagen binding. This effect is mainly caused by a lower koff at the low pH values.

  15. Determination of the angular and energy dependence of hard constituent scattering from. pi. /sup 0/ pair events at the CERN intersecting storage rings

    SciTech Connect

    Angelis, A.L.S.; Besch, H.J.; Blumenfeld, B.J.

    1982-08-23

    We present data on proton-proton collisions, obtained at the CERN Intersecting Storage Rings, in which two roughly back-to-back ..pi../sup 0/'s of high transverse momentum (p/sub T/) were produced. The angular distribution of the dipion axis relative to the collision axis is found to be independent of both the effective mass m of the dipion system and the centre-of-mass energy ..sqrt..s of the proton-proton collision. The cross-sections dsigma/dm at the two values of ..sqrt..s satisfy a scaling law of the form dsigma/dm = G(x)/m/sup n/, where x = m(..pi../sup 0/,..pi../sup 0/)/..sqrt..s and n = 6.5 +- 0.5. We show from our data that the leading ..pi../sup 0/ carries most of the momentum of the scattered parton. Given this fact, the axis of the dipion system follows closely the direction of the scattered constituents, and we exploit this to determine the angular dependence of the hard-scattering subprocess. We also compare our data with the lowest order QCD predictions using structure functions as determined in deep-inelastic scattering and fragmentation functions from electron-positron annihilation.

  16. Isospin-violating dark-matter-nucleon scattering via two-Higgs-doublet-model portals

    SciTech Connect

    Drozd, Aleksandra; Grzadkowski, Bohdan; Gunion, John F.; Jiang, Yun

    2016-10-24

    We show that in a multi-Higgs model in which one Higgs fits the LHC 125 GeV state, one or more of the other Higgs bosons can mediate DM-nucleon interactions with maximal DM isospin violation being possible for appropriate Higgs-quark couplings, independent of the nature of DM. We then consider the explicit example of a Type II two-Higgs-doublet model, identifying the h or H as the 125 GeV state while the H or h, respectively, mediates DM-nucleon interactions. Finally, we show that if a stable scalar, S, is added then it can be a viable light DM candidate with correct relic density while obeying all direct and indirect detection limits.

  17. Thermal and quantal isospin and spin fluctuations in heavy ion reactions

    SciTech Connect

    Moretto, L.G.

    1980-01-01

    The isobaric charge distributions are discussed in terms of quantal and classical isospin fluctuations. The roles of mass asymmetry and of the higher giant isovector modes are treated within the framework of a cylinder model that is worked out exactly. Spin fluctuations are considered first in terms of quantal fluctuations in a cylinder model and second in terms of thermal fluctuations in a two-sphere model. The results are applied to the calculation of in- and out-of-plane angular distributions for sequential fission, alpha and gamma decay. Analytical expressions are obtained for the angular distributions. The theoretical predictions are compared with experimental results for sequential fission, alpha, and gamma angular distributions. 23 figures.

  18. Direct CP, Lepton Flavor and Isospin Asymmetries in the Decays B->K(*)l+l-

    SciTech Connect

    Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Lopez, L.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Abrams, G.S.; Battaglia, M.; Brown, D.N.; Cahn, R.N.; Jacobsen, R.G.; /LBL, Berkeley /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /Frascati /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa U. /Iowa State U. /Johns Hopkins U. /Karlsruhe U., EKP /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT, LNS /McGill U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /INFN, Naples /Naples U. /INFN, Naples /INFN, Naples /Naples U. /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /Pennsylvania U. /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /Rostock U. /Rutherford /DSM, DAPNIA, Saclay /South Carolina U. /SLAC /Stanford U., Phys. Dept. /SUNY, Albany /Tennessee U. /Texas U. /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U., IFIC /Victoria U. /Warwick U. /Wisconsin U., Madison

    2009-03-03

    We measure rate asymmetries for the rare decays B {yields} K{sup (*)}{ell}{sup +}{ell}{sup -}, where {ell}{sup +}{ell}{sup -} is either e{sup +}e{sup -} or {mu}{sup +}{mu}{sup -}, using a sample of 384 million B{bar B} events collected with the BABAR detector at the PEP-II e{sup +}e{sup -} collider. We find no evidence for direct CP or lepton-flavor asymmetries. For dilepton masses below the J/{psi} resonance, we find evidence for unexpectedly large isospin asymmetries in both B {yields} K{ell}{sup +}{ell}{sup -} and B {yields} K*{ell}{sup +}{ell}{sup -} which differ respectively by 3.2{sigma} and 2.7{sigma}, including systematic uncertainties, from the Standard Model expectations.

  19. Measurement of Branching Fractions and CP and Isospin Asymmetry in B->K*(892)gamma Decays

    SciTech Connect

    Aubert, B.

    2009-06-19

    We present an analysis of the decays B{sup 0} {yields} K*{sup 0}(892){gamma} and B{sup +} {yields} K*{sup +}(892){gamma} using a sample of about 383 million B{bar B} events collected with the BABAR detector at the PEP-II asymmetric energy B factory. We measure the branching fractions {Beta}(B{sup 0} {yields} K*{sup 0}{gamma}) = (4.47 {+-} 0.10 {+-} 0.16) x 10{sup -5} and {Beta}(B{sup +} {yields} K*{sup +}{gamma}) = (4.22 {+-} 0.14 {+-} 0.16) x 10{sup -5}. We constrain the direct CP asymmetry to be -0.033 < {Alpha}(B {yields} K*{gamma}) < 0.028 and the isospin asymmetry to be 0.017 < {Delta}{sub 0-} < 0.116, where the limits are determined by the 90% confidence interval and include both the statistical and systematic uncertainties.

  20. GDR as a Probe of the Collective Motion in Nuclei at High Spins, Temperatures or Isospins

    SciTech Connect

    Maj, Adam

    2008-11-11

    The gamma-decay of the Giant Dipole Resonance (GDR), the high-frequency collective vibration of protons against neutrons, has been proven to be a basic probe for the shapes of hot nuclei, especially to study the effective shape evolution caused by the collective rotation of a nucleus. In this context an interesting question arises: what is the nuclear shape at extreme values of spin or temperatures, close to the limit impose by another collective motion--fission, and how evolves the giant dipole collective vibrations as a function of isospin. Short overview of the results from the experiments aimed to answer these questions are presented and possible perspectives of these type of studies for exotic nuclei to be obtained with the novel gamma-calorimeter PARIS and soon available intense radioactive beams are discussed.

  1. Angular and Isospin Asymmetries in the Decays B->K(*)l l-

    SciTech Connect

    Flood, Kevin T.; /Wisconsin U., Madison

    2011-11-08

    We use a sample of 384 million B{bar B} decays collected with the BABAR detector at the PEP-II asymmetric e{sup +}e{sup -} storage ring to study the flavor-changing neutral current decays B {yields} K{sup (*)}{ell}{sup +}{ell}{sup -}, where {ell}{sup +}{ell}{sup -} is either e{sup +}e{sup -} or {mu}{sup +}{mu}{sup -}. We present measurements in two dilepton mass bins, one below the J/{psi} resonance and the other above, of the lepton forward-backward asymmetry {Alpha}{sub FB} and the longitudinal K* polarization F{sub L} in B {yields} K* {ell}{sup +}{ell}{sup -}, along with isospin rate asymmetries in B {yields} K*{ell}{sup +}{ell}{sup -} and B {yields} K{ell}{sup +}{ell}{sup -} final states.

  2. Experimental Guidance for Isospin Symmetry Breaking Calculations via Single Neutron Pickup Reactions

    NASA Astrophysics Data System (ADS)

    Leach, K. G.; Garrett, P. E.; Bangay, J. C.; Bianco, L.; Demand, G. A.; Finlay, P.; Green, K. L.; Phillips, A. A.; Rand, E. T.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Wong, J.; Ball, G.; Faestermann, T.; Krücken, R.; Hertenberger, R.; Wirth, H.-F.; Towner, I. S.

    2013-03-01

    Recent activity in superallowed isospin-symmetry-breaking correction calculations has prompted interest in experimental confirmation of these calculation techniques. The shellmodel set of Towner and Hardy (2008) include the opening of specific core orbitals that were previously frozen. This has resulted in significant shifts in some of the δC values, and an improved agreement of the individual corrected {F}t values with the adopted world average of the 13 cases currently included in the high-precision evaluation of Vud. While the nucleus-to-nucleus variation of {F}t is consistent with the conserved-vector-current (CVC) hypothesis of the Standard Model, these new calculations must be thoroughly tested, and guidance must be given for their improvement. Presented here are details of a 64Zn(ěcd, t)63Zn experiment, undertaken to provide such guidance.

  3. Isospin and a possible interpretation of the newly observed X(1576)

    SciTech Connect

    Guo Fengkun; Shen Pengnian

    2006-11-01

    Recently, the BES Collaboration observed a broad resonant structure X(1576) with a large width being around 800 MeV and assigned its J{sup PC} number to 1{sup --}. We show that the isospin of this resonant structure should be assigned to 1. This state might be a molecule state or a tetraquark state. We study the consequences of a possible K*(892)-{kappa} molecular interpretation. In this scenario, the broad width can easily be understood. Carefully searching this resonant structure in the J/{psi}{yields}{pi}{sup +}{pi}{sup -}{pi}{sup 0} and J/{psi}{yields}K{sup +}K{sup -}{pi}{sup +}{pi}{sup -}{pi}{sup 0} decays should be important for understanding the structure of X(1567)

  4. Isospin and a possible interpretation of the newly observed X(1576)

    NASA Astrophysics Data System (ADS)

    Guo, Feng-Kun; Shen, Peng-Nian

    2006-11-01

    Recently, the BES Collaboration observed a broad resonant structure X(1576) with a large width being around 800 MeV and assigned its JPC number to 1--. We show that the isospin of this resonant structure should be assigned to 1. This state might be a molecule state or a tetraquark state. We study the consequences of a possible K*(892)-κ¯ molecular interpretation. In this scenario, the broad width can easily be understood. Carefully searching this resonant structure in the J/ψ→π+π-π0 and J/ψ→K+K-π+π-π0 decays should be important for understanding the structure of X(1567).

  5. Direct CP, lepton flavor, and isospin asymmetries in the decays B-->K(*)l+l-.

    PubMed

    Aubert, B; Bona, M; Karyotakis, Y; Lees, J P; Poireau, V; Prencipe, E; Prudent, X; Tisserand, V; Garra Tico, J; Grauges, E; Lopez, L; Palano, A; Pappagallo, M; Eigen, G; Stugu, B; Sun, L; Abrams, G S; Battaglia, M; Brown, D N; Cahn, R N; Jacobsen, R G; Kerth, L T; Kolomensky, Yu G; Lynch, G; Osipenkov, I L; Ronan, M T; Tackmann, K; Tanabe, T; Hawkes, C M; Soni, N; Watson, A T; Koch, H; Schroeder, T; Walker, D; Asgeirsson, D J; Fulsom, B G; Hearty, C; Mattison, T S; McKenna, J A; Barrett, M; Khan, A; Blinov, V E; Bukin, A D; Buzykaev, A R; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Bondioli, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Martin, E C; Stoker, D P; Abachi, S; Buchanan, C; Gary, J W; Liu, F; Long, O; Shen, B C; Vitug, G M; Yasin, Z; Zhang, L; Sharma, V; Campagnari, C; Hong, T M; Kovalskyi, D; Mazur, M A; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Schalk, T; Schumm, B A; Seiden, A; Wang, L; Wilson, M G; Winstrom, L O; Cheng, C H; Doll, D A; Echenard, B; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Andreassen, R; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Bloom, P C; Ford, W T; Gaz, A; Hirschauer, J F; Nagel, M; Nauenberg, U; Smith, J G; Ulmer, K A; Wagner, S R; Ayad, R; Soffer, A; Toki, W H; Wilson, R J; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Karbach, M; Merkel, J; Petzold, A; Spaan, B; Wacker, K; Kobel, M J; Mader, W F; Nogowski, R; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Latour, E; Thiebaux, Ch; Verderi, M; Clark, P J; Gradl, W; Playfer, S; Watson, J E; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cecchi, A; Cibinetto, G; Franchini, P; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Santoro, V; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Chaisanguanthum, K S; Morii, M; Marks, J; Schenk, S; Uwer, U; Klose, V; Lacker, H M; Bard, D J; Dauncey, P D; Nash, J A; Panduro Vazquez, W; Tibbetts, M; Behera, P K; Chai, X; Charles, M J; Mallik, U; Cochran, J; Crawley, H B; Dong, L; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gao, Y Y; Gritsan, A V; Guo, Z J; Lae, C K; Denig, A G; Fritsch, M; Schott, G; Arnaud, N; Béquilleux, J; D'Orazio, A; Davier, M; Firmino da Costa, J; Grosdidier, G; Höcker, A; Lepeltier, V; Le Diberder, F; Lutz, A M; Pruvot, S; Roudeau, P; Schune, M H; Serrano, J; Sordini, V; Stocchi, A; Wormser, G; Lange, D J; Wright, D M; Bingham, I; Burke, J P; Chavez, C A; Fry, J R; Gabathuler, E; Gamet, R; Hutchcroft, D E; Payne, D J; Touramanis, C; Bevan, A J; Clarke, C K; George, K A; Di Lodovico, F; Sacco, R; Sigamani, M; Cowan, G; Flaecher, H U; Hopkins, D A; Paramesvaran, S; Salvatore, F; Wren, A C; Brown, D N; Davis, C L; Alwyn, K E; Bailey, D; Barlow, R J; Chia, Y M; Edgar, C L; Jackson, G; Lafferty, G D; West, T J; Yi, J I; Anderson, J; Chen, C; Jawahery, A; Roberts, D A; Simi, G; Tuggle, J M; Dallapiccola, C; Li, X; Salvati, E; Saremi, S; Cowan, R; Dujmic, D; Fisher, P H; Koeneke, K; Sciolla, G; Spitznagel, M; Taylor, F; Yamamoto, R K; Zhao, M; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Sanders, D A; Summers, D J; Zhao, H W; Simard, M; Taras, P; Viaud, F B; Nicholson, H; De Nardo, G; Lista, L; Monorchio, D; Onorato, G; Sciacca, C; Raven, G; Snoek, H L; Jessop, C P; Knoepfel, K J; LoSecco, J M; Wang, W F; Benelli, G; Corwin, L A; Honscheid, K; Kagan, H; Kass, R; Morris, J P; Rahimi, A M; Regensburger, J J; Sekula, S J; Wong, Q K; Blount, N L; Brau, J; Frey, R; Igonkina, O; Kolb, J A; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Castelli, G; Gagliardi, N; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; del Amo Sanchez, P; Ben-Haim, E; Briand, H; Calderini, G; Chauveau, J; David, P; Del Buono, L; Hamon, O; Leruste, Ph; Ocariz, J; Perez, A; Prendki, J; Sitt, S; Gladney, L; Biasini, M; Covarelli, R; Manoni, E; Angelini, C; Batignani, G; Bettarini, S; Carpinelli, M; Cervelli, A; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Lopes Pegna, D; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Anulli, F; Baracchini, E; Cavoto, G; del Re, D; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Jackson, P D; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Renga, F; Voena, C; Ebert, M; Hartmann, T; Schröder, H; Waldi, R; Adye, T; Franek, B; Olaiya, E O; Wilson, F F; Emery, S; Escalier, M; Esteve, L; Ganzhur, S F; Hamel de Monchenault, G; Kozanecki, W; Vasseur, G; Yèche, Ch; Zito, M; Chen, X R; Liu, H; Park, W; Purohit, M V; White, R M; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Benitez, J F; Cenci, R; Coleman, J P; Convery, M R; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dunwoodie, W; Field, R C; Gabareen, A M; Gowdy, S J; Graham, M T; Grenier, P; Hast, C; Innes, W R; Kaminski, J; Kelsey, M H; Kim, H; Kim, P; Kocian, M L; Leith, D W G S; Li, S; Lindquist, B; Luitz, S; Luth, V; Lynch, H L; Macfarlane, D B; Marsiske, H; Messner, R; Muller, D R; Neal, H; Nelson, S; O'Grady, C P; Ofte, I; Perazzo, A; Perl, M; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Va'vra, J; Wagner, A P; Weaver, M; West, C A; Wisniewski, W J; Wittgen, M; Wright, D H; Wulsin, H W; Yarritu, A K; Yi, K; Young, C C; Ziegler, V; Burchat, P R; Edwards, A J; Majewski, S A; Miyashita, T S; Petersen, B A; Wilden, L; Ahmed, S; Alam, M S; Ernst, J A; Pan, B; Saeed, M A; Zain, S B; Spanier, S M; Wogsland, B J; Eckmann, R; Ritchie, J L; Ruland, A M; Schilling, C J; Schwitters, R F; Drummond, B W; Izen, J M; Lou, X C; Bianchi, F; Gamba, D; Pelliccioni, M; Bomben, M; Bosisio, L; Cartaro, C; Della Ricca, G; Lanceri, L; Vitale, L; Azzolini, V; Lopez-March, N; Martinez-Vidal, F; Milanes, D A; Oyanguren, A; Albert, J; Banerjee, Sw; Bhuyan, B; Choi, H H F; Hamano, K; Kowalewski, R; Lewczuk, M J; Nugent, I M; Roney, J M; Sobie, R J; Gershon, T J; Harrison, P F; Ilic, J; Latham, T E; Mohanty, G B; Band, H R; Chen, X; Dasu, S; Flood, K T; Pan, Y; Pierini, M; Prepost, R; Vuosalo, C O; Wu, S L

    2009-03-06

    We measure branching fractions and integrated rate asymmetries for the rare decays B-->K(*)l+l-, where l+l- is either e+e- or micro+micro-, using a sample of 384x10(6) BB events collected with the BABAR detector at the PEP-II e+e- collider. We find no evidence for direct CP or lepton-flavor asymmetries. However, for dilepton masses below the J/psi resonance, we find evidence for unexpectedly large isospin asymmetries in both B-->Kl+l- and B-->K*l+l- which differ, respectively, by 3.2sigma and 2.7sigma, including systematic uncertainties, from the standard model expectations.

  6. Phenomenological implications of a predictive formulation of the Nambu-Jona-Lasinio model having tensor couplings and isospin symmetry breaking terms

    NASA Astrophysics Data System (ADS)

    Battistel, O. A.; Pimenta, T. H.; Dallabona, G.

    2016-10-01

    In the present work we consider the phenomenological consequences of a predictive formulation of the Nambu-Jona-Lasinio (NJL) model at the one loop level of perturbative calculations. The investigation reported here can be considered as an extension of previously made ones on the same issue. In the study made in this work we have included vector and tensor couplings, simultaneously, as well as S U (2 ) isospin symmetry breaking terms. As a consequence of the last ingredient mentioned, there are different masses in the model amplitudes. In spite of this, within the context of the adopted procedure, we verify that it is possible to eliminate unphysical dependencies on the arbitrary choices for the routing of internal lines momenta as well as Ward identities violating contributions and scale ambiguous terms, from the corresponding one loop amplitudes, through the simple and universal Consistency Relations. The total content of divergence of the amplitudes is reduced to only two basic divergent objects. They are related to two inputs of the model in a way that, due to their scale properties, an unique arbitrariness remains. However, due to the critical condition found in the mechanism which generates the constituent quark mass, within our approach, this arbitrariness is also removed turning the model predictive in the sense that its phenomenological consequences is not dependent in possible choices made in intermediary steps of the calculations, as occurs in usual treatments. In this scenario, we investigate the most typical static properties of the scalar, pseudoscalar, vector and axial-vector mesons at low-energy. Special attention is given to the consequences of the S U (2 ) isospin symmetry breaking for the phenomenological predictions. The implications of the tensor couplings for the model observables, which can be considered an original contribution of the present work, at the level of the content and not only in the form, is analyzed in a detailed way. The found

  7. Improved Hodograph Method and the Amplitude-Phase Gradient Method to estimate the latitude dependence of the FLR frequency, plasma density, and the resonance width using data from a ground magnetometer pair: Application to CARISMA and MAGDAS station pairs in North America

    NASA Astrophysics Data System (ADS)

    Kawano, H.; Pilipenko, V.; Mann, I. R.; Milling, D. K.; Saita, S.; Kitamura, K.; Yumoto, K.; Yoshikawa, A.

    2014-12-01

    The Improved Hodograph Method (IHM below) and the Amplitude-Phase Gradient Method (APGM below) are both applied to data from two ground magnetometers latitudinally separated by ~100km and yield the field-line-resonance (FLR) frequency and the ionospheric resonance width as functions of the latitude; from the FLR frequency we can estimate the magnetospheric plasma mass density, and from the resonance width we can estimate the damping rate of FLR, which is related to how much of the FLR-generated ULF waves are absorbed by the ionosphere. The both methods apply FFT to the two magnetometers' data, and calculate the amplitude ratio and the cross phase from the two stations' data as functions of the frequency. From there the two methods use different approaches: IHM fits a curve to the obtained ratio (as a complex number including both the amplitude ratio and the cross phase) on the complex plane to separate out the non-FLR signal in the data, while APGM assumes that the obtained amplitude ratio and cross phase include the FLR signal only and obtains the FLR frequency and the resonance width in an algebraic manner. In this paper we apply the two methods to simultaneously observed data from ground station pairs of WAD (CGM latitude and longitude: 61.3 and 318.3) - WEYB (58.6, 320.9), LGRR (61.8, 332.4) - PINA (60.0, 331.8), and PINA - THRF (57.8, 331.5), where WAD belongs to MAGDAS/CPMN while the other four belong to CARISMA. We show that IHM can properly estimate the latitudinal profile of the resonance width (which is the improved point of IHM over the original Hodograph Method) by comparing the results of applying IHM to the LGRR-PINA and PINA-THRF pairs, located along the same meridian. We also compare the IHM and APGM results to support the above-stated advantage of IHM over APGM. In addition, comparing the results of applying IHM and APGM to WAD-WEYB and LGRR-PINA-THRF, having similar latitudes but different longitudes, we discuss the longitude dependence of the FLR

  8. Isospin violation in {phi}, J/{psi}, {psi}{sup '}{yields}{omega}{pi}{sup 0} via hadronic loops

    SciTech Connect

    Li Gang; Zhao Qiang; Zou Bingsong

    2008-01-01

    In this work, we study the isospin-violating decay of {phi}{yields}{omega}{pi}{sup 0} and quantify the electromagnetic (EM) transitions and intermediate meson exchanges as two major sources of the decay mechanisms. In the EM decays, the present datum status allows a good constraint on the EM decay form factor in the vector meson dominance model, and it turns out that the EM transition can only account for about 1/4{approx}1/3 of the branching ratio for {phi}{yields}{omega}{pi}{sup 0}. The intermediate meson exchanges, KK(K*) (intermediate KK interaction via K* exchanges), KK*(K) (intermediate KK* rescattering via kaon exchanges), and KK*(K*) (intermediate KK* rescattering via K* exchanges), which evade the naive Okubo-Zweig-Iizuka rule, serve as another important contribution to the isospin violations. They are evaluated with effective Lagrangians where explicit constraints from experiment can be applied. Combining these three contributions, we obtain results in good agreement with the experimental data. This approach is also extended to J/{psi}({psi}{sup '}){yields}{omega}{pi}{sup 0}, where we find contributions from the KK(K*), KK*(K), and KK*(K*) loops are negligibly small, and the isospin violation is likely to be dominated by the EM transition.

  9. Three-loop hard-thermal-loop perturbation theory thermodynamics at finite temperature and finite baryonic and isospin chemical potential

    NASA Astrophysics Data System (ADS)

    Andersen, Jens O.; Haque, Najmul; Mustafa, Munshi G.; Strickland, Michael

    2016-03-01

    In a previous paper [N. Haque et al., J. High Energy Phys. 05 (2014) 27], we calculated the three-loop thermodynamic potential of QCD at finite temperature T and quark chemical potentials μq using the hard-thermal-loop perturbation theory (HTLpt) reorganization of finite temperature and density QCD. The result allows us to study the thermodynamics of QCD at finite temperature and finite baryon, strangeness, and isospin chemical potentials μB, μS, and μI. We calculate the pressure at nonzero μB and μI with μS=0 , and the energy density, the entropy density, the trace anomaly, and the speed of sound at nonzero μI with μB=μS=0 . The second- and fourth-order isospin susceptibilities are calculated at μB=μS=μI=0 . Our results can be directly compared to lattice QCD without Taylor expansions around μq=0 since QCD has no sign problem at μB=μS=0 and finite isospin chemical potential μI.

  10. Ion pair receptors†

    PubMed Central

    Kim, Sung Kuk

    2010-01-01

    Compared with simple ion receptors, which are able to bind either a cation or an anion, ion pair receptors bearing both a cation and an anion recognition site offer the promise of binding ion pairs or pairs of ions strongly as the result of direct or indirect cooperative interactions between co-bound ions. This critical review focuses on the recent progress in the design of ion pair receptors and summarizes the various binding modes that have been used to accommodate ion pairs (110 references). PMID:20737073

  11. Isospin Mixing Reveals ^{30}P(p,γ)^{31}S Resonance Influencing Nova Nucleosynthesis.

    PubMed

    Bennett, M B; Wrede, C; Brown, B A; Liddick, S N; Pérez-Loureiro, D; Bardayan, D W; Chen, A A; Chipps, K A; Fry, C; Glassman, B E; Langer, C; Larson, N R; McNeice, E I; Meisel, Z; Ong, W; O'Malley, P D; Pain, S D; Prokop, C J; Schatz, H; Schwartz, S B; Suchyta, S; Thompson, P; Walters, M; Xu, X

    2016-03-11

    The thermonuclear ^{30}P(p,γ)^{31}S reaction rate is critical for modeling the final elemental and isotopic abundances of ONe nova nucleosynthesis, which affect the calibration of proposed nova thermometers and the identification of presolar nova grains, respectively. Unfortunately, the rate of this reaction is essentially unconstrained experimentally, because the strengths of key ^{31}S proton capture resonance states are not known, largely due to uncertainties in their spins and parities. Using the β decay of ^{31}Cl, we have observed the β-delayed γ decay of a ^{31}S state at E_{x}=6390.2(7)  keV, with a ^{30}P(p,γ)^{31}S resonance energy of E_{r}=259.3(8)  keV, in the middle of the ^{30}P(p,γ)^{31}S Gamow window for peak nova temperatures. This state exhibits isospin mixing with the nearby isobaric analog state at E_{x}=6279.0(6)  keV, giving it an unambiguous spin and parity of 3/2^{+} and making it an important l=0 resonance for proton capture on ^{30}P.

  12. Strong isospin breaking contribution to the neutron-proton mass difference

    SciTech Connect

    Martin J. Savage; Silas R. Beane; Kostas Orginos

    2006-07-01

    We determine the strong-isospin violating component of the neutron-proton mass difference from fully-dynamical lattice QCD and partially-quenched QCD calculations of the nucleon mass, constrained by partially-quenched chiral perturbation theory at one-loop level. The lattice calculations were performed with domain-wall valence quarks on MILC lattices with rooted staggered sea-quarks at a lattice spacing of b ~ 0.125 fm, lattice spatial size of L ~ 2.5 fm and pion masses ranging from m_pi ~ 290 MeV to ~ 350 MeV. At the physical value of the pion mass, we predict Mn-M_p|^(d-u) = 2.26 ± 0.57 ± 0.42 ± 0.10 MeV where the first error is statistical, the second error is due to the uncertainty in the ratio of light-quark masses, eta = m_u/m_d, determined by MILC [1], and the third error is an estimate of the systematic due to chiral extrapolation.

  13. Isospin mixing reveals 30P(p, γ)31S resonance influencing nova nucleosynthesis

    DOE PAGES

    Bennett, M. B.; Wrede, C.; Brown, B. A.; ...

    2016-03-08

    Here, the thermonuclear 30P(p, γ)31S reaction rate is critical for modeling the final elemental and isotopic abundances of ONe nova nucleosynthesis, which affect the calibration of proposed nova thermometers and the identification of presolar nova grains, respectively. Unfortunately, the rate of this reaction is essentially unconstrained experimentally, because the strengths of key 31S proton capture resonance states are not known, largely due to uncertainties in their spins and parities. Using the β decay of 31Cl, we have observed the β-delayed γ decay of a 31S state at Ex = 6390.2(7) keV, with a 30P(p, γ)31S resonance energy of Er =more » 259.3(8) keV, in the middle of the 30P(p, γ)31S Gamow window for peak nova temperatures. This state exhibits isospin mixing with the nearby isobaric analog state at Ex = 6279.0(6) keV, giving it an unambiguous spin and parity of 3/2+ and making it an important l = 0 resonance for proton capture on 30P.« less

  14. Spectroscopy of 70Kr and isospin symmetry in the T =1 f p g shell nuclei

    NASA Astrophysics Data System (ADS)

    Debenham, D. M.; Bentley, M. A.; Davies, P. J.; Haylett, T.; Jenkins, D. G.; Joshi, P.; Sinclair, L. F.; Wadsworth, R.; Ruotsalainen, P.; Henderson, J.; Kaneko, K.; Auranen, K.; Badran, H.; Grahn, T.; Greenlees, P.; HerzaáÅ, A.; Jakobsson, U.; Konki, J.; Julin, R.; Juutinen, S.; Leino, M.; Sorri, J.; Pakarinen, J.; Papadakis, P.; Peura, P.; Partanen, J.; Rahkila, P.; Sandzelius, M.; Sarén, J.; Scholey, C.; Stolze, S.; Uusitalo, J.; David, H. M.; de Angelis, G.; Korten, W.; Lotay, G.; Mallaburn, M.; Sahin, E.

    2016-11-01

    The recoil-β tagging technique has been used in conjunction with the 40Ca(32S,2 n ) reaction at a beam energy of 88 MeV to identify transitions associated with the decay of the 2+ and, tentatively, 4+ states in the nucleus 70Kr. These data are used, along with previously published data, to examine the triplet energy differences (TED) for the mass 70 isobars. The experimental TED values are compared with shell model calculations, performed with the JUN45 interaction in the f p g model space, that include a J =0 isospin nonconserving (INC) interaction with an isotensor strength of 100 keV. The agreement is found to be very good up to spin 4 and supports the expectation for analog states that all three nuclei have the same oblate shape at low-spin. The A =70 results are compared with the experimental and shell model predicted TED and mirror energy differences (MED) for the mass 66 and 74 systems. The comparisons clearly demonstrate the importance of the isotensor INC interaction in replicating the TED data in this region. Issues related to the observed MED values and their interpretation within the shell model are discussed.

  15. Matched-pair classification

    SciTech Connect

    Theiler, James P

    2009-01-01

    Following an analogous distinction in statistical hypothesis testing, we investigate variants of machine learning where the training set comes in matched pairs. We demonstrate that even conventional classifiers can exhibit improved performance when the input data has a matched-pair structure. Online algorithms, in particular, converge quicker when the data is presented in pairs. In some scenarios (such as the weak signal detection problem), matched pairs can be generated from independent samples, with the effect not only doubling the nominal size of the training set, but of providing the structure that leads to better learning. A family of 'dipole' algorithms is introduced that explicitly takes advantage of matched-pair structure in the input data and leads to further performance gains. Finally, we illustrate the application of matched-pair learning to chemical plume detection in hyperspectral imagery.

  16. On the occurrence of plateaus in the dependence of critical temperatures on oxygen content in HTSC cuprates Quantitative analysis for Bi 2Sr 2CaCu 2O 8+ x on the basis of indirect-exchange pairing

    NASA Astrophysics Data System (ADS)

    Jansen, L.; Block, R.

    1997-02-01

    Plateaus observed, with several cuprates, in the dependence of critical temperatures on oxygen content are analyzed on the basis of indirect-exchange Cooper-pair formation via oxygen anions (oxygen-mediated superconductivity), with emphasis on recent experimental results by Li et al. (1994) for Bi 2Sr 2CaCu 2O 8+ x. It is shown that these results can be quantitatively explained in the framework of the indirect-exchange formalism. The plateau structure is found to arise as a compensating effect on Tc from hole doping and a change in density of oxygen anions in (or near) the CuO 2 layers. The observed steep decrease of TC in underdoped samples is ascribed to a rapid loss of macroscopic phase coherence with decreasing oxygen content. Extrapolating the analysis to the double-plateau (“chair”) structure of TC( x) in YBa 2Cu 3O 7- x, the origin of the first (60 K) plateau is similar to that in the Bi-compound, whereas the increase to TC ≈ 90 K is due to participation by the basal (chain) plane in superconductivity.

  17. Vortex pairs on surfaces

    SciTech Connect

    Koiller, Jair

    2009-05-06

    A pair of infinitesimally close opposite vortices moving on a curved surface moves along a geodesic, according to a conjecture by Kimura. We outline a proof. Numerical simulations are presented for a pair of opposite vortices at a close but nonzero distance on a surface of revolution, the catenoid. We conjecture that the vortex pair system on a triaxial ellipsoid is a KAM perturbation of Jacobi's geodesic problem. We outline some preliminary calculations required for this study. Finding the surfaces for which the vortex pair system is integrable is in order.

  18. Cooper pairs and bipolarons

    NASA Astrophysics Data System (ADS)

    Lakhno, Victor

    2016-11-01

    It is shown that Cooper pairs are a solution of the bipolaron problem for model Fröhlich Hamiltonian. The total energy of a pair for the initial Fröhlich Hamiltonian is found. Differences between the solutions for the model and initial two-particle problems are discussed.

  19. Cooper Pairs in Insulators?!

    ScienceCinema

    James Valles

    2016-07-12

    Nearly 50 years elapsed between the discovery of superconductivity and the emergence of the microscopic theory describing this zero resistance state. The explanation required a novel phase of matter in which conduction electrons joined in weakly bound pairs and condensed with other pairs into a single quantum state. Surprisingly, this Cooper pair formation has also been invoked to account for recently uncovered high-resistance or insulating phases of matter. To address this possibility, we have used nanotechnology to create an insulating system that we can probe directly for Cooper pairs. I will present the evidence that Cooper pairs exist and dominate the electrical transport in these insulators and I will discuss how these findings provide new insight into superconductor to insulator quantum phase transitions. 

  20. Quarteting and spin-aligned proton-neutron pairs in heavy N =Z nuclei

    NASA Astrophysics Data System (ADS)

    Sambataro, M.; Sandulescu, N.

    2015-06-01

    We analyze the role of maximally aligned isoscalar pairs in heavy N =Z nuclei by employing a formalism of quartets. Quartets are superpositions of two neutrons and two protons coupled to total isospin T =0 and given J . The study is focused on the contribution of spin-aligned pairs carrying the angular momentum J =9 to the structure of 96Cd and 92Pd . We show that the role played by the J =9 pairs is quite sensitive to the model space and, in particular, it decreases considerably by passing from the simple 0 g9 /2 space to the more complete 1 p1 /2,1 p3 /2,0 f5 /2,0 g9 /2 space. In the latter case the description of these nuclei in terms of only spin-aligned J =9 pairs turns out to be unsatisfactory while an important contribution, particularly in the ground state, is seen to arise from isovector J =0 and isoscalar J =1 pairs. Thus, contrary to previous studies, we find no compelling evidence of a spin-aligned pairing phase in 92Pd .

  1. Effect of single-particle splitting in the exact wave function of the isovectorial pairing Hamiltonian

    SciTech Connect

    Lerma H, S.

    2010-07-15

    The structure of the exact wave function of the isovectorial pairing Hamiltonian with nondegenerate single-particle levels is discussed. The way that the single-particle splittings break the quartet condensate solution found for N=Z nuclei in a single degenerate level is established. After a brief review of the exact solution, the structure of the wave function is analyzed and some particular cases are considered where a clear interpretation of the wave function emerges. An expression for the exact wave function in terms of the isospin triplet of pair creators is given. The ground-state wave function is analyzed as a function of pairing strength, for a system of four protons and four neutrons. For small and large values of the pairing strength a dominance of two-pair (quartets) scalar couplings is found, whereas for intermediate values enhancements of the nonscalar couplings are obtained. A correlation of these enhancements with the creation of Cooper-like pairs is observed.

  2. A 1.5 ns OFF/ON switching-time voltage-mode LVDS driver/receiver pair for asynchronous AER bit-serial chip grid links with up to 40 times event-rate dependent power savings.

    PubMed

    Zamarreno-Ramos, Carlos; Kulkarni, Raghavendra; Silva-Martinez, Jose; Serrano-Gotarredona, Teresa; Linares-Barranco, Bernabe

    2013-10-01

    This paper presents a low power fast ON/OFF switchable voltage mode implementation of a driver/receiver pair intended to be used in high speed bit-serial Low Voltage Differential Signaling (LVDS) Address Event Representation (AER) chip grids, where short (like 32-bit) sparse data packages are transmitted. Voltage-Mode drivers require intrinsically half the power of their Current-Mode counterparts and do not require Common-Mode Voltage Control. However, for fast ON/OFF switching a special high-speed voltage regulator is required which needs to be kept ON during data pauses, and hence its power consumption must be minimized, resulting in tight design constraints. A proof-of-concept chip test prototype has been designed and fabricated in low-cost standard 0.35 μ m CMOS. At ± 500 mV voltage swing with 500 Mbps serial bit rate and 32 bit events, current consumption scales from 15.9 mA (7.7 mA for the driver and 8.2 mA for the receiver) at 10 Mevent/s rate to 406 μ A ( 343 μ A for the driver and 62.5 μA for the receiver) for an event rate below 10 Kevent/s, therefore achieving a rate dependent power saving of up to 40 times, while keeping switching times at 1.5 ns. Maximum achievable event rate was 13.7 Meps at 638 Mbps serial bit rate. Additionally, differential voltage swing is tunable, thus allowing further power reductions.

  3. Comparative tests of isospin-symmetry-breaking corrections to superallowed 0{sup +}{yields}0{sup +} nuclear {beta} decay

    SciTech Connect

    Towner, I. S.; Hardy, J. C.

    2010-12-15

    We present a test with which to evaluate the calculated isospin-symmetry-breaking corrections to superallowed 0{sup +}{yields}0{sup +} nuclear {beta} decay. The test is based on the corrected experimental Ft values being required to satisfy conservation of the vector current (CVC). When applied to six sets of published calculations, the test demonstrates quantitatively that only one set, the one based on the shell model with Saxon-Woods radial wave functions, provides satisfactory agreement with CVC. This test can easily be applied to any sets of calculated correction terms that are produced in future.

  4. Isospin Effects in Heavy-Ion Collisions: Some Results From CHIMERA Experiments At LNS And Perspectives With Radioactive Beams

    SciTech Connect

    Cardella, G.; De Filippo, E.; Pagano, A.; Papa, M.; Pirrone, S.; Verde, G.; Amorini, F.; Cavallaro, S.; Lombardo, I.; Porto, F.; Rizzo, F.; Russotto, P.; Anzalone, A.; Maiolino, C.; Arena, N.; Geraci, E.; Grassi, L.; Lo Nigro, S.; Politi, G.; Auditore, L.

    2009-05-04

    CHIMERA is a 4{pi} multidetector for charged particles available at Laboratori Nazionali del Sud (INFN-LNS). A new method to measure the time scale of the emission of nuclear fragments is described, together with some applications in the field of the isospin dynamics of heavy-ion collisions. Competition between fusion-like and binary reactions near the energy threshold for nuclear multifragmentation is discussed. Opportunities are pointed out to use the detector at low and intermediate energies using the kinematical-coincidence method.

  5. Isospin symmetry breaking and large-scale shell-model calculations with the Sakurai-Sugiura method

    NASA Astrophysics Data System (ADS)

    Mizusaki, Takahiro; Kaneko, Kazunari; Sun, Yang; Tazaki, Shigeru

    2015-05-01

    Recently isospin symmetry breaking for mass 60-70 region has been investigated based on large-scale shell-model calculations in terms of mirror energy differences (MED), Coulomb energy differences (CED) and triplet energy differences (TED). Behind these investigations, we have encountered a subtle problem in numerical calculations for odd-odd N = Z nuclei with large-scale shell-model calculations. Here we focus on how to solve this subtle problem by the Sakurai-Sugiura (SS) method, which has been recently proposed as a new diagonalization method and has been successfully applied to nuclear shell-model calculations.

  6. Paired Straight Hearth Furnace

    SciTech Connect

    2009-04-01

    This factsheet describes a research project whose goals are to design, develop, and evaluate the scalability and commercial feasibility of the PSH Paired Straight Hearth Furnace alternative ironmaking process.

  7. The dipion mass spectrum in e+e- annihilation and tau decay: Isospin symmetry breaking effects from the (rho, omega, phi) mixing

    SciTech Connect

    Benayoun, M.; David, P.; Del Buono, L.; Leitner, O.; O'Connell, H.B.; /Fermilab

    2008-01-01

    A way to explain the puzzling difference between the pion form factor as measured in e{sup +}e{sup -} annihilations and in {tau} decays is discussed. We show that isospin symmetry breaking, beside the already identified effects, produces also a full mixing between the {rho}{sup 0}, {omega} and {phi} mesons which generates an isospin 0 component inside the {rho}{sup 0} meson. This effect, not accounted for in current treatments of the problem, seems able to account for the apparent mismatch between e{sup +}e{sup -} and {tau} data below the {phi} mass.

  8. Cooper Pair Insulators

    NASA Astrophysics Data System (ADS)

    Valles, James

    One of the recent advances in the field of the Superconductor to Insulator Transition (SIT) has been the discovery and characterization of the Cooper Pair Insulator phase. This bosonic insulator, which consists of localized Cooper pairs, exhibits activated transport and a giant magneto-resistance peak. These features differ markedly from the weakly localized transport that emerges as pairs break at a ``fermionic'' SIT. I will describe how our experiments on films nano-patterned with a nearly triangular array of holes have enabled us to 1) distinguish bosonic insulators from fermionic insulators, 2) show that Cooper pairs, rather than quasi-particles dominate the transport in the Cooper Pair insulator phase, 3) demonstrate that very weak, sub nano-meter thickness inhomogeneities control whether a bosonic or fermionic insulator forms at an SIT and 4) reveal that Cooper pairs disintegrate rather than becoming more tightly bound deep in the localized phase. We have also developed a method, using a magnetic field, to tune flux disorder reversibly in these films. I will present our latest results on the influence of magnetic flux disorder and random gauge fields on phenomena near bosonic SITs. This work was performed in collaboration with M. D. Stewart, Jr., Hung Q. Nguyen, Shawna M. Hollen, Jimmy Joy, Xue Zhang, Gustavo Fernandez, Jeffrey Shainline and Jimmy Xu. It was supported by NSF Grants DMR 1307290 and DMR-0907357.

  9. Interference in the recombination of frequency-entangled photon pairs

    NASA Astrophysics Data System (ADS)

    O'Donnell, Kevin A.; Garces, Veneranda G.

    2015-11-01

    We present experimental studies of the recombination of frequency-entangled photon pairs into single photons in a periodically poled lithium niobate crystal. With a delay ? between pair members, the measured rate of pair recombination ? presents a width of 25.6 fsec. It is observed that, depending on experimental conditions, ? can contain interference fringes that arise from the spatial correlations of the photon pairs. In particular, these correlations imply that each photon of a pair interferes with itself in the experiment before pair recombination, leading to the fringes in ?. A theoretical model is developed that provides favorable comparisons with the experimental results.

  10. Pairing, pseudogap and Fermi arcs in cuprates

    SciTech Connect

    Kaminski, Adam; Kondo, Takeshi; Takeuchi, Tsunehiro; Gu, Genda

    2014-04-29

    We use Angle Resolved Photoemission Spectroscopy (ARPES) to study the relationship between the pseudogap, pairing and Fermi arcs in cuprates. High quality data measured over a wide range of dopings reveals a consistent picture of Fermiology and pairing in these materials. The pseudogap is due to an ordered state that competes with superconductivity rather than preformed pairs. Pairing does occur below Tpair ~ 150K and significantly above Tc, but well below T* and the doping dependence of this temperature scale is distinct from that of the pseudogap. The d-wave gap is present below Tpair, and its interplay with strong scattering creates “artificial” Fermi arcs for Tc ≤ T ≤ Tpair. However, above Tpair, the pseudogap exists only at the antipodal region. This leads to presence of real, gapless Fermi arcs close to the node. The length of these arcs remains constant up to T*, where the full Fermi surface is recovered. As a result, we demonstrate that these findings resolve a number of seemingly contradictory scenarios.

  11. The inverse problem for Schwinger pair production

    NASA Astrophysics Data System (ADS)

    Hebenstreit, Florian

    2016-02-01

    The production of electron-positron pairs in time-dependent electric fields (Schwinger mechanism) depends non-linearly on the applied field profile. Accordingly, the resulting momentum spectrum is extremely sensitive to small variations of the field parameters. Owing to this non-linear dependence it is so far unpredictable how to choose a field configuration such that a predetermined momentum distribution is generated. We show that quantum kinetic theory along with optimal control theory can be used to approximately solve this inverse problem for Schwinger pair production. We exemplify this by studying the superposition of a small number of harmonic components resulting in predetermined signatures in the asymptotic momentum spectrum. In the long run, our results could facilitate the observation of this yet unobserved pair production mechanism in quantum electrodynamics by providing suggestions for tailored field configurations.

  12. Solubilization and fractionation of paired helical filaments.

    PubMed

    González, P J; Correas, I; Avila, J

    1992-09-01

    Paired helical filaments isolated from brains of two different patients with Alzheimer's disease were extensively treated with the ionic detergent, sodium dodecyl sulphate. Filaments were solubilized at different extents, depending on the brain examined, thus suggesting the existence of two types of paired helical filaments: sodium dodecyl sulphate-soluble and insoluble filaments. In the first case, the number of structures resembling paired helical filaments greatly decreased after the detergent treatment, as observed by electron microscopy. Simultaneously, a decrease in the amount of sedimentable protein was also observed upon centrifugation of the sodium dodecyl sulfate-treated paired helical filaments. A sodium dodecyl sulphate-soluble fraction was isolated as a supernatant after low-speed centrifugation of the sodium dodecyl sulphate-treated paired helical filaments. The addition of the non-ionic detergent Nonidet-P40 to this fraction resulted in the formation of paired helical filament-like structures. When the sodium dodecyl sulphate-soluble fraction was further fractionated by high-speed centrifugation, three subfractions were observed: a supernatant, a pellet and a thin layer between these two subfractions. No paired helical filaments were observed in any of these subfractions, even after addition of Nonidet P-40. However, when they were mixed back together, the treatment with Nonidet P-40 resulted in the visualization of paired helical filament-like structures. These results suggest that at least two different components are needed for the reconstitution of paired helical filaments as determined by electron microscopy. The method described here may allow the study of the components involved in the formation of paired helical filaments and the identification of possible factors capable of blocking this process.

  13. Excited state proton-coupled electron transfer in 8-oxoG-C and 8-oxoG-A base pairs: a time dependent density functional theory (TD-DFT) study.

    PubMed

    Kumar, Anil; Sevilla, Michael D

    2013-08-01

    In a recent experiment, the repair efficiency of DNA thymine cyclobutane dimers (T<>T) on UV excitation of 8-oxoG base paired either to C or A was reported. An electron transfer mechanism from an excited charge transfer state of 8-oxoG-C (or 8-oxoG-A) to T<>T was proposed and 8-oxoG-A was found to be 2-3 times more efficient than 8-oxoG-C in repair of T<>T. Intra base pair proton transfer (PT) in charge transfer (CT) excited states of the base pairs was proposed to quench the excited state and prevent T<>T repair. In this work, we investigate this process with TD-DFT calculations of the excited states of 8-oxoG-C and 8-oxoG-A base pairs in the Watson-Crick and Hoogsteen base pairs using long-range corrected density functional, ωB97XD/6-31G* method. Our gas phase calculations showed that CT excited state ((1)ππ*(CT)) of 8-oxoG-C appears at lower energy than the 8-oxoG-A. For 8-oxoG-C, TD-DFT calculations show the presence of a conical intersection (CI) between the lowest (1)ππ*(PT-CT) excited state and the ground state which likely deactivates the CT excited state via a proton-coupled electron transfer (PCET) mechanism. The (1)ππ*(PT-CT) excited state of 8-oxoG-A base pair lies at higher energy and its crossing with ground state is inhibited because of a high energy gap between (1)ππ*(PT-CT) excited state and ground state. Thus the gas phase calculations suggest the 8-oxoG-A would have longer excited state lifetimes. When the effect of solvation is included using the PCM model, both 8-oxoG-A and 8-oxoG-C show large energy gaps between the ground state and both the excited CT and PT-CT states and suggest little difference would be found between the two base pairs in repair of the T<>T lesion. However, in the FC region the solvent effect is greatly diminished owing to the slow dielectric response time and smaller gaps would be expected.

  14. Minimal Pairs: Minimal Importance?

    ERIC Educational Resources Information Center

    Brown, Adam

    1995-01-01

    This article argues that minimal pairs do not merit as much attention as they receive in pronunciation instruction. There are other aspects of pronunciation that are of greater importance, and there are other ways of teaching vowel and consonant pronunciation. (13 references) (VWL)

  15. Branching fractions and CP asymmetries in B0-->pi0pi0, B+-->pi+pi0, and B+-->K+pi0 decays and isospin analysis of the B-->pipi system.

    PubMed

    Aubert, B; Barate, R; Boutigny, D; Couderc, F; Karyotakis, Y; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Grauges-Pous, E; Palano, A; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Wenzel, W A; Barrett, M; Ford, K E; Harrison, T J; Hart, A J; Hawkes, C M; Morgan, S E; Watson, A T; Fritsch, M; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Schroeder, T; Steinke, M; Boyd, J T; Chevalier, N; Cottingham, W N; Kelly, M P; Latham, T E; Wilson, F F; Cuhadar-Donszelmann, T; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Thiessen, D; Khan, A; Kyberd, P; Teodorescu, L; Blinov, A E; Blinov, V E; Druzhinin, V P; Golubev, V B; Ivanchenko, V N; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Bruinsma, M; Chao, M; Eschrich, I; Kirkby, D; Lankford, A J; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Buchanan, C; Hartfiel, B L; Weinstein, A J R; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; del Re, D; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Rahatlou, Sh; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Lu, A; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Eisner, A M; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Yang, S; Jayatilleke, S; Mancinelli, G; Meadows, B T; Sokoloff, M D; Blanc, F; Bloom, P; Chen, S; Ford, W T; Nauenberg, U; Olivas, A; Rankin, P; Ruddick, W O; Smith, J G; Ulmer, K A; Zhang, J; Zhang, L; Chen, A; Eckhart, E A; Harton, J L; Soffer, A; Toki, W H; Wilson, R J; Zeng, Q; Spaan, B; Altenburg, D; Brandt, T; Brose, J; Dickopp, M; Feltresi, E; Hauke, A; Lacker, H M; Nogowski, R; Otto, S; Petzold, A; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Bernard, D; Bonneaud, G R; Grenier, P; Schrenk, S; Thiebaux, Ch; Vasileiadis, G; Verderi, M; Bard, D J; Clark, P J; Muheim, F; Playfer, S; Xie, Y; Andreotti, M; Azzolini, V; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Piemontese, L; Sarti, A; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Crosetti, G; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Bailey, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Won, E; Dubitzky, R S; Langenegger, U; Marks, J; Uwer, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Gaillard, J R; Morton, G W; Nash, J A; Nikolich, M B; Taylor, G P; Charles, M J; Grenier, G J; Mallik, U; Cochran, J; Crawley, H B; Lamsa, J; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Yi, J; Arnaud, N; Davier, M; Giroux, X; Grosdidier, G; Höcker, A; Le Diberder, F; Lepeltier, V; Lutz, A M; Petersen, T C; Plaszczynski, S; Schune, M H; Wormser, G; Cheng, C H; Lange, D J; Simani, M C; Wright, D M; Bevan, A J; Chavez, C A; Coleman, J P; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; Hutchcroft, D E; Parry, R J; Payne, D J; Touramanis, C; Cormack, C M; Di Lodovico, F; Brown, C L; Cowan, G; Flack, R L; Flaecher, H U; Green, M G; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Winter, M A; Brown, D; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Hodgkinson, M C; Lafferty, G D; Williams, J C; Chen, C; Farbin, A; Hulsbergen, W D; Jawahery, A; Kovalskyi, D; Lae, C K; Lillard, V; Roberts, D A; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Kofler, R; Koptchev, V B; Moore, T B; Saremi, S; Staengle, H; Willocq, S; Cowan, R; Koeneke, K; Sciolla, G; Sekula, S J; Taylor, F; Yamamoto, R K; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Taras, P; Nicholson, H; Cavallo, N; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M; Bulten, H; Raven, G; Snoek, H L; Wilden, L; Jessop, C P; LoSecco, J M; Allmendinger, T; Benelli, G; Gan, K K; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Pulliam, T; Rahimi, A M; Ter-Antonyan, R; Wong, Q K; Brau, J; Frey, R; Igonkina, O; Lu, M; Potter, C T; Sinev, N B; Strom, D; Torrence, E; Colecchia, F; Dorigo, A; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; de la Vaissière, Ch; Del Buono, L; Hamon, O; John, M J J; Leruste, Ph; Malcles, J; Ocariz, J; Roos, L; Therin, G; Behera, P K; Gladney, L; Guo, Q H; Panetta, J; Biasini, M; Covarelli, R; Pioppi, M; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bucci, F; Calderini, G; Carpinelli, M; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Simi, G; Walsh, J; Haire, M; Judd, D; Paick, K; Wagoner, D E; Danielson, N; Elmer, P; Lau, Y P; Lu, C; Miftakov, V; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; D'Orazio, A; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Pierini, M; Piredda, G; Polci, F; Safai Tehrani, F; Voena, C; Christ, S; Schröder, H; Wagner, G; Waldi, R; Adye, T; De Groot, N; Franek, B; Gopal, G P; Olaiya, E O; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P-F; Hamel de Monchenault, G; Kozanecki, W; Legendre, M; London, G W; Mayer, B; Schott, G; Vasseur, G; Yèche, Ch; Zito, M; Purohit, M V; Weidemann, A W; Wilson, J R; Yumiceva, F X; Abe, T; Allen, M; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmueller, O L; Claus, R; Convery, M R; Cristinziani, M; De Nardo, G; Dingfelder, J C; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W; Fan, S; Field, R C; Glanzman, T; Gowdy, S J; Hadig, T; Halyo, V; Hast, C; Hryn'ova, T; Innes, W R; Kelsey, M H; Kim, P; Kocian, M L; Leith, D W G S; Libby, J; Luitz, S; Luth, V; Lynch, H L; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Soha, A; Stelzer, J; Strube, J; Su, D; Sullivan, M K; Thompson, J; Va'vra, J; Wagner, S R; Weaver, M; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Roat, C; Ahmed, M; Ahmed, S; Alam, M S; Ernst, J A; Saeed, M A; Saleem, M; Wappler, F R; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Kim, H; Ritchie, J L; Satpathy, A; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Bona, M; Gallo, F; Gamba, D; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Poropat, P; Vitale, L; Vuagnin, G; Martinez-Vidal, F; Panvini, R S; Banerjee, Sw; Bhuyan, B; Brown, C M; Fortin, D; Jackson, P D; Kowalewski, R; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Mohanty, G B; Band, H R; Chen, X; Cheng, B; Dasu, S; Datta, M; Eichenbaum, A M; Flood, K T; Graham, M; Hollar, J J; Johnson, J R; Kutter, P E; Li, H; Liu, R; Mihalyi, A; Pan, Y; Prepost, R; Tan, P; von Wimmersperg-Toeller, J H; Wu, J; Wu, S L; Yu, Z; Greene, M G; Neal, H

    2005-05-13

    Based on a sample of 227 x 10(6) BB pairs collected by the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC, we measure the branching fraction B(B0-->pi(0)pi(0))=(1.17+/-0.32+/-0.10)x10(-6), and the asymmetry Cpi(0)(pi(0))=-0.12+/-0.56+/-0.06. The B0-->pi(0)pi(0) signal has a significance of 5.0 sigma. We also measure B(B+-->pi(+)pi(0))=(5.8+/-0.6+/-0.4)x10(-6), B(B+-->K+pi(0))=(12.0+/-0.7+/-0.6)x10(-6), and the charge asymmetries Api(+)(pi(0))=-0.01+/-0.10+/-0.02 and AK+(pi(0))=0.06+/-0.06+/-0.01. Using isospin relations, we find an upper bound on the angle difference |alpha-alpha(eff)| of 35 degrees at the 90% C.L.

  16. Stereo Pair, Patagonia, Argentina

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This view of northern Patagonia, at Los Menucos, Argentina shows remnants of relatively young volcanoes built upon an eroded plain of much older and contorted volcanic, granitic, and sedimentary rocks. The large purple, brown, and green 'butterfly' pattern is a single volcano that has been deeply eroded. Large holes on the volcano's flanks indicate that they may have collapsed soon after eruption, as fluid molten rock drained out from under its cooled and solidified outer shell. At the upper left, a more recent eruption occurred and produced a small volcanic cone and a long stream of lava, which flowed down a gully. At the top of the image, volcanic intrusions permeated the older rocks resulting in a chain of small dark volcanic peaks. At the top center of the image, two halves of a tan ellipse pattern are offset from each other. This feature is an old igneous intrusion that has been split by a right-lateral fault. The apparent offset is about 6.6 kilometers (4 miles). Color, tonal, and topographic discontinuities reveal the fault trace as it extends across the image to the lower left. However, young unbroken basalt flows show that the fault has not been active recently.

    This cross-eyed stereoscopic image pair was generated using topographic data from the Shuttle Radar Topography Mission, combined with an enhanced Landsat 7satellite color image. The topography data are used to create two differing perspectives of a single image, one perspective for each eye. In doing so, each point in the image is shifted slightly, depending on its elevation. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions.

    Landsat satellites have provided visible light and infrared images of the Earth continuously since 1972. SRTM topographic data match the 30-meter (99-foot) spatial resolution of most Landsat images and provide a valuable complement for studying the historic and growing Landsat data archive

  17. Stereo Pair: Patagonia, Argentina

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This view of northern Patagonia, near El Cain, Argentina shows complexly eroded volcanic terrain, with basalt mesas, sinkholes, landslide debris, playas, and relatively few integrated drainage channels. Surrounding this site (but also extending far to the east) is a broad plateau capped by basalt, the Meseta de Somuncura. Here, near the western edge of the plateau, erosion has broken through the basalt cap in a variety of ways. On the mesas, water-filled sinkholes (lower left) are most likely the result of the collapse of old lava tubes. Along the edges of the mesas (several locations) the basalt seems to be sliding away from the plateau in a series of slices. Water erosion by overland flow is also evident, particularly in canyons where vegetation blankets the drainage channels (green patterns, bottom of image). However, overland water flow does not extend very far at any location. This entire site drains to local playas, some of which are seen here (blue). While the water can reach the playas and then evaporate, what becomes of the eroded rock debris? Wind might excavate some of the finer eroded debris, but the fate of much of the missing bedrock remains mysterious.

    This cross-eyed stereoscopic image pair was generated using topographic data from the Shuttle Radar Topography Mission, combined with an enhanced Landsat 7 satellite color image. The topography data are used to create two differing perspectives of a single image, one perspective for each eye. In doing so, each point in the image is shifted slightly, depending on its elevation. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions.

    Landsat satellites have provided visible light and infrared images of the Earth continuously since 1972. SRTM topographic data match the 30-meter (99-foot) spatial resolution of most Landsat images and provide a valuable complement for studying the historic and growing Landsat data archive. The

  18. B^+→ K^-π ^+π ^+: Three-Body Final State Interactions and Kπ Isospin States

    NASA Astrophysics Data System (ADS)

    Nogueira, J. H. Alvarenga; Frederico, T.; Lourenço, O.

    2017-03-01

    In this exploratory study, final state interactions are considered to formulate the B meson decay amplitude for the Kπ π channel. The Faddeev decomposition of the Bethe-Salpeter equation is used in order to build a relativistic three-body model within the light-front framework. The S-wave scattering amplitude for the Kπ system is considered in the 1/2 and 3/2 isospin channels with the set of inhomogeneous integral equations solved perturbatively. In comparison with previous results for the D meson decay in the same channel, one has to consider the different partonic processes, which build the source amplitudes, and the larger absorption to other decay channels appears, that are important features to be addressed. As in the D decay case, the convergence of the rescattering perturbative series is also achieved with two-loop contributions.

  19. Searches for isospin-violating transitions χc 0 ,2→π0ηc

    NASA Astrophysics Data System (ADS)

    Ablikim, M.; Achasov, M. N.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Baldini Ferroli, R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Bondarenko, O.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Cronin-Hennessy, D.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; de Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, Y.; Gao, Z.; Garzia, I.; Geng, C.; Goetzen, K.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Han, Y. L.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, Z. Y.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. M.; Huang, G. S.; Huang, H. P.; Huang, J. S.; Huang, X. T.; Huang, Y.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. L.; Jiang, L. W.; Jiang, X. S.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kuehn, W.; Kupsc, A.; Lai, W.; Lange, J. S.; Lara, M.; Larin, P.; Li, C. H.; Li, Cheng; Li, D. M.; Li, F.; Li, G.; Li, H. B.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, P. R.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. M.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B. J.; Liu, C. X.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, X. X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqiang; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, R. Q.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lv, M.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, Q. M.; Ma, S.; Ma, T.; Ma, X. N.; Ma, X. Y.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Moriya, K.; Muchnoi, N. Yu.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Ping, J. L.; Ping, R. G.; Poling, R.; Pu, Y. N.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Y.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ren, H. L.; Ripka, M.; Rong, G.; Ruan, X. D.; Santoro, V.; Sarantsev, A.; Savrié, M.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Shepherd, M. R.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Toth, D.; Ullrich, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, Q. J.; Wang, S. G.; Wang, W.; Wang, X. F.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Wei, J. B.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, Z.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. X.; Yang, L.; Yang, Y.; Yang, Y. X.; Ye, H.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, H. W.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. H.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, Li; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zou, B. S.; Zou, J. H.; Besiii Collaboration

    2015-06-01

    We present the first upper-limit measurement of the branching fractions of the isospin-violating transitions χc 0 ,2→π0ηc . The measurements are performed using 106 ×1 06 ψ (3686 ) events accumulated with the BESIII detector at the BEPCII e+e- collider at a center-of-mass energy corresponding to the ψ (3686 ) mass. We obtained upper limits on the branching fractions at a 90% confidence level of B (χc 0→π0ηc)<1.6 ×1 0-3 and B (χc 2→π0ηc)<3.2 ×1 0-3 .

  20. Protected Flux Pairing Qubit

    NASA Astrophysics Data System (ADS)

    Bell, Matthew; Zhang, Wenyuan; Ioffe, Lev; Gershenson, Michael

    2014-03-01

    We have studied the coherent flux tunneling in a qubit containing two submicron Josephson junctions shunted by a superinductor (a dissipationless inductor with an impedance much greater than the resistance quantum). The two low energy quantum states of this device, 0 and 1, are represented by even and odd number of fluxes in the loop, respectively. This device is dual to the charge pairing Josephson rhombi qubit. The spectrum of the device, studied by microwave spectroscopy, reflects the interference between coherent quantum phase slips in the two junctions (the Aharonov-Casher effect). The time domain measurements demonstrate the suppression of the qubit's energy relaxation in the protected regime, which illustrates the potential of this flux pairing device as a protected quantum circuit. Templeton Foundation, NSF, and ARO.

  1. Junctionless Cooper pair transistor

    NASA Astrophysics Data System (ADS)

    Arutyunov, K. Yu.; Lehtinen, J. S.

    2017-02-01

    Quantum phase slip (QPS) is the topological singularity of the complex order parameter of a quasi-one-dimensional superconductor: momentary zeroing of the modulus and simultaneous 'slip' of the phase by ±2π. The QPS event(s) are the dynamic equivalent of tunneling through a conventional Josephson junction containing static in space and time weak link(s). Here we demonstrate the operation of a superconducting single electron transistor (Cooper pair transistor) without any tunnel junctions. Instead a pair of thin superconducting titanium wires in QPS regime was used. The current-voltage characteristics demonstrate the clear Coulomb blockade with magnitude of the Coulomb gap modulated by the gate potential. The Coulomb blockade disappears above the critical temperature, and at low temperatures can be suppressed by strong magnetic field.

  2. Temperature and momentum dependence of single-particle properties in hot asymmetric nuclear matter

    SciTech Connect

    Moustakidis, Ch. C.

    2008-11-15

    We have studied the effects of momentum-dependent interactions on the single-particle properties of hot asymmetric nuclear matter. In particular, the single-particle potential of protons and neutrons as well as the symmetry potential have been studied within a self-consistent model using a momentum-dependent effective interaction. In addition, the isospin splitting of the effective mass has been derived from the above model. In each case temperature effects have been included and analyzed. The role of the specific parametrization of the effective interaction used in the present work has been investigated. It has been concluded that the behavior of the symmetry potential depends strongly on the parametrization of the interaction part of the energy density and the momentum dependence of the regulator function. The effects of the parametrization have been found to be less pronounced on the isospin mass splitting.

  3. Stability and size of particle pairs in complex plasmas

    SciTech Connect

    Nosenko, V.; Ivlev, A. V.; Kompaneets, R.; Morfill, G.

    2014-11-15

    Particle pairing in a complex plasma was experimentally studied with the emphasis on pair spatial extent and stability. Micron-size particles were suspended in the (pre)sheath area above the lower electrode in a capacitively coupled radio-frequency discharge in argon. They formed vertical pairs due to the ion wakes created by the flow of ions past particles. We discuss the confinement mechanism for the lower particle, resulting from a combination of the wake field and the field of non-uniform sheath. A model of particle pairs is proposed, which provides good description for the dependence of pair size and stability on experimental parameters.

  4. Rashba Splitting of Cooper Pairs

    NASA Astrophysics Data System (ADS)

    Shekhter, R. I.; Entin-Wohlman, O.; Jonson, M.; Aharony, A.

    2016-05-01

    We investigate theoretically the properties of a weak link between two superconducting leads, which has the form of a nonsuperconducting nanowire with a strong Rashba spin-orbit coupling caused by an electric field. In the Coulomb-blockade regime of single-electron tunneling, we find that such a weak link acts as a "spin splitter" of the spin states of Cooper pairs tunneling through the link, to an extent that depends on the direction of the electric field. We show that the Josephson current is sensitive to interference between the resulting two transmission channels, one where the spins of both members of a Cooper pair are preserved and one where they are both flipped. As a result, the current is a periodic function of the strength of the spin-orbit interaction and of the bending angle of the nanowire (when mechanically bent); an identical effect appears due to strain-induced spin-orbit coupling. In contrast, no spin-orbit induced interference effect can influence the current through a single weak link connecting two normal metals.

  5. Sequence Recognition in the Pairing of DNA Duplexes

    NASA Astrophysics Data System (ADS)

    Kornyshev, A. A.; Leikin, S.

    2001-04-01

    Pairing of DNA fragments with homologous sequences occurs in gene shuffling, DNA repair, and other vital processes. While chemical individuality of base pairs is hidden inside the double helix, x ray and NMR revealed sequence-dependent modulation of the structure of DNA backbone. Here we show that the resulting modulation of the DNA surface charge pattern enables duplexes longer than ~50 base pairs to recognize sequence homology electrostatically at a distance of up to several water layers. This may explain the local recognition observed in pairing of homologous chromosomes and the observed length dependence of homologous recombination.

  6. A 0.35 μm sub-ns wake-up time ON-OFF switchable LVDS driver-receiver chip I/O pad pair for rate-dependent power saving in AER bit-serial links.

    PubMed

    Zamarreño-Ramos, Carlos; Serrano-Gotarredona, Teresa; Linares-Barranco, Bernabé

    2012-10-01

    This paper presents a low power switchable current mode driver/receiver I/O pair for high speed serial transmission of asynchronous address event representation (AER) information. The sparse nature of AER packets (also called events) allows driver/receiver bias currents to be switched off to save power. The on/off times must be lower than the bit time to minimize the latency introduced by the switching mechanism. Using this technique, the link power consumption can be scaled down with the event rate without compromising the maximum system throughput. The proposed technique has been implemented on a typical push/pull low voltage differential signaling (LVDS) circuit, but it can easily be extended to other widely used current mode standards, such as current mode logic (CML) or low-voltage positive emitter-coupled logic (LVPECL). A proof of concept prototype has been fabricated in 0.35 μm CMOS incorporating the proposed driver/receiver pair along with a previously reported switchable serializer/deserializer scheme. At a 500 Mbps bit rate, the maximum event rate is 11 Mevent/s for 32-bit events. In this situation, current consumption is 7.5 mA and 9.6 mA for the driver and receiver, respectively, while differential voltage amplitude is ±300 mV. However, if event rate is lower than 20-30 Kevent/s, current consumption has a floor of 270 μA for the driver and 570 μA for the receiver. The measured ON/OFF switching times are in the order of 1 ns. The serial link could be operated at up to 710 Mbps bit rate, resulting in a maximum 32-bit event rate of 15 Mevent/s . This is the same peak event rate as that obtained with the same SerDes circuits and a non-switched driver/receiver pair.

  7. Pair of Craters

    NASA Technical Reports Server (NTRS)

    2005-01-01

    14 July 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a 1.5 meters per pixel (5 ft/pixel) view of a pair of small meteor impact craters in the Arena Colles region of Mars, located north of Isidis Planitia.

    Location near: 22.7oN, 278.5oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumn

  8. Type III burst pair

    NASA Astrophysics Data System (ADS)

    Ning, Zongjun; Fu, Qijun; Lu, Quankang

    2000-05-01

    We present a special solar radio burst detected on 5 January 1994 using the multi-channel (50) spectrometer (1.0-2.0 GHz) of the Beijing Astronomical Observatory (BAO). Sadly, the whole event could not be recorded since it had a broader bandwidth than the limit range of the instrument. The important part was obtained, however. The event is composed of a normal drift type III burst on the lower frequency side and a reverse drift type III burst appearing almost simultaneously on the high side. We call the burst type III a burst pair. It is a typical characteristic of two type III bursts that they are morphologically symmetric about some frequency from 1.64 GHz to 1.78 GHz on the dynamic spectra records, which indicates that there are two different electron beams from the same acceleration region travelling simultaneously in opposite directions (upward and downward). A magnetic reconnection mode is a nice interpretation of type III burst pair since the plasma beta β~=0.01 is much less than 1 and the beams have velocity of about 1.07×10^8 cm s^-1 after leaving the reconnection region if we assume that the ambient magnetic field strength is about 100 G.

  9. Type III burst pair.

    NASA Astrophysics Data System (ADS)

    Zongjun, Ning; Fu, Qijun; Quankang, Lu

    2000-05-01

    Presents a special solar radio burst detected on 5 January 1994 using the multi-channel (50) spectrometer (1.0 - 2.0 GHz) of the Beijing Astronomical Observatory. Sadly, the whole event could not be recorded since it had a broader bandwidth than the limit range of the instrument. The important part was obtained, however. The event is composed of a normal drift type III burst on the lower frequency side and a reverse drift type III burst appearing almost simultaneously on the high side. The authors call the burst type III a burst pair. It is a typical characteristic of two type III bursts that they are morphologically symmetric about some frequency from 1.64 GHz to 1.78 GHz on the dynamic spectra records, which indicates that there are two different electron beams from the same acceleration region travelling simultaneously in opposite directions (upward and downward). A magnetic reconnection mode is an interpretation of type III burst pair.

  10. Spin polarization transfer by the radical pair mechanism.

    PubMed

    Zarea, Mehdi; Ratner, Mark A; Wasielewski, Michael R

    2015-08-07

    In a three-site representation, we study a spin polarization transfer from radical pair spins to a nearby electron or nuclear spin. The quantum dynamics of the radical pair spins is governed by a constant exchange interaction between the radical pair spins which have different Zeeman frequencies. Radical pair spins can recombine to the singlet ground state or to lower energy triplet states. It is then shown that the coherent dynamics of the radical pair induces spin polarization on the nearby third spin in the presence of a magnetic field. The spin polarization transfer depends on the difference between Zeeman frequencies, the singlet and triplet recombination rates, and on the exchange and dipole-dipole interactions between the different spins. In particular, the sign of the polarization depends on the exchange coupling between radical pair spins and also on the difference between singlet and triplet recombination rate constants.

  11. Spin polarization transfer by the radical pair mechanism

    SciTech Connect

    Zarea, Mehdi Ratner, Mark A.; Wasielewski, Michael R.

    2015-08-07

    In a three-site representation, we study a spin polarization transfer from radical pair spins to a nearby electron or nuclear spin. The quantum dynamics of the radical pair spins is governed by a constant exchange interaction between the radical pair spins which have different Zeeman frequencies. Radical pair spins can recombine to the singlet ground state or to lower energy triplet states. It is then shown that the coherent dynamics of the radical pair induces spin polarization on the nearby third spin in the presence of a magnetic field. The spin polarization transfer depends on the difference between Zeeman frequencies, the singlet and triplet recombination rates, and on the exchange and dipole-dipole interactions between the different spins. In particular, the sign of the polarization depends on the exchange coupling between radical pair spins and also on the difference between singlet and triplet recombination rate constants.

  12. Effects of thermal shape fluctuations and pairing fluctuations on the giant dipole resonance in warm nuclei

    NASA Astrophysics Data System (ADS)

    Rhine Kumar, A. K.; Arumugam, P.; Dang, N. Dinh

    2015-04-01

    Apart from the higher limits of isospin and temperature, the properties of atomic nuclei are intriguing and less explored at the limits of lowest but finite temperatures. At very low temperatures there is a strong interplay between the shell (quantal fluctuations), statistical (thermal fluctuations), and residual pairing effects as evidenced from the studies on giant dipole resonance (GDR). In our recent work [Phys. Rev. C 90, 044308 (2014), 10.1103/PhysRevC.90.044308], we have outlined some of our results from a theoretical approach for such warm nuclei where all these effects are incorporated along within the thermal shape fluctuation model (TSFM) extended to include the fluctuations in the pairing field. In this article, we present the complete formalism based on the microscopic-macroscopic approach for determining the deformation energies and a macroscopic approach which links the deformation to GDR observables. We discuss our results for the nuclei 97Tc,120Sn,179Au, and 208Pb, and corroborate with the experimental data available. The TSFM could explain the data successfully at low temperature only with a proper treatment of pairing and its fluctuations. More measurements with better precision could yield rich information about several phase transitions that can happen in warm nuclei.

  13. Hard Photodisintegration of a Proton Pair

    DOE PAGES

    Pomerantz, Ishay; Bubis, Nathaniel; Allada, Kalyan; ...

    2010-01-08

    We present the first study of high energy photodisintegration of proton-pairs through the gamma + 3He -> p+p+n channel. Photon energies from 0.8 to 4.7 GeV were used in kinematics corresponding to a proton pair with high relative momentum and a neutron nearly at rest. An s^{-11} scaling of the cross section was observed, as predicted by the constituent counting rule. The onset of the scaling is at a higher energy and the cross section is significantly lower then for pn pair photodisintegration. For photon energies below the scaling region, the scaled cross section was found to present a strongmore » energy-dependent structure not observed in deuteron photodisintegration.« less

  14. Hard photodisintegration of a proton pair

    NASA Astrophysics Data System (ADS)

    Pomerantz, I.; Bubis, N.; Allada, K.; Beck, A.; Beck, S.; Berman, B. L.; Boeglin, W.; Camsonne, A.; Canan, M.; Chirapatpimol, K.; Cisbani, E.; Cusanno, F.; de Jager, C. W.; Dutta, C.; Garibaldi, F.; Geagla, O.; Gilman, R.; Glister, J.; Higinbotham, D. W.; Jiang, X.; Katramatou, A. T.; Khrosinkova, E.; Lee, B. W.; LeRose, J. J.; Lindgren, R.; McCullough, E.; Meekins, D.; Michaels, R.; Moffit, B.; Petratos, G. G.; Piasetzky, E.; Qian, X.; Qiang, Y.; Rodriguez, I.; Ron, G.; Saha, A.; Sarty, A. J.; Sawatzky, B.; Schulte, E.; Shneor, R.; Sparveris, N.; Subedi, R.; Strauch, S.; Sulkosky, V.; Wang, Y.; Wojtsekhowski, B.; Yan, X.; Yao, H.; Zhan, X.; Zheng, X.

    2010-02-01

    We present a study of high energy photodisintegration of proton-pairs through the γ+He3→p+p+n channel. Photon energies, Eγ, from 0.8 to 4.7 GeV were used in kinematics corresponding to a proton pair with high relative momentum and a neutron nearly at rest. The s scaling of the cross section, as predicted by the constituent counting rule for two nucleon photodisintegration, was observed for the first time. The onset of the scaling is at a higher energy and the cross section is significantly lower than for deuteron (pn pair) photodisintegration. For Eγ below the scaling region, the scaled cross section was found to present a strong energy-dependent structure not observed in deuteron photodisintegration.

  15. Multiprocessor switch with selective pairing

    DOEpatents

    Gara, Alan; Gschwind, Michael K; Salapura, Valentina

    2014-03-11

    System, method and computer program product for a multiprocessing system to offer selective pairing of processor cores for increased processing reliability. A selective pairing facility is provided that selectively connects, i.e., pairs, multiple microprocessor or processor cores to provide one highly reliable thread (or thread group). Each paired microprocessor or processor cores that provide one highly reliable thread for high-reliability connect with a system components such as a memory "nest" (or memory hierarchy), an optional system controller, and optional interrupt controller, optional I/O or peripheral devices, etc. The memory nest is attached to a selective pairing facility via a switch or a bus

  16. Polymerization by classical and frustrated Lewis pairs.

    PubMed

    Chen, Eugene Y-X

    2013-01-01

    Main-group classical and frustrated Lewis pairs (CLPs and FLPs) comprising strong Lewis acids (LAs) and strong Lewis bases (LBs) are highly active for polymerization of conjugated polar alkenes, affording typically high molecular weight polymers with relatively narrow molecular weight distributions. Especially effective systems are the Lewis pairs (LPs) consisting of the strong LA Al(C6F5)3 and strong LBs, such as achiral phosphines and chiral chelating diphosphines, N-heterocyclic carbenes, and phosphazene superbases, for polymerization of methacrylates and acrylamides as well as renewable α-methylene-γ-butyrolactones. Chain initiation involves cooperative addition of LPs to the monomer to generate zwitterionic active species, and chain propagation proceeds via a bimetallic, activated-monomer addition mechanism. Transition metal nucleophile/electrophile pairs comprising neutral metallocene bis(ester enolate)s and strong LAs E(C6F5)3 (E = Al, B) generate two drastically different polymerization systems, depending on the LA. With E = Al, catalyst activation and chain initiating events lead to dually active ion-pairs, thereby effecting ion-pairing polymerization that affords polymers with unique stereo-multiblock microstructures. With E = B, on the other hand, the FLP-induced catalyst activation generates metallacyclic cations paired with the hydridoborate anion [HB(C6F5)3](-); uniquely, such ion-pairs effect catalytic polymerization of conjugated polar alkenes by an H-shuttling mechanism, with the cation catalyzing chain growth and the anion promoting chain transfer by shuttling the hydride between the cation and anion centers through the neutral borane.

  17. Electron Pairing, Repulsion, and Correlation: A Simplistic Approach

    ERIC Educational Resources Information Center

    Olsson, Lars-Fride; Kloo, Lars

    2004-01-01

    The interplay between a nucleus and an electron pair is explained through a basic application of an electrostatic and balanced model to determine the correlated and repulsive movements of the electron pair. The stable correlation depends on the positive charge produced by the combined force, which in turn establishes a negative potential energy.

  18. Stereo Pair, Pasadena, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This stereoscopic image pair is a perspective view that shows the western part of the city of Pasadena, California, looking north toward the San Gabriel Mountains. Portions of the cities of Altadena and La Canada Flintridge are also shown. The cluster of large buildings left of center, at the base of the mountains, is the Jet Propulsion Laboratory. This image shows the power of combining data from different sources to create planning tools to study problems that affect large urban areas. In addition to the well-known earthquake hazards, Southern California is affected by a natural cycle of fire and mudflows. Data shown in this image can be used to predict both how wildfires spread over the terrain and how mudflows are channeled down the canyons.

    The image was created from three datasets: the Shuttle Radar Topography Mission (SRTM) supplied the elevation, U. S. Geological Survey digital aerial photography provided the image detail, and the Landsat Thematic Mapper provided the color. The United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota, provided the Landsat data and the aerial photography. The image can be viewed in 3-D by viewing the left image with the right eye and the right image with the left eye (cross-eyed viewing), or by downloading and printing the image pair, and viewing them with a stereoscope.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration

  19. Strong-Isospin Violation in the Neutron-Proton Mass Difference from Fully-Dynamical Lattice QCD and PQQCD

    SciTech Connect

    Silas Beane; Konstantinos Orginos; Martin Savage

    2007-04-01

    We determine the strong-isospin violating component of the neutron-proton mass difference from fully-dynamical lattice QCD and partially-quenched QCD calculations of the nucleon mass, constrained by partially-quenched chiral perturbation theory at one-loop level. The lattice calculations were performed with domain-wall valence quarks on MILC lattices with rooted staggered sea-quarks at a lattice spacing of b = 0.125 fm, lattice spatial size of L = 2.5 fm and pion masses ranging from m{sub {pi}} {approx} 290 MeV to {approx} 350 MeV. At the physical value of the pion mass, we predict M{sub n}-M{sub p}|{sup d-u} = 2.26 {+-} 0.57 {+-} 0.42 {+-} 0.10 MeV where the first error is statistical, the second error is due to the uncertainty in the ratio of light-quark masses, {eta} = m{sub u}/m{sub d}, determined by MILC, and the third error is an estimate of the systematic due to chiral extrapolation.

  20. Isospin mixing reveals 30P(p, γ)31S resonance influencing nova nucleosynthesis

    SciTech Connect

    Bennett, M. B.; Wrede, C.; Brown, B. A.; Liddick, S. N.; Perez-Loureiro, D.; Bardayan, D. W.; Chen, A. A.; Chipps, K. A.; Fry, C.; Glassman, B. E.; Langer, C.; Larson, N. R.; McNeice, E. I.; Meisel, Z.; Ong, W.; O'Malley, P. D.; Pain, S. D.; Prokop, C. J.; Schatz, H.; Schwartz, S. B.; Suchyta, S.; Thompson, P.; Walters, M.; Xu, X.

    2016-03-08

    Here, the thermonuclear 30P(p, γ)31S reaction rate is critical for modeling the final elemental and isotopic abundances of ONe nova nucleosynthesis, which affect the calibration of proposed nova thermometers and the identification of presolar nova grains, respectively. Unfortunately, the rate of this reaction is essentially unconstrained experimentally, because the strengths of key 31S proton capture resonance states are not known, largely due to uncertainties in their spins and parities. Using the β decay of 31Cl, we have observed the β-delayed γ decay of a 31S state at Ex = 6390.2(7) keV, with a 30P(p, γ)31S resonance energy of Er = 259.3(8) keV, in the middle of the 30P(p, γ)31S Gamow window for peak nova temperatures. This state exhibits isospin mixing with the nearby isobaric analog state at Ex = 6279.0(6) keV, giving it an unambiguous spin and parity of 3/2+ and making it an important l = 0 resonance for proton capture on 30P.

  1. Pygmy stars: first pair.

    PubMed

    Zwicky, F

    1966-07-01

    The binary LP 101-15/16 having the proper motion of 1.62 seconds of arc per year has been studied with the prime-focus spectrograph of the 200-inch (508 cm) telescope. Indications are that LP 101-15/16 is the first pair of pygmy stars ever discovered. One of its components, LP 101-16, is probably a blue pygmy star which is at least four magnitudes fainter than the ordinary white dwarfs. Also, two of the Balmer lines in absorption appear to be displaced toward the red by amounts which indicate the existence of an Einstein gravitational red shift corresponding to about 1000 km sec-1. On the other hand LP 101-15 is red and shows an entirely new type of spectrum, which suggests that it may be a first representative of a type of red pygmy star which is 2.5 magnitudes fainter than the M-type dwarf stars of the main sequence.

  2. Measurement of CP Asymmetries and Branching Fractions in B0 -> pi+ pi-, B0 -> K+ pi-, B0 -> pi0 pi0, B0 -> K0 pi0 and Isospin Analysis of B -> pi pi Decays

    SciTech Connect

    Aubert, Bernard; Bona, M.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Lopez, L.; Palano, Antimo; Pappagallo, M.; Eigen, G.; Stugu, Bjarne; Sun, L.; Abrams, G.S.; Battaglia, M.; Brown, D.N.; Cahn, Robert N.; Jacobsen, R.G.; /LBL, Berkeley /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /Ferrara U. /INFN, Ferrara /Frascati /Genoa U. /INFN, Genoa /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /Consorzio Milano Ricerche /INFN, Milan /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /Napoli Seconda U. /INFN, Naples /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /Padua U. /INFN, Padua /Paris U., VI-VII /Pennsylvania U. /Perugia U. /INFN, Perugia /INFN, Pisa /Princeton U. /Banca di Roma /Frascati /Rostock U. /Rutherford /DAPNIA, Saclay /South Carolina U. /SLAC /Stanford U., Phys. Dept. /SUNY, Albany /Tennessee U. /Texas U. /Texas U., Dallas /Turin U. /INFN, Turin /Trieste U. /INFN, Trieste /Valencia U., IFIC /Victoria U. /Warwick U. /Wisconsin U., Madison

    2008-08-01

    The authors present preliminary results of improved measurements of the CP-violating asymmetries and branching fractions in the decays B{sup 0} {yields} {pi}{sup +}{pi}{sup -}, B{sup 0} {yields} K{sup +}{pi}{sup -}, B{sup 0} {yields} {pi}{sup 0}{pi}{sup 0}, and B{sup 0} {yields} K{sup 0}{pi}{sup 0}. This update includes all data taken at the {Upsilon}(4S) resonance by the BABAR experiment at the asymmetric PEP-II B-meson factory at SLAC, corresponding to 467 {+-} 5 million B{bar B} pairs. They find S{sub {pi}{pi}} = -0.68 {+-} 0.10 {+-} 0.03, C{sub {pi}{pi}} = -0.25 {+-} 0.08 {+-} 0.02, {Alpha}{sub K{sub {pi}}} = -0.107 {+-} 0.016{sub -0.004},{sup +0.006}, C{sub {pi}{sup 0}{pi}{sup 0}} = -0.43 {+-} 0.26 {+-} 0.05, {Beta}(B{sup 0} {yields} {pi}{sup 0}{pi}{sup 0}) = (1.83 {+-} 0.21 {+-} 0.13) x 10{sup -6}, {Beta}(B{sup 0} {yields} K{sup 0}{pi}{sup 0}) = (10.1 {+-} 0.6 {+-} 0.4) x 10{sup -6}, where the first error is statistical and the second is systematic. They observe CP violation with a significance of 6.7{sigma} in B{sup 0} {yields} {pi}{sup -} and 6.1{sigma} in B{sup 0} {yields} K{sup +}{pi}{sup -}. Constraints on the Unitarity Triangle angle {alpha} are determined from the isospin relation between all B {yields} {pi}{pi} rates and asymmetries.

  3. SDSS DR2 Merging pairs

    NASA Astrophysics Data System (ADS)

    Allam, S. S.; Tucker, D. L.; SDSS Collaboration

    2004-05-01

    We present and analyze a catalog of 9,000 Merging pairs candidates to g=21 from the imaging data of the Sloan Digital Sky Survey (SDSS) Second Data Release (DR2). Candidates were selected using an automated algorithm (Allam et al. 2004) that is efficient in its selection of galaxy pairs. We highlight possible science applications of such a large photometric sample of merging pais and discuss future improvements, including incorporating magnitudes and pushing to higher redshifts and fainter pairs.

  4. Electron positron pair winds and the Eddington limit

    NASA Technical Reports Server (NTRS)

    Leighly, K. M.; Tsuruta, S.

    1989-01-01

    The dynamics of pair winds in the environment of the central engine of Active Galactic Nuclei (AGN) are investigated assuming super Eddington accretion onto black holes. If the accretion is assumed to be spherically symmetric with the accreting matter occurring in discrete cool blobs, and pairs are produced by a nonthermal mechanism, these pairs are blown out by radiation pressure if the coupling between the pairs and accreting blobs is not complete. The coupling also determines the escaping luminosity. If the maximal coupling constraint is relaxed, then a qualitative argument shows that the classical Eddington limit may be exceeded. When the pairs are considered to be noninteracting particles, the outflow is optically thin. Frame dependent effects are considered. Equations are derived considering pair production in the rest frame of the wind and also in the rest frame of the accreting cool blobs. The hydrodynamic equations are integrated numerically.

  5. Controversies in kidney paired donation.

    PubMed

    Gentry, Sommer E; Montgomery, Robert A; Segev, Dorry L

    2012-07-01

    Kidney paired donation represented 10% of living kidney donation in the United States in 2011. National registries around the world and several separate registries in the United States arrange paired donations, although with significant variations in their practices. Concerns about ethical considerations, clinical advisability, and the quantitative effectiveness of these approaches in paired donation result in these variations. For instance, although donor travel can be burdensome and might discourage paired donation, it was nearly universal until convincing analysis showed that living donor kidneys can sustain many hours of cold ischemia time without adverse consequences. Opinions also differ about whether the last donor in a chain of paired donation transplants initiated by a nondirected donor should donate immediately to someone on the deceased donor wait-list (a domino or closed chain) or should be asked to wait some length of time and donate to start another sequence of paired donations later (an open chain); some argue that asking the donor to donate later may be coercive, and others focus on balancing the probability that the waiting donor withdraws versus the number of additional transplants if the chain can be continued. Other controversies in paired donation include simultaneous versus nonsimultaneous donor operations, whether to enroll compatible pairs, and interactions with desensitization protocols. Efforts to expand public awareness of and participation in paired donation are needed to generate more transplant opportunities.

  6. Pulsational Pair-instability Supernovae

    NASA Astrophysics Data System (ADS)

    Woosley, S. E.

    2017-02-01

    The final evolution of stars in the mass range 70–140 {\\text{}}{M}ȯ is explored. Depending upon their mass loss history and rotation rates, these stars will end their lives as pulsational pair-instability supernovae (PPISN) producing a great variety of observational transients with total durations ranging from weeks to millennia and luminosities from 1041 to over 1044 erg s‑1. No nonrotating model radiates more than 5× {10}50 erg of light or has a kinetic energy exceeding 5× {10}51 erg, but greater energies are possible, in principle, in magnetar-powered explosions, which are explored. Many events resemble SNe Ibn, SNe Icn, and SNe IIn, and some potential observational counterparts are mentioned. Some PPISN can exist in a dormant state for extended periods, producing explosions millennia after their first violent pulse. These dormant supernovae contain bright Wolf–Rayet stars, possibly embedded in bright X-ray and radio sources. The relevance of PPISN to supernova impostors like Eta Carinae, to superluminous supernovae, and to sources of gravitational radiation is discussed. No black holes between 52 and 133 {\\text{}}{M}ȯ are expected from stellar evolution in close binaries.

  7. Electronic pairing in exotic superconductors

    SciTech Connect

    Cox, D.L. ); Maple, M.B. )

    1995-02-01

    Superconductivity in heavy-fermion materials and high T[sub c] cuprates may involve electronic pairing with unconventional symmetries and mechanisms. Although there has been no smoking-gun proof, numerous pieces of circumstantial evidence combined with heuristic theoretical arguments make a compelling case that these materials have pairs with exotic symmetry bound by nonphonon glue. 20 refs., 5 figs.

  8. Learning about the nuclear symmetry energy through the lens of isospin transport

    NASA Astrophysics Data System (ADS)

    Desouza, Romualdo; Hudan, Sylvie; Brown, Kyle

    2014-03-01

    Examining nucleon transport between nuclei in intermediate energy heavy-ion collisions is an effective means to assess the density dependence of the nuclear symmetry energy. Overlap of the Fermi tails of the two nuclei as they collide provides a density gradient that drives nucleon transport. In addition, nucleon transport is driven by gradients in N/Z. Disentangling these two contributions provides a measure of the symmetry energy and its density dependence and requires a comparison of N/Z symmetric and asymmetric systems. To address this question we have examined semi-peripheral collisions of 64Zn ions with 64Zn, 209Bi, and 27Al targets at Elab 45 MeV/A. The projectile-like fragment emerging from these collisions frequently undergoes binary decay in a dynamical fission process. By using the rotation of the projectile-like fragment as a clock, it is deduced that N/Z equilibration persists up to 1200 fm/c. As prior measurements were restricted to timescales of less than 100 fm/c, this approach represents a dramatic improvement in the sensitivity to long timescales. This work is supported by the U.S. DOE under Grant No. DEFG02-88ER-40404.

  9. Pairing, pseudogap and Fermi arcs in cuprates

    DOE PAGES

    Kaminski, Adam; Kondo, Takeshi; Takeuchi, Tsunehiro; ...

    2014-04-29

    We use Angle Resolved Photoemission Spectroscopy (ARPES) to study the relationship between the pseudogap, pairing and Fermi arcs in cuprates. High quality data measured over a wide range of dopings reveals a consistent picture of Fermiology and pairing in these materials. The pseudogap is due to an ordered state that competes with superconductivity rather than preformed pairs. Pairing does occur below Tpair ~ 150K and significantly above Tc, but well below T* and the doping dependence of this temperature scale is distinct from that of the pseudogap. The d-wave gap is present below Tpair, and its interplay with strong scatteringmore » creates “artificial” Fermi arcs for Tc ≤ T ≤ Tpair. However, above Tpair, the pseudogap exists only at the antipodal region. This leads to presence of real, gapless Fermi arcs close to the node. The length of these arcs remains constant up to T*, where the full Fermi surface is recovered. As a result, we demonstrate that these findings resolve a number of seemingly contradictory scenarios.« less

  10. Diagnostics for conformity of paired quantitative measurements.

    PubMed

    Hawkins, Douglas M

    2002-07-15

    Matched pairs data arise in many contexts - in case-control clinical trials, for example, and from cross-over designs. They also arise in experiments to verify the equivalence of quantitative assays. This latter use (which is the main focus of this paper) raises difficulties not always seen in other matched pairs applications. Since the designs deliberately vary the analyte levels over a wide range, issues of variance dependent on mean, calibrations of differing slopes, and curvature all need to be added to the usual model assumptions such as normality. Violations in any of these assumptions invalidate the conventional matched pairs analysis. A graphical method, due to Bland and Altman, of looking at the relationship between the average and the difference of the members of the pairs is shown to correspond to a formal testable regression model. Using standard regression diagnostics, one may detect and diagnose departures from the model assumptions and remedy them - for example using variable transformations. Examples of different common scenarios and possible approaches to handling them are shown.

  11. System size and energy dependence of jet-induced hadron pair correlation shapes in Cu+Cu and Au+Au collisions at square root sNN=200 and 62.4 GeV.

    PubMed

    Adare, A; Adler, S S; Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Al-Bataineh, H; Alexander, J; Al-Jamel, A; Aoki, K; Aphecetche, L; Armendariz, R; Aronson, S H; Asai, J; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Baksay, G; Baksay, L; Baldisseri, A; Barish, K N; Barnes, P D; Bassalleck, B; Bathe, S; Batsouli, S; Baublis, V; Bauer, F; Bazilevsky, A; Belikov, S; Bennett, R; Berdnikov, Y; Bickley, A A; Bjorndal, M T; Boissevain, J G; Borel, H; Boyle, K; Brooks, M L; Brown, D S; Bruner, N; Bucher, D; Buesching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J M; Butsyk, S; Camard, X; Campbell, S; Chai, J-S; Chand, P; Chang, B S; Chang, W C; Charvet, J-L; Chernichenko, S; Chiba, J; Chi, C Y; Chiu, M; Choi, I J; Choudhury, R K; Chujo, T; Chung, P; Churyn, A; Cianciolo, V; Cleven, C R; Cobigo, Y; Cole, B A; Comets, M P; Constantin, P; Csanád, M; Csörgo, T; Cussonneau, J P; Dahms, T; Das, K; David, G; Deák, F; Deaton, M B; Dehmelt, K; Delagrange, H; Denisov, A; d'Enterria, D; Deshpande, A; Desmond, E J; Devismes, A; Dietzsch, O; Dion, A; Donadelli, M; Drachenberg, J L; Drapier, O; Drees, A; Dubey, A K; Durum, A; Dutta, D; Dzhordzhadze, V; Efremenko, Y V; Egdemir, J; Ellinghaus, F; Emam, W S; Enokizono, A; En'yo, H; Espagnon, B; Esumi, S; Eyser, K O; Fields, D E; Finck, C; Finger, M; Finger, M; Fleuret, F; Fokin, S L; Forestier, B; Fox, B D; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fung, S-Y; Fusayasu, T; Gadrat, S; Garishvili, I; Gastineau, F; Germain, M; Glenn, A; Gong, H; Gonin, M; Gosset, J; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grosse Perdekamp, M; Gunji, T; Gustafsson, H-A; Hachiya, T; Hadj Henni, A; Haegemann, C; Haggerty, J S; Hagiwara, M N; Hamagaki, H; Han, R; Hansen, A G; Harada, H; Hartouni, E P; Haruna, K; Harvey, M; Haslum, E; Hasuko, K; Hayano, R; Heffner, M; Hemmick, T K; Hester, T; Heuser, J M; He, X; Hidas, P; Hiejima, H; Hill, J C; Hobbs, R; Hohlmann, M; Holmes, M; Holzmann, W; Homma, K; Hong, B; Hoover, A; Horaguchi, T; Hornback, D; Hur, M G; Ichihara, T; Ikonnikov, V V; Imai, K; Inaba, M; Inoue, Y; Inuzuka, M; Isenhower, D; Isenhower, L; Ishihara, M; Isobe, T; Issah, M; Isupov, A; Jacak, B V; Jia, J; Jin, J; Jinnouchi, O; Johnson, B M; Johnson, S C; Joo, K S; Jouan, D; Kajihara, F; Kametani, S; Kamihara, N; Kamin, J; Kaneta, M; Kang, J H; Kanou, H; Katou, K; Kawabata, T; Kawagishi, T; Kawall, D; Kazantsev, A V; Kelly, S; Khachaturov, B; Khanzadeev, A; Kikuchi, J; Kim, D H; Kim, D J; Kim, E; Kim, G-B; Kim, H J; Kim, Y-S; Kinney, E; Kiss, A; Kistenev, E; Kiyomichi, A; Klay, J; Klein-Boesing, C; Kobayashi, H; Kochenda, L; Kochetkov, V; Kohara, R; Komkov, B; Konno, M; Kotchetkov, D; Kozlov, A; Král, A; Kravitz, A; Kroon, P J; Kubart, J; Kuberg, C H; Kunde, G J; Kurihara, N; Kurita, K; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y-S; Lajoie, J G; Lebedev, A; Le Bornec, Y; Leckey, S; Lee, D M; Lee, M K; Lee, T; Leitch, M J; Leite, M A L; Lenzi, B; Lim, H; Liska, T; Litvinenko, A; Liu, M X; Li, X; Li, X H; Love, B; Lynch, D; Maguire, C F; Makdisi, Y I; Malakhov, A; Malik, M D; Manko, V I; Mao, Y; Martinez, G; Masek, L; Masui, H; Matathias, F; Matsumoto, T; McCain, M C; McCumber, M; McGaughey, P L; Miake, Y; Mikes, P; Miki, K; Miller, T E; Milov, A; Mioduszewski, S; Mishra, G C; Mishra, M; Mitchell, J T; Mitrovski, M; Mohanty, A K; Morreale, A; Morrison, D P; Moss, J M; Moukhanova, T V; Mukhopadhyay, D; Muniruzzaman, M; Murata, J; Nagamiya, S; Nagata, Y; Nagle, J L; Naglis, M; Nakagawa, I; Nakamiya, Y; Nakamura, T; Nakano, K; Newby, J; Nguyen, M; Norman, B E; Nyanin, A S; Nystrand, J; O'Brien, E; Oda, S X; Ogilvie, C A; Ohnishi, H; Ojha, I D; Okada, H; Okada, K; Oka, M; Omiwade, O O; Oskarsson, A; Otterlund, I; Ouchida, M; Oyama, K; Ozawa, K; Pak, R; Pal, D; Palounek, A P T; Pantuev, V; Papavassiliou, V; Park, J; Park, W J; Pate, S F; Pei, H; Penev, V; Peng, J-C; Pereira, H; Peresedov, V; Peressounko, D Yu; Pierson, A; Pinkenburg, C; Pisani, R P; Purschke, M L; Purwar, A K; Qualls, J M; Qu, H; Rak, J; Rakotozafindrabe, A; Ravinovich, I; Read, K F; Rembeczki, S; Reuter, M; Reygers, K; Riabov, V; Riabov, Y; Roche, G; Romana, A; Rosati, M; Rosendahl, S S E; Rosnet, P; Rukoyatkin, P; Rykov, V L; Ryu, S S; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakai, S; Sakata, H; Samsonov, V; Sanfratello, L; Santo, R; Sato, H D; Sato, S; Sawada, S; Schutz, Y; Seele, J; Seidl, R; Semenov, V; Seto, R; Sharma, D; Shea, T K; Shein, I; Shevel, A; Shibata, T-A; Shigaki, K; Shimomura, M; Shohjoh, T; Shoji, K; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, C P; Singh, V; Skutnik, S; Slunecka, M; Smith, W C; Soldatov, A; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Staley, F; Stankus, P W; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Suire, C; Sullivan, J P; Sziklai, J; Tabaru, T; Takagi, S; Takagui, E M; Taketani, A; Tanaka, K H; Tanaka, Y; Tanida, K; Tannenbaum, M J; Taranenko, A; Tarján, P; Thomas, T L; Togawa, M; Toia, A; Tojo, J; Tomásek, L; Torii, H; Towell, R S; Tram, V-N; Tserruya, I; Tsuchimoto, Y; Tuli, S K; Tydesjö, H; Tyurin, N; Uam, T J; Vale, C; Valle, H; vanHecke, H W; Velkovska, J; Velkovsky, M; Vertesi, R; Veszprémi, V; Vinogradov, A A; Virius, M; Volkov, M A; Vrba, V; Vznuzdaev, E; Wagner, M; Walker, D; Wang, X R; Watanabe, Y; Wessels, J; White, S N; Willis, N; Winter, D; Wohn, F K; Woody, C L; Wysocki, M; Xie, W; Yamaguchi, Y L; Yanovich, A; Yasin, Z; Ying, J; Yokkaichi, S; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zaudtke, O; Zhang, C; Zhou, S; Zimányi, J; Zolin, L; Zong, X

    2007-06-08

    We present azimuthal angle correlations of intermediate transverse momentum (1-4 GeV/c) hadrons from dijets in Cu+Cu and Au+Au collisions at square root sNN=62.4 and 200 GeV. The away-side dijet induced azimuthal correlation is broadened, non-Gaussian, and peaked away from Delta phi=pi in central and semicentral collisions in all the systems. The broadening and peak location are found to depend upon the number of participants in the collision, but not on the collision energy or beam nuclei. These results are consistent with sound or shock wave models, but pose challenges to Cherenkov gluon radiation models.

  12. Homologous pairing and the role of pairing centers in meiosis.

    PubMed

    Tsai, Jui-He; McKee, Bruce D

    2011-06-15

    Homologous pairing establishes the foundation for accurate reductional segregation during meiosis I in sexual organisms. This Commentary summarizes recent progress in our understanding of homologous pairing in meiosis, and will focus on the characteristics and mechanisms of specialized chromosome sites, called pairing centers (PCs), in Caenorhabditis elegans and Drosophila melanogaster. In C. elegans, each chromosome contains a single PC that stabilizes chromosome pairing and initiates synapsis of homologous chromosomes. Specific zinc-finger proteins recruited to PCs link chromosomes to nuclear envelope proteins--and through them to the microtubule cytoskeleton--thereby stimulating chromosome movements in early prophase, which are thought to be important for homolog sorting. This mechanism appears to be a variant of the 'telomere bouquet' process, in which telomeres cluster on the nuclear envelope, connect chromosomes through nuclear envelope proteins to the cytoskeleton and lead chromosome movements that promote homologous synapsis. In Drosophila males, which undergo meiosis without recombination, pairing of the largely non-homologous X and Y chromosomes occurs at specific repetitive sequences in the ribosomal DNA. Although no other clear examples of PC-based pairing mechanisms have been described, there is evidence for special roles of telomeres and centromeres in aspects of chromosome pairing, synapsis and segregation; these roles are in some cases similar to those of PCs.

  13. Nuclear pairing reduction due to rotation and blocking

    SciTech Connect

    Wu, X.; Zhang, Z. H.; Zeng, J. Y.; Lei, Y. A.

    2011-03-15

    Nuclear pairing gaps of normally deformed and superdeformed nuclei are investigated using the particle-number-conserving (PNC) formalism for the cranked shell model, in which the blocking effects are treated exactly. Both rotational frequency {omega} dependence and seniority (number of unpaired particles) {nu} dependence of the pairing gap {Delta}-tilde are investigated. For the ground-state bands of even-even nuclei, PNC calculations show that, in general, {Delta}-tilde decreases with increasing {omega}, but the {omega} dependence is much weaker than that calculated by the number-projected Hartree-Fock-Bogolyubov approach. For the multiquasiparticle bands (seniority {nu}>2), the pairing gaps stay almost {omega} independent. As a function of the seniority {nu}, the bandhead pairing gaps {Delta}-tilde({nu},{omega}=0) decrease slowly with increasing {nu}. Even for the highest seniority {nu} bands identified so far, {Delta}-tilde({nu},{omega}=0) remains greater than 70% of {Delta}-tilde({nu}=0,{omega}=0).

  14. Chiral loops in the isospin violating decays of Ds 1(2460 )+ and Ds0*(2317)+

    NASA Astrophysics Data System (ADS)

    Fajfer, Svjetlana; Brdnik, A. Prapotnik

    2015-10-01

    Positive parity meson states Ds0 *(2317 )+and Ds 1(2460 )+havemasses slightly below the D K threshold. Both states can strongly decay only into isospin violating decays Ds 1(2460 )+→Ds+ππ , Ds 1(2460 )+→Ds*+π0, and Ds0 *(2317 )+→Ds+π0.The π states have rather small energies, which makes these decays appropriate to study within heavy meson chiral perturbation theory and to calculate loop contributions. The Ds 1(2460 )+→Ds+ππ decays occur only at the loop level. Amplitude is a result of chiral loop contributions, which then have to be finite. However, in the case of Ds 1(2460 )+→Ds*+π0 and Ds0 *(2317 )+→Ds+π0decays, there is a tree-level contribution. We find that chiral loop contributions might be important in both cases. The calculated amplitudes are sensitive on the coupling constant describing the interaction of positive and negative parity heavy meson multiplets with the light pseudoscalars. The counterterm contributions are also present in the amplitudes Ds 1(2460 )+→Ds*+π0 and Ds0 *(2317 )+→Ds+π0.We explore an experimentally known ratio of the decay widths for these two decay modes to estimate the size of counterterm contributions. We determine decay widths for both decay modes to be Γ (Ds 1(2460 )+→Ds+π+π-)≃0.25keV and Γ (Ds 1(2460 )+→Ds+π0π0)≃0.15 keV .

  15. First observation of the isospin violating decay J/ψ→ΛΣ̄⁰+c.c.

    DOE PAGES

    Ablikim, M.; Achasov, M. N.; Ambrose, D. J.; ...

    2012-08-15

    Using a sample of (225.2±2.8)×10⁶ J/ψ events collected with the BESIII detector, we present results of a study of J/ψ→γΛΛ¯¯¯ and report the first observation of the isospin violating decay J/ψ→ΛΣ¯¯¯⁰+c.c., in which Σ¯¯¯⁰ decays to γΛ¯¯¯. The measured branching fractions are B(J/ψ→Λ¯¯¯Σ⁰)=(1.46±0.11±0.12)×10⁻⁵ and B(J/ψ→ΛΣ¯¯¯⁰)=(1.37±0.12±0.11)×10⁻⁵. We search for Λ(1520)→γΛ decay, and find no evident signal, and an upper limit for the product branching fraction B(J/ψ→ΛΛ¯¯¯(1520)+c.c.)×B(Λ(1520)→γΛ)<4.1×10⁻⁶ is set at the 90% confidence level. We also report the observation of ηc→ΛΛ¯¯¯ in J/ψ→γηc, ηc→ΛΛ¯¯¯ and measure the branching fraction B(ηc→ΛΛ¯¯¯)=(1.16±0.12(stat)±0.19(syst)±0.28(PDG))×10⁻³.

  16. Proceedings of the workshop on the production and use of intense radioactive beams at the Isospin Laboratory

    SciTech Connect

    Garrett, J.D.

    1992-12-31

    These proceedings report the deliberations of a 3 1/2 day workshop on the Production and Use of Intense Radioactive Ion Beams at the Isospin Laboratory, which was held at the Joint Institute for Heavy Ion Research in Oak Ridge, Tennessee, October 1992. The purpose of this workshop was not to duplicate the programs of other recent radioactive ion beam workshops or international conferences that have focused on the scientific concepts which radioactive beams can, and in fact already are, addressing. Instead, the intent was to address the technical problems associated with the construction of the next generation ISOL facility and to initiate a discussion of the type of experimental equipment that should be developed for such a facility. We have tried to bring together in Oak Ridge the world`s experts in radioactive targets/ion sources, light and heavy-ion accelerators, and detection systems. After 1 1/2 days of overview presentations, the participants divided into three discussion groups (Experiments with Radioactive Beams, Target Ion Sources and Mass Separation, and Accelerators-Primary and Secondary) for 1 1/2 days of detailed discussions of the most pertinent issues. The final session was devoted to reports from each of the discussion groups and a general discussion of where to go from here. An outgrowth of these discussions was the establishment of working groups to coordinate future technical developments associated with the pertinent issues. The proceedings include the text of all the overview presentations, reports from each discussion group, as well as contributions from those participants who chose to provide the text of their presentations in the discussion groups and the Concluding Remarks. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  17. Base pairing and base mis-pairing in nucleic acids

    NASA Technical Reports Server (NTRS)

    Wang, A. H. J.; Rich, A.

    1986-01-01

    In recent years we have learned that DNA is conformationally active. It can exist in a number of different stable conformations including both right-handed and left-handed forms. Using single crystal X-ray diffraction analysis we are able to discover not only additional conformations of the nucleic acids but also different types of hydrogen bonded base-base interactions. Although Watson-Crick base pairings are the predominant type of interaction in double helical DNA, they are not the only types. Recently, we have been able to examine mismatching of guanine-thymine base pairs in left-handed Z-DNA at atomic resolution (1A). A minimum amount of distortion of the sugar phosphate backbone is found in the G x T pairing in which the bases are held together by two hydrogen bonds in the wobble pairing interaction. Because of the high resolution of the analysis we can visualize water molecules which fill in to accommodate the other hydrogen bonding positions in the bases which are not used in the base-base interactions. Studies on other DNA oligomers have revealed that other types of non-Watson-Crick hydrogen bonding interactions can occur. In the structure of a DNA octamer with the sequence d(GCGTACGC) complexed to an antibiotic triostin A, it was found that the two central AT base pairs are held together by Hoogsteen rather than Watson-Crick base pairs. Similarly, the G x C base pairs at the ends are also Hoogsteen rather than Watson-Crick pairing. Hoogsteen base pairs make a modified helix which is distinct from the Watson-Crick double helix.

  18. Regimes of Pulsar Pair Formation and Particle Energetics

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; Muslimov, Alexander G.; Zhang, Bing; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We investigate the conditions required for the production of electron-positron pairs above a pulsar polar cap (PC) and the influence of pair production on the energetics of the primary particle acceleration. Assuming space-charge limited flow acceleration including the inertial frame-dragging effect, we allow both one-photon and two-photon pair production by either curvature radiation (CR) photons or photons resulting from inverse-Compton scattering of thermal photons from the PC by primary electrons. We find that,, while only the younger pulsars can produce pairs through CR, nearly all known radio pulsars are capable of producing pairs through non-resonant inverse-Compton scatterings. The effect of the neutron star equations of state on the pair death lines is explored. We show that pair production is facilitated in more compact stars and more a massive stars. Therefore accretion of mass by pulsars in binary systems may allow pair production in most of the millisecond purser population. We also find that two-photon pair production may be important in millisecond pursers if their surface temperatures are above approx. or equal to three million degrees K. Pursers that produce pairs through CRT wilt have their primary acceleration limited by the effect of screening of the electric field. In this regime, the high-energy luminosity should follow a L(sub HE) proportional to dot-E(sup 1/2, sub rot) dependence. The acceleration voltage drop in pursers that produce pairs only through inverse-Compton emission will not be limited by electric field screening. In this regime, the high-energy luminosity should follow a L(sub HE) proportional to dot-E(sub rot) dependence. Thus, older pursers will have significantly lower gamma-ray luminosity.

  19. Pairing in half-filled Landau level

    NASA Astrophysics Data System (ADS)

    Wang, Zhiqiang; Mandal, Ipsita; Chung, Suk Bum; Chakravarty, Sudip

    2015-03-01

    Pairing of composite fermions in half-filled Landau level state is reexamined by solving the BCS gap equation with full frequency dependent current-current interactions. Our results show that there can be a continuous transition from the Halperin-Lee-Read state to a chiral odd angular momentum Cooper pair state for short-range contact interaction. This is at odds with the previously established conclusion of first order pairing transition, in which the low frequency effective interaction was assumed for the entire frequency range. We find that even if the low frequency effective interaction is repulsive, it is compensated by the high frequency regime, which is attractive. We construct the phase diagrams and show that l = 1 angular momentum channel is quite different from higher angular momentum channel l >= 3 . Remarkably, the full frequency dependent analysis applied to the bilayer Hall system with a total filling fraction ν =1/2 +1/2 is quantitatively changed from the previously established results but not qualitatively. This work was supported by US NSF under the Grant DMR-1004520, the funds from the David S. Saxon Presidential Chair at UCLA(37952), and by the Institute for Basic Science in Korea through the Young Scientist grant (5199-2014003).

  20. Pairing in half-filled Landau level

    SciTech Connect

    Wang, Zhiqiang; Mandal, Ipsita; Chung, Suk Bum; Chakravarty, Sudip

    2014-12-15

    Pairing of composite fermions in half-filled Landau level state is reexamined by solving the BCS gap equation with full frequency dependent current–current interactions. Our results show that there can be a continuous transition from the Halperin–Lee–Read state to a chiral odd angular momentum Cooper pair state for short-range contact interaction. This is at odds with the previously established conclusion of first order pairing transition, in which the low frequency effective interaction was assumed for the entire frequency range. We find that even if the low frequency effective interaction is repulsive, it is compensated by the high frequency regime, which is attractive. We construct the phase diagrams and show that ℓ=1 angular momentum channel is quite different from higher angular momenta ℓ≥3. Remarkably, the full frequency dependent analysis applied to the bilayer Hall system with a total filling fraction ν=1/2 +1/2 is quantitatively changed from the previously established results but not qualitatively.

  1. Heterospecific pairing and hybridization between Nasutitermes corniger and N. ephratae

    NASA Astrophysics Data System (ADS)

    Hartke, Tamara R.; Rosengaus, Rebeca B.

    2011-09-01

    The sympatric neotropical termites Nasutitermes corniger and Nasutitermes ephratae are clearly distinguishable based on morphology, nest architecture, defensive secretion composition, and molecular markers. However, given the extensive ecological, geographical, and behavioral overlap of these closely related species, the potential for interbreeding may exist. To explore this possibility, heterospecific pairs were formed experimentally to examine courtship and colony-establishment behaviors, and reproductive potential. Courtship and nest construction behavior occurred in heterospecific pairs in a similar manner to that of conspecific pairs. Survival of pairs depended upon the species of the female partner. N. ephratae females paired with N. corniger males produced as many offspring as conspecific pairs. N. corniger females mated to N. ephratae males, however, produced significantly fewer offspring at 60 days post-establishment than the reciprocal cross or conspecific N. ephratae or N. corniger pairs. This was also the only pairing in which any aggression was observed. Heterospecific pairs and groups formed in mate choice mesocosms, suggesting that species recognition between these two termites is not an important aspect of mate choice. Overall, species mismatch tolerance and hybrid offspring viability are high. The present data, together with previous evidence from defensive secretions and isozyme analysis, suggest that hybridization may periodically occur in nature, and that reproductive barriers between these two species may be incomplete. Hybridization could provide a rare but important source of genetic diversity and may ensure mating opportunities for the more abundant sex of alates in each species.

  2. Pairing smoking-cessation services with lung cancer screening: A clinical guideline from the Association for the Treatment of Tobacco Use and Dependence and the Society for Research on Nicotine and Tobacco.

    PubMed

    Fucito, Lisa M; Czabafy, Sharon; Hendricks, Peter S; Kotsen, Chris; Richardson, Donna; Toll, Benjamin A

    2016-04-15

    Smoking cessation is crucial for reducing cancer risk and premature mortality. The US Preventive Services Task Force (USPSTF) has recommended annual lung cancer screening with low-dose computed tomography (LDCT), and the Center for Medicare and Medicaid Services recently approved lung screening as a benefit for patients ages 55 to 77 years who have a 30 pack-year history. The Society for Research on Nicotine and Tobacco (SRNT) and the Association for the Treatment of Tobacco Use and Dependence (ATTUD) developed the guideline described in this commentary based on an illustrative literature review to present the evidence for smoking-cessation health benefits in this high-risk group and to provide clinical recommendations for integrating evidence-based smoking-cessation treatment with lung cancer screening. Unfortunately, extant data on lung cancer screening participants were scarce at the time this guideline was written. However, in this review, the authors summarize the sufficient evidence on the benefits of smoking cessation and the efficacy of smoking-cessation interventions for smokers ages 55 to 77 years to provide smoking-cessation interventions for smokers who seek lung cancer screening. It is concluded that smokers who present for lung cancer screening should be encouraged to quit smoking at each visit. Access to evidence-based smoking-cessation interventions should be provided to all smokers regardless of scan results, and motivation to quit should not be a necessary precondition for treatment. Follow-up contacts to support smoking-cessation efforts should be arranged for smokers. Evidence-based behavioral strategies should be used at each visit to motivate smokers who are unwilling to try quitting/reducing smoking or to try evidence-based treatments that may lead to eventual cessation.

  3. Pairing Correlations at High Spins

    NASA Astrophysics Data System (ADS)

    Ma, Hai-Liang; Dong, Bao-Guo; Zhang, Yan; Fan, Ping; Yuan, Da-Qing; Zhu, Shen-Yun; Zhang, Huan-Qiao; Petrache, C. M.; Ragnarsson, I.; Carlsson, B. G.

    The pairing correcting energies at high spins in 161Lu and 138Nd are studied by comparing the results of the cranked-Nilsson-Strutinsky (CNS) and cranked-Nilsson-Strutinsky-Bogoliubov (CNSB) models. It is concluded that the Coriolis effect rather than the rotational alignment effect plays a major role in the reduction of the pairing correlations in the high spin region. Then we proposed an average pairing correction method which not only better reproduces the experimental data comparing with the CNS model but also enables a clean-cut tracing of the configurations thus the full-spin-range discussion on the various rotating bands.

  4. Pairing correlations in high-spin isomers

    SciTech Connect

    Odahara, A.; Gono, Y.; Fukuchi, T.; Wakabayashi, Y.; Sagawa, H.; Satula, W.; Nazarewicz, W.

    2005-12-15

    High-spin isomers with J{sup {pi}}=49/2{sup +} and 27{sup +} have been systematically observed in a number of N=83 isotones with 60{<=}Z{<=}67 at excitation energies {approx}9 MeV. Based on experimental excitation energies, an odd-even binding energy staggering has been extracted for the first time for these multi-quasiparticle states. Surprisingly, the magnitude of the odd-even effect in high-spin isomers turned out to be very close to that in ground states, thus challenging conventional wisdom that pairing correlations are reduced in highly excited states. Theoretical analysis based on mean-field theory explains the observed proton number dependence of the odd-even effect as a manifestation of strong pairing correlations in the highly excited states. Mean-field effects and the proton-neutron residual interaction on the odd-even staggering are also examined.

  5. Isospin breaking and f0(980)-a0(980) mixing in the η(1405) → π0f0(980) reaction

    NASA Astrophysics Data System (ADS)

    Aceti, F.; Liang, W. H.; Oset, E.; Wu, J. J.; Zou, B. S.

    2014-06-01

    We make a theoretical study of the η(1405) → π0f0(980) and η(1405) → π0a0(980) reactions to determine the isospin violation and the mixing of the f0(980) and a0(980) resonances. We make use of the chiral unitary approach where these two resonances appear as dynamically generated by the meson-meson interaction provided by chiral Lagrangians. We obtain a very narrow shape for the f0(980) production in agreement with a BES experiment. As to the amount of isospin violation, assuming constant vertices for the primary η(1405) → π0KK̅ and η(1405) → π0π0η production, we find results which are much smaller than found in the experimental BES paper. The problem is solved by using the primary production driven by η' → K*K̅ followed by K∗→ Kπ. Thus, we can predict absolute values for the ratio Γ(π0,π+π-)/Γ(π0,π0η) which are in fair agreement with experiment.

  6. ON THE POLAR CAP CASCADE PAIR MULTIPLICITY OF YOUNG PULSARS

    SciTech Connect

    Timokhin, A. N.; Harding, A. K.

    2015-09-10

    We study the efficiency of pair production in polar caps of young pulsars under a variety of conditions to estimate the maximum possible multiplicity of pair plasma in pulsar magnetospheres. We develop a semi-analytic model for calculation of cascade multiplicity which allows efficient exploration of the parameter space and corroborate it with direct numerical simulations. Pair creation processes are considered separately from particle acceleration in order to assess different factors affecting cascade efficiency, with acceleration of primary particles described by recent self-consistent non-stationary model of pair cascades. We argue that the most efficient cascades operate in the curvature radiation/synchrotron regime, the maximum multiplicity of pair plasma in pulsar magnetospheres is ∼few × 10{sup 5}. The multiplicity of pair plasma in magnetospheres of young energetic pulsars weakly depends on the strength of the magnetic field and the radius of curvature of magnetic field lines and has a stronger dependence on pulsar inclination angle. This result questions assumptions about very high pair plasma multiplicity in theories of pulsar wind nebulae.

  7. Pairing-induced speedup of nuclear spontaneous fission

    SciTech Connect

    Sadhukhan, Jhilam; Dobaczewski, J.; Nazarewicz, W.; Sheikh, J. A.; Baran, A.

    2014-12-22

    Collective inertia is strongly influenced at the level crossing at which the quantum system changes its microscopic configuration diabatically. Pairing correlations tend to make the large-amplitude nuclear collective motion more adiabatic by reducing the effect of these configuration changes. Competition between pairing and level crossing is thus expected to have a profound impact on spontaneous fission lifetimes. To elucidate the role of nucleonic pairing on spontaneous fission, we study the dynamic fission trajectories of 264Fm and 240Pu using the state-of-the-art self-consistent framework. We employ the superfluid nuclear density functional theory with the Skyrme energy density functional SkM* and a density-dependent pairing interaction. Along with shape variables, proton and neutron pairing correlations are taken as collective coordinates. The collective inertia tensor is calculated within the nonperturbative cranking approximation. The fission paths are obtained by using the least action principle in a four-dimensional collective space of shape and pairing coordinates. Pairing correlations are enhanced along the minimum-action fission path. For the symmetric fission of 264Fm, where the effect of triaxiality on the fission barrier is large, the geometry of the fission pathway in the space of the shape degrees of freedom is weakly impacted by pairing. This is not the case for 240Pu, where pairing fluctuations restore the axial symmetry of the dynamic fission trajectory. The minimum-action fission path is strongly impacted by nucleonic pairing. In some cases, the dynamical coupling between shape and pairing degrees of freedom can lead to a dramatic departure from the static picture. As a result, in the dynamical description of nuclear fission, particle-particle correlations should be considered on the same footing as those associated with shape degrees of freedom.

  8. Superconductivity: The persistence of pairs

    SciTech Connect

    Edelman, Alex; Littlewood, Peter

    2015-05-20

    Superconductivity stems from a weak attraction between electrons that causes them to form bound pairs and behave much like bosons. These so-called Cooper pairs are phase coherent, which leads to the astonishing properties of zero electrical resistance and magnetic flux expulsion typical of superconducting materials. This coherent state may be qualitatively understood within the Bose–Einstein condensate (BEC) model, which predicts that a gas of interacting bosons will become unstable below a critical temperature and condense into a phase of matter with a macroscopic, coherent population in the lowest energy state, as happens in 4He or cold atomic gases. The successful theory proposed by Bardeen, Cooper and Schrieffer (BCS) predicts that at the superconducting transition temperature Tc, electrons simultaneously form pairs and condense, with no sign of pairing above Tc. Theorists have long surmised that the BCS and BEC models are opposite limits of a single theory and that strong interactions or low density can, in principle, drive the system to a paired state at a temperature Tpair higher than Tc, making the transition to the superconducting state BEC-like (Fig. 1). Yet most superconductors to date are reasonably well described by BCS theory or its extensions, and there has been scant evidence in electronic materials for the existence of pairing independent of the full superconducting state (though an active debate rages over the cuprate superconductors). Writing in Nature, Jeremy Levy and colleagues have now used ingenious nanostructured devices to provide evidence for electron pairing1. Perhaps surprisingly, the material they have studied is a venerable, yet enigmatic, low-temperature superconductor, SrTiO3.

  9. Holographic pair and charge density waves

    NASA Astrophysics Data System (ADS)

    Cremonini, Sera; Li, Li; Ren, Jie

    2017-02-01

    We examine a holographic model in which a U (1 ) symmetry and translational invariance are broken spontaneously at the same time. Our construction provides an example of a system with pair-density wave order, in which the superconducting order parameter is spatially modulated but has a zero average. In addition, the charge density oscillates at twice the frequency of the scalar condensate. Depending on the choice of parameters, the model also admits a state with coexisting superconducting and charge-density wave orders, in which the scalar condensate has a uniform component.

  10. Slepton Pair Production at Hadron Colliders

    NASA Astrophysics Data System (ADS)

    Fuks, B.

    2007-04-01

    In R-parity conserving supersymmetric models, sleptons are produced in pairs at hadron colliders. We show that measurements of the longitudinal single-spin asymmetry at possible polarization upgrades of existing colliders allow for a direct extraction of the slepton mixing angle. A calculation of the transverse-momentum spectrum shows the importance of resummed contributions at next-to-leading logarithmic accuracy in the small and intermediate transverse-momentum regions and little dependence on unphysical scales and non-perturbative contributions.

  11. Cooper pairs spintronics in triplet spin valves.

    PubMed

    Romeo, F; Citro, R

    2013-11-27

    We study a spin valve with a triplet superconductor spacer intercalated between two ferromagnets with noncollinear magnetizations. We show that the magnetoresistance of the triplet spin valve depends on the relative orientations of the d vector, characterizing the superconducting order parameter, and the magnetization directions of the ferromagnetic layers. For devices characterized by a long superconductor, the effects of a polarized current sustained by Cooper pairs only are observed. In this regime, a supermagnetoresistance effect emerges, and the chiral symmetry of the order parameter of the superconducting spacer is easily recognized. Our findings open new perspectives in designing spintronics devices based on the cooperation of ferromagnetic and triplet correlations.

  12. Imidazolium salt ion pairs in solution.

    PubMed

    Stassen, Hubert K; Ludwig, Ralf; Wulf, Alexander; Dupont, Jairton

    2015-06-01

    The formation, stabilisation and reactivity of contact ion pairs of non-protic imidazolium ionic liquids (ILs) in solution are conceptualized in light of selected experimental evidence as well theoretical calculations reported mainly in the last ten years. Electric conductivity, NMR, ESI-MS and IR data as well as theoretical calculations support not only the formation of contact ion pairs in solution, but also the presence of larger ionic and neutral aggregates even when dissolved in solvents with relatively high dielectric constants, such as acetonitrile and DMSO. The presence of larger imidazolium supramolecular aggregates is favoured at higher salt concentrations in solvents of low dielectric constant for ILs that contain shorter N-alkyl side chains associated with anions of low coordination ability. The stability and reactivity of neutral contact species are also dependent on the nature of the anion, imidazolium substituents, and are more abundant in ILs containing strong coordinating anions, in particular those that can form charge transfer complexes with the imidazolium cation. Finally, some ILs display reactivities as contact ion pairs rather than solvent-separated ions.

  13. Pair extended coupled cluster doubles

    SciTech Connect

    Henderson, Thomas M.; Scuseria, Gustavo E.; Bulik, Ireneusz W.

    2015-06-07

    The accurate and efficient description of strongly correlated systems remains an important challenge for computational methods. Doubly occupied configuration interaction (DOCI), in which all electrons are paired and no correlations which break these pairs are permitted, can in many cases provide an accurate account of strong correlations, albeit at combinatorial computational cost. Recently, there has been significant interest in a method we refer to as pair coupled cluster doubles (pCCD), a variant of coupled cluster doubles in which the electrons are paired. This is simply because pCCD provides energies nearly identical to those of DOCI, but at mean-field computational cost (disregarding the cost of the two-electron integral transformation). Here, we introduce the more complete pair extended coupled cluster doubles (pECCD) approach which, like pCCD, has mean-field cost and reproduces DOCI energetically. We show that unlike pCCD, pECCD also reproduces the DOCI wave function with high accuracy. Moreover, pECCD yields sensible albeit inexact results even for attractive interactions where pCCD breaks down.

  14. Pair-Starved Pulsar Magnetospheres

    NASA Technical Reports Server (NTRS)

    Muslimov, Alex G.; Harding, Alice K.

    2009-01-01

    We propose a simple analytic model for the innermost (within the light cylinder of canonical radius, approx. c/Omega) structure of open-magnetic-field lines of a rotating neutron star (NS) with relativistic outflow of charged particles (electrons/positrons) and arbitrary angle between the NS spin and magnetic axes. We present the self-consistent solution of Maxwell's equations for the magnetic field and electric current in the pair-starved regime where the density of electron-positron plasma generated above the pulsar polar cap is not sufficient to completely screen the accelerating electric field and thus establish thee E . B = 0 condition above the pair-formation front up to the very high altitudes within the light cylinder. The proposed mode1 may provide a theoretical framework for developing the refined model of the global pair-starved pulsar magnetosphere.

  15. Invisibly Sanitizable Signature without Pairings

    NASA Astrophysics Data System (ADS)

    Yum, Dae Hyun; Lee, Pil Joong

    Sanitizable signatures allow sanitizers to delete some pre-determined parts of a signed document without invalidating the signature. While ordinary sanitizable signatures allow verifiers to know how many subdocuments have been sanitized, invisibly sanitizable signatures do not leave any clue to the sanitized subdocuments; verifiers do not know whether or not sanitizing has been performed. Previous invisibly sanitizable signature scheme was constructed based on aggregate signature with pairings. In this article, we present the first invisibly sanitizable signature without using pairings. Our proposed scheme is secure under the RSA assumption.

  16. Missing energies at pair creation

    NASA Technical Reports Server (NTRS)

    El-Ela, A. A.; Hassan, S.; Bagge, E. R.

    1985-01-01

    Wilson cloud chamber measurements of the separated spectra of positrons and electrons produced by gamma quanta of 6.14 MeV differ considerably from the theoretically predicted spectra by BETHE and HEITLER, but are in good agreement with those of a modified theory of pair creation.

  17. Pairing Linguistic and Music Intelligences

    ERIC Educational Resources Information Center

    DiEdwardo, MaryAnn Pasda

    2005-01-01

    This article describes how music in the language classroom setting can be a catalyst for developing reading, writing, and understanding skills. Studies suggest that pairing music and linguistic intelligences in the college classroom improves students' grades and abilities to compose theses statements for research papers in courses that emphasize…

  18. Pick a Pair. Being Bony

    ERIC Educational Resources Information Center

    Miller, Pat

    2004-01-01

    This column suggests pairings of fiction and nonfiction books to meet curricular needs and help students to compare/contrast the texts as they may be asked on state tests. The author of this paper focuses on activities surrounding Halloween. Since many schools are discouraged from teaching about Halloween, this can be a great time to investigate…

  19. Investigation of the Isospin Response of the (4) Helium Continuum Using the HELIUM-4(PROTON, Proton'x) Reaction at T(p) = 100 Mev

    NASA Astrophysics Data System (ADS)

    Raue, Brian A.

    1993-01-01

    The principle of charge symmetry (CS) implies invariance of the strong interaction under 180 ^circ rotations in isospin space. The study of charge symmetric, proton and neutron decays from the giant dipole resonance (GDR) of ^4He (25<= E_{x}<= 35 MeV) is one way to probe the validity of CS. If CS is valid, then one would expect nearly equal charge -symmetric decay rates with small deviations due to the Coulomb interaction. An evaluation of photoabsorption measurements concluded that R_gamma= sigma(gamma,p)/sigma(gamma,n) was large indicating sizable isospin mixing in the ^4He GDR and suggested the possibility of a large CS violating component in the strong interaction. However, data used in that evaluation are in disagreement and recent experiments continue to give inconsistent values for R _gamma. Other experiments intended to provided complementary information are generally consistent with minimal isospin mixing in the ^4He GDR but questions have arisen regarding their ability to address the problem. This experiment addresses the issue of CS by measuring charge symmetric ^3H and ^3He decays of the ^4He continuum excited by proton inelastic scattering. The experiment was designed to reduce most of the systematic errors associated with Rgamma by detecting the ^4He^ star charge symmetric decay particles with the same apparatus. Angular correlation functions (ACF) have been measured concurrent with (p,p^ ') cross sections for proton scattering angles of theta_sp{p}{lab } = 24, 30 and 35^circ in order to identify the multipolarities excited by the reaction. A unique target/detector apparatus was developed to detect low-energy ions from ^4 He^star decay over a broad angle range. Analysis of the ^4He(p,p ^' t) ACF provides evidence that predominately Delta L = 1 transitions have been excited in the GDR region. This analysis cannot uniquely identify the J^pi of ^4He^star resonances. A fit to the ^4He( p,p^' t) integrated cross section using resonance lineshapes from a

  20. A program for generating one-particle and two-particle coefficients of fractional parentage for the single j-orbit with isospin

    NASA Astrophysics Data System (ADS)

    Deveikis, A.

    2005-12-01

    The program CFPjOrbit written in FORTRAN 90 is aimed at generating the list of one-particle and two-particle coefficients of fractional parentage (CFPs) for the single j-orbit with isospin. The approach is based on a simple enumeration scheme for antisymmetric A-particle states and an efficient method for constructing the eigenvectors of an idempotent matrix as proposed in [A. Deveikis, R.K. Kalinauskas, B.R. Barrett, Ann. Phys. 296 (2002) 287]. The program provides fast calculation of coefficients of fractional parentage for high j-orbits with isospin and produces results that have only small numerical uncertainties. The auxiliary program EnumCFP allows one to perform enumeration of the coefficients. Program summaryTitle of program:CFPjOrbit, EnumCFP Catalogue identifier:ADWI Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWI Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions:none Computers:Any computer with a FORTRAN 90 compiler Operating systems under which the program has been tested:Windows 2000 Programming language used:FORTRAN 90 Memory required to execute with typical data:100 MB No. of lines in programs, including test data, etc.:4855 No. of bytes in distributed programs, including test data, etc.:26 484 Distribution format:tar.gz Nature of the physical problem:Generating the list of one-particle and two-particle coefficients of fractional parentage for the single j-orbit with isospin. Method of solution:The method is based on the algorithm presented in [A. Deveikis, R.K. Kalinauskas, B.R. Barrett, Ann. Phys. 296 (2002) 287] for the spectral decomposition of an antisymmetrization operator matrix Y. The coefficients of fractional parentage are the eigenvectors of a certain antisymmetrization operator matrix Y that correspond to its unit eigenvalues. Restrictions on the complexity of the problem:The full sets of one-particle and two-particle coefficients of fractional parentage up to the j=9

  1. Quantum and semiclassical Cooper-pair tunneling in finite systems

    NASA Astrophysics Data System (ADS)

    Kleber, M.

    2016-12-01

    We derive analytic solutions for the tunneling dynamics of two weakly coupled finite BCS-condensates. Pairing interaction between the finite-size condensates is taken into account. Using particle-number dependent chemical potentials the time-dependent transfer of Cooper pairs is obtained from a phenomenological calculation. The results of this theory are compared to a microscopic calculation within the quasispin formulation in its semiclassical limit. In both cases the tunneling current can be mapped onto the motion of a simple pendulum: The results are analogous to the Josephson current between two superconductors and can be used as a starting point to include quantum fluctuations and Josephson radiation.

  2. Floquet theory of radical pairs in radiofrequency magnetic fields

    NASA Astrophysics Data System (ADS)

    Hiscock, Hamish G.; Kattnig, Daniel R.; Manolopoulos, David E.; Hore, P. J.

    2016-09-01

    We present a new method for calculating the product yield of a radical pair recombination reaction in the presence of a weak time-dependent magnetic field. This method successfully circumvents the computational difficulties presented by a direct solution of the Liouville-von Neumann equation for a long-lived radical pair containing many hyperfine-coupled nuclear spins. Using a modified formulation of Floquet theory, treating the time-dependent magnetic field as a perturbation, and exploiting the slow radical pair recombination, we show that one can obtain a good approximation to the product yield by considering only nearly degenerate sub-spaces of the Floquet space. Within a significant parameter range, the resulting method is found to give product yields in good agreement with exact quantum mechanical results for a variety of simple model radical pairs. Moreover it is considerably more efficient than the exact calculation, and it can be applied to radical pairs containing significantly more nuclear spins. This promises to open the door to realistic theoretical investigations of the effect of radiofrequency electromagnetic radiation on the photochemically induced radical pair recombination reactions in the avian retina which are believed to be responsible for the magnetic compass sense of migratory birds.

  3. Momentum transfer dependence of generalized parton distributions

    NASA Astrophysics Data System (ADS)

    Sharma, Neetika

    2016-11-01

    We revisit the model for parametrization of the momentum dependence of nucleon generalized parton distributions in the light of recent MRST measurements of parton distribution functions (A.D. Martin et al., Eur. Phys. J. C 63, 189 (2009)). Our parametrization method with a minimum set of free parameters give a sufficiently good description of data for Dirac and Pauli electromagnetic form factors of proton and neutron at small and intermediate values of momentum transfer. We also calculate the GPDs for up- and down-quarks by decomposing the electromagnetic form factors for the nucleon using the charge and isospin symmetry and also study the evolution of GPDs to a higher scale. We further investigate the transverse charge densities for both the unpolarized and transversely polarized nucleon and compare our results with Kelly's distribution.

  4. Pair counting, pion-exchange forces and the structure of light nuclei

    SciTech Connect

    Wiringa, R.B.

    2006-03-15

    A simple but useful guide for understanding the structure of light nuclei is presented. It is based on counting the number of interacting pairs in different spin-isospin (S,T) states for a given spatial symmetry and estimating the overall binding according to the sum of {sigma}{sub i}{center_dot}{sigma}{sub j}{tau}{sub i}{center_dot}{tau}{sub j} expectation values, as suggested by one-pion exchange. Applied to s- and p-shell nuclei, this simple picture accounts for the relative stability of nuclei as A increases and as T changes across isobars, the saturation of nuclear binding in the p shell, and the tendency to form d,t, or {alpha} subclusters there. With allowance for pairwise tensor and spin-orbit forces, which are also generated or boosted by pion exchange, the model explains why mixing of different spatial symmetries in ground states increases as T increases across isobars and why, for states of the same spatial symmetry, the ones with greater S are lower in the spectrum. The ordering of some sd-shell intruder levels can also be understood. The success of this simple model supports the idea that one-pion exchange is the dominant force controlling the structure of light nuclei.

  5. Macroscopic Einstein-Podolsky-Rosen pairs in superconducting circuits

    SciTech Connect

    Wei, L. F.; Liu Yuxi; Storcz, Markus J.; Nori, Franco

    2006-05-15

    We propose an efficient approach to prepare Einstein-Podolsky-Rosen (EPR) pairs in currently existing Josephson nanocircuits with capacitive couplings. In these fixed coupling circuits, two-qubit logic gates could be easily implemented while, strictly speaking, single-qubit gates cannot be easily realized. For a known two-qubit state, conditional single-qubit operation could still be designed to evolve only the selected qubit and keep the other qubit unchanged; the rotation of the selected qubit depends on the state of the other one. These conditional single-qubit operations allow us to deterministically generate the well-known Einstein-Podolsky-Rosen pairs, represented by EPR-Bell (or Bell) states. Quantum-state tomography is further proposed to experimentally confirm the generation of these states. The decays of the prepared EPR pairs are analyzed using numerical simulations. Possible application of the generated EPR pairs to test Bell's Inequality is also discussed.

  6. Topology optimization of compliant mechanisms using pairs of curves

    NASA Astrophysics Data System (ADS)

    Wang, N. F.; Zhang, X. M.

    2015-11-01

    The structural topology optimization approach can be used to generate compliant mechanisms for some desired input-output requirements. The success of the optimization depends on the structural geometry representation scheme used. In this paper, a novel representation scheme is proposed. The representation scheme is characterized by pairs of curves that are used to connect Input/Ouput (I/O) regions of the structure. Each pair of curves includes a normal curve and a fat curve. The areas bounded by the pair of curves define the material distribution between them. All I/O regions are connected to one another (either directly or indirectly) by pairs of curves in order to form one single connected load-bearing structure. A genetic algorithm for constrained and multiobjective optimization is then applied with the representation scheme of the structure in the form of a graph. Simulation results from a displacement inverter and a displacement redirector indicate that the presented representation scheme is appropriate.

  7. Pairing gap in the inner crust of neutron stars

    SciTech Connect

    Esbensen, H.; Broglia, R.A.; Vigezzi, E.; Barranco, F.

    1995-08-01

    The pairing gap in the inner crust of a neutron star can be strongly affected by the presence of heavy nuclei. The effect is commonly estimated in a semiclassical description, using the local density approximation. It was found that the nuclear specific heat can become comparable to the electronic specific heat at certain densities and temperatures. The quantitative result depends critically upon the magnitude of the pairing gap. We therefore decided to assess the validity of the semiclassical approach. This is done by solving the quantal BCS pairing gap equation for neutrons that are confined to the Wigner-Seitz cell that surrounds a heavy nucleus. We performed calculations that are based on the Gogny pairing force. They are feasible for realistic densities of neutrons and heavy nuclei that are expected to be found in the inner crust of neutron stars. The results will be compared to the semiclassical predictions. This work is in progress.

  8. Bosonic pair creation and the Schiff-Snyder-Weinberg effect

    NASA Astrophysics Data System (ADS)

    Lv, Q. Z.; Bauke, Heiko; Su, Q.; Keitel, C. H.; Grobe, R.

    2016-01-01

    Interactions between different bound states in bosonic systems can lead to pair creation. We study this process in detail by solving the Klein-Gordon equation on space-time grids in the framework of time-dependent quantum field theory. By choosing specific external field configurations, two bound states can become pseudodegenerate, which is commonly referred to as the Schiff-Snyder-Weinberg effect. These pseudodegenerate bound states, which have complex energy eigenvalues, are related to the pseudo-Hermiticity of the Klein-Gordon Hamiltonian. In this work, the influence of the Schiff-Snyder-Weinberg effect on pair production is studied. A generalized Schiff-Snyder-Weinberg effect, where several pairs of pseudodegenerate states appear, is found in combined electric and magnetic fields. The generalized Schiff-Snyder-Weinberg effect likewise triggers pair creation. The particle number in these situations obeys an exponential growth law in time enhancing the creation of bosons, which cannot be found in fermionic systems.

  9. Odd-paired controls frequency doubling in Drosophila segmentation by altering the pair-rule gene regulatory network

    PubMed Central

    Clark, Erik; Akam, Michael

    2016-01-01

    The Drosophila embryo transiently exhibits a double-segment periodicity, defined by the expression of seven 'pair-rule' genes, each in a pattern of seven stripes. At gastrulation, interactions between the pair-rule genes lead to frequency doubling and the patterning of 14 parasegment boundaries. In contrast to earlier stages of Drosophila anteroposterior patterning, this transition is not well understood. By carefully analysing the spatiotemporal dynamics of pair-rule gene expression, we demonstrate that frequency-doubling is precipitated by multiple coordinated changes to the network of regulatory interactions between the pair-rule genes. We identify the broadly expressed but temporally patterned transcription factor, Odd-paired (Opa/Zic), as the cause of these changes, and show that the patterning of the even-numbered parasegment boundaries relies on Opa-dependent regulatory interactions. Our findings indicate that the pair-rule gene regulatory network has a temporally modulated topology, permitting the pair-rule genes to play stage-specific patterning roles. DOI: http://dx.doi.org/10.7554/eLife.18215.001 PMID:27525481

  10. The strong isospin-breaking correction for the gluonic penguin contribution to {epsilon}{prime}/{epsilon} at next-to-leading order in the chiral expansion

    SciTech Connect

    Wolfe, Carl E.; Maltman, Kim

    2001-01-01

    The strong isospin-breaking correction {Omega}{sub st}, which appears in estimates of the standard model value for the direct CP-violating ratio {epsilon}{prime}/{epsilon}, is evaluated to next-to-leading order (NLO) in the chiral expansion using chiral perturbation theory. The relevant linear combinations of the unknown NLO CP-odd weak low-energy constants (LEC's) which, in combination with one-loop and strong LEC contributions, are required for a complete determination at this order, are estimated using two different models. It is found that, to NLO, {Omega}{sub st}=0.08{+-}0.05, significantly reduced from the ''standard'' value, 0.25{+-}0.08, employed in recent analyses. The potentially significant numerical impact of this decrease on standard model predictions for {epsilon}{prime}/{epsilon}, associated with the decreased cancellation between gluonic penguin and electroweak penguin contributions, is also discussed.

  11. Time Dependent Nuclear Scattering Calculations

    NASA Astrophysics Data System (ADS)

    Weeks, David

    2005-04-01

    A new time dependent method for calculating scattering matrix elements of two and three body nuclear collisions below 50 Mev is being developed. The procedure closely follows the channel packet method (CPM) used to compute scattering matrix elements for non-adiabatic molecular reactions.ootnotetextT.A.Niday and D.E.Weeks, Chem. Phys. Letters 308 (1999) 106 Currently, one degree of freedom calculations using a simple square well have been completed and a two body scattering calculation using the Yukawa potential is anticipated. To perform nuclear scattering calculations with the CPM that will incorporate the nucleon-nucleon tensor force, we plan to position initial reactant and product channel packets in the asymptotic limit on single coupled potential energy surfaces labeled by the spin, isospin, and total angular momentum of the reactant nucleons. The wave packets will propagated numerically using the split operator method augmented by a coordinate dependant unitary transformation used to diagonalize the potential. Scattering matrix elements will be determined by the Fourier transform of the correlation function between the evolving reactant and product wave packets. A brief outline of the Argonne v18 nucleon-nucleon potentialootnotetextR.B.Wiringa, V.G.J.Stoks, and R.Schiavilla, Physical Review C 51(1995) 38 and the proposed wave packet calculations will be presented.

  12. Study of isospin correlation in high energy S + Pb and Pb + Pb interactions with a magnetic-interferometric-emulsion-chamber. Final report

    SciTech Connect

    Takahashi, Yoshiyuki

    1997-12-12

    This report describes the research results of the study of high energy heavy-ion interactions and multi-cluster correlations at the University of Alabama in Huntsville (UAH). This study has been performed as the CERN experiments, EMU05, EMU09 and EMU16, and a part of the RHIC PHENIX and its MVD Collaboration work. Physics objectives and methods are described in chapters 1, 2, 3 and Appendices A1 and A2. The experimental set-up, measurements, an the data analyses at UAH are described in chapters 4 through 10 and Appendices. The UAH research was a quest for high density state of nuclear matter, in terms of finding analysis methods of multi-isospin correlations. The present work emphasized a study of the fluctuation of the particle density, discriminating the isospin for exploring the Disoriented Chiral Condensate (DCC). The analysis methods developed are: (1) Chi-square density test; (2) Run-test; (3) G-test; (4) Fourier analysis; and (5) Lomb`s Periodogram. The application of these methods for central collision events in 2,000 GeV/n S + Pb and 167 GeV/n Pb + Pb produced interesting DCC correlations for a few events. However, further investigation of fluctuations with Monte Carlo method guided them to understand various hidden degree of freedoms in such analyses. The results of the analysis of the experimental data in comparison with the Monte Carlo data did not support the DCC process as compelling. The developed methods evolved for a plan to investigate the DCC in the PHENIX. The study has obtained several mathematical analysis methods from the CERN EMU05/16 experiments for a possible use in RHIC experiments.

  13. Precision Targeted Mutagenesis via Cas9 Paired Nickases in Rice

    PubMed Central

    Mikami, Masafumi; Toki, Seiichi; Endo, Masaki

    2016-01-01

    Recent reports of CRISPR- (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) mediated heritable mutagenesis in plants highlight the need for accuracy of the mutagenesis directed by this system. Off-target mutations are an important issue when considering functional gene analysis, as well as the molecular breeding of crop plants with large genome size, i.e. with many duplicated genes, and where the whole-genome sequence is still lacking. In mammals, off-target mutations can be suppressed by using Cas9 paired nickases together with paired guide RNAs (gRNAs). However, the performance of Cas9 paired nickases has not yet been fully assessed in plants. Here, we analyzed on- and off-target mutation frequency in rice calli and regenerated plants using Cas9 nuclease or Cas9 nickase with paired gRNAs. When Cas9 paired nickases were used, off-target mutations were fully suppressed in rice calli and regenerated plants. However, on-target mutation frequency also decreased compared with that induced by the Cas9 paired nucleases system. Since the gRNA sequence determines specific binding of Cas9 protein–gRNA ribonucleoproteins at the targeted sequence, the on-target mutation frequency of Cas9 paired nickases depends on the design of paired gRNAs. Our results suggest that a combination of gRNAs that can induce mutations at high efficiency with Cas9 nuclease should be used together with Cas9 nickase. Furthermore, we confirmed that a combination of gRNAs containing a one nucleotide (1 nt) mismatch toward the target sequence could not induce mutations when expressed with Cas9 nickase. Our results clearly show the effectiveness of Cas9 paired nickases in delivering on-target specific mutations. PMID:26936792

  14. High fidelity of base pairing by 2-selenothymidine in DNA.

    PubMed

    Hassan, Abdalla E A; Sheng, Jia; Zhang, Wen; Huang, Zhen

    2010-02-24

    The base pairs are the contributors to the sequence-dependent recognition of nucleic acids, genetic information storage, and high fidelity of DNA polymerase replication. However, the wobble base pairing, where T pairs with G instead of A, reduces specific base-pairing recognition and compromises the high fidelity of the enzymatic polymerization. Via the selenium atomic probing at the 2-position of thymidine, we have investigated the wobble discrimination by manipulating the steric and electronic effects at the 2-exo position, providing a unique chemical strategy to enhance the base pair specificity. We report here the first synthesis of the novel 2-Se-thymidine ((Se)T) derivative, its phosphoramidite, and the Se-DNAs. Our biophysical and structural studies of the 2-Se-T DNAs reveal that the bulky 2-Se atom with a weak hydrogen-bonding ability can largely increase mismatch discriminations (including T/G wobble and T/C mismatched base pairs) while maintaining the (Se)T/A virtually identical to the native T/A base pair. The 2-Se atom bulkiness and the electronic effect are probably the main factors responsible for the discrimination against the formation of the wobble (Se)T/G base pair. Our investigations provide a potential novel tool to investigate the specific recognition of base pairs, which is the basis of high fidelity during replication, transcription, and translation. Furthermore, this Se-atom-specific substitution and probing are useful for X-ray crystal structure and function studies of nucleic acids.

  15. Collisions of Vortex Filament Pairs

    NASA Astrophysics Data System (ADS)

    Banica, Valeria; Faou, Erwan; Miot, Evelyne

    2014-12-01

    We consider the problem of collisions of vortex filaments for a model introduced by Klein et al. (J Fluid Mech 288:201-248, 1995) and Zakharov (Sov Phys Usp 31(7):672-674, 1988, Lect. Notes Phys 536:369-385, 1999) to describe the interaction of almost parallel vortex filaments in three-dimensional fluids. Since the results of Crow (AIAA J 8:2172-2179, 1970) examples of collisions are searched as perturbations of antiparallel translating pairs of filaments, with initial perturbations related to the unstable mode of the linearized problem; most results are numerical calculations. In this article, we first consider a related model for the evolution of pairs of filaments, and we display another type of initial perturbation leading to collision in finite time. Moreover, we give numerical evidence that it also leads to collision through the initial model. We finally study the self-similar solutions of the model.

  16. Asymmetric Ion-Pairing Catalysis

    PubMed Central

    Brak, Katrien

    2014-01-01

    Charged intermediates and reagents are ubiquitous in organic transformations. The interaction of these ionic species with chiral neutral, anionic, or cationic small molecules has emerged as a powerful strategy for catalytic, enantioselective synthesis. This review describes developments in the burgeoning field of asymmetric ion-pairing catalysis with an emphasis on the insights that have been gleaned into the structural and mechanistic features that contribute to high asymmetric induction. PMID:23192886

  17. Septin pairs, a complex choreography.

    PubMed

    Ewers, Helge

    2011-06-13

    Septins form a filamentous collar at the mother-bud neck in budding yeast. In cytokinesis, this collar splits into two rings and the septin complexes undergo a dramatic reorientation. Using fluorescence polarization microscopy, DeMay et al. (2011. J. Cell Biol. doi:10.1083/jcb.201012143) now demonstrate that septin complexes assemble as paired filaments in vivo and reveal new insights into septin organization during cytokinesis.

  18. Technical Note: Computing numerator relationships between any pair of animals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A simple method is described to compute the numerator relationship between any or all pairs of animals in the numerator relationship matrix. The method depends on output of the MTDFNRM program from the MTDFREML set of programs. An option of the MTDFNRM program creates a file including the inbreeding...

  19. Pairing of heterochromatin in response to cellular stress

    SciTech Connect

    Abdel-Halim, H.I.; Mullenders, L.H.F. . E-mail: L.Mullenders@lumc.nl; Boei, J.J.W.A.

    2006-07-01

    We previously reported that exposure of human cells to DNA-damaging agents (X-rays and mitomycin C (MMC)) induces pairing of the homologous paracentromeric heterochromatin of chromosome 9 (9q12-13). Here, we show that UV irradiation and also heat shock treatment of human cells lead to similar effects. Since the various agents induce very different types and frequencies of damage to cellular constituents, the data suggest a general stress response as the underlying mechanism. Moreover, local UV irradiation experiments revealed that pairing of heterochromatin is an event that can be triggered without induction of DNA damage in the heterochromatic sequences. The repair deficient xeroderma pigmentosum cells (group F) previously shown to fail pairing after MMC displayed elevated pairing after heat shock treatment but not after UV exposure. Taken together, the present results indicate that pairing of heterochromatin following exposure to DNA-damaging agents is initiated by a general stress response and that the sensing of stress or the maintenance of the paired status of the heterochromatin might be dependent on DNA repair.

  20. Phenomenology of transionospheric pulse pairs

    NASA Astrophysics Data System (ADS)

    Massey, R. S.; Holden, D. N.

    1995-09-01

    Recent observations of transient radio impulses by an Earth-orbiting satellite appear to be quite unlike any previously reported. They appear as pairs of brief (a few microseconds), noiselike bursts, separated by a few tens of microseconds, and are dispersed in a way that implies subionospheric origin. Over 300 of these events have now been observed. These "transionospheric pulse pairs" (TIPPs) have not yet been associated with any known source, although thunderstorms are suspected. The observations, made by the Blackbeard instrument on the ALEXIS satellite, are digitized records of the electric field in a passband from about 25 to 100 MHz. Ground-based observations of lightning in this band appear quite different, even accounting for ionospheric dispersion: bursts of short pulses last hundreds of microseconds and have much lower power (when propagated to the satellite) than TIPP events. Signals that resemble the ground-based data have been observed by Blackbeard but, being much weaker, are much less likely to trigger the instrument than are the strong pulse pair events. In this paper we analyze 97 of the early TIPP observations. We compute several parameters that describe the events: the location of the satellite at the time of reception, the energy in each pulse, the separation between pulses, the duration of each pulse, and the dispersion of each pulse. The statistical distributions of these parameters provide clues to and constraints on possible source mechanisms. The possibility that the pulses might be the direct and reflected signals from a high-altitude source is considered and cannot be rejected by the data.

  1. Paired circularly polarized heterodyne ellipsometer

    SciTech Connect

    Yu, C.-J.; Lin, C.-E.; Yu, L.-P.; Chou, C

    2009-02-01

    We develop a paired circularly polarized heterodyne ellipsometer (PCPHE), in which a heterodyne interferometer based on a two-frequency circularly polarized laser beam is set up. It belongs to an amplitude-sensitive ellipsometer that is able to provide not only a wider dynamic range of polarization modulation frequency but also a higher detection sensitivity than that of a conventional photometric ellipsometer. A real-time and precise measurement of ellipsometric parameters, which demonstrated an accuracy of less than 1 nm on thickness measurement of SiO2 thin film deposited on silicon substrate, can be applied with the PCPHE.

  2. Cytoplasmic and genomic effects on meiotic pairing in Brassica hybrids and allotetraploids from pair crosses of three cultivated diploids.

    PubMed

    Cui, Cheng; Ge, Xianhong; Gautam, Mayank; Kang, Lei; Li, Zaiyun

    2012-07-01

    Interspecific hybridization and allopolyploidization contribute to the origin of many important crops. Synthetic Brassica is a widely used model for the study of genetic recombination and "fixed heterosis" in allopolyploids. To investigate the effects of the cytoplasm and genome combinations on meiotic recombination, we produced digenomic diploid and triploid hybrids and trigenomic triploid hybrids from the reciprocal crosses of three Brassica diploids (B. rapa, AA; B. nigra, BB; B. oleracea, CC). The chromosomes in the resultant hybrids were doubled to obtain three allotetraploids (B. juncea, AA.BB; B. napus, AA.CC; B. carinata, BB.CC). Intra- and intergenomic chromosome pairings in these hybrids were quantified using genomic in situ hybridization and BAC-FISH. The level of intra- and intergenomic pairings varied significantly, depending on the genome combinations and the cytoplasmic background and/or their interaction. The extent of intragenomic pairing was less than that of intergenomic pairing within each genome. The extent of pairing variations within the B genome was less than that within the A and C genomes, each of which had a similar extent of pairing. Synthetic allotetraploids exhibited nondiploidized meiotic behavior, and their chromosomal instabilities were correlated with the relationship of the genomes and cytoplasmic background. Our results highlight the specific roles of the cytoplasm and genome to the chromosomal behaviors of hybrids and allopolyploids.

  3. First-principles study of Frenkel pair recombination in tungsten

    NASA Astrophysics Data System (ADS)

    Qin, Shi-Yao; Jin, Shuo; Li, Yu-Hao; Zhou, Hong-Bo; Zhang, Ying; Lu, Guang-Hong

    2017-02-01

    The recombination of one Frenkel pair in tungsten has been investigated through first-principles simulation. Two different recombination types have been identified: instantaneous and thermally activated. The small recombination barriers for thermally activated recombination cases indicate that recombination can occur easily with a slightly increased temperature. For both of the two recombination types, recombination occurs through the self-interstitial atom moving towards the vacancy. The recombination process can be direct or through replacement sequences, depending on the vertical distance between the vacancy and the <1 1 1> line of self-interstitial atom pair.

  4. Optical switching of radical pair conformation enhances magnetic sensitivity

    PubMed Central

    Guerreschi, Gian Giacomo; Tiersch, Markus; Steiner, Ulrich E.; Briegel, Hans J.

    2013-01-01

    The yield of radical pair reactions is influenced by magnetic fields well beyond the levels expected from energy considerations. This dependence can be traced back to the microscopic dynamics of electron spins and constitutes the basis of chemical compasses. Here we propose a new experimental approach based on molecular photoswitches to achieve additional control on the chemical reaction and allow short-time resolution of the spin dynamics. Our proposal enables experiments to test some of the standard assumptions of the radical pair model and improves the sensitivity of a paradigmatic model of chemical magnetometer by up to two orders of magnitude. PMID:25843962

  5. Non-linear dynamics of a spur gear pair

    NASA Technical Reports Server (NTRS)

    Kahraman, A.; Singh, R.

    1990-01-01

    The backlash nonlinearity excited primarily by transmission error between spur gear pairs is studied for both external and internal excitations. The digital simulation technique and the method of harmonic balance are used to develop steady state solutions for the internal sinuosidal excitations. The analytic predictions agreed well with available experimental data. Digital simulation is used to observe that at the chaotic and subharmonic resonances may exist in a gear pair depending on the mean or design load, mean to alternating force ratio, damping, and backlash.

  6. Landau-Zener transitions in frozen pairs of Rydberg atoms.

    PubMed

    Saquet, Nicolas; Cournol, Anne; Beugnon, Jérôme; Robert, Jacques; Pillet, Pierre; Vanhaecke, Nicolas

    2010-04-02

    We have induced adiabatic transitions in pairs of frozen Rydberg sodium atoms of a supersonic beam. The diatomic ns+ns-->np+(n-1)p transition takes place in a time-dependent electric field and originates from the adiabatic change of the internal state of the pair induced by the dipole-dipole interaction. This is experimentally achieved by sweeping an electric field across the energy degeneracy ns ns-np(n-1)p. Our results fully agree with a two-level Landau-Zener model in the diatom system.

  7. Landau-Zener Transitions in Frozen Pairs of Rydberg Atoms

    SciTech Connect

    Saquet, Nicolas; Cournol, Anne; Beugnon, Jerome; Robert, Jacques; Pillet, Pierre; Vanhaecke, Nicolas

    2010-04-02

    We have induced adiabatic transitions in pairs of frozen Rydberg sodium atoms of a supersonic beam. The diatomic ns+ns{yields}np+(n-1)p transition takes place in a time-dependent electric field and originates from the adiabatic change of the internal state of the pair induced by the dipole-dipole interaction. This is experimentally achieved by sweeping an electric field across the energy degeneracy ns ns-np(n-1)p. Our results fully agree with a two-level Landau-Zener model in the diatom system.

  8. Optical conductivity from pair density waves

    NASA Astrophysics Data System (ADS)

    Dai, Zhehao; Lee, Patrick A.

    2017-01-01

    We present a theory of optical conductivity in systems with finite-momentum Cooper pairs. In contrast to the BCS pairing where ac conductivity is purely imaginary in the clean limit, there is nonzero ac absorption across the superconducting gap for finite-momentum pairing if we break the Galilean symmetry explicitly in the electronic Hamiltonian. Vertex correction is crucial for maintaining the gauge invariance in the mean-field formalism and dramatically changes the optical conductivity in the direction of the pairing momentum. We carried out a self-consistent calculation and gave an explicit formula for optical conductivity in a simple case. This result applies to the Fulde-Ferrell-Larkin-Ovchinnikov state and candidates with pair density waves proposed for high-Tc cuprates. It may help detect pair density waves and determine the pairing gap as well as the direction of the pairing momentum in experiments.

  9. The thermodynamics and kinetics of a nucleotide base pair

    NASA Astrophysics Data System (ADS)

    Wang, Yujie; Gong, Sha; Wang, Zhen; Zhang, Wenbing

    2016-03-01

    The thermodynamic and kinetic parameters of an RNA base pair were obtained through a long-time molecular dynamics simulation of the opening-closing switch process of the base pair near its melting temperature. The thermodynamic parameters were in good agreement with the nearest-neighbor model. The opening rates showed strong temperature dependence, however, the closing rates showed only weak temperature dependence. The transition path time was weakly temperature dependent and was insensitive to the energy barrier. The diffusion constant exhibited super-Arrhenius behavior. The free energy barrier of breaking a single base stack results from the enthalpy increase, ΔH, caused by the disruption of hydrogen bonding and base-stacking interactions. The free energy barrier of base pair closing comes from the unfavorable entropy loss, ΔS, caused by the restriction of torsional angles. These results suggest that a one-dimensional free energy surface is sufficient to accurately describe the dynamics of base pair opening and closing, and the dynamics are Brownian.

  10. An exact solution of spherical mean-field plus a special separable pairing model

    NASA Astrophysics Data System (ADS)

    Dai, Lianrong; Pan, Feng; Draayer, J. P.

    2017-01-01

    An exact solution of nuclear spherical mean-field plus a special orbit-dependent separable pairing model is studied, of which the separable pairing interaction parameters are obtained by a linear fitting in terms of the single-particle energies considered. The advantage of the model is that, similar to the standard pairing case, it can be solved easily by using the extended Heine-Stieltjes polynomial approach. With the analysis of the model in the ds- and pf-shell subspace, it is shown that this special separable pairing model indeed provides similar pair structures of the model with the original separable pairing interaction, and is obviously better than the standard pairing model in many aspects.

  11. Isospin Against Size Effects In Projectile Dynamical Fission For 112,124Sn+58,64Ni and 124Xe+64Zn Reactions At 35 A.MeV

    NASA Astrophysics Data System (ADS)

    Russotto, P.; De Filippo, E.; Pagano, A.; Piasecki, E.; Acosta, L.; Amorini, F.; Anzalone, A.; Auditore, L.; Baran, V.; Berceanu, I.; Boiano, C.; Borderie, B.; Bruno, M.; Cap, T.; Cardella, G.; Castoldi, A.; Cavallaro, S.; Chatterjee, M. B.; Chbihi, A.; Colonna, M.; D'Agostino, M.; D'Andrea, M.; Di Toro, M.; Fichera, F.; Francalanza, L.; Geraci, E.; Gianì, R.; Gnoffo, B.; Grimaldi, A.; Grzeszczuk, A.; Guazzoni, C.; Guazzoni, P.; Giudice, N.; Kowalski, S.; La Guidara, E.; Lanzalone, G.; Lanzanò, G.; Lombardo, I.; Maiolino, C.; Marquínez-Durán, G.; Minniti, T.; Papa, M.; Pagano, E. V.; Passaro, G.; Pirrone, S.; Płaneta, R.; Politi, G.; Porto, F.; Quattrocchi, L.; Rivet, M. F.; Rosato, E.; Riccio, F.; Rizzo, F.; Saccà, G.; Schmidt, K.; Siwek-Wilczyńska, K.; Skwira-Chalot, I.; Trifirò, A.; Trimarchi, M.; Verde, G.; Vigilante, M.; Wieleczko, J. P.; Wilczyński, J.; Zambon, P.; Zetta, L.; Zipper, W.

    2014-05-01

    In past experiments, mass asymmetric projectile-target combinations124Sn+64Ni and 112Sn+58Ni were investigated at ELab(112'124Sn)=35 A.MeVbeam energybyusing the 4n multi-detector CHIMERA. From a quantitative comparison of cross sections associated to Statistical and Dynamical Fission of the Projectile-Like Fragments, it resulted that Dynamical Fission process is about two times more probable in the neutron rich 124Sn+64Ni system than in the 112 Sn +58 Ni neutron poor one. In contrast, no sizable difference was found for Statistical Fission mechanism. The observed difference in the strength of the Dynamical effects could arise from the difference in entrance channel Isospin (N/Z) content. In order to disentangle Isospin effects from effects due to the different masses of the two systems, a new experiment 124Xe+64Zn at 35 A.MeV beam energy has been recently carried out.

  12. Isospin decomposition of γNN* transitions within a dynamical coupled-channels model

    SciTech Connect

    Kamano, Hiroyuki; Nakamura, S. X.; Lee, T. -S. H.; Sato, T.

    2016-07-07

    Here, by extending the dynamical coupled-channels analysis performed in our previous work to include the available data of photoproduction of pi mesons off neutrons, the transition amplitudes for the photoexcitation of the neutron-to-nucleon resonances, γn → N*, at the resonance pole positions are determined. The combined fits to the data for both the proton- and neutron-target reactions also revise our results for the resonance pole positions and the γp → N* transition amplitudes. Our results allow an isospin decomposition of the γN → N* transition amplitudes for the isospin I = 1/2 N* resonances, which is necessary for testing hadron structure models and gives crucial inputs for constructing models of neutrino-induced reactions in the nucleon resonance region.

  13. Homolog pairing and segregation in Drosophila meiosis.

    PubMed

    McKee, B D

    2009-01-01

    Pairing of homologous chromosomes is fundamental to their reliable segregation during meiosis I and thus underlies sexual reproduction. In most eukaryotes homolog pairing is confined to prophase of meiosis I and is accompanied by frequent exchanges, known as crossovers, between homologous chromatids. Crossovers give rise to chiasmata, stable interhomolog connectors that are required for bipolar orientation (orientation to opposite poles) of homologs during meiosis I. Drosophila is unique among model eukaryotes in exhibiting regular homolog pairing in mitotic as well as meiotic cells. I review the results of recent molecular studies of pairing in both mitosis and meiosis in Drosophila. These studies show that homolog pairing is continuous between pre-meiotic mitosis and meiosis but that pairing frequencies and patterns are altered during the mitotic-meiotic transition. They also show that, with the exception of X-Y pairing in male meiosis, which is mediated specifically by the 240-bp rDNA spacer repeats, chromosome pairing is not restricted to specific sites in either mitosis or meiosis. Instead, virtually all chromosome regions, both heterochromatic and euchromatic, exhibit autonomous pairing capacity. Mutations that reduce the frequencies of both mitotic and meiotic pairing have been recently described, but no mutations that abolish pairing completely have been discovered, and the genetic control of pairing in Drosophila remains to be elucidated.

  14. Isovector Pairing within the so(5) Richardson-Gaudin Exactly Solvable Model

    SciTech Connect

    Dimitrova, S S; Dukelsky, J; Gueorguiev, V G; Van Isacker, P

    2005-10-10

    Properties of a nucleon system interacting via isovector proton-neutron pairing can be described within the so(5) generalized Richardson-Gaudin exactly-solvable model [1]. We present results for a system of 12 nucleon pairs within the full f{sub p} + g{sub 9/2} shell-model space. We discuss coupling constant dependence of the pair energies, total energy of the system, and the occupation numbers.

  15. Morphological type correlation between nearest neighbor pairs of galaxies

    NASA Astrophysics Data System (ADS)

    Yamagata, Tomohiko

    1990-11-01

    Although the morphological type of galaxies is one of the most fundamental properties of galaxies, its origin and evolutionary processes, if any, are not yet fully understood. It has been established that the galaxy morphology strongly depends on the environment in which the galaxy resides (e.g., Dressler 1980). Galaxy pairs correspond to the smallest scales of galaxy clustering and may provide important clues to how the environment influences the formation and evolution of galaxies. Several investigators pointed out that there is a tendency for pair galaxies to have similar morphological types (Karachentsev and Karachentseva 1974, Page 1975, Noerdlinger 1979). Here, researchers analyze morphological type correlation for 18,364 nearest neighbor pairs of galaxies identified in the magnetic tape version of the Center for Astrophysics Redshift Catalogue.

  16. Quantum Phases of Fermionic Cold Atoms Through Pairing and Dissociation

    NASA Astrophysics Data System (ADS)

    Lopez, Nicolas; Tsai, Shan-Wen; Timmermans, E.; Lin, Chi-Yong

    2011-03-01

    Cold atom experiments have realized molecule creation consisting of paired fermions and dissociation of weakly bound molecules into correlated fermions by tuning of the interactions with external fields [1,2]. We study many-body correlations in such system where molecules are weakly bound and therefore pairs of fermionic atoms convert into and dissociate from the bound molecule state. This exchange mediates a long-range interaction between the fermions. We consider a simple many-body Hamiltonian that includes the destruction of fermionic atom pairs to form single bosonic molecules and vice versa. We employ a functional renormalization-group approach to search for instabilities from the disordered quantum liquid phase that may arise from a boson mediated fermion-fermion interaction. We calculate the renormalized frequency-dependent fermion interactions vertices and renormalized molecular binding energy.

  17. Kappa statistic for clustered matched-pair data.

    PubMed

    Yang, Zhao; Zhou, Ming

    2014-07-10

    Kappa statistic is widely used to assess the agreement between two procedures in the independent matched-pair data. For matched-pair data collected in clusters, on the basis of the delta method and sampling techniques, we propose a nonparametric variance estimator for the kappa statistic without within-cluster correlation structure or distributional assumptions. The results of an extensive Monte Carlo simulation study demonstrate that the proposed kappa statistic provides consistent estimation and the proposed variance estimator behaves reasonably well for at least a moderately large number of clusters (e.g., K ≥50). Compared with the variance estimator ignoring dependence within a cluster, the proposed variance estimator performs better in maintaining the nominal coverage probability when the intra-cluster correlation is fair (ρ ≥0.3), with more pronounced improvement when ρ is further increased. To illustrate the practical application of the proposed estimator, we analyze two real data examples of clustered matched-pair data.

  18. The Peak Pairs algorithm for strain mapping from HRTEM images.

    PubMed

    Galindo, Pedro L; Kret, Sławomir; Sanchez, Ana M; Laval, Jean-Yves; Yáñez, Andrés; Pizarro, Joaquín; Guerrero, Elisa; Ben, Teresa; Molina, Sergio I

    2007-11-01

    Strain mapping is defined as a numerical image-processing technique that measures the local shifts of image details around a crystal defect with respect to the ideal, defect-free, positions in the bulk. Algorithms to map elastic strains from high-resolution transmission electron microscopy (HRTEM) images may be classified into two categories: those based on the detection of peaks of intensity in real space and the Geometric Phase approach, calculated in Fourier space. In this paper, we discuss both categories and propose an alternative real space algorithm (Peak Pairs) based on the detection of pairs of intensity maxima in an affine transformed space dependent on the reference area. In spite of the fact that it is a real space approach, the Peak Pairs algorithm exhibits good behaviour at heavily distorted defect cores, e.g. interfaces and dislocations. Quantitative results are reported from experiments to determine local strain in different types of semiconductor heterostructures.

  19. Odd-frequency triplet pairing in mixed-parity superconductors

    NASA Astrophysics Data System (ADS)

    Cuoco, Mario; Gentile, Paola; Noce, Canio; Romano, Alfonso; Annunziata, Gaetano; Linder, Jacob

    2012-02-01

    We show that mixed-parity superconductors may exhibit equal-spin pair correlations that are odd-in-time and can be tuned by means of an applied field. The direction and the amplitude of the pair correlator in the spin space turn out to be strongly dependent on the symmetry of the order parameter, and thus provide a tool to identify different types of singlet-triplet mixed configurations. We suggest that odd-in-time spin-polarized pair correlations can be generated without magnetic inhomogeneities in superconducting/ferromagnetic hybrids with non-centrosymmetric superconductor or when parity mixing is induced at the interface. Paola Gentile, Canio Noce, Alfonso Romano, Gaetano Annunziata, Jacob Linder, Mario Cuoco, arXiv:1109.4885

  20. Meron-Pair Excitations in Bilayer Quantum Hall System

    NASA Astrophysics Data System (ADS)

    Moon, Kyungsun

    Bilayer two-dimensional electron gas systems can form unusual broken symmetry states with spontaneous inter-layer phase coherence at certain filling factors. At total filling factor νT = 1, the lowest energy charged excitation of the system is theoretically suggested to be a linearly-confined meron-pair, which is topologically identical to a single skyrmion. We will review how this remarkable excitation arises and can help unravel various experimental results demonstrated in bilayer quantum Hall system. In order to detect the linearly-confined meron-pair excitation directly, we propose a gated bilayer Hall bar experiment, where the magnitude and orientation of magnetic field B‖ applied parallel to the 2D plane can be controlled. We demonstrate a strong angle-dependent transport due to the anisotropic nature of linearly-confined meron-pairs and discuss how it would be manifested in experiment.

  1. Stellar kinematics of elliptical galaxies in pairs

    NASA Technical Reports Server (NTRS)

    Madejsky, Rainer; Bender, Ralf

    1990-01-01

    In both galaxy pairs Arp 166 and 3C 278 the authors find radially increasing velocity dispersions indicating a perturbed, non-equilibrium state of the galaxies after the tidal interaction. In all galaxies, the increase is most pronounced in the regions which correspond to the centers of the outer isophotes. The authors suggest a scenario in which the galaxies are strongly decelerated on their orbits during the encounter. The deceleration depends on the radial position in the perturbed galaxy and vanishes in the center of the perturbed galaxy (Spitzer, 1958). In addition, the crossing time of the stars near the center is very short, implying that the tidal perturbations can be averaged over several orbital periods (e.g., Binney and Tremaine, 1987). In consequence, the central parts are not affected by the tidal interaction while the outer parts are strongly decelerated. This leads to a displacement of the central parts of the galaxies with respect to their envelopes in an anti-symmetrical way for the two components of each galaxy pair. The motions of the central parts subsequently are opposed by dynamical friction with the surrounding envelopes. Due to dynamical friction, the density of the stars increases in the wakes of the moving central parts (Mulder, 1983). The overdensity of stars in the wakes of the moving central parts efficiently decelerates the motions of the central parts. The reaction of the stars in the overdensity regions leads to an increase of the velocity dispersion mainly along the orbits of the moving central parts. The presented observations, especially the asymmetrical luminosity profiles and the radially increasing velocity dispersions support consistently the above scenario of tidal interaction between galaxies. Further spectroscopic observations are necessary in order to investigate the degree of anisotropy in the kinematically perturbed regions.

  2. Self-confined particle pairs in complex plasmas

    NASA Astrophysics Data System (ADS)

    Lisina, I. I.; Lisin, E. A.; Vaulina, O. S.; Petrov, O. F.

    2017-01-01

    The liquid-crystal type of phase transition in complex plasmas has been observed repeatedly. However, more studies need to be done on the liquid-vapor transition in complex plasmas. In this paper, the phenomenon of coupling (condensation) of particles into self-confined particle pairs in an anisotropic plasma medium with ion flow is considered analytically and numerically using the Langevin molecular dynamics method. We obtain the stability conditions of the pair (bound) state depending on the interaction parameters and particle kinetic energy. It was shown that the breakup of the particle pair is very sensitive to the ratio of particle charges; for example, it is determined by the influence of the upper particle on the ion flow around the lower one. We also show that a self-confined pair of particles exists even if their total kinetic energy is much greater than the potential well depth for the pair state. This phenomenon occurs due to velocity correlation of particles, which arises with the nonreciprocity of interparticle interaction.

  3. New longitudinal mode and compression of pair ions in plasma

    NASA Astrophysics Data System (ADS)

    Ehsan, Zahida; Tsintsadze, N. L.; Shah, H. A.; Trines, R. M. G. M.; Imran, Muhammad

    2016-06-01

    Positive and negative ions forming the so-called pair plasma differing in sign of their charge but asymmetric in mass and temperature support a new acoustic-like mode. The condition for the excitation of ion sound wave through electron beam induced Cherenkov instability is also investigated. This beam can generate a perturbation in the pair ion plasmas in the presence of electrons when there is number density, temperature, and mass difference in the two species of ions. Basic emphasis is on the focusing of ion sound waves, and we show how, in the area of localization of wave energy, the density of pair particles increases while electrons are pushed away from that region. Further, this localization of wave is dependent on the shape of the pulse. Considering the example of pancake and bullet shaped pulses, we find that only the former leads to compression of pair ions in the supersonic regime of the focusing region. Here, possible existence of regions where pure pair particles can exist may also be speculated which is not only useful from academic point of view but also to mimic the situation of plasma (electron positron asymmetric and symmetric) observed in astrophysical environment.

  4. Self-confined particle pairs in complex plasmas.

    PubMed

    Lisina, I I; Lisin, E A; Vaulina, O S; Petrov, O F

    2017-01-01

    The liquid-crystal type of phase transition in complex plasmas has been observed repeatedly. However, more studies need to be done on the liquid-vapor transition in complex plasmas. In this paper, the phenomenon of coupling (condensation) of particles into self-confined particle pairs in an anisotropic plasma medium with ion flow is considered analytically and numerically using the Langevin molecular dynamics method. We obtain the stability conditions of the pair (bound) state depending on the interaction parameters and particle kinetic energy. It was shown that the breakup of the particle pair is very sensitive to the ratio of particle charges; for example, it is determined by the influence of the upper particle on the ion flow around the lower one. We also show that a self-confined pair of particles exists even if their total kinetic energy is much greater than the potential well depth for the pair state. This phenomenon occurs due to velocity correlation of particles, which arises with the nonreciprocity of interparticle interaction.

  5. Resonance tunneling of cooper pairs in a superconductor-polymer-superconductor josephson junction

    SciTech Connect

    Ionov, A. I.

    2013-05-15

    It is shown that the superconducting current flowing though a polymer in a superconductor-polymer-superconductor Josephson structure is due to resonant tunneling of Cooper pairs. The critical current and the thickness of the polymer in which the superconducting current is observed depend on the coherence length of a Cooper pair in the superconductor contacting the polymer.

  6. Structure of the pairing gap from orbital nematic fluctuations

    NASA Astrophysics Data System (ADS)

    Agatsuma, Tomoaki; Yamase, Hiroyuki

    2016-12-01

    We study superconducting instability from orbital nematic fluctuations in a minimal model consisting of the dx z and dy z orbitals, and choose model parameters which capture the typical Fermi surface geometry observed in iron-based superconductors. We solve the Eliashberg equations down to low temperatures with keeping the renormalization function and a full momentum dependence of the pairing gap. When superconductivity occurs in the tetragonal phase, we find that the pairing gap exhibits a weak momentum dependence over the Fermi surfaces. The superconducting instability occurs also inside the nematic phase. When the dx z orbital is occupied more than the dy z orbital in the nematic phase, a larger (smaller) gap is realized on the Fermi-surface parts where the dx z (dy z) orbital component is dominant, leading to a substantial momentum dependence of the pairing gap on the hole Fermi surfaces. On the other hand, the momentum dependence of the gap is weak on the electron Fermi surfaces. We also find that while the leading instability is the so-called s++-wave symmetry, the second leading one is dx2-y2-wave symmetry. In particular, these two states are nearly degenerate in the tetragonal phase, whereas such quasidegeneracy is lifted in the nematic phase and the dx2-y2-wave symmetry changes to highly anisotropic s -wave symmetry.

  7. Superlinear Summation of Information in Premotor Neuron Pairs.

    PubMed

    Montani, Fernando; Oliynyk, Andriy; Fadiga, Luciano

    2017-03-01

    Whether premotor/motor neurons encode information in terms of spiking frequency or by their relative time of firing, which may display synchronization, is still undetermined. To address this issue, we used an information theory approach to analyze neuronal responses recorded in the premotor (area F5) and primary motor (area F1) cortices of macaque monkeys under four different conditions of visual feedback during hand grasping. To evaluate the sensitivity of spike timing correlation between single neurons, we investigated the stimulus dependent synchronization in our population of pairs. We first investigated the degree of correlation of trial-to-trial fluctuations in response strength between neighboring neurons for each condition, and second estimated the stimulus dependent synchronization by means of an information theoretical approach. We compared the information conveyed by pairs of simultaneously recorded neurons with the sum of information provided by the respective individual cells. The information transmission across pairs of cells in the primary motor cortex seems largely independent, whereas information transmission across pairs of premotor neurons is summed superlinearly. The brain could take advantage of both the accuracy provided by the independency of F1 and the synergy allowed by the superlinear information population coding in F5, distinguishing thus the generalizing role of F5.

  8. Multi-user distribution of polarization entangled photon pairs

    NASA Astrophysics Data System (ADS)

    Trapateau, J.; Ghalbouni, J.; Orieux, A.; Diamanti, E.; Zaquine, I.

    2015-10-01

    We experimentally demonstrate multi-user distribution of polarization entanglement using commercial telecom wavelength division demultiplexers. The entangled photon pairs are generated from a broadband source based on spontaneous parametric down conversion in a periodically poled lithium niobate crystal using a double path setup employing a Michelson interferometer and active phase stabilisation. We test and compare demultiplexers based on various technologies and analyze the effect of their characteristics, such as losses and polarization dependence, on the quality of the distributed entanglement for three channel pairs of each demultiplexer. In all cases, we obtain a Bell inequality violation, whose value depends on the demultiplexer features. This demonstrates that entanglement can be distributed to at least three user pairs of a network from a single source. Additionally, we verify for the best demultiplexer that the violation is maintained when the pairs are distributed over a total channel attenuation corresponding to 20 km of optical fiber. These techniques are therefore suitable for resource-efficient practical implementations of entanglement-based quantum key distribution and other quantum communication network applications.

  9. Multi-user distribution of polarization entangled photon pairs

    SciTech Connect

    Trapateau, J.; Orieux, A.; Diamanti, E.; Zaquine, I.; Ghalbouni, J.

    2015-10-14

    We experimentally demonstrate multi-user distribution of polarization entanglement using commercial telecom wavelength division demultiplexers. The entangled photon pairs are generated from a broadband source based on spontaneous parametric down conversion in a periodically poled lithium niobate crystal using a double path setup employing a Michelson interferometer and active phase stabilisation. We test and compare demultiplexers based on various technologies and analyze the effect of their characteristics, such as losses and polarization dependence, on the quality of the distributed entanglement for three channel pairs of each demultiplexer. In all cases, we obtain a Bell inequality violation, whose value depends on the demultiplexer features. This demonstrates that entanglement can be distributed to at least three user pairs of a network from a single source. Additionally, we verify for the best demultiplexer that the violation is maintained when the pairs are distributed over a total channel attenuation corresponding to 20 km of optical fiber. These techniques are therefore suitable for resource-efficient practical implementations of entanglement-based quantum key distribution and other quantum communication network applications.

  10. Isospin influence on the decay modes of compound systems produced in the 78,86Kr + 40,48Ca at 10 AMeV

    NASA Astrophysics Data System (ADS)

    Pirrone, S.; Politi, G.; Wieleczko, J. P.; De Filippo, E.; Gnoffo, B.; Russotto, P.; Trimarchi, M.; La Commara, M.; Vigilante, M.; Ademard, G.; Amorini, F.; Auditore, L.; Beck, C.; Berceanu, I.; Bonnet, E.; Borderie, B.; Cardella, G.; Chibihi, A.; Colonna, M.; D'Onofrio, A.; Frankland, J. D.; Geraci, E.; Henry, E.; La Guidara, E.; Lanzalone, G.; Lautesse, P.; Lebhertz, D.; Le Neindre, N.; Lombardo, I.; Mazurek, K.; Norella, S.; Pagano, A.; Pagano, E. V.; Papa, M.; Piasecki, E.; Porto, F.; Quattrocchi, L.; Quinlann, M.; Rizzo, F.; Schroeder, W. U.; Spadaccini, G.; Trifirò, A.; Toke, J.; Verde, G.

    2016-06-01

    The study of the decay modes competition of the compound systems produced in the collisions 78Kr+40Ca and 86Kr+48Ca at 10AMeV is presented. In particular, the N/Z entrance channel influence on the decay paths of the compound systems, directly connected to the isospin influence, is investigated. The experiment was performed at the INFN Laboratori Nazionali del Sud (LNS) in Catania by using the 4π multi-detector CHIMERA. Charge, mass, angular distributions and kinematical features of the reaction products were studied. The analysis shows some differences in the contribution arising from the various reaction mechanisms for the neutron poor and neutron rich systems. Comparison with theoretical statistical and dynamical models are presented for the two systems. Besides a study of the influence of the energy on the entrance channel is performed for the 78Kr+40Ca reaction, by comparing the results of this experiment to those obtained for the same system at 5.5 AMeV with the INDRA device at GANIL.

  11. Isospin influence on the decay modes of the systems produced in the 78,86Kr +40,48Ca reactions at 10 AMeV

    NASA Astrophysics Data System (ADS)

    Gnoffo, B.; Pirrone, S.; Politi, G.; La Commara, M.; Wieleczko, J. P.; De Filippo, E.; Russotto, P.; Trimarchi, M.; Vigilante, M.; Ademard, G.; Amorini, F.; Auditore, L.; Beck, C.; Bercenau, I.; Bonnet, E.; Borderie, B.; Cardella, G.; Chibihi, A.; Colonna, M.; D'Onofrio, A.; Frankland, J. D.; Geraci, E.; Henry, E.; La Guidara, E.; Lanzalone, G.; Lautesse, P.; Lebhertz, D.; LeNeidre, N.; Lombardo, I.; Mazurek, K.; Norella, S.; Pagano, A.; Pagano, E. V.; Papa, M.; Piasecki, E.; Porto, F.; Quattrocchi, L.; Quinlann, M.; Rizzo, F.; Shoroeder, U.; Spadaccini, G.; Trifirò, A.; Toke, J.; Verde, G.

    2016-05-01

    The results of the analysis of the reactions 78,86Kr +40,48 Ca at 10 AMeV are presented. The experiment was performed at the INFN Laboratori Nazionali del Sud (LNS) in Catania by using the 4π multidetector CHIMERA, with beams delivered by the Superconductive Cyclotron. The competition among the various disintegration paths and in particular the isospin effects on the decay modes of the produced composite systems are investigated; this provides information about fundamental nuclear quantities such as level density, fission barrier and viscosity. Different isotopic composition and relative richness are observed among the reaction products of the two systems. An odd-even staggering effect is present in the charge distributions, in particular for the light fragments produced by the neutron-poor system. The kinematical characteristics of the IMF seem to indicate a high degree of the relaxation of the formed system. Besides, global features analysis seems to show some differences in the contribution arising from the various reaction mechanisms for the two reactions.

  12. Development of radioactive beams at LAMPF for a high precision test of the standard model and as a step towards an IsoSpin Laboratory

    SciTech Connect

    Vieira, D.; Chamberlin, E.; Preston, D.

    1996-07-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Producing high yields of isotopically pure beams of radioactive heavy ions is the technical challenge facing the IsoSpin Laboratory (ISL). The main objective of this project is to design, fabricate, install, and make operational a thin-target, He- jet system at LAMPF to provide high-intensity {sup 125-139}Cs isotopes for an atomic parity nonconservation (PNC) experiment and as a robust production source for radioactive beams. The Cs-PNC experiment itself would take several years beyond the successful completion of the developments outlined in this project. The experiment outlined in this project. The experiment seeks to measure the 6S-7S PNC transition rate for this series of Cs isotopes. From the ratios of these rates measured in the different isotopes, a fundamental test of the standard model can be made at the level of 0. 2{percent}. Herein, we describe the successful operation of a thin- target, He-jet system operating at primary beam intensities of up to 700 {mu}A with production yields of 10{sup 7} to 10{sup 8} atoms/s for a wide range of nonvolatile and Cs radioisotopes. 7 refs., 3 figs.

  13. Pair creation and plasma oscillations.

    SciTech Connect

    Prozorkevich, A. V.; Vinnik, D. V.; Schmidt, S. M.; Hecht, M. B.; Roberts, C. D.

    2000-12-15

    We describe aspects of particle creation in strong fields using a quantum kinetic equation with a relaxation-time approximation to the collision term. The strong electric background field is determined by solving Maxwell's equation in tandem with the Vlasov equation. Plasma oscillations appear as a result of feedback between the background field and the field generated by the particles produced. The plasma frequency depends on the strength of the initial background fields and the collision frequency, and is sensitive to the necessary momentum-dependence of dressed-parton masses.

  14. Report on Pairing-based Cryptography

    PubMed Central

    Moody, Dustin; Peralta, Rene; Perlner, Ray; Regenscheid, Andrew; Roginsky, Allen; Chen, Lily

    2015-01-01

    This report summarizes study results on pairing-based cryptography. The main purpose of the study is to form NIST’s position on standardizing and recommending pairing-based cryptography schemes currently published in research literature and standardized in other standard bodies. The report reviews the mathematical background of pairings. This includes topics such as pairing-friendly elliptic curves and how to compute various pairings. It includes a brief introduction to existing identity-based encryption (IBE) schemes and other cryptographic schemes using pairing technology. The report provides a complete study of the current status of standard activities on pairing-based cryptographic schemes. It explores different application scenarios for pairing-based cryptography schemes. As an important aspect of adopting pairing-based schemes, the report also considers the challenges inherent in validation testing of cryptographic algorithms and modules. Based on the study, the report suggests an approach for including pairing-based cryptography schemes in the NIST cryptographic toolkit. The report also outlines several questions that will require further study if this approach is followed. PMID:26958435

  15. FIR statistics of paired galaxies

    NASA Technical Reports Server (NTRS)

    Sulentic, Jack W.

    1990-01-01

    Much progress has been made in understanding the effects of interaction on galaxies (see reviews in this volume by Heckman and Kennicutt). Evidence for enhanced emission from galaxies in pairs first emerged in the radio (Sulentic 1976) and optical (Larson and Tinsley 1978) domains. Results in the far infrared (FIR) lagged behind until the advent of the Infrared Astronomy Satellite (IRAS). The last five years have seen numerous FIR studies of optical and IR selected samples of interacting galaxies (e.g., Cutri and McAlary 1985; Joseph and Wright 1985; Kennicutt et al. 1987; Haynes and Herter 1988). Despite all of this work, there are still contradictory ideas about the level and, even, the reality of an FIR enhancement in interacting galaxies. Much of the confusion originates in differences between the galaxy samples that were studied (i.e., optical morphology and redshift coverage). Here, the authors report on a study of the FIR detection properties for a large sample of interacting galaxies and a matching control sample. They focus on the distance independent detection fraction (DF) statistics of the sample. The results prove useful in interpreting the previously published work. A clarification of the phenomenology provides valuable clues about the physics of the FIR enhancement in galaxies.

  16. Optical binding of particle pairs in retro-reflected beam geometry

    NASA Astrophysics Data System (ADS)

    Damková, Jana; Chvátal, Lukáš; Brzobohatý, Oto; Zemánek, Pavel

    2016-12-01

    Optical binding of polystyrene microparticle pairs in retro-reflected wide Gaussian beam, called "tractor beam", is studied experimentally and the results are compared with the numerical calculations based on the multiple-particle Mie scattering theory. To investigate the dynamics of optically bound particle pairs in three dimensions we employ holographic video microscopy technique. We show that the particle pair motion is strongly dependent on the relative distances of the particles and the switching between applying pushing and pulling force on particle pairs can be achieved only by changing their configuration even though the "tractor-beam" parameters remain unchanged.

  17. Hydrophobic, Non-Hydrogen-Bonding Bases and Base Pairs in DNA

    PubMed Central

    Schweitzer, Barbara A.; Kool, Eric T.

    2009-01-01

    We report the properties of hydrophobic isosteres of pyrimidines and purines in synthetic DNA duplexes. Phenyl nucleosides 1 and 2 are nonpolar isosteres of the natural thymidine nucleoside, and indole nucleoside 3 is an analog of the complementary purine 2-aminodeoxyadenosine. The nucleosides were incorporated into synthetic oligodeoxynucleotides and were paired against each other and against the natural bases. Thermal denaturation experiments were used to measure the stabilities of the duplexes at neutral pH. It is found that the hydrophobic base analogs are nonselective in pairing with the four natural bases but selective for pairing with each other rather than with the natural bases. For example, compound 2 selectively pairs with itself rather than with A, T, G, or C; the magnitude of this selectivity is found to be 6.5–9.3 °C in Tm or 1.5–1.8 kcal/mol in free energy (25 °C). All possible hydrophobic pairing combinations of 1, 2, and 3 were examined. Results show that the pairing affinity depends on the nature of the pairs and on position in the duplex. The highest affinity pairs are found to be the 1–1 and 2–2 self-pairs and the 1–2 heteropair. The best stabilization occurs when the pairs are placed at the ends of duplexes rather than internally; the internal pairs may be destabilized by imperfect steric mimicry which leads to non-ideal duplex structure. In some cases the hydrophobic pairs are significantly stabilizing to the DNA duplex; for example, when situated at the end of a duplex, the 1–1 pair is more stabilizing than a T–A pair. When situated internally, the affinity of the 1–1 pair is the same as, or slightly better than, the analogous T–T mismatch pair, which is known to have two hydrogen bonds. The studies raise the possibility that hydrogen bonds may not always be required for the formation of stable duplex DNA-like structure. In addition, the results point out the importance of solvation and desolvation in natural base pairing

  18. Non-additive interactions involving two distinct elements mediate sloppy-paired regulation by pair-rule transcription factors

    PubMed Central

    Prazak, Lisa; Fujioka, Miki; Gergen, J. Peter

    2010-01-01

    The relatively simple combinatorial rules responsible for establishing the initial metameric expression of sloppy-paired-1 (slp1) in the Drosophila blastoderm embryo make this system an attractive model for investigating the mechanism of regulation by pair rule transcription factors. This investigation of slp1 cis-regulatory architecture identifies two distinct elements, a proximal early stripe element (PESE) and a distal early stripe element (DESE) located from −3.1 kb to −2.5 kb and from −8.1 kb to −7.1 kb upstream of the slp1 promoter, respectively, that mediate this early regulation. The proximal element expresses only even-numbered stripes and mediates repression by Even-skipped (Eve) as well as by the combination of Runt and Fushi-tarazu (Ftz). A 272 basepair sub-element of PESE retains Eve-dependent repression, but is expressed throughout the even-numbered parasegments due to the loss of repression by Runt and Ftz. In contrast, the distal element expresses both odd and even-numbered stripes and also drives inappropriate expression in the anterior half of the odd-numbered parasegments due to an inability to respond to repression by Eve. Importantly, a composite reporter gene containing both early stripe elements recapitulates pair-rule gene-dependent regulation in a manner beyond what is expected from combining their individual patterns. These results indicate interactions involving distinct cis-elements contribute to the proper integration of pair-rule regulatory information. A model fully accounting for these results proposes that metameric slp1 expression is achieved through the Runt-dependent regulation of interactions between these two pair-rule response elements and the slp1 promoter. PMID:20435028

  19. Energetic, electronic, and magnetic properties of Mn pairs on reconstructed (001) GaAs surfaces

    NASA Astrophysics Data System (ADS)

    Birowska, Magdalena; Śliwa, Cezary; Majewski, Jacek A.

    2017-03-01

    We study energetic, magnetic, and electronic properties of diluted substitutional Mn pairs on reconstructed (001 ) GaAs surfaces. The studies are based on first-principles calculations in the framework of density functional theory. We demonstrate that the stability of the systems strongly depends on the position, orientation, and the distance between the Mn atoms constituting the pair. Independently of the considered surface reconstruction pattern, the Mn pairs with Mn atoms being the nearest neighbors (NN) on a cationic sublattice turn out to be energetically more favorable than the pairs with the larger distance between the Mn atoms. However, the preferential buildup orientation of the Mn-NN pair depends on the surface reconstruction and is parallel to either the [110 ] or the [1 1 ¯0 ] crystallographic direction. We reveal also the mechanisms of the magnetic ordering of Mn-NN pairs. The Mn-NN pairs along the [110 ] crystallographic direction exhibit always ferromagnetic alignment of Mn spins, whereas the spins in the Mn-NN pairs along the [1 1 ¯0 ] direction are mostly antiferromagnetically aligned. In the electronic structure of the systems containing Mn pairs with ferromagnetically aligned spins, we observe the valence band hole states in the neighborhood of Fermi energy. This indicates that the surface ferromagnetism in this prototype of dilute magnetic semiconductors can be explained in terms of the p -d Zener model.

  20. Ordered pairing in liquid metallic hydrogen

    NASA Technical Reports Server (NTRS)

    Carlsson, A. E.; Ashcroft, N. W.

    1983-01-01

    We study two possible types of pairing involving the protons of a proposed low-temperature liquid phase metallic hydrogen. Electron-proton pairing, which can result in an insulating phase, is investigated by using an approximate solution of an Eliashberg-type equation for the anomalous self-energy. A very low estimate of the transition temperature is obtained by including proton correlations in the effective interaction. For proton-proton pairing, we derive a new proton pair potential based on the Abrikosov wave function. This potential includes the electron-proton interaction to all orders and has a much larger well depth than is obtained with linear screening methods. This suggests the possibility of either a superfluid paired phase analogous to that in He-3, or alternatively a phase with true molecular pairing.

  1. Ensemble treatments of thermal pairing in nuclei

    NASA Astrophysics Data System (ADS)

    Hung, Nguyen Quang; Dang, Nguyen Dinh

    2009-10-01

    A systematic comparison is conducted for pairing properties of finite systems at nonzero temperature as predicted by the exact solutions of the pairing problem embedded in three principal statistical ensembles, namely the grandcanonical ensemble, canonical ensemble and microcanonical ensemble, as well as the unprojected (FTBCS1+SCQRPA) and Lipkin-Nogami projected (FTLN1+SCQRPA) theories that include the quasiparticle number fluctuation and coupling to pair vibrations within the self-consistent quasiparticle random-phase approximation. The numerical calculations are performed for the pairing gap, total energy, heat capacity, entropy, and microcanonical temperature within the doubly-folded equidistant multilevel pairing model. The FTLN1+SCQRPA predictions are found to agree best with the exact grand-canonical results. In general, all approaches clearly show that the superfluid-normal phase transition is smoothed out in finite systems. A novel formula is suggested for extracting the empirical pairing gap in reasonable agreement with the exact canonical results.

  2. Decoherence in a pair of long-lived Cooper-pair boxes

    NASA Astrophysics Data System (ADS)

    Zaretskey, V.; Novikov, S.; Suri, B.; Kim, Z.; Wellstood, F. C.; Palmer, B. S.

    2013-09-01

    We have investigated the decoherence of quantum states in two Al/AlOx/Al Cooper-pair boxes coupled to lumped element superconducting inductor-capacitor resonators. At 25 mK, the first qubit had an energy relaxation time T1 that varied from 30 μs to 200 μs between 4 and 8 GHz and displayed an inverse correlation between T1 and the coupling to the microwave drive line. The Ramsey fringe decay times T2* were in the [200-500] ns range while the spin echo envelope decay times Techo varied from 2.4-3.3 μs, consistent with 1/f charge noise with a high frequency cutoff of 0.2 MHz. A second Cooper-pair box qubit with similar parameters showed T1=4-30 μs between 4 and 7.3 GHz, and that the T1 and the coupling were again inversely correlated. Although the lifetime of the second device was shorter than that of the first device, the dependence on coupling in both devices suggests that further reduction in coupling should lead to improved qubit performance.

  3. Pair production of Dirac particles in a -dimensional noncommutative space-time

    NASA Astrophysics Data System (ADS)

    Ousmane Samary, Dine; N'Dolo, Emanonfi Elias; Hounkonnou, Mahouton Norbert

    2014-11-01

    This work addresses the computation of the probability of fermionic particle pair production in -dimensional noncommutative Moyal space. Using Seiberg-Witten maps, which establish relations between noncommutative and commutative field variables, up to the first order in the noncommutative parameter , we derive the probability density of vacuum-vacuum pair production of Dirac particles. The cases of constant electromagnetic, alternating time-dependent, and space-dependent electric fields are considered and discussed.

  4. Dynamical evolution of comet pairs

    NASA Astrophysics Data System (ADS)

    Sosa, Andrea; Fernández, Julio A.

    2016-10-01

    Some Jupiter family comets in near-Earth orbits (thereafter NEJFCs) show a remarkable similarity in their present orbits, like for instance 169P/NEAT and P/2003 T12 (SOHO), or 252P/LINEAR and P/2016 BA14 (PANSTARRS). By means of numerical integrations we studied the dynamical evolution of these objects. In particular, for each pair of presumably related objects, we are interested in assessing the stability of the orbital parameters for several thousand years, and to find a minimum of their relative spatial distance, coincident with a low value of their relative velocity. For those cases for which we find a well defined minimum of their relative orbital separation, we are trying to reproduce the actual orbit of the hypothetical fragment by modeling a fragmentation of the parent body. Some model parameters are the relative ejection velocity (a few m/s), the orbital point at which the fragmentation could have happened (e.g. perihelion), and the elapsed time since fragmentation. In addition, some possible fragmentation mechanisms, like thermal stress, rotational instability, or collisions, could be explored. According to Fernández J.A and Sosa A. 2015 (Planetary and Space Science 118,pp.14-24), some NEJFCs might come from the outer asteroid belt, and then they would have a more consolidated structure and a higher mineral content than that of comets coming from the trans-Neptunian belt or the Oort cloud. Therefore, such objects would have a much longer physical lifetime in the near-Earth region, and could become potential candidates to produce visible meteor showers (as for example 169P/NEAT which has been identified as the parent body of the alpha-Capricornid meteoroid stream, according to Jenniskens, P., Vaubaillon, J., 2010 (Astron. J. 139), and Kasuga, T., Balam, D.D., Wiegert, P.A., 2010 (Astron. J. 139).

  5. Lax pairs for deformed Minkowski spacetimes

    NASA Astrophysics Data System (ADS)

    Kyono, Hideki; Sakamoto, Jun-ichi; Yoshida, Kentaroh

    2016-01-01

    We proceed to study Yang-Baxter deformations of 4D Minkowski spacetime based on a conformal embedding. We first revisit a Melvin background and argue a Lax pair by adopting a simple replacement law invented in 1509.00173. This argument enables us to deduce a general expression of Lax pair. Then the anticipated Lax pair is shown to work for arbitrary classical r-matrices with Poincaré generators. As other examples, we present Lax pairs for pp-wave backgrounds, the Hashimoto-Sethi background, the Spradlin-Takayanagi-Volovich background.

  6. Dual origin of pairing in nuclei

    NASA Astrophysics Data System (ADS)

    Idini, A.; Potel, G.; Barranco, F.; Vigezzi, E.; Broglia, R. A.

    2016-11-01

    The pairing correlations of the nucleus 120Sn are calculated by solving the Nambu-Gor'kov equations, including medium polarization effects resulting from the interweaving of quasiparticles, spin and density vibrations, taking into account, within the framework of nuclear field theory (NFT), processes leading to self-energy and vertex corrections and to the induced pairing interaction. From these results one can not only demonstrate the inevitability of the dual origin of pairing in nuclei, but also extract information which can be used at profit to quantitatively disentangle the contributions to the pairing gap Δ arising from the bare and from the induced pairing interaction. The first is the strong 1 S 0 short-range NN potential resulting from meson exchange between nucleons moving in time reversal states within an energy range of hundreds of MeV from the Fermi energy. The second results from the exchange of vibrational modes between nucleons moving within few MeV from the Fermi energy. Short- ( v p bare) and long-range ( v p ind) pairing interactions contribute essentially equally to nuclear Cooper pair stability. That is to the breaking of gauge invariance in open-shell superfluid nuclei and thus to the order parameter, namely to the ground state expectation value of the pair creation operator. In other words, to the emergent property of generalized rigidity in gauge space, and associated rotational bands and Cooper pair tunneling between members of these bands.

  7. Calculation of the stabilization energies of oxidatively damaged guanine base pairs with guanine.

    PubMed

    Suzuki, Masayo; Kino, Katsuhito; Morikawa, Masayuki; Kobayashi, Takanobu; Komori, Rie; Miyazawa, Hiroshi

    2012-06-01

    DNA is constantly exposed to endogenous and exogenous oxidative stresses. Damaged DNA can cause mutations, which may increase the risk of developing cancer and other diseases. G:C-C:G transversions are caused by various oxidative stresses. 2,2,4-Triamino-5(2H)-oxazolone (Oz), guanidinohydantoin (Gh)/iminoallantoin (Ia) and spiro-imino-dihydantoin (Sp) are known products of oxidative guanine damage. These damaged bases can base pair with guanine and cause G:C-C:G transversions. In this study, the stabilization energies of these bases paired with guanine were calculated in vacuo and in water. The calculated stabilization energies of the Ia:G base pairs were similar to that of the native C:G base pair, and both bases pairs have three hydrogen bonds. By contrast, the calculated stabilization energies of Gh:G, which form two hydrogen bonds, were lower than the Ia:G base pairs, suggesting that the stabilization energy depends on the number of hydrogen bonds. In addition, the Sp:G base pairs were less stable than the Ia:G base pairs. Furthermore, calculations showed that the Oz:G base pairs were less stable than the Ia:G, Gh:G and Sp:G base pairs, even though experimental results showed that incorporation of guanine opposite Oz is more efficient than that opposite Gh/Ia and Sp.

  8. Determination of the fermion pair size in a resonantly interacting superfluid.

    PubMed

    Schunck, Christian H; Shin, Yong-Il; Schirotzek, André; Ketterle, Wolfgang

    2008-08-07

    Fermionic superfluidity requires the formation of particle pairs, the size of which varies from the femtometre scale in neutron stars and nuclei to the micrometre scale in conventional superconductors. Many properties of the superfluid depend on the pair size relative to the interparticle spacing. This is expressed in 'BCS-BEC crossover' theories, describing the crossover from a Bardeen-Cooper-Schrieffer (BCS)-type superfluid of loosely bound, large Cooper pairs to Bose-Einstein condensates (BECs) of tightly bound molecules. Such a crossover superfluid has been realized in ultracold atomic gases where high-temperature superfluidity has been observed. The microscopic properties of the fermion pairs can be probed using radio-frequency spectroscopy. However, previous work was difficult to interpret owing to strong final-state interactions that were not well understood. Here we realize a superfluid spin mixture in which such interactions have negligible influence and present fermion pair dissociation spectra that reveal the underlying pairing correlations. This allows us to determine that the spectroscopic pair size in the resonantly interacting gas is 20 per cent smaller than the interparticle spacing. These are the smallest pairs so far observed in fermionic superfluids, highlighting the importance of small fermion pairs for superfluidity at high critical temperatures. We have also identified transitions from fermion pairs to bound molecular states and to many-body bound states in the case of strong final-state interactions.

  9. Meiotic chromosome pairing in Actinidia chinensis var. deliciosa.

    PubMed

    Mertten, D; Tsang, G K; Manako, K I; McNeilage, M A; Datson, P M

    2012-12-01

    Polyploids are defined as either autopolyploids or allopolyploids, depending on their mode of origin and/or chromosome pairing behaviour. Autopolyploids have chromosome sets that are the result of the duplication or combination of related genomes (e.g., AAAA), while allopolyploids result from the combination of sets of chromosomes from two or more different taxa (e.g., AABB, AABBCC). Allopolyploids are expected to show preferential pairing of homologous chromosomes from within each parental sub-genome, leading to disomic inheritance. In contrast, autopolyploids are expected to show random pairing of chromosomes (non-preferential pairing), potentially leading to polysomic inheritance. The two main cultivated taxa of Actinidia (kiwifruit) are A. chinensis (2x and 4x) and A. chinensis var. deliciosa (6x). There is debate whether A. chinensis var. deliciosa is an autopolyploid derived solely from A. chinensis or whether it is an allopolyploid derived from A. chinensis and one or two other Actinidia taxa. To investigate whether preferential or non-preferential chromosome pairing occurs in A. chinensis var. deliciosa, the inheritance of microsatellite alleles was analysed in the tetraploid progeny of a cross between A. chinensis var. deliciosa and the distantly related Actinidia eriantha Benth. (2x). The frequencies of inherited microsatellite allelic combinations in the hybrids suggested that non-preferential chromosome pairing had occurred in the A. chinensis var. deliciosa parent. Meiotic chromosome analysis showed predominantly bivalent formation in A. chinensis var. deliciosa, but a low frequency of quadrivalent chromosome formations was observed (1 observed in 20 pollen mother cells).

  10. Polarization of drifting pairs at decameter waves

    NASA Astrophysics Data System (ADS)

    Brazhenko, A. I.; Melnik, V. N.; Konovalenko, A. A.; Abranin, E. P.; Dorovskyy, V. V.; Vashchishin, R. V.; Frantsuzenko, A. V.; Rucker, H. O.; Lecacheux, A.

    2006-08-01

    The results of polarization researches of drifting pairs (DP) observed during Type III bursts storm in July[S:,:S][Author ID2: at Fri Jul 14 10:33:00 2006 ] 11-21, 2002 with radio telescope URAN-2 are presented. The array of the radio telescope consists of 512 broadband cross dipoles, that enables to receive signals of two polarizations, has the area about of 28000 m^2 and works in 9-30 MHz range. Circular polarization measurements were made at frequency 24.75 MHz in frequency band 10 μHz with time resolution 10 ms. Some hundreds bursts, both forward and reverse DPs, which have been registered with radio telescope UTR-2 in the frequency range 18-32 μHz, were analyzed. For the first time we find that DP polarizations strongly depend on the location of the active area associated with these bursts. When an active area is near to the central meridian, polarizations of both DP components have the same signs and their values are up to 30%. In other days in most cases polarizations of both components have opposite signs and only for some bursts polarization reaches 10%. In all cases both DP components have comparable polarization degrees.

  11. Mechanically Biased, Hinged Pairs of Piezoelectric Benders

    NASA Technical Reports Server (NTRS)

    Sager, Frank E.

    2005-01-01

    decrease in distance between the attachment tabs; this increase or decrease is the linear displacement desired for actuation. Because the displacement can be either positive or negative relative to the bias distance, depending on the polarity of the applied voltage, the overall stroke achievable for a given magnitude of applied voltage is double the stroke achievable in the absence of mechanical bias. Each hinged pair can be regarded as a unit cell that can serve as a building block for a larger actuator: Multiple unit cells can be stacked (mechanically connected in series), as shown in the lower part of the figure, and electrically connected in parallel to multiply the overall stroke achievable at a given applied voltage.

  12. Pair condensation in a finite Fermi system

    SciTech Connect

    Sambataro, M.

    2007-05-15

    The lowest seniority-zero eigenstates of an exactly solvable multilevel pairing Hamiltonian for a finite Fermi system are examined at different pairing regimes. After briefly reviewing the form of the eigenstates in the Richardson formalism, we discuss a different representation of these states in terms of the collective pairs resulting from the diagonalization of the Hamiltonian in a space of two degenerate time-reversed fermions. We perform a two-fold analysis by working both in the fermionic space of these collective pairs and in a space of corresponding elementary bosons. On the fermionic side, we monitor the variations which occur, with increasing the pairing strength, in the structure of both these collective pairs and the lowest eigenstates. On the bosonic side, after reviewing a fermion-boson mapping procedure, we construct exact images of the fermion eigenstates and study their wave function. The analysis allows a close examination of the phenomenon of pair condensation in a finite Fermi system and gives new insights into the evolution of the lowest (seniority-zero) excited states of a pairing Hamiltonian from the unperturbed regime up to a strongly interacting one.

  13. Exploring Pair Programming Benefits for MIS Majors

    ERIC Educational Resources Information Center

    Dongo, Tendai; Reed, April H.; O'Hara, Margaret

    2016-01-01

    Pair programming is a collaborative programming practice that places participants in dyads, working in tandem at one computer to complete programming assignments. Pair programming studies with Computer Science (CS) and Software Engineering (SE) majors have identified benefits such as technical productivity, program/design quality, academic…

  14. 22 CFR 62.31 - Au pairs.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... pair participant with child development and child safety instruction, as follows: (1) Prior to... development instruction of which no less than 4 shall be devoted to specific training for children under the... and participate directly in the home life of the host family. All au pair participants provide...

  15. 22 CFR 62.31 - Au pairs.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... pair participant with child development and child safety instruction, as follows: (1) Prior to... development instruction of which no less than 4 shall be devoted to specific training for children under the... and participate directly in the home life of the host family. All au pair participants provide...

  16. 22 CFR 62.31 - Au pairs.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... pair participant with child development and child safety instruction, as follows: (1) Prior to... development instruction of which no less than 4 shall be devoted to specific training for children under the... and participate directly in the home life of the host family. All au pair participants provide...

  17. 22 CFR 62.31 - Au pairs.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... pair participant with child development and child safety instruction, as follows: (1) Prior to... development instruction of which no less than 4 shall be devoted to specific training for children under the... and participate directly in the home life of the host family. All au pair participants provide...

  18. 22 CFR 62.31 - Au pairs.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... pair participant with child development and child safety instruction, as follows: (1) Prior to... development instruction of which no less than 4 shall be devoted to specific training for children under the... and participate directly in the home life of the host family. All au pair participants provide...

  19. Top Quark Pair Production at the Tevatron

    SciTech Connect

    Nielsen, Jason

    2005-05-17

    The measurement of the top quark pair production crosssection inproton-antiproton collisions at 1.96 TeV is a test ofquantumchromodynamics and could potentially be sensitive to newphysics beyondthe standard model. I report on the latest t-tbarcross section resultsfrom the CDF and DZero experiments in various finalstate topologies whicharise from decays of top quark pairs.

  20. Discovering Pair-wise Synergies in Microarray Data

    PubMed Central

    Chen, Yuan; Cao, Dan; Gao, Jun; Yuan, Zheming

    2016-01-01

    Informative gene selection can have important implications for the improvement of cancer diagnosis and the identification of new drug targets. Individual-gene-ranking methods ignore interactions between genes. Furthermore, popular pair-wise gene evaluation methods, e.g. TSP and TSG, are helpless for discovering pair-wise interactions. Several efforts to discover pair-wise synergy have been made based on the information approach, such as EMBP and FeatKNN. However, the methods which are employed to estimate mutual information, e.g. binarization, histogram-based and KNN estimators, depend on known data or domain characteristics. Recently, Reshef et al. proposed a novel maximal information coefficient (MIC) measure to capture a wide range of associations between two variables that has the property of generality. An extension from MIC(X; Y) to MIC(X1; X2; Y) is therefore desired. We developed an approximation algorithm for estimating MIC(X1; X2; Y) where Y is a discrete variable. MIC(X1; X2; Y) is employed to detect pair-wise synergy in simulation and cancer microarray data. The results indicate that MIC(X1; X2; Y) also has the property of generality. It can discover synergic genes that are undetectable by reference feature selection methods such as MIC(X; Y) and TSG. Synergic genes can distinguish different phenotypes. Finally, the biological relevance of these synergic genes is validated with GO annotation and OUgene database. PMID:27470995

  1. Inferring relationships between pairs of individuals from locus heterozygosities

    PubMed Central

    Presciuttini, Silvano; Toni, Chiara; Tempestini, Elena; Verdiani, Simonetta; Casarino, Lucia; Spinetti, Isabella; Stefano, Francesco De; Domenici, Ranieri; Bailey-Wilson, Joan E

    2002-01-01

    Background The traditional exact method for inferring relationships between individuals from genetic data is not easily applicable in all situations that may be encountered in several fields of applied genetics. This study describes an approach that gives affordable results and is easily applicable; it is based on the probabilities that two individuals share 0, 1 or both alleles at a locus identical by state. Results We show that these probabilities (zi) depend on locus heterozygosity (H), and are scarcely affected by variation of the distribution of allele frequencies. This allows us to obtain empirical curves relating zi's to H for a series of common relationships, so that the likelihood ratio of a pair of relationships between any two individuals, given their genotypes at a locus, is a function of a single parameter, H. Application to large samples of mother-child and full-sib pairs shows that the statistical power of this method to infer the correct relationship is not much lower than the exact method. Analysis of a large database of STR data proves that locus heterozygosity does not vary significantly among Caucasian populations, apart from special cases, so that the likelihood ratio of the more common relationships between pairs of individuals may be obtained by looking at tabulated zi values. Conclusions A simple method is provided, which may be used by any scientist with the help of a calculator or a spreadsheet to compute the likelihood ratios of common alternative relationships between pairs of individuals. PMID:12441003

  2. Pairing in a dry Fermi sea

    NASA Astrophysics Data System (ADS)

    Maier, T. A.; Staar, P.; Mishra, V.; Chatterjee, U.; Campuzano, J. C.; Scalapino, D. J.

    2016-06-01

    In the traditional Bardeen-Cooper-Schrieffer theory of superconductivity, the amplitude for the propagation of a pair of electrons with momentum k and -k has a log singularity as the temperature decreases. This so-called Cooper instability arises from the presence of an electron Fermi sea. It means that an attractive interaction, no matter how weak, will eventually lead to a pairing instability. However, in the pseudogap regime of the cuprate superconductors, where parts of the Fermi surface are destroyed, this log singularity is suppressed, raising the question of how pairing occurs in the absence of a Fermi sea. Here we report Hubbard model numerical results and the analysis of angular-resolved photoemission experiments on a cuprate superconductor. In contrast to the traditional theory, we find that in the pseudogap regime the pairing instability arises from an increase in the strength of the spin-fluctuation pairing interaction as the temperature decreases rather than the Cooper log instability.

  3. PAIR: the predicted Arabidopsis interactome resource.

    PubMed

    Lin, Mingzhi; Shen, Xueling; Chen, Xin

    2011-01-01

    The predicted Arabidopsis interactome resource (PAIR, http://www.cls.zju.edu.cn/pair/), comprised of 5990 experimentally reported molecular interactions in Arabidopsis thaliana together with 145,494 predicted interactions, is currently the most comprehensive data set of the Arabidopsis interactome with high reliability. PAIR predicts interactions by a fine-tuned support vector machine model that integrates indirect evidences for interaction, such as gene co-expressions, domain interactions, shared GO annotations, co-localizations, phylogenetic profile similarities and homologous interactions in other organisms (interologs). These predictions were expected to cover 24% of the entire Arabidopsis interactome, and their reliability was estimated to be 44%. Two independent example data sets were used to rigorously validate the prediction accuracy. PAIR features a user-friendly query interface, providing rich annotation on the relationships between two proteins. A graphical interaction network browser has also been integrated into the PAIR web interface to facilitate mining of specific pathways.

  4. {bar{B}_s} to φ {ρ^0} and {bar{B}_s} to φ {π^0} as a handle on isospin-violating New Physics

    NASA Astrophysics Data System (ADS)

    Hofer, Lars; Scherer, Dominik; Vernazza, Leonardo

    2011-02-01

    The 2.5 σ discrepancy between theory and experiment observed in the difference {A_{text{CP}}}left( {{B- } to {π^0}{K- }} right) - {A_{text{CP}}}left( {{{bar{B}}^0} to {π+ }{K- }} right) can be explained by a new electroweak penguin amplitude. Motivated by this result, we analyse the purely isospin-violating decays {bar{B}_s} to φ {ρ^0} and {bar{B}_s} to φ {π^0} , which are dominated by electroweak penguins, and show that in presence of a new electroweak penguin amplitude their branching ratio can be enhanced by up to an order of magnitude, without violating any constraints from other hadronic B decays. This makes them very interesting modes for LHCb and future B factories. We perform both a model-independent analysis and a study within realistic New Physics models such as a modified- Z 0-penguin scenario, a model with an additional Z' boson and the MSSM. In the latter cases the new amplitude can be correlated with other flavour phenomena, such as semileptonic B decays and {B_s} - {bar{B}_s} mixing, which impose stringent constraints on the enhancement of the two B sdecays. In particular we find that, contrary to claims in the literature, electroweak penguins in the MSSM can reduce the discrepancy in the B → πK modes only marginally. As byproducts we update the SM predictions to {text{Br}}left( {{{bar{B}}_s} to φ {π^0}} right) = 1.6_{ - 0.3}^{ + 1.1} \\cdot {10^{ - 7}} and {text{Br}}left( {{{bar{B}}_s} to φ {ρ^0}} right) = 4.4_{ - 0.7}^{ + 2.7} \\cdot {10^{ - 7}} and perform a state-of-the-art analysis of B → πK amplitudes in QCD factorisation.

  5. SRTM Stereo Pair: Fiji Islands

    NASA Technical Reports Server (NTRS)

    2000-01-01

    image pair and viewing them with a stereoscope. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions.

    This image was acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (about 200 feet) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: 192 km (119 miles) x 142 km (88 miles) Location: 17.8 deg. South lat., 178.0 deg. East lon. Orientation: North at top Date Acquired: February 19, 2000 Image: NASA/JPL/NIMA

  6. Detecting a preformed pair phase: Response to a pairing forcing field

    NASA Astrophysics Data System (ADS)

    Tagliavini, A.; Capone, M.; Toschi, A.

    2016-10-01

    The normal state of strongly coupled superconductors is characterized by the presence of "preformed" Cooper pairs well above the superconducting critical temperature. In this regime, the electrons are paired, but they lack the phase coherence necessary for superconductivity. The existence of preformed pairs implies the existence of a characteristic energy scale associated with a pseudogap. Preformed pairs are often invoked to interpret systems where some signatures of pairing are present without actual superconductivity, but an unambiguous theoretical characterization of a preformed-pair system is still lacking. To fill this gap, we consider the response to an external pairing field of an attractive Hubbard model, which hosts one of the cleanest realizations of a preformed pair phase, and a repulsive model where s -wave superconductivity cannot be realized. Using dynamical mean-field theory to study this response, we identify the characteristic features which distinguish the reaction of a preformed pair state from a normal metal without any precursor of pairing. The theoretical detection of preformed pairs is associated with the behavior of the second derivative of the order parameter with respect to the external field, as confirmed by analytic calculations in limiting cases. Our findings provide a solid test bed for the interpretation of state-of-the-art calculations for the normal state of the doped Hubbard model in terms of d -wave preformed pairs and, in perspective, of nonequilibrium experiments in high-temperature superconductors.

  7. Pairing interaction near a nematic quantum critical point of a three-band CuO2 model

    DOE PAGES

    Maier, Thomas A.; Scalapino, Douglas J.

    2014-11-21

    In this paper, we calculate the pairing interaction and the k dependence of the gap function associated with the nematic charge fluctuations of a CuO2 model.We find that the nematic pairing interaction is attractive for small momentum transfer and that it gives rise to d-wave pairing. Finally, as the doping p approaches a quantum critical point, the strength of this pairing increases and higher d-wave harmonics contribute to the k dependence of the superconducting gap function, reflecting the longer range nature of the nematic fluctuations.

  8. Pairing interaction near a nematic quantum critical point of a three-band CuO2 model

    SciTech Connect

    Maier, Thomas A.; Scalapino, Douglas J.

    2014-11-21

    In this paper, we calculate the pairing interaction and the k dependence of the gap function associated with the nematic charge fluctuations of a CuO2 model.We find that the nematic pairing interaction is attractive for small momentum transfer and that it gives rise to d-wave pairing. Finally, as the doping p approaches a quantum critical point, the strength of this pairing increases and higher d-wave harmonics contribute to the k dependence of the superconducting gap function, reflecting the longer range nature of the nematic fluctuations.

  9. KK molecules with momentum-dependent interactions

    SciTech Connect

    Lemmer, R. H.

    2009-10-15

    It is shown that the momentum-dependent kaon-antikaon interactions generated via vector-meson exchange from the standard SU{sub V}(3)xSU{sub A}(3) interaction Lagrangian lead to a nonlocal potential in coordinate space that can be incorporated without approximation into a nonrelativistic version of the Bethe-Salpeter wave equation containing a radial-dependent effective kaon mass appearing in a fully symmetrized kinetic energy operator, in addition to a local potential. Estimates of the mass and decay widths of f{sub 0}(980) and a{sub 0}(980), considered as KK molecules of isospin 0 and 1, as well as for K{sup +}K{sup -} atomic bound states (kaonium) are presented and compared with previous studies of a similar nature. It is argued that without a better knowledge of hadronic form factors it is not possible to distinguish between the molecular versus elementary particle models for the structure of the light scalar mesons.

  10. Numerical Analysis on Adsorption Characteristics of Activated Carbon/Ethanol Pair in Finned Tube Type Adsorber

    NASA Astrophysics Data System (ADS)

    Makimoto, Naoya; Kariya, Keishi; Koyama, Shigeru

    The cycle performance of adsorption cooling system depends on the thermophysical properties of the adsorbent/refrigerant pair and configuration of the adsorber/desorber heat exchanger. In this study, a twodimensional analysis is carried out in order to clarify the performance of the finned tube type adsorber/desorber heat exchanger using a highly porous activated carbon powder (ACP)/ethanol pair. The simulation results show that the average cooling capacity per unit volume of adsorber/desorber heat exchanger and coefficient of performance (COP) can be improved by optimizing fin thickness, fin height, fin pitch and tube diameter. The performance of a single stage adsorption cooling system using ACP/ethanol pair is also compared with that of activated carbon fiber (ACF)/ethanol pair. It is found that the cooling capacities of each adsorbent/refrigerant pair increase with the decrease of adsorption/desorption time and the cooling capacity of ACP/ethanol pair is approximately 2.5 times as much as that of ACF/ethanol pair. It is also shown that COP of ACP/ethanol pair is superior to that of ACF/ethanol pair.

  11. A Curious Pair of Galaxies

    NASA Astrophysics Data System (ADS)

    2009-03-01

    The ESO Very Large Telescope has taken the best image ever of a strange and chaotic duo of interwoven galaxies. The images also contain some surprises -- interlopers both far and near. ESO PR Photo 11a/09 A Curious Pair of Galaxies ESO PR Video 11a/09 Arp 261 zoom in ESO PR Video 11b/09 Pan over Arp 261 Sometimes objects in the sky that appear strange, or different from normal, have a story to tell and prove scientifically very rewarding. This was the idea behind Halton Arp's catalogue of Peculiar Galaxies that appeared in the 1960s. One of the oddballs listed there is Arp 261, which has now been imaged in more detail than ever before using the FORS2 instrument on ESO's Very Large Telescope. The image proves to contain several surprises. Arp 261 lies about 70 million light-years distant in the constellation of Libra, the Scales. Its chaotic and very unusual structure is created by the interaction of two galaxies that are engaged in a slow motion, but highly disruptive close encounter. Although individual stars are very unlikely to collide in such an event, the huge clouds of gas and dust certainly do crash into each other at high speed, leading to the formation of bright new clusters of very hot stars that are clearly seen in the picture. The paths of the existing stars in the galaxies are also dramatically disrupted, creating the faint swirls extending to the upper left and lower right of the image. Both interacting galaxies were probably dwarfs not unlike the Magellanic Clouds orbiting our own galaxy. The images used to create this picture were not actually taken to study the interacting galaxies at all, but to investigate the properties of the inconspicuous object just to the right of the brightest part of Arp 261 and close to the centre of the image. This is an unusual exploding star, called SN 1995N, that is thought to be the result of the final collapse of a massive star at the end of its life, a so-called core collapse supernova. SN 1995N is unusual because

  12. Weird Stellar Pair Puzzles Scientists

    NASA Astrophysics Data System (ADS)

    2008-05-01

    Astronomers have discovered a speedy spinning pulsar in an elongated orbit around an apparent Sun-like star, a combination never seen before, and one that has them puzzled about how the strange system developed. Orbital Comparison Comparing Orbits of Pulsar and Its Companion to our Solar System. CREDIT: Bill Saxton, NRAO/AUI/NSF Click on image for full caption information and available graphics. "Our ideas about how the fastest-spinning pulsars are produced do not predict either the kind of orbit or the type of companion star this one has," said David Champion of the Australia Telescope National Facility. "We have to come up with some new scenarios to explain this weird pair," he added. Astronomers first detected the pulsar, called J1903+0327, as part of a long-term survey using the National Science Foundation's Arecibo radio telescope in Puerto Rico. They made the discovery in 2006 doing data analysis at McGill University, where Champion worked at the time. They followed up the discovery with detailed studies using the Arecibo telescope, the NSF's Robert C. Byrd Green Bank Telescope (GBT) in West Virginia, the Westerbork radio telescope in the Netherlands, and the Gemini North optical telescope in Hawaii. The pulsar, a city-sized superdense stellar corpse left over after a massive star exploded as a supernova, is spinning on its axis 465 times every second. Nearly 21,000 light-years from Earth, it is in a highly-elongated orbit that takes it around its companion star once every 95 days. An infrared image made with the Gemini North telescope in Hawaii shows a Sun-like star at the pulsar's position. If this is an orbital companion to the pulsar, it is unlike any companions of other rapidly rotating pulsars. The pulsar, a neutron star, also is unusually massive for its type. "This combination of properties is unprecedented. Not only does it require us to figure out how this system was produced, but the large mass may help us understand how matter behaves at extremely

  13. Pure Pairing Modes in Trapped Fermion Systems

    NASA Astrophysics Data System (ADS)

    Capuzzi, P.; Hernández, E. S.; Szybisz, L.

    2013-05-01

    We present numerical predictions for the shape of the pairing fluctuations in harmonically trapped atomic 6Li with two spin projections, based on the fluiddynamical description of cold fermions with pairing interactions. In previous works it has been shown that when the equilibrium of a symmetric mixture is perturbed, the linearized fluiddynamic equations decouple into two sets, one containing the sound mode of fermion superfluids and the other the pairing mode. The latter corresponds to oscillations of the modulus of the complex gap and is driven by the kinetic energy densities of the particles and of the pairs. Assuming proportionality between the heat flux and the energy gradient, the particle kinetic energy undergoes a diffusive behavior and the diffusion parameter is the key parameter for the relaxation time scale. We examine a possible range of values for this parameter and find that the shape of the pairing oscillation is rather insensitive to the precise value of the transport coefficient. Moreover, the pairing fluctuation is largely confined to the center of the trap, and the energy of the pairing mode is consistent with the magnitude of the equilibrium gap.

  14. Pair creation in heavy ion channeling

    NASA Astrophysics Data System (ADS)

    Belov, N. A.; Harman, Z.

    2016-04-01

    Heavy ions channeled through crystals with multi-GeV kinetic energies can create electron-positron pairs. In the framework of the ion, the energy of virtual photons arising from the periodic crystal potential may exceed the threshold 2mec2. The repeated periodic collisions with the crystal ions yield high pair production rates. When the virtual photon frequency matches a nuclear transition in the ion, the production rate can be resonantly increased. In this two-step excitation-pair conversion scheme, the excitation rates are coherently enhanced, and scale approximately quadratically with the number of crystal sites along the channel.

  15. Pair Creation at Large Inherent Angles

    SciTech Connect

    Chen, P.; Tauchi, T.; Schroeder, D.V.; /SLAC

    2007-04-25

    In the next-generation linear colliders, the low-energy e{sup +}e{sup -} pairs created during the collision of high-energy e{sup +}e{sup -} beams would cause potential deleterious background problems to the detectors. At low collider energies, the pairs are made essentially by the incoherent process, where the pair is created by the interaction of beamstrahlung photons on the individual particles in the oncoming beam. This problem was first identified by Zolotarev, et al[1]. At energies where the beamstrahlung parameter {Upsilon} lies approximately in the range 0.6 {approx}< {Upsilon} {approx}< 100, pair creation from the beamstrahlung photons is dominated by a coherent process, first noted by Chen[2]. The seriousness of this pair creation problem lies in the transverse momenta that the pair particles carry when leaving the interaction point (IP) with large angles. One source of transverse momentum is from the kick by the field of the oncoming beam which results in an outcoming angle {theta} {proportional_to} 1/{radical}x, where x is the fractional energy of the particle relative to the initial beam particle energy[2,3]. As was shown in Ref. 131, there in fact exists an energy threshold for the coherent pairs, where x{sub th} {approx}> 1/2{Upsilon}. Thus within a tolerable exiting angle, there exists an upper limit for {Upsilon} where all coherent pairs would leave the detector through the exhaust port[4]. A somewhat different analysis has been done by Schroeder[5]. In the next generation of linear colliders, as it occurs, the coherent pairs can be exponentially suppressed[2] by properly choosing the {Upsilon}({approx}< 0.6). When this is achieved, the incoherent pairs becomes dominant. Since the central issue is the transverse momentum for particles with large angles, we notice that there is another source for it. Namely, when the pair particles are created at low energies, the intrinsic angles of these pairs when produced may already be large. This issue was

  16. Atom-Pair Kinetics with Strong Electric-Dipole Interactions.

    PubMed

    Thaicharoen, N; Gonçalves, L F; Raithel, G

    2016-05-27

    Rydberg-atom ensembles are switched from a weakly to a strongly interacting regime via adiabatic transformation of the atoms from an approximately nonpolar into a highly dipolar quantum state. The resultant electric dipole-dipole forces are probed using a device akin to a field ion microscope. Ion imaging and pair-correlation analysis reveal the kinetics of the interacting atoms. Dumbbell-shaped pair-correlation images demonstrate the anisotropy of the binary dipolar force. The dipolar C_{3} coefficient, derived from the time dependence of the images, agrees with the value calculated from the permanent electric-dipole moment of the atoms. The results indicate many-body dynamics akin to disorder-induced heating in strongly coupled particle systems.

  17. Microwave and THz sensing using slab-pair-based metamaterials

    SciTech Connect

    Kenanakis, G.; Shen, Nianhai; Mavidis, Ch.; Katsarakis, N.; Kafesaki, M.; Soukoulis, Costas M.; Economou, E.N.

    2012-10-15

    In this work the sensing capability of an artificial magnetic metamaterial based on pairs of metal slabs is demonstrated, both theoretically and experimentally, in the microwave regime. The demonstration is based on transmission measurements and simulations monitoring the shift of the magnetic resonance frequency as one changes a thin dielectric layer placed between the slabs of the pairs. Strong dependence of the magnetic resonance frequency on both the permittivity and the thickness of the dielectric layer under detection was observed. The sensitivity to the dielectrics′ permittivity (ε) is larger for dielectrics of low ε values, which makes the approach suitable for sensing organic materials also in the THz regime. The capability of our approach for THz sensing is also demonstrated through simulations.

  18. Pairing symmetry and vortex zero mode for superconducting Dirac fermions

    SciTech Connect

    Lu, C.-K.; Herbut, Igor F.

    2010-10-01

    We study vortex zero-energy bound states in presence of pairing between low-energy Dirac fermions on the surface of a topological insulator. The pairing symmetries considered include the s-wave, p-wave, and, in particular, the mixed-parity symmetry, which arises in absence of the inversion symmetry on the surface. The zero mode is analyzed within the generalized Jackiw-Rossi-Dirac Hamiltonian that contains a momentum-dependent mass term, and includes the effects of the electromagnetic gauge field and the Zeeman coupling as well. At a finite chemical potential, as long as the spectrum without the vortex is fully gapped, the presence of a single Fermi surface with a definite helicity always leads to one Majorana zero mode, in which both electron's spin projections participate. In particular, the critical effects of the Zeeman coupling on the zero mode are discussed.

  19. Cluster pair correlation function of simple fluids: energetic connectivity criteria.

    PubMed

    Pugnaloni, Luis A; Zarragoicoechea, Guillermo J; Vericat, Fernando

    2006-11-21

    We consider the clustering of Lennard-Jones particles by using an energetic connectivity criterion proposed long ago by Hill [J. Chem. Phys. 32, 617 (1955)] for the bond between pairs of particles. The criterion establishes that two particles are bonded (directly connected) if their relative kinetic energy is less than minus their relative potential energy. Thus, in general, it depends on the direction as well as on the magnitude of the velocities and positions of the particles. An integral equation for the pair connectedness function, proposed by two of the authors [Phys. Rev. E 61, R6067 (2000)], is solved for this criterion and the results are compared with those obtained from molecular dynamics simulations and from a connectedness Percus-Yevick-type integral equation for a velocity-averaged version of Hill's energetic criterion.

  20. Anyon pairing via phonon-mediated interaction

    NASA Astrophysics Data System (ADS)

    Kandemir, B. S.

    2006-08-01

    In this paper, we study the pairing of anyons subjected to an external uniform magnetic field and confined in a two-dimensional parabolic quantum dot within the framework of Fröhlich large bipolaron theory, motivated by the Wilczek’s prescription that treats anyons as composites having both charges and fictitious flux tubes. In this model, electrons bound to Aharanov-Bohm type flux tubes and surrounded by a cloud of virtual LO phonons interact with each other through the long range Coulomb and statistical potentials. In order to discuss the effects of both spatial confinement potential and external uniform magnetic field on the boundaries of the stability region of such a pairing in real space, we perform a self-consistent treatment of the ground-state energies of both an interacting anyon pair and two noninteracting anyons. Our results suggest that two interacting anyons can be bound into a condensate anyon pair through a phonon-mediated interaction.

  1. Temporal Multimode Storage of Entangled Photon Pairs

    NASA Astrophysics Data System (ADS)

    Tiranov, Alexey; Strassmann, Peter C.; Lavoie, Jonathan; Brunner, Nicolas; Huber, Marcus; Verma, Varun B.; Nam, Sae Woo; Mirin, Richard P.; Lita, Adriana E.; Marsili, Francesco; Afzelius, Mikael; Bussières, Félix; Gisin, Nicolas

    2016-12-01

    Multiplexed quantum memories capable of storing and processing entangled photons are essential for the development of quantum networks. In this context, we demonstrate and certify the simultaneous storage and retrieval of two entangled photons inside a solid-state quantum memory and measure a temporal multimode capacity of ten modes. This is achieved by producing two polarization-entangled pairs from parametric down-conversion and mapping one photon of each pair onto a rare-earth-ion-doped (REID) crystal using the atomic frequency comb (AFC) protocol. We develop a concept of indirect entanglement witnesses, which can be used as Schmidt number witnesses, and we use it to experimentally certify the presence of more than one entangled pair retrieved from the quantum memory. Our work puts forward REID-AFC as a platform compatible with temporal multiplexing of several entangled photon pairs along with a new entanglement certification method, useful for the characterization of multiplexed quantum memories.

  2. Spectra from pair-equilibrium plasmas

    NASA Technical Reports Server (NTRS)

    Zdziarski, A. A.

    1984-01-01

    A numerical model of relativistic nonmagnetized plasma with uniform temperature and electron density distributions is considered, and spectra from plasma in pair equilibrium are studied. A range of dimensionless temperature (T) greater than about 0.2 is considered. The spectra from low pair density plasmas in pair equilibrium vary from un-Comptonized bremsstrahlung spectra at Thomson cross section tau(N) much less than one to Comptonized bremsstrahlung spectra with tau(N) over one. For high pair density plasmas the spectra are flat for T greater than about one, and have broad intensity peaks at energy roughly equal to 3T for T less than one. In the latter region the total luminosity is approximately twice the annihilation luminosity. All spectra are flat in the X-ray region, in contradiction to observed AGN spectra. For dimensionless luminosity greater than about 100, the cooling time becomes shorter than the Thomson time.

  3. Alloy solution hardening with solute pairs

    DOEpatents

    Mitchell, John W.

    1976-08-24

    Solution hardened alloys are formed by using at least two solutes which form associated solute pairs in the solvent metal lattice. Copper containing equal atomic percentages of aluminum and palladium is an example.

  4. Mixed parity pairing in a dipolar gas

    NASA Astrophysics Data System (ADS)

    Bruun, G. M.; Hainzl, C.; Laux, M.

    2016-10-01

    We show that fermionic dipoles in a two-layer geometry form Cooper pairs with both singlet and triplet components when they are tilted with respect to the normal of the planes. The mixed parity pairing arises because the interaction between dipoles in the two different layers is not inversion symmetric. We use an efficient eigenvalue approach to calculate the zero-temperature phase diagram of the system as a function of the dipole orientation and the layer distance. The phase diagram contains purely triplet as well as mixed singlet and triplet superfluid phases. We show in detail how the pair wave function for dipoles residing in different layers smoothly changes from singlet to triplet symmetry as the orientation of the dipoles is changed. Our results indicate that dipolar quantum gases can be used to unambiguously observe mixed parity pairing.

  5. 90 Seconds of Discovery: Frustrated Lewis Pairs

    SciTech Connect

    Kathmann, Shawn; Schenter, Greg; Autrey, Tom

    2014-02-14

    Hydrogen activating catalysts play an important role in producing valuable chemicals, such as biofuels and ammonia. As a part of efforts to develop the next generation of these catalysts, PNNL researchers have found potential in Frustrated Lewis Pairs.

  6. 90 Seconds of Discovery: Frustrated Lewis Pairs

    ScienceCinema

    Kathmann, Shawn; Schenter, Greg; Autrey, Tom

    2016-07-12

    Hydrogen activating catalysts play an important role in producing valuable chemicals, such as biofuels and ammonia. As a part of efforts to develop the next generation of these catalysts, PNNL researchers have found potential in Frustrated Lewis Pairs.

  7. Pairing phenomena in strongly correlated Fermi liquids

    NASA Astrophysics Data System (ADS)

    Krotscheck, E.; Smith, R. A.; Jackson, A. D.

    1981-12-01

    The correlated-basis-function method is extended to deal with pairing phenomena in strongly correlated Fermi liquids. With a variational ansatz for the model wave function we derive the "correlated" analog of the conventional Bardeen-Cooper-Schrieffer (or Balian-Werthamer), Anderson-Brinkman-Morel theory of pairing. A suitable (and well-controlled) set of approximations brings the theory into a form identical to the conventional theories, but with the bare interaction replaced by a weak effective interaction and the bare single-particle energies replaced by an effective single-particle spectrum. As usual, liquid 3He provides a very stringent test of the theory, as both the interaction and the experimental facts are pretty clear. The variational estimates for the pairing interaction are improved by nonorthogonal perturbation theory. We find the expected enhancement of the attraction in P waves, although the restriction to effective two-body interactions appears to be insufficient to generate P-wave pairing.

  8. A novel approach for antibody nanocarriers development through hydrophobic ion-pairing complexation

    PubMed Central

    Patel, Ashaben; Gaudana, Ripal; Mitra, Ashim K.

    2015-01-01

    IgG-Fab fragment, a model antibody protein was hydrophobically modified by a novel approach of ion-pairing complexation. Three different sulphated ion-pairing agents were utilised including sodium dodecyl sulphate, taurocholic acid and dextran sulphate (DS). The formations of hydrophobic ion-pairing (HIP) complexes were dependant on pH and molar ratio of ion-pairing agent to Fab. Aqueous solubilities of HIP complexes were very low compared to Fab alone. In particular, when dextran sulphate was added as ion-pairing agent, formed Fab:DS HIP complexes were least soluble in water. Further, nanoparticles (NPs) loaded with drug and Fab:DS HIP complex were prepared and characterised with respect to encapsulation efficiency and size. We observed significant improvement in encapsulation efficiency for Fab:DS HIP complex-loaded nanoparticles. This study demonstrates a novel approach of formulating antibody-loaded nanoparticles which can also be employed for delivery of large antibodies. PMID:24697179

  9. DNA terminal base pairs have weaker hydrogen bonds especially for AT under low salt concentration

    NASA Astrophysics Data System (ADS)

    Ferreira, Izabela; Amarante, Tauanne D.; Weber, Gerald

    2015-11-01

    DNA base pairs are known to open more easily at the helix terminal, a process usually called end fraying, the details of which are still poorly understood. Here, we present a mesoscopic model calculation based on available experimental data where we consider separately the terminal base pairs of a DNA duplex. Our results show an important reduction of hydrogen bond strength for terminal cytosine-guanine (CG) base pairs which is uniform over the whole range of salt concentrations, while for AT base pairs, we obtain a nearly 1/3 reduction but only at low salt concentrations. At higher salt concentrations, terminal adenine-thymine (AT) pair has almost the same hydrogen bond strength than interior bases. The calculated terminal stacking interaction parameters display some peculiarly contrasting behavior. While there is mostly no perceptible difference to internal stacking, for some cases, we observe an unusually strong dependence with salt concentration which does not appear follow any pattern or trend.

  10. Polarization proximity effect in isolator crystal pairs.

    PubMed

    Linzon, Y; Ferrera, M; Razzari, L; Pignolet, A; Morandotti, R

    2008-12-01

    We experimentally study the polarization dynamics (orientation and ellipticity) of near-infrared light transmitted through magneto-optical yttrium iron garnet isolator crystal pairs using a modified balanced detection scheme. When the pair separation is in the submillimeter range, we observed a proximity effect in which the saturation field is reduced by up to 20%. One-dimensional calculations suggest that the proximity effect originates from magnetostatic interactions between the dipole moments of the isolator crystals.

  11. Alternative DNA base pairing through metal coordination.

    PubMed

    Clever, Guido H; Shionoya, Mitsuhiko

    2012-01-01

    Base-pairing in the naturally occurring DNA and RNA oligonucleotide duplexes is based on π-stacking, hydrogen bonding, and shape complementarity between the nucleobases adenine, thymine, guanine, and cytosine as well as on the hydrophobic-hydrophilic balance in aqueous media. This complex system of multiple supramolecular interactions is the product of a long-term evolutionary process and thus highly optimized to serve its biological functions such as information storage and processing. After the successful implementation of automated DNA synthesis, chemists have begun to introduce artificial modifications inside the core of the DNA double helix in order to study various aspects of base pairing, generate new base pairs orthogonal to the natural ones, and equip the biopolymer with entirely new functions. The idea to replace the hydrogen bonding interactions with metal coordination between ligand-like nucleosides and suitable transition metal ions culminated in the development of a plethora of artificial base-pairing systems termed "metal base-pairs" which were shown to strongly enhance the DNA duplex stability. Furthermore, they show great potential for the use of DNA as a molecular wire in nanoscale electronic architectures. Although single electrons have proven to be transmitted by natural DNA over a distance of several base pairs, the high ohmic resistance of unmodified oligonucleotides was identified as a serious obstacle. By exchanging some or all of the Watson-Crick base pairs in DNA with metal complexes, this problem may be solved. In the future, these research efforts are supposed to lead to DNA-like materials with superior conductivity for nano-electronic applications. Other fields of potential application such as DNA-based supramolecular architecture and catalysis may be strongly influenced by these developments as well. This text is meant to illustrate the basic concepts of metal-base pairing and give an outline over recent developments in this field.

  12. Ultrabright source of entangled photon pairs.

    PubMed

    Dousse, Adrien; Suffczyński, Jan; Beveratos, Alexios; Krebs, Olivier; Lemaître, Aristide; Sagnes, Isabelle; Bloch, Jacqueline; Voisin, Paul; Senellart, Pascale

    2010-07-08

    A source of triggered entangled photon pairs is a key component in quantum information science; it is needed to implement functions such as linear quantum computation, entanglement swapping and quantum teleportation. Generation of polarization entangled photon pairs can be obtained through parametric conversion in nonlinear optical media or by making use of the radiative decay of two electron-hole pairs trapped in a semiconductor quantum dot. Today, these sources operate at a very low rate, below 0.01 photon pairs per excitation pulse, which strongly limits their applications. For systems based on parametric conversion, this low rate is intrinsically due to the Poissonian statistics of the source. Conversely, a quantum dot can emit a single pair of entangled photons with a probability near unity but suffers from a naturally very low extraction efficiency. Here we show that this drawback can be overcome by coupling an optical cavity in the form of a 'photonic molecule' to a single quantum dot. Two coupled identical pillars-the photonic molecule-were etched in a semiconductor planar microcavity, using an optical lithography method that ensures a deterministic coupling to the biexciton and exciton energy states of a pre-selected quantum dot. The Purcell effect ensures that most entangled photon pairs are emitted into two cavity modes, while improving the indistinguishability of the two optical recombination paths. A polarization entangled photon pair rate of 0.12 per excitation pulse (with a concurrence of 0.34) is collected in the first lens. Our results open the way towards the fabrication of solid state triggered sources of entangled photon pairs, with an overall (creation and collection) efficiency of 80%.

  13. Instantaneous rest-frame transformation method for temporally induced pair creation

    NASA Astrophysics Data System (ADS)

    Lv, Q. Z.; Vikartofsky, A.; Norris, S.; Li, Y. J.; Wagner, R.; Su, Q.; Grobe, R.

    2014-04-01

    We introduce a computational method to determine the rate of the electron-positron pair creation triggered by a time-dependent subcritical external field. It is based on constructing a Lorentz transformation to an instantaneous rest frame, for which the pair-creation rate can be determined by standard techniques. We will discuss the accuracy and efficiency of this method by comparing its predictions with exact time-dependent quantum field theoretical solutions to the Dirac and Klein-Gordon equations for various space-time dependent external fields.

  14. Formation of asteroid pairs by rotational fission.

    PubMed

    Pravec, P; Vokrouhlický, D; Polishook, D; Scheeres, D J; Harris, A W; Galád, A; Vaduvescu, O; Pozo, F; Barr, A; Longa, P; Vachier, F; Colas, F; Pray, D P; Pollock, J; Reichart, D; Ivarsen, K; Haislip, J; Lacluyze, A; Kusnirák, P; Henych, T; Marchis, F; Macomber, B; Jacobson, S A; Krugly, Yu N; Sergeev, A V; Leroy, A

    2010-08-26

    Pairs of asteroids sharing similar heliocentric orbits, but not bound together, were found recently. Backward integrations of their orbits indicated that they separated gently with low relative velocities, but did not provide additional insight into their formation mechanism. A previously hypothesized rotational fission process may explain their formation-critical predictions are that the mass ratios are less than about 0.2 and, as the mass ratio approaches this upper limit, the spin period of the larger body becomes long. Here we report photometric observations of a sample of asteroid pairs, revealing that the primaries of pairs with mass ratios much less than 0.2 rotate rapidly, near their critical fission frequency. As the mass ratio approaches 0.2, the primary period grows long. This occurs as the total energy of the system approaches zero, requiring the asteroid pair to extract an increasing fraction of energy from the primary's spin in order to escape. We do not find asteroid pairs with mass ratios larger than 0.2. Rotationally fissioned systems beyond this limit have insufficient energy to disrupt. We conclude that asteroid pairs are formed by the rotational fission of a parent asteroid into a proto-binary system, which subsequently disrupts under its own internal system dynamics soon after formation.

  15. On cooperative instabilities of parallel vortex pairs

    NASA Astrophysics Data System (ADS)

    Bristol, R. L.; Ortega, J. M.; Marcus, P. S.; Savas, Ö.

    2004-10-01

    We present a combined analytical and numerical study of the instabilities of a pair of parallel unequal-strength vortices. We extend the analyses of a vortex in an external strain field (Crow, AIAA J. vol. 8, 1970, p. 2172; Widnall et al., J. Fluid Mech. vol. 66, 1974, p. 35) to include the orbital motion of the vortex pair. For counter-rotating pairs, the classic Crow-type periodic displacement perturbations are unstable for all vortex strength ratios, with fastest-growing wavelengths several times the vortex spacing. For co-rotating pairs, the orbital motion acts to suppress instability due to displacement perturbations. Instabilities in this case arise for elliptic perturbations at wavelengths that scale with the vortex core size. We also examine the influence of a second vortex pair by extending Crouch's (J. Fluid Mech. vol. 350, 1997, p. 311) analysis. Numerical results from a spectral initial-value code with subgrid-scale modelling agree with the growth rates from the theoretical models. Computations reveal the nonlinear evolution at late times, including wrapping and ring-rejection behaviour observed in experiments. A pair of co-rotating Gaussian vortices perturbed by noise develops elliptic instabilities, leading to the formation of vorticity bridges between the two vortices. The bridging is a prelude to vortex merger. Analytic, computational and experimental results agree well at circulation Reynolds numbers of order 10(5) .

  16. Terminal Area Procedures for Paired Runways

    NASA Technical Reports Server (NTRS)

    Lozito, Sandra; Verma, Savita Arora

    2011-01-01

    Parallel runway operations have been found to increase capacity within the National Airspace but poor visibility conditions reduce the use of these operations. The NextGen and SESAR Programs have identified the capacity benefits from increased use of closely-space parallel runway. Previous research examined the concepts and procedures related to parallel runways however, there has been no investigation of the procedures associated with the strategic and tactical pairing of aircraft for these operations. This simulation study developed and examined the pilot and controller procedures and information requirements for creating aircraft pairs for parallel runway operations. The goal was to achieve aircraft pairing with a temporal separation of 15s (+/- 10s error) at a coupling point that was about 12 nmi from the runway threshold. Two variables were explored for the pilot participants: two levels of flight deck automation (current-day flight deck automation and auto speed control future automation) as well as two flight deck displays that assisted in pilot conformance monitoring. The controllers were also provided with automation to help create and maintain aircraft pairs. Results show the operations in this study were acceptable and safe. Subjective workload, when using the pairing procedures and tools, was generally low for both controllers and pilots, and situation awareness was typically moderate to high. Pilot workload was influenced by display type and automation condition. Further research on pairing and off-nominal conditions is required however, this investigation identified promising findings about the feasibility of closely-spaced parallel runway operations.

  17. Seniority zero pair coupled cluster doubles theory.

    PubMed

    Stein, Tamar; Henderson, Thomas M; Scuseria, Gustavo E

    2014-06-07

    Coupled cluster theory with single and double excitations accurately describes weak electron correlation but is known to fail in cases of strong static correlation. Fascinatingly, however, pair coupled cluster doubles (p-CCD), a simplified version of the theory limited to pair excitations that preserve the seniority of the reference determinant (i.e., the number of unpaired electrons), has mean field computational cost and is an excellent approximation to the full configuration interaction (FCI) of the paired space provided that the orbital basis defining the pairing scheme is adequately optimized. In previous work, we have shown that optimization of the pairing scheme in the seniority zero FCI leads to a very accurate description of static correlation. The same conclusion extends to p-CCD if the orbitals are optimized to make the p-CCD energy stationary. We here demonstrate these results with numerous examples. We also explore the contributions of different seniority sectors to the coupled cluster doubles (CCD) correlation energy using different orbital bases. We consider both Hartree-Fock and Brueckner orbitals, and the role of orbital localization. We show how one can pair the orbitals so that the role of the Brueckner orbitals at the CCD level is retained at the p-CCD level. Moreover, we explore ways of extending CCD to accurately describe strongly correlated systems.

  18. Donor-acceptor pair recombination in gallium sulfide

    NASA Astrophysics Data System (ADS)

    Aydinli, A.; Gasanly, N. M.; Gökşen, K.

    2000-12-01

    Low temperature photoluminescence of GaS single crystals shows three broad emission bands below 2.4 eV. Temperature and excitation light intensity dependencies of these bands reveal that all of them originate from close donor-acceptor pair recombination processes. Temperature dependence of the peak energies of two of these bands in the visible range follow, as expected, the band gap energy shift of GaS. However, the temperature dependence of the peak energy of the third band in the near infrared shows complex behavior by blueshifting at low temperatures followed by a redshift at intermediate temperatures and a second blueshift close to room temperature, which could only be explained via a configuration coordinate model. A simple model calculation indicates that the recombination centers are most likely located at the nearest neighbor lattice or interstitial sites.

  19. Fundamental aspects of recoupled pair bonds. I. Recoupled pair bonds in carbon and sulfur monofluoride

    SciTech Connect

    Dunning, Thom H. Xu, Lu T.; Takeshita, Tyler Y.

    2015-01-21

    The number of singly occupied orbitals in the ground-state atomic configuration of an element defines its nominal valence. For carbon and sulfur, with two singly occupied orbitals in their {sup 3}P ground states, the nominal valence is two. However, in both cases, it is possible to form more bonds than indicated by the nominal valence—up to four bonds for carbon and six bonds for sulfur. In carbon, the electrons in the 2s lone pair can participate in bonding, and in sulfur the electrons in both the 3p and 3s lone pairs can participate. Carbon 2s and sulfur 3p recoupled pair bonds are the basis for the tetravalence of carbon and sulfur, and 3s recoupled pair bonds enable sulfur to be hexavalent. In this paper, we report generalized valence bond as well as more accurate calculations on the a{sup 4}Σ{sup −} states of CF and SF, which are archetypal examples of molecules that possess recoupled pair bonds. These calculations provide insights into the fundamental nature of recoupled pair bonds and illustrate the key differences between recoupled pair bonds formed with the 2s lone pair of carbon, as a representative of the early p-block elements, and recoupled pair bonds formed with the 3p lone pair of sulfur, as a representative of the late p-block elements.

  20. Probabilistic modeling of flood characterizations with parametric and minimum information pair-copula model

    NASA Astrophysics Data System (ADS)

    Daneshkhah, Alireza; Remesan, Renji; Chatrabgoun, Omid; Holman, Ian P.

    2016-09-01

    This paper highlights the usefulness of the minimum information and parametric pair-copula construction (PCC) to model the joint distribution of flood event properties. Both of these models outperform other standard multivariate copula in modeling multivariate flood data that exhibiting complex patterns of dependence, particularly in the tails. In particular, the minimum information pair-copula model shows greater flexibility and produces better approximation of the joint probability density and corresponding measures have capability for effective hazard assessments. The study demonstrates that any multivariate density can be approximated to any degree of desired precision using minimum information pair-copula model and can be practically used for probabilistic flood hazard assessment.

  1. Critical Schwinger pair production. II. Universality in the deeply critical regime

    NASA Astrophysics Data System (ADS)

    Gies, Holger; Torgrimsson, Greger

    2017-01-01

    We study electron-positron pair production by spatially inhomogeneous electric fields. Depending on the localization of the field, a critical point (critical surface) exists in the space of field configurations where the pair production probability vanishes. Near criticality, pair production exhibits universal properties similar to those of continuous phase transitions. We extend results previously obtained in the semiclassical (weak-field) critical regime to the deeply critical regime for arbitrary peak field strength. In this regime, we find an enhanced universality, featuring a unique critical exponent β =3 for all sufficiently localized fields. For a large class of field profiles, we also compute the nonuniversal amplitudes.

  2. Heavy pair production currents with general quantum numbers in dimensionally regularized nonrelativistic QCD

    SciTech Connect

    Hoang, Andre H.; Ruiz-Femenia, Pedro

    2006-12-01

    We discuss the form and construction of general color singlet heavy particle-antiparticle pair production currents for arbitrary quantum numbers, and issues related to evanescent spin operators and scheme dependences in nonrelativistic QCD in n=3-2{epsilon} dimensions. The anomalous dimensions of the leading interpolating currents for heavy quark and colored scalar pairs in arbitrary {sup 2S+1}L{sub J} angular-spin states are determined at next-to-leading order in the nonrelativistic power counting.

  3. The Fulde-Ferrell-Larkin-Ovchinnikov phase in the presence of pair hopping interaction.

    PubMed

    Ptok, Andrzej; Maśka, Maciej M; Mierzejewski, Marcin

    2009-07-22

    The recent experimental support for the presence of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase in CeCoIn(5) directed attention towards the mechanisms responsible for this type of superconductivity. We investigate the FFLO state in a model where on-site/inter-site pairing coexists with the repulsive pair hopping interaction. The latter interaction is interesting in that it leads to pairing with non-zero momentum of the Cooper pairs even in the absence of the external magnetic field (the so-called η pairing). It turns out that, depending on the strength of the pair hopping interaction, the magnetic field can induce one of two types of the FFLO phase with different spatial modulations of the order parameter. It is argued that the properties of the FFLO phase may give information about the magnitude of the pair hopping interaction. We also show that η pairing and d-wave superconductivity may coexist in the FFLO state. It holds true also for superconductors which, in the absence of magnetic field, are of pure d-wave type.

  4. Oxytocin-like receptors mediate pair bonding in a socially monogamous songbird

    PubMed Central

    Klatt, James D.; Goodson, James L.

    2013-01-01

    Although many species form socially monogamous pair bonds, relevant neural mechanisms have been described for only a single species, the prairie vole (Microtus ochrogaster). In this species, pair bonding is strongly dependent upon the nonapeptides oxytocin (OT) and vasopressin, in females and males, respectively. Because monogamy has evolved many times in multiple lineages, data from additional species are required to determine whether similar peptide mechanisms modulate bonding when monogamy evolves independently. Here we test the hypothesis that OT-like receptor activation is required for pair bond formation in the socially monogamous zebra finch (Taeniopygia guttata). Males and females were administered chronic intracerebroventricular infusions of saline or an OT receptor antagonist and were observed twice daily for 3 days in a colony environment. A variety of affiliative, aggressive and other behaviours were quantified. The antagonist produced significant and selective effects on pair bonding (latency to pair; number of sessions paired; stable pairing) and the associated behaviour of allopreening. Importantly, findings for males follow the trends of females; this yields main effects of treatment in two-way ANOVAs, although within-sex analyses are significant only for females. These data provide evidence for both convergent evolution and species diversity in the neuroendocrine mechanisms of pair bonding. PMID:23173212

  5. Multi-quasiparticle isomers near stability and reduced pairing

    SciTech Connect

    Dracoulis, G.D.

    1996-12-31

    The proximity of high-{Omega} orbitals near both proton and neutron Fermi surfaces in nuclei near Z = 74 and N = 104 results in high-K states competing with collective rotation of low-seniority configurations to generate the yrast line. In favorable situations it is possible to observe both the intrinsic states and associated rotational bands. The band properties allow characterization of the configurations and evaluation of orbital and seniority-dependent effects, including pairing reduction and consequent loss of nuclear superfluidity.

  6. Pairing and condensation in a resonant Bose-Fermi mixture

    NASA Astrophysics Data System (ADS)

    Fratini, Elisa; Pieri, Pierbiagio

    2010-05-01

    We study by diagrammatic means a Bose-Fermi mixture, with boson-fermion coupling tuned by a Fano-Feshbach resonance. For increasing coupling, the growing boson-fermion pairing correlations progressively reduce the boson condensation temperature and make it eventually vanish at a critical coupling. Such quantum critical point depends very weakly on the population imbalance and, for vanishing boson densities, coincides with that found for the polaron-molecule transition in a strongly imbalanced Fermi gas, thus bridging two quite distinct physical systems.

  7. On the rogue wave propagation in ion pair superthermal plasma

    SciTech Connect

    Abdelwahed, H. G. E-mail: hgomaa-eg@mans.edu.eg; Zahran, M. A.; El-Shewy, E. K. Elwakil, S. A.

    2016-02-15

    Effects of superthermal electron on the features of nonlinear acoustic waves in unmagnetized collisionless ion pair plasma with superthermal electrons have been examined. The system equations are reduced in the form of the nonlinear Schrodinger equation. The rogue wave characteristics dependences on the ionic density ratio (ν = n{sub –0}/n{sub +0}), ionic mass ratio (Q = m{sub +}/m{sub −}), and superthermality index (κ) are investigated. It is worth mentioning that the results present in this work could be applicable in the Earth's ionosphere plasmas.

  8. Magnetosonic wave in pair-ion electron collisional plasmas

    NASA Astrophysics Data System (ADS)

    Hussain, S.; Hasnain, H.

    2017-03-01

    Low frequency magnetosonic waves in positive and negative ions of equal mass and opposite charges in the presence of electrons in collisional plasmas are studied. The collisions of ions and electrons with neutrals are taken into account. The nonlinearities in the plasma system arise due to ion and electrons flux, Lorentz forces, and plasma current densities. The reductive perturbation method is applied to derive the Damped Korteweg de Vries (DKdV) equation. The time dependent solution of DKdV is presented. The effects of variations of different plasma parameters on propagation characteristics of magnetosonic waves in pair-ion electron plasma in the context of laboratory plasmas are discussed.

  9. Numerical Computation of Dynamical Schwingerlike Pair Production in Graphene

    NASA Astrophysics Data System (ADS)

    Fillion-Gourdeau, F.; Blain, P.; Gagnon, D.; Lefebvre, C.; Maclean, S.

    2017-03-01

    The density of electron-hole pairs produced in a graphene sample immersed in a homogeneous time-dependent electric field is evaluated. Because low energy charge carriers in graphene are described by relativistic quantum mechanics, the calculation is performed within the strong field quantum electrodynamics formalism, requiring a solution of the Dirac equation in momentum space. The equation is solved using a split-operator numerical scheme on parallel computers, allowing for the investigation of several field configurations. The strength of the method is illustrated by computing the electron momentum density generated from a realistic laser pulse model. We observe quantum interference patterns reminiscent of Landau-Zener-Stückelberg interferometry.

  10. Unconventional fermionic pairing states in a monochromatically tilted optical lattice

    NASA Astrophysics Data System (ADS)

    Nocera, A.; Polkovnikov, A.; Feiguin, A. E.

    2017-02-01

    We study the one-dimensional attractive fermionic Hubbard model under the influence of periodic driving with the time-dependent density matrix renormalization group method. We show that the system can be driven into an unconventional pairing state characterized by a condensate made of Cooper pairs with a finite center-of-mass momentum similar to a Fulde-Ferrell state. We obtain results both in the laboratory and the rotating reference frames demonstrating that the momentum of the condensate can be finely tuned by changing the ratio between the amplitude and the frequency of the driving. In particular, by quenching this ratio to the value corresponding to suppression of the tunneling and the Coulomb interaction strength to zero, we are able to "freeze" the condensate. We finally study the effects of different initial conditions and compare our numerical results to those obtained from a time-independent Floquet theory in the large frequency regime. Our work offers the possibility of engineering and controlling unconventional pairing states in fermionic condensates.

  11. Unconventional fermionic pairing states in a monochromatically tilted optical lattice

    DOE PAGES

    Nocera, Alberto; Polkovnikov, Anatoli; Feiguin, Adrian E.

    2017-02-01

    We study the one-dimensional attractive fermionic Hubbard model under the influence of periodic driving with the time-dependent density matrix renormalization group method. We show that the system can be driven into an unconventional pairing state characterized by a condensate made of Cooper pairs with a finite center-of-mass momentum similar to a Fulde-Ferrell state. We obtain results both in the laboratory and the rotating reference frames demonstrating that the momentum of the condensate can be finely tuned by changing the ratio between the amplitude and the frequency of the driving. In particular, by quenching this ratio to the value corresponding tomore » suppression of the tunneling and the Coulomb interaction strength to zero, we are able to “freeze” the condensate. We finally study the effects of different initial conditions and compare our numerical results to those obtained from a time-independent Floquet theory in the large frequency regime. Lastly, our work offers the possibility of engineering and controlling unconventional pairing states in fermionic condensates.« less

  12. An efficient quantum mechanical method for radical pair recombination reactions

    NASA Astrophysics Data System (ADS)

    Lewis, Alan M.; Fay, Thomas P.; Manolopoulos, David E.

    2016-12-01

    The standard quantum mechanical expressions for the singlet and triplet survival probabilities and product yields of a radical pair recombination reaction involve a trace over the states in a combined electronic and nuclear spin Hilbert space. If this trace is evaluated deterministically, by performing a separate time-dependent wavepacket calculation for each initial state in the Hilbert space, the computational effort scales as O (Z2log ⁡Z ) , where Z is the total number of nuclear spin states. Here we show that the trace can also be evaluated stochastically, by exploiting the properties of spin coherent states. This results in a computational effort of O (M Z log ⁡Z ) , where M is the number of Monte Carlo samples needed for convergence. Example calculations on a strongly coupled radical pair with Z >106 show that the singlet yield can be converged to graphical accuracy using just M =200 samples, resulting in a speed up by a factor of >5000 over a standard deterministic calculation. We expect that this factor will greatly facilitate future quantum mechanical simulations of a wide variety of radical pairs of interest in chemistry and biology.

  13. Isotopic Dependence of GCR Fluence behind Shielding

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.; Saganti, Premkumar; Kim, Myung-Hee Y.; Cleghorn, Timothy; Zeitlin, Cary; Tripathi, Ram K.

    2006-01-01

    In this paper we consider the effects of the isotopic composition of the primary galactic cosmic rays (GCR), nuclear fragmentation cross-sections, and isotopic-grid on the solution to transport models used for shielding studies. Satellite measurements are used to describe the isotopic composition of the GCR. For the nuclear interaction data-base and transport solution, we use the quantum multiple-scattering theory of nuclear fragmentation (QMSFRG) and high-charge and energy (HZETRN) transport code, respectively. The QMSFRG model is shown to accurately describe existing fragmentation data including proper description of the odd-even effects as function of the iso-spin dependence on the projectile nucleus. The principle finding of this study is that large errors (+/-100%) will occur in the mass-fluence spectra when comparing transport models that use a complete isotopic-grid (approx.170 ions) to ones that use a reduced isotopic-grid, for example the 59 ion-grid used in the HZETRN code in the past, however less significant errors (<+/-20%) occur in the elemental-fluence spectra. Because a complete isotopic-grid is readily handled on small computer workstations and is needed for several applications studying GCR propagation and scattering, it is recommended that they be used for future GCR studies.

  14. Geometrical parameters of E+S pairs

    NASA Technical Reports Server (NTRS)

    Rampazzo, Roberto; Sulentic, Jack W.

    1990-01-01

    Local environmental conditions (i.e., density and angular momentum properties of protogalactic clouds) are thought to be factors affecting the ultimate morphology of a galaxy. The existence of significant numbers of mixed morphology (E/SO+S) pairs of galaxies would represent a direct challenge to this idea unless all early-type components are formed by mergers. The authors wished to isolate candidate E+S pairs for detailed study. The authors have observed 22 pairs of mixed morphology galaxies (containing at least one early-type component) selected from a catalog of Sulentic (1988: unpublished) based upon the ESO sky survey. The observed sample and relevant morphological and interaction characteristics are summarized in tabular form. The authors report the relevant geometrical properties of the galaxies in another table. They list the maximum values measured for the ellipticity and the a(4)/a shape parameter together with the total measured twisting along the profile beyond the seeing disk (they set an inner limit of 3 arcsed). An asterisk indicates objects in which a(4)/a is neither predominantly boxy nor disky. They found a large number of true mixed pairs with 13/22 E+S pairs in the present sample. The remaining objects include 5 disk pairs (composed of SO and S members) and 3 early-type pairs comprising E and SO members. They estimate that between 25 and 50 percent of the pairs in any complete sample will be of the E+S type. This suggests that 100 to 200 such pairs exist on the sky brighter than m sub pg = 16.0. They found no global evidence for a difference between E members of this sample and those in more general samples (e.g., Bender et al. 1989). In particular, they found that about 30 percent of the early-type galaxies cannot be classified either predominantly boxy or disky because the a(4)/a profile shows both of these features at a comparable level or does not show any significant trend. Isophotal twisting is observed with a range and distribution

  15. Theoretical study of pair density wave superconductors

    NASA Astrophysics Data System (ADS)

    Zheng, Zhichao

    In conventional superconductors, the Cooper pairs are formed from quasiparticles. We explore another type of superconducting state, a pair density wave (PDW) order, which spontaneously breaks some of the translational and point group symmetries. In a PDW superconductor, the order parameter is a periodic function of the center-of-mass coordinate, and the spatial average value of the superconducting order parameter vanishes. In the early 1960s, following the success of the BCS theory of superconductivity, Fulde and Ferrell and Larkin and Ovchinnikov (FFLO) developed theories of inhomogeneous superconducting states. Because of this Zeeman splitting in a magnetic field, the Cooper pairs having a nonzero center-of-mass momentum are more stable than the normal pairing, leading to the FFLO state. Experiments suggest possible occurrence of the FFLO state in the heavy-fermion compound CeCoIn5, and in quasi-low-dimensional organic superconductors. FFLO phases have also been argued to be of importance in understanding ultracold atomic Fermi gases and in the formation of color superconductivity in high density quark matter. In all Fermi superfluids known at the present time, Cooper pairs are composed of particles with spin 1/2. The spin component of a pair wave function can be characterized by its total spin S = 0 (singlet) and S = 1 (triplet). In the discovered broken inversion superconductors CePt3Si, Li2Pt3B, and Li2Pd3B, the magnetic field leads to novel inhomogeneous superconducting states, namely the helical phase and the multiple-q phase. Its order parameter exhibits periodicity similar to FFLO phase, and the consequences of both phases are same: the enhancement of transition temperature as a function of magnetic field. We have studied the PDW phases in broken parity superconductors with vortices included. By studying PDW vortex states, we find the usual Abrikosov vortex solution is unstable against a new solution with fractional vortex pairs. We have also studied the

  16. Pairing in a dry Fermi sea

    SciTech Connect

    Maier, Thomas A.; Staar, Peter; Mishra, V.; Chatterjee, Utpal; Campuzano, J. C.; Scalapino, Douglas J.

    2016-06-17

    In the traditional Bardeen–Cooper–Schrieffer theory of superconductivity, the amplitude for the propagation of a pair of electrons with momentum k and -k has a log singularity as the temperature decreases. This so-called Cooper instability arises from the presence of an electron Fermi sea. It means that an attractive interaction, no matter how weak, will eventually lead to a pairing instability. However, in the pseudogap regime of the cuprate superconductors, where parts of the Fermi surface are destroyed, this log singularity is suppressed, raising the question of how pairing occurs in the absence of a Fermi sea. In this paper, we report Hubbard model numerical results and the analysis of angular-resolved photoemission experiments on a cuprate superconductor. Finally, in contrast to the traditional theory, we find that in the pseudogap regime the pairing instability arises from an increase in the strength of the spin–fluctuation pairing interaction as the temperature decreases rather than the Cooper log instability.

  17. Pairing and specific heat in hot nuclei

    NASA Astrophysics Data System (ADS)

    Gambacurta, Danilo; Lacroix, Denis; Sandulescu, N.

    2013-09-01

    The thermodynamics of pairing phase-transition in nuclei is studied in the canonical ensemble and treating the pairing correlations in a finite-temperature variation after projection BCS approach (FT-VAP). Due to the restoration of particle number conservation, the pairing gap and the specific heat calculated in the FT-VAP approach vary smoothly with the temperature, indicating a gradual transition from the superfluid to the normal phase, as expected in finite systems. We have checked that the predictions of the FT-VAP approach are very accurate when compared to the results obtained by an exact diagonalization of the pairing Hamiltonian. The influence of pairing correlations on specific heat is analyzed for the isotopes 161,162Dy and 171,172Yb. It is shown that the FT-VAP approach, applied with a level density provided by mean field calculations and supplemented, at high energies, by the level density of the back-shifted Fermi gas model, can approximate reasonably well the main properties of specific heat extracted from experimental data. However, the detailed shape of the calculated specific heat is rather sensitive to the assumption made for the mean field.

  18. Pairing instabilities of Dirac composite fermions

    NASA Astrophysics Data System (ADS)

    Milovanović, M. V.; Ćirić, M. Dimitrijević; Juričić, V.

    2016-09-01

    Recently, a Dirac (particle-hole symmetric) description of composite fermions in the half-filled Landau level (LL) was proposed [D. T. Son, Phys. Rev. X 5, 031027 (2015), 10.1103/PhysRevX.5.031027], and we study its possible consequences on BCS (Cooper) pairing of composite fermions (CFs). One of the main consequences is the existence of anisotropic states in single-layer and bilayer systems, which was previously suggested in Jeong and Park [J. S. Jeong and K. Park, Phys. Rev. B 91, 195119 (2015), 10.1103/PhysRevB.91.195119]. We argue that in the half-filled LL in the single-layer case the gapped states may sustain anisotropy, because isotropic pairings may coexist with anisotropic ones. Furthermore, anisotropic pairings with the addition of a particle-hole symmetry-breaking mass term may evolve into rotationally symmetric states, i.e., Pfaffian states of Halperin-Lee-Read (HLR) ordinary CFs. On the basis of the Dirac formalism, we argue that in the quantum Hall bilayer at total filling factor 1, with decreasing distance between the layers, weak pairing of p -wave paired CFs is gradually transformed from Dirac to ordinary, HLR-like, with a concomitant decrease in the CF number. Global characterization of low-energy spectra based on the Dirac CFs agrees well with previous calculations performed by exact diagonalization on a torus. Finally, we discuss features of the Dirac formalism when applied in this context.

  19. On the analysis of phylogenetically paired designs

    PubMed Central

    Funk, Jennifer L; Rakovski, Cyril S; Macpherson, J Michael

    2015-01-01

    As phylogenetically controlled experimental designs become increasingly common in ecology, the need arises for a standardized statistical treatment of these datasets. Phylogenetically paired designs circumvent the need for resolved phylogenies and have been used to compare species groups, particularly in the areas of invasion biology and adaptation. Despite the widespread use of this approach, the statistical analysis of paired designs has not been critically evaluated. We propose a mixed model approach that includes random effects for pair and species. These random effects introduce a “two-layer” compound symmetry variance structure that captures both the correlations between observations on related species within a pair as well as the correlations between the repeated measurements within species. We conducted a simulation study to assess the effect of model misspecification on Type I and II error rates. We also provide an illustrative example with data containing taxonomically similar species and several outcome variables of interest. We found that a mixed model with species and pair as random effects performed better in these phylogenetically explicit simulations than two commonly used reference models (no or single random effect) by optimizing Type I error rates and power. The proposed mixed model produces acceptable Type I and II error rates despite the absence of a phylogenetic tree. This design can be generalized to a variety of datasets to analyze repeated measurements in clusters of related subjects/species. PMID:25750719

  20. Pairing in a dry Fermi sea

    PubMed Central

    Maier, T. A; Staar, P.; Mishra, V.; Chatterjee, U.; Campuzano, J. C.; Scalapino, D. J.

    2016-01-01

    In the traditional Bardeen–Cooper–Schrieffer theory of superconductivity, the amplitude for the propagation of a pair of electrons with momentum k and −k has a log singularity as the temperature decreases. This so-called Cooper instability arises from the presence of an electron Fermi sea. It means that an attractive interaction, no matter how weak, will eventually lead to a pairing instability. However, in the pseudogap regime of the cuprate superconductors, where parts of the Fermi surface are destroyed, this log singularity is suppressed, raising the question of how pairing occurs in the absence of a Fermi sea. Here we report Hubbard model numerical results and the analysis of angular-resolved photoemission experiments on a cuprate superconductor. In contrast to the traditional theory, we find that in the pseudogap regime the pairing instability arises from an increase in the strength of the spin–fluctuation pairing interaction as the temperature decreases rather than the Cooper log instability. PMID:27312569

  1. Terminal Area Procedures for Paired Runways

    NASA Technical Reports Server (NTRS)

    Lozito, Sandy

    2011-01-01

    Parallel Runway operations have been found to increase capacity within the National Airspace (NAS) however, poor visibility conditions reduce this capacity [1]. Much research has been conducted to examine the concepts and procedures related to parallel runways however, there has been no investigation of the procedures associated with the strategic and tactical pairing of aircraft for these operations. This study developed and examined the pilot and controller procedures and information requirements for creating aircraft pairs for parallel runway operations. The goal was to achieve aircraft pairing with a temporal separation of 15s(+/- 10s error) at a coupling point that is about 12 nmi from the runway threshold. Two variables were explored for the pilot participants: Two levels of flight deck automation (current-day flight deck automation, and a prototype future automation) as well as two flight deck displays that assisted in pilot conformance monitoring. The controllers were also provided with automation to help create and maintain aircraft pairs. Data showed that the operations in this study were found to be acceptable and safe. Workload when using the pairing procedures and tools was generally low for both controllers and pilots, and situation awareness (SA) was typically moderate to high. There were some differences based upon the display and automation conditions for the pilots. Future research should consider the refinement of the concepts and tools for pilot and controller displays and automation for parallel runway concepts.

  2. Pairing in a dry Fermi sea

    DOE PAGES

    Maier, Thomas A.; Staar, Peter; Mishra, V.; ...

    2016-06-17

    In the traditional Bardeen–Cooper–Schrieffer theory of superconductivity, the amplitude for the propagation of a pair of electrons with momentum k and -k has a log singularity as the temperature decreases. This so-called Cooper instability arises from the presence of an electron Fermi sea. It means that an attractive interaction, no matter how weak, will eventually lead to a pairing instability. However, in the pseudogap regime of the cuprate superconductors, where parts of the Fermi surface are destroyed, this log singularity is suppressed, raising the question of how pairing occurs in the absence of a Fermi sea. In this paper, wemore » report Hubbard model numerical results and the analysis of angular-resolved photoemission experiments on a cuprate superconductor. Finally, in contrast to the traditional theory, we find that in the pseudogap regime the pairing instability arises from an increase in the strength of the spin–fluctuation pairing interaction as the temperature decreases rather than the Cooper log instability.« less

  3. Probing the tides in interacting galaxy pairs

    NASA Technical Reports Server (NTRS)

    Borne, Kirk D.

    1990-01-01

    Detailed spectroscopic and imaging observations of colliding elliptical galaxies revealed unmistakable diagnostic signatures of the tidal interactions. It is possible to compare both the distorted luminosity distributions and the disturbed internal rotation profiles with numerical simulations in order to model the strength of the tidal gravitational field acting within a given pair of galaxies. Using the best-fit numerical model, one can then measure directly the mass of a specific interacting binary system. This technique applies to individual pairs and therefore complements the classical methods of measuring the masses of galaxy pairs in well-defined statistical samples. The 'personalized' modeling of galaxy pairs also permits the derivation of each binary's orbit, spatial orientation, and interaction timescale. Similarly, one can probe the tides in less-detailed observations of disturbed galaxies in order to estimate some of the physical parameters for larger samples of interacting galaxy pairs. These parameters are useful inputs to the more universal problems of (1) the galaxy merger rate, (2) the strength and duration of the driving forces behind tidally stimulated phenomena (e.g., starbursts and maybe quasi steller objects), and (3) the identification of long-lived signatures of interaction/merger events.

  4. Frustrated Lewis pairs: from concept to catalysis.

    PubMed

    Stephan, Douglas W

    2015-02-17

    CONSPECTUS: Frustrated Lewis pair (FLP) chemistry has emerged in the past decade as a strategy that enables main-group compounds to activate small molecules. This concept is based on the notion that combinations of Lewis acids and bases that are sterically prevented from forming classical Lewis acid-base adducts have Lewis acidity and basicity available for interaction with a third molecule. This concept has been applied to stoichiometric reactivity and then extended to catalysis. This Account describes three examples of such developments: hydrogenation, hydroamination, and CO2 reduction. The most dramatic finding from FLP chemistry was the discovery that FLPs can activate H2, thus countering the long-existing dogma that metals are required for such activation. This finding of stoichiometric reactivity was subsequently evolved to employ simple main-group species as catalysts in hydrogenations. While the initial studies focused on imines, subsequent studies uncovered FLP catalysts for a variety of organic substrates, including enamines, silyl enol ethers, olefins, and alkynes. Moreover, FLP reductions of aromatic anilines and N-heterocycles have been developed, while very recent extensions have uncovered the utility of FLP catalysts for ketone reductions. FLPs have also been shown to undergo stoichiometric reactivity with terminal alkynes. Typically, either deprotonation or FLP addition reaction products are observed, depending largely on the basicity of the Lewis base. While a variety of acid/base combinations have been exploited to afford a variety of zwitterionic products, this reactivity can also be extended to catalysis. When secondary aryl amines are employed, hydroamination of alkynes can be performed catalytically, providing a facile, metal-free route to enamines. In a similar fashion, initial studies of FLPs with CO2 demonstrated their ability to capture this greenhouse gas. Again, modification of the constituents of the FLP led to the discovery of reaction

  5. Pairing dynamics and the origin of species

    PubMed Central

    Puebla, Oscar; Bermingham, Eldredge; Guichard, Frédéric

    2012-01-01

    Whether sexual selection alone can drive the evolution of assortative mating in the presence of gene flow is a long-standing question in evolutionary biology. Here, we report a role for pairing dynamics of individuals when mate choice is mutual, which is sufficient for the evolution of assortative mating by sexual selection alone in the presence of gene flow. Through behavioural observation, individual-based simulation and population genetic analysis, we evaluate the pairing dynamics of coral reef fish in the genus Hypoplectrus (Serranidae), and the role these dynamics can play for the evolution of assortative mating. When mate choice is mutual and the stability of mating pairs is critical for reproductive success, the evolution of assortative mating in the presence of gene flow is not only possible, but is also a robust evolutionary outcome. PMID:21937496

  6. ION PAIR DISSOCIATION: Spectroscopy and Dynamics

    NASA Astrophysics Data System (ADS)

    Suits, Arthur G.; Hepburn, John W.

    2006-05-01

    Ion pair dissociation processes may be studied using coherent vacuum ultraviolet laser sources in a manner entirely analogous to photoelectron spectroscopy, albeit with the anion playing the role of a heavy electron. If the excitation energy is above the dissociation energy and the kinetic energy of the fragment is measured using ion imaging, this approach is termed ion pair imaging spectroscopy (IPIS) and is related to conventional photoelectron spectroscopy. If the excitation energy is just below the dissociation energy and pulsed-field dissociation is employed, this approach is analogous to mass analyzed threshold ionization (MATI) spectroscopy and is termed threshold ion pair production spectroscopy (TIPPS). These approaches provide a novel means of investigating ion thermochemistry and spectroscopy and superexcited state decay dynamics at high resolution.

  7. Pairing dynamics and the origin of species.

    PubMed

    Puebla, Oscar; Bermingham, Eldredge; Guichard, Frédéric

    2012-03-22

    Whether sexual selection alone can drive the evolution of assortative mating in the presence of gene flow is a long-standing question in evolutionary biology. Here, we report a role for pairing dynamics of individuals when mate choice is mutual, which is sufficient for the evolution of assortative mating by sexual selection alone in the presence of gene flow. Through behavioural observation, individual-based simulation and population genetic analysis, we evaluate the pairing dynamics of coral reef fish in the genus Hypoplectrus (Serranidae), and the role these dynamics can play for the evolution of assortative mating. When mate choice is mutual and the stability of mating pairs is critical for reproductive success, the evolution of assortative mating in the presence of gene flow is not only possible, but is also a robust evolutionary outcome.

  8. Pair production in superstrong magnetic fields

    NASA Technical Reports Server (NTRS)

    Daugherty, J. K.; Harding, A. K.

    1983-01-01

    The production of electron-positron pairs by single photons in magnetic fields 10 to the twelth power G was investigated in detail for photon energies near threshold as well as for the asymptotic limit of high photon energy. The exact attenuation coefficient, which is derived and then evaluated numerically, is strongly influenced by the discrete energy states of the electron and positron. Near threshold, it exhibits a sawtooth pattern as a function of photon energy, and its value is significantly below that predicted by the asymptotic expression for the attenuation coefficient. The energy distributions of the created pair are computed numerically near threshold and analytic expressions are derived in the asymptotic limit. These results indicate that as field strength and photon energy increase, it becomes increasingly probable for the pair to divide the photon energy unequally. This effect, as well as the threshold behavior of the attenuation coefficient, could have important consequences for pulsar models.

  9. Cooper-pair splitter: towards an efficient source of spin-entangled EPR pairs

    NASA Astrophysics Data System (ADS)

    Schonenberger, Christian

    2011-03-01

    In quantum mechanics the properties of two and more particles can be entangled. In basic science pairs of entangled particles, so called Einstein-Podolsky-Rosen (EPR) pairs, play a special role as toy objects for fundamental studies. They provide such things as ``spooky interaction at distance,'' but they also enable secure encoding and teleportation and are thus important for applications in quantum information technology. Whereas EPR pairs of photons can be generated by parametric down conversion (PDC) in a crystal, a similar source for EPR pairs of electrons does not exists yet. In several theory papers, it has been suggested to use a superconductor for this purpose. The superconducting ground state is formed by a condensate of Cooper-pairs which are electron pairs in a spin-singlet state. Since there are many Cooper pairs in a metallic superconductor like Al, the main tasks are to extract Cooper pairs one by one and to split them into different arms. A controlled and efficient splitting is possible if one makes use of Coulomb interaction. This has recently be demonstrated by two groups [2-4] using hybrid quantum-dot devices with both superconducting and normal metal contacts. In the present talk, I will discuss the Cooper-pair splitter results from the Basel-Budapest-Copenhagen team and compare with the other experiments. As an outlook we discuss approaches that aim at entanglement detection. The Cooper pair splitter holds great promises because very large splitting efficiencies approaching 100% and large pair current rates appear feasible. This work has been done by L. Hofstetter, S. Csonka, A. Geresdi, M. Aagesen, J. Nygard and C. Schönenberger

  10. Paired Learning: Tutoring by Non-Teachers. Incorporating "The Paired Reading Bulletin" No. 5.

    ERIC Educational Resources Information Center

    Paired Reading Bulletin, 1989

    1989-01-01

    The eight papers constituting the Proceedings of the fourth National Paired Reading Conference are published in an annual bulletin of the Paired Reading Project, together with seven papers constituting the Supplementary Proceedings of the Peer Tutoring Conference, and nine feature articles, as follows: (1) "Whole-School Policy on Parental…

  11. Communication: Multipole approximations of distant pair energies in local correlation methods with pair natural orbitals

    NASA Astrophysics Data System (ADS)

    Werner, Hans-Joachim

    2016-11-01

    The accuracy of multipole approximations for distant pair energies in local second-order Møller-Plesset perturbation theory (LMP2) as introduced by Hetzer et al. [Chem. Phys. Lett. 290, 143 (1998)] is investigated for three chemical reactions involving molecules with up to 92 atoms. Various iterative and non-iterative approaches are compared, using different energy thresholds for distant pair selection. It is demonstrated that the simple non-iterative dipole-dipole approximation, which has been used in several recent pair natural orbitals (PNO)-LMP2 and PNO-LCCSD (local coupled-cluster with singles and doubles) methods, may underestimate the distant pair energies by up to 50% and can lead to significant errors in relative energies, unless very tight thresholds are used. The accuracy can be much improved by including higher multipole orders and by optimizing the distant pair amplitudes iteratively along with all other amplitudes. A new approach is presented in which very small special PNO domains for distant pairs are used in the iterative approach. This reduces the number of distant pair amplitudes by 3 orders of magnitude and keeps the additional computational effort for the iterative optimization of distant pair amplitudes minimal.

  12. Communication: Multipole approximations of distant pair energies in local correlation methods with pair natural orbitals.

    PubMed

    Werner, Hans-Joachim

    2016-11-28

    The accuracy of multipole approximations for distant pair energies in local second-order Møller-Plesset perturbation theory (LMP2) as introduced by Hetzer et al. [Chem. Phys. Lett. 290, 143 (1998)] is investigated for three chemical reactions involving molecules with up to 92 atoms. Various iterative and non-iterative approaches are compared, using different energy thresholds for distant pair selection. It is demonstrated that the simple non-iterative dipole-dipole approximation, which has been used in several recent pair natural orbitals (PNO)-LMP2 and PNO-LCCSD (local coupled-cluster with singles and doubles) methods, may underestimate the distant pair energies by up to 50% and can lead to significant errors in relative energies, unless very tight thresholds are used. The accuracy can be much improved by including higher multipole orders and by optimizing the distant pair amplitudes iteratively along with all other amplitudes. A new approach is presented in which very small special PNO domains for distant pairs are used in the iterative approach. This reduces the number of distant pair amplitudes by 3 orders of magnitude and keeps the additional computational effort for the iterative optimization of distant pair amplitudes minimal.

  13. Going beyond "no-pair relativistic quantum chemistry".

    PubMed

    Liu, Wenjian; Lindgren, Ingvar

    2013-07-07

    The current field of relativistic quantum chemistry (RQC) has been built upon the no-pair and no-retardation approximations. While retardation effects must be treated in a time-dependent manner through quantum electrodynamics (QED) and are hence outside RQC, the no-pair approximation (NPA) has to be removed from RQC for it has some fundamental defects. Both configuration space and Fock space formulations have been proposed in the literature to do this. However, the former is simply wrong, whereas the latter is still incomplete. To resolve the old problems pertinent to the NPA itself and new problems beyond the NPA, we propose here an effective many-body (EMB) QED approach that is in full accordance with standard methodologies of electronic structure. As a first application, the full second order energy E2 of a closed-shell many-electron system subject to the instantaneous Coulomb-Breit interaction is derived, both algebraically and diagrammatically. It is shown that the same E2 can be obtained by means of 3 Goldstone-like diagrams through the standard many-body perturbation theory or 28 Feynman diagrams through the S-matrix technique. The NPA arises naturally by retaining only the terms involving the positive energy states. The potential dependence of the NPA can be removed by adding in the QED one-body counter terms involving the negative energy states, thereby leading to a "potential-independent no-pair approximation" (PI-NPA). The NPA, PI-NPA, EMB-QED, and full QED then span a continuous spectrum of relativistic molecular quantum mechanics.

  14. Going beyond ``no-pair relativistic quantum chemistry''

    NASA Astrophysics Data System (ADS)

    Liu, Wenjian; Lindgren, Ingvar

    2013-07-01

    The current field of relativistic quantum chemistry (RQC) has been built upon the no-pair and no-retardation approximations. While retardation effects must be treated in a time-dependent manner through quantum electrodynamics (QED) and are hence outside RQC, the no-pair approximation (NPA) has to be removed from RQC for it has some fundamental defects. Both configuration space and Fock space formulations have been proposed in the literature to do this. However, the former is simply wrong, whereas the latter is still incomplete. To resolve the old problems pertinent to the NPA itself and new problems beyond the NPA, we propose here an effective many-body (EMB) QED approach that is in full accordance with standard methodologies of electronic structure. As a first application, the full second order energy E2 of a closed-shell many-electron system subject to the instantaneous Coulomb-Breit interaction is derived, both algebraically and diagrammatically. It is shown that the same E2 can be obtained by means of 3 Goldstone-like diagrams through the standard many-body perturbation theory or 28 Feynman diagrams through the S-matrix technique. The NPA arises naturally by retaining only the terms involving the positive energy states. The potential dependence of the NPA can be removed by adding in the QED one-body counter terms involving the negative energy states, thereby leading to a "potential-independent no-pair approximation" (PI-NPA). The NPA, PI-NPA, EMB-QED, and full QED then span a continuous spectrum of relativistic molecular quantum mechanics.

  15. Extracting an entangled photon pair from collectively decohered pairs at a telecommunication wavelength.

    PubMed

    Tsujimoto, Yoshiaki; Sugiura, Yukihiro; Ando, Makoto; Katsuse, Daisuke; Ikuta, Rikizo; Yamamoto, Takashi; Koashi, Masato; Imoto, Nobuyuki

    2015-05-18

    We experimentally demonstrated entanglement extraction scheme by using photons at the telecommunication band for optical-fiber-based quantum communications. We generated two pairs of non-degenerate polarization entangled photons at 780 nm and 1551 nm by spontaneous parametric down-conversion and distributed the two photons at 1551 nm through a collective phase damping channel which gives the same amount of random phase shift on the two photons. Through local operation and classical communication, we extracted an entangled photon pair from two phase-disturbed photon pairs. An observed fidelity of the extracted photon pair to a maximally entangled photon pair was 0.73 ± 0.07 which clearly shows the recovery of entanglement.

  16. Analysis of Paired Comparison Data Using Mx

    ERIC Educational Resources Information Center

    Tsai, Rung-Ching; Wu, Tsung-Lin

    2004-01-01

    By postulating that the random utilities associated with the choice options follow a multivariate normal distribution, Thurstonian models (Thurstone, 1927) provide a straightforward representation of paired comparison data. The use of Monte Carlo Expectation-Maximization (MCEM) algorithms and limited information approaches have been proposed to…

  17. Assessing Paired Orals: Raters' Orientation to Interaction

    ERIC Educational Resources Information Center

    Ducasse, Ana Maria; Brown, Annie

    2009-01-01

    Speaking tasks involving peer-to-peer candidate interaction are increasingly being incorporated into language proficiency assessments, in both large-scale international testing contexts, and in smaller-scale, for example course-related, ones. This growth in the popularity and use of paired and group orals has stimulated research, particularly into…

  18. Pair Negotiation When Developing English Speaking Tasks

    ERIC Educational Resources Information Center

    Bohórquez Suárez, Ingrid Liliana; Gómez Sará, Mary Mily; Medina Mosquera, Sindy Lorena

    2011-01-01

    This study analyzes what characterizes the negotiations of seventh graders at a public school in Bogotá when working in pairs to develop speaking tasks in EFL classes. The inquiry is a descriptive case study that follows the qualitative paradigm. As a result of analyzing the data, we obtained four consecutive steps that characterize students'…

  19. Twisted Pair Of Insulated Wires Senses Moisture

    NASA Technical Reports Server (NTRS)

    Laue, Eric G.; Stephens, James B.

    1989-01-01

    Sensitivity of electronic moisture sensor to low levels of moisture increased by new electrode configuration. Moisture-sensing circuit described in "Low-Cost Humidity Sensor" (NPO-16544). New twisted pair of wires takes place of flat-plate capacitor in circuit. Configuration allows for thermal expansion and contraction of polymer while maintaining nearly constant area of contact between polymer and wires.

  20. Phenomena, dynamics and instabilities of vortex pairs

    NASA Astrophysics Data System (ADS)

    Williamson, C. H. K.; Leweke, T.; Asselin, D. J.; Harris, D. M.

    2014-12-01

    Our motivation for studying the dynamics of vortex pairs stems initially from an interest in the trailing wake vortices from aircraft and the dynamics of longitudinal vortices close to a vehicle surface. However, our motivation also comes from the fact that vortex-vortex interactions and vortex-wall interactions are fundamental to many turbulent flows. The intent of the paper is to present an overview of some of our recent work concerning the formation and structure of counter-rotating vortex pairs. We are interested in the long-wave and short-wave three-dimensional instabilities that evolve for an isolated vortex pair, but also we would like to know how vortex pairs interact with a wall, including both two-dimensional interactions, and also the influence of the surface on the three-dimensional instabilities. The emphasis of this presentation is on physical mechanisms by which vortices interact with each other and with surfaces, principally from an experimental approach, but also coupled with analytical studies.

  1. Paired Field Placements: A Means for Collaboration

    ERIC Educational Resources Information Center

    Gardiner, Wendy; Robinson, Karen Shipley

    2009-01-01

    In this qualitative study, pairs of preservice teachers were placed with single cooperating teachers in a 100-hour urban field placement. The question guiding this research was would preservice teachers collaborate in ways that contributed to their professional development and if so why, how, and to what end? Results from field notes, multiple…

  2. Two New CPM Pairs in Libra

    NASA Astrophysics Data System (ADS)

    Ahad, Abdul

    2014-10-01

    In this paper two new double stars are reported in the constellation of Libra that are currently not in the WDS catalog, the components of which share common proper motions. On observed photometric characteristics, calibration of distances, and other assumptions, all the indications are that both pairs comprise possible wide physical systems.

  3. Pairing the Adult Learner and Boutique Wineries

    ERIC Educational Resources Information Center

    Holyoke, Laura; Heath-Simpson, Delta

    2013-01-01

    This study explored connections between adult learners and their experiences in the context of small boutique wineries operating in the start-up phase of the organizational life cycle. The research objective was to gain insight regarding the pairing of adult learners with the entering of a specialty industry. Fourteen individuals from four…

  4. A Novel Approach for Collaborative Pair Programming

    ERIC Educational Resources Information Center

    Goel, Sanjay; Kathuria, Vanshi

    2010-01-01

    The majority of an engineer's time in the software industry is spent working with other programmers. Agile methods of software development like eXtreme Programming strongly rely upon practices like daily meetings and pair programming. Hence, the need to learn the skill of working collaboratively is of primary importance for software developers.…

  5. Binaries and triples among asteroid pairs

    NASA Astrophysics Data System (ADS)

    Pravec, Petr; Scheirich, Peter; Kušnirák, Peter; Hornoch, Kamil; Galád, Adrián

    2015-08-01

    Despite major achievements obtained during the past two decades, our knowledge of the population and properties of small binary and multiple asteroid systems is still far from advanced. There is a numerous indirect evidence for that most small asteroid systems were formed by rotational fission of cohesionless parent asteroids that were spun up to the critical frequency presumably by YORP, but details of the process are lacking. Furthermore, as we proceed with observations of more and more binary and paired asteroids, we reveal new facts that substantially refine and sometimes change our understanding of the asteroid systems. One significant new finding we have recently obtained is that primaries of many asteroid pairs are actually binary or triple systems. The first such case found is (3749) Balam (Vokrouhlický, ApJL 706, L37, 2009). We have found 9 more binary systems among asteroid pairs within our ongoing NEOSource photometric project since October 2012. They are (6369) 1983 UC, (8306) Shoko, (9783) Tensho-kan, (10123) Fideoja, (21436) Chaoyichi, (43008) 1999 UD31, (44620) 1999 RS43, (46829) 1998 OS14 and (80218) 1999 VO123. We will review their characteristics. These paired binaries as we call them are mostly similar to binaries in the general ("background") population (of unpaired asteroids), but there are a few trends. The paired binaries tend to have larger secondaries with D_2/D_1 = 0.3 to 0.5 and they also tend to be wider systems with 8 of the 10 having orbital periods between 30 and 81 hours, than average among binaries in the general population. There may be also a larger fraction of triples; (3749) Balam is a confirmed triple, having a larger close and a smaller distant satellite, and (8306) Shoko and (10123) Fideoja are suspect triples as they show additional rotational lightcurve components with periods of 61 and 38.8 h that differ from the orbital period of 36.2 and 56.5 h, respectively. The unbound secondaries tend to be of the same size or

  6. Asteroid clusters similar to asteroid pairs

    NASA Astrophysics Data System (ADS)

    Pravec, Petr; Vokrouhlicky, David; Fatka, Petr; Kusnirák, Peter; Hornoch, Kamil; Galád, Adrián

    2016-10-01

    We study five small, tight and young clusters of asteroids. They are placed around following largest (primary) bodies: (11842) Kap'bos, (14627) Emilkowalski, (16598) 1992 YC2, (21509) Lucascavin and (39991) 1998 HR37. Each cluster has 2-4 secondaries that are tightly clustered around the primary body, with distance in the 5-dimensional space of mean orbital elements mostly within 10 m/s, and always < 23 m/s. Backward orbital integrations indicate that they formed between 105 and 106 yr ago. In the P1-q space, where P1 is the primary's spin period and q = Σ Mj/M1 is the total secondary-to-primary mass ratio, the clusters lie in the same range as asteroid pairs formed by rotational fission. We have extended the model of a proto-system separation after rotational fission by Pravec et al. (2010) for application to systems with more than one secondary and found a perfect match for the five tight clusters. We find these clusters to be similar to asteroid pairs and we suggest that they are "extended pairs", having 2-4 escaped secondaries rather than just one secondary as in the case of an asteroid pair. We compare them to six young mini-families (1270) Datura, (2384) Schulhof, (3152) Jones, (6825) Irvine, (10321) Rampo and (20674) 1999 VT1. These mini-families have similar ages, but they have a higher number of members and/or they show a significantly larger spread in the mean orbital elements (dmean on an order of tens m/s) than the five tight clusters. In the P1-q space, all but one of the mini-families lie in the same range as asteroid pairs and the tight clusters; the exception is the mini-family of (3152) Jones which appears to be a collisional family. A possibility that the other five mini-families were also formed by rotational fission as we suggest for the tight clusters ("extended asteroid pairs") is being explored.Reference:Pravec, P., et al. Formation of asteroid pairs by rotational fission. Nature 466, 1085-1088.

  7. Flavor violating processes with sgoldstino pair production

    NASA Astrophysics Data System (ADS)

    Demidov, S. V.; Gorbunov, D. S.

    2012-04-01

    In supersymmetric extensions of the standard model of particle physics (SM), goldstino superpartners—scalar and pseudoscalar sgoldstinos—can be light enough for emerging in decays of SM particles. Sgoldstino interaction with SM fields is suppressed by the scale of supersymmetry breaking in the whole theory. Hence, searches for sgoldstinos give an opportunity to probe the underlying mechanism of supersymmetry breaking. Sgoldstino couplings to SM fields are proportional to the supersymmetry breaking parameters—MSSM soft terms—and therefore can lead to flavor violating processes in quark and lepton sectors. We consider flavor violating processes involving sgoldstino pair production which are driven by sgoldstino couplings proportional to squark and slepton soft mass terms, m˜LL2 and m˜RR2. We find that present limits on off-diagonal entries in squark and slepton squared mass matrices allow t-, b-, c-quark and τ-lepton decays at levels available for study with existing data (BaBar, Belle, CLEOc) and in ongoing experiments (LHCb, CMS, ATLAS). In particular, we obtain the following branching ratios Br(t→cSP)≲10-7, Br(τ→μSP)≲10-7, Br(Bs→SP)≲10-4, Br(B→K(*)SP)≲10-4, Br(D→SP)≲10-7 with sgoldstino subsequent decays into kinematically allowed pairs of SM particles γγ, e+e-, μ+μ-, etc. Remarkably, the prominent signature of sgoldstino pair production is two muon pairs with pair momenta peaked at sgoldstino masses.

  8. Pairing of particle-hole symmetric composite fermions in half-filled Landau level

    NASA Astrophysics Data System (ADS)

    Wang, Zhiqiang; Chakravarty, Sudip

    2016-10-01

    In a recent proposal of the half-filled Landau level, the composite fermions are taken to be Dirac particles and particle-hole symmetric. Cooper pairing of these composite fermions in different angular momentum channels, ℓ , can give rise to different kinds of Pfaffian states. In addition to the well-known Moore-Read Pfaffian and anti-Pfaffian states, a new putative particle-hole symmetric Pfaffian state, corresponding to the s -wave pairing channel, was also proposed. However, the possible underlying pairing mechanism is not clear at all. In this work we provide a specific pairing mechanism for realizing some of these Pfaffian states. We show that there can be nonzero pairing in angular momentum channels |ℓ |≥1 depending on the magnitude of a coupling constant. There is a quantum phase transition from the Dirac composite Fermi-liquid state to Cooper pairing states in angular momentum channels |ℓ |≥1 as the coupling constant is tuned across its critical point value. Surprisingly the particle-hole symmetric ℓ =0 channel pairing turns out to be impossible irrespective of the size of the coupling constant.

  9. Compounds of paired electrons and lattice solitons moving with supersonic velocity

    NASA Astrophysics Data System (ADS)

    Hennig, D.; Velarde, M. G.; Ebeling, W.; Chetverikov, A.

    2008-12-01

    We study the time evolution of two correlated electrons of opposite spin in an anharmonic lattice chain. The electrons are described quantum mechanically by the Hubbard model while the lattice is treated classically. The lattice units are coupled via Morse-Toda potentials. Interaction between the lattice and the electrons arises due to the dependence of the electron transfer-matrix element on the distance between neighboring lattice units. Localized configurations comprising a paired electron and a pair of lattice deformation solitons are constructed such that an associated energy functional is minimized. We investigate long-lived, stable pairing features. It is demonstrated that traveling pairs of lattice solitons serve as carriers for the paired electrons realizing coherent transport of the two correlated electrons. We also observe dynamical narrowing of the states, that is, starting from an initial double-peak profile of the electron probability distribution, a single-peak profile is adopted going along with enhancement of localization of the paired electrons. Interestingly, a parameter regime is identified for which supersonic transport of paired electrons is achieved.

  10. Extended s-wave pairing symmetry on the triangular lattice heavy fermion system

    NASA Astrophysics Data System (ADS)

    Zhang, Lan; Wang, Yu-Feng; Zhong, Yin; Luo, Hong-Gang

    2015-10-01

    We investigate the pairing symmetry of the Kondo-Heisenberg model on triangular lattice, which is believed to capture the core competition of Kondo screening and local magnetic exchange interaction in heavy electron compounds. On the dominant background of the heavy fermion state, the introduction of the Heisenberg antiferromagnetic interaction ( J H ) leads to superconducting pairing instability. Depending on the strength of the interactions, it is found that the pairing symmetry favours an extended s-wave for small J H and high conduction electron density but a chiral d_{x^2 - y^2 } + id_{xy}-wave for large J H and low conduction electron density, which provides a phase diagram of pairing symmetry from the calculations of the ground-state energy. The transition between these two pairing symmetries is found to be first-order. Furthermore, we also analyze the phase diagram from the pairing strengths and find that the phase diagram obtained is qualitatively consistent with that based on the ground-state energy. In addition, we propose an effective single-band BCS Hamiltonian, which is able to describe the low-energy thermodynamic behaviors of the heavy fermion superconducting states. These results further deepen the understanding of the antiferromagnetic interaction which results in a geometric frustration for the model studied. Our work may provide a possible scenario to understand the pairing symmetry of the heavy fermion superconductivity, which is one of active issues in very recent years.

  11. Homologous pairing preceding SPO11-mediated double-strand breaks in mice.

    PubMed

    Boateng, Kingsley A; Bellani, Marina A; Gregoretti, Ivan V; Pratto, Florencia; Camerini-Otero, R Daniel

    2013-01-28

    How homologous chromosomes (homologs) find their partner, pair, and recombine during meiosis constitutes the central phenomenon in eukaryotic genetics. It is widely believed that, in most organisms, SPO11-mediated DNA double-strand breaks (DSBs) introduced during prophase I precede and are required for efficient homolog pairing. We now show that, in the mouse, a significant level of homolog pairing precedes programmed DNA cleavage. Strikingly, this early chromosome pairing still requires SPO11 but is not dependent on its ability to make DSBs or homologous recombination proteins. Intriguingly, SUN1, a protein required for telomere attachment to the nuclear envelope and for post-DSB synapsis, is also required for early pre-DSB homolog pairing. Furthermore, pre-DSB pairing at telomeres persists upon entry into prophase I and is most likely important for initiation of synapsis. Our findings suggest that the DSB-triggered homology search may mainly serve to proofread and stabilize the pre-DSB pairing of homologous chromosomes.

  12. Characteristics of compatible pair participants in kidney paired donation at a single center.

    PubMed

    Weng, Francis L; Grogan, Tracy; Patel, Anup M; Mulgaonkar, Shamkant; Morgievich, Marie M

    2017-03-25

    Compatible pairs of living kidney donors and their intended recipients can enter into kidney paired donation (KPD) and facilitate additional living donor kidney transplants (LDKTs). We examined 11 compatible pairs (the intended recipients and their intended, compatible donors) who participated in KPD, along with the recipients' 11 matched, exchange donors. The 11 pairs participated in 10 separate exchanges (3 were multi-center exchanges) that included 33 total LDKTs (22 additional LDKTs). All the intended donors were blood group O and female, with a mean living kidney donor profile index (LKDPI) of 27.6 (SD 16.8). The matched donors had a mean LKDPI of 9.4 (SD 31.7). Compatible pairs entered KPD for altruistic reasons (N=2) or due to mismatch of age (N=7) or body/kidney size (N=2) between the recipient and intended donor. In four cases, retrospective calculation of the LKDPI revealed that the matched donor had a higher LKDPI than the intended donor. Of the 22 recipients of LDKTs enabled by the compatible pairs, three were highly sensitized, with PRA >80%. In conclusion, most compatible pairs entered into KPD so that the recipient could receive a LDKT transplant from a donor whose age or body/kidney size were more favorable to post-transplant outcomes. This article is protected by copyright. All rights reserved.

  13. Triplet p-wave pairing correlation in low-doped zigzag graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Ma, Tianxing; Yang, Fan; Huang, Zhongbing; Lin, Hai-Qing

    2017-02-01

    We reveal an edge spin triplet p–wave superconducting pairing correlation in slightly doped zigzag graphene nanoribbons. By employing a method that combines random-phase approximation, the finite-temperature determinant quantum Monte Carlo approach, and the ground-state constrained-path quantum Monte Carlo method, it is shown that such a spin-triplet pairing is mediated by the ferromagnetic fluctuations caused by the flat band at the edge. The spin susceptibility and effective pairing interactions at the edge strongly increase as the on-site Coulomb interaction increases, indicating the importance of electron-electron correlations. It is also found that the doping-dependent ground-state p-wave pairing correlation bears some similarity to the famous superconducting dome in the phase diagram of a high-temperature superconductor, while the spin correlation at the edge is weakened as the system is doped away from half filling.

  14. Existence and consequences of Coulomb pairing of electrons in a solid

    SciTech Connect

    Mahajan, S.M.; Thyagaraja, A.

    1996-11-01

    It is shown from first principles that, in the periodic potential of a crystalline solid, short-range (i.e., screened) binary Coulomb interactions can lead to a two-electron bound state. It is further suggested that these composite bosonic states (charge -2e, and typically spin zero) could mediate an effectively attractive interaction between pairs of conduction electrons close to the Fermi level. This necessarily short range attractive interaction, which is crucially dependent on the band structure of the solid, and is complementary to the phonon-mediated one, may provide a source for the existence and properties of short correlation-length electron pairs (analogous to but distinct from Cooper pairs) needed to understand high temperature superconductivity. Several distinctive and observable characteristics of the proposed pairing scheme are discussed.

  15. Triplet p-wave pairing correlation in low-doped zigzag graphene nanoribbons

    PubMed Central

    Ma, Tianxing; Yang, Fan; Huang, Zhongbing; Lin, Hai-Qing

    2017-01-01

    We reveal an edge spin triplet p–wave superconducting pairing correlation in slightly doped zigzag graphene nanoribbons. By employing a method that combines random-phase approximation, the finite-temperature determinant quantum Monte Carlo approach, and the ground-state constrained-path quantum Monte Carlo method, it is shown that such a spin-triplet pairing is mediated by the ferromagnetic fluctuations caused by the flat band at the edge. The spin susceptibility and effective pairing interactions at the edge strongly increase as the on-site Coulomb interaction increases, indicating the importance of electron-electron correlations. It is also found that the doping-dependent ground-state p-wave pairing correlation bears some similarity to the famous superconducting dome in the phase diagram of a high-temperature superconductor, while the spin correlation at the edge is weakened as the system is doped away from half filling. PMID:28186185

  16. Schwinger pair creation of Kaluza-Klein particles: Pair creation without tunneling

    SciTech Connect

    Friedmann, Tamar; Verlinde, Herman

    2005-03-15

    We study Schwinger pair creation of charged Kaluza-Klein (KK) particles from a static KK electric field. We find that the gravitational backreaction of the electric field on the geometry--which is incorporated via the electric KK-Melvin solution--prevents the electrostatic potential from overcoming the rest mass of the KK particles, thus impeding the tunneling mechanism which is often thought of as responsible for the pair creation. However, we find that pair creation still occurs with a finite rate formally similar to the classic Schwinger result, but via an apparently different mechanism, involving a combination of the Unruh effect and vacuum polarization due to the E-field.

  17. Metal-mediated DNA base pairing: alternatives to hydrogen-bonded Watson-Crick base pairs.

    PubMed

    Takezawa, Yusuke; Shionoya, Mitsuhiko

    2012-12-18

    With its capacity to store and transfer the genetic information within a sequence of monomers, DNA forms its central role in chemical evolution through replication and amplification. This elegant behavior is largely based on highly specific molecular recognition between nucleobases through the specific hydrogen bonds in the Watson-Crick base pairing system. While the native base pairs have been amazingly sophisticated through the long history of evolution, synthetic chemists have devoted considerable efforts to create alternative base pairing systems in recent decades. Most of these new systems were designed based on the shape complementarity of the pairs or the rearrangement of hydrogen-bonding patterns. We wondered whether metal coordination could serve as an alternative driving force for DNA base pairing and why hydrogen bonding was selected on Earth in the course of molecular evolution. Therefore, we envisioned an alternative design strategy: we replaced hydrogen bonding with another important scheme in biological systems, metal-coordination bonding. In this Account, we provide an overview of the chemistry of metal-mediated base pairing including basic concepts, molecular design, characteristic structures and properties, and possible applications of DNA-based molecular systems. We describe several examples of artificial metal-mediated base pairs, such as Cu(2+)-mediated hydroxypyridone base pair, H-Cu(2+)-H (where H denotes a hydroxypyridone-bearing nucleoside), developed by us and other researchers. To design the metallo-base pairs we carefully chose appropriate combinations of ligand-bearing nucleosides and metal ions. As expected from their stronger bonding through metal coordination, DNA duplexes possessing metallo-base pairs exhibited higher thermal stability than natural hydrogen-bonded DNAs. Furthermore, we could also use metal-mediated base pairs to construct or induce other high-order structures. These features could lead to metal-responsive functional

  18. Stereo Pair: Inverted Topography, Patagonia, Argentina

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Meseta de Somuncura is a broad plateau capped by basalt. Near its western edge is evidence of multiple volcanic events and a complex erosion history. Most notable are the long, narrow-, and winding lava flows that run across most of the right side of the image. These formed from low-viscosity lava that flowed down gullies over fairly flat terrain. Later, erosion of the landscape continued and the solidified flows were more resistant than the older surrounding rocks. Consequently, the flows became the ridges we see here. This natural process of converting gullies to ridges is called topographic inversion. See image PIA02755 (upper left corner) for a good example of topographic inversion in its earlier stages.

    Other features seen here include numerous and varied closed depressions. The regional drainage is not well integrated, and drainage ends up in salty lakes (blue if shallow, black if deep). Wind streaks indicate that winds blow toward the east (right) and blow salt grains off the lakebeds when dry. The bowtie pattern in the upper left has resulted from differing grazing practices among fenced fields.

    This cross-eyed stereoscopic image pair was generated using topographic data from the Shuttle Radar Topography Mission, combined with an enhanced Landsat 7satellite color image. The topography data are used to create two differing perspectives of a single image, one perspective for each eye. In doing so, each point in the image is shifted slightly, depending on its elevation. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions.

    Landsat satellites have provided visible light and infrared images of the Earth continuously since 1972. SRTM topographic data match the 30-meter (99-foot) spatial resolution of most Landsat images and provide a valuable complement for studying the historic and growing Landsat data archive. The Landsat 7 Thematic Mapper image used here was provided to

  19. Isospin effects in a covariant transport approach to spallation reactions: Analysis of p+Fe and p+Pb reactions at 0.8,1.2, and 1.6 GeV

    SciTech Connect

    Abdel-Waged, Khaled; Felemban, Nuha; Gaitanos, Theodoros; Ferini, Graziella; Toro, Massimo Di

    2010-01-15

    We have investigated the influence of different nonlinear relativistic mean-field models (NL, NL{rho}, and NL{rho}{delta}) on spallation neutrons for p+Fe and p+Pb reactions at 0.8,1.2, and 1.6 GeV by means of a relativistic Boltzmann Uehling Uhlenbeck (RBUU) approach plus a statistical multifragmentation (SM) decay model. We find that the 'evaporation shoulder', that is, the neutron energy spectrum from 3 to 30 MeV, almost for any emission angle is quite sensitive to the isospin part of the mean field. For the more neutron-rich Pb target the evaporation component can be directly related to the low-density behavior on the symmetry energy in the thermal expansion phase of the excited compound system. It turns out that the spallation data for the reactions under study are shown to be more consistent with RBUU+SM employing the NLrho effective Lagrangian.

  20. Estimation of successful breeding pairs for wolves in the Northern Rocky Mountains, USA

    USGS Publications Warehouse

    Mitchell, M.S.; Ausband, D.E.; Sime, C.A.; Bangs, E.E.; Gude, J.A.; Jimenez, M.D.; Mack, C.M.; Meier, T.J.; Nadeau, M.S.; Smith, D.W.

    2008-01-01

    Under the Endangered Species Act, documenting recovery and federally mandated population levels of wolves (Canis lupus) in the Northern Rocky Mountains (NRM) requires monitoring wolf packs that successfully recruit young. United States Fish and Wildlife Service regulations define successful breeding pairs as packs estimated to contain an adult male and female, accompanied by ???2 pups on 31 December of a given year. Monitoring successful breeding pairs will become more difficult following proposed delisting of NRM wolves; alternatives to historically intensive methods, appropriate to the different ecological and regulatory context following delisting, are required. Because pack size is easier to monitor than pack composition, we estimated probability a pack would contain a successful breeding pair based on its size for wolf populations inhabiting 6 areas in the NRM. We also evaluated the extent to which differences in demography of wolves and levels of human-caused mortality among the areas influenced the probability of packs of different sizes would contain successful breeding pairs. Probability curves differed among analysis areas, depending primarily on levels of human-caused mortality, secondarily on annual population growth rate, and little on annual population density. Probabilities that packs contained successful breeding pairs were more uniformly distributed across pack sizes in areas with low levels of human mortality and stable populations. Large packs in areas with high levels of human-caused mortality and high annual growth rates had relatively high probabilities of containing breeding pairs whereas those for small packs were relatively low. Our approach can be used by managers to estimate number of successful breeding pairs in a population where number of packs and their sizes are known. Following delisting of NRM wolves, human-caused mortality is likely to increase, resulting in more small packs with low probabilities of containing breeding pairs

  1. Modulation of human corticospinal excitability by paired associative stimulation

    PubMed Central

    Carson, Richard G.; Kennedy, Niamh C.

    2013-01-01

    Paired Associative Stimulation (PAS) has come to prominence as a potential therapeutic intervention for the treatment of brain injury/disease, and as an experimental method with which to investigate Hebbian principles of neural plasticity in humans. Prototypically, a single electrical stimulus is directed to a peripheral nerve in advance of transcranial magnetic stimulation (TMS) delivered to the contralateral primary motor cortex (M1). Repeated pairing of the stimuli (i.e., association) over an extended period may increase or decrease the excitability of corticospinal projections from M1, in manner that depends on the interstimulus interval (ISI). It has been suggested that these effects represent a form of associative long-term potentiation (LTP) and depression (LTD) that bears resemblance to spike-timing dependent plasticity (STDP) as it has been elaborated in animal models. With a large body of empirical evidence having emerged since the cardinal features of PAS were first described, and in light of the variations from the original protocols that have been implemented, it is opportune to consider whether the phenomenology of PAS remains consistent with the characteristic features that were initially disclosed. This assessment necessarily has bearing upon interpretation of the effects of PAS in relation to the specific cellular pathways that are putatively engaged, including those that adhere to the rules of STDP. The balance of evidence suggests that the mechanisms that contribute to the LTP- and LTD-type responses to PAS differ depending on the precise nature of the induction protocol that is used. In addition to emphasizing the requirement for additional explanatory models, in the present analysis we highlight the key features of the PAS phenomenology that require interpretation. PMID:24348369

  2. Direct Cavity Detection of Majorana Pairs

    NASA Astrophysics Data System (ADS)

    Dartiailh, Matthieu C.; Kontos, Takis; Douçot, Benoit; Cottet, Audrey

    2017-03-01

    No experiment could directly test the particle-antiparticle duality of Majorana fermions, so far. However, this property represents a necessary ingredient towards the realization of topological quantum computing schemes. Here, we show how to complete this task by using microwave techniques. The direct coupling between a pair of overlapping Majorana bound states and the electric field from a microwave cavity is extremely difficult to detect due to the self-adjoint character of Majorana fermions which forbids direct energy exchanges with the cavity. We show theoretically how this problem can be circumvented by using photoassisted tunneling to fermionic reservoirs. The absence of a direct microwave transition inside the Majorana pair in spite of the light-Majorana coupling would represent a smoking gun for the Majorana self-adjoint character.

  3. Near-Unity Cooper Pair Splitting Efficiency

    NASA Astrophysics Data System (ADS)

    Schindele, J.; Baumgartner, A.; Schönenberger, C.

    2012-10-01

    The two electrons of a Cooper pair in a conventional superconductor form a spin singlet and therefore a maximally entangled state. Recently, it was demonstrated that the two particles can be extracted from the superconductor into two spatially separated contacts via two quantum dots in a process called Cooper pair splitting (CPS). Competing transport processes, however, limit the efficiency of this process. Here we demonstrate efficiencies up to 90%, significantly larger than required to demonstrate interaction-dominated CPS, and on the right order to test Bell’s inequality with electrons. We compare the CPS currents through both quantum dots, for which large apparent discrepancies are possible. The latter we explain intuitively and in a semiclassical master equation model. Large efficiencies are required to detect electron entanglement and for prospective electronics-based quantum information technologies.

  4. Extra-pair paternity in waved albatrosses.

    PubMed

    Huyvaert, K P; Anderson, D J; Jones, T C; Duan, W; Parker, P G

    2000-09-01

    We estimated the rate of extra-pair fertilizations (EPFs) in waved albatrosses (Phoebastria irrorata) on Isla Española, Galápagos, Ecuador, using multilocus minisatellite DNA fingerprinting. Waved albatrosses are socially monogamous, long-lived seabirds whose main population is on Española. Aggressive extra-pair copulation (EPC) attempts have been observed in the breeding colony during the days preceding egg-laying. Our genetic analyses of 16 families (single chicks and their attending parents) revealed evidence of EPFs in four families. In all cases males were the excluded parent. These data suggest that waved albatrosses have an unusually high rate of EPF relative to taxa with similar life histories. Future behavioural observations will determine the extent to which forced vs. unforced EPCs contribute to this high EPF rate.

  5. Resonant tunneling of fluctuation Cooper pairs

    SciTech Connect

    Galda, Alexey; Mel'nikov, A. S.; Vinokur, V. M.

    2015-02-09

    Superconducting fluctuations have proved to be an irreplaceable source of information about microscopic and macroscopic material parameters that could be inferred from the experiment. According to common wisdom, the effect of thermodynamic fluctuations in the vicinity of the superconducting transition temperature, Tc, is to round off all of the sharp corners and discontinuities, which otherwise would have been expected to occur at Tc. Here we report the current spikes due to radiation-induced resonant tunneling of fluctuation Cooper pairs between two superconductors which grow even sharper and more pronounced upon approach to Tc. This striking effect offers an unprecedented tool for direct measurements of fluctuation Cooper pair lifetime, which is key to our understanding of the fluctuation regime, most notably to nature of the pseudogap state in high-temperature superconductors. Our finding marks a radical departure from the conventional view of superconducting fluctuations as a blurring and rounding phenomenon.

  6. Satellite observations of transionospheric pulse pairs

    SciTech Connect

    Holden, D.N.; Munson, C.P.; Devenport, J.C.

    1995-04-15

    The BLACKBEARD payload aboard the ALEXIS satellite has been making broadband observations in the VHF band of the radio spectrum. Since November of 1993 several hundred unusual signals have been recorded. The peculiar nature of these bursts of radio noise is that they have a duration of approximately 10 {mu}sec, are typically 20 to 40 dB brighter than the average background, and occur in pairs separated by approximately 50 {mu}sec. The authors have dubbed these emissions TransIonospheric Pulse Pairs, or TIPP events. They do not know what the source of these emissions is, but the dispersion of these signals is consistent with an origin at or near the earth`s surface. The satellite field of view and time of day when TIPP events are generally detected are consistent with regions of thunderstorm activity such as south-central Africa or Indonesia. 4 refs., 5 figs.

  7. Pair creation: Back reactions and damping

    SciTech Connect

    Bloch, J. C. R.; Mizerny, V. A.; Prozorkevich, A. V.; Roberts, C. D.; Schmidt, S. M.; Smolyansky, S. A.; Vinnik, D. V.

    1999-12-01

    We solve the quantum Vlasov equation for fermions and bosons, incorporating spontaneous pair creation in the presence of back reactions and collisions. Pair creation is initiated by an external impulse field and the source term is non-Markovian. A simultaneous solution of Maxwell's equation in the presence of feedback yields an internal current and electric field that exhibit plasma oscillations with a period {tau}{sub pl}. Allowing for collisions, these oscillations are damped on a time scale {tau}{sub r} determined by the collision frequency. Plasma oscillations cannot affect the early stages of the formation of a quark-gluon plasma unless {tau}{sub r}>>{tau}{sub pl} and {tau}{sub pl}{approx}1/{lambda}{sub QCD}{approx}1 fm/c. (c) 1999 The American Physical Society.

  8. Dissipative solitons in pair-ion plasmas

    SciTech Connect

    Ghosh, Samiran; Adak, Ashish Khan, Manoranjan

    2014-01-15

    The effects of ion-neutral collisions on the dynamics of the nonlinear ion acoustic wave in pair-ion plasma are investigated. The standard perturbative approach leads to a Korteweg-de Vries equation with a linear damping term for the dynamics of the finite amplitude wave. The ion-neutral collision induced dissipation is responsible for the linear damping. The analytical solution and numerical simulation reveal that the nonlinear wave propagates in the form of a weakly dissipative compressive solitons. Furthermore, the width of the soliton is proportional to the amplitude of the wave for fixed soliton velocity. Results are discussed in the context of the fullerene pair-ion plasma experiment.

  9. Supersymmetric pairing of kinks for polynomial nonlinearities

    SciTech Connect

    Rosu, H.C.; Cornejo-Perez, O.

    2005-04-01

    We show how one can obtain kink solutions of ordinary differential equations with polynomial nonlinearities by an efficient factorization procedure directly related to the factorization of their nonlinear polynomial part. We focus on reaction-diffusion equations in the traveling frame and damped-anharmonic-oscillator equations. We also report an interesting pairing of the kink solutions, a result obtained by reversing the factorization brackets in the supersymmetric quantum-mechanical style. In this way, one gets ordinary differential equations with a different polynomial nonlinearity possessing kink solutions of different width but propagating at the same velocity as the kinks of the original equation. This pairing of kinks could have many applications. We illustrate the mathematical procedure with several important cases, among which are the generalized Fisher equation, the FitzHugh-Nagumo equation, and the polymerization fronts of microtubules.

  10. Superrotations and black hole pair creation

    NASA Astrophysics Data System (ADS)

    Strominger, Andrew; Zhiboedov, Alexander

    2017-03-01

    Recent work has shown that the symmetries of classical gravitational scattering in asymptotically flat spacetimes include, at the linearized level, infinitesimal superrotations. These act like Virasoro generators on the celestial sphere at null infinity. However, due to the singularities in these generators, the physical status of finite superrotations has remained unclear. Here we address this issue in the context of the breaking of a cosmic string via quantum black hole pair nucleation. This process is described by a gravitational instanton known as the C-metric. After pair production, the black holes are pulled by the string to null infinity with a constant acceleration. At late times the string decays and the spacetime settles into a vacuum state. We show that the early and late spacetimes before and after string decay differ by a finite superrotation. This provides a physical interpretation of superrotations. They act on spacetimes which are asymptotically flat everywhere except at isolated singularities with cosmic string defects.

  11. Resonant tunneling of fluctuation Cooper pairs

    DOE PAGES

    Galda, Alexey; Mel'nikov, A. S.; Vinokur, V. M.

    2015-02-09

    Superconducting fluctuations have proved to be an irreplaceable source of information about microscopic and macroscopic material parameters that could be inferred from the experiment. According to common wisdom, the effect of thermodynamic fluctuations in the vicinity of the superconducting transition temperature, Tc, is to round off all of the sharp corners and discontinuities, which otherwise would have been expected to occur at Tc. Here we report the current spikes due to radiation-induced resonant tunneling of fluctuation Cooper pairs between two superconductors which grow even sharper and more pronounced upon approach to Tc. This striking effect offers an unprecedented tool formore » direct measurements of fluctuation Cooper pair lifetime, which is key to our understanding of the fluctuation regime, most notably to nature of the pseudogap state in high-temperature superconductors. Our finding marks a radical departure from the conventional view of superconducting fluctuations as a blurring and rounding phenomenon.« less

  12. Asteroid Systems: Binaries, Triples, and Pairs

    NASA Astrophysics Data System (ADS)

    Margot, J.-L.; Pravec, P.; Taylor, P.; Carry, B.; Jacobson, S.

    In the past decade, the number of known binary near-Earth asteroids has more than quadrupled and the number of known large main-belt asteroids with satellites has doubled. Half a dozen triple asteroids have been discovered, and the previously unrecognized populations of asteroid pairs and small main-belt binaries have been identified. The current observational evidence confirms that small (≲20 km) binaries form by rotational fission and establishes that the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect powers the spin-up process. A unifying paradigm based on rotational fission and post-fission dynamics can explain the formation of small binaries, triples, and pairs. Large (>~20 km) binaries with small satellites are most likely created during large collisions.

  13. Multidimensional simulations of pair-instability supernovae

    NASA Astrophysics Data System (ADS)

    Baranov, A. A.; Chardonnet, P.; Chechetkin, V. M.; Filina, A. A.; Popov, M. V.

    2013-10-01

    According to theoretical models, massive stars with masses within the 100-250 M⊙ range should explode as pair-instability supernovae (PISNe). Since the first stars of the Universe are believed to be very massive, these supernovae should play a significant role in the early stages of its history. But these stars represent the last unobserved population, owing to detection limits of current telescopes. In this work we analyze pair-instability supernovae explosions using various numerical codes. We evolve series of the configurations of oxygen cores to establish a range of masses and initial conditions where this type of explosion is possible. We also study the role of possible instabilities in the propagation of shockwaves during the last stage of the explosion. This investigation could help us to predict the observational properties of PISNe for future space and ground telescopes.

  14. Dual Resolution Images from Paired Fingerprint Cards

    National Institute of Standards and Technology Data Gateway

    NIST Dual Resolution Images from Paired Fingerprint Cards (PC database for purchase)   NIST Special Database 30 is being distributed for use in development and testing of fingerprint compression and fingerprint matching systems. The database allows the user to develop and evaluate data compression algorithms for fingerprint images scanned at both 19.7 ppmm (500 dpi) and 39.4 ppmm (1000 dpi). The data consist of 36 ten-print paired cards with both the rolled and plain images scanned at 19.7 and 39.4 pixels per mm. A newer version of the compression/decompression software on the CDROM can be found at the website http://www.nist.gov/itl/iad/ig/nigos.cfm as part of the NBIS package.

  15. Satellite observations of transionospheric pulse pairs

    NASA Astrophysics Data System (ADS)

    Holden, D. N.; Munson, C. P.; Devenport, J. C.

    1995-04-01

    The BLACKBEARD payload aboard the ALEXIS satellite has been making broadband observations in the VHF band of the radio spectrum. Since November of 1993 several hundred unusual signals have been recorded. The peculiar nature of these bursts of radio noise is that they have a duration of approximately 10 microseconds, are typically 20 to 40 dB brighter than the average background, and occur in pairs separated by approximately 50 microseconds. We have dubbed these emissions TransIonospheric Pulse Pairs, or TIPP events. We do not know what the source of these emissions is, but the dispersion of these signals is consistent with an origin at or near the earth's surface. The satellite field of view and time of day when TIPP events are generally detected are consistent with regions of thunderstorm activity such as south-central Africa or Indonesia.

  16. Locomotion gaits of a rotating cylinder pair

    NASA Astrophysics Data System (ADS)

    van Rees, Wim M.; Novati, Guido; Koumoutsakos, Petros; Mahadevan, L.

    2015-11-01

    Using 2D numerical simulations of the Navier-Stokes equations, we demonstrate that a simple pair of rotating cylinders can display a range of locomotion patterns of biological and engineering interest. Steadily counter-rotating the cylinders causes the pair to move akin to a vortex dipole for low rotation rates, but as the rotational velocity is increased the direction of motion reverses. Unsteady rotations lead to different locomotion gaits that resemble jellyfish (for in-phase rotations) and undulating swimmers (for out-of-phase rotations). The small number of parameters for this simple system allows us to systematically map the phase space of these gaits, and allows us to understand the underlying physical mechanisms using a minimal model with implications for biological locomotion and engineered analogs.

  17. A search for resonant Z pair production

    SciTech Connect

    Boveia, Antonio

    2008-12-01

    I describe a search for anomalous production of Z pairs through a new massive resonance X in 2.5-2.9 fb-1 of p$\\bar{p}$ collisions at √s = 1.96 TeV using the CDFII Detector at the Fermilab Tevatron. I reconstruct Z pairs through their decays to electrons, muons, and quarks. To achieve perhaps the most efficient lepton reconstruction ever used at CDF, I apply a thorough understanding of the detector and new reconstruction software heavily revised for this purpose. In particular, I have designed and employ new general-purpose algorithms for tracking at large η in order to increase muon acceptance. Upon analyzing the unblinded signal samples, I observe no X → ZZ candidates and set upper limits on the production cross section using a Kaluza-Klein graviton-like acceptance.

  18. Pair correlations in magnetic nanodispersed fluids

    SciTech Connect

    Elfimova, E. A. Ivanov, A. O.

    2010-07-15

    The pair distribution function of a monodisperse magnetic fluid simulated by a liquid made of dipolar hard spheres with constant magnetic moments is calculated. The anisotropy of the pair distribution function and the related structure factor of scattering in a dc uniform magnetic field are studied. The calculation is performed by diagrammatic expansion in the volume concentration of particles and the interparticle magnetic-dipole interaction intensity using a thermodynamic perturbation theory. Limitation by three-particle diagrams makes it possible to apply the results obtained to magnetic fluids with a moderate concentration. Even for low-concentration and weakly nonideal magnetic fluids, the anisotropic interparticle magnetic-dipole correlations in a magnetic field lead to the repulsion of particles in the direction normal to the field and to the formation of particle dimers along the field.

  19. Average prime-pair counting formula

    NASA Astrophysics Data System (ADS)

    Korevaar, Jaap; Riele, Herman Te

    2010-04-01

    Taking r>0 , let π_{2r}(x) denote the number of prime pairs (p, p+2r) with p≤ x . The prime-pair conjecture of Hardy and Littlewood (1923) asserts that π_{2r}(x)˜ 2C_{2r} {li}_2(x) with an explicit constant C_{2r}>0 . There seems to be no good conjecture for the remainders ω_{2r}(x)=π_{2r}(x)- 2C_{2r} {li}_2(x) that corresponds to Riemann's formula for π(x)-{li}(x) . However, there is a heuristic approximate formula for averages of the remainders ω_{2r}(x) which is supported by numerical results.

  20. PAIR (Planning and Analysis of Inspection Resources)

    SciTech Connect

    Teichmann, T.; Santaniello, A.; Fishbone, L.G.

    1994-03-01

    The safeguards inspection effort of the International Atomic Energy Agency consists of the efforts for the Physical Inventory Verifications to close the annual material balance, Interim Inventory Verifications, conducted mainly to satisfy the Timeliness Criteria, Flow Verifications to verify the transfer of material, and Containment and Surveillance activities, which help preserve continuity of knowledge concerning the material. Estimating the requiring overall future inspection effort under a variety of conditions is an important part of Agency planning. As exemplified by the sample results provides a straightforward means to analyze `What if` situations in safeguards implementation. It thereby permits managers and analysts to study future scenarios and their effect on human resources. It is planned to introduce into PAIR a direct capability for studying costs associated with these hypothetical changes in safeguards implementation. In this way PAIR could more easily assist the Safeguards Department in its current program of investigating new safeguards approaches.