Science.gov

Sample records for isospin dependent pairing

  1. Effective pairing interactions with isospin density dependence

    SciTech Connect

    Margueron, J.; Sagawa, H.; Hagino, K.

    2008-05-15

    We perform Hartree-Fock-Bogoliubov (HFB) calculations for semi-magic calcium, nickel, tin, and lead isotopes and N=20,28,50, and 82 isotones using density-dependent pairing interactions recently derived from a microscopic nucleon-nucleon interaction. These interactions have an isovector component so that the pairing gaps in symmetric and neutron matter are reproduced. Our calculations well account for the experimental data for the neutron number dependence of binding energy, two-neutron separation energy, and odd-even mass staggering of these isotopes. This result suggests that by introducing the isovector term in the pairing interaction, one can construct a global effective pairing interaction that is applicable to nuclei in a wide range of the nuclear chart. It is also shown with the local density approximation that the pairing field deduced from the pairing gaps in infinite matter reproduces qualitatively well the pairing field for finite nuclei obtained with the HFB method.

  2. Effect of isospin dependence of radius on transverse flow and fragmentation in isobaric pairs

    NASA Astrophysics Data System (ADS)

    Gautam, Sakshi

    2013-11-01

    We study the role of nuclear structure effects through radius in reaction dynamics via transverse flow and multifragmentation of isobaric colliding pairs. Our study reveals that isospin-dependent radius [proposed by Royer and Rousseau [Eur. Phys. J. A10.1140/epja/i2008-10745-8 42, 541 (2009)] has significant effect towards isospin effects. The collective flow behavior and fragmentation pattern of neutron-rich system with respect to neutron-deficient system is found to get reversed with isospin-dependent radius compared to that with liquid drop radius.

  3. Isospin Dependent Pairing Interactions and BCS-BEC crossover

    SciTech Connect

    Sagawa, H.; Margueron, J.; Hagino, K.

    2008-11-11

    We propose new types of density dependent contact pairing interaction which reproduce the pairing gaps in symmetric and neutron matters obtained by a microscopic treatment based on the realistic nucleon-nucleon interaction. The BCS-BEC crossover of neutrons pairs in symmetric and asymmetric nuclear matters is studied by using these contact interactions. It is shown that the bare and screened pairing interactions lead to different features of the BCS-BEC crossover in symmetric nuclear matter. We perform Hartree-Fock-Bogoliubov (HFB) calculations for semi-magic Calcium, Nickel, Tin and Lead isotopes and N = 20, 28, 50 and 82 isotones using these density-dependent pairing interactions. Our calculations well account for the experimental data for the neutron number dependence of binding energy, two neutrons separation energy, and odd-even mass staggering of these isotopes. Especially the interaction IS+IV Bare without the medium polarization effect gives satisfactory results for all the isotopes.

  4. Isospin Dependence of Pion Absorption on Nucleon Pairs at Tπ=65 MeV

    NASA Astrophysics Data System (ADS)

    Moinester, M. A.; Gill, D. R.; Vincent, J.; Ashery, D.; Levenson, S.; Alster, J.; Altman, A.; Lichtenstadt, J.; Piasetzky, E.; Aniol, K. A.; Johnson, R. R.; Roser, H. W.; Tacik, R.; Gyles, W.; Barnett, B.; Sobie, R. J.; Gubler, H. P.

    1984-04-01

    Angular distributions of differential cross sections were measured for the first time for pion absorption on a T=1, S=0 nucleon pair and for absorption on a T=0, S=1 pair in the 3He nucleus. A large isospin dependence is observed in the differential cross sections. The ratio of cross sections σ(3He(π+,2p))σ(3He(π-,pn)) is 15.2+/-1.2. The results show evidence of an isoscalar component of the final state in the reaction 3He(π-,pn)n, which cannot be mediated by Δ resonance formation.

  5. Isospin dependence of cluster recognition and multifragment production

    SciTech Connect

    Rajni, Vermani, Yogesh K.

    2016-05-06

    The isospin dependent quantum molecular dynamics (IQMD) model is used to study the role of isospin dependent clustering mechanism in Au+Au collisions at 100 and 600 MeV/A. A significant influence of clustering mechanism via isospin dependent spatial constraints was clearly seen on the fragment observables such as persistence, binding energy and the mean multiplicity of intermediate mass fragments. The model calculations using isospin dependent clusterization approach are able to describe the ALADiN multifragmentation data.

  6. Spin-isospin and pairing properties of modified Skyrme interactions

    NASA Astrophysics Data System (ADS)

    Van Giai, Nguyen; Sagawa, H.

    1981-11-01

    New sets of parameters for Skyrme interactions have been determined. In addition to the ground-state properties, they give satisfactory values for the compression modulus, spin and spin-isospin Landau parameters, and pairing matrix elements. Gamow-Teller states are calculated and compared with experimental data.

  7. Isospin dependence of the three-nucleon force

    SciTech Connect

    Evgeny Epelbaum; Ulf-G. Meissner; Juan Palomar

    2004-07-01

    We classify A--nucleon forces according to their isospin dependence and discuss the most general isospin structure of the three--nucleon force. We derive the leading and subleading isospin--breaking corrections to the three--nucleon force using the framework of chiral effective field theory.

  8. Dependence of fusion on isospin dynamics

    NASA Astrophysics Data System (ADS)

    Godbey, K.; Umar, A. S.; Simenel, C.

    2017-01-01

    We introduce a new microscopic approach to calculate the dependence of fusion barriers and cross sections on isospin dynamics. The method is based on the time-dependent Hartree-Fock theory and the isoscalar and isovector properties of the energy density functional (EDF). The contribution to the fusion barriers originating from the isoscalar and isovector parts of the EDF is calculated. It is shown that, for nonsymmetric systems, the isovector dynamics influence the subbarrier fusion cross sections. For most systems this results in an enhancement of the subbarrier cross sections, while for others we observe differing degrees of hindrance. We use this approach to provide an explanation of recently measured fusion cross sections which show a enhancement at low Ec .m . energies for the system 40Ca+132Sn as compared with the more neutron-rich system 48Ca+132Sn and discuss the dependence of subbarrier fusion cross sections on transfer.

  9. The influence of pairing correlations on the isospin symmetry breaking corrections of superallowed Fermi beta decays

    SciTech Connect

    Cal Latin-Small-Letter-Dotless-I k, A. E.; Gerceklioglu, M.; Selam, C.

    2013-05-15

    Within the framework of quasi-particle random phase approximation, the isospin breaking correction of superallowed 0{sup +} {yields} 0{sup +} beta decay and unitarity of Cabibbo-Kobayashi-Maskawa mixing matrix have been investigated. The broken isotopic symmetry of nuclear part of Hamiltonian has been restored by Pyatov's method. The isospin symmetry breaking correction with pairing correlations has been compared with the previous results without pairing. The effect of pairing interactions has been examined for nine superallowed Fermi beta decays; their parent nuclei are {sup 26}Al, {sup 34}Cl, {sup 38}K, {sup 42}Sc, {sup 46}V, {sup 50}Mn, {sup 54}Co, {sup 62}Ga, {sup 74}Rb.

  10. Spin-isospin dependent effective interaction in nuclei

    NASA Astrophysics Data System (ADS)

    Cha, D.; Speth, J.

    1984-08-01

    The spin and isospin dependent part of the nuclear effective interaction is studied using the experimentally known Gamow-Teller states in 48Ca, 90Zr and 208Pb. About half of the strength of the residual interaction in the nucleon-nucleon channel can be expounded by the correlated π + ϱ exchange potential. Also, the corresponding interaction in the delta-nucleon channel is investigated and a reasonable agreement with the observed qunchiing of the Gamow-Teller strength is obtained.

  11. Dependence on Spin and Isospin of Short-Range Nuclear Forces in Modified OPEG

    NASA Astrophysics Data System (ADS)

    Tamagaki, R.; Takatsuka, T.

    2001-06-01

    Dependence on spin and isospin of nucleon-nucleon potentials at small inernucleon distances is studied by observing the operator forms deduced from two modified versions of OPEG potentials with the OPEP-tail and Gaussian core terms. A significant difference between their spin- and isospin-dependent features in the core region is noted.

  12. Stressed Cooper pairing in QCD at high isospin density: effective Lagrangian and random matrix theory

    NASA Astrophysics Data System (ADS)

    Kanazawa, Takuya; Wettig, Tilo

    2014-10-01

    We generalize QCD at asymptotically large isospin chemical potential to an arbitrary even number of flavors. We also allow for small quark chemical potentials, which stress the coincident Fermi surfaces of the paired quarks and lead to a sign problem in Monte Carlo simulations. We derive the corresponding low-energy effective theory in both p- and ɛ-expansion and quantify the severity of the sign problem. We construct the random matrix theory describing our physical situation and show that it can be mapped to a known random matrix theory at low baryon density so that new insights can be gained without additional calculations. In particular, we explain the Silver Blaze phenomenon at high isospin density. We also introduce stressed singular values of the Dirac operator and relate them to the pionic condensate. Finally we comment on extensions of our work to two-color QCD.

  13. BRIEF REPORT: Deformation effects on the isospin dependence of particle emission

    NASA Astrophysics Data System (ADS)

    Ye, W.

    2006-05-01

    The effect of deformation on the isospin dependence of particle emission for a rather neutron-deficient 178Pb system was investigated via a diffusion model. The calculated results show that deformation significantly increases neutron multiplicity and hence weakens the dependence of neutron emission on the isospin of the system. It is also shown that deformation enhances the sensitivity of neutron emission to the nuclear viscosity coefficient, and that this sensitivity is further increased with increasing deformation. This conclusion implies that due to deformation, even for the present low-isospin system, neutrons are still a good observable for the viscosity coefficient.

  14. Isospin asymmetry dependence of the α spectroscopic factor for heavy nuclei

    NASA Astrophysics Data System (ADS)

    Seif, W. M.; Shalaby, M.; Alrakshy, M. F.

    2011-12-01

    Both the valence nucleons (holes) and the isospin asymmetry dependencies of the preformation probability of an α-cluster inside parents radioactive nuclei are investigated. The calculations are employed in the framework of the density-dependent cluster model of an α-decay process for the even-even spherical parents nuclei with protons number around the closed shell Z0 = 82 and neutrons number around the closed shells Z0 = 82 and Z0 = 126. The microscopic α-daughter nuclear interaction potential is calculated in the framework of the Hamiltonian energy density approach based on the SLy4 Skyrme-like effective interaction. Also, the calculations based on the realistic effective M3Y-Paris nucleon-nucleon force have been used to confirm the results. The calculations then proceed to find the assault frequency and the α penetration probability within the WKB approximation. The half-lives of the different mentioned α decays are then determined and have been used in turn to find the α spectroscopic factor. We found that the spectroscopic factor increases with increasing the isospin asymmetry of the parent nuclei if they have valence protons and neutrons. When the parent nuclei have neutron or proton holes in addition to the valence protons or neutrons, then the spectroscopic factor is found to decrease with increasing isospin asymmetry. The obtained results show also that the deduced spectroscopic factors follow individual linear behaviors as a function of the multiplication of the valence proton (Np) and neutron (Nn) numbers. These linear dependencies are correlated with the closed shells core (Z0,N0). The same individual linear behaviors are obtained as a function of the multiplication of NpNn and the isospin asymmetry parameter, NpNnI. Moreover, the whole deduced spectroscopic factors are found to exhibit a nearly general linear trend with the function NpNn/(Z0+N0).

  15. Valley-isospin dependence of the quantum Hall effect in a graphene p-n junction

    NASA Astrophysics Data System (ADS)

    Tworzydło, J.; Snyman, I.; Akhmerov, A. R.; Beenakker, C. W. J.

    2007-07-01

    We calculate the conductance G of a bipolar junction in a graphene nanoribbon, in the high-magnetic-field regime where the Hall conductance in the p -doped and n -doped regions is 2e2/h . In the absence of intervalley scattering, the result G=(e2/h)(1-cosΦ) depends only on the angle Φ between the valley isospins ( =Bloch vectors representing the spinor of the valley polarization) at the two opposite edges. This plateau in the conductance versus Fermi energy is insensitive to electrostatic disorder, while it is destabilized by the dispersionless edge state which may exist at a zigzag boundary. A strain-induced vector potential shifts the conductance plateau up or down by rotating the valley isospin.

  16. The isospin dependent nucleon-nucleon inelastic cross section in the nuclear medium

    NASA Astrophysics Data System (ADS)

    Li, Qingfeng; Li, Zhuxia

    2017-10-01

    The calculation of the energy-, density-, and isospin-dependent Δ production cross sections in nucleon-nucleon (NN) scattering σNN→ NΔ * has been performed within the framework of the relativistic BUU approach. The NΔ cross sections are calculated in Born approximation taking into account the effective mass splitting of the nucleons and Δs in asymmetric matter. Due to the different mass splitting for neutron, proton and differently charged Δs, it is shown that, similar to the NN elastic ones, the reductions of NΔ inelastic cross sections in isospin-asymmetric nuclear medium are different from each other for all the individual channels and the effect is largest and of opposite sign for the Δ++ and Δ- states. This approach is also compared to calculations without effective mass splitting and with splitting derived from Dirac-Brueckerner (DB) calculations. The isospin dependence of the NΔ cross sections is expected to influence the production of π+ and π- mesons as well as their yield ratio, and thus affect the use of the latter quantity as a probe of the stiffness of the symmetry energy at supranormal densities.

  17. Isospin dependence of fragment spectra in heavy/super-heavy colliding nuclei at intermediate energies

    SciTech Connect

    Chugh, Rajiv Kumar, Rohit; Vinayak, Karan Singh

    2016-05-06

    Using isospin-dependent quantum molecular dynamics (IQMD) approach, we performed a theoretical investigation of the evolution of various kinds of fragments in heavy and superheavy-ion reactions in the intermediate/medium energy domain. We demonstrated direct impact of symmetry energy and Coulomb interactions on the evolution of fragments. Final fragment spectra (yields) obtained from the analysis of various heavy/super-heavy ion reactions at different reaction conditions show high sensitivity towards Coulomb interactions and less significant sensitivity to symmetry energy forms. No inconsistent pattern of fragment structure is obtained in case of super-heavy ion involved reactions for all the parameterizations of density dependence of symmetry energy.

  18. Isospin Dependence of Incomplete Fusion Reactions at 25 MeV/Nucleon

    SciTech Connect

    Amorini, F.; Agodi, C.; Alba, R.; Anzalone, A.; Coniglione, R.; Di Pietro, A.; Figuera, P.; Maiolino, C.; Santonocito, D.; Sapienza, P.; Cardella, G.; Papa, M.; De Filippo, E.; Pagano, A.; Pirrone, S.; Verde, G.; Giuliani, G.; Berceanu, I.; Pop, A.; Cavallaro, S.

    2009-03-20

    {sup 40}Ca+{sup 40,48}Ca,{sup 46}Ti reactions at 25 MeV/nucleon have been studied using the 4{pi} CHIMERA detector. An isospin effect on the competition between fusionlike and binarylike reaction mechanisms has been observed. The probability of producing a heavy residue is lower in the case of N{approx_equal}Z colliding systems as compared to the case of reactions induced on the neutron rich {sup 48}Ca target. Predictions based on constrained molecular dynamics II calculations show that the competition between fusionlike and binary reactions in the selected centrality bins can constrain the parametrization of the symmetry energy and its density dependence in the nuclear equation of state.

  19. Nucleon momentum distributions, their spin-isospin dependence, and short-range correlations

    NASA Astrophysics Data System (ADS)

    Alvioli, M.; Ciofi degli Atti, C.; Kaptari, L. P.; Mezzetti, C. B.; Morita, H.

    2013-03-01

    The nucleon momentum distribution nA(k) for A=2, 3, 4, 16, and 40 nuclei is systematically analyzed in terms of wave functions resulting from advanced solutions of the nonrelativistic Schrödinger equation, obtained within different many-body approaches based upon different realistic bare nucleon-nucleon (NN) interactions featuring similar short-range repulsion and tensor interactions. Particular attention is paid to the separation of the momentum distributions into the mean-field and short-range correlation (SRC) contributions. It is shown that although at high values of the momentum k different approaches lead to some quantitative differences, these do not hinder the general conclusion that the high-momentum behavior (k≳1.5-2 fm-1) of all nuclei considered are very similar, exhibiting the well-known scaling behavior with the mass number A, independently of the used many-body approach and the details of the bare NN interaction. To analyze and understand the frequently addressed question concerning the relationships between the nucleus, nA(k), and the deuteron, nD(k), momentum distributions, the spin (S)-isospin (T) structure of few-nucleon systems and complex nuclei is analyzed in terms of realistic NN interactions and many-body approaches. To this end, the number of NN pairs in a given (ST) state, viz., (ST)=(10), (00), (01), and (11), and the contribution of these states to the nucleon momentum distributions are calculated. It is shown that, apart from the (00) state, which has very small effects, all other spin-isospin states contribute to the momentum distribution in a wide range of momenta. It is shown that for all nuclei considered the momentum distributions in the states T=0 and T=1 exhibit at k≳1.5-2 fm-1 very similar behaviors, which represents strong evidence of the A-independent character of SRCs. The ratio nA(k)/nD(k) is analyzed in detail, stressing that in the SRC region it always increases with the momentum and the origin of such an increase is

  20. Effect of entrance-channel asymmetry on the isospin dependence of nucleon emission in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Zhang, Fang; Zuo, Wei; Chen, Ji-Yan; Zhou, Zhen-Xiao

    2008-07-01

    Using the isospin- and momentum-dependent hadronic transport model IBUU04, we have investigated the influence of the entrance-channel isospin asymmetry on the sensitivity of the pre-equilibrium neutron/proton ratio to symmetry energy in central heavy-ion collisions induced by high-energy radioactive beams. Our analysis and discussion are based on the dynamical simulations of the three isotopic reaction systems 132Sn+124Sn, 124Sn+112Sn and 112Sn+112Sn which are of the same total proton number but different isospin asymmetry. We find that the kinetic-energy distributions of the pre-equilibrium neutron/proton ratio are quite sensitive to the density-dependence of symmetry energy at incident beam energy E/A = 400 MeV, and the sensitivity increases as the isospin asymmetry of the reaction system increases. Supported by National Natural Science Foundation of China (10575119, 10775061), Knowledge Innovation Project of Chinese Academy of Sciences (KJCX3-SYW-N2), Major State Basic Research Developing Program of China (2007CB815004), CAS/SAFEA International Partnership Program for Creative Research Teams (CXTD-J2005-1), and the Asia-Link Project of the European Commission (CN/ASIA-LINK/008(94791))

  1. Spectroscopy on the proton drip-line: Probing the structure dependence of isospin nonconserving interactions

    NASA Astrophysics Data System (ADS)

    Henderson, J.; Jenkins, D. G.; Kaneko, K.; Ruotsalainen, P.; Sarriguren, P.; Auranen, K.; Bentley, M. A.; Davies, P. J.; Görgen, A.; Grahn, T.; Greenlees, P. T.; Hay, A.; Henry, T. W.; HerzáÅ, A.; Jakobsson, U.; Julin, R.; Juutinen, S.; Konki, J.; Leino, M.; McPeake, C.; Milne, S.; Nichols, A. J.; Pakarinen, J.; Papadakis, P.; Partanen, J.; Peura, P.; Rahkila, P.; Sahin, E.; Sandzelius, M.; Sarén, J.; Scholey, C.; Siciliano, M.; Sinclair, L.; Sorri, J.; Stolze, S.; Uusitalo, J.; Wadsworth, R.; Zielińska, M.

    2014-11-01

    The recoil-β tagging technique was used to identify transitions associated with the decay of the 2+ and, tentatively, the 4+ excited states in 74Sr. Combining these results with published data for the A =74 isobars, triplet energy differences (TEDs) have been extracted, the heaviest case for which these values have been evaluated. State-of-the-art shell-model calculations using the JUN45 interaction and incorporating a J =0 isospin nonconserving (INC) interaction with an isotensor strength of 100 keV can reproduce the trend in the TED data, with particularly good agreement for the 2+ state. This agreement for the TED data taken together with the fact that agreement has also been shown between shell-model calculations with the same strength of INC interaction in the f7 /2 shell and recently for A =66 strongly suggests that such an interaction exists throughout the nuclear chart and cannot have a strong dependence on details of nuclear structure such as which nuclear orbitals are occupied. It also supports the hypothesis that only a J =0 component of the INC interaction need be included to explain the observed TEDs.

  2. Exploring the extended density-dependent Skyrme effective forces for normal and isospin-rich nuclei to neutron stars

    SciTech Connect

    Agrawal, B.K.; Dhiman, Shashi K.; Kumar, Raj

    2006-03-15

    We parametrize the recently proposed generalized Skyrme effective force (GSEF) containing extended density dependence. The parameters of the GSEF are determined by the fit to several properties of the normal and isospin-rich nuclei. We also include in our fit a realistic equation of state for the pure neutron matter up to high densities so that the resulting Skyrme parameters can be suitably used to model the neutron star with the 'canonical' mass ({approx}1.4M{sub {center_dot}}). For the appropriate comparison, we generate a parameter set for the standard Skyrme effective force (SSEF) using exactly the same set data as employed to determine the parameters of the GSEF. We find that the GSEF yields larger values for the neutron skin thickness which are closer to the recent predictions based on the isospin diffusion data. The Skyrme parameters so obtained are employed to compute the strength function for the isoscalar giant monopole, dipole, and quadrupole resonances. It is found that in the case of GSEF, because of the larger value of the nucleon effective mass, the values of centroid energies for the isoscalar giant resonances are in better agreement with the corresponding experimental data than those obtained using the SSEF. We also present results for some of the key properties associated with the neutron star of canonical mass and for the one with the maximum mass.

  3. Global analysis of isospin dependent microscopic nucleon-nucleus optical potentials in a Dirac-Brueckner-Hartree-Fock approach

    NASA Astrophysics Data System (ADS)

    Xu, Ruirui; Ma, Zhongyu; Zhang, Yue; Tian, Yuan; van Dalen, E. N. E.; Müther, H.

    2016-09-01

    Background: For the study of exotic nuclei it is important to have an optical model potential that is reliable not only for stable nuclei but can also be extrapolated to nuclear systems with exotic numbers of protons and neutrons. An efficient way to obtain such a potential is to develop a microscopic optical potential (MOP) based on a fundamental theory with a minimal number of free parameters, which are adjusted to describe stable nuclei all over the nuclide chart. Purpose: The choice adopted in the present work is to develop the MOP within a relativistic scheme which provides a natural and consistent relation between the spin-orbit part and the central part of the potential. The Dirac-Brueckner-Hartree-Fock (DBHF) approach provides such a microscopic relativistic scheme, which is based on a realistic nucleon-nucleon interaction and reproduces the saturation properties of symmetric nuclear matter without any adjustable parameter. Its solution using the projection technique within the subtracted T -matrix representation provides a reliable extension to asymmetric nuclear matter, which is important to describe the features of isospin asymmetric nuclei. The present work performs a global analysis of the isospin dependent nucleon-nucleus MOP based on the DBHF calculation in symmetric and asymmetric nuclear matter. Methods: The DBHF approach is used to evaluate the relativistic structure of the nucleon self-energies in nuclear matter at various densities and asymmetries. The Schrödinger equivalent potentials of finite nuclei are derived from these Dirac components by a local density approximation (LDA). The density distributions of finite nuclei are taken from the Hartree-Fock-Bogoliubov approach with Gogny D1S force. An improved LDA approach (ILDA) is employed to get a better prediction of the scattering observables. A χ2 assessment system based on the global simulated annealing algorithm is developed to optimize the very few free components in this study. Results

  4. Neutron–proton effective mass splitting in neutron-rich matter at normal density from analyzing nucleon–nucleus scattering data within an isospin dependent optical model

    DOE PAGES

    Li, Xiao -Hua; Guo, Wen -Jun; Li, Bao -An; ...

    2015-04-01

    The neutron–proton effective mass splitting in asymmetric nucleonic matter of isospin asymmetry δ and normal density is found to be m*n-p≡(m*n – m*p)/m = (0.41 ± 0.15)δ from analyzing globally 1088 sets of reaction and angular differential cross sections of proton elastic scattering on 130 targets with beam energies from 0.783 MeV to 200 MeV, and 1161 sets of data of neutron elastic scattering on 104 targets with beam energies from 0.05 MeV to 200 MeV within an isospin dependent non-relativistic optical potential model. It sets a useful reference for testing model predictions on the momentum dependence of the nucleonmore » isovector potential necessary for understanding novel structures and reactions of rare isotopes.« less

  5. Neutron-proton effective mass splitting in neutron-rich matter at normal density from analyzing nucleon-nucleus scattering data within an isospin dependent optical model

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Hua; Guo, Wen-Jun; Li, Bao-An; Chen, Lie-Wen; Fattoyev, Farrukh J.; Newton, William G.

    2015-04-01

    The neutron-proton effective mass splitting in asymmetric nucleonic matter of isospin asymmetry δ and normal density is found to be mn-p* ≡ (mn* - mp*) / m = (0.41 ± 0.15) δ from analyzing globally 1088 sets of reaction and angular differential cross sections of proton elastic scattering on 130 targets with beam energies from 0.783 MeV to 200 MeV, and 1161 sets of data of neutron elastic scattering on 104 targets with beam energies from 0.05 MeV to 200 MeV within an isospin dependent non-relativistic optical potential model. It sets a useful reference for testing model predictions on the momentum dependence of the nucleon isovector potential necessary for understanding novel structures and reactions of rare isotopes.

  6. Isospin Dependence in the Odd-Even Staggering of Nuclear Binding Energies

    SciTech Connect

    Litvinov, Yu.A.; Geissel, H.; Buervenich, T.J.; Novikov, Yu.N.; Patyk, Z.; Scheidenberger, C.; Attallah, F.; Beckert, K.; Bosch, F.; Franzke, B.; Klepper, O.; Kluge, H.-J.; Kozhuharov, C.; Muenzenberg, G.; Nolden, F.; Radon, T.; Steck, M.; Typel, S.; Audi, G.; Falch, M.

    2005-07-22

    The FRS-ESR facility at GSI provides unique conditions for precision measurements of large areas on the nuclear mass surface in a single experiment. Values for masses of 604 neutron-deficient nuclides (30{<=}Z{<=}92) were obtained with a typical uncertainty of 30 {mu}u. The masses of 114 nuclides were determined for the first time. The odd-even staggering (OES) of nuclear masses was systematically investigated for isotopic chains between the proton shell closures at Z=50 and Z=82. The results were compared with predictions of modern nuclear models. The comparison revealed that the measured trend of OES is not reproduced by the theories fitted to masses only. The spectral pairing gaps extracted from models adjusted to both masses, and density related observables of nuclei agree better with the experimental data.

  7. Transport properties of isospin asymmetric nuclear matter using the time-dependent Hartree-Fock method

    NASA Astrophysics Data System (ADS)

    Umar, A. S.; Simenel, C.; Ye, W.

    2017-08-01

    Background: The study of deep-inelastic reactions of nuclei provides a vehicle to explore nuclear transport phenomena for a full range of equilibration dynamics. These investigations provide us the ingredients to model such phenomena and help answer important questions about the nuclear equation of state and its evolution as a function of neutron-to-proton (N /Z ) ratio. Purpose: The motivation is to examine the real-time dynamics of nuclear transport phenomena and its dependence on N /Z asymmetry from a microscopic point of view to avoid any pre-conceived assumptions about the involved processes. Method: The time-dependent Hartree-Fock (TDHF) method in full three dimensions is employed to calculate deep-inelastic reactions of 78Kr+208Pb and 92Kr+208Pb systems at 8.5 MeV/nucleon. The impact parameter and energy-loss dependence of relevant observables are calculated. In addition, the density-constrained TDHF method is used to compute excitation energies of the primary fragments. The statistical deexcitation code gemini is utilized to examine the final reaction products. Results: The kinetic energy loss and sticking times as a function of impact parameter are calculated. The final properties of the fragments (charge, mass, scattering angle, and kinetic energy) are computed. Their evolution as a function of energy loss is studied and various intra-relations are investigated. The fragment excitation energy sharing is computed. Conclusions: We find a smooth dependence of the energy loss, Eloss, on the impact parameter for both systems. However, the transfer properties for low Eloss values are very different for the two systems but become similar in the higher Eloss regime. The mean lifetime of the charge equilibration process, obtained from the final (N -Z )/A value of the fragments, is shown to be ˜0.5 zs. This value is slightly larger than (but of the same order as) the value obtained from reactions at Fermi energies.

  8. Isospin effects and the density dependence of the nuclear symmetry energy

    SciTech Connect

    Souza, S. R.; Tsang, M. B.; Lynch, W. G.; Steiner, A. W.; Carlson, B. V.; Donangelo, R.

    2009-10-15

    The density dependence of the nuclear symmetry energy is inspected using the statistical multifragmentation model with Skyrme effective interactions. The model consistently considers the expansion of the fragments' volumes at finite temperature at the freeze-out stage. By selecting parametrizations of the Skyrme force that lead to very different equations of state for the symmetry energy, we investigate the sensitivity of the isoscaling parameter and the isotopic distributions to differences in the symmetry energy. Our results suggest that, in spite of being sensitive to the thermal dilation of the fragments' volumes, it is difficult to distinguish among the Skyrme forces from the isoscaling analysis. On the other hand, the isotopic distribution of the emitted fragments turns out to be very sensitive to the force employed in the calculation.

  9. Isospin breaking from diquark clustering

    NASA Astrophysics Data System (ADS)

    Gibbs, W. R.; Dedonder, Jean-Pierre

    2017-09-01

    Background: Although SU(2) isospin symmetry is generally assumed in the basic theory of the strong interaction, a number of significant violations have been observed in scattering and bound states of nucleons. Many of these violations can be attributed to the electromagnetic interaction but the question of how much of the violation is due to it remains open. Purpose: To establish the connection between diquark clustering in the two-nucleon system and isospin breaking from the Coulomb interaction between the members of diquark pairs. Method: A schematic model based on clustering of quarks in the interior of the confinement region of the two-nucleon system is introduced and evaluated. In this model the Coulomb interaction is the source of all isospin breaking. It draws on a picture of the quark density based on the diquark-quark model of hadron structure which has been investigated by a number of groups. Results: The model produces three isospin breaking potentials connecting the unbroken value of the low-energy scattering amplitude to those of the p p , n n , and n p singlet channels. A simple test of the potentials in the three-nucleon energy difference problem yields results in agreement with the known binding energy difference. Conclusion: The illustrative model suggests that the breaking seen in the low-energy nucleon-nucleon (NN) interaction may be understood in terms of the Coulomb force between members of diquark clusters. It allows the prediction of the charge symmetry breaking interaction and the n n scattering length from the well measured n p singlet scattering length. Values of the n n scattering length around -18 fm are favored. Since the model is based on the quark picture, it can be easily extended, in the SU(3) limit, to calculate isospin breaking in the strange sector in the corresponding channels. A natural consequence of isospin breaking from diquark clustering is that the breaking in the strange sector, as measured by the separation energy

  10. Ginocchio model with isospin

    NASA Astrophysics Data System (ADS)

    Okai, Tadashi; Otsuka, Takaharu; Arima, Akito

    1992-02-01

    We study the sp(8) subgroup of the isospin-invariant Ginnocchio model. The allowed quantum numbers are determined in terms of Young's diagrams. Using this result, we discuss the excitation energy of a model hamiltonian.

  11. Isospinning baby Skyrmion solutions

    NASA Astrophysics Data System (ADS)

    Battye, Richard A.; Haberichter, Mareike

    2013-12-01

    We perform full two-dimensional (2D) numerical relaxations of isospinning soliton solutions in the baby Skyrme model in which the global O(3) symmetry is broken by the 2D analogue of the pion mass term in the Skyrme model. In our calculations we explicitly allow the isospinning solitons to deform and to break the symmetries of the static configurations. We find that stable isospinning baby Skyrme solutions can be constructed numerically for all angular frequencies ω≤min⁡(μ,1), where μ is the mass parameter of the model. Stable, rotationally symmetric baby Skyrmion solutions for higher angular velocities are simply an artefact of the hedgehog approximation. Isospinning multisoliton solutions of topological charge B turn out to be unstable to break up into their B charge-1 constituents at some critical breakup frequency value. Furthermore, we find that for μ sufficiently large the rotational symmetry of charge-2 baby Skyrmions becomes broken at a critical angular frequency ω.

  12. Spatial dependence of pairing in deformed nuclei

    SciTech Connect

    Balbutsev, E. B.; Malov, L. A.; Schuck, P.

    2011-11-15

    The solution of time-dependent Hartree-Fock-Bogoliubov equations by the Wignerfunction-moments method leads to the appearance of refined low-lying modes whose description requires the accurate knowledge of the anomalous density matrix. It is shown that calculations with Woods-Saxon potential satisfy this requirement, producing an anomalous density matrix of the same quality as more complicated calculations with realistic forces.

  13. Pair supersolid with atom-pair hopping on the state-dependent triangular lattice

    NASA Astrophysics Data System (ADS)

    Zhang, Wanzhou; Yin, Ruoxi; Wang, Yancheng

    2013-11-01

    degeneracy of pair solids in classical limits. We describe the experimental realization of pair tunneling on state dependent lattice.

  14. Exotic Paired States with Anisotropic Spin-Dependent Fermi Surfaces

    SciTech Connect

    Feiguin, Adrian E.; Fisher, Matthew P. A.

    2009-07-10

    We propose a model for realizing exotic paired states in cold Fermi gases by using a spin-dependent optical lattice to engineer mismatched Fermi surfaces for each hyperfine species. The BCS phase diagram shows a stable paired superfluid state with coexisting pockets of momentum space with gapless unpaired carriers, similar to the Sarma state in polarized mixtures, but in our case the system is unpolarized. We propose the possible existence of an exotic 'Cooper-pair Bose-metal' phase, which has a gap for single fermion excitations but gapless and uncondensed 'Cooper-pair' excitations residing on a 'Bose surface' in momentum space.

  15. Isovector spin-singlet (T = 1, S = 0) and isoscalar spin-triplet (T = 0, S = 1) pairing interactions and spin-isospin response

    NASA Astrophysics Data System (ADS)

    Sagawa, H.; Bai, C. L.; Colò, G.

    2016-08-01

    We review several experimental and theoretical advances that emphasize common aspects of the study of spin-singlet, T = 1, and spin-triplet, T = 0, pairing correlations in nuclei. We first discuss various empirical evidence of the special role played by the T = 1 pairing interaction. In particular, we show the peculiar features of the nuclear pairing interaction in the low-density regime, and possible outcomes such as the BCS-BEC crossover in nuclear matter and, in an analogous way, in loosely bound nuclei. We then move to the competition between T = 1 and T = 0 pairing correlations. The effect of such competition on the low-lying spectra is studied in N = Z odd-odd nuclei by using a three-body model; in this case, it is shown that the inversion of the {J}π ={0}+ and {J}π ={1}+ states near the ground state, and the strong magnetic dipole transitions between them, can be considered as a clear manifestation of strong T = 0 pairing correlations in these nuclei. The effect of T = 0 pairing correlations is also quite evident if one studies charge-changing transitions. The Gamow-Teller (GT) states in N=Z+2 nuclei are studied here by using self-consistent Hartree-Fock-Bogoliubov (HFB) plus quasiparticle random-phase approximation calculations in which the T = 0 pairing interaction is taken into account. Strong GT states are found, near the ground state of daughter nuclei; these are compared with available experimental data from charge-exchange reactions, and such comparison can pinpoint the value of the strength of the T = 0 interaction. Pair transfer reactions are eventually discussed. While two-neutron transfer has long been proposed as a tool to measure the T = 1 superfluidity in the nuclear ground states, the study of deuteron transfer is still in its infancy, despite its potential interest for revealing effects coming from both T = 1 and T = 0 interactions. We also point out that the reaction mechanism may mask the strong pair transfer amplitudes predicted by the

  16. Age-dependent trajectories differ between within-pair and extra-pair paternity success.

    PubMed

    Hsu, Y-H; Simons, M J P; Schroeder, J; Girndt, A; Winney, I S; Burke, T; Nakagawa, S

    2017-02-24

    Reproductive success is associated with age in many taxa, increasing in early life followed by reproductive senescence. In socially monogamous but genetically polygamous species, this generates the interesting possibility of differential trajectories of within-pair and extra-pair siring success with age in males. We investigate these relationships simultaneously using within-individual analyses with 13 years of data from an insular house sparrow (Passer domesticus) population. As expected, we found that both within- and extra-pair paternity success increased with age, followed by a senescence-like decline. However, the age trajectories of within- and extra-pair paternity successes differed significantly, with the extra-pair paternity success increasing faster, although not significantly, in early life, and showing a delayed decline by 1.5 years on average later in life compared to within-pair paternity success. These different trajectories indicate that the two alternative mating tactics should have age-dependent pay-offs. Males may partition their reproductive effort between within- and extra-pair matings depending on their current age to reap the maximal combined benefit from both strategies. The interplay between these mating strategies and age-specific mortality may explain the variation in rates of extra-pair paternity observed within and between species.

  17. Classically spinning and isospinning solitons

    NASA Astrophysics Data System (ADS)

    Battye, Richard A.; Haberichter, Mareike

    2012-09-01

    We investigate classically spinning topological solitons in (2+1)- and (3+1)-dimensional models; more explicitely spinning sigma model solitons in 2+1 dimensions and Skyrme solitons in 2+1 and 3+1 dimensions. For example, such types of solitons can be used to describe quasiparticle excitations in ferromagnetic quantum Hall systems or to model spin and isospin states of nuclei. The standard way to obtain solitons with quantised spin and isospin is the semiclassical quantization procedure: One parametrizes the zero-mode space - the space of energy-degenerate soliton configurations generated from a single soliton by spatial translations and rotations in space and isospace - by collective coordinates which are then taken to be time-dependent. This gives rise to additional dynamical terms in the Hamiltonian which can then be quantized following semiclassical quantization rules. A simplification which is often made in the literature is to apply a simple adiabatic approximation to the (iso)rotational zero modes of the soliton by assuming that the soliton's shape is rotational frequency independent. Our numerical results on classically spinning arbitrarily deforming soliton solutions clearly show that soliton deformation cannot be ignored.

  18. Isospin effect of Coulomb interaction on the dissipation and fragmentation in intermediate energy heavy ion collisions

    SciTech Connect

    Liu Jianye; Guo Wenjun; Gao Yuanyi; Xing Yongzhong; Li Xiguo

    2004-09-01

    We investigate separately the isospin effects of Coulomb interaction and symmetry potential on the dissipation and fragmentation in the intermediate energy heavy ion collisions by using isospin-dependent quantum molecular dynamics model. The calculated results show that the Coulomb interaction induces the reductions of both isospin fractionation ratio and nuclear stopping (momentum dissipation). However, the Coulomb interaction not only does not change obviously the strong isospin effect of the symmetry potential on the isospin fractionation ratio but also does not change obviously that of in-medium two-body collision on the nuclear stopping. On the contrary, the symmetry potential induces the enhancement of the isospin fractionation ratio but it is insensitive to the nuclear stopping. Finally, the competition between the Coulomb interaction and symmetry potential induces the reductions of both isospin fractionation ratio and nuclear stopping for two forms of symmetry potentials in this paper.

  19. Spin and isospin fluctuations in heavy ion collisions and their dependence upon the shape of the dinuclear complex

    SciTech Connect

    Moretto, L.G.

    1980-08-01

    The relevance of higher multipoles of giant isovector modes in the charge distribution of deep inelastic fragments is discussed and found to depend strongly on mass asymmetry. The sources of angular momentum fluctuations are investigated. Quantal effects are considered as well as effects arising from non-equilibrium and equilibrium statistical fluctuations. A model based upon equilibrium statistical mechanics is considered in detail, and used to predict both 2nd moments of the angular momentum distributions and the angular momentum misalignment. Analytical expressions are derived to calculate the angular distributions of sequentially emitted particles, fission fragments, as well as gamma rays in terms of the angular momentum misalignment. Recent data on the angular distributions of sequential alphas, fission and gamma rays are analyzed in terms of the model. 29 figures, 1 table.

  20. Observer dependence of bubble nucleation and Schwinger pair production

    SciTech Connect

    Garriga, Jaume; Kanno, Sugumi; Vilenkin, Alexander; Sasaki, Misao; Soda, Jiro E-mail: sugumi@cosmos.phy.tufts.edu E-mail: jiro@tap.scphys.kyoto-u.ac.jp

    2012-12-01

    Pair production in a constant electric field is closely analogous to bubble nucleation in a false vacuum. The classical trajectories of the pairs are Lorentz invariant, but it appears that this invariance should be broken by the nucleation process. Here, we use a model detector, consisting of other particles interacting with the pairs, to investigate how pair production is seen by different Lorentzian observers. We focus on the idealized situation where a constant external electric field is present for an infinitely long time, and we consider the in-vacuum state for a charged scalar field that describes the nucleating pairs. The in-vacuum is defined in terms of modes which are positive frequency in the remote past. Even though the construction uses a particular reference frame and a gauge where the vector potential is time dependent, we show explicitly that the resulting quantum state is Lorentz invariant. We then introduce a ''detector'' particle which interacts with the nucleated pairs, and show that all Lorentzian observers will see the particles and antiparticles nucleating preferentially at rest in the detector's rest frame. Similar conclusions are expected to apply to bubble nucleation in a sufficiently long lived vacuum. We also comment on certain unphysical aspects of the Lorentz invariant in-vacuum, associated with the fact that it contains an infinite density of particles. This can be easily remedied by considering Lorentz breaking initial conditions.

  1. Isospin breaking and chiral symmetry restoration

    SciTech Connect

    Gomez Nicola, A.; Torres Andres, R.

    2011-04-01

    We analyze quark condensates and chiral (scalar) susceptibilities including isospin-breaking effects at finite temperature T. These include m{sub u{ne}}m{sub d} contributions as well as electromagnetic (e{ne}0) corrections, both treated in a consistent chiral Lagrangian framework to leading order in SU(2) and SU(3) chiral perturbation theory, so that our predictions are model-independent. The chiral restoration temperature extracted from = is almost unaffected, while the isospin-breaking order parameter grows with T for the three-flavor case SU(3). We derive a sum rule relating the condensate ratio (e{ne}0)/(e=0) with the scalar susceptibility difference {chi}(T)-{chi}(0), directly measurable on the lattice. This sum rule is useful also for estimating condensate errors in staggered lattice analysis. Keeping m{sub u{ne}}m{sub d} allows one to obtain the connected and disconnected contributions to the susceptibility, even in the isospin limit, whose temperature, mass, and isospin-breaking dependence we analyze in detail. The disconnected part grows linearly, diverging in the chiral (infrared) limit as T/M{sub {pi}}, while the connected part shows a quadratic behavior, infrared regular as T{sup 2}/M{sub {eta}}{sup 2}, and coming from {pi}{sup 0{eta}} mixing terms. This smooth connected behavior suggests that isospin-breaking correlations are weaker than critical chiral ones near the transition temperature. We explore some consequences in connection with lattice data and their scaling properties, for which our present analysis for physical masses, i.e. beyond the chiral limit, provides a useful model-independent description for low and moderate temperatures.

  2. Isospin Mixing in 80Zr: From Finite to Zero Temperature

    NASA Astrophysics Data System (ADS)

    Ceruti, S.; Camera, F.; Bracco, A.; Avigo, R.; Benzoni, G.; Blasi, N.; Bocchi, G.; Bottoni, S.; Brambilla, S.; Crespi, F. C. L.; Giaz, A.; Leoni, S.; Mentana, A.; Million, B.; Morales, A. I.; Nicolini, R.; Pellegri, L.; Pullia, A.; Riboldi, S.; Wieland, O.; Birkenbach, B.; Bazzacco, D.; Ciemala, M.; Désesquelles, P.; Eberth, J.; Farnea, E.; Görgen, A.; Gottardo, A.; Hess, H.; Judson, D. S.; Jungclaus, A.; Kmiecik, M.; Korten, W.; Maj, A.; Menegazzo, R.; Mengoni, D.; Michelagnoli, C.; Modamio, V.; Montanari, D.; Myalski, S.; Napoli, D.; Quintana, B.; Reiter, P.; Recchia, F.; Rosso, D.; Sahin, E.; Salsac, M. D.; Söderström, P.-A.; Stezowski, O.; Theisen, Ch.; Ur, C.; Valiente-Dobón, J. J.; Zieblinski, M.

    2015-11-01

    The isospin mixing was deduced in the compound nucleus 80Zr at an excitation energy of E*=54 MeV from the γ decay of the giant dipole resonance. The reaction 40Ca + 40Ca at Ebeam=136 MeV was used to form the compound nucleus in the isospin I =0 channel, while the reaction 37Cl + 44Ca at Ebeam=95 MeV was used as the reference reaction. The γ rays were detected with the AGATA demonstrator array coupled with LaBr3 :Ce detectors. The temperature dependence of the isospin mixing was obtained and the zero-temperature value deduced. The isospin-symmetry-breaking correction δC used for the Fermi superallowed transitions was extracted and found to be consistent with β -decay data.

  3. Conservation of Isospin in Neutron-rich Fission Fragments

    SciTech Connect

    Jain, A.K.; Choudhury, D.; Maheshwari, B.

    2014-06-15

    On the occasion of the 75{sup th} anniversary of the fission phenomenon, we present a surprisingly simple result which highlights the important role of isospin and its conservation in neutron rich fission fragments. We have analysed the fission fragment mass distribution from two recent heavyion reactions {sup 238}U({sup 18}O,f) and {sup 208}Pb({sup 18}O,f) as well as a thermal neutron fission reaction {sup 245}Cm(n{sup th},f). We find that the conservation of the total isospin explains the overall trend in the observed relative yields of fragment masses in each fission pair partition. The isospin values involved are very large making the effect dramatic. The findings open the way for more precise calculations of fission fragment distributions in heavy nuclei and may have far reaching consequences for the drip line nuclei, HI fusion reactions, and calculation of decay heat in the fission phenomenon.

  4. Transverse isospin response function of asymmetric nuclear matter from a local isospin density functional

    NASA Astrophysics Data System (ADS)

    Lipparini, Enrico; Pederiva, Francesco

    2016-08-01

    The time dependent local isospin density approximation (TDLIDA) has been extended to the study of the transverse isospin response function in nuclear matter with an arbitrary neutron-proton asymmetry parameter ξ . The energy density functional has been chosen in order to fit existing accurate quantum Monte Carlo calculations with a density dependent potential. The evolution of the response with ξ in the Δ Tz=±1 channels is quite different. While the strength of the Δ Tz=+1 channel disappears rather quickly by increasing the asymmetry, the Δ Tz=-1 channel develops a stronger and stronger collective mode that in the regime typical of neutron star matter at β equilibrium almost completely exhausts the excitation spectrum of the system. The neutrino mean free paths obtained from the TDLIDA responses are strongly dependent on ξ and on the presence of collective modes, leading to a sizable difference with respect to the prediction of the Fermi gas model.

  5. Nuclear inertia from the time dependent pairing equations

    NASA Astrophysics Data System (ADS)

    Mirea, M.

    2016-10-01

    In a dynamical system, the momenta of inertia and the effective masses are not adiabatic quantities, but are dynamical ones that depend on the dissipated energy accumulated during motion. However, these parameters are calculated for adiabatic nuclear systems, leaving no room for dissipated energy. In this work, a formalism is elaborated in order to derive simultaneously the nuclear momenta of inertia and the effective masses by taking into account the appearance of dissipated energy for large amplitude motion of the nuclear system. The expressions that define the inertia are obtained from the variational principle. The same principle manages the time dependent pairing equations, offering estimations of the averaged dissipation energy for large amplitude motions. The model is applied to 232Th fission. The fission barrier was calculated along the least action trajectory. The dissipation energy, effective mass and moment of inertia are determined for different values of the collective velocities. The dissipation increases with the internuclear velocity in binary disintegration processes and modifies the effective mass parameters. We observed that the inertia decreases as long as the collective velocity increases to some moderate values and begins to grow for larger collective velocities. So, a dependence between the cranking mass parameters and the intrinsic excitation energy is evidenced. In order to investigate the overall effect, the half-lives are predicted for adiabatic and dynamics simulations.

  6. Nuclear isospin asymmetry in α decay of heavy nuclei

    NASA Astrophysics Data System (ADS)

    Shin, Eunkyoung; Lim, Yeunhwan; Hyun, Chang Ho; Oh, Yongseok

    2016-08-01

    The effects of nuclear isospin asymmetry on α -decay lifetimes of heavy nuclei are investigated within various phenomenological models of the nuclear potential for the α particle. We consider the widely used simple square-well potential and Woods-Saxon potential and modify them by including an isospin asymmetry term. We then suggest a model for the potential of the α particle motivated by a microscopic phenomenological approach of the Skyrme force model, which naturally introduces the isospin-dependent form of the nuclear potential for the α particle. The empirical α -decay lifetime formula of Viola and Seaborg [J. Inorg. Nucl. Chem. 28, 741 (1966), 10.1016/0022-1902(66)80412-8] is also modified to include isospin asymmetry effects. The obtained α -decay half-lives are in good agreement with the experimental data, and we find that including the nuclear isospin effects somehow improves the theoretical results for α -decay half-lives. The implications of these results are discussed, and the predictions on the α -decay lifetimes of superheavy elements are also presented.

  7. Isospin dependence of relative yields of K{sup +} and K{sup 0} mesons at 1.528A GeV

    SciTech Connect

    Lopez, X.; Kim, Y. J.; Andronic, A.; Hartmann, O. N.; Hildenbrand, K. D.; Koczon, P.; Leifels, Y.; Reisdorf, W.; Schuettauf, A.; Herrmann, N.; Benabderrahmane, M. L.; Cordier, E.; Merschmeyer, M.; Pelte, D.; Barret, V.; Bastid, N.; Crochet, P.; Dupieux, P.

    2007-01-15

    Results on K{sup +} and K{sup 0} meson production in {sub 44}{sup 96}Ru + {sub 44}{sup 96}Ru and {sub 40}{sup 96}Zr + {sub 40}{sup 96}Zr collisions at a beam kinetic energy of 1.528A GeV, measured with the FOPI detector at GSI-Darmstadt, are investigated as a possible probe of isospin effects in high-density nuclear matter. The measured double ratio (K{sup +}/K{sup 0}){sub Ru}/(K{sup +}/K{sup 0}){sub Zr} is compared to the predictions of a thermal model and a relativistic mean field transport model using two different collision scenarios and under different assumptions on the stiffness of the symmetry energy. We find good agreement with the thermal model prediction and the assumption of a soft symmetry energy for infinite nuclear matter, while more realistic transport simulations of the collisions show a similar agreement with the data but also exhibit a reduced sensitivity to the symmetry term.

  8. Isobaric Multiplet Yrast Energies and Isospin Nonconserving Forces

    NASA Astrophysics Data System (ADS)

    Zuker, A. P.; Lenzi, S. M.; Martínez-Pinedo, G.; Poves, A.

    2002-09-01

    The isovector and isotensor energy differences between yrast states of isobaric multiplets in the lower half of the pf region are quantitatively reproduced in a shell model context. The isospin nonconserving nuclear interactions are found to be at least as important as the Coulomb potential. Their isovector and isotensor channels are dominated by J=2 and J=0 pairing terms, respectively. The results are sensitive to the radii of the states, whose evolution along the yrast band can be accurately followed.

  9. Partial preferential chromosome pairing is genotype dependent in tetraploid rose.

    PubMed

    Bourke, Peter M; Arens, Paul; Voorrips, Roeland E; Esselink, G Danny; Koning-Boucoiran, Carole F S; Van't Westende, Wendy P C; Santos Leonardo, Tiago; Wissink, Patrick; Zheng, Chaozhi; van Geest, Geert; Visser, Richard G F; Krens, Frans A; Smulders, Marinus J M; Maliepaard, Chris

    2017-04-01

    It has long been recognised that polyploid species do not always neatly fall into the categories of auto- or allopolyploid, leading to the term 'segmental allopolyploid' to describe everything in between. The meiotic behaviour of such intermediate species is not fully understood, nor is there consensus as to how to model their inheritance patterns. In this study we used a tetraploid cut rose (Rosa hybrida) population, genotyped using the 68K WagRhSNP array, to construct an ultra-high-density linkage map of all homologous chromosomes using methods previously developed for autotetraploids. Using the predicted bivalent configurations in this population we quantified differences in pairing behaviour among and along homologous chromosomes, leading us to correct our estimates of recombination frequency to account for this behaviour. This resulted in the re-mapping of 25 695 SNP markers across all homologues of the seven rose chromosomes, tailored to the pairing behaviour of each chromosome in each parent. We confirmed the inferred differences in pairing behaviour among chromosomes by examining repulsion-phase linkage estimates, which also carry information about preferential pairing and recombination. Currently, the closest sequenced relative to rose is Fragaria vesca. Aligning the integrated ultra-dense rose map with the strawberry genome sequence provided a detailed picture of the synteny, confirming overall co-linearity but also revealing new genomic rearrangements. Our results suggest that pairing affinities may vary along chromosome arms, which broadens our current understanding of segmental allopolyploidy. © 2017 The Authors The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  10. Antinucleon as a probe of nuclear spin and isospin excitations

    NASA Astrophysics Data System (ADS)

    Dover, C. B.; Sainio, M. E.; Walker, G. E.

    1983-12-01

    Using two models for the antinucleon-nucleon (N¯N) interaction, we obtain complex, energy dependent N¯N transition operators t appropriate for (N¯, N¯') inelastic scattering studies on complex nuclei. It is shown that the spin-isospin dependence of the N¯N annihilation potential plays an important role in determining the dominant spin-isospin modes in the nuclear response. In particular, for the most realistic of our N¯N models, a large spin dependent component tσ is obtained, leading to the strong excitation of isoscalar spin-flip states; this term is suppressed in the corresponding NN t matrix. The central spin and isospin independent term, tc0, is large for N¯N, at all relevant momentum transfers q. At high q the isoscalar spin-orbit (tLS0) and isovector tensor (tTτ) components are important. Cross section and analyzing power predictions for N¯ inelastic scattering as well as corrections due to energy and density dependence are discussed.

  11. Isospin diffusion in thermal AdS/CFT correspondence with flavor

    SciTech Connect

    Erdmenger, Johanna; Kaminski, Matthias; Rust, Felix

    2007-08-15

    We study the gauge/gravity dual of a finite temperature field theory at finite isospin chemical potential by considering a probe of two coincident D7-branes embedded in the AdS-Schwarzschild black hole background. The isospin chemical potential is obtained by giving a vacuum expectation value to the time component of the non-Abelian gauge field on the brane. The fluctuations of the non-Abelian gauge field on the brane are dual to the SU(2) flavor current in the field theory. For the embedding corresponding to vanishing quark mass, we calculate all Green functions corresponding to the components of the flavor current correlator. We discuss the physical properties of these Green functions, which go beyond linear response theory. In particular, we show that the isospin chemical potential leads to a frequency-dependent isospin diffusion coefficient.

  12. Temperature-dependent isovector pairing gap equations using a path integral approach

    SciTech Connect

    Fellah, M.; Allal, N. H.; Belabbas, M.; Oudih, M. R.; Benhamouda, N.

    2007-10-15

    Temperature-dependent isovector neutron-proton (np) pairing gap equations have been established by means of the path integral approach. These equations generalize the BCS ones for the pairing between like particles at finite temperature. The method has been numerically tested using the one-level model. It has been shown that the gap parameter {delta}{sub np} has a behavior analogous to that of {delta}{sub nn} and {delta}{sub pp} as a function of the temperature: one notes the presence of a critical temperature. Moreover, it has been shown that the isovector pairing effects remain beyond the critical temperature that corresponds to the pairing between like particles.

  13. Models of isospin violating ADM

    SciTech Connect

    Okada, Nobuchika; Seto, Osamu

    2014-06-24

    The isospin violating dark matter (IVDM) scenario offers an interesting possibility to reconcile conflicting results among direct dark matter search experiments for a mass range around 10 GeV. We consider two simple renormalizable IVDM models with a complex scalar dark matter and a Dirac fermion dark matter, respectively, whose stability is ensured by the conservation of “dark matter number.” Although both models successfully work as the IVDM scenario with destructive interference between effective couplings to proton and neutron, the dark matter annihilation cross section is found to exceed the cosmological/astrophysical upper bounds. Then, we propose a simple scenario to reconcile the IVDM scenario with the cosmological/astrophysical bounds, namely, the IVDM being asymmetric. We also discuss collider experimental constraints on the models and an implication to Higgs boson physics.

  14. The interplay between nucleonic and nuclear spin-isospin excitations

    NASA Astrophysics Data System (ADS)

    Weise, W.

    Following a brief review of pion-nucleon coupling in relativistic quark models and the introduction of the Δ(1232) at the quark level, we develop the nuclear spin-isospin response function in a framework of nucleons and Δ‧s interacting through exchange of mesons. The spin-isospin dependent particle-hole interaction will be elaborated and various different aspects of the Landau-Migdal parameter g‧ for nucleons and Δ‧s will be discussed. We summarize the evidence for broad Δ-hole states at high excitation energies (200-400 MeV). Then the impact of the existence of such Δ-hole excitations on the quenching of Gamow-Teller and magnetic isovector spin transitions at low energy is discussed in combination with conventional nuclear mechanisms like core polarization and ground state correlations.

  15. Meson spectral functions at finite temperature and isospin density with the functional renormalization group

    NASA Astrophysics Data System (ADS)

    Wang, Ziyue; Zhuang, Pengfei

    2017-07-01

    The pion superfluid and the corresponding Goldstone and soft modes are investigated in a two-flavor quark-meson model with a functional renormalization group. By solving the flow equations for the effective potential and the meson two-point functions at finite temperature and isospin density, the critical temperature for the superfluid increases sizeably in comparison with solving the flow equation for the potential only. The spectral function for the soft mode shows clearly a transition from meson gas to quark gas with increasing temperature and a crossover from Bose-Einstein condensation to Bardeen-Cooper-Schrieffer pairing of quarks with increasing isospin density.

  16. Split Isobaric Analog State in Ni55: Case of Strong Isospin Mixing

    NASA Astrophysics Data System (ADS)

    Tripathi, Vandana; Tabor, S. L.; Volya, A.; Liddick, S. N.; Bender, P. C.; Larson, N.; Prokop, C.; Suchyta, S.; Tai, P.-L.; VonMoss, J. M.

    2013-12-01

    Study of β+ decay of the exotic Tz=-3/2 nucleus Cu55, via delayed γ rays, has revealed a strongly isospin mixed doublet (4599-4579 keV) in Ni55, which represents the fragmented and previously unknown isobaric analog of the ground state of Cu55. The observed small log ft values to both states in the doublet confirm the superallowed Fermi β decay. The near degeneracy of a pair of 3/2- levels in Ni55 results in the strong isospin mixing. The isospin mixing matrix element between the T =3/2 and T=1/2 levels is inferred from the experiment to be 9(1) keV, which agrees well with the matrix element of the charge symmetry breaking shell model Hamiltonian of Ormand and Brown. A precise value of the half-life of Cu55 at 57(3) ms was also obtained.

  17. Dynamical isospin effects in nucleon-induced reactions

    SciTech Connect

    Ou Li; Li Zhuxia; Wu Xizhen

    2008-10-15

    The isospin effects in proton-induced reactions on isotopes of {sup 112-132}Sn and the corresponding {beta}-stable isobars are studied by means of the improved quantum molecular dynamics model and some sensitive probes for the density dependence of the symmetry energy at subnormal densities are proposed. The beam energy range is chosen to be 100-300 MeV. Our study shows that the system size dependence of the reaction cross sections for p+{sup 112-132}Sn deviates from the Carlson's empirical expression obtained by fitting the reaction cross sections for proton on nuclei along the {beta}-stability line and sensitively depends on the stiffness of the symmetry energy. We also find that the angular distribution of elastic scattering for p+{sup 132}Sn at large impact parameters is very sensitive to the density dependence of the symmetry energy, which is uniquely due to the effect of the symmetry potential with no mixture of the effect from the isospin dependence of the nucleon-nucleon cross sections. The isospin effects in neutron-induced reactions are also studied and it is found that the effects are just opposite to that in proton-induced reactions. We find that the difference between the peaks of the angular distributions of elastic scattering for p+{sup 132}Sn and n+{sup 132}Sn at E{sub p,n}=100 MeV and b=7.5 fm is positive for soft symmetry energy U{sub sym}{sup sf} and negative for super-stiff symmetry energy U{sub sym}{sup nlin} and close to zero for linear density dependent symmetry energy U{sub sym}{sup lin}, which seems very useful for constraining the density dependence of the symmetry energy at subnormal densities.

  18. Incidence dependence of negative index in asymmetric cut wire pairs metamaterials

    NASA Astrophysics Data System (ADS)

    Burokur, Shah Nawaz; Lepetit, Thomas; Lustrac, André de

    2009-11-01

    Metamaterials made of asymmetric cut wire pairs have experimentally demonstrated a negative refractive index at microwave frequencies. In this letter, we begin by presenting the analogy between asymmetric cut wire pairs and S-shaped metamaterials by a simple unifying approach. Then, using simulations and experiments in the microwave domain, we investigate the dependence of resonances and retrieved effective index on the incident angle in asymmetric cut wire pairs. While it is found that resonances shift in frequency with increasing oblique incidence in the E-plane, it is shown that the structure is angle-independent in the H-plane.

  19. Time-dependent pair distribution in the mean-field approximation

    NASA Astrophysics Data System (ADS)

    Boley, C. D.; Tenti, G.

    1980-05-01

    The time-dependent pair-distribution function, which plays a central role in the description of nuclear magnetic relaxation and collision-induced absorption in classical fluids, is evaluated in a mean-field approximation proposed earlier. In this scheme the binary dynamics of the colliding pair is treated without approximation, and the interaction with the background fluid is taken into account via a renormalization of the pair potential. The result is expressed in terms of orbits having specified end points and specified elapsed times.

  20. Temperature dependence of pair correlations and correlation entropy in a fluid

    SciTech Connect

    Sanchez-Castro, C.R.; Aidun, J.B.; Straub, G.K.; Wills, J.M.; Wallace, D.C. )

    1994-09-01

    For a system of atoms interacting through a pair potential, the entropy is evaluated by molecular dynamics at temperatures from the liquid to the gas. The pair potential represents aluminum in the liquid regime and the calculated entropy is in close agreement with experiment. The temperature dependence of the entropy is understood in terms of structural changes in the pair correlation function. Of the two approximate entropy expansions evaluated in low orders, the Nettleton-Raveche-Green expansion is more accurate at high temperatures, while the multiparticle irreducible correlation expansion is more accurate for the liquid.

  1. Temperature dependence of pair correlations and correlation entropy in a fluid

    NASA Astrophysics Data System (ADS)

    Sanchez-Castro, Carlos R.; Aidun, John B.; Straub, Galen K.; Wills, John M.; Wallace, Duane C.

    1994-09-01

    For a system of atoms interacting through a pair potential, the entropy is evaluated by molecular dynamics at temperatures from the liquid to the gas. The pair potential represents aluminum in the liquid regime and the calculated entropy is in close agreement with experiment. The temperature dependence of the entropy is understood in terms of structural changes in the pair correlation function. Of the two approximate entropy expansions evaluated in low orders, the Nettleton-Raveché-Green expansion is more accurate at high temperatures, while the multiparticle irreducible correlation expansion is more accurate for the liquid.

  2. Dual condensates at finite isospin chemical potential

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao; Miao, Qing

    2016-02-01

    The dual observables as order parameters for center symmetry are tested at finite isospin chemical potential μI in a Polyakov-loop enhanced chiral model of QCD with physical quark masses. As a counterpart of the dressed Polyakov-loop, the first Fourier moment of pion condensate is introduced for μI >mπ / 2 under the temporal twisted boundary conditions for quarks. We demonstrate that this dual condensate exhibits the similar temperature dependence as the conventional Polyakov-loop. We confirm that its rapid increase with T is driven by the evaporating of pion condensation. On the other hand, the dressed Polyakov-loop shows abnormal thermal behavior, which even decreases with T at low temperatures due to the influence of pion condensate. We also find that the dressed Polyakov-loop always rises most steeply at the chiral transition temperature, which is consistent with the previous results in Nambu-Jona-Lasinio (NJL) model and its variants without considering the center symmetry. Since both quantities are strongly affected by the chiral symmetry and pion condensation, we conclude that it is difficult to clarify the deconfinement transition from the dual condensates in this situation within this model.

  3. Sequence dependency of canonical base pair opening in the DNA double helix.

    PubMed

    Lindahl, Viveca; Villa, Alessandra; Hess, Berk

    2017-04-01

    The flipping-out of a DNA base from the double helical structure is a key step of many cellular processes, such as DNA replication, modification and repair. Base pair opening is the first step of base flipping and the exact mechanism is still not well understood. We investigate sequence effects on base pair opening using extensive classical molecular dynamics simulations targeting the opening of 11 different canonical base pairs in two DNA sequences. Two popular biomolecular force fields are applied. To enhance sampling and calculate free energies, we bias the simulation along a simple distance coordinate using a newly developed adaptive sampling algorithm. The simulation is guided back and forth along the coordinate, allowing for multiple opening pathways. We compare the calculated free energies with those from an NMR study and check assumptions of the model used for interpreting the NMR data. Our results further show that the neighboring sequence is an important factor for the opening free energy, but also indicates that other sequence effects may play a role. All base pairs are observed to have a propensity for opening toward the major groove. The preferred opening base is cytosine for GC base pairs, while for AT there is sequence dependent competition between the two bases. For AT opening, we identify two non-canonical base pair interactions contributing to a local minimum in the free energy profile. For both AT and CG we observe long-lived interactions with water and with sodium ions at specific sites on the open base pair.

  4. Pairing context determines condition-dependence of song rate in a monogamous passerine bird

    PubMed Central

    David, Morgan; Auclair, Yannick; Dall, Sasha R. X.; Cézilly, Frank

    2013-01-01

    Condition-dependence of male ornaments is thought to provide honest signals on which females can base their sexual choice for genetic quality. Recent studies show that condition-dependence patterns can vary within populations. Although long-term association is thought to promote honest signalling, no study has explored the influence of pairing context on the condition-dependence of male ornaments. In this study, we assessed the influence of natural variation in body condition on song rate in zebra finches (Taeniopygia guttata) in three different situations: during short and long encounters with an unfamiliar female, and within heterosexual mated pairs. We found consistent individual differences in male directed and undirected song rate. Moreover, body condition had a positive effect on song rate in paired males. However, male song rate was not influenced by body condition during short or long encounters with unfamiliar females. Song rate appears to be an unreliable signal of condition to prospective females as even poor-condition birds can cheat and sing at a high rate. By contrast, paired females can reliably use song rate to assess their mate's body condition, and possibly the genetic quality. We propose that species' characteristics, such as mating system, should be systematically taken into account to generate relevant hypotheses about the evolution of condition-dependent male ornaments. PMID:23256191

  5. Linear-response time-dependent density-functional theory with pairing fields.

    PubMed

    Peng, Degao; van Aggelen, Helen; Yang, Yang; Yang, Weitao

    2014-05-14

    Recent development in particle-particle random phase approximation (pp-RPA) broadens the perspective on ground state correlation energies [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013), Y. Yang, H. van Aggelen, S. N. Steinmann, D. Peng, and W. Yang, J. Chem. Phys. 139, 174110 (2013); D. Peng, S. N. Steinmann, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 104112 (2013)] and N ± 2 excitation energies [Y. Yang, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 224105 (2013)]. So far Hartree-Fock and approximated density-functional orbitals have been utilized to evaluate the pp-RPA equation. In this paper, to further explore the fundamentals and the potential use of pairing matrix dependent functionals, we present the linear-response time-dependent density-functional theory with pairing fields with both adiabatic and frequency-dependent kernels. This theory is related to the density-functional theory and time-dependent density-functional theory for superconductors, but is applied to normal non-superconducting systems for our purpose. Due to the lack of the proof of the one-to-one mapping between the pairing matrix and the pairing field for time-dependent systems, the linear-response theory is established based on the representability assumption of the pairing matrix. The linear response theory justifies the use of approximated density-functionals in the pp-RPA equation. This work sets the fundamentals for future density-functional development to enhance the description of ground state correlation energies and N ± 2 excitation energies.

  6. A pair-conformation-dependent scoring function for evaluating 3D RNA-protein complex structures

    PubMed Central

    Li, Haotian; Huang, Yangyu

    2017-01-01

    Computational prediction of RNA-protein complex 3D structures includes two basic steps: one is sampling possible structures and another is scoring the sampled structures to pick out the correct one. At present, constructing accurate scoring functions is still not well solved and the performances of the scoring functions usually depend on used benchmarks. Here we propose a pair-conformation-dependent scoring function, 3dRPC-Score, for 3D RNA-protein complex structure prediction by considering the nucleotide-residue pairs having the same energy if their conformations are similar, instead of the distance-only dependence of the most existing scoring functions. Benchmarking shows that 3dRPC-Score has a consistent performance in three test sets. PMID:28358834

  7. A pair-conformation-dependent scoring function for evaluating 3D RNA-protein complex structures.

    PubMed

    Li, Haotian; Huang, Yangyu; Xiao, Yi

    2017-01-01

    Computational prediction of RNA-protein complex 3D structures includes two basic steps: one is sampling possible structures and another is scoring the sampled structures to pick out the correct one. At present, constructing accurate scoring functions is still not well solved and the performances of the scoring functions usually depend on used benchmarks. Here we propose a pair-conformation-dependent scoring function, 3dRPC-Score, for 3D RNA-protein complex structure prediction by considering the nucleotide-residue pairs having the same energy if their conformations are similar, instead of the distance-only dependence of the most existing scoring functions. Benchmarking shows that 3dRPC-Score has a consistent performance in three test sets.

  8. Isospin effects on fragmentation in the asymmetric reactions induced by neutron-rich targets

    SciTech Connect

    Sharma, Arun

    2016-05-06

    To understand the isospin effects in terms of fragment’s yield in the asymmetric reactions induced by neutron-rich targets, we perform a theoretical study using isospin-dependent quantum molecular dynamics (IQMD) model. Simulations are carried out for reactions of {sup 16}O+Br{sup 80,84,92} and {sup 16}O+Ag{sup 108,113,122}. We envision that fragments’s yield in the asymmetric collisions induced by neutron-rich targets is better candidate to study isospin effects via symmetry energy and nucleon-nucleon (nn) cross-sections. Also, pronounced effects of symmetry energy and cross-sections can be found at lower and higher beam energies, respectively.

  9. Sequence dependency of canonical base pair opening in the DNA double helix

    PubMed Central

    Villa, Alessandra

    2017-01-01

    The flipping-out of a DNA base from the double helical structure is a key step of many cellular processes, such as DNA replication, modification and repair. Base pair opening is the first step of base flipping and the exact mechanism is still not well understood. We investigate sequence effects on base pair opening using extensive classical molecular dynamics simulations targeting the opening of 11 different canonical base pairs in two DNA sequences. Two popular biomolecular force fields are applied. To enhance sampling and calculate free energies, we bias the simulation along a simple distance coordinate using a newly developed adaptive sampling algorithm. The simulation is guided back and forth along the coordinate, allowing for multiple opening pathways. We compare the calculated free energies with those from an NMR study and check assumptions of the model used for interpreting the NMR data. Our results further show that the neighboring sequence is an important factor for the opening free energy, but also indicates that other sequence effects may play a role. All base pairs are observed to have a propensity for opening toward the major groove. The preferred opening base is cytosine for GC base pairs, while for AT there is sequence dependent competition between the two bases. For AT opening, we identify two non-canonical base pair interactions contributing to a local minimum in the free energy profile. For both AT and CG we observe long-lived interactions with water and with sodium ions at specific sites on the open base pair. PMID:28369121

  10. Isospin Splittings of Doubly Heavy Baryons

    SciTech Connect

    Brodsky, Stanley J.; Guo, Feng-Kun; Hanhart, Christoph; Meissner, Ulf-G.; /Julich, Forschungszentrum /JCHP, Julich /IAS, Julich /Bonn U., HISKP /Bonn U.

    2011-08-18

    The SELEX Collaboration has reported a very large isospin splitting of doubly charmed baryons. We show that this effect would imply that the doubly charmed baryons are very compact. One intriguing possibility is that such baryons have a linear geometry Q-q-Q where the light quark q oscillates between the two heavy quarks Q, analogous to a linear molecule such as carbon dioxide. However, using conventional arguments, the size of a heavy-light hadron is expected to be around 0.5 fm, much larger than the size needed to explain the observed large isospin splitting. Assuming the distance between two heavy quarks is much smaller than that between the light quark and a heavy one, the doubly heavy baryons are related to the heavy mesons via heavy quark-diquark symmetry. Based on this symmetry, we predict the isospin splittings for doubly heavy baryons including {Xi}{sub cc}, {Xi}{sub bb} and {Xi}{sub bc}. The prediction for the {Xi}{sub cc} is much smaller than the SELEX value. On the other hand, the {Xi}{sub bb} baryons are predicted to have an isospin splitting as large as (6.3 {+-} 1.7) MeV. An experimental study of doubly bottomed baryons is therefore very important to better understand the structure of baryons with heavy quarks.

  11. Isospin-symmetry breaking in superallowed Fermi β-decay due to isospin-nonconserving forces

    NASA Astrophysics Data System (ADS)

    Kaneko, K.; Sun, Y.; Mizusaki, T.; Tazaki, S.; Ghorui, S. K.

    2017-10-01

    We investigate isospin-symmetry breaking effects in the sd-shell region with large-scale shell-model calculations, aiming to understand the recent anomalies observed in superallowed Fermi β-decay. We begin with calculations of Coulomb displacement energies (CDE's) and triplet displacement energies (TDE's) by adding the T = 1 , J = 0 isospin nonconserving (INC) interaction into the usual isospin-invariant Hamiltonian. It is found that CDE's and TDE's can be systematically described with high accuracy. A total number of 122 one- and two-proton separation energies are predicted accordingly, and locations of the proton drip-line and candidates for proton-emitters are thereby suggested. However, attempt to explain the anomalies in the superallowed Fermi β-decay fails because these well-fitted T = 1 , J = 0 INC interactions are found no effects on the nuclear matrix elements. It is demonstrated that the observed large isospin-breaking correction in the 32Cl β-decay, the large isospin-mixing in the 31Cl β-decay, and the small isospin-mixing in the 23Al β-decay can be consistently understood by introducing additional T = 1 , J = 2 INC interactions related to the s1/2 orbit.

  12. Isospin-symmetry-breaking effects in A˜70 nuclei within beyond-mean-field approach

    NASA Astrophysics Data System (ADS)

    Petrovici, A.; Andrei, O.

    2015-02-01

    Particular isospin-symmetry-breaking probes including Coulomb energy differences (CED), mirror energy differences (MED), and triplet energy differences (TED) manifest anomalies in the A˜70 isovector triplets of nuclei. The structure of proton-rich nuclei in the A˜70 mass region suggests shape coexistence and competition between pairing correlations in different channels. Recent results concerning the interplay between isospin-mixing and shape-coexistence effects on exotic phenomena in A˜70 nuclei obtained within the beyond-mean-field complex Excited Vampir variational model with symmetry projection before variation using a realistic effective interaction in a relatively large model space are presented. Excited Vampir predictions concerning the Gamow-Teller β decay to the odd-odd N=Z 66As and 70Br nuclei correlated with the pair structure analysis in the T=1 and T=0 channel of the involved wave functions are discussed.

  13. Isospin-symmetry-breaking effects in A∼70 nuclei within beyond-mean-field approach

    SciTech Connect

    Petrovici, A.; Andrei, O.

    2015-02-24

    Particular isospin-symmetry-breaking probes including Coulomb energy differences (CED), mirror energy differences (MED), and triplet energy differences (TED) manifest anomalies in the A∼70 isovector triplets of nuclei. The structure of proton-rich nuclei in the A∼70 mass region suggests shape coexistence and competition between pairing correlations in different channels. Recent results concerning the interplay between isospin-mixing and shape-coexistence effects on exotic phenomena in A∼70 nuclei obtained within the beyond-mean-field complex Excited Vampir variational model with symmetry projection before variation using a realistic effective interaction in a relatively large model space are presented. Excited Vampir predictions concerning the Gamow-Teller β decay to the odd-odd N=Z {sup 66}As and {sup 70}Br nuclei correlated with the pair structure analysis in the T=1 and T=0 channel of the involved wave functions are discussed.

  14. Brain State-Dependent Closed-Loop Modulation of Paired Associative Stimulation Controlled by Sensorimotor Desynchronization

    PubMed Central

    Royter, Vladislav; Gharabaghi, Alireza

    2016-01-01

    Background: Pairing peripheral electrical stimulation (ES) and transcranial magnetic stimulation (TMS) increases corticospinal excitability when applied with a specific temporal pattern. When the two stimulation techniques are applied separately, motor imagery (MI)-related oscillatory modulation amplifies both ES-related cortical effects—sensorimotor event-related desynchronization (ERD), and TMS-induced peripheral responses—motor-evoked potentials (MEP). However, the influence of brain self-regulation on the associative pairing of these stimulation techniques is still unclear. Objective: The aim of this pilot study was to investigate the effects of MI-related ERD during associative ES and TMS on subsequent corticospinal excitability. Method: The paired application of functional electrical stimulation (FES) of the extensor digitorum communis (EDC) muscle and subsequent single-pulse TMS (110% resting motor threshold (RMT)) of the contralateral primary motor cortex (M1) was controlled by beta-band (16–22 Hz) ERD during MI of finger extension and applied within a brain-machine interface environment in six healthy subjects. Neural correlates were probed by acquiring the stimulus-response curve (SRC) of both MEP peak-to-peak amplitude and area under the curve (AUC) before and after the intervention. Result: The application of approximately 150 pairs of associative FES and TMS resulted in a significant increase of MEP amplitudes and AUC, indicating that the induced increase of corticospinal excitability was mediated by the recruitment of additional neuronal pools. MEP increases were brain state-dependent and correlated with beta-band ERD, but not with the background EDC muscle activity; this finding was independent of the FES intensity applied. Conclusion: These results could be relevant for developing closed-loop therapeutic approaches such as the application of brain state-dependent, paired associative stimulation (PAS) in the context of neurorehabilitation. PMID

  15. Biotin-dependent functions in adiposity: a study of monozygotic twin pairs.

    PubMed

    Järvinen, E; Ismail, K; Muniandy, M; Bogl, L H; Heinonen, S; Tummers, M; Miettinen, S; Kaprio, J; Rissanen, A; Ollikainen, M; Pietiläinen, K H

    2016-05-01

    Biotin acts as a coenzyme for carboxylases regulating lipid and amino-acid metabolism. We investigated alterations of the biotin-dependent functions in obesity and the downstream effects of biotin restriction in adipocytes in vitro. Twenty-four monozygotic twin pairs discordant for body mass index (BMI). Mean within-pair difference (heavy-lean co-twin, Δ) of BMI was 6.0 kg m(-2) (range 3.1-15.2 kg m(-)(2)). Adipose tissue (AT) DNA methylation, gene expression of AT and adipocytes, and leukocytes (real-time quantitative PCR), serum biotin, C-reactive protein (CRP) and triglycerides were measured in the twins. Human adipocytes were cultured in low and control biotin concentrations and analyzed for lipid droplet content, mitochondrial morphology and mitochondrial respiration. The gene expression levels of carboxylases, PCCB and MCCC1, were upregulated in the heavier co-twins' leukocytes. ΔPCCB (r=0.91, P=0.0046) and ΔMCCC1 (r=0.79, P=0.036) correlated with ΔCRP within-pairs. Serum biotin levels were lower in the heavier (274 ng l(-1)) than in the lean co-twins (390 ng l(-1), P=0.034). ΔBiotin correlated negatively with Δtriglycerides (r=-0.56, P=0.045) within-pairs. In AT, HLCS and ACACB were hypermethylated and biotin cycle genes HLCS and BTD were downregulated (P<0.05). Biotin-dependent carboxylases were downregulated (ACACA, ACACB, PCCB, MCCC2 and PC; P<0.05) in both AT and adipocytes of the heavier co-twins. Adipocytes cultured in low biotin had decreased lipid accumulation, altered mitochondrial morphology and deficient mitochondrial respiration. Biotin-dependent functions are modified by adiposity independent of genetic effects, and correlate with inflammation and hypertriglyceridemia. Biotin restriction decreases lipid accumulation and respiration, and alters mitochondrial morphology in adipocytes.

  16. Single-molecule derivation of salt dependent base-pair free energies in DNA

    PubMed Central

    Huguet, Josep M.; Bizarro, Cristiano V.; Forns, Núria; Smith, Steven B.; Bustamante, Carlos; Ritort, Felix

    2010-01-01

    Accurate knowledge of the thermodynamic properties of nucleic acids is crucial to predicting their structure and stability. To date most measurements of base-pair free energies in DNA are obtained in thermal denaturation experiments, which depend on several assumptions. Here we report measurements of the DNA base-pair free energies based on a simplified system, the mechanical unzipping of single DNA molecules. By combining experimental data with a physical model and an optimization algorithm for analysis, we measure the 10 unique nearest-neighbor base-pair free energies with 0.1 kcal mol-1 precision over two orders of magnitude of monovalent salt concentration. We find an improved set of standard energy values compared with Unified Oligonucleotide energies and a unique set of 10 base-pair-specific salt-correction values. The latter are found to be strongest for AA/TT and weakest for CC/GG. Our unique energy values and salt corrections improve predictions of DNA unzipping forces and are fully compatible with melting temperatures for oligos. The method should make it possible to obtain free energies, enthalpies, and entropies in conditions not accessible by bulk methodologies. PMID:20716688

  17. Nuclear spin isospin responses for low-energy neutrinos

    NASA Astrophysics Data System (ADS)

    Ejiri, H.

    2000-11-01

    Nuclear spin isospin responses for low-energy neutrinos of current astroparticle physics interests are briefly reviewed. Neutrinos are key particles for new particle physics beyond the standard electro-weak theory, and sensitive probes for studying stellar evolution and astronuclear processes. Low-energy neutrinos with energies of Eν~=0.1-50MeV have been studied extensively by using nuclei as micro-laboratories. Nuclear weak processes involved are vector and axial-vector weak interactions. Accordingly, nuclear isospin and spin isospin responses for neutrinos are crucial for studying neutrinos through nuclear weak processes. Nuclei show spin isospin responses characteristic of nuclear spin isospin structures. Nuclear spin isospin responses are investigated by relevant electromagnetic and hadronic processes. Subjects discussed include nuclear spin isospin responses for neutrinos and spin isospin giant resonances, hadronic charge-exchange spin-flip and non spin-flip reactions used for studying nuclear spin isospin responses, nuclear responses for neutrinos associated with double beta decays, nuclear spin isospin responses for solar neutrinos, and nuclear responses for supernova and accelerator-based neutrinos.

  18. The Isospin Admixture of The Ground State and The Properties of The Isobar Analog Resonances In Deformed Nuclei

    SciTech Connect

    Aygor, H. Ali; Maras, Ismail; Cakmak, Necla; Selam, Cevad

    2008-11-11

    Within quasiparticle random phase approximation (QRPA), Pyatov-Salamov method for the self-consistent determination of the isovector effective interaction strength parameter, restoring a broken isotopic symmetry for the nuclear part of the Hamiltonian, is used. The isospin admixtures in the ground state of the parent nucleus, and the isospin structure of the isobar analog resonance (IAR) state are investigated by including the pairing correlations between nucleons for {sup 72-80}Kr isotopes. Our results are compared with the spherical case and with other theoretical results.

  19. Analytical pair correlations in ideal quantum gases: temperature-dependent bunching and antibunching.

    PubMed

    Bosse, J; Pathak, K N; Singh, G S

    2011-10-01

    The fluctuation-dissipation theorem together with the exact density response spectrum for ideal quantum gases has been utilized to yield a new expression for the static structure factor, which we use to derive exact analytical expressions for the temperature-dependent pair distribution function g(r) of the ideal gases. The plots of bosonic and fermionic g(r) display "Bose pile" and "Fermi hole" typically akin to bunching and antibunching as observed experimentally for ultracold atomic gases. The behavior of spin-scaled pair correlation for fermions is almost featureless, but bosons show a rich structure including long-range correlations near T(c). The coherent state at T=0 shows no correlation at all, just like single-mode lasers. The depicted decreasing trend in correlation with decrease in temperature for T

  20. Giant Valley-Isospin Conductance Oscillations in Ballistic Graphene

    NASA Astrophysics Data System (ADS)

    Handschin, Clevin; Makk, Péter; Rickhaus, Peter; Maurand, Romain; Watanabe, Kenji; Taniguchi, Takashi; Richter, Klaus; Liu, Ming-Hao; Schönenberger, Christian

    2017-09-01

    At high magnetic fields the conductance of graphene is governed by the half-integer quantum Hall effect. By local electrostatic gating a \\textit{p-n} junction perpendicular to the graphene edges can be formed, along which quantum Hall channels co-propagate. It has been predicted by Tworzid\\l{}o and co-workers that if only the lowest Landau level is filled on both sides of the junction, the conductance is determined by the valley (isospin) polarization at the edges and by the width of the flake. This effect remained hidden so far due to scattering between the channels co-propagating along the \\textit{p-n} interface (equilibration). Here we investigate \\textit{p-n} junctions in encapsulated graphene with a movable \\textit{p-n} interface with which we are able to probe the edge-configuration of graphene flakes. We observe large quantum conductance oscillations on the order of \\si{e^2/h} which solely depend on the \\textit{p-n} junction position providing the first signature of isospin-defined conductance. Our experiments are underlined by quantum transport calculations.

  1. Optimized distance-dependent atom-pair-based potential DOOP for protein structure prediction.

    PubMed

    Chae, Myong-Ho; Krull, Florian; Knapp, Ernst-Walter

    2015-05-01

    The DOcking decoy-based Optimized Potential (DOOP) energy function for protein structure prediction is based on empirical distance-dependent atom-pair interactions. To optimize the atom-pair interactions, native protein structures are decomposed into polypeptide chain segments that correspond to structural motives involving complete secondary structure elements. They constitute near native ligand-receptor systems (or just pairs). Thus, a total of 8609 ligand-receptor systems were prepared from 954 selected proteins. For each of these hypothetical ligand-receptor systems, 1000 evenly sampled docking decoys with 0-10 Å interface root-mean-square-deviation (iRMSD) were generated with a method used before for protein-protein docking. A neural network-based optimization method was applied to derive the optimized energy parameters using these decoys so that the energy function mimics the funnel-like energy landscape for the interaction between these hypothetical ligand-receptor systems. Thus, our method hierarchically models the overall funnel-like energy landscape of native protein structures. The resulting energy function was tested on several commonly used decoy sets for native protein structure recognition and compared with other statistical potentials. In combination with a torsion potential term which describes the local conformational preference, the atom-pair-based potential outperforms other reported statistical energy functions in correct ranking of native protein structures for a variety of decoy sets. This is especially the case for the most challenging ROSETTA decoy set, although it does not take into account side chain orientation-dependence explicitly. The DOOP energy function for protein structure prediction, the underlying database of protein structures with hypothetical ligand-receptor systems and their decoys are freely available at http://agknapp.chemie.fu-berlin.de/doop/. © 2015 Wiley Periodicals, Inc.

  2. Isospin mixing from β -delayed proton emission

    NASA Astrophysics Data System (ADS)

    Smirnova, N. A.; Blank, B.; Brown, B. A.; Richter, W. A.; Benouaret, N.; Lam, Y. H.

    2017-05-01

    We present a general scheme of a shell-model analysis of a β -delayed proton emission. We show that the experimental proton to γ -ray branching ratio for the isobaric analog state (IAS) populated in β decay of a precursor, supplemented by theoretical proton and γ -ray widths, can be used to extract spectroscopic factors for isospin-forbidden proton emission. In the case of a well-justified two-level mixing approximation and a relatively well known spectroscopic factor of the admixed state, the proposed scheme provides a new way to determine the amount of the isospin mixing in the IAS. This conjecture is illustrated by the theoretical analysis of 44Cr and 48Fe decay.

  3. Light scalar susceptibilities and isospin breaking

    SciTech Connect

    Andres, R. Torres; Nicola, A. Gomez

    2010-12-28

    Making a thermal analysis in the context of NLO SU(3) Chiral Perturbation Theory we see that isospin breaking (IB) corrections (both electromagnetic and QCD ones) to quark condensates are of order O(e{sup 2}) and O({epsilon}), with {epsilon} the {pi}{sup 0}-{eta} mixing angle. However the combination {chi}{sub uu}-{chi}{sub ud} of flavour breaking susceptibilities, which vanishes in the isospin limit and can be identified essentially with the connected susceptibility, has an order O(1) contribution enhanced with T because of the {pi}{sup 0}-{eta}) mixing. Finally we present a thermal sum rule that relates quark condensate ratios and the light scalar susceptibility without IB, {chi}(T)-{chi}(0).

  4. Isospin purity in the A=42 isobars

    SciTech Connect

    Orce, J.N.; McKay, C.J.; Choudry, S.N.; Lesher, S.L.; Mynk, M.; Bandyopadhyay, D.; Yates, S.W.; McEllistrem, M.T.; Petkov, P.

    2004-09-13

    The lifetime of the first 2{sub T=1}{sup +} state in 42Sc has been measured as 74(16) fs. This result gives a value for the isoscalar matrix element of M0=6.63(76). From the mirror nuclei, 42Ca and 42Ti, the isoscalar matrix element is given as 7.15(48) W.u., confirming isospin purity in the A=42 isobars.

  5. Time-dependent pairing equations for seniority-one nuclear systems

    SciTech Connect

    Mirea, M.

    2008-10-15

    When the time-dependent Hartree-Fock-Bogoliubov intrinsic equations of motion are solved in the case of seniority-one nuclear systems, the unpaired nucleon remains on the same orbital. The blocking effect hinders the possibility to skip from one orbital to another. This unpleasant feature is by-passed with a new set of pairing time-dependent equations that allows the possibility that the unpaired nucleon changes its single-particle level. These equations generalize the time-dependent Hartree-Fock-Bogoliubov equations of motion by including the Landau-Zener effect. The derivation of these new equations is presented in detail. These equations are applied to the case of a superasymmetric fission process, that is, to explain the fine structure the {sup 14}C emission from {sup 233}Ra. In this context, a new version of the Woods-Saxon model extended for two-center potentials is used.

  6. Variation after Spin-Isospin Projection in the Skyrme Model

    NASA Astrophysics Data System (ADS)

    Shiino, E.; Hosaka, A.; Toki, H.

    1987-07-01

    We calculate nucleon, delta and higher spin-isospin baryons by making variation of the hedgehog function after the spin-isospin projection. The nucleon and delta masses are lowered only a small amount as compared to the case of variation before spin-isospin projection. The axial coupling g_{A} of the nucleon is, however, changed from 1.33 to 1.20.

  7. Inverse Temperature Dependence of Nuclear Quantum Effects in DNA Base Pairs

    PubMed Central

    2016-01-01

    Despite the inherently quantum mechanical nature of hydrogen bonding, it is unclear how nuclear quantum effects (NQEs) alter the strengths of hydrogen bonds. With this in mind, we use ab initio path integral molecular dynamics to determine the absolute contribution of NQEs to the binding in DNA base pair complexes, arguably the most important hydrogen-bonded systems of all. We find that depending on the temperature, NQEs can either strengthen or weaken the binding within the hydrogen-bonded complexes. As a somewhat counterintuitive consequence, NQEs can have a smaller impact on hydrogen bond strengths at cryogenic temperatures than at room temperature. We rationalize this in terms of a competition of NQEs between low-frequency and high-frequency vibrational modes. Extending this idea, we also propose a simple model to predict the temperature dependence of NQEs on hydrogen bond strengths in general. PMID:27195654

  8. Stokes phenomenon and schwinger vacuum pair production in time-dependent laser pulses.

    PubMed

    Dumlu, Cesim K; Dunne, Gerald V

    2010-06-25

    Particle production due to external fields (electric, chromoelectric, or gravitational) requires evolving an initial state through an interaction with a time-dependent background, with the rate being computed from a Bogoliubov transformation between the in and out vacua. When the background fields have temporal profiles with substructure, a semiclassical analysis of this problem confronts the full subtlety of the Stokes phenomenon: WKB solutions are only local, while the production rate requires global information. We give a simple quantitative explanation of the recently computed [Phys. Rev. Lett. 102, 150404 (2009)10.1103/PhysRevLett.102.150404] oscillatory momentum spectrum of e^{+}e^{-} pairs produced from vacuum subjected to a time-dependent electric field with subcycle laser pulse structure. This approach also explains naturally why for spinor and scalar QED these oscillations are out of phase.

  9. Stokes Phenomenon and Schwinger Vacuum Pair Production in Time-Dependent Laser Pulses

    SciTech Connect

    Dumlu, Cesim K.; Dunne, Gerald V.

    2010-06-25

    Particle production due to external fields (electric, chromoelectric, or gravitational) requires evolving an initial state through an interaction with a time-dependent background, with the rate being computed from a Bogoliubov transformation between the in and out vacua. When the background fields have temporal profiles with substructure, a semiclassical analysis of this problem confronts the full subtlety of the Stokes phenomenon: WKB solutions are only local, while the production rate requires global information. We give a simple quantitative explanation of the recently computed [Phys. Rev. Lett. 102, 150404 (2009)] oscillatory momentum spectrum of e{sup +}e{sup -} pairs produced from vacuum subjected to a time-dependent electric field with subcycle laser pulse structure. This approach also explains naturally why for spinor and scalar QED these oscillations are out of phase.

  10. Inverse Temperature Dependence of Nuclear Quantum Effects in DNA Base Pairs.

    PubMed

    Fang, Wei; Chen, Ji; Rossi, Mariana; Feng, Yexin; Li, Xin-Zheng; Michaelides, Angelos

    2016-06-02

    Despite the inherently quantum mechanical nature of hydrogen bonding, it is unclear how nuclear quantum effects (NQEs) alter the strengths of hydrogen bonds. With this in mind, we use ab initio path integral molecular dynamics to determine the absolute contribution of NQEs to the binding in DNA base pair complexes, arguably the most important hydrogen-bonded systems of all. We find that depending on the temperature, NQEs can either strengthen or weaken the binding within the hydrogen-bonded complexes. As a somewhat counterintuitive consequence, NQEs can have a smaller impact on hydrogen bond strengths at cryogenic temperatures than at room temperature. We rationalize this in terms of a competition of NQEs between low-frequency and high-frequency vibrational modes. Extending this idea, we also propose a simple model to predict the temperature dependence of NQEs on hydrogen bond strengths in general.

  11. Time-Dependence of VHE Gamma-Ray induced Pair Cascades in Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Roustazadeh, Parisa; Boettcher, Markus; Thrush, Samantha

    2016-04-01

    Recently, several intermediate frequency peaked BL Lac objects (IBL), low frequency peaked BL Lac objects (LBL) and flat spectrum radio quasars (FSRQ) were detected as very high energy ( VHE, E > 100 ˜ GeV) γ-ray sources. These discoveries suggest that γγ absorption and pair cascades might occur in those objects, leading to excess γ-ray emission which may be observable also in off-axis viewing directions (i.e., like in radio galaxies) when deflected by moderately strong magnetic fields. Here, we investigate the time dependence of the Compton γ-ray emission from such VHE γ-ray induced pair cascades. We show that the cascade emission is variable on time scales much shorter than the light-crossing time across the characteristic extent of the external radiation field, depending on the viewing angle and γ-ray energy. Thus, we find that the cascade Compton interpretation for the Fermi γ-ray emission from radio galaxies is still consistent with the day-scale variability detected in the Fermi γ-ray emission of radio galaxies, such as NGC 1275, which we use as a specific example.

  12. 1-Anilino-8-naphthalene sulfonate anion-protein binding depends primarily on ion pair formation.

    PubMed Central

    Matulis, D; Lovrien, R

    1998-01-01

    The ANS- (1-anilino-8-naphthalene sulfonate) anion is strongly, dominantly bound to cationic groups of water-soluble proteins and polyamino acids through ion pair formation. This mode of ANS- binding, broad and pH dependent, is expressed by the quite rigorous stoichiometry of ANS- bound with respect to the available summed number of H+ titrated lysine, histidine, and arginine groups. By titration calorimetry, the integral or overall enthalpies of ANS- binding to four proteins, bovine serum albumin, lysozyme, papain, and protease omega, were arithmetic sums of individual ANS(-)-polyamino acid sidechain binding enthalpies (polyhistidine, polyarginine, polylysine), weighted by numbers of such cationic groups of each protein (additivity of binding enthalpies). ANS- binding energetics to both classes of macromolecules, cationic proteins and synthetic cationic polyamino acids, is reinforced by the organic moiety (anilinonaphthalene) of ANS-. In a much narrower range of binding, where ANS- is sometimes assumed to act as a hydrophobic probe, ANS- may become fluorescent. However, the broad overall range is sharply dependent on electrostatic, ion pair formation, where the organic sulfonate group is the major determinant of binding. PMID:9449342

  13. Ferrocene-bis(thymine/uracil) conjugates: base pairing directed, spacer dependent self-assembly and supramolecular packing.

    PubMed

    Patwa, Amit N; Gonnade, Rajesh G; Kumar, Vaijayanti A; Bhadbhade, Mohan M; Ganesh, Krishna N

    2010-12-17

    X-ray crystallographic studies of methylene linked Ferrocene-bis(thymine/uracil) conjugates Fc(T:T)(M) and Fc(U:U)(M) reveal base dependent 2-D supramolecular assemblies generated via wobble self-pairing for bis-thymine and reverse wobble self-pairing for bis-uracil conjugates, differing in architecture from the corresponding butylene spacer linked conjugates.

  14. Dependence of the rate of LiF ion pairing on the description of molecular interaction

    SciTech Connect

    Pluharova, Eva; Baer, Marcel D.; Schenter, Gregory K.; Jungwirth, Pavel; Mundy, Christopher J.

    2016-03-03

    We present an analysis of the dynamics of ion-pairing of Lithium Fluoride (LiF) in aqueous solvent using both detailed molecular simulation as well as reduced models within a Gener- alized Langevin Equation (GLE) framework. We explored the sensitivity of the ion-pairing phenomena to the details of descriptions of molecular interaction, comparing two empirical potentials to explicit quantum based density functional theory. We find quantitative differences in the potentials of mean force for ion-pairing as well as time dependent frictions that lead to variations in the rate constant and reactive flux correlation functions. These details reflect differences in solvent response to ion-pairing between different representations of molecular interaction and influence anharmonicity of the dynamic response. We find that the short time anharmonic response is recovered with a GLE parameterization. Recovery of the details of long time response may require extensions to the reduced model. We show that the utility of using a reduced model leads to a straight forward application of variational transition state the- ory concepts to the condensed phase system. The significance of this is reflected in the analysis of committor distributions and the variation of planar hypersurfaces, leading to an improved understanding of factors that determine the rate of LiF ion-pairing. CJM and GKS are supported by the U.S. Department of Energy‘s (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest Na- tional Laboratory (PNNL) is operated for the Department of Energy by Battelle. MDB is grateful for the support of Laboratory Directed Research and Development funding under the auspices of PNNL’s Laboratory Initiative Materials Synthesis and Simulation across Scales (MS3). Additional computing resources were generously allocated by PNNL’s Institutional Computing program. EP acknowledges support from PNNL’s Alternate Sponsored

  15. Isospin properties of electric dipole excitations in 48Ca

    NASA Astrophysics Data System (ADS)

    Derya, V.; Savran, D.; Endres, J.; Harakeh, M. N.; Hergert, H.; Kelley, J. H.; Papakonstantinou, P.; Pietralla, N.; Ponomarev, V. Yu.; Roth, R.; Rusev, G.; Tonchev, A. P.; Tornow, W.; Wörtche, H. J.; Zilges, A.

    2014-03-01

    Two different experimental approaches were combined to study the electric dipole strength in the doubly-magic nucleus 48Ca below the neutron threshold. Real-photon scattering experiments using bremsstrahlung up to 9.9 MeV and nearly mono-energetic linearly polarized photons with energies between 6.6 and 9.51 MeV provided strength distribution and parities, and an (α,α‧γ) experiment at Eα=136 MeV gave cross sections for an isoscalar probe. The unexpected difference observed in the dipole response is compared to calculations using the first-order random-phase approximation and points to an energy-dependent isospin character. A strong isoscalar state at 7.6 MeV was identified for the first time supporting a recent theoretical prediction.

  16. A Pair of Pharyngeal Gustatory Receptor Neurons Regulates Caffeine-Dependent Ingestion in Drosophila Larvae

    PubMed Central

    Choi, Jaekyun; van Giesen, Lena; Choi, Min Sung; Kang, KyeongJin; Sprecher, Simon G.; Kwon, Jae Young

    2016-01-01

    The sense of taste is an essential chemosensory modality that enables animals to identify appropriate food sources and control feeding behavior. In particular, the recognition of bitter taste prevents animals from feeding on harmful substances. Feeding is a complex behavior comprised of multiple steps, and food quality is continuously assessed. We here examined the role of pharyngeal gustatory organs in ingestion behavior. As a first step, we constructed a gustatory receptor-to-neuron map of the larval pharyngeal sense organs, and examined corresponding gustatory receptor neuron (GRN) projections in the larval brain. Out of 22 candidate bitter compounds, we found 14 bitter compounds that elicit inhibition of ingestion in a dose-dependent manner. We provide evidence that certain pharyngeal GRNs are necessary and sufficient for the ingestion response of larvae to caffeine. Additionally, we show that a specific pair of pharyngeal GRNs, DP1, responds to caffeine by calcium imaging. In this study we show that a specific pair of GRNs in the pharyngeal sense organs coordinates caffeine sensing with regulation of behavioral responses such as ingestion. Our results indicate that in Drosophila larvae, the pharyngeal GRNs have a major role in sensing food palatability to regulate ingestion behavior. The pharyngeal sense organs are prime candidates to influence ingestion due to their position in the pharynx, and they may act as first level sensors of ingested food. PMID:27486388

  17. A Pair of Pharyngeal Gustatory Receptor Neurons Regulates Caffeine-Dependent Ingestion in Drosophila Larvae.

    PubMed

    Choi, Jaekyun; van Giesen, Lena; Choi, Min Sung; Kang, KyeongJin; Sprecher, Simon G; Kwon, Jae Young

    2016-01-01

    The sense of taste is an essential chemosensory modality that enables animals to identify appropriate food sources and control feeding behavior. In particular, the recognition of bitter taste prevents animals from feeding on harmful substances. Feeding is a complex behavior comprised of multiple steps, and food quality is continuously assessed. We here examined the role of pharyngeal gustatory organs in ingestion behavior. As a first step, we constructed a gustatory receptor-to-neuron map of the larval pharyngeal sense organs, and examined corresponding gustatory receptor neuron (GRN) projections in the larval brain. Out of 22 candidate bitter compounds, we found 14 bitter compounds that elicit inhibition of ingestion in a dose-dependent manner. We provide evidence that certain pharyngeal GRNs are necessary and sufficient for the ingestion response of larvae to caffeine. Additionally, we show that a specific pair of pharyngeal GRNs, DP1, responds to caffeine by calcium imaging. In this study we show that a specific pair of GRNs in the pharyngeal sense organs coordinates caffeine sensing with regulation of behavioral responses such as ingestion. Our results indicate that in Drosophila larvae, the pharyngeal GRNs have a major role in sensing food palatability to regulate ingestion behavior. The pharyngeal sense organs are prime candidates to influence ingestion due to their position in the pharynx, and they may act as first level sensors of ingested food.

  18. Orbital Dependent Nucleonic Pairing in the Lightest Known Isotopes of Tin

    SciTech Connect

    Darby, Iain; Grzywacz, R.; Batchelder, J. C.; Bingham, C. R.; Cartegni, L.; Gross, Carl J; Liddick, Sean; Nazarewicz, Witold; Padgett, Stephen; Papenbrock, T.; Rajabali, M. M.; Rotureau, J.; Rykaczewski, Krzysztof Piotr

    2010-01-01

    By studying the {sup 109}Xe {yields} {sup 105}Te {yields} {sup 101}Sn superallowed {alpha}-decay chain, we observe low-lying states in {sup 101}Sn, the one-neutron system outside doubly magic {sup 100}Sn. We find that the spins of the ground state (J=7/2) and first excited state (J=5/2) in {sup 101}Sn are reversed with respect to the traditional level ordering postulated for {sup 103}Sn and the heavier tin isotopes. Through simple arguments and state-of-the-art shell-model calculations we explain this unexpected switch in terms of a transition from the single-particle regime to the collective mode in which orbital-dependent pairing correlations dominate.

  19. Orbital Dependent Nucleonic Pairing in the Lightest Known Isotopes of Tin

    NASA Astrophysics Data System (ADS)

    Darby, I. G.; Grzywacz, R. K.; Batchelder, J. C.; Bingham, C. R.; Cartegni, L.; Gross, C. J.; Hjorth-Jensen, M.; Joss, D. T.; Liddick, S. N.; Nazarewicz, W.; Padgett, S.; Page, R. D.; Papenbrock, T.; Rajabali, M. M.; Rotureau, J.; Rykaczewski, K. P.

    2010-10-01

    By studying the Xe109→Te105→Sn101 superallowed α-decay chain, we observe low-lying states in Sn101, the one-neutron system outside doubly magic Sn100. We find that the spins of the ground state (J=7/2) and first excited state (J=5/2) in Sn101 are reversed with respect to the traditional level ordering postulated for Sn103 and the heavier tin isotopes. Through simple arguments and state-of-the-art shell-model calculations we explain this unexpected switch in terms of a transition from the single-particle regime to the collective mode in which orbital-dependent pairing correlations dominate.

  20. NUCLEAR PHYSICS: Equation of State for Isospin Asymmetric Matter of Nucleons and Deltas

    NASA Astrophysics Data System (ADS)

    Lu, Xiao-Hua; Zhang, Ying-Xun; Li, Zhu-Xia; Zhao, Zhi-Xiang

    2008-11-01

    An investigation on the equation of state of the isospin asymmetric, hot, dense matter of nucleons and deltas is performed based on the relativistic mean Geld theory. The QHD-II-type effective Lagrangian extending to the delta degree of freedom is adopted. Our results show that the equation of state is softened due to the inclusion of the delta degree of freedom. The baryon resonance isomer may occur depending on the delta-meson coupling. The results show that the densities for appearing the baryon resonance isomer, the densities for starting softening the equation of state and the extent of the softening depend not only on the temperature, the coupling strengths but also the isospin asymmetry of the baryon matter.

  1. Effects of the high-momentum tail of nucleon momentum distribution on the isospin-sensitive observables

    NASA Astrophysics Data System (ADS)

    Zhang, Fang; Yong, Gao-Chan

    2016-11-01

    Based on the Isospin-dependent Boltzmann-Uehling-Uhlenbeck (IBUU) transport model, effects of the high-momentum tail (HMT) of nucleon momentum distribution in colliding nuclei on some isospin-sensitive observables are studied in the semi-central 197Au + 197Au reactions at incident beam energy of 400 MeV/nucleon. It is found that the nucleon transverse flow, the difference of neutron and proton transverse flows, the nucleon elliptic flow and the free neutron to proton ratio are all less sensitive to the HMT, while the isospin-sensitive nucleon elliptic flow difference is clearly affected by the HMT. Except at very high kinetic energies, the kinetic energy distributions of π-, π+ and charged pion ratio π- / π+ are all sensitive to the HMT.

  2. Quarksonic matter at high isospin density

    NASA Astrophysics Data System (ADS)

    Cao, Gaoqing; He, Lianyi; Huang, Xu-Guang

    2017-05-01

    Analogous to the quarkyonic matter at high baryon density in which the quark Fermi seas and the baryonic excitations coexist, it is argued that a “quarksonic matter” phase appears at high isospin density where the quark (antiquark) Fermi seas and the mesonic excitations coexist. We explore this phase in detail in both large N c and asymptotically free limits. In the large N c limit, we sketch a phase diagram for the quarksonic matter. In the asymptotically free limit, we study the pion superfluidity and thermodynamics of the quarksonic matter by using both perturbative calculations and an effective model. Supported by Thousand Young Talents Program of China, Shanghai Natural Science Foundation, (14ZR1403000) and NSFC (11535012), China Postdoctoral Science Foundation (KLH1512072)

  3. Isospin aspects in nuclear reactions involving Ca beams at 25 MeV/nucleon

    SciTech Connect

    Lombardo, I. Agodi, C.; Alba, R.; Amorini, F.; Anzalone, A.; Auditore, L.; Berceanu, I.; Cardella, G.; Cavallaro, S.; Chatterjee, M. B.; Filippo, E. De; Di Pietro, A.; Figuera, P.; Giuliani, G.; Geraci, E.; Grassi, L.; Grzeszczuk, A.; Han, J.; La Guidara, E.; Lanzalone, G.; and others

    2011-11-15

    Isospin dependence of dynamical and thermodynamical properties observed in reactions {sup 40}Ca+ {sup 40,48}Ca and {sup 40}Ca + {sup 46}Ti at 25 MeV/nucleon has been studied. We used the CHIMERA multi-detector array. Strong isospin effects are seen in the isotopic distributions of light nuclei and in the competition between different reaction mechanisms in semi-central collisions. We will show also preliminary results obtained in nuclear collision {sup 48}Ca + {sup 48}Ca at 25MeV/nucleon, having very high N/Z value in the entrance channel (N/Z = 1.4). The enhancement of evaporation residue production confirms the strong role played by the N/Z degree of freedom in nuclear dynamics.

  4. Structural and isospin effects on balance energy and transition energy via different nuclear charge radii parameterizations

    NASA Astrophysics Data System (ADS)

    Sangeeta; Kaur, Varinderjit

    2017-10-01

    The structural and isospin effects have been studied through isospin dependent and independent nuclear charge radii parameterizations on the collective flow within the framework of Isospin-dependent Quantum Molecular Dynamics (IQMD) model. The calculations have been carried out by using two approaches: (i) for the reaction series having fixed N / Z ratio and (ii) for the isobaric reaction series with different N / Z ratio. Our results indicate that there is a considerable effect of radii parameterizations on the excitation function of reduced flow (∂v1/∂Yred) and elliptical flow (v2). Both balance energy (Ebal) and transition energy (Etrans) are enhanced with increase in radii of reacting nuclei and found to follow a power law with nuclear charge radii. The exponent τ values show that the elliptical flow is more sensitive towards different nuclear charge radii as compared to reduced flow. Moreover, we observe that our theoretical calculation of Ebal and Etrans are in agreement with the experimental data provided by GSI, INDRA and FOPI collaborations.

  5. Angular and temperature dependence of photon pair rates in spontaneous parametric down-conversion from a periodically poled crystal

    NASA Astrophysics Data System (ADS)

    Jimenez, G. Daniel; Garces, Veneranda G.; O'Donnell, Kevin A.

    2017-08-01

    We present a theoretical and experimental study of the angular and temperature dependence of the photon pairs produced by spontaneous parametric down-conversion in a periodically poled KTP crystal. In the experiment, two detectors are placed at different angles in the emitted light, and the detected photon pair rate is measured as a function of one angle or of crystal temperature. In the theoretical work, exact results for the pair rates are obtained through importance-sampled numerical integration of the fourth-order coherence function over regions representing the experimental integration parameters. Conditions studied range from well-resolved results in which detector angular and filter bandwidth integration effects are negligible, to other cases in which such effects are large and pair rates exceed 105s-1 . Throughout these cases, good agreement is often seen between experimental and theoretical results, while some differences that are noted provide insight into the actual crystal quasi-phase-matching function.

  6. Perturbative thermodynamics at nonzero isospin density for cold QCD

    NASA Astrophysics Data System (ADS)

    Graf, Thorben; Schaffner-Bielich, Juergen; Fraga, Eduardo S.

    2016-04-01

    We use next-to-leading order in perturbation theory to investigate the effects of a finite isospin density on the thermodynamics of cold strongly interacting matter. Our results include nonzero quark masses and are compared to lattice data.

  7. Isospin Breaking in the Goldberger-Treiman Discrepancies

    SciTech Connect

    Jose Goity; Jordi Saez

    2002-09-01

    Effects of isospin breaking at the level of the Goldberger-Treiman discrepancies involving the neutral isotriplet axial and pion-nucleon couplings are analyzed to leading non-trivial order in chiral perturbation theory.

  8. Shell Model Depiction of Isospin Mixing in sd Shell

    SciTech Connect

    Lam, Yi Hua; Smirnova, Nadya A.; Caurier, Etienne

    2011-11-30

    We constructed a new empirical isospin-symmetry breaking (ISB) Hamiltonian in the sd(1s{sub 1/2}, 0d{sub 5/2} and 0d{sub 3/2}) shell-model space. In this contribution, we present its application to two important case studies: (i){beta}-delayed proton emission from {sup 22}Al and (ii) isospin-mixing correction to superallowed 0{sup +}{yields}0{sup +}{beta}-decay ft-values.

  9. Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. I: Role of density dependence in pairing force

    NASA Astrophysics Data System (ADS)

    Samyn, M.; Goriely, S.; Pearson, J. M.

    2003-09-01

    The HFB-2 mass formula is generalized to make the δ-function pairing force density-dependent. It is shown that the mass data rule out the simple model of a pairing force that vanishes completely in the nuclear interior. Consistency with the mass data is found for a fairly wide range of δ-function pairing forces with a partial weakening in the nuclear interior. In particular, the form of density dependence determined by the realistic nuclear-matter calculations of Garrido et al. is shown to be compatible with the mass data, 2135 measured masses being fitted with an rms error of 0.656 MeV. On this basis we construct a new mass table, HFB-3, running from one drip line to the other. Shell quenching at the neutron-drip line is now somewhat stronger than before, but otherwise the new mass formula does not differ in any conspicuous way from the HFB-2 mass formula.

  10. Isospin-spin excitations in the A=58 mass region: The {sup 58}Ni({sup 3}He,t){sup 58}Cu reaction

    SciTech Connect

    Bes, D. R.; Civitarese, O.

    2008-07-15

    The experimental information on isospin-spin excitations around {sup 58}Ni is analyzed by using isoscalar and isovector pairing vibrations, Gamow-Teller (GT) modes, and their couplings. It is found that the proposed coupling scheme accounts for a sizable amount of the strength associated with isospin-spin excitations, which include transitions to both one- and two-phonon states. The calculations are performed within the framework of perturbation theory, accounting for the renormalization of the charge by the collective GT excitations.

  11. Condensates of p-wave pairs are exact solutions for rotating two-component Bose gases.

    PubMed

    Papenbrock, T; Reimann, S M; Kavoulakis, G M

    2012-02-17

    We derive exact analytical results for the wave functions and energies of harmonically trapped two-component Bose-Einstein condensates with weakly repulsive interactions under rotation. The isospin symmetric wave functions are universal and do not depend on the matrix elements of the two-body interaction. The comparison with the results from numerical diagonalization shows that the ground state and low-lying excitations consist of condensates of p-wave pairs for repulsive contact interactions, Coulomb interactions, and the repulsive interactions between aligned dipoles.

  12. Condensates of p-Wave Pairs Are Exact Solutions for Rotating Two-Component Bose Gases

    SciTech Connect

    Papenbrock, T; Kavoulakis, G. M.

    2012-01-01

    We derive exact analytical results for the wave functions and energies of harmonically trapped two-component Bose-Einstein condensates with weakly repulsive interactions under rotation. The isospin symmetric wave functions are universal and do not depend on the matrix elements of the two-body interaction. The comparison with the results from numerical diagonalization shows that the ground state and low-lying excitations consist of condensates of p-wave pairs for repulsive contact interactions, Coulomb interactions, and the repulsive interactions between aligned dipoles.

  13. Topological deconfinement transition in QCD at finite isospin density

    NASA Astrophysics Data System (ADS)

    Kashiwa, Kouji; Ohnishi, Akira

    2017-09-01

    The confinement-deconfinement transition is discussed from topological viewpoints. The topological change of the system is achieved by introducing the dimensionless imaginary chemical potential (θ). Then, the non-trivial free-energy degeneracy becomes the signal of the deconfinement transition and it can be visualized by using the map of the thermodynamic quantities to the circle S1 along θ. To understand this "topological" deconfinement transition at finite real quark chemical potential (μR), we consider the isospin chemical potential (μiso) in the effective model of QCD. The phase diagram at finite μiso is identical with that at finite μR outside of the pion-condensed phase at least in the large-Nc limit via the well-known orbifold equivalence. In the present effective model, the topological deconfinement transition does not show a significant dependence on μiso and then we can expect that this tendency also appears at small μR. Also, the chiral transition and the topological deconfinement transition seems to be weakly correlated. If we will access lattice QCD data for the temperature dependence of the quark number density at finite μiso with θ = π / 3, our surmise can be judged.

  14. Combinatory microarray and SuperSAGE analyses identify pairing-dependently transcribed genes in Schistosoma mansoni males, including follistatin.

    PubMed

    Leutner, Silke; Oliveira, Katia C; Rotter, Björn; Beckmann, Svenja; Buro, Christin; Hahnel, Steffen; Kitajima, Joao P; Verjovski-Almeida, Sergio; Winter, Peter; Grevelding, Christoph G

    2013-11-01

    Schistosomiasis is a disease of world-wide importance and is caused by parasitic flatworms of the genus Schistosoma. These parasites exhibit a unique reproduction biology as the female's sexual maturation depends on a constant pairing-contact to the male. Pairing leads to gonad differentiation in the female, and even gene expression of some gonad-associated genes is controlled by pairing. In contrast, no morphological changes have been observed in males, although first data indicated an effect of pairing also on gene transcription in males. To investigate the influence of pairing on males, we performed a combinatory approach applying SuperSAGE and microarray hybridization, generating the most comprehensive data-set on differential transcription available to date. Of 6,326 sense transcripts detected by both analyses, 29 were significantly differentially transcribed. Besides mutual confirmation, the two methods complemented each other as shown by data comparison and real-time PCR, which revealed a number of genes with consistent regulation across all methods. One of the candidate genes, follistatin of S. mansoni (SmFst) was characterized in more detail by in situ hybridization and yeast two-hybrid (Y2H) interaction analyses with potential binding partners. Beyond confirming previously hypothesized differences in metabolic processes between pairing-experienced (EM) and pairing-unexperienced males (UM), our data indicate that neuronal processes are involved in male-female interaction but also TGFβ-signaling. One candidate revealing significant down-regulation in EM was the TGFβ-pathway controlling molecule follistatin (SmFst). First functional analyses demonstrated SmFst interaction with the S. mansoni TGFβ-receptor agonists inhibin/activin (SmInAct) and bone morphogenic protein (SmBMP), and all molecules colocalized in the testes. This indicates a yet unknown role of the TGFβ-pathway for schistosome biology leading to male competence and a possible influence of

  15. Unusual isospin-breaking and isospin-mixing effects in the A=35 mirror nuclei.

    PubMed

    Ekman, J; Rudolph, D; Fahlander, C; Zuker, A P; Bentley, M A; Lenzi, S M; Andreoiu, C; Axiotis, M; de Angelis, G; Farnea, E; Gadea, A; Kröll, Th; Mărginean, N; Martinez, T; Mineva, M N; Rossi-Alvarez, C; Ur, C A

    2004-04-02

    Excited states have been studied in 35Ar following the 16O(24Mg,1alpha1n)35Ar fusion-evaporation reaction at 60 MeV using the Ge-detector array GASP. A comparison with the mirror nucleus 35Cl shows two remarkable features: (i) A surprisingly large energy difference for the 13/2(-) states, in which the hitherto overlooked electromagnetic spin-orbit term is shown to play a major role, and (ii) a very different decay pattern for the 7/2(-) states, which provides direct evidence of isospin mixing.

  16. Unusual Isospin-Breaking and Isospin-Mixing Effects in the A=35 Mirror Nuclei

    NASA Astrophysics Data System (ADS)

    Ekman, J.; Rudolph, D.; Fahlander, C.; Zuker, A. P.; Bentley, M. A.; Lenzi, S. M.; Andreoiu, C.; Axiotis, M.; de Angelis, G.; Farnea, E.; Gadea, A.; Kröll, Th.; Mărginean, N.; Martinez, T.; Mineva, M. N.; Rossi-Alvarez, C.; Ur, C. A.

    2004-04-01

    Excited states have been studied in 35Ar following the 16O(24Mg,1α1n)35Ar fusion-evaporation reaction at 60MeV using the Ge-detector array GASP. A comparison with the mirror nucleus 35Cl shows two remarkable features: (i)A surprisingly large energy difference for the 13/2- states, in which the hitherto overlooked electromagnetic spin-orbit term is shown to play a major role, and (ii)a very different decay pattern for the 7/2- states, which provides direct evidence of isospin mixing.

  17. Isospin of topological defects in Dirac systems

    NASA Astrophysics Data System (ADS)

    Herbut, Igor F.

    2012-02-01

    We study the Dirac quasiparticles in d-dimensional lattice systems of electrons in the presence of domain walls (d=1), vortices (d=2), or hedgehogs (d=3) of superconducting and/or insulating, order parameters, which appear as mass terms in the Dirac equation. Such topological defects have been known to carry nontrivial quantum numbers, such as charge and spin. Here we discuss their additional internal degree of freedom: irrespective of the dimensionality of space and the nature of orders that support the defect, an extra mass order parameter is found to emerge in their core. Six linearly independent local orders, which close two mutually commuting three-dimensional Clifford algebras, are proven to be in general possible. We show how the particle-hole symmetry restricts the defects to always carry the quantum numbers of a single effective isospin 1/2, quite independently of the values of their electric charge or true spin. Examples of this new degree of freedom in graphene and on surfaces of topological insulators are discussed.

  18. Temporal Interval Discrimination Thresholds Depend on Perceived Synchrony for Audio-Visual Stimulus Pairs

    ERIC Educational Resources Information Center

    van Eijk, Rob L. J.; Kohlrausch, Armin; Juola, James F.; van de Par, Steven

    2009-01-01

    Audio-visual stimulus pairs presented at various relative delays, are commonly judged as being "synchronous" over a range of delays from about -50 ms (audio leading) to +150 ms (video leading). The center of this range is an estimate of the point of subjective simultaneity (PSS). The judgment boundaries, where "synchronous" judgments yield to a…

  19. Schistosome sex matters: a deep view into gonad-specific and pairing-dependent transcriptomes reveals a complex gender interplay

    PubMed Central

    Lu, Zhigang; Sessler, Florian; Holroyd, Nancy; Hahnel, Steffen; Quack, Thomas; Berriman, Matthew; Grevelding, Christoph G.

    2016-01-01

    As a key event for maintaining life cycles, reproduction is a central part of platyhelminth biology. In case of parasitic platyhelminths, reproductive processes can also contribute to pathology. One representative example is the trematode Schistosoma, which causes schistosomiasis, an infectious disease, whose pathology is associated with egg production. Among the outstanding features of schistosomes is their dioecious lifestyle and the pairing-dependent differentiation of the female gonads which finally leads to egg synthesis. To analyze the reproductive biology of Schistosoma mansoni in-depth we isolated complete ovaries and testes from paired and unpaired schistosomes for comparative RNA-seq analyses. Of >7,000 transcripts found in the gonads, 243 (testes) and 3,600 (ovaries) occurred pairing-dependently. Besides the detection of genes transcribed preferentially or specifically in the gonads of both genders, we uncovered pairing-induced processes within the gonads including stem cell-associated and neural functions. Comparisons to work on neuropeptidergic signaling in planarian showed interesting parallels but also remarkable differences and highlights the importance of the nervous system for flatworm gonad differentiation. Finally, we postulated first functional hints for 235 hypothetical genes. Together, these results elucidate key aspects of flatworm reproductive biology and will be relevant for basic as well as applied, exploitable research aspects. PMID:27499125

  20. Isospin symmetry breaking in the chiral quark model

    NASA Astrophysics Data System (ADS)

    Song, Huiying; Zhang, Xinyu; Ma, Bo-Qiang

    2010-12-01

    We discuss the isospin symmetry breaking (ISB) of the valence- and sea-quark distributions between the proton and the neutron in the framework of the chiral quark model. We assume that isospin symmetry breaking is the result of mass differences between isospin multiplets and then analyze the effects of isospin symmetry breaking on the Gottfried sum rule and the NuTeV anomaly. We show that, although both flavor asymmetry in the nucleon sea and the ISB between the proton and the neutron can lead to the violation of the Gottfried sum rule, the main contribution is from the flavor asymmetry in the framework of the chiral quark model. We also find that the correction to the NuTeV anomaly is in an opposite direction, so the NuTeV anomaly cannot be removed by isospin symmetry breaking in the chiral quark model. It is remarkable that our results of ISB for both valence- and sea-quark distributions are consistent with the Martin-Roberts-Stirling-Thorne parametrization of quark distributions.

  1. MHC-dependent survival in a wild population: evidence for hidden genetic benefits gained through extra-pair fertilizations.

    PubMed

    Brouwer, Lyanne; Barr, Iain; van de Pol, Martijn; Burke, Terry; Komdeur, Jan; Richardson, David S

    2010-08-01

    Females should prefer to be fertilized by males that increase the genetic quality of their offspring. In vertebrates, genes of the major histocompatibility complex (MHC) play a key role in the acquired immune response and have been shown to affect mating preferences. They are therefore important candidates for the link between mate choice and indirect genetic benefits. Higher MHC diversity may be advantageous because this allows a wider range of pathogens to be detected and combated. Furthermore, individuals harbouring rare MHC alleles might better resist pathogen variants that have evolved to evade common MHC alleles. In the Seychelles warbler, females paired with low MHC-diversity males elevate the MHC diversity of their offspring to levels comparable to the population mean by gaining extra-pair fertilizations. Here, we investigate whether increased MHC diversity results in higher life expectancy and whether there are any additional benefits of extra-pair fertilizations. Our 10-year study found a positive association between MHC diversity and juvenile survival, but no additional survival advantage of extra-pair fertilizations. In addition, offspring with a specific allele (Ase-ua4) had a fivefold longer life expectancy than offspring without this allele. Consequently, the interacting effects of sexual selection and pathogen-mediated viability selection appear to be important for maintaining MHC variation in the Seychelles warbler. Our study supports the prediction that MHC-dependent extra-pair fertilizations result in genetic benefits for offspring in natural populations. However, such genetic benefits might be hidden and not necessarily apparent in the widely used fitness comparison of extra- and within-pair offspring.

  2. Estimates of isospin breaking contributions to baryon masses

    SciTech Connect

    Ha, Phuoc

    2007-10-01

    We estimate the isospin breaking contributions to the baryon masses which we analyzed recently using a loop expansion in the heavy-baryon chiral effective field theory. To one loop, the isospin breaking corrections come from the effects of the d, u quark mass difference, the Coulomb and magnetic moment interactions, and effective point interactions attributable to color-magnetic effects. The addition of the first meson loop corrections introduces new structure. We estimate the resulting low-energy, long-range contributions to the mass splittings by regularizing the loop integrals using connections to dynamical models for finite-size baryons. We find that the resulting contributions to the isospin breaking corrections are of the right general size, have the correct sign pattern, and agree with the experimental values within the margin of error.

  3. A novel tubulin-dependent protein kinase forming a paired helical filament epitope on tau.

    PubMed

    Ishiguro, K; Ihara, Y; Uchida, T; Imahori, K

    1988-09-01

    From rat brain microtubule proteins, we purified a protein kinase that phosphorylated tau, one of microtubule-associated proteins. The electrophoretic mobility of the phosphorylated tau on SDS-polyacrylamide gel decreased. The enzyme was not activated by cyclic nucleotides, calmodulin, or phospholipids, and was inhibited by the calcium ions. The kinase bound to tau. The phosphorylation of tau was stimulated by tubulin under the condition of microtubule formation. From these results we propose an idea that the phosphorylation could occur concomitantly with microtubule formation in the brain. Human tau phosphorylated by the kinase carried an epitope of the paired helical filaments that accumulate in the brain in Alzheimer's disease.

  4. Fock-space diagonalization of the state-dependent pairing Hamiltonian with the Woods-Saxon mean field

    NASA Astrophysics Data System (ADS)

    Molique, H.; Dudek, J.

    1997-10-01

    A particle-number conserving approach is presented to solve the nuclear mean-field plus pairing Hamiltonian problem with a realistic deformed Woods-Saxon single-particle potential. The method is designed for the state-dependent monopole pairing Hamiltonian H⁁pair=∑αβGαβc†αc†α ¯cβ ¯cβ with an arbitrary set of matrix elements Gαβ. Symmetries of the Hamiltonians on the many-body level are discussed using the language of P symmetry introduced earlier in the literature and are employed to diagonalize the problem; the only essential approximation used is a many-body (Fock-space) basis cutoff. An optimal basis construction is discussed and the stability of the final result with respect to the basis cutoff is illustrated in details. Extensions of the concept of P symmetry are introduced and their consequences for an optimal many-body basis cutoff construction are exploited. An algorithm is constructed allowing to solve the pairing problems in the many-body spaces corresponding to p~40 particles on n~80 levels and for several dozens of lowest lying states with precision ~(1-2) % within seconds of the CPU time on a CRAY computer. Among applications, the presence of the low-lying seniority s=0 solutions, that are usually poorly described in terms of the standard approximations (BCS, HFB), is discussed and demonstrated to play a role in the interpretation of the spectra of rotating nuclei.

  5. Accounting for dependence induced by weighted KNN imputation in paired samples, motivated by a colorectal cancer study.

    PubMed

    Suyundikov, Anvar; Stevens, John R; Corcoran, Christopher; Herrick, Jennifer; Wolff, Roger K; Slattery, Martha L

    2015-01-01

    Missing data can arise in bioinformatics applications for a variety of reasons, and imputation methods are frequently applied to such data. We are motivated by a colorectal cancer study where miRNA expression was measured in paired tumor-normal samples of hundreds of patients, but data for many normal samples were missing due to lack of tissue availability. We compare the precision and power performance of several imputation methods, and draw attention to the statistical dependence induced by K-Nearest Neighbors (KNN) imputation. This imputation-induced dependence has not previously been addressed in the literature. We demonstrate how to account for this dependence, and show through simulation how the choice to ignore or account for this dependence affects both power and type I error rate control.

  6. Old Neutron Stars as Probes of Isospin-Violating Dark Matter

    NASA Astrophysics Data System (ADS)

    Zheng, Hao; Sun, Kai-Jia; Chen, Lie-Wen

    2015-02-01

    Isospin-violating dark matter (IVDM), which couples differently with protons and neutrons, provides a promising mechanism to ameliorate the tension among recent direct detection experiments. Assuming dark matter (DM) is non-interacting bosonic asymmetric IVDM, we investigate how the existence of old neutron stars limits the DM-proton scattering cross-section {{σ }p}, especially the effects of the isospin-violating DM-nucleon interactions and the symmetry energy in the equation of state (EOS) of isospin asymmetric nuclear matter. Our calculations are completely based on general relativity and the structure of neutron stars is obtained by solving the Tolman-Oppenheimer-Volkoff equations with nuclear matter EOS constrained by terrestrial experiments. We find that, by considering the more realistic neutron star model rather than a simple uniform neutron sphere as usual, the {{σ }p} bounds from old neutron stars can be varied by more than an order of magnitude depending on the specific values of the DM neutron-to-proton coupling ratio {{f}n}/{{f}p}, and they can be further varied by more than a factor of two depending on the density dependence of the symmetry energy. In particular, we demonstrate that the observed nearby isolated old neutron star PSR B1257+12 can set a very strong limit on {{σ }p} for low-mass DM particles (≤slant 20 GeV) that reaches a sensitivity beyond the current best limits from direct detection experiments and disfavors the DM interpretation of previously reported positive experimental results, including the IVDM.

  7. How well do regional climate models simulate the spatial dependence of precipitation? An application of pair-copula constructions

    NASA Astrophysics Data System (ADS)

    Hobæk Haff, Ingrid; Frigessi, Arnoldo; Maraun, Douglas

    2015-04-01

    We investigate how well a suite of regional climate models (RCMs) from the ENSEMBLES project represents the residual spatial dependence of daily precipitation. The study area we consider is a 200 km × 200 km region in south central Norway, with RCMs driven by ERA-40 boundary conditions at a horizontal resolution of approximately 25 km × 25 km. We model the residual spatial dependence with pair-copula constructions, which allows us to assess both the overall and tail dependence in precipitation, including uncertainty estimates. The selected RCMs reproduce the overall dependence rather well, though the discrepancies compared to observations are substantial. All models overestimate the overall dependence in the west-east direction. They also overestimate the upper tail dependence in the north-south direction during winter, and in the west-east direction during summer, whereas they tend to underestimate this dependence in the north-south direction in summer. Moreover, many of the climate models do not simulate the small-scale dependence patterns caused by the pronounced orography well. However, the misrepresented residual spatial dependence does not seem to affect estimates of high quantiles of extreme precipitation aggregated over a few grid boxes. The underestimation of the area-aggregated extreme precipitation is due mainly to the well-known underestimation of the univariate margins for individual grid boxes, suggesting that the correction of RCM biases in precipitation might be feasible.

  8. Solvent dependence of structure, charge distribution, and absorption spectrum in the photochromic merocyanine-spiropyran pair.

    PubMed

    Murugan, N Arul; Chakrabarti, Swapan; Ågren, Hans

    2011-04-14

    We have studied the structures and absorption spectra of merocyanine, the photoresponsive isomer of the spiropyran (SP)-merocyanine (MC) pair, in chloroform and in water solvents using a combined hybrid QM/MM Car-Parrinello molecular dynamics (CP-QM/MM) and ZINDO approach. We report remarkable differences in the molecular structure and charge distribution of MC between the two solvents; the molecular structure of MC remains in neutral form in chloroform while it becomes charge-separated, zwitterionic, in water. The dipole moment of MC in water is about 50% larger than in chloroform, while the value for SP in water is in between, suggesting that the solvent is more influential than the conformation itself in deciding the dipole moment for the merocyanine-spiropyran pair. The calculations could reproduce the experimentally reported blue shift in the absorption spectra of MC when going from the nonpolar to the polar solvent, though the actual value of the absorption maximum is overestimated in chloroform solvent. We find that the CP-QM/MM approach is appropriate for structure modeling of solvatochromic and thermochromic molecules as this approach is able to capture the solvent and thermal-induced structural changes within the solute important for an accurate assessment of the properties.

  9. Studying temperature dependence of pairing gap parameter in a nucleus as a small superconducting system

    NASA Astrophysics Data System (ADS)

    Rahmatinejad, A.; Razavi, R.; Kakavand, T.

    2016-07-01

    In this paper, we have taken the effect of small size of nucleus and static fluctuations into account in the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity calculations of 45Ti nucleus. Thermodynamic quantities of 45Ti have been extracted within the BCS model with the inclusion of the average value of the pairing gap square, extracted by the modified Ginzburg-Landau (MGL) method for small systems. Calculated values of the excitation energy and entropy within the MGL+BCS method improve the extracted results within the usual BCS model and show a smooth behavior around the critical temperature with a very good agreement with the semi-empirical values. The result of using MGL+BCS method for the heat capacity of 45Ti is compared with the corresponding semi-empirical values and the calculated values within the BCS, static path approximation (SPA) and Modified Pairing gap BCS (MPBCS) which is a method that was proposed in our previous publications. Both MGL+BCS and MPBCS avoid the discontinuity of the heat capacity curve, which is observed in the usual BCS method, and lead to an S-shaped curve with a good agreement with the semi-empirical results.

  10. Solitons and Rabi Oscillations in a Time-Dependent BCS Pairing Problem

    NASA Astrophysics Data System (ADS)

    Barankov, Roman; Levitov, Leonid; Spivak, Boris

    2004-03-01

    Motivated by recent efforts [1] to achieve fermion pairing in cold alkali atomic gases near a Feshbach resonance, we consider fast, nonadiabatic formation of the Bardeen-Cooper-Schrieffer (BCS) state after the coupling constant is turned on. In the nonadiabatic regime [2], the system oscillates between the normal and BCS states until BCS state settles down on time scales controlled by the quasiparticle energy relaxation. We study the collective oscillation of the BCS-Bogoliubov amplitudes u_p, v_p, along with the pairing function Δ. We demonstrate that it is an integrable dynamical problem, and obtain a family of exact solutions in the form of single solitons and soliton trains, describing periodic oscillations. We interpret the collective oscillations as Bloch precession of Anderson pseudospins [3], where each soliton causes a pseudospin a full 2π Rabi rotation. Numerical simulations of the Bloch dynamics indicate the ubiquity of the solitons, and demonstrate their robustness with respect to noise and damping. [1] B. DeMarco, et al., Phys. Rev. Lett. 82, 4208 (1999); A. G. Truscott et al., Science 291, 2570 (2001) [2] R. A. Barankov, L. S. Levitov, B. Z. Spivak, arXiv:cond-mat/0312053 [3] P. W. Anderson, Phys. Rev. 112, 1900 (1958)

  11. SATELLITES IN MILKY-WAY-LIKE HOSTS: ENVIRONMENT DEPENDENCE AND CLOSE PAIRS

    SciTech Connect

    Gonzalez, Roberto E.; Kravtsov, Andrey V.; Gnedin, Nickolay Y.

    2013-06-20

    Previous studies showed that an estimate of the likelihood distribution of the Milky Way (MW) halo mass can be derived using the properties of the satellites similar to the Large and Small Magellanic Clouds (LMC and SMC). However, it would be straightforward to interpret such an estimate only if the properties of the Magellanic Clouds (MCs) are fairly typical and are not biased by the environment. In this study, we explore whether the environment of the MW affects the properties of the SMC and LMC such as their velocities. To test for the effect of the environment, we compare velocity distributions for MC-sized subhalos around MW hosts in a sample selected simply by mass and in the second sample of such halos selected with additional restrictions on the distance to the nearest cluster and the local galaxy density, designed to mimic the environment of the Local Group (LG). We find that satellites in halos in the LG-like environments do have somewhat larger velocities, as compared to the halos of similar mass in the sample without environmental constraints. For example, the fraction of subhalos matching the velocity of the LMC is 23% {+-} 2% larger in the LG-like environments. We derive the host halo likelihood distribution for the samples in the LG-like environment and in the control sample and find that the environment does not significantly affect the derived likelihood. We use the updated properties of the SMC and LMC to derive the constraint on the MW halo mass of log(M{sub 200}/M{sub Sun }) = 12.06{sub -0.19}{sup +0.31} (90% confidence interval). We also explore the incidence of close pairs with relative velocities and separations similar to those of the LMC and SMC and find that such pairs are quite rare among {Lambda}CDM halos. Only 2% of halos in the MW mass range have a relatively close pair ({Delta}r < 40 kpc and {Delta}s < 160 km s{sup -1}) of subhalos with circular velocities v{sub circ} > 50 km s{sup -1}. Pairs with masses and separations similar to

  12. Inversion of the Odd-Even Effect in Cold Fission from the Time-Dependent Pairing Equations

    NASA Astrophysics Data System (ADS)

    Mirea, M.

    2016-06-01

    A peculiar phenomenon was observed experimentally in cold fission: the odd partition yields are favored over the even ones for excitations energies of the fragments smaller than 4 MeV. In this contribution, a microscopic model is proposed for the explanation of this odd-even effect in cold fission. This explanation is based on a mixing configuration mechanism that is produced during the fission process. This configuration mixing mechanism is obtained dynamically by solving a the generalized system of time-dependent pairing equations, which include a pair-breaking effect. The time dependent equations of motion for the pair breaking effect were corroborated with a condition that fixes dynamically the number of particles on the two fission fragment. The single particle level scheme was calculated with the Woods-Saxon superasymmetric two center shell model, providing a continuous variation of the single particle energies and of the wave functions from one nucleus up to two separated fragments. A first rule can be extracted from this model. The even-even fission products cannot be obtained at zero excitation energies because of the existence of dynamical excitations produced in the avoided- level-crossing regions when the nuclear system deforms slowly.

  13. Covariant Density Functional Theory For Isospin Properties In Nuclei Far From Stability

    SciTech Connect

    Ring, P.; Lalazissis, G.A.; Niksic, T.; Vretenar, D.

    2005-04-05

    In recent years Covariant Density Functional Theory (CDFT) has been very successful for the description of ground state properties of nuclei all over the periodic table. Isospin properties of nuclei far from the valley of stability are used to improve the existing functionals. Modern parameter sets of the corresponding Lagrangian density are adjusted carefully to characteristic nuclei with explicit density dependence of the meson-nucleon couplings. They are tested in relativistic Hartree-Bogoliubov calculations of nuclear ground-states, in particular for the calculation of masses, and they are applied to the analysis of very recent data on super-heavy nuclei.

  14. Mechanistic insights into temperature-dependent regulation of the simple cyanobacterial hsp17 RNA thermometer at base-pair resolution

    PubMed Central

    Wagner, Dominic; Rinnenthal, Jörg; Narberhaus, Franz; Schwalbe, Harald

    2015-01-01

    The cyanobacterial hsp17 ribonucleicacid thermometer (RNAT) is one of the smallest naturally occurring RNAT. It forms a single hairpin with an internal 1×3-bulge separating the start codon in stem I from the ribosome binding site (RBS) in stem II. We investigated the temperature-dependent regulation of hsp17 by mapping individual base-pair stabilities from solvent exchange nuclear magnetic resonance (NMR) spectroscopy. The wild-type RNAT was found to be stabilized by two critical CG base pairs (C14-G27 and C13-G28). Replacing the internal 1×3 bulge by a stable CG base pair in hsp17rep significantly increased the global stability and unfolding cooperativity as evidenced by circular dichroism spectroscopy. From the NMR analysis, remote stabilization and non-nearest neighbour effects exist at the base-pair level, in particular for nucleotide G28 (five nucleotides apart from the side of mutation). Individual base-pair stabilities are coupled to the stability of the entire thermometer within both the natural and the stabilized RNATs by enthalpy–entropy compensation presumably mediated by the hydration shell. At the melting point the Gibbs energies of the individual nucleobases are equalized suggesting a consecutive zipper-type unfolding mechanism of the RBS leading to a dimmer-like function of hsp17 and switch-like regulation behaviour of hsp17rep. The data show how minor changes in the nucleotide sequence not only offset the melting temperature but also alter the mode of temperature sensing. The cyanobacterial thermosensor demonstrates the remarkable adjustment of natural RNATs to execute precise temperature control. PMID:25940621

  15. Mechanistic insights into temperature-dependent regulation of the simple cyanobacterial hsp17 RNA thermometer at base-pair resolution.

    PubMed

    Wagner, Dominic; Rinnenthal, Jörg; Narberhaus, Franz; Schwalbe, Harald

    2015-06-23

    The cyanobacterial hsp17 ribonucleicacid thermometer (RNAT) is one of the smallest naturally occurring RNAT. It forms a single hairpin with an internal 1×3-bulge separating the start codon in stem I from the ribosome binding site (RBS) in stem II. We investigated the temperature-dependent regulation of hsp17 by mapping individual base-pair stabilities from solvent exchange nuclear magnetic resonance (NMR) spectroscopy. The wild-type RNAT was found to be stabilized by two critical CG base pairs (C14-G27 and C13-G28). Replacing the internal 1×3 bulge by a stable CG base pair in hsp17(rep) significantly increased the global stability and unfolding cooperativity as evidenced by circular dichroism spectroscopy. From the NMR analysis, remote stabilization and non-nearest neighbour effects exist at the base-pair level, in particular for nucleotide G28 (five nucleotides apart from the side of mutation). Individual base-pair stabilities are coupled to the stability of the entire thermometer within both the natural and the stabilized RNATs by enthalpy-entropy compensation presumably mediated by the hydration shell. At the melting point the Gibbs energies of the individual nucleobases are equalized suggesting a consecutive zipper-type unfolding mechanism of the RBS leading to a dimmer-like function of hsp17 and switch-like regulation behaviour of hsp17(rep). The data show how minor changes in the nucleotide sequence not only offset the melting temperature but also alter the mode of temperature sensing. The cyanobacterial thermosensor demonstrates the remarkable adjustment of natural RNATs to execute precise temperature control.

  16. Anomalous Fermi-Surface Dependent Pairing in a Self-Doped High-Tc Superconductor

    SciTech Connect

    Chen, Y.

    2010-05-03

    We report the discovery of a self-doped multi-layer high T{sub c} superconductor Ba{sub 2}Ca{sub 3}Cu{sub 4}O{sub 8}F{sub 2} (F0234) which contains distinctly different superconducting gap magnitudes along its two Fermi surface(FS) sheets. While formal valence counting would imply this material to be an undoped insulator, it is a self-doped superconductor with a T{sub c} of 60K, possessing simultaneously both electron- and hole-doped FS sheets. Intriguingly, the FS sheet characterized by the much larger gap is the electron-doped one, which has a shape disfavoring two electronic features considered to be important for the pairing mechanism: the van Hove singularity and the antiferromagnetic ({pi}/a, {pi}/a) scattering.

  17. Anomalous Fermi-Surface Dependent Pairing in a Self-Doped High-T(c) Superconductor

    SciTech Connect

    Chen, Yulin; Iyo, Akira; Yang, Wanli; Zhou, Xingjiang; Lu, Donghui; Eisaki, Hiroshi; Devereaux, Thomas P.; Hussain, Zahid; Shen, Z.-X.; /Stanford U., Phys. Dept. /SLAC, SSRL /AIST, Tsukuba /Waterloo U. /LBNL, ALS

    2007-02-12

    We report the discovery of a self-doped multilayer high T{sub c} superconductor Ba{sub 2}Ca{sub 3}Cu{sub 4}O{sub 8}F{sub 2} (F0234) which contains distinctly different superconducting gap magnitudes along its two Fermi-surface sheets. While formal valence counting would imply this material to be an undoped insulator, it is a self-doped superconductor with a T{sub c} of 60 K, possessing simultaneously both electron- and hole-doped Fermi-surface sheets. Intriguingly, the Fermi-surface sheet characterized by the much larger gap is the electron-doped one, which has a shape disfavoring two electronic features considered to be important for the pairing mechanism: the van Hove singularity and the antiferromagnetic ({pi}/{alpha}, {pi}/{alpha}) scattering.

  18. Anomalous Fermi-Surface Dependent Pairing in a Self-Doped High-TcSuperconductor

    SciTech Connect

    Chen, Yulin; Iyo, Akira; Yang, Wanli; Zhou, Xingjiang; Lu,Donghui; Eisaki, Hiroshi; Devereaux, Thomas P.; Hussain, Zahid; Shen, Z.-X.

    2006-06-14

    We report the discovery of a self-doped multilayer high Tcsuperconductor Ba2Ca3Cu4O8F2 (F0234) which contains distinctly differentsuperconducting gap magnitudes along its two Fermi-surface sheets. Whileformal valence counting would imply this material to be an undopedinsulator, it is a self-doped superconductor with a Tc of 60 K,possessing simultaneously both electron- and hole-doped Fermi-surfacesheets. Intriguingly, the Fermi-surface sheet characterized by the muchlarger gap is the electron-doped one, which has a shape disfavoring twoelectronic features considered to be important for the pairing mechanism:the van Hove singularity and the antiferromagnetic (pi/a, pi/a)scattering.

  19. Orbital dependent pairing and the structure of the lightest isotopes of tin

    NASA Astrophysics Data System (ADS)

    Grzywacz, Robert; Darby, Iain; Batchelder, Jon; Bingham, Carrol; Cartegni, Lucia; Gross, Carl; Hjorth-Jensen, Morten; Joss, David; Liddick, Sean; Nazarewicz, Witold; Page, Robert; Papenbrock, Thomas; Rajabali, Mustafa; Rotureau, Jimmy; Rykaczewski, Krzysztof; Padgett, Stephen

    2010-11-01

    The island of alpha radioactivity near doubly magic ^100Sn provides an opportunity to study properties of tin isotopes using the extreme selectivity of charge particle decay spectroscopy. In an experiment, which used the most advanced experimental spectroscopic techniques the ^109Xe->^105Te->^101Sn alpha decay chain was studied at the Holifield Radioactive Ion Beam Facility at Oak Ridge. The majority of the alpha decay branching ratio of the ^105Te populates not the ground state but the first excited state in ^101Sn leading to the revision of the established order of single particle levels. The in-depth analysis of this result with the state-of-the-art shell model calculations lead to surprising conclusions on the role of the pairing correlations in the lightest tin isotopes.

  20. Doping-dependent critical Cooper-pair momentum pc in thin underdoped cuprate films

    NASA Astrophysics Data System (ADS)

    Lemberger, Thomas; Draskovic, John; Steers, Stanley; McJunkin, Thomas; Anmed, Adam

    2015-03-01

    We apply a low-field (<100 G) technique to measure the critical Cooper pair momentum pc in thin, underdoped films of Y0.7Ca0.3Ba2Cu3O7-δ and Bi2Sr2CaCu2O8+δ, where doping is effected by adjusting the oxygen stoichiometry through post-deposition annealing. The technique is based on applying a perpendicular magnetic field to the center of a superconducting film and measuring the field at which screening of the field catastrophically fails. Theory together with measurements on thin films of conventional superconductors Nb and MoGe argue for the validity of the technique. In underdoped cuprates, spectroscopy identifies multiple characteristic energy scales, e.g., the pseudogap and the ``nodal'' gap, neither of which is proportional to Tc. On general grounds, we expect to find that pc ~ 1/1ξ ξ is proportional to the characteristic superconducting energy scale. We observe that pc ~Tc as Tc decreases with underdoping, identifying kBTc as the characteristic energy. While this result is trivial in conventional superconductors whose spectroscopic gaps are proportional to Tc, it is significant in cuprates. Research supported by DOE-Basic Energy Sciences through Grant No. FG02-08ER46533.

  1. IrisCode decompression based on the dependence between its bit pairs.

    PubMed

    Kong, Adams Wai-Kin

    2012-03-01

    IrisCode is an iris recognition algorithm developed in 1993 and continuously improved by Daugman. Understanding IrisCode's properties is extremely important because over 60 million people have been mathematically enrolled by the algorithm. In this paper, IrisCode is proved to be a compression algorithm, which is to say its templates are compressed iris images. In our experiments, the compression ratio of these images is 1:655. An algorithm is designed to perform this decompression by exploiting a graph composed of the bit pairs in IrisCode, prior knowledge from iris image databases, and the theoretical results. To remove artifacts, two postprocessing techniques that carry out optimization in the Fourier domain are developed. Decompressed iris images obtained from two public iris image databases are evaluated by visual comparison, two objective image quality assessment metrics, and eight iris recognition methods. The experimental results show that the decompressed iris images retain iris texture that their quality is roughly equivalent to a JPEG quality factor of 10 and that the iris recognition methods can match the original images with the decompressed images. This paper also discusses the impacts of these theoretical and experimental findings on privacy and security.

  2. Equation of State for Isospin Asymmetric Nuclear Matter Using Lane Potential

    NASA Astrophysics Data System (ADS)

    Basu, D. N.; Chowdhury, P. Roy; Samanta, C.

    2006-10-01

    A mean field calculation for obtaining the equation of state (EOS) for symmetric nuclear matter from a density dependent M3Y interaction supplemented by a zero-range potential is described. The energy per nucleon is minimized to obtain the ground state of symmetric nuclear matter. The saturation energy per nucleon used for nuclear matter calculations is determined from the co-efficient of the volume term of Bethe--Weizsäcker mass formula which is evaluated by fitting the recent experimental and estimated atomic mass excesses from Audi--Wapstra--Thibault atomic mass table by minimizing the mean square deviation. The constants of density dependence of the effective interaction are obtained by reproducing the saturation energy per nucleon and the saturation density of spin and isospin symmetric cold infinite nuclear matter. The EOS of symmetric nuclear matter, thus obtained, provide reasonably good estimate of nuclear incompressibility. Once the constants of density dependence are determined, EOS for asymmetric nuclear matter is calculated by adding to the isoscalar part, the isovector component of the M3Y interaction that do not contribute to the EOS of symmetric nuclear matter. These EOS are then used to calculate the pressure, the energy density and the velocity of sound in symmetric as well as isospin asymmetric nuclear matter.

  3. O⁶-carboxymethylguanine in DNA forms a sequence context-dependent wobble base-pair structure with thymine.

    PubMed

    Zhang, Fang; Tsunoda, Masaru; Kikuchi, Yuji; Wilkinson, Oliver; Millington, Christopher L; Margison, Geoffrey P; Williams, David M; Takénaka, Akio

    2014-06-01

    N-Nitrosation of glycine and its derivatives generates potent alkylating agents that can lead to the formation of O(6)-carboxymethylguanine (O(6)-CMG) in DNA. O(6)-CMG has been identified in DNA derived from human colon tissue and its occurrence has been linked to diets high in red and processed meats, implying an association with the induction of colorectal cancer. By analogy to O(6)-methylguanine, O(6)-CMG is expected to be mutagenic, inducing G-to-A mutations that may be the molecular basis of increased cancer risk. Previously, the crystal structure of the DNA dodecamer d(CGCG[O(6)-CMG]ATTCGCG) has been reported, in which O(6)-CMG forms a Watson-Crick-type pair with thymine similar to the canonical A:T pair. In order to further investigate the versatility of O(6)-CMG in base-pair formation, the structure of the DNA dodecamer d(CGC[O(6)-CMG]AATTTGCG) containing O(6)-CMG at a different position has been determined by X-ray crystallography using four crystal forms obtained under conditions containing different solvent ions (Sr(2+), Ba(2+), Mg(2+), K(+) or Na(+)) with and without Hoechst 33258. The most striking finding is that the pairing modes of O(6)-CMG with T are quite different from those previously reported. In the present dodecamer, the T bases are displaced (wobbled) into the major groove to form a hydrogen bond between the thymine N(3) N-H and the carboxyl group of O(6)-CMG. In addition, a water molecule is bridged through two hydrogen bonds between the thymine O(2) atom and the 2-amino group of O(6)-CMG to stabilize the pairing. These interaction modes commonly occur in the four crystal forms, regardless of the differences in crystallization conditions. The previous and the present results show that O(6)-CMG can form a base pair with T in two alternative modes: the Watson-Crick type and a high-wobble type, the nature of which may depend on the DNA-sequence context.

  4. Neither time nor number of context-shock pairings affect long-term dependence of memory on hippocampus.

    PubMed

    Sparks, Fraser T; Spanswick, Simon C; Lehmann, Hugo; Sutherland, Robert J

    2013-11-01

    There are still basic uncertainties concerning the role of the hippocampus (HPC) in maintaining long-term context memories. All experiments examining the effects of extensive HPC damage on context memory for a single learning episode find that damage soon after learning results in robust retrograde amnesia. Some experiments find that if the learning-to-damage interval is extended, remote context memories are spared. In contrast, other experiments fail to find spared remote context memory. One possible explanation for inconsistency might be the potency of the context memory conditioning procedure, as the experiments showing spared remote memory used a greater number of context-shock pairings, likely creating a stronger context fear memory. We designed an experiment to directly test the question: does increasing the number of context-shock pairings result in sparing of remote context memory after HPC damage? Six independent groups of rats received either 3 or 12 context-shock pairings during a single conditioning session and then either received extensive HPC damage or Control surgery at 1-week, 2-months, or 4-months after conditioning. 10 days after surgery rats were tested for memory of the shock context. Consistent with all relevant studies, HPC damage at the shortest training-surgery interval produced robust retrograde amnesia for both 3- and 12-shock groups whereas the Control rats expressed significantly high levels of memory. At the longer training-surgery interval, HPC damage produced similarly robust retrograde amnesia in the rats in both the 3- and 12-shock groups. These results clearly demonstrate that increasing the number of context-shock pairings within a single learning session does not change the dependence of the memory on the HPC. Current evidence from our group on retrograde amnesia has now shown that partial damage, dorsal vs. ventral damage, discrete cue+context conditioning, time after training, and number of context-shock pairings do not affect

  5. No-core configuration-interaction model for the isospin- and angular-momentum-projected states

    NASA Astrophysics Data System (ADS)

    Satuła, W.; Båczyk, P.; Dobaczewski, J.; Konieczka, M.

    2016-08-01

    Background: Single-reference density functional theory is very successful in reproducing bulk nuclear properties like binding energies, radii, or quadrupole moments throughout the entire periodic table. Its extension to the multireference level allows for restoring symmetries and, in turn, for calculating transition rates. Purpose: We propose a new variant of the no-core-configuration-interaction (NCCI) model treating properly isospin and rotational symmetries. The model is applicable to any nucleus irrespective of its mass and neutron- and proton-number parity. It properly includes polarization effects caused by an interplay between the long- and short-range forces acting in the atomic nucleus. Methods: The method is based on solving the Hill-Wheeler-Griffin equation within a model space built of linearly dependent states having good angular momentum and properly treated isobaric spin. The states are generated by means of the isospin and angular-momentum projection applied to a set of low-lying (multi)particle-(multi)hole deformed Slater determinants calculated using the self-consistent Skyrme-Hartree-Fock approach. Results: The theory is applied to calculate energy spectra in N ≈Z nuclei that are relevant from the point of view of a study of superallowed Fermi β decays. In particular, a new set of the isospin-symmetry-breaking corrections to these decays is given. Conclusions: It is demonstrated that the NCCI model is capable of capturing main features of low-lying energy spectra in light and medium-mass nuclei using relatively small model space and without any local readjustment of its low-energy coupling constants. Its flexibility and a range of applicability makes it an interesting alternative to the conventional nuclear shell model.

  6. Spike Timing-Dependent Plasticity in the Long-Latency Stretch Reflex Following Paired Stimulation from a Wearable Electronic Device

    PubMed Central

    Foysal, K. M. Riashad; de Carvalho, Felipe

    2016-01-01

    The long-latency stretch reflex (LLSR) in human elbow muscles probably depends on multiple pathways; one possible contributor is the reticulospinal tract. Here we attempted to induce plastic changes in the LLSR by pairing noninvasive stimuli that are known to activate reticulospinal pathways, at timings predicted to cause spike timing-dependent plasticity in the brainstem. In healthy human subjects, reflex responses in flexor muscles were recorded following extension perturbations at the elbow. Subjects were then fitted with a portable device that delivered auditory click stimuli through an earpiece, and electrical stimuli around motor threshold to the biceps muscle via surface electrodes. We tested the following four paradigms: biceps stimulus 10 ms before click (Bi-10ms-C); click 25 ms before biceps (C-25ms-Bi); click alone (C only); and biceps alone (Bi only). The average stimulus rate was 0.67 Hz. Subjects left the laboratory wearing the device and performed normal daily activities. Approximately 7 h later, they returned, and stretch reflexes were remeasured. The LLSR was significantly enhanced in the biceps muscle (on average by 49%) after the Bi-10ms-C paradigm, but was suppressed for C-25ms-Bi (by 31%); it was unchanged for Bi only and C only. No paradigm induced LLSR changes in the unstimulated brachioradialis muscle. Although we cannot exclude contributions from spinal or cortical pathways, our results are consistent with spike timing-dependent plasticity in reticulospinal circuits, specific to the stimulated muscle. This is the first demonstration that the LLSR can be modified via paired-pulse methods, and may open up new possibilities in motor systems neuroscience and rehabilitation. SIGNIFICANCE STATEMENT This report is the first demonstration that the long-latency stretch reflex can be modified by repeated, precisely timed pairing of stimuli known to activate brainstem pathways. Furthermore, pairing was achieved with a portable electronic device

  7. Attention can increase or decrease spike count correlations between pairs of neurons depending on their role in a task

    PubMed Central

    Ruff, Douglas A.; Cohen, Marlene R.

    2015-01-01

    Visual attention enhances the responses of visual neurons that encode the attended location. Several recent studies showed that attention also decreases correlations between fluctuations in the responses of pairs of neurons (termed spike count correlation or rSC). The previous results are consistent with two hypotheses. Attention–related changes in rate and rSC might be linked (perhaps through a common mechanism), so that attention always decreases rSC. Alternately, attention might either increase or decrease rSC, possibly depending on the role the neurons play in the behavioral task. We recorded simultaneously from dozens of neurons in area V4 while monkeys performed a discrimination task. We found strong evidence in favor of the second hypothesis, showing that attention can flexibly increase or decrease correlations, depending on whether the neurons provide evidence for the same or opposite perceptual decisions. These results place important constraints on models of the neuronal mechanisms underlying cognitive factors. PMID:25306550

  8. Higgs Boson Pair Production in Gluon Fusion at Next-to-Leading Order with Full Top-Quark Mass Dependence.

    PubMed

    Borowka, S; Greiner, N; Heinrich, G; Jones, S P; Kerner, M; Schlenk, J; Schubert, U; Zirke, T

    2016-07-01

    We present the calculation of the cross section and invariant mass distribution for Higgs boson pair production in gluon fusion at next-to-leading order (NLO) in QCD. Top-quark masses are fully taken into account throughout the calculation. The virtual two-loop amplitude has been generated using an extension of the program GoSam supplemented with an interface to Reduze for the integral reduction. The occurring integrals have been calculated numerically using the program SecDec. Our results, including the full top-quark mass dependence for the first time, allow us to assess the validity of various approximations proposed in the literature, which we also recalculate. We find substantial deviations between the NLO result and the different approximations, which emphasizes the importance of including the full top-quark mass dependence at NLO.

  9. Temperature-dependence of phonons, solid state properties and liquid structure of noble metals: A comparison of pair-potentials

    NASA Astrophysics Data System (ADS)

    Januszko, A.; Bose, S. K.

    2015-02-01

    Two groups of effective pair-potentials are studied from the viewpoint of their suitability in being able to describe solid state properties and liquid state structure of noble metals Cu, Ag and Au over a wide temperature range. Since the effective pair-potentials are usually empirical in nature, with parameters obtained by fitting to some reference state properties, the objective of the present study is to determine whether a particular parametrization scheme has any definite advantage over another. We consider Morse potentials with parameters determined by equilibrium lattice parameter, cohesive/sublimation energies as well as bulk modulus values of the solid at low/room temperatures. The other group of potentials considered is Erkoç potentials, where the parameters were determined first by studying dimers and further modified using bulk stability condition and bulk cohesive energy values. The potentials were then used to study the energetics of microclusters containing 3-7 atoms. Quasiharmonic results for the solid obtained at different temperatures and Monte Carlo simulation for the liquid state show that phonon spectra, thermal expansion, temperature-dependence of specific heats and liquid structure are much better described by the latter group. The first group of potentials may have an advantage in reproducing the temperature-dependence of elastic constants and bulk moduli, since they are based on room temperature values of these properties, which show only weak temperature-dependence in general for all metals. It is argued that potentials based on parameters fitted to the properties at a single volume are less versatile in capturing the temperature-dependence of various thermodynamic properties over a wide range. Potentials capable of reproducing the energetics of clusters of different co-ordination numbers and volumes per atom may fare better in this regard.

  10. Nuclear response theory for spin-isospin excitations in a relativistic quasiparticle-phonon coupling framework

    NASA Astrophysics Data System (ADS)

    Robin, Caroline; Litvinova, Elena

    2016-07-01

    A new theoretical approach to spin-isospin excitations in open-shell nuclei is presented. The developed method is based on the relativistic meson-exchange nuclear Lagrangian of Quantum Hadrodynamics and extends the response theory for superfluid nuclear systems beyond relativistic quasiparticle random phase approximation in the proton-neutron channel (pn-RQRPA). The coupling between quasiparticle degrees of freedom and collective vibrations (phonons) introduces a time-dependent effective interaction, in addition to the exchange of pion and ρ -meson taken into account without retardation. The time-dependent contributions are treated in the resonant time-blocking approximation, in analogy to the previously developed relativistic quasiparticle time-blocking approximation (RQTBA) in the neutral (non-isospin-flip) channel. The new method is called proton-neutron RQTBA (pn-RQTBA) and is applied to the Gamow-Teller resonance in a chain of neutron-rich nickel isotopes 68-78Ni . A strong fragmentation of the resonance along with quenching of the strength, as compared to pn-RQRPA, is obtained. Based on the calculated strength distribution, beta-decay half-lives of the considered isotopes are computed and compared to pn-RQRPA half-lives and to experimental data. It is shown that a considerable improvement of the half-life description is obtained in pn-RQTBA because of the spreading effects, which bring the lifetimes to a very good quantitative agreement with data.

  11. Sequence dependence of base-pair stacking in right-handed DNA in solution: proton nuclear Overhauser effect NMR measurements.

    PubMed Central

    Patel, D J; Kozlowski, S A; Bhatt, R

    1983-01-01

    Single-crystal x-ray studies of d(C-G-C-G-A-A-T-T-C-G-C-G) exhibit base-pair propeller twisting [Dickerson, R. E. & Drew, H. R. (1981) J. Mol. Biol. 149, 761-786] that results in close contacts between adjacent purines in the minor groove in pyrimidine (3'-5')-purine steps and in the major groove in purine (3'-5')-pyrimidine steps [Calladine, C. R. (1982) J. Mol. Biol. 161, 343-362]. These observations require an approximately 3.4 A separation between the minor groove edges of adenosines on adjacent base pairs for the dA-dA step but predict a smaller separation for the dT-dA step and a larger separation for the dA-dT step in a D(A-T-T-A).d(T-A-A-T) fragment. We have confirmed these predictions from steady-state nuclear Overhauser effect measurements between assigned minor groove adenosine H-2 protons on adjacent base pairs in the proton NMR spectrum of the d(C1-G2-A3-T4-T5-A6-T6-A5-A4-T3-C2-G1) self-complementary dodecanucleotide duplex (henceforth called the Pribnow 12-mer) in solution. The measured cross-relaxation rates (product of steady-state nuclear Overhauser effect and selective spin- lattice relaxation rates) translate to interproton separations between adjacent adenosine H-2 protons of 4.22 A in the (dA3-dT4).(dA4-dT3) step, of 3.56 A in the (dT4-dT5).dA5-dA4) step, and of 3.17 A in the (dT5-dA6).(dT6-dA5) step for the Pribnow 12-mer duplex with an isotropic rotational correlation time of 9 ns at 5 degrees C. These proton NMR results show that the sequence-dependent base-pair stacking resulting from base-pair propeller twisting of defined handedness for right-handed DNA in the solid state is maintained in aqueous solution. PMID:6575384

  12. Evidence for a Mass Dependent Forward-Backward Asymmetry in Top Quark Pair Production

    SciTech Connect

    Aaltonen, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Apresyan, A.; Arisawa, T.; /Waseda U. /Dubna, JINR

    2011-01-01

    We present a new measurement of the inclusive forward-backward t{bar t} production asymmetry and its rapidity and mass dependence. The measurements are performed with data corresponding to an integrated luminosity of 5.3 fb{sup -1} of p{bar p} collisions at {radical}s = 1.96 TeV, recorded with the CDF II Detector at the Fermilab Tevatron. Significant inclusive asymmetries are observed in both the laboratory frame and the t{bar t} rest frame, and in both cases are found to be consistent with CP conservation under interchange of t and {bar t}. In the t{bar t} rest frame, the asymmetry is observed to increase with the t{bar t} rapidity difference, {Delta}y, and with the invariant mass M{sub t{bar t}} of the t{bar t} system. Fully corrected parton-level asymmetries are derived in two regions of each variable, and the asymmetry is found to be most significant at large {Delta}y and M{sub t{bar t}}. For M{sub t{bar t}} {ge} 450 GeV/c{sup 2}, the parton-level asymmetry in the t{bar t} rest frame is A{sup t{bar t}} = 0.475 {+-} 0.114 compared to a next-to-leading order QCD prediction of 0.088 {+-} 0.013.

  13. Spike Timing-Dependent Plasticity in the Long-Latency Stretch Reflex Following Paired Stimulation from a Wearable Electronic Device.

    PubMed

    Foysal, K M Riashad; de Carvalho, Felipe; Baker, Stuart N

    2016-10-19

    The long-latency stretch reflex (LLSR) in human elbow muscles probably depends on multiple pathways; one possible contributor is the reticulospinal tract. Here we attempted to induce plastic changes in the LLSR by pairing noninvasive stimuli that are known to activate reticulospinal pathways, at timings predicted to cause spike timing-dependent plasticity in the brainstem. In healthy human subjects, reflex responses in flexor muscles were recorded following extension perturbations at the elbow. Subjects were then fitted with a portable device that delivered auditory click stimuli through an earpiece, and electrical stimuli around motor threshold to the biceps muscle via surface electrodes. We tested the following four paradigms: biceps stimulus 10 ms before click (Bi-10ms-C); click 25 ms before biceps (C-25ms-Bi); click alone (C only); and biceps alone (Bi only). The average stimulus rate was 0.67 Hz. Subjects left the laboratory wearing the device and performed normal daily activities. Approximately 7 h later, they returned, and stretch reflexes were remeasured. The LLSR was significantly enhanced in the biceps muscle (on average by 49%) after the Bi-10ms-C paradigm, but was suppressed for C-25ms-Bi (by 31%); it was unchanged for Bi only and C only. No paradigm induced LLSR changes in the unstimulated brachioradialis muscle. Although we cannot exclude contributions from spinal or cortical pathways, our results are consistent with spike timing-dependent plasticity in reticulospinal circuits, specific to the stimulated muscle. This is the first demonstration that the LLSR can be modified via paired-pulse methods, and may open up new possibilities in motor systems neuroscience and rehabilitation.

  14. Differential Stabilities and Sequence-Dependent Base Pair Opening Dynamics of Watson–Crick Base Pairs with 5-Hydroxymethylcytosine, 5-Formylcytosine, or 5-Carboxylcytosine

    PubMed Central

    2016-01-01

    5-Hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) form during active demethylation of 5-methylcytosine (5mC) and are implicated in epigenetic regulation of the genome. They are differentially processed by thymine DNA glycosylase (TDG), an enzyme involved in active demethylation of 5mC. Three modified Dickerson–Drew dodecamer (DDD) sequences, amenable to crystallographic and spectroscopic analyses and containing the 5′-CG-3′ sequence associated with genomic cytosine methylation, containing 5hmC, 5fC, or 5caC placed site-specifically into the 5′-T8X9G10-3′ sequence of the DDD, were compared. The presence of 5caC at the X9 base increased the stability of the DDD, whereas 5hmC or 5fC did not. Both 5hmC and 5fC increased imino proton exchange rates and calculated rate constants for base pair opening at the neighboring base pair A5:T8, whereas 5caC did not. At the oxidized base pair G4:X9, 5fC exhibited an increase in the imino proton exchange rate and the calculated kop. In all cases, minimal effects to imino proton exchange rates occurred at the neighboring base pair C3:G10. No evidence was observed for imino tautomerization, accompanied by wobble base pairing, for 5hmC, 5fC, or 5caC when positioned at base pair G4:X9; each favored Watson–Crick base pairing. However, both 5fC and 5caC exhibited intranucleobase hydrogen bonding between their formyl or carboxyl oxygens, respectively, and the adjacent cytosine N4 exocyclic amines. The lesion-specific differences observed in the DDD may be implicated in recognition of 5hmC, 5fC, or 5caC in DNA by TDG. However, they do not correlate with differential excision of 5hmC, 5fC, or 5caC by TDG, which may be mediated by differences in transition states of the enzyme-bound complexes. PMID:25632825

  15. Differential stabilities and sequence-dependent base pair opening dynamics of Watson–Crick base pairs with 5-hydroxymethylcytosine, 5-formylcytosine, or 5-carboxylcytosine

    DOE PAGES

    Szulik, Marta W.; Pallan, Pradeep S.; Nocek, Boguslaw; ...

    2015-01-29

    5-Hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) form during active demethylation of 5-methylcytosine (5mC) and are implicated in epigenetic regulation of the genome. They are differentially processed by thymine DNA glycosylase (TDG), an enzyme involved in active demethylation of 5mC. Three modified Dickerson–Drew dodecamer (DDD) sequences, amenable to crystallographic and spectroscopic analyses and containing the 5'-CG-3' sequence associated with genomic cytosine methylation, containing 5hmC, 5fC, or 5caC placed site-specifically into the 5'-T8X9G10-3' sequence of the DDD, were compared. The presence of 5caC at the X9 base increased the stability of the DDD, whereas 5hmC or 5fC did not. Both 5hmCmore » and 5fC increased imino proton exchange rates and calculated rate constants for base pair opening at the neighboring base pair A5:T8, whereas 5caC did not. At the oxidized base pair G4:X9, 5fC exhibited an increase in the imino proton exchange rate and the calculated kop. In all cases, minimal effects to imino proton exchange rates occurred at the neighboring base pair C3:G10. No evidence was observed for imino tautomerization, accompanied by wobble base pairing, for 5hmC, 5fC, or 5caC when positioned at base pair G4:X9; each favored Watson–Crick base pairing. However, both 5fC and 5caC exhibited intranucleobase hydrogen bonding between their formyl or carboxyl oxygens, respectively, and the adjacent cytosine N4 exocyclic amines. The lesion-specific differences observed in the DDD may be implicated in recognition of 5hmC, 5fC, or 5caC in DNA by TDG. Furthermore, they do not correlate with differential excision of 5hmC, 5fC, or 5caC by TDG, which may be mediated by differences in transition states of the enzyme-bound complexes.« less

  16. Differential stabilities and sequence-dependent base pair opening dynamics of Watson-Crick base pairs with 5-hydroxymethylcytosine, 5-formylcytosine, or 5-carboxylcytosine.

    PubMed

    Szulik, Marta W; Pallan, Pradeep S; Nocek, Boguslaw; Voehler, Markus; Banerjee, Surajit; Brooks, Sonja; Joachimiak, Andrzej; Egli, Martin; Eichman, Brandt F; Stone, Michael P

    2015-02-10

    5-Hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) form during active demethylation of 5-methylcytosine (5mC) and are implicated in epigenetic regulation of the genome. They are differentially processed by thymine DNA glycosylase (TDG), an enzyme involved in active demethylation of 5mC. Three modified Dickerson-Drew dodecamer (DDD) sequences, amenable to crystallographic and spectroscopic analyses and containing the 5'-CG-3' sequence associated with genomic cytosine methylation, containing 5hmC, 5fC, or 5caC placed site-specifically into the 5'-T(8)X(9)G(10)-3' sequence of the DDD, were compared. The presence of 5caC at the X(9) base increased the stability of the DDD, whereas 5hmC or 5fC did not. Both 5hmC and 5fC increased imino proton exchange rates and calculated rate constants for base pair opening at the neighboring base pair A(5):T(8), whereas 5caC did not. At the oxidized base pair G(4):X(9), 5fC exhibited an increase in the imino proton exchange rate and the calculated kop. In all cases, minimal effects to imino proton exchange rates occurred at the neighboring base pair C(3):G(10). No evidence was observed for imino tautomerization, accompanied by wobble base pairing, for 5hmC, 5fC, or 5caC when positioned at base pair G(4):X(9); each favored Watson-Crick base pairing. However, both 5fC and 5caC exhibited intranucleobase hydrogen bonding between their formyl or carboxyl oxygens, respectively, and the adjacent cytosine N(4) exocyclic amines. The lesion-specific differences observed in the DDD may be implicated in recognition of 5hmC, 5fC, or 5caC in DNA by TDG. However, they do not correlate with differential excision of 5hmC, 5fC, or 5caC by TDG, which may be mediated by differences in transition states of the enzyme-bound complexes.

  17. Dopamine and memory: modulation of the persistence of memory for novel hippocampal NMDA receptor-dependent paired associates.

    PubMed

    Bethus, Ingrid; Tse, Dorothy; Morris, Richard G M

    2010-02-03

    Three experiments investigated the role in memory processing of dopamine (DA) afferents to the hippocampus (HPC) that arise from the ventral tegmental area. One hypothesis is that D(1)/D(5) receptor activation in HPC is necessary for the encoding of novel, episodic-like information; the other is that DA activation ensures the greater temporal persistence of transient hippocampal memory traces. Rats (n = 35) were trained, in separate experiments using an episodic-like memory task, to learn six paired associates (PAs) in an "event arena" involving a repeated association between specific flavors of food and locations in space. After 6 weeks of training, rats had learned a "schema" such that two new paired associates could be acquired in a single trial in one session (episodic-like memory). We show that encoding of novel PAs is sensitive to intrahippocampal microinfusion of the NMDA antagonist d-AP-5. Experiment 1 established that intrahippocampal infusion of the D(1)/D(5) dopaminergic antagonist SCH23390 [R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride] before encoding of new PAs caused impaired memory 24 h later but that SCH23390 had no effect on the later memory of previously established PAs. Experiment 2 established that SCH23390 modulated the persistence of new memories over time (30 min vs 24 h) rather than affecting initial encoding. Experiment 3 revealed that the impact of SCH23390 was not mediated by state dependence nor had an effect on memory retrieval. These findings support the second hypothesis and establish that persistent, long-term memory of rapid, hippocampal-mediated acquisition of new paired associates requires activation of D(1)/D(5) receptors in HPC at or around the time of encoding.

  18. Time-dependent absorption of very high-energy gamma-rays from the Galactic center by pair-production

    SciTech Connect

    Abramowski, Attila; Horns, Dieter; Ripken, Joachim; Gillessen, Stefan; Eldik, Christopher van

    2008-12-24

    Very high energy (VHE) gamma-rays have been detected from the direction of the Galactic center. The H.E.S.S. Cherenkov telescopes have located this {gamma}-ray source with a preliminary position uncertainty of 8.5'' per axis (6'' statistic+6'' sytematic per axis). Within the uncertainty region several possible counterpart candidates exist: the Super Massive Black Hole Sgr A*, the Pulsar Wind Nebula candidate G359.95-0.04, the Low Mass X-Ray Binary-system J174540.0-290031, the stellar cluster IRS 13, as well as self-annihilating dark matter. It is experimentally very challenging to further improve the positional accuracy in this energy range and therefore, it may not be possible to clearly associate one of the counterpart candidates with the VHE-source. Here, we present a new method to investigate a possible link of the VHE-source with the near environment of Sgr A*(within approximately 1000 Schwarzschild radii). This method uses the time- and energy-dependent effect of absorption of VHE {gamma}-rays by pair-production (in the following named pair-eclipse) with low-energy photons of stars closely orbiting the SMBH Sgr A*.

  19. Further study of α-decay in heavy isotopic chains considering the isospin effect

    NASA Astrophysics Data System (ADS)

    Qian, Yibin; Ren, Zhongzhou

    2016-06-01

    We have enhanced the deformed density-dependent cluster model to improve the quantitative description of α-decay in heavy even-even nuclei with 84≤slant Z≤slant 92. To preliminarily introduce the isospin effect into α-decay, the neutron excess term is added in the establishment of the crucial α-core potential. The proton and neutron density distributions are respectively considered in different parameterized formulas by combining them with available experimental data of both the charge radius and the neutron skin thickness. The calculated α-decay half-lives are found to be in somewhat better agreement with the experimental data as compared with our previous results. Strikingly, it is noted that the relatively large deviation between theory and experiment, along the tail of the isotopic chain, is obviously reduced and smoother. This may indicate the necessity of considering the isospin effect in α-decay, especially for extremely neutron-rich nuclei, which appears to be essential for the extended study of heaviest nuclei as well.

  20. Isospin quartic term in the kinetic energy of neutron-rich nucleonic matter

    NASA Astrophysics Data System (ADS)

    Cai, Bao-Jun; Li, Bao-An

    2015-07-01

    The energy of a free gas of neutrons and protons is well known to be approximately isospin parabolic with a negligibly small quartic term of only 0.45 MeV at the saturation density of nuclear matter ρ0=0.16 fm-3 . Using an isospin-dependent single-nucleon momentum distribution including a high (low) momentum tail (depletion) with its shape parameters constrained by recent high-energy electron scattering and medium-energy nuclear photodisintegration experiments as well as the state-of-the-art calculations of the deuteron wave function and the equation of state of pure neutron matter near the unitary limit within several modern microscopic many-body theories, we show for the first time that the kinetic energy of interacting nucleons in neutron-rich nucleonic matter has a significant quartic term of 7.18 ±2.52 MeV. Such a large quartic term has broad ramifications in determining the equation of state of neutron-rich nucleonic matter using observables of nuclear reactions and neutron stars.

  1. Isospin-violating dark matter in the light of recent data

    NASA Astrophysics Data System (ADS)

    Yaguna, Carlos E.

    2017-03-01

    In scenarios where dark matter interacts differently with protons and neutrons (isospin-violating dark matter), the interpretation of the experimental limits on the dark matter spin-independent cross section may be significantly modified. On the one hand, the direct detection constraints are shifted depending on the target nucleus, possibly changing the hierarchy among different experiments. On the other hand, the relative strength between the bounds from neutrino detectors and those from direct detection experiments is altered, allowing the former to be more competitive. In this paper, the status of isospin-violating dark matter is assessed in the light of recent data, and the prospects for its detection in the near future are analyzed. We find, for example, that there are regions in the parameter space where IceCube currently provides the most stringent limits on the spin-independent cross section, or others where the expected sensitivity of DEAP-3600 is well above the LUX exclusion limit. Our results highlight the complementarity among different targets in direct detection experiments, and between direct detection and neutrino searches in the quest for a dark matter signal.

  2. Isospin effects on neutrons as a probe of nuclear dissipation

    SciTech Connect

    Ye, W.

    2009-03-15

    Based on a dynamical Langevin equation coupled with a statistical decay model, we calculate the excess of the precision neutron multiplicity of the heavy nuclei {sup 240}Cf, {sup 246}Cf, {sup 252}Cf, and {sup 240}U over that predicted by the standard statistical model as a function of the postsaddle dissipation strength. We find that with increasing isospin of the system, the sensitivity of the excess to the dissipation strength decreases substantially. Moreover, for {sup 240}U, this excess is no longer sensitive to the nuclear dissipation. These results suggest that, on the experimental side, to accurately obtain information of the postsaddle dissipation strength by measuring the neutron multiplicity evaporated during the fission process of heavy nuclei, it is best to populate those compound systems with low isospin.

  3. Frequency-dependent changes in the paired-pulse index in the hippocampus of the freely moving adult male rat.

    PubMed

    Yorns, W R; Blaise, J H; Bronzino, J D

    2004-03-01

    The paired-pulse index (PPI) has been widely used as a measure of modulation of cellular excitability in the hippocampal trisynaptic circuit. This paper presents a quantification of the changes in this measure of neuronal modulation as a result of the application of pulse trains having six different train frequencies (0.1, 1, 5, 8, 15, and 30 Hz) to one of the major efferent pathways to the dentate gyrus, the medial perforant path (MPP). Our findings indicate that the modulation of the first leg of the hippocampal trisynaptic circuit is dependent on the frequency of the "burst train" applied to the perforant pathway. This methodological finding is of importance to all investigators studying hippocampal plasticity via LTP or LTD approaches. The different synaptic mechanisms implicated in being responsible for the changes in the PPI are also discussed.

  4. Electron hole pair mediated vibrational excitation in CO scattering from Au(111): incidence energy and surface temperature dependence.

    PubMed

    Shirhatti, Pranav R; Werdecker, Jörn; Golibrzuch, Kai; Wodtke, Alec M; Bartels, Christof

    2014-09-28

    We investigated the translational incidence energy (Ei) and surface temperature (Ts) dependence of CO vibrational excitation upon scattering from a clean Au(111) surface. We report absolute v = 0 → 1 excitation probabilities for Ei between 0.16 and 0.84 eV and Ts between 473 and 973 K. This is now only the second collision system where such comprehensive measurements are available - the first is NO on Au(111). For CO on Au(111), vibrational excitation occurs via direct inelastic scattering through electron hole pair mediated energy transfer - it is enhanced by incidence translation and the electronically non-adiabatic coupling is about 5 times weaker than in NO scattering from Au(111). Vibrational excitation via the trapping desorption channel dominates at Ei = 0.16 eV and quickly disappears at higher Ei.

  5. NLO predictions for Higgs boson pair production with full top quark mass dependence matched to parton showers

    NASA Astrophysics Data System (ADS)

    Heinrich, G.; Jones, S. P.; Kerner, M.; Luisoni, G.; Vryonidou, E.

    2017-08-01

    We present the first combination of NLO QCD matrix elements for di-Higgs production, retaining the full top quark mass dependence, with a parton shower. Results are provided within both the POWHEG-BOX and MadGraph5_aMC@NLO Monte Carlo frameworks. We assess in detail the theoretical uncertainties and provide differential results. We find that, as expected, the shower effects are relatively large for observables like the transverse momentum of the Higgs boson pair, which are sensitive to extra radiation. However, these shower effects are still much smaller than the differences between the Born-improved HEFT approximation and the full NLO calculation in the tails of the distributions.

  6. A two-step Notch-dependant mechanism controls the selection of the polar cell pair in Drosophila oogenesis.

    PubMed

    Vachias, Caroline; Couderc, Jean-Louis; Grammont, Muriel

    2010-08-01

    Organisers control the patterning and growth of many tissues and organs. Correctly regulating the size of these organisers is crucial for proper differentiation to occur. Organiser activity in the epithelium of the Drosophila ovarian follicle resides in a pair of cells called polar cells. It is known that these two cells are selected from a cluster of equivalent cells. However, the mechanisms responsible for this selection are still unclear. Here, we present evidence that the selection of the two cells is not random but, by contrast, depends on an atypical two-step Notch-dependent mechanism. We show that this sequential process begins when one cell becomes refractory to Notch activation and is selected as the initial polar cell. This cell then produces a Delta signal that induces a high level of Notch activation in one other cell within the cluster. This Notch activity prevents elimination by apoptosis, allowing its selection as the second polar cell. Therefore, the mechanism used to select precisely two cells from among an equivalence group involves an inductive Delta signal that originates from one cell, itself unable to respond to Notch activation, and results in one other cell being selected to adopt the same fate. Given its properties, this two-step Notch-dependent mechanism represents a novel aspect of Notch action.

  7. Isospin-violating dark matter from a double portal

    SciTech Connect

    Bélanger, Geneviève; Goudelis, Andreas; Park, Jong-Chul; Pukhov, Alexander E-mail: andreas.goudelis@lapth.cnrs.fr E-mail: pukhov@lapth.cnrs.fr

    2014-02-01

    We study a simple model that can give rise to isospin-violating interactions of Dirac fermion asymmetric dark matter to protons and neutrons through the interference of a scalar and U(1)' gauge boson contribution. The model can yield a large suppression of the elastic scattering cross section off Xenon relative to Silicon thus reconciling CDMS-Si and LUX results while being compatible with LHC findings on the 126 GeV Higgs, electroweak precision tests and flavour constraints.

  8. Isospin effects in elastic proton-nucleus scattering

    NASA Astrophysics Data System (ADS)

    Chinn, C. R.; Elster, Ch.; Thaler, R. M.

    1993-05-01

    Isovector effects in proton-nucleus elastic scattering at medium energies are studied. The accuracy of the Kerman-McManus-Thaler isospin averaging procedure is found to be very good for nuclei larger than 4He. Studies of 40Ca and 208Pb suggest that the surface neutrons may be pulled in somewhat relative to the protons, although uncertainties in the detailed applicability of the present truncation of the multiple scattering treatment render firm conclusions premature.

  9. Isospin diffusion and equilibration for Sn+Sn collisions at E/A=35 MeV

    SciTech Connect

    Sun, Z. Y.; Tsang, M. B.; Lynch, W. G.; Danielewicz, P.; Verde, G.; Cardella, G.; De Filippo, E.; Pagano, A.; Papa, M.; Pirrone, S.; Amorini, F.; Porto, F.; Rizzo, F.; Russotto, P.; Andronenko, L.; Andronenko, M.; Chatterje, M.; Galichet, E.; Maiolino, C.; Santonocito, D.

    2010-11-15

    Equilibration and equilibration rates have been measured by colliding Sn nuclei with different isospin asymmetries at beam energies of E/A=35 MeV. Using the yields of mirror nuclei of {sup 7}Li and {sup 7}Be, we have studied the diffusion of isospin asymmetry by combining data from asymmetric {sup 112}Sn+{sup 124}Sn and {sup 124}Sn+{sup 112}Sn collisions with those from symmetric {sup 112}Sn+{sup 112}Sn and {sup 124}Sn+{sup 124}Sn collisions. We use these measurements to probe isospin equilibration in central collisions where nucleon-nucleon collisions are strongly blocked by the Pauli exclusion principle. The results are consistent with transport theoretical calculations that predict a degree of transparency in these collisions, but inconsistent with the emission of intermediate mass fragments by a single chemically equilibrated source. Comparisons with quantum molecular dynamics calculations are consistent with results obtained at higher incident energies that provide constraints on the density dependence of the symmetry energy.

  10. Deconfinement transition at high isospin chemical potential and low temperature

    NASA Astrophysics Data System (ADS)

    Cohen, Thomas D.; Sen, Srimoyee

    2015-10-01

    We consider QCD with two degenerate flavors of light quarks (up and down) at asymptotically high isospin (μI) with zero baryon chemical potential (μB) and calculate for the first time a quantitative expression for the critical temperature of the deconfinement transition in this regime. At high isospin chemical potential and sufficiently low temperatures this theory becomes equivalent to a pure Yang-Mills theory and accordingly has a first order deconfinement phase transition. Although this was conjectured in a seminal paper by Son and Stephanov in the year 2001, the critical temperature of this deconfinement phase transition was not computed. This paper computes the energy scale associated with this transition as a function of the chemical potential μI by relating the parameters of the equivalent Yang-Mills theory to those of the underlying theory. We also relate the equation of state in one strongly interacting regime of QCD namely at finite isospin density to that in pure Yang-Mills, with the latter being amenable to straightforward numerical calculation. Our results for the critical temperature of deconfinement transition can be compared with future lattice calculations.

  11. Paired-Pulse Inhibition in the Auditory Cortex in Parkinson's Disease and Its Dependence on Clinical Characteristics of the Patients

    PubMed Central

    Lukhanina, Elena; Berezetskaya, Natalia; Karaban, Irina

    2011-01-01

    We aimed to determine the value of the paired-pulse inhibition (PPI) in the auditory cortex in patients with Parkinson's disease (PD) and analyze its dependence on clinical characteristics of the patients. The central (Cz) auditory evoked potentials were recorded in 58 patients with PD and 22 age-matched healthy subjects. PPI of the N1/P2 component was significantly (P < .001) reduced for interstimulus intervals 500, 700, and 900 ms in patients with PD compared to control subjects. The value of PPI correlated negatively with the age of the PD patients (P < .05), age of disease onset (P < .05), body bradykinesia score (P < .01), and positively with the Mini Mental State Examination (MMSE) cognitive score (P < .01). Negative correlation between value of PPI and the age of the healthy subjects (P < .05) was also observed. Thus, results show that cortical inhibitory processes are deficient in PD patients and that the brain's ability to carry out the postexcitatory inhibition is age-dependent. PMID:21052541

  12. Matching base-pair number dependence of the kinetics of DNA-DNA hybridization studied by surface plasmon fluorescence spectroscopy.

    PubMed

    Tawa, Keiko; Yao, Danfeng; Knoll, Wolfgang

    2005-08-15

    Two single-stranded DNA oligonucleotides consisting of complementary base-pairs can form double strands. This phenomenon is well studied in solutions, however, in order to clarify the physical mechanism of the hybridization occurring at a solid/solution interface, we studied the kinetics by surface plasmon fluorescence spectroscopy (SPFS): one single-stranded oligo-DNA (probe-DNA) was immobilized on the substrate, the other one (target-DNA) labelled with a fluorescent probe was added to the flow cell. After hybridization, the chromophores could be excited by the surface plasmon mode and their fluorescence detected with high sensitivity. The dependence of the k(on) and k(off) rate constants on the length of the hybridizing oligonucleotides was investigated by using a MM0 series (no mismatch) and the kinetics was found to be well described by a Langmuir adsorption model. From these measurements we found that also in the case of surface hybridization the affinity of the duplexes decreases as the number of matching base-pairs decreases from 15 to 10. In order to show that SPFS is the powerful technique with high sensitivity, the hybridization process for mixed target-oligos was measured by SPFS and analyzed by an expanded Langmuir model in which two components of target-oligo can bind to probe-DNA at the sensor surface competitively. Two sets of the k(on) and k(off) obtained from the experiment are successfully consistent with the k(on) and k(off) obtained from experiments for single (pure) target-DNA.

  13. Spin-orbit coupling and paramagnetic relaxation in micellized triplet radical pairs. Determination of relaxation parameters from magnetic field dependences of the decay kinetics

    NASA Astrophysics Data System (ADS)

    Levin, P. P.; Kuzmin, V. A.

    1990-01-01

    The geminate recombination kinetics of the radical pairs produced by quenching of triplet benzophenone or 4-bromobenzophenone by 4-phenylphenol and 4-phenylaniline in aqueous micellar solutions of sodium dodecyl sulfate has been examined using the laser flash technique. Application of an external magnetic field results in the retardation of geminate recombination up to 20 times. The magnetic field dependences are considered in terms of a simple kinetic scheme, which includes the singlet-triplet evolution in the separated states of a pair due to hyperfine coupling and relaxation mechanisms as well as intersystem recombination process due to the spin-orbit coupling in the contact states of a pair.

  14. Field-induced dissociation of electron-hole pairs in organic light emitting diodes monitored directly from bias-dependent magnetic resonance techniques

    NASA Astrophysics Data System (ADS)

    Kanemoto, Katsuichi; Hatanaka, Shuto; Kimura, Keigo; Ueda, Yujiro; Matsuoka, Hidenobu

    2017-07-01

    The conversion processes of electron-hole (e-h) pairs into carriers and excitons in organic light emitting diodes (OLEDs) have been explored by simultaneous photoluminescence- and photocurrent-detected magnetic resonance (PLDMR and PCDMR) techniques as a function of bias. Both PLDMR and PCDMR signals are shown to disappear or extremely reduce with increasing the field strength, whereas photoluminescence intensity is unchanged and photocurrent rather increases. This is clear evidence that e-h pairs are dissociated by the field. A simple model for pair dissociation is proposed and explains the field dependence of PLDMR intensity.

  15. Surface spectral function of momentum-dependent pairing potentials in a topological insulator: application to CuxBi2Se3.

    PubMed

    Chen, Liang; Wan, Shaolong

    2013-05-29

    We propose three possible momentum-dependent pairing potentials as candidates for topological superconductors (for example CuxBi2Se3), and calculate the surface spectral function and surface density of states with these pairing potentials. We find that the first two can give the same spectral functions as the fully gapped and node-contacted pairing potentials given by Fu and Berg (2010 Phys. Rev. Lett. 105 097001), and that the third one can obtain a topological non-trivial case in which there exists a flat Andreev bound state and which preserves the threefold rotation symmetry. We hope our proposals and results will be assessed by future experiment.

  16. Observation of Transverse Spin-Dependent Azimuthal Correlations of Charged Pion Pairs in p↑+p at √{s }=200 GeV

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandin, A. V.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cervantes, M. C.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, S.; Gupta, A.; Guryn, W.; Hamad, A.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, X.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jiang, K.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Koetke, D. D.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, C.; Li, W.; Li, Z. M.; Li, Y.; Li, X.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, Y. G.; Ma, G. L.; Ma, L.; Ma, R.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; Meehan, K.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V.; Olvitt, D.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Peterson, A.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, M. K.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B.; Sun, X.; Sun, Z.; Sun, X. M.; Sun, Y.; Surrow, B.; Svirida, N.; Szelezniak, M. A.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Tawfik, A. N.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, F.; Wang, Y.; Wang, H.; Wang, J. S.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z. G.; Xie, W.; Xin, K.; Xu, Q. H.; Xu, Z.; Xu, H.; Xu, N.; Xu, Y. F.; Yang, Q.; Yang, Y.; Yang, S.; Yang, Y.; Yang, C.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, X. P.; Zhang, J.; Zhang, Y.; Zhang, J.; Zhang, J. B.; Zhang, S.; Zhang, Z.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2015-12-01

    We report the observation of transverse polarization-dependent azimuthal correlations in charged pion pair production with the STAR experiment in p↑+p collisions at RHIC. These correlations directly probe quark transversity distributions. We measure signals in excess of 5 standard deviations at high transverse momenta, at high pseudorapidities η >0.5 , and for pair masses around the mass of the ρ meson. This is the first direct transversity measurement in p +p collisions.

  17. Observation of Transverse Spin-Dependent Azimuthal Correlations of Charged Pion Pairs in p^{↑}+p at sqrt[s]=200  GeV.

    PubMed

    Adamczyk, L; Adkins, J K; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Banerjee, A; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Bouchet, J; Brandin, A V; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Calderón de la Barca Sánchez, M; Campbell, J M; Cebra, D; Cervantes, M C; Chakaberia, I; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, J H; Chen, X; Cheng, J; Cherney, M; Christie, W; Contin, G; Crawford, H J; Das, S; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; di Ruzza, B; Didenko, L; Dilks, C; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Eppley, G; Esha, R; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Federic, P; Fedorisin, J; Feng, Z; Filip, P; Fisyak, Y; Flores, C E; Fulek, L; Gagliardi, C A; Garand, D; Geurts, F; Gibson, A; Girard, M; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, S; Gupta, A; Guryn, W; Hamad, A; Hamed, A; Haque, R; Harris, J W; He, L; Heppelmann, S; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, X; Huang, H Z; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Jiang, K; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Khan, Z H; Kikola, D P; Kisel, I; Kisiel, A; Kochenda, L; Koetke, D D; Kollegger, T; Kosarzewski, L K; Kraishan, A F; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; Li, X; Li, C; Li, W; Li, Z M; Li, Y; Li, X; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, Y G; Ma, G L; Ma, L; Ma, R; Magdy, N; Majka, R; Manion, A; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; Meehan, K; Minaev, N G; Mioduszewski, S; Mohanty, B; Mondal, M M; Morozov, D; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nigmatkulov, G; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Okorokov, V; Olvitt, D; Page, B S; Pak, R; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlik, B; Pei, H; Perkins, C; Peterson, A; Pile, P; Planinic, M; Pluta, J; Poljak, N; Poniatowska, K; Porter, J; Posik, M; Poskanzer, A M; Pruthi, N K; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Roy, A; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, M K; Sharma, B; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Sikora, R; Simko, M; Skoby, M J; Smirnov, D; Smirnov, N; Song, L; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stepanov, M; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Summa, B; Sun, X; Sun, Z; Sun, X M; Sun, Y; Surrow, B; Svirida, N; Szelezniak, M A; Tang, A H; Tang, Z; Tarnowsky, T; Tawfik, A N; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Tripathy, S K; Trzeciak, B A; Tsai, O D; Ullrich, T; Underwood, D G; Upsal, I; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Varma, R; Vasiliev, A N; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Voloshin, S A; Vossen, A; Wang, G; Wang, Y; Wang, F; Wang, Y; Wang, H; Wang, J S; Webb, J C; Webb, G; Wen, L; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z G; Xie, W; Xin, K; Xu, Q H; Xu, Z; Xu, H; Xu, N; Xu, Y F; Yang, Q; Yang, Y; Yang, S; Yang, Y; Yang, C; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Yu, N; Zbroszczyk, H; Zha, W; Zhang, X P; Zhang, J; Zhang, Y; Zhang, J; Zhang, J B; Zhang, S; Zhang, Z; Zhao, J; Zhong, C; Zhou, L; Zhu, X; Zoulkarneeva, Y; Zyzak, M

    2015-12-11

    We report the observation of transverse polarization-dependent azimuthal correlations in charged pion pair production with the STAR experiment in p^{↑}+p collisions at RHIC. These correlations directly probe quark transversity distributions. We measure signals in excess of 5 standard deviations at high transverse momenta, at high pseudorapidities η>0.5, and for pair masses around the mass of the ρ meson. This is the first direct transversity measurement in p+p collisions.

  18. Simple concentration-dependent pair interaction model for large-scale simulations of Fe-Cr alloys

    SciTech Connect

    Levesque, Maximilien; Martinez, Enrique; Fu, Chu-Chun; Nastar, Maylise; Soisson, Frederic

    2011-11-01

    This work is motivated by the need for large-scale simulations to extract physical information on the iron-chromium system that is a binary model alloy for ferritic steels used or proposed in many nuclear applications. From first-principles calculations and the experimental critical temperature we build a new energetic rigid lattice model based on pair interactions with concentration and temperature dependence. Density functional theory calculations in both norm-conserving and projector augmented-wave approaches have been performed. A thorough comparison of these two different ab initio techniques leads to a robust parametrization of the Fe-Cr Hamiltonian. Mean-field approximations and Monte Carlo calculations are then used to account for temperature effects. The predictions of the model are in agreement with the most recent phase diagram at all temperatures and compositions. The solubility of Cr in Fe below 700 K remains in the range of about 6 to 12%. It reproduces the transition between the ordering and demixing tendency and the spinodal decomposition limits are also in agreement with the values given in the literature.

  19. Effects of pairing correlations on the neutron skin thickness and the symmetry energy

    NASA Astrophysics Data System (ADS)

    Choi, Soonchul; Zhang, Ying; Cheoun, Myung-Ki; Kwon, Youngshin; Kim, Kyungsik; Kim, Hungchong

    2017-08-01

    We investigated effects of pairing correlations on the neutron skin thickness and the symmetry energy of finite nuclei. In this calculation we used Hartree-Fock-Bogoliubov method with Skyrme forces and effective pairing interactions. The results have been compared with available experimental data, Hartree-Fock results as well as the predictions by droplet model. Finally, our discussion was extended to study of the pairing interaction in nuclear matter. Roles of isospin T =0 pairing in the nuclear matter were also discussed.

  20. Isospin symmetry breaking in 93Tc and statistical properties

    NASA Astrophysics Data System (ADS)

    Åberg, S.; Heine, A.; Mitchell, G. E.; Richter, A.

    2004-09-01

    We present a statistical analysis of proton resonances in the compound nucleus 93Tc in terms of random matrix theory (RMT). The fluctuation properties of energy levels and reduced widths from data measured by Bilpuch et al. [Phys. Rev. C 9 (1974) 1589] are studied. We conclude that one T> = 9 / 2 isobaric analog state does not affect the spectral correlations of a sequence of 124 T< = 7 / 2 states, and that the observed deviations from RMT are due to unobserved levels. For the reduced widths, however, certain deviations from Porter-Thomas statistics are attributed to the effect of isospin mixing.

  1. Unified Understanding of Spin Isospin Response Functions of Nuclei

    NASA Astrophysics Data System (ADS)

    Ichimura, M.; Wakasa, T.; Sakai, H.

    2005-08-01

    Recent (p, n) and (n, p) experiments at intermediate energies provided reliable data on nuclear spin-isospin responses. We investigated them with emphasis on the contrasting phenomena of the quenching of the total strength of the Gamow-Teller transition, and the enhancement of the pionic response in the quasielasic region, in a unified theoretical framework, that is the continuum RPA with the π + ρ + g' model, incorporated with DWIA and two-step calculations. We extracted a common set of the Landau-Migdal parameters, g'NN=0.6-0.7 and g'NΔ=0.2-0.4 for both low and high momentum transfers.

  2. Isospin odd @pK scattering length [rapid communication

    NASA Astrophysics Data System (ADS)

    Schweizer, J.

    2005-10-01

    We make use of the chiral two-loop representation of the πK scattering amplitude [J. Bijnens, P. Dhonte, P. Talavera, JHEP 0405 (2004) 036] to investigate the isospin odd scattering length at next-to-next-to-leading order in the SU (3) expansion. This scattering length is protected against contributions of ms in the chiral expansion, in the sense that the corrections to the current algebra result are of order Mπ2. In view of the planned lifetime measurement on πK atoms at CERN it is important to understand the size of these corrections.

  3. Close, stable homolog juxtaposition during meiosis in budding yeast is dependent on meiotic recombination, occurs independently of synapsis, and is distinct from DSB-independent pairing contacts

    PubMed Central

    Peoples, Tamara L.; Dean, Eric; Gonzalez, Oscar; Lambourne, Lindsey; Burgess, Sean M.

    2002-01-01

    A site-specific recombination system that probes the relative probabilities that pairs of chromosomal loci collide with one another in living cells of budding yeast was used to explore the relative contributions of pairing, recombination, synaptonemal complex formation, and telomere clustering to the close juxtaposition of homologous chromosome pairs during meiosis. The level of Cre-mediated recombination between a pair of loxP sites located at an allelic position on homologous chromosomes was 13-fold greater than that between a pair of loxP sites located at ectopic positions on nonhomologous chromosomes. Mutations affecting meiotic recombination initiation and the processing of DNA double-strand breaks (DSBs) into single-end invasions (SEIs) reduced the levels of allelic Cre-mediated recombination levels by three- to sixfold. The severity of Cre/loxP phenotypes is presented in contrast to relatively weak DSB-independent pairing defects as assayed using fluorescence in situ hybridization for these mutants. Mutations affecting synaptonemal complex (SC) formation or crossover control gave wild-type levels of allelic Cre-mediated recombination. A delay in attaining maximum levels of allelic Cre-mediated recombination was observed for a mutant defective in telomere clustering. None of the mutants affected ectopic levels of recombination. These data suggest that stable, close homolog juxtaposition in yeast is distinct from pre-DSB pairing interactions, requires both DSB and SEI formation, but does not depend on crossovers or SC. PMID:12101126

  4. Isospin constraints from/on B to ππ

    NASA Astrophysics Data System (ADS)

    Pivk, M.; Le Diberder, F. R.

    2005-02-01

    The Standard Model constraints on α which can be derived from the Brightarrowππ decays are revisited in some depth. As experimental inputs, the B^0rightarrowπ^ + π^-, B^ + rightarrowπ^ + π^0 decays complemented by the B^0rightarrowπ^0π^0 decays, the CP parameters S_{ππ} and C_{ππ}, and/or the value of α as determined by the global CKM fit are used. The constraints discussed here are model independent in the sense that they rely only on Isospin symmetry, following the Gronau-London proposal. A new bound on mathcal{B}^{00} and the function C_{00}(mathcal{B}^{00}) are introduced. While another bound applied to BABAR results is shown to imply that \\cos(2α_eff) is negative. The Grossman-Quinn bound is rediscussed. A close form expression is given for α as a function of the measurements. Various scenarios for the future of the isospin analysis are explored. To probe the Standard Model the (mathcal{B}^{00},C_{00}) plane is introduced.

  5. Excited states of DNA base pairs using long-range corrected time-dependent density functional theory.

    PubMed

    Jensen, Lasse; Govind, Niranjan

    2009-09-10

    In this work, we present a study of the excitation energies of adenine, cytosine, guanine, thymine, and the adenine-thymine (AT) and guanine-cytosine (GC) base pairs using long-range corrected (LC) density functional theory. We compare three recent LC functionals, BNL, CAM-B3LYP, and LC-PBE0, with B3LYP and coupled cluster results from the literature. We find that the best overall performance is for the BNL functional based on LDA. However, in order to achieve this good agreement, a smaller attenuation parameter is needed, which leads to nonoptimum performance for ground-state properties. B3LYP, on the other hand, severely underestimates the charge-transfer (CT) transitions in the base pairs. Surprisingly, we also find that the CAM-B3LYP functional also underestimates the CT excitation energy for the GC base pair but correctly describes the AT base pair. This illustrates the importance of retaining the full long-range exact exchange even at distances as short as that of the DNA base pairs. The worst overall performance is obtained with the LC-PBE0 functional, which overestimates the excitations for the individual bases as well as the base pairs. It is therefore crucial to strike a good balance between the amount of local and long-range exact exchange. Thus, this work highlights the difficulties in obtained LC functionals, which provides a good description of both ground- and excited-state properties.

  6. Excited States of DNA Base Pairs Using Long-Range Corrected Time-Dependent Density Functional Theory

    SciTech Connect

    Jensen, Lasse; Govind, Niranjan

    2009-09-10

    In this work we present a study of the excitation energies of adenine, cytosine, guanine, thymine and the adenine-thymine (AT) and guanine-cytosine (GC) base pairs using long-range corrected (LC) density functional theory. We compare three recent LC-functionals, BNL, CAM-B3LYP and LC-PBE0 with B3LYP and coupled cluster results from the literature. We find that the best overall performance is for the BNL functional based on LDA. However, in order to achieve this good agreement a smaller attenuation parameter was needed which leads to non-optimum performance for ground state properties. B3LYP, on the other hand, severely underestimates the charge transfer (CT) transitions in the base pairs. Surprisingly we also find that the CAM-B3LYP functional also underestimates the CT excitation energy for the GC base pair, but correctly describes the AT base pair. This illustrates the importance of retaining the full long-range exact exchange even at distances as short as that of the DNA base pairs. The worst overall performance was obtained with the LC-PBE0 functional which overestimates the excitations for the individual bases as well as the base pairs. It is therefore crucial to strike a good balance between the amount of local and long-range exact exchange.

  7. Excited States of DNA Base Pairs Using Long-Range Corrected Time-Dependent Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Jensen, Lasse; Govind, Niranjan

    2009-08-01

    In this work, we present a study of the excitation energies of adenine, cytosine, guanine, thymine, and the adenine-thymine (AT) and guanine-cytosine (GC) base pairs using long-range corrected (LC) density functional theory. We compare three recent LC functionals, BNL, CAM-B3LYP, and LC-PBE0, with B3LYP and coupled cluster results from the literature. We find that the best overall performance is for the BNL functional based on LDA. However, in order to achieve this good agreement, a smaller attenuation parameter is needed, which leads to nonoptimum performance for ground-state properties. B3LYP, on the other hand, severely underestimates the charge-transfer (CT) transitions in the base pairs. Surprisingly, we also find that the CAM-B3LYP functional also underestimates the CT excitation energy for the GC base pair but correctly describes the AT base pair. This illustrates the importance of retaining the full long-range exact exchange even at distances as short as that of the DNA base pairs. The worst overall performance is obtained with the LC-PBE0 functional, which overestimates the excitations for the individual bases as well as the base pairs. It is therefore crucial to strike a good balance between the amount of local and long-range exact exchange. Thus, this work highlights the difficulties in obtained LC functionals, which provides a good description of both ground- and excited-state properties.

  8. HTP-1-dependent constraints coordinate homolog pairing and synapsis and promote chiasma formation during C. elegans meiosis.

    PubMed

    Martinez-Perez, Enrique; Villeneuve, Anne M

    2005-11-15

    Synaptonemal complex (SC) assembly must occur between correctly paired homologous chromosomes to promote formation of chiasmata. Here, we identify the Caenorhabditis elegans HORMA-domain protein HTP-1 as a key player in coordinating establishment of homolog pairing and synapsis in C. elegans and provide evidence that checkpoint-like mechanisms couple these early meiotic prophase events. htp-1 mutants are defective in the establishment of pairing, but in contrast with the pairing-defective chk-2 mutant, SC assembly is not inhibited and generalized nonhomologous synapsis occurs. Extensive nonhomologous synapsis in htp-1; chk-2 double mutants indicates that HTP-1 is required for the inhibition of SC assembly observed in chk-2 gonads. htp-1 mutants show a decreased abundance of nuclei exhibiting a polarized organization that normally accompanies establishment of pairing; analysis of htp-1; syp-2 double mutants suggests that HTP-1 is needed to prevent premature exit from this polarized nuclear organization and that this exit stops homology search. Further, based on experiments monitoring the formation of recombination intermediates and crossover products, we suggest that htp-1 mutants are defective in preventing the use of sister chromatids as recombination partners. We propose a model in which HTP-1 functions to establish or maintain multiple constraints that operate to ensure coordination of events leading to chiasma formation.

  9. HTP-1-dependent constraints coordinate homolog pairing and synapsis and promote chiasma formation during C. elegans meiosis

    PubMed Central

    Martinez-Perez, Enrique; Villeneuve, Anne M.

    2005-01-01

    Synaptonemal complex (SC) assembly must occur between correctly paired homologous chromosomes to promote formation of chiasmata. Here, we identify the Caenorhabditis elegans HORMA-domain protein HTP-1 as a key player in coordinating establishment of homolog pairing and synapsis in C. elegans and provide evidence that checkpoint-like mechanisms couple these early meiotic prophase events. htp-1 mutants are defective in the establishment of pairing, but in contrast with the pairing-defective chk-2 mutant, SC assembly is not inhibited and generalized nonhomologous synapsis occurs. Extensive nonhomologous synapsis in htp-1; chk-2 double mutants indicates that HTP-1 is required for the inhibition of SC assembly observed in chk-2 gonads. htp-1 mutants show a decreased abundance of nuclei exhibiting a polarized organization that normally accompanies establishment of pairing; analysis of htp-1; syp-2 double mutants suggests that HTP-1 is needed to prevent premature exit from this polarized nuclear organization and that this exit stops homology search. Further, based on experiments monitoring the formation of recombination intermediates and crossover products, we suggest that htp-1 mutants are defective in preventing the use of sister chromatids as recombination partners. We propose a model in which HTP-1 functions to establish or maintain multiple constraints that operate to ensure coordination of events leading to chiasma formation. PMID:16291646

  10. Enhancement of chiral symmetry breaking from the pion condensation at finite isospin chemical potential in a holographic QCD model

    NASA Astrophysics Data System (ADS)

    Nishihara, Hiroki; Harada, Masayasu

    2014-04-01

    We study the pion condensation at the finite isospin chemical potential using a holographic QCD model. By solving the equations of motion for the pion fields together with those for the isosinglet scalar and iso-triplet vector meson fields, we show that the phase transition from the normal phase to the pion condensation phase is second order with the mean-field exponent, and that the critical value of the isospin chemical potential μI is equal to the pion mass, consistently with the result obtained by the chiral effective Lagrangian at O(p2). For a higher chemical potential, we find a deviation, which can be understood as a higher order effect in the chiral effective Lagrangian. We investigate the μI dependence of the chiral condensate defined by σ ˜≡√⟨σ⟩2+⟨πa⟩2 . We find that σ ˜ is almost constant in the small μI region, while it grows with μI in the large μI region. This implies that the strength of the chiral symmetry breaking is not changed for small μI: The isospin chemical potential plays a role to rotate the "vacuum angle" of the chiral circle tan-1√⟨πa⟩2/⟨σ⟩2 with keeping the "radius" σ ˜ unchanged for small μI. For the large μI region, on the other hand, the chiral symmetry breaking is enhanced by the existence of μI.

  11. Study of isospin nonconservation in the framework of spectral distribution theory

    NASA Astrophysics Data System (ADS)

    Kar, Kamales; Sarkar, Sukhendusekhar

    2015-05-01

    The observed isospin-symmetry breaking in light nuclei are caused not only by the Coulomb interaction but also by the isovector one- and two-body plus isotensor two- body nuclear interactions. Spectral distribution theory, which treats nuclear spectroscopy and other structural properties in a statistical framework, has been applied mostly to isospin conserving Hamiltonians. In this paper we extend that to include the nuclear interactions non-scalar in isospin and work out examples in the sd shell to calculate the linear term in the isobaric mass-multiplet equation originating from these non-isoscalar parts.

  12. Peculiarities in the concentration dependence of the superconducting transition temperature in the bipolaron theory of Cooper pairs

    NASA Astrophysics Data System (ADS)

    Lakhno, Victor

    2017-04-01

    It is shown that the bipolaron theory of Cooper pairs suggests that there is a possibility for a superconducting phase to exist at low and high levels of doping and be absent at the intermediate level of doping. The results obtained possibly to imply the universal character of 1/8 anomaly.

  13. Trojan Penguins and Isospin Violation in Hadronic B Decays

    SciTech Connect

    Grossman, yuval

    1999-09-10

    Some rare hadronic decays of B mesons, such as B {yields} {pi}K, are sensitive to isospin-violating contributions from physics beyond the Standard Model. Although commonly referred to as electroweak penguins, such contributions can often arise through tree-level exchanges of heavy particles, or through strong-interaction loop diagrams. The Wilson coefficients of the corresponding electroweak penguin operators are calculated in a large class of New Physics models, and in many cases are found not to be suppressed with respect to the QCD penguin coefficients. Several tests for these effects using observables in B{sup {+-}} {yields} {pi}K decays are discussed, and nontrivial bounds on the couplings of the various New Physics models are derived.

  14. Isospin-mixing correction for fp-shell Fermi transitions

    SciTech Connect

    Ormand, W.E.; Brown, B.A.

    1995-10-01

    Isospin-mixing corrections for superallowed Fermi transitions in fp-shell nuclei are computed within the framework of the shelf model. The study includes a re-evaluation of three nuclei that are part of the set of nine accurately measured transitions and five new cases that are expected to be measured in the future at radioactive-beam facilities. For the heavier fp-shell nuclei, both the configuration mixing term, {delta}{sub IM}, and the radial-overlap mis-match correction, {delta}{sub RO}, are much larger than in the case of the previous nine transitions. For the nine accurately measured transitions, excellent agreement with the CVC hypothesis is found. but the CKM matrix is found to violate the unitarity condition at the level of 3 {sigma}.

  15. Isospin splittings in baryons with two heavy quarks

    NASA Astrophysics Data System (ADS)

    Karliner, Marek; Rosner, Jonathan L.

    2017-08-01

    Isospin splittings in baryons with two heavy quarks and a u or d quark are calculated using simple methods proposed previously by the authors. The results are M (Ξcc ++)-M (Ξcc +)=1.41 ±0.1 2+0.76 MeV , M (Ξbb 0)-M (Ξbb -)=-4.78 ±0.0 6+0.03 MeV , and M (Ξbc +)-M (Ξbc 0)=-1.69 ±0.0 7+0.39 MeV , where the statistical errors reflect uncertainties in input mass splittings, and the systematic errors are associated with the choice of constituent-quark masses.

  16. QCD Phase Diagram at Finite Baryon and Isospin Chemical Potentials

    SciTech Connect

    Sasaki, T.; Sakai, Y.; Yahiro, M.; Kouno, H.

    2011-10-21

    The phase structure of two-flavor QCD is explored for finite temperature T and finite baryon- and isospin-chemical potentials, {mu}{sub B} and {mu}{sub I}, by using the Polyakov-loop extended Nambu-Jona-Lasinio (PNJL) model. The PNJL model with the scalar-type eight-quark interaction can reproduce lattice QCD data in the {mu}{sub I}-T plane at {mu}{sub B} = 0. In the {mu}{sub I}-{mu}{sub B}-T space, the critical endpoint of the chiral phase transition in the {mu}{sub B}-T plane at {mu}{sub I} = 0 moves to the tricritical point of the pion-superfluidity phase transition in the {mu}{sub I}-T plane at {mu}{sub B} = 0 as {mu}{sub I} increases.

  17. Investigations of QCD at non-zero isospin density

    SciTech Connect

    Zhifeng Shi, William Detmold

    2011-12-01

    We investigate the QCD phase diagram as a function of isospin chemical potential at a fixed temperature by directly putting large numbers of {pi}{sup +}s into the system. Correlation functions of N {pi}{sup +}s systems involves N!N! contractions, and become extremely expensive when N is large. In order to alleviate this problem, a recursion relation of correlation functions has been derived in Ref. [1] that substantially reduces the number of independent contractions needed and makes the study of many pions systems be possible. In this proceeding this method is investigated numerically. We have also constructed a new method that is even more efficient, enabling us to study systems of up to 72 {pi}{sup +}s.

  18. Effective contact pairing forces from realistic calculations in infinite homogeneous nuclear matter

    SciTech Connect

    Chamel, N.

    2010-07-15

    Nonempirical effective contact pairing forces to be used in self-consistent mean-field calculations are presented. These pairing forces, constructed so as to reproduce exactly any given microscopic pairing gaps in infinite homogeneous nuclear matter for any isospin asymmetry, are given in analytical form. As a by-product, this work provides an analytical solution of the BCS gap equations which could be applied to describe various many-body systems.

  19. Post-accelerator issues at the IsoSpin Laboratory

    SciTech Connect

    Chattopadhyay, S.; Nitschke, J.M.

    1994-05-01

    The workshop on ``Post-Accelerator Issues at the Isospin Laboratory`` was held at the Lawrence Berkeley Laboratory from October 27--29, 1993. It was sponsored by the Center for Beam Physics in the Accelerator and Fusion Research Division and the ISL Studies Group in the Nuclear Science Division. About forty scientists from around the world participated vigorously in this two and a half day workshop, (c.f. Agenda, Appendix D). Following various invited review talks from leading practitioners in the field on the first day, the workshop focussed around two working groups: (1) the Ion Source and Separators working group and (2) the Radio Frequency Quadrupoles and Linacs working group. The workshop closed with the two working groups summarizing and outlining the tasks for the future. This report documents the proceedings of the workshop and includes the invited review talks, the two summary talks from the working groups and individual contributions from the participants. It is a complete assemblage of state-of-the-art thinking on ion sources, low-{beta}, low(q/A) accelerating structures, e.g. linacs and RFQS, isobar separators, phase-space matching, cyclotrons, etc., as relevant to radioactive beam facilities and the IsoSpin Laboratory. We regret to say that while the fascinating topic of superconducting low-velocity accelerator structure was covered by Dr. K. Shepard during the workshop, we can only reproduce the copies of the transparencies of his talk in the Appendix, since no written manuscript was available at the time of publication of this report. The individual report have been catologed separately elsewhere.

  20. A novel concentration dependent amino acid ion pair strategy to mediate drug permeation using indomethacin as a model insoluble drug.

    PubMed

    ElShaer, Amr; Hanson, Peter; Mohammed, Afzal R

    2014-10-01

    Assessment of oral drug bioavailability is an important parameter for new chemical entities (NCEs) in drug development cycle. After evaluating the pharmacological response of these new molecules, the following critical stage is to investigate their in vitro permeability. Despite the great success achieved by prodrugs, covalent linking the drug molecule with a hydrophobic moiety might result in a new entity that might be toxic or ineffective. Therefore, an alternative that would improve the drug uptake without affecting the efficacy of the drug molecule would be advantageous. The aim of the current study is to investigate the effect of ion-pairing on the permeability profile of a model drug: indomethacin (IND) to understand the mechanism behind the permeability improvement across Caco-2 monolayers. Arginine and lysine formed ion-pairs with IND at various molar ratios 1:1, 1:2, 1:4 and 1:8 as reflected by the double reciprocal graphs. The partitioning capacities of the IND were evaluated using octanol/water partitioning studies and the apparent permeabilities (Papp) were measured across Caco-2 monolayers for the different formulations. Partitioning studies reflected the high hydrophobicity of IND (LogP=3) which dropped upon increasing the concentrations of arginine/lysine in the ion pairs. Nevertheless, the prepared ion pairs improved IND permeability especially after 60 min of the start of the experiment. Coupling partitioning and permeability results suggest a decrease in the passive transcellular uptake due to the drop in IND portioning capacities and a possible involvement of active carriers. Future work will investigate which transport gene might be involved in the absorption of the ion paired formulations using molecular biology technologies.

  1. Nonperturbative charming penguin contributions to isospin asymmetries in radiative B decays

    SciTech Connect

    Kim, Chul; Mehen, Thomas; Leibovich, Adam K.

    2008-09-01

    Recent experimental data on the radiative decays B{yields}V{gamma}, where V is a light vector meson, find small isospin violation in B{yields}K*{gamma} while isospin asymmetries in B{yields}{rho}{gamma} are of order 20%, with large uncertainties. Using soft-collinear effective theory, we calculate isospin asymmetries in these radiative B decays up to O(1/m{sub b}), also including O(v{alpha}{sub s}) contributions from nonperturbative charming penguins (NPCP). In the absence of NPCP contributions, the theoretical predictions for the asymmetries are a few percent or less. Including the NPCP can significantly increase the isospin asymmetries for both B{yields}V{gamma} modes. We also consider the effect of the NPCP on the branching ratio and CP asymmetries in B{sup {+-}}{yields}V{sup {+-}}{gamma}.

  2. Gamow-Teller strength and the spin-isospin coupling constants of the Skyrme energy functional

    NASA Astrophysics Data System (ADS)

    Bender, M.; Dobaczewski, J.; Engel, J.; Nazarewicz, W.

    2002-05-01

    We investigate the effects of the spin-isospin channel of the Skyrme energy functional on predictions for Gamow-Teller distributions and superdeformed rotational bands. We use the generalized Skyrme interaction SkO' to describe even-even ground states and then analyze the effects of time-odd spin-isospin couplings, first term by term and then together via linear regression. Some terms affect the strength and energy of the Gamow-Teller resonance in finite nuclei without altering the Landau parameter g'0 that to leading order determines spin-isospin properties of nuclear matter. Though the existing data are not sufficient to uniquely determine all the spin-isospin couplings, we are able to fit them locally. Altering these coupling constants does not change the quality with which the Skyrme functional describes rotational bands.

  3. Goodness of isospin in neutron rich systems from the fission fragment distribution

    NASA Astrophysics Data System (ADS)

    Garg, Swati; Jain, Ashok Kumar

    2017-09-01

    We present the results of our calculations for the relative yields of neutron-rich fission fragments emitted in 208Pb (18O, fission) reaction by using the concept of the conservation of isospin and compare with the experimental data. We take into account a range of isospin values allowed by the isospin algebra and assume that the fission fragments are formed in isobaric analog states. We also take into account the neutron multiplicity data for various neutron-emission channels in each partition, and use them to obtain the weight factors in calculating the yields. We then calculate the relative yields of the fission fragments. Our calculated results are able to reproduce the experimental trends reasonably well. This is the first direct evidence of the isospin conservation in neutron-rich systems and may prove a very useful tool in their studies.

  4. Landau parameters of nuclear matter in the spin and spin-isospin channels

    NASA Astrophysics Data System (ADS)

    Zuo, W.; Shen, Caiwan; Lombardo, U.

    2003-03-01

    The equation of state of spin and isospin polarized nuclear matter is determined in the framework of the Brueckner theory including three-body forces. The Landau parameters in the spin and spin-isospin sectors are derived as a function of the baryonic density. The results are compared with the Gamow-Teller collective modes. The relevance of G0 and G'0 for neutron stars is shortly discussed, including the magnetic susceptibility and the neutron star cooling.

  5. Exact Solution of the Isovector Proton Neutron Pairing Hamiltonian

    SciTech Connect

    Dukelsky, J; Gueorguiev, V G; Van Isacker, P; Dimitrova, S S; Errea, B; H., S L

    2005-12-02

    The complete exact solution of the T = 1 neutron-proton pairing Hamiltonian is presented in the context of the SO(5) Richardson-Gaudin model with non-degenerate single-particle levels and including isospin-symmetry breaking terms. The power of the method is illustrated with a numerical calculation for {sup 64}Ge for a pf + g{sub 9/2} model space which is out of reach of modern shell-model codes.

  6. Observation of the ABC effect and final-state isospin

    NASA Astrophysics Data System (ADS)

    Doroshkevich, E. A.; Bashkanov, M. A.; Clement, H.; Perez del Rio, E.; Pricking, A.; Skorodko, T. Yu.; Wagner, G. J.

    2014-07-01

    Despite the number of inclusive measurements of the pionic fusion reactions, the nature of the ABC effect discovered in 1960 was not completely established. Exclusive measurements of the doublepion-production reactions leading to either fused d, 3He and 4He nuclear final states or pp pairs are analyzed. A significant ABC effect—enhancement in the region of low ππ mass—is found only in the isoscalar ππ channel while in the isovector channels it is small or absent. For the reaction with isovector pp final state an ABC effect was not observed even at the special kinematic conditions to reproduce a quasi-bound two-proton state. The total cross sections for the d and 4He fusion reactions show similar resonance-like energy dependence.

  7. Paired Burst Stimulation Causes GABAA Receptor-Dependent Spike Firing Facilitation in CA1 of Rat Hippocampal Slices

    PubMed Central

    Tominaga, Takashi; Tominaga, Yoko

    2016-01-01

    The theta oscillation (4–8 Hz) is a pivotal form of oscillatory activity in the hippocampus that is intermittently concurrent with gamma (25–100 Hz) burst events. In in vitro preparation, a stimulation protocol that mimics the theta oscillation, theta burst stimulation (TBS), is used to induce long-term potentiation. Thus, TBS is thought to have a distinct role in the neural network of the hippocampal slice preparation. However, the specific mechanisms that make TBS induce such neural circuit modifications are still unknown. Using electrophysiology and voltage-sensitive dye imaging (VSDI), we have found that TBS induces augmentation of spike firing. The augmentation was apparent in the first couple of brief burst stimulation (100 Hz four pulses) on a TBS-train in a presence of NMDA receptor blocker (APV 50 μM). In this study, we focused on the characterizes of the NMDA independent augmentation caused by a pair of the brief burst stimulation (the first pair of the TBS; paired burst stimulation-PBS). We found that PBS enhanced membrane potential responses on VSDI signal and intracellular recordings while it was absent in the current recording under whole-cell clamp condition. The enhancement of the response accompanied the augmentation of excitatory postsynaptic potential (EPSP) to spike firing (E-S) coupling. The paired burst facilitation (PBF) reached a plateau when the number of the first burst stimulation (priming burst) exceeds three. The interval between the bursts of 150 ms resulted in the maximum PBF. Gabazine (a GABAA receptor antagonist) abolished PBF. The threshold for spike generation of the postsynaptic cells measured with a current injection to cells was not lowered by the priming burst of PBS. These results indicate that PBS activates the GABAergic system to cause short-term E-S augmentation without raising postsynaptic excitability. We propose that a GABAergic system of area CA1 of the hippocampus produce the short-term E-S plasticity that could

  8. Isospin violating dark matter in Stückelberg portals with intersecting D-branes

    NASA Astrophysics Data System (ADS)

    Peiró, Miguel

    2016-05-01

    Certain string theory constructions are representative of the so-called hidden sector scenarios in which the hidden particles interact with the Standard Model matter fields through the exchange of massive Z‧ bosons. We show that such string motivated Stückelberg portals naturally lead to isospin violating interactions of DM particles with nuclei in direct detection experiments. We find that the ratios between the DM coupling to neutrons and protons for both, spin-independent (fn/fp ) and spin-dependent (an/ap ) interactions, are generically different from ±1, and depend on the charges of the quarks under the extra U(1) gauge groups. In order to find the experimentally allowed values of these ratios, we have incorporated constraints from searches for dijet and dilepton resonances at the LHC as well as LUX bounds on the elastic scattering of DM off nucleons. Our results highlight the importance of combining different search methods to shed light on this sort of scenarios.

  9. Form factor effects in the direct detection of isospin-violating dark matter

    SciTech Connect

    Zheng, Hao; Zhang, Zhen; Chen, Lie-Wen E-mail: malkuth@sjtu.edu.cn

    2014-08-01

    Isospin-violating dark matter (IVDM) provides a possible mechanism to ameliorate the tension among recent direct detection experiments. For IVDM, we demonstrate that the results of direct detection experiments based on neutron-rich target nuclei may depend strongly on the density dependence of the symmetry energy which is presently largely unknown and controls the neutron skin thickness that reflects the relative difference of neutron and proton form factors in the neutron-rich nuclei. In particular, using the neutron and proton form factors obtained from Skyrme-Hartree-Fock calculations by varying the symmetry energy within the uncertainty region set by the latest model-independent measurement of the neutron skin thickness of {sup 208}Pb from PREX experiment at JLab, we find that, for IVDM with neutron-to-proton coupling ratio fixed to f{sub n}/f{sub p}=-0.7, the form factor effect may enhance the sensitivity of Xe-based detectors (e.g., XENON100 and LUX) to the DM-proton cross section by a factor of 3 in the DM mass region constrained by CMDS-II(Si) and even by more than an order of magnitude for heavy DM with mass larger than 80 GeV, compared with the results using the empirical Helm form factor. Our results further indicate that the form factor effect can significantly modify the recoil spectrum of Xe-based detectors for heavy IVDM with f{sub n}/f{sub p}=-0.7.

  10. Form factor effects in the direct detection of isospin-violating dark matter

    NASA Astrophysics Data System (ADS)

    Zheng, Hao; Zhang, Zhen; Chen, Lie-Wen

    2014-08-01

    Isospin-violating dark matter (IVDM) provides a possible mechanism to ameliorate the tension among recent direct detection experiments. For IVDM, we demonstrate that the results of direct detection experiments based on neutron-rich target nuclei may depend strongly on the density dependence of the symmetry energy which is presently largely unknown and controls the neutron skin thickness that reflects the relative difference of neutron and proton form factors in the neutron-rich nuclei. In particular, using the neutron and proton form factors obtained from Skyrme-Hartree-Fock calculations by varying the symmetry energy within the uncertainty region set by the latest model-independent measurement of the neutron skin thickness of 208Pb from PREX experiment at JLab, we find that, for IVDM with neutron-to-proton coupling ratio fixed to fn/fp=-0.7, the form factor effect may enhance the sensitivity of Xe-based detectors (e.g., XENON100 and LUX) to the DM-proton cross section by a factor of 3 in the DM mass region constrained by CMDS-II(Si) and even by more than an order of magnitude for heavy DM with mass larger than 80 GeV, compared with the results using the empirical Helm form factor. Our results further indicate that the form factor effect can significantly modify the recoil spectrum of Xe-based detectors for heavy IVDM with fn/fp=-0.7.

  11. Retention of nucleic acids in ion-pair reversed-phase high-performance liquid chromatography depends not only on base composition but also on base sequence.

    PubMed

    Qiao, Jun-Qin; Liang, Chao; Wei, Lan-Chun; Cao, Zhao-Ming; Lian, Hong-Zhen

    2016-12-01

    The study on nucleic acid retention in ion-pair reversed-phase high-performance liquid chromatography mainly focuses on size-dependence, however, other factors influencing retention behaviors have not been comprehensively clarified up to date. In this present work, the retention behaviors of oligonucleotides and double-stranded DNAs were investigated on silica-based C18 stationary phase by ion-pair reversed-phase high-performance liquid chromatography. It is found that the retention of oligonucleotides was influenced by base composition and base sequence as well as size, and oligonucleotides prone to self-dimerization have weaker retention than those not prone to self-dimerization but with the same base composition. However, homo-oligonucleotides are suitable for the size-dependent separation as a special case of oligonucleotides. For double-stranded DNAs, the retention is also influenced by base composition and base sequence, as well as size. This may be attributed to the interaction of exposed bases in major or minor grooves with the hydrophobic alky chains of stationary phase. In addition, no specific influence of guanine and cytosine content was confirmed on retention of double-stranded DNAs. Notably, the space effect resulted from the stereostructure of nucleic acids also influences the retention behavior in ion-pair reversed-phase high-performance liquid chromatography.

  12. Dirac-Hartree-Bogoliubov calculation for spherical and deformed hot nuclei: Temperature dependence of the pairing energy and gaps, nuclear deformation, nuclear radii, excitation energy, and entropy

    NASA Astrophysics Data System (ADS)

    Lisboa, R.; Malheiro, M.; Carlson, B. V.

    2016-02-01

    Background: Unbound single-particle states become important in determining the properties of a hot nucleus as its temperature increases. We present relativistic mean field (RMF) for hot nuclei considering not only the self-consistent temperature and density dependence of the self-consistent relativistic mean fields but also the vapor phase that takes into account the unbound nucleon states. Purpose: The temperature dependence of the pairing gaps, nuclear deformation, radii, binding energies, entropy, and caloric curves of spherical and deformed nuclei are obtained in self-consistent RMF calculations up to the limit of existence of the nucleus. Method: We perform Dirac-Hartree-Bogoliubov (DHB) calculations for hot nuclei using a zero-range approximation to the relativistic pairing interaction to calculate proton-proton and neutron-neutron pairing energies and gaps. A vapor subtraction procedure is used to account for unbound states and to remove long range Coulomb repulsion between the hot nucleus and the gas as well as the contribution of the external nucleon gas. Results: We show that p -p and n -n pairing gaps in the S10 channel vanish for low critical temperatures in the range Tcp≈0.6 -1.1 MeV for spherical nuclei such as 90Zr, 124Sn, and 140Ce and for both deformed nuclei 150Sm and 168Er. We found that superconducting phase transition occurs at Tcp=1.03 Δp p(0 ) for 90Zr, Tcp=1.16 Δp p(0 ) for 140Ce, Tcp=0.92 Δp p(0 ) for 150Sm, and Tcp=0.97 Δp p(0 ) for 168Er. The superfluidity phase transition occurs at Tcp=0.72 Δn n(0 ) for 124Sn, Tcp=1.22 Δn n(0 ) for 150Sm, and Tcp=1.13 Δn n(0 ) for 168Er. Thus, the nuclear superfluidity phase—at least for this channel—can only survive at very low nuclear temperatures and this phase transition (when the neutron gap vanishes) always occurs before the superconducting one, where the proton gap is zero. For deformed nuclei the nuclear deformation disappear at temperatures of about Tcs=2.0 -4.0 MeV , well above the

  13. Energy relaxation and separation of a hot electron-hole pair in organic aggregates from a time-dependent wavepacket diffusion method

    SciTech Connect

    Han, Lu; Liang, WanZhen; Zhao, Yi; Zhong, Xinxin

    2014-06-07

    The time-dependent wavepacket diffusive method [X. Zhong and Y. Zhao, J. Chem. Phys. 138, 014111 (2013)] is extended to investigate the energy relaxation and separation of a hot electron-hole pair in organic aggregates with incorporation of Coulomb interaction and electron-phonon coupling. The pair initial condition generated by laser pulse is represented by a Gaussian wavepacket with a central momentum. The results reveal that the hot electron energy relaxation is very well described by two rate processes with the fast rate much larger than the slow one, consistent with experimental observations, and an efficient electron-hole separation is accomplished accompanying the fast energy relaxation. Furthermore, although the extra energy indeed helps the separation by overcoming the Coulomb interaction, the width of initial wavepacket is much sensitive to the separation efficiency and the narrower wavepacket generates the more separated charges. This behavior may be useful to understand the experimental controversy of the hot carrier effect on charge separation.

  14. Isospin analysis of charmless B-meson decays

    NASA Astrophysics Data System (ADS)

    Charles, J.; Deschamps, O.; Descotes-Genon, S.; Niess, V.

    2017-08-01

    We discuss the determination of the CKM angle α using the non-leptonic two-body decays B→ π π , B→ ρ ρ and B→ ρ π using the latest data available. We illustrate the methods used in each case and extract the corresponding value of α . Combining all these elements, we obtain the determination α _dir={({86.2}_{-4.0}^{+4.4} \\cup {178.4}_{-5.1}^{+3.9})}°. We assess the uncertainties associated to the breakdown of the isospin hypothesis and the choice of the statistical framework in detail. We also determine the hadronic amplitudes (tree and penguin) describing the QCD dynamics involved in these decays, briefly comparing our results with theoretical expectations. For each observable of interest in the B→ π π , B→ ρ ρ and B→ ρ π systems, we perform an indirect determination based on the constraints from all the other observables available and we discuss the compatibility between indirect and direct determinations. Finally, we review the impact of future improved measurements on the determination of α.

  15. Spin-isospin responses in Nuclei via polarization measurements

    NASA Astrophysics Data System (ADS)

    Sakai, Hide

    2001-06-01

    High quality (p, n) data obtained by NTOF+NPOL2 facility at RCNP were presented. From the measurement of 90Zr(p,n) reaction at 295 MeV, the quenching value for the Gamow-Teller transition in terms of the Ikeda's sum rule of Sβ--Sβ+=3(N-Z) is derived as 0.90+/-0.05. By using this quenching value, the Landau-Migdal parameters representing short-range correlation in isospin-spin interactions are deduced as (gNN',gNΔ')=(0.6,0.2). This small gNΔ' value favors the pion condensation. The complete set of the polarization transfer coefficients, DLL', DSS', DNN', DLS' and DSL', for the (p, n) quasi-elastic scattering has been measured at 350 MeV. The spin-longitudinal cross section IDq(~RL) and the spin-transverse cross section IDp(~RT) are deduced. IDq is found to be consistent with the DWIA+RPA calculation with (gNN',gNΔ')=(0.6,0.3). This result supports strongly the existence of the pionic enhancement in nuclei. .

  16. QCD phase diagram at finite baryon and isospin chemical potentials

    SciTech Connect

    Sasaki, Takahiro; Sakai, Yuji; Yahiro, Masanobu; Kouno, Hiroaki

    2010-12-01

    The phase structure of two-flavor QCD is explored for thermal systems with finite baryon- and isospin-chemical potentials, {mu}{sub B} and {mu}{sub iso}, by using the Polyakov-loop extended Nambu-Jona-Lasinio (PNJL) model. The PNJL model with the scalar-type eight-quark interaction can reproduce lattice QCD data at not only {mu}{sub iso}={mu}{sub B}=0, but also {mu}{sub iso}>0 and {mu}{sub B}=0. In the {mu}{sub iso}-{mu}{sub B}-T space, where T is temperature, the critical endpoint of the chiral phase transition in the {mu}{sub B}-T plane at {mu}{sub iso}=0 moves to the tricritical point of the pion-superfluidity phase transition in the {mu}{sub iso}-T plane at {mu}{sub B}=0 as {mu}{sub iso} increases. The thermodynamics at small T is controlled by {radical}({sigma}{sup 2}+{pi}{sup 2}) defined by the chiral and pion condensates, {sigma} and {pi}.

  17. Origins of the isospin violation of dark matter interactions

    SciTech Connect

    Gao, Xin; Kang, Zhaofeng; Li, Tianjun E-mail: zhaofengkang@gmail.com

    2013-01-01

    Light dark matter (DM) with a large DM-nucleon spin-independent scattering cross section and moreover proper isospin violation (ISV) f{sub n}/f{sub p} ≈ −0.7 may provide a way to understand the confusing DM direct detection results. Further using the stringent astrophysical and collider constraints, we systematically investigate the origin of ISV first via general operator analyses and further via specifying three types of mediators: a light Z' from chiral U(1){sub X}, an approximate spectator Higgs doublet (It can explain the W+jj anomaly simultaneously) and color triplets. In addition, although Z' from an exotic U(1){sub X} mixing with U(1){sub Y} generates only f{sub n} = 0, we can combine it with the conventional Higgs to achieve the proper ISV. As a concrete example, we propose the U(1){sub X} model where the U(1){sub X} charged light sneutrino is an inelastic DM, which dominantly annihilates to light dark states such as Z' with sub-GeV mass. The model can consistently (with other DM direct detection results) and safely interpret the recent GoGeNT annual modulation result.

  18. Population based study of prevalence of islet cell autoantibodies in monozygotic and dizygotic Danish twin pairs with insulin dependent diabetes mellitus.

    PubMed Central

    Petersen, J. S.; Kyvik, K. O.; Bingley, P. J.; Gale, E. A.; Green, A.; Dyrberg, T.; Beck-Nielsen, H.

    1997-01-01

    OBJECTIVE: To study the comparative importance of environment and genes in the development of islet cell autoimmunity associated with insulin dependent diabetes mellitus. DESIGN: Population based study of diabetic twins. SETTING: Danish population. SUBJECTS: 18 monozygotic and 36 dizygotic twin pairs with one or both partners having insulin dependent diabetes. MAIN OUTCOME MEASURES: Presence of islet cell antibodies, insulin autoantibodies, and autoantibodies to glutamic acid decarboxylase (GAD65) in serum samples from twin pairs 10 years (range 0-30 years) and 9.5 years (2-30 years) after onset of disease. RESULTS: In those with diabetes the prevalence of islet cell antibodies, insulin autoantibodies, and autoantibodies to glutamic acid decarboxylase in the 26 monozygotic twins was 38%, 85%, and 92%, respectively, and in the dizygotic twins was 57%, 70%, and 57%, respectively. In those without diabetes the proportions were 20%, 50%, and 40% in the 10 monozygotic twins and 26%, 49%, and 40% in the 35 dizygotic twins. CONCLUSION: There is no difference between the prevalence of islet cell autoantibodies in dizygotic and monozygotic twins without diabetes, suggesting that islet cell autoimmunity is environmentally rather than genetically determined. Furthermore, the prevalence of islet cell antibodies was higher in the non-diabetic twins than in other first degree relatives of patients with insulin dependent diabetes. This implies that the prenatal or early postnatal period during which twins are exposed to the same environment, in contrast with that experienced by first degree relatives, is of aetiological importance. PMID:9169400

  19. Nuclear spin-isospin excitations from covariant quasiparticle-vibration coupling

    NASA Astrophysics Data System (ADS)

    Robin, Caroline; Litvinova, Elena

    2016-09-01

    Methods based on the relativistic Lagrangian of quantum hadrodynamics and nuclear field theory provide a consistent framework for the description of nuclear excitations, naturally connecting the high- and medium-energy scales of mesons to the low-energy domain of nucleonic collective motion. Applied in the neutral channel, this approach has been quite successful in describing the overall transition strength up to high excitation energies, as well as fine details of the low-lying distribution. Recently, this method has been extended to the description of spin-isospin excitations in open-shell nuclei. In the charge-exchange channel, the coupling between nucleons and collective vibrations generates a time-dependent proton-neutron effective interaction, in addition to the static pion and rho-meson exchange, and introduces complex configurations that induce fragmentation and spreading of the resonances. Such effects have a great impact on the quenching of the strength and on the computing of weak reaction rates that are needed for astrophysics modeling. Gamow-Teller transitions in medium-mass nuclei and associated beta-decay half-lives will be presented. Further developments aiming to include additional ground-state correlations will also be discussed. This work is supported by US-NSF Grants PHY-1404343 and PHY-1204486.

  20. Isospin Symmetry at High Spin Studied via Nucleon Knockout from Isomeric States.

    PubMed

    Milne, S A; Bentley, M A; Simpson, E C; Baugher, T; Bazin, D; Berryman, J S; Bruce, A M; Davies, P J; Diget, C Aa; Gade, A; Henry, T W; Iwasaki, H; Lemasson, A; Lenzi, S M; McDaniel, S; Napoli, D R; Nichols, A J; Ratkiewicz, A; Scruton, L; Stroberg, S R; Tostevin, J A; Weisshaar, D; Wimmer, K; Winkler, R

    2016-08-19

    One-neutron knockout reactions have been performed on a beam of radioactive ^{53}Co in a high-spin isomeric state. The analysis is shown to yield a highly selective population of high-spin states in an exotic nucleus with a significant cross section, and hence represents a technique that is applicable to the planned new generation of fragmentation-based radioactive beam facilities. Additionally, the relative cross sections among the excited states can be predicted to a high level of accuracy when reliable shell-model input is available. The work has resulted in a new level scheme, up to the 11^{+} band-termination state, of the proton-rich nucleus ^{52}Co (Z=27, N=25). This has in turn enabled a study of mirror energy differences in the A=52 odd-odd mirror nuclei, interpreted in terms of isospin-nonconserving (INC) forces in nuclei. The analysis demonstrates the importance of using a full set of J-dependent INC terms to explain the experimental observations.

  1. Double-beta decay in pn-QRPA model with isospin and SU(4) symmetry constraints

    NASA Astrophysics Data System (ADS)

    Krmpotić, F.; Sharma, S. Shelly

    1994-05-01

    The transition matrix elements for the 0 + → 0 + double-beta decays are calculated for 48Ca, 76Ge, 82Se, 100Mo, 128Te and 130Te nuclei, using a δ-interaction. As a guide, to fix the particle-particle interaction strengths, we exploit the fact that the missing symmetries of the mean-field approximation are restored in the random phase approximation by the residual interaction. Thus, the T = 1, S = 0 and T = 0, S = 1 coupling strengths have been estimated by invoking the partial restoration of the isospin and Wigner SU(4) symmetries, respectively. When this recipe is strictly applied, the calculation is consistent with the experimental limit for the 2ν lifetime of 48Ca and it also correctly reproduces the 2ν lifetime of 82Se. In this way, however, the two-neutrino matrix elements for the remaining nuclei are either underestimated (for 76Ge and 100Mo) or overestimated (for 128Te and 130Te) approximately by a factor of 3. With a comparatively small variation (< 10%) of the spin-triplet parameter, near the value suggested by the SU(4) symmetry, it is possible to reproduce the measured T 2ν{1}/{2} all the cases. The upper limit for the effective neutrino mass, as obtained from the theoretical estimates of 0ν matrix elements, is < m> ˜- 1 eV. The dependence of the nuclear matrix elements on the size of the configuration space has been also analyzed.

  2. Isospin Symmetry at High Spin Studied via Nucleon Knockout from Isomeric States

    NASA Astrophysics Data System (ADS)

    Milne, S. A.; Bentley, M. A.; Simpson, E. C.; Baugher, T.; Bazin, D.; Berryman, J. S.; Bruce, A. M.; Davies, P. J.; Diget, C. Aa.; Gade, A.; Henry, T. W.; Iwasaki, H.; Lemasson, A.; Lenzi, S. M.; McDaniel, S.; Napoli, D. R.; Nichols, A. J.; Ratkiewicz, A.; Scruton, L.; Stroberg, S. R.; Tostevin, J. A.; Weisshaar, D.; Wimmer, K.; Winkler, R.

    2016-08-01

    One-neutron knockout reactions have been performed on a beam of radioactive 53Co in a high-spin isomeric state. The analysis is shown to yield a highly selective population of high-spin states in an exotic nucleus with a significant cross section, and hence represents a technique that is applicable to the planned new generation of fragmentation-based radioactive beam facilities. Additionally, the relative cross sections among the excited states can be predicted to a high level of accuracy when reliable shell-model input is available. The work has resulted in a new level scheme, up to the 1 1+ band-termination state, of the proton-rich nucleus 52Co (Z =27 , N =25 ). This has in turn enabled a study of mirror energy differences in the A =52 odd-odd mirror nuclei, interpreted in terms of isospin-nonconserving (INC) forces in nuclei. The analysis demonstrates the importance of using a full set of J -dependent INC terms to explain the experimental observations.

  3. Solitons, Bäcklund transformations, Lax pair and conservation laws for the nonautonomous mKdV-sinh-Gordon equation with time-dependent coefficients

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Tian, Bo; Sun, Wen-Rong; Wang, Yu-Feng; Wang, Yun-Po

    2016-01-01

    The transition phenomenon of few-cycle-pulse optical solitons from a pure modified Korteweg-de Vries (mKdV) to a pure sine-Gordon regime can be described by the nonautonomous mKdV-sinh-Gordon equation with time-dependent coefficients. Based on the Bell polynomials, Hirota method and symbolic computation, bilinear forms and soliton solutions for this equation are obtained. Bäcklund transformations (BTs) in both the binary Bell polynomial and bilinear forms are obtained. By virtue of the BTs and Ablowitz-Kaup-Newell-Segur system, Lax pair and infinitely many conservation laws for this equation are derived as well.

  4. Sequence-Dependent T:G Base Pair Opening in DNA Double Helix Bound by Cren7, a Chromatin Protein Conserved among Crenarchaea

    PubMed Central

    Tian, Lei; Zhang, Zhenfeng; Wang, Hanqian; Zhao, Mohan; Dong, Yuhui; Gong, Yong

    2016-01-01

    T:G base pair arising from spontaneous deamination of 5mC or polymerase errors is a great challenge for DNA repair of hyperthermophilic archaea, especially Crenarchaea. Most strains in this phylum lack the protein homologues responsible for the recognition of the mismatch in the DNA repair pathways. To investigate whether Cren7, a highly conserved chromatin protein in Crenarchaea, serves a role in the repair of T:G mispairs, the crystal structures of Cren7-GTAATTGC and Cren7-GTGATCGC complexes were solved at 2.0 Å and 2.1 Å. In our structures, binding of Cren7 to the AT-rich DNA duplex (GTAATTGC) induces opening of T2:G15 but not T10:G7 base pair. By contrast, both T:G mispairs in the GC-rich DNA duplex (GTGATCGC) retain the classic wobble type. Structural analysis also showed DNA helical changes of GTAATTGC, especially in the steps around the open T:G base pair, as compared to GTGATCGC or the matched DNAs. Surface plasmon resonance assays revealed a 4-fold lower binding affinity of Cren7 for GTAATTGC than that for GTGATCGC, which was dominantly contributed by the decrease of association rate. These results suggested that binding of Cren7 to DNA leads to T:G mispair opening in a sequence dependent manner, and therefore propose the potential roles of Cren7 in DNA repair. PMID:27685992

  5. Sequence-Dependent T:G Base Pair Opening in DNA Double Helix Bound by Cren7, a Chromatin Protein Conserved among Crenarchaea.

    PubMed

    Tian, Lei; Zhang, Zhenfeng; Wang, Hanqian; Zhao, Mohan; Dong, Yuhui; Gong, Yong

    T:G base pair arising from spontaneous deamination of 5mC or polymerase errors is a great challenge for DNA repair of hyperthermophilic archaea, especially Crenarchaea. Most strains in this phylum lack the protein homologues responsible for the recognition of the mismatch in the DNA repair pathways. To investigate whether Cren7, a highly conserved chromatin protein in Crenarchaea, serves a role in the repair of T:G mispairs, the crystal structures of Cren7-GTAATTGC and Cren7-GTGATCGC complexes were solved at 2.0 Å and 2.1 Å. In our structures, binding of Cren7 to the AT-rich DNA duplex (GTAATTGC) induces opening of T2:G15 but not T10:G7 base pair. By contrast, both T:G mispairs in the GC-rich DNA duplex (GTGATCGC) retain the classic wobble type. Structural analysis also showed DNA helical changes of GTAATTGC, especially in the steps around the open T:G base pair, as compared to GTGATCGC or the matched DNAs. Surface plasmon resonance assays revealed a 4-fold lower binding affinity of Cren7 for GTAATTGC than that for GTGATCGC, which was dominantly contributed by the decrease of association rate. These results suggested that binding of Cren7 to DNA leads to T:G mispair opening in a sequence dependent manner, and therefore propose the potential roles of Cren7 in DNA repair.

  6. Photoionization and time-dependent stokes shift of coumarin 307 in soft matter: solvation and radical-ion pair recombination dynamics.

    PubMed

    Dhenadhayalan, Namasivayam; Selvaraju, Chellappan; Ramamurthy, Perumal

    2011-09-22

    Photoionization, fluorescence time-dependent Stokes shift (TDSS), and rotational dynamics of coumarin 307 (C307) have been investigated in soft matter system such as micelles using time-resolved transient absorption and fluorescence spectroscopy. Photoionization of C307 leads to the formation of coumarin radical cation and hydrated electron, which were characterized by their respective transient absorption. The photoionization yields are significantly higher in anionic sodium dodecyl sulfate (SDS) micelle than in cationic cetyltrimethylammonium bromide (CTAB) and neutral Triton X-100 (TX-100) micelles, indicating the influence of micellar surface charge on the efficient separation of radical cation-hydrated electron pair. The CTAB micelle favors the recombination of radical cation and hydrated electron leading to the formation of triplet state of C307, which causes a decrease in the photoionization yield. C307 exhibits TDSS in all micelles; the time evolution and the magnitude of the TDSS depend on nature of the micelle. In TX-100 micelles, the decay of the TDSS exhibits ultraslow component (165 ns) and is affected by the presence of electron scavengers. The ultraslow component in TX-100 micelle originates from the recombination of radical cation-hydrated electron, which results in the formation of twisted intramolecular charge transfer (TICT) state; such formation of TICT state was not observed in SDS and CTAB micelles. To the best of our knowledge, this is the first report where the radical-ion pair recombination dynamics is probed using TDSS in combination with time-resolved transient absorption studies. The activation energy for the solvent relaxation and radical-ion pair (solvent separated) recombination process was found to be 6.1 and 3.0 kcal mol(-1), respectively. Temperature effect on TDSS in TX-100 micelles confirmed the increase in the water hydration, and size of the micelle influences the relative contribution of the solvation and radical-ion pair

  7. Towards Temperature-Dependent Coarse-Grained Potentials of Side-Chain Interactions for Protein Folding Simulations. II. Molecular Dynamics Study of Pairs of Different Types of Interactions in Water at Various Temperatures

    PubMed Central

    Sobolewski, Emil; Ołdziej, Stanisław; Wiśniewska, Marta; Liwo, Adam; Makowski, Mariusz

    2012-01-01

    By means of molecular dynamics simulations of 15 pairs of molecules selected to model the interactions of nonpolar, nonpolar and polar, nonpolar and charged, polar, and polar and charged side chains in water, we determined the potentials of mean force (PMFs) of pairs of interacting molecules in water as functions of distance between the interacting particles or their distance and orientations at three temperatures: 283 K, 323 K and 373 K, respectively. The systems were found to fall into the following four categories as far as the temperature dependence of the potential of mean force is concerned: (i) pairs, for which association is entropy-driven (ii) pairs, for which association is energy-driven, (iii), pairs of positively-charged solute molecules, for which association is energy-driven with unfavorable entropy change, and (iv) the remaining systems for which temperature dependence is weak. For each pair of PMFs entropic and energetic contributions have been discussed. PMID:22475198

  8. Isotopic dependence of nuclear temperatures

    SciTech Connect

    Su Jun; Zhang Fengshou

    2011-09-15

    A systematic study of isotope temperatures has been presented for heavy-ion collisions at 600 MeV/nucleon via the isospin-dependent quantum molecular dynamics model in the company of the statistical decay model (GEMINI). We find that the isospin dependence of the isotope temperatures in multifragmentation is weak; however, this effect is still visible over a wide isotopic range. The isotope temperatures for the neutron-rich projectiles are larger than those for the neutron-poor projectiles. We also find that the isotope temperatures calculated by the model decrease with increasing nuclear mass.

  9. Thermodynamics of (2+1)-flavor strongly interacting matter at nonzero isospin

    NASA Astrophysics Data System (ADS)

    Stiele, Rainer; Fraga, Eduardo S.; Schaffner-Bielich, Jürgen

    2014-02-01

    We investigate the phase structure of strongly interacting matter at non-vanishing isospin before the onset of pion condensation in the framework of the unquenched Polyakov-Quark-Meson model with 2+1 quark flavors. We show results for the order parameters and all relevant thermodynamic quantities. In particular, we obtain a moderate change of the pressure with isospin at vanishing baryon chemical potential, whereas the chiral condensate decreases more appreciably. We compare the effective model to recent lattice data for the decrease of the pseudo-critical temperature with the isospin chemical potential. We also demonstrate the major role played by the value of the pion mass in the curvature of the transition line, and the need for lattice results with a physical pion mass. Limitations of the model at nonzero chemical potential are also discussed.

  10. Effective Field Theory and Isospin Violation in Few-Nucleon Systems

    SciTech Connect

    Evgeny Epelbaum

    2004-08-01

    I discuss the leading and subleading isospin--breaking three--nucleon forces in the chiral effective field theory framework. I have discussed the leading and subleading isospin-violating 3NFs. The leading contributions are generated by one- and two-pion exchange diagrams with their strength given by the strong neutron-proton mass difference. The subleading corrections are again given by one- and two-pion exchange diagrams, driven largely by the charged-to-neutral pion mass difference and also by the electromagnetic neutron-proton mass difference and the dimension two electromagnetic LEC f{sub 1}. In the future, these isospin-breaking forces should be used to analyze few-nucleon systems based on chiral EFT.

  11. Study of isospin violating phi excitation in e+e- → ωπ0

    NASA Astrophysics Data System (ADS)

    Li, Gang; Zhang, Yuan-Jiang; Zhao, Qiang

    2009-08-01

    We study the reaction e+e- → ωπ0 in the vicinity of the phi mass region. The isospin-violating phi excitation is accounted for by two major mechanisms. One is electromagnetic transition and the other is strong isospin violations. For the latter, we consider contributions from the intermediate hadronic meson loops and phi-ρ0 mixing as the major mechanisms via the t- and s-channel transitions, respectively. By fitting the recent KLOE data, we succeed in constraining the model parameters and extracting the phi → ωπ0 branching ratio. It shows that the branching ratio is sensitive to the phi excitation line shape and background contributions. Some crucial insights into the correlation between isospin violation and Okubo-Zweig-Iizuka rule evading transitions are also learned.

  12. Isospin-violating nucleon-nucleon forces using the method of unitary transformation

    SciTech Connect

    Evgeny Epelbaum; Ulf-G. Meissner

    2005-02-01

    Recently, we have derived the leading and subleading isospin-breaking three-nucleon forces using the method of unitary transformation. In the present work we extend this analysis and consider the corresponding two-nucleon forces using the same approach. Certain contributions to the isospin-violating one- and two-pion exchange potential have already been discussed by various groups within the effective field theory framework. Our findings agree with the previously obtained results. In addition, we present the expressions for the subleading charge-symmetry-breaking two-pion exchange potential which were not considered before. These corrections turn out to be numerically important. Together with the three-nucleon force results presented in our previous work, the results of the present study specify completely isospin-violating nuclear force up to the order {Lambda}{sup 5}.

  13. Isospin transport effects in nuclear reactions at 25 MeV/nucleon

    SciTech Connect

    Lombardo, I.; Cavallaro, S.; Porto, F.; Rizzo, F.; Russotto, P.; Agodi, C.; Alba, R.; Amorini, F.; Anzalone, A.; Di Pietro, A.; Figuera, P.; Han, J.; Maiolino, C.; Santonocito, D.; Berceanu, I.; Pop, A.; Cardella, G.; De Filippo, E.; Pagano, A.; Papa, M.

    2010-07-15

    Isotopic effects are studied in reactions induced by {sup 40}Ca projectiles at 25 MeV/nucleon on {sup 40}Ca, {sup 48}Ca , and {sup 46}Ti targets. The N/Z contents of projectilelike and midvelocity (MV) sources are probed by means of isotopic ({sup 7}Li/{sup 6}Li and {sup 9}Be/{sup 7}Be) and isobaric ({sup 7}Li/{sup 7}Be) yield ratios, for semiperipheral events. In particular, information about isospin transport phenomena will be discussed. Isospin diffusion processes involving nuclei, which have noticeable differences in N/Z have been investigated. Signals of isospin drift, which are related to the gradient of density in the participant region, have also been observed for fragments emitted at MV.

  14. Towards the improvement of spin-isospin properties in nuclear energy density functionals

    NASA Astrophysics Data System (ADS)

    Roca-Maza, X.; Colò, G.; Liang, H. Z.; Meng, J.; Ring, P.; Sagawa, H.; Zhao, P. W.

    2016-06-01

    We address the problem of improving existing nuclear Energy Density Functionals (EDFs) in the spin-isospin channel. For that, we propose two different ways. The first one is to carefully take into account in the fitting protocol some of the key ground state properties for an accurate description of the most studied spin-isospin resonances: the Gamow-Teller Resonance (GTR) [1]. The second consists in providing a strategy to build local covariant EDF keeping the main features from their non-local counterparts [2]. The RHF model based on a Lagrangian where heavy mesons carry the nuclear effective interaction have been shown to be successful in the description of spin-isospin resonances [3].

  15. Twisting Motion Frequency Dependent I-V Characteristics of 102 Base Pairs Poly(dG)-Poly(dC) DNA Molecule

    NASA Astrophysics Data System (ADS)

    Yudiarsah, Efta

    2017-05-01

    The I-V characteristic of 102 base pair Poly(dG)-Poly(dC) DNA molecule have been calculated for several base pairs twisting motion frequencies. The calculation is carried out on doubled-stranded DNA model sandwiched in between two metallic electrodes. The effect is studied by taking into account twisting angle dependent on-site energy and hopping constant in the tight binding Hamiltonian of double-strand DNA model. We use semi-empirical Slater-Koster theory in the twisting angle dependent intra- and inter-strand hopping constant. We consider the temperature dependent sugar-phosphate backbone on-site energy by employing random energy disorder using uniform distribution function. The standard deviation of twisting angle is obtained by assuming that the average kinetic energy of twisting motions is proportional to system temperature. The transfer and scattering matrix methods are used simultaneously in calculating the transmission probability of charge on the molecule. We choose the contacts between molecule and both electrodes such that the main features of transport properties of the molecule do not change much by the presence of metallic electrodes. By assuming the voltage drops symmetrically at the contacts, Landauer-Buttiker Formalism is used in calculating the I-V characteristic of the molecule from transmission probability. The results show that the magnitude of current increases by twisting motion frequency increment. Larger current magnitude increment is observed at higher voltage. The influence of twisting motion frequency on the I-V characteristic is stronger at higher temperature, in the range of considered temperature.

  16. Isospin distillation with radial flow: A test of the nuclear symmetry energy

    SciTech Connect

    Colonna, M.; Baran, V.; Toro, M. Di; Wolter, H. H.

    2008-12-15

    We discuss mechanisms related to isospin transport in central collisions between neutron-rich systems at Fermi energies to gain information on the nuclear symmetry energy at and below saturation. A fully consistent study of the isospin distillation and expansion dynamics in two-component systems is presented in the framework of a stochastic transport theory. We analyze correlations between fragment observables, focusing on the study of the fragment asymmetry N/Z as a function of their kinetic energy. We find that the relation between these observables allows us to better characterize the fragmentation path and to access new information on the low-density behavior of the symmetry energy.

  17. Experimental validation of the largest calculated isospin-symmetry-breaking effect in a superallowed Fermi decay.

    PubMed

    Melconian, D; Triambak, S; Bordeanu, C; García, A; Hardy, J C; Iacob, V E; Nica, N; Park, H I; Tabacaru, G; Trache, L; Towner, I S; Tribble, R E; Zhai, Y

    2011-10-28

    A precision measurement of the γ yields following the β decay of (32)Cl has determined its isobaric-analogue branch to be (22.47(-0.18)(+0.21))%. Since it is an almost pure-Fermi decay, we can also determine the amount of isospin-symmetry breaking in this superallowed transition. We find a very large value, δ(C) = 5.3(9)%, in agreement with a shell-model calculation. This result sets a benchmark for isospin-symmetry-breaking calculations and lends support for similarly calculated, yet smaller, corrections that are currently applied to 0+ → 0 + transitions for tests of the standard model.

  18. Isospin-mixing corrections for {ital fp}-shell Fermi transitions

    SciTech Connect

    Ormand, W.E. |; Brown, B.A.

    1995-11-01

    Isospin-mixing corrections for superallowed Fermi transitions in {ital fp}-shell nuclei are computed within the framework of the shell model. The study includes three nuclei that are part of the set of nine accurately measured transitions as well as five cases that are expected to be measured in the future at radioactive-beam facilities. We also include some new calculations for {sup 10}C. With the isospin-mixing corrections applied to the nine accurately measured {ital ft} values, the conserved-vector-current hypothesis and the unitarity condition of the Cabbibo-Kobayashi-Maskawa matrix are tested.

  19. Mirror energy differences at large isospin studied through direct two-nucleon knockout.

    PubMed

    Davies, P J; Bentley, M A; Henry, T W; Simpson, E C; Gade, A; Lenzi, S M; Baugher, T; Bazin, D; Berryman, J S; Bruce, A M; Diget, C Aa; Iwasaki, H; Lemasson, A; McDaniel, S; Napoli, D R; Ratkiewicz, A; Scruton, L; Shore, A; Stroberg, R; Tostevin, J A; Weisshaar, D; Wimmer, K; Winkler, R

    2013-08-16

    The first spectroscopy of excited states in 52Ni (T(z)=-2) and 51Co (T(z)=-3/2) has been obtained using the highly selective two-neutron knockout reaction. Mirror energy differences between isobaric analogue states in these nuclei and their mirror partners are interpreted in terms of isospin nonconserving effects. A comparison between large-scale shell-model calculations and data provides the most compelling evidence to date that both electromagnetic and an additional isospin nonconserving interactions for J=2 couplings, of unknown origin, are required to obtain good agreement.

  20. np Pairing Correlations in Low-Density Region of Nuclear Matter

    SciTech Connect

    Isayev, A.A.; Bastrukov, S.I.; Yang, J.

    2004-10-01

    In the framework of Green's function formalism at finite temperatures, superfluidity of nuclear matter with np pairing correlations is studied. It is shown that, at low densities, equations for the energy gap in the spectrum of quasiparticles and chemical potentials of protons and neutrons allow solutions with negative chemical potential, which corresponds to appearance of Bose-Einstein condensation of deuterons in the low-density region of nuclear matter. In this region, np pairing correlations survive even for large isospin asymmetry. Interaction between nucleons is described by the effective zero range force, developed to reproduce the energy gap in the isospin singlet pairing channel, calculated with the use of the Paris NN potential. The obtained results may be of importance for description of thermal properties of outer low-density regions of neutron stars.

  1. Measurements of B →D ¯ Ds0 *+ (2317 ) decay rates and a search for isospin partners of the Ds0 *+ (2317 )

    NASA Astrophysics Data System (ADS)

    Choi, S.-K.; Olsen, S. L.; Abdesselam, A.; Adachi, I.; Aihara, H.; Arinstein, K.; Asner, D. M.; Aushev, T.; Ayad, R.; Babu, V.; Badhrees, I.; Bakich, A. M.; Barberio, E.; Bhardwaj, V.; Bhuyan, B.; Bonvicini, G.; Bozek, A.; Bračko, M.; Browder, T. E.; Červenkov, D.; Chen, A.; Cheon, B. G.; Chilikin, K.; Chistov, R.; Cho, K.; Chobanova, V.; Choi, Y.; Cinabro, D.; Dalseno, J.; Danilov, M.; Doležal, Z.; Drásal, Z.; Drutskoy, A.; Dutta, D.; Eidelman, S.; Farhat, H.; Fast, J. E.; Ferber, T.; Fulsom, B. G.; Gaur, V.; Gabyshev, N.; Garmash, A.; Getzkow, D.; Gillard, R.; Glattauer, R.; Goh, Y. M.; Golob, B.; Haba, J.; Hara, T.; Hayasaka, K.; Hayashii, H.; He, X. H.; Horiguchi, T.; Hou, W.-S.; Iijima, T.; Inami, K.; Inguglia, G.; Ishikawa, A.; Itoh, R.; Iwasaki, Y.; Jaegle, I.; Joffe, D.; Julius, T.; Kang, K. H.; Kato, E.; Katrenko, P.; Kawasaki, T.; Kim, B. H.; Kim, D. Y.; Kim, H. J.; Kim, J. B.; Kim, J. H.; Kim, K. T.; Kim, S. H.; Kim, Y. J.; Kinoshita, K.; Ko, B. R.; Kodyš, P.; Korpar, S.; Križan, P.; Krokovny, P.; Kumita, T.; Kuzmin, A.; Kwon, Y.-J.; Lange, J. S.; Lee, I. S.; Lewis, P.; Li, H.; Li Gioi, L.; Libby, J.; Lukin, P.; Matvienko, D.; Miyabayashi, K.; Miyata, H.; Mizuk, R.; Mohanty, G. B.; Moll, A.; Moon, H. K.; Mori, T.; Mussa, R.; Nakano, E.; Nakao, M.; Nanut, T.; Natkaniec, Z.; Nayak, M.; Nisar, N. K.; Nishida, S.; Ogawa, S.; Okuno, S.; Pakhlov, P.; Pakhlova, G.; Pal, B.; Park, C. W.; Park, H.; Pedlar, T. K.; Pesántez, L.; Pestotnik, R.; Petrič, M.; Piilonen, L. E.; Ribežl, E.; Ritter, M.; Rostomyan, A.; Ryu, S.; Sakai, Y.; Sandilya, S.; Santelj, L.; Sanuki, T.; Sato, Y.; Savinov, V.; Schneider, O.; Schnell, G.; Schwanda, C.; Senyo, K.; Sevior, M. E.; Shapkin, M.; Shebalin, V.; Shen, C. P.; Shibata, T.-A.; Shiu, J.-G.; Shwartz, B.; Sibidanov, A.; Simon, F.; Sohn, Y.-S.; Sokolov, A.; Solovieva, E.; Starič, M.; Steder, M.; Tamponi, U.; Tanaka, S.; Tanida, K.; Teramoto, Y.; Trusov, V.; Uchida, M.; Uglov, T.; Unno, Y.; Uno, S.; Urquijo, P.; Usov, Y.; Van Hulse, C.; Vanhoefer, P.; Varner, G.; Vinokurova, A.; Vorobyev, V.; Vossen, A.; Wagner, M. N.; Wang, C. H.; Wang, M.-Z.; Wang, X. L.; Watanabe, Y.; Williams, K. M.; Won, E.; Yashchenko, S.; Zhang, Z. P.; Zhilich, V.; Zhulanov, V.; Zupanc, A.; Belle Collaboration

    2015-05-01

    We report improved measurements of the product branching fractions B (B+→D¯ 0Ds0 *+(2317 ))×B (Ds0 *+(2317 )→Ds+π0)=(8. 0-1.2+1.3±1.1 ±0.4 )×1 0-4 and B (B0→D-Ds0 *+(2317 ))×B (Ds0 *+(2317 )→Ds+π0)=(10. 2-1.2+1.3±1.0 ±0.4 )×1 0-4 , where the first errors are statistical, the second are systematic and the third are from D and Ds+ branching fractions. In addition, we report negative results from a search for hypothesized neutral (z0 ) and doubly charged (z++ ) isospin partners of the Ds0 *+(2317 ) and provide upper limits on the product branching fractions B (B0→D0z0)×B (z0→Ds+π-) and B (B+→D0z++)×B (z++→Ds+π+) that are more than an order of magnitude smaller than theoretical expectations for the hypotheses that the Ds0 *+(2317 ) is a member of an isospin triplet. The analysis uses a 711 fb-1 data sample containing 772 million B B ¯ -meson pairs collected at the ϒ (4 S ) resonance in the Belle detector at the KEKB collider.

  2. First {gamma}-ray spectroscopy of {sup 49}Fe and {sup 53}Ni: Isospin-breaking effects at large proton excess

    SciTech Connect

    Brown, J. R.; Bentley, M. A.; Taylor, M. J.; Adrich, P.; Bazin, D.; Cook, J. M.; Diget, C. A.; Gade, A.; Glasmacher, T.; McDaniel, S.; Ratkiewicz, A.; Siwek, K.; Weisshaar, D.; Lenzi, S. M.; Pritychenko, B.

    2009-07-15

    Isospin-breaking effects have been studied for the first time in T=(3/2) isobaric analog states. Gamma decays have been observed from T{sub z}=-(3/2) nuclei, {sup 49}Fe and {sup 53}Ni, presented here in new level schemes, and mirror energy differences have been computed following observation of analog states in {sup 49}V and {sup 53}Mn, respectively. Shell-model calculations in the fp shell are in good agreement with the data and reveal the importance of non-Coulomb isospin-breaking effects in T=(3/2) isobaric analog states. A two-step fragmentation process was developed to allow access to highly proton-rich nuclei and to produce each member of a mirror pair via mirrored fragmentation of a {sup 56}Ni secondary beam. This work represents the first study using this technique and demonstrates the power of this approach for future studies of isobaric analog states in very proton-rich systems.

  3. A large sample of finnish diabetic sib-pairs reveals no evidence for a non-insulin-dependent diabetes mellitus susceptibility locus at 2qter.

    PubMed Central

    Ghosh, S; Hauser, E R; Magnuson, V L; Valle, T; Ally, D S; Karanjawala, Z E; Rayman, J B; Knapp, J I; Musick, A; Tannenbaum, J; Te, C; Eldridge, W; Shapiro, S; Musick, T; Martin, C; So, A; Witt, A; Harvan, J B; Watanabe, R M; Hagopian, W; Eriksson, J; Nylund, S J; Kohtamaki, K; Tuomilehto-Wolf, E; Boehnke, M

    1998-01-01

    In the first reported positive result from a genome scan for non-insulin-dependent diabetes mellitus (NIDDM), Hanis et al. found significant evidence of linkage for NIDDM on chromosome 2q37 and named the putative disease locus NIDDM1 (Hanis et al. 1996. Nat. Genet. 13:161-166). Their total sample was comprised of 440 Mexican-American affected sib-pairs from 246 sibships. The strongest evidence for linkage was at marker D2S125 and best estimates of lambdas (risk to siblings of probands/population prevalence) using this marker were 1.37 under an additive model and 1.36 under a multiplicative model. We examined this chromosomal region using linkage analysis in a Finnish sample comprised of 709 affected sib-pairs from 472 sibships. We excluded this region in our sample (multipoint logarithm of odds score /= 1.37. We discuss possible reasons why linkage to 2q37 was not found and conclude that this region is unlikely to be playing a major role in NIDDM susceptibility in the Finnish Caucasian population. PMID:9710438

  4. Exact two-body quantum dynamics of an electron-hole pair in semiconductor coupled quantum wells: A time-dependent approach

    NASA Astrophysics Data System (ADS)

    Grasselli, Federico; Bertoni, Andrea; Goldoni, Guido

    2016-05-01

    We simulate the time-dependent coherent dynamics of a spatially indirect exciton—an electron-hole pair with the two particles confined in different layers—in a GaAs coupled quantum well system. We use a unitary wave-packet propagation method taking into account in full the four degrees of freedom of the two particles in a two-dimensional system, including both the long-range Coulomb attraction and arbitrary two-dimensional electrostatic potentials affecting the electron and/or the hole separately. The method has been implemented for massively parallel architectures to cope with the huge numerical problem, showing good scaling properties and allowing evolution for tens of picoseconds. We have investigated both transient time phenomena and asymptotic time transmission and reflection coefficients for potential profiles consisting of (i) extended barriers and wells and (ii) a single-slit geometry. We found clear signatures of the internal two-body dynamics, with transient phenomena in the picosecond time scale which might be revealed by optical spectroscopy. Exact results have been compared with mean-field approaches which, neglecting dynamical correlations by construction, turn out to be inadequate to describe the electron-hole pair evolution in realistic experimental conditions.

  5. Earthquake interevent time distributions reflect the proportion of dependent and independent events pairs and are therefore not universal

    NASA Astrophysics Data System (ADS)

    Naylor, Mark; Touati, Sarah; Main, Ian; Bell, Andrew

    2010-05-01

    Seismic activity is routinely quantified using event rates or their inverse, interevent times, which are more stable to extreme events [1]. It is common practice to model regional earthquake interevent times using a gamma distribution [2]. However, the use of this gamma distribution is empirically based, not physical. Our recent work has shown that the gamma distribution is an approximation that drops out of a physically based model after the commonly applied filtering of the raw data [3]. We show that in general, interevent time distributions have a fundamentally bimodal shape caused by the mixing of two contributions: correlated aftershocks, which have short interevent times and produce a gamma distribution; and independent events, which tend to be separated by longer intervals and are described by a Poisson distribution. The power-law segment of the gamma distribution arises at the cross over between these distributions. This physically based model is transferable to other fields to explain the form of cascading interevent time series with varying proportions of independent and dependent daughter events. We have found that when the independent or background rate of earthquakes is high, as is the case for earthquake catalogues spanning large regions, significant overlapping of separate aftershock sequences within the time series "masks" the effects of these aftershock sequences on the temporal statistics. The time series qualitatively appears more random; this is confirmed in the interevent time distribution, in the convergence of the mean interevent time, and in the poor performance of temporal ETAS parameter inversions on synthetic catalogues within this regime [4]. The aftershock-triggering characteristics within the data are thus hidden from observation in the time series by a high independent rate of events; spatial information about event occurrence is needed in this case to uncover the triggering structure in the data. We show that earthquake interevent

  6. First-order chiral to non-chiral transition in the angular dependence of the upper critical induction of the Scharnberg-Klemm p-wave pair state.

    PubMed

    Zhang, J; Lörscher, C; Gu, Q; Klemm, R A

    2014-06-25

    We calculate the temperature T and angular (θ, ϕ) dependencies of the upper critical induction Bc2(θ, ϕ, T) for parallel-spin superconductors with an axially symmetric p-wave pairing interaction pinned to the lattice and a dominant ellipsoidal Fermi surface (FS). For all FS anisotropies, the chiral Scharnberg-Klemm (SK) state Bc2(θ, ϕ, T) exceeds that of the chiral Anderson-Brinkman-Morel (ABM) state and exhibits a kink at θ = θ*(T, ϕ), indicative of a first-order transition from its chiral, nodal-direction behavior to its non-chiral, antinodal-direction behavior. Applicabilities to Sr2RuO4, UCoGe and the candidate topological superconductor CuxBi2Se3 are discussed.

  7. Limited associations of dopamine system genes with alcohol dependence and related traits in the Irish Affected Sib Pair Study of Alcohol Dependence (IASPSAD).

    PubMed

    Hack, Laura M; Kalsi, Gursharan; Aliev, Fazil; Kuo, Po-Hsiu; Prescott, Carol A; Patterson, Diana G; Walsh, Dermot; Dick, Danielle M; Riley, Brien P; Kendler, Kenneth S

    2011-02-01

    Over 50 years of evidence from research has established that the central dopaminergic reward pathway is likely involved in alcohol dependence (AD). Additional evidence supports a role for dopamine (DA) in other disinhibitory psychopathology, which is often comorbid with AD. Family and twin studies demonstrate that a common genetic component accounts for most of the genetic variance in these traits. Thus, DA-related genes represent putative candidates for the genetic risk that underlies not only AD but also behavioral disinhibition. Many linkage and association studies have examined these relationships with inconsistent results, possibly because of low power, poor marker coverage, and/or an inappropriate correction for multiple testing. We conducted an association study on the products encoded by 10 DA-related genes (DRD1-D5, SLC18A2, SLC6A3, DDC, TH, COMT) using a large, ethnically homogeneous sample with severe AD (n = 545) and screened controls (n = 509). We collected genotypes from linkage disequilibrium (LD)-tagging single nucleotide polymorphisms (SNPs) and employed a gene-based method of correction. We tested for association with AD diagnosis in cases and controls and with a variety of alcohol-related traits (including age-at-onset, initial sensitivity, tolerance, maximum daily drinks, and a withdrawal factor score), disinhibitory symptoms, and a disinhibitory factor score in cases only. A total of 135 SNPs were genotyped using the Illumina GoldenGate and Taqman Assays-on-Demand protocols. Of the 101 SNPs entered into standard analysis, 6 independent SNPs from 5 DA genes were associated with AD or a quantitative alcohol-related trait. Two SNPs across 2 genes were associated with a disinhibitory symptom count, while 1 SNP in DRD5 was positive for association with the general disinhibitory factor score. Our study provides evidence of modest associations between a small number of DA-related genes and AD as well as a range of alcohol-related traits and measures

  8. Limited Associations of Dopamine System Genes With Alcohol Dependence and Related Traits in the Irish Affected Sib Pair Study of Alcohol Dependence (IASPSAD)

    PubMed Central

    Hack, Laura M.; Kalsi, Gursharan; Aliev, Fazil; Kuo, Po-Hsiu; Prescott, Carol A.; Patterson, Diana G.; Walsh, Dermot; Dick, Danielle M.; Riley, Brien P.; Kendler, Kenneth S.

    2012-01-01

    Background Over 50 years of evidence from research has established that the central dopaminergic reward pathway is likely involved in alcohol dependence (AD). Additional evidence supports a role for dopamine (DA) in other disinhibitory psychopathology, which is often comorbid with AD. Family and twin studies demonstrate that a common genetic component accounts for most of the genetic variance in these traits. Thus, DA-related genes represent putative candidates for the genetic risk that underlies not only AD but also behavioral disinhibition. Many linkage and association studies have examined these relationships with inconsistent results, possibly because of low power, poor marker coverage, and/or an inappropriate correction for multiple testing. Methods We conducted an association study on the products encoded by 10 DA-related genes (DRD1-D5, SLC18A2, SLC6A3, DDC, TH, COMT) using a large, ethnically homogeneous sample with severe AD (n = 545) and screened controls (n = 509). We collected genotypes from linkage disequilibrium (LD)-tagging single nucleotide polymorphisms (SNPs) and employed a gene-based method of correction. We tested for association with AD diagnosis in cases and controls and with a variety of alcohol-related traits (including age-at-onset, initial sensitivity, tolerance, maximum daily drinks, and a withdrawal factor score), disinhibitory symptoms, and a disinhibitory factor score in cases only. A total of 135 SNPs were genotyped using the Illumina GoldenGate and Taqman Assays-on-Demand protocols. Results Of the 101 SNPs entered into standard analysis, 6 independent SNPs from 5 DA genes were associated with AD or a quantitative alcohol-related trait. Two SNPs across 2 genes were associated with a disinhibitory symptom count, while 1 SNP in DRD5 was positive for association with the general disinhibitory factor score. Conclusions Our study provides evidence of modest associations between a small number of DA-related genes and AD as well as a range

  9. Combinatorial DNA Damage Pairing Model Based on X-Ray-Induced Foci Predicts the Dose and LET Dependence of Cell Death in Human Breast Cells

    SciTech Connect

    Vadhavkar, Nikhil; Pham, Christopher; Georgescu, Walter; Deschamps, Thomas; Heuskin, Anne-Catherine; Tang, Jonathan; Costes, Sylvain V.

    2014-09-01

    In contrast to the classic view of static DNA double-strand breaks (DSBs) being repaired at the site of damage, we hypothesize that DSBs move and merge with each other over large distances (m). As X-ray dose increases, the probability of having DSB clusters increases as does the probability of misrepair and cell death. Experimental work characterizing the X-ray dose dependence of radiation-induced foci (RIF) in nonmalignant human mammary epithelial cells (MCF10A) is used here to validate a DSB clustering model. We then use the principles of the local effect model (LEM) to predict the yield of DSBs at the submicron level. Two mechanisms for DSB clustering, namely random coalescence of DSBs versus active movement of DSBs into repair domains are compared and tested. Simulations that best predicted both RIF dose dependence and cell survival after X-ray irradiation favored the repair domain hypothesis, suggesting the nucleus is divided into an array of regularly spaced repair domains of ~;;1.55 m sides. Applying the same approach to high-linear energy transfer (LET) ion tracks, we are able to predict experimental RIF/m along tracks with an overall relative error of 12percent, for LET ranging between 30 350 keV/m and for three different ions. Finally, cell death was predicted by assuming an exponential dependence on the total number of DSBs and of all possible combinations of paired DSBs within each simulated RIF. Relative biological effectiveness (RBE) predictions for cell survival of MCF10A exposed to high-LET showed an LET dependence that matches previous experimental results for similar cell types. Overall, this work suggests that microdosimetric properties of ion tracks at the submicron level are sufficient to explain both RIF data and survival curves for any LET, similarly to the LEM assumption. Conversely, high-LET death mechanism does not have to infer linear-quadratic dose formalism as done in the LEM. In addition, the size of repair domains derived in our model

  10. Combinatorial DNA damage pairing model based on X-ray-induced foci predicts the dose and LET dependence of cell death in human breast cells.

    PubMed

    Vadhavkar, Nikhil; Pham, Christopher; Georgescu, Walter; Deschamps, Thomas; Heuskin, Anne-Catherine; Tang, Jonathan; Costes, Sylvain V

    2014-09-01

    In contrast to the classic view of static DNA double-strand breaks (DSBs) being repaired at the site of damage, we hypothesize that DSBs move and merge with each other over large distances (μm). As X-ray dose increases, the probability of having DSB clusters increases as does the probability of misrepair and cell death. Experimental work characterizing the X-ray dose dependence of radiation-induced foci (RIF) in nonmalignant human mammary epithelial cells (MCF10A) is used here to validate a DSB clustering model. We then use the principles of the local effect model (LEM) to predict the yield of DSBs at the submicron level. Two mechanisms for DSB clustering, namely random coalescence of DSBs versus active movement of DSBs into repair domains are compared and tested. Simulations that best predicted both RIF dose dependence and cell survival after X-ray irradiation favored the repair domain hypothesis, suggesting the nucleus is divided into an array of regularly spaced repair domains of ∼1.55 μm sides. Applying the same approach to high-linear energy transfer (LET) ion tracks, we are able to predict experimental RIF/μm along tracks with an overall relative error of 12%, for LET ranging between 30-350 keV/μm and for three different ions. Finally, cell death was predicted by assuming an exponential dependence on the total number of DSBs and of all possible combinations of paired DSBs within each simulated RIF. Relative biological effectiveness (RBE) predictions for cell survival of MCF10A exposed to high-LET showed an LET dependence that matches previous experimental results for similar cell types. Overall, this work suggests that microdosimetric properties of ion tracks at the submicron level are sufficient to explain both RIF data and survival curves for any LET, similarly to the LEM assumption. Conversely, high-LET death mechanism does not have to infer linear-quadratic dose formalism as done in the LEM. In addition, the size of repair domains derived in our

  11. Isospin breaking in the decay constants of heavy mesons from QCD sum rules

    NASA Astrophysics Data System (ADS)

    Lucha, Wolfgang; Melikhov, Dmitri; Simula, Silvano

    2017-02-01

    We present a study of the strong isospin-breaking (IB) effect, due in QCD to the difference between u- and d-quark masses, in the leptonic decay constants of charmed and beauty pseudoscalar and vector mesons using the method of QCD sum rules. We apply the sum-rule analysis to the decay constants of mesons containing one heavy quark and one light quark with the light mass in the range from the average u / d quark mass to the strange-quark mass. We then analyse the dependence of the decay constants on the light-quark mass and extract with good accuracy the IB ratios of decay constants at leading order in the mass difference (md -mu), obtaining: (fD+ -fD0) /fD = 0.0047 (6), (fD*+ -fD*0) /fD* = 0.0068 (9), (fB0 -fB+) /fB = 0.0047 (6), and (fB*0 -fB*+) /fB* = 0.0045 (5), which yield: fD+ -fD0 = 0.97 ± 0.13 MeV, fD*+ -fD*0 = 1.73 ± 0.27 MeV, fB0 -fB+ = 0.90 ± 0.13 MeV, fB*0 -fB*+ = 0.81 ± 0.11 MeV. In the case of the D-meson our finding is consistent with recent lattice QCD results, whereas it is much lower in the case of the B-meson showing a tension of ≈3 standard deviations.

  12. Constraining the Symmetry Energy:. a Journey in the Isospin Physics from Coulomb Barrier to Deconfinement

    NASA Astrophysics Data System (ADS)

    di Toro, M.; Colonna, M.; Greco, V.; Ferini, G.; Rizzo, C.; Rizzo, J.; Baran, V.; Gaitanos, T.; Prassa, V.; Wolter, H. H.; Zielinska-Pfabe, M.

    Heavy Ion Collisions (HIC) represent a unique tool to probe the in-medium nuclear interaction in regions away from saturation. In this work we present a selection of reaction observables in dissipative collisions particularly sensitive to the isovector part of the interaction, i.e.to the symmetry term of the nuclear Equation of State (EoS). At low energies the behavior of the symmetry energy around saturation influences dissipation and fragment production mechanisms. We will first discuss the recently observed Dynamical Dipole Radiation, due to a collective neutron-proton oscillation during the charge equilibration in fusion and deep-inelastic collisions. Important Iso - EOS are stressed. Reactions induced by unstable 132Sn beams appear to be very promising tools to test the sub-saturation Isovector EoS. New Isospin sensitive observables are also presented for deep-inelastic, fragmentation collisions and Isospin equilibration measurements (Imbalance Ratios). The high density symmetry term can be derived from isospin effects on heavy ion reactions at relativistic energies (few AGeV range), that can even allow a "direct" study of the covariant structure of the isovector interaction in the hadron medium. Rather sensitive observables are proposed from collective flows and from pion/kaon production. The possibility of the transition to a mixed hadron-quark phase, at high baryon and isospin density, is finally suggested. Some signatures could come from an expected "neutron trapping" effect. The importance of studying violent collisions with radioactive beams from low to relativistic energies is finally stressed.

  13. Pick a Pair. Pancake Pairs

    ERIC Educational Resources Information Center

    Miller, Pat

    2005-01-01

    Cold February weather and pancakes are a traditional pairing. Pancake Day began as a way to eat up the foods that were abstained from in Lent--traditionally meat, fat, eggs and dairy products. The best-known pancake event is The Pancake Day Race in Buckinghamshire, England, which has been run since 1445. This column describes pairs of books that…

  14. Pick a Pair. Pancake Pairs

    ERIC Educational Resources Information Center

    Miller, Pat

    2005-01-01

    Cold February weather and pancakes are a traditional pairing. Pancake Day began as a way to eat up the foods that were abstained from in Lent--traditionally meat, fat, eggs and dairy products. The best-known pancake event is The Pancake Day Race in Buckinghamshire, England, which has been run since 1445. This column describes pairs of books that…

  15. Isospin Mixing and the Continuum Coupling in Weakly Bound Nuclei

    SciTech Connect

    Michel, N.; Nazarewicz, Witold; Ploszajczak, M.

    2010-01-01

    We investigate the near-threshold behavior of one-nucleon spectroscopic factors in mirror nuclei using the Gamow Shell Model, which simultaneously takes into account many-body correlations and continuum effects. We demonstrate that for weakly bound or unbound systems, the mirror symmetry-breaking effects are appreciable, and they manifest in large differences of spectroscopic factors in a mirror pair.

  16. Measurement of Branching Fractions, Isospin, and CP-Violating Asymmetries for Exclusive b→dγ Modes

    NASA Astrophysics Data System (ADS)

    Taniguchi, N.; Nakao, M.; Nishida, S.; Adachi, I.; Aihara, H.; Arinstein, K.; Aushev, T.; Aziz, T.; Bakich, A. M.; Balagura, V.; Bay, A.; Belous, K.; Bhardwaj, V.; Bitenc, U.; Bondar, A.; Bozek, A.; Bračko, M.; Browder, T. E.; Chang, M.-C.; Chang, P.; Chao, Y.; Chen, A.; Chen, K.-F.; Chen, W. T.; Cheon, B. G.; Chiang, C.-C.; Cho, I.-S.; Choi, Y.; Dalseno, J.; Dash, M.; Drutskoy, A.; Dungel, W.; Eidelman, S.; Golob, B.; Ha, H.; Haba, J.; Hara, T.; Hayasaka, K.; Hayashii, H.; Hazumi, M.; Hoshi, Y.; Hou, W.-S.; Hyun, H. J.; Iijima, T.; Inami, K.; Ishikawa, A.; Ishino, H.; Itoh, R.; Iwabuchi, M.; Iwasaki, M.; Iwasaki, Y.; Joshi, N. J.; Kah, D. H.; Kaji, H.; Kang, J. H.; Kawai, H.; Kawasaki, T.; Kichimi, H.; Kim, S. K.; Kim, Y. I.; Kim, Y. J.; Kinoshita, K.; Korpar, S.; Križan, P.; Krokovny, P.; Kumar, R.; Kuzmin, A.; Kwon, Y.-J.; Kyeong, S.-H.; Lange, J. S.; Lee, J. S.; Lee, S. E.; Lesiak, T.; Limosani, A.; Lin, S.-W.; Liu, C.; Liu, Y.; Liventsev, D.; Mandl, F.; McOnie, S.; Miyabayashi, K.; Miyazaki, Y.; Moloney, G. R.; Nagasaka, Y.; Nakamura, I.; Nakano, E.; Nakazawa, H.; Natkaniec, Z.; Nitoh, O.; Nozaki, T.; Ogawa, S.; Ohshima, T.; Okuno, S.; Olsen, S. L.; Ozaki, H.; Pakhlov, P.; Pakhlova, G.; Park, C. W.; Park, H.; Park, H. K.; Park, K. S.; Peak, L. S.; Piilonen, L. E.; Sahoo, H.; Sakai, Y.; Sasao, N.; Schneider, O.; Schümann, J.; Schwanda, C.; Schwartz, A. J.; Seidl, R.; Senyo, K.; Sevior, M. E.; Shapkin, M.; Shen, C. P.; Shiu, J.-G.; Shwartz, B.; Singh, J. B.; Sokolov, A.; Stanič, S.; Starič, M.; Sumisawa, K.; Sumiyoshi, T.; Suzuki, S. Y.; Tamura, N.; Taylor, G. N.; Teramoto, Y.; Tikhomirov, I.; Trabelsi, K.; Tsuboyama, T.; Uehara, S.; Uglov, T.; Unno, Y.; Uno, S.; Urquijo, P.; Varner, G.; Wang, C. H.; Wang, M.-Z.; Wang, P.; Wang, X. L.; Watanabe, Y.; Wedd, R.; Wicht, J.; Won, E.; Yabsley, B. D.; Yamashita, Y.; Yusa, Y.; Zhang, Z. P.; Zhilich, V.; Zhulanov, V.; Zivko, T.; Zupanc, A.; Zyukova, O.

    2008-09-01

    We report new measurements of the decays B+→ρ+γ, B0→ρ0γ, and B0→ωγ using a data sample of 657×106 B meson pairs accumulated with the Belle detector at the KEKB e+e- collider. We measure branching fractions B(B+→ρ+γ)=(8.7-2.7-1.1+2.9+0.9)×10-7, B(B0→ρ0γ)=(7.8-1.6-1.0+1.7+0.9)×10-7, and B(B0→ωγ)=(4.0-1.7+1.9±1.3)×10-7. We also report the isospin asymmetry Δ(ργ)=-0.48-0.19-0.09+0.21+0.08 and the first measurement of the direct CP-violating asymmetry ACP(B+→ρ+γ)=-0.11±0.32±0.09, where the first and second errors are statistical and systematic, respectively.

  17. Effect of momentum dependent interactions and nucleonic cross-section on directed flow (v{sub 1})

    SciTech Connect

    Jain, Anupriya; Vinayak, Karan Singh; Kumar, Suneel

    2013-07-15

    The descriptive analysis for the effect of momentum dependent interactions and nucleonic cross-section (isospin dependent and isospin-independent) on the neutron–proton directed flow (v{sub 1}), within the framework of the isospin dependent quantum molecular dynamics model is presented. Our study shows that, the directed flow of both neutrons and protons is affected by the momentum dependence of nuclear equation of state and the isospin dependence of nucleon–nucleon cross-section. A soft momentum dependent (SM) equation of state is found to be more compatible with the experimental data. -- Highlights: •Role of rapidity cut on transverse flow has been explored. •p{sub t} differential flow for protons and neutrons has been studied. •Role of MDI on directed flow has been studied.

  18. The tilt-dependent potential of mean force of a pair of DNA oligomers from all-atom molecular dynamics simulations

    DOE PAGES

    Cortini, Ruggero; Cheng, Xiaolin; Smith, Jeremy C.

    2017-01-16

    Electrostatic interactions between DNA molecules have been extensively studied experimentally and theoretically, but several aspects (e.g. its role in determining the pitch of the cholesteric DNA phase) still remain unclear. Here, we performed large-scale all-atom molecular dynamics simulations in explicit water and 150 mM sodium chloride, to reconstruct the potential of mean force (PMF) of two DNA oligomers 24 base pairs long as a function of their interaxial angle and intermolecular distance. We find that the potential of mean force is dominated by total DNA charge, and not by the helical geometry of its charged groups. The theory of homogeneously charged cylinders fits well all our simulation data, and the fit yields the optimal value of the total compensated charge on DNA to ≈65% of its total fixed charge (arising from the phosphorous atoms), close to the value expected from Manning's theory of ion condensation. The PMF calculated from our simulations does not show a significant dependence on the handedness of the angle between the two DNA molecules, or its size is on the order ofmore » $$1{{k}_{\\text{B}}}T$$ . Thermal noise for molecules of the studied length seems to mask the effect of detailed helical charge patterns of DNA. The fact that in monovalent salt the effective interaction between two DNA molecules is independent on the handedness of the tilt may suggest that alternative mechanisms are required to understand the cholesteric phase of DNA.« less

  19. Impact of land-use on carbon storage as dependent on soil texture: evidence from a desertified dryland using repeated paired sampling design.

    PubMed

    Ye, Xuehua; Tang, Shuangli; Cornwell, William K; Gao, Shuqin; Huang, Zhenying; Dong, Ming; Cornelissen, Johannes H C

    2015-03-01

    Desertification resulting from land-use affects large dryland areas around the world, accompanied by carbon loss. However it has been difficult to interpret different land-use contributions to carbon pools owing to confounding factors related to climate, topography, soil texture and other original soil properties. To avoid such confounding effects, a unique systematic and extensive repeated design of paired sampling plots of different land-use types was adopted on Ordos Plateau, N China. The sampling enabled to quantify the effects of the predominant land-use types on carbon storage as dependent on soil texture, and to define the most promising land-use choices for carbon storage, both in grassland on sandy soil and in desert grassland on brown calcareous soil. The results showed that (1) desertification control should be an effective measure to improve the carbon sequestration in sandy grassland, and shrub planting should be better than grass planting; (2) development of man-made grassland should be a good choice to solve the contradictions of ecology and economy in desert grassland; (3) grassland on sandy soil is more vulnerable to soil degradation than desert grassland on brown calcareous soil. The results may be useful for the selection of land-use types, aiming at desertification prevention in drylands. Follow-up studies should directly investigate the role of soil texture on the carbon storage dynamic caused by land-use change. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. The tilt-dependent potential of mean force of a pair of DNA oligomers from all-atom molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Cortini, Ruggero; Cheng, Xiaolin; Smith, Jeremy C.

    2017-03-01

    Electrostatic interactions between DNA molecules have been extensively studied experimentally and theoretically, but several aspects (e.g. its role in determining the pitch of the cholesteric DNA phase) still remain unclear. Here, we performed large-scale all-atom molecular dynamics simulations in explicit water and 150 mM sodium chloride, to reconstruct the potential of mean force (PMF) of two DNA oligomers 24 base pairs long as a function of their interaxial angle and intermolecular distance. We find that the potential of mean force is dominated by total DNA charge, and not by the helical geometry of its charged groups. The theory of homogeneously charged cylinders fits well all our simulation data, and the fit yields the optimal value of the total compensated charge on DNA to  ≈65% of its total fixed charge (arising from the phosphorous atoms), close to the value expected from Manning’s theory of ion condensation. The PMF calculated from our simulations does not show a significant dependence on the handedness of the angle between the two DNA molecules, or its size is on the order of 1{{k}\\text{B}}T . Thermal noise for molecules of the studied length seems to mask the effect of detailed helical charge patterns of DNA. The fact that in monovalent salt the effective interaction between two DNA molecules is independent on the handedness of the tilt may suggest that alternative mechanisms are required to understand the cholesteric phase of DNA.

  1. Excessive production of electron pairs by soft photons in low multiplicity ion interactions

    NASA Technical Reports Server (NTRS)

    Burnett, T. H.; Dake, S.; Fuki, M.; Gregory, J. C.; Hayashi, T.; Holynski, R.; Iwai, J.; Jones, W. V.; Jurak, A.; Lord, J. J.

    1985-01-01

    Three multiply charged primary cosmic ray interactions with carbon nuclei are reported, in which the number of materialized electron pairs within a distance of about 0.3 conversion length is larger than predicted from isospin considerations. These are the most energetic (sigma E gamma 4 TeV) of the low multiplicity ( 15 tracks) events observed in the Japanese-American Cooperative Experiment (JACEE-2) emulsion chamber.

  2. JAHN—A program for representing atomic and nuclear states within an isospin basis

    NASA Astrophysics Data System (ADS)

    Gaigalas, G.; Fritzsche, S.; Gaidamauskas, E.; Kiršanskas, G.; Žalandauskas, T.

    2006-07-01

    A computer program is presented to deal with atomic and nuclear state functions within an isospin-coupled basis. Apart from the classification of the isospin bases states, the program JAHN supports the computation of the corresponding coefficients of fractional parentage as well as of the transformation matrices going from a LS-coupled to an isospin-coupled basis. In the future, these features may facilitate the treatment of atomic systems in order to obtain a deeper insight into the coupling of open-shell atoms and ions. The JAHN program has been designed for interactive work and is distributed as a MAPLE module. Program summaryTitle of program:JAHN Catalogue identifier:ADXA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXA_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions:None Computers for which the program is designed: All computers with a valid license of the computer algebra package MAPLE which is a registered trademark of Waterloo Maple Inc. Installations: University of Kassel (Germany) Operating systems under which the program has been tested: Linux 8.1+ Program language used:MAPLE, Release 8 and 9 Memory required to execute with typical data: 30 MB Number of lines in distributed program, including test data, etc.: 38 158 Number of bytes in distributed program, including test data, etc.: 743 689 Distribution format: tar.gz Nature of the physical problem: The accurate computation of atomic (nuclear) properties and level structures requires a good understanding and implementation of the atomic (nuclear) shell model and, hence, a fast and reliable access to its classification, the coefficients of fractional parentage and the coefficients of fractional grandparentage. For open-shell atoms and ions, moreover, a reliable classification of the level structure often requires the knowledge of some transformation matrices in order to find the main components of the wave functions as well as

  3. Proton-neutron pairing and alpha-type condensation in nuclei

    SciTech Connect

    Sandulescu, N.; Negrea, D.; Gambacurta, D.

    2015-10-15

    We summarize a recent work (N. Sandulescu et al, arXiv:1507.04144) on isoscalar and isovector proton-neutron pairing treated in a formalism which conserves exactly the particle number and the isospin. The formalism is designed for self-conjugate (N=Z) systems of nucleons moving in an axially deformed mean field and interacting through the most general isovector and isoscalar pairing interactions. The ground state of these systems is described by a superposition of two types of condensates, i.e., condensates of isovector quartets, built by two isovector pairs coupled to the total isospin T=0, and condensates of isoscalar proton-neutron pairs. The comparison with the exact solutions of realistic isovector-isoscalar pairing Hamiltonians shows that this formalism is able to describe accurately the pairing correlations energies. It is also shown that, contrary to the majority of HFB calculations, in the present formalism the isovector and isoscalar pairing correlations coexist together for any pairing interactions.

  4. LHCb pentaquarks as a baryon-ψ (2 S ) bound state: Prediction of isospin-3/2 pentaquarks with hidden charm

    NASA Astrophysics Data System (ADS)

    Perevalova, Irina A.; Polyakov, Maxim V.; Schweitzer, Peter

    2016-09-01

    The pentaquark Pc+(4450 ) recently discovered by the LHCb has been interpreted as a bound state of Ψ (2 S ) and a nucleon. The charmonium-nucleon interaction which provides the binding mechanism is given, in the heavy-quark limit, in terms of charmonium chromoelectric polarizabilities and densities of the nucleon energy-momentum tensor. In this work, we show in a model-independent way, by exploring general properties of the effective interaction, that Ψ (2 S ) can form bound states with a nucleon and Δ . Using the Skyrme model to evaluate the effective interaction in the large-Nc limit and estimate 1 /Nc corrections, we confirm the results from prior work which were based on a different effective model (chiral quark soliton model). This shows that the interpretation of Pc+(4450 ) is remarkably robust and weakly dependent on the details of the effective theories for the nucleon energy-momentum tensor. We explore the formalism further and present robust predictions of isospin-3/2 bound states of Ψ (2 S ) and Δ with masses around 4.5 GeV and widths around 70 MeV. The approach also predicts broader resonances in the Ψ (2 S )-Δ channel at 4.9 GeV with widths of the order of 150 MeV. We discuss in which reactions these new isospin-3/2 pentaquarks with hidden charm can be observed.

  5. Isospin decomposition of γN→N* transitions within a dynamical coupled-channels model

    DOE PAGES

    Kamano, Hiroyuki; Nakamura, S. X.; Lee, T. -S. H.; ...

    2016-07-07

    Here, by extending the dynamical coupled-channels analysis performed in our previous work to include the available data of photoproduction of pi mesons off neutrons, the transition amplitudes for the photoexcitation of the neutron-to-nucleon resonances, γn → N*, at the resonance pole positions are determined. The combined fits to the data for both the proton- and neutron-target reactions also revise our results for the resonance pole positions and the γp → N* transition amplitudes. Our results allow an isospin decomposition of the γN → N* transition amplitudes for the isospin I = 1/2 N* resonances, which is necessary for testing hadronmore » structure models and gives crucial inputs for constructing models of neutrino-induced reactions in the nucleon resonance region.« less

  6. Isospin effects on light charged particles as probes of nuclear dissipation

    SciTech Connect

    Ye, W.

    2009-07-15

    The multiplicities of postsaddle protons and {alpha} particles of the heavy systems {sup 234}Cf, {sup 240}Cf, {sup 246}Cf, and {sup 240}U as functions of the postsaddle dissipation strength are calculated in the framework of a dynamical Langevin model coupled with a statistical decay model. It is found that with increasing isospin of the Cf system, the sensitivity of the postsaddle proton and {alpha}-particle multiplicity to the dissipation strength decreases substantially, and it disappears for the {sup 240}U system. We suggest that on the experimental side, to accurately probe the postsaddle dissipation strength by measuring the prescission proton and {alpha}-particle multiplicity, it is best to populate heavy compound systems with low isospin.

  7. Precise Determination of 40Ti Mass by Measuring the 40Sc Isospin Analogue State

    NASA Astrophysics Data System (ADS)

    Liu, Wei-Ping; Hellström, M.; Collatz, R.; Benlliure, J.; Chulkov, L.; Cortina Gil, D.; Farget, F.; Grawe, H.; Z., Hu; Iwasa, N.; Pfützner, M.; Piechaczek, A.; Raabe, R.; Reusen, I.; Roeckl, E.; Vancraeynest, G.; Wöhr, A.

    2001-11-01

    The mass of 40Ti has been determined by using the isobaric multiplet mass equation method. The experimental data of the 40Ti β-decay were used to determine the level of the isospin analogue state of 40Sc. The ground-state mass excess and the QEC value for 40Ti were determined to be -9060+/-12 keV and 11 466 +/- 13 keV, respectively.

  8. Isospin and particle representations for quasi-bound state of kaonic clusters

    NASA Astrophysics Data System (ADS)

    Filikhin, Igor; Kezerashvili, Roman; Vlahovic, Branislav

    2017-01-01

    In the framework of the method of the Faddeev equations in configuration space, the NNK (I = 0) (and KK) kaonic cluster system including two identical particles is considered. We use the formalism of isospin and particle representations to describe the systems. The treatment of I = 1 and I = 0 isospin KN channels is discussed. The presence of the Coulomb force in ppK- channel violates the isospin symmetry of the NNK (I = 0) system. According to the particle representation, NNK is a two-level system of coupled ppK- and ppnl channels with and without the Coulomb energy, respectively. The results of calculations for the bound states with the phenomenological and chiral motivated KN potentials are given for different representations. In particular, new single channel calculations for the ppK- (and K-K- p) cluster are presented. It is shown that the exchange of identical particles plays an important role in the formation of a bound state of the systems. The relation of the exchange and the three-body mass rearrangement effects is discussed. This work is supported by the National Science Foundation grant Supplement to the NSF grant HRD-1345219 and NASA (NNX09AV07A).

  9. A new Skyrme energy density functional for a better description of spin-isospin resonances

    NASA Astrophysics Data System (ADS)

    Roca-Maza, X.; Colò, G.; Cao, Li-Gang; Sagawa, H.

    2015-10-01

    A correct determination of the isospin and spin-isospin properties of the nuclear effective interaction should lead to an accurate description of the Gamow-Teller resonance (GT), the Spin Dipole Resonance (SDR), the Giant Dipole Resonance (GDR) or the Antianalog Giant Dipole Resonance (AGDR), among others. A new Skyrme energy density functional named SAMi is introduced with the aim of going a step forward in setting the bases for a more precise description of spin-isospin resonances [1, 2]. In addition, we will discuss some new features of our analysis on the AGDR in 208Pb [3] as compared with available experimental data on this resonance [4, 5, 6], and on the GDR [7]. Such study, guided by a simple yet physical pocket formula, has been developed by employing the so called SAMi-J family of systematically varied interactions. This set of interactions is compatible with experimental data for values of the symmetry energy at saturation J and slope parameter L falling in the ranges 31-33 MeV and 75-95 MeV, respectively.

  10. A new Skyrme energy density functional for a better description of spin-isospin resonances

    SciTech Connect

    Roca-Maza, X.; Colò, G.; Cao, Li-Gang; Sagawa, H.

    2015-10-15

    A correct determination of the isospin and spin-isospin properties of the nuclear effective interaction should lead to an accurate description of the Gamow-Teller resonance (GT), the Spin Dipole Resonance (SDR), the Giant Dipole Resonance (GDR) or the Antianalog Giant Dipole Resonance (AGDR), among others. A new Skyrme energy density functional named SAMi is introduced with the aim of going a step forward in setting the bases for a more precise description of spin-isospin resonances [1, 2]. In addition, we will discuss some new features of our analysis on the AGDR in {sup 208}Pb [3] as compared with available experimental data on this resonance [4, 5, 6], and on the GDR [7]. Such study, guided by a simple yet physical pocket formula, has been developed by employing the so called SAMi-J family of systematically varied interactions. This set of interactions is compatible with experimental data for values of the symmetry energy at saturation J and slope parameter L falling in the ranges 31−33 MeV and 75−95 MeV, respectively.

  11. Isospin Symmetry Breaking within the HLS Model: A Full (rho, omega, phi) Mixing Scheme

    SciTech Connect

    O'Connell, Heath B

    2001-07-16

    We study the way isospin symmetry violation can be generated within the Hidden Local Symmetry (HLS) Model. We show that isospin symmetry breaking effects on pseudoscalar mesons naturally induces correspondingly effects within the physics of vector mesons, through kaon loops. In this way, one recovers all features traditionally expected from {rho}-{omega} mixing and one finds support for the Orsay phase modeling of the e{sup +}e{sup -} {yields} {pi}{sup +}{pi}{sup -} amplitude. We then examine an effective procedure which generates mixing in the whole {rho}, {omega}, {phi} sector of the HLS Model. The corresponding model allows us to account for all two body decays of light mesons accessible to the HLS model in modulus and phase, leaving aside the {rho} {yields} {pi}{pi} and K* {yields} K{pi} modes only, which raise a specific problem. Comparison with experimental data is performed and covers modulus and phase information; this represents 26 physics quantities successfully described with very good fit quality within a constrained model which accounts for SU(3) breaking, nonet symmetry breaking in the pseudoscalar sector and, now, isospin symmetry breaking.

  12. Isospin violation in ϕ, J/ψ, ψ'→ωπ0 via hadronic loops

    NASA Astrophysics Data System (ADS)

    Li, Gang; Zhao, Qiang; Zou, Bing-Song

    2008-01-01

    In this work, we study the isospin-violating decay of ϕ→ωπ0 and quantify the electromagnetic (EM) transitions and intermediate meson exchanges as two major sources of the decay mechanisms. In the EM decays, the present datum status allows a good constraint on the EM decay form factor in the vector meson dominance model, and it turns out that the EM transition can only account for about 1/4˜1/3 of the branching ratio for ϕ→ωπ0. The intermediate meson exchanges, KK¯(K*) (intermediate KK¯ interaction via K* exchanges), KK¯*(K) (intermediate KK¯* rescattering via kaon exchanges), and KK¯*(K*) (intermediate KK¯* rescattering via K* exchanges), which evade the naive Okubo-Zweig-Iizuka rule, serve as another important contribution to the isospin violations. They are evaluated with effective Lagrangians where explicit constraints from experiment can be applied. Combining these three contributions, we obtain results in good agreement with the experimental data. This approach is also extended to J/ψ(ψ')→ωπ0, where we find contributions from the KK¯(K*), KK¯*(K), and KK¯*(K*) loops are negligibly small, and the isospin violation is likely to be dominated by the EM transition.

  13. Probing the hadron-quark mixed phase at high isospin and baryon density. Sensitive observables

    NASA Astrophysics Data System (ADS)

    Di Toro, Massimo; Colonna, Maria; Greco, Vincenzo; Shao, Guo-Yun

    2016-08-01

    We discuss the isospin effect on the possible phase transition from hadronic to quark matter at high baryon density and finite temperatures. The two-Equation of State (Two-EoS) model is adopted to describe the hadron-quark phase transition in dense matter formed in heavy-ion collisions. For the hadron sector we use Relativistic Mean-Field (RMF) effective models, already tested on heavy-ion collision (HIC). For the quark phase we consider various effective models, the MIT-Bag static picture, the Nambu-Jona-Lasinio (NJL) approach with chiral dynamics and finally the NJL coupled to the Polyakov-loop field (PNJL), which includes both chiral and (de)confinement dynamics. The idea is to extract mixed phase properties which appear robust with respect to the model differences. In particular we focus on the phase transitions of isospin asymmetric matter, with two main results: i) an earlier transition to a mixed hadron-quark phase, at lower baryon density/chemical potential with respect to symmetric matter; ii) an "Isospin Distillation" to the quark component of the mixed phase, with predicted effects on the final hadron production. Possible observation signals are suggested to probe in heavy-ion collision experiments at intermediate energies, in the range of the NICA program.

  14. Reply to Comment on 'Excited states of DNA base pairs using long-range corrected time-dependent density functional theory

    SciTech Connect

    Jensen, Lasse; Govind, Niranjan

    2009-09-18

    In this work we present a study of the excitation energies of adenine, cytosine, guanine, thymine and the adenine-thymine (AT) and guanine-cytosine (GC) base pairs using long-range corrected (LC) density functional theory. We compare three recent LC-functionals, BNL, CAM-B3LYP and LC-PBE0 with B3LYP and coupled cluster results from the literature. We find that the best overall performance is for the BNL functional based on LDA. However, in order to achieve this good agreement a smaller attenuation parameter was needed which leads to non-optimum performance for ground state properties. B3LYP, on the other hand, severely underestimates the charge transfer (CT) transitions in the base pairs. Surprisingly we also find that the CAM-B3LYP functional also underestimates the CT excitation energy for the GC base pair, but correctly describes the AT base pair. This illustrates the importance of retaining the full long-range exact exchange even at distances as short as that of the DNA base pairs. The worst overall performance was obtained with the LC-PBE0 functional which overestimates the excitations for the individual bases as well as the base pairs. It is therefore crucial to strike a good balance between the amount of local and long-range exact exchange.

  15. The local post-perovskite structure and its temperature dependence : atom-pair distances in CalrO{sub 3} revealed through analysis of the total x-ray scattering at high temperatures.

    SciTech Connect

    Martin, C. D.; X-Ray Science Division

    2008-08-01

    The temperature-dependent post-perovskite structure model of MgSiO{sub 3} is reinvestigated through analysis of the atom-pair distances observed experimentally via Fourier transformation of X-ray diffraction and diffuse scattering, the total X-ray scattering, from CaIrO{sub 3}. In contrast to the results of a previous Rietveld structure refinement, which shows a negative or null thermal expansion of Ir-O and Ca-O bond lengths within the average long-range structure, visual inspection of these atom-pair distances in the pair-distribution function, in addition to structure models fitted through least-squares refinement to this local-structure data, strongly suggests that these distances between atom pairs increase with temperature. The average long-range structure of CaIrO{sub 3}, visible from Rietveld structure refinement, is distinct from the short-range structure ({le} 18 {angstrom}) at all of the temperatures examined in this study (325-1114 K) and is reproduced in structure models fitted to the pair-distribution function extending to sufficiently long atom-pair distances ({ge} 50 {angstrom}). While previous data obtained with Rietveld structure refinement show the iridium coordination octahedra to distort with increasing temperature, models of the short-range structure demonstrate that these polyhedra instead reduce distortion and rotate in a manner similar to that occurring in the perovskite structure.

  16. Leading isospin-breaking corrections to pion, kaon, and charmed-meson masses with twisted-mass fermions

    NASA Astrophysics Data System (ADS)

    Giusti, D.; Lubicz, V.; Tarantino, C.; Martinelli, G.; Sanfilippo, F.; Simula, S.; Tantalo, N.; RM123 Collaboration

    2017-06-01

    We present a lattice computation of the isospin-breaking corrections to pseudoscalar meson masses using the gauge configurations produced by the European Twisted Mass Collaboration with Nf=2 +1 +1 dynamical quarks at three values of the lattice spacing (a ≃0.062 , 0.082, and 0.089 fm) with pion masses in the range Mπ≃210 - 450 MeV . The strange and charm quark masses are tuned at their physical values. We adopt the RM123 method based on the combined expansion of the path integral in powers of the d - and u -quark mass difference (m^d-m^u) and of the electromagnetic coupling αe m. Within the quenched QED approximation, which neglects the effects of the sea-quark charges, and after the extrapolations to the physical pion mass and to the continuum and infinite volume limits, we provide results for the pion, kaon, and (for the first time) charmed-meson mass splittings, for the prescription-dependent parameters ɛπ0, ɛγ(M S ¯ ,2 GeV ) , ɛK0(M S ¯ ,2 GeV ) , related to the violations of the Dashen's theorem, and for the light quark mass difference (m^ d-m^ u)(M S ¯ ,2 GeV ) .

  17. On Adiabatic Pair Creation

    NASA Astrophysics Data System (ADS)

    Pickl, Peter; Dürr, Detlef

    2008-08-01

    We give here a rigorous proof of the well known prediction of pair creation as it arises from the Dirac equation with an external time dependent potential. Pair creation happens with probability one if the potential changes adiabatically in time and becomes overcritical, which means that an eigenvalue curve (as a function of time) bridges the gap between the negative and positive spectral continuum. The potential can be thought of as being zero at large negative and large positive times. The rigorous treatment of this effect has been lacking since the pioneering work of Beck, Steinwedel and Süßmann [1] in 1963 and Gershtein and Zeldovich [8] in 1970.

  18. Optimal self-cleavage activity of the hepatitis delta virus RNA is dependent on a homopurine base pair in the ribozyme core.

    PubMed Central

    Been, M D; Perrotta, A T

    1995-01-01

    A non-Watson-Crick G.G interaction within the core region of the hepatitis delta virus (HDV) antigenomic ribozyme is required for optimal rates of self-cleavage activity. Base substitutions for either one or both G's revealed that full activity was obtained only when both G's were replaced with A's. At those positions, substitutions that generate potential Watson-Crick, G.U, heteropurine, or homopyrimidine combinations resulted in dramatically lower cleavage activity. A homopurine symmetric base pair, of the same type identified in the high-affinity binding site of the HIV RRE, is most consistent with this data. Additional features shared between the antigenomic ribozyme and the Rev binding site in the vicinity of the homopurine pairs suggest some structural similarity for this region of the two RNAs and a possible motif associated with this homopurine interaction. Evidence for a homopurine pair at the equivalent position in a modified form of the HDV genomic ribozyme was also found. With the postulated symmetric pairing scheme, large distortions in the nucleotide conformation, the sugar-phosphate backbone, or both would be necessary to accommodate this interaction at the end of a helix; we hypothesize that this distortion is critical to the structure of the active site of the ribozyme and it is stabilized by the homopurine base pair. PMID:8595561

  19. Electrostatics Explains the Position-Dependent Effect of G⋅U Wobble Base Pairs on the Affinity of RNA Kissing Complexes.

    PubMed

    Abi-Ghanem, Josephine; Rabin, Clémence; Porrini, Massimiliano; Dausse, Eric; Toulmé, Jean-Jacques; Gabelica, Valérie

    2017-07-31

    In the RNA realm, non-Watson-Crick base pairs are abundant and can affect both the RNA 3D structure and its function. Here, we investigated the formation of RNA kissing complexes in which the loop-loop interaction is modulated by non-Watson-Crick pairs. Mass spectrometry, surface plasmon resonance, and UV-melting experiments show that the G⋅U wobble base pair favors kissing complex formation only when placed at specific positions. We tried to rationalize this effect by molecular modeling, including molecular mechanics Poisson-Boltzmann surface area (MMPBSA) thermodynamics calculations and PBSA calculations of the electrostatic potential surfaces. Modeling reveals that the G⋅U stabilization is due to a specific electrostatic environment defined by the base pairs of the entire loop-loop region. The loop is not symmetric, and therefore the identity and position of each base pair matters. Predicting and visualizing the electrostatic environment created by a given sequence can help to design specific kissing complexes with high affinity, for potential therapeutic, nanotechnology or analytical applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Aminoxyl Radicals of B/P Frustrated Lewis Pairs: Refinement of the Spin-Hamiltonian Parameters by Field- and Temperature-Dependent Pulsed EPR Spectroscopy

    PubMed Central

    de Oliveira, Marcos; Knitsch, Robert; Sajid, Muhammad; Stute, Annika; Elmer, Lisa-Maria; Kehr, Gerald; Erker, Gerhard; Magon, Claudio J.; Jeschke, Gunnar; Eckert, Hellmut

    2016-01-01

    Q-band and X-band pulsed electron paramagnetic resonance spectroscopic methods (EPR) in the solid state were employed to refine the parameters characterizing the anisotropic interactions present in six nitroxide radicals prepared by N,N addition of NO to various borane-phosphane frustrated Lewis pairs (FLPs). The EPR spectra are characterized by the g-anisotropy as well as by nuclear hyperfine coupling between the unpaired electron and the 11B/10B, 14N and 31P nuclear magnetic moments. It was previously shown that continuous-wave spectra measured at X-band frequency (9.5 GHz) are dominated by the magnetic hyperfine coupling to 14N and 31P, whereas the g-tensor values and the 11B hyperfine coupling parameters cannot be refined with high precision from lineshape fitting. On the other hand, the X-band electron spin echo envelope modulation (ESEEM) and hyperfine sublevel correlation (HYSCORE) spectra are completely dominated by the nuclear hyperfine coupling to the 11B nuclei, allowing a selective determination of their interaction parameters. In the present work this analysis has been further validated by temperature dependent ESEEM measurements. In addition, pulsed EPR data measured in the Q-band (34 GHz) are reported, which present an entirely different situation: the g-tensor components can be measured with much higher precision, and the ESEEM and HYSCORE spectra contain information about all of the 10B, 11B, 14N and 31P hyperfine interaction parameters. Based on these new results, we report here high-accuracy and precision data of the EPR spin Hamiltonian parameters measured on six FLP-NO radical species embedded in their corresponding hydroxylamine host structures. While the ESEEM spectra at Q-band frequency turn out to be very complex (due to the multinuclear contribution to the overall signal) in the HYSCORE experiment the extension over two dimensions renders a better discrimination between the different nuclear species, and the signals arising from hyperfine

  1. Aminoxyl Radicals of B/P Frustrated Lewis Pairs: Refinement of the Spin-Hamiltonian Parameters by Field- and Temperature-Dependent Pulsed EPR Spectroscopy.

    PubMed

    de Oliveira, Marcos; Knitsch, Robert; Sajid, Muhammad; Stute, Annika; Elmer, Lisa-Maria; Kehr, Gerald; Erker, Gerhard; Magon, Claudio J; Jeschke, Gunnar; Eckert, Hellmut

    2016-01-01

    Q-band and X-band pulsed electron paramagnetic resonance spectroscopic methods (EPR) in the solid state were employed to refine the parameters characterizing the anisotropic interactions present in six nitroxide radicals prepared by N,N addition of NO to various borane-phosphane frustrated Lewis pairs (FLPs). The EPR spectra are characterized by the g-anisotropy as well as by nuclear hyperfine coupling between the unpaired electron and the 11B/10B, 14N and 31P nuclear magnetic moments. It was previously shown that continuous-wave spectra measured at X-band frequency (9.5 GHz) are dominated by the magnetic hyperfine coupling to 14N and 31P, whereas the g-tensor values and the 11B hyperfine coupling parameters cannot be refined with high precision from lineshape fitting. On the other hand, the X-band electron spin echo envelope modulation (ESEEM) and hyperfine sublevel correlation (HYSCORE) spectra are completely dominated by the nuclear hyperfine coupling to the 11B nuclei, allowing a selective determination of their interaction parameters. In the present work this analysis has been further validated by temperature dependent ESEEM measurements. In addition, pulsed EPR data measured in the Q-band (34 GHz) are reported, which present an entirely different situation: the g-tensor components can be measured with much higher precision, and the ESEEM and HYSCORE spectra contain information about all of the 10B, 11B, 14N and 31P hyperfine interaction parameters. Based on these new results, we report here high-accuracy and precision data of the EPR spin Hamiltonian parameters measured on six FLP-NO radical species embedded in their corresponding hydroxylamine host structures. While the ESEEM spectra at Q-band frequency turn out to be very complex (due to the multinuclear contribution to the overall signal) in the HYSCORE experiment the extension over two dimensions renders a better discrimination between the different nuclear species, and the signals arising from hyperfine

  2. Longitudinal Assessment of Renal Perfusion and Oxygenation in Transplant Donor-Recipient Pairs Using Arterial Spin Labeling and Blood Oxygen Level-Dependent Magnetic Resonance Imaging.

    PubMed

    Niles, David J; Artz, Nathan S; Djamali, Arjang; Sadowski, Elizabeth A; Grist, Thomas M; Fain, Sean B

    2016-02-01

    The aims of this study were to assess renal function in kidney transplant recipients and their respective donors over 2 years using arterial spin labeling (ASL) and blood oxygen level-dependent (BOLD) magnetic resonance imaging (MRI) and to prospectively evaluate the effect of losartan on functional MRI measures in recipients. The study included 15 matched pairs of renal transplant donors and recipients. Arterial spin labeling and BOLD MRI of the kidneys were performed on donors before transplant surgery (baseline) and on both donors and recipients at 3 months, 1 year, and 2 years after transplant. After 3 months, 7 of the 15 recipients were prescribed 25 to 50 mg/d losartan for the remainder of the study. A linear mixed-effects model was used to evaluate perfusion, R2*, estimated glomerular filtration rate, and fractional excretion of sodium for changes across time or associated with losartan treatment. In donors, cortical perfusion in the remaining kidney decreased by 50 ± 19 mL/min per 100 g (11.8%) between baseline and 2 years (P < 0.05), while cortical R2* declined modestly by 0.7 ± 0.3 s-1 (5.6%; P < 0.05). In transplanted kidneys, cortical perfusion decreased markedly by 141 ± 21 mL/min per 100 g (34.2%) between baseline and 2 years (P < 0.001), while medullary R2* declined by 1.5 ± 0.8 s-1 (8.3%; P = 0.06). Single-kidney estimated glomerular filtration rate increased between baseline and 2 years by 17.7 ± 2.7 mL/min per 1.73 m (40.3%; P < 0.0001) in donors and to 14.6 ± 4.3 mL/min per 1.73 m (33.3%; P < 0.01) in recipients. Cortical perfusion at 1 and 2 years in recipients receiving 25 to 50 mg/d losartan was 62 ± 24 mL/min per 100 g higher than recipients not receiving the drug (P < 0.05). No significant effects of losartan were observed for any other markers of renal function. The results suggest an important role for noninvasive functional monitoring with ASL and BOLD MRI in kidney transplant recipients and donors, and they indicate a potentially

  3. Analysis of pH-dependent elements in proteins: geometry and properties of pairs of hydrogen-bonded carboxylic acid side-chains.

    PubMed

    Wohlfahrt, Gerd

    2005-02-01

    A rather frequent but so far little discussed observation is that pairs of carboxylic acid side-chains in proteins can share a proton in a hydrogen bond. In the present article, quantum chemical calculations of simple model systems for carboxyl-carboxylate interactions are compared with structural observations from proteins. A detailed structural analysis of the proteins deposited in the PDB revealed that, in a subset of proteins sharing less than 90% sequence identity, 19% (314) contain at least one pair of carboxylic acids with their side-chain oxygen atoms within hydrogen-bonding distance. As the distance between those interacting oxygen atoms is frequently very short ( approximately 2.55 A), many of these carboxylic acids are suggested to share a proton in a strong hydrogen bond. When situated in an appropriate structural environment (low dielectric constant), some might even form a low barrier hydrogen bond. The quantum chemical studies show that the most frequent geometric features of carboxyl-carboxylate pairs found in proteins, and no or symmetric ligation, are also the most stable arrangements at low dielectric constants, and they also suggest at medium and low pH a higher stability than for isosteric amide-carboxylate pairs. The presence of these pairs in 119 different enzymes found in the BRENDA database is set in relation to their properties and functions. This analysis shows that pH optima of enzymes with carboxyl-carboxylate pairs are shifted to lower than average values, whereas temperature optima seem to be increased. The described structural principles can be used as guidelines for rational protein design (e.g., in order to improve pH or temperature stability).

  4. Isospin dependence of EMC effect explains NuTeV anomaly

    SciTech Connect

    Cloet, Ian; Bentz, Wolfgang; Thomas, Anthony

    2009-01-01

    A neutron or proton excess in nuclei leads to an isovector-vector mean-field which, through its coupling to the quarks in a bound nucleon, implies a shift in the quark distributions with respect to the Bjorken scaling variable. We show that this result leads to an additional correction to the NuTeV measurement of sin^2Theta_W. The sign of this correction is largely model independent and acts to reduce the NuTeV result. Explicit calculation within a covariant and confining Nambu Jona-Lasinio model predicts that this vector field correction accounts for approximately two-thirds of the NuTeV anomaly. We are therefore led to offer a new interpretation of the NuTeV measurement, namely, that it is further evidence for the medium modification of the bound nucleon wavefunction.

  5. Evidence for isovector neutron-proton pairing from high-spin states in N=Z 74Rb

    NASA Astrophysics Data System (ADS)

    O'Leary, C. D.; Svensson, C. E.; Frauendorf, S. G.; Afanasjev, A. V.; Appelbe, D. E.; Austin, R. A.; Ball, G. C.; Cameron, J. A.; Clark, R. M.; Cromaz, M.; Fallon, P.; Hodgson, D. F.; Kelsall, N. S.; Macchiavelli, A. O.; Ragnarsson, I.; Sarantites, D.; Waddington, J. C.; Wadsworth, R.

    2003-02-01

    High-spin states in the odd-odd N=Z nucleus 7437Rb37 were studied using the 40Ca(40Ca,αnp) reaction. A previously observed odd-spin T=0 band has been extended to Iπ=(31+) and an even-spin T=0 band has been observed for the first time to Iπ=(22+); both have a π(g9/2)⊗ν(g9/2) structure. A strongly coupled low-spin T=0,K=3 band has been interpreted as being based upon a π[312]3/2⊗ν[312]3/2 configuration. Cranked relativistic Hartree-Bogoliubov calculations, which are corrected for the t=1 np-pair field by restoring isospin symmetry, reproduce the observed spectrum. These new results provide evidence for the existence of an isovector pair field that contains a neutron-proton component with the proper strength for ensuring isospin conservation.

  6. Neutrinos by double beta decays from 100Mo and nuclear spin-isospin responses

    NASA Astrophysics Data System (ADS)

    Kudomi, N.; Ejiri, H.; Fushimi, K.; Hayashi, K.; Kishimoto, T.; Komori, M.; Kume, K.; Kuramoto, H.; Matsuoka, K.; Ohsumi, H.; Takahisa, K.; Umehara, S.; Yoshida, S.

    2001-06-01

    Spectroscopic studies of neutrino-less double beta decays (0νββ) of 100Mo were made by means of ELEGANT V. The data at Oto lab., being combined with the data at Kamioka, gives stringent limits on the half-life of T1/2 for the 0νββ and the effective Majorana neutrino mass of <2.1 eV(90%C.L.). Spin-isospin responses for neutrinos associated with ββ of 100Mo are discussed. A perspective of double beta decay of 100Mo and a possible proposal of MOON are discussed. .

  7. On the splitting of nucleon effective masses at high isospin density: reaction observables

    SciTech Connect

    Di Toro, M.; Colonna, M.; Rizzo, J.

    2005-10-14

    We review the present status of the nucleon effective mass splitting puzzle in asymmetric matter, with controversial predictions within both non-relativistic and relativistic approaches to the effective in medium interactions. Based on microscopic transport rimulations we suggest some rather sensitive observables in collisions of asymmetric (unstable) ions at intermediate (RIA) energies: i) Energy systematics of Lane Potentials; ii) Isospin content of fast emitted nucleons; iii) Differential Collective Flows. Similar measurements for light isobars (like 3H-3He) could be also important.

  8. Comparative tests of isospin-symmetry-breaking corrections to superallowed 0+→0+ nuclear β decay

    NASA Astrophysics Data System (ADS)

    Towner, I. S.; Hardy, J. C.

    2010-12-01

    We present a test with which to evaluate the calculated isospin-symmetry-breaking corrections to superallowed 0+→0+ nuclear β decay. The test is based on the corrected experimental Ft values being required to satisfy conservation of the vector current (CVC). When applied to six sets of published calculations, the test demonstrates quantitatively that only one set, the one based on the shell model with Saxon-Woods radial wave functions, provides satisfactory agreement with CVC. This test can easily be applied to any sets of calculated correction terms that are produced in future.

  9. Electron spin polarization by isospin ordering in correlated two-layer quantum Hall systems.

    PubMed

    Tiemann, L; Wegscheider, W; Hauser, M

    2015-05-01

    Enhancement of the electron spin polarization in a correlated two-layer, two-dimensional electron system at a total Landau level filling factor of 1 is reported. Using resistively detected nuclear magnetic resonance, we demonstrate that the electron spin polarization of two closely spaced two-dimensional electron systems becomes maximized when interlayer Coulomb correlations establish spontaneous isospin ferromagnetic order. This correlation-driven polarization dominates over the spin polarizations of competing single-layer fractional quantum Hall states under electron density imbalances.

  10. Unified analysis of spin isospin responses of nuclei

    SciTech Connect

    Wakasa, T.; Ichimura, M.; Sakai, H.

    2005-12-15

    We investigate the Gamow-Teller (GT) response functions at a momentum transfer of q=0 fm{sup -1} and the pionic response functions for quasielastic scattering (QES) at q{approx_equal}1.7 fm{sup -1} using the continuum random phase approximation with the {pi}+{rho}+g{sup '} model interaction. The Landau-Migdal (LM) parameters, g{sub NN}{sup '} and g{sub N{delta}}{sup '}, are estimated by comparing the calculations with recent experimental data. The peak of the GT resonance and the pionic response functions below the QES peak constrain g{sub NN}{sup '}, whereas the quenching of the GT total strength and the enhanced pionic strength around the QES peak provide information about g{sub N{delta}}{sup '}. We obtained g{sub NN}{sup '}=0.6{+-}0.1 and g{sub N{delta}}{sup '}=0.35{+-}0.16 at q=0 fm{sup -1} and g{sub NN}{sup '}=0.7{+-}0.1 and g{sub N{delta}}{sup '}=0.3{+-}0.1 at q{approx_equal}1.7 fm{sup -1}. These results indicate that the q dependence of the LM parameters is weak.

  11. Unified analysis of spin isospin responses of nuclei

    NASA Astrophysics Data System (ADS)

    Wakasa, T.; Ichimura, M.; Sakai, H.

    2005-12-01

    We investigate the Gamow-Teller (GT) response functions at a momentum transfer of q=0fm-1 and the pionic response functions for quasielastic scattering (QES) at q≈1.7fm-1 using the continuum random phase approximation with the π+ρ+g' model interaction. The Landau-Migdal (LM) parameters, g'NN and g'NΔ, are estimated by comparing the calculations with recent experimental data. The peak of the GT resonance and the pionic response functions below the QES peak constrain g'NN, whereas the quenching of the GT total strength and the enhanced pionic strength around the QES peak provide information about g'NΔ. We obtained g'NN=0.6±0.1 and g'NΔ=0.35±0.16 at q=0fm-1 and g'NN=0.7±0.1 and g'NΔ=0.3±0.1 at q≈1.7fm-1. These results indicate that the q dependence of the LM parameters is weak.

  12. Dip-Hump Temperature Dependence of Specific Heat and Effects of Pairing Fluctuations in the Weak-Coupling Side of a P-Wave Interacting Fermi Gas

    NASA Astrophysics Data System (ADS)

    Inotani, Daisuke; van Wyk, Pieter; Ohashi, Yoji

    2016-12-01

    We investigate the specific heat CV at constant volume in the normal state of a p-wave interacting Fermi gas. Including p-wave pairing fluctuations within the strong-coupling theory developed by Nozières and Schmitt-Rink, we show that, in the weak-coupling side, CV exhibits a dip-hump behavior as a function of the temperature. While the dip is associated with the pseudogap phenomenon near Tc, the hump structure is found to come from the suppression of Fermi quasiparticle scattering into a p-wave molecular state in the Fermi degenerate regime. Since the latter phenomenon does not occur in the ordinary s-wave interacting Fermi gas, it may be viewed as a characteristic phenomenon associated with a p-wave pairing interaction.

  13. Nucleon and nucleon-pair momentum distributions in A ≤12 nuclei

    NASA Astrophysics Data System (ADS)

    Wiringa, R. B.; Schiavilla, R.; Pieper, Steven C.; Carlson, J.

    2014-02-01

    Background: Momentum distributions of individual nucleons and nucleon pairs reflect features of the short-range structure of nuclei and provide useful insights into various reactions on nuclei, such as (e,e'p) and (e,e'pp/pn) electrodisintegration processes or neutrino-nucleus interaction experiments. Purpose: To provide the nuclear physics community with the results (available online) of a systematic study of single-nucleon momentum distributions and nucleon-pair and nucleon-cluster momentum distributions for A ≤12 nuclei. Method: The realistic Argonne v18 two-nucleon and Urbana X three-nucleon potentials are used to generate accurate variational Monte Carlo wave functions for the A ≤12 nuclei; quantum Monte Carlo methods are used to calculate the momentum distributions. Results: Single-nucleon distributions are given, broken down into proton and neutron components and spin-up and spin-down components where appropriate. Nucleon-pair momentum distributions are given either in pair spin and isospin ST projection or for pp, pn, and nn pairs. Nucleon-cluster momentum distributions include dp in 3He, tp and dd in 4He, αd in 6Li, αt in 7Li, and αα in 8Be. Conclusions: The momentum distributions exhibit common characteristic shapes, with tensor correlations (or lack thereof) playing a dominant role in the 1.5-3 fm-1 range, while spin-isospin correlations dominate at higher momenta.

  14. Pairing Learners in Pair Work Activity

    ERIC Educational Resources Information Center

    Storch, Neomy; Aldosari, Ali

    2013-01-01

    Although pair work is advocated by major theories of second language (L2) learning and research findings suggest that pair work facilitates L2 learning, what is unclear is how to best pair students in L2 classes of mixed L2 proficiency. This study investigated the nature of pair work in an English as a Foreign Language (EFL) class in a college in…

  15. Pairing Learners in Pair Work Activity

    ERIC Educational Resources Information Center

    Storch, Neomy; Aldosari, Ali

    2013-01-01

    Although pair work is advocated by major theories of second language (L2) learning and research findings suggest that pair work facilitates L2 learning, what is unclear is how to best pair students in L2 classes of mixed L2 proficiency. This study investigated the nature of pair work in an English as a Foreign Language (EFL) class in a college in…

  16. Skyrmion semiclassical quantization in the presence of an isospin chemical potential

    SciTech Connect

    Cohen, Thomas D.; Ponciano, Juan A.; Scoccola, Norberto N.

    2008-08-01

    The semiclassical description of Skyrmions at small isospin chemical potential {mu}{sub I} is carefully analyzed. We show that when the calculation of the energy of a nucleon is performed using the straightforward generalization of the vacuum sector techniques ({mu}{sub I}=0), together with the 'natural' assumption {mu}{sub I}=O(N{sub c}{sup 0}), the proton and neutron masses are nonlinear in {mu}{sub I} in the regime |{mu}{sub I}|isospin, I{approx}N{sub c}.

  17. Holographic vector mesons from spectral functions at finite baryon or isospin density

    SciTech Connect

    Erdmenger, Johanna; Kaminski, Matthias; Rust, Felix

    2008-02-15

    We consider gauge/gravity duality with flavor for the finite-temperature field theory dual of the AdS-Schwarzschild black hole background with embedded D7-brane probes. In particular, we investigate spectral functions at finite baryon density in the black hole phase. We determine the resonance frequencies corresponding to meson-mass peaks as function of the quark mass over temperature ratio. We find that these frequencies have a minimum for a finite value of the quark mass. If the quotient of quark mass and temperature is increased further, the peaks move to larger frequencies. At the same time the peaks narrow, in agreement with the formation of nearly stable vector meson states which exactly reproduce the meson-mass spectrum found at zero temperature. We also calculate the diffusion coefficient, which has finite value for all quark mass to temperature ratios, and exhibits a first-order phase transition. Finally we consider an isospin chemical potential and find that the spectral functions display a resonance peak splitting, similar to the isospin meson-mass splitting observed in effective QCD models.

  18. Isospin susceptibility in the O( n) sigma-model in the delta-regime

    NASA Astrophysics Data System (ADS)

    Niedermayer, F.; Weisz, P.

    2017-06-01

    We compute the isospin susceptibility in an effective O( n) scalar field theory (in d = 4 dimensions), to third order in chiral perturbation theory ( χPT) in the delta-regime using the quantum mechanical rotator picture. This is done in the presence of an additional coupling, involving a parameter η, describing the effect of a small explicit symmetry breaking term (quark mass). For the chiral limit η = 0 we demonstrate consistency with our previous χPT computations of the finite-volume mass gap and isospin susceptibility. For the massive case by computing the leading mass effect in the susceptibility using χPT with dimensional regularization, we determine the χPT expansion for η to third order. The behavior of the shape coefficients for long tube geometry obtained here might be of broader interest. The susceptibility calculated from the rotator approximation differs from the χPT result in terms vanishing like 1 /ℓ for ℓ = L t /L s → ∞. We show that this deviation can be described by a correction to the rotator spectrum proportional to the square of the quadratic Casimir invariant.

  19. Change of Electroweak Nuclear Reaction Rates by CP- and Isospin Symmetry Breaking - A Model Calculation

    NASA Astrophysics Data System (ADS)

    Stumpf, Harald

    2006-09-01

    Based on the assumption that electroweak bosons, leptons and quarks possess a substructure of elementary fermionic constituents, in previous papers the effect of CP-symmetry breaking on the effective dynamics of these particles was calculated. Motivated by the phenomenological procedure in this paper, isospin symmetry breaking will be added and the physical consequences of these calculations will be discussed. The dynamical law of the fermionic constituents is given by a relativistically invariant nonlinear spinor field equation with local interaction, canonical quantization, selfregularization and probability interpretation. The corresponding effective dynamics is derived by algebraic weak mapping theorems. In contrast to the commonly applied modifications of the quark mass matrices, CP-symmetry breaking is introduced into this algebraic formalism by an inequivalent vacuum with respect to the CP-invariant case, represented by a modified spinor field propagator. This leads to an extension of the standard model as effective theory which contains besides the "electric" electroweak bosons additional "magnetic" electroweak bosons and corresponding interactions. If furthermore the isospin invariance of the propagator is broken too, it will be demonstrated in detail that in combination with CP-symmetry breaking this induces a considerable modification of electroweak nuclear reaction rates.

  20. Isospin symmetry violating effects and scattering length extraction from kaon decays

    SciTech Connect

    Gevorkyan, S. R.

    2013-08-15

    The isospin symmetry breaking effects in the charged kaons decays to two or three pions are considered. In semileptonic decay K{sup {+-}} {yields} {pi}{sup +}{pi}{sup -}e{sup {+-}}{nu} (called K{sub e4}) these effects turn out to be crucial for correct extraction of {pi}{pi} scattering lengths. Taking in account electromagnetic interaction between the pions in the final state and isospin symmetry breaking due to different masses of charged and neutral pions allows to adjust the values of scattering lengths obtained from experimental data on K{sub e4} decay and predictions of Chiral Perturbation Theory (ChPT). Final state interactions of pions in the decay K{sup {+-}} {yields} {pi}{sup {+-}}{pi}{sup 0}{pi}{sup 0} leading to the anomaly (cusp) in the {pi}{sup 0}{pi}{sup 0} invariant mass distribution in the vicinity of charged pions' threshold are discussed and recent results of accounting of the electromagnetic interaction among charged pions leading to {pi}{sup +}{pi}{sup -} bound states (pioniumatom) just under the charged pions' threshold are presented.

  1. A genome-wide linkage analysis for the personality trait neuroticism in the Irish affected sib-pair study of alcohol dependence.

    PubMed

    Kuo, Po-Hsiu; Neale, Michael C; Riley, Brien P; Patterson, Diana G; Walsh, Dermot; Prescott, Carol A; Kendler, Kenneth S

    2007-06-05

    Neuroticism is a personality trait which reflects individual differences in emotional stability and vulnerability to stress and anxiety. Consistent evidence shows substantial genetic influences on variation in this trait. The present study seeks to identify regions containing susceptibility loci for neuroticism using a selected sib-pair sample from Ireland. Using Merlin regress, we conducted a 4 cM whole-genome linkage analysis on 714 sib-pairs. Evidence for linkage to neuroticism was found on chromosomes 11p, 12q, and 15q. The highest linkage peak was on 12q at marker D12S1638 with a Lod score of 2.13 (-log p = 2.76, empirical P-value <0.001). Our data also support gender specific loci for neuroticism, with male specific linkage regions on chromosomes 1, 4, 11, 12, 15, 16, and 22, and female specific linkage regions on chromosomes 2, 4, 9, 12, 13, and 18. Some genome regions reported in the present study replicate findings from previous linkage studies of neuroticism. These results, together with prior studies, indicate several potential regions for quantitative trait loci for neuroticism that warrant further study.

  2. Study of hole pair condensation based on the SU(2) Slave-Boson approach to the t-J Hamiltonian: Temperature, momentum and doping dependences of spectral functions

    SciTech Connect

    Salk, S.H.S.; Lee, S.S.

    1999-11-01

    Based on the U(1) and SU(2) slave-boson approaches to the t-J Hamiltonian, the authors evaluate the one electron spectral functions for the hole doped high {Tc} cuprates for comparison with the angle resolved photoemission spectroscopy (ARPES) data. They find that the observed quasiparticle peak in the superconducting state is correlated with the hump which exists in the normal state. They find that the spectral weight of the quasiparticle peak increases as doping rate increases, which is consistent with observation. As a consequence of the phase fluctuation effects of the spinon and holon pairing order parameters the spectral weight of the predicted peak obtained from the SU(2) theory is found to be smaller than the one predicted from U(1) mean field theory.

  3. Base pairing between hepatitis C virus RNA and 18S rRNA is required for IRES-dependent translation initiation in vivo

    PubMed Central

    Matsuda, Daiki; Mauro, Vincent P.

    2014-01-01

    Degeneracy in eukaryotic translation initiation is evident in the initiation strategies of various viruses. Hepatitis C virus (HCV) provides an exceptional example—translation of the HCV RNA is facilitated by an internal ribosome entry site (IRES) that can autonomously bind a 40S ribosomal subunit and accurately position it at the initiation codon. This binding involves both ribosomal protein and 18S ribosomal RNA (rRNA) interactions. In this study, we evaluate the functional significance of the rRNA interaction and show that HCV IRES activity requires a 3-nt Watson–Crick base-pairing interaction between the apical loop of subdomain IIId in the IRES and helix 26 in 18S rRNA. Mutations of these nucleotides in either RNA dramatically disrupted IRES activity. The activities of the mutated HCV IRESs could be restored by compensatory mutations in the 18S rRNA. The effects of the 18S rRNA mutations appeared to be specific inasmuch as ribosomes containing these mutations did not support translation mediated by the wild-type HCV IRES, but did not block translation mediated by the cap structure or other viral IRESs. The present study provides, to our knowledge, the first functional demonstration of mRNA–rRNA base pairing in mammalian cells. By contrast with other rRNA-binding sites in mRNAs that can enhance translation as independent elements, e.g., the Shine–Dalgarno sequence in prokaryotes, the rRNA-binding site in the HCV IRES functions as an essential component of a more complex interaction. PMID:25313046

  4. Base pairing between hepatitis C virus RNA and 18S rRNA is required for IRES-dependent translation initiation in vivo.

    PubMed

    Matsuda, Daiki; Mauro, Vincent P

    2014-10-28

    Degeneracy in eukaryotic translation initiation is evident in the initiation strategies of various viruses. Hepatitis C virus (HCV) provides an exceptional example--translation of the HCV RNA is facilitated by an internal ribosome entry site (IRES) that can autonomously bind a 40S ribosomal subunit and accurately position it at the initiation codon. This binding involves both ribosomal protein and 18S ribosomal RNA (rRNA) interactions. In this study, we evaluate the functional significance of the rRNA interaction and show that HCV IRES activity requires a 3-nt Watson-Crick base-pairing interaction between the apical loop of subdomain IIId in the IRES and helix 26 in 18S rRNA. Mutations of these nucleotides in either RNA dramatically disrupted IRES activity. The activities of the mutated HCV IRESs could be restored by compensatory mutations in the 18S rRNA. The effects of the 18S rRNA mutations appeared to be specific inasmuch as ribosomes containing these mutations did not support translation mediated by the wild-type HCV IRES, but did not block translation mediated by the cap structure or other viral IRESs. The present study provides, to our knowledge, the first functional demonstration of mRNA-rRNA base pairing in mammalian cells. By contrast with other rRNA-binding sites in mRNAs that can enhance translation as independent elements, e.g., the Shine-Dalgarno sequence in prokaryotes, the rRNA-binding site in the HCV IRES functions as an essential component of a more complex interaction.

  5. Age-Related Enhancement of a Protein Synthesis-Dependent Late Phase of LTP Induced by Low Frequency Paired-Pulse Stimulation in Hippocampus

    ERIC Educational Resources Information Center

    Huang, Yan-You; Kandel, Eric R.

    2006-01-01

    Protein synthesis-dependent late phase of LTP (L-LTP) is typically induced by repeated high-frequency stimulation (HFS). This form of L-LTP is reduced in the aged animal and is positively correlated with age-related memory loss. Here we report a novel form of protein synthesis-dependent late phase of LTP in the CA1 region of hippocampus induced by…

  6. Age-Related Enhancement of a Protein Synthesis-Dependent Late Phase of LTP Induced by Low Frequency Paired-Pulse Stimulation in Hippocampus

    ERIC Educational Resources Information Center

    Huang, Yan-You; Kandel, Eric R.

    2006-01-01

    Protein synthesis-dependent late phase of LTP (L-LTP) is typically induced by repeated high-frequency stimulation (HFS). This form of L-LTP is reduced in the aged animal and is positively correlated with age-related memory loss. Here we report a novel form of protein synthesis-dependent late phase of LTP in the CA1 region of hippocampus induced by…

  7. Pairing in the BCS and LN approximations using continuum single particle level density

    NASA Astrophysics Data System (ADS)

    Id Betan, R. M.; Repetto, C. E.

    2017-04-01

    Understanding the properties of drip line nuclei requires to take into account the correlations with the continuum spectrum of energy of the system. This paper has the purpose to show that the continuum single particle level density is a convenient way to consider the pairing correlation in the continuum. Isospin mean-field and isospin pairing strength are used to find the Bardeen-Cooper-Schrieffer (BCS) and Lipkin-Nogami (LN) approximate solutions of the pairing Hamiltonian. Several physical properties of the whole chain of the Tin isotope, as gap parameter, Fermi level, binding energy, and one- and two-neutron separation energies, were calculated and compared with other methods and with experimental data when they exist. It is shown that the use of the continuum single particle level density is an economical way to include explicitly the correlations with the continuum spectrum of energy in large scale mass calculation. It is also shown that the computed properties are in good agreement with experimental data and with more sophisticated treatment of the pairing interaction.

  8. Direct CP, Lepton Flavor and Isospin Asymmetries in the Decays B->K(*)l+l-

    SciTech Connect

    Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Lopez, L.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Abrams, G.S.; Battaglia, M.; Brown, D.N.; Cahn, R.N.; Jacobsen, R.G.; /LBL, Berkeley /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /Frascati /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa U. /Iowa State U. /Johns Hopkins U. /Karlsruhe U., EKP /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT, LNS /McGill U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /INFN, Naples /Naples U. /INFN, Naples /INFN, Naples /Naples U. /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /Pennsylvania U. /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /Rostock U. /Rutherford /DSM, DAPNIA, Saclay /South Carolina U. /SLAC /Stanford U., Phys. Dept. /SUNY, Albany /Tennessee U. /Texas U. /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U., IFIC /Victoria U. /Warwick U. /Wisconsin U., Madison

    2009-03-03

    We measure rate asymmetries for the rare decays B {yields} K{sup (*)}{ell}{sup +}{ell}{sup -}, where {ell}{sup +}{ell}{sup -} is either e{sup +}e{sup -} or {mu}{sup +}{mu}{sup -}, using a sample of 384 million B{bar B} events collected with the BABAR detector at the PEP-II e{sup +}e{sup -} collider. We find no evidence for direct CP or lepton-flavor asymmetries. For dilepton masses below the J/{psi} resonance, we find evidence for unexpectedly large isospin asymmetries in both B {yields} K{ell}{sup +}{ell}{sup -} and B {yields} K*{ell}{sup +}{ell}{sup -} which differ respectively by 3.2{sigma} and 2.7{sigma}, including systematic uncertainties, from the Standard Model expectations.

  9. Direct CP, lepton flavor, and isospin asymmetries in the decays B-->K(*)l+l-.

    PubMed

    Aubert, B; Bona, M; Karyotakis, Y; Lees, J P; Poireau, V; Prencipe, E; Prudent, X; Tisserand, V; Garra Tico, J; Grauges, E; Lopez, L; Palano, A; Pappagallo, M; Eigen, G; Stugu, B; Sun, L; Abrams, G S; Battaglia, M; Brown, D N; Cahn, R N; Jacobsen, R G; Kerth, L T; Kolomensky, Yu G; Lynch, G; Osipenkov, I L; Ronan, M T; Tackmann, K; Tanabe, T; Hawkes, C M; Soni, N; Watson, A T; Koch, H; Schroeder, T; Walker, D; Asgeirsson, D J; Fulsom, B G; Hearty, C; Mattison, T S; McKenna, J A; Barrett, M; Khan, A; Blinov, V E; Bukin, A D; Buzykaev, A R; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Bondioli, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Martin, E C; Stoker, D P; Abachi, S; Buchanan, C; Gary, J W; Liu, F; Long, O; Shen, B C; Vitug, G M; Yasin, Z; Zhang, L; Sharma, V; Campagnari, C; Hong, T M; Kovalskyi, D; Mazur, M A; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Schalk, T; Schumm, B A; Seiden, A; Wang, L; Wilson, M G; Winstrom, L O; Cheng, C H; Doll, D A; Echenard, B; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Andreassen, R; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Bloom, P C; Ford, W T; Gaz, A; Hirschauer, J F; Nagel, M; Nauenberg, U; Smith, J G; Ulmer, K A; Wagner, S R; Ayad, R; Soffer, A; Toki, W H; Wilson, R J; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Karbach, M; Merkel, J; Petzold, A; Spaan, B; Wacker, K; Kobel, M J; Mader, W F; Nogowski, R; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Latour, E; Thiebaux, Ch; Verderi, M; Clark, P J; Gradl, W; Playfer, S; Watson, J E; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cecchi, A; Cibinetto, G; Franchini, P; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Santoro, V; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Chaisanguanthum, K S; Morii, M; Marks, J; Schenk, S; Uwer, U; Klose, V; Lacker, H M; Bard, D J; Dauncey, P D; Nash, J A; Panduro Vazquez, W; Tibbetts, M; Behera, P K; Chai, X; Charles, M J; Mallik, U; Cochran, J; Crawley, H B; Dong, L; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gao, Y Y; Gritsan, A V; Guo, Z J; Lae, C K; Denig, A G; Fritsch, M; Schott, G; Arnaud, N; Béquilleux, J; D'Orazio, A; Davier, M; Firmino da Costa, J; Grosdidier, G; Höcker, A; Lepeltier, V; Le Diberder, F; Lutz, A M; Pruvot, S; Roudeau, P; Schune, M H; Serrano, J; Sordini, V; Stocchi, A; Wormser, G; Lange, D J; Wright, D M; Bingham, I; Burke, J P; Chavez, C A; Fry, J R; Gabathuler, E; Gamet, R; Hutchcroft, D E; Payne, D J; Touramanis, C; Bevan, A J; Clarke, C K; George, K A; Di Lodovico, F; Sacco, R; Sigamani, M; Cowan, G; Flaecher, H U; Hopkins, D A; Paramesvaran, S; Salvatore, F; Wren, A C; Brown, D N; Davis, C L; Alwyn, K E; Bailey, D; Barlow, R J; Chia, Y M; Edgar, C L; Jackson, G; Lafferty, G D; West, T J; Yi, J I; Anderson, J; Chen, C; Jawahery, A; Roberts, D A; Simi, G; Tuggle, J M; Dallapiccola, C; Li, X; Salvati, E; Saremi, S; Cowan, R; Dujmic, D; Fisher, P H; Koeneke, K; Sciolla, G; Spitznagel, M; Taylor, F; Yamamoto, R K; Zhao, M; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Sanders, D A; Summers, D J; Zhao, H W; Simard, M; Taras, P; Viaud, F B; Nicholson, H; De Nardo, G; Lista, L; Monorchio, D; Onorato, G; Sciacca, C; Raven, G; Snoek, H L; Jessop, C P; Knoepfel, K J; LoSecco, J M; Wang, W F; Benelli, G; Corwin, L A; Honscheid, K; Kagan, H; Kass, R; Morris, J P; Rahimi, A M; Regensburger, J J; Sekula, S J; Wong, Q K; Blount, N L; Brau, J; Frey, R; Igonkina, O; Kolb, J A; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Castelli, G; Gagliardi, N; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; del Amo Sanchez, P; Ben-Haim, E; Briand, H; Calderini, G; Chauveau, J; David, P; Del Buono, L; Hamon, O; Leruste, Ph; Ocariz, J; Perez, A; Prendki, J; Sitt, S; Gladney, L; Biasini, M; Covarelli, R; Manoni, E; Angelini, C; Batignani, G; Bettarini, S; Carpinelli, M; Cervelli, A; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Lopes Pegna, D; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Anulli, F; Baracchini, E; Cavoto, G; del Re, D; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Jackson, P D; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Renga, F; Voena, C; Ebert, M; Hartmann, T; Schröder, H; Waldi, R; Adye, T; Franek, B; Olaiya, E O; Wilson, F F; Emery, S; Escalier, M; Esteve, L; Ganzhur, S F; Hamel de Monchenault, G; Kozanecki, W; Vasseur, G; Yèche, Ch; Zito, M; Chen, X R; Liu, H; Park, W; Purohit, M V; White, R M; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Benitez, J F; Cenci, R; Coleman, J P; Convery, M R; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dunwoodie, W; Field, R C; Gabareen, A M; Gowdy, S J; Graham, M T; Grenier, P; Hast, C; Innes, W R; Kaminski, J; Kelsey, M H; Kim, H; Kim, P; Kocian, M L; Leith, D W G S; Li, S; Lindquist, B; Luitz, S; Luth, V; Lynch, H L; Macfarlane, D B; Marsiske, H; Messner, R; Muller, D R; Neal, H; Nelson, S; O'Grady, C P; Ofte, I; Perazzo, A; Perl, M; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Va'vra, J; Wagner, A P; Weaver, M; West, C A; Wisniewski, W J; Wittgen, M; Wright, D H; Wulsin, H W; Yarritu, A K; Yi, K; Young, C C; Ziegler, V; Burchat, P R; Edwards, A J; Majewski, S A; Miyashita, T S; Petersen, B A; Wilden, L; Ahmed, S; Alam, M S; Ernst, J A; Pan, B; Saeed, M A; Zain, S B; Spanier, S M; Wogsland, B J; Eckmann, R; Ritchie, J L; Ruland, A M; Schilling, C J; Schwitters, R F; Drummond, B W; Izen, J M; Lou, X C; Bianchi, F; Gamba, D; Pelliccioni, M; Bomben, M; Bosisio, L; Cartaro, C; Della Ricca, G; Lanceri, L; Vitale, L; Azzolini, V; Lopez-March, N; Martinez-Vidal, F; Milanes, D A; Oyanguren, A; Albert, J; Banerjee, Sw; Bhuyan, B; Choi, H H F; Hamano, K; Kowalewski, R; Lewczuk, M J; Nugent, I M; Roney, J M; Sobie, R J; Gershon, T J; Harrison, P F; Ilic, J; Latham, T E; Mohanty, G B; Band, H R; Chen, X; Dasu, S; Flood, K T; Pan, Y; Pierini, M; Prepost, R; Vuosalo, C O; Wu, S L

    2009-03-06

    We measure branching fractions and integrated rate asymmetries for the rare decays B-->K(*)l+l-, where l+l- is either e+e- or micro+micro-, using a sample of 384x10(6) BB events collected with the BABAR detector at the PEP-II e+e- collider. We find no evidence for direct CP or lepton-flavor asymmetries. However, for dilepton masses below the J/psi resonance, we find evidence for unexpectedly large isospin asymmetries in both B-->Kl+l- and B-->K*l+l- which differ, respectively, by 3.2sigma and 2.7sigma, including systematic uncertainties, from the standard model expectations.

  10. Isospin-violating dark-matter-nucleon scattering via two-Higgs-doublet-model portals

    SciTech Connect

    Drozd, Aleksandra; Grzadkowski, Bohdan; Gunion, John F.; Jiang, Yun

    2016-10-24

    We show that in a multi-Higgs model in which one Higgs fits the LHC 125 GeV state, one or more of the other Higgs bosons can mediate DM-nucleon interactions with maximal DM isospin violation being possible for appropriate Higgs-quark couplings, independent of the nature of DM. We then consider the explicit example of a Type II two-Higgs-doublet model, identifying the h or H as the 125 GeV state while the H or h, respectively, mediates DM-nucleon interactions. Finally, we show that if a stable scalar, S, is added then it can be a viable light DM candidate with correct relic density while obeying all direct and indirect detection limits.

  11. Angular and Isospin Asymmetries in the Decays B->K(*)l l-

    SciTech Connect

    Flood, Kevin T.; /Wisconsin U., Madison

    2011-11-08

    We use a sample of 384 million B{bar B} decays collected with the BABAR detector at the PEP-II asymmetric e{sup +}e{sup -} storage ring to study the flavor-changing neutral current decays B {yields} K{sup (*)}{ell}{sup +}{ell}{sup -}, where {ell}{sup +}{ell}{sup -} is either e{sup +}e{sup -} or {mu}{sup +}{mu}{sup -}. We present measurements in two dilepton mass bins, one below the J/{psi} resonance and the other above, of the lepton forward-backward asymmetry {Alpha}{sub FB} and the longitudinal K* polarization F{sub L} in B {yields} K* {ell}{sup +}{ell}{sup -}, along with isospin rate asymmetries in B {yields} K*{ell}{sup +}{ell}{sup -} and B {yields} K{ell}{sup +}{ell}{sup -} final states.

  12. GDR as a Probe of the Collective Motion in Nuclei at High Spins, Temperatures or Isospins

    SciTech Connect

    Maj, Adam

    2008-11-11

    The gamma-decay of the Giant Dipole Resonance (GDR), the high-frequency collective vibration of protons against neutrons, has been proven to be a basic probe for the shapes of hot nuclei, especially to study the effective shape evolution caused by the collective rotation of a nucleus. In this context an interesting question arises: what is the nuclear shape at extreme values of spin or temperatures, close to the limit impose by another collective motion--fission, and how evolves the giant dipole collective vibrations as a function of isospin. Short overview of the results from the experiments aimed to answer these questions are presented and possible perspectives of these type of studies for exotic nuclei to be obtained with the novel gamma-calorimeter PARIS and soon available intense radioactive beams are discussed.

  13. Unexpected neutron/proton ratio and isospin effect in low-energy antiproton-induced reactions

    NASA Astrophysics Data System (ADS)

    Feng, Zhao-Qing

    2017-09-01

    The inclusive spectra of pre-equilibrium nucleons produced in low-energy antiproton-nucleus collisions are thoroughly investigated within the the Lanzhou quantum molecular dynamics transport approach for the first time. The reaction channels of elastic scattering, annihilation, charge exchange, and inelastic processes in antibaryon-baryon, baryon-baryon, and meson-baryon collisions have been implemented in the model. The unexpected neutron to proton yield ratios are caused from the isospin effects of pion-nucleon collisions and the symmetry energy. It is found that the π--neutron collisions enhance the neutron emission in the antiproton annihilation in a nucleus. A soft symmetry energy with the stiffness of γs=0.5 at subsaturation densities is constrained from the available data of the neutron/proton spectra.

  14. Isospin Mixing of Quark Cluster Diybaryon Resonances in the Bag Model*

    NASA Astrophysics Data System (ADS)

    Ward, Thomas

    2000-10-01

    Calculations of isospin mixing of dibaryon resonaces composed of color magentic six quark states using the quark cluster bag model are shown to result in a low lying J=2 dibaryon at 1913 MeV. The 1913 MeV resonance can only transition into NN states and a low energy (29-35 MeV) isoscaler meson multiplet, the sigma mesons (J=0,1,2). The J=1 axial-vector meson may already have been discovered at the Rutherford ISIS Facility, detected as a neutrino time anomaly known as the KARMEN particle. The predicted J=0 meson has the long sought after properties of the sigma meson or Higgs particle required for the Chiral Symmetry Breaking partner of the pion and light mass hadron generation. The influence of this predicted isoscaler multiplet in QCD and QFD is interpreted using the effective low energy model of Chiral Perturbation Theory.

  15. Thermal and quantal isospin and spin fluctuations in heavy ion reactions

    SciTech Connect

    Moretto, L.G.

    1980-01-01

    The isobaric charge distributions are discussed in terms of quantal and classical isospin fluctuations. The roles of mass asymmetry and of the higher giant isovector modes are treated within the framework of a cylinder model that is worked out exactly. Spin fluctuations are considered first in terms of quantal fluctuations in a cylinder model and second in terms of thermal fluctuations in a two-sphere model. The results are applied to the calculation of in- and out-of-plane angular distributions for sequential fission, alpha and gamma decay. Analytical expressions are obtained for the angular distributions. The theoretical predictions are compared with experimental results for sequential fission, alpha, and gamma angular distributions. 23 figures.

  16. Experimental Guidance for Isospin Symmetry Breaking Calculations via Single Neutron Pickup Reactions

    NASA Astrophysics Data System (ADS)

    Leach, K. G.; Garrett, P. E.; Bangay, J. C.; Bianco, L.; Demand, G. A.; Finlay, P.; Green, K. L.; Phillips, A. A.; Rand, E. T.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Wong, J.; Ball, G.; Faestermann, T.; Krücken, R.; Hertenberger, R.; Wirth, H.-F.; Towner, I. S.

    2013-03-01

    Recent activity in superallowed isospin-symmetry-breaking correction calculations has prompted interest in experimental confirmation of these calculation techniques. The shellmodel set of Towner and Hardy (2008) include the opening of specific core orbitals that were previously frozen. This has resulted in significant shifts in some of the δC values, and an improved agreement of the individual corrected {F}t values with the adopted world average of the 13 cases currently included in the high-precision evaluation of Vud. While the nucleus-to-nucleus variation of {F}t is consistent with the conserved-vector-current (CVC) hypothesis of the Standard Model, these new calculations must be thoroughly tested, and guidance must be given for their improvement. Presented here are details of a 64Zn(ěcd, t)63Zn experiment, undertaken to provide such guidance.

  17. Measurement of Branching Fractions and CP and Isospin Asymmetry in B->K*(892)gamma Decays

    SciTech Connect

    Aubert, B.

    2009-06-19

    We present an analysis of the decays B{sup 0} {yields} K*{sup 0}(892){gamma} and B{sup +} {yields} K*{sup +}(892){gamma} using a sample of about 383 million B{bar B} events collected with the BABAR detector at the PEP-II asymmetric energy B factory. We measure the branching fractions {Beta}(B{sup 0} {yields} K*{sup 0}{gamma}) = (4.47 {+-} 0.10 {+-} 0.16) x 10{sup -5} and {Beta}(B{sup +} {yields} K*{sup +}{gamma}) = (4.22 {+-} 0.14 {+-} 0.16) x 10{sup -5}. We constrain the direct CP asymmetry to be -0.033 < {Alpha}(B {yields} K*{gamma}) < 0.028 and the isospin asymmetry to be 0.017 < {Delta}{sub 0-} < 0.116, where the limits are determined by the 90% confidence interval and include both the statistical and systematic uncertainties.

  18. Isospin and a possible interpretation of the newly observed X(1576)

    SciTech Connect

    Guo Fengkun; Shen Pengnian

    2006-11-01

    Recently, the BES Collaboration observed a broad resonant structure X(1576) with a large width being around 800 MeV and assigned its J{sup PC} number to 1{sup --}. We show that the isospin of this resonant structure should be assigned to 1. This state might be a molecule state or a tetraquark state. We study the consequences of a possible K*(892)-{kappa} molecular interpretation. In this scenario, the broad width can easily be understood. Carefully searching this resonant structure in the J/{psi}{yields}{pi}{sup +}{pi}{sup -}{pi}{sup 0} and J/{psi}{yields}K{sup +}K{sup -}{pi}{sup +}{pi}{sup -}{pi}{sup 0} decays should be important for understanding the structure of X(1567)

  19. Isospin and a possible interpretation of the newly observed X(1576)

    NASA Astrophysics Data System (ADS)

    Guo, Feng-Kun; Shen, Peng-Nian

    2006-11-01

    Recently, the BES Collaboration observed a broad resonant structure X(1576) with a large width being around 800 MeV and assigned its JPC number to 1--. We show that the isospin of this resonant structure should be assigned to 1. This state might be a molecule state or a tetraquark state. We study the consequences of a possible K*(892)-κ¯ molecular interpretation. In this scenario, the broad width can easily be understood. Carefully searching this resonant structure in the J/ψ→π+π-π0 and J/ψ→K+K-π+π-π0 decays should be important for understanding the structure of X(1567).

  20. Isospin asymmetry of quark distributions and implications for single top-quark production at the LHC

    NASA Astrophysics Data System (ADS)

    Alekhin, S.; Blümlein, J.; Moch, S.; PlačakytÄ--, R.

    2016-12-01

    We present an improved determination of the up- and down-quark distributions in the proton using recent data on charged lepton asymmetries from W± gauge-boson production at the LHC and Tevatron. The analysis is performed in the framework of a global fit of parton distribution functions. The fit results are consistent with a nonzero isospin asymmetry of the sea, x (d ¯ -u ¯ ) , at small values of Bjorken x ˜10-4 indicating a delayed onset of the Regge asymptotics of a vanishing (d ¯ -u ¯ ) -asymmetry at small x . We compare with up- and down-quark distributions available in the literature and provide accurate predictions for the production of single top-quarks at the LHC, a process which can serve as a standard candle for the light quark flavor content of the proton.

  1. Observation of the dependence of the interference effect of identical pions on pion pair velocity in inclusive ¯pp-interactions at 22·4 GeV/c

    NASA Astrophysics Data System (ADS)

    Batyunya, B. V.; Boguslavsky, I. V.; Gramenitsky, I. M.; Lednický, R.; Tikhonova, L. A.; Valkárová, A.; Vrba, V.; Zlatanov, Z.; Levonian, S. V.; Ermilova, D. I.; Filippova, V. V.; Takibaev, Z. S.; Temiraliev, T.; Dumbrajs, S.; Ervanne, J.; Hannula, E.; Villanen, P.; Dementiev, R. K.; Korzhavina, I. A.; Leikin, E. M.; Rud, V. I.; Suk, M.; Herynek, I.; Reimer, P.; Řídký, J.; Šimák, V.; Khudzadze, A. M.; Kuratashvili, G. O.; Topuriya, T. P.; Tsintsadze, V. D.

    1981-05-01

    The Bose-Einstein interference effect is studied using 7333 events of ¯pp-interactions with n ch≧6 at 22·4 GeV/c. An essential dependence of the strength of this effect on the pion pair velocity is observed. An indication is obtained that processes with essentially different time characteristics (τ<1 fm and τ>2 fm) contribute to ¯pp-interactions at 22·4 GeV/c. The interpretation based on abundant resonance production in high energy collisions is discussed.

  2. Pair correlation functions and the wavevector-dependent surface tension in a simple density functional treatment of the liquid-vapour interface.

    PubMed

    Parry, A O; Rascón, C; Willis, G; Evans, R

    2014-09-03

    We study the density-density correlation function G(r, r') in the interfacial region of a fluid (or Ising-like magnet) with short-ranged interactions using square gradient density functional theory. Adopting a simple double parabola approximation for the bulk free-energy density, we first show that the parallel Fourier transform G(z, z'; q) and local structure factor S(z; q) separate into bulk and excess contributions. We attempt to account for both contributions by deriving an interfacial Hamiltonian, characterised by a wavevector dependent surface tension σ(q), and then reconstructing density correlations from correlations in the interface position. We show that the standard crossing criterion identification of the interface, as a surface of fixed density (or magnetization), does not explain the separation of G(z, z'; q) and the form of the excess contribution. We propose an alternative definition of the interface position based on the properties of correlations between points that 'float' with the surface and show that this describes the full q and z dependence of the excess contributions to both G and S. However, neither the 'crossing-criterion' nor the new 'floating interface' definition of σ(q) are quantities directly measurable from the total structure factor S(tot)(q) which contains additional q dependence arising from the non-local relation between fluctuations in the interfacial position and local density. Since it is the total structure factor that is measured experimentally or in simulations, our results have repercussions for earlier attempts to extract and interpret σ(q).

  3. Pair correlation functions and the wavevector-dependent surface tension in a simple density functional treatment of the liquid-vapour interface

    NASA Astrophysics Data System (ADS)

    Parry, A. O.; Rascón, C.; Willis, G.; Evans, R.

    2014-09-01

    We study the density-density correlation function G(r, r‧) in the interfacial region of a fluid (or Ising-like magnet) with short-ranged interactions using square gradient density functional theory. Adopting a simple double parabola approximation for the bulk free-energy density, we first show that the parallel Fourier transform G(z, z‧ q) and local structure factor S(z q) separate into bulk and excess contributions. We attempt to account for both contributions by deriving an interfacial Hamiltonian, characterised by a wavevector dependent surface tension σ(q), and then reconstructing density correlations from correlations in the interface position. We show that the standard crossing criterion identification of the interface, as a surface of fixed density (or magnetization), does not explain the separation of G(z, z‧ q) and the form of the excess contribution. We propose an alternative definition of the interface position based on the properties of correlations between points that ‘float’ with the surface and show that this describes the full q and z dependence of the excess contributions to both G and S. However, neither the ‘crossing-criterion’ nor the new ‘floating interface’ definition of σ(q) are quantities directly measurable from the total structure factor Stot(q) which contains additional q dependence arising from the non-local relation between fluctuations in the interfacial position and local density. Since it is the total structure factor that is measured experimentally or in simulations, our results have repercussions for earlier attempts to extract and interpret σ(q).

  4. Phenomenological implications of a predictive formulation of the Nambu-Jona-Lasinio model having tensor couplings and isospin symmetry breaking terms

    NASA Astrophysics Data System (ADS)

    Battistel, O. A.; Pimenta, T. H.; Dallabona, G.

    2016-10-01

    In the present work we consider the phenomenological consequences of a predictive formulation of the Nambu-Jona-Lasinio (NJL) model at the one loop level of perturbative calculations. The investigation reported here can be considered as an extension of previously made ones on the same issue. In the study made in this work we have included vector and tensor couplings, simultaneously, as well as S U (2 ) isospin symmetry breaking terms. As a consequence of the last ingredient mentioned, there are different masses in the model amplitudes. In spite of this, within the context of the adopted procedure, we verify that it is possible to eliminate unphysical dependencies on the arbitrary choices for the routing of internal lines momenta as well as Ward identities violating contributions and scale ambiguous terms, from the corresponding one loop amplitudes, through the simple and universal Consistency Relations. The total content of divergence of the amplitudes is reduced to only two basic divergent objects. They are related to two inputs of the model in a way that, due to their scale properties, an unique arbitrariness remains. However, due to the critical condition found in the mechanism which generates the constituent quark mass, within our approach, this arbitrariness is also removed turning the model predictive in the sense that its phenomenological consequences is not dependent in possible choices made in intermediary steps of the calculations, as occurs in usual treatments. In this scenario, we investigate the most typical static properties of the scalar, pseudoscalar, vector and axial-vector mesons at low-energy. Special attention is given to the consequences of the S U (2 ) isospin symmetry breaking for the phenomenological predictions. The implications of the tensor couplings for the model observables, which can be considered an original contribution of the present work, at the level of the content and not only in the form, is analyzed in a detailed way. The found

  5. The pH-dependent Client Release from the Collagen-specific Chaperone HSP47 Is Triggered by a Tandem Histidine Pair.

    PubMed

    Oecal, Sinan; Socher, Eileen; Uthoff, Matthias; Ernst, Corvin; Zaucke, Frank; Sticht, Heinrich; Baumann, Ulrich; Gebauer, Jan M

    2016-06-10

    Heat shock protein 47 (HSP47) is an endoplasmic reticulum (ER)-resident collagen-specific chaperone and essential for proper formation of the characteristic collagen triple helix. It preferentially binds to the folded conformation of its clients and accompanies them from the ER to the Golgi compartment, where it releases them and is recycled back to the ER. Unlike other chaperones, the binding and release cycles are not governed by nucleotide exchange and hydrolysis, but presumably the dissociation of the HSP47-procollagen complex is triggered by the lower pH in the Golgi (pH 6.3) compared with the ER (pH 7.4). Histidine residues have been suggested as triggers due to their approximate textbook pKa value of 6.1 for their side chains. We present here an extensive theoretical and experimental study of the 14 histidine residues present in canine HSP47, where we have mutated all histidine residues in the collagen binding interface and additionally all of those that were predicted to undergo a significant change in protonation state between pH 7 and 6. These mutants were characterized by biolayer interferometry for their pH-dependent binding to a collagen model. One mutant (H238N) loses binding, which can be explained by a rearrangement of the Arg(222) and Asp(385) residues, which are crucial for specific collagen recognition. Most of the other mutants were remarkably silent, but a double mutant with His(273) and His(274) exchanged for asparagines exhibits a much less pronounced pH dependence of collagen binding. This effect is mainly caused by a lower koff at the low pH values.

  6. The pH-dependent Client Release from the Collagen-specific Chaperone HSP47 Is Triggered by a Tandem Histidine Pair*

    PubMed Central

    Oecal, Sinan; Socher, Eileen; Uthoff, Matthias; Ernst, Corvin; Zaucke, Frank; Sticht, Heinrich; Baumann, Ulrich; Gebauer, Jan M.

    2016-01-01

    Heat shock protein 47 (HSP47) is an endoplasmic reticulum (ER)-resident collagen-specific chaperone and essential for proper formation of the characteristic collagen triple helix. It preferentially binds to the folded conformation of its clients and accompanies them from the ER to the Golgi compartment, where it releases them and is recycled back to the ER. Unlike other chaperones, the binding and release cycles are not governed by nucleotide exchange and hydrolysis, but presumably the dissociation of the HSP47-procollagen complex is triggered by the lower pH in the Golgi (pH 6.3) compared with the ER (pH 7.4). Histidine residues have been suggested as triggers due to their approximate textbook pKa value of 6.1 for their side chains. We present here an extensive theoretical and experimental study of the 14 histidine residues present in canine HSP47, where we have mutated all histidine residues in the collagen binding interface and additionally all of those that were predicted to undergo a significant change in protonation state between pH 7 and 6. These mutants were characterized by biolayer interferometry for their pH-dependent binding to a collagen model. One mutant (H238N) loses binding, which can be explained by a rearrangement of the Arg222 and Asp385 residues, which are crucial for specific collagen recognition. Most of the other mutants were remarkably silent, but a double mutant with His273 and His274 exchanged for asparagines exhibits a much less pronounced pH dependence of collagen binding. This effect is mainly caused by a lower koff at the low pH values. PMID:27129216

  7. Determination of the angular and energy dependence of hard constituent scattering from. pi. /sup 0/ pair events at the CERN intersecting storage rings

    SciTech Connect

    Angelis, A.L.S.; Besch, H.J.; Blumenfeld, B.J.

    1982-08-23

    We present data on proton-proton collisions, obtained at the CERN Intersecting Storage Rings, in which two roughly back-to-back ..pi../sup 0/'s of high transverse momentum (p/sub T/) were produced. The angular distribution of the dipion axis relative to the collision axis is found to be independent of both the effective mass m of the dipion system and the centre-of-mass energy ..sqrt..s of the proton-proton collision. The cross-sections dsigma/dm at the two values of ..sqrt..s satisfy a scaling law of the form dsigma/dm = G(x)/m/sup n/, where x = m(..pi../sup 0/,..pi../sup 0/)/..sqrt..s and n = 6.5 +- 0.5. We show from our data that the leading ..pi../sup 0/ carries most of the momentum of the scattered parton. Given this fact, the axis of the dipion system follows closely the direction of the scattered constituents, and we exploit this to determine the angular dependence of the hard-scattering subprocess. We also compare our data with the lowest order QCD predictions using structure functions as determined in deep-inelastic scattering and fragmentation functions from electron-positron annihilation.

  8. Temperature dependent absorption cross-sections of O2-O2 collision pairs between 340 and 630 nm and at atmospherically relevant pressure.

    PubMed

    Thalman, Ryan; Volkamer, Rainer

    2013-10-07

    The collisions between two oxygen molecules give rise to O4 absorption in the Earth atmosphere. O4 absorption is relevant to atmospheric transmission and Earth's radiation budget. O4 is further used as a reference gas in Differential Optical Absorption Spectroscopy (DOAS) applications to infer properties of clouds and aerosols. The O4 absorption cross section spectrum of bands centered at 343, 360, 380, 446, 477, 532, 577 and 630 nm is investigated in dry air and oxygen as a function of temperature (203-295 K), and at 820 mbar pressure. We characterize the temperature dependent O4 line shape and provide high precision O4 absorption cross section reference spectra that are suitable for atmospheric O4 measurements. The peak absorption cross-section is found to increase at lower temperatures due to a corresponding narrowing of the spectral band width, while the integrated cross-section remains constant (within <3%, the uncertainty of our measurements). The enthalpy of formation is determined to be ΔH(250) = -0.12 ± 0.12 kJ mol(-1), which is essentially zero, and supports previous assignments of O4 as collision induced absorption (CIA). At 203 K, van der Waals complexes (O(2-dimer)) contribute less than 0.14% to the O4 absorption in air. We conclude that O(2-dimer) is not observable in the Earth atmosphere, and as a consequence the atmospheric O4 distribution is for all practical means and purposes independent of temperature, and can be predicted with an accuracy of better than 10(-3) from knowledge of the oxygen concentration profile.

  9. Three-loop hard-thermal-loop perturbation theory thermodynamics at finite temperature and finite baryonic and isospin chemical potential

    NASA Astrophysics Data System (ADS)

    Andersen, Jens O.; Haque, Najmul; Mustafa, Munshi G.; Strickland, Michael

    2016-03-01

    In a previous paper [N. Haque et al., J. High Energy Phys. 05 (2014) 27], we calculated the three-loop thermodynamic potential of QCD at finite temperature T and quark chemical potentials μq using the hard-thermal-loop perturbation theory (HTLpt) reorganization of finite temperature and density QCD. The result allows us to study the thermodynamics of QCD at finite temperature and finite baryon, strangeness, and isospin chemical potentials μB, μS, and μI. We calculate the pressure at nonzero μB and μI with μS=0 , and the energy density, the entropy density, the trace anomaly, and the speed of sound at nonzero μI with μB=μS=0 . The second- and fourth-order isospin susceptibilities are calculated at μB=μS=μI=0 . Our results can be directly compared to lattice QCD without Taylor expansions around μq=0 since QCD has no sign problem at μB=μS=0 and finite isospin chemical potential μI.

  10. Isospin violation in {phi}, J/{psi}, {psi}{sup '}{yields}{omega}{pi}{sup 0} via hadronic loops

    SciTech Connect

    Li Gang; Zhao Qiang; Zou Bingsong

    2008-01-01

    In this work, we study the isospin-violating decay of {phi}{yields}{omega}{pi}{sup 0} and quantify the electromagnetic (EM) transitions and intermediate meson exchanges as two major sources of the decay mechanisms. In the EM decays, the present datum status allows a good constraint on the EM decay form factor in the vector meson dominance model, and it turns out that the EM transition can only account for about 1/4{approx}1/3 of the branching ratio for {phi}{yields}{omega}{pi}{sup 0}. The intermediate meson exchanges, KK(K*) (intermediate KK interaction via K* exchanges), KK*(K) (intermediate KK* rescattering via kaon exchanges), and KK*(K*) (intermediate KK* rescattering via K* exchanges), which evade the naive Okubo-Zweig-Iizuka rule, serve as another important contribution to the isospin violations. They are evaluated with effective Lagrangians where explicit constraints from experiment can be applied. Combining these three contributions, we obtain results in good agreement with the experimental data. This approach is also extended to J/{psi}({psi}{sup '}){yields}{omega}{pi}{sup 0}, where we find contributions from the KK(K*), KK*(K), and KK*(K*) loops are negligibly small, and the isospin violation is likely to be dominated by the EM transition.

  11. Towards temperature-dependent coarse-grained potentials of side-chain interactions for protein folding simulations. I: molecular dynamics study of a pair of methane molecules in water at various temperatures.

    PubMed

    Sobolewski, Emil; Makowski, Mariusz; Oldziej, Stanislaw; Czaplewski, Cezary; Liwo, Adam; Scheraga, Harold A

    2009-09-01

    By means of molecular dynamics simulations of a pair of methane molecules in a TIP3P periodic water box with the NVT scheme at six temperatures and, additionally, the NPT scheme at three temperatures ranging from T = 283 to 373 K, we determined the potential of mean force (PMF) of pairs of interacting methane molecules in water as functions of distance between the methane molecules. The PMFs converge to a single baseline only for r> 11 A at all temperatures. The curves of the dimensionless PMF obtained at different temperatures with the NVT scheme overlap almost perfectly in the region of the contact minimum and still very well in the regions of the desolvation maximum and the solvent-separated minimum, which suggests that the temperature-dependent hydrophobic interaction potentials at constant volume in united-residue force fields can be obtained by scaling the respective dimensionless potentials by RT, R being the universal gas constant. For the dimensionless potentials of mean force obtained with the NPT scheme, the depth of the contact minimum increases, whereas the height of the desolvation maximum and the depth of the solvent-separated minimum decrease with temperature, in agreement with results reported in the literature.

  12. Spectroscopy of 70Kr and isospin symmetry in the T =1 f p g shell nuclei

    NASA Astrophysics Data System (ADS)

    Debenham, D. M.; Bentley, M. A.; Davies, P. J.; Haylett, T.; Jenkins, D. G.; Joshi, P.; Sinclair, L. F.; Wadsworth, R.; Ruotsalainen, P.; Henderson, J.; Kaneko, K.; Auranen, K.; Badran, H.; Grahn, T.; Greenlees, P.; HerzaáÅ, A.; Jakobsson, U.; Konki, J.; Julin, R.; Juutinen, S.; Leino, M.; Sorri, J.; Pakarinen, J.; Papadakis, P.; Peura, P.; Partanen, J.; Rahkila, P.; Sandzelius, M.; Sarén, J.; Scholey, C.; Stolze, S.; Uusitalo, J.; David, H. M.; de Angelis, G.; Korten, W.; Lotay, G.; Mallaburn, M.; Sahin, E.

    2016-11-01

    The recoil-β tagging technique has been used in conjunction with the 40Ca(32S,2 n ) reaction at a beam energy of 88 MeV to identify transitions associated with the decay of the 2+ and, tentatively, 4+ states in the nucleus 70Kr. These data are used, along with previously published data, to examine the triplet energy differences (TED) for the mass 70 isobars. The experimental TED values are compared with shell model calculations, performed with the JUN45 interaction in the f p g model space, that include a J =0 isospin nonconserving (INC) interaction with an isotensor strength of 100 keV. The agreement is found to be very good up to spin 4 and supports the expectation for analog states that all three nuclei have the same oblate shape at low-spin. The A =70 results are compared with the experimental and shell model predicted TED and mirror energy differences (MED) for the mass 66 and 74 systems. The comparisons clearly demonstrate the importance of the isotensor INC interaction in replicating the TED data in this region. Issues related to the observed MED values and their interpretation within the shell model are discussed.

  13. Isospin and kinematical properties of heavy residues from the multifragmentation of neutron-rich systems

    NASA Astrophysics Data System (ADS)

    Souliotis, G. A.; Veselsky, M.; Botvina, A. S.; Keksis, A.; Martin, E.; Shetty, D. V.; Yennello, S. J.

    2004-05-01

    The yields and velocity distributions of isotopically resolved projectile residues from the reactions of 86Kr(25MeV/nucleon) with 64Ni,58Ni,124Sn,112Sn and 208Pb, as well as 124Sn(20MeV/u) with 124Sn are studied in this work [1,2]. Special attention is given to residues produced at excitation energies near the multifragmentation threshold ( ˜2-3MeV/nucleon). Both the isospin and the kinematical properties of the observed residues are well described by a hybrid approach consisting of a deep inelastic transfer model for the dynamical stage of the collision and the statistical multifragmentation model (SMM) for the de-excitation stage [3]. The present version of SMM features a fully microcanonically-based partition of fragmentation space and a detailed treatment of Coulomb interaction (including the interaction of fragments with target `spectators'). Apart from a nuclear reaction standpoint, the present study also addresses, both experimentally and theoretically, the practical issue of the production of very neutron-rich rare isotopes in multifragmentation of neutron-rich systems. [1] G.A. Souliotis et al., Phys. Rev. C 68 024605 (2003). [2] G.A. Souliotis et al., Nucl. Instrum. Methods B 204 166 (2003). [3] A.S. Botvina et al. Phys. Rev. C 65 044610 (2002) and references therein.

  14. Isospin mixing reveals 30P(p, γ)31S resonance influencing nova nucleosynthesis

    DOE PAGES

    Bennett, M. B.; Wrede, C.; Brown, B. A.; ...

    2016-03-08

    Here, the thermonuclear 30P(p, γ)31S reaction rate is critical for modeling the final elemental and isotopic abundances of ONe nova nucleosynthesis, which affect the calibration of proposed nova thermometers and the identification of presolar nova grains, respectively. Unfortunately, the rate of this reaction is essentially unconstrained experimentally, because the strengths of key 31S proton capture resonance states are not known, largely due to uncertainties in their spins and parities. Using the β decay of 31Cl, we have observed the β-delayed γ decay of a 31S state at Ex = 6390.2(7) keV, with a 30P(p, γ)31S resonance energy of Er =more » 259.3(8) keV, in the middle of the 30P(p, γ)31S Gamow window for peak nova temperatures. This state exhibits isospin mixing with the nearby isobaric analog state at Ex = 6279.0(6) keV, giving it an unambiguous spin and parity of 3/2+ and making it an important l = 0 resonance for proton capture on 30P.« less

  15. Isospin Mixing Reveals 30P (p ,γ ) 31S Resonance Influencing Nova Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Bennett, M. B.; Wrede, C.; Brown, B. A.; Liddick, S. N.; Pérez-Loureiro, D.; Bardayan, D. W.; Chen, A. A.; Chipps, K. A.; Fry, C.; Glassman, B. E.; Langer, C.; Larson, N. R.; McNeice, E. I.; Meisel, Z.; Ong, W.; O'Malley, P. D.; Pain, S. D.; Prokop, C. J.; Schatz, H.; Schwartz, S. B.; Suchyta, S.; Thompson, P.; Walters, M.; Xu, X.

    2016-03-01

    The thermonuclear 30P (p ,γ ) 31S reaction rate is critical for modeling the final elemental and isotopic abundances of ONe nova nucleosynthesis, which affect the calibration of proposed nova thermometers and the identification of presolar nova grains, respectively. Unfortunately, the rate of this reaction is essentially unconstrained experimentally, because the strengths of key 31 proton capture resonance states are not known, largely due to uncertainties in their spins and parities. Using the β decay of 31Cl, we have observed the β -delayed γ decay of a 31S state at Ex=6390.2 (7 ) keV , with a 39P (p ,γ )31S resonance energy of Er=259.3 (8 ) keV , in the middle of the 30P (p ,γ )31S Gamow window for peak nova temperatures. This state exhibits isospin mixing with the nearby isobaric analog state at Ex=6279.0 (6 ) keV , giving it an unambiguous spin and parity of 3 /2+ and making it an important l =0 resonance for proton capture on 30P 30.

  16. Strong isospin breaking contribution to the neutron-proton mass difference

    SciTech Connect

    Martin J. Savage; Silas R. Beane; Kostas Orginos

    2006-07-01

    We determine the strong-isospin violating component of the neutron-proton mass difference from fully-dynamical lattice QCD and partially-quenched QCD calculations of the nucleon mass, constrained by partially-quenched chiral perturbation theory at one-loop level. The lattice calculations were performed with domain-wall valence quarks on MILC lattices with rooted staggered sea-quarks at a lattice spacing of b ~ 0.125 fm, lattice spatial size of L ~ 2.5 fm and pion masses ranging from m_pi ~ 290 MeV to ~ 350 MeV. At the physical value of the pion mass, we predict Mn-M_p|^(d-u) = 2.26 ± 0.57 ± 0.42 ± 0.10 MeV where the first error is statistical, the second error is due to the uncertainty in the ratio of light-quark masses, eta = m_u/m_d, determined by MILC [1], and the third error is an estimate of the systematic due to chiral extrapolation.

  17. Isospin Mixing Reveals ^{30}P(p,γ)^{31}S Resonance Influencing Nova Nucleosynthesis.

    PubMed

    Bennett, M B; Wrede, C; Brown, B A; Liddick, S N; Pérez-Loureiro, D; Bardayan, D W; Chen, A A; Chipps, K A; Fry, C; Glassman, B E; Langer, C; Larson, N R; McNeice, E I; Meisel, Z; Ong, W; O'Malley, P D; Pain, S D; Prokop, C J; Schatz, H; Schwartz, S B; Suchyta, S; Thompson, P; Walters, M; Xu, X

    2016-03-11

    The thermonuclear ^{30}P(p,γ)^{31}S reaction rate is critical for modeling the final elemental and isotopic abundances of ONe nova nucleosynthesis, which affect the calibration of proposed nova thermometers and the identification of presolar nova grains, respectively. Unfortunately, the rate of this reaction is essentially unconstrained experimentally, because the strengths of key ^{31}S proton capture resonance states are not known, largely due to uncertainties in their spins and parities. Using the β decay of ^{31}Cl, we have observed the β-delayed γ decay of a ^{31}S state at E_{x}=6390.2(7)  keV, with a ^{30}P(p,γ)^{31}S resonance energy of E_{r}=259.3(8)  keV, in the middle of the ^{30}P(p,γ)^{31}S Gamow window for peak nova temperatures. This state exhibits isospin mixing with the nearby isobaric analog state at E_{x}=6279.0(6)  keV, giving it an unambiguous spin and parity of 3/2^{+} and making it an important l=0 resonance for proton capture on ^{30}P.

  18. Improved Hodograph Method and the Amplitude-Phase Gradient Method to estimate the latitude dependence of the FLR frequency, plasma density, and the resonance width using data from a ground magnetometer pair: Application to CARISMA and MAGDAS station pairs in North America

    NASA Astrophysics Data System (ADS)

    Kawano, H.; Pilipenko, V.; Mann, I. R.; Milling, D. K.; Saita, S.; Kitamura, K.; Yumoto, K.; Yoshikawa, A.

    2014-12-01

    The Improved Hodograph Method (IHM below) and the Amplitude-Phase Gradient Method (APGM below) are both applied to data from two ground magnetometers latitudinally separated by ~100km and yield the field-line-resonance (FLR) frequency and the ionospheric resonance width as functions of the latitude; from the FLR frequency we can estimate the magnetospheric plasma mass density, and from the resonance width we can estimate the damping rate of FLR, which is related to how much of the FLR-generated ULF waves are absorbed by the ionosphere. The both methods apply FFT to the two magnetometers' data, and calculate the amplitude ratio and the cross phase from the two stations' data as functions of the frequency. From there the two methods use different approaches: IHM fits a curve to the obtained ratio (as a complex number including both the amplitude ratio and the cross phase) on the complex plane to separate out the non-FLR signal in the data, while APGM assumes that the obtained amplitude ratio and cross phase include the FLR signal only and obtains the FLR frequency and the resonance width in an algebraic manner. In this paper we apply the two methods to simultaneously observed data from ground station pairs of WAD (CGM latitude and longitude: 61.3 and 318.3) - WEYB (58.6, 320.9), LGRR (61.8, 332.4) - PINA (60.0, 331.8), and PINA - THRF (57.8, 331.5), where WAD belongs to MAGDAS/CPMN while the other four belong to CARISMA. We show that IHM can properly estimate the latitudinal profile of the resonance width (which is the improved point of IHM over the original Hodograph Method) by comparing the results of applying IHM to the LGRR-PINA and PINA-THRF pairs, located along the same meridian. We also compare the IHM and APGM results to support the above-stated advantage of IHM over APGM. In addition, comparing the results of applying IHM and APGM to WAD-WEYB and LGRR-PINA-THRF, having similar latitudes but different longitudes, we discuss the longitude dependence of the FLR

  19. Ion pair receptors†

    PubMed Central

    Kim, Sung Kuk

    2010-01-01

    Compared with simple ion receptors, which are able to bind either a cation or an anion, ion pair receptors bearing both a cation and an anion recognition site offer the promise of binding ion pairs or pairs of ions strongly as the result of direct or indirect cooperative interactions between co-bound ions. This critical review focuses on the recent progress in the design of ion pair receptors and summarizes the various binding modes that have been used to accommodate ion pairs (110 references). PMID:20737073

  20. Isospin Effects in Heavy-Ion Collisions: Some Results From CHIMERA Experiments At LNS And Perspectives With Radioactive Beams

    SciTech Connect

    Cardella, G.; De Filippo, E.; Pagano, A.; Papa, M.; Pirrone, S.; Verde, G.; Amorini, F.; Cavallaro, S.; Lombardo, I.; Porto, F.; Rizzo, F.; Russotto, P.; Anzalone, A.; Maiolino, C.; Arena, N.; Geraci, E.; Grassi, L.; Lo Nigro, S.; Politi, G.; Auditore, L.

    2009-05-04

    CHIMERA is a 4{pi} multidetector for charged particles available at Laboratori Nazionali del Sud (INFN-LNS). A new method to measure the time scale of the emission of nuclear fragments is described, together with some applications in the field of the isospin dynamics of heavy-ion collisions. Competition between fusion-like and binary reactions near the energy threshold for nuclear multifragmentation is discussed. Opportunities are pointed out to use the detector at low and intermediate energies using the kinematical-coincidence method.

  1. Comparative tests of isospin-symmetry-breaking corrections to superallowed 0{sup +}{yields}0{sup +} nuclear {beta} decay

    SciTech Connect

    Towner, I. S.; Hardy, J. C.

    2010-12-15

    We present a test with which to evaluate the calculated isospin-symmetry-breaking corrections to superallowed 0{sup +}{yields}0{sup +} nuclear {beta} decay. The test is based on the corrected experimental Ft values being required to satisfy conservation of the vector current (CVC). When applied to six sets of published calculations, the test demonstrates quantitatively that only one set, the one based on the shell model with Saxon-Woods radial wave functions, provides satisfactory agreement with CVC. This test can easily be applied to any sets of calculated correction terms that are produced in future.

  2. Isospin symmetry breaking and large-scale shell-model calculations with the Sakurai-Sugiura method

    NASA Astrophysics Data System (ADS)

    Mizusaki, Takahiro; Kaneko, Kazunari; Sun, Yang; Tazaki, Shigeru

    2015-05-01

    Recently isospin symmetry breaking for mass 60-70 region has been investigated based on large-scale shell-model calculations in terms of mirror energy differences (MED), Coulomb energy differences (CED) and triplet energy differences (TED). Behind these investigations, we have encountered a subtle problem in numerical calculations for odd-odd N = Z nuclei with large-scale shell-model calculations. Here we focus on how to solve this subtle problem by the Sakurai-Sugiura (SS) method, which has been recently proposed as a new diagonalization method and has been successfully applied to nuclear shell-model calculations.

  3. Nuclear Structure and Magnetic Moment of the Unstable 12B-12N Mirror Pair

    NASA Astrophysics Data System (ADS)

    Zheng, Yong-Nan; Zhou, Dong-Mei; Yuan, Da-Qing; Zuo, Yi; Fan, Ping; Mihara, M.; Matsuta, K.; Fukuda, M.; Minamisono, T.; Suzuki, T.; Xu, Yong-Jun; Zhu, Jia-Zheng; Wang, Zhi-Qiang; Luo, Hai-Long; Zhang, Xi-Zhen; Zhu, Sheng-Yun

    2010-02-01

    Magnetic moments of the A = 12 unstable mirror pair nuclides 12B and 12N have been measured by the β- NMR, technique. The experimentally measured magnetic moments are μ(12B) = 1.001(17)μN and μ(12N) = 0.4571(1)μN The improved shell model using an SFO Hamiltonian with enhanced spin-isospin monopole proton-neutron interaction and modified single-particle energies is employed to calculate the magnetic moments of 12B and 12N. The calculation yields μ(12B) = 0.929μN and μ(12N) = 0.452μN and has produced a new magic number 6 for the short-lived unstable mirror pair nuclides 12B and 12N.

  4. Matched-pair classification

    SciTech Connect

    Theiler, James P

    2009-01-01

    Following an analogous distinction in statistical hypothesis testing, we investigate variants of machine learning where the training set comes in matched pairs. We demonstrate that even conventional classifiers can exhibit improved performance when the input data has a matched-pair structure. Online algorithms, in particular, converge quicker when the data is presented in pairs. In some scenarios (such as the weak signal detection problem), matched pairs can be generated from independent samples, with the effect not only doubling the nominal size of the training set, but of providing the structure that leads to better learning. A family of 'dipole' algorithms is introduced that explicitly takes advantage of matched-pair structure in the input data and leads to further performance gains. Finally, we illustrate the application of matched-pair learning to chemical plume detection in hyperspectral imagery.

  5. Vortex pairs on surfaces

    SciTech Connect

    Koiller, Jair

    2009-05-06

    A pair of infinitesimally close opposite vortices moving on a curved surface moves along a geodesic, according to a conjecture by Kimura. We outline a proof. Numerical simulations are presented for a pair of opposite vortices at a close but nonzero distance on a surface of revolution, the catenoid. We conjecture that the vortex pair system on a triaxial ellipsoid is a KAM perturbation of Jacobi's geodesic problem. We outline some preliminary calculations required for this study. Finding the surfaces for which the vortex pair system is integrable is in order.

  6. On the occurrence of plateaus in the dependence of critical temperatures on oxygen content in HTSC cuprates Quantitative analysis for Bi 2Sr 2CaCu 2O 8+ x on the basis of indirect-exchange pairing

    NASA Astrophysics Data System (ADS)

    Jansen, L.; Block, R.

    1997-02-01

    Plateaus observed, with several cuprates, in the dependence of critical temperatures on oxygen content are analyzed on the basis of indirect-exchange Cooper-pair formation via oxygen anions (oxygen-mediated superconductivity), with emphasis on recent experimental results by Li et al. (1994) for Bi 2Sr 2CaCu 2O 8+ x. It is shown that these results can be quantitatively explained in the framework of the indirect-exchange formalism. The plateau structure is found to arise as a compensating effect on Tc from hole doping and a change in density of oxygen anions in (or near) the CuO 2 layers. The observed steep decrease of TC in underdoped samples is ascribed to a rapid loss of macroscopic phase coherence with decreasing oxygen content. Extrapolating the analysis to the double-plateau (“chair”) structure of TC( x) in YBa 2Cu 3O 7- x, the origin of the first (60 K) plateau is similar to that in the Bi-compound, whereas the increase to TC ≈ 90 K is due to participation by the basal (chain) plane in superconductivity.

  7. Pair symmetry conversion in driven multiband superconductors

    NASA Astrophysics Data System (ADS)

    Triola, Christopher; Balatsky, Alexander V.

    2017-06-01

    It was recently shown that odd-frequency superconducting pair amplitudes can be induced in conventional superconductors subjected to a spatially nonuniform time-dependent drive. It has also been shown that, in the presence of interband scattering, multiband superconductors will possess bulk odd-frequency superconducting pair amplitudes. In this work we build on these previous results to demonstrate that by subjecting a multiband superconductor with interband scattering to a time-dependent drive, even-frequency pair amplitudes can be converted to odd-frequency pair amplitudes and vice versa. We will discuss the physical conditions under which these pair symmetry conversions can be achieved and possible experimental signatures of their presence.

  8. The dipion mass spectrum in e+e- annihilation and tau decay: Isospin symmetry breaking effects from the (rho, omega, phi) mixing

    SciTech Connect

    Benayoun, M.; David, P.; Del Buono, L.; Leitner, O.; O'Connell, H.B.; /Fermilab

    2008-01-01

    A way to explain the puzzling difference between the pion form factor as measured in e{sup +}e{sup -} annihilations and in {tau} decays is discussed. We show that isospin symmetry breaking, beside the already identified effects, produces also a full mixing between the {rho}{sup 0}, {omega} and {phi} mesons which generates an isospin 0 component inside the {rho}{sup 0} meson. This effect, not accounted for in current treatments of the problem, seems able to account for the apparent mismatch between e{sup +}e{sup -} and {tau} data below the {phi} mass.

  9. Pairing versus quarteting coherence length

    NASA Astrophysics Data System (ADS)

    Delion, D. S.; Baran, V. V.

    2015-02-01

    We systematically analyze the coherence length in even-even nuclei. The pairing coherence length in the spin-singlet channel for the effective density-dependent delta (DDD) and Gaussian interaction is estimated. We consider in our calculations bound states as well as narrow resonances. It turns out that the pairing gaps given by the DDD interaction are similar to those of the Gaussian potential if one renormalizes the radial width to the nuclear radius. The correlations induced by the pairing interaction have, in all considered cases, a long-range character inside the nucleus and a decrease towards the surface. The mean coherence length is larger than the geometrical radius for light nuclei and approaches this value for heavy nuclei. The effect of the temperature and states in the continuum is investigated. Strong shell effects are put in evidence, especially for protons. We generalize this concept to quartets by considering similar relations, but between proton and neutron pairs. The quartet coherence length has a similar shape, but with larger values on the nuclear surface. We provide evidence of the important role of proton-neutron correlations by estimating the so-called alpha coherence length, which takes into account the overlap with the proton-neutron part of the α -particle wave function. It turns out that it does not depend on the nuclear size and has a value comparable to the free α -particle radius. We have shown that pairing correlations are mainly concentrated inside the nucleus, while quarteting correlations are connected to the nuclear surface.

  10. Spin isospin responses via (p,n) and (n,p) reactions

    NASA Astrophysics Data System (ADS)

    Ichimura, M.; Sakai, H.; Wakasa, T.

    2006-04-01

    Recent progress in the study of spin-isospin responses by charge exchange (p,n) and (n,p) reactions at 300-500 MeV is reviewed with special emphases on quenching of the total Gamow-Teller (GT) strength at a momentum transfer q=0 fm and enhancement of the spin-longitudinal (pionic) response in quasielastic scattering (QES) at q≈1.7 fm. This progress has been made possible by the development of experimental techniques such as polarization transfer measurements for (p,n) reactions and quasi-monochromatic neutron beam production for (n,p) measurements. Currently operating (p→,n→) and (n,p) facilities are described. We present a detailed method of multipole decomposition analysis to extract GT strengths from the continuum spectra of the Zr90(p,n) and (n,p) reactions. From the obtained GT strength distributions, a quenching factor Q with respect to the GT sum rule value of 3(N-Z) can be derived. We also describe a method to obtain the polarized cross section IDi for the QES region from a complete set of polarization transfer coefficients D for the (p→,n→) reaction. The peak position of the GT giant resonance, the quenching factor Q, and the spin-longitudinal cross section IDq are used to estimate the values for the Landau-Migdal parameters, giving gNN‧=0.6-0.7 and gNΔ‧=0.2-0.4, which are appropriate for the wide range q≈0-1.7 fm. This small gNΔ‧ value leads to a large increase in pionic attraction in a large momentum transfer region. One possible consequence of this is a reduction of the critical density of pion condensation, which is briefly touched upon. Another consequence is precursor phenomena of pion condensation in the normal nuclear density which appear in the enhancement of IDq. Basic theoretical elements, including the Δ isobar degrees of freedom for analyzing experimental data, are described. Treatments of the continuum in reactions as well as in nuclear structure are emphasized. The framework of the distorted wave impulse approximation as

  11. Cooper pairs and bipolarons

    NASA Astrophysics Data System (ADS)

    Lakhno, Victor

    2016-11-01

    It is shown that Cooper pairs are a solution of the bipolaron problem for model Fröhlich Hamiltonian. The total energy of a pair for the initial Fröhlich Hamiltonian is found. Differences between the solutions for the model and initial two-particle problems are discussed.

  12. Triplet pairing in neutron matter

    NASA Astrophysics Data System (ADS)

    Khodel, V. V.; Khodel, V. A.; Clark, J. W.

    2001-01-01

    The separation method developed earlier by us [Nucl. Phys. A 598 390 (1996)] to calculate and analyze solutions of the BCS gap equation for 1S 0 pairing is extended and applied to 3P 2- 3F 2 pairing in pure neutron matter. The pairing matrix elements are written as a separable part plus a remainder that vanishes when either momentum variable is on the Fermi surface. This decomposition effects a separation of (i) the problem of determining the dependence of the gap components in a spin-angle representation on the magnitude of the momentum (described by a set of functions independent of magnetic quantum number) from (ii) the problem of determining the dependence of the gap on angle or magnetic projection. The former problem is solved through a set of nonsingular, quasilinear integral equations, providing inputs for solution of the latter problem through a coupled system of algebraic equations for a set of numerical coefficients. An incisive criterion is given for finding the upper critical density for closure of the triplet gap. The separation method and its development for triplet pairing exploit the existence of a small parameter, given by a gap-amplitude measure divided by the Fermi energy. The revised BCS equations admit analysis revealing universal properties of the full set of solutions for 3P 2 pairing in the absence of tensor coupling, referring especially to the energy degeneracy and energetic order of these solutions. The angle-average approximation introduced by Baldo et al. is illuminated in terms of the separation-transformed BCS problem and the small parameter expansion. Numerical calculations of 3P 2 pairing parameters and gap functions, with and without coupling to the 3F 2 state, are carried out for pairing matrix elements supplied by (vacuum) two-neutron interactions that fit nucleon-nucleon scattering data. It is emphasized that ab initio evaluation of the in-medium particle-particle interaction and associated single-particle energies will be

  13. Positron neutrino correlations in 32Ar and 33Ar decays: Probes of scalar weak currents and nuclear isospin mixing

    NASA Astrophysics Data System (ADS)

    García, A.; Adelberger, E. G.; Ortiz, C.; Swanson, H. E.; Beck, M.; Tengblad, O.; Borge, M. J. G.; Martel, I.; Bichsel, H.

    2000-12-01

    The positron neutrino correlation in the 0+→0+ β-decay of 32Ar was measured at ISOLDE by analyzing the effect of lepton recoil on the shape of the narrow proton group following the super-allowed decay. Our result is consistent with the standard model prediction;for vanishing Fierz interference we find a=0.9989±0.0052±0.0039. Our result leads to improved constraints on scalar weak interactions. The positron neutrino correlation in 33Ar decay was measured in the same experiment;for vanishing Fierz interference we find a=0.944±0.002±0.003. The 32Ar and 33Ar correlations, in combination with precision measurements of the half-lives, super-allowed branching ratios and beta endpoint energies, will determine the isospin impurities of the super-allowed transitions. These will provide useful tests of isospin-violation corrections used in deducing |Vud| which currently indicates non-unitarity of the KM matrix.

  14. Cooper Pairs in Insulators?!

    ScienceCinema

    James Valles

    2016-07-12

    Nearly 50 years elapsed between the discovery of superconductivity and the emergence of the microscopic theory describing this zero resistance state. The explanation required a novel phase of matter in which conduction electrons joined in weakly bound pairs and condensed with other pairs into a single quantum state. Surprisingly, this Cooper pair formation has also been invoked to account for recently uncovered high-resistance or insulating phases of matter. To address this possibility, we have used nanotechnology to create an insulating system that we can probe directly for Cooper pairs. I will present the evidence that Cooper pairs exist and dominate the electrical transport in these insulators and I will discuss how these findings provide new insight into superconductor to insulator quantum phase transitions. 

  15. Quarteting and spin-aligned proton-neutron pairs in heavy N =Z nuclei

    NASA Astrophysics Data System (ADS)

    Sambataro, M.; Sandulescu, N.

    2015-06-01

    We analyze the role of maximally aligned isoscalar pairs in heavy N =Z nuclei by employing a formalism of quartets. Quartets are superpositions of two neutrons and two protons coupled to total isospin T =0 and given J . The study is focused on the contribution of spin-aligned pairs carrying the angular momentum J =9 to the structure of 96Cd and 92Pd . We show that the role played by the J =9 pairs is quite sensitive to the model space and, in particular, it decreases considerably by passing from the simple 0 g9 /2 space to the more complete 1 p1 /2,1 p3 /2,0 f5 /2,0 g9 /2 space. In the latter case the description of these nuclei in terms of only spin-aligned J =9 pairs turns out to be unsatisfactory while an important contribution, particularly in the ground state, is seen to arise from isovector J =0 and isoscalar J =1 pairs. Thus, contrary to previous studies, we find no compelling evidence of a spin-aligned pairing phase in 92Pd .

  16. Effect of single-particle splitting in the exact wave function of the isovectorial pairing Hamiltonian

    SciTech Connect

    Lerma H, S.

    2010-07-15

    The structure of the exact wave function of the isovectorial pairing Hamiltonian with nondegenerate single-particle levels is discussed. The way that the single-particle splittings break the quartet condensate solution found for N=Z nuclei in a single degenerate level is established. After a brief review of the exact solution, the structure of the wave function is analyzed and some particular cases are considered where a clear interpretation of the wave function emerges. An expression for the exact wave function in terms of the isospin triplet of pair creators is given. The ground-state wave function is analyzed as a function of pairing strength, for a system of four protons and four neutrons. For small and large values of the pairing strength a dominance of two-pair (quartets) scalar couplings is found, whereas for intermediate values enhancements of the nonscalar couplings are obtained. A correlation of these enhancements with the creation of Cooper-like pairs is observed.

  17. Electron pairing without superconductivity.

    PubMed

    Cheng, Guanglei; Tomczyk, Michelle; Lu, Shicheng; Veazey, Joshua P; Huang, Mengchen; Irvin, Patrick; Ryu, Sangwoo; Lee, Hyungwoo; Eom, Chang-Beom; Hellberg, C Stephen; Levy, Jeremy

    2015-05-14

    Strontium titanate (SrTiO3) is the first and best known superconducting semiconductor. It exhibits an extremely low carrier density threshold for superconductivity, and possesses a phase diagram similar to that of high-temperature superconductors--two factors that suggest an unconventional pairing mechanism. Despite sustained interest for 50 years, direct experimental insight into the nature of electron pairing in SrTiO3 has remained elusive. Here we perform transport experiments with nanowire-based single-electron transistors at the interface between SrTiO3 and a thin layer of lanthanum aluminate, LaAlO3. Electrostatic gating reveals a series of two-electron conductance resonances-paired electron states--that bifurcate above a critical pairing field Bp of about 1-4 tesla, an order of magnitude larger than the superconducting critical magnetic field. For magnetic fields below Bp, these resonances are insensitive to the applied magnetic field; for fields in excess of Bp, the resonances exhibit a linear Zeeman-like energy splitting. Electron pairing is stable at temperatures as high as 900 millikelvin, well above the superconducting transition temperature (about 300 millikelvin). These experiments demonstrate the existence of a robust electronic phase in which electrons pair without forming a superconducting state. Key experimental signatures are captured by a model involving an attractive Hubbard interaction that describes real-space electron pairing as a precursor to superconductivity.

  18. Paired-pulse transcranial magnetic stimulation reveals probability-dependent changes in functional connectivity between right inferior frontal cortex and primary motor cortex during go/no-go performance

    PubMed Central

    van Campen, A. Dilene; Neubert, Franz-Xaver; van den Wildenberg, Wery P. M.; Ridderinkhof, K. Richard; Mars, Rogier B.

    2013-01-01

    The functional role of the right inferior frontal cortex (rIFC) in mediating human behavior is the subject of ongoing debate. Activation of the rIFC has been associated with both response inhibition and with signaling action adaptation demands resulting from unpredicted events. The goal of this study is to investigate the role of rIFC by combining a go/no-go paradigm with paired-pulse transcranial magnetic stimulation (ppTMS) over rIFC and the primary motor cortex (M1) to probe the functional connectivity between these brain areas. Participants performed a go/no-go task with 20% or 80% of the trials requiring response inhibition (no-go trials) in a classic and a reversed version of the task, respectively. Responses were slower to infrequent compared to frequent go trials, while commission errors were more prevalent to infrequent compared to frequent no-go trials. We hypothesized that if rIFC is involved primarily in response inhibition, then rIFC should exert an inhibitory influence over M1 on no-go (inhibition) trials regardless of no-go probability. If, by contrast, rIFC has a role on unexpected trials other than just response inhibition then rIFC should influence M1 on infrequent trials regardless of response demands. We observed that rIFC suppressed M1 excitability during frequent no-go trials, but not during infrequent no-go trials, suggesting that the role of rIFC in response inhibition is context dependent rather than generic. Importantly, rIFC was found to facilitate M1 excitability on all low frequent trials, irrespective of whether the infrequent event involved response inhibition, a finding more in line with a predictive coding framework of cognitive control. PMID:24282398

  19. A 1.5 ns OFF/ON switching-time voltage-mode LVDS driver/receiver pair for asynchronous AER bit-serial chip grid links with up to 40 times event-rate dependent power savings.

    PubMed

    Zamarreno-Ramos, Carlos; Kulkarni, Raghavendra; Silva-Martinez, Jose; Serrano-Gotarredona, Teresa; Linares-Barranco, Bernabe

    2013-10-01

    This paper presents a low power fast ON/OFF switchable voltage mode implementation of a driver/receiver pair intended to be used in high speed bit-serial Low Voltage Differential Signaling (LVDS) Address Event Representation (AER) chip grids, where short (like 32-bit) sparse data packages are transmitted. Voltage-Mode drivers require intrinsically half the power of their Current-Mode counterparts and do not require Common-Mode Voltage Control. However, for fast ON/OFF switching a special high-speed voltage regulator is required which needs to be kept ON during data pauses, and hence its power consumption must be minimized, resulting in tight design constraints. A proof-of-concept chip test prototype has been designed and fabricated in low-cost standard 0.35 μ m CMOS. At ± 500 mV voltage swing with 500 Mbps serial bit rate and 32 bit events, current consumption scales from 15.9 mA (7.7 mA for the driver and 8.2 mA for the receiver) at 10 Mevent/s rate to 406 μ A ( 343 μ A for the driver and 62.5 μA for the receiver) for an event rate below 10 Kevent/s, therefore achieving a rate dependent power saving of up to 40 times, while keeping switching times at 1.5 ns. Maximum achievable event rate was 13.7 Meps at 638 Mbps serial bit rate. Additionally, differential voltage swing is tunable, thus allowing further power reductions.

  20. Paired Straight Hearth Furnace

    SciTech Connect

    2009-04-01

    This factsheet describes a research project whose goals are to design, develop, and evaluate the scalability and commercial feasibility of the PSH Paired Straight Hearth Furnace alternative ironmaking process.

  1. Stereo Pair, Pasadena, California

    NASA Image and Video Library

    2000-03-10

    This stereoscopic image pair is a perspective view that shows the western part of the city of Pasadena, California, looking north toward the San Gabriel Mountains. Portions of the cities of Altadena and La Canada Flintridge are also shown.

  2. Stereo Pair, Honolulu, Oahu

    NASA Image and Video Library

    2000-03-10

    Honolulu, on the island of Oahu, is a large and growing urban area. This stereoscopic image pair, combining a Landsat image with topography measured by NASA Shuttle Radar Topography Mission SRTM, shows how topography controls the urban pattern.

  3. Amplification of Cooper pair splitting current in a graphene-based Cooper pair beam splitter geometry

    NASA Astrophysics Data System (ADS)

    Islam, SK Firoz; Saha, Arijit

    2017-09-01

    Motivated by the recent experiments [Scientific Reports 6, 23051 (2016), 10.1038/srep23051; Phys. Rev. Lett. 114, 096602 (2015), 10.1103/PhysRevLett.114.096602], we theoretically investigate Cooper pair splitting current in a graphene-based Cooper pair beam splitter geometry. By considering the graphene-based superconductor as an entangler device, instead of normal [two-dimensional (2D)] BCS superconductor, we show that the Cooper pair splitting current mediated by the crossed Andreev process is amplified compared to its normal superconductor counterpart. This amplification is attributed to the strong suppression of the local normal Andreev reflection process (arising from the Cooper pair splitting) from the graphene-based superconductor to lead via the same quantum dot, in comparison to the usual 2D superconductor. Due to the vanishing density of states at the Dirac point of undoped graphene, a doped graphene-based superconductor is considered here and it is observed that Cooper pair splitting current is very insensitive to the doping level in comparison to the usual 2D superconductor. The transport process of nonlocal spin-entangled electrons also depends on the type of pairing, i.e., whether the electron-hole pairing is onsite, intersublattice or the combination of both. The intersublattice pairing of graphene causes the maximum nonlocal Cooper pair splitting current, whereas the presence of both pairings reduces the Cooper pair splitting current.

  4. Cooper Pair Insulators

    NASA Astrophysics Data System (ADS)

    Valles, James

    One of the recent advances in the field of the Superconductor to Insulator Transition (SIT) has been the discovery and characterization of the Cooper Pair Insulator phase. This bosonic insulator, which consists of localized Cooper pairs, exhibits activated transport and a giant magneto-resistance peak. These features differ markedly from the weakly localized transport that emerges as pairs break at a ``fermionic'' SIT. I will describe how our experiments on films nano-patterned with a nearly triangular array of holes have enabled us to 1) distinguish bosonic insulators from fermionic insulators, 2) show that Cooper pairs, rather than quasi-particles dominate the transport in the Cooper Pair insulator phase, 3) demonstrate that very weak, sub nano-meter thickness inhomogeneities control whether a bosonic or fermionic insulator forms at an SIT and 4) reveal that Cooper pairs disintegrate rather than becoming more tightly bound deep in the localized phase. We have also developed a method, using a magnetic field, to tune flux disorder reversibly in these films. I will present our latest results on the influence of magnetic flux disorder and random gauge fields on phenomena near bosonic SITs. This work was performed in collaboration with M. D. Stewart, Jr., Hung Q. Nguyen, Shawna M. Hollen, Jimmy Joy, Xue Zhang, Gustavo Fernandez, Jeffrey Shainline and Jimmy Xu. It was supported by NSF Grants DMR 1307290 and DMR-0907357.

  5. BCS theory with the external pair potential

    NASA Astrophysics Data System (ADS)

    Grigorishin, Konstantin V.

    2017-09-01

    We consider a hypothetical substance, where interaction between (within) structural elements of condensed matter (molecules, nanoparticles, clusters, layers, wires etc.) depends on state of Cooper pairs: an additional work must be made against this interaction to break a pair. Such a system can be described by BCS Hamiltonian with the external pair potential term. In this model the potential essentially renormalizes the order parameter: if the pairing lowers energy of the structure the energy gap is slightly enlarged at zero temperature and asymptotically tends to zero as temperature rises. Thus the critical temperature of such a superconductor is equal to infinity formally. For this case the effective Ginzburg-Landau theory is formulated, where the coherence length decreases as temperature rises, the GL parameter and the second critical field are increasing functions of temperature unlike the standard theory. If the pairing enlarges energy of the structure then suppression of superconductivity and the first order phase transition occur.

  6. Branching Fractions and CP Asymmetries in B0 to pi0pi0, B+ to pi+pi0 and B+ to K+pi0 Decays and Isospin Analysis of the B to pi pi System

    SciTech Connect

    Cristinziani, M.

    2004-12-14

    Based on a sample of 227 million B{bar B} pairs collected by the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC, we measure the branching fraction {Beta}(B{sup 0} {yields} {pi}{sup 0}{pi}{sup 0}) = (1.17 {+-} 0.32 {+-} 0.10) x 10{sup -6}, and the asymmetry C{sub {pi}{sup 0}{pi}{sup 0}} = -0.12 {+-} 0.56 {+-} 0.06. The B{sup 0} {yields} {pi}{sup 0}{pi}{sup 0} signal has a significance of 5.0{sigma}. We also measure {Beta}(B{sup +} {yields} {pi}{sup +}{pi}{sup 0}) = (5.8 {+-} 0.6 {+-} 0.4) x 10{sup -6}, {Beta}(B{sup +} {yields} K{sup +}{pi}{sup 0}) = (12.0 {+-} 0.7 {+-} 0.6) x 10{sup -6}, and the charge asymmetries {Alpha}{sub {pi}{sup +}{pi}{sup 0}} = -0.01 {+-} 0.10 {+-} 0.02 and {Alpha}{sub K{sup +}{pi}{sup 0}} = 0.06 {+-} 0.06 {+-} 0.01. Using isospin relations we find an upper bound on the angle difference |{alpha} - {alpha}{sub eff}| of 35{sup o} at the 90% C.L.

  7. Branching fractions and CP asymmetries in B0-->pi0pi0, B+-->pi+pi0, and B+-->K+pi0 decays and isospin analysis of the B-->pipi system.

    PubMed

    Aubert, B; Barate, R; Boutigny, D; Couderc, F; Karyotakis, Y; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Grauges-Pous, E; Palano, A; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Wenzel, W A; Barrett, M; Ford, K E; Harrison, T J; Hart, A J; Hawkes, C M; Morgan, S E; Watson, A T; Fritsch, M; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Schroeder, T; Steinke, M; Boyd, J T; Chevalier, N; Cottingham, W N; Kelly, M P; Latham, T E; Wilson, F F; Cuhadar-Donszelmann, T; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Thiessen, D; Khan, A; Kyberd, P; Teodorescu, L; Blinov, A E; Blinov, V E; Druzhinin, V P; Golubev, V B; Ivanchenko, V N; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Bruinsma, M; Chao, M; Eschrich, I; Kirkby, D; Lankford, A J; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Buchanan, C; Hartfiel, B L; Weinstein, A J R; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; del Re, D; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Rahatlou, Sh; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Lu, A; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Eisner, A M; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Yang, S; Jayatilleke, S; Mancinelli, G; Meadows, B T; Sokoloff, M D; Blanc, F; Bloom, P; Chen, S; Ford, W T; Nauenberg, U; Olivas, A; Rankin, P; Ruddick, W O; Smith, J G; Ulmer, K A; Zhang, J; Zhang, L; Chen, A; Eckhart, E A; Harton, J L; Soffer, A; Toki, W H; Wilson, R J; Zeng, Q; Spaan, B; Altenburg, D; Brandt, T; Brose, J; Dickopp, M; Feltresi, E; Hauke, A; Lacker, H M; Nogowski, R; Otto, S; Petzold, A; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Bernard, D; Bonneaud, G R; Grenier, P; Schrenk, S; Thiebaux, Ch; Vasileiadis, G; Verderi, M; Bard, D J; Clark, P J; Muheim, F; Playfer, S; Xie, Y; Andreotti, M; Azzolini, V; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Piemontese, L; Sarti, A; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Crosetti, G; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Bailey, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Won, E; Dubitzky, R S; Langenegger, U; Marks, J; Uwer, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Gaillard, J R; Morton, G W; Nash, J A; Nikolich, M B; Taylor, G P; Charles, M J; Grenier, G J; Mallik, U; Cochran, J; Crawley, H B; Lamsa, J; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Yi, J; Arnaud, N; Davier, M; Giroux, X; Grosdidier, G; Höcker, A; Le Diberder, F; Lepeltier, V; Lutz, A M; Petersen, T C; Plaszczynski, S; Schune, M H; Wormser, G; Cheng, C H; Lange, D J; Simani, M C; Wright, D M; Bevan, A J; Chavez, C A; Coleman, J P; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; Hutchcroft, D E; Parry, R J; Payne, D J; Touramanis, C; Cormack, C M; Di Lodovico, F; Brown, C L; Cowan, G; Flack, R L; Flaecher, H U; Green, M G; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Winter, M A; Brown, D; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Hodgkinson, M C; Lafferty, G D; Williams, J C; Chen, C; Farbin, A; Hulsbergen, W D; Jawahery, A; Kovalskyi, D; Lae, C K; Lillard, V; Roberts, D A; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Kofler, R; Koptchev, V B; Moore, T B; Saremi, S; Staengle, H; Willocq, S; Cowan, R; Koeneke, K; Sciolla, G; Sekula, S J; Taylor, F; Yamamoto, R K; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Taras, P; Nicholson, H; Cavallo, N; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M; Bulten, H; Raven, G; Snoek, H L; Wilden, L; Jessop, C P; LoSecco, J M; Allmendinger, T; Benelli, G; Gan, K K; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Pulliam, T; Rahimi, A M; Ter-Antonyan, R; Wong, Q K; Brau, J; Frey, R; Igonkina, O; Lu, M; Potter, C T; Sinev, N B; Strom, D; Torrence, E; Colecchia, F; Dorigo, A; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; de la Vaissière, Ch; Del Buono, L; Hamon, O; John, M J J; Leruste, Ph; Malcles, J; Ocariz, J; Roos, L; Therin, G; Behera, P K; Gladney, L; Guo, Q H; Panetta, J; Biasini, M; Covarelli, R; Pioppi, M; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bucci, F; Calderini, G; Carpinelli, M; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Simi, G; Walsh, J; Haire, M; Judd, D; Paick, K; Wagoner, D E; Danielson, N; Elmer, P; Lau, Y P; Lu, C; Miftakov, V; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; D'Orazio, A; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Pierini, M; Piredda, G; Polci, F; Safai Tehrani, F; Voena, C; Christ, S; Schröder, H; Wagner, G; Waldi, R; Adye, T; De Groot, N; Franek, B; Gopal, G P; Olaiya, E O; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P-F; Hamel de Monchenault, G; Kozanecki, W; Legendre, M; London, G W; Mayer, B; Schott, G; Vasseur, G; Yèche, Ch; Zito, M; Purohit, M V; Weidemann, A W; Wilson, J R; Yumiceva, F X; Abe, T; Allen, M; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmueller, O L; Claus, R; Convery, M R; Cristinziani, M; De Nardo, G; Dingfelder, J C; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W; Fan, S; Field, R C; Glanzman, T; Gowdy, S J; Hadig, T; Halyo, V; Hast, C; Hryn'ova, T; Innes, W R; Kelsey, M H; Kim, P; Kocian, M L; Leith, D W G S; Libby, J; Luitz, S; Luth, V; Lynch, H L; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Soha, A; Stelzer, J; Strube, J; Su, D; Sullivan, M K; Thompson, J; Va'vra, J; Wagner, S R; Weaver, M; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Roat, C; Ahmed, M; Ahmed, S; Alam, M S; Ernst, J A; Saeed, M A; Saleem, M; Wappler, F R; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Kim, H; Ritchie, J L; Satpathy, A; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Bona, M; Gallo, F; Gamba, D; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Poropat, P; Vitale, L; Vuagnin, G; Martinez-Vidal, F; Panvini, R S; Banerjee, Sw; Bhuyan, B; Brown, C M; Fortin, D; Jackson, P D; Kowalewski, R; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Mohanty, G B; Band, H R; Chen, X; Cheng, B; Dasu, S; Datta, M; Eichenbaum, A M; Flood, K T; Graham, M; Hollar, J J; Johnson, J R; Kutter, P E; Li, H; Liu, R; Mihalyi, A; Pan, Y; Prepost, R; Tan, P; von Wimmersperg-Toeller, J H; Wu, J; Wu, S L; Yu, Z; Greene, M G; Neal, H

    2005-05-13

    Based on a sample of 227 x 10(6) BB pairs collected by the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC, we measure the branching fraction B(B0-->pi(0)pi(0))=(1.17+/-0.32+/-0.10)x10(-6), and the asymmetry Cpi(0)(pi(0))=-0.12+/-0.56+/-0.06. The B0-->pi(0)pi(0) signal has a significance of 5.0 sigma. We also measure B(B+-->pi(+)pi(0))=(5.8+/-0.6+/-0.4)x10(-6), B(B+-->K+pi(0))=(12.0+/-0.7+/-0.6)x10(-6), and the charge asymmetries Api(+)(pi(0))=-0.01+/-0.10+/-0.02 and AK+(pi(0))=0.06+/-0.06+/-0.01. Using isospin relations, we find an upper bound on the angle difference |alpha-alpha(eff)| of 35 degrees at the 90% C.L.

  8. Experimental 64Zn(d⃗,t)63Zn spectroscopic factors: Guidance for isospin-symmetry-breaking calculations

    NASA Astrophysics Data System (ADS)

    Leach, K. G.; Garrett, P. E.; Towner, I. S.; Ball, G. C.; Bildstein, V.; Brown, B. A.; Demand, G. A.; Faestermann, T.; Finlay, P.; Green, K. L.; Hertenberger, R.; Krücken, R.; Phillips, A. A.; Rand, E. T.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Wirth, H.-F.; Wong, J.

    2013-06-01

    With the recent inclusion of core orbitals to the radial-overlap component of the isospin-symmetry-breaking (ISB) corrections for superallowed Fermi β decay, experimental data are needed to test the validity of the theoretical model. This work reports measurements of single-neutron pickup reaction spectroscopic factors into 63Zn, one neutron away from 62Zn, the superallowed daughter of 62Ga. The experiment was performed using a 22-MeV polarized deuteron beam, a Q3D magnetic spectrograph, and a cathode-strip focal-plane detector to analyze outgoing tritons at nine angles between 10∘ and 60∘. Angular distributions and vector analyzing powers were obtained for all 162 observed states in 63Zn, including 125 newly observed levels, up to an excitation energy of 4.8 MeV. Spectroscopic factors are extracted and compared to several shell-model predictions, and implications for the ISB calculations are discussed.

  9. B^+→ K^-π ^+π ^+: Three-Body Final State Interactions and Kπ Isospin States

    NASA Astrophysics Data System (ADS)

    Nogueira, J. H. Alvarenga; Frederico, T.; Lourenço, O.

    2017-03-01

    In this exploratory study, final state interactions are considered to formulate the B meson decay amplitude for the Kπ π channel. The Faddeev decomposition of the Bethe-Salpeter equation is used in order to build a relativistic three-body model within the light-front framework. The S-wave scattering amplitude for the Kπ system is considered in the 1/2 and 3/2 isospin channels with the set of inhomogeneous integral equations solved perturbatively. In comparison with previous results for the D meson decay in the same channel, one has to consider the different partonic processes, which build the source amplitudes, and the larger absorption to other decay channels appears, that are important features to be addressed. As in the D decay case, the convergence of the rescattering perturbative series is also achieved with two-loop contributions.

  10. Hadron-Hadron Interactions from Nf=2 +1 +1 lattice QCD: Isospin-1 K K scattering length

    NASA Astrophysics Data System (ADS)

    Helmes, C.; Jost, C.; Knippschild, B.; Kostrzewa, B.; Liu, L.; Urbach, C.; Werner, M.; ETM Collaboration

    2017-08-01

    We present results for the interaction of two kaons at maximal isospin. The calculation is based on Nf=2 +1 +1 flavor gauge configurations generated by the European Twisted Mass Collaboration with pion masses ranging from about 230 MeV to 450 MeV at three values of the lattice spacing. The elastic scattering length a0I =1 is calculated at several values of the bare strange and light quark masses. We find MKa0=-0.385 (16 )stat(+0/-12)ms(+0/-5)ZP(4 )rf as the result of a combined extrapolation to the continuum and to the physical point, where the first error is statistical, and the three following are systematical. This translates to a0=-0.154 (6 )stat(-5+0)ms(-2+0)ZP(2 )rf fm .

  11. Searches for isospin-violating transitions χc 0 ,2→π0ηc

    NASA Astrophysics Data System (ADS)

    Ablikim, M.; Achasov, M. N.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Baldini Ferroli, R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Bondarenko, O.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Cronin-Hennessy, D.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; de Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, Y.; Gao, Z.; Garzia, I.; Geng, C.; Goetzen, K.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Han, Y. L.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, Z. Y.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. M.; Huang, G. S.; Huang, H. P.; Huang, J. S.; Huang, X. T.; Huang, Y.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. L.; Jiang, L. W.; Jiang, X. S.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kuehn, W.; Kupsc, A.; Lai, W.; Lange, J. S.; Lara, M.; Larin, P.; Li, C. H.; Li, Cheng; Li, D. M.; Li, F.; Li, G.; Li, H. B.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, P. R.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. M.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B. J.; Liu, C. X.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, X. X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqiang; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, R. Q.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lv, M.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, Q. M.; Ma, S.; Ma, T.; Ma, X. N.; Ma, X. Y.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Moriya, K.; Muchnoi, N. Yu.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Ping, J. L.; Ping, R. G.; Poling, R.; Pu, Y. N.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Y.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ren, H. L.; Ripka, M.; Rong, G.; Ruan, X. D.; Santoro, V.; Sarantsev, A.; Savrié, M.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Shepherd, M. R.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Toth, D.; Ullrich, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, Q. J.; Wang, S. G.; Wang, W.; Wang, X. F.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Wei, J. B.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, Z.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. X.; Yang, L.; Yang, Y.; Yang, Y. X.; Ye, H.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, H. W.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. H.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, Li; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zou, B. S.; Zou, J. H.; Besiii Collaboration

    2015-06-01

    We present the first upper-limit measurement of the branching fractions of the isospin-violating transitions χc 0 ,2→π0ηc . The measurements are performed using 106 ×1 06 ψ (3686 ) events accumulated with the BESIII detector at the BEPCII e+e- collider at a center-of-mass energy corresponding to the ψ (3686 ) mass. We obtained upper limits on the branching fractions at a 90% confidence level of B (χc 0→π0ηc)<1.6 ×1 0-3 and B (χc 2→π0ηc)<3.2 ×1 0-3 .

  12. Isospin corrections for superallowed Fermi {beta} decay in self-consistent relativistic random-phase approximation approaches

    SciTech Connect

    Liang Haozhao; Nguyen Van Giai; Meng Jie

    2009-06-15

    Self-consistent random phase approximation (RPA) approaches in the relativistic framework are applied to calculate the isospin symmetry-breaking corrections {delta}{sub c} for the 0{sup +}{yields}0{sup +} superallowed transitions. It is found that the corrections {delta}{sub c} are sensitive to the proper treatments of the Coulomb mean field, but not so much to specific effective interactions. With these corrections {delta}{sub c}, the nucleus-independent Ft values are obtained in combination with the experimental ft values in the most recent survey and the improved radiative corrections. It is found that the constancy of the Ft values is satisfied for all effective interactions employed. Furthermore, the element V{sub ud} and unitarity of the Cabibbo-Kobayashi-Maskawa matrix are discussed.

  13. Pairing, pseudogap and Fermi arcs in cuprates

    SciTech Connect

    Kaminski, Adam; Kondo, Takeshi; Takeuchi, Tsunehiro; Gu, Genda

    2014-04-29

    We use Angle Resolved Photoemission Spectroscopy (ARPES) to study the relationship between the pseudogap, pairing and Fermi arcs in cuprates. High quality data measured over a wide range of dopings reveals a consistent picture of Fermiology and pairing in these materials. The pseudogap is due to an ordered state that competes with superconductivity rather than preformed pairs. Pairing does occur below Tpair ~ 150K and significantly above Tc, but well below T* and the doping dependence of this temperature scale is distinct from that of the pseudogap. The d-wave gap is present below Tpair, and its interplay with strong scattering creates “artificial” Fermi arcs for Tc ≤ T ≤ Tpair. However, above Tpair, the pseudogap exists only at the antipodal region. This leads to presence of real, gapless Fermi arcs close to the node. The length of these arcs remains constant up to T*, where the full Fermi surface is recovered. As a result, we demonstrate that these findings resolve a number of seemingly contradictory scenarios.

  14. Mediators of homologous DNA pairing.

    PubMed

    Zelensky, Alex; Kanaar, Roland; Wyman, Claire

    2014-10-09

    Homologous DNA pairing and strand exchange are at the core of homologous recombination. These reactions are promoted by a DNA-strand-exchange protein assembled into a nucleoprotein filament comprising the DNA-pairing protein, ATP, and single-stranded DNA. The catalytic activity of this molecular machine depends on control of its dynamic instability by accessory factors. Here we discuss proteins known as recombination mediators that facilitate formation and functional activation of the DNA-strand-exchange protein filament. Although the basics of homologous pairing and DNA-strand exchange are highly conserved in evolution, differences in mediator function are required to cope with differences in how single-stranded DNA is packaged by the single-stranded DNA-binding protein in different species, and the biochemical details of how the different DNA-strand-exchange proteins nucleate and extend into a nucleoprotein filament. The set of (potential) mediator proteins has apparently expanded greatly in evolution, raising interesting questions about the need for additional control and coordination of homologous recombination in more complex organisms. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  15. Mediators of Homologous DNA Pairing

    PubMed Central

    Zelensky, Alex; Kanaar, Roland; Wyman, Claire

    2014-01-01

    Homologous DNA pairing and strand exchange are at the core of homologous recombination. These reactions are promoted by a DNA-strand-exchange protein assembled into a nucleoprotein filament comprising the DNA-pairing protein, ATP, and single-stranded DNA. The catalytic activity of this molecular machine depends on control of its dynamic instability by accessory factors. Here we discuss proteins known as recombination mediators that facilitate formation and functional activation of the DNA-strand-exchange protein filament. Although the basics of homologous pairing and DNA-strand exchange are highly conserved in evolution, differences in mediator function are required to cope with differences in how single-stranded DNA is packaged by the single-stranded DNA-binding protein in different species, and the biochemical details of how the different DNA-strand-exchange proteins nucleate and extend into a nucleoprotein filament. The set of (potential) mediator proteins has apparently expanded greatly in evolution, raising interesting questions about the need for additional control and coordination of homologous recombination in more complex organisms. PMID:25301930

  16. Interference in the recombination of frequency-entangled photon pairs

    NASA Astrophysics Data System (ADS)

    O'Donnell, Kevin A.; Garces, Veneranda G.

    2015-11-01

    We present experimental studies of the recombination of frequency-entangled photon pairs into single photons in a periodically poled lithium niobate crystal. With a delay ? between pair members, the measured rate of pair recombination ? presents a width of 25.6 fsec. It is observed that, depending on experimental conditions, ? can contain interference fringes that arise from the spatial correlations of the photon pairs. In particular, these correlations imply that each photon of a pair interferes with itself in the experiment before pair recombination, leading to the fringes in ?. A theoretical model is developed that provides favorable comparisons with the experimental results.

  17. Dependence of the lone pair of bismuth on coordination environment and pressure: An ab initio study on Cu{sub 4}Bi{sub 5}S{sub 10} and Bi{sub 2}S{sub 3}

    SciTech Connect

    Arnskov Olsen, Lars; Lopez-Solano, Javier; Garcia, Alberto; Balic-Zunic, Tonci; Makovicky, Emil

    2010-09-15

    DFT calculations have been carried out for Cu{sub 4}Bi{sub 5}S{sub 10} and Bi{sub 2}S{sub 3} to provide an analysis of the relation between electronic structure, lone electron pairs and the local geometry. The effect of pressure is considered in Bi{sub 2}S{sub 3} and the results are compared to published experimental data. Bi{sup 3+} in Cu{sub 4}Bi{sub 5}S{sub 10} is found at both symmetrically and asymmetrically coordinated sites, whereas the coordination environments of Bi in Bi{sub 2}S{sub 3} are asymmetric at room conditions and get more regular with increasing pressure. The charge density maps of the asymmetric sites show the lone pairs as lobes of non-shared charge. These lobes are related to an effective Bi s-Bi p hybridization resulting from coupling to S p orbitals, supporting the modern view of the origin of the stereochemically active lone pair. No effective Bi s-p hybridization is seen for the symmetric site in Cu{sub 4}Bi{sub 5}S{sub 10}, whereas Bi s-p hybridization coexists with a much reduced lone pair in Bi{sub 2}S{sub 3} at high pressure. - Graphical abstract: The article includes charge density maps used to analyze the charge distribution around bismuth in sulfides. This map shows the orientation of a lone electron pair.

  18. The inverse problem for Schwinger pair production

    NASA Astrophysics Data System (ADS)

    Hebenstreit, Florian

    2016-02-01

    The production of electron-positron pairs in time-dependent electric fields (Schwinger mechanism) depends non-linearly on the applied field profile. Accordingly, the resulting momentum spectrum is extremely sensitive to small variations of the field parameters. Owing to this non-linear dependence it is so far unpredictable how to choose a field configuration such that a predetermined momentum distribution is generated. We show that quantum kinetic theory along with optimal control theory can be used to approximately solve this inverse problem for Schwinger pair production. We exemplify this by studying the superposition of a small number of harmonic components resulting in predetermined signatures in the asymptotic momentum spectrum. In the long run, our results could facilitate the observation of this yet unobserved pair production mechanism in quantum electrodynamics by providing suggestions for tailored field configurations.

  19. Solubilization and fractionation of paired helical filaments.

    PubMed

    González, P J; Correas, I; Avila, J

    1992-09-01

    Paired helical filaments isolated from brains of two different patients with Alzheimer's disease were extensively treated with the ionic detergent, sodium dodecyl sulphate. Filaments were solubilized at different extents, depending on the brain examined, thus suggesting the existence of two types of paired helical filaments: sodium dodecyl sulphate-soluble and insoluble filaments. In the first case, the number of structures resembling paired helical filaments greatly decreased after the detergent treatment, as observed by electron microscopy. Simultaneously, a decrease in the amount of sedimentable protein was also observed upon centrifugation of the sodium dodecyl sulfate-treated paired helical filaments. A sodium dodecyl sulphate-soluble fraction was isolated as a supernatant after low-speed centrifugation of the sodium dodecyl sulphate-treated paired helical filaments. The addition of the non-ionic detergent Nonidet-P40 to this fraction resulted in the formation of paired helical filament-like structures. When the sodium dodecyl sulphate-soluble fraction was further fractionated by high-speed centrifugation, three subfractions were observed: a supernatant, a pellet and a thin layer between these two subfractions. No paired helical filaments were observed in any of these subfractions, even after addition of Nonidet P-40. However, when they were mixed back together, the treatment with Nonidet P-40 resulted in the visualization of paired helical filament-like structures. These results suggest that at least two different components are needed for the reconstitution of paired helical filaments as determined by electron microscopy. The method described here may allow the study of the components involved in the formation of paired helical filaments and the identification of possible factors capable of blocking this process.

  20. Minimal Pairs: Minimal Importance?

    ERIC Educational Resources Information Center

    Brown, Adam

    1995-01-01

    This article argues that minimal pairs do not merit as much attention as they receive in pronunciation instruction. There are other aspects of pronunciation that are of greater importance, and there are other ways of teaching vowel and consonant pronunciation. (13 references) (VWL)

  1. Anchored paired comparisons

    NASA Astrophysics Data System (ADS)

    Dalal, E. N.; Handley, J. C.; Wu, W.; Wang, J.

    2008-01-01

    The method of paired comparisons is often used in image quality evaluations. Psychometric scale values for quality judgments are modeled using Thurstone's Law of Comparative Judgment in which distance in a psychometric scale space is a function of the probability of preference. The transformation from psychometric space to probability is a cumulative probability distribution. The major drawback of a complete paired comparison experiment is that every treatment is compared to every other, thus the number of comparisons grows quadratically. We ameliorate this difficulty by performing paired comparisons in two stages, by precisely estimating anchors in the psychometric scale space which are spaced apart to cover the range of scale values and comparing treatments against those anchors. In this model, we employ a generalized linear model where the regression equation has a constant offset vector determined by the anchors. The result of this formulation is a straightforward statistical model easily analyzed using any modern statistics package. This enables model fitting and diagnostics. This method was applied to overall preference evaluations of color pictorial hardcopy images. The results were found to be compatible with complete paired comparison experiments, but with significantly less effort.

  2. Two Pairs of Storms

    NASA Image and Video Library

    2004-06-04

    Two pairs of dark spots, or storms, in Saturn atmosphere squeeze past each other as they dance around the planet. In this group of four storms, the top left and lower right storms are fringed with white clouds as seen by NASA Cassini spacecraft.

  3. Excited state proton-coupled electron transfer in 8-oxoG-C and 8-oxoG-A base pairs: a time dependent density functional theory (TD-DFT) study.

    PubMed

    Kumar, Anil; Sevilla, Michael D

    2013-08-01

    In a recent experiment, the repair efficiency of DNA thymine cyclobutane dimers (T<>T) on UV excitation of 8-oxoG base paired either to C or A was reported. An electron transfer mechanism from an excited charge transfer state of 8-oxoG-C (or 8-oxoG-A) to T<>T was proposed and 8-oxoG-A was found to be 2-3 times more efficient than 8-oxoG-C in repair of T<>T. Intra base pair proton transfer (PT) in charge transfer (CT) excited states of the base pairs was proposed to quench the excited state and prevent T<>T repair. In this work, we investigate this process with TD-DFT calculations of the excited states of 8-oxoG-C and 8-oxoG-A base pairs in the Watson-Crick and Hoogsteen base pairs using long-range corrected density functional, ωB97XD/6-31G* method. Our gas phase calculations showed that CT excited state ((1)ππ*(CT)) of 8-oxoG-C appears at lower energy than the 8-oxoG-A. For 8-oxoG-C, TD-DFT calculations show the presence of a conical intersection (CI) between the lowest (1)ππ*(PT-CT) excited state and the ground state which likely deactivates the CT excited state via a proton-coupled electron transfer (PCET) mechanism. The (1)ππ*(PT-CT) excited state of 8-oxoG-A base pair lies at higher energy and its crossing with ground state is inhibited because of a high energy gap between (1)ππ*(PT-CT) excited state and ground state. Thus the gas phase calculations suggest the 8-oxoG-A would have longer excited state lifetimes. When the effect of solvation is included using the PCM model, both 8-oxoG-A and 8-oxoG-C show large energy gaps between the ground state and both the excited CT and PT-CT states and suggest little difference would be found between the two base pairs in repair of the T<>T lesion. However, in the FC region the solvent effect is greatly diminished owing to the slow dielectric response time and smaller gaps would be expected.

  4. Temperature and momentum dependence of single-particle properties in hot asymmetric nuclear matter

    SciTech Connect

    Moustakidis, Ch. C.

    2008-11-15

    We have studied the effects of momentum-dependent interactions on the single-particle properties of hot asymmetric nuclear matter. In particular, the single-particle potential of protons and neutrons as well as the symmetry potential have been studied within a self-consistent model using a momentum-dependent effective interaction. In addition, the isospin splitting of the effective mass has been derived from the above model. In each case temperature effects have been included and analyzed. The role of the specific parametrization of the effective interaction used in the present work has been investigated. It has been concluded that the behavior of the symmetry potential depends strongly on the parametrization of the interaction part of the energy density and the momentum dependence of the regulator function. The effects of the parametrization have been found to be less pronounced on the isospin mass splitting.

  5. Stereo Pair: Patagonia, Argentina

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This view of northern Patagonia, near El Cain, Argentina shows complexly eroded volcanic terrain, with basalt mesas, sinkholes, landslide debris, playas, and relatively few integrated drainage channels. Surrounding this site (but also extending far to the east) is a broad plateau capped by basalt, the Meseta de Somuncura. Here, near the western edge of the plateau, erosion has broken through the basalt cap in a variety of ways. On the mesas, water-filled sinkholes (lower left) are most likely the result of the collapse of old lava tubes. Along the edges of the mesas (several locations) the basalt seems to be sliding away from the plateau in a series of slices. Water erosion by overland flow is also evident, particularly in canyons where vegetation blankets the drainage channels (green patterns, bottom of image). However, overland water flow does not extend very far at any location. This entire site drains to local playas, some of which are seen here (blue). While the water can reach the playas and then evaporate, what becomes of the eroded rock debris? Wind might excavate some of the finer eroded debris, but the fate of much of the missing bedrock remains mysterious.

    This cross-eyed stereoscopic image pair was generated using topographic data from the Shuttle Radar Topography Mission, combined with an enhanced Landsat 7 satellite color image. The topography data are used to create two differing perspectives of a single image, one perspective for each eye. In doing so, each point in the image is shifted slightly, depending on its elevation. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions.

    Landsat satellites have provided visible light and infrared images of the Earth continuously since 1972. SRTM topographic data match the 30-meter (99-foot) spatial resolution of most Landsat images and provide a valuable complement for studying the historic and growing Landsat data archive. The

  6. Stereo Pair: Patagonia, Argentina

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This view of northern Patagonia, near El Cain, Argentina shows complexly eroded volcanic terrain, with basalt mesas, sinkholes, landslide debris, playas, and relatively few integrated drainage channels. Surrounding this site (but also extending far to the east) is a broad plateau capped by basalt, the Meseta de Somuncura. Here, near the western edge of the plateau, erosion has broken through the basalt cap in a variety of ways. On the mesas, water-filled sinkholes (lower left) are most likely the result of the collapse of old lava tubes. Along the edges of the mesas (several locations) the basalt seems to be sliding away from the plateau in a series of slices. Water erosion by overland flow is also evident, particularly in canyons where vegetation blankets the drainage channels (green patterns, bottom of image). However, overland water flow does not extend very far at any location. This entire site drains to local playas, some of which are seen here (blue). While the water can reach the playas and then evaporate, what becomes of the eroded rock debris? Wind might excavate some of the finer eroded debris, but the fate of much of the missing bedrock remains mysterious.

    This cross-eyed stereoscopic image pair was generated using topographic data from the Shuttle Radar Topography Mission, combined with an enhanced Landsat 7 satellite color image. The topography data are used to create two differing perspectives of a single image, one perspective for each eye. In doing so, each point in the image is shifted slightly, depending on its elevation. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions.

    Landsat satellites have provided visible light and infrared images of the Earth continuously since 1972. SRTM topographic data match the 30-meter (99-foot) spatial resolution of most Landsat images and provide a valuable complement for studying the historic and growing Landsat data archive. The

  7. Stereo Pair, Patagonia, Argentina

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This view of northern Patagonia, at Los Menucos, Argentina shows remnants of relatively young volcanoes built upon an eroded plain of much older and contorted volcanic, granitic, and sedimentary rocks. The large purple, brown, and green 'butterfly' pattern is a single volcano that has been deeply eroded. Large holes on the volcano's flanks indicate that they may have collapsed soon after eruption, as fluid molten rock drained out from under its cooled and solidified outer shell. At the upper left, a more recent eruption occurred and produced a small volcanic cone and a long stream of lava, which flowed down a gully. At the top of the image, volcanic intrusions permeated the older rocks resulting in a chain of small dark volcanic peaks. At the top center of the image, two halves of a tan ellipse pattern are offset from each other. This feature is an old igneous intrusion that has been split by a right-lateral fault. The apparent offset is about 6.6 kilometers (4 miles). Color, tonal, and topographic discontinuities reveal the fault trace as it extends across the image to the lower left. However, young unbroken basalt flows show that the fault has not been active recently.

    This cross-eyed stereoscopic image pair was generated using topographic data from the Shuttle Radar Topography Mission, combined with an enhanced Landsat 7satellite color image. The topography data are used to create two differing perspectives of a single image, one perspective for each eye. In doing so, each point in the image is shifted slightly, depending on its elevation. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions.

    Landsat satellites have provided visible light and infrared images of the Earth continuously since 1972. SRTM topographic data match the 30-meter (99-foot) spatial resolution of most Landsat images and provide a valuable complement for studying the historic and growing Landsat data archive

  8. Protected Flux Pairing Qubit

    NASA Astrophysics Data System (ADS)

    Bell, Matthew; Zhang, Wenyuan; Ioffe, Lev; Gershenson, Michael

    2014-03-01

    We have studied the coherent flux tunneling in a qubit containing two submicron Josephson junctions shunted by a superinductor (a dissipationless inductor with an impedance much greater than the resistance quantum). The two low energy quantum states of this device, 0 and 1, are represented by even and odd number of fluxes in the loop, respectively. This device is dual to the charge pairing Josephson rhombi qubit. The spectrum of the device, studied by microwave spectroscopy, reflects the interference between coherent quantum phase slips in the two junctions (the Aharonov-Casher effect). The time domain measurements demonstrate the suppression of the qubit's energy relaxation in the protected regime, which illustrates the potential of this flux pairing device as a protected quantum circuit. Templeton Foundation, NSF, and ARO.

  9. Junctionless Cooper pair transistor

    NASA Astrophysics Data System (ADS)

    Arutyunov, K. Yu.; Lehtinen, J. S.

    2017-02-01

    Quantum phase slip (QPS) is the topological singularity of the complex order parameter of a quasi-one-dimensional superconductor: momentary zeroing of the modulus and simultaneous 'slip' of the phase by ±2π. The QPS event(s) are the dynamic equivalent of tunneling through a conventional Josephson junction containing static in space and time weak link(s). Here we demonstrate the operation of a superconducting single electron transistor (Cooper pair transistor) without any tunnel junctions. Instead a pair of thin superconducting titanium wires in QPS regime was used. The current-voltage characteristics demonstrate the clear Coulomb blockade with magnitude of the Coulomb gap modulated by the gate potential. The Coulomb blockade disappears above the critical temperature, and at low temperatures can be suppressed by strong magnetic field.

  10. Synthesis, characterization, and PGSE (1H and 19F) NMR diffusion studies on cationic (eta6- arene)Mn(CO)3+ complexes: boron counterion, ion pairing, and solvent dependences.

    PubMed

    Schott, Daniele; Pregosin, Paul S; Jacques, Béatrice; Chavarot, Murielle; Rose-Munch, Françoise; Rose, Eric

    2005-08-08

    The synthesis, characterization, and PGSE ((1)H and (19)F) NMR diffusion studies on the cationic [(eta(6)-arene)Mn(CO)(3)][X] (arene = anisole, 4-chloroanisole, and 1,3,5-trimethoxybenzene; X = BPh(4) and BArF) are reported. The tetraphenyl borate complexes of anisole and 4-chloroanisole show surprisingly strong ion pairing in dichloromethane solution, whereas the BArF salts do not. (1)H,(1)H-NOESY data support this anion selectivity. In chloroform solution one finds the usual strong ion pairing for both anions. The solid-state structure of [(eta(6)-1,3,5-trimethoxybenzene)Mn(CO)(3)][BPh(4)] has been determined. (13)C NMR and IR data for the new complexes are reported. The observed IR frequencies are higher for the BArF complexes than for the BPh(4) complexes.

  11. Rashba Splitting of Cooper Pairs

    NASA Astrophysics Data System (ADS)

    Shekhter, R. I.; Entin-Wohlman, O.; Jonson, M.; Aharony, A.

    2016-05-01

    We investigate theoretically the properties of a weak link between two superconducting leads, which has the form of a nonsuperconducting nanowire with a strong Rashba spin-orbit coupling caused by an electric field. In the Coulomb-blockade regime of single-electron tunneling, we find that such a weak link acts as a "spin splitter" of the spin states of Cooper pairs tunneling through the link, to an extent that depends on the direction of the electric field. We show that the Josephson current is sensitive to interference between the resulting two transmission channels, one where the spins of both members of a Cooper pair are preserved and one where they are both flipped. As a result, the current is a periodic function of the strength of the spin-orbit interaction and of the bending angle of the nanowire (when mechanically bent); an identical effect appears due to strain-induced spin-orbit coupling. In contrast, no spin-orbit induced interference effect can influence the current through a single weak link connecting two normal metals.

  12. Stability and size of particle pairs in complex plasmas

    SciTech Connect

    Nosenko, V.; Ivlev, A. V.; Kompaneets, R.; Morfill, G.

    2014-11-15

    Particle pairing in a complex plasma was experimentally studied with the emphasis on pair spatial extent and stability. Micron-size particles were suspended in the (pre)sheath area above the lower electrode in a capacitively coupled radio-frequency discharge in argon. They formed vertical pairs due to the ion wakes created by the flow of ions past particles. We discuss the confinement mechanism for the lower particle, resulting from a combination of the wake field and the field of non-uniform sheath. A model of particle pairs is proposed, which provides good description for the dependence of pair size and stability on experimental parameters.

  13. Cooper pairs in a two-orbital superconductor: bands filling effect on pair sizes

    NASA Astrophysics Data System (ADS)

    Litak, Grzegorz; Örd, Teet; Rägo, Küllike; Vargunin, Artjom

    2017-05-01

    The two-orbital superconducting state is modeled by on-site intra-orbital negative-U Hubbard correlations together with inter-orbital pair-transfer interactions. The influence of bands filling on the temperature dependencies of the sizes of Cooper pairs in different orbitals is analyzed. It is found that the sizes exhibit unconventionally strong variation in the temperature scale for occupations favouring interband proximity effect.

  14. Sequence Recognition in the Pairing of DNA Duplexes

    NASA Astrophysics Data System (ADS)

    Kornyshev, A. A.; Leikin, S.

    2001-04-01

    Pairing of DNA fragments with homologous sequences occurs in gene shuffling, DNA repair, and other vital processes. While chemical individuality of base pairs is hidden inside the double helix, x ray and NMR revealed sequence-dependent modulation of the structure of DNA backbone. Here we show that the resulting modulation of the DNA surface charge pattern enables duplexes longer than ~50 base pairs to recognize sequence homology electrostatically at a distance of up to several water layers. This may explain the local recognition observed in pairing of homologous chromosomes and the observed length dependence of homologous recombination.

  15. Pair of Craters

    NASA Technical Reports Server (NTRS)

    2005-01-01

    14 July 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a 1.5 meters per pixel (5 ft/pixel) view of a pair of small meteor impact craters in the Arena Colles region of Mars, located north of Isidis Planitia.

    Location near: 22.7oN, 278.5oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumn

  16. A 0.35 μm sub-ns wake-up time ON-OFF switchable LVDS driver-receiver chip I/O pad pair for rate-dependent power saving in AER bit-serial links.

    PubMed

    Zamarreño-Ramos, Carlos; Serrano-Gotarredona, Teresa; Linares-Barranco, Bernabé

    2012-10-01

    This paper presents a low power switchable current mode driver/receiver I/O pair for high speed serial transmission of asynchronous address event representation (AER) information. The sparse nature of AER packets (also called events) allows driver/receiver bias currents to be switched off to save power. The on/off times must be lower than the bit time to minimize the latency introduced by the switching mechanism. Using this technique, the link power consumption can be scaled down with the event rate without compromising the maximum system throughput. The proposed technique has been implemented on a typical push/pull low voltage differential signaling (LVDS) circuit, but it can easily be extended to other widely used current mode standards, such as current mode logic (CML) or low-voltage positive emitter-coupled logic (LVPECL). A proof of concept prototype has been fabricated in 0.35 μm CMOS incorporating the proposed driver/receiver pair along with a previously reported switchable serializer/deserializer scheme. At a 500 Mbps bit rate, the maximum event rate is 11 Mevent/s for 32-bit events. In this situation, current consumption is 7.5 mA and 9.6 mA for the driver and receiver, respectively, while differential voltage amplitude is ±300 mV. However, if event rate is lower than 20-30 Kevent/s, current consumption has a floor of 270 μA for the driver and 570 μA for the receiver. The measured ON/OFF switching times are in the order of 1 ns. The serial link could be operated at up to 710 Mbps bit rate, resulting in a maximum 32-bit event rate of 15 Mevent/s . This is the same peak event rate as that obtained with the same SerDes circuits and a non-switched driver/receiver pair.

  17. Isospin mixing reveals 30P(p, γ)31S resonance influencing nova nucleosynthesis

    SciTech Connect

    Bennett, M. B.; Wrede, C.; Brown, B. A.; Liddick, S. N.; Perez-Loureiro, D.; Bardayan, D. W.; Chen, A. A.; Chipps, K. A.; Fry, C.; Glassman, B. E.; Langer, C.; Larson, N. R.; McNeice, E. I.; Meisel, Z.; Ong, W.; O'Malley, P. D.; Pain, S. D.; Prokop, C. J.; Schatz, H.; Schwartz, S. B.; Suchyta, S.; Thompson, P.; Walters, M.; Xu, X.

    2016-03-08

    Here, the thermonuclear 30P(p, γ)31S reaction rate is critical for modeling the final elemental and isotopic abundances of ONe nova nucleosynthesis, which affect the calibration of proposed nova thermometers and the identification of presolar nova grains, respectively. Unfortunately, the rate of this reaction is essentially unconstrained experimentally, because the strengths of key 31S proton capture resonance states are not known, largely due to uncertainties in their spins and parities. Using the β decay of 31Cl, we have observed the β-delayed γ decay of a 31S state at Ex = 6390.2(7) keV, with a 30P(p, γ)31S resonance energy of Er = 259.3(8) keV, in the middle of the 30P(p, γ)31S Gamow window for peak nova temperatures. This state exhibits isospin mixing with the nearby isobaric analog state at Ex = 6279.0(6) keV, giving it an unambiguous spin and parity of 3/2+ and making it an important l = 0 resonance for proton capture on 30P.

  18. Strong-Isospin Violation in the Neutron-Proton Mass Difference from Fully-Dynamical Lattice QCD and PQQCD

    SciTech Connect

    Silas Beane; Konstantinos Orginos; Martin Savage

    2007-04-01

    We determine the strong-isospin violating component of the neutron-proton mass difference from fully-dynamical lattice QCD and partially-quenched QCD calculations of the nucleon mass, constrained by partially-quenched chiral perturbation theory at one-loop level. The lattice calculations were performed with domain-wall valence quarks on MILC lattices with rooted staggered sea-quarks at a lattice spacing of b = 0.125 fm, lattice spatial size of L = 2.5 fm and pion masses ranging from m{sub {pi}} {approx} 290 MeV to {approx} 350 MeV. At the physical value of the pion mass, we predict M{sub n}-M{sub p}|{sup d-u} = 2.26 {+-} 0.57 {+-} 0.42 {+-} 0.10 MeV where the first error is statistical, the second error is due to the uncertainty in the ratio of light-quark masses, {eta} = m{sub u}/m{sub d}, determined by MILC, and the third error is an estimate of the systematic due to chiral extrapolation.

  19. Type III burst pair

    NASA Astrophysics Data System (ADS)

    Ning, Zongjun; Fu, Qijun; Lu, Quankang

    2000-05-01

    We present a special solar radio burst detected on 5 January 1994 using the multi-channel (50) spectrometer (1.0-2.0 GHz) of the Beijing Astronomical Observatory (BAO). Sadly, the whole event could not be recorded since it had a broader bandwidth than the limit range of the instrument. The important part was obtained, however. The event is composed of a normal drift type III burst on the lower frequency side and a reverse drift type III burst appearing almost simultaneously on the high side. We call the burst type III a burst pair. It is a typical characteristic of two type III bursts that they are morphologically symmetric about some frequency from 1.64 GHz to 1.78 GHz on the dynamic spectra records, which indicates that there are two different electron beams from the same acceleration region travelling simultaneously in opposite directions (upward and downward). A magnetic reconnection mode is a nice interpretation of type III burst pair since the plasma beta β~=0.01 is much less than 1 and the beams have velocity of about 1.07×10^8 cm s^-1 after leaving the reconnection region if we assume that the ambient magnetic field strength is about 100 G.

  20. Type III burst pair.

    NASA Astrophysics Data System (ADS)

    Zongjun, Ning; Fu, Qijun; Quankang, Lu

    2000-05-01

    Presents a special solar radio burst detected on 5 January 1994 using the multi-channel (50) spectrometer (1.0 - 2.0 GHz) of the Beijing Astronomical Observatory. Sadly, the whole event could not be recorded since it had a broader bandwidth than the limit range of the instrument. The important part was obtained, however. The event is composed of a normal drift type III burst on the lower frequency side and a reverse drift type III burst appearing almost simultaneously on the high side. The authors call the burst type III a burst pair. It is a typical characteristic of two type III bursts that they are morphologically symmetric about some frequency from 1.64 GHz to 1.78 GHz on the dynamic spectra records, which indicates that there are two different electron beams from the same acceleration region travelling simultaneously in opposite directions (upward and downward). A magnetic reconnection mode is an interpretation of type III burst pair.

  1. Effects of thermal shape fluctuations and pairing fluctuations on the giant dipole resonance in warm nuclei

    NASA Astrophysics Data System (ADS)

    Rhine Kumar, A. K.; Arumugam, P.; Dang, N. Dinh

    2015-04-01

    Apart from the higher limits of isospin and temperature, the properties of atomic nuclei are intriguing and less explored at the limits of lowest but finite temperatures. At very low temperatures there is a strong interplay between the shell (quantal fluctuations), statistical (thermal fluctuations), and residual pairing effects as evidenced from the studies on giant dipole resonance (GDR). In our recent work [Phys. Rev. C 90, 044308 (2014), 10.1103/PhysRevC.90.044308], we have outlined some of our results from a theoretical approach for such warm nuclei where all these effects are incorporated along within the thermal shape fluctuation model (TSFM) extended to include the fluctuations in the pairing field. In this article, we present the complete formalism based on the microscopic-macroscopic approach for determining the deformation energies and a macroscopic approach which links the deformation to GDR observables. We discuss our results for the nuclei 97Tc,120Sn,179Au, and 208Pb, and corroborate with the experimental data available. The TSFM could explain the data successfully at low temperature only with a proper treatment of pairing and its fluctuations. More measurements with better precision could yield rich information about several phase transitions that can happen in warm nuclei.

  2. Spin polarization transfer by the radical pair mechanism

    SciTech Connect

    Zarea, Mehdi Ratner, Mark A.; Wasielewski, Michael R.

    2015-08-07

    In a three-site representation, we study a spin polarization transfer from radical pair spins to a nearby electron or nuclear spin. The quantum dynamics of the radical pair spins is governed by a constant exchange interaction between the radical pair spins which have different Zeeman frequencies. Radical pair spins can recombine to the singlet ground state or to lower energy triplet states. It is then shown that the coherent dynamics of the radical pair induces spin polarization on the nearby third spin in the presence of a magnetic field. The spin polarization transfer depends on the difference between Zeeman frequencies, the singlet and triplet recombination rates, and on the exchange and dipole-dipole interactions between the different spins. In particular, the sign of the polarization depends on the exchange coupling between radical pair spins and also on the difference between singlet and triplet recombination rate constants.

  3. Spin polarization transfer by the radical pair mechanism.

    PubMed

    Zarea, Mehdi; Ratner, Mark A; Wasielewski, Michael R

    2015-08-07

    In a three-site representation, we study a spin polarization transfer from radical pair spins to a nearby electron or nuclear spin. The quantum dynamics of the radical pair spins is governed by a constant exchange interaction between the radical pair spins which have different Zeeman frequencies. Radical pair spins can recombine to the singlet ground state or to lower energy triplet states. It is then shown that the coherent dynamics of the radical pair induces spin polarization on the nearby third spin in the presence of a magnetic field. The spin polarization transfer depends on the difference between Zeeman frequencies, the singlet and triplet recombination rates, and on the exchange and dipole-dipole interactions between the different spins. In particular, the sign of the polarization depends on the exchange coupling between radical pair spins and also on the difference between singlet and triplet recombination rate constants.

  4. Measurement of CP Asymmetries and Branching Fractions in B0 -> pi+ pi-, B0 -> K+ pi-, B0 -> pi0 pi0, B0 -> K0 pi0 and Isospin Analysis of B -> pi pi Decays

    SciTech Connect

    Aubert, Bernard; Bona, M.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Lopez, L.; Palano, Antimo; Pappagallo, M.; Eigen, G.; Stugu, Bjarne; Sun, L.; Abrams, G.S.; Battaglia, M.; Brown, D.N.; Cahn, Robert N.; Jacobsen, R.G.; /LBL, Berkeley /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /Ferrara U. /INFN, Ferrara /Frascati /Genoa U. /INFN, Genoa /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /Consorzio Milano Ricerche /INFN, Milan /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /Napoli Seconda U. /INFN, Naples /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /Padua U. /INFN, Padua /Paris U., VI-VII /Pennsylvania U. /Perugia U. /INFN, Perugia /INFN, Pisa /Princeton U. /Banca di Roma /Frascati /Rostock U. /Rutherford /DAPNIA, Saclay /South Carolina U. /SLAC /Stanford U., Phys. Dept. /SUNY, Albany /Tennessee U. /Texas U. /Texas U., Dallas /Turin U. /INFN, Turin /Trieste U. /INFN, Trieste /Valencia U., IFIC /Victoria U. /Warwick U. /Wisconsin U., Madison

    2008-08-01

    The authors present preliminary results of improved measurements of the CP-violating asymmetries and branching fractions in the decays B{sup 0} {yields} {pi}{sup +}{pi}{sup -}, B{sup 0} {yields} K{sup +}{pi}{sup -}, B{sup 0} {yields} {pi}{sup 0}{pi}{sup 0}, and B{sup 0} {yields} K{sup 0}{pi}{sup 0}. This update includes all data taken at the {Upsilon}(4S) resonance by the BABAR experiment at the asymmetric PEP-II B-meson factory at SLAC, corresponding to 467 {+-} 5 million B{bar B} pairs. They find S{sub {pi}{pi}} = -0.68 {+-} 0.10 {+-} 0.03, C{sub {pi}{pi}} = -0.25 {+-} 0.08 {+-} 0.02, {Alpha}{sub K{sub {pi}}} = -0.107 {+-} 0.016{sub -0.004},{sup +0.006}, C{sub {pi}{sup 0}{pi}{sup 0}} = -0.43 {+-} 0.26 {+-} 0.05, {Beta}(B{sup 0} {yields} {pi}{sup 0}{pi}{sup 0}) = (1.83 {+-} 0.21 {+-} 0.13) x 10{sup -6}, {Beta}(B{sup 0} {yields} K{sup 0}{pi}{sup 0}) = (10.1 {+-} 0.6 {+-} 0.4) x 10{sup -6}, where the first error is statistical and the second is systematic. They observe CP violation with a significance of 6.7{sigma} in B{sup 0} {yields} {pi}{sup -} and 6.1{sigma} in B{sup 0} {yields} K{sup +}{pi}{sup -}. Constraints on the Unitarity Triangle angle {alpha} are determined from the isospin relation between all B {yields} {pi}{pi} rates and asymmetries.

  5. Hard photodisintegration of a proton pair

    NASA Astrophysics Data System (ADS)

    Pomerantz, I.; Bubis, N.; Allada, K.; Beck, A.; Beck, S.; Berman, B. L.; Boeglin, W.; Camsonne, A.; Canan, M.; Chirapatpimol, K.; Cisbani, E.; Cusanno, F.; de Jager, C. W.; Dutta, C.; Garibaldi, F.; Geagla, O.; Gilman, R.; Glister, J.; Higinbotham, D. W.; Jiang, X.; Katramatou, A. T.; Khrosinkova, E.; Lee, B. W.; LeRose, J. J.; Lindgren, R.; McCullough, E.; Meekins, D.; Michaels, R.; Moffit, B.; Petratos, G. G.; Piasetzky, E.; Qian, X.; Qiang, Y.; Rodriguez, I.; Ron, G.; Saha, A.; Sarty, A. J.; Sawatzky, B.; Schulte, E.; Shneor, R.; Sparveris, N.; Subedi, R.; Strauch, S.; Sulkosky, V.; Wang, Y.; Wojtsekhowski, B.; Yan, X.; Yao, H.; Zhan, X.; Zheng, X.

    2010-02-01

    We present a study of high energy photodisintegration of proton-pairs through the γ+He3→p+p+n channel. Photon energies, Eγ, from 0.8 to 4.7 GeV were used in kinematics corresponding to a proton pair with high relative momentum and a neutron nearly at rest. The s scaling of the cross section, as predicted by the constituent counting rule for two nucleon photodisintegration, was observed for the first time. The onset of the scaling is at a higher energy and the cross section is significantly lower than for deuteron (pn pair) photodisintegration. For Eγ below the scaling region, the scaled cross section was found to present a strong energy-dependent structure not observed in deuteron photodisintegration.

  6. Hard Photodisintegration of a Proton Pair

    DOE PAGES

    Pomerantz, Ishay; Bubis, Nathaniel; Allada, Kalyan; ...

    2010-01-08

    We present the first study of high energy photodisintegration of proton-pairs through the gamma + 3He -> p+p+n channel. Photon energies from 0.8 to 4.7 GeV were used in kinematics corresponding to a proton pair with high relative momentum and a neutron nearly at rest. An s^{-11} scaling of the cross section was observed, as predicted by the constituent counting rule. The onset of the scaling is at a higher energy and the cross section is significantly lower then for pn pair photodisintegration. For photon energies below the scaling region, the scaled cross section was found to present a strongmore » energy-dependent structure not observed in deuteron photodisintegration.« less

  7. Prospective very young asteroid pairs

    NASA Astrophysics Data System (ADS)

    Galád, A.; Vokrouhlický, D.; Zizka, J.

    2014-07-01

    Several tens of asteroid pairs can be discerned from the background main-belt asteroids. The majority of them are thought to have formed within only the last few 10^6 yr. The youngest recognized pairs have formed more than ≈ 10 kyr ago. As some details of pair formation are still not understood well, the study of young pairs is of great importance. It is mainly because the conditions at the time of the pair formation could be deduced much more reliably for young pairs. For example, space weathering on the surfaces of the components, or changes in their rotational properties (in spin rates, tumbling, coordinates of rotational pole) could be negligible since the formation of young pairs. Also, possible strong perturbations by main-belt bodies on pair formation can be reliably studied only for extremely young pairs. Some pairs can quickly blend in with the background asteroids, so even the frequency of asteroid pair formation could be determined more reliably based on young pairs (though only after a statistically significant sample is at disposal). In our regular search for young pairs in the growing asteroid database, only multiopposition asteroids with very similar orbital and proper elements are investigated. Every pair component is represented by a number of clones within orbital uncertainties and drifting in semimajor axis due to the Yarkovsky effect. We found that, if the previously unrecognized pairs (87887) 2000 SS_{286} - 2002 AT_{49} and (355258) 2007 LY_{4} - 2013AF_{40} formed at the recent very close approach of their components, they could become the youngest known pairs. In both cases, the relative encounter velocities of the components were only ˜ 0.1 m s^{-1}. However, the minimum distances between some clones are too large and a few clones of the latter pair did not encounter recently (within ≈ 10 kyr). The age of some prospective young pairs cannot be determined reliably without improved orbital properties (e.g., the second component of a pair

  8. Multiprocessor switch with selective pairing

    DOEpatents

    Gara, Alan; Gschwind, Michael K; Salapura, Valentina

    2014-03-11

    System, method and computer program product for a multiprocessing system to offer selective pairing of processor cores for increased processing reliability. A selective pairing facility is provided that selectively connects, i.e., pairs, multiple microprocessor or processor cores to provide one highly reliable thread (or thread group). Each paired microprocessor or processor cores that provide one highly reliable thread for high-reliability connect with a system components such as a memory "nest" (or memory hierarchy), an optional system controller, and optional interrupt controller, optional I/O or peripheral devices, etc. The memory nest is attached to a selective pairing facility via a switch or a bus

  9. Characterizing particle pairs optically bound in "tractor beam"

    NASA Astrophysics Data System (ADS)

    Damková, Jana; Chvátal, LukáÅ.¡; Brzobohatý, Oto; Svak, Vojtěch; Å iler, Martin; Simpson, Stephen; Zemánek, Pavel

    2016-09-01

    We report on an experimental and theoretical study of optical binding of polystyrene sphere pairs illuminated by retro-reflected wide Gaussian beam, so-called "tractor beam". We show that depending on configuration of particle pairs, optically bound structure in the "tractor beam" can be pushed or pulled against the beam propagation. We employ holographic video microscopy to analyse object positions in three dimensions and their time evolution. In such a way, we investigate their dynamics in dependence on the geometrical configuration that is compared with numerical simulations. We observe strong dependence of the particle pair motion on the relative distance of the particles.

  10. Experimental many-pairs nonlocality

    NASA Astrophysics Data System (ADS)

    Poh, Hou Shun; Cerè, Alessandro; Bancal, Jean-Daniel; Cai, Yu; Sangouard, Nicolas; Scarani, Valerio; Kurtsiefer, Christian

    2017-08-01

    Collective measurements on large quantum systems together with a majority voting strategy can lead to a violation of the Clauser-Horne-Shimony-Holt Bell inequality. In the presence of many entangled pairs, this violation decreases quickly with the number of pairs and vanishes for some critical pair number that is a function of the noise present in the system. Here we show that a different binning strategy can lead to a more substantial Bell violation when the noise is sufficiently small. Given the relation between the critical pair number and the source noise, we then present an experiment where the critical pair number is used to quantify the quality of a high visibility photon pair source. Our results demonstrate nonlocal correlations using collective measurements operating on clusters of more than 40 photon pairs.

  11. Polymerization by classical and frustrated Lewis pairs.

    PubMed

    Chen, Eugene Y-X

    2013-01-01

    Main-group classical and frustrated Lewis pairs (CLPs and FLPs) comprising strong Lewis acids (LAs) and strong Lewis bases (LBs) are highly active for polymerization of conjugated polar alkenes, affording typically high molecular weight polymers with relatively narrow molecular weight distributions. Especially effective systems are the Lewis pairs (LPs) consisting of the strong LA Al(C6F5)3 and strong LBs, such as achiral phosphines and chiral chelating diphosphines, N-heterocyclic carbenes, and phosphazene superbases, for polymerization of methacrylates and acrylamides as well as renewable α-methylene-γ-butyrolactones. Chain initiation involves cooperative addition of LPs to the monomer to generate zwitterionic active species, and chain propagation proceeds via a bimetallic, activated-monomer addition mechanism. Transition metal nucleophile/electrophile pairs comprising neutral metallocene bis(ester enolate)s and strong LAs E(C6F5)3 (E = Al, B) generate two drastically different polymerization systems, depending on the LA. With E = Al, catalyst activation and chain initiating events lead to dually active ion-pairs, thereby effecting ion-pairing polymerization that affords polymers with unique stereo-multiblock microstructures. With E = B, on the other hand, the FLP-induced catalyst activation generates metallacyclic cations paired with the hydridoborate anion [HB(C6F5)3](-); uniquely, such ion-pairs effect catalytic polymerization of conjugated polar alkenes by an H-shuttling mechanism, with the cation catalyzing chain growth and the anion promoting chain transfer by shuttling the hydride between the cation and anion centers through the neutral borane.

  12. Stereo Pair, Honolulu, Oahu

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Honolulu, on the island of Oahu, is a large and growing urban area. This stereoscopic image pair, combining a Landsat image with topography measured by the Shuttle Radar Topography Mission (SRTM), shows how topography controls the urban pattern. This color image can be viewed in 3-D by viewing the left image with the right eye and the right image with the left eye (cross-eyed viewing), or by downloading and printing the image pair, and viewing them with a stereoscope.

    Features of interest in this scene include Diamond Head (an extinct volcano near the bottom of the image), Waikiki Beach (just above Diamond Head), the Punchbowl National Cemetary (another extinct volcano, near the image center), downtown Honolulu and Honolulu harbor (image left-center), and offshore reef patterns. The slopes of the Koolau mountain range are seen in the right half of the image. Clouds commonly hang above ridges and peaks of the Hawaiian Islands, but in this synthesized stereo rendition appear draped directly on the mountains. The clouds are actually about 1000 meters (3300 feet) above sea level.

    This stereoscopic image pair was generated using topographic data from the Shuttle Radar Topography Mission, combined with a Landsat 7 Thematic Mapper image collected at the same time as the SRTM flight. The topography data were used to create two differing perspectives, one for each eye. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. The United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota, provided the Landsat data.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission was designed to collect three-dimensional measurements of the

  13. Stereo Pair, Pasadena, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This stereoscopic image pair is a perspective view that shows the western part of the city of Pasadena, California, looking north toward the San Gabriel Mountains. Portions of the cities of Altadena and La Canada Flintridge are also shown. The cluster of large buildings left of center, at the base of the mountains, is the Jet Propulsion Laboratory. This image shows the power of combining data from different sources to create planning tools to study problems that affect large urban areas. In addition to the well-known earthquake hazards, Southern California is affected by a natural cycle of fire and mudflows. Data shown in this image can be used to predict both how wildfires spread over the terrain and how mudflows are channeled down the canyons.

    The image was created from three datasets: the Shuttle Radar Topography Mission (SRTM) supplied the elevation, U. S. Geological Survey digital aerial photography provided the image detail, and the Landsat Thematic Mapper provided the color. The United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota, provided the Landsat data and the aerial photography. The image can be viewed in 3-D by viewing the left image with the right eye and the right image with the left eye (cross-eyed viewing), or by downloading and printing the image pair, and viewing them with a stereoscope.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration

  14. Stereo Pair, Pasadena, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This stereoscopic image pair is a perspective view that shows the western part of the city of Pasadena, California, looking north toward the San Gabriel Mountains. Portions of the cities of Altadena and La Canada Flintridge are also shown. The cluster of large buildings left of center, at the base of the mountains, is the Jet Propulsion Laboratory. This image shows the power of combining data from different sources to create planning tools to study problems that affect large urban areas. In addition to the well-known earthquake hazards, Southern California is affected by a natural cycle of fire and mudflows. Data shown in this image can be used to predict both how wildfires spread over the terrain and how mudflows are channeled down the canyons.

    The image was created from three datasets: the Shuttle Radar Topography Mission (SRTM) supplied the elevation, U. S. Geological Survey digital aerial photography provided the image detail, and the Landsat Thematic Mapper provided the color. The United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota, provided the Landsat data and the aerial photography. The image can be viewed in 3-D by viewing the left image with the right eye and the right image with the left eye (cross-eyed viewing), or by downloading and printing the image pair, and viewing them with a stereoscope.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration

  15. Reaction of the Co(II)-substrate radical pair catalytic intermediate in coenzyme B12-dependent ethanolamine ammonia-lyase in frozen aqueous solution from 190 to 217 K.

    PubMed

    Zhu, Chen; Warncke, Kurt

    2008-12-15

    The decay kinetics of the aminoethanol-generated Co(II)-substrate radical pair catalytic intermediate in ethanolamine ammonia-lyase from Salmonella typhimurium have been measured on timescales of <10(5) s in frozen aqueous solution from 190 to 217 K. X-band continuous-wave electron paramagnetic resonance (EPR) spectroscopy of the disordered samples has been used to continuously monitor the full radical pair EPR spectrum during progress of the decay after temperature step reaction initiation. The decay to a diamagnetic state is complete and no paramagnetic intermediate states are detected. The decay exhibits three kinetic regimes in the measured temperature range, as follows. i), Low temperature range, 190 < or = T < or = 207 K: the decay is biexponential with constant fast (0.57 +/- 0.04) and slow (0.43 +/- 0.04) phase amplitudes. ii), Transition temperature range, 207 < T < 214 K: the amplitude of the slow phase decreases to zero with a compensatory rise in the fast phase amplitude, with increasing temperature. iii), High temperature range, T > or = 214 K: the decay is monoexponential. The observed first-order rate constants for the monoexponential (k(obs,m)) and the fast phase of the biexponential decay (k(obs,f)) adhere to the same linear relation on an lnk versus T(-1) (Arrhenius) plot. Thus, k(obs,m) and k(obs,f) correspond to the same apparent Arrhenius prefactor and activation energy (logA(app,f) (s(-1)) = 13.0, E(a,app,f) = 15.0 kcal/mol), and therefore, a common decay mechanism. We propose that k(obs,m) and k(obs,f) represent the native, forward reaction of the substrate through the radical rearrangement step. The slow phase rate constant (k(obs,s)) for 190 < or = T < or = 207 K obeys a different linear Arrhenius relation (logA(app,s) (s(-1)) = 13.9, E(a,app,s) = 16.6 kcal/mol). In the transition temperature range, k(obs,s) displays a super-Arrhenius increase with increasing temperature. The change in E(a,app,s) with temperature and the narrow range over

  16. Pairing interaction and superconductivity in oxides and hydrides

    NASA Astrophysics Data System (ADS)

    Kulik, I. O.

    1990-05-01

    The existence of a universal mechanism of pairing between holes in electronegative metals is demonstrated. The pairing force arises as a consequence of orbital size dependence upon its filling and is characteristic for electronegative metals with moderate overlap between hole orbitals. This mechanism will not operate at very strong or very weak overlap regimes.

  17. Electron Pairing, Repulsion, and Correlation: A Simplistic Approach

    ERIC Educational Resources Information Center

    Olsson, Lars-Fride; Kloo, Lars

    2004-01-01

    The interplay between a nucleus and an electron pair is explained through a basic application of an electrostatic and balanced model to determine the correlated and repulsive movements of the electron pair. The stable correlation depends on the positive charge produced by the combined force, which in turn establishes a negative potential energy.

  18. Electron Pairing, Repulsion, and Correlation: A Simplistic Approach

    ERIC Educational Resources Information Center

    Olsson, Lars-Fride; Kloo, Lars

    2004-01-01

    The interplay between a nucleus and an electron pair is explained through a basic application of an electrostatic and balanced model to determine the correlated and repulsive movements of the electron pair. The stable correlation depends on the positive charge produced by the combined force, which in turn establishes a negative potential energy.

  19. Proceedings of the workshop on the production and use of intense radioactive beams at the Isospin Laboratory

    SciTech Connect

    Garrett, J.D.

    1992-12-31

    These proceedings report the deliberations of a 3 1/2 day workshop on the Production and Use of Intense Radioactive Ion Beams at the Isospin Laboratory, which was held at the Joint Institute for Heavy Ion Research in Oak Ridge, Tennessee, October 1992. The purpose of this workshop was not to duplicate the programs of other recent radioactive ion beam workshops or international conferences that have focused on the scientific concepts which radioactive beams can, and in fact already are, addressing. Instead, the intent was to address the technical problems associated with the construction of the next generation ISOL facility and to initiate a discussion of the type of experimental equipment that should be developed for such a facility. We have tried to bring together in Oak Ridge the world`s experts in radioactive targets/ion sources, light and heavy-ion accelerators, and detection systems. After 1 1/2 days of overview presentations, the participants divided into three discussion groups (Experiments with Radioactive Beams, Target Ion Sources and Mass Separation, and Accelerators-Primary and Secondary) for 1 1/2 days of detailed discussions of the most pertinent issues. The final session was devoted to reports from each of the discussion groups and a general discussion of where to go from here. An outgrowth of these discussions was the establishment of working groups to coordinate future technical developments associated with the pertinent issues. The proceedings include the text of all the overview presentations, reports from each discussion group, as well as contributions from those participants who chose to provide the text of their presentations in the discussion groups and the Concluding Remarks. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  20. Chiral loops in the isospin violating decays of Ds 1(2460 )+ and Ds0*(2317)+

    NASA Astrophysics Data System (ADS)

    Fajfer, Svjetlana; Brdnik, A. Prapotnik

    2015-10-01

    Positive parity meson states Ds0 *(2317 )+and Ds 1(2460 )+havemasses slightly below the D K threshold. Both states can strongly decay only into isospin violating decays Ds 1(2460 )+→Ds+ππ , Ds 1(2460 )+→Ds*+π0, and Ds0 *(2317 )+→Ds+π0.The π states have rather small energies, which makes these decays appropriate to study within heavy meson chiral perturbation theory and to calculate loop contributions. The Ds 1(2460 )+→Ds+ππ decays occur only at the loop level. Amplitude is a result of chiral loop contributions, which then have to be finite. However, in the case of Ds 1(2460 )+→Ds*+π0 and Ds0 *(2317 )+→Ds+π0decays, there is a tree-level contribution. We find that chiral loop contributions might be important in both cases. The calculated amplitudes are sensitive on the coupling constant describing the interaction of positive and negative parity heavy meson multiplets with the light pseudoscalars. The counterterm contributions are also present in the amplitudes Ds 1(2460 )+→Ds*+π0 and Ds0 *(2317 )+→Ds+π0.We explore an experimentally known ratio of the decay widths for these two decay modes to estimate the size of counterterm contributions. We determine decay widths for both decay modes to be Γ (Ds 1(2460 )+→Ds+π+π-)≃0.25keV and Γ (Ds 1(2460 )+→Ds+π0π0)≃0.15 keV .

  1. First observation of the isospin violating decay J/ψ→ΛΣ̄⁰+c.c.

    SciTech Connect

    Ablikim, M.; Achasov, M. N.; Ambrose, D. J.; An, F. F.; An, Q.; An, Z. H.; Bai, J. Z.; Ban, Y.; Becker, J.; Berger, N.; Bertani, M.; Bian, J. M.; Boger, E.; Bondarenko, O.; Boyko, I.; Briere, R. A.; Bytev, V.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, Y.; Chen, Y. B.; Cheng, H. P.; Chu, Y. P.; Cronin-Hennessy, D.; Dai, H. L.; Dai, J. P.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; Ding, W. M.; Ding, Y.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Fang, J.; Fang, S. S.; Fava, L.; Feldbauer, F.; Feng, C. Q.; Ferroli, R. B.; Fu, C. D.; Fu, J. L.; Gao, Y.; Geng, C.; Goetzen, K.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y. P.; Han, Y. L.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, M.; He, Z. Y.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, H. M.; Hu, J. F.; Hu, T.; Huang, B.; Huang, G. M.; Huang, J. S.; Huang, X. T.; Huang, Y. P.; Hussain, T.; Ji, C. S.; Ji, Q.; Ji, X. B.; Ji, X. L.; Jia, L. K.; Jiang, L. L.; Jiang, X. S.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Jing, F. F.; Kalantar-Nayestanaki, N.; Kavatsyuk, M.; Kuehn, W.; Lai, W.; Lange, J. S.; Li, C. H.; Li, Cheng; Li, Cui; Li, D. M.; Li, F.; Li, G.; Li, H. B.; Li, J. C.; Li, K.; Li, Lei; Li, N. B.; Li, Q. J.; Li, S. L.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, X. R.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Liao, X. T.; Liu, B. J.; Liu, C. L.; Liu, C. X.; Liu, C. Y.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H.; Liu, H. B.; Liu, H. H.; Liu, H. M.; Liu, H. W.; Liu, J. P.; Liu, K. Y.; Liu, Kai; Liu, Kun; Liu, P. L.; Liu, S. B.; Liu, X.; Liu, X. H.; Liu, Y.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqiang; Liu, Zhiqing; Loehner, H.; Lu, G. R.; Lu, H. J.; Lu, J. G.; Lu, Q. W.; Lu, X. R.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lv, M.; Ma, C. L.; Ma, F. C.; Ma, H. L.; Ma, Q. M.; Ma, S.; Ma, T.; Ma, X. Y.; Ma, Y.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mao, H.; Mao, Y. J.; Mao, Z. P.; Messchendorp, J. G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Morales, C. Morales; Motzko, C.; Muchnoi, N. Yu.; Muramatsu, H.; Nefedov, Y.; Nicholson, C.; Nikolaev, I. B.; Ning, Z.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Park, J. W.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Ping, J. L.; Ping, R. G.; Poling, R.; Prencipe, E.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, X. S.; Qin, Y.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Rong, G.; Ruan, X. D.; Sarantsev, A.; Schaefer, B. D.; Schulze, J.; Shao, M.; Shen, C. P.; Shen, X. Y.; Sheng, H. Y.; Shepherd, M. R.; Song, X. Y.; Spataro, S.; Spruck, B.; Sun, D. H.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, X. D.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tang, X. F.; Tapan, I.; Thorndike, E. H.; Tian, H. L.; Toth, D.; Ullrich, M.; Varner, G. S.; Wang, B.; Wang, B. Q.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, Q.; Wang, Q. J.; Wang, S. G.; Wang, X. L.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. Y.; Wei, D. H.; Weidenkaff, P.; Wen, Q. G.; Wen, S. P.; Werner, M.; Wiedner, U.; Wu, L. H.; Wu, N.; Wu, S. X.; Wu, W.; Wu, Z.; Xia, L. G.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, G. M.; Xu, H.; Xu, Q. J.; Xu, X. P.; Xu, Z. R.; Xue, F.; Xue, Z.; Yan, L.; Yan, W. B.; Yan, Y. H.; Yang, H. X.; Yang, Y.; Yang, Y. X.; Ye, H.; Ye, M.; Ye, M. H.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yu, S. P.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, S. H.; Zhang, T. R.; Zhang, X. J.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. S.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, H. S.; Zhao, J. W.; Zhao, K. X.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, S. J.; Zhao, T. C.; Zhao, X. H.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, Y. H.; Zheng, Z. P.; Zhong, B.; Zhong, J.; Zhou, L.; Zhou, X. K.; Zhou, X. R.; Zhu, C.; Zhu, K.; Zhu, K. J.; Zhu, S. H.; Zhu, X. L.; Zhu, X. W.; Zhu, Y. C.; Zhu, Y. M.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zou, B. S.; Zou, J. H.; Zuo, J. X.

    2012-08-15

    Using a sample of (225.2±2.8)×10⁶ J/ψ events collected with the BESIII detector, we present results of a study of J/ψ→γΛΛ¯¯¯ and report the first observation of the isospin violating decay J/ψ→ΛΣ¯¯¯⁰+c.c., in which Σ¯¯¯⁰ decays to γΛ¯¯¯. The measured branching fractions are B(J/ψ→Λ¯¯¯Σ⁰)=(1.46±0.11±0.12)×10⁻⁵ and B(J/ψ→ΛΣ¯¯¯⁰)=(1.37±0.12±0.11)×10⁻⁵. We search for Λ(1520)→γΛ decay, and find no evident signal, and an upper limit for the product branching fraction B(J/ψ→ΛΛ¯¯¯(1520)+c.c.)×B(Λ(1520)→γΛ)<4.1×10⁻⁶ is set at the 90% confidence level. We also report the observation of ηc→ΛΛ¯¯¯ in J/ψ→γηc, ηc→ΛΛ¯¯¯ and measure the branching fraction B(ηc→ΛΛ¯¯¯)=(1.16±0.12(stat)±0.19(syst)±0.28(PDG))×10⁻³.

  2. First observation of the isospin violating decay J/ψ→ΛΣ̄⁰+c.c.

    DOE PAGES

    Ablikim, M.; Achasov, M. N.; Ambrose, D. J.; ...

    2012-08-15

    Using a sample of (225.2±2.8)×10⁶ J/ψ events collected with the BESIII detector, we present results of a study of J/ψ→γΛΛ¯¯¯ and report the first observation of the isospin violating decay J/ψ→ΛΣ¯¯¯⁰+c.c., in which Σ¯¯¯⁰ decays to γΛ¯¯¯. The measured branching fractions are B(J/ψ→Λ¯¯¯Σ⁰)=(1.46±0.11±0.12)×10⁻⁵ and B(J/ψ→ΛΣ¯¯¯⁰)=(1.37±0.12±0.11)×10⁻⁵. We search for Λ(1520)→γΛ decay, and find no evident signal, and an upper limit for the product branching fraction B(J/ψ→ΛΛ¯¯¯(1520)+c.c.)×B(Λ(1520)→γΛ)<4.1×10⁻⁶ is set at the 90% confidence level. We also report the observation of ηc→ΛΛ¯¯¯ in J/ψ→γηc, ηc→ΛΛ¯¯¯ and measure the branching fraction B(ηc→ΛΛ¯¯¯)=(1.16±0.12(stat)±0.19(syst)±0.28(PDG))×10⁻³.

  3. Pygmy stars: first pair.

    PubMed

    Zwicky, F

    1966-07-01

    The binary LP 101-15/16 having the proper motion of 1.62 seconds of arc per year has been studied with the prime-focus spectrograph of the 200-inch (508 cm) telescope. Indications are that LP 101-15/16 is the first pair of pygmy stars ever discovered. One of its components, LP 101-16, is probably a blue pygmy star which is at least four magnitudes fainter than the ordinary white dwarfs. Also, two of the Balmer lines in absorption appear to be displaced toward the red by amounts which indicate the existence of an Einstein gravitational red shift corresponding to about 1000 km sec-1. On the other hand LP 101-15 is red and shows an entirely new type of spectrum, which suggests that it may be a first representative of a type of red pygmy star which is 2.5 magnitudes fainter than the M-type dwarf stars of the main sequence.

  4. Structure of chymopapain M the late-eluted chymopapain deduced by comparative modelling techniques and active-centre characteristics determined by pH-dependent kinetics of catalysis and reactions with time-dependent inhibitors: the Cys-25/His-159 ion-pair is insufficient for catalytic competence in both chymopapain M and papain.

    PubMed

    Thomas, M P; Topham, C M; Kowlessur, D; Mellor, G W; Thomas, E W; Whitford, D; Brocklehurst, K

    1994-06-15

    ionizations with pKa values 3.4, 4.3 and 5.6. The pH-dependences of kcat./Km for the hydrolysis of N-acetyl-L-Phe-Gly-4-nitroanilide at 25.0 degrees C and I0.1 M catalysed by chymopapain M and papain were determined. For both enzymes, little catalytic activity (5-7% of the maximal) develops consequent on formation of the catalytic site Cys-S-/His-Im+H ion-pair state (across pKa 3.4 for both enzymes). For papain, full expression of Kcat./Km for the uncharged substrate requires only the additional hydronic dissociation with pKa 4.2. By contrast, full expression of kcat./Km for chymopapain M requires additional hydronic dissociation with pKa values of 4.3 and 5.6.(ABSTRACT TRUNCATED AT 400 WORDS)

  5. Three carbon pairs in Si

    NASA Astrophysics Data System (ADS)

    Docaj, A.; Estreicher, S. K.

    2012-08-01

    Carbon impurities in Si are common in floating-zone and cast-Si materials. The simplest and most discussed carbon complex is the interstitial-substitutional CiCs pair, which readily forms when self-interstitials are present in the material. This pair has three possible configurations, each of which is electrically active. The less common CsCs pair has been studied in irradiated material but has also recently been seen in as-grown C-rich cast-Si, which is commonly used to fabricate solar cells. The third pair consists of two interstitial C atoms: CiCi. Although its formation probability is low for several reasons, the CiCi pair is very stable and electrically inactive. In this contribution, we report preliminary results of first-principles calculations of these three C pairs in Si. The structures, binding energies, vibrational spectra, and electrical activity are predicted.

  6. Evidence for a breakdown of the isobaric multiplet mass equation: A study of the A=35,T=3/2 isospin quartet

    SciTech Connect

    Yazidjian, C.; Beck, D.; Herfurth, F.; Audi, G.; Guenaut, C.; Lunney, D.; Blaum, K.; George, S.; Herlert, A.; Schweikhard, L.; Kellerbauer, A.; Kluge, H.-J.

    2007-08-15

    Mass measurements on radionuclides along the potassium isotope chain have been performed with the ISOLTRAP Penning trap mass spectrometer. For {sup 35}K (T{sub 1/2}=178 ms) to {sup 46}K (T{sub 1/2}=105 s) relative mass uncertainties of 2x10{sup -8} and better have been achieved. The accurate mass determination of {sup 35}K ({delta}m=0.54 keV) has been exploited to test the isobaric multiplet mass equation for the A=35,T=3/2 isospin quartet. The experimental results indicate a deviation from the generally adopted quadratic form.

  7. SDSS DR2 Merging pairs

    NASA Astrophysics Data System (ADS)

    Allam, S. S.; Tucker, D. L.; SDSS Collaboration

    2004-05-01

    We present and analyze a catalog of 9,000 Merging pairs candidates to g=21 from the imaging data of the Sloan Digital Sky Survey (SDSS) Second Data Release (DR2). Candidates were selected using an automated algorithm (Allam et al. 2004) that is efficient in its selection of galaxy pairs. We highlight possible science applications of such a large photometric sample of merging pais and discuss future improvements, including incorporating magnitudes and pushing to higher redshifts and fainter pairs.

  8. Hamiltonian dynamics on matched pairs

    NASA Astrophysics Data System (ADS)

    Esen, Oğul; Sütlü, Serkan

    2016-08-01

    The cotangent bundle of a matched pair Lie group, and its trivialization, are shown to be a matched pair Lie group. The explicit matched pair decomposition on the trivialized bundle is presented. On the trivialized space, the canonical symplectic two-form and the canonical Poisson bracket are explicitly written. Various symplectic and Poisson reductions are perfomed. The Lie-Poisson bracket is derived. As an example, Lie-Poisson equations on 𝔰𝔩(2, ℂ)∗ are obtained.

  9. Controversies in kidney paired donation.

    PubMed

    Gentry, Sommer E; Montgomery, Robert A; Segev, Dorry L

    2012-07-01

    Kidney paired donation represented 10% of living kidney donation in the United States in 2011. National registries around the world and several separate registries in the United States arrange paired donations, although with significant variations in their practices. Concerns about ethical considerations, clinical advisability, and the quantitative effectiveness of these approaches in paired donation result in these variations. For instance, although donor travel can be burdensome and might discourage paired donation, it was nearly universal until convincing analysis showed that living donor kidneys can sustain many hours of cold ischemia time without adverse consequences. Opinions also differ about whether the last donor in a chain of paired donation transplants initiated by a nondirected donor should donate immediately to someone on the deceased donor wait-list (a domino or closed chain) or should be asked to wait some length of time and donate to start another sequence of paired donations later (an open chain); some argue that asking the donor to donate later may be coercive, and others focus on balancing the probability that the waiting donor withdraws versus the number of additional transplants if the chain can be continued. Other controversies in paired donation include simultaneous versus nonsimultaneous donor operations, whether to enroll compatible pairs, and interactions with desensitization protocols. Efforts to expand public awareness of and participation in paired donation are needed to generate more transplant opportunities.

  10. Pairs of promoter pairs in a web of transcription.

    PubMed

    Kaplan, Craig D

    2016-08-30

    A new analysis has characterized a fundamental building block of complex transcribed loci. Constellations of core promoters can generally be reduced to pairs of divergent transcription units, where the distance between the pairs of transcription units correlates with constraints on genomic context, which in turn contribute to transcript fate.

  11. Pulsational Pair-instability Supernovae

    NASA Astrophysics Data System (ADS)

    Woosley, S. E.

    2017-02-01

    The final evolution of stars in the mass range 70-140 {\\text{}}{M}⊙ is explored. Depending upon their mass loss history and rotation rates, these stars will end their lives as pulsational pair-instability supernovae (PPISN) producing a great variety of observational transients with total durations ranging from weeks to millennia and luminosities from 1041 to over 1044 erg s-1. No nonrotating model radiates more than 5× {10}50 erg of light or has a kinetic energy exceeding 5× {10}51 erg, but greater energies are possible, in principle, in magnetar-powered explosions, which are explored. Many events resemble SNe Ibn, SNe Icn, and SNe IIn, and some potential observational counterparts are mentioned. Some PPISN can exist in a dormant state for extended periods, producing explosions millennia after their first violent pulse. These dormant supernovae contain bright Wolf-Rayet stars, possibly embedded in bright X-ray and radio sources. The relevance of PPISN to supernova impostors like Eta Carinae, to superluminous supernovae, and to sources of gravitational radiation is discussed. No black holes between 52 and 133 {\\text{}}{M}⊙ are expected from stellar evolution in close binaries.

  12. Electron positron pair winds and the Eddington limit

    NASA Technical Reports Server (NTRS)

    Leighly, K. M.; Tsuruta, S.

    1989-01-01

    The dynamics of pair winds in the environment of the central engine of Active Galactic Nuclei (AGN) are investigated assuming super Eddington accretion onto black holes. If the accretion is assumed to be spherically symmetric with the accreting matter occurring in discrete cool blobs, and pairs are produced by a nonthermal mechanism, these pairs are blown out by radiation pressure if the coupling between the pairs and accreting blobs is not complete. The coupling also determines the escaping luminosity. If the maximal coupling constraint is relaxed, then a qualitative argument shows that the classical Eddington limit may be exceeded. When the pairs are considered to be noninteracting particles, the outflow is optically thin. Frame dependent effects are considered. Equations are derived considering pair production in the rest frame of the wind and also in the rest frame of the accreting cool blobs. The hydrodynamic equations are integrated numerically.

  13. Behavioral studies of the auditory discrimination of paired pulses with identical pulse spacings by a dolphin

    NASA Astrophysics Data System (ADS)

    Sukhoruchenko, M. N.

    2008-11-01

    For a bottlenose dolphin, the thresholds of discrimination of paired pulses with pulse spacings of 50 1000 μs and different peak values of the second pulse in the test pair are investigated. It is shown that the pair discrimination thresholds depend on both the absolute level of pulses and the ratio between the pulse levels in the standard pair. As the pulse delay in a pair increases, the thresholds monotonically decrease. A possibility of the paired pulse discrimination by the total energy of pulses in a pair is considered for the case of pulse delays both within the critical interval (300 μs) and beyond it.

  14. Electronic pairing in exotic superconductors

    SciTech Connect

    Cox, D.L. ); Maple, M.B. )

    1995-02-01

    Superconductivity in heavy-fermion materials and high T[sub c] cuprates may involve electronic pairing with unconventional symmetries and mechanisms. Although there has been no smoking-gun proof, numerous pieces of circumstantial evidence combined with heuristic theoretical arguments make a compelling case that these materials have pairs with exotic symmetry bound by nonphonon glue. 20 refs., 5 figs.

  15. Assessment Strategies for Pair Programming

    ERIC Educational Resources Information Center

    Hahn, Jan Hendrik; Mentz, Elsa; Meyer, Lukas

    2009-01-01

    Although pair programming has proved its usefulness in teaching and learning programming skills, it is difficult to assess the individual roles and abilities of students whilst programming in pairs. (Note that within this manuscript, the term assessment refers to evaluating individual student performance.) Assessing only the outcomes of a pair…

  16. Homologous pairing and the role of pairing centers in meiosis.

    PubMed

    Tsai, Jui-He; McKee, Bruce D

    2011-06-15

    Homologous pairing establishes the foundation for accurate reductional segregation during meiosis I in sexual organisms. This Commentary summarizes recent progress in our understanding of homologous pairing in meiosis, and will focus on the characteristics and mechanisms of specialized chromosome sites, called pairing centers (PCs), in Caenorhabditis elegans and Drosophila melanogaster. In C. elegans, each chromosome contains a single PC that stabilizes chromosome pairing and initiates synapsis of homologous chromosomes. Specific zinc-finger proteins recruited to PCs link chromosomes to nuclear envelope proteins--and through them to the microtubule cytoskeleton--thereby stimulating chromosome movements in early prophase, which are thought to be important for homolog sorting. This mechanism appears to be a variant of the 'telomere bouquet' process, in which telomeres cluster on the nuclear envelope, connect chromosomes through nuclear envelope proteins to the cytoskeleton and lead chromosome movements that promote homologous synapsis. In Drosophila males, which undergo meiosis without recombination, pairing of the largely non-homologous X and Y chromosomes occurs at specific repetitive sequences in the ribosomal DNA. Although no other clear examples of PC-based pairing mechanisms have been described, there is evidence for special roles of telomeres and centromeres in aspects of chromosome pairing, synapsis and segregation; these roles are in some cases similar to those of PCs.

  17. Diagnostics for conformity of paired quantitative measurements.

    PubMed

    Hawkins, Douglas M

    2002-07-15

    Matched pairs data arise in many contexts - in case-control clinical trials, for example, and from cross-over designs. They also arise in experiments to verify the equivalence of quantitative assays. This latter use (which is the main focus of this paper) raises difficulties not always seen in other matched pairs applications. Since the designs deliberately vary the analyte levels over a wide range, issues of variance dependent on mean, calibrations of differing slopes, and curvature all need to be added to the usual model assumptions such as normality. Violations in any of these assumptions invalidate the conventional matched pairs analysis. A graphical method, due to Bland and Altman, of looking at the relationship between the average and the difference of the members of the pairs is shown to correspond to a formal testable regression model. Using standard regression diagnostics, one may detect and diagnose departures from the model assumptions and remedy them - for example using variable transformations. Examples of different common scenarios and possible approaches to handling them are shown.

  18. Pairing, pseudogap and Fermi arcs in cuprates

    DOE PAGES

    Kaminski, Adam; Kondo, Takeshi; Takeuchi, Tsunehiro; ...

    2014-04-29

    We use Angle Resolved Photoemission Spectroscopy (ARPES) to study the relationship between the pseudogap, pairing and Fermi arcs in cuprates. High quality data measured over a wide range of dopings reveals a consistent picture of Fermiology and pairing in these materials. The pseudogap is due to an ordered state that competes with superconductivity rather than preformed pairs. Pairing does occur below Tpair ~ 150K and significantly above Tc, but well below T* and the doping dependence of this temperature scale is distinct from that of the pseudogap. The d-wave gap is present below Tpair, and its interplay with strong scatteringmore » creates “artificial” Fermi arcs for Tc ≤ T ≤ Tpair. However, above Tpair, the pseudogap exists only at the antipodal region. This leads to presence of real, gapless Fermi arcs close to the node. The length of these arcs remains constant up to T*, where the full Fermi surface is recovered. As a result, we demonstrate that these findings resolve a number of seemingly contradictory scenarios.« less

  19. Chemical Nonlinearities and Radical Pair Lifetime Estimation

    NASA Astrophysics Data System (ADS)

    Robinson, Gregory

    2013-03-01

    Much attention has recently developed around chemical reactions that depend on applied static magnetic fields as weak as earth's. This interest is largely motivated by experiments that implicate the role of spin-selective radical pair recombination in biological magnetic sensing. Existing literature uses a straightforward calculation to approximate the expected lifetime of coherent radical pairs as a function of the minimum RF amplitude that is observed to disrupt magnetic navigation, apparently by decohering the radical pair via electronic Zeeman excitations. But we show that chemical nonlinearities can preclude direct computation of coherent pair lifetime without considering the cellular signalling mechanisms involved, and discuss whether it can explain the surprising fragility of some animals' compass sense. In particular, we demonstrate that an autocatalytic cycle can introduce threshold effects on the disruption sensitivity to applied oscillatory magnetic fields. We will show examples in the mean-field limit and consider the consequences of noise and fluctuations in the Freidlin-Wentzell picture of perturbed dynamical systems.

  20. Base pairing and base mis-pairing in nucleic acids

    NASA Technical Reports Server (NTRS)

    Wang, A. H. J.; Rich, A.

    1986-01-01

    In recent years we have learned that DNA is conformationally active. It can exist in a number of different stable conformations including both right-handed and left-handed forms. Using single crystal X-ray diffraction analysis we are able to discover not only additional conformations of the nucleic acids but also different types of hydrogen bonded base-base interactions. Although Watson-Crick base pairings are the predominant type of interaction in double helical DNA, they are not the only types. Recently, we have been able to examine mismatching of guanine-thymine base pairs in left-handed Z-DNA at atomic resolution (1A). A minimum amount of distortion of the sugar phosphate backbone is found in the G x T pairing in which the bases are held together by two hydrogen bonds in the wobble pairing interaction. Because of the high resolution of the analysis we can visualize water molecules which fill in to accommodate the other hydrogen bonding positions in the bases which are not used in the base-base interactions. Studies on other DNA oligomers have revealed that other types of non-Watson-Crick hydrogen bonding interactions can occur. In the structure of a DNA octamer with the sequence d(GCGTACGC) complexed to an antibiotic triostin A, it was found that the two central AT base pairs are held together by Hoogsteen rather than Watson-Crick base pairs. Similarly, the G x C base pairs at the ends are also Hoogsteen rather than Watson-Crick pairing. Hoogsteen base pairs make a modified helix which is distinct from the Watson-Crick double helix.

  1. Base pairing and base mis-pairing in nucleic acids

    NASA Technical Reports Server (NTRS)

    Wang, A. H. J.; Rich, A.

    1986-01-01

    In recent years we have learned that DNA is conformationally active. It can exist in a number of different stable conformations including both right-handed and left-handed forms. Using single crystal X-ray diffraction analysis we are able to discover not only additional conformations of the nucleic acids but also different types of hydrogen bonded base-base interactions. Although Watson-Crick base pairings are the predominant type of interaction in double helical DNA, they are not the only types. Recently, we have been able to examine mismatching of guanine-thymine base pairs in left-handed Z-DNA at atomic resolution (1A). A minimum amount of distortion of the sugar phosphate backbone is found in the G x T pairing in which the bases are held together by two hydrogen bonds in the wobble pairing interaction. Because of the high resolution of the analysis we can visualize water molecules which fill in to accommodate the other hydrogen bonding positions in the bases which are not used in the base-base interactions. Studies on other DNA oligomers have revealed that other types of non-Watson-Crick hydrogen bonding interactions can occur. In the structure of a DNA octamer with the sequence d(GCGTACGC) complexed to an antibiotic triostin A, it was found that the two central AT base pairs are held together by Hoogsteen rather than Watson-Crick base pairs. Similarly, the G x C base pairs at the ends are also Hoogsteen rather than Watson-Crick pairing. Hoogsteen base pairs make a modified helix which is distinct from the Watson-Crick double helix.

  2. Isospin breaking and f0(980)-a0(980) mixing in the η(1405) → π0f0(980) reaction

    NASA Astrophysics Data System (ADS)

    Aceti, F.; Liang, W. H.; Oset, E.; Wu, J. J.; Zou, B. S.

    2014-06-01

    We make a theoretical study of the η(1405) → π0f0(980) and η(1405) → π0a0(980) reactions to determine the isospin violation and the mixing of the f0(980) and a0(980) resonances. We make use of the chiral unitary approach where these two resonances appear as dynamically generated by the meson-meson interaction provided by chiral Lagrangians. We obtain a very narrow shape for the f0(980) production in agreement with a BES experiment. As to the amount of isospin violation, assuming constant vertices for the primary η(1405) → π0KK̅ and η(1405) → π0π0η production, we find results which are much smaller than found in the experimental BES paper. The problem is solved by using the primary production driven by η' → K*K̅ followed by K∗→ Kπ. Thus, we can predict absolute values for the ratio Γ(π0,π+π-)/Γ(π0,π0η) which are in fair agreement with experiment.

  3. System size and energy dependence of jet-induced hadron pair correlation shapes in Cu+Cu and Au+Au collisions at square root sNN=200 and 62.4 GeV.

    PubMed

    Adare, A; Adler, S S; Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Al-Bataineh, H; Alexander, J; Al-Jamel, A; Aoki, K; Aphecetche, L; Armendariz, R; Aronson, S H; Asai, J; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Baksay, G; Baksay, L; Baldisseri, A; Barish, K N; Barnes, P D; Bassalleck, B; Bathe, S; Batsouli, S; Baublis, V; Bauer, F; Bazilevsky, A; Belikov, S; Bennett, R; Berdnikov, Y; Bickley, A A; Bjorndal, M T; Boissevain, J G; Borel, H; Boyle, K; Brooks, M L; Brown, D S; Bruner, N; Bucher, D; Buesching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J M; Butsyk, S; Camard, X; Campbell, S; Chai, J-S; Chand, P; Chang, B S; Chang, W C; Charvet, J-L; Chernichenko, S; Chiba, J; Chi, C Y; Chiu, M; Choi, I J; Choudhury, R K; Chujo, T; Chung, P; Churyn, A; Cianciolo, V; Cleven, C R; Cobigo, Y; Cole, B A; Comets, M P; Constantin, P; Csanád, M; Csörgo, T; Cussonneau, J P; Dahms, T; Das, K; David, G; Deák, F; Deaton, M B; Dehmelt, K; Delagrange, H; Denisov, A; d'Enterria, D; Deshpande, A; Desmond, E J; Devismes, A; Dietzsch, O; Dion, A; Donadelli, M; Drachenberg, J L; Drapier, O; Drees, A; Dubey, A K; Durum, A; Dutta, D; Dzhordzhadze, V; Efremenko, Y V; Egdemir, J; Ellinghaus, F; Emam, W S; Enokizono, A; En'yo, H; Espagnon, B; Esumi, S; Eyser, K O; Fields, D E; Finck, C; Finger, M; Finger, M; Fleuret, F; Fokin, S L; Forestier, B; Fox, B D; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fung, S-Y; Fusayasu, T; Gadrat, S; Garishvili, I; Gastineau, F; Germain, M; Glenn, A; Gong, H; Gonin, M; Gosset, J; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grosse Perdekamp, M; Gunji, T; Gustafsson, H-A; Hachiya, T; Hadj Henni, A; Haegemann, C; Haggerty, J S; Hagiwara, M N; Hamagaki, H; Han, R; Hansen, A G; Harada, H; Hartouni, E P; Haruna, K; Harvey, M; Haslum, E; Hasuko, K; Hayano, R; Heffner, M; Hemmick, T K; Hester, T; Heuser, J M; He, X; Hidas, P; Hiejima, H; Hill, J C; Hobbs, R; Hohlmann, M; Holmes, M; Holzmann, W; Homma, K; Hong, B; Hoover, A; Horaguchi, T; Hornback, D; Hur, M G; Ichihara, T; Ikonnikov, V V; Imai, K; Inaba, M; Inoue, Y; Inuzuka, M; Isenhower, D; Isenhower, L; Ishihara, M; Isobe, T; Issah, M; Isupov, A; Jacak, B V; Jia, J; Jin, J; Jinnouchi, O; Johnson, B M; Johnson, S C; Joo, K S; Jouan, D; Kajihara, F; Kametani, S; Kamihara, N; Kamin, J; Kaneta, M; Kang, J H; Kanou, H; Katou, K; Kawabata, T; Kawagishi, T; Kawall, D; Kazantsev, A V; Kelly, S; Khachaturov, B; Khanzadeev, A; Kikuchi, J; Kim, D H; Kim, D J; Kim, E; Kim, G-B; Kim, H J; Kim, Y-S; Kinney, E; Kiss, A; Kistenev, E; Kiyomichi, A; Klay, J; Klein-Boesing, C; Kobayashi, H; Kochenda, L; Kochetkov, V; Kohara, R; Komkov, B; Konno, M; Kotchetkov, D; Kozlov, A; Král, A; Kravitz, A; Kroon, P J; Kubart, J; Kuberg, C H; Kunde, G J; Kurihara, N; Kurita, K; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y-S; Lajoie, J G; Lebedev, A; Le Bornec, Y; Leckey, S; Lee, D M; Lee, M K; Lee, T; Leitch, M J; Leite, M A L; Lenzi, B; Lim, H; Liska, T; Litvinenko, A; Liu, M X; Li, X; Li, X H; Love, B; Lynch, D; Maguire, C F; Makdisi, Y I; Malakhov, A; Malik, M D; Manko, V I; Mao, Y; Martinez, G; Masek, L; Masui, H; Matathias, F; Matsumoto, T; McCain, M C; McCumber, M; McGaughey, P L; Miake, Y; Mikes, P; Miki, K; Miller, T E; Milov, A; Mioduszewski, S; Mishra, G C; Mishra, M; Mitchell, J T; Mitrovski, M; Mohanty, A K; Morreale, A; Morrison, D P; Moss, J M; Moukhanova, T V; Mukhopadhyay, D; Muniruzzaman, M; Murata, J; Nagamiya, S; Nagata, Y; Nagle, J L; Naglis, M; Nakagawa, I; Nakamiya, Y; Nakamura, T; Nakano, K; Newby, J; Nguyen, M; Norman, B E; Nyanin, A S; Nystrand, J; O'Brien, E; Oda, S X; Ogilvie, C A; Ohnishi, H; Ojha, I D; Okada, H; Okada, K; Oka, M; Omiwade, O O; Oskarsson, A; Otterlund, I; Ouchida, M; Oyama, K; Ozawa, K; Pak, R; Pal, D; Palounek, A P T; Pantuev, V; Papavassiliou, V; Park, J; Park, W J; Pate, S F; Pei, H; Penev, V; Peng, J-C; Pereira, H; Peresedov, V; Peressounko, D Yu; Pierson, A; Pinkenburg, C; Pisani, R P; Purschke, M L; Purwar, A K; Qualls, J M; Qu, H; Rak, J; Rakotozafindrabe, A; Ravinovich, I; Read, K F; Rembeczki, S; Reuter, M; Reygers, K; Riabov, V; Riabov, Y; Roche, G; Romana, A; Rosati, M; Rosendahl, S S E; Rosnet, P; Rukoyatkin, P; Rykov, V L; Ryu, S S; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakai, S; Sakata, H; Samsonov, V; Sanfratello, L; Santo, R; Sato, H D; Sato, S; Sawada, S; Schutz, Y; Seele, J; Seidl, R; Semenov, V; Seto, R; Sharma, D; Shea, T K; Shein, I; Shevel, A; Shibata, T-A; Shigaki, K; Shimomura, M; Shohjoh, T; Shoji, K; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, C P; Singh, V; Skutnik, S; Slunecka, M; Smith, W C; Soldatov, A; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Staley, F; Stankus, P W; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Suire, C; Sullivan, J P; Sziklai, J; Tabaru, T; Takagi, S; Takagui, E M; Taketani, A; Tanaka, K H; Tanaka, Y; Tanida, K; Tannenbaum, M J; Taranenko, A; Tarján, P; Thomas, T L; Togawa, M; Toia, A; Tojo, J; Tomásek, L; Torii, H; Towell, R S; Tram, V-N; Tserruya, I; Tsuchimoto, Y; Tuli, S K; Tydesjö, H; Tyurin, N; Uam, T J; Vale, C; Valle, H; vanHecke, H W; Velkovska, J; Velkovsky, M; Vertesi, R; Veszprémi, V; Vinogradov, A A; Virius, M; Volkov, M A; Vrba, V; Vznuzdaev, E; Wagner, M; Walker, D; Wang, X R; Watanabe, Y; Wessels, J; White, S N; Willis, N; Winter, D; Wohn, F K; Woody, C L; Wysocki, M; Xie, W; Yamaguchi, Y L; Yanovich, A; Yasin, Z; Ying, J; Yokkaichi, S; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zaudtke, O; Zhang, C; Zhou, S; Zimányi, J; Zolin, L; Zong, X

    2007-06-08

    We present azimuthal angle correlations of intermediate transverse momentum (1-4 GeV/c) hadrons from dijets in Cu+Cu and Au+Au collisions at square root sNN=62.4 and 200 GeV. The away-side dijet induced azimuthal correlation is broadened, non-Gaussian, and peaked away from Delta phi=pi in central and semicentral collisions in all the systems. The broadening and peak location are found to depend upon the number of participants in the collision, but not on the collision energy or beam nuclei. These results are consistent with sound or shock wave models, but pose challenges to Cherenkov gluon radiation models.

  4. Nuclear pairing reduction due to rotation and blocking

    SciTech Connect

    Wu, X.; Zhang, Z. H.; Zeng, J. Y.; Lei, Y. A.

    2011-03-15

    Nuclear pairing gaps of normally deformed and superdeformed nuclei are investigated using the particle-number-conserving (PNC) formalism for the cranked shell model, in which the blocking effects are treated exactly. Both rotational frequency {omega} dependence and seniority (number of unpaired particles) {nu} dependence of the pairing gap {Delta}-tilde are investigated. For the ground-state bands of even-even nuclei, PNC calculations show that, in general, {Delta}-tilde decreases with increasing {omega}, but the {omega} dependence is much weaker than that calculated by the number-projected Hartree-Fock-Bogolyubov approach. For the multiquasiparticle bands (seniority {nu}>2), the pairing gaps stay almost {omega} independent. As a function of the seniority {nu}, the bandhead pairing gaps {Delta}-tilde({nu},{omega}=0) decrease slowly with increasing {nu}. Even for the highest seniority {nu} bands identified so far, {Delta}-tilde({nu},{omega}=0) remains greater than 70% of {Delta}-tilde({nu}=0,{omega}=0).

  5. Estimating Eulerian spectra from pairs of drifters

    NASA Astrophysics Data System (ADS)

    LaCasce, Joe

    2017-04-01

    GPS-tracked surface drifters offer the possibility of sampling energetic variations at the ocean surface on scales of only 10s of meters, much less than that resolved by satellite. Here we investigate whether velocity differences between pairs of drifters can be used to estimate kinetic energy spectra. Theoretical relations between the spectrum and the second-order longitudinal structure function for 2D non-divergent flow are derived. The structure function is a natural statistic for particle pairs and is easily calculated. However it integrates contributions across wavenumber, and this tends to obscure the spectral dependencies when turbulent inertial ranges are of finite extent. Nevertheless, the transform from spectrum to structure function is robust, as illustrated with Eulerian data collected from aircraft. The inverse transform, from structure function to spectrum, is much less robust, yielding poor results in particular at large wavenumbers. This occurs because the transform involves a filter function which magnifies contributions from large pair separations, which tend to be noisy. Fitting the structure function to a polynomial improves the spectral estimate, but not sufficiently to distinguish correct inertial range dependencies. Thus with Lagrangian data, it is appears preferable to focus on structure functions, despite their shortcomings.

  6. Pairing in half-filled Landau level

    SciTech Connect

    Wang, Zhiqiang; Mandal, Ipsita; Chung, Suk Bum; Chakravarty, Sudip

    2014-12-15

    Pairing of composite fermions in half-filled Landau level state is reexamined by solving the BCS gap equation with full frequency dependent current–current interactions. Our results show that there can be a continuous transition from the Halperin–Lee–Read state to a chiral odd angular momentum Cooper pair state for short-range contact interaction. This is at odds with the previously established conclusion of first order pairing transition, in which the low frequency effective interaction was assumed for the entire frequency range. We find that even if the low frequency effective interaction is repulsive, it is compensated by the high frequency regime, which is attractive. We construct the phase diagrams and show that ℓ=1 angular momentum channel is quite different from higher angular momenta ℓ≥3. Remarkably, the full frequency dependent analysis applied to the bilayer Hall system with a total filling fraction ν=1/2 +1/2 is quantitatively changed from the previously established results but not qualitatively.

  7. Pairing in half-filled Landau level

    NASA Astrophysics Data System (ADS)

    Wang, Zhiqiang; Mandal, Ipsita; Chung, Suk Bum; Chakravarty, Sudip

    2015-03-01

    Pairing of composite fermions in half-filled Landau level state is reexamined by solving the BCS gap equation with full frequency dependent current-current interactions. Our results show that there can be a continuous transition from the Halperin-Lee-Read state to a chiral odd angular momentum Cooper pair state for short-range contact interaction. This is at odds with the previously established conclusion of first order pairing transition, in which the low frequency effective interaction was assumed for the entire frequency range. We find that even if the low frequency effective interaction is repulsive, it is compensated by the high frequency regime, which is attractive. We construct the phase diagrams and show that l = 1 angular momentum channel is quite different from higher angular momentum channel l >= 3 . Remarkably, the full frequency dependent analysis applied to the bilayer Hall system with a total filling fraction ν =1/2 +1/2 is quantitatively changed from the previously established results but not qualitatively. This work was supported by US NSF under the Grant DMR-1004520, the funds from the David S. Saxon Presidential Chair at UCLA(37952), and by the Institute for Basic Science in Korea through the Young Scientist grant (5199-2014003).

  8. Regimes of Pulsar Pair Formation and Particle Energetics

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; Muslimov, Alexander G.; Zhang, Bing; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We investigate the conditions required for the production of electron-positron pairs above a pulsar polar cap (PC) and the influence of pair production on the energetics of the primary particle acceleration. Assuming space-charge limited flow acceleration including the inertial frame-dragging effect, we allow both one-photon and two-photon pair production by either curvature radiation (CR) photons or photons resulting from inverse-Compton scattering of thermal photons from the PC by primary electrons. We find that,, while only the younger pulsars can produce pairs through CR, nearly all known radio pulsars are capable of producing pairs through non-resonant inverse-Compton scatterings. The effect of the neutron star equations of state on the pair death lines is explored. We show that pair production is facilitated in more compact stars and more a massive stars. Therefore accretion of mass by pulsars in binary systems may allow pair production in most of the millisecond purser population. We also find that two-photon pair production may be important in millisecond pursers if their surface temperatures are above approx. or equal to three million degrees K. Pursers that produce pairs through CRT wilt have their primary acceleration limited by the effect of screening of the electric field. In this regime, the high-energy luminosity should follow a L(sub HE) proportional to dot-E(sup 1/2, sub rot) dependence. The acceleration voltage drop in pursers that produce pairs only through inverse-Compton emission will not be limited by electric field screening. In this regime, the high-energy luminosity should follow a L(sub HE) proportional to dot-E(sub rot) dependence. Thus, older pursers will have significantly lower gamma-ray luminosity.

  9. Pairing Correlations at High Spins

    NASA Astrophysics Data System (ADS)

    Ma, Hai-Liang; Dong, Bao-Guo; Zhang, Yan; Fan, Ping; Yuan, Da-Qing; Zhu, Shen-Yun; Zhang, Huan-Qiao; Petrache, C. M.; Ragnarsson, I.; Carlsson, B. G.

    The pairing correcting energies at high spins in 161Lu and 138Nd are studied by comparing the results of the cranked-Nilsson-Strutinsky (CNS) and cranked-Nilsson-Strutinsky-Bogoliubov (CNSB) models. It is concluded that the Coriolis effect rather than the rotational alignment effect plays a major role in the reduction of the pairing correlations in the high spin region. Then we proposed an average pairing correction method which not only better reproduces the experimental data comparing with the CNS model but also enables a clean-cut tracing of the configurations thus the full-spin-range discussion on the various rotating bands.

  10. Heterospecific pairing and hybridization between Nasutitermes corniger and N. ephratae

    NASA Astrophysics Data System (ADS)

    Hartke, Tamara R.; Rosengaus, Rebeca B.

    2011-09-01

    The sympatric neotropical termites Nasutitermes corniger and Nasutitermes ephratae are clearly distinguishable based on morphology, nest architecture, defensive secretion composition, and molecular markers. However, given the extensive ecological, geographical, and behavioral overlap of these closely related species, the potential for interbreeding may exist. To explore this possibility, heterospecific pairs were formed experimentally to examine courtship and colony-establishment behaviors, and reproductive potential. Courtship and nest construction behavior occurred in heterospecific pairs in a similar manner to that of conspecific pairs. Survival of pairs depended upon the species of the female partner. N. ephratae females paired with N. corniger males produced as many offspring as conspecific pairs. N. corniger females mated to N. ephratae males, however, produced significantly fewer offspring at 60 days post-establishment than the reciprocal cross or conspecific N. ephratae or N. corniger pairs. This was also the only pairing in which any aggression was observed. Heterospecific pairs and groups formed in mate choice mesocosms, suggesting that species recognition between these two termites is not an important aspect of mate choice. Overall, species mismatch tolerance and hybrid offspring viability are high. The present data, together with previous evidence from defensive secretions and isozyme analysis, suggest that hybridization may periodically occur in nature, and that reproductive barriers between these two species may be incomplete. Hybridization could provide a rare but important source of genetic diversity and may ensure mating opportunities for the more abundant sex of alates in each species.

  11. Heterospecific pairing and hybridization between Nasutitermes corniger and N. ephratae.

    PubMed

    Hartke, Tamara R; Rosengaus, Rebeca B

    2011-09-01

    The sympatric neotropical termites Nasutitermes corniger and Nasutitermes ephratae are clearly distinguishable based on morphology, nest architecture, defensive secretion composition, and molecular markers. However, given the extensive ecological, geographical, and behavioral overlap of these closely related species, the potential for interbreeding may exist. To explore this possibility, heterospecific pairs were formed experimentally to examine courtship and colony-establishment behaviors, and reproductive potential. Courtship and nest construction behavior occurred in heterospecific pairs in a similar manner to that of conspecific pairs. Survival of pairs depended upon the species of the female partner. N. ephratae females paired with N. corniger males produced as many offspring as conspecific pairs. N. corniger females mated to N. ephratae males, however, produced significantly fewer offspring at 60 days post-establishment than the reciprocal cross or conspecific N. ephratae or N. corniger pairs. This was also the only pairing in which any aggression was observed. Heterospecific pairs and groups formed in mate choice mesocosms, suggesting that species recognition between these two termites is not an important aspect of mate choice. Overall, species mismatch tolerance and hybrid offspring viability are high. The present data, together with previous evidence from defensive secretions and isozyme analysis, suggest that hybridization may periodically occur in nature, and that reproductive barriers between these two species may be incomplete. Hybridization could provide a rare but important source of genetic diversity and may ensure mating opportunities for the more abundant sex of alates in each species.

  12. Pairing smoking-cessation services with lung cancer screening: A clinical guideline from the Association for the Treatment of Tobacco Use and Dependence and the Society for Research on Nicotine and Tobacco.

    PubMed

    Fucito, Lisa M; Czabafy, Sharon; Hendricks, Peter S; Kotsen, Chris; Richardson, Donna; Toll, Benjamin A

    2016-04-15

    Smoking cessation is crucial for reducing cancer risk and premature mortality. The US Preventive Services Task Force (USPSTF) has recommended annual lung cancer screening with low-dose computed tomography (LDCT), and the Center for Medicare and Medicaid Services recently approved lung screening as a benefit for patients ages 55 to 77 years who have a 30 pack-year history. The Society for Research on Nicotine and Tobacco (SRNT) and the Association for the Treatment of Tobacco Use and Dependence (ATTUD) developed the guideline described in this commentary based on an illustrative literature review to present the evidence for smoking-cessation health benefits in this high-risk group and to provide clinical recommendations for integrating evidence-based smoking-cessation treatment with lung cancer screening. Unfortunately, extant data on lung cancer screening participants were scarce at the time this guideline was written. However, in this review, the authors summarize the sufficient evidence on the benefits of smoking cessation and the efficacy of smoking-cessation interventions for smokers ages 55 to 77 years to provide smoking-cessation interventions for smokers who seek lung cancer screening. It is concluded that smokers who present for lung cancer screening should be encouraged to quit smoking at each visit. Access to evidence-based smoking-cessation interventions should be provided to all smokers regardless of scan results, and motivation to quit should not be a necessary precondition for treatment. Follow-up contacts to support smoking-cessation efforts should be arranged for smokers. Evidence-based behavioral strategies should be used at each visit to motivate smokers who are unwilling to try quitting/reducing smoking or to try evidence-based treatments that may lead to eventual cessation.

  13. Pairing Smoking-Cessation Services With Lung Cancer Screening: A Clinical Guideline From the Association for the Treatment of Tobacco Use and Dependence and the Society for Research on Nicotine and Tobacco

    PubMed Central

    Fucito, Lisa M.; Czabafy, Sharon; Hendricks, Peter S.; Kotsen, Chris; Richardson, Donna; Toll, Benjamin A.

    2016-01-01

    Smoking cessation is crucial for reducing cancer risk and premature mortality. The US Preventive Services Task Force (USPSTF) has recommended annual lung cancer screening with low-dose computed tomography (LDCT), and the Center for Medicare and Medicaid Services recently approved lung screening as a benefit for patients ages 55 to 77 years who have a 30 pack-year history. The Society for Research on Nicotine and Tobacco (SRNT) and the Association for the Treatment of Tobacco Use and Dependence (ATTUD) developed the guideline described in this commentary based on an illustrative literature review to present the evidence for smoking-cessation health benefits in this high-risk group and to provide clinical recommendations for integrating evidence-based smoking-cessation treatment with lung cancer screening. Unfortunately, extant data on lung cancer screening participants were scarce at the time this guideline was written. However, in this review, the authors summarize the sufficient evidence on the benefits of smoking cessation and the efficacy of smoking-cessation interventions for smokers ages 55 to 77 years to provide smoking-cessation interventions for smokers who seek lung cancer screening. It is concluded that smokers who present for lung cancer screening should be encouraged to quit smoking at each visit. Access to evidence-based smoking-cessation interventions should be provided to all smokers regardless of scan results, and motivation to quit should not be a necessary precondition for treatment. Follow-up contacts to support smoking-cessation efforts should be arranged for smokers. Evidence-based behavioral strategies should be used at each visit to motivate smokers who are unwilling to try quitting/reducing smoking or to try evidence-based treatments that may lead to eventual cessation. PMID:26916412

  14. Pairing correlations in high-spin isomers

    SciTech Connect

    Odahara, A.; Gono, Y.; Fukuchi, T.; Wakabayashi, Y.; Sagawa, H.; Satula, W.; Nazarewicz, W.

    2005-12-15

    High-spin isomers with J{sup {pi}}=49/2{sup +} and 27{sup +} have been systematically observed in a number of N=83 isotones with 60{<=}Z{<=}67 at excitation energies {approx}9 MeV. Based on experimental excitation energies, an odd-even binding energy staggering has been extracted for the first time for these multi-quasiparticle states. Surprisingly, the magnitude of the odd-even effect in high-spin isomers turned out to be very close to that in ground states, thus challenging conventional wisdom that pairing correlations are reduced in highly excited states. Theoretical analysis based on mean-field theory explains the observed proton number dependence of the odd-even effect as a manifestation of strong pairing correlations in the highly excited states. Mean-field effects and the proton-neutron residual interaction on the odd-even staggering are also examined.

  15. Isospin Symmetry of Odd-Odd Mirror Nuclei: Identification of Excited States in N=Z-2 {sup 48}Mn

    SciTech Connect

    Bentley, M. A.; Taylor, M. J.; Brown, J. R.; Chandler, C.; Hammond, G.; Carpenter, M. P.; Davids, C.; Janssens, R. V. F.; Lister, C. J.; Seweryniak, D.; Ekman, J.; Rietz, R. du; Freeman, S. J.; Garrett, P. E.; Lenzi, S. M.

    2006-09-29

    Excited states have been observed in the N=Z-2 odd-odd nucleus {sup 48}Mn for the first time. Through comparison with the structure of {sup 48}V, a first high-spin study of an odd-odd mirror pair has been achieved. Differences between the T=1 analogue states in this pair have been interpreted in terms of Coulomb effects, with the aid of shell-model calculations in the full pf valence space. Unlike other mirror pairs, the energy differences have been interpreted almost entirely as due to a monopole effect associated with smooth changes in radius (or deformation) as a function of angular momentum. In addition, the large energy shift between analogue negative-parity states is interpreted in terms of the electromagnetic spin-orbit interaction in nuclei.

  16. A program for generating one-particle and two-particle coefficients of fractional parentage for the single j-orbit with isospin

    NASA Astrophysics Data System (ADS)

    Deveikis, A.

    2005-12-01

    The program CFPjOrbit written in FORTRAN 90 is aimed at generating the list of one-particle and two-particle coefficients of fractional parentage (CFPs) for the single j-orbit with isospin. The approach is based on a simple enumeration scheme for antisymmetric A-particle states and an efficient method for constructing the eigenvectors of an idempotent matrix as proposed in [A. Deveikis, R.K. Kalinauskas, B.R. Barrett, Ann. Phys. 296 (2002) 287]. The program provides fast calculation of coefficients of fractional parentage for high j-orbits with isospin and produces results that have only small numerical uncertainties. The auxiliary program EnumCFP allows one to perform enumeration of the coefficients. Program summaryTitle of program:CFPjOrbit, EnumCFP Catalogue identifier:ADWI Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWI Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions:none Computers:Any computer with a FORTRAN 90 compiler Operating systems under which the program has been tested:Windows 2000 Programming language used:FORTRAN 90 Memory required to execute with typical data:100 MB No. of lines in programs, including test data, etc.:4855 No. of bytes in distributed programs, including test data, etc.:26 484 Distribution format:tar.gz Nature of the physical problem:Generating the list of one-particle and two-particle coefficients of fractional parentage for the single j-orbit with isospin. Method of solution:The method is based on the algorithm presented in [A. Deveikis, R.K. Kalinauskas, B.R. Barrett, Ann. Phys. 296 (2002) 287] for the spectral decomposition of an antisymmetrization operator matrix Y. The coefficients of fractional parentage are the eigenvectors of a certain antisymmetrization operator matrix Y that correspond to its unit eigenvalues. Restrictions on the complexity of the problem:The full sets of one-particle and two-particle coefficients of fractional parentage up to the j=9

  17. Investigation of the Isospin Response of the (4) Helium Continuum Using the HELIUM-4(PROTON, Proton'x) Reaction at T(p) = 100 Mev

    NASA Astrophysics Data System (ADS)

    Raue, Brian A.

    1993-01-01

    The principle of charge symmetry (CS) implies invariance of the strong interaction under 180 ^circ rotations in isospin space. The study of charge symmetric, proton and neutron decays from the giant dipole resonance (GDR) of ^4He (25<= E_{x}<= 35 MeV) is one way to probe the validity of CS. If CS is valid, then one would expect nearly equal charge -symmetric decay rates with small deviations due to the Coulomb interaction. An evaluation of photoabsorption measurements concluded that R_gamma= sigma(gamma,p)/sigma(gamma,n) was large indicating sizable isospin mixing in the ^4He GDR and suggested the possibility of a large CS violating component in the strong interaction. However, data used in that evaluation are in disagreement and recent experiments continue to give inconsistent values for R _gamma. Other experiments intended to provided complementary information are generally consistent with minimal isospin mixing in the ^4He GDR but questions have arisen regarding their ability to address the problem. This experiment addresses the issue of CS by measuring charge symmetric ^3H and ^3He decays of the ^4He continuum excited by proton inelastic scattering. The experiment was designed to reduce most of the systematic errors associated with Rgamma by detecting the ^4He^ star charge symmetric decay particles with the same apparatus. Angular correlation functions (ACF) have been measured concurrent with (p,p^ ') cross sections for proton scattering angles of theta_sp{p}{lab } = 24, 30 and 35^circ in order to identify the multipolarities excited by the reaction. A unique target/detector apparatus was developed to detect low-energy ions from ^4 He^star decay over a broad angle range. Analysis of the ^4He(p,p ^' t) ACF provides evidence that predominately Delta L = 1 transitions have been excited in the GDR region. This analysis cannot uniquely identify the J^pi of ^4He^star resonances. A fit to the ^4He( p,p^' t) integrated cross section using resonance lineshapes from a

  18. Search for pair production of vector-like top quarks in events with one lepton, jets, and missing transverse momentum in √{s}=13 TeV pp collisions with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aaboud, M.; Aad, G.; Abbott, B.; Abdinov, O.; Abeloos, B.; Abidi, S. H.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adachi, S.; Adamczyk, L.; Adelman, J.; Adersberger, M.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agheorghiesei, C.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akatsuka, S.; Akerstedt, H.; Åkesson, T. P. A.; Akilli, E.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albicocco, P.; Verzini, M. J. Alconada; Alderweireldt, S. C.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alshehri, A. A.; Alstaty, M.; Gonzalez, B. Alvarez; Piqueras, D. Álvarez; Alviggi, M. G.; Amadio, B. T.; Coutinho, Y. Amaral; Amelung, C.; Amidei, D.; Santos, S. P. Amor Dos; Amorim, A.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Angerami, A.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Antrim, D. J.; Anulli, F.; Aoki, M.; Bella, L. Aperio; Arabidze, G.; Arai, Y.; Araque, J. P.; Ferraz, V. Araujo; Arce, A. T. H.; Ardell, R. E.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagnaia, P.; Bahmani, M.; Bahrasemani, H.; Baines, J. T.; Bajic, M.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balli, F.; Balunas, W. K.; Banas, E.; Bandyopadhyay, A.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barkeloo, J. T.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Navarro, L. Barranco; Barreiro, F.; da Costa, J. Barreiro Guimarães; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Beck, H. C.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beermann, T. A.; Begalli, M.; Begel, M.; Behr, J. K.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Noccioli, E. Benhar; Benitez, J.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Kuutmann, E. Bergeaas; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernardi, G.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bylund, O. Bessidskaia; Bessner, M.; Besson, N.; Betancourt, C.; Bethani, A.; Bethke, S.; Bevan, A. J.; Beyer, J.; Bianchi, R. M.; Biebel, O.; Biedermann, D.; Bielski, R.; Bierwagen, K.; Biesuz, N. V.; Biglietti, M.; Billoud, T. R. V.; Bilokon, H.; Bindi, M.; Bingul, A.; Bini, C.; Biondi, S.; Bisanz, T.; Bittrich, C.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blair, R. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blue, A.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bolz, A. E.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Boscherini, D.; Bosman, M.; Sola, J. D. Bossio; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Madden, W. D. Breaden; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Briglin, D. L.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; de Renstrom, P. A. Bruckman; Bruncko, D.; Bruni, A.; Bruni, G.; Bruni, L. S.; Brunt, BH; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burch, T. J.; Burdin, S.; Burgard, C. D.; Burger, A. M.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Urbán, S. Cabrera; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Lopez, S. Calvente; Calvet, D.; Calvet, S.; Calvet, T. P.; Toro, R. Camacho; Camarda, S.; Camarri, P.; Cameron, D.; Armadans, R. Caminal; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Bret, M. Cano; Cantero, J.; Cao, T.; Garrido, M. D. M. Capeans; Caprini, I.; Caprini, M.; Capua, M.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carlson, B. T.; Carminati, L.; Carney, R. M. D.; Caron, S.; Carquin, E.; Carrá, S.; Carrillo-Montoya, G. D.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castelijn, R.; Gimenez, V. Castillo; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Celebi, E.; Ceradini, F.; Alberich, L. Cerda; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, W. S.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Barajas, C. A. Chavez; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheplakov, A.; Cheremushkina, E.; El Moursli, R. Cherkaoui; Cheu, E.; Cheung, K.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chiu, Y. H.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Christodoulou, V.; Chromek-Burckhart, D.; Chu, M. C.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocca, C.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Muiño, P. Conde; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper-Sarkar, A. M.; Cormier, F.; Cormier, K. J. R.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Creager, R. A.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Donszelmann, T. Cuhadar; Cukierman, A. R.; Cummings, J.; Curatolo, M.; Cúth, J.; Czodrowski, P.; D'amen, G.; D'Auria, S.; D'eramo, L.; D'Onofrio, M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Daneri, M. F.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Hoffmann, M. Dano; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Daubney, T.; Davey, W.; David, C.; Davidek, T.; Davis, D. R.; Davison, P.; Dawe, E.; Dawson, I.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Maria, A.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vasconcelos Corga, K.; De Vivie De Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Pietra, M. Della; della Volpe, D.; Delmastro, M.; Delporte, C.; Delsart, P. A.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Devesa, M. R.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Bello, F. A.; Di Ciaccio, A.; Di Ciaccio, L.; Di Clemente, W. K.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Di Nardo, R.; Di Petrillo, K. F.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Cornell, S. Díez; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Dubreuil, A.; Duchovni, E.; Duckeck, G.; Ducourthial, A.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudder, A. Chr.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dumancic, M.; Dumitriu, A. E.; Duncan, A. K.; Dunford, M.; Yildiz, H. Duran; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Dziedzic, B. S.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; El Kosseifi, R.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernst, M.; Errede, S.; Escalier, M.; Escobar, C.; Esposito, B.; Pastor, O. Estrada; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Ezzi, M.; Fabbri, F.; Fabbri, L.; Fabiani, V.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Giannelli, M. Faucci; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenton, M. J.; Fenyuk, A. B.; Feremenga, L.; Martinez, P. Fernandez; Perez, S. Fernandez; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; de Lima, D. E. Ferreira; Ferrer, A.; Ferrere, D.; Ferretti, C.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, R. R. M.; Flick, T.; Flierl, B. M.; Castillo, L. R. Flores; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Förster, F. A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Freund, B.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Ganguly, S.; Gao, Y.; Gao, Y. S.; Walls, F. M. Garay; García, C.; Navarro, J. E. García; Pascual, J. A. García; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Bravo, A. Gascon; Gasnikova, K.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gee, C. N. P.; Geisen, J.; Geisen, M.; Geisler, M. P.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Gershon, A.; Geßner, G.; Ghasemi, S.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giangiacomi, N.; Giannetti, P.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gkountoumis, P.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Gama, R. Goncalves; Da Costa, J. Goncalves Pinto Firmino; Gonella, G.; Gonella, L.; Gongadze, A.; de la Hoz, S. González; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gottardo, C. A.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, C.; Gray, H. M.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Grummer, A.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Gui, B.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, W.; Guo, Y.; Gupta, R.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Ortiz, N. G. Gutierrez; Gutschow, C.; Guyot, C.; Guzik, M. P.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Hageböck, S.; Hagihara, M.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Han, S.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartmann, N. M.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havener, L. B.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heer, S.; Heidegger, K. K.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Held, A.; Hellman, S.; Helsens, C.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Correia, A. M. Henriques; Henrot-Versille, S.; Herbert, G. H.; Herde, H.; Herget, V.; Jiménez, Y. Hernández; Herr, H.; Herten, G.; Hertenberger, R.; Hervas, L.; Herwig, T. C.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Higashino, S.; Higón-Rodriguez, E.; Hildebrand, K.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hils, M.; Hinchliffe, I.; Hirose, M.; Hirschbuehl, D.; Hiti, B.; Hladik, O.; Hoad, X.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Honda, S.; Honda, T.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howarth, J.; Hoya, J.; Hrabovsky, M.; Hrdinka, J.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, P. J.; Hsu, S.-C.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Isacson, M. F.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Issever, C.; Istin, S.; Ito, F.; Ponce, J. M. Iturbe; Iuppa, R.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, P.; Jacobs, R. M.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansky, R.; Janssen, J.; Janus, M.; Janus, P. A.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Javurkova, M.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jelinskas, A.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiang, Z.; Jiggins, S.; Pena, J. Jimenez; Jin, S.; Jinaru, A.; Jinnouchi, O.; Jivan, H.; Johansson, P.; Johns, K. A.; Johnson, C. A.; Johnson, W. J.; Jon-And, K.; Jones, R. W. L.; Jones, S. D.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Rozas, A. Juste; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kar, D.; Karakostas, K.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kay, E. F.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Kendrick, J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-zada, F.; Khanov, A.; Kharlamov, A. G.; Kharlamova, T.; Khodinov, A.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; Kirchmeier, D.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kitali, V.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klapdor-Kleingrothaus, T.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klingl, T.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Köhler, N. M.; Koi, T.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Koulouris, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kourlitis, E.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Krauss, D.; Kremer, J. A.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, M. C.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kulinich, Y. P.; Kuna, M.; Kunigo, T.; Kupco, A.; Kupfer, T.; Kuprash, O.; Kurashige, H.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kurth, M. G.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; La Ruffa, F.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Langenberg, R. J.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Lapertosa, A.; Laplace, S.; Laporte, J. F.; Lari, T.; Manghi, F. Lasagni; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Le Dortz, O.; Le Guirriec, E.; Le Quilleuc, E. P.; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, G. R.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Miotto, G. Lehmann; Lei, X.; Leight, W. A.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Li, B.; Li, Changqiao; Li, H.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, H.; Liu, H.; Liu, J. K. K.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Merino, J. Llorente; Lloyd, S. L.; Lo, C. Y.; Sterzo, F. Lo; Lobodzinska, E. M.; Loch, P.; Loebinger, F. K.; Loesle, A.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopez, J. A.; Mateos, D. Lopez; Paz, I. Lopez; Solis, A. Lopez; Lorenz, J.; Martinez, N. Lorenzo; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lu, Y. J.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lutz, M. S.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyu, F.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Miguens, J. Machado; Madaffari, D.; Madar, R.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A. S.; Magerl, V.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majersky, O.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandić, I.; Maneira, J.; de Andrade Filho, L. Manhaes; Ramos, J. Manjarres; Mankinen, K. H.; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchese, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Martensson, M. U. F.; Marti-Garcia, S.; Martin, C. B.; Martin, T. A.; Martin, V. J.; dit Latour, B. Martin; Martinez, M.; Outschoorn, V. I. Martinez; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Maznas, I.; Mazza, S. M.; Fadden, N. C. Mc; Goldrick, G. Mc; Kee, S. P. Mc; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McNamara, P. C.; McPherson, R. A.; Meehan, S.; Megy, T. J.; Mehlhase, S.; Mehta, A.; Meideck, T.; Meier, K.; Meirose, B.; Melini, D.; Garcia, B. R. Mellado; Mellenthin, J. D.; Melo, M.; Meloni, F.; Melzer, A.; Menary, S. B.; Meng, L.; Meng, X. T.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Theenhausen, H. Meyer Zu; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Minegishi, Y.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mizukami, A.; Mjörnmark, J. U.; Mkrtchyan, T.; Mlynarikova, M.; Moa, T.; Mochizuki, K.; Mogg, P.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Berlingen, J. Montejo; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Llácer, M. Moreno; Morettini, P.; Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moschovakos, P.; Mosidze, M.; Moss, H. J.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Moyse, E. J. W.; Muanza, S.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Sanchez, F. J. Munoz; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Garcia, R. F. Naranjo; Narayan, R.; Villar, D. I. Narrias; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nelson, M. E.; Nemecek, S.; Nemethy, P.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Newman, P. R.; Ng, T. Y.; Manh, T. Nguyen; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishu, N.; Nisius, R.; Nitsche, I.; Nitta, T.; Nobe, T.; Noguchi, Y.; Nomachi, M.; Nomidis, I.; Nomura, M. A.; Nooney, T.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'connor, K.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Seabra, L. F. Oleiro; Pino, S. A. Olivares; Damazio, D. Oliveira; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oppen, H.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; y Garzon, G. Otero; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pages, A. Pacheco; Rodriguez, L. Pacheco; Aranda, C. Padilla; Griso, S. Pagan; Paganini, M.; Paige, F.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; Panagiotopoulou, E. St.; Panagoulias, I.; Pandini, C. E.; Vazquez, J. G. Panduro; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Hernandez, D. Paredes; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasner, J. M.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearson, B.; Lopez, S. Pedraza; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Peri, F.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, F. H.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pinamonti, M.; Pinfold, J. L.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Pluth, D.; Podberezko, P.; Poettgen, R.; Poggi, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Ponomarenko, D.; Pontecorvo, L.; Popeneciu, G. A.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Poulard, G.; Poulsen, T.; Poveda, J.; Astigarraga, M. E. Pozo; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Primavera, M.; Prince, S.; Proklova, N.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puri, A.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rangel-Smith, C.; Rashid, T.; Raspopov, S.; Ratti, M. G.; Rauch, D. M.; Rauscher, F.; Rave, S.; Ravinovich, I.; Rawling, J. H.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reed, R. G.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reiss, A.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Resseguie, E. D.; Rettie, S.; Reynolds, E.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ripellino, G.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Roberts, R. T.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Rocco, E.; Roda, C.; Rodina, Y.; Bosca, S. Rodriguez; Perez, A. Rodriguez; Rodriguez, D. Rodriguez; Roe, S.; Rogan, C. S.; Røhne, O.; Roloff, J.; Romaniouk, A.; Romano, M.; Saez, S. M. Romano; Adam, E. Romero; Rompotis, N.; Ronzani, M.; Roos, L.; Rosati, S.; Rosbach, K.; Rose, P.; Rosien, N.-A.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Rothberg, J.; Rousseau, D.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Tehrani, F. Safai; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Loyola, J. E. Salazar; Salek, D.; De Bruin, P. H. Sales; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sampsonidou, D.; Sánchez, J.; Martinez, V. Sanchez; Pineda, A. Sanchez; Sandaker, H.; Sandbach, R. L.; Sander, C. O.; Sandhoff, M.; Sandoval, C.; Sankey, D. P. C.; Sannino, M.; Sano, Y.; Sansoni, A.; Santoni, C.; Santos, H.; Castillo, I. Santoyo; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sato, K.; Sauvan, E.; Savage, G.; Savard, P.; Savic, N.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, L.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schildgen, L. K.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schouwenberg, J. F. P.; Schovancova, J.; Schramm, S.; Schuh, N.; Schulte, A.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Sciandra, A.; Sciolla, G.; Scornajenghi, M.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Semprini-Cesari, N.; Senkin, S.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Shen, Y.; Sherafati, N.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shipsey, I. P. J.; Shirabe, S.; Shiyakova, M.; Shlomi, J.; Shmeleva, A.; Saadi, D. Shoaleh; Shochet, M. J.; Shojaii, S.; Shope, D. R.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Haddad, E. Sideras; Sidiropoulou, O.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Siral, I.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smiesko, J.; Smirnov, N.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, J. W.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, I. M.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Søgaard, A.; Soh, D. A.; Sokhrannyi, G.; Sanchez, C. A. Solans; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Sopczak, A.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spieker, T. M.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Denis, R. D. St.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanitzki, M. M.; Stapf, B. S.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Stark, S. H.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultan, DMS; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Suruliz, K.; Suster, C. J. E.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Swift, S. P.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takasugi, E. H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanaka, S.; Tanioka, R.; Tannenwald, B. B.; Araya, S. Tapia; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Delgado, A. Tavares; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teixeira-Dias, P.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thiele, F.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Tibbetts, M. J.; Torres, R. E. Ticse; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorova-Nova, S.; Todt, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Tornambe, P.; Torrence, E.; Torres, H.; Pastor, E. Torró; Toth, J.; Touchard, F.; Tovey, D. R.; Treado, C. J.; Trefzger, T.; Tresoldi, F.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsang, K. W.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tulbure, T. T.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turgeman, D.; Cakir, I. Turk; Turra, R.; Tuts, P. M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usui, J.; Vacavant, L.; Vacek, V.; Vachon, B.; Vadla, K. O. H.; Vaidya, A.; Valderanis, C.; Santurio, E. Valdes; Valentinetti, S.; Valero, A.; Valéry, L.; Valkar, S.; Vallier, A.; Ferrer, J. A. Valls; Van Den Wollenberg, W.; van der Graaf, H.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varni, C.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vasquez, G. A.; Vazeille, F.; Schroeder, T. Vazquez; Veatch, J.; Veeraraghavan, V.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, A. T.; Vermeulen, J. C.; Vetterli, M. C.; Maira, N. Viaux; Viazlo, O.; Vichou, I.; Vickey, T.; Boeriu, O. E. Vickey; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Perez, M. Villaplana; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vishwakarma, A.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vogel, M.; Vokac, P.; Volpi, G.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Milosavljevic, M. Vranjes; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wagner, W.; Wagner-Kuhr, J.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, Q.; Wang, R.; Wang, S. M.; Wang, T.; Wang, W.; Wang, W.; Wang, Z.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, A. F.; Webb, S.; Weber, M. S.; Weber, S. W.; Weber, S. A.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weirich, M.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M. D.; Werner, P.; Wessels, M.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A. S.; White, A.; White, M. J.; White, R.; Whiteson, D.; Whitmore, B. W.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winkels, E.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wobisch, M.; Wolf, T. M. H.; Wolff, R.; Wolter, M. W.; Wolters, H.; Wong, V. W. S.; Worm, S. D.; Wosiek, B. K.; Wotschack, J.; Wozniak, K. W.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xi, Z.; Xia, L.; Xu, D.; Xu, L.; Xu, T.; Yabsley, B.; Yacoob, S.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamatani, M.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Wong, K. H. Yau; Ye, J.; Ye, S.; Yeletskikh, I.; Yigitbasi, E.; Yildirim, E.; Yorita, K.; Yoshihara, K.; Young, C.; Young, C. J. S.; Yu, J.; Yu, J.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zacharis, G.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanzi, D.; Zeitnitz, C.; Zemaityte, G.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, L.; Zhang, M.; Zhang, P.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Y.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, M.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zou, R.; zur Nedden, M.; Zwalinski, L.

    2017-08-01

    The results of a search for vector-like top quarks using events with exactly one lepton, at least four jets, and large missing transverse momentum are reported. The search is optimised for pair production of vector-like top quarks in the Z(→νν) t + X decay channel. LHC pp collision data at a centre-of-mass energy of √{s}=13 TeV recorded by the ATLAS detector in 2015 and 2016 are used, corresponding to an integrated luminosity of 36.1 fb-1. No significant excess over the Standard Model expectation is seen and upper limits on the production cross-section of a vector-like T quark pair as a function of the T quark mass are derived. The observed (expected) 95% CL lower limits on the T mass are 870 GeV (890 GeV) for the weak-isospin singlet model, 1.05 TeV (1.06 TeV) for the weak-isospin doublet model and 1.16 TeV (1.17 TeV) for the pure Zt decay mode. Limits are also set on the mass as a function of the decay branching ratios, excluding large parts of the parameter space for masses below 1 TeV. [Figure not available: see fulltext.

  19. Accurate effective pair potentials for polymer solutions

    NASA Astrophysics Data System (ADS)

    Bolhuis, P. G.; Louis, A. A.; Hansen, J. P.; Meijer, E. J.

    2001-03-01

    Dilute or semidilute solutions of nonintersecting self-avoiding walk (SAW) polymer chains are mapped onto a fluid of "soft" particles interacting via an effective pair potential between their centers of mass. This mapping is achieved by inverting the pair distribution function of the centers of mass of the original polymer chains, using integral equation techniques from the theory of simple fluids. The resulting effective pair potential is finite at all distances, has a range of the order of the radius of gyration, and turns out to be only moderately concentration-dependent. The dependence of the effective potential on polymer length is analyzed in an effort to extract the scaling limit. The effective potential is used to derive the osmotic equation of state, which is compared to simulation data for the full SAW segment model, and to the predictions of renormalization group calculations. A similar inversion procedure is used to derive an effective wall-polymer potential from the center of mass density profiles near the wall, obtained from simulations of the full polymer segment model. The resulting wall-polymer potential turns out to depend strongly on bulk polymer concentration when polymer-polymer correlations are taken into account, leading to a considerable enhancement of the effective repulsion with increasing concentration. The effective polymer-polymer and wall-polymer potentials are combined to calculate the depletion interaction induced by SAW polymers between two walls. The calculated depletion interaction agrees well with the "exact" results from much more computer-intensive direct simulation of the full polymer-segment model, and clearly illustrates the inadequacy—in the semidilute regime—of the standard Asakura-Oosawa approximation based on the assumption of noninteracting polymer coils.

  20. Superconductivity: The persistence of pairs

    SciTech Connect

    Edelman, Alex; Littlewood, Peter

    2015-05-20

    Superconductivity stems from a weak attraction between electrons that causes them to form bound pairs and behave much like bosons. These so-called Cooper pairs are phase coherent, which leads to the astonishing properties of zero electrical resistance and magnetic flux expulsion typical of superconducting materials. This coherent state may be qualitatively understood within the Bose–Einstein condensate (BEC) model, which predicts that a gas of interacting bosons will become unstable below a critical temperature and condense into a phase of matter with a macroscopic, coherent population in the lowest energy state, as happens in 4He or cold atomic gases. The successful theory proposed by Bardeen, Cooper and Schrieffer (BCS) predicts that at the superconducting transition temperature Tc, electrons simultaneously form pairs and condense, with no sign of pairing above Tc. Theorists have long surmised that the BCS and BEC models are opposite limits of a single theory and that strong interactions or low density can, in principle, drive the system to a paired state at a temperature Tpair higher than Tc, making the transition to the superconducting state BEC-like (Fig. 1). Yet most superconductors to date are reasonably well described by BCS theory or its extensions, and there has been scant evidence in electronic materials for the existence of pairing independent of the full superconducting state (though an active debate rages over the cuprate superconductors). Writing in Nature, Jeremy Levy and colleagues have now used ingenious nanostructured devices to provide evidence for electron pairing1. Perhaps surprisingly, the material they have studied is a venerable, yet enigmatic, low-temperature superconductor, SrTiO3.

  1. ON THE POLAR CAP CASCADE PAIR MULTIPLICITY OF YOUNG PULSARS

    SciTech Connect

    Timokhin, A. N.; Harding, A. K.

    2015-09-10

    We study the efficiency of pair production in polar caps of young pulsars under a variety of conditions to estimate the maximum possible multiplicity of pair plasma in pulsar magnetospheres. We develop a semi-analytic model for calculation of cascade multiplicity which allows efficient exploration of the parameter space and corroborate it with direct numerical simulations. Pair creation processes are considered separately from particle acceleration in order to assess different factors affecting cascade efficiency, with acceleration of primary particles described by recent self-consistent non-stationary model of pair cascades. We argue that the most efficient cascades operate in the curvature radiation/synchrotron regime, the maximum multiplicity of pair plasma in pulsar magnetospheres is ∼few × 10{sup 5}. The multiplicity of pair plasma in magnetospheres of young energetic pulsars weakly depends on the strength of the magnetic field and the radius of curvature of magnetic field lines and has a stronger dependence on pulsar inclination angle. This result questions assumptions about very high pair plasma multiplicity in theories of pulsar wind nebulae.

  2. Pairing-induced speedup of nuclear spontaneous fission

    SciTech Connect

    Sadhukhan, Jhilam; Dobaczewski, J.; Nazarewicz, W.; Sheikh, J. A.; Baran, A.

    2014-12-22

    Collective inertia is strongly influenced at the level crossing at which the quantum system changes its microscopic configuration diabatically. Pairing correlations tend to make the large-amplitude nuclear collective motion more adiabatic by reducing the effect of these configuration changes. Competition between pairing and level crossing is thus expected to have a profound impact on spontaneous fission lifetimes. To elucidate the role of nucleonic pairing on spontaneous fission, we study the dynamic fission trajectories of 264Fm and 240Pu using the state-of-the-art self-consistent framework. We employ the superfluid nuclear density functional theory with the Skyrme energy density functional SkM* and a density-dependent pairing interaction. Along with shape variables, proton and neutron pairing correlations are taken as collective coordinates. The collective inertia tensor is calculated within the nonperturbative cranking approximation. The fission paths are obtained by using the least action principle in a four-dimensional collective space of shape and pairing coordinates. Pairing correlations are enhanced along the minimum-action fission path. For the symmetric fission of 264Fm, where the effect of triaxiality on the fission barrier is large, the geometry of the fission pathway in the space of the shape degrees of freedom is weakly impacted by pairing. This is not the case for 240Pu, where pairing fluctuations restore the axial symmetry of the dynamic fission trajectory. The minimum-action fission path is strongly impacted by nucleonic pairing. In some cases, the dynamical coupling between shape and pairing degrees of freedom can lead to a dramatic departure from the static picture. As a result, in the dynamical description of nuclear fission, particle-particle correlations should be considered on the same footing as those associated with shape degrees of freedom.

  3. Cooper pairs spintronics in triplet spin valves.

    PubMed

    Romeo, F; Citro, R

    2013-11-27

    We study a spin valve with a triplet superconductor spacer intercalated between two ferromagnets with noncollinear magnetizations. We show that the magnetoresistance of the triplet spin valve depends on the relative orientations of the d vector, characterizing the superconducting order parameter, and the magnetization directions of the ferromagnetic layers. For devices characterized by a long superconductor, the effects of a polarized current sustained by Cooper pairs only are observed. In this regime, a supermagnetoresistance effect emerges, and the chiral symmetry of the order parameter of the superconducting spacer is easily recognized. Our findings open new perspectives in designing spintronics devices based on the cooperation of ferromagnetic and triplet correlations.

  4. Cooper pair splitting in diffusive magnetic SQUIDs

    NASA Astrophysics Data System (ADS)

    Ioselevich, P. A.; Ostrovsky, P. M.; Fominov, Ya. V.; Feigel'man, M. V.

    2017-03-01

    We study Josephson junctions with weak links consisting of two parallel disordered arms with magnetic properties: ferromagnetic, half-metallic, or normal with magnetic impurities. In the case of long links, the Josephson effect is dominated by mesoscopic fluctuations. In this regime, the system realizes a φ0 junction with sample-specific φ0 and critical current. Cooper pair splitting between the two arms plays a major role and leads to 2 Φ0 periodicity of the current as a function of flux between the arms. We calculate the current and its flux and polarization dependence for the three types of magnetic links.

  5. Holographic pair and charge density waves

    NASA Astrophysics Data System (ADS)

    Cremonini, Sera; Li, Li; Ren, Jie

    2017-02-01

    We examine a holographic model in which a U (1 ) symmetry and translational invariance are broken spontaneously at the same time. Our construction provides an example of a system with pair-density wave order, in which the superconducting order parameter is spatially modulated but has a zero average. In addition, the charge density oscillates at twice the frequency of the scalar condensate. Depending on the choice of parameters, the model also admits a state with coexisting superconducting and charge-density wave orders, in which the scalar condensate has a uniform component.

  6. Slepton Pair Production at Hadron Colliders

    NASA Astrophysics Data System (ADS)

    Fuks, B.

    2007-04-01

    In R-parity conserving supersymmetric models, sleptons are produced in pairs at hadron colliders. We show that measurements of the longitudinal single-spin asymmetry at possible polarization upgrades of existing colliders allow for a direct extraction of the slepton mixing angle. A calculation of the transverse-momentum spectrum shows the importance of resummed contributions at next-to-leading logarithmic accuracy in the small and intermediate transverse-momentum regions and little dependence on unphysical scales and non-perturbative contributions.

  7. Imidazolium salt ion pairs in solution.

    PubMed

    Stassen, Hubert K; Ludwig, Ralf; Wulf, Alexander; Dupont, Jairton

    2015-06-01

    The formation, stabilisation and reactivity of contact ion pairs of non-protic imidazolium ionic liquids (ILs) in solution are conceptualized in light of selected experimental evidence as well theoretical calculations reported mainly in the last ten years. Electric conductivity, NMR, ESI-MS and IR data as well as theoretical calculations support not only the formation of contact ion pairs in solution, but also the presence of larger ionic and neutral aggregates even when dissolved in solvents with relatively high dielectric constants, such as acetonitrile and DMSO. The presence of larger imidazolium supramolecular aggregates is favoured at higher salt concentrations in solvents of low dielectric constant for ILs that contain shorter N-alkyl side chains associated with anions of low coordination ability. The stability and reactivity of neutral contact species are also dependent on the nature of the anion, imidazolium substituents, and are more abundant in ILs containing strong coordinating anions, in particular those that can form charge transfer complexes with the imidazolium cation. Finally, some ILs display reactivities as contact ion pairs rather than solvent-separated ions.

  8. From Cooper-pair glass to unconventional superconductivity: a unified approach to cuprates and pnictides

    NASA Astrophysics Data System (ADS)

    Sacks, William; Mauger, Alain; Noat, Yves

    2017-05-01

    We report a microscopic model wherein the unconventional superconductivity emerges from an incoherent 'Cooper-pair glass' state. Driven by the pair-pair interaction, a new type of quasi-Bose phase transition is at work. The interaction leads to the unconventional coupling of the quasiparticles to excited pair states, or 'super-quasiparticles', with a non-retarded energy-dependent gap. The model describes quantitatively the quasiparticle excitation spectra of both cuprates and pnictides, including the universal 'peak-dip-hump' signatures, and for the pseudogap phase above Tc. The results show that instantaneous pair-pair interactions account for the SC condensation without a collective mode.

  9. Pair extended coupled cluster doubles

    SciTech Connect

    Henderson, Thomas M.; Scuseria, Gustavo E.; Bulik, Ireneusz W.

    2015-06-07

    The accurate and efficient description of strongly correlated systems remains an important challenge for computational methods. Doubly occupied configuration interaction (DOCI), in which all electrons are paired and no correlations which break these pairs are permitted, can in many cases provide an accurate account of strong correlations, albeit at combinatorial computational cost. Recently, there has been significant interest in a method we refer to as pair coupled cluster doubles (pCCD), a variant of coupled cluster doubles in which the electrons are paired. This is simply because pCCD provides energies nearly identical to those of DOCI, but at mean-field computational cost (disregarding the cost of the two-electron integral transformation). Here, we introduce the more complete pair extended coupled cluster doubles (pECCD) approach which, like pCCD, has mean-field cost and reproduces DOCI energetically. We show that unlike pCCD, pECCD also reproduces the DOCI wave function with high accuracy. Moreover, pECCD yields sensible albeit inexact results even for attractive interactions where pCCD breaks down.

  10. The strong isospin-breaking correction for the gluonic penguin contribution to {epsilon}{prime}/{epsilon} at next-to-leading order in the chiral expansion

    SciTech Connect

    Wolfe, Carl E.; Maltman, Kim

    2001-01-01

    The strong isospin-breaking correction {Omega}{sub st}, which appears in estimates of the standard model value for the direct CP-violating ratio {epsilon}{prime}/{epsilon}, is evaluated to next-to-leading order (NLO) in the chiral expansion using chiral perturbation theory. The relevant linear combinations of the unknown NLO CP-odd weak low-energy constants (LEC's) which, in combination with one-loop and strong LEC contributions, are required for a complete determination at this order, are estimated using two different models. It is found that, to NLO, {Omega}{sub st}=0.08{+-}0.05, significantly reduced from the ''standard'' value, 0.25{+-}0.08, employed in recent analyses. The potentially significant numerical impact of this decrease on standard model predictions for {epsilon}{prime}/{epsilon}, associated with the decreased cancellation between gluonic penguin and electroweak penguin contributions, is also discussed.

  11. Isospin influence on the decay modes of compound nuclei produced in the 78, 86Kr + 40, 48Ca at 10 MeV/nucleon

    NASA Astrophysics Data System (ADS)

    Pirrone, S.; Politi, G.; Wieleczko, J. P.; Gnoffo, B.; De Filippo, E.; La Commara, M.; Russotto, P.; Trimarchi, M.; Vigilante, M.; Ademard, G.; Auditore, L.; Beck, C.; Bercenau, I.; Bonnet, E.; Borderie, B.; Cardella, G.; Chibihi, A.; Colonna, M.; D'Onofrio, A.; Frankland, J. D.; Lanzalone, G.; Lautesse, P.; Lebhertz, D.; Le Neidre, N.; Lombardo, I.; Mazurek, K.; Pagano, A.; Pagano, E. V.; Papa, M.; Piasecki, E.; Porto, F.; Quattrocchi, L.; Rizzo, F.; Spadaccini, G.; Trifirò, A.; Verde, G.

    2017-09-01

    The study of the decay modes competition of the compound systems produced in the collisions ^{78}{Kr} + ^{40}{Ca} and ^{86}{Kr} + ^{48}{Ca} at 10MeV/A is presented. In particular, the N / Z entrance channel influence on the decay paths of the compound systems, directly connected to the isospin influence, is investigated. The experiment was performed at the INFN Laboratori Nazionali del Sud (LNS) in Catania by using the 4 π multi-detector CHIMERA. Charge, mass, angular distributions and kinematical features of the reaction products were studied. The analysis shows some differences in the contribution arising from the various reaction mechanisms for the neutron-poor and neutron-rich systems.

  12. Spin-isospin responses of nuclei — Gamow-Teller response functions and pionic response functions in the quasi-elastic scattering region

    NASA Astrophysics Data System (ADS)

    Ichimura, Munetake

    2006-09-01

    Recent elaborate experiments of (p,n) and (n,p) reactions provide detailed information about spin-isospin responses of nuclei at two different energy-momentum regions. One is the Gamow-Teller (GT) response function at small energy and momentum transfers (ω,q), and the other is the pionic response functions in the quasi-elastic scattering (QES) region at relatively large q(≈1.7)fm. The measured GT strength distributions and isovector spin-longitudinal cross sections IDq in the QES region are analyzed in the same theoretical framework of the distorted wave impulse approximation with the continuum random phase approximation (CRPA) including the Δ-isobar degree of freedom. As the effective interactions for the CRPA, the π+ρ+g model interactions are utilized. The Landau-Migdal parameters gNN' and gNΔ', which specify the effective interactions, are determined for the two different (ω,q) regions.

  13. Precision Branching Ratio Measurement for the Superallowed {beta}{sup +} Emitter {sup 62}Ga and Isospin-Symmetry-Breaking Corrections in A{>=}62 Nuclei

    SciTech Connect

    Hyland, B.; Svensson, C. E.; Andreoiu, C.; Finlay, P.; Grinyer, G. F.; Phillips, A. A.; Schumaker, M. A.; Valiente-Dobon, J. J.; Ball, G. C.; Achtzehn, T.; Albers, D.; Bricault, P.; Churchman, R.; Dombsky, M.; Hackman, G.; Hanemaayer, V.; Lassen, J.; Morton, A. C.; Pearson, C. J.; Pearson, M. R.

    2006-09-08

    A high-precision branching ratio measurement for the superallowed {beta}{sup +} decay of {sup 62}Ga was performed at the Isotope Separator and Accelerator radioactive ion beam facility. Nineteen {gamma} rays emitted following {beta}{sup +} decay of {sup 62}Ga were identified, establishing the dominant superallowed branching ratio to be (99.861{+-}0.011)%. Combined with recent half-life and Q-value measurements, this branching ratio yields a superallowed ft value of 3075.6{+-}1.4 s for {sup 62}Ga decay. These results demonstrate the feasibility of high-precision superallowed branching ratio measurements in the A{>=}62 mass region and provide the first stringent tests of the large isospin-symmetry-breaking effects predicted for these decays.

  14. Study of isospin correlation in high energy S + Pb and Pb + Pb interactions with a magnetic-interferometric-emulsion-chamber. Final report

    SciTech Connect

    Takahashi, Yoshiyuki

    1997-12-12

    This report describes the research results of the study of high energy heavy-ion interactions and multi-cluster correlations at the University of Alabama in Huntsville (UAH). This study has been performed as the CERN experiments, EMU05, EMU09 and EMU16, and a part of the RHIC PHENIX and its MVD Collaboration work. Physics objectives and methods are described in chapters 1, 2, 3 and Appendices A1 and A2. The experimental set-up, measurements, an the data analyses at UAH are described in chapters 4 through 10 and Appendices. The UAH research was a quest for high density state of nuclear matter, in terms of finding analysis methods of multi-isospin correlations. The present work emphasized a study of the fluctuation of the particle density, discriminating the isospin for exploring the Disoriented Chiral Condensate (DCC). The analysis methods developed are: (1) Chi-square density test; (2) Run-test; (3) G-test; (4) Fourier analysis; and (5) Lomb`s Periodogram. The application of these methods for central collision events in 2,000 GeV/n S + Pb and 167 GeV/n Pb + Pb produced interesting DCC correlations for a few events. However, further investigation of fluctuations with Monte Carlo method guided them to understand various hidden degree of freedoms in such analyses. The results of the analysis of the experimental data in comparison with the Monte Carlo data did not support the DCC process as compelling. The developed methods evolved for a plan to investigate the DCC in the PHENIX. The study has obtained several mathematical analysis methods from the CERN EMU05/16 experiments for a possible use in RHIC experiments.

  15. Pair-Starved Pulsar Magnetospheres

    NASA Technical Reports Server (NTRS)

    Muslimov, Alex G.; Harding, Alice K.

    2009-01-01

    We propose a simple analytic model for the innermost (within the light cylinder of canonical radius, approx. c/Omega) structure of open-magnetic-field lines of a rotating neutron star (NS) with relativistic outflow of charged particles (electrons/positrons) and arbitrary angle between the NS spin and magnetic axes. We present the self-consistent solution of Maxwell's equations for the magnetic field and electric current in the pair-starved regime where the density of electron-positron plasma generated above the pulsar polar cap is not sufficient to completely screen the accelerating electric field and thus establish thee E . B = 0 condition above the pair-formation front up to the very high altitudes within the light cylinder. The proposed mode1 may provide a theoretical framework for developing the refined model of the global pair-starved pulsar magnetosphere.

  16. Genetic covariance between components of male reproductive success: within-pair vs. extra-pair paternity in song sparrows.

    PubMed

    Reid, J M; Arcese, P; Losdat, S

    2014-10-01

    The evolutionary trajectories of reproductive systems, including both male and female multiple mating and hence polygyny and polyandry, are expected to depend on the additive genetic variances and covariances in and among components of male reproductive success achieved through different reproductive tactics. However, genetic covariances among key components of male reproductive success have not been estimated in wild populations. We used comprehensive paternity data from socially monogamous but genetically polygynandrous song sparrows (Melospiza melodia) to estimate additive genetic variance and covariance in the total number of offspring a male sired per year outside his social pairings (i.e. his total extra-pair reproductive success achieved through multiple mating) and his liability to sire offspring produced by his socially paired female (i.e. his success in defending within-pair paternity). Both components of male fitness showed nonzero additive genetic variance, and the estimated genetic covariance was positive, implying that males with high additive genetic value for extra-pair reproduction also have high additive genetic propensity to sire their socially paired female's offspring. There was consequently no evidence of a genetic or phenotypic trade-off between male within-pair paternity success and extra-pair reproductive success. Such positive genetic covariance might be expected to facilitate ongoing evolution of polygyny and could also shape the ongoing evolution of polyandry through indirect selection. © 2014 The Authors. Journal of Evolutionary Biology published by John Wiley & Sons Ltd on behalf of European Society for Evolutionary Biology.

  17. Genetic covariance between components of male reproductive success: within-pair vs. extra-pair paternity in song sparrows

    PubMed Central

    Reid, J M; Arcese, P; Losdat, S

    2014-01-01

    The evolutionary trajectories of reproductive systems, including both male and female multiple mating and hence polygyny and polyandry, are expected to depend on the additive genetic variances and covariances in and among components of male reproductive success achieved through different reproductive tactics. However, genetic covariances among key components of male reproductive success have not been estimated in wild populations. We used comprehensive paternity data from socially monogamous but genetically polygynandrous song sparrows (Melospiza melodia) to estimate additive genetic variance and covariance in the total number of offspring a male sired per year outside his social pairings (i.e. his total extra-pair reproductive success achieved through multiple mating) and his liability to sire offspring produced by his socially paired female (i.e. his success in defending within-pair paternity). Both components of male fitness showed nonzero additive genetic variance, and the estimated genetic covariance was positive, implying that males with high additive genetic value for extra-pair reproduction also have high additive genetic propensity to sire their socially paired female's offspring. There was consequently no evidence of a genetic or phenotypic trade-off between male within-pair paternity success and extra-pair reproductive success. Such positive genetic covariance might be expected to facilitate ongoing evolution of polygyny and could also shape the ongoing evolution of polyandry through indirect selection. PMID:25186454

  18. Turbulent Inertial Particle Pair Diffusion

    NASA Astrophysics Data System (ADS)

    Usama, Syed; Malik, Nadeem

    2017-04-01

    Inertial particle pair diffusion has received much less attention than fluid particle pair diffusion, even though it is arguably more relevant to real world applications, such as sand storms, and pollen dispersion. Only the DNS work of Bec et al [1] has been reported. A non-local theory of fluid particle pair diffusion has recently been proposed [2,3]; but the question is, can non-locality be extended to inertial particle pair diffusion? Here, we investigate it using Kinematic Simulations [4,5], in the limit of Stokes' drag where the transport is given by, d{x}/dt={v}(t), \\qquad; d{v}/dt = -1/τ({v}(t)-{u}) {x}(t) is the particle position at time t, {v}(t) is the particle velocity, {u}({x},t) is the Eulerian velocity field generated by the KS model, τ is the particle response time. The Stokes number is, St=τ/t_η, where t_η is the Kolmogorov time scale, σ_l(t)=< l(t)^2>1/2, where l(t)=|{x}_1(t)-{x}_2(t)| is the distance between particles in a pair, in an ensemble of particle pairs released at time t=0 such that l(t=0) =l0 2/3. KS was used in a frame of reference moving with the (virtual) large scale sweeping velocities with spectrum, E(k)˜ k-5/3, for 1≤ k ≤10^4, and E(k)=0, for k

  19. Invisibly Sanitizable Signature without Pairings

    NASA Astrophysics Data System (ADS)

    Yum, Dae Hyun; Lee, Pil Joong

    Sanitizable signatures allow sanitizers to delete some pre-determined parts of a signed document without invalidating the signature. While ordinary sanitizable signatures allow verifiers to know how many subdocuments have been sanitized, invisibly sanitizable signatures do not leave any clue to the sanitized subdocuments; verifiers do not know whether or not sanitizing has been performed. Previous invisibly sanitizable signature scheme was constructed based on aggregate signature with pairings. In this article, we present the first invisibly sanitizable signature without using pairings. Our proposed scheme is secure under the RSA assumption.

  20. Pair counting, pion-exchange forces and the structure of light nuclei

    SciTech Connect

    Wiringa, R.B.

    2006-03-15

    A simple but useful guide for understanding the structure of light nuclei is presented. It is based on counting the number of interacting pairs in different spin-isospin (S,T) states for a given spatial symmetry and estimating the overall binding according to the sum of {sigma}{sub i}{center_dot}{sigma}{sub j}{tau}{sub i}{center_dot}{tau}{sub j} expectation values, as suggested by one-pion exchange. Applied to s- and p-shell nuclei, this simple picture accounts for the relative stability of nuclei as A increases and as T changes across isobars, the saturation of nuclear binding in the p shell, and the tendency to form d,t, or {alpha} subclusters there. With allowance for pairwise tensor and spin-orbit forces, which are also generated or boosted by pion exchange, the model explains why mixing of different spatial symmetries in ground states increases as T increases across isobars and why, for states of the same spatial symmetry, the ones with greater S are lower in the spectrum. The ordering of some sd-shell intruder levels can also be understood. The success of this simple model supports the idea that one-pion exchange is the dominant force controlling the structure of light nuclei.

  1. Momentum transfer dependence of generalized parton distributions

    NASA Astrophysics Data System (ADS)

    Sharma, Neetika

    2016-11-01

    We revisit the model for parametrization of the momentum dependence of nucleon generalized parton distributions in the light of recent MRST measurements of parton distribution functions (A.D. Martin et al., Eur. Phys. J. C 63, 189 (2009)). Our parametrization method with a minimum set of free parameters give a sufficiently good description of data for Dirac and Pauli electromagnetic form factors of proton and neutron at small and intermediate values of momentum transfer. We also calculate the GPDs for up- and down-quarks by decomposing the electromagnetic form factors for the nucleon using the charge and isospin symmetry and also study the evolution of GPDs to a higher scale. We further investigate the transverse charge densities for both the unpolarized and transversely polarized nucleon and compare our results with Kelly's distribution.

  2. Impingement of a Vortex Pair on a Wavy Wall

    NASA Astrophysics Data System (ADS)

    Morris, Sarah; Williamson, C. H. K.

    2016-11-01

    In this research we examine the impingement of a vortex pair onto a wavy wall. Isolated vortex pairs, not in ground effect, can become unstable to short-wave (Widnall, 1974) or long-wave instability (Crow, 1970). When a vortex pair approaches a ground plane, the boundary layer that forms on the surface separates, generating secondary vorticity and causing the primary pair to 'rebound'. When a vortex pair with the long-wave instability interacts with a flat boundary, the topology of the pair changes, resulting in rebounding vortical structures whose form is dependent on the extent of the instability prior to wall interaction (Asselin & Williamson, 2013, 2016). By using PIV and LIF to consider the "complementary" experiment, a straight vortex pair encountering a wavy wall (rather than a wavy pair impinging on a flat wall), certain critical features of the two flows are found to be similar. The 2D vortex pair first interacts with the "hills" of the boundary, triggering accelerated vorticity cancellation in this area compared to the corresponding "valley" regions. An axial pressure gradient forms between the two regions, giving rise to strong axial flow. This leads to the interaction of primary and secondary vortices in the valleys, wherein reconnection results in "rebounding" vortex rings, two per fundamental wavelength. The resulting flowfield forms distinctly different vortex structures than are classically found for 2D vortex pair wall impingement or for the long-wave instability out of ground effect. This work was supported by the Office of Naval Research Award No. N00014-12-421-0712, monitored by Dr. Ron Joslin.

  3. Pairing Linguistic and Music Intelligences

    ERIC Educational Resources Information Center

    DiEdwardo, MaryAnn Pasda

    2005-01-01

    This article describes how music in the language classroom setting can be a catalyst for developing reading, writing, and understanding skills. Studies suggest that pairing music and linguistic intelligences in the college classroom improves students' grades and abilities to compose theses statements for research papers in courses that emphasize…

  4. Missing energies at pair creation

    NASA Technical Reports Server (NTRS)

    El-Ela, A. A.; Hassan, S.; Bagge, E. R.

    1985-01-01

    Wilson cloud chamber measurements of the separated spectra of positrons and electrons produced by gamma quanta of 6.14 MeV differ considerably from the theoretically predicted spectra by BETHE and HEITLER, but are in good agreement with those of a modified theory of pair creation.

  5. Pick a Pair. Being Bony

    ERIC Educational Resources Information Center

    Miller, Pat

    2004-01-01

    This column suggests pairings of fiction and nonfiction books to meet curricular needs and help students to compare/contrast the texts as they may be asked on state tests. The author of this paper focuses on activities surrounding Halloween. Since many schools are discouraged from teaching about Halloween, this can be a great time to investigate…

  6. Pairing Linguistic and Music Intelligences

    ERIC Educational Resources Information Center

    DiEdwardo, MaryAnn Pasda

    2005-01-01

    This article describes how music in the language classroom setting can be a catalyst for developing reading, writing, and understanding skills. Studies suggest that pairing music and linguistic intelligences in the college classroom improves students' grades and abilities to compose theses statements for research papers in courses that emphasize…

  7. Pick a Pair. Being Bony

    ERIC Educational Resources Information Center

    Miller, Pat

    2004-01-01

    This column suggests pairings of fiction and nonfiction books to meet curricular needs and help students to compare/contrast the texts as they may be asked on state tests. The author of this paper focuses on activities surrounding Halloween. Since many schools are discouraged from teaching about Halloween, this can be a great time to investigate…

  8. Matched pair conical spiral antennas

    NASA Technical Reports Server (NTRS)

    Metzler, R. E.

    1972-01-01

    A matched pair of VHF (220-260 MHz) conical spiral antennas for use in a rocket-tracking interferometer array was designed and tested. While gain, bandwidth, impedance, and pattern measurements met specifications, the phase match between antennas at low elevations was not equal to the design goal.

  9. Quantum and semiclassical Cooper-pair tunneling in finite systems

    NASA Astrophysics Data System (ADS)

    Kleber, M.

    2016-12-01

    We derive analytic solutions for the tunneling dynamics of two weakly coupled finite BCS-condensates. Pairing interaction between the finite-size condensates is taken into account. Using particle-number dependent chemical potentials the time-dependent transfer of Cooper pairs is obtained from a phenomenological calculation. The results of this theory are compared to a microscopic calculation within the quasispin formulation in its semiclassical limit. In both cases the tunneling current can be mapped onto the motion of a simple pendulum: The results are analogous to the Josephson current between two superconductors and can be used as a starting point to include quantum fluctuations and Josephson radiation.

  10. Competing pairing channels in the doped honeycomb lattice Hubbard model

    NASA Astrophysics Data System (ADS)

    Xu, Xiao Yan; Wessel, Stefan; Meng, Zi Yang

    2016-09-01

    Proposals for superconductivity emerging from correlated electrons in the doped Hubbard model on the honeycomb lattice range from chiral d +i d singlet to p +i p triplet pairing, depending on the considered range of doping and interaction strength, as well as the approach used to analyze the pairing instabilities. Here, we consider these scenarios using large-scale dynamic cluster approximation (DCA) calculations to examine the evolution in the leading pairing symmetry from weak to intermediate coupling strength. These calculations focus on doping levels around the van Hove singularity (VHS) and are performed using DCA simulations with an interaction-expansion continuous-time quantum Monte Carlo cluster solver. We calculated explicitly the temperature dependence of different uniform superconducting pairing susceptibilities and found a consistent picture emerging upon gradually increasing the cluster size: while at weak coupling the d +i d singlet pairing dominates close to the VHS filling, an enhanced tendency towards p -wave triplet pairing upon further increasing the interaction strength is observed. The relevance of these systematic results for existing proposals and ongoing pursuits of odd-parity topological superconductivity are also discussed.

  11. Floquet theory of radical pairs in radiofrequency magnetic fields

    NASA Astrophysics Data System (ADS)

    Hiscock, Hamish G.; Kattnig, Daniel R.; Manolopoulos, David E.; Hore, P. J.

    2016-09-01

    We present a new method for calculating the product yield of a radical pair recombination reaction in the presence of a weak time-dependent magnetic field. This method successfully circumvents the computational difficulties presented by a direct solution of the Liouville-von Neumann equation for a long-lived radical pair containing many hyperfine-coupled nuclear spins. Using a modified formulation of Floquet theory, treating the time-dependent magnetic field as a perturbation, and exploiting the slow radical pair recombination, we show that one can obtain a good approximation to the product yield by considering only nearly degenerate sub-spaces of the Floquet space. Within a significant parameter range, the resulting method is found to give product yields in good agreement with exact quantum mechanical results for a variety of simple model radical pairs. Moreover it is considerably more efficient than the exact calculation, and it can be applied to radical pairs containing significantly more nuclear spins. This promises to open the door to realistic theoretical investigations of the effect of radiofrequency electromagnetic radiation on the photochemically induced radical pair recombination reactions in the avian retina which are believed to be responsible for the magnetic compass sense of migratory birds.

  12. Time Dependent Nuclear Scattering Calculations

    NASA Astrophysics Data System (ADS)

    Weeks, David

    2005-04-01

    A new time dependent method for calculating scattering matrix elements of two and three body nuclear collisions below 50 Mev is being developed. The procedure closely follows the channel packet method (CPM) used to compute scattering matrix elements for non-adiabatic molecular reactions.ootnotetextT.A.Niday and D.E.Weeks, Chem. Phys. Letters 308 (1999) 106 Currently, one degree of freedom calculations using a simple square well have been completed and a two body scattering calculation using the Yukawa potential is anticipated. To perform nuclear scattering calculations with the CPM that will incorporate the nucleon-nucleon tensor force, we plan to position initial reactant and product channel packets in the asymptotic limit on single coupled potential energy surfaces labeled by the spin, isospin, and total angular momentum of the reactant nucleons. The wave packets will propagated numerically using the split operator method augmented by a coordinate dependant unitary transformation used to diagonalize the potential. Scattering matrix elements will be determined by the Fourier transform of the correlation function between the evolving reactant and product wave packets. A brief outline of the Argonne v18 nucleon-nucleon potentialootnotetextR.B.Wiringa, V.G.J.Stoks, and R.Schiavilla, Physical Review C 51(1995) 38 and the proposed wave packet calculations will be presented.

  13. Bosonic pair creation and the Schiff-Snyder-Weinberg effect

    NASA Astrophysics Data System (ADS)

    Lv, Q. Z.; Bauke, Heiko; Su, Q.; Keitel, C. H.; Grobe, R.

    2016-01-01

    Interactions between different bound states in bosonic systems can lead to pair creation. We study this process in detail by solving the Klein-Gordon equation on space-time grids in the framework of time-dependent quantum field theory. By choosing specific external field configurations, two bound states can become pseudodegenerate, which is commonly referred to as the Schiff-Snyder-Weinberg effect. These pseudodegenerate bound states, which have complex energy eigenvalues, are related to the pseudo-Hermiticity of the Klein-Gordon Hamiltonian. In this work, the influence of the Schiff-Snyder-Weinberg effect on pair production is studied. A generalized Schiff-Snyder-Weinberg effect, where several pairs of pseudodegenerate states appear, is found in combined electric and magnetic fields. The generalized Schiff-Snyder-Weinberg effect likewise triggers pair creation. The particle number in these situations obeys an exponential growth law in time enhancing the creation of bosons, which cannot be found in fermionic systems.

  14. Topology optimization of compliant mechanisms using pairs of curves

    NASA Astrophysics Data System (ADS)

    Wang, N. F.; Zhang, X. M.

    2015-11-01

    The structural topology optimization approach can be used to generate compliant mechanisms for some desired input-output requirements. The success of the optimization depends on the structural geometry representation scheme used. In this paper, a novel representation scheme is proposed. The representation scheme is characterized by pairs of curves that are used to connect Input/Ouput (I/O) regions of the structure. Each pair of curves includes a normal curve and a fat curve. The areas bounded by the pair of curves define the material distribution between them. All I/O regions are connected to one another (either directly or indirectly) by pairs of curves in order to form one single connected load-bearing structure. A genetic algorithm for constrained and multiobjective optimization is then applied with the representation scheme of the structure in the form of a graph. Simulation results from a displacement inverter and a displacement redirector indicate that the presented representation scheme is appropriate.

  15. Macroscopic Einstein-Podolsky-Rosen pairs in superconducting circuits

    SciTech Connect

    Wei, L. F.; Liu Yuxi; Storcz, Markus J.; Nori, Franco

    2006-05-15

    We propose an efficient approach to prepare Einstein-Podolsky-Rosen (EPR) pairs in currently existing Josephson nanocircuits with capacitive couplings. In these fixed coupling circuits, two-qubit logic gates could be easily implemented while, strictly speaking, single-qubit gates cannot be easily realized. For a known two-qubit state, conditional single-qubit operation could still be designed to evolve only the selected qubit and keep the other qubit unchanged; the rotation of the selected qubit depends on the state of the other one. These conditional single-qubit operations allow us to deterministically generate the well-known Einstein-Podolsky-Rosen pairs, represented by EPR-Bell (or Bell) states. Quantum-state tomography is further proposed to experimentally confirm the generation of these states. The decays of the prepared EPR pairs are analyzed using numerical simulations. Possible application of the generated EPR pairs to test Bell's Inequality is also discussed.

  16. Pairing gap in the inner crust of neutron stars

    SciTech Connect

    Esbensen, H.; Broglia, R.A.; Vigezzi, E.; Barranco, F.

    1995-08-01

    The pairing gap in the inner crust of a neutron star can be strongly affected by the presence of heavy nuclei. The effect is commonly estimated in a semiclassical description, using the local density approximation. It was found that the nuclear specific heat can become comparable to the electronic specific heat at certain densities and temperatures. The quantitative result depends critically upon the magnitude of the pairing gap. We therefore decided to assess the validity of the semiclassical approach. This is done by solving the quantal BCS pairing gap equation for neutrons that are confined to the Wigner-Seitz cell that surrounds a heavy nucleus. We performed calculations that are based on the Gogny pairing force. They are feasible for realistic densities of neutrons and heavy nuclei that are expected to be found in the inner crust of neutron stars. The results will be compared to the semiclassical predictions. This work is in progress.

  17. Squark pair production in the MSSM with explicit CP violation

    SciTech Connect

    Alan, Ahmet T.; Cankocak, Kerem; Demir, Durmus A.

    2007-05-01

    We analyze effects of the CP-odd soft phases in the MSSM on the pair productions of colored superpartners in pp collisions at the LHC energies. We find that, among all pair-production processes, those of the scalar quarks in the first and second generations are particularly sensitive to the CP-odd phases, more precisely, to the phases of the gluinos and neutralinos. We compute pair-production cross sections, classify various production modes according to their dependencies on the gluino and neutralino phases, perform a detailed numerical analysis to determine individual as well as total cross sections, and give a detailed discussion of 2. electric dipole moment (EDM) bounds. We find that pair productions of first and second generation squarks serve as a viable probe of the CP violation sources in the gaugino sector of the theory even if experiments cannot determine chirality, flavor and electric charge of the squarks produced.

  18. Pairing mechanism in the ferromagnetic superconductor UCoGe

    PubMed Central

    Wu, Beilun; Bastien, Gaël; Taupin, Mathieu; Paulsen, Carley; Howald, Ludovic; Aoki, Dai; Brison, Jean-Pascal

    2017-01-01

    Superconductivity is a unique manifestation of quantum mechanics on a macroscopic scale, and one of the rare examples of many-body phenomena that can be explained by predictive, quantitative theories. The superconducting ground state is described as a condensate of Cooper pairs, and a major challenge has been to understand which mechanisms could lead to a bound state between two electrons, despite the large Coulomb repulsion. An even bigger challenge is to identify experimentally this pairing mechanism, notably in unconventional superconductors dominated by strong electronic correlations, like in high-Tc cuprates, iron pnictides or heavy-fermion compounds. Here we show that in the ferromagnetic superconductor UCoGe, the field dependence of the pairing strength influences dramatically its macroscopic properties like the superconducting upper critical field, in a way that can be quantitatively understood. This provides a simple demonstration of the dominant role of ferromagnetic spin fluctuations in the pairing mechanism. PMID:28230099

  19. Sensitivity of Electron Transfer Mediated Decay to Ion Pairing.

    PubMed

    Pohl, Marvin N; Richter, Clemens; Lugovoy, Evgeny; Seidel, Robert; Slavíček, Petr; Aziz, Emad F; Abel, Bernd; Winter, Bernd; Hergenhahn, Uwe

    2017-08-17

    Ion pairing in electrolyte solutions remains a topic of discussion despite a long history of research. Very recently, nearest-neighbor mediated electronic de-excitation processes of core hole vacancies (electron transfer mediated decay, ETMD) were proposed to carry a spectral fingerprint of local solvation structure and in particular of contact ion pairs. Here, for the first time, we apply electron-electron coincidence detection to a liquid microjet, and record ETMD spectra of Li 1s vacancies in aqueous solutions of lithium chloride (LiCl) in direct comparison to lithium acetate (LiOAc). A change in the ETMD spectrum dependent on the electrolyte anion identity is observed for 4.5 M salt concentration. We discuss these findings within the framework of the formation and presence of contact ion pairs and the unique sensitivity of ETMD spectroscopy to ion pairing.

  20. Odd-paired controls frequency doubling in Drosophila segmentation by altering the pair-rule gene regulatory network

    PubMed Central

    Clark, Erik; Akam, Michael

    2016-01-01

    The Drosophila embryo transiently exhibits a double-segment periodicity, defined by the expression of seven 'pair-rule' genes, each in a pattern of seven stripes. At gastrulation, interactions between the pair-rule genes lead to frequency doubling and the patterning of 14 parasegment boundaries. In contrast to earlier stages of Drosophila anteroposterior patterning, this transition is not well understood. By carefully analysing the spatiotemporal dynamics of pair-rule gene expression, we demonstrate that frequency-doubling is precipitated by multiple coordinated changes to the network of regulatory interactions between the pair-rule genes. We identify the broadly expressed but temporally patterned transcription factor, Odd-paired (Opa/Zic), as the cause of these changes, and show that the patterning of the even-numbered parasegment boundaries relies on Opa-dependent regulatory interactions. Our findings indicate that the pair-rule gene regulatory network has a temporally modulated topology, permitting the pair-rule genes to play stage-specific patterning roles. DOI: http://dx.doi.org/10.7554/eLife.18215.001 PMID:27525481