Science.gov

Sample records for isospin dependent pairing

  1. Isospin-dependent pairing interaction from nuclear matter calculations

    SciTech Connect

    Zhang, S. S.; Cao, L. G.; Lombardo, U.; Zhao, E. G.; Zhou, S. G.

    2010-04-15

    The isospin dependence of the effective pairing interaction is discussed on the basis of the Bardeen, Cooper, and Schrieffer theory of superfluid asymmetric nuclear matter. It is shown that the energy gap, calculated within the mean field approximation in the range from symmetric nuclear matter to pure neutron matter, is not linearly dependent on the symmetry parameter owing to the nonlinear structure of the gap equation. Moreover, the construction of a zero-range effective pairing interaction compatible with the neutron and proton gaps in homogeneous matter is investigated, along with some recent proposals of isospin dependence tested on the nuclear data table.

  2. Isospin Dependent Pairing Interactions and BCS-BEC crossover

    SciTech Connect

    Sagawa, H.; Margueron, J.; Hagino, K.

    2008-11-11

    We propose new types of density dependent contact pairing interaction which reproduce the pairing gaps in symmetric and neutron matters obtained by a microscopic treatment based on the realistic nucleon-nucleon interaction. The BCS-BEC crossover of neutrons pairs in symmetric and asymmetric nuclear matters is studied by using these contact interactions. It is shown that the bare and screened pairing interactions lead to different features of the BCS-BEC crossover in symmetric nuclear matter. We perform Hartree-Fock-Bogoliubov (HFB) calculations for semi-magic Calcium, Nickel, Tin and Lead isotopes and N = 20, 28, 50 and 82 isotones using these density-dependent pairing interactions. Our calculations well account for the experimental data for the neutron number dependence of binding energy, two neutrons separation energy, and odd-even mass staggering of these isotopes. Especially the interaction IS+IV Bare without the medium polarization effect gives satisfactory results for all the isotopes.

  3. Pionic pair condensation in finite isospin chemical potential

    SciTech Connect

    Matsuzaki, Masayuki

    2010-05-12

    We study the character change of the pionic condensation at finite isospin chemical potential mu{sub I} by adopting the linear sigma model as a non-local interaction between quarks. At low |mu{sub I}| the condensation is purely bosonic, then the Cooper pairing around the Fermi surface grows gradually as |mu{sub I}| increases.

  4. The influence of pairing correlations on the isospin symmetry breaking corrections of superallowed Fermi beta decays

    SciTech Connect

    Cal Latin-Small-Letter-Dotless-I k, A. E.; Gerceklioglu, M.; Selam, C.

    2013-05-15

    Within the framework of quasi-particle random phase approximation, the isospin breaking correction of superallowed 0{sup +} {yields} 0{sup +} beta decay and unitarity of Cabibbo-Kobayashi-Maskawa mixing matrix have been investigated. The broken isotopic symmetry of nuclear part of Hamiltonian has been restored by Pyatov's method. The isospin symmetry breaking correction with pairing correlations has been compared with the previous results without pairing. The effect of pairing interactions has been examined for nine superallowed Fermi beta decays; their parent nuclei are {sup 26}Al, {sup 34}Cl, {sup 38}K, {sup 42}Sc, {sup 46}V, {sup 50}Mn, {sup 54}Co, {sup 62}Ga, {sup 74}Rb.

  5. BCS-BEC crossover and thermodynamics in asymmetric nuclear matter with pairings in isospin I=0 and I=1 channels

    SciTech Connect

    Mao Shijun; Zhuang Pengfei; Huang Xuguang

    2009-03-15

    The Bardeen/Cooper/Schrieffer-Bose-Einstein condensation (BCS-BEC) crossover and phase diagram for asymmetric nuclear superfluid with pairings in isospin I=0 and I=1 channels are investigated at the mean-field level by using a density-dependent nucleon-nucleon potential. Induced by the in-medium nucleon mass and density-dependent coupling constants, neutron-proton Cooper pairs could be in BEC state at sufficiently low density, but there is no chance for the BEC formation of neutron-neutron and proton-proton pairs at any density and asymmetry. We calculate the phase diagram in asymmetry-temperature plane for weakly interacting nuclear superfluid and find that including the I=1 channel changes significantly the phase structure at low temperature. There appears a new phase with both I=0 and I=1 pairings at low temperature and low asymmetry, and the gapless state in any phase with I=1 pairing is washed out and all excited nucleons are fully gapped.

  6. Isospin effects on the mass dependence of the balance energy

    SciTech Connect

    Gautam, Sakshi; Sood, Aman D.

    2010-07-15

    We study the effect of isospin degree of freedom on balance energy throughout the mass range between 50 and 350 for two sets of isotopic systems with N/A= 0.54 and 0.57 as well as isobaric systems with N/A= 0.5 and 0.58. Our findings indicate that different values of balance energy for two isobaric systems may be mainly due to the Coulomb repulsion. We also demonstrate clearly the dominance of Coulomb repulsion over symmetry energy.

  7. Coherent Contributions to Isospin Mixing in the Mirror Pair {sup 67}As and {sup 67}Se

    SciTech Connect

    Orlandi, R.; Angelis, G. de; Gadea, A.; Della Vedova, F.; Napoli, D. R.; Recchia, F.; Sahin, E.; Valiente-Dobon, J. J.; Bizzeti, P. G.; Bizzeti-Sona, A. M.; Lunardi, S.; Brandolini, F.; Farnea, E.; Lenzi, S. M.; Marginean, N.; Mengoni, D.; Ur, C. A.; Bracco, A.; Leoni, S.; Carpenter, M. P.

    2009-07-31

    Isospin symmetry breaking has been investigated in mass A=67 mirror nuclei through the experimental determination of the E1 strengths of analog electromagnetic transitions. Lifetimes of excited states have been measured in {sup 67}Se and {sup 67}As with the centroid shift method. Through the comparison of the B(E1) strengths of the mirror 9/2{sup +}->7/2{sup -} transitions, the isovector and the isoscalar components of the electromagnetic transition amplitude were extracted. The presence of a large isoscalar component provides evidence for coherent contributions to isospin mixing, probably involving the isovector giant monopole resonance.

  8. Valley-isospin dependence of the quantum Hall effect in a graphene p-n junction

    NASA Astrophysics Data System (ADS)

    Tworzydło, J.; Snyman, I.; Akhmerov, A. R.; Beenakker, C. W. J.

    2007-07-01

    We calculate the conductance G of a bipolar junction in a graphene nanoribbon, in the high-magnetic-field regime where the Hall conductance in the p -doped and n -doped regions is 2e2/h . In the absence of intervalley scattering, the result G=(e2/h)(1-cosΦ) depends only on the angle Φ between the valley isospins ( =Bloch vectors representing the spinor of the valley polarization) at the two opposite edges. This plateau in the conductance versus Fermi energy is insensitive to electrostatic disorder, while it is destabilized by the dispersionless edge state which may exist at a zigzag boundary. A strain-induced vector potential shifts the conductance plateau up or down by rotating the valley isospin.

  9. Quark Magnetar in Confined Isospin- and Density-dependent Mass Model

    NASA Astrophysics Data System (ADS)

    Chu, P. C.; Chen, L. W.; Wang, X.

    2015-11-01

    Within confined isospin- and density-dependent mass model, we study the equation of state(EOS) for the strange quark matter (SQM) and quark stars (QSs) under density-dependent magneticfields. The EOS of SQM is obtained self-consistently under a strong magnetic field, and thetransverse pressure which is perpendicular to the magnetic field is proved to be larger than thelongitudinal pressure that is parallel to the magnetic field. Our results indicate that the maximummass of quark magnetars can significantly increase (decrease) when the transverse (radial) magneticfield orientation is considered.

  10. Quark matter at high density based on an extended confined isospin-density-dependent mass model

    NASA Astrophysics Data System (ADS)

    Qauli, A. I.; Sulaksono, A.

    2016-01-01

    We investigate the effect of the inclusion of relativistic Coulomb terms in a confined-isospin-density-dependent-mass (CIDDM) model of strange quark matter (SQM). We found that if we include the Coulomb term in scalar density form, the SQM equation of state (EOS) at high densities is stiffer but if we include the Coulomb term in vector density form it is softer than that of the standard CIDDM model. We also investigate systematically the role of each term of the extended CIDDM model. Compared with what was reported by Chu and Chen [Astrophys. J. 780, 135 (2014)], we found the stiffness of SQM EOS is controlled by the interplay among the oscillator harmonic, isospin asymmetry and Coulomb contributions depending on the parameter's range of these terms. We have found that the absolute stable condition of SQM and the mass of 2 M⊙ pulsars can constrain the parameter of oscillator harmonic κ1≈0.53 in the case the Coulomb term is excluded. If the Coulomb term is included, for the models with their parameters are consistent with SQM absolute stability condition, the 2.0 M⊙ constraint more prefers the maximum mass prediction of the model with the scalar Coulomb term than that of the model with the vector Coulomb term. On the contrary, the high densities EOS predicted by the model with the vector Coulomb is more compatible with the recent perturbative quantum chromodynamics result [1] than that predicted by the model with the scalar Coulomb. Furthermore, we also observed the quark composition in a very high density region depends quite sensitively on the kind of Coulomb term used.

  11. Isospin Dependence of Incomplete Fusion Reactions at 25 MeV/Nucleon

    SciTech Connect

    Amorini, F.; Agodi, C.; Alba, R.; Anzalone, A.; Coniglione, R.; Di Pietro, A.; Figuera, P.; Maiolino, C.; Santonocito, D.; Sapienza, P.; Cardella, G.; Papa, M.; De Filippo, E.; Pagano, A.; Pirrone, S.; Verde, G.; Giuliani, G.; Berceanu, I.; Pop, A.; Cavallaro, S.

    2009-03-20

    {sup 40}Ca+{sup 40,48}Ca,{sup 46}Ti reactions at 25 MeV/nucleon have been studied using the 4{pi} CHIMERA detector. An isospin effect on the competition between fusionlike and binarylike reaction mechanisms has been observed. The probability of producing a heavy residue is lower in the case of N{approx_equal}Z colliding systems as compared to the case of reactions induced on the neutron rich {sup 48}Ca target. Predictions based on constrained molecular dynamics II calculations show that the competition between fusionlike and binary reactions in the selected centrality bins can constrain the parametrization of the symmetry energy and its density dependence in the nuclear equation of state.

  12. Slowly rotating superfluid neutron stars with isospin dependent entrainment in a two-fluid model

    NASA Astrophysics Data System (ADS)

    Kheto, Apurba; Bandyopadhyay, Debades

    2015-02-01

    We investigate the slowly rotating general relativistic superfluid neutron stars including the entrainment effect in a two-fluid model, where one fluid represents the superfluid neutrons and the other is the charge-neutral fluid, called the proton fluid, made of protons and electrons. The equation of state and the entrainment effect between the superfluid neutrons and the proton fluid are computed using a relativistic mean field (RMF) model where baryon-baryon interaction is mediated by the exchange of σ , ω , and ρ mesons, and scalar self-interactions are also included. The equations governing rotating neutron stars in the slow rotation approximation are second order in rotational velocities of neutron and proton fluids. We explore the effects of the isospin dependent entrainment and the relative rotation between two fluids on the global properties of rotating superfluid neutron stars such as mass, shape, and the mass-shedding (Kepler) limit within the RMF model with different parameter sets. It is observed that for the global properties of rotating superfluid neutron stars in particular, the Kepler limit is modified compared with the case that does not include the contribution of ρ mesons in the entrainment effect.

  13. Single-proton resonant states and the isospin dependence investigated by Green’s function relativistic mean field theory

    NASA Astrophysics Data System (ADS)

    Sun, T. T.; Niu, Z. M.; Zhang, S. Q.

    2016-08-01

    The relativistic mean field theory formulated with Green’s function method (RMF-GF) is applied to investigate single-proton resonant states and isospin dependence. The calculated energies and widths for the single-proton resonant states in {}120{{Sn}} are in good agreement with previous investigations. The single-proton resonant states of the Sn isotopes and the N = 82 isotones are systematically studied and it is shown that the calculated energies and widths decrease monotonically with the increase of neutron number while increase monotonically with the increase of proton number. To further examine the evolutions of the single-proton resonant states, their dependence on the depth, radius and diffuseness of nuclear potential is investigated with the help of an analytic Woods-Saxon potential, and it is found that the increase of radius plays the most important role in the cross phenomenon appearing in the single-proton resonant states of the Sn isotopes.

  14. Global analysis of isospin dependent microscopic nucleon-nucleus optical potentials in a Dirac-Brueckner-Hartree-Fock approach

    NASA Astrophysics Data System (ADS)

    Xu, Ruirui; Ma, Zhongyu; Zhang, Yue; Tian, Yuan; van Dalen, E. N. E.; Müther, H.

    2016-09-01

    Background: For the study of exotic nuclei it is important to have an optical model potential that is reliable not only for stable nuclei but can also be extrapolated to nuclear systems with exotic numbers of protons and neutrons. An efficient way to obtain such a potential is to develop a microscopic optical potential (MOP) based on a fundamental theory with a minimal number of free parameters, which are adjusted to describe stable nuclei all over the nuclide chart. Purpose: The choice adopted in the present work is to develop the MOP within a relativistic scheme which provides a natural and consistent relation between the spin-orbit part and the central part of the potential. The Dirac-Brueckner-Hartree-Fock (DBHF) approach provides such a microscopic relativistic scheme, which is based on a realistic nucleon-nucleon interaction and reproduces the saturation properties of symmetric nuclear matter without any adjustable parameter. Its solution using the projection technique within the subtracted T -matrix representation provides a reliable extension to asymmetric nuclear matter, which is important to describe the features of isospin asymmetric nuclei. The present work performs a global analysis of the isospin dependent nucleon-nucleus MOP based on the DBHF calculation in symmetric and asymmetric nuclear matter. Methods: The DBHF approach is used to evaluate the relativistic structure of the nucleon self-energies in nuclear matter at various densities and asymmetries. The Schrödinger equivalent potentials of finite nuclei are derived from these Dirac components by a local density approximation (LDA). The density distributions of finite nuclei are taken from the Hartree-Fock-Bogoliubov approach with Gogny D1S force. An improved LDA approach (ILDA) is employed to get a better prediction of the scattering observables. A χ2 assessment system based on the global simulated annealing algorithm is developed to optimize the very few free components in this study. Results

  15. Neutron-proton effective mass splitting in neutron-rich matter at normal density from analyzing nucleon-nucleus scattering data within an isospin dependent optical model

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Hua; Guo, Wen-Jun; Li, Bao-An; Chen, Lie-Wen; Fattoyev, Farrukh J.; Newton, William G.

    2015-04-01

    The neutron-proton effective mass splitting in asymmetric nucleonic matter of isospin asymmetry δ and normal density is found to be mn-p* ≡ (mn* - mp*) / m = (0.41 ± 0.15) δ from analyzing globally 1088 sets of reaction and angular differential cross sections of proton elastic scattering on 130 targets with beam energies from 0.783 MeV to 200 MeV, and 1161 sets of data of neutron elastic scattering on 104 targets with beam energies from 0.05 MeV to 200 MeV within an isospin dependent non-relativistic optical potential model. It sets a useful reference for testing model predictions on the momentum dependence of the nucleon isovector potential necessary for understanding novel structures and reactions of rare isotopes.

  16. Isospin Dependence in the Odd-Even Staggering of Nuclear Binding Energies

    SciTech Connect

    Litvinov, Yu.A.; Geissel, H.; Buervenich, T.J.; Novikov, Yu.N.; Patyk, Z.; Scheidenberger, C.; Attallah, F.; Beckert, K.; Bosch, F.; Franzke, B.; Klepper, O.; Kluge, H.-J.; Kozhuharov, C.; Muenzenberg, G.; Nolden, F.; Radon, T.; Steck, M.; Typel, S.; Audi, G.; Falch, M.

    2005-07-22

    The FRS-ESR facility at GSI provides unique conditions for precision measurements of large areas on the nuclear mass surface in a single experiment. Values for masses of 604 neutron-deficient nuclides (30{<=}Z{<=}92) were obtained with a typical uncertainty of 30 {mu}u. The masses of 114 nuclides were determined for the first time. The odd-even staggering (OES) of nuclear masses was systematically investigated for isotopic chains between the proton shell closures at Z=50 and Z=82. The results were compared with predictions of modern nuclear models. The comparison revealed that the measured trend of OES is not reproduced by the theories fitted to masses only. The spectral pairing gaps extracted from models adjusted to both masses, and density related observables of nuclei agree better with the experimental data.

  17. Isospin effects and the density dependence of the nuclear symmetry energy

    SciTech Connect

    Souza, S. R.; Tsang, M. B.; Lynch, W. G.; Steiner, A. W.; Carlson, B. V.; Donangelo, R.

    2009-10-15

    The density dependence of the nuclear symmetry energy is inspected using the statistical multifragmentation model with Skyrme effective interactions. The model consistently considers the expansion of the fragments' volumes at finite temperature at the freeze-out stage. By selecting parametrizations of the Skyrme force that lead to very different equations of state for the symmetry energy, we investigate the sensitivity of the isoscaling parameter and the isotopic distributions to differences in the symmetry energy. Our results suggest that, in spite of being sensitive to the thermal dilation of the fragments' volumes, it is difficult to distinguish among the Skyrme forces from the isoscaling analysis. On the other hand, the isotopic distribution of the emitted fragments turns out to be very sensitive to the force employed in the calculation.

  18. Spin and Isospin Dependent Interactions in Classical Molecular Simulations of Dense Nuclear Matter

    NASA Astrophysics Data System (ADS)

    Amason, Charlee; Caplan, Matt; Horowitz, Cj

    2015-10-01

    A neutron star is the hot, incredibly dense remnant of a massive star gone supernova. Extreme conditions on neutron stars allow for the formation of exotically shaped nuclear matter, known colloquially as ``nuclear pasta.'' Competition between the strong nuclear force and the repulsive Coulomb force results in frustration of the neutron star crust, ultimately resulting in these pasta shapes. Previous work at Indiana University has used classical molecular dynamic simulations to model the formation of this pasta. For this project, we introduce a similar model with a new spin dependent interaction. Using this model, we perform molecular dynamics simulations of both symmetric nuclear matter and pure neutron matter with 400 particles. The energies found are similar to those in chiral effective field theory calculations. When we include Coulomb interactions, the model produces pasta shapes. Future work will incorporate this spin potential into larger pasta simulations. Supported by the National Science Foundation REU at Indiana University.

  19. Antiproton-nucleus inelastic scattering and the spin-isospin dependence of the N anti N interaction

    SciTech Connect

    Dover, C.B.

    1985-01-01

    A general overview of the utility of antinucleon (anti N)-nucleus inelastic scattering studies is presented, emphasizing both the sensitivity of the cross sections to various components of the N anti N transition amplitudes and the prospects for the exploration of some novel aspects of nuclear structure. We start with an examination of the relation between NN and N anti N potentials, focusing on the coherences predicted for the central, spin-orbit and tensor components, and how these may be revealed by measurements of two-body spin observables. We next discuss the role of the nucleus as a spin and isospin filter, and show how, by a judicious choice of final state quantum numbers (natural or unnatural parity states, isospin transfer ..delta..T=0 or 1) and momentum transfer q, one can isolate different components of the N anti N transition amplitude. Various models for the N anti N interaction which give reasonable fits to the available two-body data are shown to lead to strikingly different predictions for certain spin-flip nuclear transitions. We suggest several possible directions for future anti N-nucleus inelastic scattering experiments at LEAR, for instance the study of spin observables which would be accessible with polarized anti N beams, charge exchange reactions, and higher resolution studies of the (anti p, anti p') reaction. We compare the antinucleon and the nucleon as a probe of nuclear modes of excitation. 34 refs.

  20. Isospinning baby Skyrmion solutions

    NASA Astrophysics Data System (ADS)

    Battye, Richard A.; Haberichter, Mareike

    2013-12-01

    We perform full two-dimensional (2D) numerical relaxations of isospinning soliton solutions in the baby Skyrme model in which the global O(3) symmetry is broken by the 2D analogue of the pion mass term in the Skyrme model. In our calculations we explicitly allow the isospinning solitons to deform and to break the symmetries of the static configurations. We find that stable isospinning baby Skyrme solutions can be constructed numerically for all angular frequencies ω≤min⁡(μ,1), where μ is the mass parameter of the model. Stable, rotationally symmetric baby Skyrmion solutions for higher angular velocities are simply an artefact of the hedgehog approximation. Isospinning multisoliton solutions of topological charge B turn out to be unstable to break up into their B charge-1 constituents at some critical breakup frequency value. Furthermore, we find that for μ sufficiently large the rotational symmetry of charge-2 baby Skyrmions becomes broken at a critical angular frequency ω.

  1. Exotic paired phases in ladders with spin-dependent hopping

    SciTech Connect

    Feiguin, Adrian E.; Fisher, Matthew P. A.

    2011-03-15

    Fermions in two dimensions, when subject to anisotropic spin-dependent hopping, can potentially give rise to unusual paired states in unpolarized mixtures that can behave as non-Fermi liquids. One possibility is a fully paired state with a gap for fermion excitations in which the Cooper pairs remain uncondensed. Such a ''Cooper-pair Bose-metal'' phase would be expected to have a singular Bose surface in momentum space. As demonstrated in the context of two-dimensional bosons hopping with a frustrating ring-exchange interaction, an analogous Bose-metal phase has a set of quasi-one-dimensional descendant states when put on a ladder geometry. Here we present a density matrix renormalization group study of the attractive Hubbard model with spin-dependent hopping on a two-leg ladder geometry. In our setup, one spin species moves preferentially along the leg direction, while the other does so along the rung direction. We find compelling evidence for the existence of a novel Cooper-pair Bose-metal phase in a region of the phase diagram at intermediate coupling. We further explore the phase diagram of this model as a function of hopping anisotropy, density, and interaction strength, finding a conventional superfluid phase as well as a phase of paired Cooper pairs with d-wave symmetry, similar to the one found in models of hard-core bosons with ring exchange. We argue that simulating this model with cold Fermi gases on spin-dependent optical lattices is a promising direction for realizing exotic quantum states.

  2. Isovector spin-singlet (T = 1, S = 0) and isoscalar spin-triplet (T = 0, S = 1) pairing interactions and spin-isospin response

    NASA Astrophysics Data System (ADS)

    Sagawa, H.; Bai, C. L.; Colò, G.

    2016-08-01

    We review several experimental and theoretical advances that emphasize common aspects of the study of spin-singlet, T = 1, and spin-triplet, T = 0, pairing correlations in nuclei. We first discuss various empirical evidence of the special role played by the T = 1 pairing interaction. In particular, we show the peculiar features of the nuclear pairing interaction in the low-density regime, and possible outcomes such as the BCS–BEC crossover in nuclear matter and, in an analogous way, in loosely bound nuclei. We then move to the competition between T = 1 and T = 0 pairing correlations. The effect of such competition on the low-lying spectra is studied in N = Z odd-odd nuclei by using a three-body model; in this case, it is shown that the inversion of the {J}π ={0}+ and {J}π ={1}+ states near the ground state, and the strong magnetic dipole transitions between them, can be considered as a clear manifestation of strong T = 0 pairing correlations in these nuclei. The effect of T = 0 pairing correlations is also quite evident if one studies charge-changing transitions. The Gamow–Teller (GT) states in N=Z+2 nuclei are studied here by using self-consistent Hartree–Fock–Bogoliubov (HFB) plus quasiparticle random-phase approximation calculations in which the T = 0 pairing interaction is taken into account. Strong GT states are found, near the ground state of daughter nuclei; these are compared with available experimental data from charge-exchange reactions, and such comparison can pinpoint the value of the strength of the T = 0 interaction. Pair transfer reactions are eventually discussed. While two-neutron transfer has long been proposed as a tool to measure the T = 1 superfluidity in the nuclear ground states, the study of deuteron transfer is still in its infancy, despite its potential interest for revealing effects coming from both T = 1 and T = 0 interactions. We also point out that the reaction mechanism may mask the strong pair transfer amplitudes predicted

  3. Isovector spin-singlet (T = 1, S = 0) and isoscalar spin-triplet (T = 0, S = 1) pairing interactions and spin-isospin response

    NASA Astrophysics Data System (ADS)

    Sagawa, H.; Bai, C. L.; Colò, G.

    2016-08-01

    We review several experimental and theoretical advances that emphasize common aspects of the study of spin-singlet, T = 1, and spin-triplet, T = 0, pairing correlations in nuclei. We first discuss various empirical evidence of the special role played by the T = 1 pairing interaction. In particular, we show the peculiar features of the nuclear pairing interaction in the low-density regime, and possible outcomes such as the BCS-BEC crossover in nuclear matter and, in an analogous way, in loosely bound nuclei. We then move to the competition between T = 1 and T = 0 pairing correlations. The effect of such competition on the low-lying spectra is studied in N = Z odd-odd nuclei by using a three-body model; in this case, it is shown that the inversion of the {J}π ={0}+ and {J}π ={1}+ states near the ground state, and the strong magnetic dipole transitions between them, can be considered as a clear manifestation of strong T = 0 pairing correlations in these nuclei. The effect of T = 0 pairing correlations is also quite evident if one studies charge-changing transitions. The Gamow-Teller (GT) states in N=Z+2 nuclei are studied here by using self-consistent Hartree-Fock-Bogoliubov (HFB) plus quasiparticle random-phase approximation calculations in which the T = 0 pairing interaction is taken into account. Strong GT states are found, near the ground state of daughter nuclei; these are compared with available experimental data from charge-exchange reactions, and such comparison can pinpoint the value of the strength of the T = 0 interaction. Pair transfer reactions are eventually discussed. While two-neutron transfer has long been proposed as a tool to measure the T = 1 superfluidity in the nuclear ground states, the study of deuteron transfer is still in its infancy, despite its potential interest for revealing effects coming from both T = 1 and T = 0 interactions. We also point out that the reaction mechanism may mask the strong pair transfer amplitudes predicted by the

  4. Observer dependence of bubble nucleation and Schwinger pair production

    SciTech Connect

    Garriga, Jaume; Kanno, Sugumi; Vilenkin, Alexander; Sasaki, Misao; Soda, Jiro E-mail: sugumi@cosmos.phy.tufts.edu E-mail: jiro@tap.scphys.kyoto-u.ac.jp

    2012-12-01

    Pair production in a constant electric field is closely analogous to bubble nucleation in a false vacuum. The classical trajectories of the pairs are Lorentz invariant, but it appears that this invariance should be broken by the nucleation process. Here, we use a model detector, consisting of other particles interacting with the pairs, to investigate how pair production is seen by different Lorentzian observers. We focus on the idealized situation where a constant external electric field is present for an infinitely long time, and we consider the in-vacuum state for a charged scalar field that describes the nucleating pairs. The in-vacuum is defined in terms of modes which are positive frequency in the remote past. Even though the construction uses a particular reference frame and a gauge where the vector potential is time dependent, we show explicitly that the resulting quantum state is Lorentz invariant. We then introduce a ''detector'' particle which interacts with the nucleated pairs, and show that all Lorentzian observers will see the particles and antiparticles nucleating preferentially at rest in the detector's rest frame. Similar conclusions are expected to apply to bubble nucleation in a sufficiently long lived vacuum. We also comment on certain unphysical aspects of the Lorentz invariant in-vacuum, associated with the fact that it contains an infinite density of particles. This can be easily remedied by considering Lorentz breaking initial conditions.

  5. String pair production in a time-dependent gravitational field

    SciTech Connect

    Tolley, Andrew J.; Wesley, Daniel H.

    2005-12-15

    We study the pair creation of point particles and strings in a time-dependent, weak gravitational field. We find that, for massive string states, there are surprising and significant differences between the string and point-particle results. Central to our approach is the fact that a weakly curved spacetime can be represented by a coherent state of gravitons, and therefore we employ standard techniques in string perturbation theory. String and point-particle pairs are created through tree-level interactions between the background gravitons. In particular, we focus on the production of excited string states and perform explicit calculations of the production of a set of string states of arbitrary excitation level. The differences between the string and point-particle results may contain important lessons for the pair production of strings in the strong gravitational fields of interest in cosmology and black hole physics.

  6. Spin and isospin fluctuations in heavy ion collisions and their dependence upon the shape of the dinuclear complex

    SciTech Connect

    Moretto, L.G.

    1980-08-01

    The relevance of higher multipoles of giant isovector modes in the charge distribution of deep inelastic fragments is discussed and found to depend strongly on mass asymmetry. The sources of angular momentum fluctuations are investigated. Quantal effects are considered as well as effects arising from non-equilibrium and equilibrium statistical fluctuations. A model based upon equilibrium statistical mechanics is considered in detail, and used to predict both 2nd moments of the angular momentum distributions and the angular momentum misalignment. Analytical expressions are derived to calculate the angular distributions of sequentially emitted particles, fission fragments, as well as gamma rays in terms of the angular momentum misalignment. Recent data on the angular distributions of sequential alphas, fission and gamma rays are analyzed in terms of the model. 29 figures, 1 table.

  7. Isospin Mixing in MAGNESIUM-24.

    NASA Astrophysics Data System (ADS)

    Hoyle, Charles David

    The (beta)-(gamma) circular polarization correlation asymmetry was measured for the pure Gamow-Teller decay of ('28)Al, for the pure Fermi decay of ('14)O and for the mixed decay of the ('24)Al 4('+) ground state to the 8.437 MeV, 4('+) state in ('24)Mg. The expected results were obtained for the pure Gamow-Teller and Fermi decays. From the results of the ('24)Al decay the isospin mixing of the 8.437 MeV, 4('+) state and the 9.515 MeV, 4('+) analog state in ('24)Mg was determined. The charge dependent matrix element mixing these two states was determined to be -95 (+OR-) 36 keV. This is the largest charge dependent matrix element observed in (beta) decay to date. This large value has not been completely explained and suggests the existence of a (DELTA)T = 1 nuclear force.

  8. Isospin breaking and chiral symmetry restoration

    SciTech Connect

    Gomez Nicola, A.; Torres Andres, R.

    2011-04-01

    We analyze quark condensates and chiral (scalar) susceptibilities including isospin-breaking effects at finite temperature T. These include m{sub u{ne}}m{sub d} contributions as well as electromagnetic (e{ne}0) corrections, both treated in a consistent chiral Lagrangian framework to leading order in SU(2) and SU(3) chiral perturbation theory, so that our predictions are model-independent. The chiral restoration temperature extracted from = is almost unaffected, while the isospin-breaking order parameter grows with T for the three-flavor case SU(3). We derive a sum rule relating the condensate ratio (e{ne}0)/(e=0) with the scalar susceptibility difference {chi}(T)-{chi}(0), directly measurable on the lattice. This sum rule is useful also for estimating condensate errors in staggered lattice analysis. Keeping m{sub u{ne}}m{sub d} allows one to obtain the connected and disconnected contributions to the susceptibility, even in the isospin limit, whose temperature, mass, and isospin-breaking dependence we analyze in detail. The disconnected part grows linearly, diverging in the chiral (infrared) limit as T/M{sub {pi}}, while the connected part shows a quadratic behavior, infrared regular as T{sup 2}/M{sub {eta}}{sup 2}, and coming from {pi}{sup 0{eta}} mixing terms. This smooth connected behavior suggests that isospin-breaking correlations are weaker than critical chiral ones near the transition temperature. We explore some consequences in connection with lattice data and their scaling properties, for which our present analysis for physical masses, i.e. beyond the chiral limit, provides a useful model-independent description for low and moderate temperatures.

  9. Nuclear inertia from the time dependent pairing equations

    NASA Astrophysics Data System (ADS)

    Mirea, M.

    2016-10-01

    In a dynamical system, the momenta of inertia and the effective masses are not adiabatic quantities, but are dynamical ones that depend on the dissipated energy accumulated during motion. However, these parameters are calculated for adiabatic nuclear systems, leaving no room for dissipated energy. In this work, a formalism is elaborated in order to derive simultaneously the nuclear momenta of inertia and the effective masses by taking into account the appearance of dissipated energy for large amplitude motion of the nuclear system. The expressions that define the inertia are obtained from the variational principle. The same principle manages the time dependent pairing equations, offering estimations of the averaged dissipation energy for large amplitude motions. The model is applied to 232Th fission. The fission barrier was calculated along the least action trajectory. The dissipation energy, effective mass and moment of inertia are determined for different values of the collective velocities. The dissipation increases with the internuclear velocity in binary disintegration processes and modifies the effective mass parameters. We observed that the inertia decreases as long as the collective velocity increases to some moderate values and begins to grow for larger collective velocities. So, a dependence between the cranking mass parameters and the intrinsic excitation energy is evidenced. In order to investigate the overall effect, the half-lives are predicted for adiabatic and dynamics simulations.

  10. Isospin Mixing in 80Zr: From Finite to Zero Temperature

    NASA Astrophysics Data System (ADS)

    Ceruti, S.; Camera, F.; Bracco, A.; Avigo, R.; Benzoni, G.; Blasi, N.; Bocchi, G.; Bottoni, S.; Brambilla, S.; Crespi, F. C. L.; Giaz, A.; Leoni, S.; Mentana, A.; Million, B.; Morales, A. I.; Nicolini, R.; Pellegri, L.; Pullia, A.; Riboldi, S.; Wieland, O.; Birkenbach, B.; Bazzacco, D.; Ciemala, M.; Désesquelles, P.; Eberth, J.; Farnea, E.; Görgen, A.; Gottardo, A.; Hess, H.; Judson, D. S.; Jungclaus, A.; Kmiecik, M.; Korten, W.; Maj, A.; Menegazzo, R.; Mengoni, D.; Michelagnoli, C.; Modamio, V.; Montanari, D.; Myalski, S.; Napoli, D.; Quintana, B.; Reiter, P.; Recchia, F.; Rosso, D.; Sahin, E.; Salsac, M. D.; Söderström, P.-A.; Stezowski, O.; Theisen, Ch.; Ur, C.; Valiente-Dobón, J. J.; Zieblinski, M.

    2015-11-01

    The isospin mixing was deduced in the compound nucleus 80Zr at an excitation energy of E*=54 MeV from the γ decay of the giant dipole resonance. The reaction 40Ca + 40Ca at Ebeam=136 MeV was used to form the compound nucleus in the isospin I =0 channel, while the reaction 37Cl + 44Ca at Ebeam=95 MeV was used as the reference reaction. The γ rays were detected with the AGATA demonstrator array coupled with LaBr3 :Ce detectors. The temperature dependence of the isospin mixing was obtained and the zero-temperature value deduced. The isospin-symmetry-breaking correction δC used for the Fermi superallowed transitions was extracted and found to be consistent with β -decay data.

  11. Tracing isospin with the {pi}{sup -}/{pi}{sup +} ratio in central heavy ion collisions

    SciTech Connect

    Zhang Ming; Xiao Zhigang; Zhu Shengjiang

    2010-10-15

    Within an isospin- and momentum-dependent hadronic transport model, we have investigated the isospin mixing with the probe of the {pi}{sup -}/{pi}{sup +} ratio in central isospin asymmetric {sup 96}Ru+{sup 96}Zr collision at an incident energy of 400 MeV/u. The isospin equilibrium is not reached according to the asymmetrical distribution of the {pi}{sup -}/{pi}{sup +} ratio with rapidity. In comparison with the nucleon observable, it suggests that the pion ratio {pi}{sup -}/{pi}{sup +} is a promising observable to probe the relaxation of isospin degree of freedom in central heavy ion collisions without being strongly affected by the surface effect. Because of the small system size and rather strong effect of rescattering on pions, the isospin mixing shows insignificant dependence on the stiffness of the symmetry energy in the relevant colliding system.

  12. Conservation of Isospin in Neutron-rich Fission Fragments

    SciTech Connect

    Jain, A.K.; Choudhury, D.; Maheshwari, B.

    2014-06-15

    On the occasion of the 75{sup th} anniversary of the fission phenomenon, we present a surprisingly simple result which highlights the important role of isospin and its conservation in neutron rich fission fragments. We have analysed the fission fragment mass distribution from two recent heavyion reactions {sup 238}U({sup 18}O,f) and {sup 208}Pb({sup 18}O,f) as well as a thermal neutron fission reaction {sup 245}Cm(n{sup th},f). We find that the conservation of the total isospin explains the overall trend in the observed relative yields of fragment masses in each fission pair partition. The isospin values involved are very large making the effect dramatic. The findings open the way for more precise calculations of fission fragment distributions in heavy nuclei and may have far reaching consequences for the drip line nuclei, HI fusion reactions, and calculation of decay heat in the fission phenomenon.

  13. Conservation of Isospin in Neutron-rich Fission Fragments

    NASA Astrophysics Data System (ADS)

    Jain, A. K.; Choudhury, D.; Maheshwari, B.

    2014-06-01

    On the occasion of the 75th anniversary of the fission phenomenon, we present a surprisingly simple result which highlights the important role of isospin and its conservation in neutron rich fission fragments. We have analysed the fission fragment mass distribution from two recent heavyion reactions 238U(18O,f) and 208Pb(18O,f) as well as a thermal neutron fission reaction 245Cm(nth,f). We find that the conservation of the total isospin explains the overall trend in the observed relative yields of fragment masses in each fission pair partition. The isospin values involved are very large making the effect dramatic. The findings open the way for more precise calculations of fission fragment distributions in heavy nuclei and may have far reaching consequences for the drip line nuclei, HI fusion reactions, and calculation of decay heat in the fission phenomenon.

  14. Transverse isospin response function of asymmetric nuclear matter from a local isospin density functional

    NASA Astrophysics Data System (ADS)

    Lipparini, Enrico; Pederiva, Francesco

    2016-08-01

    The time dependent local isospin density approximation (TDLIDA) has been extended to the study of the transverse isospin response function in nuclear matter with an arbitrary neutron-proton asymmetry parameter ξ . The energy density functional has been chosen in order to fit existing accurate quantum Monte Carlo calculations with a density dependent potential. The evolution of the response with ξ in the Δ Tz=±1 channels is quite different. While the strength of the Δ Tz=+1 channel disappears rather quickly by increasing the asymmetry, the Δ Tz=-1 channel develops a stronger and stronger collective mode that in the regime typical of neutron star matter at β equilibrium almost completely exhausts the excitation spectrum of the system. The neutrino mean free paths obtained from the TDLIDA responses are strongly dependent on ξ and on the presence of collective modes, leading to a sizable difference with respect to the prediction of the Fermi gas model.

  15. Isospin dependence of relative yields of K{sup +} and K{sup 0} mesons at 1.528A GeV

    SciTech Connect

    Lopez, X.; Kim, Y. J.; Andronic, A.; Hartmann, O. N.; Hildenbrand, K. D.; Koczon, P.; Leifels, Y.; Reisdorf, W.; Schuettauf, A.; Herrmann, N.; Benabderrahmane, M. L.; Cordier, E.; Merschmeyer, M.; Pelte, D.; Barret, V.; Bastid, N.; Crochet, P.; Dupieux, P.

    2007-01-15

    Results on K{sup +} and K{sup 0} meson production in {sub 44}{sup 96}Ru + {sub 44}{sup 96}Ru and {sub 40}{sup 96}Zr + {sub 40}{sup 96}Zr collisions at a beam kinetic energy of 1.528A GeV, measured with the FOPI detector at GSI-Darmstadt, are investigated as a possible probe of isospin effects in high-density nuclear matter. The measured double ratio (K{sup +}/K{sup 0}){sub Ru}/(K{sup +}/K{sup 0}){sub Zr} is compared to the predictions of a thermal model and a relativistic mean field transport model using two different collision scenarios and under different assumptions on the stiffness of the symmetry energy. We find good agreement with the thermal model prediction and the assumption of a soft symmetry energy for infinite nuclear matter, while more realistic transport simulations of the collisions show a similar agreement with the data but also exhibit a reduced sensitivity to the symmetry term.

  16. Nuclear isospin asymmetry in α decay of heavy nuclei

    NASA Astrophysics Data System (ADS)

    Shin, Eunkyoung; Lim, Yeunhwan; Hyun, Chang Ho; Oh, Yongseok

    2016-08-01

    The effects of nuclear isospin asymmetry on α -decay lifetimes of heavy nuclei are investigated within various phenomenological models of the nuclear potential for the α particle. We consider the widely used simple square-well potential and Woods-Saxon potential and modify them by including an isospin asymmetry term. We then suggest a model for the potential of the α particle motivated by a microscopic phenomenological approach of the Skyrme force model, which naturally introduces the isospin-dependent form of the nuclear potential for the α particle. The empirical α -decay lifetime formula of Viola and Seaborg [J. Inorg. Nucl. Chem. 28, 741 (1966), 10.1016/0022-1902(66)80412-8] is also modified to include isospin asymmetry effects. The obtained α -decay half-lives are in good agreement with the experimental data, and we find that including the nuclear isospin effects somehow improves the theoretical results for α -decay half-lives. The implications of these results are discussed, and the predictions on the α -decay lifetimes of superheavy elements are also presented.

  17. Quarkonium at nonzero isospin density

    SciTech Connect

    Detmold, William; Meinel, Stefan; Shi, Zhifeng

    2013-05-01

    We calculate the energies of quarkonium bound states in the presence of a medium of nonzero isospin density using lattice QCD. The medium, created using a canonical (fixed isospin charge) approach, induces a reduction of the quarkonium energies. As the isospin density increases, the energy shifts first increase and then saturate. The saturation occurs at an isospin density close to that where previously a qualitative change in the behavior of the energy density of the medium has been observed, which was conjectured to correspond to a transition from a pion gas to a Bose-Einstein condensed phase. The reduction of the quarkonium energies becomes more pronounced as the heavy-quark mass is decreased, similar to the behavior seen in two-color QCD at nonzero quark chemical potential. In the process of our analysis, the η{sub b-π} and Υ-π scattering phase shifts are determined at low momentum. An interpolation of the scattering lengths to the physical pion mass gives a{sub η{sub b},π}=0.0025(8)(6)fm and a{sub Υ,π}=0.0030(9)(7)fm.

  18. Temperature-dependent isovector pairing gap equations using a path integral approach

    SciTech Connect

    Fellah, M.; Allal, N. H.; Belabbas, M.; Oudih, M. R.; Benhamouda, N.

    2007-10-15

    Temperature-dependent isovector neutron-proton (np) pairing gap equations have been established by means of the path integral approach. These equations generalize the BCS ones for the pairing between like particles at finite temperature. The method has been numerically tested using the one-level model. It has been shown that the gap parameter {delta}{sub np} has a behavior analogous to that of {delta}{sub nn} and {delta}{sub pp} as a function of the temperature: one notes the presence of a critical temperature. Moreover, it has been shown that the isovector pairing effects remain beyond the critical temperature that corresponds to the pairing between like particles.

  19. The phase-shift of isospin-2 pi-pi scattering from lattice QCD

    SciTech Connect

    Jozef J. Dudek, Robert G. Edwards, Michael J. Peardon, David G. Richards, Christopher E. Thomas

    2011-04-01

    Finite-volume lattice QCD calculations offer the possibility of extracting resonance parameters from the energy-dependent elastic phase-shift computed using the L\\"uscher technique. In this letter, as a trial of the method, we report on the extraction of the non-resonant phase-shift for $S$ and $D$-wave $\\pi\\pi$ isospin-2 scattering from dynamical lattice QCD computations. We define a variational basis of operators resembling pairs of pions of definite relative momentum and extract a spectrum of excited states that maps to phase-shifts at a set of discrete scattering momenta. Computations are performed with pion masses between $400$ and $520$ MeV on multiple spatial volumes. We observe no significant quark mass dependence in the phase-shifts extracted which are in reasonable agreement with the available experimental data at low momentum.

  20. Isospin effects on fragmentation in the asymmetric reactions induced by neutron-rich targets

    NASA Astrophysics Data System (ADS)

    Sharma, Arun

    2016-05-01

    To understand the isospin effects in terms of fragment's yield in the asymmetric reactions induced by neutron-rich targets, we perform a theoretical study using isospin-dependent quantum molecular dynamics (IQMD) model. Simulations are carried out for reactions of 16O+Br80,84,92 and 16O+Ag108,113,122. We envision that fragments's yield in the asymmetric collisions induced by neutron-rich targets is better candidate to study isospin effects via symmetry energy and nucleon-nucleon (nn) cross-sections. Also, pronounced effects of symmetry energy and cross-sections can be found at lower and higher beam energies, respectively.

  1. Isospin diffusion in thermal AdS/CFT correspondence with flavor

    SciTech Connect

    Erdmenger, Johanna; Kaminski, Matthias; Rust, Felix

    2007-08-15

    We study the gauge/gravity dual of a finite temperature field theory at finite isospin chemical potential by considering a probe of two coincident D7-branes embedded in the AdS-Schwarzschild black hole background. The isospin chemical potential is obtained by giving a vacuum expectation value to the time component of the non-Abelian gauge field on the brane. The fluctuations of the non-Abelian gauge field on the brane are dual to the SU(2) flavor current in the field theory. For the embedding corresponding to vanishing quark mass, we calculate all Green functions corresponding to the components of the flavor current correlator. We discuss the physical properties of these Green functions, which go beyond linear response theory. In particular, we show that the isospin chemical potential leads to a frequency-dependent isospin diffusion coefficient.

  2. Pairing context determines condition-dependence of song rate in a monogamous passerine bird

    PubMed Central

    David, Morgan; Auclair, Yannick; Dall, Sasha R. X.; Cézilly, Frank

    2013-01-01

    Condition-dependence of male ornaments is thought to provide honest signals on which females can base their sexual choice for genetic quality. Recent studies show that condition-dependence patterns can vary within populations. Although long-term association is thought to promote honest signalling, no study has explored the influence of pairing context on the condition-dependence of male ornaments. In this study, we assessed the influence of natural variation in body condition on song rate in zebra finches (Taeniopygia guttata) in three different situations: during short and long encounters with an unfamiliar female, and within heterosexual mated pairs. We found consistent individual differences in male directed and undirected song rate. Moreover, body condition had a positive effect on song rate in paired males. However, male song rate was not influenced by body condition during short or long encounters with unfamiliar females. Song rate appears to be an unreliable signal of condition to prospective females as even poor-condition birds can cheat and sing at a high rate. By contrast, paired females can reliably use song rate to assess their mate's body condition, and possibly the genetic quality. We propose that species' characteristics, such as mating system, should be systematically taken into account to generate relevant hypotheses about the evolution of condition-dependent male ornaments. PMID:23256191

  3. Models of isospin violating ADM

    SciTech Connect

    Okada, Nobuchika; Seto, Osamu

    2014-06-24

    The isospin violating dark matter (IVDM) scenario offers an interesting possibility to reconcile conflicting results among direct dark matter search experiments for a mass range around 10 GeV. We consider two simple renormalizable IVDM models with a complex scalar dark matter and a Dirac fermion dark matter, respectively, whose stability is ensured by the conservation of “dark matter number.” Although both models successfully work as the IVDM scenario with destructive interference between effective couplings to proton and neutron, the dark matter annihilation cross section is found to exceed the cosmological/astrophysical upper bounds. Then, we propose a simple scenario to reconcile the IVDM scenario with the cosmological/astrophysical bounds, namely, the IVDM being asymmetric. We also discuss collider experimental constraints on the models and an implication to Higgs boson physics.

  4. Aspects of particle production in isospin-asymmetric matter

    NASA Astrophysics Data System (ADS)

    Ferini, G.; Colonna, M.; Gaitanos, T.; Di Toro, M.

    2005-11-01

    The production/absorption rate of particles in compressed and heated asymmetric matter is studied using a Relativistic Mean Field (RMF) transport model with an isospin-dependent collision term. Just from energy conservation in the elementary production/absorption processes we expect to see a strong dependence of the yields on the basic Lorentz structure of the isovector effective interaction, due to isospin effects on the scalar and vector self-energies of the hadrons. This will be particularly evident for the ratio of the rates of particles produced with different charges: results are shown for π/π, K/K yields. In order to simplify the analysis we perform RMF cascade simulations in a box with periodic boundary conditions. In this way we can better pin down all such fine relativistic effects in particle production, that could likely show up even in realistic heavy ion collisions. In fact, the box properties are tuned in order to reproduce the heated dense matter formed during a nucleus-nucleus collision in the few A GeV beam energy region. In particular, K production is expected to be directly related to the high density behaviour of the symmetry energy, since kaons are produced very early during the high density stage of the collision and their mean free path is rather large. We show that the K/K ratio reflects important isospin contributions on the production rates just because of the large sensitivity around the threshold. The results are very promising for the possibility of a direct link between particle production data in exotic Heavy Ion Collisions (HIC) and the isospin-dependent part of the Equation of State (EoS) at high baryon densities.

  5. Divergence of the isospin-asymmetry expansion of the nuclear equation of state in many-body perturbation theory

    NASA Astrophysics Data System (ADS)

    Wellenhofer, Corbinian; Holt, Jeremy W.; Kaiser, Norbert

    2016-05-01

    The isospin-asymmetry dependence of the nuclear-matter equation of state obtained from microscopic chiral two- and three-body interactions in second-order many-body perturbation theory is examined in detail. The quadratic, quartic, and sextic coefficients in the Maclaurin expansion of the free energy per particle of infinite homogeneous nuclear matter with respect to the isospin asymmetry are extracted numerically using finite differences, and the resulting polynomial isospin-asymmetry parametrizations are compared to the full isospin-asymmetry dependence of the free energy. It is found that in the low-temperature and high-density regime where the radius of convergence of the expansion is generically zero, the inclusion of higher-order terms beyond the leading quadratic approximation leads overall to a significantly poorer description of the isospin-asymmetry dependence. In contrast, at high temperatures and densities well below nuclear saturation density, the interaction contributions to the higher-order coefficients are negligible and the deviations from the quadratic approximation are predominantly from the noninteracting term in the many-body perturbation series. Furthermore, we extract the leading logarithmic term in the isospin-asymmetry expansion of the equation of state at zero temperature from the analysis of linear combinations of finite differences. It is shown that the logarithmic term leads to a considerably improved description of the isospin-asymmetry dependence at zero temperature.

  6. Nuclear level density of even-even nuclei with temperature-dependent pairing energy

    NASA Astrophysics Data System (ADS)

    Dehghani, V.; Alavi, S. A.

    2016-10-01

    The influence of using a temperature-dependent pairing term on the back-shifted Fermi gas (BSFG) model of nuclear level density of some even-even nuclei has been investigated. We have chosen an approach to determine the adjustable parameters from theoretical calculations, directly. The exact Ginzburg-Landau (EGL) theory was used to determine the temperature-dependent pairing energy as back-shifted parameter of the BSFG model. The level density parameter of the BSFG model has been determined through the Thomas-Fermi approximation. The level densities of 96Mo, 106,112Cd, 106,108Pd, 164Dy, 232Th, 238U and heat capacities of 96Mo and 164Dy nuclei were calculated. Good agreement between theory and experiment was observed.

  7. Spatiotemporal configuration dependent pairing of nerve events in dark-adapted human vision

    NASA Astrophysics Data System (ADS)

    Bouman, Maarten A.

    2002-02-01

    In the model presented here, in the dark any single quantum absorption in a rod or cone produces a subliminal excitation. Subliminal excitations from both halves of a twin unit pair in the retina for the perception of light from the stimulus. A twin unit contains either two red or two green cones. The twin units are intertwined in triples of two red units and one green unit in a hexagon called a trion. P satellite rods surround each cone, P being approximately proportional to the square of eccentricity. A successful pairing for light perception represents-through the points of time and locations of the creation of its partners in the retina-a direction event with two possible polarities and with the orientation of the elongated shape of the twin unit. The polarity of the event depends on which of the two partners arrives first at the twin's pairing facility. Simultaneous events and successive events with the same polarity in adjacent units that are aligned along one of the three orientations of the hexagonal retinal mosaic pair in the cortex for the perception of edge and of movement. Inter-twin pairing products of the three differently oriented sets of aligned twins are independent of each other and sum vectorially in the cortex. This system of three sub-retinas is called the retrinet. Two one-quantum excitations in any of a twin's receptors make the percept colored. The odd blue cone produces already a blue signal for a single one-quantum excitation. Intra-receptor pairing in a rod, a red cone and a green cone is for white, red, and green respectively. Red and green cone products of a trion cross-pair in the retina and produce a yellow signal. Red and green cone products of a hexagon of adjacent trions cross-pair in the cortex and produce a white signal. This large hexagon with a total of seven trions is called a persepton. After subliminal excitations in a twin have paired successfully, further subliminal receptor excitations in neighboring and aligned twins are

  8. Brain State-Dependent Closed-Loop Modulation of Paired Associative Stimulation Controlled by Sensorimotor Desynchronization

    PubMed Central

    Royter, Vladislav; Gharabaghi, Alireza

    2016-01-01

    Background: Pairing peripheral electrical stimulation (ES) and transcranial magnetic stimulation (TMS) increases corticospinal excitability when applied with a specific temporal pattern. When the two stimulation techniques are applied separately, motor imagery (MI)-related oscillatory modulation amplifies both ES-related cortical effects—sensorimotor event-related desynchronization (ERD), and TMS-induced peripheral responses—motor-evoked potentials (MEP). However, the influence of brain self-regulation on the associative pairing of these stimulation techniques is still unclear. Objective: The aim of this pilot study was to investigate the effects of MI-related ERD during associative ES and TMS on subsequent corticospinal excitability. Method: The paired application of functional electrical stimulation (FES) of the extensor digitorum communis (EDC) muscle and subsequent single-pulse TMS (110% resting motor threshold (RMT)) of the contralateral primary motor cortex (M1) was controlled by beta-band (16–22 Hz) ERD during MI of finger extension and applied within a brain-machine interface environment in six healthy subjects. Neural correlates were probed by acquiring the stimulus-response curve (SRC) of both MEP peak-to-peak amplitude and area under the curve (AUC) before and after the intervention. Result: The application of approximately 150 pairs of associative FES and TMS resulted in a significant increase of MEP amplitudes and AUC, indicating that the induced increase of corticospinal excitability was mediated by the recruitment of additional neuronal pools. MEP increases were brain state-dependent and correlated with beta-band ERD, but not with the background EDC muscle activity; this finding was independent of the FES intensity applied. Conclusion: These results could be relevant for developing closed-loop therapeutic approaches such as the application of brain state-dependent, paired associative stimulation (PAS) in the context of neurorehabilitation. PMID

  9. Direct observation of f-pair magnetic field effects and time-dependence of radical pair composition using rapidly switched magnetic fields and time-resolved infrared methods.

    PubMed

    Woodward, Jonathan R; Foster, Timothy J; Salaoru, Adrian T; Vink, Claire B

    2008-07-21

    A rapidly switched (<10 ns) magnetic field was employed to directly observe magnetic fields from f-pair reactions of radical pairs in homogeneous solution. Geminate radical pairs from the photoabstraction reaction of benzophenone from cyclohexanol were observed directly using a pump-probe pulsed magnetic field method to determine their existence time. No magnetic field effects from geminate pairs were observed at times greater than 100 ns after initial photoexcitation. By measuring magnetic field effects for fields applied continuously only after this initial geminate period, f-pair effects could be directly observed. Measurement of the time-dependence of the field effect for the photolysis of 2-hydroxy-4-(2-hydroxyethoxy)-2-methylpropiophenone in cyclohexanol using time-resolved infrared spectroscopy revealed not only the presence of f-pair magnetic field effects but also the ability of the time dependence of the MARY spectra to observe the changing composition of the randomly encountering pairs throughout the second order reaction period.

  10. Single-molecule derivation of salt dependent base-pair free energies in DNA.

    PubMed

    Huguet, Josep M; Bizarro, Cristiano V; Forns, Núria; Smith, Steven B; Bustamante, Carlos; Ritort, Felix

    2010-08-31

    Accurate knowledge of the thermodynamic properties of nucleic acids is crucial to predicting their structure and stability. To date most measurements of base-pair free energies in DNA are obtained in thermal denaturation experiments, which depend on several assumptions. Here we report measurements of the DNA base-pair free energies based on a simplified system, the mechanical unzipping of single DNA molecules. By combining experimental data with a physical model and an optimization algorithm for analysis, we measure the 10 unique nearest-neighbor base-pair free energies with 0.1 kcal mol(-1) precision over two orders of magnitude of monovalent salt concentration. We find an improved set of standard energy values compared with Unified Oligonucleotide energies and a unique set of 10 base-pair-specific salt-correction values. The latter are found to be strongest for AA/TT and weakest for CC/GG. Our unique energy values and salt corrections improve predictions of DNA unzipping forces and are fully compatible with melting temperatures for oligos. The method should make it possible to obtain free energies, enthalpies, and entropies in conditions not accessible by bulk methodologies. PMID:20716688

  11. Mass and Isospin Effects in Multifragmentation

    NASA Astrophysics Data System (ADS)

    Sfienti, C.; Adrich, P.; Aumann, T.; Bacri, C. O.; Barczyk, T.; Bassini, R.; Boiano, C.; Botvina, A. S.; Boudard, A.; Brzychczyk, J.; Chbihi, A.; Cibor, J.; Czech, B.; De Napoli, M.; Ducret, J.-E.; Emling, H.; Frankland, J.; Hellström, M.; Henzlova, D.; Kezzar, K.; Immé, G.; Iori, I.; Johansson, H.; Lafriakh, A.; Le Fèvre, A.; Le Gentil, E.; Leifels, Y.; Lynch, W. G.; Lühning, J.; Łukasik, J.; Lynen, U.; Majka, Z.; Mocko, M.; Müller, W. F. J.; Mykulyak, A.; Orth, H.; Otte, A. N.; Palit, R.; Pullia, A.; Raciti, G.; Rapisarda, E.; Sann, H.; Schwarz, C.; Simon, H.; Sokolov, A.; Sümmerer, K.; Trautmann, W.; Tsang, M. B.; Verde, G.; Volant, C.; Wallace, M.; Weick, H.; Wiechula, J.; Wieloch, A.; Zwieglinski, B.

    2005-03-01

    A systematic study of isospin effects in the breakup of projectile spectators at relativistic energies has been performed with the ALADiN spectrometer at the GSI laboratory (Darmstadt). Four different projectiles 197Au, 124La, 124Sn and 107Sn, all with an incident energy of 600 AMeV, have been used, thus allowing a study of various combinations of masses and N/Z ratios in the entrance channel. The measurement of the momentum vector and of the charge of all projectile fragments with Z > 1 entering the acceptance of the ALADiN magnet has been performed with the high efficiency and resolution achieved with the TP-MUSIC IV detector. The Rise and Fall behavior of the mean multiplicity of IMFs as a function of Zbound and its dependence on the isotopic composition has been determined for the studied systems. Other observables investigated so far include mean N/Z values of the emitted light fragments and neutron multiplicities. Qualitative agreement has been obtained between the observed gross properties and the predictions of the Statistical Multifragmentation Model.

  12. Pseudo-Goldstone modes in isospin-asymmetric nuclear matter

    SciTech Connect

    Cohen, T.D.; Broniowski, W.

    1995-01-01

    The authors analyze the chiral limit in dense isospin-asymmetric nuclear matter. It is shown that the pseudo-Goldstone modes in this system are qualitatively different from the case of isospin-symmetric matter.

  13. Polyamine-dependent facilitation of postsynaptic AMPA receptors counteracts paired-pulse depression.

    PubMed

    Rozov, A; Burnashev, N

    1999-10-01

    At many glutamatergic synapses in the brain, calcium-permeable alpha - amino - 3 - hydro - 5 - methyl - 4 - isoxazolepropionate receptor (AMPAR) channels mediate fast excitatory transmission. These channels are blocked by endogenous intracellular polyamines, which are found in virtually every type of cell. In excised patches, use-dependent relief of polyamine block enhances glutamate-evoked currents through recombinant and native calcium-permeable, polyamine-sensitive AMPAR channels. The contribution of polyamine unblock to synaptic currents during high-frequency stimulation may be to facilitate currents and maintain current amplitudes in the face of a slow recovery from desensitization or presynaptic depression. Here we show, on pairs and triples of synaptically connected neurons in slices, that this mechanism contributes to short-term plasticity in local circuits formed by presynaptic pyramidal neurons and postsynaptic multipolar interneurons in layer 2/3 of rat neocortex. Activity-dependent relief from polyamine block of postsynaptic calcium-permeable AMPARs in the interneurons either reduces the rate of paired-pulse depression in a frequency-dependent manner or, at a given stimulation frequency, induces facilitation of a synaptic response that would otherwise depress. This mechanism for the enhancement of synaptic gain appears to be entirely postsynaptic.

  14. Impact of Fock terms on the isospin properties of nuclear matter

    NASA Astrophysics Data System (ADS)

    Sun, Bao Yuan; Zhao, Qian; Long, Wen Hui

    2016-05-01

    Several topics on the isospin properties of nuclear matter studied within the density-dependent relativistic Hartree-Fock theory are summarized. In detail, the effects of the Fock terms on the nuclear symmetry energy are listed, including the extra enhancement from the Fock terms of the isoscalar meson-nucleon coupling channels, the extra hyperon-induced suppression effect originating from the Fock channel, self-consistent tensor effects embedded automatically in the Fock diagrams, the enhanced density-dependent isospin-triplet potential part of the symmetry energy at high densities, a reduced kinetic symmetry energy at supranuclear density and so on. The results demonstrate the importance of the Fork diagram, especially from the isoscalar mesonnucleon coupling channels, on the isospin properties of the in-medium nuclear force.

  15. Vlasov equation for Schwinger pair production in a time-dependent electric field

    NASA Astrophysics Data System (ADS)

    Huet, Adolfo; Kim, Sang Pyo; Schubert, Christian

    2014-12-01

    Schwinger pair creation in a purely time-dependent electric field can be described through a quantum Vlasov equation describing the time evolution of the single-particle momentum distribution function. This equation exists in two versions, both of which can be derived by a Bogoliubov transformation, but whose equivalence is not obvious. For the spinless case, we show here that the difference between these two evolution equations corresponds to the one between the "in-out" and "in-in" formalisms. We give a simple relation between the asymptotic distribution functions generated by the two Vlasov equations. As examples we discuss the Sauter and single-soliton field cases.

  16. Inverse Temperature Dependence of Nuclear Quantum Effects in DNA Base Pairs

    PubMed Central

    2016-01-01

    Despite the inherently quantum mechanical nature of hydrogen bonding, it is unclear how nuclear quantum effects (NQEs) alter the strengths of hydrogen bonds. With this in mind, we use ab initio path integral molecular dynamics to determine the absolute contribution of NQEs to the binding in DNA base pair complexes, arguably the most important hydrogen-bonded systems of all. We find that depending on the temperature, NQEs can either strengthen or weaken the binding within the hydrogen-bonded complexes. As a somewhat counterintuitive consequence, NQEs can have a smaller impact on hydrogen bond strengths at cryogenic temperatures than at room temperature. We rationalize this in terms of a competition of NQEs between low-frequency and high-frequency vibrational modes. Extending this idea, we also propose a simple model to predict the temperature dependence of NQEs on hydrogen bond strengths in general. PMID:27195654

  17. Isospin Splittings of Doubly Heavy Baryons

    SciTech Connect

    Brodsky, Stanley J.; Guo, Feng-Kun; Hanhart, Christoph; Meissner, Ulf-G.; /Julich, Forschungszentrum /JCHP, Julich /IAS, Julich /Bonn U., HISKP /Bonn U.

    2011-08-18

    The SELEX Collaboration has reported a very large isospin splitting of doubly charmed baryons. We show that this effect would imply that the doubly charmed baryons are very compact. One intriguing possibility is that such baryons have a linear geometry Q-q-Q where the light quark q oscillates between the two heavy quarks Q, analogous to a linear molecule such as carbon dioxide. However, using conventional arguments, the size of a heavy-light hadron is expected to be around 0.5 fm, much larger than the size needed to explain the observed large isospin splitting. Assuming the distance between two heavy quarks is much smaller than that between the light quark and a heavy one, the doubly heavy baryons are related to the heavy mesons via heavy quark-diquark symmetry. Based on this symmetry, we predict the isospin splittings for doubly heavy baryons including {Xi}{sub cc}, {Xi}{sub bb} and {Xi}{sub bc}. The prediction for the {Xi}{sub cc} is much smaller than the SELEX value. On the other hand, the {Xi}{sub bb} baryons are predicted to have an isospin splitting as large as (6.3 {+-} 1.7) MeV. An experimental study of doubly bottomed baryons is therefore very important to better understand the structure of baryons with heavy quarks.

  18. Isospin-symmetry-breaking effects in A∼70 nuclei within beyond-mean-field approach

    SciTech Connect

    Petrovici, A.; Andrei, O.

    2015-02-24

    Particular isospin-symmetry-breaking probes including Coulomb energy differences (CED), mirror energy differences (MED), and triplet energy differences (TED) manifest anomalies in the A∼70 isovector triplets of nuclei. The structure of proton-rich nuclei in the A∼70 mass region suggests shape coexistence and competition between pairing correlations in different channels. Recent results concerning the interplay between isospin-mixing and shape-coexistence effects on exotic phenomena in A∼70 nuclei obtained within the beyond-mean-field complex Excited Vampir variational model with symmetry projection before variation using a realistic effective interaction in a relatively large model space are presented. Excited Vampir predictions concerning the Gamow-Teller β decay to the odd-odd N=Z {sup 66}As and {sup 70}Br nuclei correlated with the pair structure analysis in the T=1 and T=0 channel of the involved wave functions are discussed.

  19. A Pair of Pharyngeal Gustatory Receptor Neurons Regulates Caffeine-Dependent Ingestion in Drosophila Larvae

    PubMed Central

    Choi, Jaekyun; van Giesen, Lena; Choi, Min Sung; Kang, KyeongJin; Sprecher, Simon G.; Kwon, Jae Young

    2016-01-01

    The sense of taste is an essential chemosensory modality that enables animals to identify appropriate food sources and control feeding behavior. In particular, the recognition of bitter taste prevents animals from feeding on harmful substances. Feeding is a complex behavior comprised of multiple steps, and food quality is continuously assessed. We here examined the role of pharyngeal gustatory organs in ingestion behavior. As a first step, we constructed a gustatory receptor-to-neuron map of the larval pharyngeal sense organs, and examined corresponding gustatory receptor neuron (GRN) projections in the larval brain. Out of 22 candidate bitter compounds, we found 14 bitter compounds that elicit inhibition of ingestion in a dose-dependent manner. We provide evidence that certain pharyngeal GRNs are necessary and sufficient for the ingestion response of larvae to caffeine. Additionally, we show that a specific pair of pharyngeal GRNs, DP1, responds to caffeine by calcium imaging. In this study we show that a specific pair of GRNs in the pharyngeal sense organs coordinates caffeine sensing with regulation of behavioral responses such as ingestion. Our results indicate that in Drosophila larvae, the pharyngeal GRNs have a major role in sensing food palatability to regulate ingestion behavior. The pharyngeal sense organs are prime candidates to influence ingestion due to their position in the pharynx, and they may act as first level sensors of ingested food. PMID:27486388

  20. Pressure Dependence of Anharmonic Effective Pair Potentials in Rock Salt Type AgI

    SciTech Connect

    Yoshiasa, Akira; Sugahara, Masahiko; Fukui, Hiroshi; Arima, Hiroshi; Ohtaka, Osamu; Okube, Maki; Katayama, Yoshinori; Murai, Kei-ichiro

    2007-02-02

    Pressure dependence of anharmonic effective pair potentials V(u)=au2/2+bu3/3{exclamation_point} for the I-Ag bond in rock salt type AgI has been investigated by EXAFS Debye-Waller factors. EXAFS measurements near the I K-edge were performed under pressure up to 6.0 GPa using a multi-anvil high-pressure device and synchrotron radiation from SPring-8, Hyogo. The potential parameter a for rock-salt type is 1.66(5) eV/A2 at 1.0 GPa and increases to 1.88(6) eV/A2 at 6.0 GPa. The phonon energies in rock salt type AgI under pressure have been estimated using the potential parameter a by calculating the dynamical matrix. The anharmonic effective pair potential for each phase is influenced by pressure and becomes steeper with increasing pressure while the extent of anharmonicity decreases with pressure.

  1. Space-dependent formation of central pair microtubules and their interactions with radial spokes.

    PubMed

    Nakazawa, Yuki; Ariyoshi, Tetsuro; Noga, Akira; Kamiya, Ritsu; Hirono, Masafumi

    2014-01-01

    Cilia and flagella contain nine outer doublet microtubules and a pair of central microtubules. The central pair of microtubules (CP) is important for cilia/flagella beating, as clearly shown by primary ciliary dyskinesia resulting from the loss of the CP. The CP is thought to regulate axonemal dyneins through interaction with radial spokes (RSs). However, the nature of the CP-RS interaction is poorly understood. Here we examine the appearance of CPs in the axonemes of a Chlamydomonas mutant, bld12, which produces axonemes with 8 to 11 outer-doublets. Most of its 8-doublet axonemes lack CPs. However, in the double mutant of bld12 and pf14, a mutant lacking the RS, most 8-doublet axonemes contain the CP. Thus formation of the CP apparently depends on the internal space limited by the outer doublets and RSs. In 10- or 11-doublet axonemes, only 3-5 RSs are attached to the CP and the doublet arrangement is distorted most likely because the RSs attached to the CP pull the outer doublets toward the axonemal center. The CP orientation in the axonemes varies in double mutants formed between bld12 and mutants lacking particular CP projections. The mutant bld12 thus provides the first direct and visual information about the CP-RS interaction, as well as about the mechanism of CP formation.

  2. A Pair of Pharyngeal Gustatory Receptor Neurons Regulates Caffeine-Dependent Ingestion in Drosophila Larvae.

    PubMed

    Choi, Jaekyun; van Giesen, Lena; Choi, Min Sung; Kang, KyeongJin; Sprecher, Simon G; Kwon, Jae Young

    2016-01-01

    The sense of taste is an essential chemosensory modality that enables animals to identify appropriate food sources and control feeding behavior. In particular, the recognition of bitter taste prevents animals from feeding on harmful substances. Feeding is a complex behavior comprised of multiple steps, and food quality is continuously assessed. We here examined the role of pharyngeal gustatory organs in ingestion behavior. As a first step, we constructed a gustatory receptor-to-neuron map of the larval pharyngeal sense organs, and examined corresponding gustatory receptor neuron (GRN) projections in the larval brain. Out of 22 candidate bitter compounds, we found 14 bitter compounds that elicit inhibition of ingestion in a dose-dependent manner. We provide evidence that certain pharyngeal GRNs are necessary and sufficient for the ingestion response of larvae to caffeine. Additionally, we show that a specific pair of pharyngeal GRNs, DP1, responds to caffeine by calcium imaging. In this study we show that a specific pair of GRNs in the pharyngeal sense organs coordinates caffeine sensing with regulation of behavioral responses such as ingestion. Our results indicate that in Drosophila larvae, the pharyngeal GRNs have a major role in sensing food palatability to regulate ingestion behavior. The pharyngeal sense organs are prime candidates to influence ingestion due to their position in the pharynx, and they may act as first level sensors of ingested food. PMID:27486388

  3. Parameter dependence in the atmospheric decoherence of modally entangled photon pairs

    NASA Astrophysics Data System (ADS)

    Ibrahim, Alpha Hamadou; Roux, Filippus S.; Konrad, Thomas

    2014-11-01

    When a pair of photons that are entangled in terms of their transverse modes, such as an orbital angular momentum (OAM) basis, propagates through atmospheric turbulence, the scintillation causes a decay of the entanglement. Here, we use numerical simulations to study how this decoherence process depends on the various dimension parameters of the system. The relevant dimension parameters are the propagation distance, the wavelength, the beam radius, and the refractive index structure constant, indicating the strength of the turbulence. We show that beyond the weak scintillation regime, the entanglement evolution cannot be accurately modeled by a single phase screen that is specified by a single dimensionless parameter. Two dimensionless parameters are necessary to describe the OAM entanglement evolution. Furthermore, it is found that higher OAM modes are not more robust in turbulence beyond the weak scintillation regime.

  4. Orbital Dependent Nucleonic Pairing in the Lightest Known Isotopes of Tin

    SciTech Connect

    Darby, Iain; Grzywacz, R.; Batchelder, J. C.; Bingham, C. R.; Cartegni, L.; Gross, Carl J; Liddick, Sean; Nazarewicz, Witold; Padgett, Stephen; Papenbrock, T.; Rajabali, M. M.; Rotureau, J.; Rykaczewski, Krzysztof Piotr

    2010-01-01

    By studying the {sup 109}Xe {yields} {sup 105}Te {yields} {sup 101}Sn superallowed {alpha}-decay chain, we observe low-lying states in {sup 101}Sn, the one-neutron system outside doubly magic {sup 100}Sn. We find that the spins of the ground state (J=7/2) and first excited state (J=5/2) in {sup 101}Sn are reversed with respect to the traditional level ordering postulated for {sup 103}Sn and the heavier tin isotopes. Through simple arguments and state-of-the-art shell-model calculations we explain this unexpected switch in terms of a transition from the single-particle regime to the collective mode in which orbital-dependent pairing correlations dominate.

  5. Effects of isospin dynamics on neck fragmentation in isotopic nuclear reactions

    NASA Astrophysics Data System (ADS)

    Feng, Zhao-Qing

    2016-07-01

    The neck dynamics in Fermi-energy heavy-ion collisions, to probe the nuclear symmetry energy in the domain of subsaturation densities, is investigated within an isospin-dependent transport model. The single and double ratios of neutrons to protons from free nucleons and light clusters (complex particles) in the isotopic reactions are analyzed systematically. Isospin effects of particles produced from the neck fragmentations are explored. It is found that the ratios of the energetic isospin particles strongly depend on the stiffness of the nuclear symmetry energy and the effects increase with softening of the symmetry energy, which would be a nice probe for extracting the symmetry energy below the normal density in experiments. A flat structure appears at the tail spectra from the double ratio distributions. The neutron to proton ratio of light intermediate-mass fragments with charge number Z ≤8 is related to the density dependence of the symmetry energy with less sensitivity in comparison to the isospin ratios of nucleons and light particles.

  6. On mT dependence of femtoscopy scales for meson and baryon pairs

    NASA Astrophysics Data System (ADS)

    Sinyukov, Yu. M.; Shapoval, V. M.; Naboka, V. Yu.

    2016-02-01

    The mT-dependencies of the femto-scales, the so-called interferometry and source radii, are investigated within the hydrokinetic model for different types of particle pairs - pion-pion, kaon-kaon, proton-proton and proton-lambda, - produced in Pb+Pb and p + p collisions at the LHC. In particular, such property of the femto-scales momentum behavior as mT-scaling is studied for the systems with (w) and without (w/o) intensive transverse flow, and also w and w/o re-scattering at the final afterburner stage of the matter evolution. The detailed spatiotemporal description obtained within hydrokinetic model is compared with the simple analytical results for the spectra and longitudinal interferometry radii depending on the effective temperature on the hypersurface of maximal emission, proper time of such emission, and intensity of transverse flow. The derivation of the corresponding analytical formulas and discussion about a possibility for their utilization by the experimentalists for the simple femtoscopy data analysis is the main aim of this theoretical investigation.

  7. The Isospin Admixture of The Ground State and The Properties of The Isobar Analog Resonances In Deformed Nuclei

    SciTech Connect

    Aygor, H. Ali; Maras, Ismail; Cakmak, Necla; Selam, Cevad

    2008-11-11

    Within quasiparticle random phase approximation (QRPA), Pyatov-Salamov method for the self-consistent determination of the isovector effective interaction strength parameter, restoring a broken isotopic symmetry for the nuclear part of the Hamiltonian, is used. The isospin admixtures in the ground state of the parent nucleus, and the isospin structure of the isobar analog resonance (IAR) state are investigated by including the pairing correlations between nucleons for {sup 72-80}Kr isotopes. Our results are compared with the spherical case and with other theoretical results.

  8. Light scalar susceptibilities and isospin breaking

    SciTech Connect

    Andres, R. Torres; Nicola, A. Gomez

    2010-12-28

    Making a thermal analysis in the context of NLO SU(3) Chiral Perturbation Theory we see that isospin breaking (IB) corrections (both electromagnetic and QCD ones) to quark condensates are of order O(e{sup 2}) and O({epsilon}), with {epsilon} the {pi}{sup 0}-{eta} mixing angle. However the combination {chi}{sub uu}-{chi}{sub ud} of flavour breaking susceptibilities, which vanishes in the isospin limit and can be identified essentially with the connected susceptibility, has an order O(1) contribution enhanced with T because of the {pi}{sup 0}-{eta}) mixing. Finally we present a thermal sum rule that relates quark condensate ratios and the light scalar susceptibility without IB, {chi}(T)-{chi}(0).

  9. Two-fluid temperature-dependent relativistic waves in magnetized streaming pair plasmas.

    PubMed

    Soto-Chavez, A R; Mahajan, S M; Hazeltine, R D

    2010-02-01

    A relativistic two-fluid temperature-dependent approach for a streaming magnetized pair plasma is considered. Such a scenario corresponds to secondary plasmas created at the polar caps of pulsar magnetospheres. In the model the generalized vorticity rather than the magnetic field is frozen into the fluid. For parallel propagation four transverse modes are found. Two are electromagnetic plasma modes which at high temperature become light waves. The remaining two are Alfvénic modes split into a fast and slow mode. The slow mode is cyclotron two-stream unstable at large wavelengths and is always subluminous. We find that the instability cannot be suppressed by temperature effects in the limit of large (finite) magnetic field. The fast Alfvén mode can be superluminous only at large wavelengths, however it is always subluminous at high temperatures. In this incompressible approximation only the ordinary mode is present for perpendicular propagation. For oblique propagation the dispersion relation is studied for finite and large strong magnetic fields and the results are qualitatively described. PMID:20365661

  10. Uncovering hidden variance: pair-wise SNP analysis accounts for additional variance in nicotine dependence

    PubMed Central

    Culverhouse, Robert C.; Saccone, Nancy L.; Stitzel, Jerry A.; Wang, Jen C.; Steinbach, Joseph H.; Goate, Alison M.; Schwantes-An, Tae-Hwi; Grucza, Richard A.; Stevens, Victoria L.; Bierut, Laura J.

    2010-01-01

    Results from genome-wide association studies of complex traits account for only a modest proportion of the trait variance predicted to be due to genetics. We hypothesize that joint analysis of polymorphisms may account for more variance. We evaluated this hypothesis on a case–control smoking phenotype by examining pairs of nicotinic receptor single-nucleotide polymorphisms (SNPs) using the Restricted Partition Method (RPM) on data from the Collaborative Genetic Study of Nicotine Dependence (COGEND). We found evidence of joint effects that increase explained variance. Four signals identified in COGEND were testable in independent American Cancer Society (ACS) data, and three of the four signals replicated. Our results highlight two important lessons: joint effects that increase the explained variance are not limited to loci displaying substantial main effects, and joint effects need not display a significant interaction term in a logistic regression model. These results suggest that the joint analyses of variants may indeed account for part of the genetic variance left unexplained by single SNP analyses. Methodologies that limit analyses of joint effects to variants that demonstrate association in single SNP analyses, or require a significant interaction term, will likely miss important joint effects. PMID:21079997

  11. Isospin effects via Coulomb forces on the onset of multifragmentation in light and heavily charged systems

    NASA Astrophysics Data System (ADS)

    Sharma, Arun; Bharti, Arun

    2016-03-01

    We concurrently study the isospin effects via Coulomb forces and the nuclear equation of state and its momentum dependence on the onset of multifragmentation, i.e., critical energy point, in the light and heavily charged reactions of 40Ar + 45Sc and 84Kr + 197Au , respectively, using the isospin-dependent quantum molecular dynamics model. We find that Coulomb forces influence the onset of multifragmentation and result in the shift of the critical energy point towards lower and higher incident energies with and without their presence, respectively. Also, we observe that the critical energy point is sharper for the heavily charged system of 84Kr + 197Au when compared with the light charged system of 40Ar + 45Sc , where a small dip is observed and thus leads to the dependence of onset of multifragmentation, i.e., the critical energy point, on the reaction asymmetry as well as on the Coulomb forces.

  12. Combinatory Microarray and SuperSAGE Analyses Identify Pairing-Dependently Transcribed Genes in Schistosoma mansoni Males, Including Follistatin

    PubMed Central

    Leutner, Silke; Oliveira, Katia C.; Rotter, Björn; Beckmann, Svenja; Buro, Christin; Hahnel, Steffen; Kitajima, Joao P.; Verjovski-Almeida, Sergio; Winter, Peter; Grevelding, Christoph G.

    2013-01-01

    Background Schistosomiasis is a disease of world-wide importance and is caused by parasitic flatworms of the genus Schistosoma. These parasites exhibit a unique reproduction biology as the female's sexual maturation depends on a constant pairing-contact to the male. Pairing leads to gonad differentiation in the female, and even gene expression of some gonad-associated genes is controlled by pairing. In contrast, no morphological changes have been observed in males, although first data indicated an effect of pairing also on gene transcription in males. Methodology/Principal Findings To investigate the influence of pairing on males, we performed a combinatory approach applying SuperSAGE and microarray hybridization, generating the most comprehensive data-set on differential transcription available to date. Of 6,326 sense transcripts detected by both analyses, 29 were significantly differentially transcribed. Besides mutual confirmation, the two methods complemented each other as shown by data comparison and real-time PCR, which revealed a number of genes with consistent regulation across all methods. One of the candidate genes, follistatin of S. mansoni (SmFst) was characterized in more detail by in situ hybridization and yeast two-hybrid (Y2H) interaction analyses with potential binding partners. Conclusions/Significance Beyond confirming previously hypothesized differences in metabolic processes between pairing-experienced (EM) and pairing-unexperienced males (UM), our data indicate that neuronal processes are involved in male-female interaction but also TGFβ-signaling. One candidate revealing significant down-regulation in EM was the TGFβ-pathway controlling molecule follistatin (SmFst). First functional analyses demonstrated SmFst interaction with the S. mansoni TGFβ-receptor agonists inhibin/activin (SmInAct) and bone morphogenic protein (SmBMP), and all molecules colocalized in the testes. This indicates a yet unknown role of the TGFβ-pathway for

  13. Temporal Interval Discrimination Thresholds Depend on Perceived Synchrony for Audio-Visual Stimulus Pairs

    ERIC Educational Resources Information Center

    van Eijk, Rob L. J.; Kohlrausch, Armin; Juola, James F.; van de Par, Steven

    2009-01-01

    Audio-visual stimulus pairs presented at various relative delays, are commonly judged as being "synchronous" over a range of delays from about -50 ms (audio leading) to +150 ms (video leading). The center of this range is an estimate of the point of subjective simultaneity (PSS). The judgment boundaries, where "synchronous" judgments yield to a…

  14. Dependence of the Rate of LiF Ion-Pairing on the Description of Molecular Interaction.

    PubMed

    Pluhařová, Eva; Baer, Marcel D; Schenter, Gregory K; Jungwirth, Pavel; Mundy, Christopher J

    2016-03-01

    We present an analysis of the dynamics of ion-pairing of lithium fluoride (LiF) in aqueous solvent using both detailed molecular simulation as well as reduced models within a generalized Langevin equation (GLE) framework. We explored the sensitivity of the ion-pairing phenomena to the details of descriptions of molecular interaction, comparing two empirical potentials to explicit quantum based density functional theory. We find quantitative differences in the potentials of mean force for ion-pairing as well as time dependent frictions that lead to variations in the rate constant and reactive flux correlation functions. These details reflect differences in solvent response to ion-pairing between different representations of molecular interaction and influence anharmonicity of the dynamic response. We find that the short-time anharmonic response is recovered with a GLE parametrization. Recovery of the details of long time response may require extensions to the reduced model. We show that the utility of using a reduced model leads to a straightforward application of variational transition state theory concepts to the condensed phase system. The significance of this is reflected in the analysis of committor distributions and the variation of planar hypersurfaces, leading to an improved understanding of factors that determine the rate of LiF ion-pairing.

  15. Schistosome sex matters: a deep view into gonad-specific and pairing-dependent transcriptomes reveals a complex gender interplay.

    PubMed

    Lu, Zhigang; Sessler, Florian; Holroyd, Nancy; Hahnel, Steffen; Quack, Thomas; Berriman, Matthew; Grevelding, Christoph G

    2016-01-01

    As a key event for maintaining life cycles, reproduction is a central part of platyhelminth biology. In case of parasitic platyhelminths, reproductive processes can also contribute to pathology. One representative example is the trematode Schistosoma, which causes schistosomiasis, an infectious disease, whose pathology is associated with egg production. Among the outstanding features of schistosomes is their dioecious lifestyle and the pairing-dependent differentiation of the female gonads which finally leads to egg synthesis. To analyze the reproductive biology of Schistosoma mansoni in-depth we isolated complete ovaries and testes from paired and unpaired schistosomes for comparative RNA-seq analyses. Of >7,000 transcripts found in the gonads, 243 (testes) and 3,600 (ovaries) occurred pairing-dependently. Besides the detection of genes transcribed preferentially or specifically in the gonads of both genders, we uncovered pairing-induced processes within the gonads including stem cell-associated and neural functions. Comparisons to work on neuropeptidergic signaling in planarian showed interesting parallels but also remarkable differences and highlights the importance of the nervous system for flatworm gonad differentiation. Finally, we postulated first functional hints for 235 hypothetical genes. Together, these results elucidate key aspects of flatworm reproductive biology and will be relevant for basic as well as applied, exploitable research aspects. PMID:27499125

  16. Schistosome sex matters: a deep view into gonad-specific and pairing-dependent transcriptomes reveals a complex gender interplay

    PubMed Central

    Lu, Zhigang; Sessler, Florian; Holroyd, Nancy; Hahnel, Steffen; Quack, Thomas; Berriman, Matthew; Grevelding, Christoph G.

    2016-01-01

    As a key event for maintaining life cycles, reproduction is a central part of platyhelminth biology. In case of parasitic platyhelminths, reproductive processes can also contribute to pathology. One representative example is the trematode Schistosoma, which causes schistosomiasis, an infectious disease, whose pathology is associated with egg production. Among the outstanding features of schistosomes is their dioecious lifestyle and the pairing-dependent differentiation of the female gonads which finally leads to egg synthesis. To analyze the reproductive biology of Schistosoma mansoni in-depth we isolated complete ovaries and testes from paired and unpaired schistosomes for comparative RNA-seq analyses. Of >7,000 transcripts found in the gonads, 243 (testes) and 3,600 (ovaries) occurred pairing-dependently. Besides the detection of genes transcribed preferentially or specifically in the gonads of both genders, we uncovered pairing-induced processes within the gonads including stem cell-associated and neural functions. Comparisons to work on neuropeptidergic signaling in planarian showed interesting parallels but also remarkable differences and highlights the importance of the nervous system for flatworm gonad differentiation. Finally, we postulated first functional hints for 235 hypothetical genes. Together, these results elucidate key aspects of flatworm reproductive biology and will be relevant for basic as well as applied, exploitable research aspects. PMID:27499125

  17. Fock-space diagonalization of the state-dependent pairing Hamiltonian with the Woods-Saxon mean field

    NASA Astrophysics Data System (ADS)

    Molique, H.; Dudek, J.

    1997-10-01

    A particle-number conserving approach is presented to solve the nuclear mean-field plus pairing Hamiltonian problem with a realistic deformed Woods-Saxon single-particle potential. The method is designed for the state-dependent monopole pairing Hamiltonian H⁁pair=∑αβGαβc†αc†α ¯cβ ¯cβ with an arbitrary set of matrix elements Gαβ. Symmetries of the Hamiltonians on the many-body level are discussed using the language of P symmetry introduced earlier in the literature and are employed to diagonalize the problem; the only essential approximation used is a many-body (Fock-space) basis cutoff. An optimal basis construction is discussed and the stability of the final result with respect to the basis cutoff is illustrated in details. Extensions of the concept of P symmetry are introduced and their consequences for an optimal many-body basis cutoff construction are exploited. An algorithm is constructed allowing to solve the pairing problems in the many-body spaces corresponding to p~40 particles on n~80 levels and for several dozens of lowest lying states with precision ~(1-2) % within seconds of the CPU time on a CRAY computer. Among applications, the presence of the low-lying seniority s=0 solutions, that are usually poorly described in terms of the standard approximations (BCS, HFB), is discussed and demonstrated to play a role in the interpretation of the spectra of rotating nuclei.

  18. Theory of antisymmetric spin-pair-dependent electric polarization in multiferroics

    NASA Astrophysics Data System (ADS)

    Miyahara, S.; Furukawa, N.

    2016-01-01

    We investigate magnetoelectric couplings between an electric polarization and an antisymmetric spin pair, Si×Sj , in a multiorbital Hubbard model on a distorted lattice. We microscopically derive a generic form of the electric polarization, pAS=d ̂(Si×Sj) , with a tensor, d ̂, which includes the electric polarization induced by the Katsura-Nagaosa-Balatsky formula as a subset. The origin and nature of these magnetoelectric couplings are clarified in a unified way; the results indicate that various noncollinear magnetic structures, such as canted antiferromagnetic, proper screw, and 120∘ spin structures, show multiferroic behaviors owing to non-Katsura-Nagaosa-Balatsky coupling.

  19. Isospin transport in 84Kr+112,124Sn collisions at Fermi energies

    NASA Astrophysics Data System (ADS)

    Barlini, S.; Piantelli, S.; Casini, G.; Maurenzig, P. R.; Olmi, A.; Bini, M.; Carboni, S.; Pasquali, G.; Poggi, G.; Stefanini, A. A.; Bougault, R.; Bonnet, E.; Borderie, B.; Chbihi, A.; Frankland, J. D.; Gruyer, D.; Lopez, O.; Le Neindre, N.; Pârlog, M.; Rivet, M. F.; Vient, E.; Rosato, E.; Spadaccini, G.; Vigilante, M.; Bruno, M.; Marchi, T.; Morelli, L.; Cinausero, M.; Degerlier, M.; Gramegna, F.; Kozik, T.; Twaróg, T.; Alba, R.; Maiolino, C.; Santonocito, D.

    2013-05-01

    Isotopically resolved fragments with Z≲20 have been studied with a high-resolution telescope in a test run for the FAZIA Collaboration. The fragments were produced by the collision of a 84Kr beam at 35 MeV/nucleon with a neutron-rich (124Sn) and a neutron-poor (112Sn) target. The fragments, detected close to the grazing angle, are mainly emitted from the phase-space region of the projectile. The fragment isotopic content clearly depends on the neutron richness of the target and this is direct evidence of isospin diffusion between projectile and target. The observed enhanced neutron richness of light fragments emitted from the phase-space region close to the center of mass of the system can be interpreted as an effect of isospin drift in the diluted neck region.

  20. Isospin aspects in nuclear reactions involving Ca beams at 25 MeV/nucleon

    SciTech Connect

    Lombardo, I. Agodi, C.; Alba, R.; Amorini, F.; Anzalone, A.; Auditore, L.; Berceanu, I.; Cardella, G.; Cavallaro, S.; Chatterjee, M. B.; Filippo, E. De; Di Pietro, A.; Figuera, P.; Giuliani, G.; Geraci, E.; Grassi, L.; Grzeszczuk, A.; Han, J.; La Guidara, E.; Lanzalone, G.; and others

    2011-11-15

    Isospin dependence of dynamical and thermodynamical properties observed in reactions {sup 40}Ca+ {sup 40,48}Ca and {sup 40}Ca + {sup 46}Ti at 25 MeV/nucleon has been studied. We used the CHIMERA multi-detector array. Strong isospin effects are seen in the isotopic distributions of light nuclei and in the competition between different reaction mechanisms in semi-central collisions. We will show also preliminary results obtained in nuclear collision {sup 48}Ca + {sup 48}Ca at 25MeV/nucleon, having very high N/Z value in the entrance channel (N/Z = 1.4). The enhancement of evaporation residue production confirms the strong role played by the N/Z degree of freedom in nuclear dynamics.

  1. Isospin mixing within relativistic mean-field models including the delta meson

    NASA Astrophysics Data System (ADS)

    Graeff, C. A.; Marinelli, J. R.

    2011-09-01

    We investigate isospin mixing effects in the asymmetry as obtained in parity-violating electron scattering from 4He, 12C, 16O, 40Ca and 56Ni. The scattering analysis is developed within plane (PWBA) and distorted wave (DWBA) Born approximations accounting for nucleon form factors, which are given by the Galster parametrization. We use Walecka's Model (QHD), including the σ, ω, ρ and δ mesons as well as the electromagnetic interaction. The δ meson effects are specially interesting once it should add a contribution for isospin mixing together with the electromagnetic and ρ meson fields. Our model includes lagrangians with nonlinear terms as well as lagrangians including density dependent couplings. The model is solved in a Hartree approximation with spherical symmetry using a self-consistent calculation by means of an expansion of the nuclear wave functions and potentials in an harmonic oscillator basis. Results using four different parametrizations are obtained and compared with calculations using non-relativistic models.

  2. Accounting for Dependence Induced by Weighted KNN Imputation in Paired Samples, Motivated by a Colorectal Cancer Study

    PubMed Central

    Suyundikov, Anvar; Stevens, John R.; Corcoran, Christopher; Herrick, Jennifer; Wolff, Roger K.; Slattery, Martha L.

    2015-01-01

    Missing data can arise in bioinformatics applications for a variety of reasons, and imputation methods are frequently applied to such data. We are motivated by a colorectal cancer study where miRNA expression was measured in paired tumor-normal samples of hundreds of patients, but data for many normal samples were missing due to lack of tissue availability. We compare the precision and power performance of several imputation methods, and draw attention to the statistical dependence induced by K-Nearest Neighbors (KNN) imputation. This imputation-induced dependence has not previously been addressed in the literature. We demonstrate how to account for this dependence, and show through simulation how the choice to ignore or account for this dependence affects both power and type I error rate control. PMID:25849489

  3. Studying temperature dependence of pairing gap parameter in a nucleus as a small superconducting system

    NASA Astrophysics Data System (ADS)

    Rahmatinejad, A.; Razavi, R.; Kakavand, T.

    2016-07-01

    In this paper, we have taken the effect of small size of nucleus and static fluctuations into account in the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity calculations of 45Ti nucleus. Thermodynamic quantities of 45Ti have been extracted within the BCS model with the inclusion of the average value of the pairing gap square, extracted by the modified Ginzburg-Landau (MGL) method for small systems. Calculated values of the excitation energy and entropy within the MGL+BCS method improve the extracted results within the usual BCS model and show a smooth behavior around the critical temperature with a very good agreement with the semi-empirical values. The result of using MGL+BCS method for the heat capacity of 45Ti is compared with the corresponding semi-empirical values and the calculated values within the BCS, static path approximation (SPA) and Modified Pairing gap BCS (MPBCS) which is a method that was proposed in our previous publications. Both MGL+BCS and MPBCS avoid the discontinuity of the heat capacity curve, which is observed in the usual BCS method, and lead to an S-shaped curve with a good agreement with the semi-empirical results.

  4. Inversion of the Odd-Even Effect in Cold Fission from the Time-Dependent Pairing Equations

    NASA Astrophysics Data System (ADS)

    Mirea, M.

    2016-06-01

    A peculiar phenomenon was observed experimentally in cold fission: the odd partition yields are favored over the even ones for excitations energies of the fragments smaller than 4 MeV. In this contribution, a microscopic model is proposed for the explanation of this odd-even effect in cold fission. This explanation is based on a mixing configuration mechanism that is produced during the fission process. This configuration mixing mechanism is obtained dynamically by solving a the generalized system of time-dependent pairing equations, which include a pair-breaking effect. The time dependent equations of motion for the pair breaking effect were corroborated with a condition that fixes dynamically the number of particles on the two fission fragment. The single particle level scheme was calculated with the Woods-Saxon superasymmetric two center shell model, providing a continuous variation of the single particle energies and of the wave functions from one nucleus up to two separated fragments. A first rule can be extracted from this model. The even-even fission products cannot be obtained at zero excitation energies because of the existence of dynamical excitations produced in the avoided- level-crossing regions when the nuclear system deforms slowly.

  5. Isospin Breaking in the Goldberger-Treiman Discrepancies

    SciTech Connect

    Jose Goity; Jordi Saez

    2002-09-01

    Effects of isospin breaking at the level of the Goldberger-Treiman discrepancies involving the neutral isotriplet axial and pion-nucleon couplings are analyzed to leading non-trivial order in chiral perturbation theory.

  6. Asymptotic expansion of pair production probability in a time-dependent electric field

    NASA Astrophysics Data System (ADS)

    Arai, Takashi

    2015-12-01

    We study particle creation in a single pulse of an electric field in scalar quantum electrodynamics. We investigate the parameter condition for the case where the dynamical pair creation and Schwinger mechanism respectively dominate. Then, an asymptotic expansion for the particle distribution in terms of the time interval of the applied electric field is derived. We compare our result with particle creation in a constant electric field with a finite-time interval. These results coincide in an extremely strong field, however they differ in general field strength. We interpret the reason of this difference as a nonperturbative effect of high-frequency photons in external electric fields. Moreover, we find that the next-to-leading-order term in our asymptotic expansion coincides with the derivative expansion of the effective action.

  7. Anomalous Fermi-Surface Dependent Pairing in a Self-Doped High-Tc Superconductor

    SciTech Connect

    Chen, Y.

    2010-05-03

    We report the discovery of a self-doped multi-layer high T{sub c} superconductor Ba{sub 2}Ca{sub 3}Cu{sub 4}O{sub 8}F{sub 2} (F0234) which contains distinctly different superconducting gap magnitudes along its two Fermi surface(FS) sheets. While formal valence counting would imply this material to be an undoped insulator, it is a self-doped superconductor with a T{sub c} of 60K, possessing simultaneously both electron- and hole-doped FS sheets. Intriguingly, the FS sheet characterized by the much larger gap is the electron-doped one, which has a shape disfavoring two electronic features considered to be important for the pairing mechanism: the van Hove singularity and the antiferromagnetic ({pi}/a, {pi}/a) scattering.

  8. Measurement of isospin mixing in 80Zr* at finite temperature

    NASA Astrophysics Data System (ADS)

    Corsi, A.; Wieland, O.; Barlini, S.; Kravchuk, V. L.; Bracco, A.; Camera, F.; Crespi, F. C. L.; Giaz, A.; Leoni, S.; Nicolini, R.; Vandone, V.; Benzoni, G.; Blasi, N.; Brambilla, S.; Million, B.; Montanari, D.; Bardelli, L.; Bini, M.; Casini, G.; Nannini, A.; Pasquali, G.; Poggi, G.; Cinausero, M.; Degerlier, M.; Gramegna, F.; Marchi, T.; Baiocco, G.; Bruno, M.; D'Agostino, M.; Morelli, L.; Vannini, G.; Ciemala, M.; Kmiecik, M.; Maj, A.; Mazurek, K.; Meczynski, W.; Myalski, S.; Ordine, A.

    2011-10-01

    Isospin mixing induced by Coulomb interaction has been measured in the compound nucleus Z = N = 40 80Zr at T˜2 MeV produced in a fusion-evaporation reaction. The observable sensitive to the isospin purity of the compound nucleus is the Giant Dipole Resonance γ decay. The degree of mixing of the compound nucleus has been obtained via Statistical Model analysis of the measured γ spectrum.

  9. Isospin mixing at finite temperature in 80Zr

    NASA Astrophysics Data System (ADS)

    Ceruti, Simone; Giaz, A.; Camera, F.; Avigo, R.; Benzoni, G.; Blasi, N.; Bracco, A.; Brambilla, S.; Coelli, S.; Corsi, A.; Crespi, F.; Leoni, S.; Million, B.; Morales-Lopez, A. I.; Pellegri, L.; Nicolini, R.; Riboldi, S.; Vandone, V.; Wieland, O.; Bortolato, D.; Fanin, C.; Gottardo, A.; Valiente-Dobon, J. J.; Bellato, M.; Bazzacco, D.; Mengoni, D.; Michelagnoli, C.; Montanari, D.; Recchia, F.; Farnea, E.; Ur, C.; Zieblinski, M.; Ciemala, M.; Kmiecik, M.; Maj, A.; Myalski, S.; Styczen, J.

    2014-03-01

    Isospin mixing induced by the Coulomb interaction has been studied in the compound nucleus 80Zr at T~2 MeV produced in the fusion-evaporation reaction 40Ca+40Ca at Ebeam = 136 MeV. The isospin impurity was measured using the first step of the Giant Dipole Resonance γ decay. The preliminary value of the Coulomb spreading width has been extracted via statistical model analysis of the measured γ spectrum.

  10. Shell Model Depiction of Isospin Mixing in sd Shell

    SciTech Connect

    Lam, Yi Hua; Smirnova, Nadya A.; Caurier, Etienne

    2011-11-30

    We constructed a new empirical isospin-symmetry breaking (ISB) Hamiltonian in the sd(1s{sub 1/2}, 0d{sub 5/2} and 0d{sub 3/2}) shell-model space. In this contribution, we present its application to two important case studies: (i){beta}-delayed proton emission from {sup 22}Al and (ii) isospin-mixing correction to superallowed 0{sup +}{yields}0{sup +}{beta}-decay ft-values.

  11. Higgs Boson Pair Production in Gluon Fusion at Next-to-Leading Order with Full Top-Quark Mass Dependence.

    PubMed

    Borowka, S; Greiner, N; Heinrich, G; Jones, S P; Kerner, M; Schlenk, J; Schubert, U; Zirke, T

    2016-07-01

    We present the calculation of the cross section and invariant mass distribution for Higgs boson pair production in gluon fusion at next-to-leading order (NLO) in QCD. Top-quark masses are fully taken into account throughout the calculation. The virtual two-loop amplitude has been generated using an extension of the program GoSam supplemented with an interface to Reduze for the integral reduction. The occurring integrals have been calculated numerically using the program SecDec. Our results, including the full top-quark mass dependence for the first time, allow us to assess the validity of various approximations proposed in the literature, which we also recalculate. We find substantial deviations between the NLO result and the different approximations, which emphasizes the importance of including the full top-quark mass dependence at NLO.

  12. Attention can increase or decrease spike count correlations between pairs of neurons depending on their role in a task

    PubMed Central

    Ruff, Douglas A.; Cohen, Marlene R.

    2015-01-01

    Visual attention enhances the responses of visual neurons that encode the attended location. Several recent studies showed that attention also decreases correlations between fluctuations in the responses of pairs of neurons (termed spike count correlation or rSC). The previous results are consistent with two hypotheses. Attention–related changes in rate and rSC might be linked (perhaps through a common mechanism), so that attention always decreases rSC. Alternately, attention might either increase or decrease rSC, possibly depending on the role the neurons play in the behavioral task. We recorded simultaneously from dozens of neurons in area V4 while monkeys performed a discrimination task. We found strong evidence in favor of the second hypothesis, showing that attention can flexibly increase or decrease correlations, depending on whether the neurons provide evidence for the same or opposite perceptual decisions. These results place important constraints on models of the neuronal mechanisms underlying cognitive factors. PMID:25306550

  13. Higgs Boson Pair Production in Gluon Fusion at Next-to-Leading Order with Full Top-Quark Mass Dependence

    NASA Astrophysics Data System (ADS)

    Borowka, S.; Greiner, N.; Heinrich, G.; Jones, S. P.; Kerner, M.; Schlenk, J.; Schubert, U.; Zirke, T.

    2016-07-01

    We present the calculation of the cross section and invariant mass distribution for Higgs boson pair production in gluon fusion at next-to-leading order (NLO) in QCD. Top-quark masses are fully taken into account throughout the calculation. The virtual two-loop amplitude has been generated using an extension of the program GoSam supplemented with an interface to Reduze for the integral reduction. The occurring integrals have been calculated numerically using the program SecDec. Our results, including the full top-quark mass dependence for the first time, allow us to assess the validity of various approximations proposed in the literature, which we also recalculate. We find substantial deviations between the NLO result and the different approximations, which emphasizes the importance of including the full top-quark mass dependence at NLO.

  14. Higgs Boson Pair Production in Gluon Fusion at Next-to-Leading Order with Full Top-Quark Mass Dependence.

    PubMed

    Borowka, S; Greiner, N; Heinrich, G; Jones, S P; Kerner, M; Schlenk, J; Schubert, U; Zirke, T

    2016-07-01

    We present the calculation of the cross section and invariant mass distribution for Higgs boson pair production in gluon fusion at next-to-leading order (NLO) in QCD. Top-quark masses are fully taken into account throughout the calculation. The virtual two-loop amplitude has been generated using an extension of the program GoSam supplemented with an interface to Reduze for the integral reduction. The occurring integrals have been calculated numerically using the program SecDec. Our results, including the full top-quark mass dependence for the first time, allow us to assess the validity of various approximations proposed in the literature, which we also recalculate. We find substantial deviations between the NLO result and the different approximations, which emphasizes the importance of including the full top-quark mass dependence at NLO. PMID:27419563

  15. Detecting dependencies between spike trains of pairs of neurons through copulas.

    PubMed

    Sacerdote, Laura; Tamborrino, Massimiliano; Zucca, Cristina

    2012-01-24

    The dynamics of a neuron are influenced by the connections with the network where it lies. Recorded spike trains exhibit patterns due to the interactions between neurons. However, the structure of the network is not known. A challenging task is to investigate it from the analysis of simultaneously recorded spike trains. We develop a non-parametric method based on copulas, that we apply to simulated data according to different bivariate Leaky Integrate and Fire models. The method discerns dependencies determined by the surrounding network, from those determined by direct interactions between the two neurons. Furthermore, the method recognizes the presence of delays in the spike propagation. This article is part of a Special Issue entitled "Neural Coding". PMID:21981802

  16. Characterizing Non-Linear Dependencies Among Pairs of Clinical Variables and Imaging Data

    PubMed Central

    Caban, Jesus J.; Bagci, Ulas; Mehari, Alem; Alam, Shoaib; Fontana, Joseph R.; Kato, Gregory J.; Mollura, Daniel J.

    2012-01-01

    Advances in computer-aided diagnosis (CAD) systems have shown the benefits of using computer-based techniques to obtain quantitative image measurements of the extent of a particular disease. Such measurements provide more accurate information that can be used to better study the associations between anatomical changes and clinical findings. Unfortunately, even with the use of quantitative image features, the correlations between anatomical changes and clinical findings are often not apparent and definite conclusions are difficult to reach. This paper uses nonparametric exploration techniques to demonstrate that even when the associations between two-variables seems weak, advanced properties of the associations can be studied and used to better understand the relationships between individual measurements. This paper uses quantitative imaging findings and clinical measurements of 85 patients with pulmonary fibrosis to demonstrate the advantages of non-linear dependency analysis. Results show that even when the correlation coefficients between imaging and clinical findings seem small, statistical measurements such as the maximum asymmetry score (MAS) and maximum edge value (MEV) can be used to better understand the hidden associations between the variables. PMID:23366482

  17. Evidence for a Mass Dependent Forward-Backward Asymmetry in Top Quark Pair Production

    SciTech Connect

    Aaltonen, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Apresyan, A.; Arisawa, T.; /Waseda U. /Dubna, JINR

    2011-01-01

    We present a new measurement of the inclusive forward-backward t{bar t} production asymmetry and its rapidity and mass dependence. The measurements are performed with data corresponding to an integrated luminosity of 5.3 fb{sup -1} of p{bar p} collisions at {radical}s = 1.96 TeV, recorded with the CDF II Detector at the Fermilab Tevatron. Significant inclusive asymmetries are observed in both the laboratory frame and the t{bar t} rest frame, and in both cases are found to be consistent with CP conservation under interchange of t and {bar t}. In the t{bar t} rest frame, the asymmetry is observed to increase with the t{bar t} rapidity difference, {Delta}y, and with the invariant mass M{sub t{bar t}} of the t{bar t} system. Fully corrected parton-level asymmetries are derived in two regions of each variable, and the asymmetry is found to be most significant at large {Delta}y and M{sub t{bar t}}. For M{sub t{bar t}} {ge} 450 GeV/c{sup 2}, the parton-level asymmetry in the t{bar t} rest frame is A{sup t{bar t}} = 0.475 {+-} 0.114 compared to a next-to-leading order QCD prediction of 0.088 {+-} 0.013.

  18. Isospin symmetry breaking in the chiral quark model

    NASA Astrophysics Data System (ADS)

    Song, Huiying; Zhang, Xinyu; Ma, Bo-Qiang

    2010-12-01

    We discuss the isospin symmetry breaking (ISB) of the valence- and sea-quark distributions between the proton and the neutron in the framework of the chiral quark model. We assume that isospin symmetry breaking is the result of mass differences between isospin multiplets and then analyze the effects of isospin symmetry breaking on the Gottfried sum rule and the NuTeV anomaly. We show that, although both flavor asymmetry in the nucleon sea and the ISB between the proton and the neutron can lead to the violation of the Gottfried sum rule, the main contribution is from the flavor asymmetry in the framework of the chiral quark model. We also find that the correction to the NuTeV anomaly is in an opposite direction, so the NuTeV anomaly cannot be removed by isospin symmetry breaking in the chiral quark model. It is remarkable that our results of ISB for both valence- and sea-quark distributions are consistent with the Martin-Roberts-Stirling-Thorne parametrization of quark distributions.

  19. Lattice QCD at non-zero isospin chemical potential

    SciTech Connect

    Shi, Zhifeng

    2013-04-30

    Systems of non-zero isospin chemical potential are studied from a canonical approach by computing correlation functions with the quantum numbers of N π(+)'s (C(N)(π)). In order to reduce the number of contractions required in calculating C(N)(π) for a large N in the Wick's theorem, we constructed a few new algorithms. With these new algorithms, systems with isospin charge up to 72 are investigated on three anisotropic gauge ensembles with a pion mass of 390 MeV, and with lattice spatial extents L ~ 2.0, 2.5, 3.0 fm. The largest isospin density of ρ(I) thickapprox 9 fm(-)(3) is achieved in the smallest volume, and the QCD phase diagram is investigated at a fixed low temperature at varying isospin chemical potentials, m(π) ≤ μ(I) ≤ 4.5 m(π). By investigating the behaviour of the extracted energy density of the system at different isospin chemical potentials, we numerically identified the conjectured transition to a Bose-Einstein condensation state at μ(I) ≥ m(π).

  20. Time-dependent absorption of very high-energy gamma-rays from the Galactic center by pair-production

    SciTech Connect

    Abramowski, Attila; Horns, Dieter; Ripken, Joachim; Gillessen, Stefan; Eldik, Christopher van

    2008-12-24

    Very high energy (VHE) gamma-rays have been detected from the direction of the Galactic center. The H.E.S.S. Cherenkov telescopes have located this {gamma}-ray source with a preliminary position uncertainty of 8.5'' per axis (6'' statistic+6'' sytematic per axis). Within the uncertainty region several possible counterpart candidates exist: the Super Massive Black Hole Sgr A*, the Pulsar Wind Nebula candidate G359.95-0.04, the Low Mass X-Ray Binary-system J174540.0-290031, the stellar cluster IRS 13, as well as self-annihilating dark matter. It is experimentally very challenging to further improve the positional accuracy in this energy range and therefore, it may not be possible to clearly associate one of the counterpart candidates with the VHE-source. Here, we present a new method to investigate a possible link of the VHE-source with the near environment of Sgr A*(within approximately 1000 Schwarzschild radii). This method uses the time- and energy-dependent effect of absorption of VHE {gamma}-rays by pair-production (in the following named pair-eclipse) with low-energy photons of stars closely orbiting the SMBH Sgr A*.

  1. Simulations of circular dichroism spectra of a pair of diterpene enantiomers by time-dependent density functional theory

    NASA Astrophysics Data System (ADS)

    Liaw, Chih-Chuang; Chang, Jia-Lin; Chen, Shou-Fong; Huang, Jhih-Hong; Sie, Jyun-Fu; Cheng, Yung-Yi

    2011-11-01

    We present the first theoretical study on a pair of diterpene enantiomers of formula C 21H 34O 5, which were newly isolated from plants and identified as 3β,5β-dihydroxy-16 α/ β-methoxyhalima-13(14)-en-15,16-olide. The equilibrium geometries and harmonic vibrational frequencies of their low-lying conformers were obtained by using the AM1 and B3LYP/6-31+G(d) methods. At the optimized geometries, rotatory strengths of six excited states of each conformer were computed by the time-dependent density functional theory. The electronic circular dichroism spectra were simulated by taking Boltzmann averaging and considering the solvent effect, from which the absolute configurations of the enantiomers were determined. Their vibrational circular dichroism spectra were also predicted.

  2. Electron hole pair mediated vibrational excitation in CO scattering from Au(111): Incidence energy and surface temperature dependence

    SciTech Connect

    Shirhatti, Pranav R.; Werdecker, Jörn; Golibrzuch, Kai; Wodtke, Alec M.; Bartels, Christof

    2014-09-28

    We investigated the translational incidence energy (E{sub i}) and surface temperature (T{sub s}) dependence of CO vibrational excitation upon scattering from a clean Au(111) surface. We report absolute v = 0 → 1 excitation probabilities for E{sub i} between 0.16 and 0.84 eV and T{sub s} between 473 and 973 K. This is now only the second collision system where such comprehensive measurements are available – the first is NO on Au(111). For CO on Au(111), vibrational excitation occurs via direct inelastic scattering through electron hole pair mediated energy transfer – it is enhanced by incidence translation and the electronically non-adiabatic coupling is about 5 times weaker than in NO scattering from Au(111). Vibrational excitation via the trapping desorption channel dominates at E{sub i} = 0.16 eV and quickly disappears at higher E{sub i}.

  3. Schwinger pair production in space- and time-dependent electric fields: Relating the Wigner formalism to quantum kinetic theory

    SciTech Connect

    Hebenstreit, F.; Alkofer, R.; Gies, H.

    2010-11-15

    The nonperturbative electron-positron pair production (Schwinger effect) is considered for space- and time-dependent electric fields E-vector(x-vector,t). Based on the Dirac-Heisenberg-Wigner formalism, we derive a system of partial differential equations of infinite order for the 16 irreducible components of the Wigner function. In the limit of spatially homogeneous fields the Vlasov equation of quantum kinetic theory is rediscovered. It is shown that the quantum kinetic formalism can be exactly solved in the case of a constant electric field E(t)=E{sub 0} and the Sauter-type electric field E(t)=E{sub 0}sech{sup 2}(t/{tau}). These analytic solutions translate into corresponding expressions within the Dirac-Heisenberg-Wigner formalism and allow to discuss the effect of higher derivatives. We observe that spatial field variations typically exert a strong influence on the components of the Wigner function for large momenta or for late times.

  4. Association of ADH and ALDH Genes With Alcohol Dependence in the Irish Affected Sib Pair Study of Alcohol Dependence (IASPSAD) Sample

    PubMed Central

    Kuo, Po-Hsiu; Kalsi, Gursharan; Prescott, Carol A.; Hodgkinson, Colin A.; Goldman, David; van den Oord, Edwin J.; Alexander, Jeffry; Jiang, Cizhong; Sullivan, Patrick F.; Patterson, Diana G.; Walsh, Dermot; Kendler, Kenneth S.; Riley, Brien P.

    2008-01-01

    Background: The genes coding for ethanol metabolism enzymes [alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH)] have been widely studied for their influence on the risk to develop alcohol dependence (AD). However, the relation between polymorphisms of these metabolism genes and AD in Caucasian subjects has not been clearly established. The present study examined evidence for the association of alcohol metabolism genes with AD in the Irish Affected Sib Pair Study of alcohol dependence. Methods: We conducted a case–control association study with 575 independent subjects who met Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, AD diagnosis and 530 controls. A total of 77 single nucleotide polymorphisms (SNPs) in the seven ADH (ADH1-7) and two ALDH genes (ALDH1A1 and ALDH2) were genotyped using the Illumina GoldenGate protocols. Several statistical procedures were implemented to control for false discoveries. Results: All markers with minor allele frequency greater than 0.01 were in Hardy–Weinberg equilibrium. Numerous SNPs in ADH genes showed association with AD, including one marker in the coding region of ADH1C (rs1693482 in exon6, Ile271Gln). Haplotypic association was observed in the ADH5 and ADH1C genes, and in a long haplotype block formed by the ADH1A and ADH1B loci. We detected two significant interactions between pairs of markers in intron 6 of ADH6 and intron 12 of ALDH2 (p = 5 × 10−5), and 5′ of both ADH4 and ADH1A (p = 2 × 10−4). Conclusion: We found evidence for the association of several ADH genes with AD in a sample of Western European origin. The significant interaction effects between markers in ADH and ALDH genes suggest possible epistatic roles between alcohol metabolic enzymes in the risk for AD. PMID:18331377

  5. Isovector pairing and quartet condensation in N=Z nuclei

    SciTech Connect

    Sandulescu, N.; Negrea, D.; Dukelsky, J.; Johnson, C. W.

    2012-11-20

    We introduce and study a quartet condensate model (QCM) to treat the isovector pairing correlations in N=Z nuclei, by conserving the particle number and the total spin and isospin in the ground state of such nuclei. For the calculations we choose different isovector pairing forces acting on spherical and axially deformed single particle states. The results show that the QCM model describes very well the isovector pairing correlations for nuclear systems with N=Z.

  6. Isospin in Nuclei: Isospin has been reborn as an important and useful quantum number for all nuclei.

    PubMed

    Robson, D

    1973-01-12

    The major feature of isospin in nuclei that I have discussed here is its application to all nuclei. The rebirth of this quantum number in nuclear physics occurred in the early 1960's and was initiated almost entirely by the important work of Anderson et al. (4) and Fox et al. (5). There is still great interest in the use of isospin in its fullest sense as predicted by Wigner (3), and indeed isospin concepts have been largely responsible for demonstrating that nuclei in the doubly "magic number" region of (208)Pb are remarkably in agreement with shell model theory. The early experiments have also initiated a whole new set of more sophisticated experiments (some of which I have briefly alluded to above) which promise to keep many physicists busy for a long time to come. A particularly interesting series of experiments are those being performed (15) at Duke University with high-resolution proton beams. This work shows the highly detailed nature of analogue resonances, that is, as coherent superpositions of many complicated compound states yielding a beautifully modulated wave train, the modulation being observed only in conventional experiments with poor-resolution proton beams. Similarly, nuclear theorists have been led to vastly improve their interpretation of, and computational techniques for, both nuclear reactions and nuclear structure in order to meet the more stringent tests provided by such experiments. Perhaps a lesson can be learned from the historical development of the isospin concept. In the past the belief that T . T would not significantly commute with the dynamical Hamiltonian so that isospin would not be conserved sufficiently well enough certainly delayed the nuclear travels of isospin into the realm of heavy nuclei. Hopefully the same mistake will not occur in the future for other approximate symmetries of nature. PMID:17842982

  7. Equation of State for Isospin Asymmetric Nuclear Matter Using Lane Potential

    NASA Astrophysics Data System (ADS)

    Basu, D. N.; Chowdhury, P. Roy; Samanta, C.

    2006-10-01

    A mean field calculation for obtaining the equation of state (EOS) for symmetric nuclear matter from a density dependent M3Y interaction supplemented by a zero-range potential is described. The energy per nucleon is minimized to obtain the ground state of symmetric nuclear matter. The saturation energy per nucleon used for nuclear matter calculations is determined from the co-efficient of the volume term of Bethe--Weizsäcker mass formula which is evaluated by fitting the recent experimental and estimated atomic mass excesses from Audi--Wapstra--Thibault atomic mass table by minimizing the mean square deviation. The constants of density dependence of the effective interaction are obtained by reproducing the saturation energy per nucleon and the saturation density of spin and isospin symmetric cold infinite nuclear matter. The EOS of symmetric nuclear matter, thus obtained, provide reasonably good estimate of nuclear incompressibility. Once the constants of density dependence are determined, EOS for asymmetric nuclear matter is calculated by adding to the isoscalar part, the isovector component of the M3Y interaction that do not contribute to the EOS of symmetric nuclear matter. These EOS are then used to calculate the pressure, the energy density and the velocity of sound in symmetric as well as isospin asymmetric nuclear matter.

  8. Salt dependent premelting base pair opening probabilities of B and Z DNA Poly [d(G-C)] and significance for the B-Z transition

    PubMed Central

    Chen, Y. Z.; Prohofsky, E. W.

    1993-01-01

    We calculate room temperature thermal fluctuational base pair opening probabilities of B and Z DNA Poly[d(G-C)] at various salt concentrations and discuss the significance of thermal fluctuation in facilitating base pair disruption during B to Z transition. Our calculated base pair opening probability of the B DNA at lower salt concentrations and the probability of the Z DNA at high salt concentrations are in agreement with observations. The salt dependence of the probabilities indicates a B to Z transition at a salt concentration close to the observed concentration. PMID:19431893

  9. Observation of Transverse Spin-Dependent Azimuthal Correlations of Charged Pion Pairs in p^{↑}+p at sqrt[s]=200  GeV.

    PubMed

    Adamczyk, L; Adkins, J K; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Banerjee, A; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Bouchet, J; Brandin, A V; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Calderón de la Barca Sánchez, M; Campbell, J M; Cebra, D; Cervantes, M C; Chakaberia, I; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, J H; Chen, X; Cheng, J; Cherney, M; Christie, W; Contin, G; Crawford, H J; Das, S; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; di Ruzza, B; Didenko, L; Dilks, C; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Eppley, G; Esha, R; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Federic, P; Fedorisin, J; Feng, Z; Filip, P; Fisyak, Y; Flores, C E; Fulek, L; Gagliardi, C A; Garand, D; Geurts, F; Gibson, A; Girard, M; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, S; Gupta, A; Guryn, W; Hamad, A; Hamed, A; Haque, R; Harris, J W; He, L; Heppelmann, S; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, X; Huang, H Z; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Jiang, K; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Khan, Z H; Kikola, D P; Kisel, I; Kisiel, A; Kochenda, L; Koetke, D D; Kollegger, T; Kosarzewski, L K; Kraishan, A F; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; Li, X; Li, C; Li, W; Li, Z M; Li, Y; Li, X; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, Y G; Ma, G L; Ma, L; Ma, R; Magdy, N; Majka, R; Manion, A; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; Meehan, K; Minaev, N G; Mioduszewski, S; Mohanty, B; Mondal, M M; Morozov, D; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nigmatkulov, G; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Okorokov, V; Olvitt, D; Page, B S; Pak, R; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlik, B; Pei, H; Perkins, C; Peterson, A; Pile, P; Planinic, M; Pluta, J; Poljak, N; Poniatowska, K; Porter, J; Posik, M; Poskanzer, A M; Pruthi, N K; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Roy, A; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, M K; Sharma, B; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Sikora, R; Simko, M; Skoby, M J; Smirnov, D; Smirnov, N; Song, L; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stepanov, M; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Summa, B; Sun, X; Sun, Z; Sun, X M; Sun, Y; Surrow, B; Svirida, N; Szelezniak, M A; Tang, A H; Tang, Z; Tarnowsky, T; Tawfik, A N; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Tripathy, S K; Trzeciak, B A; Tsai, O D; Ullrich, T; Underwood, D G; Upsal, I; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Varma, R; Vasiliev, A N; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Voloshin, S A; Vossen, A; Wang, G; Wang, Y; Wang, F; Wang, Y; Wang, H; Wang, J S; Webb, J C; Webb, G; Wen, L; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z G; Xie, W; Xin, K; Xu, Q H; Xu, Z; Xu, H; Xu, N; Xu, Y F; Yang, Q; Yang, Y; Yang, S; Yang, Y; Yang, C; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Yu, N; Zbroszczyk, H; Zha, W; Zhang, X P; Zhang, J; Zhang, Y; Zhang, J; Zhang, J B; Zhang, S; Zhang, Z; Zhao, J; Zhong, C; Zhou, L; Zhu, X; Zoulkarneeva, Y; Zyzak, M

    2015-12-11

    We report the observation of transverse polarization-dependent azimuthal correlations in charged pion pair production with the STAR experiment in p^{↑}+p collisions at RHIC. These correlations directly probe quark transversity distributions. We measure signals in excess of 5 standard deviations at high transverse momenta, at high pseudorapidities η>0.5, and for pair masses around the mass of the ρ meson. This is the first direct transversity measurement in p+p collisions. PMID:26705627

  10. Observation of Transverse Spin-Dependent Azimuthal Correlations of Charged Pion Pairs in p↑+p at √{s }=200 GeV

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandin, A. V.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cervantes, M. C.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, S.; Gupta, A.; Guryn, W.; Hamad, A.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, X.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jiang, K.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Koetke, D. D.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, C.; Li, W.; Li, Z. M.; Li, Y.; Li, X.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, Y. G.; Ma, G. L.; Ma, L.; Ma, R.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; Meehan, K.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V.; Olvitt, D.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Peterson, A.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, M. K.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B.; Sun, X.; Sun, Z.; Sun, X. M.; Sun, Y.; Surrow, B.; Svirida, N.; Szelezniak, M. A.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Tawfik, A. N.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, F.; Wang, Y.; Wang, H.; Wang, J. S.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z. G.; Xie, W.; Xin, K.; Xu, Q. H.; Xu, Z.; Xu, H.; Xu, N.; Xu, Y. F.; Yang, Q.; Yang, Y.; Yang, S.; Yang, Y.; Yang, C.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, X. P.; Zhang, J.; Zhang, Y.; Zhang, J.; Zhang, J. B.; Zhang, S.; Zhang, Z.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2015-12-01

    We report the observation of transverse polarization-dependent azimuthal correlations in charged pion pair production with the STAR experiment in p↑+p collisions at RHIC. These correlations directly probe quark transversity distributions. We measure signals in excess of 5 standard deviations at high transverse momenta, at high pseudorapidities η >0.5 , and for pair masses around the mass of the ρ meson. This is the first direct transversity measurement in p +p collisions.

  11. Observation of Transverse Spin-Dependent Azimuthal Correlations of Charged Pion Pairs in p^{↑}+p at sqrt[s]=200  GeV.

    PubMed

    Adamczyk, L; Adkins, J K; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Banerjee, A; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Bouchet, J; Brandin, A V; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Calderón de la Barca Sánchez, M; Campbell, J M; Cebra, D; Cervantes, M C; Chakaberia, I; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, J H; Chen, X; Cheng, J; Cherney, M; Christie, W; Contin, G; Crawford, H J; Das, S; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; di Ruzza, B; Didenko, L; Dilks, C; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Eppley, G; Esha, R; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Federic, P; Fedorisin, J; Feng, Z; Filip, P; Fisyak, Y; Flores, C E; Fulek, L; Gagliardi, C A; Garand, D; Geurts, F; Gibson, A; Girard, M; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, S; Gupta, A; Guryn, W; Hamad, A; Hamed, A; Haque, R; Harris, J W; He, L; Heppelmann, S; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, X; Huang, H Z; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Jiang, K; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Khan, Z H; Kikola, D P; Kisel, I; Kisiel, A; Kochenda, L; Koetke, D D; Kollegger, T; Kosarzewski, L K; Kraishan, A F; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; Li, X; Li, C; Li, W; Li, Z M; Li, Y; Li, X; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, Y G; Ma, G L; Ma, L; Ma, R; Magdy, N; Majka, R; Manion, A; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; Meehan, K; Minaev, N G; Mioduszewski, S; Mohanty, B; Mondal, M M; Morozov, D; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nigmatkulov, G; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Okorokov, V; Olvitt, D; Page, B S; Pak, R; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlik, B; Pei, H; Perkins, C; Peterson, A; Pile, P; Planinic, M; Pluta, J; Poljak, N; Poniatowska, K; Porter, J; Posik, M; Poskanzer, A M; Pruthi, N K; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Roy, A; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, M K; Sharma, B; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Sikora, R; Simko, M; Skoby, M J; Smirnov, D; Smirnov, N; Song, L; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stepanov, M; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Summa, B; Sun, X; Sun, Z; Sun, X M; Sun, Y; Surrow, B; Svirida, N; Szelezniak, M A; Tang, A H; Tang, Z; Tarnowsky, T; Tawfik, A N; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Tripathy, S K; Trzeciak, B A; Tsai, O D; Ullrich, T; Underwood, D G; Upsal, I; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Varma, R; Vasiliev, A N; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Voloshin, S A; Vossen, A; Wang, G; Wang, Y; Wang, F; Wang, Y; Wang, H; Wang, J S; Webb, J C; Webb, G; Wen, L; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z G; Xie, W; Xin, K; Xu, Q H; Xu, Z; Xu, H; Xu, N; Xu, Y F; Yang, Q; Yang, Y; Yang, S; Yang, Y; Yang, C; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Yu, N; Zbroszczyk, H; Zha, W; Zhang, X P; Zhang, J; Zhang, Y; Zhang, J; Zhang, J B; Zhang, S; Zhang, Z; Zhao, J; Zhong, C; Zhou, L; Zhu, X; Zoulkarneeva, Y; Zyzak, M

    2015-12-11

    We report the observation of transverse polarization-dependent azimuthal correlations in charged pion pair production with the STAR experiment in p^{↑}+p collisions at RHIC. These correlations directly probe quark transversity distributions. We measure signals in excess of 5 standard deviations at high transverse momenta, at high pseudorapidities η>0.5, and for pair masses around the mass of the ρ meson. This is the first direct transversity measurement in p+p collisions.

  12. Isospin Symmetry Along The N=Z Line In The sd Shell

    SciTech Connect

    Della Vedova, F.; Lenzi, S. M.; Farnea, E.; Nespolo, M.; Bazzacco, D.; Brandolini, F.; Lunardi, S.; Menegazzo, R.; Rossi Alvarez, C.; Ur, C.A.; Ionescu-Bujor, M.; Bucurescu, D.; Iordachescu, A.; Marginean, N.; De Angelis, G.; Axiotis, M.; Napoli, D. R.; Bizzeti-Sona, A.; Bizzeti, P.G.

    2005-04-05

    Excited states have been studied in sd-shell nuclei following the 16O (70 MeV) + 24Mg (400 {mu}g/cm2) fusion-evaporation reaction. The GASP spectrometer in conjunction with the charged-particle detector ISIS and the Neutron ring allowed the detection of the {gamma}-rays in coincidence with evaporated light particles. New data on the mirror pairs A=31 and A=35 have been obtained. In particular, the comparison between the level schemes of 35Ar and 35Cl has confirmed the importance of the electromagnetic spin-orbit term, which explains the large Mirror Energy Difference values. Evidence of isospin mixing can be deduced from the E1 transitions.

  13. No-core configuration-interaction model for the isospin- and angular-momentum-projected states

    NASA Astrophysics Data System (ADS)

    Satuła, W.; Båczyk, P.; Dobaczewski, J.; Konieczka, M.

    2016-08-01

    Background: Single-reference density functional theory is very successful in reproducing bulk nuclear properties like binding energies, radii, or quadrupole moments throughout the entire periodic table. Its extension to the multireference level allows for restoring symmetries and, in turn, for calculating transition rates. Purpose: We propose a new variant of the no-core-configuration-interaction (NCCI) model treating properly isospin and rotational symmetries. The model is applicable to any nucleus irrespective of its mass and neutron- and proton-number parity. It properly includes polarization effects caused by an interplay between the long- and short-range forces acting in the atomic nucleus. Methods: The method is based on solving the Hill-Wheeler-Griffin equation within a model space built of linearly dependent states having good angular momentum and properly treated isobaric spin. The states are generated by means of the isospin and angular-momentum projection applied to a set of low-lying (multi)particle-(multi)hole deformed Slater determinants calculated using the self-consistent Skyrme-Hartree-Fock approach. Results: The theory is applied to calculate energy spectra in N ≈Z nuclei that are relevant from the point of view of a study of superallowed Fermi β decays. In particular, a new set of the isospin-symmetry-breaking corrections to these decays is given. Conclusions: It is demonstrated that the NCCI model is capable of capturing main features of low-lying energy spectra in light and medium-mass nuclei using relatively small model space and without any local readjustment of its low-energy coupling constants. Its flexibility and a range of applicability makes it an interesting alternative to the conventional nuclear shell model.

  14. Collective aspects deduced from time-dependent microscopic mean-field with pairing: Application to the fission process

    NASA Astrophysics Data System (ADS)

    Tanimura, Yusuke; Lacroix, Denis; Scamps, Guillaume

    2015-09-01

    Given a set of collective variables, a method is proposed to obtain the associated conjugated collective momenta and masses starting from a microscopic time-dependent mean-field theory. The construction of pairs of conjugated variables is the first step to bridge microscopic and macroscopic approaches. The method is versatile and can be applied to study a large class of nuclear processes. An illustration is given here with the fission of 258Fm. Using the quadrupole moment and eventually higher-order multipole moments, the associated collective masses are estimated along the microscopic mean-field evolution. When more than one collective variable is considered, it is shown that the off-diagonal matrix elements of the inertia play a crucial role. Using the information on the quadrupole moment and associated momentum, the collective evolution is studied. It is shown that dynamical effects beyond the adiabatic limit are important. Nuclei formed after fission tend to stick together for a longer time leading to a dynamical scission point at a larger distance between nuclei compared to the one anticipated from the adiabatic energy landscape. The effective nucleus-nucleus potential felt by the emitted nuclei is finally extracted.

  15. Nuclear response theory for spin-isospin excitations in a relativistic quasiparticle-phonon coupling framework

    NASA Astrophysics Data System (ADS)

    Robin, Caroline; Litvinova, Elena

    2016-07-01

    A new theoretical approach to spin-isospin excitations in open-shell nuclei is presented. The developed method is based on the relativistic meson-exchange nuclear Lagrangian of Quantum Hadrodynamics and extends the response theory for superfluid nuclear systems beyond relativistic quasiparticle random phase approximation in the proton-neutron channel (pn-RQRPA). The coupling between quasiparticle degrees of freedom and collective vibrations (phonons) introduces a time-dependent effective interaction, in addition to the exchange of pion and ρ -meson taken into account without retardation. The time-dependent contributions are treated in the resonant time-blocking approximation, in analogy to the previously developed relativistic quasiparticle time-blocking approximation (RQTBA) in the neutral (non-isospin-flip) channel. The new method is called proton-neutron RQTBA (pn-RQTBA) and is applied to the Gamow-Teller resonance in a chain of neutron-rich nickel isotopes 68-78Ni . A strong fragmentation of the resonance along with quenching of the strength, as compared to pn-RQRPA, is obtained. Based on the calculated strength distribution, beta-decay half-lives of the considered isotopes are computed and compared to pn-RQRPA half-lives and to experimental data. It is shown that a considerable improvement of the half-life description is obtained in pn-RQTBA because of the spreading effects, which bring the lifetimes to a very good quantitative agreement with data.

  16. Masses from an inhomogeneous partial difference equation with higher-order isospin contributions

    SciTech Connect

    Masson, P.J.; Jaenecke, J.

    1988-07-01

    In the present work, a mass equation obtained as the solution of an inhomogeneous partial difference equation is used to predict masses of unknown neutron-rich and proton-rich nuclei. The inhomogeneous source terms contain shell-dependent symmetry energy expressions (quadratic in isospin), and include, as well, an independently derived shell-model Coulomb energy equation which describes all known Coulomb displacement energies with a standarad deviation of sigma/sub c/ = 41 keV. Perturbations of higher order in isospin, previously recognized as a cause of systematic effects in long-range mass extrapolations, are also incorporated. The most general solutions of the inhomogeneous difference equation have been deduced from a chi/sup 2/-minimization procedure based on the recent atomic mass adjustment of Wapstra, Audi, and Hoekstra. Subjecting the solutions further to the condition of charge symmetry preserves the accuracy of Coulomb energies and allows mass predictions for nuclei with both Ngreater than or equal toZ and Z>N. The solutions correspond to a mass equation with 470 parameters. Using this equation, 4385 mass values have been calculated for nuclei with Agreater than or equal to16 (except N = Z = odd for A<40), with a standard deviation of sigma/sub m/ = 194 keV from the experimental masses. copyright 1988 Academic Press, Inc.

  17. Isospin quartic term in the kinetic energy of neutron-rich nucleonic matter

    NASA Astrophysics Data System (ADS)

    Cai, Bao-Jun; Li, Bao-An

    2015-07-01

    The energy of a free gas of neutrons and protons is well known to be approximately isospin parabolic with a negligibly small quartic term of only 0.45 MeV at the saturation density of nuclear matter ρ0=0.16 fm-3 . Using an isospin-dependent single-nucleon momentum distribution including a high (low) momentum tail (depletion) with its shape parameters constrained by recent high-energy electron scattering and medium-energy nuclear photodisintegration experiments as well as the state-of-the-art calculations of the deuteron wave function and the equation of state of pure neutron matter near the unitary limit within several modern microscopic many-body theories, we show for the first time that the kinetic energy of interacting nucleons in neutron-rich nucleonic matter has a significant quartic term of 7.18 ±2.52 MeV. Such a large quartic term has broad ramifications in determining the equation of state of neutron-rich nucleonic matter using observables of nuclear reactions and neutron stars.

  18. Further study of α-decay in heavy isotopic chains considering the isospin effect

    NASA Astrophysics Data System (ADS)

    Qian, Yibin; Ren, Zhongzhou

    2016-06-01

    We have enhanced the deformed density-dependent cluster model to improve the quantitative description of α-decay in heavy even-even nuclei with 84≤slant Z≤slant 92. To preliminarily introduce the isospin effect into α-decay, the neutron excess term is added in the establishment of the crucial α-core potential. The proton and neutron density distributions are respectively considered in different parameterized formulas by combining them with available experimental data of both the charge radius and the neutron skin thickness. The calculated α-decay half-lives are found to be in somewhat better agreement with the experimental data as compared with our previous results. Strikingly, it is noted that the relatively large deviation between theory and experiment, along the tail of the isotopic chain, is obviously reduced and smoother. This may indicate the necessity of considering the isospin effect in α-decay, especially for extremely neutron-rich nuclei, which appears to be essential for the extended study of heaviest nuclei as well.

  19. Isospin violation in QCD sum rules for baryons

    SciTech Connect

    Adami, C. ); Drukarev, E.G. ); Ioffe, B.L. )

    1993-09-01

    We thoroughly analyze isospin-violating effects in QCD sum rules for the masses of nucleons, [Sigma], and [Xi] hyperons. After comparing with experimental mass splittings in isotopic multiplets, we obtain for the isospin breaking in the quark condensate [l angle]0[vert bar][ital [bar u]u][minus][ital [bar d]d][vert bar]0[r angle]/[l angle]0[vert bar][ital [bar u]u][vert bar]0[r angle]=(2[plus minus]1)[times]10[sup [minus]3], a value significantly smaller than the one usually adopted. We present arguments in favor of our result and critically analyze previous estimates. The value of the quark mass difference [ital m][sub [ital d

  20. Isospin mixing at finite temperature in 80Zr

    NASA Astrophysics Data System (ADS)

    Corsi, A.; Bracco, A.; Camera, F.; Crespi, F. C. L.; Giaz, A.; Leoni, S.; Montanari, D.; Nicolini, R.; Vandone, V.; Wieland, O.; Benzoni, G.; Blasi, N.; Brambilla, S.; Million, B.; Kravchuk, V. L.; Cinausero, M.; Degerlier, M.; Gramegna, F.; Marchi, T.; Barlini, S.; Bardelli, L.; Bini, M.; Casini, G.; Nannini, A.; Pasquali, G.; Poggi, G.; Baiocco, G.; Bruno, M.; D'Agostino, M.; Morelli, L.; Vannini, G.; Ciemala, M.; Kmiecik, M.; Maj, A.; Mazurek, K.; Meczynski, W.; Myalski, S.

    2012-09-01

    The degree of isospin mixing in the hot compound nucleus 80Zr has been extracted by statistical-model analysis of the γ-decay spectrum emitted in fusion reactions 40Ca+40Ca at Ebeam = 200 MeV and 37Cl+44Ca at Ebeam = 153 MeV. In the case of 40Ca+40Ca reaction an hindrance of first-step γ-decay is expected because in self-conjugate nuclei the E1 selection rules forbid the decay between states with isospin I=0. The results obtained at finite temperature (T ~ 2 MeV) have been used to extrapolate the degree of mixing at zero temperature

  1. Multipion correlations induced by isospin conservation of coherent emission

    NASA Astrophysics Data System (ADS)

    Gangadharan, Dhevan

    2016-11-01

    Recent measurements have revealed a significant suppression of multipion Bose-Einstein correlations in heavy-ion collisions at the LHC. The suppression may be explained by postulating coherent pion emission. Typically, the suppression of Bose-Einstein correlations due to coherence is taken into account with the coherent state formalism in quantum optics. However, since charged pion correlations are most often measured, the additional constraint of isospin conservation, which is absent in quantum optics, needs to be taken into account. As a consequence, correlations emerge between pions of opposite charge. A calculation of the correlations induced by isospin conservation of coherent emission is made for two, three- and four-pion correlation functions and compared to the data from the LHC.

  2. Isospin effects on neutrons as a probe of nuclear dissipation

    SciTech Connect

    Ye, W.

    2009-03-15

    Based on a dynamical Langevin equation coupled with a statistical decay model, we calculate the excess of the precision neutron multiplicity of the heavy nuclei {sup 240}Cf, {sup 246}Cf, {sup 252}Cf, and {sup 240}U over that predicted by the standard statistical model as a function of the postsaddle dissipation strength. We find that with increasing isospin of the system, the sensitivity of the excess to the dissipation strength decreases substantially. Moreover, for {sup 240}U, this excess is no longer sensitive to the nuclear dissipation. These results suggest that, on the experimental side, to accurately obtain information of the postsaddle dissipation strength by measuring the neutron multiplicity evaporated during the fission process of heavy nuclei, it is best to populate those compound systems with low isospin.

  3. Isospin-violating dark matter from a double portal

    SciTech Connect

    Bélanger, Geneviève; Goudelis, Andreas; Park, Jong-Chul; Pukhov, Alexander E-mail: andreas.goudelis@lapth.cnrs.fr E-mail: pukhov@lapth.cnrs.fr

    2014-02-01

    We study a simple model that can give rise to isospin-violating interactions of Dirac fermion asymmetric dark matter to protons and neutrons through the interference of a scalar and U(1)' gauge boson contribution. The model can yield a large suppression of the elastic scattering cross section off Xenon relative to Silicon thus reconciling CDMS-Si and LUX results while being compatible with LHC findings on the 126 GeV Higgs, electroweak precision tests and flavour constraints.

  4. Isospin effect on probing nuclear dissipation with fission cross sections

    NASA Astrophysics Data System (ADS)

    Tian, J.; Ye, W.

    2016-08-01

    Nuclear dissipation retards fission. Using the stochastic Langevin model, we calculate the drop of fission cross section caused by friction over its standard statistical-model value, σfdrop, as a function of the presaddle friction strength for fissioning nuclei 195Bi, 202Bi, and 209Bi as well as for different angular momenta. We find that friction effects on σfdrop are substantially enhanced with increasing isospin of the Bi system and become greater with decreasing angular momentum. Our findings suggest that in experiments, to better constrain the strength of presaddle dissipation through the measurement of fission excitation functions, it is optimal to yield those compound systems with a high isospin and a low spin. Furthermore, we analyze the data of fission excitation functions of 210Po and 209Bi systems, which are populated in p +209Bi and p +208Pb reactions and which have a high isospin and a low spin, and find that Langevin calculations with a presaddle friction strength of (3-5) ×10-21 s-1 describe these experimental fission data very well.

  5. Efficient aminoacylation of the tRNA(Ala) acceptor stem: dependence on the 2:71 base pair.

    PubMed Central

    Beuning, Penny J; Nagan, Maria C; Cramer, Christopher J; Musier-Forsyth, Karin; Gelpí, Josep-Lluis; Bashford, Donald

    2002-01-01

    Specific aminoacylation by aminoacyl-tRNA synthetases requires accurate recognition of cognate tRNA substrates. In the case of alanyl-tRNA synthetase (AlaRS), RNA duplexes that mimic the acceptor stem of the tRNA are efficient substrates for aminoacylation in vitro. It was previously shown that recognition by AlaRS is severely affected by a simple base pair transversion of the G2:C71 pair at the second position in the RNA helix. In this study, we determined the aminoacylation efficiencies of 50 variants of the tRNA(Ala) acceptor stem containing substitutions at the 2:71 position. We find that there is not a single functional group of the wild-type G2:C71 base pair that is critical for positive recognition. Rather, we observed that base-pair orientation plays an important role in recognition. In particular, pyrimidine2:purine71 combinations generally resulted in decreased aminoacylation efficiency compared to the corresponding purine:pyrimidine pair. Moreover, the activity of a pyrimidine:purine variant could be partially restored by the presence of a major groove amino group at position 71. In an attempt to understand this result further, dielectric continuum electrostatic calculations were carried out, in some cases with additional inclusion of van der Waals interaction energies, to determine interaction potentials of the wild-type duplexAla and seven 2:71 variants. This analysis revealed a positive correlation between major groove negative electrostatic potential in the vicinity of the 3:70 base pair and measured aminoacylation efficiency. PMID:12022232

  6. Isospin invariance and the vacuum polarization energy of cosmic strings

    NASA Astrophysics Data System (ADS)

    Weigel, H.; Quandt, M.; Graham, N.

    2016-08-01

    We corroborate the previously applied spectral approach to compute the vacuum polarization energy of string configurations in models similar to the standard model of particle physics. The central observation underlying this corroboration is the existence of a particular global isospin transformation of the string configuration. Under this transformation the single particle energies of the quantum fluctuations are invariant, while the inevitable implementation of regularization and renormalization requires operations that are not invariant. We verify numerically that all such variances eventually cancel, and that the vacuum polarization energy obtained in the spectral approach is indeed gauge invariant.

  7. Paired Burst Stimulation Causes GABAA Receptor-Dependent Spike Firing Facilitation in CA1 of Rat Hippocampal Slices.

    PubMed

    Tominaga, Takashi; Tominaga, Yoko

    2016-01-01

    The theta oscillation (4-8 Hz) is a pivotal form of oscillatory activity in the hippocampus that is intermittently concurrent with gamma (25-100 Hz) burst events. In in vitro preparation, a stimulation protocol that mimics the theta oscillation, theta burst stimulation (TBS), is used to induce long-term potentiation. Thus, TBS is thought to have a distinct role in the neural network of the hippocampal slice preparation. However, the specific mechanisms that make TBS induce such neural circuit modifications are still unknown. Using electrophysiology and voltage-sensitive dye imaging (VSDI), we have found that TBS induces augmentation of spike firing. The augmentation was apparent in the first couple of brief burst stimulation (100 Hz four pulses) on a TBS-train in a presence of NMDA receptor blocker (APV 50 μM). In this study, we focused on the characterizes of the NMDA independent augmentation caused by a pair of the brief burst stimulation (the first pair of the TBS; paired burst stimulation-PBS). We found that PBS enhanced membrane potential responses on VSDI signal and intracellular recordings while it was absent in the current recording under whole-cell clamp condition. The enhancement of the response accompanied the augmentation of excitatory postsynaptic potential (EPSP) to spike firing (E-S) coupling. The paired burst facilitation (PBF) reached a plateau when the number of the first burst stimulation (priming burst) exceeds three. The interval between the bursts of 150 ms resulted in the maximum PBF. Gabazine (a GABAA receptor antagonist) abolished PBF. The threshold for spike generation of the postsynaptic cells measured with a current injection to cells was not lowered by the priming burst of PBS. These results indicate that PBS activates the GABAergic system to cause short-term E-S augmentation without raising postsynaptic excitability. We propose that a GABAergic system of area CA1 of the hippocampus produce the short-term E-S plasticity that could

  8. Dirac-Hartree-Bogoliubov calculation for spherical and deformed hot nuclei: Temperature dependence of the pairing energy and gaps, nuclear deformation, nuclear radii, excitation energy, and entropy

    NASA Astrophysics Data System (ADS)

    Lisboa, R.; Malheiro, M.; Carlson, B. V.

    2016-02-01

    Background: Unbound single-particle states become important in determining the properties of a hot nucleus as its temperature increases. We present relativistic mean field (RMF) for hot nuclei considering not only the self-consistent temperature and density dependence of the self-consistent relativistic mean fields but also the vapor phase that takes into account the unbound nucleon states. Purpose: The temperature dependence of the pairing gaps, nuclear deformation, radii, binding energies, entropy, and caloric curves of spherical and deformed nuclei are obtained in self-consistent RMF calculations up to the limit of existence of the nucleus. Method: We perform Dirac-Hartree-Bogoliubov (DHB) calculations for hot nuclei using a zero-range approximation to the relativistic pairing interaction to calculate proton-proton and neutron-neutron pairing energies and gaps. A vapor subtraction procedure is used to account for unbound states and to remove long range Coulomb repulsion between the hot nucleus and the gas as well as the contribution of the external nucleon gas. Results: We show that p -p and n -n pairing gaps in the S10 channel vanish for low critical temperatures in the range Tcp≈0.6 -1.1 MeV for spherical nuclei such as 90Zr, 124Sn, and 140Ce and for both deformed nuclei 150Sm and 168Er. We found that superconducting phase transition occurs at Tcp=1.03 Δp p(0 ) for 90Zr, Tcp=1.16 Δp p(0 ) for 140Ce, Tcp=0.92 Δp p(0 ) for 150Sm, and Tcp=0.97 Δp p(0 ) for 168Er. The superfluidity phase transition occurs at Tcp=0.72 Δn n(0 ) for 124Sn, Tcp=1.22 Δn n(0 ) for 150Sm, and Tcp=1.13 Δn n(0 ) for 168Er. Thus, the nuclear superfluidity phase—at least for this channel—can only survive at very low nuclear temperatures and this phase transition (when the neutron gap vanishes) always occurs before the superconducting one, where the proton gap is zero. For deformed nuclei the nuclear deformation disappear at temperatures of about Tcs=2.0 -4.0 MeV , well above the

  9. Energy relaxation and separation of a hot electron-hole pair in organic aggregates from a time-dependent wavepacket diffusion method

    SciTech Connect

    Han, Lu; Liang, WanZhen; Zhao, Yi; Zhong, Xinxin

    2014-06-07

    The time-dependent wavepacket diffusive method [X. Zhong and Y. Zhao, J. Chem. Phys. 138, 014111 (2013)] is extended to investigate the energy relaxation and separation of a hot electron-hole pair in organic aggregates with incorporation of Coulomb interaction and electron-phonon coupling. The pair initial condition generated by laser pulse is represented by a Gaussian wavepacket with a central momentum. The results reveal that the hot electron energy relaxation is very well described by two rate processes with the fast rate much larger than the slow one, consistent with experimental observations, and an efficient electron-hole separation is accomplished accompanying the fast energy relaxation. Furthermore, although the extra energy indeed helps the separation by overcoming the Coulomb interaction, the width of initial wavepacket is much sensitive to the separation efficiency and the narrower wavepacket generates the more separated charges. This behavior may be useful to understand the experimental controversy of the hot carrier effect on charge separation.

  10. Population based study of prevalence of islet cell autoantibodies in monozygotic and dizygotic Danish twin pairs with insulin dependent diabetes mellitus.

    PubMed Central

    Petersen, J. S.; Kyvik, K. O.; Bingley, P. J.; Gale, E. A.; Green, A.; Dyrberg, T.; Beck-Nielsen, H.

    1997-01-01

    OBJECTIVE: To study the comparative importance of environment and genes in the development of islet cell autoimmunity associated with insulin dependent diabetes mellitus. DESIGN: Population based study of diabetic twins. SETTING: Danish population. SUBJECTS: 18 monozygotic and 36 dizygotic twin pairs with one or both partners having insulin dependent diabetes. MAIN OUTCOME MEASURES: Presence of islet cell antibodies, insulin autoantibodies, and autoantibodies to glutamic acid decarboxylase (GAD65) in serum samples from twin pairs 10 years (range 0-30 years) and 9.5 years (2-30 years) after onset of disease. RESULTS: In those with diabetes the prevalence of islet cell antibodies, insulin autoantibodies, and autoantibodies to glutamic acid decarboxylase in the 26 monozygotic twins was 38%, 85%, and 92%, respectively, and in the dizygotic twins was 57%, 70%, and 57%, respectively. In those without diabetes the proportions were 20%, 50%, and 40% in the 10 monozygotic twins and 26%, 49%, and 40% in the 35 dizygotic twins. CONCLUSION: There is no difference between the prevalence of islet cell autoantibodies in dizygotic and monozygotic twins without diabetes, suggesting that islet cell autoimmunity is environmentally rather than genetically determined. Furthermore, the prevalence of islet cell antibodies was higher in the non-diabetic twins than in other first degree relatives of patients with insulin dependent diabetes. This implies that the prenatal or early postnatal period during which twins are exposed to the same environment, in contrast with that experienced by first degree relatives, is of aetiological importance. PMID:9169400

  11. Oxytocin has dose-dependent developmental effects on pair-bonding and alloparental care in female prairie voles.

    PubMed

    Bales, Karen L; van Westerhuyzen, Julie A; Lewis-Reese, Antoniah D; Grotte, Nathaniel D; Lanter, Jalene A; Carter, C Sue

    2007-08-01

    The present study examines the developmental consequences of neonatal exposure to oxytocin on adult social behaviors in female prairie voles (Microtus ochrogaster). Female neonates were injected within 24 h of birth with isotonic saline or one of four dosages of oxytocin (OT). As adults, females were tested in an elevated plus-maze paradigm (a measure of anxiety and exploratory behavior), and for alloparental behavior and partner preferences. At 2 mg/kg OT, females took longer to approach pups, but were the only group to form a statistically significant within-group partner preference. At 4 mg/kg OT, females retrieved pups significantly more frequently but no longer displayed a partner preference; while females treated developmentally with 8 mg/kg spent significantly more time in side-to-side contact with a male stranger than any other treatment group. OT may have broad developmental consequences, but these effects are not linear and may both increase and decrease the propensity to display behaviors such as pair-bonding. PMID:17553502

  12. Age-Dependent Differences in the Strength and Persistence of Psychostimulant-Induced Conditioned Activity in Rats: Effects of a Single Environment-Cocaine Pairing

    PubMed Central

    McDougall, Sanders A.; Pipkin, Joseph A.; Der-Ghazarian, Taleen; Cortez, Anthony M.; Gutierrez, Arnold; Lee, Ryan J.; Carbajal, Sandra; Mohd-Yusof, Alena

    2014-01-01

    The purpose of the present study was to determine the strength and persistence of cocaine-induced conditioned activity in young and adult rats. A one-trial protocol has proven useful for studying the ontogeny of psychostimulant-induced behavioral sensitization; therefore, a similar procedure was used to examine conditioned activity. On postnatal day (PD) 19 or PD 80, rats were injected with saline or cocaine in either a novel test chamber or the home cage. After various drug abstinence intervals (1–21 days), rats were injected with saline and returned to the test chamber, where conditioned activity was assessed. In a separate experiment, we examined whether cocaine-induced conditioned activity was a consequence of Pavlovian conditioning or a failure to habituate to the test environment. The results showed that adult rats exhibited strong one-trial conditioned activity that persisted for at least 21 days, whereas young rats did not show a conditioned locomotor response. The conditioned activity exhibited by adult rats did not result from a failure to habituate to the cocaine-paired environment. These results indicate that cocaine-paired contextual stimuli differentially affect behavior depending on age of the animal. The data provided by adult rats have potential translational relevance for humans because a single environment-drug pairing caused long-term alterations in behavior. PMID:25171082

  13. Sequence-Dependent T:G Base Pair Opening in DNA Double Helix Bound by Cren7, a Chromatin Protein Conserved among Crenarchaea

    PubMed Central

    Tian, Lei; Zhang, Zhenfeng; Wang, Hanqian; Zhao, Mohan; Dong, Yuhui; Gong, Yong

    2016-01-01

    T:G base pair arising from spontaneous deamination of 5mC or polymerase errors is a great challenge for DNA repair of hyperthermophilic archaea, especially Crenarchaea. Most strains in this phylum lack the protein homologues responsible for the recognition of the mismatch in the DNA repair pathways. To investigate whether Cren7, a highly conserved chromatin protein in Crenarchaea, serves a role in the repair of T:G mispairs, the crystal structures of Cren7-GTAATTGC and Cren7-GTGATCGC complexes were solved at 2.0 Å and 2.1 Å. In our structures, binding of Cren7 to the AT-rich DNA duplex (GTAATTGC) induces opening of T2:G15 but not T10:G7 base pair. By contrast, both T:G mispairs in the GC-rich DNA duplex (GTGATCGC) retain the classic wobble type. Structural analysis also showed DNA helical changes of GTAATTGC, especially in the steps around the open T:G base pair, as compared to GTGATCGC or the matched DNAs. Surface plasmon resonance assays revealed a 4-fold lower binding affinity of Cren7 for GTAATTGC than that for GTGATCGC, which was dominantly contributed by the decrease of association rate. These results suggested that binding of Cren7 to DNA leads to T:G mispair opening in a sequence dependent manner, and therefore propose the potential roles of Cren7 in DNA repair. PMID:27685992

  14. Exact Solution of the Isovector Proton Neutron Pairing Hamiltonian

    SciTech Connect

    Dukelsky, J; Gueorguiev, V G; Van Isacker, P; Dimitrova, S S; Errea, B; H., S L

    2005-12-02

    The complete exact solution of the T = 1 neutron-proton pairing Hamiltonian is presented in the context of the SO(5) Richardson-Gaudin model with non-degenerate single-particle levels and including isospin-symmetry breaking terms. The power of the method is illustrated with a numerical calculation for {sup 64}Ge for a pf + g{sub 9/2} model space which is out of reach of modern shell-model codes.

  15. Trojan Penguins and Isospin Violation in Hadronic B Decays

    SciTech Connect

    Grossman, yuval

    1999-09-10

    Some rare hadronic decays of B mesons, such as B {yields} {pi}K, are sensitive to isospin-violating contributions from physics beyond the Standard Model. Although commonly referred to as electroweak penguins, such contributions can often arise through tree-level exchanges of heavy particles, or through strong-interaction loop diagrams. The Wilson coefficients of the corresponding electroweak penguin operators are calculated in a large class of New Physics models, and in many cases are found not to be suppressed with respect to the QCD penguin coefficients. Several tests for these effects using observables in B{sup {+-}} {yields} {pi}K decays are discussed, and nontrivial bounds on the couplings of the various New Physics models are derived.

  16. QCD Phase Diagram at Finite Baryon and Isospin Chemical Potentials

    SciTech Connect

    Sasaki, T.; Sakai, Y.; Yahiro, M.; Kouno, H.

    2011-10-21

    The phase structure of two-flavor QCD is explored for finite temperature T and finite baryon- and isospin-chemical potentials, {mu}{sub B} and {mu}{sub I}, by using the Polyakov-loop extended Nambu-Jona-Lasinio (PNJL) model. The PNJL model with the scalar-type eight-quark interaction can reproduce lattice QCD data in the {mu}{sub I}-T plane at {mu}{sub B} = 0. In the {mu}{sub I}-{mu}{sub B}-T space, the critical endpoint of the chiral phase transition in the {mu}{sub B}-T plane at {mu}{sub I} = 0 moves to the tricritical point of the pion-superfluidity phase transition in the {mu}{sub I}-T plane at {mu}{sub B} = 0 as {mu}{sub I} increases.

  17. Investigations of QCD at non-zero isospin density

    SciTech Connect

    Zhifeng Shi, William Detmold

    2011-12-01

    We investigate the QCD phase diagram as a function of isospin chemical potential at a fixed temperature by directly putting large numbers of {pi}{sup +}s into the system. Correlation functions of N {pi}{sup +}s systems involves N!N! contractions, and become extremely expensive when N is large. In order to alleviate this problem, a recursion relation of correlation functions has been derived in Ref. [1] that substantially reduces the number of independent contractions needed and makes the study of many pions systems be possible. In this proceeding this method is investigated numerically. We have also constructed a new method that is even more efficient, enabling us to study systems of up to 72 {pi}{sup +}s.

  18. Post-accelerator issues at the IsoSpin Laboratory

    SciTech Connect

    Chattopadhyay, S.; Nitschke, J.M.

    1994-05-01

    The workshop on ``Post-Accelerator Issues at the Isospin Laboratory`` was held at the Lawrence Berkeley Laboratory from October 27--29, 1993. It was sponsored by the Center for Beam Physics in the Accelerator and Fusion Research Division and the ISL Studies Group in the Nuclear Science Division. About forty scientists from around the world participated vigorously in this two and a half day workshop, (c.f. Agenda, Appendix D). Following various invited review talks from leading practitioners in the field on the first day, the workshop focussed around two working groups: (1) the Ion Source and Separators working group and (2) the Radio Frequency Quadrupoles and Linacs working group. The workshop closed with the two working groups summarizing and outlining the tasks for the future. This report documents the proceedings of the workshop and includes the invited review talks, the two summary talks from the working groups and individual contributions from the participants. It is a complete assemblage of state-of-the-art thinking on ion sources, low-{beta}, low(q/A) accelerating structures, e.g. linacs and RFQS, isobar separators, phase-space matching, cyclotrons, etc., as relevant to radioactive beam facilities and the IsoSpin Laboratory. We regret to say that while the fascinating topic of superconducting low-velocity accelerator structure was covered by Dr. K. Shepard during the workshop, we can only reproduce the copies of the transparencies of his talk in the Appendix, since no written manuscript was available at the time of publication of this report. The individual report have been catologed separately elsewhere.

  19. Custodial isospin violation in the Lee-Wick standard model

    SciTech Connect

    Chivukula, R. Sekhar; Farzinnia, Arsham; Foadi, Roshan; Simmons, Elizabeth H.

    2010-05-01

    We analyze the tension between naturalness and isospin violation in the Lee-Wick standard model (LW SM) by computing tree-level and fermionic one-loop contributions to the post-LEP electroweak parameters (S-circumflex, T-circumflex, W, and Y) and the Zb{sub L}b-bar{sub L} coupling. The model is most natural when the LW partners of the gauge bosons and fermions are light, but small partner masses can lead to large isospin violation. The post-LEP parameters yield a simple picture in the LW SM: the gauge sector contributes to Y and W only, with leading contributions arising at tree level, while the fermion sector contributes to S-circumflex and T-circumflex only, with leading corrections arising at one loop. Hence, W and Y constrain the masses of the LW gauge bosons to satisfy M{sub 1}, M{sub 2} > or approx. 2.4 TeV at 95% C.L. Likewise, experimental limits on T-circumflex reveal that the masses of the LW fermions must satisfy M{sub q}, M{sub t} > or approx. 1.6 TeV at 95% C.L. if the Higgs mass is light and tend to exclude the LW SM for any LW fermion masses if the Higgs mass is heavy. Contributions from the top-quark sector to the Zb{sub L}b{sub L} coupling can be even more stringent, placing a lower bound of 4 TeV on the LW fermion masses at 95% C.L.

  20. Evaluating the phase diagram at finite isospin and baryon chemical potentials in the Nambu-Jona-Lasinio model

    SciTech Connect

    Mu Chengfu; He Lianyi; Liu Yuxin

    2010-09-01

    We study the phase diagram of two-flavor dense QCD at finite isospin and baryon chemical potentials in the framework of the Nambu-Jona-Lasinio model. We focus on the case with arbitrary isospin chemical potential {mu}{sub I} and small baryon chemical potential {mu}{sub B{<=}{mu}B}{sup {chi}}where {mu}{sub B}{sup {chi}}is the critical chemical potential for the first-order chiral phase transition to happen at {mu}{sub I}=0. The {mu}{sub I}-{mu}{sub B} phase diagram shows a rich phase structure since the system undergoes a crossover from a Bose-Einstein condensate of charged pions to a BCS superfluid with condensed quark-antiquark Cooper pairs when {mu}{sub I} increases at {mu}{sub B}=0, and a nonzero baryon chemical potential serves as a mismatch between the pairing species. We observe a gapless pion condensation phase near the quadruple point ({mu}{sub I},{mu}{sub B})=(m{sub {pi}},M{sub N}-1.5m{sub {pi}}) where m{sub {pi}}, M{sub N} are the vacuum masses of pions and nucleons, respectively. The first-order chiral phase transition becomes a smooth crossover when {mu}{sub I}>0.82m{sub {pi}}. At very large isospin chemical potential, {mu}{sub I}>6.36m{sub {pi}}, an inhomogeneous Larkin-Ovchinnikov-Fulde-Ferrell superfluid phase, appears in a window of {mu}{sub B}, which should in principle exist for arbitrary large {mu}{sub I}. Between the gapless and the Larkin-Ovchinnikov-Fulde-Ferrell phases, the pion superfluid phase and the normal quark matter phase are connected by a first-order phase transition. In the normal phase above the superfluid domain, we find that charged pions are still bound states even though {mu}{sub I} becomes very large, which is quite different from that at finite temperature. Our phase diagram is in good agreement with that found in imbalanced cold atom systems.

  1. Maximal isospin few-body systems of nucleons and Ξ hyperons

    NASA Astrophysics Data System (ADS)

    Garcilazo, H.; Valcarce, A.; Vijande, J.

    2016-08-01

    By using local central Yukawa-type interactions that reproduce the low-energy parameters of the latest updates of the Nijmegen ESC08c potentials, we show that the N Ξ , N N Ξ , N Ξ Ξ , and N N Ξ Ξ systems with maximal isospin are bound. Since in these states the strong decay N Ξ →Λ Λ is forbidden by isospin conservation, these strange few-body systems will be stable under the strong interaction. These results may suggest that other states with different number of N s and Ξ s in the maximal isospin channel could also be bound.

  2. Isospin diffusion in {sup 58}Ni-induced reactions at intermediate energies. I. Experimental results

    SciTech Connect

    Galichet, E.; Rivet, M. F.; Borderie, B.; Bougault, R.; Durand, D.; Lopez, O.; Manduci, L.; Tamain, B.; Vient, E.; Dayras, R.; Volant, C.; Rosato, E.

    2009-06-15

    Isospin diffusion in semiperipheral collisions is probed as a function of the dissipated energy by studying two systems {sup 58}Ni+{sup 58}Ni and {sup 58}Ni+{sup 197}Au, over the incident energy range 52A-74A MeV. A close examination of the multiplicities of light products in the forward part of the phase space clearly shows an influence of the isospin of the target on the neutron richness of these products. A progressive isospin diffusion is observed when collisions become more central, in connection with the interaction time.

  3. Calculation of the pair potential interaction in electric double-layered magnetic fluids: a quantitative analysis of the pH-dependent phase diagram

    NASA Astrophysics Data System (ADS)

    Campos, A. F. C.; Tourinho, F. A.; da Silva, G. J.; Depeyrot, J.

    2005-03-01

    In this work, the phase behavior of an acidic EDL-MF sample based on cobalt ferrite nanoparticles is studied in absence of external magnetic field and constant temperature. An experimental pH-dependent phase diagram of the ferrofluid sample is established and the result shows three phases in different pH ranges: a sol phase in low pH conditions, a gel phase when 3.8 dependence of the nanoparticle surface charge density is taken into account in the framework of the extended DLVO pair potential theory allowing a quantitative analysis of the observed phase diagram.

  4. Isospin and deformation studies in the odd-odd N=Z nucleus {sup 54}Co

    SciTech Connect

    Rudolph, D.; Andersson, L.-L.; Ekman, J.; Erten, O.; Fahlander, C.; Johansson, E. K.; Andreoiu, C.; Bengtsson, R.; Ragnarsson, I.; Bentley, M. A.; Williams, S. J.; Carpenter, M. P.; Seweryniak, D.; Charity, R. J.; Reviol, W.; Sarantites, D. G.; Clark, R. M.; Fallon, P.; Macchiavelli, A. O.; Svensson, C. E.

    2010-11-15

    High-spin states in the odd-odd N=Z nucleus {sup 54}Co have been investigated by the fusion-evaporation reaction {sup 28}Si({sup 32}S,1{alpha}1p1n){sup 54}Co. Gamma-ray information gathered with the Ge detector array Gammasphere was correlated with evaporated particles detected in the charged particle detector system Microball and a 1{pi} neutron detector array. A significantly extended excitation scheme of {sup 54}Co is presented, which includes a candidate for the isospin T=1, 6{sup +} state of the 1f{sub 7/2}{sup -2} multiplet. The results are compared to large-scale shell-model calculations in the fp shell. Effective interactions with and without isospin-breaking terms have been used to probe isospin symmetry and isospin mixing. A quest for deformed high-spin rotational cascades proved negative. This feature is discussed by means of cranking calculations.

  5. Nonperturbative charming penguin contributions to isospin asymmetries in radiative B decays

    SciTech Connect

    Kim, Chul; Mehen, Thomas; Leibovich, Adam K.

    2008-09-01

    Recent experimental data on the radiative decays B{yields}V{gamma}, where V is a light vector meson, find small isospin violation in B{yields}K*{gamma} while isospin asymmetries in B{yields}{rho}{gamma} are of order 20%, with large uncertainties. Using soft-collinear effective theory, we calculate isospin asymmetries in these radiative B decays up to O(1/m{sub b}), also including O(v{alpha}{sub s}) contributions from nonperturbative charming penguins (NPCP). In the absence of NPCP contributions, the theoretical predictions for the asymmetries are a few percent or less. Including the NPCP can significantly increase the isospin asymmetries for both B{yields}V{gamma} modes. We also consider the effect of the NPCP on the branching ratio and CP asymmetries in B{sup {+-}}{yields}V{sup {+-}}{gamma}.

  6. Measurement of isospin mixing in {sup 80}Zr{sup *} at finite temperature

    SciTech Connect

    Corsi, A.; Bracco, A.; Camera, F.; Crespi, F. C. L.; Giaz, A.; Leoni, S.; Nicolini, R.; Vandone, V.; Wieland, O.; Benzoni, G.; Blasi, N.; Brambilla, S.; Million, B.; Barlini, S.; Bardelli, L.; Bini, M.; Casini, G.; Nannini, A.; Pasquali, G.; Poggi, G.

    2011-10-28

    Isospin mixing induced by Coulomb interaction has been measured in the compound nucleus Z = N = 40 {sup 80}Zr at T{approx}2 MeV produced in a fusion-evaporation reaction. The observable sensitive to the isospin purity of the compound nucleus is the Giant Dipole Resonance {gamma} decay. The degree of mixing of the compound nucleus has been obtained via Statistical Model analysis of the measured {gamma} spectrum.

  7. Exact two-body quantum dynamics of an electron-hole pair in semiconductor coupled quantum wells: A time-dependent approach

    NASA Astrophysics Data System (ADS)

    Grasselli, Federico; Bertoni, Andrea; Goldoni, Guido

    2016-05-01

    We simulate the time-dependent coherent dynamics of a spatially indirect exciton—an electron-hole pair with the two particles confined in different layers—in a GaAs coupled quantum well system. We use a unitary wave-packet propagation method taking into account in full the four degrees of freedom of the two particles in a two-dimensional system, including both the long-range Coulomb attraction and arbitrary two-dimensional electrostatic potentials affecting the electron and/or the hole separately. The method has been implemented for massively parallel architectures to cope with the huge numerical problem, showing good scaling properties and allowing evolution for tens of picoseconds. We have investigated both transient time phenomena and asymptotic time transmission and reflection coefficients for potential profiles consisting of (i) extended barriers and wells and (ii) a single-slit geometry. We found clear signatures of the internal two-body dynamics, with transient phenomena in the picosecond time scale which might be revealed by optical spectroscopy. Exact results have been compared with mean-field approaches which, neglecting dynamical correlations by construction, turn out to be inadequate to describe the electron-hole pair evolution in realistic experimental conditions.

  8. Form factor effects in the direct detection of isospin-violating dark matter

    SciTech Connect

    Zheng, Hao; Zhang, Zhen; Chen, Lie-Wen E-mail: malkuth@sjtu.edu.cn

    2014-08-01

    Isospin-violating dark matter (IVDM) provides a possible mechanism to ameliorate the tension among recent direct detection experiments. For IVDM, we demonstrate that the results of direct detection experiments based on neutron-rich target nuclei may depend strongly on the density dependence of the symmetry energy which is presently largely unknown and controls the neutron skin thickness that reflects the relative difference of neutron and proton form factors in the neutron-rich nuclei. In particular, using the neutron and proton form factors obtained from Skyrme-Hartree-Fock calculations by varying the symmetry energy within the uncertainty region set by the latest model-independent measurement of the neutron skin thickness of {sup 208}Pb from PREX experiment at JLab, we find that, for IVDM with neutron-to-proton coupling ratio fixed to f{sub n}/f{sub p}=-0.7, the form factor effect may enhance the sensitivity of Xe-based detectors (e.g., XENON100 and LUX) to the DM-proton cross section by a factor of 3 in the DM mass region constrained by CMDS-II(Si) and even by more than an order of magnitude for heavy DM with mass larger than 80 GeV, compared with the results using the empirical Helm form factor. Our results further indicate that the form factor effect can significantly modify the recoil spectrum of Xe-based detectors for heavy IVDM with f{sub n}/f{sub p}=-0.7.

  9. Form factor effects in the direct detection of isospin-violating dark matter

    NASA Astrophysics Data System (ADS)

    Zheng, Hao; Zhang, Zhen; Chen, Lie-Wen

    2014-08-01

    Isospin-violating dark matter (IVDM) provides a possible mechanism to ameliorate the tension among recent direct detection experiments. For IVDM, we demonstrate that the results of direct detection experiments based on neutron-rich target nuclei may depend strongly on the density dependence of the symmetry energy which is presently largely unknown and controls the neutron skin thickness that reflects the relative difference of neutron and proton form factors in the neutron-rich nuclei. In particular, using the neutron and proton form factors obtained from Skyrme-Hartree-Fock calculations by varying the symmetry energy within the uncertainty region set by the latest model-independent measurement of the neutron skin thickness of 208Pb from PREX experiment at JLab, we find that, for IVDM with neutron-to-proton coupling ratio fixed to fn/fp=-0.7, the form factor effect may enhance the sensitivity of Xe-based detectors (e.g., XENON100 and LUX) to the DM-proton cross section by a factor of 3 in the DM mass region constrained by CMDS-II(Si) and even by more than an order of magnitude for heavy DM with mass larger than 80 GeV, compared with the results using the empirical Helm form factor. Our results further indicate that the form factor effect can significantly modify the recoil spectrum of Xe-based detectors for heavy IVDM with fn/fp=-0.7.

  10. Isospin violating dark matter in Stückelberg portal scenarios

    NASA Astrophysics Data System (ADS)

    Lozano, Víctor Martín; Peiró, Miguel; Soler, Pablo

    2015-04-01

    Hidden sector scenarios in which dark matter (DM) interacts with the Standard Model matter fields through the exchange of massive Z ' bosons are well motivated by certain string theory constructions. In this work, we thoroughly study the phenomenological aspects of such scenarios and find that they present a clear and testable consequence for direct DM searches. We show that such string motivated Stückelberg portals naturally lead to isospin violating interactions of DM particles with nuclei. We find that the relations between the DM coupling to neutrons and protons for both, spin-independent ( f n /f p ) and spin-dependent ( a n /a p ) interactions, are very flexible depending on the charges of the quarks under the extra U(1) gauge groups. We show that within this construction these ratios are generically different from ±1 (i.e. different couplings to protons and neutrons) leading to a potentially measurable distinction from other popular portals. Finally, we incorporate bounds from searches for dijet and dilepton resonances at the LHC as well as LUX bounds on the elastic scattering of DM off nucleons to determine the experimentally allowed values of f n /f p and a n /a p .

  11. Isospin violating dark matter in Stückelberg portals with intersecting D-branes

    NASA Astrophysics Data System (ADS)

    Peiró, Miguel

    2016-05-01

    Certain string theory constructions are representative of the so-called hidden sector scenarios in which the hidden particles interact with the Standard Model matter fields through the exchange of massive Z‧ bosons. We show that such string motivated Stückelberg portals naturally lead to isospin violating interactions of DM particles with nuclei in direct detection experiments. We find that the ratios between the DM coupling to neutrons and protons for both, spin-independent (fn/fp ) and spin-dependent (an/ap ) interactions, are generically different from ±1, and depend on the charges of the quarks under the extra U(1) gauge groups. In order to find the experimentally allowed values of these ratios, we have incorporated constraints from searches for dijet and dilepton resonances at the LHC as well as LUX bounds on the elastic scattering of DM off nucleons. Our results highlight the importance of combining different search methods to shed light on this sort of scenarios.

  12. Pairing forces in nuclei

    SciTech Connect

    Chasman, R.R.

    1996-12-31

    In this contribution, the author mentions some features of pairing forces that are unique to nuclei and cover some areas of major interest in nuclear structure research, that involve pairing. At the level of most nuclear structure studies, nuclei are treated as consisting of two kinds of fermions (protons and neutrons) in a valence space with rather few levels. These features give rise to unique aspects of pairing forces in nuclei: (1) n-p pairing in T = 0 as well as the usual T = 1 pairing that is characteristic of like fermions; (2) a need to correct pairing calculations for the (1/N) effects that can typically be neglected in superconducting solids. An issue of current concern is the nature of the pairing interaction: several recent studies suggest a need for a density dependent form of the pairing interaction. There is a good deal of feedback between the questions of accurate calculations of pairing interactions and the form and magnitude of the pairing interaction. Finally, the authors discuss some many-body wave functions that are a generalization of the BCS wave function form, and apply them to a calculation of energy level spacings in superdeformed rotational bands.

  13. Combinatorial DNA Damage Pairing Model Based on X-Ray-Induced Foci Predicts the Dose and LET Dependence of Cell Death in Human Breast Cells

    SciTech Connect

    Vadhavkar, Nikhil; Pham, Christopher; Georgescu, Walter; Deschamps, Thomas; Heuskin, Anne-Catherine; Tang, Jonathan; Costes, Sylvain V.

    2014-09-01

    In contrast to the classic view of static DNA double-strand breaks (DSBs) being repaired at the site of damage, we hypothesize that DSBs move and merge with each other over large distances (m). As X-ray dose increases, the probability of having DSB clusters increases as does the probability of misrepair and cell death. Experimental work characterizing the X-ray dose dependence of radiation-induced foci (RIF) in nonmalignant human mammary epithelial cells (MCF10A) is used here to validate a DSB clustering model. We then use the principles of the local effect model (LEM) to predict the yield of DSBs at the submicron level. Two mechanisms for DSB clustering, namely random coalescence of DSBs versus active movement of DSBs into repair domains are compared and tested. Simulations that best predicted both RIF dose dependence and cell survival after X-ray irradiation favored the repair domain hypothesis, suggesting the nucleus is divided into an array of regularly spaced repair domains of ~;;1.55 m sides. Applying the same approach to high-linear energy transfer (LET) ion tracks, we are able to predict experimental RIF/m along tracks with an overall relative error of 12percent, for LET ranging between 30 350 keV/m and for three different ions. Finally, cell death was predicted by assuming an exponential dependence on the total number of DSBs and of all possible combinations of paired DSBs within each simulated RIF. Relative biological effectiveness (RBE) predictions for cell survival of MCF10A exposed to high-LET showed an LET dependence that matches previous experimental results for similar cell types. Overall, this work suggests that microdosimetric properties of ion tracks at the submicron level are sufficient to explain both RIF data and survival curves for any LET, similarly to the LEM assumption. Conversely, high-LET death mechanism does not have to infer linear-quadratic dose formalism as done in the LEM. In addition, the size of repair domains derived in our model

  14. Origins of the isospin violation of dark matter interactions

    SciTech Connect

    Gao, Xin; Kang, Zhaofeng; Li, Tianjun E-mail: zhaofengkang@gmail.com

    2013-01-01

    Light dark matter (DM) with a large DM-nucleon spin-independent scattering cross section and moreover proper isospin violation (ISV) f{sub n}/f{sub p} ≈ −0.7 may provide a way to understand the confusing DM direct detection results. Further using the stringent astrophysical and collider constraints, we systematically investigate the origin of ISV first via general operator analyses and further via specifying three types of mediators: a light Z' from chiral U(1){sub X}, an approximate spectator Higgs doublet (It can explain the W+jj anomaly simultaneously) and color triplets. In addition, although Z' from an exotic U(1){sub X} mixing with U(1){sub Y} generates only f{sub n} = 0, we can combine it with the conventional Higgs to achieve the proper ISV. As a concrete example, we propose the U(1){sub X} model where the U(1){sub X} charged light sneutrino is an inelastic DM, which dominantly annihilates to light dark states such as Z' with sub-GeV mass. The model can consistently (with other DM direct detection results) and safely interpret the recent GoGeNT annual modulation result.

  15. Isospin Symmetry at High Spin Studied via Nucleon Knockout from Isomeric States

    NASA Astrophysics Data System (ADS)

    Milne, S. A.; Bentley, M. A.; Simpson, E. C.; Baugher, T.; Bazin, D.; Berryman, J. S.; Bruce, A. M.; Davies, P. J.; Diget, C. Aa.; Gade, A.; Henry, T. W.; Iwasaki, H.; Lemasson, A.; Lenzi, S. M.; McDaniel, S.; Napoli, D. R.; Nichols, A. J.; Ratkiewicz, A.; Scruton, L.; Stroberg, S. R.; Tostevin, J. A.; Weisshaar, D.; Wimmer, K.; Winkler, R.

    2016-08-01

    One-neutron knockout reactions have been performed on a beam of radioactive 53Co in a high-spin isomeric state. The analysis is shown to yield a highly selective population of high-spin states in an exotic nucleus with a significant cross section, and hence represents a technique that is applicable to the planned new generation of fragmentation-based radioactive beam facilities. Additionally, the relative cross sections among the excited states can be predicted to a high level of accuracy when reliable shell-model input is available. The work has resulted in a new level scheme, up to the 1 1+ band-termination state, of the proton-rich nucleus 52Co (Z =27 , N =25 ). This has in turn enabled a study of mirror energy differences in the A =52 odd-odd mirror nuclei, interpreted in terms of isospin-nonconserving (INC) forces in nuclei. The analysis demonstrates the importance of using a full set of J -dependent INC terms to explain the experimental observations.

  16. Isospin Symmetry at High Spin Studied via Nucleon Knockout from Isomeric States.

    PubMed

    Milne, S A; Bentley, M A; Simpson, E C; Baugher, T; Bazin, D; Berryman, J S; Bruce, A M; Davies, P J; Diget, C Aa; Gade, A; Henry, T W; Iwasaki, H; Lemasson, A; Lenzi, S M; McDaniel, S; Napoli, D R; Nichols, A J; Ratkiewicz, A; Scruton, L; Stroberg, S R; Tostevin, J A; Weisshaar, D; Wimmer, K; Winkler, R

    2016-08-19

    One-neutron knockout reactions have been performed on a beam of radioactive ^{53}Co in a high-spin isomeric state. The analysis is shown to yield a highly selective population of high-spin states in an exotic nucleus with a significant cross section, and hence represents a technique that is applicable to the planned new generation of fragmentation-based radioactive beam facilities. Additionally, the relative cross sections among the excited states can be predicted to a high level of accuracy when reliable shell-model input is available. The work has resulted in a new level scheme, up to the 11^{+} band-termination state, of the proton-rich nucleus ^{52}Co (Z=27, N=25). This has in turn enabled a study of mirror energy differences in the A=52 odd-odd mirror nuclei, interpreted in terms of isospin-nonconserving (INC) forces in nuclei. The analysis demonstrates the importance of using a full set of J-dependent INC terms to explain the experimental observations. PMID:27588851

  17. Polarization dependence of phase-sensitive optical time-domain reflectometry and its suppression method based on orthogonal-state of polarization pulse pair

    NASA Astrophysics Data System (ADS)

    Zhang, Yixin; Xu, Yemian; Shan, Yuanyuan; Sun, Zhenhong; Zhu, Fan; Zhang, Xuping

    2016-07-01

    Phase-sensitive optical time-domain reflectometry (Φ-OTDR) has been widely used in various applications for its distributed measurement capability of dynamic disturbance along the entire sensing fiber. Commonly, the sensing system is considered to be only sensitive to the phase change and capable of detecting multiple vibration events. In application, once any of the vibration events leads to a local birefringence change, the polarization evolution of the signal will be disturbed along the following fiber, which will result in the generation of polarization-related noise and the failure of identification for multipoint vibration events. We will reveal the polarization-dependence of Φ-OTDR both theoretically and experimentally. To suppress the polarization-dependence of Φ-OTDR, an orthogonal-state of polarization pulse pair method has been proposed, making the sensing system purely phase-sensitive. The experiment result has shown that maximum noise suppression ratio of 11.2 dB and mean noise suppression ratio of 4.9 dB could be achieved, which confirmed the validity of the proposed method.

  18. Pick a Pair. Pancake Pairs

    ERIC Educational Resources Information Center

    Miller, Pat

    2005-01-01

    Cold February weather and pancakes are a traditional pairing. Pancake Day began as a way to eat up the foods that were abstained from in Lent--traditionally meat, fat, eggs and dairy products. The best-known pancake event is The Pancake Day Race in Buckinghamshire, England, which has been run since 1445. This column describes pairs of books that…

  19. Critical Schwinger Pair Production.

    PubMed

    Gies, Holger; Torgrimsson, Greger

    2016-03-01

    We investigate Schwinger pair production in spatially inhomogeneous electric backgrounds. A critical point for the onset of pair production can be approached by fields that marginally provide sufficient electrostatic energy for an off-shell long-range electron-positron fluctuation to become a real pair. Close to this critical point, we observe features of universality which are analogous to continuous phase transitions in critical phenomena with the pair-production rate serving as an order parameter: electric backgrounds can be subdivided into universality classes and the onset of pair production exhibits characteristic scaling laws. An appropriate design of the electric background field can interpolate between power-law scaling, essential Berezinskii-Kosterlitz-Thouless-type scaling, and a power-law scaling with log corrections. The corresponding critical exponents only depend on the large-scale features of the electric background, whereas the microscopic details of the background play the role of irrelevant perturbations not affecting criticality. PMID:26991162

  20. Isospin properties of quark matter from a 3-flavor NJL model

    NASA Astrophysics Data System (ADS)

    Liu, He; Xu, Jun; Chen, Lie-Wen; Sun, Kai-Jia

    2016-09-01

    We have studied the properties of hot and dense quark matter based on the 3-flavor Nambu-Jona-Lasinio (NJL) model as well as its Polyakov-loop extension (pNJL) with scalar-isovector and vector-isovector couplings. Provided a considerable large isospin asymmetry or isospin chemical potential, isospin splittings of constituent mass, chiral phase transition boundary, and critical point for u and d quarks can be observed for positive isovector coupling constants but are suppressed for negative ones. The quark matter symmetry energy decreases with the increasing isovector coupling constant, and is mostly enhanced in the pNJL model than in the NJL model. A positive scalar-isovector coupling constant is more likely to lead to an unstable isospin asymmetric quark matter. The isovector coupling has been further found to affect particle fractions as well as the equation of state in hybrid stars. Possible effects on the isospin properties of quark matter have also been discussed if the strangeness sector is further broken among the flavor symmetry.

  1. Impact of land-use on carbon storage as dependent on soil texture: evidence from a desertified dryland using repeated paired sampling design.

    PubMed

    Ye, Xuehua; Tang, Shuangli; Cornwell, William K; Gao, Shuqin; Huang, Zhenying; Dong, Ming; Cornelissen, Johannes H C

    2015-03-01

    Desertification resulting from land-use affects large dryland areas around the world, accompanied by carbon loss. However it has been difficult to interpret different land-use contributions to carbon pools owing to confounding factors related to climate, topography, soil texture and other original soil properties. To avoid such confounding effects, a unique systematic and extensive repeated design of paired sampling plots of different land-use types was adopted on Ordos Plateau, N China. The sampling enabled to quantify the effects of the predominant land-use types on carbon storage as dependent on soil texture, and to define the most promising land-use choices for carbon storage, both in grassland on sandy soil and in desert grassland on brown calcareous soil. The results showed that (1) desertification control should be an effective measure to improve the carbon sequestration in sandy grassland, and shrub planting should be better than grass planting; (2) development of man-made grassland should be a good choice to solve the contradictions of ecology and economy in desert grassland; (3) grassland on sandy soil is more vulnerable to soil degradation than desert grassland on brown calcareous soil. The results may be useful for the selection of land-use types, aiming at desertification prevention in drylands. Follow-up studies should directly investigate the role of soil texture on the carbon storage dynamic caused by land-use change.

  2. Single pairing spike-timing dependent plasticity in BiFeO3 memristors with a time window of 25 ms to 125 μs.

    PubMed

    Du, Nan; Kiani, Mahdi; Mayr, Christian G; You, Tiangui; Bürger, Danilo; Skorupa, Ilona; Schmidt, Oliver G; Schmidt, Heidemarie

    2015-01-01

    Memristive devices are popular among neuromorphic engineers for their ability to emulate forms of spike-driven synaptic plasticity by applying specific voltage and current waveforms at their two terminals. In this paper, we investigate spike-timing dependent plasticity (STDP) with a single pairing of one presynaptic voltage spike and one post-synaptic voltage spike in a BiFeO3 memristive device. In most memristive materials the learning window is primarily a function of the material characteristics and not of the applied waveform. In contrast, we show that the analog resistive switching of the developed artificial synapses allows to adjust the learning time constant of the STDP function from 25 ms to 125 μs via the duration of applied voltage spikes. Also, as the induced weight change may degrade, we investigate the remanence of the resistance change for several hours after analog resistive switching, thus emulating the processes expected in biological synapses. As the power consumption is a major constraint in neuromorphic circuits, we show methods to reduce the consumed energy per setting pulse to only 4.5 pJ in the developed artificial synapses. PMID:26175666

  3. Impact of land-use on carbon storage as dependent on soil texture: evidence from a desertified dryland using repeated paired sampling design.

    PubMed

    Ye, Xuehua; Tang, Shuangli; Cornwell, William K; Gao, Shuqin; Huang, Zhenying; Dong, Ming; Cornelissen, Johannes H C

    2015-03-01

    Desertification resulting from land-use affects large dryland areas around the world, accompanied by carbon loss. However it has been difficult to interpret different land-use contributions to carbon pools owing to confounding factors related to climate, topography, soil texture and other original soil properties. To avoid such confounding effects, a unique systematic and extensive repeated design of paired sampling plots of different land-use types was adopted on Ordos Plateau, N China. The sampling enabled to quantify the effects of the predominant land-use types on carbon storage as dependent on soil texture, and to define the most promising land-use choices for carbon storage, both in grassland on sandy soil and in desert grassland on brown calcareous soil. The results showed that (1) desertification control should be an effective measure to improve the carbon sequestration in sandy grassland, and shrub planting should be better than grass planting; (2) development of man-made grassland should be a good choice to solve the contradictions of ecology and economy in desert grassland; (3) grassland on sandy soil is more vulnerable to soil degradation than desert grassland on brown calcareous soil. The results may be useful for the selection of land-use types, aiming at desertification prevention in drylands. Follow-up studies should directly investigate the role of soil texture on the carbon storage dynamic caused by land-use change. PMID:25560656

  4. Single pairing spike-timing dependent plasticity in BiFeO3 memristors with a time window of 25 ms to 125 μs

    PubMed Central

    Du, Nan; Kiani, Mahdi; Mayr, Christian G.; You, Tiangui; Bürger, Danilo; Skorupa, Ilona; Schmidt, Oliver G.; Schmidt, Heidemarie

    2015-01-01

    Memristive devices are popular among neuromorphic engineers for their ability to emulate forms of spike-driven synaptic plasticity by applying specific voltage and current waveforms at their two terminals. In this paper, we investigate spike-timing dependent plasticity (STDP) with a single pairing of one presynaptic voltage spike and one post-synaptic voltage spike in a BiFeO3 memristive device. In most memristive materials the learning window is primarily a function of the material characteristics and not of the applied waveform. In contrast, we show that the analog resistive switching of the developed artificial synapses allows to adjust the learning time constant of the STDP function from 25 ms to 125 μs via the duration of applied voltage spikes. Also, as the induced weight change may degrade, we investigate the remanence of the resistance change for several hours after analog resistive switching, thus emulating the processes expected in biological synapses. As the power consumption is a major constraint in neuromorphic circuits, we show methods to reduce the consumed energy per setting pulse to only 4.5 pJ in the developed artificial synapses. PMID:26175666

  5. Effective Field Theory and Isospin Violation in Few-Nucleon Systems

    SciTech Connect

    Evgeny Epelbaum

    2004-08-01

    I discuss the leading and subleading isospin--breaking three--nucleon forces in the chiral effective field theory framework. I have discussed the leading and subleading isospin-violating 3NFs. The leading contributions are generated by one- and two-pion exchange diagrams with their strength given by the strong neutron-proton mass difference. The subleading corrections are again given by one- and two-pion exchange diagrams, driven largely by the charged-to-neutral pion mass difference and also by the electromagnetic neutron-proton mass difference and the dimension two electromagnetic LEC f{sub 1}. In the future, these isospin-breaking forces should be used to analyze few-nucleon systems based on chiral EFT.

  6. Isospin distillation with radial flow: A test of the nuclear symmetry energy

    SciTech Connect

    Colonna, M.; Baran, V.; Toro, M. Di; Wolter, H. H.

    2008-12-15

    We discuss mechanisms related to isospin transport in central collisions between neutron-rich systems at Fermi energies to gain information on the nuclear symmetry energy at and below saturation. A fully consistent study of the isospin distillation and expansion dynamics in two-component systems is presented in the framework of a stochastic transport theory. We analyze correlations between fragment observables, focusing on the study of the fragment asymmetry N/Z as a function of their kinetic energy. We find that the relation between these observables allows us to better characterize the fragmentation path and to access new information on the low-density behavior of the symmetry energy.

  7. Experimental validation of the largest calculated isospin-symmetry-breaking effect in a superallowed Fermi decay.

    PubMed

    Melconian, D; Triambak, S; Bordeanu, C; García, A; Hardy, J C; Iacob, V E; Nica, N; Park, H I; Tabacaru, G; Trache, L; Towner, I S; Tribble, R E; Zhai, Y

    2011-10-28

    A precision measurement of the γ yields following the β decay of (32)Cl has determined its isobaric-analogue branch to be (22.47(-0.18)(+0.21))%. Since it is an almost pure-Fermi decay, we can also determine the amount of isospin-symmetry breaking in this superallowed transition. We find a very large value, δ(C) = 5.3(9)%, in agreement with a shell-model calculation. This result sets a benchmark for isospin-symmetry-breaking calculations and lends support for similarly calculated, yet smaller, corrections that are currently applied to 0+ → 0 + transitions for tests of the standard model.

  8. Isospin Mixing and the Continuum Coupling in Weakly Bound Nuclei

    SciTech Connect

    Michel, N.; Nazarewicz, Witold; Ploszajczak, M.

    2010-01-01

    We investigate the near-threshold behavior of one-nucleon spectroscopic factors in mirror nuclei using the Gamow Shell Model, which simultaneously takes into account many-body correlations and continuum effects. We demonstrate that for weakly bound or unbound systems, the mirror symmetry-breaking effects are appreciable, and they manifest in large differences of spectroscopic factors in a mirror pair.

  9. Shape changes and isospin purity in highly excited light mass nuclei

    SciTech Connect

    Kicinska-Habior, M. |; Snover, K.A.; Behr, J.A.; Gossett, C.A.; Gundlach, J.H.; Drebi, Z.M.; Kaplan, M.S.; Wells, D.P.

    1993-11-01

    The statistical decay of the Giant Dipole Resonance built on a highly excited states of light-mass nuclei was studied in inclusive experiments. Results of the search for a shape change of hot, fast-rotating {sup 45}Sc and the test of the isospin purity at high excitation in {sup 28}Si and {sup 26}Al are reported.

  10. Impact of electromagnetism on phase structure for Wilson and twisted-mass fermions including isospin breaking

    NASA Astrophysics Data System (ADS)

    Horkel, Derek P.; Sharpe, Stephen R.

    2015-10-01

    In a recent paper we used chiral perturbation theory to determine the phase diagram and pion spectrum for Wilson and twisted-mass fermions at nonzero lattice spacing with nondegenerate up and down quarks. Here we extend this work to include the effects of electromagnetism, so that it is applicable to recent simulations incorporating all sources of isospin breaking. For Wilson fermions, we find that the phase diagram is unaffected by the inclusion of electromagnetism—the only effect is to raise the charged pion masses. For maximally twisted fermions, we previously took the twist and isospin-breaking directions to be different, in order that the fermion determinant is real and positive. However, this is incompatible with electromagnetic gauge invariance, and so here we take the twist to be in the isospin-breaking direction, following the RM123 Collaboration. We map out the phase diagram in this case, which has not previously been studied. The results differ from those obtained with different twist and isospin directions. One practical issue when including electromagnetism is that the critical masses for up and down quarks differ. We show that one of the criteria suggested to determine these critical masses does not work, and propose an alternative.

  11. Isospin-breaking two-nucleon force with explicit {delta} excitations

    SciTech Connect

    Epelbaum, E.; Meissner, Ulf-G.; Krebs, H.

    2008-03-15

    We study the leading isospin-breaking contributions to the two-nucleon two-pion exchange potential due to explicit {delta} degrees of freedom in chiral effective field theory. In particular, we find important contributions due to the delta mass splittings to the charge symmetry breaking potential that act opposite to the effects induced by the nucleon mass splitting.

  12. The local post-perovskite structure and its temperature dependence : atom-pair distances in CalrO{sub 3} revealed through analysis of the total x-ray scattering at high temperatures.

    SciTech Connect

    Martin, C. D.; X-Ray Science Division

    2008-08-01

    The temperature-dependent post-perovskite structure model of MgSiO{sub 3} is reinvestigated through analysis of the atom-pair distances observed experimentally via Fourier transformation of X-ray diffraction and diffuse scattering, the total X-ray scattering, from CaIrO{sub 3}. In contrast to the results of a previous Rietveld structure refinement, which shows a negative or null thermal expansion of Ir-O and Ca-O bond lengths within the average long-range structure, visual inspection of these atom-pair distances in the pair-distribution function, in addition to structure models fitted through least-squares refinement to this local-structure data, strongly suggests that these distances between atom pairs increase with temperature. The average long-range structure of CaIrO{sub 3}, visible from Rietveld structure refinement, is distinct from the short-range structure ({le} 18 {angstrom}) at all of the temperatures examined in this study (325-1114 K) and is reproduced in structure models fitted to the pair-distribution function extending to sufficiently long atom-pair distances ({ge} 50 {angstrom}). While previous data obtained with Rietveld structure refinement show the iridium coordination octahedra to distort with increasing temperature, models of the short-range structure demonstrate that these polyhedra instead reduce distortion and rotate in a manner similar to that occurring in the perovskite structure.

  13. Proton-neutron pairing and alpha-type condensation in nuclei

    SciTech Connect

    Sandulescu, N.; Negrea, D.; Gambacurta, D.

    2015-10-15

    We summarize a recent work (N. Sandulescu et al, arXiv:1507.04144) on isoscalar and isovector proton-neutron pairing treated in a formalism which conserves exactly the particle number and the isospin. The formalism is designed for self-conjugate (N=Z) systems of nucleons moving in an axially deformed mean field and interacting through the most general isovector and isoscalar pairing interactions. The ground state of these systems is described by a superposition of two types of condensates, i.e., condensates of isovector quartets, built by two isovector pairs coupled to the total isospin T=0, and condensates of isoscalar proton-neutron pairs. The comparison with the exact solutions of realistic isovector-isoscalar pairing Hamiltonians shows that this formalism is able to describe accurately the pairing correlations energies. It is also shown that, contrary to the majority of HFB calculations, in the present formalism the isovector and isoscalar pairing correlations coexist together for any pairing interactions.

  14. Aminoxyl Radicals of B/P Frustrated Lewis Pairs: Refinement of the Spin-Hamiltonian Parameters by Field- and Temperature-Dependent Pulsed EPR Spectroscopy

    PubMed Central

    de Oliveira, Marcos; Knitsch, Robert; Sajid, Muhammad; Stute, Annika; Elmer, Lisa-Maria; Kehr, Gerald; Erker, Gerhard; Magon, Claudio J.; Jeschke, Gunnar; Eckert, Hellmut

    2016-01-01

    Q-band and X-band pulsed electron paramagnetic resonance spectroscopic methods (EPR) in the solid state were employed to refine the parameters characterizing the anisotropic interactions present in six nitroxide radicals prepared by N,N addition of NO to various borane-phosphane frustrated Lewis pairs (FLPs). The EPR spectra are characterized by the g-anisotropy as well as by nuclear hyperfine coupling between the unpaired electron and the 11B/10B, 14N and 31P nuclear magnetic moments. It was previously shown that continuous-wave spectra measured at X-band frequency (9.5 GHz) are dominated by the magnetic hyperfine coupling to 14N and 31P, whereas the g-tensor values and the 11B hyperfine coupling parameters cannot be refined with high precision from lineshape fitting. On the other hand, the X-band electron spin echo envelope modulation (ESEEM) and hyperfine sublevel correlation (HYSCORE) spectra are completely dominated by the nuclear hyperfine coupling to the 11B nuclei, allowing a selective determination of their interaction parameters. In the present work this analysis has been further validated by temperature dependent ESEEM measurements. In addition, pulsed EPR data measured in the Q-band (34 GHz) are reported, which present an entirely different situation: the g-tensor components can be measured with much higher precision, and the ESEEM and HYSCORE spectra contain information about all of the 10B, 11B, 14N and 31P hyperfine interaction parameters. Based on these new results, we report here high-accuracy and precision data of the EPR spin Hamiltonian parameters measured on six FLP-NO radical species embedded in their corresponding hydroxylamine host structures. While the ESEEM spectra at Q-band frequency turn out to be very complex (due to the multinuclear contribution to the overall signal) in the HYSCORE experiment the extension over two dimensions renders a better discrimination between the different nuclear species, and the signals arising from hyperfine

  15. Aminoxyl Radicals of B/P Frustrated Lewis Pairs: Refinement of the Spin-Hamiltonian Parameters by Field- and Temperature-Dependent Pulsed EPR Spectroscopy.

    PubMed

    de Oliveira, Marcos; Knitsch, Robert; Sajid, Muhammad; Stute, Annika; Elmer, Lisa-Maria; Kehr, Gerald; Erker, Gerhard; Magon, Claudio J; Jeschke, Gunnar; Eckert, Hellmut

    2016-01-01

    Q-band and X-band pulsed electron paramagnetic resonance spectroscopic methods (EPR) in the solid state were employed to refine the parameters characterizing the anisotropic interactions present in six nitroxide radicals prepared by N,N addition of NO to various borane-phosphane frustrated Lewis pairs (FLPs). The EPR spectra are characterized by the g-anisotropy as well as by nuclear hyperfine coupling between the unpaired electron and the 11B/10B, 14N and 31P nuclear magnetic moments. It was previously shown that continuous-wave spectra measured at X-band frequency (9.5 GHz) are dominated by the magnetic hyperfine coupling to 14N and 31P, whereas the g-tensor values and the 11B hyperfine coupling parameters cannot be refined with high precision from lineshape fitting. On the other hand, the X-band electron spin echo envelope modulation (ESEEM) and hyperfine sublevel correlation (HYSCORE) spectra are completely dominated by the nuclear hyperfine coupling to the 11B nuclei, allowing a selective determination of their interaction parameters. In the present work this analysis has been further validated by temperature dependent ESEEM measurements. In addition, pulsed EPR data measured in the Q-band (34 GHz) are reported, which present an entirely different situation: the g-tensor components can be measured with much higher precision, and the ESEEM and HYSCORE spectra contain information about all of the 10B, 11B, 14N and 31P hyperfine interaction parameters. Based on these new results, we report here high-accuracy and precision data of the EPR spin Hamiltonian parameters measured on six FLP-NO radical species embedded in their corresponding hydroxylamine host structures. While the ESEEM spectra at Q-band frequency turn out to be very complex (due to the multinuclear contribution to the overall signal) in the HYSCORE experiment the extension over two dimensions renders a better discrimination between the different nuclear species, and the signals arising from hyperfine

  16. Excessive production of electron pairs by soft photons in low multiplicity ion interactions

    NASA Technical Reports Server (NTRS)

    Burnett, T. H.; Dake, S.; Fuki, M.; Gregory, J. C.; Hayashi, T.; Holynski, R.; Iwai, J.; Jones, W. V.; Jurak, A.; Lord, J. J.

    1985-01-01

    Three multiply charged primary cosmic ray interactions with carbon nuclei are reported, in which the number of materialized electron pairs within a distance of about 0.3 conversion length is larger than predicted from isospin considerations. These are the most energetic (sigma E gamma 4 TeV) of the low multiplicity ( 15 tracks) events observed in the Japanese-American Cooperative Experiment (JACEE-2) emulsion chamber.

  17. Pairing Properties of Superheavy Nuclei

    SciTech Connect

    Staszczak, A.; Dobaczewski, J.; Nazarewicz, Witold

    2007-01-01

    Pairing properties of even-even superheavy N=184 isotones are studied within the Skyrme-Hartree-Fock+BCS approach. In the particle-hole channel we take the Skyrme energy density functional SLy4, while in the particle-particle channel we employ the seniority pairing force and zero-range delta-interactions with different forms of density dependence. We conclude that the calculated static fission trajectories weakly depend on the specific form of the delta-pairing interaction. We also investigate the impact of triaxiality on the inner fission barrier and find a rather strong Z dependence of the effect.

  18. LHCb pentaquarks as a baryon-ψ (2 S ) bound state: Prediction of isospin-3/2 pentaquarks with hidden charm

    NASA Astrophysics Data System (ADS)

    Perevalova, Irina A.; Polyakov, Maxim V.; Schweitzer, Peter

    2016-09-01

    The pentaquark Pc+(4450 ) recently discovered by the LHCb has been interpreted as a bound state of Ψ (2 S ) and a nucleon. The charmonium-nucleon interaction which provides the binding mechanism is given, in the heavy-quark limit, in terms of charmonium chromoelectric polarizabilities and densities of the nucleon energy-momentum tensor. In this work, we show in a model-independent way, by exploring general properties of the effective interaction, that Ψ (2 S ) can form bound states with a nucleon and Δ . Using the Skyrme model to evaluate the effective interaction in the large-Nc limit and estimate 1 /Nc corrections, we confirm the results from prior work which were based on a different effective model (chiral quark soliton model). This shows that the interpretation of Pc+(4450 ) is remarkably robust and weakly dependent on the details of the effective theories for the nucleon energy-momentum tensor. We explore the formalism further and present robust predictions of isospin-3/2 bound states of Ψ (2 S ) and Δ with masses around 4.5 GeV and widths around 70 MeV. The approach also predicts broader resonances in the Ψ (2 S )-Δ channel at 4.9 GeV with widths of the order of 150 MeV. We discuss in which reactions these new isospin-3/2 pentaquarks with hidden charm can be observed.

  19. Isospin splittings of meson and baryon masses from three-flavor lattice QCD + QED

    NASA Astrophysics Data System (ADS)

    Horsley, R.; Nakamura, Y.; Perlt, H.; Pleiter, D.; Rakow, P. E. L.; Schierholz, G.; Schiller, A.; Stokes, R.; Stüben, H.; Young, R. D.; Zanotti, J. M.

    2016-10-01

    Lattice QCD simulations are now reaching a precision where isospin breaking effects become important. Previously, we have developed a program to systematically investigate the pattern of flavor symmetry beaking within QCD and successfully applied it to meson and baryon masses involving up, down and strange quarks. In this Letter we extend the calculations to QCD + QED and present our first results on isospin splittings in the pseudoscalar meson and baryon octets. In particular, we obtain the nucleon mass difference of {M}n-{M}p=1.35(18)(8){{MeV}} and the electromagnetic contribution to the pion splitting {M}{π +}-{M}{π 0}=4.60(20){{MeV}}. Further we report first determination of the separation between strong and electromagnetic contributions in the \\overline{{MS}} scheme.

  20. Measurement of isospin mixing at a finite temperature in 80Zr via giant dipole resonance decay

    NASA Astrophysics Data System (ADS)

    Corsi, A.; Wieland, O.; Barlini, S.; Bracco, A.; Camera, F.; Kravchuk, V. L.; Baiocco, G.; Bardelli, L.; Benzoni, G.; Bini, M.; Blasi, N.; Brambilla, S.; Bruno, M.; Casini, G.; Ciemala, M.; Cinausero, M.; Crespi, F. C. L.; D'Agostino, M.; Degerlier, M.; Giaz, A.; Gramegna, F.; Kmiecik, M.; Leoni, S.; Maj, A.; Marchi, T.; Mazurek, K.; Meczynski, W.; Million, B.; Montanari, D.; Morelli, L.; Myalski, S.; Nannini, A.; Nicolini, R.; Pasquali, G.; Poggi, G.; Vandone, V.; Vannini, G.

    2011-10-01

    Isospin mixing in the hot compound nucleus 80Zr was studied by measuring and comparing the γ-ray emission from the fusion reactions 40Ca+40Ca at Ebeam=200 MeV and 37Cl+44Ca at Ebeam=153 MeV. The γ yield associated with the giant dipole resonance is found to be different in the two reactions because, in self-conjugate nuclei, the E1 selection rules forbid the decay between states with isospin I=0. The degree of mixing is deduced from statistical-model analysis of the γ-ray spectrum emitted by the compound nucleus 80Zr with the standard parameters deduced from the γ decay of the nucleus 81Rb. The results are used to deduce the zero-temperature value, which is then compared with the latest predictions. The Coulomb spreading width is found to be independent of temperature.

  1. Differential branching fractions and isospin asymmetries of B → K (*) μ + μ - decays

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Cartelle, P. Alvarez; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassen, R.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Gutierrez, O. Aquines; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Balagura, V.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Bauer, Th.; Bay, A.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Bjørnstad, P. M.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Brambach, T.; van den Brand, J.; Bressieux, J.; Brett, D.; Britsch, M.; Britton, T.; Brook, N. H.; Brown, H.; Bursche, A.; Busetto, G.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Callot, O.; Calvi, M.; Gomez, M. Calvo; Camboni, A.; Campana, P.; Perez, D. Campora; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carranza-Mejia, H.; Carson, L.; Akiba, K. Carvalho; Casse, G.; Cassina, L.; Garcia, L. Castillo; Cattaneo, M.; Cauet, Ch.; Cenci, R.; Charles, M.; Charpentier, Ph.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Ciba, K.; Vidal, X. Cid; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coca, C.; Coco, V.; Cogan, J.; Cogneras, E.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Counts, I.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Torres, M. Cruz; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Di Canto, A.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Suárez, A. Dosil; Dossett, D.; Dovbnya, A.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Esen, S.; Evans, T.; Falabella, A.; Färber, C.; Farinelli, C.; Farry, S.; Ferguson, D.; Albor, V. Fernandez; Rodrigues, F. Ferreira; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Torreira, A. Gallas; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garofoli, J.; Tico, J. Garra; Garrido, L.; Gaspar, C.; Gauld, R.; Gavardi, L.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Giani', S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gordon, H.; Gotti, C.; Gándara, M. Grabalosa; Diaz, R. Graciani; Cardoso, L. A. Granado; Graugés, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Hartmann, T.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Morata, J. A. Hernando; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Hunt, P.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jaton, P.; Jawahery, A.; Jezabek, M.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kaballo, M.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Kelsey, M.; Kenyon, I. R.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kozlinskiy, A.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanciotti, E.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leo, S.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Liu, G.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lopez-March, N.; Lowdon, P.; Lu, H.; Lucchesi, D.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Malde, S.; Manca, G.; Mancinelli, G.; Manzali, M.; Maratas, J.; Marchand, J. F.; Marconi, U.; Benito, C. Marin; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martens, A.; Sánchez, A. Martín; Martinelli, M.; Santos, D. Martinez; Vidal, F. Martinez; Tostes, D. Martins; Massafferri, A.; Matev, R.; Mathe, Z.; Matteuzzi, C.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; McSkelly, B.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M.-N.; Rodriguez, J. Molina; Monteil, S.; Moran, D.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Mountain, R.; Muheim, F.; Müller, K.; Muresan, R.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Nicol, M.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; Oblakowska-Mucha, A.; Obraztsov, V.; Oggero, S.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, G.; Orlandea, M.; Goicochea, J. M. Otalora; Owen, P.; Oyanguren, A.; Pal, B. K.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Parkes, C.; Parkinson, C. J.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Alvarez, A. Pazos; Pearce, A.; Pellegrino, A.; Altarelli, M. Pepe; Perazzini, S.; Trigo, E. Perez; Perret, P.; Perrin-Terrin, M.; Pescatore, L.; Pesen, E.; Petridis, K.; Petrolini, A.; Olloqui, E. Picatoste; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Playfer, S.; Casasus, M. Plo; Polci, F.; Poluektov, A.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Powell, A.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Navarro, A. Puig; Punzi, G.; Qian, W.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, A.; Rinnert, K.; Molina, V. Rives; Romero, D. A. Roa; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Perez, P. Rodriguez; Roiser, S.; Romanovsky, V.; Vidal, A. Romero; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruffini, F.; Ruiz, H.; Valls, P. Ruiz; Sabatino, G.; Silva, J. J. Saborido; Sagidova, N.; Sail, P.; Saitta, B.; Guimaraes, V. Salustino; Mayordomo, C. Sanchez; Sedes, B. Sanmartin; Santacesaria, R.; Rios, C. Santamarina; Santovetti, E.; Sapunov, M.; Sarti, A.; Satriano, C.; Satta, A.; Savrie, M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Seco, M.; Semennikov, A.; Senderowska, K.; Sepp, I.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Coutinho, R. Silva; Simi, G.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, N. A.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; De Paula, B. Souza; Spaan, B.; Sparkes, A.; Spinella, F.; Spradlin, P.; Stagni, F.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Subbiah, V. K.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szilard, D.; Szumlak, T.; T'Jampens, S.; Teklishyn, M.; Tellarini, G.; Teodorescu, E.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Tran, M. T.; Tresch, M.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Garcia, M. Ubeda; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vagnoni, V.; Valenti, G.; Vallier, A.; Gomez, R. Vazquez; Regueiro, P. Vazquez; Sierra, C. Vázquez; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Diaz, M. Vieites; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; Voss, H.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Webber, A. D.; Websdale, D.; Whitehead, M.; Wicht, J.; Wiedner, D.; Wilkinson, G.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wu, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Xu, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, F.; Zhang, L.; Zhang, W. C.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zvyagin, A.

    2014-06-01

    The isospin asymmetries of B → Kμ + μ - and B → K * μ + μ - decays and the partial branching fractions of the B 0 → K 0 μ + μ -, B + → K + μ + μ - and B + → K *+ μ + μ - decays are measured as functions of the dimuon mass squared, q 2. The data used correspond to an integrated luminosity of 3 fb-1 from proton-proton collisions collected with the LHCb detector at centre-of-mass energies of 7 TeV and 8 TeV in 2011 and 2012, respectively. The isospin asymmetries are both consistent with the Standard Model expectations. The three measured branching fractions favour lower values than their respective theoretical predictions, however they are all individually consistent with the Standard Model. [Figure not available: see fulltext.

  2. Isospin decomposition of γ N →N* transitions within a dynamical coupled-channels model

    NASA Astrophysics Data System (ADS)

    Kamano, H.; Nakamura, S. X.; Lee, T.-S. H.; Sato, T.

    2016-07-01

    By extending the dynamical coupled-channels analysis performed in our previous work [Phys. Rev. C 88, 035209 (2013)], 10.1103/PhysRevC.88.035209 to include the available data of photoproduction of π mesons off neutrons, the transition amplitudes for the photoexcitation of the neutron-to-nucleon resonances, γ n →N* , at the resonance pole positions are determined. The combined fits to the data for both the proton- and neutron-target reactions also revise our results for the resonance pole positions and the γ p →N* transition amplitudes. Our results allow an isospin decomposition of the γ N →N* transition amplitudes for the isospin I =1/2 N* resonances, which is necessary for testing hadron structure models and gives crucial inputs for constructing models of neutrino-induced reactions in the nucleon resonance region.

  3. Isospin effects on light charged particles as probes of nuclear dissipation

    SciTech Connect

    Ye, W.

    2009-07-15

    The multiplicities of postsaddle protons and {alpha} particles of the heavy systems {sup 234}Cf, {sup 240}Cf, {sup 246}Cf, and {sup 240}U as functions of the postsaddle dissipation strength are calculated in the framework of a dynamical Langevin model coupled with a statistical decay model. It is found that with increasing isospin of the Cf system, the sensitivity of the postsaddle proton and {alpha}-particle multiplicity to the dissipation strength decreases substantially, and it disappears for the {sup 240}U system. We suggest that on the experimental side, to accurately probe the postsaddle dissipation strength by measuring the prescission proton and {alpha}-particle multiplicity, it is best to populate heavy compound systems with low isospin.

  4. Study of Kaon Isospin Fluctuations in Au+Au Collisions at STAR

    NASA Astrophysics Data System (ADS)

    Rose, Andrew

    2002-10-01

    Recent theoretical studies have suggested that in heavy ion collisions the formation of disoriented chiral condensates (DCC) may result from the restoration and subsequent re-breaking of chiral symmetry. Searches for DCC have so far focused on the pion sector with little attention given to the Kaon sector. Recently however, Kapusta has suggested the observation of enhanced production of Ω and \\overlineΩ at s_NN = 17 GeV, in Pb+Pb collisions, can in part be explained by the production of many small strange DCC regions. Gavin and Kapusta have additionally shown that strange DCCs production may induce anomalous fluctuations of the Kaon total isospin. We present a statistical analysis of Kaon isospin fluctuations in Au+Au collisions at 130- and 200-GeV measured with the STAR apparatus. The analysis is based on the ν_dyn fluctuation measure which correlates the production of neutral and charged kaons.

  5. Time-dependent activation of parieto-frontal networks for directing attention to tactile space. A study with paired transcranial magnetic stimulation pulses in right-brain-damaged patients with extinction.

    PubMed

    Oliveri, M; Rossini, P M; Filippi, M M; Traversa, R; Cicinelli, P; Palmieri, M G; Pasqualetti, P; Caltagirone, C

    2000-09-01

    Tactile extinction has been interpreted as an attentional disorder, closely related to hemineglect, due to hyperactivation of the unaffected hemisphere, resulting in an ipsilesional attentional bias. Paired transcranial magnetic stimulation (TMS) techniques, with a subthreshold conditioning stimulus (CS) followed at various interstimulus intervals (ISIs) by a suprathreshold test stimulus (TS), are useful for investigating intracortical inhibition and facilitation in the human motor cortex. In the present work, we investigated the effects of paired TMS over the posterior parietal and frontal cortex of the unaffected hemisphere in a group of eight right-brain-damaged patients with tactile extinction who were carrying out a bimanual tactile discrimination task. The aim of the study was to verify if paired TMS could induce selective inhibition or facilitation of the unaffected hemisphere depending on the ISI, resulting, respectively, in an improvement and a worsening of contralesional extinction. In addition, we wanted to investigate if the effects of parietal and frontal TMS on contralesional extinction appeared at different intervals, suggesting time-dependent activation in the cortical network for the processing of tactile spatial information. Paired TMS stimuli with a CS and a TS, separated by two ISIs of 1 and 10 ms, were applied over the left parietal and frontal cortex after various intervals from the presentation of bimanual cutaneous stimuli. Single-test parietal TMS stimuli improved the patients' performance, whereas paired TMS had distinct effects depending on the ISI: at ISI = 1 ms the improvement in extinction was greater than that induced by single-pulse TMS; at ISI = 10 ms we observed worsening of extinction, with complete reversal of the effects of single-pulse TMS. Compared with TMS delivered over the frontal cortex, parietal TMS improved the extinction rate in a time window that began earlier. These findings shed further light on the mechanism of

  6. Isospin transport in 84Kr+112,124Sn reactions at Fermi energies

    NASA Astrophysics Data System (ADS)

    Piantelli, S.; Casini, G.; Olmi, A.; Barlini, S.; Bini, M.; Carboni, S.; Maurenzig, P. R.; Pasquali, G.; Poggi, G.; Stefanini, A. A.; Bougault, R.; Le Neindre, N.; Lopez, O.; Parlog, M.; Vient, E.; Bonnet, E.; Chbihi, A.; Frankland, J. D.; Gruyer, D.; Rosato, E.; Spadaccini, G.; Vigilante, M.; Borderie, B.; Rivet, M. F.; Bruno, M.; Morelli, L.; Cinausero, M.; Degerlier, M.; Gramegna, F.; Marchi, T.; Alba, R.; Maiolino, C.; Santonocito, D.; Kozik, T.; Twarog, T.

    2014-03-01

    Isospin transport phenomena in dissipative heavy ion collisions have been investigated at Fermi energies with a beam of 84Kr at 35AMeV. A comparison of the /Z of light and medium products forward-emitted in the centre of mass frame when the beam impinges on two different targets, the n-poor 112Sn and the n-rich 124Sn, is presented. Data were collected by means of a three-layer telescope with very good performances in terms of mass identification (full isotopic resolution up to Z ~ 20 for ions punching through the first detector layer) built by the FAZIA Collaboration and located just beyond the grazing angle for both reactions. The /Z of the products detected when the n-rich target is used is always higher than that associated to the n-poor one; since the detector was able to measure only fragments coming from the QuasiProjectile decay and/or neck emission, the observed behaviour can be ascribed to the isospin diffusion process, driven by the isospin gradient between QuasiProjectile and QuasiTarget. Moreover, for light fragments the /Z as a function of the lab velocity of the fragment is observed to increase when we move from the QuasiProjectile velocity to the centre of mass (neck zone). This effect can be interpreted as an evidence of isospin drift driven by the density gradient between the QuasiProjectile zone (at normal density) and the more diluted neck zone.

  7. The phases of isospin asymmetric matter in the two flavor NJL model

    SciTech Connect

    S. Lawley; W. Bentz; A. W. Thomas

    2005-04-01

    We investigate the phase diagram of isospin asymmetric matter at T=0 in the two flavor Nambu-Jona-Lasinio model. Our approach describes the single nucleon as a quark-diquark bound state, the saturation properties of nuclear matter at normal densities, and the phase transition to normal or color superconducting quark matter at higher densities. The resulting equation of state of charge neutral matter is discussed.

  8. Probing the hadron-quark mixed phase at high isospin and baryon density. Sensitive observables

    NASA Astrophysics Data System (ADS)

    Di Toro, Massimo; Colonna, Maria; Greco, Vincenzo; Shao, Guo-Yun

    2016-08-01

    We discuss the isospin effect on the possible phase transition from hadronic to quark matter at high baryon density and finite temperatures. The two-Equation of State (Two-EoS) model is adopted to describe the hadron-quark phase transition in dense matter formed in heavy-ion collisions. For the hadron sector we use Relativistic Mean-Field (RMF) effective models, already tested on heavy-ion collision (HIC). For the quark phase we consider various effective models, the MIT-Bag static picture, the Nambu-Jona-Lasinio (NJL) approach with chiral dynamics and finally the NJL coupled to the Polyakov-loop field (PNJL), which includes both chiral and (de)confinement dynamics. The idea is to extract mixed phase properties which appear robust with respect to the model differences. In particular we focus on the phase transitions of isospin asymmetric matter, with two main results: i) an earlier transition to a mixed hadron-quark phase, at lower baryon density/chemical potential with respect to symmetric matter; ii) an "Isospin Distillation" to the quark component of the mixed phase, with predicted effects on the final hadron production. Possible observation signals are suggested to probe in heavy-ion collision experiments at intermediate energies, in the range of the NICA program.

  9. A new Skyrme energy density functional for a better description of spin-isospin resonances

    NASA Astrophysics Data System (ADS)

    Roca-Maza, X.; Colò, G.; Cao, Li-Gang; Sagawa, H.

    2015-10-01

    A correct determination of the isospin and spin-isospin properties of the nuclear effective interaction should lead to an accurate description of the Gamow-Teller resonance (GT), the Spin Dipole Resonance (SDR), the Giant Dipole Resonance (GDR) or the Antianalog Giant Dipole Resonance (AGDR), among others. A new Skyrme energy density functional named SAMi is introduced with the aim of going a step forward in setting the bases for a more precise description of spin-isospin resonances [1, 2]. In addition, we will discuss some new features of our analysis on the AGDR in 208Pb [3] as compared with available experimental data on this resonance [4, 5, 6], and on the GDR [7]. Such study, guided by a simple yet physical pocket formula, has been developed by employing the so called SAMi-J family of systematically varied interactions. This set of interactions is compatible with experimental data for values of the symmetry energy at saturation J and slope parameter L falling in the ranges 31-33 MeV and 75-95 MeV, respectively.

  10. A new Skyrme energy density functional for a better description of spin-isospin resonances

    SciTech Connect

    Roca-Maza, X.; Colò, G.; Cao, Li-Gang; Sagawa, H.

    2015-10-15

    A correct determination of the isospin and spin-isospin properties of the nuclear effective interaction should lead to an accurate description of the Gamow-Teller resonance (GT), the Spin Dipole Resonance (SDR), the Giant Dipole Resonance (GDR) or the Antianalog Giant Dipole Resonance (AGDR), among others. A new Skyrme energy density functional named SAMi is introduced with the aim of going a step forward in setting the bases for a more precise description of spin-isospin resonances [1, 2]. In addition, we will discuss some new features of our analysis on the AGDR in {sup 208}Pb [3] as compared with available experimental data on this resonance [4, 5, 6], and on the GDR [7]. Such study, guided by a simple yet physical pocket formula, has been developed by employing the so called SAMi-J family of systematically varied interactions. This set of interactions is compatible with experimental data for values of the symmetry energy at saturation J and slope parameter L falling in the ranges 31−33 MeV and 75−95 MeV, respectively.

  11. Pairing Learners in Pair Work Activity

    ERIC Educational Resources Information Center

    Storch, Neomy; Aldosari, Ali

    2013-01-01

    Although pair work is advocated by major theories of second language (L2) learning and research findings suggest that pair work facilitates L2 learning, what is unclear is how to best pair students in L2 classes of mixed L2 proficiency. This study investigated the nature of pair work in an English as a Foreign Language (EFL) class in a college in…

  12. Nuclear pairing from bare interaction: Two and three-body chiral forces

    SciTech Connect

    Finelli, Paolo

    2012-10-20

    In a recent paper the {sup 1}S{sub 0} pairing gap in isospin-symmetric nuclear matter and finite nuclei has been investigated starting from the chiral nucleon-nucleon potential at the N{sup 3}LO order in the two-body sector and the N{sup 2}LO order in the three-body sector. To include realistic nuclear forces in RHB (Relativistic Hartree Bolgoliubov) calculations we relied on a separable representation of the pairing interaction. In this paper we would like to show recent results concerning isotonic chains with N= 28,50,82.

  13. Specific spin-correlation dependent magnetic field effects on radical pairs photo-generated by electron transfer from biphenyl to phenyl-pyrilium salts in micelle

    NASA Astrophysics Data System (ADS)

    Parui, Partha Pratim; Manoj, N.; Banerjee, Sudip; Chowdhury, Mihir

    2009-09-01

    We have studied the magnetic field effects (MFEs) on photo-generated various geminate phenyl-pyrilium/biphenyl radical pair (PP rad /BP + rad ) of variable singlet/triplet spin-correlations within SDS micelle. When RPs are produced largely with singlet spin-correlation, the MFEs have been observed in two different time domains. It consists of both the initial ( t = 0) decrease of radical yield with field, considering nanosecond phenomenon, and comparatively slow microsecond MFE. However, the RPs of relatively lower singlet spin-correlation shows only slow μs behavior, which may indicate that only singlet spin-state is responsible for exhibiting initial stage MFEs. A kinetic scheme, based on Pedersen's 'super-cage model' for two-stage RP reaction in micelle, has been proposed for analysis.

  14. Study of hole pair condensation based on the SU(2) Slave-Boson approach to the t-J Hamiltonian: Temperature, momentum and doping dependences of spectral functions

    SciTech Connect

    Salk, S.H.S.; Lee, S.S.

    1999-11-01

    Based on the U(1) and SU(2) slave-boson approaches to the t-J Hamiltonian, the authors evaluate the one electron spectral functions for the hole doped high {Tc} cuprates for comparison with the angle resolved photoemission spectroscopy (ARPES) data. They find that the observed quasiparticle peak in the superconducting state is correlated with the hump which exists in the normal state. They find that the spectral weight of the quasiparticle peak increases as doping rate increases, which is consistent with observation. As a consequence of the phase fluctuation effects of the spinon and holon pairing order parameters the spectral weight of the predicted peak obtained from the SU(2) theory is found to be smaller than the one predicted from U(1) mean field theory.

  15. Age-Related Enhancement of a Protein Synthesis-Dependent Late Phase of LTP Induced by Low Frequency Paired-Pulse Stimulation in Hippocampus

    ERIC Educational Resources Information Center

    Huang, Yan-You; Kandel, Eric R.

    2006-01-01

    Protein synthesis-dependent late phase of LTP (L-LTP) is typically induced by repeated high-frequency stimulation (HFS). This form of L-LTP is reduced in the aged animal and is positively correlated with age-related memory loss. Here we report a novel form of protein synthesis-dependent late phase of LTP in the CA1 region of hippocampus induced by…

  16. Study of Gamow-Teller transitions with J = 0 and Jmax pairing

    NASA Astrophysics Data System (ADS)

    Garcia, Ricardo; Zamick, Larry

    2015-10-01

    Allowed Gamow-Teller transitions are sensitive to the interactions which are used. In this single j shell study, we consider the 2 extremes J = 0 pairing and Jmax pairing as well as ``half.'' Also, for comparison, a realistic interaction, MBZE. For 43Sc decay J = 0 pairing yields a maximum B(GT) for I = 7/2 to 7/2 but is zero for 7/2 to 9/2 and 7/2 to 5/2. This is tied to a selection rule that one cannot simultaneously change reduced isospin and seniority. For 46Ti I = 1 to I = 0 there is not monotonic behavior as one goes from Jmax to J = 0 pairing, explained by the fact that that there is an isospin crossover of J = 1 T = 2 as one goes to the J=0 pairing limit. Comparison with experiment is made. RG has received support via the Research Undergraduate Experience program (REU) from the U.S. National Science Foundation through grant PHY-1263280, and thanks the REU Physics program at Rutgers University for their support.

  17. On the splitting of nucleon effective masses at high isospin density: reaction observables

    SciTech Connect

    Di Toro, M.; Colonna, M.; Rizzo, J.

    2005-10-14

    We review the present status of the nucleon effective mass splitting puzzle in asymmetric matter, with controversial predictions within both non-relativistic and relativistic approaches to the effective in medium interactions. Based on microscopic transport rimulations we suggest some rather sensitive observables in collisions of asymmetric (unstable) ions at intermediate (RIA) energies: i) Energy systematics of Lane Potentials; ii) Isospin content of fast emitted nucleons; iii) Differential Collective Flows. Similar measurements for light isobars (like 3H-3He) could be also important.

  18. Model dependence of elliptic flow differences

    NASA Astrophysics Data System (ADS)

    Cozma, M. D.

    2013-02-01

    An isospin dependent version of the QMD transport model is used to study the influence of the isovector part of the equation of state of nuclear matter on observables that can be measured in heavy-ion collisions at intermediate energy. The model dependence of neutron-proton elliptic flow difference is studied for AuAu collisions at an incident energy of 400 MeV per nucleon. It is found that the sensitivity to microscopical nucleon-nucleon cross-sections, momentum dependence of the optical potential, compressibility modulus of nuclear matter and width of nucleon wave function are moderate compared to the dependence on the stiffness of the isospin asymmetric part of the equation of state. It is concluded that neutron-proton elliptic flow difference is a suitable observable for setting constraints on the supra-saturation density dependence of symmetry energy.

  19. Pair correlation functions and the wavevector-dependent surface tension in a simple density functional treatment of the liquid-vapour interface.

    PubMed

    Parry, A O; Rascón, C; Willis, G; Evans, R

    2014-09-01

    We study the density-density correlation function G(r, r') in the interfacial region of a fluid (or Ising-like magnet) with short-ranged interactions using square gradient density functional theory. Adopting a simple double parabola approximation for the bulk free-energy density, we first show that the parallel Fourier transform G(z, z'; q) and local structure factor S(z; q) separate into bulk and excess contributions. We attempt to account for both contributions by deriving an interfacial Hamiltonian, characterised by a wavevector dependent surface tension σ(q), and then reconstructing density correlations from correlations in the interface position. We show that the standard crossing criterion identification of the interface, as a surface of fixed density (or magnetization), does not explain the separation of G(z, z'; q) and the form of the excess contribution. We propose an alternative definition of the interface position based on the properties of correlations between points that 'float' with the surface and show that this describes the full q and z dependence of the excess contributions to both G and S. However, neither the 'crossing-criterion' nor the new 'floating interface' definition of σ(q) are quantities directly measurable from the total structure factor S(tot)(q) which contains additional q dependence arising from the non-local relation between fluctuations in the interfacial position and local density. Since it is the total structure factor that is measured experimentally or in simulations, our results have repercussions for earlier attempts to extract and interpret σ(q).

  20. Isospin transport and reaction mechanism in nuclear reactions in the range 20–40 MeV/n

    SciTech Connect

    Barlini, S. Piantelli, S.; Casini, G.; Olmi, A.; Bini, M.; Pasquali, G.; Poggi, G.; Stefanini, A. A.; Valdré, S.; Pastore, G.; Bougault, R.; Lopez, O.; Le Neindre, N.; Parlog, M.; Vient, E.; Bonnet, E.; Chibhi, A.; Frankland, J. D. [GANIL, CEA Borderie, B.; Rivet, M. F. [Institut de Physique Nucléaire, CNRS and others

    2015-10-15

    In recent years, many efforts have been devoted to the investigation of the isospin degree of freedom in nuclear reactions. Comparing systems involving partners with different N/Z, it has been possible to investigate the isospin transport process and its influence on the final products population. This can be then related to the symmetry energy term of the nuclear EOS. From the experimental point of view, this task requires detectors able to measure both charge and mass of the emitted products, in the widest possible range of energy and size of the fragments. With this objective, the FAZIA and GARFIELD+RCo apparatus have been used with success in some recent experiments.

  1. Isospin transport and reaction mechanism in nuclear reactions in the range 20-40 MeV/n

    NASA Astrophysics Data System (ADS)

    Barlini, S.; Piantelli, S.; Casini, G.; Olmi, A.; Bini, M.; Pasquali, G.; Poggi, G.; Stefanini, A. A.; Bougault, R.; Bonnet, E.; Borderie, B.; Chibhi, A.; Frankland, J. D.; Gruyer, D.; Lopez, O.; Le Neindre, N.; Parlog, M.; Rivet, M. F.; Vient, E.; Rosato, E.; Vigilante, M.; Bruno, M.; Marchi, T.; Morelli, L.; Cinausero, M.; Degerlier, M.; Gramegna, F.; Kozik, T.; Twarog, T.; Fabris, D.; Valdré, S.; Pastore, G.

    2015-10-01

    In recent years, many efforts have been devoted to the investigation of the isospin degree of freedom in nuclear reactions. Comparing systems involving partners with different N/Z, it has been possible to investigate the isospin transport process and its influence on the final products population. This can be then related to the symmetry energy term of the nuclear EOS. From the experimental point of view, this task requires detectors able to measure both charge and mass of the emitted products, in the widest possible range of energy and size of the fragments. With this objective, the FAZIA and GARFIELD+RCo apparatus have been used with success in some recent experiments.

  2. Holographic vector mesons from spectral functions at finite baryon or isospin density

    SciTech Connect

    Erdmenger, Johanna; Kaminski, Matthias; Rust, Felix

    2008-02-15

    We consider gauge/gravity duality with flavor for the finite-temperature field theory dual of the AdS-Schwarzschild black hole background with embedded D7-brane probes. In particular, we investigate spectral functions at finite baryon density in the black hole phase. We determine the resonance frequencies corresponding to meson-mass peaks as function of the quark mass over temperature ratio. We find that these frequencies have a minimum for a finite value of the quark mass. If the quotient of quark mass and temperature is increased further, the peaks move to larger frequencies. At the same time the peaks narrow, in agreement with the formation of nearly stable vector meson states which exactly reproduce the meson-mass spectrum found at zero temperature. We also calculate the diffusion coefficient, which has finite value for all quark mass to temperature ratios, and exhibits a first-order phase transition. Finally we consider an isospin chemical potential and find that the spectral functions display a resonance peak splitting, similar to the isospin meson-mass splitting observed in effective QCD models.

  3. Isospin symmetry violating effects and scattering length extraction from kaon decays

    SciTech Connect

    Gevorkyan, S. R.

    2013-08-15

    The isospin symmetry breaking effects in the charged kaons decays to two or three pions are considered. In semileptonic decay K{sup {+-}} {yields} {pi}{sup +}{pi}{sup -}e{sup {+-}}{nu} (called K{sub e4}) these effects turn out to be crucial for correct extraction of {pi}{pi} scattering lengths. Taking in account electromagnetic interaction between the pions in the final state and isospin symmetry breaking due to different masses of charged and neutral pions allows to adjust the values of scattering lengths obtained from experimental data on K{sub e4} decay and predictions of Chiral Perturbation Theory (ChPT). Final state interactions of pions in the decay K{sup {+-}} {yields} {pi}{sup {+-}}{pi}{sup 0}{pi}{sup 0} leading to the anomaly (cusp) in the {pi}{sup 0}{pi}{sup 0} invariant mass distribution in the vicinity of charged pions' threshold are discussed and recent results of accounting of the electromagnetic interaction among charged pions leading to {pi}{sup +}{pi}{sup -} bound states (pioniumatom) just under the charged pions' threshold are presented.

  4. Change of Electroweak Nuclear Reaction Rates by CP- and Isospin Symmetry Breaking - A Model Calculation

    NASA Astrophysics Data System (ADS)

    Stumpf, Harald

    2006-09-01

    Based on the assumption that electroweak bosons, leptons and quarks possess a substructure of elementary fermionic constituents, in previous papers the effect of CP-symmetry breaking on the effective dynamics of these particles was calculated. Motivated by the phenomenological procedure in this paper, isospin symmetry breaking will be added and the physical consequences of these calculations will be discussed. The dynamical law of the fermionic constituents is given by a relativistically invariant nonlinear spinor field equation with local interaction, canonical quantization, selfregularization and probability interpretation. The corresponding effective dynamics is derived by algebraic weak mapping theorems. In contrast to the commonly applied modifications of the quark mass matrices, CP-symmetry breaking is introduced into this algebraic formalism by an inequivalent vacuum with respect to the CP-invariant case, represented by a modified spinor field propagator. This leads to an extension of the standard model as effective theory which contains besides the "electric" electroweak bosons additional "magnetic" electroweak bosons and corresponding interactions. If furthermore the isospin invariance of the propagator is broken too, it will be demonstrated in detail that in combination with CP-symmetry breaking this induces a considerable modification of electroweak nuclear reaction rates.

  5. Chemical evidence for the pH-dependent control of ion-pair geometry in cathepsin B. Benzofuroxan as a reactivity probe sensitive to differences in the mutual disposition of the thiolate and imidazolium components of cysteine proteinase catalytic sites.

    PubMed

    Willenbrock, F; Brocklehurst, K

    1986-08-15

    Benzofuroxan reacts with the catalytic-site thiol group of cathepsin B (EC 3.4.22.1) to produce stoichiometric amount of the chromophoric reduction product, o-benzoquinone dioxime. In a study of the pH-dependence of the kinetics of this reaction, most data were collected for the bovine spleen enzyme, but the more limited data collected for the rat liver enzyme were closely similar both in the magnitude of the values of the second-order rate constants (k) and in the shape of the pH-k profile. In acidic and weakly alkaline media, the reaction is faster than the reactions of benzofuroxan with some other cysteine proteinases. For example, in the pH region around 5-6, the reaction of cathepsin B is about 10 times faster than that of papain, 15 times faster than that of stem bromelain and 6 times faster than that of ficin. The pH-dependence of k for the reaction of cathepsin B with benzofuroxan was determined in the pH range 2.7-8.3. In marked contrast with the analogous reactions of papain, ficin and stem bromelain [reported by Shipton & Brocklehurst (1977) Biochem. J. 167, 799-810], the pH-k profile for the cathepsin B reaction contains a sigmoidal component with pKa 5.2 in which k increases with decrease in pH. This modulation of the reactivity of the catalytic-site -S-/-ImH+ ion-pair state of cathepsin B (produced by protonic dissociation from -SH/-ImH+ with pKa approx. 3) towards a small, rigid, electrophilic reagent, in a reaction that appears to involve both components of the ion-pair for efficient reaction, suggests that the state of ionization of a group associated with a molecular pKa of approx. 5 may control ion-pair geometry. This might account for the remarkable finding [reported by Willenbrock & Brocklehurst (1984) Biochem. J. 222, 805-814] that, although the ion-pair appears to be generated in cathepsin B as the pH is increased across pKa 3.4, catalytic competence is not generated until the pH is increased across pKa 5-6.

  6. Pair Excitations in Fermi Fluids

    NASA Astrophysics Data System (ADS)

    Böhm, Helga M.; Krotscheck, Eckhard; Schörkhuber, Karl; Springer, Josef

    2006-09-01

    We present a theory of multi-pair excitations in strongly interacting Fermi systems. Based on an equations-of-motion approach for time-dependent pair correlations it leads to a qualitatively new structure of the density-density response function. Our theory reduces to both, i) the "correlated" random-phase approximation (RPA) for fermions if the two-pair excitations are ignored, and ii) the correlated Brillouin-Wigner perturbation theory for bosons in the appropriate limit. The theory preserves the two first energy-weighted sum rules. A familiar problem of the standard RPA is that its zero-sound mode is energetically much higher than found in experiments. The popular cure of introducing an average effective mass in the Lindhard function violates sum rules and describes the physics incorrectly. We demonstrate that the inclusion of correlated pair excitations gives the correct dispersion. As in 4He, a modification of the effective mass is unnecessary also in 3He.

  7. A Pair of Tabersonine 16-Hydroxylases Initiates the Synthesis of Vindoline in an Organ-Dependent Manner in Catharanthus roseus1[C][W

    PubMed Central

    Besseau, Sébastien; Kellner, Franziska; Lanoue, Arnaud; Thamm, Antje M.K.; Salim, Vonny; Schneider, Bernd; Geu-Flores, Fernando; Höfer, René; Guirimand, Grégory; Guihur, Anthony; Oudin, Audrey; Glevarec, Gaëlle; Foureau, Emilien; Papon, Nicolas; Clastre, Marc; Giglioli-Guivarc’h, Nathalie; St-Pierre, Benoit; Werck-Reichhart, Danièle; Burlat, Vincent; De Luca, Vincenzo; O’Connor, Sarah E.; Courdavault, Vincent

    2013-01-01

    Hydroxylation of tabersonine at the C-16 position, catalyzed by tabersonine 16-hydroxylase (T16H), initiates the synthesis of vindoline that constitutes the main alkaloid accumulated in leaves of Catharanthus roseus. Over the last decade, this reaction has been associated with CYP71D12 cloned from undifferentiated C. roseus cells. In this study, we isolated a second cytochrome P450 (CYP71D351) displaying T16H activity. Biochemical characterization demonstrated that CYP71D12 and CYP71D351 both exhibit high affinity for tabersonine and narrow substrate specificity, making of T16H, to our knowledge, the first alkaloid biosynthetic enzyme displaying two isoforms encoded by distinct genes characterized to date in C. roseus. However, both genes dramatically diverge in transcript distribution in planta. While CYP71D12 (T16H1) expression is restricted to flowers and undifferentiated cells, the CYP71D351 (T16H2) expression profile is similar to the other vindoline biosynthetic genes reaching a maximum in young leaves. Moreover, transcript localization by carborundum abrasion and RNA in situ hybridization demonstrated that CYP71D351 messenger RNAs are specifically located to leaf epidermis, which also hosts the next step of vindoline biosynthesis. Comparison of high- and low-vindoline-accumulating C. roseus cultivars also highlights the direct correlation between CYP71D351 transcript and vindoline levels. In addition, CYP71D351 down-regulation mediated by virus-induced gene silencing reduces vindoline accumulation in leaves and redirects the biosynthetic flux toward the production of unmodified alkaloids at the C-16 position. All these data demonstrate that tabersonine 16-hydroxylation is orchestrated in an organ-dependent manner by two genes including CYP71D351, which encodes the specific T16H isoform acting in the foliar vindoline biosynthesis. PMID:24108213

  8. Temperature dependent absorption cross-sections of O2-O2 collision pairs between 340 and 630 nm and at atmospherically relevant pressure.

    PubMed

    Thalman, Ryan; Volkamer, Rainer

    2013-10-01

    The collisions between two oxygen molecules give rise to O4 absorption in the Earth atmosphere. O4 absorption is relevant to atmospheric transmission and Earth's radiation budget. O4 is further used as a reference gas in Differential Optical Absorption Spectroscopy (DOAS) applications to infer properties of clouds and aerosols. The O4 absorption cross section spectrum of bands centered at 343, 360, 380, 446, 477, 532, 577 and 630 nm is investigated in dry air and oxygen as a function of temperature (203-295 K), and at 820 mbar pressure. We characterize the temperature dependent O4 line shape and provide high precision O4 absorption cross section reference spectra that are suitable for atmospheric O4 measurements. The peak absorption cross-section is found to increase at lower temperatures due to a corresponding narrowing of the spectral band width, while the integrated cross-section remains constant (within <3%, the uncertainty of our measurements). The enthalpy of formation is determined to be ΔH(250) = -0.12 ± 0.12 kJ mol(-1), which is essentially zero, and supports previous assignments of O4 as collision induced absorption (CIA). At 203 K, van der Waals complexes (O(2-dimer)) contribute less than 0.14% to the O4 absorption in air. We conclude that O(2-dimer) is not observable in the Earth atmosphere, and as a consequence the atmospheric O4 distribution is for all practical means and purposes independent of temperature, and can be predicted with an accuracy of better than 10(-3) from knowledge of the oxygen concentration profile.

  9. Temperature dependent absorption cross-sections of O2-O2 collision pairs between 340 and 630 nm and at atmospherically relevant pressure.

    PubMed

    Thalman, Ryan; Volkamer, Rainer

    2013-10-01

    The collisions between two oxygen molecules give rise to O4 absorption in the Earth atmosphere. O4 absorption is relevant to atmospheric transmission and Earth's radiation budget. O4 is further used as a reference gas in Differential Optical Absorption Spectroscopy (DOAS) applications to infer properties of clouds and aerosols. The O4 absorption cross section spectrum of bands centered at 343, 360, 380, 446, 477, 532, 577 and 630 nm is investigated in dry air and oxygen as a function of temperature (203-295 K), and at 820 mbar pressure. We characterize the temperature dependent O4 line shape and provide high precision O4 absorption cross section reference spectra that are suitable for atmospheric O4 measurements. The peak absorption cross-section is found to increase at lower temperatures due to a corresponding narrowing of the spectral band width, while the integrated cross-section remains constant (within <3%, the uncertainty of our measurements). The enthalpy of formation is determined to be ΔH(250) = -0.12 ± 0.12 kJ mol(-1), which is essentially zero, and supports previous assignments of O4 as collision induced absorption (CIA). At 203 K, van der Waals complexes (O(2-dimer)) contribute less than 0.14% to the O4 absorption in air. We conclude that O(2-dimer) is not observable in the Earth atmosphere, and as a consequence the atmospheric O4 distribution is for all practical means and purposes independent of temperature, and can be predicted with an accuracy of better than 10(-3) from knowledge of the oxygen concentration profile. PMID:23928555

  10. Powered Tate Pairing Computation

    NASA Astrophysics Data System (ADS)

    Kang, Bo Gyeong; Park, Je Hong

    In this letter, we provide a simple proof of bilinearity for the eta pairing. Based on it, we show an efficient method to compute the powered Tate pairing as well. Although efficiency of our method is equivalent to that of the Tate pairing on the eta pairing approach, but ours is more general in principle.

  11. Measurement of B-->K{*}(892)gamma branching fractions and CP and Isospin asymmetries.

    PubMed

    Aubert, B; Karyotakis, Y; Lees, J P; Poireau, V; Prencipe, E; Prudent, X; Tisserand, V; Garra Tico, J; Grauges, E; Martinelli, M; Palano, A; Pappagallo, M; Eigen, G; Stugu, B; Sun, L; Battaglia, M; Brown, D N; Kerth, L T; Kolomensky, Yu G; Lynch, G; Osipenkov, I L; Tackmann, K; Tanabe, T; Hawkes, C M; Soni, N; Watson, A T; Koch, H; Schroeder, T; Asgeirsson, D J; Fulsom, B G; Hearty, C; Mattison, T S; McKenna, J A; Barrett, M; Khan, A; Randle-Conde, A; Blinov, V E; Bukin, A D; Buzykaev, A R; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Bondioli, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Martin, E C; Stoker, D P; Atmacan, H; Gary, J W; Liu, F; Long, O; Vitug, G M; Yasin, Z; Zhang, L; Sharma, V; Campagnari, C; Hong, T M; Kovalskyi, D; Mazur, M A; Richman, J D; Beck, T W; Eisner, A M; Heusch, C A; Kroseberg, J; Lockman, W S; Martinez, A J; Schalk, T; Schumm, B A; Seiden, A; Wang, L; Winstrom, L O; Cheng, C H; Doll, D A; Echenard, B; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Andreassen, R; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Bloom, P C; Ford, W T; Gaz, A; Hirschauer, J F; Nagel, M; Nauenberg, U; Smith, J G; Wagner, S R; Ayad, R; Toki, W H; Wilson, R J; Feltresi, E; Hauke, A; Jasper, H; Karbach, T M; Merkel, J; Petzold, A; Spaan, B; Wacker, K; Kobel, M J; Nogowski, R; Schubert, K R; Schwierz, R; Volk, A; Bernard, D; Latour, E; Verderi, M; Clark, P J; Playfer, S; Watson, J E; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cecchi, A; Cibinetto, G; Fioravanti, E; Franchini, P; Luppi, E; Munerato, M; Negrini, M; Petrella, A; Piemontese, L; Santoro, V; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Contri, R; Guido, E; Lo Vetere, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Tosi, S; Chaisanguanthum, K S; Morii, M; Adametz, A; Marks, J; Schenk, S; Uwer, U; Bernlochner, F U; Klose, V; Lacker, H M; Bard, D J; Dauncey, P D; Tibbetts, M; Behera, P K; Charles, M J; Mallik, U; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gao, Y Y; Gritsan, A V; Guo, Z J; Arnaud, N; Béquilleux, J; D'Orazio, A; Davier, M; Derkach, D; Firmino da Costa, J; Grosdidier, G; Le Diberder, F; Lepeltier, V; Lutz, A M; Malaescu, B; Pruvot, S; Roudeau, P; Schune, M H; Serrano, J; Sordini, V; Stocchi, A; Wormser, G; Lange, D J; Wright, D M; Bingham, I; Burke, J P; Chavez, C A; Fry, J R; Gabathuler, E; Gamet, R; Hutchcroft, D E; Payne, D J; Touramanis, C; Bevan, A J; Clarke, C K; Di Lodovico, F; Sacco, R; Sigamani, M; Cowan, G; Paramesvaran, S; Wren, A C; Brown, D N; Davis, C L; Denig, A G; Fritsch, M; Gradl, W; Hafner, A; Alwyn, K E; Bailey, D; Barlow, R J; Jackson, G; Lafferty, G D; West, T J; Yi, J I; Anderson, J; Chen, C; Jawahery, A; Roberts, D A; Simi, G; Tuggle, J M; Dallapiccola, C; Salvati, E; Saremi, S; Cowan, R; Dujmic, D; Fisher, P H; Henderson, S W; Sciolla, G; Spitznagel, M; Yamamoto, R K; Zhao, M; Patel, P M; Robertson, S H; Schram, M; Lazzaro, A; Lombardo, V; Palombo, F; Stracka, S; Bauer, J M; Cremaldi, L; Godang, R; Kroeger, R; Sonnek, P; Summers, D J; Zhao, H W; Simard, M; Taras, P; Nicholson, H; De Nardo, G; Lista, L; Monorchio, D; Onorato, G; Sciacca, C; Raven, G; Snoek, H L; Jessop, C P; Knoepfel, K J; Losecco, J M; Wang, W F; Corwin, L A; Honscheid, K; Kagan, H; Kass, R; Morris, J P; Rahimi, A M; Regensburger, J J; Sekula, S J; Wong, Q K; Blount, N L; Brau, J; Frey, R; Igonkina, O; Kolb, J A; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Castelli, G; Gagliardi, N; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Del Amo Sanchez, P; Ben-Haim, E; Bonneaud, G R; Briand, H; Chauveau, J; Hamon, O; Leruste, Ph; Marchiori, G; Ocariz, J; Perez, A; Prendki, J; Sitt, S; Gladney, L; Biasini, M; Manoni, E; Angelini, C; Batignani, G; Bettarini, S; Calderini, G; Carpinelli, M; Cervelli, A; Forti, F; Giorgi, M A; Lusiani, A; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Lopes Pegna, D; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Anulli, F; Baracchini, E; Cavoto, G; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Jackson, P D; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Renga, F; Voena, C; Ebert, M; Hartmann, T; Schröder, H; Waldi, R; Adye, T; Franek, B; Olaiya, E O; Wilson, F F; Emery, S; Esteve, L; Hamel de Monchenault, G; Kozanecki, W; Vasseur, G; Yèche, Ch; Zito, M; Allen, M T; Aston, D; Bartoldus, R; Benitez, J F; Cenci, R; Coleman, J P; Convery, M R; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dunwoodie, W; Field, R C; Franco Sevilla, M; Gabareen, A M; Graham, M T; Grenier, P; Hast, C; Innes, W R; Kaminski, J; Kelsey, M H; Kim, H; Kim, P; Kocian, M L; Leith, D W G S; Li, S; Lindquist, B; Luitz, S; Luth, V; Lynch, H L; Macfarlane, D B; Marsiske, H; Messner, R; Muller, D R; Neal, H; Nelson, S; O'Grady, C P; Ofte, I; Perl, M; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Va'vra, J; Wagner, A P; Weaver, M; West, C A; Wisniewski, W J; Wittgen, M; Wright, D H; Wulsin, H W; Yarritu, A K; Young, C C; Ziegler, V; Chen, X R; Liu, H; Park, W; Purohit, M V; White, R M; Wilson, J R; Burchat, P R; Edwards, A J; Miyashita, T S; Ahmed, S; Alam, M S; Ernst, J A; Pan, B; Saeed, M A; Zain, S B; Soffer, A; Spanier, S M; Wogsland, B J; Eckmann, R; Ritchie, J L; Ruland, A M; Schilling, C J; Schwitters, R F; Wray, B C; Drummond, B W; Izen, J M; Lou, X C; Bianchi, F; Gamba, D; Pelliccioni, M; Bomben, M; Bosisio, L; Cartaro, C; Della Ricca, G; Lanceri, L; Vitale, L; Azzolini, V; Lopez-March, N; Martinez-Vidal, F; Milanes, D A; Oyanguren, A; Albert, J; Banerjee, Sw; Bhuyan, B; Choi, H H F; Hamano, K; King, G J; Kowalewski, R; Lewczuk, M J; Nugent, I M; Roney, J M; Sobie, R J; Gershon, T J; Harrison, P F; Ilic, J; Latham, T E; Mohanty, G B; Puccio, E M T; Band, H R; Chen, X; Dasu, S; Flood, K T; Pan, Y; Prepost, R; Vuosalo, C O; Wu, S L

    2009-11-20

    We present an analysis of the decays B{0}-->K{*0}(892)gamma and B{+}-->K{*+}(892)gamma using a sample of about 383 x 10{6} BB[-over ] events collected with the BABAR detector at the PEP-II asymmetric energy B factory. We measure the branching fractions B(B{0}-->K{*0}gamma)=(4.47+/-0.10+/-0.16) x 10{-5} and B(B{+}-->K{*+}gamma)=(4.22+/-0.14+/-0.16) x 10{-5}. We constrain the direct CP asymmetry to be -0.033K{*}gamma)<0.028 and the isospin asymmetry to be 0.017

  12. Isospin and a possible interpretation of the newly observed X(1576)

    SciTech Connect

    Guo Fengkun; Shen Pengnian

    2006-11-01

    Recently, the BES Collaboration observed a broad resonant structure X(1576) with a large width being around 800 MeV and assigned its J{sup PC} number to 1{sup --}. We show that the isospin of this resonant structure should be assigned to 1. This state might be a molecule state or a tetraquark state. We study the consequences of a possible K*(892)-{kappa} molecular interpretation. In this scenario, the broad width can easily be understood. Carefully searching this resonant structure in the J/{psi}{yields}{pi}{sup +}{pi}{sup -}{pi}{sup 0} and J/{psi}{yields}K{sup +}K{sup -}{pi}{sup +}{pi}{sup -}{pi}{sup 0} decays should be important for understanding the structure of X(1567)

  13. Isospin and a possible interpretation of the newly observed X(1576)

    NASA Astrophysics Data System (ADS)

    Guo, Feng-Kun; Shen, Peng-Nian

    2006-11-01

    Recently, the BES Collaboration observed a broad resonant structure X(1576) with a large width being around 800 MeV and assigned its JPC number to 1--. We show that the isospin of this resonant structure should be assigned to 1. This state might be a molecule state or a tetraquark state. We study the consequences of a possible K*(892)-κ¯ molecular interpretation. In this scenario, the broad width can easily be understood. Carefully searching this resonant structure in the J/ψ→π+π-π0 and J/ψ→K+K-π+π-π0 decays should be important for understanding the structure of X(1567).

  14. Isospin Mixing of Quark Cluster Diybaryon Resonances in the Bag Model*

    NASA Astrophysics Data System (ADS)

    Ward, Thomas

    2000-10-01

    Calculations of isospin mixing of dibaryon resonaces composed of color magentic six quark states using the quark cluster bag model are shown to result in a low lying J=2 dibaryon at 1913 MeV. The 1913 MeV resonance can only transition into NN states and a low energy (29-35 MeV) isoscaler meson multiplet, the sigma mesons (J=0,1,2). The J=1 axial-vector meson may already have been discovered at the Rutherford ISIS Facility, detected as a neutrino time anomaly known as the KARMEN particle. The predicted J=0 meson has the long sought after properties of the sigma meson or Higgs particle required for the Chiral Symmetry Breaking partner of the pion and light mass hadron generation. The influence of this predicted isoscaler multiplet in QCD and QFD is interpreted using the effective low energy model of Chiral Perturbation Theory.

  15. Direct CP, lepton flavor, and isospin asymmetries in the decays B-->K(*)l+l-.

    PubMed

    Aubert, B; Bona, M; Karyotakis, Y; Lees, J P; Poireau, V; Prencipe, E; Prudent, X; Tisserand, V; Garra Tico, J; Grauges, E; Lopez, L; Palano, A; Pappagallo, M; Eigen, G; Stugu, B; Sun, L; Abrams, G S; Battaglia, M; Brown, D N; Cahn, R N; Jacobsen, R G; Kerth, L T; Kolomensky, Yu G; Lynch, G; Osipenkov, I L; Ronan, M T; Tackmann, K; Tanabe, T; Hawkes, C M; Soni, N; Watson, A T; Koch, H; Schroeder, T; Walker, D; Asgeirsson, D J; Fulsom, B G; Hearty, C; Mattison, T S; McKenna, J A; Barrett, M; Khan, A; Blinov, V E; Bukin, A D; Buzykaev, A R; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Bondioli, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Martin, E C; Stoker, D P; Abachi, S; Buchanan, C; Gary, J W; Liu, F; Long, O; Shen, B C; Vitug, G M; Yasin, Z; Zhang, L; Sharma, V; Campagnari, C; Hong, T M; Kovalskyi, D; Mazur, M A; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Schalk, T; Schumm, B A; Seiden, A; Wang, L; Wilson, M G; Winstrom, L O; Cheng, C H; Doll, D A; Echenard, B; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Andreassen, R; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Bloom, P C; Ford, W T; Gaz, A; Hirschauer, J F; Nagel, M; Nauenberg, U; Smith, J G; Ulmer, K A; Wagner, S R; Ayad, R; Soffer, A; Toki, W H; Wilson, R J; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Karbach, M; Merkel, J; Petzold, A; Spaan, B; Wacker, K; Kobel, M J; Mader, W F; Nogowski, R; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Latour, E; Thiebaux, Ch; Verderi, M; Clark, P J; Gradl, W; Playfer, S; Watson, J E; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cecchi, A; Cibinetto, G; Franchini, P; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Santoro, V; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Chaisanguanthum, K S; Morii, M; Marks, J; Schenk, S; Uwer, U; Klose, V; Lacker, H M; Bard, D J; Dauncey, P D; Nash, J A; Panduro Vazquez, W; Tibbetts, M; Behera, P K; Chai, X; Charles, M J; Mallik, U; Cochran, J; Crawley, H B; Dong, L; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gao, Y Y; Gritsan, A V; Guo, Z J; Lae, C K; Denig, A G; Fritsch, M; Schott, G; Arnaud, N; Béquilleux, J; D'Orazio, A; Davier, M; Firmino da Costa, J; Grosdidier, G; Höcker, A; Lepeltier, V; Le Diberder, F; Lutz, A M; Pruvot, S; Roudeau, P; Schune, M H; Serrano, J; Sordini, V; Stocchi, A; Wormser, G; Lange, D J; Wright, D M; Bingham, I; Burke, J P; Chavez, C A; Fry, J R; Gabathuler, E; Gamet, R; Hutchcroft, D E; Payne, D J; Touramanis, C; Bevan, A J; Clarke, C K; George, K A; Di Lodovico, F; Sacco, R; Sigamani, M; Cowan, G; Flaecher, H U; Hopkins, D A; Paramesvaran, S; Salvatore, F; Wren, A C; Brown, D N; Davis, C L; Alwyn, K E; Bailey, D; Barlow, R J; Chia, Y M; Edgar, C L; Jackson, G; Lafferty, G D; West, T J; Yi, J I; Anderson, J; Chen, C; Jawahery, A; Roberts, D A; Simi, G; Tuggle, J M; Dallapiccola, C; Li, X; Salvati, E; Saremi, S; Cowan, R; Dujmic, D; Fisher, P H; Koeneke, K; Sciolla, G; Spitznagel, M; Taylor, F; Yamamoto, R K; Zhao, M; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Sanders, D A; Summers, D J; Zhao, H W; Simard, M; Taras, P; Viaud, F B; Nicholson, H; De Nardo, G; Lista, L; Monorchio, D; Onorato, G; Sciacca, C; Raven, G; Snoek, H L; Jessop, C P; Knoepfel, K J; LoSecco, J M; Wang, W F; Benelli, G; Corwin, L A; Honscheid, K; Kagan, H; Kass, R; Morris, J P; Rahimi, A M; Regensburger, J J; Sekula, S J; Wong, Q K; Blount, N L; Brau, J; Frey, R; Igonkina, O; Kolb, J A; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Castelli, G; Gagliardi, N; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; del Amo Sanchez, P; Ben-Haim, E; Briand, H; Calderini, G; Chauveau, J; David, P; Del Buono, L; Hamon, O; Leruste, Ph; Ocariz, J; Perez, A; Prendki, J; Sitt, S; Gladney, L; Biasini, M; Covarelli, R; Manoni, E; Angelini, C; Batignani, G; Bettarini, S; Carpinelli, M; Cervelli, A; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Lopes Pegna, D; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Anulli, F; Baracchini, E; Cavoto, G; del Re, D; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Jackson, P D; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Renga, F; Voena, C; Ebert, M; Hartmann, T; Schröder, H; Waldi, R; Adye, T; Franek, B; Olaiya, E O; Wilson, F F; Emery, S; Escalier, M; Esteve, L; Ganzhur, S F; Hamel de Monchenault, G; Kozanecki, W; Vasseur, G; Yèche, Ch; Zito, M; Chen, X R; Liu, H; Park, W; Purohit, M V; White, R M; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Benitez, J F; Cenci, R; Coleman, J P; Convery, M R; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dunwoodie, W; Field, R C; Gabareen, A M; Gowdy, S J; Graham, M T; Grenier, P; Hast, C; Innes, W R; Kaminski, J; Kelsey, M H; Kim, H; Kim, P; Kocian, M L; Leith, D W G S; Li, S; Lindquist, B; Luitz, S; Luth, V; Lynch, H L; Macfarlane, D B; Marsiske, H; Messner, R; Muller, D R; Neal, H; Nelson, S; O'Grady, C P; Ofte, I; Perazzo, A; Perl, M; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Va'vra, J; Wagner, A P; Weaver, M; West, C A; Wisniewski, W J; Wittgen, M; Wright, D H; Wulsin, H W; Yarritu, A K; Yi, K; Young, C C; Ziegler, V; Burchat, P R; Edwards, A J; Majewski, S A; Miyashita, T S; Petersen, B A; Wilden, L; Ahmed, S; Alam, M S; Ernst, J A; Pan, B; Saeed, M A; Zain, S B; Spanier, S M; Wogsland, B J; Eckmann, R; Ritchie, J L; Ruland, A M; Schilling, C J; Schwitters, R F; Drummond, B W; Izen, J M; Lou, X C; Bianchi, F; Gamba, D; Pelliccioni, M; Bomben, M; Bosisio, L; Cartaro, C; Della Ricca, G; Lanceri, L; Vitale, L; Azzolini, V; Lopez-March, N; Martinez-Vidal, F; Milanes, D A; Oyanguren, A; Albert, J; Banerjee, Sw; Bhuyan, B; Choi, H H F; Hamano, K; Kowalewski, R; Lewczuk, M J; Nugent, I M; Roney, J M; Sobie, R J; Gershon, T J; Harrison, P F; Ilic, J; Latham, T E; Mohanty, G B; Band, H R; Chen, X; Dasu, S; Flood, K T; Pan, Y; Pierini, M; Prepost, R; Vuosalo, C O; Wu, S L

    2009-03-01

    We measure branching fractions and integrated rate asymmetries for the rare decays B-->K(*)l+l-, where l+l- is either e+e- or micro+micro-, using a sample of 384x10(6) BB events collected with the BABAR detector at the PEP-II e+e- collider. We find no evidence for direct CP or lepton-flavor asymmetries. However, for dilepton masses below the J/psi resonance, we find evidence for unexpectedly large isospin asymmetries in both B-->Kl+l- and B-->K*l+l- which differ, respectively, by 3.2sigma and 2.7sigma, including systematic uncertainties, from the standard model expectations. PMID:19392508

  16. Thermal and quantal isospin and spin fluctuations in heavy ion reactions

    SciTech Connect

    Moretto, L.G.

    1980-01-01

    The isobaric charge distributions are discussed in terms of quantal and classical isospin fluctuations. The roles of mass asymmetry and of the higher giant isovector modes are treated within the framework of a cylinder model that is worked out exactly. Spin fluctuations are considered first in terms of quantal fluctuations in a cylinder model and second in terms of thermal fluctuations in a two-sphere model. The results are applied to the calculation of in- and out-of-plane angular distributions for sequential fission, alpha and gamma decay. Analytical expressions are obtained for the angular distributions. The theoretical predictions are compared with experimental results for sequential fission, alpha, and gamma angular distributions. 23 figures.

  17. Measurement of B-->K{*}(892)gamma branching fractions and CP and Isospin asymmetries.

    PubMed

    Aubert, B; Karyotakis, Y; Lees, J P; Poireau, V; Prencipe, E; Prudent, X; Tisserand, V; Garra Tico, J; Grauges, E; Martinelli, M; Palano, A; Pappagallo, M; Eigen, G; Stugu, B; Sun, L; Battaglia, M; Brown, D N; Kerth, L T; Kolomensky, Yu G; Lynch, G; Osipenkov, I L; Tackmann, K; Tanabe, T; Hawkes, C M; Soni, N; Watson, A T; Koch, H; Schroeder, T; Asgeirsson, D J; Fulsom, B G; Hearty, C; Mattison, T S; McKenna, J A; Barrett, M; Khan, A; Randle-Conde, A; Blinov, V E; Bukin, A D; Buzykaev, A R; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Bondioli, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Martin, E C; Stoker, D P; Atmacan, H; Gary, J W; Liu, F; Long, O; Vitug, G M; Yasin, Z; Zhang, L; Sharma, V; Campagnari, C; Hong, T M; Kovalskyi, D; Mazur, M A; Richman, J D; Beck, T W; Eisner, A M; Heusch, C A; Kroseberg, J; Lockman, W S; Martinez, A J; Schalk, T; Schumm, B A; Seiden, A; Wang, L; Winstrom, L O; Cheng, C H; Doll, D A; Echenard, B; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Andreassen, R; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Bloom, P C; Ford, W T; Gaz, A; Hirschauer, J F; Nagel, M; Nauenberg, U; Smith, J G; Wagner, S R; Ayad, R; Toki, W H; Wilson, R J; Feltresi, E; Hauke, A; Jasper, H; Karbach, T M; Merkel, J; Petzold, A; Spaan, B; Wacker, K; Kobel, M J; Nogowski, R; Schubert, K R; Schwierz, R; Volk, A; Bernard, D; Latour, E; Verderi, M; Clark, P J; Playfer, S; Watson, J E; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cecchi, A; Cibinetto, G; Fioravanti, E; Franchini, P; Luppi, E; Munerato, M; Negrini, M; Petrella, A; Piemontese, L; Santoro, V; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Contri, R; Guido, E; Lo Vetere, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Tosi, S; Chaisanguanthum, K S; Morii, M; Adametz, A; Marks, J; Schenk, S; Uwer, U; Bernlochner, F U; Klose, V; Lacker, H M; Bard, D J; Dauncey, P D; Tibbetts, M; Behera, P K; Charles, M J; Mallik, U; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gao, Y Y; Gritsan, A V; Guo, Z J; Arnaud, N; Béquilleux, J; D'Orazio, A; Davier, M; Derkach, D; Firmino da Costa, J; Grosdidier, G; Le Diberder, F; Lepeltier, V; Lutz, A M; Malaescu, B; Pruvot, S; Roudeau, P; Schune, M H; Serrano, J; Sordini, V; Stocchi, A; Wormser, G; Lange, D J; Wright, D M; Bingham, I; Burke, J P; Chavez, C A; Fry, J R; Gabathuler, E; Gamet, R; Hutchcroft, D E; Payne, D J; Touramanis, C; Bevan, A J; Clarke, C K; Di Lodovico, F; Sacco, R; Sigamani, M; Cowan, G; Paramesvaran, S; Wren, A C; Brown, D N; Davis, C L; Denig, A G; Fritsch, M; Gradl, W; Hafner, A; Alwyn, K E; Bailey, D; Barlow, R J; Jackson, G; Lafferty, G D; West, T J; Yi, J I; Anderson, J; Chen, C; Jawahery, A; Roberts, D A; Simi, G; Tuggle, J M; Dallapiccola, C; Salvati, E; Saremi, S; Cowan, R; Dujmic, D; Fisher, P H; Henderson, S W; Sciolla, G; Spitznagel, M; Yamamoto, R K; Zhao, M; Patel, P M; Robertson, S H; Schram, M; Lazzaro, A; Lombardo, V; Palombo, F; Stracka, S; Bauer, J M; Cremaldi, L; Godang, R; Kroeger, R; Sonnek, P; Summers, D J; Zhao, H W; Simard, M; Taras, P; Nicholson, H; De Nardo, G; Lista, L; Monorchio, D; Onorato, G; Sciacca, C; Raven, G; Snoek, H L; Jessop, C P; Knoepfel, K J; Losecco, J M; Wang, W F; Corwin, L A; Honscheid, K; Kagan, H; Kass, R; Morris, J P; Rahimi, A M; Regensburger, J J; Sekula, S J; Wong, Q K; Blount, N L; Brau, J; Frey, R; Igonkina, O; Kolb, J A; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Castelli, G; Gagliardi, N; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Del Amo Sanchez, P; Ben-Haim, E; Bonneaud, G R; Briand, H; Chauveau, J; Hamon, O; Leruste, Ph; Marchiori, G; Ocariz, J; Perez, A; Prendki, J; Sitt, S; Gladney, L; Biasini, M; Manoni, E; Angelini, C; Batignani, G; Bettarini, S; Calderini, G; Carpinelli, M; Cervelli, A; Forti, F; Giorgi, M A; Lusiani, A; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Lopes Pegna, D; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Anulli, F; Baracchini, E; Cavoto, G; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Jackson, P D; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Renga, F; Voena, C; Ebert, M; Hartmann, T; Schröder, H; Waldi, R; Adye, T; Franek, B; Olaiya, E O; Wilson, F F; Emery, S; Esteve, L; Hamel de Monchenault, G; Kozanecki, W; Vasseur, G; Yèche, Ch; Zito, M; Allen, M T; Aston, D; Bartoldus, R; Benitez, J F; Cenci, R; Coleman, J P; Convery, M R; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dunwoodie, W; Field, R C; Franco Sevilla, M; Gabareen, A M; Graham, M T; Grenier, P; Hast, C; Innes, W R; Kaminski, J; Kelsey, M H; Kim, H; Kim, P; Kocian, M L; Leith, D W G S; Li, S; Lindquist, B; Luitz, S; Luth, V; Lynch, H L; Macfarlane, D B; Marsiske, H; Messner, R; Muller, D R; Neal, H; Nelson, S; O'Grady, C P; Ofte, I; Perl, M; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Va'vra, J; Wagner, A P; Weaver, M; West, C A; Wisniewski, W J; Wittgen, M; Wright, D H; Wulsin, H W; Yarritu, A K; Young, C C; Ziegler, V; Chen, X R; Liu, H; Park, W; Purohit, M V; White, R M; Wilson, J R; Burchat, P R; Edwards, A J; Miyashita, T S; Ahmed, S; Alam, M S; Ernst, J A; Pan, B; Saeed, M A; Zain, S B; Soffer, A; Spanier, S M; Wogsland, B J; Eckmann, R; Ritchie, J L; Ruland, A M; Schilling, C J; Schwitters, R F; Wray, B C; Drummond, B W; Izen, J M; Lou, X C; Bianchi, F; Gamba, D; Pelliccioni, M; Bomben, M; Bosisio, L; Cartaro, C; Della Ricca, G; Lanceri, L; Vitale, L; Azzolini, V; Lopez-March, N; Martinez-Vidal, F; Milanes, D A; Oyanguren, A; Albert, J; Banerjee, Sw; Bhuyan, B; Choi, H H F; Hamano, K; King, G J; Kowalewski, R; Lewczuk, M J; Nugent, I M; Roney, J M; Sobie, R J; Gershon, T J; Harrison, P F; Ilic, J; Latham, T E; Mohanty, G B; Puccio, E M T; Band, H R; Chen, X; Dasu, S; Flood, K T; Pan, Y; Prepost, R; Vuosalo, C O; Wu, S L

    2009-11-20

    We present an analysis of the decays B{0}-->K{*0}(892)gamma and B{+}-->K{*+}(892)gamma using a sample of about 383 x 10{6} BB[-over ] events collected with the BABAR detector at the PEP-II asymmetric energy B factory. We measure the branching fractions B(B{0}-->K{*0}gamma)=(4.47+/-0.10+/-0.16) x 10{-5} and B(B{+}-->K{*+}gamma)=(4.22+/-0.14+/-0.16) x 10{-5}. We constrain the direct CP asymmetry to be -0.033K{*}gamma)<0.028 and the isospin asymmetry to be 0.017

  18. Isospin-violating dark-matter-nucleon scattering via two-Higgs-doublet-model portals

    NASA Astrophysics Data System (ADS)

    Drozd, Aleksandra; Grzadkowski, Bohdan; Gunion, John F.; Jiang, Yun

    2016-10-01

    We show that in a multi-Higgs model in which one Higgs fits the LHC 125 GeV state, one or more of the other Higgs bosons can mediate DM-nucleon interactions with maximal DM isospin violation being possible for appropriate Higgs-quark couplings, independent of the nature of DM. We then consider the explicit example of a Type II two-Higgs-doublet model, identifying the h or H as the 125 GeV state while the H or h, respectively, mediates DM-nucleon interactions. Finally, we show that if a stable scalar, S, is added then it can be a viable light DM candidate with correct relic density while obeying all direct and indirect detection limits.

  19. Angular and Isospin Asymmetries in the Decays B->K(*)l l-

    SciTech Connect

    Flood, Kevin T.; /Wisconsin U., Madison

    2011-11-08

    We use a sample of 384 million B{bar B} decays collected with the BABAR detector at the PEP-II asymmetric e{sup +}e{sup -} storage ring to study the flavor-changing neutral current decays B {yields} K{sup (*)}{ell}{sup +}{ell}{sup -}, where {ell}{sup +}{ell}{sup -} is either e{sup +}e{sup -} or {mu}{sup +}{mu}{sup -}. We present measurements in two dilepton mass bins, one below the J/{psi} resonance and the other above, of the lepton forward-backward asymmetry {Alpha}{sub FB} and the longitudinal K* polarization F{sub L} in B {yields} K* {ell}{sup +}{ell}{sup -}, along with isospin rate asymmetries in B {yields} K*{ell}{sup +}{ell}{sup -} and B {yields} K{ell}{sup +}{ell}{sup -} final states.

  20. GDR as a Probe of the Collective Motion in Nuclei at High Spins, Temperatures or Isospins

    SciTech Connect

    Maj, Adam

    2008-11-11

    The gamma-decay of the Giant Dipole Resonance (GDR), the high-frequency collective vibration of protons against neutrons, has been proven to be a basic probe for the shapes of hot nuclei, especially to study the effective shape evolution caused by the collective rotation of a nucleus. In this context an interesting question arises: what is the nuclear shape at extreme values of spin or temperatures, close to the limit impose by another collective motion--fission, and how evolves the giant dipole collective vibrations as a function of isospin. Short overview of the results from the experiments aimed to answer these questions are presented and possible perspectives of these type of studies for exotic nuclei to be obtained with the novel gamma-calorimeter PARIS and soon available intense radioactive beams are discussed.

  1. Measurement of B→K*(892)γ Branching Fractions and CP and Isospin Asymmetries

    NASA Astrophysics Data System (ADS)

    Aubert, B.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Battaglia, M.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tackmann, K.; Tanabe, T.; Hawkes, C. M.; Soni, N.; Watson, A. T.; Koch, H.; Schroeder, T.; Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Barrett, M.; Khan, A.; Randle-Conde, A.; Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.; Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Yasin, Z.; Zhang, L.; Sharma, V.; Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.; Beck, T. W.; Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wang, L.; Winstrom, L. O.; Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.; Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.; Ayad, R.; Toki, W. H.; Wilson, R. J.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, T. M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.; Kobel, M. J.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Volk, A.; Bernard, D.; Latour, E.; Verderi, M.; Clark, P. J.; Playfer, S.; Watson, J. E.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.; Chaisanguanthum, K. S.; Morii, M.; Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.; Bernlochner, F. U.; Klose, V.; Lacker, H. M.; Bard, D. J.; Dauncey, P. D.; Tibbetts, M.; Behera, P. K.; Charles, M. J.; Mallik, U.; Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Arnaud, N.; Béquilleux, J.; D'Orazio, A.; Davier, M.; Derkach, D.; Firmino da Costa, J.; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.; Lange, D. J.; Wright, D. M.; Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; Clarke, C. K.; di Lodovico, F.; Sacco, R.; Sigamani, M.; Cowan, G.; Paramesvaran, S.; Wren, A. C.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.; Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.; Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.; Dallapiccola, C.; Salvati, E.; Saremi, S.; Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Sciolla, G.; Spitznagel, M.; Yamamoto, R. K.; Zhao, M.; Patel, P. M.; Robertson, S. H.; Schram, M.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.; Bauer, J. M.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Zhao, H. W.; Simard, M.; Taras, P.; Nicholson, H.; de Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; Losecco, J. M.; Wang, W. F.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.; Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.; Del Amo Sanchez, P.; Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.; Gladney, L.; Biasini, M.; Manoni, E.; Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.; Lopes Pegna, D.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Li Gioi, L.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Renga, F.; Voena, C.; Ebert, M.; Hartmann, T.; Schröder, H.; Waldi, R.; Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.; Emery, S.; Esteve, L.; Hamel de Monchenault, G.; Kozanecki, W.; Vasseur, G.; Yèche, Ch.; Zito, M.; Allen, M. T.; Aston, D.; Bartoldus, R.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Franco Sevilla, M.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; Macfarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'Vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.; Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.; Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.; Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.; Soffer, A.; Spanier, S. M.; Wogsland, B. J.; Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.; Drummond, B. W.; Izen, J. M.; Lou, X. C.; Bianchi, F.; Gamba, D.; Pelliccioni, M.; Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.; Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.; Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Puccio, E. M. T.; Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.

    2009-11-01

    We present an analysis of the decays B0→K*0(892)γ and B+→K*+(892)γ using a sample of about 383×106 BB¯ events collected with the BABAR detector at the PEP-II asymmetric energy B factory. We measure the branching fractions B(B0→K*0γ)=(4.47±0.10±0.16)×10-5 and B(B+→K*+γ)=(4.22±0.14±0.16)×10-5. We constrain the direct CP asymmetry to be -0.033isospin asymmetry to be 0.017<Δ0-<0.116, where the limits are determined by the 90% confidence interval and include both the statistical and systematic uncertainties.

  2. Direct CP, Lepton Flavor, and Isospin Asymmetries in the Decays B→K(*)l+l-

    NASA Astrophysics Data System (ADS)

    Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Lopez, L.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Abrams, G. S.; Battaglia, M.; Brown, D. N.; Cahn, R. N.; Jacobsen, R. G.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.; Hawkes, C. M.; Soni, N.; Watson, A. T.; Koch, H.; Schroeder, T.; Walker, D.; Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Barrett, M.; Khan, A.; Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.; Abachi, S.; Buchanan, C.; Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Yasin, Z.; Zhang, L.; Sharma, V.; Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.; Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wang, L.; Wilson, M. G.; Winstrom, L. O.; Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.; Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.; Ayad, R.; Soffer, A.; Toki, W. H.; Wilson, R. J.; Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.; Kobel, M. J.; Mader, W. F.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.; Bernard, D.; Bonneaud, G. R.; Latour, E.; Thiebaux, Ch.; Verderi, M.; Clark, P. J.; Gradl, W.; Playfer, S.; Watson, J. E.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.; Chaisanguanthum, K. S.; Morii, M.; Marks, J.; Schenk, S.; Uwer, U.; Klose, V.; Lacker, H. M.; Bard, D. J.; Dauncey, P. D.; Nash, J. A.; Panduro Vazquez, W.; Tibbetts, M.; Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.; Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.; Denig, A. G.; Fritsch, M.; Schott, G.; Arnaud, N.; Béquilleux, J.; D'Orazio, A.; Davier, M.; Firmino da Costa, J.; Grosdidier, G.; Höcker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.; Lange, D. J.; Wright, D. M.; Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; Clarke, C. K.; George, K. A.; di Lodovico, F.; Sacco, R.; Sigamani, M.; Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.; Brown, D. N.; Davis, C. L.; Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.; Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.; Dallapiccola, C.; Li, X.; Salvati, E.; Saremi, S.; Cowan, R.; Dujmic, D.; Fisher, P. H.; Koeneke, K.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.; Patel, P. M.; Robertson, S. H.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.; Simard, M.; Taras, P.; Viaud, F. B.; Nicholson, H.; de Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; Losecco, J. M.; Wang, W. F.; Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.; Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.; Del Amo Sanchez, P.; Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; Hamon, O.; Leruste, Ph.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.; Gladney, L.; Biasini, M.; Covarelli, R.; Manoni, E.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.; Lopes Pegna, D.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Anulli, F.; Baracchini, E.; Cavoto, G.; Del Re, D.; di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Li Gioi, L.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.; Ebert, M.; Hartmann, T.; Schröder, H.; Waldi, R.; Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.; Emery, S.; Escalier, M.; Esteve, L.; Ganzhur, S. F.; Hamel de Monchenault, G.; Kozanecki, W.; Vasseur, G.; Yèche, Ch.; Zito, M.; Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.; Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Gabareen, A. M.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; Macfarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'Vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.; Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.; Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.; Spanier, S. M.; Wogsland, B. J.; Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Drummond, B. W.; Izen, J. M.; Lou, X. C.; Bianchi, F.; Gamba, D.; Pelliccioni, M.; Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.; Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.; Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Pierini, M.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.

    2009-03-01

    We measure branching fractions and integrated rate asymmetries for the rare decays B→K(*)l+l-, where l+l- is either e+e- or μ+μ-, using a sample of 384×106 B Bmacr events collected with the BABAR detector at the PEP-II e+e- collider. We find no evidence for direct CP or lepton-flavor asymmetries. However, for dilepton masses below the J/ψ resonance, we find evidence for unexpectedly large isospin asymmetries in both B→Kl+l- and B→K*l+l- which differ, respectively, by 3.2σ and 2.7σ, including systematic uncertainties, from the standard model expectations.

  3. Consequences of simultaneous chiral symmetry breaking and deconfinement for the isospin symmetric phase diagram

    NASA Astrophysics Data System (ADS)

    Fischer, Tobias; Klähn, Thomas; Hempel, Matthias

    2016-08-01

    The thermodynamic bag model (tdBag) has been applied widely to model quark matter properties in both heavy-ion and astrophysics communities. Several fundamental physics aspects are missing in tdBag, e.g., dynamical chiral symmetry breaking (D χ SB) and repulsions due to the vector interaction are both included explicitly in the novel vBag quark matter model of Klähn and Fischer (Astrophys. J. 810, 134 (2015)). An important feature of vBag is the simultaneous D χ SB and deconfinement, where the latter links vBag to a given hadronic model for the construction of the phase transition. In this article we discuss the extension to finite temperatures and the resulting phase diagram for the isospin symmetric medium.

  4. Direct CP, Lepton Flavor and Isospin Asymmetries in the Decays B->K(*)l+l-

    SciTech Connect

    Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Lopez, L.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Abrams, G.S.; Battaglia, M.; Brown, D.N.; Cahn, R.N.; Jacobsen, R.G.; /LBL, Berkeley /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /Frascati /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa U. /Iowa State U. /Johns Hopkins U. /Karlsruhe U., EKP /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT, LNS /McGill U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /INFN, Naples /Naples U. /INFN, Naples /INFN, Naples /Naples U. /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /Pennsylvania U. /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /Rostock U. /Rutherford /DSM, DAPNIA, Saclay /South Carolina U. /SLAC /Stanford U., Phys. Dept. /SUNY, Albany /Tennessee U. /Texas U. /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U., IFIC /Victoria U. /Warwick U. /Wisconsin U., Madison

    2009-03-03

    We measure rate asymmetries for the rare decays B {yields} K{sup (*)}{ell}{sup +}{ell}{sup -}, where {ell}{sup +}{ell}{sup -} is either e{sup +}e{sup -} or {mu}{sup +}{mu}{sup -}, using a sample of 384 million B{bar B} events collected with the BABAR detector at the PEP-II e{sup +}e{sup -} collider. We find no evidence for direct CP or lepton-flavor asymmetries. For dilepton masses below the J/{psi} resonance, we find evidence for unexpectedly large isospin asymmetries in both B {yields} K{ell}{sup +}{ell}{sup -} and B {yields} K*{ell}{sup +}{ell}{sup -} which differ respectively by 3.2{sigma} and 2.7{sigma}, including systematic uncertainties, from the Standard Model expectations.

  5. Improved Hodograph Method and the Amplitude-Phase Gradient Method to estimate the latitude dependence of the FLR frequency, plasma density, and the resonance width using data from a ground magnetometer pair: Application to CARISMA and MAGDAS station pairs in North America

    NASA Astrophysics Data System (ADS)

    Kawano, H.; Pilipenko, V.; Mann, I. R.; Milling, D. K.; Saita, S.; Kitamura, K.; Yumoto, K.; Yoshikawa, A.

    2014-12-01

    The Improved Hodograph Method (IHM below) and the Amplitude-Phase Gradient Method (APGM below) are both applied to data from two ground magnetometers latitudinally separated by ~100km and yield the field-line-resonance (FLR) frequency and the ionospheric resonance width as functions of the latitude; from the FLR frequency we can estimate the magnetospheric plasma mass density, and from the resonance width we can estimate the damping rate of FLR, which is related to how much of the FLR-generated ULF waves are absorbed by the ionosphere. The both methods apply FFT to the two magnetometers' data, and calculate the amplitude ratio and the cross phase from the two stations' data as functions of the frequency. From there the two methods use different approaches: IHM fits a curve to the obtained ratio (as a complex number including both the amplitude ratio and the cross phase) on the complex plane to separate out the non-FLR signal in the data, while APGM assumes that the obtained amplitude ratio and cross phase include the FLR signal only and obtains the FLR frequency and the resonance width in an algebraic manner. In this paper we apply the two methods to simultaneously observed data from ground station pairs of WAD (CGM latitude and longitude: 61.3 and 318.3) - WEYB (58.6, 320.9), LGRR (61.8, 332.4) - PINA (60.0, 331.8), and PINA - THRF (57.8, 331.5), where WAD belongs to MAGDAS/CPMN while the other four belong to CARISMA. We show that IHM can properly estimate the latitudinal profile of the resonance width (which is the improved point of IHM over the original Hodograph Method) by comparing the results of applying IHM to the LGRR-PINA and PINA-THRF pairs, located along the same meridian. We also compare the IHM and APGM results to support the above-stated advantage of IHM over APGM. In addition, comparing the results of applying IHM and APGM to WAD-WEYB and LGRR-PINA-THRF, having similar latitudes but different longitudes, we discuss the longitude dependence of the FLR

  6. Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. XVI. Inclusion of self-energy effects in pairing

    NASA Astrophysics Data System (ADS)

    Goriely, S.; Chamel, N.; Pearson, J. M.

    2016-03-01

    Extending our earlier work, a new family of three Hartree-Fock-Bogoliubov (HFB) mass models, labeled HFB-30, HFB-31, and HFB-32, is presented, along with their underlying interactions, BSk30, BSk31, and BSk32, respectively. The principle new feature is a purely phenomenological pairing term that depends on the density gradient. This enables us to have a bulk pairing term that is fitted to realistic nuclear-matter calculations in which for the first time the self-energy corrections are included, while the behavior of the nucleon effective masses in asymmetric homogeneous nuclear matter is significantly improved. Furthermore, in the particle-hole channel all the highly realistic constraints of our earlier work are retained. In particular, the unconventional Skyrme forces containing t4 and t5 terms are still constrained to fit realistic equations of state of neutron matter stiff enough to support the massive neutron stars PSR J1614-2230 and PSR J0348+0432. All unphysical long-wavelength spin and spin-isospin instabilities of nuclear matter, including the unphysical transition to a polarized state in neutron-star matter, are eliminated. Our three interactions are characterized by values of the symmetry coefficient J of 30, 31, and 32 MeV, respectively. The best fit to the database of 2353 nuclear masses is found for model HFB-31 (J =31 MeV ) with a model error of 0.561 MeV. This model also fits the charge-radius data with an root-mean-square error of 0.027 fm.

  7. Contact Pairing Interaction for the Hartree-Fock-Bogoliubov Calculations

    SciTech Connect

    Dobaczewski, J.

    2001-10-18

    Properties of density-dependent contact pairing interactions in nuclei are discussed. It is shown that the pairing interaction that is intermediate between surface and volume pairing forces gives the pairing gaps that are compatible with the experimental odd-even mass staggering. Results of the deformed Hartree-Fock-Bogoliubov calculations for this ''mixed'' pairing interaction, and using the transformed harmonic oscillator basis, are presented.

  8. Three-loop hard-thermal-loop perturbation theory thermodynamics at finite temperature and finite baryonic and isospin chemical potential

    NASA Astrophysics Data System (ADS)

    Andersen, Jens O.; Haque, Najmul; Mustafa, Munshi G.; Strickland, Michael

    2016-03-01

    In a previous paper [N. Haque et al., J. High Energy Phys. 05 (2014) 27], we calculated the three-loop thermodynamic potential of QCD at finite temperature T and quark chemical potentials μq using the hard-thermal-loop perturbation theory (HTLpt) reorganization of finite temperature and density QCD. The result allows us to study the thermodynamics of QCD at finite temperature and finite baryon, strangeness, and isospin chemical potentials μB, μS, and μI. We calculate the pressure at nonzero μB and μI with μS=0 , and the energy density, the entropy density, the trace anomaly, and the speed of sound at nonzero μI with μB=μS=0 . The second- and fourth-order isospin susceptibilities are calculated at μB=μS=μI=0 . Our results can be directly compared to lattice QCD without Taylor expansions around μq=0 since QCD has no sign problem at μB=μS=0 and finite isospin chemical potential μI.

  9. Matched-pair classification

    SciTech Connect

    Theiler, James P

    2009-01-01

    Following an analogous distinction in statistical hypothesis testing, we investigate variants of machine learning where the training set comes in matched pairs. We demonstrate that even conventional classifiers can exhibit improved performance when the input data has a matched-pair structure. Online algorithms, in particular, converge quicker when the data is presented in pairs. In some scenarios (such as the weak signal detection problem), matched pairs can be generated from independent samples, with the effect not only doubling the nominal size of the training set, but of providing the structure that leads to better learning. A family of 'dipole' algorithms is introduced that explicitly takes advantage of matched-pair structure in the input data and leads to further performance gains. Finally, we illustrate the application of matched-pair learning to chemical plume detection in hyperspectral imagery.

  10. Paired watershed study design

    SciTech Connect

    Clausen, J.C.; Spooner, J.

    1993-09-01

    The purpose of the fact sheet is to describe the paired watershed approach for conducting nonpoint source (NPS) water quality studies. The basic approach requires a minimum of two watersheds - control and treatment - and two periods of study - calibration and treatment. The basis of the paired watershed approach is that there is a quantifiable relationship between paired water quality data for the two watersheds, and that this relationship is valid until a major change is made in one of the watersheds.

  11. Vortex pairs on surfaces

    SciTech Connect

    Koiller, Jair

    2009-05-06

    A pair of infinitesimally close opposite vortices moving on a curved surface moves along a geodesic, according to a conjecture by Kimura. We outline a proof. Numerical simulations are presented for a pair of opposite vortices at a close but nonzero distance on a surface of revolution, the catenoid. We conjecture that the vortex pair system on a triaxial ellipsoid is a KAM perturbation of Jacobi's geodesic problem. We outline some preliminary calculations required for this study. Finding the surfaces for which the vortex pair system is integrable is in order.

  12. Pairing Beyond BCS

    NASA Astrophysics Data System (ADS)

    Volya, Alexander; Zelevinsky, Vladimir

    2013-01-01

    We concentrate on the specifics of the nuclear pairing problem from the standpoint of the BCS approach. We consider the properties of nuclear pairing which usually are not discussed in standard texts: how good is the BCS theory in nuclear context compared to the exact large-scale diagonalization, whether it can be improved by the particle number conservation, how to mark the phase transition regions in a mesoscopic system like a nucleus, how may effective many-body forces influence the formation and structure of the pairing condensate, what effect the decay instability has on the paired nuclear structure, etc.

  13. Isospin Mixing Reveals 30P (p ,γ ) 31S Resonance Influencing Nova Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Bennett, M. B.; Wrede, C.; Brown, B. A.; Liddick, S. N.; Pérez-Loureiro, D.; Bardayan, D. W.; Chen, A. A.; Chipps, K. A.; Fry, C.; Glassman, B. E.; Langer, C.; Larson, N. R.; McNeice, E. I.; Meisel, Z.; Ong, W.; O'Malley, P. D.; Pain, S. D.; Prokop, C. J.; Schatz, H.; Schwartz, S. B.; Suchyta, S.; Thompson, P.; Walters, M.; Xu, X.

    2016-03-01

    The thermonuclear 30P (p ,γ ) 31S reaction rate is critical for modeling the final elemental and isotopic abundances of ONe nova nucleosynthesis, which affect the calibration of proposed nova thermometers and the identification of presolar nova grains, respectively. Unfortunately, the rate of this reaction is essentially unconstrained experimentally, because the strengths of key 31 proton capture resonance states are not known, largely due to uncertainties in their spins and parities. Using the β decay of 31Cl, we have observed the β -delayed γ decay of a 31S state at Ex=6390.2 (7 ) keV , with a 39P (p ,γ )31S resonance energy of Er=259.3 (8 ) keV , in the middle of the 30P (p ,γ )31S Gamow window for peak nova temperatures. This state exhibits isospin mixing with the nearby isobaric analog state at Ex=6279.0 (6 ) keV , giving it an unambiguous spin and parity of 3 /2+ and making it an important l =0 resonance for proton capture on 30P 30.

  14. Isospin mixing reveals 30P(p, γ)31S resonance influencing nova nucleosynthesis

    DOE PAGESBeta

    Bennett, M. B.; Wrede, C.; Brown, B. A.; Liddick, S. N.; Perez-Loureiro, D.; Bardayan, D. W.; Chen, A. A.; Chipps, K. A.; Fry, C.; Glassman, B. E.; et al

    2016-03-08

    Here, the thermonuclear 30P(p, γ)31S reaction rate is critical for modeling the final elemental and isotopic abundances of ONe nova nucleosynthesis, which affect the calibration of proposed nova thermometers and the identification of presolar nova grains, respectively. Unfortunately, the rate of this reaction is essentially unconstrained experimentally, because the strengths of key 31S proton capture resonance states are not known, largely due to uncertainties in their spins and parities. Using the β decay of 31Cl, we have observed the β-delayed γ decay of a 31S state at Ex = 6390.2(7) keV, with a 30P(p, γ)31S resonance energy of Er =more » 259.3(8) keV, in the middle of the 30P(p, γ)31S Gamow window for peak nova temperatures. This state exhibits isospin mixing with the nearby isobaric analog state at Ex = 6279.0(6) keV, giving it an unambiguous spin and parity of 3/2+ and making it an important l = 0 resonance for proton capture on 30P.« less

  15. Isospin Mixing Reveals ^{30}P(p,γ)^{31}S Resonance Influencing Nova Nucleosynthesis.

    PubMed

    Bennett, M B; Wrede, C; Brown, B A; Liddick, S N; Pérez-Loureiro, D; Bardayan, D W; Chen, A A; Chipps, K A; Fry, C; Glassman, B E; Langer, C; Larson, N R; McNeice, E I; Meisel, Z; Ong, W; O'Malley, P D; Pain, S D; Prokop, C J; Schatz, H; Schwartz, S B; Suchyta, S; Thompson, P; Walters, M; Xu, X

    2016-03-11

    The thermonuclear ^{30}P(p,γ)^{31}S reaction rate is critical for modeling the final elemental and isotopic abundances of ONe nova nucleosynthesis, which affect the calibration of proposed nova thermometers and the identification of presolar nova grains, respectively. Unfortunately, the rate of this reaction is essentially unconstrained experimentally, because the strengths of key ^{31}S proton capture resonance states are not known, largely due to uncertainties in their spins and parities. Using the β decay of ^{31}Cl, we have observed the β-delayed γ decay of a ^{31}S state at E_{x}=6390.2(7)  keV, with a ^{30}P(p,γ)^{31}S resonance energy of E_{r}=259.3(8)  keV, in the middle of the ^{30}P(p,γ)^{31}S Gamow window for peak nova temperatures. This state exhibits isospin mixing with the nearby isobaric analog state at E_{x}=6279.0(6)  keV, giving it an unambiguous spin and parity of 3/2^{+} and making it an important l=0 resonance for proton capture on ^{30}P. PMID:27015475

  16. Pair contact process with diffusion of pairs

    NASA Astrophysics Data System (ADS)

    Santos, F. L.; Dickman, Ronald; Fulco, U. L.

    2011-03-01

    The pair contact process (PCP) is a nonequilibrium stochastic model which, like the basic contact process (CP), exhibits a phase transition to an absorbing state. The two models belong to the directed percolation (DP) universality class, despite the fact that the PCP possesses infinitely many absorbing configurations whereas the CP has but one. The critical behavior of the PCP with hopping by particles (PCPD) is as yet unclear. Here we study a version of the PCP in which nearest-neighbor particle pairs can hop but individual particles cannot. Using quasistationary simulations for three values of the diffusion probability (D = 0.1, 0.5 and 0.9), we find convincing evidence of DP-like critical behavior.

  17. Cooper Pairs in Insulators?!

    SciTech Connect

    James Valles

    2008-07-23

    Nearly 50 years elapsed between the discovery of superconductivity and the emergence of the microscopic theory describing this zero resistance state. The explanation required a novel phase of matter in which conduction electrons joined in weakly bound pairs and condensed with other pairs into a single quantum state. Surprisingly, this Cooper pair formation has also been invoked to account for recently uncovered high-resistance or insulating phases of matter. To address this possibility, we have used nanotechnology to create an insulating system that we can probe directly for Cooper pairs. I will present the evidence that Cooper pairs exist and dominate the electrical transport in these insulators and I will discuss how these findings provide new insight into superconductor to insulator quantum phase transitions. 

  18. Cooper Pairs in Insulators?!

    ScienceCinema

    James Valles

    2016-07-12

    Nearly 50 years elapsed between the discovery of superconductivity and the emergence of the microscopic theory describing this zero resistance state. The explanation required a novel phase of matter in which conduction electrons joined in weakly bound pairs and condensed with other pairs into a single quantum state. Surprisingly, this Cooper pair formation has also been invoked to account for recently uncovered high-resistance or insulating phases of matter. To address this possibility, we have used nanotechnology to create an insulating system that we can probe directly for Cooper pairs. I will present the evidence that Cooper pairs exist and dominate the electrical transport in these insulators and I will discuss how these findings provide new insight into superconductor to insulator quantum phase transitions. 

  19. A 1.5 ns OFF/ON switching-time voltage-mode LVDS driver/receiver pair for asynchronous AER bit-serial chip grid links with up to 40 times event-rate dependent power savings.

    PubMed

    Zamarreno-Ramos, Carlos; Kulkarni, Raghavendra; Silva-Martinez, Jose; Serrano-Gotarredona, Teresa; Linares-Barranco, Bernabe

    2013-10-01

    This paper presents a low power fast ON/OFF switchable voltage mode implementation of a driver/receiver pair intended to be used in high speed bit-serial Low Voltage Differential Signaling (LVDS) Address Event Representation (AER) chip grids, where short (like 32-bit) sparse data packages are transmitted. Voltage-Mode drivers require intrinsically half the power of their Current-Mode counterparts and do not require Common-Mode Voltage Control. However, for fast ON/OFF switching a special high-speed voltage regulator is required which needs to be kept ON during data pauses, and hence its power consumption must be minimized, resulting in tight design constraints. A proof-of-concept chip test prototype has been designed and fabricated in low-cost standard 0.35 μ m CMOS. At ± 500 mV voltage swing with 500 Mbps serial bit rate and 32 bit events, current consumption scales from 15.9 mA (7.7 mA for the driver and 8.2 mA for the receiver) at 10 Mevent/s rate to 406 μ A ( 343 μ A for the driver and 62.5 μA for the receiver) for an event rate below 10 Kevent/s, therefore achieving a rate dependent power saving of up to 40 times, while keeping switching times at 1.5 ns. Maximum achievable event rate was 13.7 Meps at 638 Mbps serial bit rate. Additionally, differential voltage swing is tunable, thus allowing further power reductions.

  20. Electron pairing without superconductivity.

    PubMed

    Cheng, Guanglei; Tomczyk, Michelle; Lu, Shicheng; Veazey, Joshua P; Huang, Mengchen; Irvin, Patrick; Ryu, Sangwoo; Lee, Hyungwoo; Eom, Chang-Beom; Hellberg, C Stephen; Levy, Jeremy

    2015-05-14

    Strontium titanate (SrTiO3) is the first and best known superconducting semiconductor. It exhibits an extremely low carrier density threshold for superconductivity, and possesses a phase diagram similar to that of high-temperature superconductors--two factors that suggest an unconventional pairing mechanism. Despite sustained interest for 50 years, direct experimental insight into the nature of electron pairing in SrTiO3 has remained elusive. Here we perform transport experiments with nanowire-based single-electron transistors at the interface between SrTiO3 and a thin layer of lanthanum aluminate, LaAlO3. Electrostatic gating reveals a series of two-electron conductance resonances-paired electron states--that bifurcate above a critical pairing field Bp of about 1-4 tesla, an order of magnitude larger than the superconducting critical magnetic field. For magnetic fields below Bp, these resonances are insensitive to the applied magnetic field; for fields in excess of Bp, the resonances exhibit a linear Zeeman-like energy splitting. Electron pairing is stable at temperatures as high as 900 millikelvin, well above the superconducting transition temperature (about 300 millikelvin). These experiments demonstrate the existence of a robust electronic phase in which electrons pair without forming a superconducting state. Key experimental signatures are captured by a model involving an attractive Hubbard interaction that describes real-space electron pairing as a precursor to superconductivity. PMID:25971511

  1. Electron pairing without superconductivity

    NASA Astrophysics Data System (ADS)

    Levy, Jeremy

    Strontium titanate (SrTiO3) is the first and best known superconducting semiconductor. It exhibits an extremely low carrier density threshold for superconductivity, and possesses a phase diagram similar to that of high-temperature superconductors--two factors that suggest an unconventional pairing mechanism. Despite sustained interest for 50 years, direct experimental insight into the nature of electron pairing in SrTiO3 has remained elusive. Here we perform transport experiments with nanowire-based single-electron transistors at the interface between SrTiO3 and a thin layer of lanthanum aluminate, LaAlO3. Electrostatic gating reveals a series of two-electron conductance resonances--paired electron states--that bifurcate above a critical pairing field Bp of about 1-4 tesla, an order of magnitude larger than the superconducting critical magnetic field. For magnetic fields below Bp, these resonances are insensitive to the applied magnetic field; for fields in excess of Bp, the resonances exhibit a linear Zeeman-like energy splitting. Electron pairing is stable at temperatures as high as 900 millikelvin, well above the superconducting transition temperature (about 300 millikelvin). These experiments demonstrate the existence of a robust electronic phase in which electrons pair without forming a superconducting state. Key experimental signatures are captured by a model involving an attractive Hubbard interaction that describes real-space electron pairing as a precursor to superconductivity. Support from AFOSR, ONR, ARO, NSF, DOE and NSSEFF is gratefully acknowledged.

  2. Effect of single-particle splitting in the exact wave function of the isovectorial pairing Hamiltonian

    SciTech Connect

    Lerma H, S.

    2010-07-15

    The structure of the exact wave function of the isovectorial pairing Hamiltonian with nondegenerate single-particle levels is discussed. The way that the single-particle splittings break the quartet condensate solution found for N=Z nuclei in a single degenerate level is established. After a brief review of the exact solution, the structure of the wave function is analyzed and some particular cases are considered where a clear interpretation of the wave function emerges. An expression for the exact wave function in terms of the isospin triplet of pair creators is given. The ground-state wave function is analyzed as a function of pairing strength, for a system of four protons and four neutrons. For small and large values of the pairing strength a dominance of two-pair (quartets) scalar couplings is found, whereas for intermediate values enhancements of the nonscalar couplings are obtained. A correlation of these enhancements with the creation of Cooper-like pairs is observed.

  3. Isospin violating decays of positive parity B_s mesons in HMχ PT

    NASA Astrophysics Data System (ADS)

    Fajfer, Svjetlana; Prapotnik Brdnik, Anita

    2016-10-01

    Recent lattice QCD results suggest that the masses of the first two positive parity B_s mesons lie below the BK threshold, similar to the case of D^*_{s0}(2317)^+ and D_{s1}(2460)^+ mesons. The mass spectrum of B_s mesons seems to follow the pattern of a D_s mass spectrum. As in the case of charmed mesons, the structure of positive parity B_s mesons is very intriguing. To shed more light on this issue, we investigate the strong isospin violating decays B_{s0}^{*0} → B_s^0 π ^0, B_{s1}0 → B_s^{*0} π ^0, and B_{s1}0 → B_s^0 π π within heavy meson chiral perturbation theory. The two-body decay amplitude arises at tree level and we show that the loop corrections give significant contributions. On the other hand, in the case of three-body decay B_{s1}0 → B_s^0 π π the amplitude occurs only at loop level. We find that the decay widths for these decays are Γ (B_{s1}0 → B_s^0 π π )˜ 10^{-3} keV, and Γ (B_{s0}^{*0} → B_s^0 π ^0) ≤ 55 keV, Γ (B_{s1}0 → B_s^{*0} π ^0) ≤ 50 keV. More precise knowledge of the coupling constant describing the interaction of positive and negative parity heavy mesons with light pseudo-scalar mesons would help to increase the accuracy of our calculation.

  4. Collective pairing Hamiltonian in the GCM approximation

    NASA Astrophysics Data System (ADS)

    Góźdź, A.; Pomorski, K.; Brack, M.; Werner, E.

    1985-08-01

    Using the generator coordinate method and the gaussian overlap approximation we derived the collective Schrödinger-type equation starting from a microscopic single-particle plus pairing hamiltonian for one kind of particle. The BCS wave function was used as the generator function. The pairing energy-gap parameter Δ and the gauge transformation anglewere taken as the generator coordinates. Numerical results have been obtained for the full and the mean-field pairing hamiltonians and compared with the cranking estimates. A significant role played by the zero-point energy correction in the collective pairing potential is found. The ground-state energy dependence on the pairing strength agrees very well with the exact solution of the Richardson model for a set of equidistant doubly-degenerate single-particle levels.

  5. Paired Straight Hearth Furnace

    SciTech Connect

    2009-04-01

    This factsheet describes a research project whose goals are to design, develop, and evaluate the scalability and commercial feasibility of the PSH Paired Straight Hearth Furnace alternative ironmaking process.

  6. Energy dependence of forward 1S0 diproton production in the pp → ppπ0 reaction

    NASA Astrophysics Data System (ADS)

    Kurbatov, V.; Büscher, M.; Dymov, S.; Gusev, D.; Hartmann, M.; Kacharava, A.; Khoukaz, A.; Komarov, V.; Kulikov, A.; Macharashvili, G.; Mersmann, T.; Merzliakov, S.; Mikirtytchiants, S.; Prasuhn, D.; Rathmann, F.; Schleichert, R.; Ströher, H.; Tsirkov, D.; Uzikov, Yu.; Wilkin, C.; Yaschenko, S.

    2008-03-01

    The pp →{pp}sπ0 differential cross section has been measured with the ANKE spectrometer at COSY-Jülich for seven proton beam energies Tp between 0.51 and 1.97 GeV. By selecting proton pairs with an excitation energy of less than 3 MeV it is ensured that the final {pp}s system is in the S10 state. In the measured region of θppcm ≲ 18 °, the data reveal a forward dip for Tp ⩽ 1.4 GeV whereas a forward peaking is seen at 1.97 GeV. The energy dependence of the forward cross section shows a broad peak in the 0.6-0.8 GeV region, probably associated with Δ (1232) excitation, and a minimum at 1.4 GeV. Some of these features are similar to those observed for the spin-isospin partner reaction, pp → dπ+. However, the ratio of the forward differential cross sections of the two reactions shows a significant suppression of single pion production associated with a spin-singlet final nucleon pair.

  7. Adaptive Pairing Reversible Watermarking.

    PubMed

    Dragoi, Ioan-Catalin; Coltuc, Dinu

    2016-05-01

    This letter revisits the pairwise reversible watermarking scheme of Ou et al., 2013. An adaptive pixel pairing that considers only pixels with similar prediction errors is introduced. This adaptive approach provides an increased number of pixel pairs where both pixels are embedded and decreases the number of shifted pixels. The adaptive pairwise reversible watermarking outperforms the state-of-the-art low embedding bit-rate schemes proposed so far.

  8. Resonantly paired fermionic superfluids

    NASA Astrophysics Data System (ADS)

    Gurarie, V.; Radzihovsky, L.

    2007-01-01

    We present a theory of a degenerate atomic Fermi gas, interacting through a narrow Feshbach resonance, whose position and therefore strength can be tuned experimentally, as demonstrated recently in ultracold trapped atomic gases. The distinguishing feature of the theory is that its accuracy is controlled by a dimensionless parameter proportional to the ratio of the width of the resonance to Fermi energy. The theory is therefore quantitatively accurate for a narrow Feshbach resonance. In the case of a narrow s-wave resonance, our analysis leads to a quantitative description of the crossover between a weakly paired BCS superconductor of overlapping Cooper pairs and a strongly paired molecular Bose-Einstein condensate of diatomic molecules. In the case of pairing via a p-wave resonance, that we show is always narrow for a sufficiently low density, we predict a detuning-temperature phase diagram, that in the course of a BCS-BEC crossover can exhibit a host of thermodynamically distinct phases separated by quantum and classical phase transitions. For an intermediate strength of the dipolar anisotropy, the system exhibits a px + i py paired superfluidity that undergoes a topological phase transition between a weakly coupled gapless ground state at large positive detuning and a strongly paired fully gapped molecular superfluid for a negative detuning. In two dimensions the former state is characterized by a Pfaffian ground state exhibiting topological order and non-Abelian vortex excitations familiar from fractional quantum Hall systems.

  9. Cooper Pair Insulators

    NASA Astrophysics Data System (ADS)

    Valles, James

    One of the recent advances in the field of the Superconductor to Insulator Transition (SIT) has been the discovery and characterization of the Cooper Pair Insulator phase. This bosonic insulator, which consists of localized Cooper pairs, exhibits activated transport and a giant magneto-resistance peak. These features differ markedly from the weakly localized transport that emerges as pairs break at a ``fermionic'' SIT. I will describe how our experiments on films nano-patterned with a nearly triangular array of holes have enabled us to 1) distinguish bosonic insulators from fermionic insulators, 2) show that Cooper pairs, rather than quasi-particles dominate the transport in the Cooper Pair insulator phase, 3) demonstrate that very weak, sub nano-meter thickness inhomogeneities control whether a bosonic or fermionic insulator forms at an SIT and 4) reveal that Cooper pairs disintegrate rather than becoming more tightly bound deep in the localized phase. We have also developed a method, using a magnetic field, to tune flux disorder reversibly in these films. I will present our latest results on the influence of magnetic flux disorder and random gauge fields on phenomena near bosonic SITs. This work was performed in collaboration with M. D. Stewart, Jr., Hung Q. Nguyen, Shawna M. Hollen, Jimmy Joy, Xue Zhang, Gustavo Fernandez, Jeffrey Shainline and Jimmy Xu. It was supported by NSF Grants DMR 1307290 and DMR-0907357.

  10. Dependence of the lone pair of bismuth on coordination environment and pressure: An ab initio study on Cu{sub 4}Bi{sub 5}S{sub 10} and Bi{sub 2}S{sub 3}

    SciTech Connect

    Arnskov Olsen, Lars; Lopez-Solano, Javier; Garcia, Alberto; Balic-Zunic, Tonci; Makovicky, Emil

    2010-09-15

    DFT calculations have been carried out for Cu{sub 4}Bi{sub 5}S{sub 10} and Bi{sub 2}S{sub 3} to provide an analysis of the relation between electronic structure, lone electron pairs and the local geometry. The effect of pressure is considered in Bi{sub 2}S{sub 3} and the results are compared to published experimental data. Bi{sup 3+} in Cu{sub 4}Bi{sub 5}S{sub 10} is found at both symmetrically and asymmetrically coordinated sites, whereas the coordination environments of Bi in Bi{sub 2}S{sub 3} are asymmetric at room conditions and get more regular with increasing pressure. The charge density maps of the asymmetric sites show the lone pairs as lobes of non-shared charge. These lobes are related to an effective Bi s-Bi p hybridization resulting from coupling to S p orbitals, supporting the modern view of the origin of the stereochemically active lone pair. No effective Bi s-p hybridization is seen for the symmetric site in Cu{sub 4}Bi{sub 5}S{sub 10}, whereas Bi s-p hybridization coexists with a much reduced lone pair in Bi{sub 2}S{sub 3} at high pressure. - Graphical abstract: The article includes charge density maps used to analyze the charge distribution around bismuth in sulfides. This map shows the orientation of a lone electron pair.

  11. Optical emission of a molecular nanoantenna pair

    NASA Astrophysics Data System (ADS)

    Rice, E. M.; Andrews, D. L.

    2012-06-01

    The optical emission from a pair of nanoantennas is investigated within the theoretical framework of quantum electrodynamics. The analysis of fluorescent emission from a pair of molecular antenna species in close proximity is prompted by experimental work on oriented semiconductor polymer nanostructures. Each physically different possibility for separation-dependent features in photon emission by any such pair is explored in detail, leading to the identification of three distinct mechanisms: emission from a pair-delocalized exciton state, emission that engages electrodynamic coupling through quantum interference, and correlated photon emission from the two components of the pair. Although each mechanism produces a damped oscillatory dependence on the pair separation, each of the corresponding results exhibits an analytically different form. Significant differences in the associated spatial frequencies enable an apparent ambiguity in the interpretation of experiments to be resolved. Other major differences are found in the requisite conditions, the associated selection rules, and the variation with angular disposition of the emitters, together offering grounds for experimental discrimination between the coupling mechanisms. The analysis paves the way for investigations of pair-wise coupling effects in the emission from nanoantenna arrays.

  12. Isospin Effects in Heavy-Ion Collisions: Some Results From CHIMERA Experiments At LNS And Perspectives With Radioactive Beams

    SciTech Connect

    Cardella, G.; De Filippo, E.; Pagano, A.; Papa, M.; Pirrone, S.; Verde, G.; Amorini, F.; Cavallaro, S.; Lombardo, I.; Porto, F.; Rizzo, F.; Russotto, P.; Anzalone, A.; Maiolino, C.; Arena, N.; Geraci, E.; Grassi, L.; Lo Nigro, S.; Politi, G.; Auditore, L.

    2009-05-04

    CHIMERA is a 4{pi} multidetector for charged particles available at Laboratori Nazionali del Sud (INFN-LNS). A new method to measure the time scale of the emission of nuclear fragments is described, together with some applications in the field of the isospin dynamics of heavy-ion collisions. Competition between fusion-like and binary reactions near the energy threshold for nuclear multifragmentation is discussed. Opportunities are pointed out to use the detector at low and intermediate energies using the kinematical-coincidence method.

  13. Pairing, pseudogap and Fermi arcs in cuprates

    SciTech Connect

    Kaminski, Adam; Kondo, Takeshi; Takeuchi, Tsunehiro; Gu, Genda

    2014-04-29

    We use Angle Resolved Photoemission Spectroscopy (ARPES) to study the relationship between the pseudogap, pairing and Fermi arcs in cuprates. High quality data measured over a wide range of dopings reveals a consistent picture of Fermiology and pairing in these materials. The pseudogap is due to an ordered state that competes with superconductivity rather than preformed pairs. Pairing does occur below Tpair ~ 150K and significantly above Tc, but well below T* and the doping dependence of this temperature scale is distinct from that of the pseudogap. The d-wave gap is present below Tpair, and its interplay with strong scattering creates “artificial” Fermi arcs for Tc ≤ T ≤ Tpair. However, above Tpair, the pseudogap exists only at the antipodal region. This leads to presence of real, gapless Fermi arcs close to the node. The length of these arcs remains constant up to T*, where the full Fermi surface is recovered. As a result, we demonstrate that these findings resolve a number of seemingly contradictory scenarios.

  14. Segmentation and the pairing hypothesis.

    PubMed

    Bragason, Orn

    2004-09-30

    The effect of stimulus contiguity and response contingency on responding in chain schedules was examined in two experiments. In Experiment 1, four pigeons were trained on two simple three-link chain schedules that alternated within sessions. Initial links were correlated with a variable-interval 30s schedule, and middle and terminal links were correlated with interdependent variable-interval 30s variable-interval 30s schedules. The combined duration of the interdependent schedules summed to 60s. The two chains differed with respect to signaling of the schedule components: a two-stimulus chain had one stimulus paired with the initial link and one stimulus paired with both the middle and the terminal link, while a three-stimulus chain had a different stimulus paired with the each of the three links. The results showed that the two-stimulus chain maintained lower initial-link responding than the three-stimulus chain. In Experiment 2, four pigeons were exposed to three separate conditions, the two- and three-stimulus chains of Experiment 1 and a three-stimulus chain that had a 3s delay to terminal-link entry from the middle-link response that produced it. The two-stimulus chain maintained lower initial-link responding than the three-stimulus chain, as in Experiment 1, and a similar initial-link responding was maintained by the two-stimulus chain and the three-stimulus chain with the delay contingency. The results demonstrate that a stimulus noncontiguous with food can maintain responding that is sometimes greater than a stimulus contiguous with food, depending on the response contingency for terminal-link entry. The results are contrary to the pairing hypothesis of conditioned reinforcement.

  15. The dipion mass spectrum in e+e- annihilation and tau decay: Isospin symmetry breaking effects from the (rho, omega, phi) mixing

    SciTech Connect

    Benayoun, M.; David, P.; Del Buono, L.; Leitner, O.; O'Connell, H.B.; /Fermilab

    2008-01-01

    A way to explain the puzzling difference between the pion form factor as measured in e{sup +}e{sup -} annihilations and in {tau} decays is discussed. We show that isospin symmetry breaking, beside the already identified effects, produces also a full mixing between the {rho}{sup 0}, {omega} and {phi} mesons which generates an isospin 0 component inside the {rho}{sup 0} meson. This effect, not accounted for in current treatments of the problem, seems able to account for the apparent mismatch between e{sup +}e{sup -} and {tau} data below the {phi} mass.

  16. Multi-pair states in electron-positron pair creation

    NASA Astrophysics Data System (ADS)

    Wöllert, Anton; Bauke, Heiko; Keitel, Christoph H.

    2016-09-01

    Ultra strong electromagnetic fields can lead to spontaneous creation of single or multiple electron-positron pairs. A quantum field theoretical treatment of the pair creation process combined with numerical methods provides a description of the fermionic quantum field state, from which all observables of the multiple electron-positron pairs can be inferred. This allows to study the complex multi-particle dynamics of electron-positron pair creation in-depth, including multi-pair statistics as well as momentum distributions and spin. To illustrate the potential benefit of this approach, it is applied to the intermediate regime of pair creation between nonperturbative Schwinger pair creation and perturbative multiphoton pair creation where the creation of multi-pair states becomes nonnegligible but cascades do not yet set in. Furthermore, it is demonstrated how spin and helicity of the created electrons and positrons are affected by the polarization of the counterpropagating laser fields, which induce the creation of electron-positron pairs.

  17. High base pair opening rates in tracts of GC base pairs.

    PubMed

    Dornberger, U; Leijon, M; Fritzsche, H

    1999-03-12

    Sequence-dependent structural features of the DNA double helix have a strong influence on the base pair opening dynamics. Here we report a detailed study of the kinetics of base pair breathing in tracts of GC base pairs in DNA duplexes derived from 1H NMR measurements of the imino proton exchange rates upon titration with the exchange catalyst ammonia. In the limit of infinite exchange catalyst concentration, the exchange times of the guanine imino protons of the GC tracts extrapolate to much shorter base pair lifetimes than commonly observed for isolated GC base pairs. The base pair lifetimes in the GC tracts are below 5 ms for almost all of the base pairs. The unusually rapid base pair opening dynamics of GC tracts are in striking contrast to the behavior of AT tracts, where very long base pair lifetimes are observed. The implication of these findings for the structural principles governing spontaneous helix opening as well as the DNA-binding specificity of the cytosine-5-methyltransferases, where flipping of the cytosine base has been observed, are discussed.

  18. Non stationary pair model in blazar

    NASA Astrophysics Data System (ADS)

    Marcowith, Alexandre; Henri, Gilles; Renaud, Nicolas

    2001-09-01

    This article shortly present an improved version of pair models for X and gamma-ray emission from blazar jets. The radiations are generated through external and synchrotron Inverse Compton mechanisms in the vicinity of a super-massive black hole by an ultra-relativistic electron-positron pair plasma pervading a non-relativistic electron-proton jet (two-flow model). Non stationary solutions are found by solving simultaneously pair creation/annihilation, soft photon absorption and particle acceleration processes along the jet. The power supply necessary to re-accelerate particles is not treated in a self-consistent procedure but parametrised. Pair creation opacity effects can lead to interesting variability effects depending on the X-ray emission regimes. Multi-wavelength observations by INTEGRAL will provide tests for the model, and also for the matter content and variability mechanisms in compact sources.

  19. Stereo Pair: Patagonia, Argentina

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This view of northern Patagonia, near El Cain, Argentina shows complexly eroded volcanic terrain, with basalt mesas, sinkholes, landslide debris, playas, and relatively few integrated drainage channels. Surrounding this site (but also extending far to the east) is a broad plateau capped by basalt, the Meseta de Somuncura. Here, near the western edge of the plateau, erosion has broken through the basalt cap in a variety of ways. On the mesas, water-filled sinkholes (lower left) are most likely the result of the collapse of old lava tubes. Along the edges of the mesas (several locations) the basalt seems to be sliding away from the plateau in a series of slices. Water erosion by overland flow is also evident, particularly in canyons where vegetation blankets the drainage channels (green patterns, bottom of image). However, overland water flow does not extend very far at any location. This entire site drains to local playas, some of which are seen here (blue). While the water can reach the playas and then evaporate, what becomes of the eroded rock debris? Wind might excavate some of the finer eroded debris, but the fate of much of the missing bedrock remains mysterious.

    This cross-eyed stereoscopic image pair was generated using topographic data from the Shuttle Radar Topography Mission, combined with an enhanced Landsat 7 satellite color image. The topography data are used to create two differing perspectives of a single image, one perspective for each eye. In doing so, each point in the image is shifted slightly, depending on its elevation. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions.

    Landsat satellites have provided visible light and infrared images of the Earth continuously since 1972. SRTM topographic data match the 30-meter (99-foot) spatial resolution of most Landsat images and provide a valuable complement for studying the historic and growing Landsat data archive. The

  20. Stereo Pair, Patagonia, Argentina

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This view of northern Patagonia, at Los Menucos, Argentina shows remnants of relatively young volcanoes built upon an eroded plain of much older and contorted volcanic, granitic, and sedimentary rocks. The large purple, brown, and green 'butterfly' pattern is a single volcano that has been deeply eroded. Large holes on the volcano's flanks indicate that they may have collapsed soon after eruption, as fluid molten rock drained out from under its cooled and solidified outer shell. At the upper left, a more recent eruption occurred and produced a small volcanic cone and a long stream of lava, which flowed down a gully. At the top of the image, volcanic intrusions permeated the older rocks resulting in a chain of small dark volcanic peaks. At the top center of the image, two halves of a tan ellipse pattern are offset from each other. This feature is an old igneous intrusion that has been split by a right-lateral fault. The apparent offset is about 6.6 kilometers (4 miles). Color, tonal, and topographic discontinuities reveal the fault trace as it extends across the image to the lower left. However, young unbroken basalt flows show that the fault has not been active recently.

    This cross-eyed stereoscopic image pair was generated using topographic data from the Shuttle Radar Topography Mission, combined with an enhanced Landsat 7satellite color image. The topography data are used to create two differing perspectives of a single image, one perspective for each eye. In doing so, each point in the image is shifted slightly, depending on its elevation. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions.

    Landsat satellites have provided visible light and infrared images of the Earth continuously since 1972. SRTM topographic data match the 30-meter (99-foot) spatial resolution of most Landsat images and provide a valuable complement for studying the historic and growing Landsat data archive

  1. Stability and size of particle pairs in complex plasmas

    SciTech Connect

    Nosenko, V.; Ivlev, A. V.; Kompaneets, R.; Morfill, G.

    2014-11-15

    Particle pairing in a complex plasma was experimentally studied with the emphasis on pair spatial extent and stability. Micron-size particles were suspended in the (pre)sheath area above the lower electrode in a capacitively coupled radio-frequency discharge in argon. They formed vertical pairs due to the ion wakes created by the flow of ions past particles. We discuss the confinement mechanism for the lower particle, resulting from a combination of the wake field and the field of non-uniform sheath. A model of particle pairs is proposed, which provides good description for the dependence of pair size and stability on experimental parameters.

  2. Branching fractions and CP asymmetries in B0-->pi0pi0, B+-->pi+pi0, and B+-->K+pi0 decays and isospin analysis of the B-->pipi system.

    PubMed

    Aubert, B; Barate, R; Boutigny, D; Couderc, F; Karyotakis, Y; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Grauges-Pous, E; Palano, A; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Wenzel, W A; Barrett, M; Ford, K E; Harrison, T J; Hart, A J; Hawkes, C M; Morgan, S E; Watson, A T; Fritsch, M; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Schroeder, T; Steinke, M; Boyd, J T; Chevalier, N; Cottingham, W N; Kelly, M P; Latham, T E; Wilson, F F; Cuhadar-Donszelmann, T; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Thiessen, D; Khan, A; Kyberd, P; Teodorescu, L; Blinov, A E; Blinov, V E; Druzhinin, V P; Golubev, V B; Ivanchenko, V N; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Bruinsma, M; Chao, M; Eschrich, I; Kirkby, D; Lankford, A J; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Buchanan, C; Hartfiel, B L; Weinstein, A J R; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; del Re, D; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Rahatlou, Sh; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Lu, A; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Eisner, A M; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Yang, S; Jayatilleke, S; Mancinelli, G; Meadows, B T; Sokoloff, M D; Blanc, F; Bloom, P; Chen, S; Ford, W T; Nauenberg, U; Olivas, A; Rankin, P; Ruddick, W O; Smith, J G; Ulmer, K A; Zhang, J; Zhang, L; Chen, A; Eckhart, E A; Harton, J L; Soffer, A; Toki, W H; Wilson, R J; Zeng, Q; Spaan, B; Altenburg, D; Brandt, T; Brose, J; Dickopp, M; Feltresi, E; Hauke, A; Lacker, H M; Nogowski, R; Otto, S; Petzold, A; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Bernard, D; Bonneaud, G R; Grenier, P; Schrenk, S; Thiebaux, Ch; Vasileiadis, G; Verderi, M; Bard, D J; Clark, P J; Muheim, F; Playfer, S; Xie, Y; Andreotti, M; Azzolini, V; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Piemontese, L; Sarti, A; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Crosetti, G; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Bailey, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Won, E; Dubitzky, R S; Langenegger, U; Marks, J; Uwer, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Gaillard, J R; Morton, G W; Nash, J A; Nikolich, M B; Taylor, G P; Charles, M J; Grenier, G J; Mallik, U; Cochran, J; Crawley, H B; Lamsa, J; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Yi, J; Arnaud, N; Davier, M; Giroux, X; Grosdidier, G; Höcker, A; Le Diberder, F; Lepeltier, V; Lutz, A M; Petersen, T C; Plaszczynski, S; Schune, M H; Wormser, G; Cheng, C H; Lange, D J; Simani, M C; Wright, D M; Bevan, A J; Chavez, C A; Coleman, J P; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; Hutchcroft, D E; Parry, R J; Payne, D J; Touramanis, C; Cormack, C M; Di Lodovico, F; Brown, C L; Cowan, G; Flack, R L; Flaecher, H U; Green, M G; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Winter, M A; Brown, D; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Hodgkinson, M C; Lafferty, G D; Williams, J C; Chen, C; Farbin, A; Hulsbergen, W D; Jawahery, A; Kovalskyi, D; Lae, C K; Lillard, V; Roberts, D A; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Kofler, R; Koptchev, V B; Moore, T B; Saremi, S; Staengle, H; Willocq, S; Cowan, R; Koeneke, K; Sciolla, G; Sekula, S J; Taylor, F; Yamamoto, R K; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Taras, P; Nicholson, H; Cavallo, N; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M; Bulten, H; Raven, G; Snoek, H L; Wilden, L; Jessop, C P; LoSecco, J M; Allmendinger, T; Benelli, G; Gan, K K; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Pulliam, T; Rahimi, A M; Ter-Antonyan, R; Wong, Q K; Brau, J; Frey, R; Igonkina, O; Lu, M; Potter, C T; Sinev, N B; Strom, D; Torrence, E; Colecchia, F; Dorigo, A; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; de la Vaissière, Ch; Del Buono, L; Hamon, O; John, M J J; Leruste, Ph; Malcles, J; Ocariz, J; Roos, L; Therin, G; Behera, P K; Gladney, L; Guo, Q H; Panetta, J; Biasini, M; Covarelli, R; Pioppi, M; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bucci, F; Calderini, G; Carpinelli, M; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Simi, G; Walsh, J; Haire, M; Judd, D; Paick, K; Wagoner, D E; Danielson, N; Elmer, P; Lau, Y P; Lu, C; Miftakov, V; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; D'Orazio, A; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Pierini, M; Piredda, G; Polci, F; Safai Tehrani, F; Voena, C; Christ, S; Schröder, H; Wagner, G; Waldi, R; Adye, T; De Groot, N; Franek, B; Gopal, G P; Olaiya, E O; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P-F; Hamel de Monchenault, G; Kozanecki, W; Legendre, M; London, G W; Mayer, B; Schott, G; Vasseur, G; Yèche, Ch; Zito, M; Purohit, M V; Weidemann, A W; Wilson, J R; Yumiceva, F X; Abe, T; Allen, M; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmueller, O L; Claus, R; Convery, M R; Cristinziani, M; De Nardo, G; Dingfelder, J C; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W; Fan, S; Field, R C; Glanzman, T; Gowdy, S J; Hadig, T; Halyo, V; Hast, C; Hryn'ova, T; Innes, W R; Kelsey, M H; Kim, P; Kocian, M L; Leith, D W G S; Libby, J; Luitz, S; Luth, V; Lynch, H L; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Soha, A; Stelzer, J; Strube, J; Su, D; Sullivan, M K; Thompson, J; Va'vra, J; Wagner, S R; Weaver, M; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Roat, C; Ahmed, M; Ahmed, S; Alam, M S; Ernst, J A; Saeed, M A; Saleem, M; Wappler, F R; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Kim, H; Ritchie, J L; Satpathy, A; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Bona, M; Gallo, F; Gamba, D; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Poropat, P; Vitale, L; Vuagnin, G; Martinez-Vidal, F; Panvini, R S; Banerjee, Sw; Bhuyan, B; Brown, C M; Fortin, D; Jackson, P D; Kowalewski, R; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Mohanty, G B; Band, H R; Chen, X; Cheng, B; Dasu, S; Datta, M; Eichenbaum, A M; Flood, K T; Graham, M; Hollar, J J; Johnson, J R; Kutter, P E; Li, H; Liu, R; Mihalyi, A; Pan, Y; Prepost, R; Tan, P; von Wimmersperg-Toeller, J H; Wu, J; Wu, S L; Yu, Z; Greene, M G; Neal, H

    2005-05-13

    Based on a sample of 227 x 10(6) BB pairs collected by the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC, we measure the branching fraction B(B0-->pi(0)pi(0))=(1.17+/-0.32+/-0.10)x10(-6), and the asymmetry Cpi(0)(pi(0))=-0.12+/-0.56+/-0.06. The B0-->pi(0)pi(0) signal has a significance of 5.0 sigma. We also measure B(B+-->pi(+)pi(0))=(5.8+/-0.6+/-0.4)x10(-6), B(B+-->K+pi(0))=(12.0+/-0.7+/-0.6)x10(-6), and the charge asymmetries Api(+)(pi(0))=-0.01+/-0.10+/-0.02 and AK+(pi(0))=0.06+/-0.06+/-0.01. Using isospin relations, we find an upper bound on the angle difference |alpha-alpha(eff)| of 35 degrees at the 90% C.L.

  3. A 0.35 μm sub-ns wake-up time ON-OFF switchable LVDS driver-receiver chip I/O pad pair for rate-dependent power saving in AER bit-serial links.

    PubMed

    Zamarreño-Ramos, Carlos; Serrano-Gotarredona, Teresa; Linares-Barranco, Bernabé

    2012-10-01

    This paper presents a low power switchable current mode driver/receiver I/O pair for high speed serial transmission of asynchronous address event representation (AER) information. The sparse nature of AER packets (also called events) allows driver/receiver bias currents to be switched off to save power. The on/off times must be lower than the bit time to minimize the latency introduced by the switching mechanism. Using this technique, the link power consumption can be scaled down with the event rate without compromising the maximum system throughput. The proposed technique has been implemented on a typical push/pull low voltage differential signaling (LVDS) circuit, but it can easily be extended to other widely used current mode standards, such as current mode logic (CML) or low-voltage positive emitter-coupled logic (LVPECL). A proof of concept prototype has been fabricated in 0.35 μm CMOS incorporating the proposed driver/receiver pair along with a previously reported switchable serializer/deserializer scheme. At a 500 Mbps bit rate, the maximum event rate is 11 Mevent/s for 32-bit events. In this situation, current consumption is 7.5 mA and 9.6 mA for the driver and receiver, respectively, while differential voltage amplitude is ±300 mV. However, if event rate is lower than 20-30 Kevent/s, current consumption has a floor of 270 μA for the driver and 570 μA for the receiver. The measured ON/OFF switching times are in the order of 1 ns. The serial link could be operated at up to 710 Mbps bit rate, resulting in a maximum 32-bit event rate of 15 Mevent/s . This is the same peak event rate as that obtained with the same SerDes circuits and a non-switched driver/receiver pair.

  4. Rashba Splitting of Cooper Pairs

    NASA Astrophysics Data System (ADS)

    Shekhter, R. I.; Entin-Wohlman, O.; Jonson, M.; Aharony, A.

    2016-05-01

    We investigate theoretically the properties of a weak link between two superconducting leads, which has the form of a nonsuperconducting nanowire with a strong Rashba spin-orbit coupling caused by an electric field. In the Coulomb-blockade regime of single-electron tunneling, we find that such a weak link acts as a "spin splitter" of the spin states of Cooper pairs tunneling through the link, to an extent that depends on the direction of the electric field. We show that the Josephson current is sensitive to interference between the resulting two transmission channels, one where the spins of both members of a Cooper pair are preserved and one where they are both flipped. As a result, the current is a periodic function of the strength of the spin-orbit interaction and of the bending angle of the nanowire (when mechanically bent); an identical effect appears due to strain-induced spin-orbit coupling. In contrast, no spin-orbit induced interference effect can influence the current through a single weak link connecting two normal metals.

  5. Rashba Splitting of Cooper Pairs.

    PubMed

    Shekhter, R I; Entin-Wohlman, O; Jonson, M; Aharony, A

    2016-05-27

    We investigate theoretically the properties of a weak link between two superconducting leads, which has the form of a nonsuperconducting nanowire with a strong Rashba spin-orbit coupling caused by an electric field. In the Coulomb-blockade regime of single-electron tunneling, we find that such a weak link acts as a "spin splitter" of the spin states of Cooper pairs tunneling through the link, to an extent that depends on the direction of the electric field. We show that the Josephson current is sensitive to interference between the resulting two transmission channels, one where the spins of both members of a Cooper pair are preserved and one where they are both flipped. As a result, the current is a periodic function of the strength of the spin-orbit interaction and of the bending angle of the nanowire (when mechanically bent); an identical effect appears due to strain-induced spin-orbit coupling. In contrast, no spin-orbit induced interference effect can influence the current through a single weak link connecting two normal metals. PMID:27284669

  6. Oscillatory pairing of fermions in spin-split traps

    SciTech Connect

    Sun Kuei; Vishveshwara, Smitha; Meyer, Julia S.; Sheehy, Daniel E.

    2011-03-15

    As a means of realizing oscillatory pairing between fermions, we study superfluid pairing between two fermion ''spin'' species that are confined to adjustable spin-dependent trapping potentials. Focusing on the one-dimensional limit, we find that with increasing separation between the spin-dependent traps, the fermions exhibit distinct phases, including a fully paired phase, a spin-imbalanced phase with oscillatory pairing, and an unpaired fully spin-polarized phase. We obtain the phase diagram of fermions in such a spin-split trap and discuss signatures of these phases in cold-atom experiments.

  7. Mean-field plus various types of pairing models and an exact boson mapping of the standard pairing model

    SciTech Connect

    Pan Feng; Wang Yin; Guan Xin; Jia Lu; Chen Xiangrong; Draayer, J. P.

    2011-06-28

    Exact solutions of Nilsson mean-field with various pairing interactions are reviewed. Some even-odd mass differences and moments of inertia of low-lying states for rare earth and actinide nuclei are calculated for the nearest-orbit pairing approximation as well as for the extended pairing model and compared to available experimental data. An exact boson mapping of the standard pairing Hamiltonian is also reported. Under the mapping, fermion pair operators are mapped exactly onto corresponding bosons. The image of the mapping is a Bose-Hubbard model with orbit-dependent hopping.

  8. Migration of helium-pair in metals

    NASA Astrophysics Data System (ADS)

    Cao, J. L.; Geng, W. T.

    2016-09-01

    We have carried out a first-principles density functional theory investigation into the migration of both a single interstitial He and an interstitial He-pair in Fe, Mo, W, Cu, Pd, and Pt. We find the migration trajectories and barriers are determined predominantly by low-energy He-pair configurations which depend mainly on the energy state of a single He in different interstices. The migration barrier for a He-pair in bcc metals is always slightly higher than for a single He. Configurations of a He-pair in fcc metals are very complicated, due to the existence of interstitial sites with nearly identical energy for a single He. The migration barrier for a He-pair is slightly lower than (in Cu), or similar to (in Pd and Pt) a single He. The collective migrations of a He-pair are ensured by strong Hesbnd He interactions with strength-versus-distance forms resembling chemical bonds and can be described with Morse potentials.

  9. Studies of the spin-isospin response of the nuclear continuum using intermediate energy hadrons. Final technical report

    SciTech Connect

    Baker, F.T.

    1999-11-01

    The work supported by this grant has had two main thrusts. One involved study of the spin, isospin, and multipole content of the continuum of nuclei, a continuation and completion of work done at LAMPF, Saturne, and TRIUMF. Most of the work has used ({bar p}, {bar p}{prime}) or ({bar d}, {bar d}{prime}) reactions, measuring spin observable to infer properties of the target nuclei. Publications resulting from this work have included seven refereed articles and letters, five abstracts and conference talks, one of which was invited. The second thrust involved preparatory work for experiments at CEBAF. The author was involved in Hall A work and the construction, installation, and initial experiments using the proton focal plane polarimeter. Experiments began in 1997 and no referred publications have yet been completed; ten abstracts and conference talks have been published.

  10. Searches for isospin-violating transitions χc 0 ,2→π0ηc

    NASA Astrophysics Data System (ADS)

    Ablikim, M.; Achasov, M. N.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Baldini Ferroli, R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Bondarenko, O.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Cronin-Hennessy, D.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; de Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, Y.; Gao, Z.; Garzia, I.; Geng, C.; Goetzen, K.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Han, Y. L.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, Z. Y.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. M.; Huang, G. S.; Huang, H. P.; Huang, J. S.; Huang, X. T.; Huang, Y.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. L.; Jiang, L. W.; Jiang, X. S.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kuehn, W.; Kupsc, A.; Lai, W.; Lange, J. S.; Lara, M.; Larin, P.; Li, C. H.; Li, Cheng; Li, D. M.; Li, F.; Li, G.; Li, H. B.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, P. R.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. M.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B. J.; Liu, C. X.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, X. X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqiang; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, R. Q.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lv, M.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, Q. M.; Ma, S.; Ma, T.; Ma, X. N.; Ma, X. Y.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Moriya, K.; Muchnoi, N. Yu.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Ping, J. L.; Ping, R. G.; Poling, R.; Pu, Y. N.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Y.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ren, H. L.; Ripka, M.; Rong, G.; Ruan, X. D.; Santoro, V.; Sarantsev, A.; Savrié, M.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Shepherd, M. R.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Toth, D.; Ullrich, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, Q. J.; Wang, S. G.; Wang, W.; Wang, X. F.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Wei, J. B.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, Z.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. X.; Yang, L.; Yang, Y.; Yang, Y. X.; Ye, H.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, H. W.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. H.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, Li; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zou, B. S.; Zou, J. H.; Besiii Collaboration

    2015-06-01

    We present the first upper-limit measurement of the branching fractions of the isospin-violating transitions χc 0 ,2→π0ηc . The measurements are performed using 106 ×1 06 ψ (3686 ) events accumulated with the BESIII detector at the BEPCII e+e- collider at a center-of-mass energy corresponding to the ψ (3686 ) mass. We obtained upper limits on the branching fractions at a 90% confidence level of B (χc 0→π0ηc)<1.6 ×1 0-3 and B (χc 2→π0ηc)<3.2 ×1 0-3 .

  11. Existence of best proximity pairs and equilibrium pairs

    NASA Astrophysics Data System (ADS)

    Kim, Won Kyu; Lee, Kyoung Hee

    2006-04-01

    In this paper, using the fixed point theorem for Kakutani factorizable multifunctions, we shall prove new existence theorems of best proximity pairs and equilibrium pairs for free abstract economies, which include the previous fixed point theorems and equilibrium existence theorems.

  12. Temperature and momentum dependence of single-particle properties in hot asymmetric nuclear matter

    SciTech Connect

    Moustakidis, Ch. C.

    2008-11-15

    We have studied the effects of momentum-dependent interactions on the single-particle properties of hot asymmetric nuclear matter. In particular, the single-particle potential of protons and neutrons as well as the symmetry potential have been studied within a self-consistent model using a momentum-dependent effective interaction. In addition, the isospin splitting of the effective mass has been derived from the above model. In each case temperature effects have been included and analyzed. The role of the specific parametrization of the effective interaction used in the present work has been investigated. It has been concluded that the behavior of the symmetry potential depends strongly on the parametrization of the interaction part of the energy density and the momentum dependence of the regulator function. The effects of the parametrization have been found to be less pronounced on the isospin mass splitting.

  13. Spin polarization transfer by the radical pair mechanism

    SciTech Connect

    Zarea, Mehdi Ratner, Mark A.; Wasielewski, Michael R.

    2015-08-07

    In a three-site representation, we study a spin polarization transfer from radical pair spins to a nearby electron or nuclear spin. The quantum dynamics of the radical pair spins is governed by a constant exchange interaction between the radical pair spins which have different Zeeman frequencies. Radical pair spins can recombine to the singlet ground state or to lower energy triplet states. It is then shown that the coherent dynamics of the radical pair induces spin polarization on the nearby third spin in the presence of a magnetic field. The spin polarization transfer depends on the difference between Zeeman frequencies, the singlet and triplet recombination rates, and on the exchange and dipole-dipole interactions between the different spins. In particular, the sign of the polarization depends on the exchange coupling between radical pair spins and also on the difference between singlet and triplet recombination rate constants.

  14. Hard Photodisintegration of a Proton Pair

    DOE PAGESBeta

    Pomerantz, Ishay; Bubis, Nathaniel; Allada, Kalyan; Beck, Arie; Beck, Sara; Berman, Barry L.; Boeglin, Werner U.; Camsonne, Alexandre; Canan, Mustafa; Chirapatpimol, Khem; et al

    2010-01-08

    We present the first study of high energy photodisintegration of proton-pairs through the gamma + 3He -> p+p+n channel. Photon energies from 0.8 to 4.7 GeV were used in kinematics corresponding to a proton pair with high relative momentum and a neutron nearly at rest. An s^{-11} scaling of the cross section was observed, as predicted by the constituent counting rule. The onset of the scaling is at a higher energy and the cross section is significantly lower then for pn pair photodisintegration. For photon energies below the scaling region, the scaled cross section was found to present a strongmore » energy-dependent structure not observed in deuteron photodisintegration.« less

  15. Hadronic production of massive lepton pairs

    SciTech Connect

    Berger, E.L.

    1982-12-01

    A review is presented of recent experimental and theoretical progress in studies of the production of massive lepton pairs in hadronic collisions. I begin with the classical Drell-Yan annihilation model and its predictions. Subsequently, I discuss deviations from scaling, the status of the proofs of factorization in the parton model, higher-order terms in the perturbative QCD expansion, the discrepancy between measured and predicted yields (K factor), high-twist terms, soft gluon effects, transverse-momentum distributions, implications for weak vector boson (W/sup + -/ and Z/sup 0/) yields and production properties, nuclear A dependence effects, correlations of the lepton pair with hadrons in the final state, and angular distributions in the lepton-pair rest frame.

  16. Reaction of the Co(II)-substrate radical pair catalytic intermediate in coenzyme B12-dependent ethanolamine ammonia-lyase in frozen aqueous solution from 190 to 217 K.

    PubMed

    Zhu, Chen; Warncke, Kurt

    2008-12-15

    The decay kinetics of the aminoethanol-generated Co(II)-substrate radical pair catalytic intermediate in ethanolamine ammonia-lyase from Salmonella typhimurium have been measured on timescales of <10(5) s in frozen aqueous solution from 190 to 217 K. X-band continuous-wave electron paramagnetic resonance (EPR) spectroscopy of the disordered samples has been used to continuously monitor the full radical pair EPR spectrum during progress of the decay after temperature step reaction initiation. The decay to a diamagnetic state is complete and no paramagnetic intermediate states are detected. The decay exhibits three kinetic regimes in the measured temperature range, as follows. i), Low temperature range, 190 < or = T < or = 207 K: the decay is biexponential with constant fast (0.57 +/- 0.04) and slow (0.43 +/- 0.04) phase amplitudes. ii), Transition temperature range, 207 < T < 214 K: the amplitude of the slow phase decreases to zero with a compensatory rise in the fast phase amplitude, with increasing temperature. iii), High temperature range, T > or = 214 K: the decay is monoexponential. The observed first-order rate constants for the monoexponential (k(obs,m)) and the fast phase of the biexponential decay (k(obs,f)) adhere to the same linear relation on an lnk versus T(-1) (Arrhenius) plot. Thus, k(obs,m) and k(obs,f) correspond to the same apparent Arrhenius prefactor and activation energy (logA(app,f) (s(-1)) = 13.0, E(a,app,f) = 15.0 kcal/mol), and therefore, a common decay mechanism. We propose that k(obs,m) and k(obs,f) represent the native, forward reaction of the substrate through the radical rearrangement step. The slow phase rate constant (k(obs,s)) for 190 < or = T < or = 207 K obeys a different linear Arrhenius relation (logA(app,s) (s(-1)) = 13.9, E(a,app,s) = 16.6 kcal/mol). In the transition temperature range, k(obs,s) displays a super-Arrhenius increase with increasing temperature. The change in E(a,app,s) with temperature and the narrow range over

  17. Multiprocessor switch with selective pairing

    DOEpatents

    Gara, Alan; Gschwind, Michael K; Salapura, Valentina

    2014-03-11

    System, method and computer program product for a multiprocessing system to offer selective pairing of processor cores for increased processing reliability. A selective pairing facility is provided that selectively connects, i.e., pairs, multiple microprocessor or processor cores to provide one highly reliable thread (or thread group). Each paired microprocessor or processor cores that provide one highly reliable thread for high-reliability connect with a system components such as a memory "nest" (or memory hierarchy), an optional system controller, and optional interrupt controller, optional I/O or peripheral devices, etc. The memory nest is attached to a selective pairing facility via a switch or a bus

  18. Prospective very young asteroid pairs

    NASA Astrophysics Data System (ADS)

    Galád, A.; Vokrouhlický, D.; Zizka, J.

    2014-07-01

    Several tens of asteroid pairs can be discerned from the background main-belt asteroids. The majority of them are thought to have formed within only the last few 10^6 yr. The youngest recognized pairs have formed more than ≈ 10 kyr ago. As some details of pair formation are still not understood well, the study of young pairs is of great importance. It is mainly because the conditions at the time of the pair formation could be deduced much more reliably for young pairs. For example, space weathering on the surfaces of the components, or changes in their rotational properties (in spin rates, tumbling, coordinates of rotational pole) could be negligible since the formation of young pairs. Also, possible strong perturbations by main-belt bodies on pair formation can be reliably studied only for extremely young pairs. Some pairs can quickly blend in with the background asteroids, so even the frequency of asteroid pair formation could be determined more reliably based on young pairs (though only after a statistically significant sample is at disposal). In our regular search for young pairs in the growing asteroid database, only multiopposition asteroids with very similar orbital and proper elements are investigated. Every pair component is represented by a number of clones within orbital uncertainties and drifting in semimajor axis due to the Yarkovsky effect. We found that, if the previously unrecognized pairs (87887) 2000 SS_{286} - 2002 AT_{49} and (355258) 2007 LY_{4} - 2013AF_{40} formed at the recent very close approach of their components, they could become the youngest known pairs. In both cases, the relative encounter velocities of the components were only ˜ 0.1 m s^{-1}. However, the minimum distances between some clones are too large and a few clones of the latter pair did not encounter recently (within ≈ 10 kyr). The age of some prospective young pairs cannot be determined reliably without improved orbital properties (e.g., the second component of a pair

  19. Electron Pairing, Repulsion, and Correlation: A Simplistic Approach

    ERIC Educational Resources Information Center

    Olsson, Lars-Fride; Kloo, Lars

    2004-01-01

    The interplay between a nucleus and an electron pair is explained through a basic application of an electrostatic and balanced model to determine the correlated and repulsive movements of the electron pair. The stable correlation depends on the positive charge produced by the combined force, which in turn establishes a negative potential energy.

  20. Multiple origins of asteroid pairs

    NASA Astrophysics Data System (ADS)

    Jacobson, Seth A.

    2016-01-01

    Rotationally fissioned asteroids produce unbound asteroid pairs that have very similar heliocentric orbits. Backward integration of their current heliocentric orbits provides an age of closest proximity that can be used to date the rotational fission event. Most asteroid pairs follow a predicted theoretical relationship between the primary spin period and the mass ratio of the two pair members that is a direct consequence of the YORP-induced rotational fission hypothesis. If the progenitor asteroid has strength, asteroid pairs may have higher mass ratios or faster rotating primaries. However, the process of secondary fission leaves the originally predicted trend unaltered. We also describe the characteristics of pair members produced by four alternative routes from a rotational fission event to an asteroid pair. Unlike direct formation from the event itself, the age of closest proximity of these pairs cannot generally be used to date the rotational fission event since considerable time may have passed.

  1. Primordial nuggets survival and QCD pairing

    NASA Astrophysics Data System (ADS)

    Lugones, G.; Horvath, J. E.

    2004-03-01

    We reexamine the problem of boiling and surface evaporation of quark nuggets in the cosmological quark-hadron transition with the explicit consideration of pairing between quarks in a color-flavor locked state. Assuming that primordial quark nuggets are actually formed, we analyze the consequences of pairing on the rates of boiling and surface evaporation in order to determine whether they could have survived with substantial mass. We find a substantial quenching of the evaporation+boiling processes, which suggests the survival of primordial nuggets for the currently considered range of the pairing gap Δ. Boiling is shown to depend on the competition of an increased stability window and the suppression of the rate, and is not likely to dominate the destruction of the nuggets. If surface evaporation dominates, the fate of the nuggets depends on the features of the initial mass spectrum of the nuggets, their evaporation rate, and the value of the pairing gap, as shown and discussed in the text.

  2. Stereo Pair, Honolulu, Oahu

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Honolulu, on the island of Oahu, is a large and growing urban area. This stereoscopic image pair, combining a Landsat image with topography measured by the Shuttle Radar Topography Mission (SRTM), shows how topography controls the urban pattern. This color image can be viewed in 3-D by viewing the left image with the right eye and the right image with the left eye (cross-eyed viewing), or by downloading and printing the image pair, and viewing them with a stereoscope.

    Features of interest in this scene include Diamond Head (an extinct volcano near the bottom of the image), Waikiki Beach (just above Diamond Head), the Punchbowl National Cemetary (another extinct volcano, near the image center), downtown Honolulu and Honolulu harbor (image left-center), and offshore reef patterns. The slopes of the Koolau mountain range are seen in the right half of the image. Clouds commonly hang above ridges and peaks of the Hawaiian Islands, but in this synthesized stereo rendition appear draped directly on the mountains. The clouds are actually about 1000 meters (3300 feet) above sea level.

    This stereoscopic image pair was generated using topographic data from the Shuttle Radar Topography Mission, combined with a Landsat 7 Thematic Mapper image collected at the same time as the SRTM flight. The topography data were used to create two differing perspectives, one for each eye. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. The United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota, provided the Landsat data.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission was designed to collect three-dimensional measurements of the

  3. Stereo Pair, Pasadena, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This stereoscopic image pair is a perspective view that shows the western part of the city of Pasadena, California, looking north toward the San Gabriel Mountains. Portions of the cities of Altadena and La Canada Flintridge are also shown. The cluster of large buildings left of center, at the base of the mountains, is the Jet Propulsion Laboratory. This image shows the power of combining data from different sources to create planning tools to study problems that affect large urban areas. In addition to the well-known earthquake hazards, Southern California is affected by a natural cycle of fire and mudflows. Data shown in this image can be used to predict both how wildfires spread over the terrain and how mudflows are channeled down the canyons.

    The image was created from three datasets: the Shuttle Radar Topography Mission (SRTM) supplied the elevation, U. S. Geological Survey digital aerial photography provided the image detail, and the Landsat Thematic Mapper provided the color. The United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota, provided the Landsat data and the aerial photography. The image can be viewed in 3-D by viewing the left image with the right eye and the right image with the left eye (cross-eyed viewing), or by downloading and printing the image pair, and viewing them with a stereoscope.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration

  4. Dynamics of a vortex pair in radial flow

    SciTech Connect

    Bannikova, E. Yu. Kontorovich, V. M. Reznik, G. M.

    2007-10-15

    The problem of vortex pair motion in two-dimensional radial flow is solved. Under certain conditions for flow parameters, the vortex pair can reverse its motion within a bounded region. The vortex-pair translational velocity decreases or increases after passing through the source/sink region, depending on whether the flow is diverging or converging, respectively. The rotational motion of a corotating vortex pair in a quiescent environment transforms into motion along a logarithmic spiral in radial flow. The problem may have applications in astrophysics and geophysics.

  5. Pygmy stars: first pair.

    PubMed

    Zwicky, F

    1966-07-01

    The binary LP 101-15/16 having the proper motion of 1.62 seconds of arc per year has been studied with the prime-focus spectrograph of the 200-inch (508 cm) telescope. Indications are that LP 101-15/16 is the first pair of pygmy stars ever discovered. One of its components, LP 101-16, is probably a blue pygmy star which is at least four magnitudes fainter than the ordinary white dwarfs. Also, two of the Balmer lines in absorption appear to be displaced toward the red by amounts which indicate the existence of an Einstein gravitational red shift corresponding to about 1000 km sec-1. On the other hand LP 101-15 is red and shows an entirely new type of spectrum, which suggests that it may be a first representative of a type of red pygmy star which is 2.5 magnitudes fainter than the M-type dwarf stars of the main sequence. PMID:17730606

  6. Pygmy stars: first pair.

    PubMed

    Zwicky, F

    1966-07-01

    The binary LP 101-15/16 having the proper motion of 1.62 seconds of arc per year has been studied with the prime-focus spectrograph of the 200-inch (508 cm) telescope. Indications are that LP 101-15/16 is the first pair of pygmy stars ever discovered. One of its components, LP 101-16, is probably a blue pygmy star which is at least four magnitudes fainter than the ordinary white dwarfs. Also, two of the Balmer lines in absorption appear to be displaced toward the red by amounts which indicate the existence of an Einstein gravitational red shift corresponding to about 1000 km sec-1. On the other hand LP 101-15 is red and shows an entirely new type of spectrum, which suggests that it may be a first representative of a type of red pygmy star which is 2.5 magnitudes fainter than the M-type dwarf stars of the main sequence.

  7. Spectra and symmetry in nuclear pairing

    SciTech Connect

    Balantekin, A. B.; Jesus, J. H. de; Pehlivan, Y.

    2007-06-15

    We apply the algebraic Bethe ansatz technique to the nuclear pairing problem with orbit dependent coupling constants and degenerate single particle energy levels. We find the exact energies and eigenstates. We show that for a given shell, there are degeneracies between the states corresponding to less than and more than half full shell. We also provide a technique to solve the equations of Bethe ansatz.

  8. Pairs of promoter pairs in a web of transcription.

    PubMed

    Kaplan, Craig D

    2016-08-30

    A new analysis has characterized a fundamental building block of complex transcribed loci. Constellations of core promoters can generally be reduced to pairs of divergent transcription units, where the distance between the pairs of transcription units correlates with constraints on genomic context, which in turn contribute to transcript fate. PMID:27573684

  9. Pairs of promoter pairs in a web of transcription.

    PubMed

    Kaplan, Craig D

    2016-08-30

    A new analysis has characterized a fundamental building block of complex transcribed loci. Constellations of core promoters can generally be reduced to pairs of divergent transcription units, where the distance between the pairs of transcription units correlates with constraints on genomic context, which in turn contribute to transcript fate.

  10. System Size and Energy Dependence of Jet-Induced Hadron Pair Correlation Shapes in Cu + Cu and Au + Au Collisions at sqrt(s_NN) = 200 and 62.4 GeV

    SciTech Connect

    Awes, Terry C; Batsouli, Sotiria; Cianciolo, Vince; Efremenko, Yuri; Plasil, F; Read Jr, Kenneth F; Silvermyr, David O; Sorensen, Soren P; Stankus, Paul W; Young, Glenn R; Zhang, Chun; PHENIX, Collaboration

    2007-06-01

    We present azimuthal angle correlations of intermediate transverse momentum (1-4 GeV/c) hadrons from dijets in Cu+Cu and Au+Au collisions at {radical}(s{sub NN})=62.4 and 200 GeV. The away-side dijet induced azimuthal correlation is broadened, non-Gaussian, and peaked away from {Delta}{phi}={pi} in central and semicentral collisions in all the systems. The broadening and peak location are found to depend upon the number of participants in the collision, but not on the collision energy or beam nuclei. These results are consistent with sound or shock wave models, but pose challenges to Cherenkov gluon radiation models.

  11. Assessment Strategies for Pair Programming

    ERIC Educational Resources Information Center

    Hahn, Jan Hendrik; Mentz, Elsa; Meyer, Lukas

    2009-01-01

    Although pair programming has proved its usefulness in teaching and learning programming skills, it is difficult to assess the individual roles and abilities of students whilst programming in pairs. (Note that within this manuscript, the term assessment refers to evaluating individual student performance.) Assessing only the outcomes of a pair…

  12. Pairing, pseudogap and Fermi arcs in cuprates

    DOE PAGESBeta

    Kaminski, Adam; Kondo, Takeshi; Takeuchi, Tsunehiro; Gu, Genda

    2014-04-29

    We use Angle Resolved Photoemission Spectroscopy (ARPES) to study the relationship between the pseudogap, pairing and Fermi arcs in cuprates. High quality data measured over a wide range of dopings reveals a consistent picture of Fermiology and pairing in these materials. The pseudogap is due to an ordered state that competes with superconductivity rather than preformed pairs. Pairing does occur below Tpair ~ 150K and significantly above Tc, but well below T* and the doping dependence of this temperature scale is distinct from that of the pseudogap. The d-wave gap is present below Tpair, and its interplay with strong scatteringmore » creates “artificial” Fermi arcs for Tc ≤ T ≤ Tpair. However, above Tpair, the pseudogap exists only at the antipodal region. This leads to presence of real, gapless Fermi arcs close to the node. The length of these arcs remains constant up to T*, where the full Fermi surface is recovered. As a result, we demonstrate that these findings resolve a number of seemingly contradictory scenarios.« less

  13. Nuclear pairing reduction due to rotation and blocking

    SciTech Connect

    Wu, X.; Zhang, Z. H.; Zeng, J. Y.; Lei, Y. A.

    2011-03-15

    Nuclear pairing gaps of normally deformed and superdeformed nuclei are investigated using the particle-number-conserving (PNC) formalism for the cranked shell model, in which the blocking effects are treated exactly. Both rotational frequency {omega} dependence and seniority (number of unpaired particles) {nu} dependence of the pairing gap {Delta}-tilde are investigated. For the ground-state bands of even-even nuclei, PNC calculations show that, in general, {Delta}-tilde decreases with increasing {omega}, but the {omega} dependence is much weaker than that calculated by the number-projected Hartree-Fock-Bogolyubov approach. For the multiquasiparticle bands (seniority {nu}>2), the pairing gaps stay almost {omega} independent. As a function of the seniority {nu}, the bandhead pairing gaps {Delta}-tilde({nu},{omega}=0) decrease slowly with increasing {nu}. Even for the highest seniority {nu} bands identified so far, {Delta}-tilde({nu},{omega}=0) remains greater than 70% of {Delta}-tilde({nu}=0,{omega}=0).

  14. Nuclear pairing reduction due to rotation and blocking

    NASA Astrophysics Data System (ADS)

    Wu, X.; Zhang, Z. H.; Zeng, J. Y.; Lei, Y. A.

    2011-03-01

    Nuclear pairing gaps of normally deformed and superdeformed nuclei are investigated using the particle-number-conserving (PNC) formalism for the cranked shell model, in which the blocking effects are treated exactly. Both rotational frequency ω dependence and seniority (number of unpaired particles) ν dependence of the pairing gap Δ˜ are investigated. For the ground-state bands of even-even nuclei, PNC calculations show that, in general, Δ˜ decreases with increasing ω, but the ω dependence is much weaker than that calculated by the number-projected Hartree-Fock-Bogolyubov approach. For the multiquasiparticle bands (seniority ν>2), the pairing gaps stay almost ω independent. As a function of the seniority ν, the bandhead pairing gaps Δ˜(ν,ω=0) decrease slowly with increasing ν. Even for the highest seniority ν bands identified so far, Δ˜(ν,ω=0) remains greater than 70% of Δ˜(ν=0,ω=0).

  15. Guanidinium Pairing Facilitates Membrane Translocation.

    PubMed

    Allolio, Christoph; Baxova, Katarina; Vazdar, Mario; Jungwirth, Pavel

    2016-01-14

    Ab initio free energy calculations of guanidinium pairing in aqueous solution confirm the counterintuitive conjecture that the like-charge ion pair is thermodynamically stable. Transferring the guanidinium pair to the inside of a POPC lipid bilayer, like-charge ion pairing is found to occur also inside the membrane defect. It is found to contribute to the nonadditivity of ion transfer, thereby facilitating the presence of ions inside the bilayer. The effect is quantified by free energy decomposition and comparison with ammonium ions, which do not form a stable pair. The presence of two charges inside the center of the bilayer leads to the formation of a pore. Potential consequences for cell penetrating peptides and ion conduction are drawn.

  16. Base pairing and base mis-pairing in nucleic acids

    NASA Technical Reports Server (NTRS)

    Wang, A. H. J.; Rich, A.

    1986-01-01

    In recent years we have learned that DNA is conformationally active. It can exist in a number of different stable conformations including both right-handed and left-handed forms. Using single crystal X-ray diffraction analysis we are able to discover not only additional conformations of the nucleic acids but also different types of hydrogen bonded base-base interactions. Although Watson-Crick base pairings are the predominant type of interaction in double helical DNA, they are not the only types. Recently, we have been able to examine mismatching of guanine-thymine base pairs in left-handed Z-DNA at atomic resolution (1A). A minimum amount of distortion of the sugar phosphate backbone is found in the G x T pairing in which the bases are held together by two hydrogen bonds in the wobble pairing interaction. Because of the high resolution of the analysis we can visualize water molecules which fill in to accommodate the other hydrogen bonding positions in the bases which are not used in the base-base interactions. Studies on other DNA oligomers have revealed that other types of non-Watson-Crick hydrogen bonding interactions can occur. In the structure of a DNA octamer with the sequence d(GCGTACGC) complexed to an antibiotic triostin A, it was found that the two central AT base pairs are held together by Hoogsteen rather than Watson-Crick base pairs. Similarly, the G x C base pairs at the ends are also Hoogsteen rather than Watson-Crick pairing. Hoogsteen base pairs make a modified helix which is distinct from the Watson-Crick double helix.

  17. Regimes of Pulsar Pair Formation and Particle Energetics

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; Muslimov, Alexander G.; Zhang, Bing; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We investigate the conditions required for the production of electron-positron pairs above a pulsar polar cap (PC) and the influence of pair production on the energetics of the primary particle acceleration. Assuming space-charge limited flow acceleration including the inertial frame-dragging effect, we allow both one-photon and two-photon pair production by either curvature radiation (CR) photons or photons resulting from inverse-Compton scattering of thermal photons from the PC by primary electrons. We find that,, while only the younger pulsars can produce pairs through CR, nearly all known radio pulsars are capable of producing pairs through non-resonant inverse-Compton scatterings. The effect of the neutron star equations of state on the pair death lines is explored. We show that pair production is facilitated in more compact stars and more a massive stars. Therefore accretion of mass by pulsars in binary systems may allow pair production in most of the millisecond purser population. We also find that two-photon pair production may be important in millisecond pursers if their surface temperatures are above approx. or equal to three million degrees K. Pursers that produce pairs through CRT wilt have their primary acceleration limited by the effect of screening of the electric field. In this regime, the high-energy luminosity should follow a L(sub HE) proportional to dot-E(sup 1/2, sub rot) dependence. The acceleration voltage drop in pursers that produce pairs only through inverse-Compton emission will not be limited by electric field screening. In this regime, the high-energy luminosity should follow a L(sub HE) proportional to dot-E(sub rot) dependence. Thus, older pursers will have significantly lower gamma-ray luminosity.

  18. Pairing smoking-cessation services with lung cancer screening: A clinical guideline from the Association for the Treatment of Tobacco Use and Dependence and the Society for Research on Nicotine and Tobacco.

    PubMed

    Fucito, Lisa M; Czabafy, Sharon; Hendricks, Peter S; Kotsen, Chris; Richardson, Donna; Toll, Benjamin A

    2016-04-15

    Smoking cessation is crucial for reducing cancer risk and premature mortality. The US Preventive Services Task Force (USPSTF) has recommended annual lung cancer screening with low-dose computed tomography (LDCT), and the Center for Medicare and Medicaid Services recently approved lung screening as a benefit for patients ages 55 to 77 years who have a 30 pack-year history. The Society for Research on Nicotine and Tobacco (SRNT) and the Association for the Treatment of Tobacco Use and Dependence (ATTUD) developed the guideline described in this commentary based on an illustrative literature review to present the evidence for smoking-cessation health benefits in this high-risk group and to provide clinical recommendations for integrating evidence-based smoking-cessation treatment with lung cancer screening. Unfortunately, extant data on lung cancer screening participants were scarce at the time this guideline was written. However, in this review, the authors summarize the sufficient evidence on the benefits of smoking cessation and the efficacy of smoking-cessation interventions for smokers ages 55 to 77 years to provide smoking-cessation interventions for smokers who seek lung cancer screening. It is concluded that smokers who present for lung cancer screening should be encouraged to quit smoking at each visit. Access to evidence-based smoking-cessation interventions should be provided to all smokers regardless of scan results, and motivation to quit should not be a necessary precondition for treatment. Follow-up contacts to support smoking-cessation efforts should be arranged for smokers. Evidence-based behavioral strategies should be used at each visit to motivate smokers who are unwilling to try quitting/reducing smoking or to try evidence-based treatments that may lead to eventual cessation.

  19. Pairing smoking-cessation services with lung cancer screening: A clinical guideline from the Association for the Treatment of Tobacco Use and Dependence and the Society for Research on Nicotine and Tobacco.

    PubMed

    Fucito, Lisa M; Czabafy, Sharon; Hendricks, Peter S; Kotsen, Chris; Richardson, Donna; Toll, Benjamin A

    2016-04-15

    Smoking cessation is crucial for reducing cancer risk and premature mortality. The US Preventive Services Task Force (USPSTF) has recommended annual lung cancer screening with low-dose computed tomography (LDCT), and the Center for Medicare and Medicaid Services recently approved lung screening as a benefit for patients ages 55 to 77 years who have a 30 pack-year history. The Society for Research on Nicotine and Tobacco (SRNT) and the Association for the Treatment of Tobacco Use and Dependence (ATTUD) developed the guideline described in this commentary based on an illustrative literature review to present the evidence for smoking-cessation health benefits in this high-risk group and to provide clinical recommendations for integrating evidence-based smoking-cessation treatment with lung cancer screening. Unfortunately, extant data on lung cancer screening participants were scarce at the time this guideline was written. However, in this review, the authors summarize the sufficient evidence on the benefits of smoking cessation and the efficacy of smoking-cessation interventions for smokers ages 55 to 77 years to provide smoking-cessation interventions for smokers who seek lung cancer screening. It is concluded that smokers who present for lung cancer screening should be encouraged to quit smoking at each visit. Access to evidence-based smoking-cessation interventions should be provided to all smokers regardless of scan results, and motivation to quit should not be a necessary precondition for treatment. Follow-up contacts to support smoking-cessation efforts should be arranged for smokers. Evidence-based behavioral strategies should be used at each visit to motivate smokers who are unwilling to try quitting/reducing smoking or to try evidence-based treatments that may lead to eventual cessation. PMID:26916412

  20. Pairing in half-filled Landau level

    SciTech Connect

    Wang, Zhiqiang; Mandal, Ipsita; Chung, Suk Bum; Chakravarty, Sudip

    2014-12-15

    Pairing of composite fermions in half-filled Landau level state is reexamined by solving the BCS gap equation with full frequency dependent current–current interactions. Our results show that there can be a continuous transition from the Halperin–Lee–Read state to a chiral odd angular momentum Cooper pair state for short-range contact interaction. This is at odds with the previously established conclusion of first order pairing transition, in which the low frequency effective interaction was assumed for the entire frequency range. We find that even if the low frequency effective interaction is repulsive, it is compensated by the high frequency regime, which is attractive. We construct the phase diagrams and show that ℓ=1 angular momentum channel is quite different from higher angular momenta ℓ≥3. Remarkably, the full frequency dependent analysis applied to the bilayer Hall system with a total filling fraction ν=1/2 +1/2 is quantitatively changed from the previously established results but not qualitatively.

  1. The coevolution of long-term pair bonds and cooperation.

    PubMed

    Song, Z; Feldman, M W

    2013-05-01

    The evolution of social traits may not only depend on but also change the social structure of the population. In particular, the evolution of pairwise cooperation, such as biparental care, depends on the pair-matching distribution of the population, and the latter often emerges as a collective outcome of individual pair-bonding traits, which are also under selection. Here, we develop an analytical model and individual-based simulations to study the coevolution of long-term pair bonds and cooperation in parental care, where partners play a Snowdrift game in each breeding season. We illustrate that long-term pair bonds may coevolve with cooperation when bonding cost is below a threshold. As long-term pair bonds lead to assortative interactions through pair-matching dynamics, they may promote the prevalence of cooperation. In addition to the pay-off matrix of a single game, the evolutionarily stable equilibrium also depends on bonding cost and accidental divorce rate, and it is determined by a form of balancing selection because the benefit from pair-bond maintenance diminishes as the frequency of cooperators increases. Our findings highlight the importance of ecological factors affecting social bonding cost and stability in understanding the coevolution of social behaviour and social structures, which may lead to the diversity of biological social systems. PMID:23496797

  2. Heterospecific pairing and hybridization between Nasutitermes corniger and N. ephratae

    NASA Astrophysics Data System (ADS)

    Hartke, Tamara R.; Rosengaus, Rebeca B.

    2011-09-01

    The sympatric neotropical termites Nasutitermes corniger and Nasutitermes ephratae are clearly distinguishable based on morphology, nest architecture, defensive secretion composition, and molecular markers. However, given the extensive ecological, geographical, and behavioral overlap of these closely related species, the potential for interbreeding may exist. To explore this possibility, heterospecific pairs were formed experimentally to examine courtship and colony-establishment behaviors, and reproductive potential. Courtship and nest construction behavior occurred in heterospecific pairs in a similar manner to that of conspecific pairs. Survival of pairs depended upon the species of the female partner. N. ephratae females paired with N. corniger males produced as many offspring as conspecific pairs. N. corniger females mated to N. ephratae males, however, produced significantly fewer offspring at 60 days post-establishment than the reciprocal cross or conspecific N. ephratae or N. corniger pairs. This was also the only pairing in which any aggression was observed. Heterospecific pairs and groups formed in mate choice mesocosms, suggesting that species recognition between these two termites is not an important aspect of mate choice. Overall, species mismatch tolerance and hybrid offspring viability are high. The present data, together with previous evidence from defensive secretions and isozyme analysis, suggest that hybridization may periodically occur in nature, and that reproductive barriers between these two species may be incomplete. Hybridization could provide a rare but important source of genetic diversity and may ensure mating opportunities for the more abundant sex of alates in each species.

  3. Learning about the nuclear symmetry energy through the lens of isospin transport

    NASA Astrophysics Data System (ADS)

    Desouza, Romualdo; Hudan, Sylvie; Brown, Kyle

    2014-03-01

    Examining nucleon transport between nuclei in intermediate energy heavy-ion collisions is an effective means to assess the density dependence of the nuclear symmetry energy. Overlap of the Fermi tails of the two nuclei as they collide provides a density gradient that drives nucleon transport. In addition, nucleon transport is driven by gradients in N/Z. Disentangling these two contributions provides a measure of the symmetry energy and its density dependence and requires a comparison of N/Z symmetric and asymmetric systems. To address this question we have examined semi-peripheral collisions of 64Zn ions with 64Zn, 209Bi, and 27Al targets at Elab 45 MeV/A. The projectile-like fragment emerging from these collisions frequently undergoes binary decay in a dynamical fission process. By using the rotation of the projectile-like fragment as a clock, it is deduced that N/Z equilibration persists up to 1200 fm/c. As prior measurements were restricted to timescales of less than 100 fm/c, this approach represents a dramatic improvement in the sensitivity to long timescales. This work is supported by the U.S. DOE under Grant No. DEFG02-88ER-40404.

  4. A study of paired necro kidney grafts.

    PubMed

    Lamm, L U

    1979-01-01

    The comparison of the fate of kidney pairs originating from the same donor offers an opportunity to control variability in primary kidney graft survival due to characteristics of the donor. The present study on 1,303 pairs was made possible by combining the information in the Scandiatransplant registry and the EDTA follow-up file. The analysis showed that, contrary to expectation, the main variability in kidney graft survival is not donor dependent but rather due to post-nephrectomy factors. By the present approach it was possible to demonstrate a significant effect of presensitisation, HLA-A,B matching and recipient age. In contrast, transportation, and differences in sex and ABO blood group combinations seem to be of no importance for kidney graft survival.

  5. Pairing Correlations at High Spins

    NASA Astrophysics Data System (ADS)

    Ma, Hai-Liang; Dong, Bao-Guo; Zhang, Yan; Fan, Ping; Yuan, Da-Qing; Zhu, Shen-Yun; Zhang, Huan-Qiao; Petrache, C. M.; Ragnarsson, I.; Carlsson, B. G.

    The pairing correcting energies at high spins in 161Lu and 138Nd are studied by comparing the results of the cranked-Nilsson-Strutinsky (CNS) and cranked-Nilsson-Strutinsky-Bogoliubov (CNSB) models. It is concluded that the Coriolis effect rather than the rotational alignment effect plays a major role in the reduction of the pairing correlations in the high spin region. Then we proposed an average pairing correction method which not only better reproduces the experimental data comparing with the CNS model but also enables a clean-cut tracing of the configurations thus the full-spin-range discussion on the various rotating bands.

  6. First observation of the isospin violating decay J/ψ→ΛΣ̄⁰+c.c.

    DOE PAGESBeta

    Ablikim, M.; Achasov, M. N.; Ambrose, D. J.; An, F. F.; An, Q.; An, Z. H.; Bai, J. Z.; Ban, Y.; Becker, J.; Berger, N.; et al

    2012-08-15

    Using a sample of (225.2±2.8)×10⁶ J/ψ events collected with the BESIII detector, we present results of a study of J/ψ→γΛΛ¯¯¯ and report the first observation of the isospin violating decay J/ψ→ΛΣ¯¯¯⁰+c.c., in which Σ¯¯¯⁰ decays to γΛ¯¯¯. The measured branching fractions are B(J/ψ→Λ¯¯¯Σ⁰)=(1.46±0.11±0.12)×10⁻⁵ and B(J/ψ→ΛΣ¯¯¯⁰)=(1.37±0.12±0.11)×10⁻⁵. We search for Λ(1520)→γΛ decay, and find no evident signal, and an upper limit for the product branching fraction B(J/ψ→ΛΛ¯¯¯(1520)+c.c.)×B(Λ(1520)→γΛ)<4.1×10⁻⁶ is set at the 90% confidence level. We also report the observation of ηc→ΛΛ¯¯¯ in J/ψ→γηc, ηc→ΛΛ¯¯¯ and measure the branching fraction B(ηc→ΛΛ¯¯¯)=(1.16±0.12(stat)±0.19(syst)±0.28(PDG))×10⁻³.

  7. Proceedings of the workshop on the production and use of intense radioactive beams at the Isospin Laboratory

    SciTech Connect

    Garrett, J.D.

    1992-12-31

    These proceedings report the deliberations of a 3 1/2 day workshop on the Production and Use of Intense Radioactive Ion Beams at the Isospin Laboratory, which was held at the Joint Institute for Heavy Ion Research in Oak Ridge, Tennessee, October 1992. The purpose of this workshop was not to duplicate the programs of other recent radioactive ion beam workshops or international conferences that have focused on the scientific concepts which radioactive beams can, and in fact already are, addressing. Instead, the intent was to address the technical problems associated with the construction of the next generation ISOL facility and to initiate a discussion of the type of experimental equipment that should be developed for such a facility. We have tried to bring together in Oak Ridge the world`s experts in radioactive targets/ion sources, light and heavy-ion accelerators, and detection systems. After 1 1/2 days of overview presentations, the participants divided into three discussion groups (Experiments with Radioactive Beams, Target Ion Sources and Mass Separation, and Accelerators-Primary and Secondary) for 1 1/2 days of detailed discussions of the most pertinent issues. The final session was devoted to reports from each of the discussion groups and a general discussion of where to go from here. An outgrowth of these discussions was the establishment of working groups to coordinate future technical developments associated with the pertinent issues. The proceedings include the text of all the overview presentations, reports from each discussion group, as well as contributions from those participants who chose to provide the text of their presentations in the discussion groups and the Concluding Remarks. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  8. First observation of the isospin violating decay J/ψ→ΛΣ̄⁰+c.c.

    SciTech Connect

    Ablikim, M.; Achasov, M. N.; Ambrose, D. J.; An, F. F.; An, Q.; An, Z. H.; Bai, J. Z.; Ban, Y.; Becker, J.; Berger, N.; Bertani, M.; Bian, J. M.; Boger, E.; Bondarenko, O.; Boyko, I.; Briere, R. A.; Bytev, V.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, Y.; Chen, Y. B.; Cheng, H. P.; Chu, Y. P.; Cronin-Hennessy, D.; Dai, H. L.; Dai, J. P.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; Ding, W. M.; Ding, Y.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Fang, J.; Fang, S. S.; Fava, L.; Feldbauer, F.; Feng, C. Q.; Ferroli, R. B.; Fu, C. D.; Fu, J. L.; Gao, Y.; Geng, C.; Goetzen, K.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y. P.; Han, Y. L.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, M.; He, Z. Y.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, H. M.; Hu, J. F.; Hu, T.; Huang, B.; Huang, G. M.; Huang, J. S.; Huang, X. T.; Huang, Y. P.; Hussain, T.; Ji, C. S.; Ji, Q.; Ji, X. B.; Ji, X. L.; Jia, L. K.; Jiang, L. L.; Jiang, X. S.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Jing, F. F.; Kalantar-Nayestanaki, N.; Kavatsyuk, M.; Kuehn, W.; Lai, W.; Lange, J. S.; Li, C. H.; Li, Cheng; Li, Cui; Li, D. M.; Li, F.; Li, G.; Li, H. B.; Li, J. C.; Li, K.; Li, Lei; Li, N. B.; Li, Q. J.; Li, S. L.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, X. R.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Liao, X. T.; Liu, B. J.; Liu, C. L.; Liu, C. X.; Liu, C. Y.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H.; Liu, H. B.; Liu, H. H.; Liu, H. M.; Liu, H. W.; Liu, J. P.; Liu, K. Y.; Liu, Kai; Liu, Kun; Liu, P. L.; Liu, S. B.; Liu, X.; Liu, X. H.; Liu, Y.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqiang; Liu, Zhiqing; Loehner, H.; Lu, G. R.; Lu, H. J.; Lu, J. G.; Lu, Q. W.; Lu, X. R.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lv, M.; Ma, C. L.; Ma, F. C.; Ma, H. L.; Ma, Q. M.; Ma, S.; Ma, T.; Ma, X. Y.; Ma, Y.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mao, H.; Mao, Y. J.; Mao, Z. P.; Messchendorp, J. G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Morales, C. Morales; Motzko, C.; Muchnoi, N. Yu.; Muramatsu, H.; Nefedov, Y.; Nicholson, C.; Nikolaev, I. B.; Ning, Z.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Park, J. W.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Ping, J. L.; Ping, R. G.; Poling, R.; Prencipe, E.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, X. S.; Qin, Y.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Rong, G.; Ruan, X. D.; Sarantsev, A.; Schaefer, B. D.; Schulze, J.; Shao, M.; Shen, C. P.; Shen, X. Y.; Sheng, H. Y.; Shepherd, M. R.; Song, X. Y.; Spataro, S.; Spruck, B.; Sun, D. H.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, X. D.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tang, X. F.; Tapan, I.; Thorndike, E. H.; Tian, H. L.; Toth, D.; Ullrich, M.; Varner, G. S.; Wang, B.; Wang, B. Q.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, Q.; Wang, Q. J.; Wang, S. G.; Wang, X. L.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. Y.; Wei, D. H.; Weidenkaff, P.; Wen, Q. G.; Wen, S. P.; Werner, M.; Wiedner, U.; Wu, L. H.; Wu, N.; Wu, S. X.; Wu, W.; Wu, Z.; Xia, L. G.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, G. M.; Xu, H.; Xu, Q. J.; Xu, X. P.; Xu, Z. R.; Xue, F.; Xue, Z.; Yan, L.; Yan, W. B.; Yan, Y. H.; Yang, H. X.; Yang, Y.; Yang, Y. X.; Ye, H.; Ye, M.; Ye, M. H.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yu, S. P.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, S. H.; Zhang, T. R.; Zhang, X. J.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. S.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, H. S.; Zhao, J. W.; Zhao, K. X.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, S. J.; Zhao, T. C.; Zhao, X. H.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, Y. H.; Zheng, Z. P.; Zhong, B.; Zhong, J.; Zhou, L.; Zhou, X. K.; Zhou, X. R.; Zhu, C.; Zhu, K.; Zhu, K. J.; Zhu, S. H.; Zhu, X. L.; Zhu, X. W.; Zhu, Y. C.; Zhu, Y. M.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zou, B. S.; Zou, J. H.; Zuo, J. X.

    2012-08-15

    Using a sample of (225.2±2.8)×10⁶ J/ψ events collected with the BESIII detector, we present results of a study of J/ψ→γΛΛ¯¯¯ and report the first observation of the isospin violating decay J/ψ→ΛΣ¯¯¯⁰+c.c., in which Σ¯¯¯⁰ decays to γΛ¯¯¯. The measured branching fractions are B(J/ψ→Λ¯¯¯Σ⁰)=(1.46±0.11±0.12)×10⁻⁵ and B(J/ψ→ΛΣ¯¯¯⁰)=(1.37±0.12±0.11)×10⁻⁵. We search for Λ(1520)→γΛ decay, and find no evident signal, and an upper limit for the product branching fraction B(J/ψ→ΛΛ¯¯¯(1520)+c.c.)×B(Λ(1520)→γΛ)<4.1×10⁻⁶ is set at the 90% confidence level. We also report the observation of ηc→ΛΛ¯¯¯ in J/ψ→γηc, ηc→ΛΛ¯¯¯ and measure the branching fraction B(ηc→ΛΛ¯¯¯)=(1.16±0.12(stat)±0.19(syst)±0.28(PDG))×10⁻³.

  9. Nonperturbative signatures in pair production for general elliptic polarization fields

    NASA Astrophysics Data System (ADS)

    Li, Z. L.; Lu, D.; Xie, B. S.; Shen, B. F.; Fu, L. B.; Liu, J.

    2015-06-01

    The momentum signatures in nonperturbative multiphoton pair production for general elliptic polarization electric fields are investigated by employing the real-time Dirac-Heisenberg-Wigner formalism. For a linearly polarized electric field we find that the positions of the nodes in momentum spectra of created pairs depend only on the electric-field frequency. The polarization of external fields could not only change the node structures or even make the nodes disappear but also change the thresholds of pair production. The momentum signatures associated to the node positions in which the even-number photon pair creation process is forbidden could be used to distinguish the orbital angular momentum of created pairs on the momentum spectra. These distinguishable momentum signatures could be relevant for providing the output information of created particles and also the input information of ultrashort laser pulses.

  10. Dynamical interactions of galaxy pairs

    NASA Technical Reports Server (NTRS)

    Athanassoula, E.

    1990-01-01

    Here the author briefly reviews the dynamics of sinking satellites and the effect of companions on elliptical galaxies. The author then discusses recent work on interacting disk systems, and finally focuses on a favorite interacting pair, NGC 5194/5195.

  11. ON THE POLAR CAP CASCADE PAIR MULTIPLICITY OF YOUNG PULSARS

    SciTech Connect

    Timokhin, A. N.; Harding, A. K.

    2015-09-10

    We study the efficiency of pair production in polar caps of young pulsars under a variety of conditions to estimate the maximum possible multiplicity of pair plasma in pulsar magnetospheres. We develop a semi-analytic model for calculation of cascade multiplicity which allows efficient exploration of the parameter space and corroborate it with direct numerical simulations. Pair creation processes are considered separately from particle acceleration in order to assess different factors affecting cascade efficiency, with acceleration of primary particles described by recent self-consistent non-stationary model of pair cascades. We argue that the most efficient cascades operate in the curvature radiation/synchrotron regime, the maximum multiplicity of pair plasma in pulsar magnetospheres is ∼few × 10{sup 5}. The multiplicity of pair plasma in magnetospheres of young energetic pulsars weakly depends on the strength of the magnetic field and the radius of curvature of magnetic field lines and has a stronger dependence on pulsar inclination angle. This result questions assumptions about very high pair plasma multiplicity in theories of pulsar wind nebulae.

  12. Evidence for a breakdown of the isobaric multiplet mass equation: A study of the A=35,T=3/2 isospin quartet

    SciTech Connect

    Yazidjian, C.; Beck, D.; Herfurth, F.; Audi, G.; Guenaut, C.; Lunney, D.; Blaum, K.; George, S.; Herlert, A.; Schweikhard, L.; Kellerbauer, A.; Kluge, H.-J.

    2007-08-15

    Mass measurements on radionuclides along the potassium isotope chain have been performed with the ISOLTRAP Penning trap mass spectrometer. For {sup 35}K (T{sub 1/2}=178 ms) to {sup 46}K (T{sub 1/2}=105 s) relative mass uncertainties of 2x10{sup -8} and better have been achieved. The accurate mass determination of {sup 35}K ({delta}m=0.54 keV) has been exploited to test the isobaric multiplet mass equation for the A=35,T=3/2 isospin quartet. The experimental results indicate a deviation from the generally adopted quadratic form.

  13. 2p-2p decay of {sup 8}C and isospin-allowed 2p decay of the isobaric-analog state in {sup 8}B

    SciTech Connect

    Charity, R. J.; Elson, J. M.; Manfredi, J.; Shane, R.; Sobotka, L. G.; Chajecki, Z.; Coupland, D.; Iwasaki, H.; Kilburn, M.; Lee, Jenny; Lynch, W. G.; Sanetullaev, A.; Tsang, M. B.; Winkelbauer, J.; Youngs, M.; Marley, S. T.; Shetty, D. V.; Wuosmaa, A. H.; Ghosh, T. K.

    2010-10-15

    {sup 8}C is found to decay to four protons and an {alpha} particle in two 2p emission steps. The correlations between the protons in the first step ({sup 8}C to {sup 6}Be) exhibit a significant enhancement in the region of the decay phase space where the two protons have small relative energy, a region sometimes called the diproton region. The decay of the isobaric analog of {sup 8}C in {sup 8}B is also found to decay by 2p emission. This is the first case of isospin-allowed 2p decay between isobaric analog states.

  14. Pairing-induced speedup of nuclear spontaneous fission

    SciTech Connect

    Sadhukhan, Jhilam; Dobaczewski, J.; Nazarewicz, W.; Sheikh, J. A.; Baran, A.

    2014-12-22

    Collective inertia is strongly influenced at the level crossing at which the quantum system changes its microscopic configuration diabatically. Pairing correlations tend to make the large-amplitude nuclear collective motion more adiabatic by reducing the effect of these configuration changes. Competition between pairing and level crossing is thus expected to have a profound impact on spontaneous fission lifetimes. To elucidate the role of nucleonic pairing on spontaneous fission, we study the dynamic fission trajectories of 264Fm and 240Pu using the state-of-the-art self-consistent framework. We employ the superfluid nuclear density functional theory with the Skyrme energy density functional SkM* and a density-dependent pairing interaction. Along with shape variables, proton and neutron pairing correlations are taken as collective coordinates. The collective inertia tensor is calculated within the nonperturbative cranking approximation. The fission paths are obtained by using the least action principle in a four-dimensional collective space of shape and pairing coordinates. Pairing correlations are enhanced along the minimum-action fission path. For the symmetric fission of 264Fm, where the effect of triaxiality on the fission barrier is large, the geometry of the fission pathway in the space of the shape degrees of freedom is weakly impacted by pairing. This is not the case for 240Pu, where pairing fluctuations restore the axial symmetry of the dynamic fission trajectory. The minimum-action fission path is strongly impacted by nucleonic pairing. In some cases, the dynamical coupling between shape and pairing degrees of freedom can lead to a dramatic departure from the static picture. As a result, in the dynamical description of nuclear fission, particle-particle correlations should be considered on the same footing as those associated with shape degrees of freedom.

  15. Superconductivity: The persistence of pairs

    SciTech Connect

    Edelman, Alex; Littlewood, Peter

    2015-05-20

    Superconductivity stems from a weak attraction between electrons that causes them to form bound pairs and behave much like bosons. These so-called Cooper pairs are phase coherent, which leads to the astonishing properties of zero electrical resistance and magnetic flux expulsion typical of superconducting materials. This coherent state may be qualitatively understood within the Bose–Einstein condensate (BEC) model, which predicts that a gas of interacting bosons will become unstable below a critical temperature and condense into a phase of matter with a macroscopic, coherent population in the lowest energy state, as happens in 4He or cold atomic gases. The successful theory proposed by Bardeen, Cooper and Schrieffer (BCS) predicts that at the superconducting transition temperature Tc, electrons simultaneously form pairs and condense, with no sign of pairing above Tc. Theorists have long surmised that the BCS and BEC models are opposite limits of a single theory and that strong interactions or low density can, in principle, drive the system to a paired state at a temperature Tpair higher than Tc, making the transition to the superconducting state BEC-like (Fig. 1). Yet most superconductors to date are reasonably well described by BCS theory or its extensions, and there has been scant evidence in electronic materials for the existence of pairing independent of the full superconducting state (though an active debate rages over the cuprate superconductors). Writing in Nature, Jeremy Levy and colleagues have now used ingenious nanostructured devices to provide evidence for electron pairing1. Perhaps surprisingly, the material they have studied is a venerable, yet enigmatic, low-temperature superconductor, SrTiO3.

  16. Cooper pairs spintronics in triplet spin valves.

    PubMed

    Romeo, F; Citro, R

    2013-11-27

    We study a spin valve with a triplet superconductor spacer intercalated between two ferromagnets with noncollinear magnetizations. We show that the magnetoresistance of the triplet spin valve depends on the relative orientations of the d vector, characterizing the superconducting order parameter, and the magnetization directions of the ferromagnetic layers. For devices characterized by a long superconductor, the effects of a polarized current sustained by Cooper pairs only are observed. In this regime, a supermagnetoresistance effect emerges, and the chiral symmetry of the order parameter of the superconducting spacer is easily recognized. Our findings open new perspectives in designing spintronics devices based on the cooperation of ferromagnetic and triplet correlations.

  17. Cooper pairs spintronics in triplet spin valves.

    PubMed

    Romeo, F; Citro, R

    2013-11-27

    We study a spin valve with a triplet superconductor spacer intercalated between two ferromagnets with noncollinear magnetizations. We show that the magnetoresistance of the triplet spin valve depends on the relative orientations of the d vector, characterizing the superconducting order parameter, and the magnetization directions of the ferromagnetic layers. For devices characterized by a long superconductor, the effects of a polarized current sustained by Cooper pairs only are observed. In this regime, a supermagnetoresistance effect emerges, and the chiral symmetry of the order parameter of the superconducting spacer is easily recognized. Our findings open new perspectives in designing spintronics devices based on the cooperation of ferromagnetic and triplet correlations. PMID:24329463

  18. Genetic covariance between components of male reproductive success: within-pair vs. extra-pair paternity in song sparrows

    PubMed Central

    Reid, J M; Arcese, P; Losdat, S

    2014-01-01

    The evolutionary trajectories of reproductive systems, including both male and female multiple mating and hence polygyny and polyandry, are expected to depend on the additive genetic variances and covariances in and among components of male reproductive success achieved through different reproductive tactics. However, genetic covariances among key components of male reproductive success have not been estimated in wild populations. We used comprehensive paternity data from socially monogamous but genetically polygynandrous song sparrows (Melospiza melodia) to estimate additive genetic variance and covariance in the total number of offspring a male sired per year outside his social pairings (i.e. his total extra-pair reproductive success achieved through multiple mating) and his liability to sire offspring produced by his socially paired female (i.e. his success in defending within-pair paternity). Both components of male fitness showed nonzero additive genetic variance, and the estimated genetic covariance was positive, implying that males with high additive genetic value for extra-pair reproduction also have high additive genetic propensity to sire their socially paired female's offspring. There was consequently no evidence of a genetic or phenotypic trade-off between male within-pair paternity success and extra-pair reproductive success. Such positive genetic covariance might be expected to facilitate ongoing evolution of polygyny and could also shape the ongoing evolution of polyandry through indirect selection. PMID:25186454

  19. Pair extended coupled cluster doubles

    SciTech Connect

    Henderson, Thomas M.; Scuseria, Gustavo E.; Bulik, Ireneusz W.

    2015-06-07

    The accurate and efficient description of strongly correlated systems remains an important challenge for computational methods. Doubly occupied configuration interaction (DOCI), in which all electrons are paired and no correlations which break these pairs are permitted, can in many cases provide an accurate account of strong correlations, albeit at combinatorial computational cost. Recently, there has been significant interest in a method we refer to as pair coupled cluster doubles (pCCD), a variant of coupled cluster doubles in which the electrons are paired. This is simply because pCCD provides energies nearly identical to those of DOCI, but at mean-field computational cost (disregarding the cost of the two-electron integral transformation). Here, we introduce the more complete pair extended coupled cluster doubles (pECCD) approach which, like pCCD, has mean-field cost and reproduces DOCI energetically. We show that unlike pCCD, pECCD also reproduces the DOCI wave function with high accuracy. Moreover, pECCD yields sensible albeit inexact results even for attractive interactions where pCCD breaks down.

  20. Pair-Starved Pulsar Magnetospheres

    NASA Technical Reports Server (NTRS)

    Muslimov, Alex G.; Harding, Alice K.

    2009-01-01

    We propose a simple analytic model for the innermost (within the light cylinder of canonical radius, approx. c/Omega) structure of open-magnetic-field lines of a rotating neutron star (NS) with relativistic outflow of charged particles (electrons/positrons) and arbitrary angle between the NS spin and magnetic axes. We present the self-consistent solution of Maxwell's equations for the magnetic field and electric current in the pair-starved regime where the density of electron-positron plasma generated above the pulsar polar cap is not sufficient to completely screen the accelerating electric field and thus establish thee E . B = 0 condition above the pair-formation front up to the very high altitudes within the light cylinder. The proposed mode1 may provide a theoretical framework for developing the refined model of the global pair-starved pulsar magnetosphere.

  1. Mass, Energy, Space And Time Systemic Theory--MEST-- heat and cold, positive electron and negative electron, up isopin and down isospin

    NASA Astrophysics Data System (ADS)

    Cao, Dayong

    2010-03-01

    Things have their physical system of the mass, energy, space and time of themselves-MEST. The time is from the frequency of wave, the spac is from the amplitude of wave. Sun can radiate the repulsion (energy) wave and can absorb the absorptive (mass) wave. And the radiate wave give the planets the repulsion force; the absorptive wave give the planets the gravity. The the gravity equal the repulsion force. By the same way, the nuclear have the radiate wave and the absorptive wave like the electromagnetic wave. And it give the electrons the repulsion force and the gravity like the electromagnetic force. Like charges repel each other, unlike charges attract. By the same way, Like energy (like cold and heat) repel each other, unlike temperature energy (like cold and heat) attract. So the orbit of the planets is quantization system model like the one of the electron. By the same way, the the proton have the radiate wave and the absorptive wave like the baryon-lepton wave. And it give the neutron the repulsion force and the gravity like the Strong-Weak Force. By the same way, Like isospin repel each other, unlike isospin attract. So the electromagnetic wave system modem is like the one of the baryon-lepton wave. All of their system model are the double shell structure.

  2. Antiferromagnetic exchange and spin-fluctuation pairing in cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Plakida, Nikolay M.

    2006-01-01

    A microscopic theory of superconductivity is formulated within an effective p-d Hubbard model for a CuO2 plane. By applying the Mori-type projection technique, the Dyson equation is derived for the Green functions in terms of Hubbard operators. The antiferromagnetic exchange caused by interband hopping results in pairing of all carries in the conduction subband and high Tc proportional to the Fermi energy. Kinematic interaction in intraband hopping is responsible for the conventional spin-fluctuation pairing. Numerical solution of the gap equation proves the d-wave gap symmetry and defines Tc doping dependence. Oxygen isotope shift and pressure dependence of Tc are also discussed.

  3. Missing energies at pair creation

    NASA Technical Reports Server (NTRS)

    El-Ela, A. A.; Hassan, S.; Bagge, E. R.

    1985-01-01

    Wilson cloud chamber measurements of the separated spectra of positrons and electrons produced by gamma quanta of 6.14 MeV differ considerably from the theoretically predicted spectra by BETHE and HEITLER, but are in good agreement with those of a modified theory of pair creation.

  4. Cooper pair transfer in nuclei

    NASA Astrophysics Data System (ADS)

    Potel, G.; Idini, A.; Barranco, F.; Vigezzi, E.; Broglia, R. A.

    2013-10-01

    The second-order distorted wave Born approximation implementation of two-particle transfer direct reactions which includes simultaneous and successive transfer, properly corrected by non-orthogonality effects, is tested with the help of controlled nuclear structure and reaction inputs against data spanning the whole mass table, and showed to constitute a quantitative probe of nuclear pairing correlations.

  5. Pick a Pair. Being Bony

    ERIC Educational Resources Information Center

    Miller, Pat

    2004-01-01

    This column suggests pairings of fiction and nonfiction books to meet curricular needs and help students to compare/contrast the texts as they may be asked on state tests. The author of this paper focuses on activities surrounding Halloween. Since many schools are discouraged from teaching about Halloween, this can be a great time to investigate…

  6. Pairing Linguistic and Music Intelligences

    ERIC Educational Resources Information Center

    DiEdwardo, MaryAnn Pasda

    2005-01-01

    This article describes how music in the language classroom setting can be a catalyst for developing reading, writing, and understanding skills. Studies suggest that pairing music and linguistic intelligences in the college classroom improves students' grades and abilities to compose theses statements for research papers in courses that emphasize…

  7. Floquet theory of radical pairs in radiofrequency magnetic fields

    NASA Astrophysics Data System (ADS)

    Hiscock, Hamish G.; Kattnig, Daniel R.; Manolopoulos, David E.; Hore, P. J.

    2016-09-01

    We present a new method for calculating the product yield of a radical pair recombination reaction in the presence of a weak time-dependent magnetic field. This method successfully circumvents the computational difficulties presented by a direct solution of the Liouville-von Neumann equation for a long-lived radical pair containing many hyperfine-coupled nuclear spins. Using a modified formulation of Floquet theory, treating the time-dependent magnetic field as a perturbation, and exploiting the slow radical pair recombination, we show that one can obtain a good approximation to the product yield by considering only nearly degenerate sub-spaces of the Floquet space. Within a significant parameter range, the resulting method is found to give product yields in good agreement with exact quantum mechanical results for a variety of simple model radical pairs. Moreover it is considerably more efficient than the exact calculation, and it can be applied to radical pairs containing significantly more nuclear spins. This promises to open the door to realistic theoretical investigations of the effect of radiofrequency electromagnetic radiation on the photochemically induced radical pair recombination reactions in the avian retina which are believed to be responsible for the magnetic compass sense of migratory birds.

  8. Competing pairing channels in the doped honeycomb lattice Hubbard model

    NASA Astrophysics Data System (ADS)

    Xu, Xiao Yan; Wessel, Stefan; Meng, Zi Yang

    2016-09-01

    Proposals for superconductivity emerging from correlated electrons in the doped Hubbard model on the honeycomb lattice range from chiral d +i d singlet to p +i p triplet pairing, depending on the considered range of doping and interaction strength, as well as the approach used to analyze the pairing instabilities. Here, we consider these scenarios using large-scale dynamic cluster approximation (DCA) calculations to examine the evolution in the leading pairing symmetry from weak to intermediate coupling strength. These calculations focus on doping levels around the van Hove singularity (VHS) and are performed using DCA simulations with an interaction-expansion continuous-time quantum Monte Carlo cluster solver. We calculated explicitly the temperature dependence of different uniform superconducting pairing susceptibilities and found a consistent picture emerging upon gradually increasing the cluster size: while at weak coupling the d +i d singlet pairing dominates close to the VHS filling, an enhanced tendency towards p -wave triplet pairing upon further increasing the interaction strength is observed. The relevance of these systematic results for existing proposals and ongoing pursuits of odd-parity topological superconductivity are also discussed.

  9. Bosonic pair creation and the Schiff-Snyder-Weinberg effect

    NASA Astrophysics Data System (ADS)

    Lv, Q. Z.; Bauke, Heiko; Su, Q.; Keitel, C. H.; Grobe, R.

    2016-01-01

    Interactions between different bound states in bosonic systems can lead to pair creation. We study this process in detail by solving the Klein-Gordon equation on space-time grids in the framework of time-dependent quantum field theory. By choosing specific external field configurations, two bound states can become pseudodegenerate, which is commonly referred to as the Schiff-Snyder-Weinberg effect. These pseudodegenerate bound states, which have complex energy eigenvalues, are related to the pseudo-Hermiticity of the Klein-Gordon Hamiltonian. In this work, the influence of the Schiff-Snyder-Weinberg effect on pair production is studied. A generalized Schiff-Snyder-Weinberg effect, where several pairs of pseudodegenerate states appear, is found in combined electric and magnetic fields. The generalized Schiff-Snyder-Weinberg effect likewise triggers pair creation. The particle number in these situations obeys an exponential growth law in time enhancing the creation of bosons, which cannot be found in fermionic systems.

  10. Pairing gap in the inner crust of neutron stars

    SciTech Connect

    Esbensen, H.; Broglia, R.A.; Vigezzi, E.; Barranco, F.

    1995-08-01

    The pairing gap in the inner crust of a neutron star can be strongly affected by the presence of heavy nuclei. The effect is commonly estimated in a semiclassical description, using the local density approximation. It was found that the nuclear specific heat can become comparable to the electronic specific heat at certain densities and temperatures. The quantitative result depends critically upon the magnitude of the pairing gap. We therefore decided to assess the validity of the semiclassical approach. This is done by solving the quantal BCS pairing gap equation for neutrons that are confined to the Wigner-Seitz cell that surrounds a heavy nucleus. We performed calculations that are based on the Gogny pairing force. They are feasible for realistic densities of neutrons and heavy nuclei that are expected to be found in the inner crust of neutron stars. The results will be compared to the semiclassical predictions. This work is in progress.

  11. Behavior of entanglement and Cooper pairs under relativistic boosts

    SciTech Connect

    Palge, Veiko; Dunningham, Jacob A.; Vedral, Vlatko

    2011-10-15

    Recent work [J. A. Dunningham, V. Palge, and V. Vedral, Phys. Rev. A 80, 044302 (2009)] has shown how single-particle entangled states are transformed when boosted in relativistic frames for certain restricted geometries. Here we extend that work to consider completely general inertial boosts. We then apply our single-particle results to multiparticle entanglements by focusing on Cooper pairs of electrons. We show that a standard Cooper pair state consisting of a spin-singlet acquires spin-triplet components in a relativistically boosted inertial frame, regardless of the geometry. We also show that, if we start with a spin-triplet pair, two out of the three triplet states acquire a singlet component, the size of which depends on the geometry. This transformation between the different singlet and triplet superconducting pairs may lead to a better understanding of unconventional superconductivity.

  12. Odd-paired controls frequency doubling in Drosophila segmentation by altering the pair-rule gene regulatory network

    PubMed Central

    Clark, Erik; Akam, Michael

    2016-01-01

    The Drosophila embryo transiently exhibits a double-segment periodicity, defined by the expression of seven 'pair-rule' genes, each in a pattern of seven stripes. At gastrulation, interactions between the pair-rule genes lead to frequency doubling and the patterning of 14 parasegment boundaries. In contrast to earlier stages of Drosophila anteroposterior patterning, this transition is not well understood. By carefully analysing the spatiotemporal dynamics of pair-rule gene expression, we demonstrate that frequency-doubling is precipitated by multiple coordinated changes to the network of regulatory interactions between the pair-rule genes. We identify the broadly expressed but temporally patterned transcription factor, Odd-paired (Opa/Zic), as the cause of these changes, and show that the patterning of the even-numbered parasegment boundaries relies on Opa-dependent regulatory interactions. Our findings indicate that the pair-rule gene regulatory network has a temporally modulated topology, permitting the pair-rule genes to play stage-specific patterning roles. DOI: http://dx.doi.org/10.7554/eLife.18215.001 PMID:27525481

  13. Stereo Pair: Wellington, New Zealand

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Wellington, the capital city of New Zealand, is located on the shores of Port Nicholson, a natural harbor at the south end of North Island. The city was founded in 1840 by British emigrants and now has a regional population of more than 400,000 residents. As seen here, the natural terrain imposes strong control over the urban growth pattern (urban features generally appear gray or white in this view). Rugged hills generally rising to 300 meters (1,000 feet) help protect the city and harbor from strong winter winds

    New Zealand is seismically active and faults are readily seen in the topography. The Wellington Fault forms the straight northwestern (left) shoreline of the harbor. Toward the southwest (down) the fault crosses through the city, then forms linear canyons in the hills before continuing offshore at the bottom. Toward the northeast (upper right) the fault forms the sharp mountain front along the northern edge of the heavily populated Hutt Valley.

    This stereoscopic image pair was generated using topographic data from the Shuttle Radar Topography Mission, combined with an enhanced true color Landsat7 satellite image. The topography data are used to create two differing perspectives of a single image, one perspective for each eye. In doing so, each point in the image is shifted slightly, depending on its elevation. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions.

    Landsat satellites have provided visible light and infrared images of the Earth continuously since 1972. SRTM topographic data match the 30 meter (99 foot) spatial resolution of most Landsat images and will provide a valuable complement for studying the historic and growing Landsat data archive. The Landsat 7 Thematic Mapper image used here was provided to the SRTM project by the United States Geological Survey, Earth Resources Observation Systems (EROS) data Center, Sioux Falls, South Dakota.

    Elevation data

  14. Precision Targeted Mutagenesis via Cas9 Paired Nickases in Rice

    PubMed Central

    Mikami, Masafumi; Toki, Seiichi; Endo, Masaki

    2016-01-01

    Recent reports of CRISPR- (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) mediated heritable mutagenesis in plants highlight the need for accuracy of the mutagenesis directed by this system. Off-target mutations are an important issue when considering functional gene analysis, as well as the molecular breeding of crop plants with large genome size, i.e. with many duplicated genes, and where the whole-genome sequence is still lacking. In mammals, off-target mutations can be suppressed by using Cas9 paired nickases together with paired guide RNAs (gRNAs). However, the performance of Cas9 paired nickases has not yet been fully assessed in plants. Here, we analyzed on- and off-target mutation frequency in rice calli and regenerated plants using Cas9 nuclease or Cas9 nickase with paired gRNAs. When Cas9 paired nickases were used, off-target mutations were fully suppressed in rice calli and regenerated plants. However, on-target mutation frequency also decreased compared with that induced by the Cas9 paired nucleases system. Since the gRNA sequence determines specific binding of Cas9 protein–gRNA ribonucleoproteins at the targeted sequence, the on-target mutation frequency of Cas9 paired nickases depends on the design of paired gRNAs. Our results suggest that a combination of gRNAs that can induce mutations at high efficiency with Cas9 nuclease should be used together with Cas9 nickase. Furthermore, we confirmed that a combination of gRNAs containing a one nucleotide (1 nt) mismatch toward the target sequence could not induce mutations when expressed with Cas9 nickase. Our results clearly show the effectiveness of Cas9 paired nickases in delivering on-target specific mutations. PMID:26936792

  15. Superluminal Spot Pair Events in Astronomical Settings: Sweeping Beams

    NASA Astrophysics Data System (ADS)

    Nemiroff, Robert J.

    2015-02-01

    Sweeping beams of light can cast spots moving with superluminal speeds across scattering surfaces. Such faster-than-light speeds are well-known phenomena that do not violate special relativity. It is shown here that under certain circumstances, superluminal spot pair creation and annihilation events can occur that provide unique information to observers. These spot pair events are not particle pair events-they are the sudden creation or annihilation of a pair of relatively illuminated spots on a scattering surface. Real spot pair illumination events occur unambiguously on the scattering surface when spot speeds diverge, while virtual spot pair events are observer dependent and perceived only when real spot radial speeds cross the speed of light. Specifically, a virtual spot pair creation event will be observed when a real spot's speed toward the observer drops below c, while a virtual spot pair annihilation event will be observed when a real spot's radial speed away from the observer rises above c. Superluminal spot pair events might be found angularly, photometrically, or polarimetrically, and might carry useful geometry or distance information. Two example scenarios are briefly considered. The first is a beam swept across a scattering spherical object, exemplified by spots of light moving across Earth's Moon and pulsar companions. The second is a beam swept across a scattering planar wall or linear filament, exemplified by spots of light moving across variable nebulae including Hubble's Variable Nebula. In local cases where the sweeping beam can be controlled and repeated, a three-dimensional map of a target object can be constructed. Used tomographically, this imaging technique is fundamentally different from lens photography, radar, and conventional lidar.

  16. Pair production in inhomogeneous fields

    SciTech Connect

    Gies, Holger; Klingmueller, Klaus

    2005-09-15

    We employ the recently developed worldline numerics, which combines string-inspired field theory methods with Monte Carlo techniques, to develop an algorithm for the computation of pair-production rates in scalar QED for inhomogeneous background fields. We test the algorithm with the classic Sauter potential, for which we compute the local production rate for the first time. Furthermore, we study the production rate for a superposition of a constant E field and a spatially oscillating field for various oscillation frequencies. Our results reveal that the approximation by a local derivative expansion already fails for frequencies small compared to the electron-mass scale, whereas for strongly oscillating fields a derivative expansion for the averaged field represents an acceptable approximation. The worldline picture makes the nonlocal nature of pair production transparent and facilitates a profound understanding of this important quantum phenomenon.

  17. Flux Quantization Without Cooper Pairs

    NASA Astrophysics Data System (ADS)

    Kadin, Alan

    2013-03-01

    It is universally accepted that the superconducting flux quantum h/2e requires the existence of a phase-coherent macroscopic wave function of Cooper pairs, each with charge 2e. On the contrary, we assert that flux quantization can be better understood in terms of single-electron quantum states, localized on the scale of the coherence length and organized into a real-space phase-antiphase structure. This packing configuration is consistent with the Pauli exclusion principle for single-electron states, maintains long-range phase coherence, and is compatible with much of the BCS formalism. This also accounts for h/2e in the Josephson effect, without Cooper pairs. Experimental evidence for this alternative picture may be found in deviations from h/2e in loops and devices much smaller than the coherence length. A similar phase-antiphase structure may also account for superfluids, without the need for boson condensation.

  18. One-dimensional Cooper pairing

    NASA Astrophysics Data System (ADS)

    Mendoza, R.; Fortes, M.; de Llano, M.; Solís, M. A.

    2011-09-01

    We study electron pairing in a one-dimensional (1D) fermion gas at zero temperature under zero- and finite-range, attractive, two-body interactions. The binding energy of Cooper pairs (CPs) with zero total or center-of-mass momentum (CMM) increases with attraction strength and decreases with interaction range for fixed strength. The excitation energy of 1D CPs with nonzero CMM display novel, unique properties. It satisfies a dispersion relation with two branches: a phonon-like linear excitation for small CP CMM; this is followed by roton-like quadratic excitation minimum for CMM greater than twice the Fermi wavenumber, but only above a minimum threshold attraction strength. The expected quadratic-in-CMM dispersion in vacuo when the Fermi wavenumber is set to zero is recovered for any coupling. This paper completes a three-part exploration initiated in 2D and continued in 3D.

  19. Asymmetric Ion-Pairing Catalysis

    PubMed Central

    Brak, Katrien

    2014-01-01

    Charged intermediates and reagents are ubiquitous in organic transformations. The interaction of these ionic species with chiral neutral, anionic, or cationic small molecules has emerged as a powerful strategy for catalytic, enantioselective synthesis. This review describes developments in the burgeoning field of asymmetric ion-pairing catalysis with an emphasis on the insights that have been gleaned into the structural and mechanistic features that contribute to high asymmetric induction. PMID:23192886

  20. Non-empirical pairing energy functional in nuclear matter and finite nuclei

    SciTech Connect

    Hebeler, K.; Duguet, T.; Lesinski, T.; Schwenk, A.

    2009-10-15

    We study {sup 1}S{sub 0} pairing gaps in neutron and nuclear matter as well as T=1 pairing in finite nuclei on the basis of microscopic two-nucleon interactions. Special attention is paid to the consistency of the pairing interaction and normal self-energy contributions. We find that pairing gaps obtained from low-momentum interactions depend only weakly on approximation schemes for the normal self-energy, required in present energy-density functional calculations, while pairing gaps from hard potentials are very sensitive to the effective-mass approximation scheme.

  1. The Positive-Pion Double-Charge Reaction: Experiments on the Isotopic Pairs OXYGEN-16,18 and MAGNESIUM-24,26.

    NASA Astrophysics Data System (ADS)

    Greene, Steven Joseph

    1981-06-01

    The ((pi)('+),(pi)('-)) double-charge-exchange (DCX) reaction has been performed on targets of T = 0,1 isospin (and isotopic) pairs ('16,18)O and ('24,26)Mg. Energy excitation functions of d(sigma)/d(OMEGA), across the (3,3) (pi)-N resonance, are presented for transitions to double -isobaric analog state (DIAS) and non-DIAS ground-state residual nuclei. Angular distributions in the region of 5(DEGREES)-33(DEGREES) are presented for the DIAS from the T = 1 nuclei. The simularities and differences of DIAS and non-DIAS distributions are discussed in relation to reaction-mechanism and nuclear-structure effects. Also, a simple, two-amplitude model for the ('18)O excitation function, consistent with the data, is presented. The utility of DCX in nuclear mass measurements is discussed, with some examples.

  2. Positive-pion double-charge-exchange reaction: experiments on the isotopic pairs oxygen-16,18 and magnesium-24,26

    SciTech Connect

    Greene, S.J.

    1981-06-01

    The (..pi../sup +/,..pi../sup -/) double-charge-exchange (DCX) reaction has been performed on targets of T = 0,1 isospin (and isotopic) pairs /sup 16/ /sup 18/O and /sup 24/ /sup 26/Mg. Energy excitation functions of d sigma/d ..cap omega.., across the (3,3) ..pi..-N resonance, are presented for transitions to double-isobaric analog state (DIAS) and non-DIAS ground-state residual nuclei. Angular distributions in the region of 5/sup 0/ to 33/sup 0/ are presented for the DIAS from the T = 1 nuclei. The similarities and differences of DIAS and non-DIAS distributions are discussed in relation to reaction-mechanism and nuclear-structure effects. Also, a simple, two-amplitude model for the /sup 18/O excitation function, consistent with the data, is presented. The utility of DCX in nuclear mass measurements is discussed, with some examples.

  3. Microscopic description of 258Fm fission dynamic with pairing

    NASA Astrophysics Data System (ADS)

    Scamps, Guillaume; Simenel, Cédric; Lacroix, Denis

    2016-05-01

    Fission dynamic remains a challenge for nuclear microscopic theories. In order to understand the dynamic of the last stage of the fission process, the time-dependent Hartree-Fock approach with BCS pairing is applied to the describe the fission of the 258Fm. A good agreement is found for the one-body observables: the total kinetic energy and the average mass asymmetry. The non-physical dependence of two-body observables with the initial shape is discussed.

  4. The strong isospin-breaking correction for the gluonic penguin contribution to {epsilon}{prime}/{epsilon} at next-to-leading order in the chiral expansion

    SciTech Connect

    Wolfe, Carl E.; Maltman, Kim

    2001-01-01

    The strong isospin-breaking correction {Omega}{sub st}, which appears in estimates of the standard model value for the direct CP-violating ratio {epsilon}{prime}/{epsilon}, is evaluated to next-to-leading order (NLO) in the chiral expansion using chiral perturbation theory. The relevant linear combinations of the unknown NLO CP-odd weak low-energy constants (LEC's) which, in combination with one-loop and strong LEC contributions, are required for a complete determination at this order, are estimated using two different models. It is found that, to NLO, {Omega}{sub st}=0.08{+-}0.05, significantly reduced from the ''standard'' value, 0.25{+-}0.08, employed in recent analyses. The potentially significant numerical impact of this decrease on standard model predictions for {epsilon}{prime}/{epsilon}, associated with the decreased cancellation between gluonic penguin and electroweak penguin contributions, is also discussed.

  5. Single molecule detection of direct, homologous, DNA/DNA pairing

    PubMed Central

    Danilowicz, C.; Lee, C. H.; Kim, K.; Hatch, K.; Coljee, V. W.; Kleckner, N.; Prentiss, M.

    2009-01-01

    Using a parallel single molecule magnetic tweezers assay we demonstrate homologous pairing of two double-stranded (ds) DNA molecules in the absence of proteins, divalent metal ions, crowding agents, or free DNA ends. Pairing is accurate and rapid under physiological conditions of temperature and monovalent salt, even at DNA molecule concentrations orders of magnitude below those found in vivo, and in the presence of a large excess of nonspecific competitor DNA. Crowding agents further increase the reaction rate. Pairing is readily detected between regions of homology of 5 kb or more. Detected pairs are stable against thermal forces and shear forces up to 10 pN. These results strongly suggest that direct recognition of homology between chemically intact B-DNA molecules should be possible in vivo. The robustness of the observed signal raises the possibility that pairing might even be the “default” option, limited to desired situations by specific features. Protein-independent homologous pairing of intact dsDNA has been predicted theoretically, but further studies are needed to determine whether existing theories fit sequence length, temperature, and salt dependencies described here. PMID:19903884

  6. Pairing of heterochromatin in response to cellular stress

    SciTech Connect

    Abdel-Halim, H.I.; Mullenders, L.H.F. . E-mail: L.Mullenders@lumc.nl; Boei, J.J.W.A.

    2006-07-01

    We previously reported that exposure of human cells to DNA-damaging agents (X-rays and mitomycin C (MMC)) induces pairing of the homologous paracentromeric heterochromatin of chromosome 9 (9q12-13). Here, we show that UV irradiation and also heat shock treatment of human cells lead to similar effects. Since the various agents induce very different types and frequencies of damage to cellular constituents, the data suggest a general stress response as the underlying mechanism. Moreover, local UV irradiation experiments revealed that pairing of heterochromatin is an event that can be triggered without induction of DNA damage in the heterochromatic sequences. The repair deficient xeroderma pigmentosum cells (group F) previously shown to fail pairing after MMC displayed elevated pairing after heat shock treatment but not after UV exposure. Taken together, the present results indicate that pairing of heterochromatin following exposure to DNA-damaging agents is initiated by a general stress response and that the sensing of stress or the maintenance of the paired status of the heterochromatin might be dependent on DNA repair.

  7. Study of isospin correlation in high energy S + Pb and Pb + Pb interactions with a magnetic-interferometric-emulsion-chamber. Final report

    SciTech Connect

    Takahashi, Yoshiyuki

    1997-12-12

    This report describes the research results of the study of high energy heavy-ion interactions and multi-cluster correlations at the University of Alabama in Huntsville (UAH). This study has been performed as the CERN experiments, EMU05, EMU09 and EMU16, and a part of the RHIC PHENIX and its MVD Collaboration work. Physics objectives and methods are described in chapters 1, 2, 3 and Appendices A1 and A2. The experimental set-up, measurements, an the data analyses at UAH are described in chapters 4 through 10 and Appendices. The UAH research was a quest for high density state of nuclear matter, in terms of finding analysis methods of multi-isospin correlations. The present work emphasized a study of the fluctuation of the particle density, discriminating the isospin for exploring the Disoriented Chiral Condensate (DCC). The analysis methods developed are: (1) Chi-square density test; (2) Run-test; (3) G-test; (4) Fourier analysis; and (5) Lomb`s Periodogram. The application of these methods for central collision events in 2,000 GeV/n S + Pb and 167 GeV/n Pb + Pb produced interesting DCC correlations for a few events. However, further investigation of fluctuations with Monte Carlo method guided them to understand various hidden degree of freedoms in such analyses. The results of the analysis of the experimental data in comparison with the Monte Carlo data did not support the DCC process as compelling. The developed methods evolved for a plan to investigate the DCC in the PHENIX. The study has obtained several mathematical analysis methods from the CERN EMU05/16 experiments for a possible use in RHIC experiments.

  8. Pair Tunneling through Single Molecules

    NASA Astrophysics Data System (ADS)

    Raikh, Mikhail

    2007-03-01

    Coupling to molecular vibrations induces a polaronic shift, and can lead to a negative charging energy, U. For negative U, the occupation of the ground state of the molecule is even. In this situation, virtual pair transitions between the molecule and the leads can dominate electron transport. At low temperature, T, these transitions give rise to the charge-Kondo effect [1]. We developed the electron transport theory through the negative-U molecule [2] at relatively high T, when the Kondo correlations are suppressed. Two physical ingredients distinguish our theory from the transport through a superconducting grain coupled to the normal leads [3]: (i) in parallel with sequential pair-tunneling processes, single-particle cotunneling processes take place; (ii) the electron pair on the molecule can be created (or annihilated) by two electrons tunneling in from (or out to) opposite leads. We found that, even within the rate-equation description, the behavior of differential conductance through the negative-U molecule as function of the gate voltage is quite peculiar: the height of the peak near the degeneracy point is independent of temperature, while its width is proportional to T. This is in contrast to the ordinary Coulomb-blockade conductance peak, whose integral strength is T-independent. At finite source-drain bias, V>>T, the width of the conductance peak is ˜V, whereas the conventional Coulomb-blockade peak at finite V splits into two sharp peaks at detunings V/2, and -V/2. Possible applications to the gate-controlled current rectification and switching will be discussed. [1] A. Taraphder and P. Coleman, Phys. Rev. Lett. 66, 2814 (1991). [2] J. Koch, M. E. Raikh, and F. von Oppen, Phys. Rev. Lett. 96, 056803 (2006). [3] F. W. J. Hekking, L. I. Glazman, K. A. Matveev, and R. I. Shekhter, Phys. Rev. Lett. 70, 4138 (1993).

  9. Cytoplasmic and genomic effects on meiotic pairing in Brassica hybrids and allotetraploids from pair crosses of three cultivated diploids.

    PubMed

    Cui, Cheng; Ge, Xianhong; Gautam, Mayank; Kang, Lei; Li, Zaiyun

    2012-07-01

    Interspecific hybridization and allopolyploidization contribute to the origin of many important crops. Synthetic Brassica is a widely used model for the study of genetic recombination and "fixed heterosis" in allopolyploids. To investigate the effects of the cytoplasm and genome combinations on meiotic recombination, we produced digenomic diploid and triploid hybrids and trigenomic triploid hybrids from the reciprocal crosses of three Brassica diploids (B. rapa, AA; B. nigra, BB; B. oleracea, CC). The chromosomes in the resultant hybrids were doubled to obtain three allotetraploids (B. juncea, AA.BB; B. napus, AA.CC; B. carinata, BB.CC). Intra- and intergenomic chromosome pairings in these hybrids were quantified using genomic in situ hybridization and BAC-FISH. The level of intra- and intergenomic pairings varied significantly, depending on the genome combinations and the cytoplasmic background and/or their interaction. The extent of intragenomic pairing was less than that of intergenomic pairing within each genome. The extent of pairing variations within the B genome was less than that within the A and C genomes, each of which had a similar extent of pairing. Synthetic allotetraploids exhibited nondiploidized meiotic behavior, and their chromosomal instabilities were correlated with the relationship of the genomes and cytoplasmic background. Our results highlight the specific roles of the cytoplasm and genome to the chromosomal behaviors of hybrids and allopolyploids.

  10. Cytoplasmic and Genomic Effects on Meiotic Pairing in Brassica Hybrids and Allotetraploids from Pair Crosses of Three Cultivated Diploids

    PubMed Central

    Cui, Cheng; Ge, Xianhong; Gautam, Mayank; Kang, Lei; Li, Zaiyun

    2012-01-01

    Interspecific hybridization and allopolyploidization contribute to the origin of many important crops. Synthetic Brassica is a widely used model for the study of genetic recombination and “fixed heterosis” in allopolyploids. To investigate the effects of the cytoplasm and genome combinations on meiotic recombination, we produced digenomic diploid and triploid hybrids and trigenomic triploid hybrids from the reciprocal crosses of three Brassica diploids (B. rapa, AA; B. nigra, BB; B. oleracea, CC). The chromosomes in the resultant hybrids were doubled to obtain three allotetraploids (B. juncea, AA.BB; B. napus, AA.CC; B. carinata, BB.CC). Intra- and intergenomic chromosome pairings in these hybrids were quantified using genomic in situ hybridization and BAC-FISH. The level of intra- and intergenomic pairings varied significantly, depending on the genome combinations and the cytoplasmic background and/or their interaction. The extent of intragenomic pairing was less than that of intergenomic pairing within each genome. The extent of pairing variations within the B genome was less than that within the A and C genomes, each of which had a similar extent of pairing. Synthetic allotetraploids exhibited nondiploidized meiotic behavior, and their chromosomal instabilities were correlated with the relationship of the genomes and cytoplasmic background. Our results highlight the specific roles of the cytoplasm and genome to the chromosomal behaviors of hybrids and allopolyploids. PMID:22505621

  11. Cytoplasmic and genomic effects on meiotic pairing in Brassica hybrids and allotetraploids from pair crosses of three cultivated diploids.

    PubMed

    Cui, Cheng; Ge, Xianhong; Gautam, Mayank; Kang, Lei; Li, Zaiyun

    2012-07-01

    Interspecific hybridization and allopolyploidization contribute to the origin of many important crops. Synthetic Brassica is a widely used model for the study of genetic recombination and "fixed heterosis" in allopolyploids. To investigate the effects of the cytoplasm and genome combinations on meiotic recombination, we produced digenomic diploid and triploid hybrids and trigenomic triploid hybrids from the reciprocal crosses of three Brassica diploids (B. rapa, AA; B. nigra, BB; B. oleracea, CC). The chromosomes in the resultant hybrids were doubled to obtain three allotetraploids (B. juncea, AA.BB; B. napus, AA.CC; B. carinata, BB.CC). Intra- and intergenomic chromosome pairings in these hybrids were quantified using genomic in situ hybridization and BAC-FISH. The level of intra- and intergenomic pairings varied significantly, depending on the genome combinations and the cytoplasmic background and/or their interaction. The extent of intragenomic pairing was less than that of intergenomic pairing within each genome. The extent of pairing variations within the B genome was less than that within the A and C genomes, each of which had a similar extent of pairing. Synthetic allotetraploids exhibited nondiploidized meiotic behavior, and their chromosomal instabilities were correlated with the relationship of the genomes and cytoplasmic background. Our results highlight the specific roles of the cytoplasm and genome to the chromosomal behaviors of hybrids and allopolyploids. PMID:22505621

  12. Broadband photon pair generation at 3 ω/2

    NASA Astrophysics Data System (ADS)

    Suchowski, Haim; Bruner, Barry D.; Israel, Yonatan; Ganany-Padowicz, Ayelet; Arie, Ady; Silberberg, Yaron

    2016-02-01

    We experimentally demonstrate a method for creating broad bandwidth photon pairs in the visible spectral region, centered at a frequency that is higher than that of the initial pump source. Spontaneous down conversion of a narrowband 1053 nm pulsed Nd:YLF laser is followed by highly efficient upconversion in adiabatic nonlinear frequency-conversion process. Photon pairs are generated from 693 to 708 nm, and the complete conversion process occurs within a single monolithic 5-cm-long stoichiometric lithium tantalate nonlinear crystal. We have characterized the dependence of this structure with respect to pump intensity and crystal temperature.

  13. QCD Corrections to Higgs Pair Production in Bottom Quark Fusion

    SciTech Connect

    Dawson, Sally; Kao, Chung; Wang, Yili; Williams, Peter; /Oklahoma U.

    2006-10-01

    We present a complete next-to-leading order (NLO) calculation for the total cross section of inclusive Higgs pair production via bottom-quark fusion (b{bar b} {yields} hh) at the CERN Large Hadron Collider (LHC) in the Standard Model. The NLO QCD corrections lead to less dependence on the renormalization scale ({mu}{sub R}) and the factorization scale ({mu}{sub F}) than the leading-order (LO) cross section, and they significantly increase the LO cross section. The rate for inclusive Higgs pair production is small in the Standard Model, but can be large in models with enhanced couplings of the b quark to the Higgs bosons.

  14. Non-linear dynamics of a spur gear pair

    NASA Technical Reports Server (NTRS)

    Kahraman, A.; Singh, R.

    1990-01-01

    The backlash nonlinearity excited primarily by transmission error between spur gear pairs is studied for both external and internal excitations. The digital simulation technique and the method of harmonic balance are used to develop steady state solutions for the internal sinuosidal excitations. The analytic predictions agreed well with available experimental data. Digital simulation is used to observe that at the chaotic and subharmonic resonances may exist in a gear pair depending on the mean or design load, mean to alternating force ratio, damping, and backlash.

  15. Landau-Zener Transitions in Frozen Pairs of Rydberg Atoms

    SciTech Connect

    Saquet, Nicolas; Cournol, Anne; Beugnon, Jerome; Robert, Jacques; Pillet, Pierre; Vanhaecke, Nicolas

    2010-04-02

    We have induced adiabatic transitions in pairs of frozen Rydberg sodium atoms of a supersonic beam. The diatomic ns+ns{yields}np+(n-1)p transition takes place in a time-dependent electric field and originates from the adiabatic change of the internal state of the pair induced by the dipole-dipole interaction. This is experimentally achieved by sweeping an electric field across the energy degeneracy ns ns-np(n-1)p. Our results fully agree with a two-level Landau-Zener model in the diatom system.

  16. Photoassociative cooling and trapping of a pair of interacting atoms

    NASA Astrophysics Data System (ADS)

    Saha, Subrata; Naskar, Somnath; Deb, Bimalendu

    2016-08-01

    We show that it is possible to cool interacting pairs of atoms by a lin ⊥ lin Sisyphus-like laser cooling scheme using counterpropagating photoassociation (PA) lasers. It is shown that the center-of-mass (c.m.) motion of atom pairs can be trapped in molecular spin-dependent periodic potentials generated by the lasers. The proposed scheme is most effective for narrow-line PA transitions. We illustrate this with numerical calculations using fermionic 171Yb atoms as an example.

  17. Passive estimation of the waveguide invariant per pair of modes.

    PubMed

    Le Gall, Yann; Bonnel, Julien

    2013-08-01

    In many oceanic waveguides, acoustic propagation is characterized by a parameter called waveguide invariant. This property is used in many passive and active sonar applications where knowledge of the waveguide invariant value is required. The waveguide invariant is classically considered as scalar but several studies show that it is better modeled by a distribution because of its dependence on frequency and mode pairs. This paper presents a new method for estimating the waveguide invariant distribution. Using the noise radiated by a distant ship and a single hydrophone, the proposed methodology allows estimating the waveguide invariant for each pair of modes in shallow water. Performance is evaluated on simulated data.

  18. Bound Polaron Pair Formation in Poly (phenylenevinylenes)

    NASA Astrophysics Data System (ADS)

    Rothberg, Lewis

    The following sections are included: * INTRODUCTION * PHOTOGENERATED YIELD OF SINGLET EXCITONS * AGGREGRATION EFFECTS ON EXCITED STATE PHOTO-GENERATION * ASSIGNMENT TO BOUND POLARON PAIRS AND DISCUSSION * PROBLEMS WITH THE BOUND POLARON PAIR PICTURE AND CONCLUSION * REFERENCES

  19. Pair bonds: arrival synchrony in migratory birds.

    PubMed

    Gunnarsson, T G; Gill, J A; Sigurbjörnsson, T; Sutherland, W J

    2004-10-01

    Synchronous arrival of pairs of migratory birds at their breeding grounds is important for maintaining pair bonds and is achieved by pairs that remain together all year round. Here we show that arrival is also synchronized in paired individuals of a migratory shorebird, the black-tailed godwit (Limosa limosa islandica), even though they winter hundreds of kilometres apart and do not migrate together. The mechanisms required to achieve this synchrony and prevent 'divorce' illustrate the complexity of migratory systems. PMID:15470417

  20. Isovector Pairing within the so(5) Richardson-Gaudin Exactly Solvable Model

    SciTech Connect

    Dimitrova, S S; Dukelsky, J; Gueorguiev, V G; Van Isacker, P

    2005-10-10

    Properties of a nucleon system interacting via isovector proton-neutron pairing can be described within the so(5) generalized Richardson-Gaudin exactly-solvable model [1]. We present results for a system of 12 nucleon pairs within the full f{sub p} + g{sub 9/2} shell-model space. We discuss coupling constant dependence of the pair energies, total energy of the system, and the occupation numbers.

  1. Individuation of Pairs of Objects in Infancy

    ERIC Educational Resources Information Center

    Leslie, Alan M.; Chen, Marian L.

    2007-01-01

    Looking-time studies examined whether 11-month-old infants can individuate two pairs of objects using only shape information. In order to test individuation, the object pairs were presented sequentially. Infants were familiarized either with the sequential pairs, disk-triangle/disk-triangle (XY/XY), whose shapes differed within but not across…

  2. The Associability of CVC Pairs. Research Report.

    ERIC Educational Resources Information Center

    Montague, William E.; Kiess, Harold O.

    To obtain an a priori estimate of natural language mediators (NLM's) 320 pairs of words with the consonant-vowel-consonant-pattern (CVC's) were broken into four series of 90 pairs and presented to 240 male and female undergraduates. Pairs were shown for 15 seconds while the subjects wrote down any associative device or NLM they could generate that…

  3. The role of close pair interactions in triggering stellar bars and rings

    NASA Astrophysics Data System (ADS)

    Nair, Preethi; Ellison, Sara; Patton, David

    2015-03-01

    Recent works which have looked at bars in clusters versus the field have found no significant difference in bar fraction. However, other works (Nair & Abraham 2010, Lee et al. 2012) have found that bar fractions depend sensitively on the mass, morphology and color of the galaxy. In addition, simulations suggest that bar formation may depend on the merger ratio of close pair interactions as well as on the separation between the pairs. In this work, we analyze the bar fractions in a complete sample of ~23,000 close pairs derived from the Sloan Digital Sky Survey Data Release 7. We will present results illustrating the dependence of bar and ring fractions as a function of merger mass ratio, pair separation, galaxy morphology, and stellar mass. I will further compare the role of bars and close pairs in triggering central star formation and AGN.

  4. Topological superconductivity and unconventional pairing in oxide interfaces.

    PubMed

    Scheurer, Mathias S; Schmalian, Jörg

    2015-01-28

    Pinpointing the microscopic mechanism for superconductivity has proven to be one of the most outstanding challenges in the physics of correlated quantum matter. Thus far, the most direct evidence for an electronic pairing mechanism is the observation of a new symmetry of the order parameter, as done in the cuprate high-temperature superconductors. Alternatively, global, topological invariants allow for a sharp discrimination between states of matter that cannot be transformed into each other adiabatically. Here we propose an unconventional pairing state for the electron fluid in two-dimensional oxide interfaces and establish a direct link to the emergence of non-trivial topological invariants. Topological signatures, in particular Majorana edge states, can then be used to detect the microscopic origin of superconductivity. In addition, we show that also the density wave states that compete with superconductivity sensitively depend on the nature of the pairing interaction.

  5. Magnetosonic shock wave in collisional pair-ion plasma

    NASA Astrophysics Data System (ADS)

    Adak, Ashish; Sikdar, Arnab; Ghosh, Samiran; Khan, Manoranjan

    2016-06-01

    Nonlinear propagation of magnetosonic shock wave has been studied in collisional magnetized pair-ion plasma. The masses of both ions are same but the temperatures are slightly different. Two fluid model has been taken to describe the model. Two different modes of the magnetosonic wave have been obtained. The dynamics of the nonlinear magnetosonic wave is governed by the Korteweg-de Vries Burgers' equation. It has been shown that the ion-ion collision is the source of dissipation that causes the Burgers' term which is responsible for the shock structures in equal mass pair-ion plasma. The numerical investigations reveal that the magnetosonic wave exhibits both oscillatory and monotonic shock structures depending on the strength of the dissipation. The nonlinear wave exhibited the oscillatory shock wave for strong magnetic field (weak dissipation) and monotonic shock wave for weak magnetic field (strong dissipation). The results have been discussed in the context of the fullerene pair-ion plasma experiments.

  6. Kappa statistic for clustered matched-pair data.

    PubMed

    Yang, Zhao; Zhou, Ming

    2014-07-10

    Kappa statistic is widely used to assess the agreement between two procedures in the independent matched-pair data. For matched-pair data collected in clusters, on the basis of the delta method and sampling techniques, we propose a nonparametric variance estimator for the kappa statistic without within-cluster correlation structure or distributional assumptions. The results of an extensive Monte Carlo simulation study demonstrate that the proposed kappa statistic provides consistent estimation and the proposed variance estimator behaves reasonably well for at least a moderately large number of clusters (e.g., K ≥50). Compared with the variance estimator ignoring dependence within a cluster, the proposed variance estimator performs better in maintaining the nominal coverage probability when the intra-cluster correlation is fair (ρ ≥0.3), with more pronounced improvement when ρ is further increased. To illustrate the practical application of the proposed estimator, we analyze two real data examples of clustered matched-pair data.

  7. Topological superconductivity and unconventional pairing in oxide interfaces.

    PubMed

    Scheurer, Mathias S; Schmalian, Jörg

    2015-01-01

    Pinpointing the microscopic mechanism for superconductivity has proven to be one of the most outstanding challenges in the physics of correlated quantum matter. Thus far, the most direct evidence for an electronic pairing mechanism is the observation of a new symmetry of the order parameter, as done in the cuprate high-temperature superconductors. Alternatively, global, topological invariants allow for a sharp discrimination between states of matter that cannot be transformed into each other adiabatically. Here we propose an unconventional pairing state for the electron fluid in two-dimensional oxide interfaces and establish a direct link to the emergence of non-trivial topological invariants. Topological signatures, in particular Majorana edge states, can then be used to detect the microscopic origin of superconductivity. In addition, we show that also the density wave states that compete with superconductivity sensitively depend on the nature of the pairing interaction. PMID:25629433

  8. Perturbations of vortex ring pairs

    NASA Astrophysics Data System (ADS)

    Gubser, Steven S.; Horn, Bart; Parikh, Sarthak

    2016-02-01

    We study pairs of coaxial vortex rings starting from the action for a classical bosonic string in a three-form background. We complete earlier work on the phase diagram of classical orbits by explicitly considering the case where the circulations of the two vortex rings are equal and opposite. We then go on to study perturbations, focusing on cases where the relevant four-dimensional transfer matrix splits into two-dimensional blocks. When the circulations of the rings have the same sign, instabilities are mostly limited to wavelengths smaller than a dynamically generated length scale at which single-ring instabilities occur. When the circulations have the opposite sign, larger wavelength instabilities can occur.

  9. Stellar kinematics of elliptical galaxies in pairs

    NASA Technical Reports Server (NTRS)

    Madejsky, Rainer; Bender, Ralf

    1990-01-01

    In both galaxy pairs Arp 166 and 3C 278 the authors find radially increasing velocity dispersions indicating a perturbed, non-equilibrium state of the galaxies after the tidal interaction. In all galaxies, the increase is most pronounced in the regions which correspond to the centers of the outer isophotes. The authors suggest a scenario in which the galaxies are strongly decelerated on their orbits during the encounter. The deceleration depends on the radial position in the perturbed galaxy and vanishes in the center of the perturbed galaxy (Spitzer, 1958). In addition, the crossing time of the stars near the center is very short, implying that the tidal perturbations can be averaged over several orbital periods (e.g., Binney and Tremaine, 1987). In consequence, the central parts are not affected by the tidal interaction while the outer parts are strongly decelerated. This leads to a displacement of the central parts of the galaxies with respect to their envelopes in an anti-symmetrical way for the two components of each galaxy pair. The motions of the central parts subsequently are opposed by dynamical friction with the surrounding envelopes. Due to dynamical friction, the density of the stars increases in the wakes of the moving central parts (Mulder, 1983). The overdensity of stars in the wakes of the moving central parts efficiently decelerates the motions of the central parts. The reaction of the stars in the overdensity regions leads to an increase of the velocity dispersion mainly along the orbits of the moving central parts. The presented observations, especially the asymmetrical luminosity profiles and the radially increasing velocity dispersions support consistently the above scenario of tidal interaction between galaxies. Further spectroscopic observations are necessary in order to investigate the degree of anisotropy in the kinematically perturbed regions.

  10. Pair Cascades in Blazars and Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Roustazadeh Sheikhyousefi, Parisa

    2012-05-01

    magnetic field in the AGN environment, secondary particles produced by gamma-gamma absorption can be isotropized. I suggested that the Compton emission from VHE gamma-ray induced pair cascades can explain the detection of radio galaxies as high energy sources. I presented fits to the the Fermi fluxes and spectra of the radio galaxies Cen A and NGC 1275. In the last part of my Ph. D. research work, I developed my Monte-Carlo code to include energy loss of particles by synchrotron radiation between to successive Compton scatterings and the angle dependence of the synchrotron output from the cascade. This can be important for situations when the magnetic field in the AGN environment is not negligible. I showed that the synchrotron radiation from the cascades in the radio galaxies NGC 1275 and Cen A with the parameters used in my first and second paper are much smaller than the synchrotron radiation from the jets and neglecting synchrotron radiation in those works is justified. I found that the magnetic field can not be determined from a fit of the cascade emission to the gamma-ray spectrum alone. I studied this scenario for the case of NGC 1275 and showed that the degeneracy of the magnetic field can only be lifted if the synchrotron emission from the cascade is observed as well. I suggest that the big blue bump (BBB) observed in the spectral energy distribution (SED) of several blazars can be due to the synchrotron radiation from cascades. This can be an alternative explanation of the BBB signature and I illustrate this idea on the blazar 3C 279. I have investigated the apparent absorption feature observed in the SEDs of some blazars such as W Comae and S5 0716+714 in the 10-100 GeV energy range and point out that this can be due to gamma-gamma absorption of primary gamma-ray photons by soft photons from the BLR or dust torus. During this study, I participated in three observing runs at the MDM observatory on Kitt Peak near Tucson, Arizona and I monitored the optical

  11. Pair Cascades in Blazars and Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Roustazadeh Sheikhyousefi, Parisa

    2012-05-01

    magnetic field in the AGN environment, secondary particles produced by gamma-gamma absorption can be isotropized. I suggested that the Compton emission from VHE gamma-ray induced pair cascades can explain the detection of radio galaxies as high energy sources. I presented fits to the the Fermi fluxes and spectra of the radio galaxies Cen A and NGC 1275. In the last part of my Ph. D. research work, I developed my Monte-Carlo code to include energy loss of particles by synchrotron radiation between to successive Compton scatterings and the angle dependence of the synchrotron output from the cascade. This can be important for situations when the magnetic field in the AGN environment is not negligible. I showed that the synchrotron radiation from the cascades in the radio galaxies NGC 1275 and Cen A with the parameters used in my first and second paper are much smaller than the synchrotron radiation from the jets and neglecting synchrotron radiation in those works is justified. I found that the magnetic field can not be determined from a fit of the cascade emission to the gamma-ray spectrum alone. I studied this scenario for the case of NGC 1275 and showed that the degeneracy of the magnetic field can only be lifted if the synchrotron emission from the cascade is observed as well. I suggest that the big blue bump (BBB) observed in the spectral energy distribution (SED) of several blazars can be due to the synchrotron radiation from cascades. This can be an alternative explanation of the BBB signature and I illustrate this idea on the blazar 3C 279. I have investigated the apparent absorption feature observed in the SEDs of some blazars such as W Comae and S5 0716+714 in the 10-100 GeV energy range and point out that this can be due to gamma-gamma absorption of primary gamma-ray photons by soft photons from the BLR or dust torus. During this study, I participated in three observing runs at the MDM observatory on Kitt Peak near Tucson, Arizona and I monitored the optical

  12. Resonance tunneling of cooper pairs in a superconductor-polymer-superconductor josephson junction

    SciTech Connect

    Ionov, A. I.

    2013-05-15

    It is shown that the superconducting current flowing though a polymer in a superconductor-polymer-superconductor Josephson structure is due to resonant tunneling of Cooper pairs. The critical current and the thickness of the polymer in which the superconducting current is observed depend on the coherence length of a Cooper pair in the superconductor contacting the polymer.

  13. Homologue pairing, recombination and segregation in Caenorhabditis elegans.

    PubMed

    Zetka, M

    2009-01-01

    Meiosis in the free-living, hermaphroditic nematode Caenorhabditis elegans is marked by the same highly conserved features observed in other sexually reproducing systems. Accurate chromosome segregation at the meiotic divisions depends on earlier landmark events of meiotic prophase, including the pairing of homologous chromosomes, synapsis between them, and the formation of crossovers. Dissection of these processes has revealed a unique simplification of meiotic mechanisms that impact the interpretation of meiotic chromosome behaviour in more complex systems. Chromosome sites required for chromosome pairing are consolidated to one end of each chromosome, the many sites of recombination initiation are resolved into a single crossover for each chromosome pair, and the diffuse (holocentric) kinetic activity that extends along the length of the mitotic chromosomes is reduced to a single end of each meiotic chromosome. Consequently, studies from the nematode have illuminated and challenged long-standing concepts of homologue pairing mechanisms, crossover interference, and kinetochore structure. Because chromosome pairing, synapsis, and recombination can proceed independently of one another, C. elegans has provided a simplified system for studying these processes and the mechanisms mediating their coordination during meiosis. This review covers the major features of C. elegans meiosis with emphasis on its contributions to understanding essential meiotic processes. PMID:18948706

  14. Pair truncation for rotational nuclei: j =(17/2 model

    SciTech Connect

    Halse, P.; Jaqua, L.; Barrett, B.R. )

    1989-08-01

    The suitability of the pair condensate approach for rotational states is studied in a single {ital j}=17/2 shell of identical nucleons interacting through a quadrupole-quadrupole Hamiltonian. The ground band and a {ital K}=2 excited band are both studied in detail. A direct comparison of the exact states with those constituting the {ital SD} and {ital SDG} subspaces is used to identify the important degrees of freedom for these levels. The range of pairs necessary for a good description is found to be highly state dependent; {ital S} and {ital D} pairs are the major constituents of the low-spin ground-band levels, while {ital G} pairs are needed for those in the {gamma} band. Energy spectra are obtained for each truncated subspace. {ital SDG} pairs allow accurate reproduction of the binding energy and {ital K}=2 excitation energy, but still give a moment of inertia which is about 30% too small even for the lowest levels.

  15. Modulated pair condensate of p-orbital ultracold fermions

    NASA Astrophysics Data System (ADS)

    Zhang, Zixu; Hung, Hsiang-Hsuan; Ho, Chiu Man; Zhao, Erhai; Liu, W. Vincent

    2010-09-01

    We show that an interesting kind of pairing occurs for spin-imbalanced Fermi gases under a specific experimental condition—the spin up and spin down Fermi levels lying within the px and s orbital bands of an optical lattice, respectively. The pairs condense at a finite momentum equal to the sum of the two Fermi momenta of spin up and spin down fermions and form a p-orbital pair condensate. This 2kF momentum dependence has been seen before in spin- and charge-density waves, but it differs from the usual p-wave superfluids such as He3, where the orbital symmetry refers to the relative motion within each pair. Our conclusion is based on the density matrix renormalization group analysis for the one-dimensional (1D) system and mean-field theory for the quasi-1D system. The phase diagram of the quasi-1D system is calculated, showing that the p-orbital pair condensate occurs in a wide range of fillings. In the strongly attractive limit, the system realizes an unconventional BEC beyond Feynman’s no-node theorem. The possible experimental signatures of this phase in molecule projection experiment are discussed.

  16. Molecular mechanisms of homologous chromosome pairing and segregation in plants.

    PubMed

    Zhang, Jing; Zhang, Bing; Su, Handong; Birchler, James A; Han, Fangpu

    2014-03-20

    In most eukaryotic species, three basic steps of pairing, recombination and synapsis occur during prophase of meiosis I. Homologous chromosomal pairing and recombination are essential for accurate segregation of chromosomes. In contrast to the well-studied processes such as recombination and synapsis, many aspects of chromosome pairing are still obscure. Recent progress in several species indicates that the telomere bouquet formation can facilitate homologous chromosome pairing by bringing chromosome ends into close proximity, but the sole presence of telomere clustering is not sufficient for recognizing homologous pairs. On the other hand, accurate segregation of the genetic material from parent to offspring during meiosis is dependent on the segregation of homologs in the reductional meiotic division (MI) with sister kinetochores exhibiting mono-orientation from the same pole, and the segregation of sister chromatids during the equational meiotic division (MII) with kinetochores showing bi-orientation from the two poles. The underlying mechanism of orientation and segregation is still unclear. Here we focus on recent studies in plants and other species that provide insight into how chromosomes find their partners and mechanisms mediating chromosomal segregation. PMID:24656232

  17. New longitudinal mode and compression of pair ions in plasma

    NASA Astrophysics Data System (ADS)

    Ehsan, Zahida; Tsintsadze, N. L.; Shah, H. A.; Trines, R. M. G. M.; Imran, Muhammad

    2016-06-01

    Positive and negative ions forming the so-called pair plasma differing in sign of their charge but asymmetric in mass and temperature support a new acoustic-like mode. The condition for the excitation of ion sound wave through electron beam induced Cherenkov instability is also investigated. This beam can generate a perturbation in the pair ion plasmas in the presence of electrons when there is number density, temperature, and mass difference in the two species of ions. Basic emphasis is on the focusing of ion sound waves, and we show how, in the area of localization of wave energy, the density of pair particles increases while electrons are pushed away from that region. Further, this localization of wave is dependent on the shape of the pulse. Considering the example of pancake and bullet shaped pulses, we find that only the former leads to compression of pair ions in the supersonic regime of the focusing region. Here, possible existence of regions where pure pair particles can exist may also be speculated which is not only useful from academic point of view but also to mimic the situation of plasma (electron positron asymmetric and symmetric) observed in astrophysical environment.

  18. Cylindrically confined pair-ion-electron and pair-ion plasmas having axial sheared flow and radial gradients

    SciTech Connect

    Batool, Nazia; Saleem, H.

    2013-10-15

    The linear and nonlinear dynamics of pair-ion (PI) and pair-ion-electron plasmas (PIE) have been investigated in a cylindrical geometry with a sheared plasma flow along the axial direction having radial dependence. The coupled linear dispersion relation of low frequency electrostatic waves has been presented taking into account the Guassian profile of density and linear gradient of sheared flow. It is pointed out that the quasi-neutral cold inhomogeneous pure pair ion plasma supports only the obliquely propagating convective cell mode. The linear dispersion relation of this mode has been solved using boundary conditions. The nonlinear structures in the form of vortices formed by different waves have been discussed in PI and PIE plasmas.

  19. Multi-user distribution of polarization entangled photon pairs

    SciTech Connect

    Trapateau, J.; Orieux, A.; Diamanti, E.; Zaquine, I.; Ghalbouni, J.

    2015-10-14

    We experimentally demonstrate multi-user distribution of polarization entanglement using commercial telecom wavelength division demultiplexers. The entangled photon pairs are generated from a broadband source based on spontaneous parametric down conversion in a periodically poled lithium niobate crystal using a double path setup employing a Michelson interferometer and active phase stabilisation. We test and compare demultiplexers based on various technologies and analyze the effect of their characteristics, such as losses and polarization dependence, on the quality of the distributed entanglement for three channel pairs of each demultiplexer. In all cases, we obtain a Bell inequality violation, whose value depends on the demultiplexer features. This demonstrates that entanglement can be distributed to at least three user pairs of a network from a single source. Additionally, we verify for the best demultiplexer that the violation is maintained when the pairs are distributed over a total channel attenuation corresponding to 20 km of optical fiber. These techniques are therefore suitable for resource-efficient practical implementations of entanglement-based quantum key distribution and other quantum communication network applications.

  20. Pair creation and plasma oscillations.

    SciTech Connect

    Prozorkevich, A. V.; Vinnik, D. V.; Schmidt, S. M.; Hecht, M. B.; Roberts, C. D.

    2000-12-15

    We describe aspects of particle creation in strong fields using a quantum kinetic equation with a relaxation-time approximation to the collision term. The strong electric background field is determined by solving Maxwell's equation in tandem with the Vlasov equation. Plasma oscillations appear as a result of feedback between the background field and the field generated by the particles produced. The plasma frequency depends on the strength of the initial background fields and the collision frequency, and is sensitive to the necessary momentum-dependence of dressed-parton masses.

  1. Report on Pairing-based Cryptography.

    PubMed

    Moody, Dustin; Peralta, Rene; Perlner, Ray; Regenscheid, Andrew; Roginsky, Allen; Chen, Lily

    2015-01-01

    This report summarizes study results on pairing-based cryptography. The main purpose of the study is to form NIST's position on standardizing and recommending pairing-based cryptography schemes currently published in research literature and standardized in other standard bodies. The report reviews the mathematical background of pairings. This includes topics such as pairing-friendly elliptic curves and how to compute various pairings. It includes a brief introduction to existing identity-based encryption (IBE) schemes and other cryptographic schemes using pairing technology. The report provides a complete study of the current status of standard activities on pairing-based cryptographic schemes. It explores different application scenarios for pairing-based cryptography schemes. As an important aspect of adopting pairing-based schemes, the report also considers the challenges inherent in validation testing of cryptographic algorithms and modules. Based on the study, the report suggests an approach for including pairing-based cryptography schemes in the NIST cryptographic toolkit. The report also outlines several questions that will require further study if this approach is followed.

  2. Report on Pairing-based Cryptography

    PubMed Central

    Moody, Dustin; Peralta, Rene; Perlner, Ray; Regenscheid, Andrew; Roginsky, Allen; Chen, Lily

    2015-01-01

    This report summarizes study results on pairing-based cryptography. The main purpose of the study is to form NIST’s position on standardizing and recommending pairing-based cryptography schemes currently published in research literature and standardized in other standard bodies. The report reviews the mathematical background of pairings. This includes topics such as pairing-friendly elliptic curves and how to compute various pairings. It includes a brief introduction to existing identity-based encryption (IBE) schemes and other cryptographic schemes using pairing technology. The report provides a complete study of the current status of standard activities on pairing-based cryptographic schemes. It explores different application scenarios for pairing-based cryptography schemes. As an important aspect of adopting pairing-based schemes, the report also considers the challenges inherent in validation testing of cryptographic algorithms and modules. Based on the study, the report suggests an approach for including pairing-based cryptography schemes in the NIST cryptographic toolkit. The report also outlines several questions that will require further study if this approach is followed. PMID:26958435

  3. Report on Pairing-based Cryptography.

    PubMed

    Moody, Dustin; Peralta, Rene; Perlner, Ray; Regenscheid, Andrew; Roginsky, Allen; Chen, Lily

    2015-01-01

    This report summarizes study results on pairing-based cryptography. The main purpose of the study is to form NIST's position on standardizing and recommending pairing-based cryptography schemes currently published in research literature and standardized in other standard bodies. The report reviews the mathematical background of pairings. This includes topics such as pairing-friendly elliptic curves and how to compute various pairings. It includes a brief introduction to existing identity-based encryption (IBE) schemes and other cryptographic schemes using pairing technology. The report provides a complete study of the current status of standard activities on pairing-based cryptographic schemes. It explores different application scenarios for pairing-based cryptography schemes. As an important aspect of adopting pairing-based schemes, the report also considers the challenges inherent in validation testing of cryptographic algorithms and modules. Based on the study, the report suggests an approach for including pairing-based cryptography schemes in the NIST cryptographic toolkit. The report also outlines several questions that will require further study if this approach is followed. PMID:26958435

  4. Hydrophobic, Non-Hydrogen-Bonding Bases and Base Pairs in DNA

    PubMed Central

    Schweitzer, Barbara A.; Kool, Eric T.

    2009-01-01

    We report the properties of hydrophobic isosteres of pyrimidines and purines in synthetic DNA duplexes. Phenyl nucleosides 1 and 2 are nonpolar isosteres of the natural thymidine nucleoside, and indole nucleoside 3 is an analog of the complementary purine 2-aminodeoxyadenosine. The nucleosides were incorporated into synthetic oligodeoxynucleotides and were paired against each other and against the natural bases. Thermal denaturation experiments were used to measure the stabilities of the duplexes at neutral pH. It is found that the hydrophobic base analogs are nonselective in pairing with the four natural bases but selective for pairing with each other rather than with the natural bases. For example, compound 2 selectively pairs with itself rather than with A, T, G, or C; the magnitude of this selectivity is found to be 6.5–9.3 °C in Tm or 1.5–1.8 kcal/mol in free energy (25 °C). All possible hydrophobic pairing combinations of 1, 2, and 3 were examined. Results show that the pairing affinity depends on the nature of the pairs and on position in the duplex. The highest affinity pairs are found to be the 1–1 and 2–2 self-pairs and the 1–2 heteropair. The best stabilization occurs when the pairs are placed at the ends of duplexes rather than internally; the internal pairs may be destabilized by imperfect steric mimicry which leads to non-ideal duplex structure. In some cases the hydrophobic pairs are significantly stabilizing to the DNA duplex; for example, when situated at the end of a duplex, the 1–1 pair is more stabilizing than a T–A pair. When situated internally, the affinity of the 1–1 pair is the same as, or slightly better than, the analogous T–T mismatch pair, which is known to have two hydrogen bonds. The studies raise the possibility that hydrogen bonds may not always be required for the formation of stable duplex DNA-like structure. In addition, the results point out the importance of solvation and desolvation in natural base pairing

  5. FIR statistics of paired galaxies

    NASA Technical Reports Server (NTRS)

    Sulentic, Jack W.

    1990-01-01

    Much progress has been made in understanding the effects of interaction on galaxies (see reviews in this volume by Heckman and Kennicutt). Evidence for enhanced emission from galaxies in pairs first emerged in the radio (Sulentic 1976) and optical (Larson and Tinsley 1978) domains. Results in the far infrared (FIR) lagged behind until the advent of the Infrared Astronomy Satellite (IRAS). The last five years have seen numerous FIR studies of optical and IR selected samples of interacting galaxies (e.g., Cutri and McAlary 1985; Joseph and Wright 1985; Kennicutt et al. 1987; Haynes and Herter 1988). Despite all of this work, there are still contradictory ideas about the level and, even, the reality of an FIR enhancement in interacting galaxies. Much of the confusion originates in differences between the galaxy samples that were studied (i.e., optical morphology and redshift coverage). Here, the authors report on a study of the FIR detection properties for a large sample of interacting galaxies and a matching control sample. They focus on the distance independent detection fraction (DF) statistics of the sample. The results prove useful in interpreting the previously published work. A clarification of the phenomenology provides valuable clues about the physics of the FIR enhancement in galaxies.

  6. Pair cascades in the magnetospheres of strongly magnetized neutron stars

    NASA Astrophysics Data System (ADS)

    Medin, Zach; Lai, Dong

    2010-08-01

    We present numerical simulations of electron-positron pair cascades in the magnetospheres of magnetic neutron stars for a wide range of surface fields (Bp = 1012-1015 G), rotation periods (0.1-10 s) and field geometries. This has been motivated by the discovery in recent years of a number of radio pulsars with inferred magnetic fields comparable to those of magnetars. Evolving the cascade generated by a primary electron or positron after it has been accelerated in the inner gap of the magnetosphere, we follow the spatial development of the cascade until the secondary photons and electron-positron pairs leave the magnetosphere, and we obtain the pair multiplicity and the energy spectra of the cascade pairs and photons under various conditions. Going beyond previous works, which were restricted to weaker fields (B <~ afew × 1012 G), we have incorporated in our simulations detailed treatments of physical processes that are potentially important (especially in the high-field regime) but were either neglected or crudely treated before, including photon splitting with the correct selection rules for photon polarization modes, one-photon pair production into low Landau levels for the e+/-, and resonant inverse Compton scattering from polar cap hotspots. We find that even for B >> BQ = 4 × 1013 G, photon splitting has a small effect on the multiplicity of the cascade since a majority of the photons in the cascade cannot split. One-photon decay into e+ e- pairs at low Landau levels, however, becomes the dominant pair production channel when B >~ 3 × 1012 G; this tends to suppress synchrotron radiation so that the cascade can develop only at a larger distance from the stellar surface. Nevertheless, we find that the total number of pairs and their energy spectrum produced in the cascade depend mainly on the polar cap voltage BpP-2, and are weakly dependent on Bp (and P) alone. We discuss the implications of our results for the radio pulsar death line and for the hard X

  7. Pair programming in education: a literature review

    NASA Astrophysics Data System (ADS)

    Hanks, Brian; Fitzgerald, Sue; McCauley, Renée; Murphy, Laurie; Zander, Carol

    2011-06-01

    This article provides a review of educational research literature focused on pair programming in the undergraduate computer science curriculum. Research suggests that the benefits of pair programming include increased success rates in introductory courses, increased retention in the major, higher quality software, higher student confidence in solutions, and improvement in learning outcomes. Moreover, there is some evidence that women, in particular, benefit from pair programming. The literature also provides evidence that the transition from paired to solo programming is easy for students. The greatest challenges for paired students appear to concern scheduling and partner compatibility. This review also considers practical issues such as assigning partners, teaching students to work in pairs, and assessing individual contributions, and concludes with a discussion of open research questions.

  8. Pair production and escape in accretion disks.

    NASA Astrophysics Data System (ADS)

    Meirelles Filho, C.; Liang, E. P.

    It is shown that, in the absence of confining mechanisms, there will be a non-negligible amount of pairs escaping from the inner region of a Comptonized soft photon two-temperature accretion disk, when pair production is not balanced by annihilation. Assuming conditions such that the photons and particles in the disk can be regarded as close to a Wien plasma (Svensson, 1984), the authors calculate the rate of pair escape from the disk for both a situation close to pair balance and a situation with the rate of escape exceeding annihilation. The pairs are assumed to be created by photon-photon processes. Within this model one can account for the 511 keV γ-ray luminosity due to pair annihilation in the ISM, as recently observed in the Einstein source.

  9. Spatiotemporal control of degenerate multiphoton fluorescence microscopy with delay-tunable femtosecond pulse pairs

    NASA Astrophysics Data System (ADS)

    Das, Dhiman; Bhattacharyya, Indrajit; Goswami, Debabrata

    2016-07-01

    Selective excitation of a particular fluorophore in an ensemble of different fluorophores with overlapping fluorescence spectra is shown to be dependent on the time delay of femtosecond pulse pairs in multiphoton fluorescence microscopy. In particular, the two-photon fluorescence behavior of the Texas Red and DAPI dye pair inside Bovine Pulmonary Artery Endothelial (BPAE) cells depends strongly on the center wavelength of the laser, as well as the delay between two identical laser pulses in one-color femtosecond pulse-pair excitation scheme. Thus, we present a novel design concept using pairs of femtosecond pulses at different central wavelengths and tunable pulse separations for controlling the image contrast between two spatially and spectrally overlapping fluorophores. This femtosecond pulse-pair technique is unique in utilizing the variation of dye dynamics inside biological cells as a contrast mode in microscopy of different fluorophores.

  10. Dynamical evolution of comet pairs

    NASA Astrophysics Data System (ADS)

    Sosa, Andrea; Fernández, Julio A.

    2016-10-01

    Some Jupiter family comets in near-Earth orbits (thereafter NEJFCs) show a remarkable similarity in their present orbits, like for instance 169P/NEAT and P/2003 T12 (SOHO), or 252P/LINEAR and P/2016 BA14 (PANSTARRS). By means of numerical integrations we studied the dynamical evolution of these objects. In particular, for each pair of presumably related objects, we are interested in assessing the stability of the orbital parameters for several thousand years, and to find a minimum of their relative spatial distance, coincident with a low value of their relative velocity. For those cases for which we find a well defined minimum of their relative orbital separation, we are trying to reproduce the actual orbit of the hypothetical fragment by modeling a fragmentation of the parent body. Some model parameters are the relative ejection velocity (a few m/s), the orbital point at which the fragmentation could have happened (e.g. perihelion), and the elapsed time since fragmentation. In addition, some possible fragmentation mechanisms, like thermal stress, rotational instability, or collisions, could be explored. According to Fernández J.A and Sosa A. 2015 (Planetary and Space Science 118,pp.14-24), some NEJFCs might come from the outer asteroid belt, and then they would have a more consolidated structure and a higher mineral content than that of comets coming from the trans-Neptunian belt or the Oort cloud. Therefore, such objects would have a much longer physical lifetime in the near-Earth region, and could become potential candidates to produce visible meteor showers (as for example 169P/NEAT which has been identified as the parent body of the alpha-Capricornid meteoroid stream, according to Jenniskens, P., Vaubaillon, J., 2010 (Astron. J. 139), and Kasuga, T., Balam, D.D., Wiegert, P.A., 2010 (Astron. J. 139).

  11. Lax pairs for deformed Minkowski spacetimes

    NASA Astrophysics Data System (ADS)

    Kyono, Hideki; Sakamoto, Jun-ichi; Yoshida, Kentaroh

    2016-01-01

    We proceed to study Yang-Baxter deformations of 4D Minkowski spacetime based on a conformal embedding. We first revisit a Melvin background and argue a Lax pair by adopting a simple replacement law invented in 1509.00173. This argument enables us to deduce a general expression of Lax pair. Then the anticipated Lax pair is shown to work for arbitrary classical r-matrices with Poincaré generators. As other examples, we present Lax pairs for pp-wave backgrounds, the Hashimoto-Sethi background, the Spradlin-Takayanagi-Volovich background.

  12. Isospin influence on the decay modes of the systems produced in the 78,86Kr +40,48Ca reactions at 10 AMeV

    NASA Astrophysics Data System (ADS)

    Gnoffo, B.; Pirrone, S.; Politi, G.; La Commara, M.; Wieleczko, J. P.; De Filippo, E.; Russotto, P.; Trimarchi, M.; Vigilante, M.; Ademard, G.; Amorini, F.; Auditore, L.; Beck, C.; Bercenau, I.; Bonnet, E.; Borderie, B.; Cardella, G.; Chibihi, A.; Colonna, M.; D'Onofrio, A.; Frankland, J. D.; Geraci, E.; Henry, E.; La Guidara, E.; Lanzalone, G.; Lautesse, P.; Lebhertz, D.; LeNeidre, N.; Lombardo, I.; Mazurek, K.; Norella, S.; Pagano, A.; Pagano, E. V.; Papa, M.; Piasecki, E.; Porto, F.; Quattrocchi, L.; Quinlann, M.; Rizzo, F.; Shoroeder, U.; Spadaccini, G.; Trifirò, A.; Toke, J.; Verde, G.

    2016-05-01

    The results of the analysis of the reactions 78,86Kr +40,48 Ca at 10 AMeV are presented. The experiment was performed at the INFN Laboratori Nazionali del Sud (LNS) in Catania by using the 4π multidetector CHIMERA, with beams delivered by the Superconductive Cyclotron. The competition among the various disintegration paths and in particular the isospin effects on the decay modes of the produced composite systems are investigated; this provides information about fundamental nuclear quantities such as level density, fission barrier and viscosity. Different isotopic composition and relative richness are observed among the reaction products of the two systems. An odd-even staggering effect is present in the charge distributions, in particular for the light fragments produced by the neutron-poor system. The kinematical characteristics of the IMF seem to indicate a high degree of the relaxation of the formed system. Besides, global features analysis seems to show some differences in the contribution arising from the various reaction mechanisms for the two reactions.

  13. Isospin influence on the decay modes of compound systems produced in the 78,86Kr + 40,48Ca at 10 AMeV

    NASA Astrophysics Data System (ADS)

    Pirrone, S.; Politi, G.; Wieleczko, J. P.; De Filippo, E.; Gnoffo, B.; Russotto, P.; Trimarchi, M.; La Commara, M.; Vigilante, M.; Ademard, G.; Amorini, F.; Auditore, L.; Beck, C.; Berceanu, I.; Bonnet, E.; Borderie, B.; Cardella, G.; Chibihi, A.; Colonna, M.; D'Onofrio, A.; Frankland, J. D.; Geraci, E.; Henry, E.; La Guidara, E.; Lanzalone, G.; Lautesse, P.; Lebhertz, D.; Le Neindre, N.; Lombardo, I.; Mazurek, K.; Norella, S.; Pagano, A.; Pagano, E. V.; Papa, M.; Piasecki, E.; Porto, F.; Quattrocchi, L.; Quinlann, M.; Rizzo, F.; Schroeder, W. U.; Spadaccini, G.; Trifirò, A.; Toke, J.; Verde, G.

    2016-06-01

    The study of the decay modes competition of the compound systems produced in the collisions 78Kr+40Ca and 86Kr+48Ca at 10AMeV is presented. In particular, the N/Z entrance channel influence on the decay paths of the compound systems, directly connected to the isospin influence, is investigated. The experiment was performed at the INFN Laboratori Nazionali del Sud (LNS) in Catania by using the 4π multi-detector CHIMERA. Charge, mass, angular distributions and kinematical features of the reaction products were studied. The analysis shows some differences in the contribution arising from the various reaction mechanisms for the neutron poor and neutron rich systems. Comparison with theoretical statistical and dynamical models are presented for the two systems. Besides a study of the influence of the energy on the entrance channel is performed for the 78Kr+40Ca reaction, by comparing the results of this experiment to those obtained for the same system at 5.5 AMeV with the INDRA device at GANIL.

  14. Mechanically Biased, Hinged Pairs of Piezoelectric Benders

    NASA Technical Reports Server (NTRS)

    Sager, Frank E.

    2005-01-01

    decrease in distance between the attachment tabs; this increase or decrease is the linear displacement desired for actuation. Because the displacement can be either positive or negative relative to the bias distance, depending on the polarity of the applied voltage, the overall stroke achievable for a given magnitude of applied voltage is double the stroke achievable in the absence of mechanical bias. Each hinged pair can be regarded as a unit cell that can serve as a building block for a larger actuator: Multiple unit cells can be stacked (mechanically connected in series), as shown in the lower part of the figure, and electrically connected in parallel to multiply the overall stroke achievable at a given applied voltage.

  15. Pair Programming in Education: A Literature Review

    ERIC Educational Resources Information Center

    Hanks, Brian; Fitzgerald, Sue; McCauley, Renee; Murphy, Laurie; Zander, Carol

    2011-01-01

    This article provides a review of educational research literature focused on pair programming in the undergraduate computer science curriculum. Research suggests that the benefits of pair programming include increased success rates in introductory courses, increased retention in the major, higher quality software, higher student confidence in…

  16. 22 CFR 62.31 - Au pairs.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... pair participant with child development and child safety instruction, as follows: (1) Prior to... development instruction of which no less than 4 shall be devoted to specific training for children under the... and participate directly in the home life of the host family. All au pair participants provide...

  17. 22 CFR 62.31 - Au pairs.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... pair participant with child development and child safety instruction, as follows: (1) Prior to... development instruction of which no less than 4 shall be devoted to specific training for children under the... and participate directly in the home life of the host family. All au pair participants provide...

  18. 22 CFR 62.31 - Au pairs.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... pair participant with child development and child safety instruction, as follows: (1) Prior to... development instruction of which no less than 4 shall be devoted to specific training for children under the... and participate directly in the home life of the host family. All au pair participants provide...

  19. 22 CFR 62.31 - Au pairs.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... pair participant with child development and child safety instruction, as follows: (1) Prior to... development instruction of which no less than 4 shall be devoted to specific training for children under the... and participate directly in the home life of the host family. All au pair participants provide...

  20. 22 CFR 62.31 - Au pairs.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... pair participant with child development and child safety instruction, as follows: (1) Prior to... development instruction of which no less than 4 shall be devoted to specific training for children under the... and participate directly in the home life of the host family. All au pair participants provide...

  1. Top Quark Pair Production at the Tevatron

    SciTech Connect

    Nielsen, Jason

    2005-05-17

    The measurement of the top quark pair production crosssection inproton-antiproton collisions at 1.96 TeV is a test ofquantumchromodynamics and could potentially be sensitive to newphysics beyondthe standard model. I report on the latest t-tbarcross section resultsfrom the CDF and DZero experiments in various finalstate topologies whicharise from decays of top quark pairs.

  2. Attitudes on Using Pair-Programming

    ERIC Educational Resources Information Center

    Howard, Elizabeth V.

    2007-01-01

    During a research study conducted over four semesters, students enrolled in an introductory programming class at a commuter campus used the pair-programming approach for both in-class labs and out-of-class programming assignments. This study was a comprehensive assessment of pair-programming using multiple measures of both quantitative and…

  3. Bidirectional Synonym Ratings of 464 Noun Pairs.

    ERIC Educational Resources Information Center

    Whitten, William B.; And Others

    1979-01-01

    Each of 464 noun pairs was rated for synonymy on a seven-point scale by college students to provide an extensive set of synonym pairs for use as stimuli in experiments, and to evaluate the effects of word encoding order on perceived synonymy. (SW)

  4. Spontaneous formation of inert oscillator pairs

    NASA Astrophysics Data System (ADS)

    Tsygankov, Denis; Wiesenfeld, Kurt

    2004-05-01

    We describe a peculiar type of spontaneous synchronization in a transmission line studded with nonlinear oscillators. After a transient period of complicated interactions, the elements form strongly synchronized pairs with interactions between these pairs virtually nil. The creation of these “dynamical dimers” appears to stem from the coupling intrinsic to transmission lines rather than any specific property of the nonlinear oscillators.

  5. Driven quantum tunneling and pair creation with graphene Landau levels

    NASA Astrophysics Data System (ADS)

    Gagnon, Denis; Fillion-Gourdeau, François; Dumont, Joey; Lefebvre, Catherine; MacLean, Steve

    2016-05-01

    Driven tunneling between graphene Landau levels is theoretically linked to the process of pair creation from vacuum, a prediction of quantum electrodynamics (QED). Landau levels are created by the presence of a strong, constant, quantizing magnetic field perpendicular to a graphene monolayer. Following the formal analogy between QED and the description of low-energy excitations in graphene, solutions of the fully interacting Dirac equation are used to compute electron-hole pair creation driven by a circularly or linearly polarized field. This is achieved via the coupled channel method, a numerical scheme for the solution of the time-dependent Dirac equation in the presence of bound states. The case of a monochromatic driving field is first considered, followed by the more realistic case of a pulsed excitation. We show that the pulse duration yields an experimental control parameter over the maximal pair yield. Orders of magnitude of the pair yield are given for experimentally achievable magnetic fields and laser intensities weak enough to preserve the Landau level structure.

  6. Discovering Pair-wise Synergies in Microarray Data

    PubMed Central

    Chen, Yuan; Cao, Dan; Gao, Jun; Yuan, Zheming

    2016-01-01

    Informative gene selection can have important implications for the improvement of cancer diagnosis and the identification of new drug targets. Individual-gene-ranking methods ignore interactions between genes. Furthermore, popular pair-wise gene evaluation methods, e.g. TSP and TSG, are helpless for discovering pair-wise interactions. Several efforts to discover pair-wise synergy have been made based on the information approach, such as EMBP and FeatKNN. However, the methods which are employed to estimate mutual information, e.g. binarization, histogram-based and KNN estimators, depend on known data or domain characteristics. Recently, Reshef et al. proposed a novel maximal information coefficient (MIC) measure to capture a wide range of associations between two variables that has the property of generality. An extension from MIC(X; Y) to MIC(X1; X2; Y) is therefore desired. We developed an approximation algorithm for estimating MIC(X1; X2; Y) where Y is a discrete variable. MIC(X1; X2; Y) is employed to detect pair-wise synergy in simulation and cancer microarray data. The results indicate that MIC(X1; X2; Y) also has the property of generality. It can discover synergic genes that are undetectable by reference feature selection methods such as MIC(X; Y) and TSG. Synergic genes can distinguish different phenotypes. Finally, the biological relevance of these synergic genes is validated with GO annotation and OUgene database. PMID:27470995

  7. Discovering Pair-wise Synergies in Microarray Data.

    PubMed

    Chen, Yuan; Cao, Dan; Gao, Jun; Yuan, Zheming

    2016-01-01

    Informative gene selection can have important implications for the improvement of cancer diagnosis and the identification of new drug targets. Individual-gene-ranking methods ignore interactions between genes. Furthermore, popular pair-wise gene evaluation methods, e.g. TSP and TSG, are helpless for discovering pair-wise interactions. Several efforts to discover pair-wise synergy have been made based on the information approach, such as EMBP and FeatKNN. However, the methods which are employed to estimate mutual information, e.g. binarization, histogram-based and KNN estimators, depend on known data or domain characteristics. Recently, Reshef et al. proposed a novel maximal information coefficient (MIC) measure to capture a wide range of associations between two variables that has the property of generality. An extension from MIC(X; Y) to MIC(X1; X2; Y) is therefore desired. We developed an approximation algorithm for estimating MIC(X1; X2; Y) where Y is a discrete variable. MIC(X1; X2; Y) is employed to detect pair-wise synergy in simulation and cancer microarray data. The results indicate that MIC(X1; X2; Y) also has the property of generality. It can discover synergic genes that are undetectable by reference feature selection methods such as MIC(X; Y) and TSG. Synergic genes can distinguish different phenotypes. Finally, the biological relevance of these synergic genes is validated with GO annotation and OUgene database. PMID:27470995

  8. Inferring relationships between pairs of individuals from locus heterozygosities

    PubMed Central

    Presciuttini, Silvano; Toni, Chiara; Tempestini, Elena; Verdiani, Simonetta; Casarino, Lucia; Spinetti, Isabella; Stefano, Francesco De; Domenici, Ranieri; Bailey-Wilson, Joan E

    2002-01-01

    Background The traditional exact method for inferring relationships between individuals from genetic data is not easily applicable in all situations that may be encountered in several fields of applied genetics. This study describes an approach that gives affordable results and is easily applicable; it is based on the probabilities that two individuals share 0, 1 or both alleles at a locus identical by state. Results We show that these probabilities (zi) depend on locus heterozygosity (H), and are scarcely affected by variation of the distribution of allele frequencies. This allows us to obtain empirical curves relating zi's to H for a series of common relationships, so that the likelihood ratio of a pair of relationships between any two individuals, given their genotypes at a locus, is a function of a single parameter, H. Application to large samples of mother-child and full-sib pairs shows that the statistical power of this method to infer the correct relationship is not much lower than the exact method. Analysis of a large database of STR data proves that locus heterozygosity does not vary significantly among Caucasian populations, apart from special cases, so that the likelihood ratio of the more common relationships between pairs of individuals may be obtained by looking at tabulated zi values. Conclusions A simple method is provided, which may be used by any scientist with the help of a calculator or a spreadsheet to compute the likelihood ratios of common alternative relationships between pairs of individuals. PMID:12441003

  9. Pairing in a dry Fermi sea.

    PubMed

    Maier, T A; Staar, P; Mishra, V; Chatterjee, U; Campuzano, J C; Scalapino, D J

    2016-01-01

    In the traditional Bardeen-Cooper-Schrieffer theory of superconductivity, the amplitude for the propagation of a pair of electrons with momentum k and -k has a log singularity as the temperature decreases. This so-called Cooper instability arises from the presence of an electron Fermi sea. It means that an attractive interaction, no matter how weak, will eventually lead to a pairing instability. However, in the pseudogap regime of the cuprate superconductors, where parts of the Fermi surface are destroyed, this log singularity is suppressed, raising the question of how pairing occurs in the absence of a Fermi sea. Here we report Hubbard model numerical results and the analysis of angular-resolved photoemission experiments on a cuprate superconductor. In contrast to the traditional theory, we find that in the pseudogap regime the pairing instability arises from an increase in the strength of the spin-fluctuation pairing interaction as the temperature decreases rather than the Cooper log instability. PMID:27312569

  10. Pairing in a dry Fermi sea

    NASA Astrophysics Data System (ADS)

    Maier, T. A.; Staar, P.; Mishra, V.; Chatterjee, U.; Campuzano, J. C.; Scalapino, D. J.

    2016-06-01

    In the traditional Bardeen-Cooper-Schrieffer theory of superconductivity, the amplitude for the propagation of a pair of electrons with momentum k and -k has a log singularity as the temperature decreases. This so-called Cooper instability arises from the presence of an electron Fermi sea. It means that an attractive interaction, no matter how weak, will eventually lead to a pairing instability. However, in the pseudogap regime of the cuprate superconductors, where parts of the Fermi surface are destroyed, this log singularity is suppressed, raising the question of how pairing occurs in the absence of a Fermi sea. Here we report Hubbard model numerical results and the analysis of angular-resolved photoemission experiments on a cuprate superconductor. In contrast to the traditional theory, we find that in the pseudogap regime the pairing instability arises from an increase in the strength of the spin-fluctuation pairing interaction as the temperature decreases rather than the Cooper log instability.

  11. Optical Spectroscopy of Unbound Asteroid Pairs

    NASA Astrophysics Data System (ADS)

    Duddy, Samuel; Lowry, S. C.; Christou, A.; Wolters, S. D.; Snodgrass, C.; Fitzsimmons, A.; Deller, J. F.; Hainaut, O. R.; Rozitis, B.; Weissman, P. R.; Green, S. F.

    2012-10-01

    The recently discovered unbound asteroid pairs have been suggested to be the result of the decoupling of binary asteroids formed either through collision processes or, more likely, rotational fission of a rubble-pile asteroid after spin-up (Vokrouhlicky et al. 2008, AJ 136, 280; Pravec et al., 2010, Nature, 466, 1085). Much of the evidence for linkage of the asteroids in each pair relies solely on the backwards integrations of their orbits. We report new results from our continuing spectroscopic survey of the unbound asteroid pairs, including the youngest known pair, (6070) Rhineland - (54827) 2001 NQ8. The survey goal is to determine whether the asteroids in each unbound pair have similar spectra and therefore composition, expected if they have formed from a common parent body. Low-resolution spectroscopy covering the range 0.4-0.95 microns was conducted using the 3.6m ESO NTT+EFOSC2 during 2011-2012 and the 4.2m WHT+ACAM. We have attempted to maintain a high level of consistency between the observations of the components in each pair to ensure that differences in the asteroid spectra are not the result of the observing method or data reduction, but purely caused by compositional differences. Our WHT data indicates that the asteroids of unbound pair 17198 - 229056 exhibit different spectra and have been assigned different taxonomies, A and R respectively. Initial analysis of our data from the NTT suggests that the asteroids in unbound pairs 6070 - 54827 and 38707 - 32957 are likely silicate-dominated asteroids. The components of pair 23998 - 205383 are potentially X-type asteroids. We present final taxonomic classifications and the likelihood of spectral similarity in each pair.

  12. SRTM Stereo Pair: Fiji Islands

    NASA Technical Reports Server (NTRS)

    2000-01-01

    image pair and viewing them with a stereoscope. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions.

    This image was acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (about 200 feet) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: 192 km (119 miles) x 142 km (88 miles) Location: 17.8 deg. South lat., 178.0 deg. East lon. Orientation: North at top Date Acquired: February 19, 2000 Image: NASA/JPL/NIMA

  13. Detecting a preformed pair phase: Response to a pairing forcing field

    NASA Astrophysics Data System (ADS)

    Tagliavini, A.; Capone, M.; Toschi, A.

    2016-10-01

    The normal state of strongly coupled superconductors is characterized by the presence of "preformed" Cooper pairs well above the superconducting critical temperature. In this regime, the electrons are paired, but they lack the phase coherence necessary for superconductivity. The existence of preformed pairs implies the existence of a characteristic energy scale associated with a pseudogap. Preformed pairs are often invoked to interpret systems where some signatures of pairing are present without actual superconductivity, but an unambiguous theoretical characterization of a preformed-pair system is still lacking. To fill this gap, we consider the response to an external pairing field of an attractive Hubbard model, which hosts one of the cleanest realizations of a preformed pair phase, and a repulsive model where s -wave superconductivity cannot be realized. Using dynamical mean-field theory to study this response, we identify the characteristic features which distinguish the reaction of a preformed pair state from a normal metal without any precursor of pairing. The theoretical detection of preformed pairs is associated with the behavior of the second derivative of the order parameter with respect to the external field, as confirmed by analytic calculations in limiting cases. Our findings provide a solid test bed for the interpretation of state-of-the-art calculations for the normal state of the doped Hubbard model in terms of d -wave preformed pairs and, in perspective, of nonequilibrium experiments in high-temperature superconductors.

  14. Pairing interaction near a nematic quantum critical point of a three-band CuO2 model

    DOE PAGESBeta

    Maier, Thomas A.; Scalapino, Douglas J.

    2014-11-21

    In this paper, we calculate the pairing interaction and the k dependence of the gap function associated with the nematic charge fluctuations of a CuO2 model.We find that the nematic pairing interaction is attractive for small momentum transfer and that it gives rise to d-wave pairing. Finally, as the doping p approaches a quantum critical point, the strength of this pairing increases and higher d-wave harmonics contribute to the k dependence of the superconducting gap function, reflecting the longer range nature of the nematic fluctuations.

  15. Pairing interaction near a nematic quantum critical point of a three-band CuO2 model

    SciTech Connect

    Maier, Thomas A.; Scalapino, Douglas J.

    2014-11-21

    In this paper, we calculate the pairing interaction and the k dependence of the gap function associated with the nematic charge fluctuations of a CuO2 model.We find that the nematic pairing interaction is attractive for small momentum transfer and that it gives rise to d-wave pairing. Finally, as the doping p approaches a quantum critical point, the strength of this pairing increases and higher d-wave harmonics contribute to the k dependence of the superconducting gap function, reflecting the longer range nature of the nematic fluctuations.

  16. Numerical Analysis on Adsorption Characteristics of Activated Carbon/Ethanol Pair in Finned Tube Type Adsorber

    NASA Astrophysics Data System (ADS)

    Makimoto, Naoya; Kariya, Keishi; Koyama, Shigeru

    The cycle performance of adsorption cooling system depends on the thermophysical properties of the adsorbent/refrigerant pair and configuration of the adsorber/desorber heat exchanger. In this study, a twodimensional analysis is carried out in order to clarify the performance of the finned tube type adsorber/desorber heat exchanger using a highly porous activated carbon powder (ACP)/ethanol pair. The simulation results show that the average cooling capacity per unit volume of adsorber/desorber heat exchanger and coefficient of performance (COP) can be improved by optimizing fin thickness, fin height, fin pitch and tube diameter. The performance of a single stage adsorption cooling system using ACP/ethanol pair is also compared with that of activated carbon fiber (ACF)/ethanol pair. It is found that the cooling capacities of each adsorbent/refrigerant pair increase with the decrease of adsorption/desorption time and the cooling capacity of ACP/ethanol pair is approximately 2.5 times as much as that of ACF/ethanol pair. It is also shown that COP of ACP/ethanol pair is superior to that of ACF/ethanol pair.

  17. Partitioning of on-demand electron pairs

    NASA Astrophysics Data System (ADS)

    Ubbelohde, Niels; Hohls, Frank; Kashcheyevs, Vyacheslavs; Wagner, Timo; Fricke, Lukas; Kästner, Bernd; Pierz, Klaus; Schumacher, Hans W.; Haug, Rolf J.

    2015-01-01

    The on-demand generation and separation of entangled photon pairs are key components of quantum information processing in quantum optics. In an electronic analogue, the decomposition of electron pairs represents an essential building block for using the quantum state of ballistic electrons in electron quantum optics. The scattering of electrons has been used to probe the particle statistics of stochastic sources in Hanbury Brown and Twiss experiments and the recent advent of on-demand sources further offers the possibility to achieve indistinguishability between multiple sources in Hong-Ou-Mandel experiments. Cooper pairs impinging stochastically at a mesoscopic beamsplitter have been successfully partitioned, as verified by measuring the coincidence of arrival. Here, we demonstrate the splitting of electron pairs generated on demand. Coincidence correlation measurements allow the reconstruction of the full counting statistics, revealing regimes of statistically independent, distinguishable or correlated partitioning, and have been envisioned as a source of information on the quantum state of the electron pair. The high pair-splitting fidelity opens a path to future on-demand generation of spin-entangled electron pairs from a suitably prepared two-electron quantum-dot ground state.

  18. Colors of dynamically associated asteroid pairs

    NASA Astrophysics Data System (ADS)

    Moskovitz, Nicholas A.

    2012-09-01

    Recent dynamical studies have identified pairs of asteroids that reside in nearly identical heliocentric orbits. Possible formation scenarios for these systems include dissociation of binary asteroids, collisional disruption of a single parent body, or spin-up and rotational fission of a rubble-pile. Aside from detailed dynamical analyses and measurement of rotational light curves, little work has been done to investigate the colors or spectra of these unusual objects. A photometric and spectroscopic survey was conducted to determine the reflectance properties of asteroid pairs. New observations were obtained for a total of 34 individual asteroids. Additional photometric measurements were retrieved from the Sloan Digital Sky Survey Moving Object Catalog. Colors or spectra for a total of 42 pair components are presented here. The main findings of this work are: (1) the components in the observed pair systems have the same colors within the uncertainties of this survey, and (2) the color distribution of asteroid pairs appears indistinguishable from that of all Main Belt asteroids. These findings support a scenario of pair formation from a common progenitor and suggest that pair formation is likely a compositionally independent process. In agreement with previous studies, this is most consistent with an origin via binary disruption and/or rotational fission.

  19. A Curious Pair of Galaxies

    NASA Astrophysics Data System (ADS)

    2009-03-01

    The ESO Very Large Telescope has taken the best image ever of a strange and chaotic duo of interwoven galaxies. The images also contain some surprises -- interlopers both far and near. ESO PR Photo 11a/09 A Curious Pair of Galaxies ESO PR Video 11a/09 Arp 261 zoom in ESO PR Video 11b/09 Pan over Arp 261 Sometimes objects in the sky that appear strange, or different from normal, have a story to tell and prove scientifically very rewarding. This was the idea behind Halton Arp's catalogue of Peculiar Galaxies that appeared in the 1960s. One of the oddballs listed there is Arp 261, which has now been imaged in more detail than ever before using the FORS2 instrument on ESO's Very Large Telescope. The image proves to contain several surprises. Arp 261 lies about 70 million light-years distant in the constellation of Libra, the Scales. Its chaotic and very unusual structure is created by the interaction of two galaxies that are engaged in a slow motion, but highly disruptive close encounter. Although individual stars are very unlikely to collide in such an event, the huge clouds of gas and dust certainly do crash into each other at high speed, leading to the formation of bright new clusters of very hot stars that are clearly seen in the picture. The paths of the existing stars in the galaxies are also dramatically disrupted, creating the faint swirls extending to the upper left and lower right of the image. Both interacting galaxies were probably dwarfs not unlike the Magellanic Clouds orbiting our own galaxy. The images used to create this picture were not actually taken to study the interacting galaxies at all, but to investigate the properties of the inconspicuous object just to the right of the brightest part of Arp 261 and close to the centre of the image. This is an unusual exploding star, called SN 1995N, that is thought to be the result of the final collapse of a massive star at the end of its life, a so-called core collapse supernova. SN 1995N is unusual because

  20. Weird Stellar Pair Puzzles Scientists

    NASA Astrophysics Data System (ADS)

    2008-05-01

    Astronomers have discovered a speedy spinning pulsar in an elongated orbit around an apparent Sun-like star, a combination never seen before, and one that has them puzzled about how the strange system developed. Orbital Comparison Comparing Orbits of Pulsar and Its Companion to our Solar System. CREDIT: Bill Saxton, NRAO/AUI/NSF Click on image for full caption information and available graphics. "Our ideas about how the fastest-spinning pulsars are produced do not predict either the kind of orbit or the type of companion star this one has," said David Champion of the Australia Telescope National Facility. "We have to come up with some new scenarios to explain this weird pair," he added. Astronomers first detected the pulsar, called J1903+0327, as part of a long-term survey using the National Science Foundation's Arecibo radio telescope in Puerto Rico. They made the discovery in 2006 doing data analysis at McGill University, where Champion worked at the time. They followed up the discovery with detailed studies using the Arecibo telescope, the NSF's Robert C. Byrd Green Bank Telescope (GBT) in West Virginia, the Westerbork radio telescope in the Netherlands, and the Gemini North optical telescope in Hawaii. The pulsar, a city-sized superdense stellar corpse left over after a massive star exploded as a supernova, is spinning on its axis 465 times every second. Nearly 21,000 light-years from Earth, it is in a highly-elongated orbit that takes it around its companion star once every 95 days. An infrared image made with the Gemini North telescope in Hawaii shows a Sun-like star at the pulsar's position. If this is an orbital companion to the pulsar, it is unlike any companions of other rapidly rotating pulsars. The pulsar, a neutron star, also is unusually massive for its type. "This combination of properties is unprecedented. Not only does it require us to figure out how this system was produced, but the large mass may help us understand how matter behaves at extremely

  1. Distance distributions of photogenerated charge pairs in organic photovoltaic cells.

    PubMed

    Barker, Alex J; Chen, Kai; Hodgkiss, Justin M

    2014-08-27

    Strong Coulomb interactions in organic photovoltaic cells dictate that charges must separate over relatively long distances in order to circumvent geminate recombination and produce photocurrent. In this article, we measure the distance distributions of thermalized charge pairs by accessing a regime at low temperature where charge pairs are frozen out following the primary charge separation step and recombine monomolecularly via tunneling. The exponential attenuation of tunneling rate with distance provides a sensitive probe of the distance distribution of primary charge pairs, reminiscent of electron transfer studies in proteins. By fitting recombination dynamics to distributions of recombination rates, we identified populations of charge-transfer states and well-separated charge pairs. For the wide range of materials we studied, the yield of separated charges in the tunneling regime is strongly correlated with the yield of free charges measured via their intensity-dependent bimolecular recombination dynamics at room temperature. We therefore conclude that populations of free charges are established via long-range charge separation within the thermalization time scale, thus invoking early branching between free and bound charges across an energetic barrier. Subject to assumed values of the electron tunneling attenuation constant, we estimate critical charge separation distances of ∼3-4 nm in all materials. In some blends, large fullerene crystals can enhance charge separation yields; however, the important role of the polymers is also highlighted in blends that achieved significant charge separation with minimal fullerene concentration. We expect that our approach of isolating the intrinsic properties of primary charge pairs will be of considerable value in guiding new material development and testing the validity of proposed mechanisms for long-range charge separation.

  2. KK molecules with momentum-dependent interactions

    SciTech Connect

    Lemmer, R. H.

    2009-10-15

    It is shown that the momentum-dependent kaon-antikaon interactions generated via vector-meson exchange from the standard SU{sub V}(3)xSU{sub A}(3) interaction Lagrangian lead to a nonlocal potential in coordinate space that can be incorporated without approximation into a nonrelativistic version of the Bethe-Salpeter wave equation containing a radial-dependent effective kaon mass appearing in a fully symmetrized kinetic energy operator, in addition to a local potential. Estimates of the mass and decay widths of f{sub 0}(980) and a{sub 0}(980), considered as KK molecules of isospin 0 and 1, as well as for K{sup +}K{sup -} atomic bound states (kaonium) are presented and compared with previous studies of a similar nature. It is argued that without a better knowledge of hadronic form factors it is not possible to distinguish between the molecular versus elementary particle models for the structure of the light scalar mesons.

  3. Microwave and THz sensing using slab-pair-based metamaterials

    SciTech Connect

    Kenanakis, G.; Shen, Nianhai; Mavidis, Ch.; Katsarakis, N.; Kafesaki, M.; Soukoulis, Costas M.; Economou, E.N.

    2012-10-15

    In this work the sensing capability of an artificial magnetic metamaterial based on pairs of metal slabs is demonstrated, both theoretically and experimentally, in the microwave regime. The demonstration is based on transmission measurements and simulations monitoring the shift of the magnetic resonance frequency as one changes a thin dielectric layer placed between the slabs of the pairs. Strong dependence of the magnetic resonance frequency on both the permittivity and the thickness of the dielectric layer under detection was observed. The sensitivity to the dielectrics′ permittivity (ε) is larger for dielectrics of low ε values, which makes the approach suitable for sensing organic materials also in the THz regime. The capability of our approach for THz sensing is also demonstrated through simulations.

  4. Atom-Pair Kinetics with Strong Electric-Dipole Interactions.

    PubMed

    Thaicharoen, N; Gonçalves, L F; Raithel, G

    2016-05-27

    Rydberg-atom ensembles are switched from a weakly to a strongly interacting regime via adiabatic transformation of the atoms from an approximately nonpolar into a highly dipolar quantum state. The resultant electric dipole-dipole forces are probed using a device akin to a field ion microscope. Ion imaging and pair-correlation analysis reveal the kinetics of the interacting atoms. Dumbbell-shaped pair-correlation images demonstrate the anisotropy of the binary dipolar force. The dipolar C_{3} coefficient, derived from the time dependence of the images, agrees with the value calculated from the permanent electric-dipole moment of the atoms. The results indicate many-body dynamics akin to disorder-induced heating in strongly coupled particle systems. PMID:27284655

  5. Bipolar polaron pair recombination in polymer/fullerene solar cells

    NASA Astrophysics Data System (ADS)

    Kupijai, Alexander J.; Behringer, Konstantin M.; Schaeble, Florian G.; Galfe, Natalie E.; Corazza, Michael; Gevorgyan, Suren A.; Krebs, Frederik C.; Stutzmann, Martin; Brandt, Martin S.

    2015-12-01

    We present a study of the rate-limiting spin-dependent charge-transfer processes in different polymer/fullerene bulk-heterojunction solar cells at 10 K . Observing central spin-locking signals in pulsed electrically detected magnetic resonance and an inversion of Rabi oscillations in multifrequency electron-double-resonance spectroscopy, we find that the spin response of both spin-coated and printed P3HT/PCBM and spin-coated PCDTBT/PCBM solar cells at low temperatures is governed by bipolar polaron pair recombination and quantitatively determine the polaron-polaron coupling strength with double electron-electron resonance experiments. Furthermore spin Hahn echo decay and inversion recovery measurements are performed to measure spin coherence and recombination times of the polaron pairs, respectively.

  6. Pairing symmetry and vortex zero mode for superconducting Dirac fermions

    SciTech Connect

    Lu, C.-K.; Herbut, Igor F.

    2010-10-01

    We study vortex zero-energy bound states in presence of pairing between low-energy Dirac fermions on the surface of a topological insulator. The pairing symmetries considered include the s-wave, p-wave, and, in particular, the mixed-parity symmetry, which arises in absence of the inversion symmetry on the surface. The zero mode is analyzed within the generalized Jackiw-Rossi-Dirac Hamiltonian that contains a momentum-dependent mass term, and includes the effects of the electromagnetic gauge field and the Zeeman coupling as well. At a finite chemical potential, as long as the spectrum without the vortex is fully gapped, the presence of a single Fermi surface with a definite helicity always leads to one Majorana zero mode, in which both electron's spin projections participate. In particular, the critical effects of the Zeeman coupling on the zero mode are discussed.

  7. Atom-Pair Kinetics with Strong Electric-Dipole Interactions

    NASA Astrophysics Data System (ADS)

    Thaicharoen, N.; Gonçalves, L. F.; Raithel, G.

    2016-05-01

    Rydberg-atom ensembles are switched from a weakly to a strongly interacting regime via adiabatic transformation of the atoms from an approximately nonpolar into a highly dipolar quantum state. The resultant electric dipole-dipole forces are probed using a device akin to a field ion microscope. Ion imaging and pair-correlation analysis reveal the kinetics of the interacting atoms. Dumbbell-shaped pair-correlation images demonstrate the anisotropy of the binary dipolar force. The dipolar C3 coefficient, derived from the time dependence of the images, agrees with the value calculated from the permanent electric-dipole moment of the atoms. The results indicate many-body dynamics akin to disorder-induced heating in strongly coupled particle systems.

  8. Cluster pair correlation function of simple fluids: energetic connectivity criteria.

    PubMed

    Pugnaloni, Luis A; Zarragoicoechea, Guillermo J; Vericat, Fernando

    2006-11-21

    We consider the clustering of Lennard-Jones particles by using an energetic connectivity criterion proposed long ago by Hill [J. Chem. Phys. 32, 617 (1955)] for the bond between pairs of particles. The criterion establishes that two particles are bonded (directly connected) if their relative kinetic energy is less than minus their relative potential energy. Thus, in general, it depends on the direction as well as on the magnitude of the velocities and positions of the particles. An integral equation for the pair connectedness function, proposed by two of the authors [Phys. Rev. E 61, R6067 (2000)], is solved for this criterion and the results are compared with those obtained from molecular dynamics simulations and from a connectedness Percus-Yevick-type integral equation for a velocity-averaged version of Hill's energetic criterion.

  9. {bar{B}_s} to φ {ρ^0} and {bar{B}_s} to φ {π^0} as a handle on isospin-violating New Physics

    NASA Astrophysics Data System (ADS)

    Hofer, Lars; Scherer, Dominik; Vernazza, Leonardo

    2011-02-01

    The 2.5 σ discrepancy between theory and experiment observed in the difference {A_{text{CP}}}left( {{B- } to {π^0}{K- }} right) - {A_{text{CP}}}left( {{{bar{B}}^0} to {π+ }{K- }} right) can be explained by a new electroweak penguin amplitude. Motivated by this result, we analyse the purely isospin-violating decays {bar{B}_s} to φ {ρ^0} and {bar{B}_s} to φ {π^0} , which are dominated by electroweak penguins, and show that in presence of a new electroweak penguin amplitude their branching ratio can be enhanced by up to an order of magnitude, without violating any constraints from other hadronic B decays. This makes them very interesting modes for LHCb and future B factories. We perform both a model-independent analysis and a study within realistic New Physics models such as a modified- Z 0-penguin scenario, a model with an additional Z' boson and the MSSM. In the latter cases the new amplitude can be correlated with other flavour phenomena, such as semileptonic B decays and {B_s} - {bar{B}_s} mixing, which impose stringent constraints on the enhancement of the two B sdecays. In particular we find that, contrary to claims in the literature, electroweak penguins in the MSSM can reduce the discrepancy in the B → πK modes only marginally. As byproducts we update the SM predictions to {text{Br}}left( {{{bar{B}}_s} to φ {π^0}} right) = 1.6_{ - 0.3}^{ + 1.1} \\cdot {10^{ - 7}} and {text{Br}}left( {{{bar{B}}_s} to φ {ρ^0}} right) = 4.4_{ - 0.7}^{ + 2.7} \\cdot {10^{ - 7}} and perform a state-of-the-art analysis of B → πK amplitudes in QCD factorisation.

  10. Energy dependence of pion in-medium effects on the π-/π+ ratio in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Chen, Lie-Wen; Ko, Che Ming; Li, Bao-An; Ma, Yu-Gang

    2013-06-01

    Within the framework of a thermal model with its parameters fitted to the results from an isospin-dependent Boltzmann-Uehling-Uhlenbeck transport model, we have studied the pion in-medium effect on the charged-pion ratio in heavy-ion collisions at various energies. We find that due to the cancellation between the effects from pion-nucleon s-wave and p-wave interactions in nuclear medium, the π-/π+ ratio generally decreases after including the pion in-medium effect. The effect is larger at lower collision energies as a result of narrower pion spectral functions at lower temperatures.

  11. "Watching" Polaron Pair Formation from First-Principles Electron-Nuclear Dynamics.

    PubMed

    Donati, Greta; Lingerfelt, David B; Petrone, Alessio; Rega, Nadia; Li, Xiaosong

    2016-09-22

    The formation of polaron pairs is one of the important photophysical processes that take place after the excitation in semiconducting organic polymers. First-principles Ehrenfest excited-state dynamics is a unique tool to investigate ultrafast photoinduced charge carrier dynamics and related nonequilibrium processes involving correlated electron-nuclear dynamics. In this work the formation of polaron pairs and their dynamical evolution in an oligomer of seven thiophene units is investigated with a combined approach of first-principles exciton-nuclear dynamics and wavelet analysis. The real-time formation of a polaron pair can be observed in the dipole evolution during the excited-state dynamics. The possible driving force of the polaron pair formation is investigated through qualitative correlation between the structural dynamics and the dipole evolution. The time-dependent characteristics and spectroscopic consequences of the polaron pair formation are probed using the wavelet analysis. PMID:27571540

  12. A novel approach for antibody nanocarriers development through hydrophobic ion-pairing complexation

    PubMed Central

    Patel, Ashaben; Gaudana, Ripal; Mitra, Ashim K.

    2015-01-01

    IgG-Fab fragment, a model antibody protein was hydrophobically modified by a novel approach of ion-pairing complexation. Three different sulphated ion-pairing agents were utilised including sodium dodecyl sulphate, taurocholic acid and dextran sulphate (DS). The formations of hydrophobic ion-pairing (HIP) complexes were dependant on pH and molar ratio of ion-pairing agent to Fab. Aqueous solubilities of HIP complexes were very low compared to Fab alone. In particular, when dextran sulphate was added as ion-pairing agent, formed Fab:DS HIP complexes were least soluble in water. Further, nanoparticles (NPs) loaded with drug and Fab:DS HIP complex were prepared and characterised with respect to encapsulation efficiency and size. We observed significant improvement in encapsulation efficiency for Fab:DS HIP complex-loaded nanoparticles. This study demonstrates a novel approach of formulating antibody-loaded nanoparticles which can also be employed for delivery of large antibodies. PMID:24697179

  13. DNA terminal base pairs have weaker hydrogen bonds especially for AT under low salt concentration

    NASA Astrophysics Data System (ADS)

    Ferreira, Izabela; Amarante, Tauanne D.; Weber, Gerald

    2015-11-01

    DNA base pairs are known to open more easily at the helix terminal, a process usually called end fraying, the details of which are still poorly understood. Here, we present a mesoscopic model calculation based on available experimental data where we consider separately the terminal base pairs of a DNA duplex. Our results show an important reduction of hydrogen bond strength for terminal cytosine-guanine (CG) base pairs which is uniform over the whole range of salt concentrations, while for AT base pairs, we obtain a nearly 1/3 reduction but only at low salt concentrations. At higher salt concentrations, terminal adenine-thymine (AT) pair has almost the same hydrogen bond strength than interior bases. The calculated terminal stacking interaction parameters display some peculiarly contrasting behavior. While there is mostly no perceptible difference to internal stacking, for some cases, we observe an unusually strong dependence with salt concentration which does not appear follow any pattern or trend.

  14. 90 Seconds of Discovery: Frustrated Lewis Pairs

    SciTech Connect

    Kathmann, Shawn; Schenter, Greg; Autrey, Tom

    2014-02-14

    Hydrogen activating catalysts play an important role in producing valuable chemicals, such as biofuels and ammonia. As a part of efforts to develop the next generation of these catalysts, PNNL researchers have found potential in Frustrated Lewis Pairs.

  15. Engineering a factorable photon pair source

    SciTech Connect

    Zielnicki, Kevin; Kwiat, Paul

    2014-12-04

    Spontaneous parametric downconversion is an important process for producing pairs of photons for quantum optics. We discuss a scheme for eliminating undesired inter-photon correlations inherent in this process, and an efficient characterization of spectral correlations.

  16. Pair-production in inhomogeneous electric fields

    SciTech Connect

    Xue Shesheng

    2008-01-03

    This is a preliminary study on the rate of electron-positron pair production in spatially inhomogeneous electric fields. We study the rate in the Sauter field and compare it to the rate in the homogeneous field.

  17. Alloy solution hardening with solute pairs

    DOEpatents

    Mitchell, John W.

    1976-08-24

    Solution hardened alloys are formed by using at least two solutes which form associated solute pairs in the solvent metal lattice. Copper containing equal atomic percentages of aluminum and palladium is an example.

  18. 90 Seconds of Discovery: Frustrated Lewis Pairs

    ScienceCinema

    Kathmann, Shawn; Schenter, Greg; Autrey, Tom

    2016-07-12

    Hydrogen activating catalysts play an important role in producing valuable chemicals, such as biofuels and ammonia. As a part of efforts to develop the next generation of these catalysts, PNNL researchers have found potential in Frustrated Lewis Pairs.

  19. Mixed parity pairing in a dipolar gas

    NASA Astrophysics Data System (ADS)

    Bruun, G. M.; Hainzl, C.; Laux, M.

    2016-10-01

    We show that fermionic dipoles in a two-layer geometry form Cooper pairs with both singlet and triplet components when they are tilted with respect to the normal of the planes. The mixed parity pairing arises because the interaction between dipoles in the two different layers is not inversion symmetric. We use an efficient eigenvalue approach to calculate the zero-temperature phase diagram of the system as a function of the dipole orientation and the layer distance. The phase diagram contains purely triplet as well as mixed singlet and triplet superfluid phases. We show in detail how the pair wave function for dipoles residing in different layers smoothly changes from singlet to triplet symmetry as the orientation of the dipoles is changed. Our results indicate that dipolar quantum gases can be used to unambiguously observe mixed parity pairing.

  20. Ultrabright source of entangled photon pairs.

    PubMed

    Dousse, Adrien; Suffczyński, Jan; Beveratos, Alexios; Krebs, Olivier; Lemaître, Aristide; Sagnes, Isabelle; Bloch, Jacqueline; Voisin, Paul; Senellart, Pascale

    2010-07-01

    A source of triggered entangled photon pairs is a key component in quantum information science; it is needed to implement functions such as linear quantum computation, entanglement swapping and quantum teleportation. Generation of polarization entangled photon pairs can be obtained through parametric conversion in nonlinear optical media or by making use of the radiative decay of two electron-hole pairs trapped in a semiconductor quantum dot. Today, these sources operate at a very low rate, below 0.01 photon pairs per excitation pulse, which strongly limits their applications. For systems based on parametric conversion, this low rate is intrinsically due to the Poissonian statistics of the source. Conversely, a quantum dot can emit a single pair of entangled photons with a probability near unity but suffers from a naturally very low extraction efficiency. Here we show that this drawback can be overcome by coupling an optical cavity in the form of a 'photonic molecule' to a single quantum dot. Two coupled identical pillars-the photonic molecule-were etched in a semiconductor planar microcavity, using an optical lithography method that ensures a deterministic coupling to the biexciton and exciton energy states of a pre-selected quantum dot. The Purcell effect ensures that most entangled photon pairs are emitted into two cavity modes, while improving the indistinguishability of the two optical recombination paths. A polarization entangled photon pair rate of 0.12 per excitation pulse (with a concurrence of 0.34) is collected in the first lens. Our results open the way towards the fabrication of solid state triggered sources of entangled photon pairs, with an overall (creation and collection) efficiency of 80%. PMID:20613838

  1. Extracting differential pair distribution functions using MIXSCAT

    SciTech Connect

    Wurden, Caroline; Page, Katharine; Llobet, Anna; White, Claire E.; Proffen, Thomas

    2010-08-27

    Differently weighted experimental scattering data have been used to extract partial or differential structure factors or pair distribution functions in studying many materials. However, this is not done routinely partly because of the lack of user-friendly software. This paper presents MIXSCAT, a new member of the DISCUS program package. MIXSCAT allows one to combine neutron and X-ray pair distribution functions and extract their respective differential functions.

  2. Linear Response Calculation using Canonical-basis TDHFB with a schematic pairing functional

    SciTech Connect

    Ebata, S.; Nakatsukasa, T.; Inakura, T.; Hashimoto, Y.; Yabana, K.

    2010-08-12

    We derive the Canonical-basis Time-Dependent Hartree-Fock-Bogoliubov (CbTDHFB) equations using time-dependent variational principle with a special pairing energy functional. We obtain the isoscalar quadrupole strength functions for Neon isotopes with small-amplitude CbTDHFB calculation in the three-dimensional coordinate-space representation.

  3. Stressful life events and depression among adolescent twin pairs.

    PubMed

    Boardman, Jason D; Alexander, Kari B; Stallings, Michael C

    2011-01-01

    Using the twin pairs sample from the National Longitudinal Study ofAdolescent Health, we estimate bivariate Cholesky models for the influence of stressful life events (SLEs) on depressive symptoms. We show that depressive symptoms (h2Depression = .28) and dependent SLEs (events influenced by an individual's behavior) are both moderately heritable (h2SLE Dependent = .43). We find no evidence for the heritability of independent SLEs. Results from the bivariate Cholesky model suggest that roughly one-half of the correlation between depression and dependent SLEs is due to common genetic factors. Our findings suggest that attempts to characterize the causal effect of SLEs on mental health should limit their list of SLEs to those that are outside of the control of the individual.

  4. Recognition of Short Time-Paired Activities

    NASA Astrophysics Data System (ADS)

    Chaminda, Hapugahage Thilak; Klyuev, Vitaly; Naruse, Keitaro; Osano, Minetada

    We undertake numerous activities in our daily life and for some of those we forget to complete the action as originally intended. Significant aspects while performing most of these actions might be: “pairing of both hands simultaneously” and “short time consumption”. In this work an attempt has been made to recognize those kinds of Paired Activities (PAs), which are easy to forget, and to provide a method to remind about uncompleted PAs. To represent PAs, a study was done on opening and closing of various bottles. A model to define PAs, which simulated the paired behavior of both hands, is proposed, called “Paired Activity Model” (PAM). To recognize PAs using PAM, Paired Activity Recognition Algorithm (PARA) was implemented. Paired motion capturing was done by accelerometers, which were worn by subjects on the wrist areas of both hands. Individual and correlative behavior of both hands was used to recognize exact PA among other activities. Artificial Neural Network (ANN) algorithm was used for data categorization in PARA. ANN significantly outperformed the support vector machine algorithm in real time evaluations. In the user-independent case, PARA achieved recognition rates of 96% for only target PAs and 91% for target PAs undertaken amidst unrelated activities.

  5. Formation of asteroid pairs by rotational fission.

    PubMed

    Pravec, P; Vokrouhlický, D; Polishook, D; Scheeres, D J; Harris, A W; Galád, A; Vaduvescu, O; Pozo, F; Barr, A; Longa, P; Vachier, F; Colas, F; Pray, D P; Pollock, J; Reichart, D; Ivarsen, K; Haislip, J; Lacluyze, A; Kusnirák, P; Henych, T; Marchis, F; Macomber, B; Jacobson, S A; Krugly, Yu N; Sergeev, A V; Leroy, A

    2010-08-26

    Pairs of asteroids sharing similar heliocentric orbits, but not bound together, were found recently. Backward integrations of their orbits indicated that they separated gently with low relative velocities, but did not provide additional insight into their formation mechanism. A previously hypothesized rotational fission process may explain their formation-critical predictions are that the mass ratios are less than about 0.2 and, as the mass ratio approaches this upper limit, the spin period of the larger body becomes long. Here we report photometric observations of a sample of asteroid pairs, revealing that the primaries of pairs with mass ratios much less than 0.2 rotate rapidly, near their critical fission frequency. As the mass ratio approaches 0.2, the primary period grows long. This occurs as the total energy of the system approaches zero, requiring the asteroid pair to extract an increasing fraction of energy from the primary's spin in order to escape. We do not find asteroid pairs with mass ratios larger than 0.2. Rotationally fissioned systems beyond this limit have insufficient energy to disrupt. We conclude that asteroid pairs are formed by the rotational fission of a parent asteroid into a proto-binary system, which subsequently disrupts under its own internal system dynamics soon after formation.

  6. Seniority zero pair coupled cluster doubles theory

    SciTech Connect

    Stein, Tamar; Henderson, Thomas M.; Scuseria, Gustavo E.

    2014-06-07

    Coupled cluster theory with single and double excitations accurately describes weak electron correlation but is known to fail in cases of strong static correlation. Fascinatingly, however, pair coupled cluster doubles (p-CCD), a simplified version of the theory limited to pair excitations that preserve the seniority of the reference determinant (i.e., the number of unpaired electrons), has mean field computational cost and is an excellent approximation to the full configuration interaction (FCI) of the paired space provided that the orbital basis defining the pairing scheme is adequately optimized. In previous work, we have shown that optimization of the pairing scheme in the seniority zero FCI leads to a very accurate description of static correlation. The same conclusion extends to p-CCD if the orbitals are optimized to make the p-CCD energy stationary. We here demonstrate these results with numerous examples. We also explore the contributions of different seniority sectors to the coupled cluster doubles (CCD) correlation energy using different orbital bases. We consider both Hartree-Fock and Brueckner orbitals, and the role of orbital localization. We show how one can pair the orbitals so that the role of the Brueckner orbitals at the CCD level is retained at the p-CCD level. Moreover, we explore ways of extending CCD to accurately describe strongly correlated systems.

  7. Spectral similarity of unbound asteroid pairs

    NASA Astrophysics Data System (ADS)

    Wolters, Stephen D.; Weissman, Paul R.; Christou, Apostolis; Duddy, Samuel R.; Lowry, Stephen C.

    2014-04-01

    Infrared (IR) spectroscopy between 0.8 and 2.5 μ has been obtained for both components of three unbound asteroid pairs, using the NASA Infrared Telescope Facility with the SpeX instrument. Pair primary (2110) Moore-Sitterly is classified as an S-type following the Bus-DeMeo taxonomy; the classification for secondary (44612) 1999 RP27 is ambiguous: S/Sq/Q/K/L-type. Primary (10484) Hecht and secondary (44645) 1999 RC118 are classified as V-types. IR spectra for Moore-Sitterly and Hecht are each linked with available visual photometry. The classifications for primary (88604) 2001 QH293 and (60546) 2000 EE85 are ambiguous: S/Sq/Q/K/L-type. Subtle spectral differences between them suggest that the primary may have more weathered material on its surface. Dynamical integrations have constrained the ages of formation: 2110-44612 > 782 kyr; 10484-44645 = 348 (+823,-225) kyr; 88604-60546 = 925 (+842,-754) kyr. The spectral similarity of seven complete pairs is ranked in comparison with nearby background asteroids. Two pairs, 17198-229056 and 19289-278067, have significantly different spectra between the components, compared to the similarity of spectra in the background population. The other pairs are closer than typical, supporting an interpretation of each pair's formation from a common parent body.

  8. Fundamental aspects of recoupled pair bonds. I. Recoupled pair bonds in carbon and sulfur monofluoride

    SciTech Connect

    Dunning, Thom H. Xu, Lu T.; Takeshita, Tyler Y.

    2015-01-21

    The number of singly occupied orbitals in the ground-state atomic configuration of an element defines its nominal valence. For carbon and sulfur, with two singly occupied orbitals in their {sup 3}P ground states, the nominal valence is two. However, in both cases, it is possible to form more bonds than indicated by the nominal valence—up to four bonds for carbon and six bonds for sulfur. In carbon, the electrons in the 2s lone pair can participate in bonding, and in sulfur the electrons in both the 3p and 3s lone pairs can participate. Carbon 2s and sulfur 3p recoupled pair bonds are the basis for the tetravalence of carbon and sulfur, and 3s recoupled pair bonds enable sulfur to be hexavalent. In this paper, we report generalized valence bond as well as more accurate calculations on the a{sup 4}Σ{sup −} states of CF and SF, which are archetypal examples of molecules that possess recoupled pair bonds. These calculations provide insights into the fundamental nature of recoupled pair bonds and illustrate the key differences between recoupled pair bonds formed with the 2s lone pair of carbon, as a representative of the early p-block elements, and recoupled pair bonds formed with the 3p lone pair of sulfur, as a representative of the late p-block elements.

  9. Limitations of the narrow-angle convergent pair. [of Viking Orbiter photographs for triangulation and topographic mapping

    NASA Technical Reports Server (NTRS)

    Arthur, D. W. G.

    1977-01-01

    Spatial triangulations and topographies of the Martian surface derived from Viking Orbiter pictures depend on the use of symmetric narrow-angle convergent pairs. The overlap in each pair is close to 100 percent and the ground principal points virtually coincide. The analysis of this paper reveals a high degree of indeterminacy in such pairs and at least in part explains the rather disappointing precision of the associated spatial triangulations.

  10. Zero-temperature damping of Bose-Einstein condensate oscillations by vortex-antivortex pair creation

    SciTech Connect

    Fedichev, Petr O.; Fischer, Uwe R.; Recati, Alessio

    2003-07-01

    We investigate vortex-antivortex pair creation in a supersonically expanding and contracting quasi-two-dimensional Bose-Einstein condensate at zero temperature. For sufficiently large-amplitude condensate oscillations, pair production provides the leading dissipation mechanism. The condensate oscillations decay in a nonexponential manner, and the dissipation rate depends strongly on the oscillation amplitude. These features allow one to distinguish the decay due to pair creation from other possible damping mechanisms. An experimental observation of the predicted oscillation behavior of the superfluid gas provides a direct confirmation of the hydrodynamical analogy of quantum electrodynamics and quantum vortex dynamics in two spatial dimensions.

  11. Probabilistic modeling of flood characterizations with parametric and minimum information pair-copula model

    NASA Astrophysics Data System (ADS)

    Daneshkhah, Alireza; Remesan, Renji; Chatrabgoun, Omid; Holman, Ian P.

    2016-09-01

    This paper highlights the usefulness of the minimum information and parametric pair-copula construction (PCC) to model the joint distribution of flood event properties. Both of these models outperform other standard multivariate copula in modeling multivariate flood data that exhibiting complex patterns of dependence, particularly in the tails. In particular, the minimum information pair-copula model shows greater flexibility and produces better approximation of the joint probability density and corresponding measures have capability for effective hazard assessments. The study demonstrates that any multivariate density can be approximated to any degree of desired precision using minimum information pair-copula model and can be practically used for probabilistic flood hazard assessment.

  12. Heavy pair production currents with general quantum numbers in dimensionally regularized nonrelativistic QCD

    SciTech Connect

    Hoang, Andre H.; Ruiz-Femenia, Pedro

    2006-12-01

    We discuss the form and construction of general color singlet heavy particle-antiparticle pair production currents for arbitrary quantum numbers, and issues related to evanescent spin operators and scheme dependences in nonrelativistic QCD in n=3-2{epsilon} dimensions. The anomalous dimensions of the leading interpolating currents for heavy quark and colored scalar pairs in arbitrary {sup 2S+1}L{sub J} angular-spin states are determined at next-to-leading order in the nonrelativistic power counting.

  13. Production of free electron-positron pairs in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Ionescu, D. C.; Eichler, J.

    1993-08-01

    The production of free electron-positron pairs in relativistic heavy-ion collisions is investigated within first-order time-dependent perturbation theory. An analytic expression for the differential pair-production cross section is obtained by employing Furry-Sommerfeld-Maue wave functions for the description of continuum states in the external field of the target nucleus. The angular distributions of electrons and positrons and cross sections are calculated and compared with previous results.

  14. Pairing Competition between Identical and Homologous Chromosomes in Rye and Grasshoppers

    PubMed Central

    Santos, J. L.; Orellana, J.; Giraldez, R.

    1983-01-01

    Meiotic pairing preferences between identical and homologous but not identical chromosomes were analyzed in spontaneous tetraploid/diploid chimeras of three male grasshoppers (Eyprepocnemis plorans) whose chromosome pair 11 were heterozygous for C-banding pattern and in four induced tetraploid/diploid chimaeral rye plants (Secale cereale) heterozygous for telomeric heterochromatin C-bands in chromosomes 1R and 2R. In the grasshoppers, a preference for identical over homologous pairing was observed, whereas in rye both a preference for homologous rather than identical pairing and random pairing between the four chromosomes of the set was found. From the results in rye, it can be deduced that pairing preferences do not depend exclusively on the similarities between chromosomes involved. It is suggested that genotypic or cryptic structural differences between the homologous chromosomes of each pair analyzed might be responsible for the pairing preferences found. This hypothesis can also explain the results obtained in grasshoppers, although the possibility of premeiotic association cannot be excluded in this material. PMID:17246148

  15. Pairing and condensation in a resonant Bose-Fermi mixture

    SciTech Connect

    Fratini, Elisa; Pieri, Pierbiagio

    2010-05-15

    We study by diagrammatic means a Bose-Fermi mixture, with boson-fermion coupling tuned by a Fano-Feshbach resonance. For increasing coupling, the growing boson-fermion pairing correlations progressively reduce the boson condensation temperature and make it eventually vanish at a critical coupling. Such quantum critical point depends very weakly on the population imbalance and, for vanishing boson densities, coincides with that found for the polaron-molecule transition in a strongly imbalanced Fermi gas, thus bridging two quite distinct physical systems.

  16. Multi-quasiparticle isomers near stability and reduced pairing

    SciTech Connect

    Dracoulis, G.D.

    1996-12-31

    The proximity of high-{Omega} orbitals near both proton and neutron Fermi surfaces in nuclei near Z = 74 and N = 104 results in high-K states competing with collective rotation of low-seniority configurations to generate the yrast line. In favorable situations it is possible to observe both the intrinsic states and associated rotational bands. The band properties allow characterization of the configurations and evaluation of orbital and seniority-dependent effects, including pairing reduction and consequent loss of nuclear superfluidity.

  17. Experimental extraction of an entangled photon pair from two identically decohered pairs.

    PubMed

    Yamamoto, Takashi; Koashi, Masato; Ozdemir, Sahin Kaya; Imoto, Nobuyuki

    2003-01-23

    Entanglement is considered to be one of the most important resources in quantum information processing schemes, including teleportation, dense coding and entanglement-based quantum key distribution. Because entanglement cannot be generated by classical communication between distant parties, distribution of entangled particles between them is necessary. During the distribution process, entanglement between the particles is degraded by the decoherence and dissipation processes that result from unavoidable coupling with the environment. Entanglement distillation and concentration schemes are therefore needed to extract pairs with a higher degree of entanglement from these less-entangled pairs; this is accomplished using local operations and classical communication. Here we report an experimental demonstration of extraction of a polarization-entangled photon pair from two decohered photon pairs. Two polarization-entangled photon pairs are generated by spontaneous parametric down-conversion and then distributed through a channel that induces identical phase fluctuations to both pairs; this ensures that no entanglement is available as long as each pair is manipulated individually. Then, through collective local operations and classical communication we extract from the two decohered pairs a photon pair that is observed to be polarization-entangled.

  18. [Structural and Dipole Structure Peculiarities of Hoogsteen Base Pairs Formed in Complementary Nucleobases according to ab initio Quantum Mechanics Studies].

    PubMed

    Petrenko, Y M

    2015-01-01

    Ab initio quantum mechanics studies for the detection of structure and dipole structure peculiarities of Hoogsteen base pairs relative to Watson-Crick base pairs, were performed during our work. These base pairs are formed as a result of complementary interactions. It was revealed, that adenine-thymine Hoogsteen base pair and adenine-thymine Watson-Crick base pairs can be formed depending on initial configuration. Cytosine-guanine Hoogsteen pairs are formed only when cytosine was originally protonated. Both types of Hoogsteen pairs have noticeable difference in the bond distances and angles. These differences appeared in purine as well as in pyrimidine parts of the pairs. Hoogsteen pairs have mostly shorter hydrogen bond lengths and significantly larger angles of hydrogen bonds and larger angles between the hydrogen bonds than Watson-Crick base pairs. Notable differences are also observed with respect to charge distribution and dipole moment. Quantitative data on these differences are shown in our work. It is also reported that the values of local parameters (according to Cambridge classification of the parameters which determine DNA properties) in Hoogsteen base pairs, are greatly different from Watson-Crick ones.

  19. Geometrical parameters of E+S pairs

    NASA Technical Reports Server (NTRS)

    Rampazzo, Roberto; Sulentic, Jack W.

    1990-01-01

    Local environmental conditions (i.e., density and angular momentum properties of protogalactic clouds) are thought to be factors affecting the ultimate morphology of a galaxy. The existence of significant numbers of mixed morphology (E/SO+S) pairs of galaxies would represent a direct challenge to this idea unless all early-type components are formed by mergers. The authors wished to isolate candidate E+S pairs for detailed study. The authors have observed 22 pairs of mixed morphology galaxies (containing at least one early-type component) selected from a catalog of Sulentic (1988: unpublished) based upon the ESO sky survey. The observed sample and relevant morphological and interaction characteristics are summarized in tabular form. The authors report the relevant geometrical properties of the galaxies in another table. They list the maximum values measured for the ellipticity and the a(4)/a shape parameter together with the total measured twisting along the profile beyond the seeing disk (they set an inner limit of 3 arcsed). An asterisk indicates objects in which a(4)/a is neither predominantly boxy nor disky. They found a large number of true mixed pairs with 13/22 E+S pairs in the present sample. The remaining objects include 5 disk pairs (composed of SO and S members) and 3 early-type pairs comprising E and SO members. They estimate that between 25 and 50 percent of the pairs in any complete sample will be of the E+S type. This suggests that 100 to 200 such pairs exist on the sky brighter than m sub pg = 16.0. They found no global evidence for a difference between E members of this sample and those in more general samples (e.g., Bender et al. 1989). In particular, they found that about 30 percent of the early-type galaxies cannot be classified either predominantly boxy or disky because the a(4)/a profile shows both of these features at a comparable level or does not show any significant trend. Isophotal twisting is observed with a range and distribution

  20. Probing the tides in interacting galaxy pairs

    NASA Technical Reports Server (NTRS)

    Borne, Kirk D.

    1990-01-01

    Detailed spectroscopic and imaging observations of colliding elliptical galaxies revealed unmistakable diagnostic signatures of the tidal interactions. It is possible to compare both the distorted luminosity distributions and the disturbed internal rotation profiles with numerical simulations in order to model the strength of the tidal gravitational field acting within a given pair of galaxies. Using the best-fit numerical model, one can then measure directly the mass of a specific interacting binary system. This technique applies to individual pairs and therefore complements the classical methods of measuring the masses of galaxy pairs in well-defined statistical samples. The 'personalized' modeling of galaxy pairs also permits the derivation of each binary's orbit, spatial orientation, and interaction timescale. Similarly, one can probe the tides in less-detailed observations of disturbed galaxies in order to estimate some of the physical parameters for larger samples of interacting galaxy pairs. These parameters are useful inputs to the more universal problems of (1) the galaxy merger rate, (2) the strength and duration of the driving forces behind tidally stimulated phenomena (e.g., starbursts and maybe quasi steller objects), and (3) the identification of long-lived signatures of interaction/merger events.

  1. Pairing instabilities of Dirac composite fermions

    NASA Astrophysics Data System (ADS)

    Milovanović, M. V.; Ćirić, M. Dimitrijević; Juričić, V.

    2016-09-01

    Recently, a Dirac (particle-hole symmetric) description of composite fermions in the half-filled Landau level (LL) was proposed [D. T. Son, Phys. Rev. X 5, 031027 (2015), 10.1103/PhysRevX.5.031027], and we study its possible consequences on BCS (Cooper) pairing of composite fermions (CFs). One of the main consequences is the existence of anisotropic states in single-layer and bilayer systems, which was previously suggested in Jeong and Park [J. S. Jeong and K. Park, Phys. Rev. B 91, 195119 (2015), 10.1103/PhysRevB.91.195119]. We argue that in the half-filled LL in the single-layer case the gapped states may sustain anisotropy, because isotropic pairings may coexist with anisotropic ones. Furthermore, anisotropic pairings with the addition of a particle-hole symmetry-breaking mass term may evolve into rotationally symmetric states, i.e., Pfaffian states of Halperin-Lee-Read (HLR) ordinary CFs. On the basis of the Dirac formalism, we argue that in the quantum Hall bilayer at total filling factor 1, with decreasing distance between the layers, weak pairing of p -wave paired CFs is gradually transformed from Dirac to ordinary, HLR-like, with a concomitant decrease in the CF number. Global characterization of low-energy spectra based on the Dirac CFs agrees well with previous calculations performed by exact diagonalization on a torus. Finally, we discuss features of the Dirac formalism when applied in this context.

  2. Parity Protection in Flux-Pairing Qubits

    NASA Astrophysics Data System (ADS)

    Zhang, Wenyuan; Bell, Matthew; Jin, Xiaoyue; Ioffe, Lev; Gershenson, Michael

    2015-03-01

    We have studied a novel qubit whose logical states are decoupled from the environment due to parity protection. The flux-pairing qubit (FPQ) is a superconducting loop consisting of a 4 π periodic Josephson element (a Cooper pair box with the e charge on the central island) and a superinductor. This device is dual to the charge-pairing qubit. The FPQ design suppresses tunneling of single flux lines through the junctions in the Cooper pair box and enforces simultaneous tunneling of pairs of flux lines. The lowest-energy quantum states of the FPQ are encoded in the parity of the magnetic flux quanta inside the loop. Parity protection prohibits the mixing of these states, and reduces both the decay and dephasing rates. We will discuss the experimental aspects of the FPQ optimization and the possibility of fault-tolerant operations with these qubits. The work was supported in part by grants from the Templeton Foundation (40381) and the NSF (DMR-1006265).

  3. Radical-pair based avian magnetoreception

    NASA Astrophysics Data System (ADS)

    Procopio, Maria; Ritz, Thorsten

    2014-03-01

    Behavioural experiments suggest that migratory birds possess a magnetic compass sensor able to detect the direction of the geomagnetic. One hypothesis for the basis of this remarkable sensory ability is that the coherent quantum spin dynamics of photoinduced radical pair reactions transduces directional magnetic information from the geomagnetic field into changes of reaction yields, possibly involving the photoreceptor cryptochrome in the birds retina. The suggested radical-pair based avian magnetoreception has attracted attention in the field of quantum biology as an example of a biological sensor which might exploit quantum coherences for its biological function. Investigations on such a spin-based sensor have focussed on uncovering the design features for the design of a biomimetic magnetic field sensor. We study the effects of slow fluctuations in the nuclear spin environment on the directional signal. We quantitatively evaluate the robustness of signals under fluctuations on a timescale longer than the lifetime of a radical pair, utilizing two models of radical pairs. Our results suggest design principles for building a radical-pair based compass sensor that is both robust and highly directional sensitive.

  4. On the analysis of phylogenetically paired designs

    PubMed Central

    Funk, Jennifer L; Rakovski, Cyril S; Macpherson, J Michael

    2015-01-01

    As phylogenetically controlled experimental designs become increasingly common in ecology, the need arises for a standardized statistical treatment of these datasets. Phylogenetically paired designs circumvent the need for resolved phylogenies and have been used to compare species groups, particularly in the areas of invasion biology and adaptation. Despite the widespread use of this approach, the statistical analysis of paired designs has not been critically evaluated. We propose a mixed model approach that includes random effects for pair and species. These random effects introduce a “two-layer” compound symmetry variance structure that captures both the correlations between observations on related species within a pair as well as the correlations between the repeated measurements within species. We conducted a simulation study to assess the effect of model misspecification on Type I and II error rates. We also provide an illustrative example with data containing taxonomically similar species and several outcome variables of interest. We found that a mixed model with species and pair as random effects performed better in these phylogenetically explicit simulations than two commonly used reference models (no or single random effect) by optimizing Type I error rates and power. The proposed mixed model produces acceptable Type I and II error rates despite the absence of a phylogenetic tree. This design can be generalized to a variety of datasets to analyze repeated measurements in clusters of related subjects/species. PMID:25750719

  5. Pairing and specific heat in hot nuclei

    NASA Astrophysics Data System (ADS)

    Gambacurta, Danilo; Lacroix, Denis; Sandulescu, N.

    2013-09-01

    The thermodynamics of pairing phase-transition in nuclei is studied in the canonical ensemble and treating the pairing correlations in a finite-temperature variation after projection BCS approach (FT-VAP). Due to the restoration of particle number conservation, the pairing gap and the specific heat calculated in the FT-VAP approach vary smoothly with the temperature, indicating a gradual transition from the superfluid to the normal phase, as expected in finite systems. We have checked that the predictions of the FT-VAP approach are very accurate when compared to the results obtained by an exact diagonalization of the pairing Hamiltonian. The influence of pairing correlations on specific heat is analyzed for the isotopes 161,162Dy and 171,172Yb. It is shown that the FT-VAP approach, applied with a level density provided by mean field calculations and supplemented, at high energies, by the level density of the back-shifted Fermi gas model, can approximate reasonably well the main properties of specific heat extracted from experimental data. However, the detailed shape of the calculated specific heat is rather sensitive to the assumption made for the mean field.

  6. Pairing in a dry Fermi sea

    DOE PAGESBeta

    Maier, Thomas A.; Staar, Peter; Mishra, V.; Chatterjee, Utpal; Campuzano, J. C.; Scalapino, Douglas J.

    2016-06-17

    In the traditional Bardeen–Cooper–Schrieffer theory of superconductivity, the amplitude for the propagation of a pair of electrons with momentum k and -k has a log singularity as the temperature decreases. This so-called Cooper instability arises from the presence of an electron Fermi sea. It means that an attractive interaction, no matter how weak, will eventually lead to a pairing instability. However, in the pseudogap regime of the cuprate superconductors, where parts of the Fermi surface are destroyed, this log singularity is suppressed, raising the question of how pairing occurs in the absence of a Fermi sea. In this paper, wemore » report Hubbard model numerical results and the analysis of angular-resolved photoemission experiments on a cuprate superconductor. Finally, in contrast to the traditional theory, we find that in the pseudogap regime the pairing instability arises from an increase in the strength of the spin–fluctuation pairing interaction as the temperature decreases rather than the Cooper log instability.« less

  7. Pairing in a dry Fermi sea

    PubMed Central

    Maier, T. A; Staar, P.; Mishra, V.; Chatterjee, U.; Campuzano, J. C.; Scalapino, D. J.

    2016-01-01

    In the traditional Bardeen–Cooper–Schrieffer theory of superconductivity, the amplitude for the propagation of a pair of electrons with momentum k and −k has a log singularity as the temperature decreases. This so-called Cooper instability arises from the presence of an electron Fermi sea. It means that an attractive interaction, no matter how weak, will eventually lead to a pairing instability. However, in the pseudogap regime of the cuprate superconductors, where parts of the Fermi surface are destroyed, this log singularity is suppressed, raising the question of how pairing occurs in the absence of a Fermi sea. Here we report Hubbard model numerical results and the analysis of angular-resolved photoemission experiments on a cuprate superconductor. In contrast to the traditional theory, we find that in the pseudogap regime the pairing instability arises from an increase in the strength of the spin–fluctuation pairing interaction as the temperature decreases rather than the Cooper log instability. PMID:27312569

  8. Accurate theoretical chemistry with coupled pair models.

    PubMed

    Neese, Frank; Hansen, Andreas; Wennmohs, Frank; Grimme, Stefan

    2009-05-19

    Quantum chemistry has found its way into the everyday work of many experimental chemists. Calculations can predict the outcome of chemical reactions, afford insight into reaction mechanisms, and be used to interpret structure and bonding in molecules. Thus, contemporary theory offers tremendous opportunities in experimental chemical research. However, even with present-day computers and algorithms, we cannot solve the many particle Schrodinger equation exactly; inevitably some error is introduced in approximating the solutions of this equation. Thus, the accuracy of quantum chemical calculations is of critical importance. The affordable accuracy depends on molecular size and particularly on the total number of atoms: for orientation, ethanol has 9 atoms, aspirin 21 atoms, morphine 40 atoms, sildenafil 63 atoms, paclitaxel 113 atoms, insulin nearly 800 atoms, and quaternary hemoglobin almost 12,000 atoms. Currently, molecules with up to approximately 10 atoms can be very accurately studied by coupled cluster (CC) theory, approximately 100 atoms with second-order Møller-Plesset perturbation theory (MP2), approximately 1000 atoms with density functional theory (DFT), and beyond that number with semiempirical quantum chemistry and force-field methods. The overwhelming majority of present-day calculations in the 100-atom range use DFT. Although these methods have been very successful in quantum chemistry, they do not offer a well-defined hierarchy of calculations that allows one to systematically converge to the correct answer. Recently a number of rather spectacular failures of DFT methods have been found-even for seemingly simple systems such as hydrocarbons, fueling renewed interest in wave function-based methods that incorporate the relevant physics of electron correlation in a more systematic way. Thus, it would be highly desirable to fill the gap between 10 and 100 atoms with highly correlated ab initio methods. We have found that one of the earliest (and now

  9. Isotopic Dependence of GCR Fluence behind Shielding

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.; Saganti, Premkumar; Kim, Myung-Hee Y.; Cleghorn, Timothy; Zeitlin, Cary; Tripathi, Ram K.

    2006-01-01

    In this paper we consider the effects of the isotopic composition of the primary galactic cosmic rays (GCR), nuclear fragmentation cross-sections, and isotopic-grid on the solution to transport models used for shielding studies. Satellite measurements are used to describe the isotopic composition of the GCR. For the nuclear interaction data-base and transport solution, we use the quantum multiple-scattering theory of nuclear fragmentation (QMSFRG) and high-charge and energy (HZETRN) transport code, respectively. The QMSFRG model is shown to accurately describe existing fragmentation data including proper description of the odd-even effects as function of the iso-spin dependence on the projectile nucleus. The principle finding of this study is that large errors (+/-100%) will occur in the mass-fluence spectra when comparing transport models that use a complete isotopic-grid (approx.170 ions) to ones that use a reduced isotopic-grid, for example the 59 ion-grid used in the HZETRN code in the past, however less significant errors (<+/-20%) occur in the elemental-fluence spectra. Because a complete isotopic-grid is readily handled on small computer workstations and is needed for several applications studying GCR propagation and scattering, it is recommended that they be used for future GCR studies.

  10. Flavour dependent gauged radiative neutrino mass model

    NASA Astrophysics Data System (ADS)

    Baek, Seungwon; Okada, Hiroshi; Yagyu, Kei

    2015-04-01

    We propose a one-loop induced radiative neutrino mass model with anomaly free flavour dependent gauge symmetry: μ minus τ symmetry U(1) μ- τ . A neutrino mass matrix satisfying current experimental data can be obtained by introducing a weak isospin singlet scalar boson that breaks U(1) μ- τ symmetry, an inert doublet scalar field, and three right-handed neutrinos in addition to the fields in the standard model. We find that a characteristic structure appears in the neutrino mass matrix: two-zero texture form which predicts three non-zero neutrino masses and three non-zero CP-phases from five well measured experimental inputs of two squared mass differences and three mixing angles. Furthermore, it is clarified that only the inverted mass hierarchy is allowed in our model. In a favored parameter set from the neutrino sector, the discrepancy in the muon anomalous magnetic moment between the experimental data and the the standard model prediction can be explained by the additional neutral gauge boson loop contribution with mass of order 100 MeV and new gauge coupling of order 10-3.

  11. Dressed electrostatic solitary excitations in three component pair-plasmas: Application in isothermal pair-plasma with stationary ions

    SciTech Connect

    Esfandyari-Kalejahi, A.; Akbari-Moghanjoughi, M.; Haddadpour-Khiaban, B.

    2009-10-15

    In this work electrostatic solitary waves in a three component pair-plasma consisting of hot isothermal electrons (or negative fullerene ions), positrons (or positive fullerene ions), and stationary positive ions (say, dust particulates) are studied. Using reductive perturbation method, plasma fluid equations are reduced to a Korteweg-de Vries (KdV) equation. Considering the higher-order nonlinearity, a linear inhomogeneous equation is derived, and the stationary solutions of these coupled equations are achieved by applying the renormalization procedure of Kodama-Taniuti. It is observed that in the linear approximation and applying Fourier analysis, two electrostatic modes, namely, upper or optical and lower or acoustic modes, are present. However, the application of reductive perturbation technique confirms that only acoustic-electrostatic mode can propagate in such plasma as KdV soliton, the amplitude and width of which are studied regarding to plasma parameters {sigma} (positron-to-electron temperature ratio) and {delta} (stationary cold ions-to-electron density ratio). It is also observed that the higher-order nonlinearity leads to deformation of the soliton structure from bell-shaped to W-shaped depending on the variation in values of the plasma parameters {sigma} and {delta}. It is revealed that KdV-type solitary waves cannot propagate in three component pair-plasma when the pair-species temperature is equal.

  12. Theoretical analysis of novel fiber grating pair

    NASA Astrophysics Data System (ADS)

    Wang, Liao; Jia, Hongzhi; Fang, Liang; You, Bei

    2016-06-01

    A novel fiber grating pair that consists of a conventional long-period fiber grating and a fiber Bragg cladding grating (FBCG) is proposed. The FBCG is a new type of fiber grating in which refractive index modulation is formed in the cladding. Through the coupled-mode theory, we accurately calculate the coupling coefficients between modes supported in the fibers. And some other mode coupling features in the fiber cladding gratings are analyzed in detail. The calculation of the modes involved in this paper is based on a model of three-layer step-index fiber geometry. Then, we have investigated the sensitivity characteristics for variation of the modulation strengths of the fiber Bragg cladding gratings' resonance peaks and the long-period cladding gratings' (LPCGs) dual resonant peaks. Finally, the modulation strength sensitivity of the grating pair's three resonant peaks is demonstrated, and the results indicate that these grating pairs may find potential applications in optical fiber sensing.

  13. Automated DNA Base Pair Calling Algorithm

    1999-07-07

    The procedure solves the problem of calling the DNA base pair sequence from two channel electropherogram separations in an automated fashion. The core of the program involves a peak picking algorithm based upon first, second, and third derivative spectra for each electropherogram channel, signal levels as a function of time, peak spacing, base pair signal to noise sequence patterns, frequency vs ratio of the two channel histograms, and confidence levels generated during the run. Themore » ratios of the two channels at peak centers can be used to accurately and reproducibly determine the base pair sequence. A further enhancement is a novel Gaussian deconvolution used to determine the peak heights used in generating the ratio.« less

  14. An Evolved Orthogonal Enzyme/Cofactor Pair.

    PubMed

    Reynolds, Evan W; McHenry, Matthew W; Cannac, Fabien; Gober, Joshua G; Snow, Christopher D; Brustad, Eric M

    2016-09-28

    We introduce a strategy that expands the functionality of hemoproteins through orthogonal enzyme/heme pairs. By exploiting the ability of a natural heme transport protein, ChuA, to promiscuously import heme derivatives, we have evolved a cytochrome P450 (P450BM3) that selectively incorporates a nonproteinogenic cofactor, iron deuteroporphyrin IX (Fe-DPIX), even in the presence of endogenous heme. Crystal structures show that selectivity gains are due to mutations that introduce steric clash with the heme vinyl groups while providing a complementary binding surface for the smaller Fe-DPIX cofactor. Furthermore, the evolved orthogonal enzyme/cofactor pair is active in non-natural carbenoid-mediated olefin cyclopropanation. This methodology for the generation of orthogonal enzyme/cofactor pairs promises to expand cofactor diversity in artificial metalloenzymes.

  15. Parametric Amplification of Scattered Atom Pairs

    SciTech Connect

    Campbell, Gretchen K.; Mun, Jongchul; Boyd, Micah; Streed, Erik W.; Ketterle, Wolfgang; Pritchard, David E.

    2006-01-20

    We have observed parametric generation and amplification of ultracold atom pairs. A {sup 87}Rb Bose-Einstein condensate was loaded into a one-dimensional optical lattice with quasimomentum k{sub 0} and spontaneously scattered into two final states with quasimomenta k{sub 1} and k{sub 2}. Furthermore, when a seed of atoms was first created with quasimomentum k{sub 1} we observed parametric amplification of scattered atoms pairs in states k{sub 1} and k{sub 2} when the phase-matching condition was fulfilled. This process is analogous to optical parametric generation and amplification of photons and could be used to efficiently create entangled pairs of atoms. Furthermore, these results explain the dynamic instability of condensates in moving lattices observed in recent experiments.

  16. Breaking of Cooper pairs in 108Pd

    NASA Astrophysics Data System (ADS)

    Rahmatinejad, A.; Kakavand, T.; Razavi, R.

    2016-04-01

    In this paper, breaking of Cooper pairs in 108Pd is investigated within the canonical ensemble framework and the BCS model. Our results show an evidence of two phase transitions, which are related to neutron and proton systems. Also, with consideration of pairing interaction, the role of neutron and proton systems in entropy, spin cutoff parameter and as a result in the moment of inertia are investigated. The results show minor role for the proton system at low temperatures and approximately equal roles for both neutron and proton systems after the critical temperature. Good agreement was observed between obtained results and the experimental data.

  17. Photon pair generation in birefringent optical fibers

    NASA Astrophysics Data System (ADS)

    Smith, Brian J.; Mahou, P.; Cohen, Offir; Lundeen, J. S.; Walmsley, I. A.

    2009-12-01

    We study both experimentally and theoretically the generation of photon pairs by spontaneous four-wave mixing (SFWM) in standard birefringent optical fibers. The ability to produce a range of two-photon spectral states, from highly correlated (entangled) to completely factorable, by means of cross-polarized birefringent phase matching, is explored. A simple model is developed to predict the spectral state of the photon pair which shows how this can be adjusted by choosing the appropriate pump bandwidth, fiber length and birefringence. Spontaneous Raman scattering is modeled to determine the tradeoff between SFWM and background Raman noise, and the predicted results are shown to agree with experimental data.

  18. Comment on ``Pairing interaction and Galilei invariance''

    NASA Astrophysics Data System (ADS)

    Arias, J. M.; Gallardo, M.; Gómez-Camacho, J.

    1999-05-01

    A recent article by Dussel, Sofia, and Tonina studies the relation between Galilei invariance and dipole energy weighted sum rule (EWSR). The authors find that the pairing interaction, which is neither Galilei nor Lorentz invariant, produces big changes in the EWSR and in effective masses of the nucleons. They argue that these effects of the pairing force could be realistic. In this Comment we stress the validity of Galilei invariance to a very good approximation in this context of low-energy nuclear physics and show that the effective masses and the observed change in the EWSR for the electric dipole operator relative to its classical value are compatible with this symmetry.

  19. Crystal Structures of Non-Natural Nucleobase Pairs in A- and B-DNA†

    PubMed Central

    Georgiadis, Millie M.; Singh, Isha; Kellett, Whitney F.; Hoshika, Shuichi; Benner, Steven A.; Richards, Nigel G. J.

    2015-01-01

    The extent to which synthetic biology can be used to expand genetic information systems compatible with natural enzymes and cells will depend on the extent to which multiple and contiguous non-natural nucleobase pairs fit within the standard double helical conformations of DNA. Toward this goal, two non-standard nucleobases (Z, 6-amino-5-nitro-2(1H)-pyridone and P, 2-amino-imidazo[1,2-a]-1,3,5-triazin-4(8H)one) were designed to form a Z:P pair with a standard “edge on” Watson-Crick geometry, but with rearranged hydrogen bond donor and acceptor groups. Here, we present the crystal structures of two self-complementary 16-mer oligonucleotides containing Z:P pairs. The first contained two consecutive Z:P nucleobase pairs and was found to crystallize within a host-guest complex in B-form. The second contained six consecutive Z:P pairs; it was found to crystallize as an A-form DNA duplex, although it can adopt B-form in solution as inferred from circular dichroism spectra. Although Z:P pairs have some structural properties that are similar to those of G:C pairs, unique features include stacking of the nitro group on Z with the adjacent heterocyclic nucleobase ring in A-DNA. In both B-and A-DNA, major groove widths associated with the Z:P pairs are approximately 1 Å wider than those of comparable G:C pairs potentially due to the presence of the nitro group in Z. Thus, our structural studies suggest that multiple and consecutive Z:P pairs are readily accommodated in DNA duplex structures recognized by natural polymerases, and therefore the GACTZP synthetic genetic system has the requisite properties to expand sequence space. PMID:25961938

  20. Paired Learning: Tutoring by Non-Teachers. Incorporating "The Paired Reading Bulletin" No. 5.

    ERIC Educational Resources Information Center

    Paired Reading Bulletin, 1989

    1989-01-01

    The eight papers constituting the Proceedings of the fourth National Paired Reading Conference are published in an annual bulletin of the Paired Reading Project, together with seven papers constituting the Supplementary Proceedings of the Peer Tutoring Conference, and nine feature articles, as follows: (1) "Whole-School Policy on Parental…

  1. New model of the average neutron and proton pairing gaps

    NASA Astrophysics Data System (ADS)

    Madland, David G.; Nix, J. Rayford

    1988-01-01

    By use of the BCS approximation applied to a distribution of dense, equally spaced levels, we derive new expressions for the average neutron pairing gap ¯gD n and average proton pairing gap ¯gD p. These expressions, which contain exponential terms, take into account the dependencies of ¯gD n and ¯gD p upon both the relative neutron excess and shape of the nucleus. The three constants that appear are determined by a least-squares adjustment to experimental pairing gaps obtained by use of fourth-order differences of measured masses. For this purpose we use the 1986 Audi-Wapstra mid-stream mass evaluation and take into account experimental uncertainties. Our new model explains not only the dependencies of ¯gD n and ¯gD p upon relative neutron excess and nuclear shape, but also the experimental result that for medium and heavy nuclei ¯gD n is generally smaller than ¯gD p. We also introduce a new expression for the average residual neutron-proton interaction energy ¯gd that appears in the masses of odd-odd nuclei, and determine the constant that appears by an analogous least-squares adjustment to experimental mass differences. Our new expressions for ¯gD n, ¯gD p and ¯gd should permit extrapolation of these quantities to heavier nuclei and to nuclei farther removed from the valley of β stability than do previous parameterizations.

  2. Extracting an entangled photon pair from collectively decohered pairs at a telecommunication wavelength.

    PubMed

    Tsujimoto, Yoshiaki; Sugiura, Yukihiro; Ando, Makoto; Katsuse, Daisuke; Ikuta, Rikizo; Yamamoto, Takashi; Koashi, Masato; Imoto, Nobuyuki

    2015-05-18

    We experimentally demonstrated entanglement extraction scheme by using photons at the telecommunication band for optical-fiber-based quantum communications. We generated two pairs of non-degenerate polarization entangled photons at 780 nm and 1551 nm by spontaneous parametric down-conversion and distributed the two photons at 1551 nm through a collective phase damping channel which gives the same amount of random phase shift on the two photons. Through local operation and classical communication, we extracted an entangled photon pair from two phase-disturbed photon pairs. An observed fidelity of the extracted photon pair to a maximally entangled photon pair was 0.73 ± 0.07 which clearly shows the recovery of entanglement.

  3. Eliminating dual-task costs by minimizing crosstalk between tasks: The role of modality and feature pairings.

    PubMed

    Göthe, Katrin; Oberauer, Klaus; Kliegl, Reinhold

    2016-05-01

    We tested the independent influences of two content-based factors on dual-task costs, and on the parallel processing ability: The pairing of S-R modalities and the pairing of relevant features between stimuli and responses of two tasks. The two pairing factors were realized across four dual-task groups. Within each group the two tasks comprised two different stimulus modalities (visual and auditory), two different relevant stimulus features (spatial and verbal) and two response modalities (manual and vocal). Pairings of S-R modalities (standard: visual-manual and auditory-vocal, non-standard: visual-vocal and auditory-manual) and feature pairings (standard: spatial-manual and verbal-vocal, non-standard: spatial-vocal and verbal-manual) varied across groups. All participants practiced their respective dual-task combination in a paradigm with simultaneous stimulus onset before being transferred to a psychological refractory period paradigm varying stimulus-onset asynchrony. A comparison at the end of practice revealed similar dual-task costs and similar pairing effects in both paradigms. Dual-task costs depended on modality and feature pairings. Groups training with non-standard feature pairings (i.e., verbal stimulus features mapped to spatially separated response keys, or spatial stimulus features mapped to verbal responses) and non-standard modality pairings (i.e., auditory stimulus mapped to manual response, or visual stimulus mapped to vocal responses) had higher dual-task costs than respective standard pairings. In contrast, irrespective of modality pairing dual-task costs virtually disappeared with standard feature pairings after practice in both paradigms. The results can be explained by crosstalk between feature-binding processes for the two tasks. Crosstalk was present for non-standard but absent for standard feature pairings. Therefore, standard feature pairings enabled parallel processing at the end of practice.

  4. A computational study of dsDNA pairs and vibrational resonance in separating water.

    PubMed

    Calloway, Richard J; Proctor, Michael D; Boyer, Victor M; Napier, Samantha

    2014-12-01

    This article investigates the relationship between molecular sequence and dependent interacting behavior of molecular segment pairs and secondly, sequence dependent, vibrational resonance in surrounding normal saline, protein-free water. The development of a molecular model to explore these systems phenomena, the results of several nanoscale molecular dynamics simulations, and analysis of behavior of interacting ΦX174 double-stranded DNA segment pair models in various configurations are presented. Fourier analysis revealed intriguing vibration frequencies within the solvent plane between the segments, while subsequent frequency domain transformation of the time domain waveforms revealed statistically significant resonating harmonic signals in the THz range.

  5. Twisted Pair Of Insulated Wires Senses Moisture

    NASA Technical Reports Server (NTRS)

    Laue, Eric G.; Stephens, James B.

    1989-01-01

    Sensitivity of electronic moisture sensor to low levels of moisture increased by new electrode configuration. Moisture-sensing circuit described in "Low-Cost Humidity Sensor" (NPO-16544). New twisted pair of wires takes place of flat-plate capacitor in circuit. Configuration allows for thermal expansion and contraction of polymer while maintaining nearly constant area of contact between polymer and wires.

  6. A Novel Approach for Collaborative Pair Programming

    ERIC Educational Resources Information Center

    Goel, Sanjay; Kathuria, Vanshi

    2010-01-01

    The majority of an engineer's time in the software industry is spent working with other programmers. Agile methods of software development like eXtreme Programming strongly rely upon practices like daily meetings and pair programming. Hence, the need to learn the skill of working collaboratively is of primary importance for software developers.…

  7. Turbulent Particle Pair Diffusion Using Kinematic Simulations

    NASA Astrophysics Data System (ADS)

    Malik, Nadeem

    2015-11-01

    Sweeping errors in Kinematic Simulations (KS) have been shown to be negligible in turbulent flows with extended inertial subranges up to at least 1pair diffusivity K = < Δ . v > in KS may therefore be a genuine effect, challenging previous assumptions that in turbulence with generalized power-law energy spectra, E (k) ~k-p for 1 <= 3, locality would lead to, K ~σΔγ , where σΔ = [ <Δ2 > ]1/2 , Δ is the pair separation, v is the pair relative velocity, < > is the ensemble average, and γ = (1 + p) / 2 . For Kolmogorov turbulence this gives, K ~σΔ4 / 3 . A new analysis, supported by KS confirms that both local and non-local effects govern the pair diffusion process, leading to, K ~σΔγp , where now γp > γ for Kolmogorov turbulence, K ~σΔ1 . 53 . Thus non-local diffusional processes cannot be neglected, and this may have important consequences for the general theory of turbulence. The author acknowledge financial support from SABIC, #SB101011.

  8. Phenomena, dynamics and instabilities of vortex pairs

    NASA Astrophysics Data System (ADS)

    Williamson, C. H. K.; Leweke, T.; Asselin, D. J.; Harris, D. M.

    2014-12-01

    Our motivation for studying the dynamics of vortex pairs stems initially from an interest in the trailing wake vortices from aircraft and the dynamics of longitudinal vortices close to a vehicle surface. However, our motivation also comes from the fact that vortex-vortex interactions and vortex-wall interactions are fundamental to many turbulent flows. The intent of the paper is to present an overview of some of our recent work concerning the formation and structure of counter-rotating vortex pairs. We are interested in the long-wave and short-wave three-dimensional instabilities that evolve for an isolated vortex pair, but also we would like to know how vortex pairs interact with a wall, including both two-dimensional interactions, and also the influence of the surface on the three-dimensional instabilities. The emphasis of this presentation is on physical mechanisms by which vortices interact with each other and with surfaces, principally from an experimental approach, but also coupled with analytical studies.

  9. Assessing Paired Orals: Raters' Orientation to Interaction

    ERIC Educational Resources Information Center

    Ducasse, Ana Maria; Brown, Annie

    2009-01-01

    Speaking tasks involving peer-to-peer candidate interaction are increasingly being incorporated into language proficiency assessments, in both large-scale international testing contexts, and in smaller-scale, for example course-related, ones. This growth in the popularity and use of paired and group orals has stimulated research, particularly into…

  10. Ion Pairing in Alkali Nitrate Electrolyte Solutions.

    PubMed

    Xie, Wen Jun; Zhang, Zhen; Gao, Yi Qin

    2016-03-10

    In this study, we investigate the thermodynamics of alkali nitrate salt solutions, especially the formation of contact ion pairs between alkali cation and nitrate anion. The ion-pairing propensity shows an order of LiNO3 < NaNO3 < KNO3. Such results explain the salt activity coefficients and suggest that the empirical "law of matching water affinity" is followed by these alkali nitrate salt solutions. The spatial patterns of contact ion pairs are different in the three salt solutions studied here: Li(+) forms the contact ion pair with only one oxygen of the nitrate while Na(+) and K(+) can also be shared by two oxygens of the nitrate. In reproducing the salt activity coefficient using Kirkwood-Buff theory, we find that it is essential to include electronic polarization for Li(+) which has a high charge density. The electronic continuum correction for nonpolarizable force field significantly improves the agreement between the calculated activity coefficients and their experimental values. This approach also improves the performance of the force field on salt solubility. From these two aspects, this study suggests that electronic continuum correction can be a promising approach to force-field development for ions with high charge densities. PMID:26901167

  11. Fermionic Paired Superfluids at High Rotation Rate

    NASA Astrophysics Data System (ADS)

    Veillette, Martin Y.; Sheehy, Daniel E.; Gurarie, Victor; Radzihovsky, Leo

    2006-03-01

    I will describe our recent work on rotating resonantly-paired superfluids, mapping out the Feshbach resonance detuning, temperature and rotational frequency phase diagram. I will compare our predictions with the recent experiments on degenerate atomic ^6Li gases across a Feshbach resonance [Zwierlein et al. Nature 435, 1047 (2005)] and will make proposals for future experiments in such systems.

  12. Evolution of displays within the pair bond

    PubMed Central

    Servedio, Maria R.; Price, Trevor D.; Lande, Russell

    2013-01-01

    Although sexual selection is an important cause of display evolution, in socially monogamous species (e.g. many birds), displays continue after formation of the pair bond. Here, we consider that these displays evolve because they stimulate the partner to increase investment in offspring. Our study is motivated by elaborate mutual displays in species that are largely monomorphic and have long-term pair bonds (e.g. the great crested grebe, Podiceps cristatus) and by many empirical results evidencing that display manipulation affects parental investment. Using population genetic models, we show that a necessary condition for the permanent establishment of mutual displays in the pair bond is that the benefit of investment by the pair is more than twice that resulting from investment by a single individual. Pre-existing biases to respond to displays by increased investment are a necessary component of display evolution. We also consider examples where one sex (e.g. males) stimulates increased investment in offspring by the other sex. Here, display and additional investment cannot evolve permanently, but can increase and linger at high frequency for a long time before loss. We discuss how such transient effects may lead to the evolution of permanent displays as a result of evolution at additional loci. PMID:23427172

  13. Pairing the Adult Learner and Boutique Wineries

    ERIC Educational Resources Information Center

    Holyoke, Laura; Heath-Simpson, Delta

    2013-01-01

    This study explored connections between adult learners and their experiences in the context of small boutique wineries operating in the start-up phase of the organizational life cycle. The research objective was to gain insight regarding the pairing of adult learners with the entering of a specialty industry. Fourteen individuals from four…

  14. Ion Pairing in Alkali Nitrate Electrolyte Solutions.

    PubMed

    Xie, Wen Jun; Zhang, Zhen; Gao, Yi Qin

    2016-03-10

    In this study, we investigate the thermodynamics of alkali nitrate salt solutions, especially the formation of contact ion pairs between alkali cation and nitrate anion. The ion-pairing propensity shows an order of LiNO3 < NaNO3 < KNO3. Such results explain the salt activity coefficients and suggest that the empirical "law of matching water affinity" is followed by these alkali nitrate salt solutions. The spatial patterns of contact ion pairs are different in the three salt solutions studied here: Li(+) forms the contact ion pair with only one oxygen of the nitrate while Na(+) and K(+) can also be shared by two oxygens of the nitrate. In reproducing the salt activity coefficient using Kirkwood-Buff theory, we find that it is essential to include electronic polarization for Li(+) which has a high charge density. The electronic continuum correction for nonpolarizable force field significantly improves the agreement between the calculated activity coefficients and their experimental values. This approach also improves the performance of the force field on salt solubility. From these two aspects, this study suggests that electronic continuum correction can be a promising approach to force-field development for ions with high charge densities.

  15. Quantum physics: Photons paired with phonons

    NASA Astrophysics Data System (ADS)

    Blencowe, Miles

    2016-02-01

    The force exerted by light on an object has been used to pair photons with quantum units of mechanical vibration. This paves the way for mechanical oscillators to act as interfaces between photons and other quantum systems. See Letter p.313

  16. Paired Field Placements: A Means for Collaboration

    ERIC Educational Resources Information Center

    Gardiner, Wendy; Robinson, Karen Shipley

    2009-01-01

    In this qualitative study, pairs of preservice teachers were placed with single cooperating teachers in a 100-hour urban field placement. The question guiding this research was would preservice teachers collaborate in ways that contributed to their professional development and if so why, how, and to what end? Results from field notes, multiple…

  17. Analysis of Paired Comparison Data Using Mx

    ERIC Educational Resources Information Center

    Tsai, Rung-Ching; Wu, Tsung-Lin

    2004-01-01

    By postulating that the random utilities associated with the choice options follow a multivariate normal distribution, Thurstonian models (Thurstone, 1927) provide a straightforward representation of paired comparison data. The use of Monte Carlo Expectation-Maximization (MCEM) algorithms and limited information approaches have been proposed to…

  18. Asteroid clusters similar to asteroid pairs

    NASA Astrophysics Data System (ADS)

    Pravec, Petr; Vokrouhlicky, David; Fatka, Petr; Kusnirák, Peter; Hornoch, Kamil; Galád, Adrián

    2016-10-01

    We study five small, tight and young clusters of asteroids. They are placed around following largest (primary) bodies: (11842) Kap'bos, (14627) Emilkowalski, (16598) 1992 YC2, (21509) Lucascavin and (39991) 1998 HR37. Each cluster has 2-4 secondaries that are tightly clustered around the primary body, with distance in the 5-dimensional space of mean orbital elements mostly within 10 m/s, and always < 23 m/s. Backward orbital integrations indicate that they formed between 105 and 106 yr ago. In the P1-q space, where P1 is the primary's spin period and q = Σ Mj/M1 is the total secondary-to-primary mass ratio, the clusters lie in the same range as asteroid pairs formed by rotational fission. We have extended the model of a proto-system separation after rotational fission by Pravec et al. (2010) for application to systems with more than one secondary and found a perfect match for the five tight clusters. We find these clusters to be similar to asteroid pairs and we suggest that they are "extended pairs", having 2-4 escaped secondaries rather than just one secondary as in the case of an asteroid pair. We compare them to six young mini-families (1270) Datura, (2384) Schulhof, (3152) Jones, (6825) Irvine, (10321) Rampo and (20674) 1999 VT1. These mini-families have similar ages, but they have a higher number of members and/or they show a significantly larger spread in the mean orbital elements (dmean on an order of tens m/s) than the five tight clusters. In the P1-q space, all but one of the mini-families lie in the same range as asteroid pairs and the tight clusters; the exception is the mini-family of (3152) Jones which appears to be a collisional family. A possibility that the other five mini-families were also formed by rotational fission as we suggest for the tight clusters ("extended asteroid pairs") is being explored.Reference:Pravec, P., et al. Formation of asteroid pairs by rotational fission. Nature 466, 1085-1088.

  19. Binaries and triples among asteroid pairs

    NASA Astrophysics Data System (ADS)

    Pravec, Petr; Scheirich, Peter; Kušnirák, Peter; Hornoch, Kamil; Galád, Adrián

    2015-08-01

    Despite major achievements obtained during the past two decades, our knowledge of the population and properties of small binary and multiple asteroid systems is still far from advanced. There is a numerous indirect evidence for that most small asteroid systems were formed by rotational fission of cohesionless parent asteroids that were spun up to the critical frequency presumably by YORP, but details of the process are lacking. Furthermore, as we proceed with observations of more and more binary and paired asteroids, we reveal new facts that substantially refine and sometimes change our understanding of the asteroid systems. One significant new finding we have recently obtained is that primaries of many asteroid pairs are actually binary or triple systems. The first such case found is (3749) Balam (Vokrouhlický, ApJL 706, L37, 2009). We have found 9 more binary systems among asteroid pairs within our ongoing NEOSource photometric project since October 2012. They are (6369) 1983 UC, (8306) Shoko, (9783) Tensho-kan, (10123) Fideoja, (21436) Chaoyichi, (43008) 1999 UD31, (44620) 1999 RS43, (46829) 1998 OS14 and (80218) 1999 VO123. We will review their characteristics. These paired binaries as we call them are mostly similar to binaries in the general ("background") population (of unpaired asteroids), but there are a few trends. The paired binaries tend to have larger secondaries with D_2/D_1 = 0.3 to 0.5 and they also tend to be wider systems with 8 of the 10 having orbital periods between 30 and 81 hours, than average among binaries in the general population. There may be also a larger fraction of triples; (3749) Balam is a confirmed triple, having a larger close and a smaller distant satellite, and (8306) Shoko and (10123) Fideoja are suspect triples as they show additional rotational lightcurve components with periods of 61 and 38.8 h that differ from the orbital period of 36.2 and 56.5 h, respectively. The unbound secondaries tend to be of the same size or

  20. Pairing of Homologous Regions in the Mouse Genome Is Associated with Transcription but Not Imprinting Status

    PubMed Central

    Krueger, Christel; King, Michelle R.; Krueger, Felix; Branco, Miguel R.; Osborne, Cameron S.; Niakan, Kathy K.; Higgins, Michael J.; Reik, Wolf

    2012-01-01

    Although somatic homologous pairing is common in Drosophila it is not generally observed in mammalian cells. However, a number of regions have recently been shown to come into close proximity with their homologous allele, and it has been proposed that pairing might be involved in the establishment or maintenance of monoallelic expression. Here, we investigate the pairing properties of various imprinted and non-imprinted regions in mouse tissues and ES cells. We find by allele-specific 4C-Seq and DNA FISH that the Kcnq1 imprinted region displays frequent pairing but that this is not dependent on monoallelic expression. We demonstrate that pairing involves larger chromosomal regions and that the two chromosome territories come close together. Frequent pairing is not associated with imprinted status or DNA repair, but is influenced by chromosomal location and transcription. We propose that homologous pairing is not exclusive to specialised regions or specific functional events, and speculate that it provides the cell with the opportunity of trans-allelic effects on gene regulation. PMID:22802932