Sample records for isostatically pressed beryllium-aluminum-silver

  1. Fracture toughness of CIP-HIP (cold isostatic pressed - hot isostatic pressed) beryllium at elevated temperatures. Final report, 13 May 1980-13 February 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barker, L.M.; Jones, A.H.

    1986-04-01

    The fracture toughness of CIP-HIP (cold isostatic pressed-hot isostatic pressed) beryllium was determined using the short-bar fracture-toughness (K/sub IcSB/) method. The K/sub IcSB/ value measured was 10.96 MPa x the square root of m at room temperature. This falls well within the expected range of 9 to 12 MPa x the square root of m as observed from previous fracture toughness measurements of beryllium. Toughness increased rapidly between 400 F and 500 F reaching a value of 16.7 MPa x the square root of m at 500 F.

  2. Cryogenic Properties of Aluminum Beryllium and Beryllium Materials

    NASA Technical Reports Server (NTRS)

    Gamwell, Wayne R.; McGill, Preston B.

    2003-01-01

    Ultimate tensile strength, yield strength, and elongation were obtained for the aluminum-beryllium alloy, AlBeMetl62 (38%Al-62%Be), at cryogenic (-195.5 C (-320 F) and (-252.8 C) (-423 F)) temperatures, and for an optical grade beryllium, O-30H (99%Be), at -252.8 C. AlBeMetl62 material was purchased to the requirements of SAE-AMS7912, "Aluminum-Beryllium Alloy, Extrusions." O-30H material was purchased to the requirements of Brush Wellman Inc. specification O-30H Optical Grade Beryllium. The ultimate tensile and yield strengths for extruded AlBeMetl62 material increased with decreasing temperature, and the percent elongation decreased with decreasing temperature. Design properties for the ultimate tensile strength, yield strength, and percent elongation for extruded AlBeMetl62 were generated. It was not possible to distinguish a difference in the room and cryogenic ultimate strength for the hot isostatically pressed (HIP'ed) O-30H material. The O30H elongation decreased with decreasing temperature.

  3. The Cryogenic Properties of Several Aluminum-Beryllium Alloys and a Beryllium Oxide Material

    NASA Technical Reports Server (NTRS)

    Gamwell, Wayne R.; McGill, Preston B.

    2003-01-01

    Performance related mechanical properties for two aluminum-beryllium (Al-Be) alloys and one beryllium-oxide (BeO) material were developed at cryogenic temperatures. Basic mechanical properties (Le., ultimate tensile strength, yield strength, percent elongation, and elastic modulus were obtained for the aluminum-beryllium alloy, AlBeMetl62 at cryogenic [-195.5"C (-320 F) and -252.8"C (-423"F)I temperatures. Basic mechanical properties for the Be0 material were obtained at cyrogenic [- 252.8"C (-423"F)] temperatures. Fracture properties were obtained for the investment cast alloy Beralcast 363 at cryogenic [-252.8"C (-423"F)] temperatures. The AlBeMetl62 material was extruded, the Be0 material was hot isostatic pressing (HIP) consolidated, and the Beralcast 363 material was investment cast.

  4. Expanded Analysis of Hot Isostatic Pressed Iodine-Loaded Silver-Exchanged Mordenite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jubin, R. T.; Bruffey, S. H.; Patton, K. K.

    2014-09-30

    Reduced silver-exchanged mordenite (Ag0Z) is being evaluated as a potential material to control the release of radioactive iodine that is released during the reprocessing of used nuclear fuel into the plant off-gas streams. The purpose of this study was to determine if hot pressing could directly convert this iodine loaded sorbent into a waste form suitable for long-term disposition. The minimal pretreatment required for production of pressed pellets makes hot pressing a technically and economically desirable process. Initial scoping studies utilized hot uniaxial pressing (HUPing) to prepare samples of non-iodine-loaded reduced silver exchanged mordenite (Ag0Z). The resulting samples were verymore » fragile due to the low pressure (~ 28 MPa) used. It was recommended that hot isostatic pressing (HIPing), performed at higher temperatures and pressures, be investigated. HIPing was carried out in two phases, with a third and final phase currently underway. Phase I evaluated the effects of pressure and temperature conditions on the manufacture of a pressed sample. The base material was an engineered form of silver zeolite. Six samples of Ag0Z and two samples of I-Ag0Z were pressed. It was found that HIPing produced a pressed pellet of high density. Analysis of each pressed pellet by scanning electron microscopy-energy dispersive spectrophotometry (SEM-EDS) and X-ray diffraction (XRD) demonstrated that under the conditions used for pressing, the majority of the material transforms into an amorphous structure. The only crystalline phase observed in the pressed Ag0Z material was SiO2. For the samples loaded with iodine (I-Ag0Z) iodine was present as AgI clusters at low temperatures, and transformed into AgIO4 at high temperatures. Surface mapping and EDS demonstrate segregation between silver iodide phases and silicon dioxide phases. Based on the results of the Phase I study, an expanded test matrix was developed to examine the effects of multiple source materials

  5. Fabrication of Monolithic RERTR Fuels by Hot Isostatic Pressing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jan-Fong Jue; Blair H. Park; Curtis R. Clark

    2010-11-01

    The RERTR (Reduced Enrichment for Research and Test Reactors) Program is developing advanced nuclear fuels for high-power test reactors. Monolithic fuel design provides higher uranium loading than that of the traditional dispersion fuel design. Hot isostatic pressing is a promising process for low-cost batch fabrication of monolithic RERTR fuel plates for these high-power reactors. Bonding U Mo fuel foil and 6061 Al cladding by hot isostatic press bonding was successfully developed at Idaho National Laboratory. Due to the relatively high processing temperature, the interaction between fuel meat and aluminum cladding is a concern. Two different methods were employed to mitigatemore » this effect: (1) a diffusion barrier and (2) a doping addition to the interface. Both types of fuel plates have been fabricated by hot isostatic press bonding. Preliminary results show that the direct fuel/cladding interaction during the bonding process was eliminated by introducing a thin zirconium diffusion barrier layer between the fuel and the cladding. Fuel plates were also produced and characterized with a silicon-rich interlayer between fuel and cladding. This paper reports the recent progress of this developmental effort and identifies the areas that need further attention.« less

  6. Development of monolithic nuclear fuels for RERTR by hot isostatic pressing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jue, J.-F.; Park, Blair; Chapple, Michael

    2008-07-15

    The RERTR Program (Reduced Enrichment for Research and Test Reactors) is developing advanced nuclear fuels for high power test reactors. Monolithic fuel design provides a higher uranium loading than that of the traditional dispersion fuel design. In order to bond monolithic fuel meat to aluminum cladding, several bonding methods such as roll bonding, friction stir bonding and hot isostatic pressing, have been explored. Hot isostatic pressing is a promising process for low cost, batch fabrication of monolithic RERTR fuel plates. The progress on the development of this process at the Idaho National Laboratory will be presented. Due to the relativelymore » high processing temperature used, the reaction between fuel meat and aluminum cladding to form brittle intermetallic phases may be a concern. The effect of processing temperature and time on the fuel/cladding reaction will be addressed. The influence of chemical composition on the reaction will also be discussed. (author)« less

  7. Beryllium fabrication/cost assessment for ITER (International Thermonuclear Experimental Reactor)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beeston, J.M.; Longhurst, G.R.; Parsonage, T.

    1990-06-01

    A fabrication and cost estimate of three possible beryllium shapes for the International Thermonuclear Experimental Reactor (ITER) blanket is presented. The fabrication method by hot pressing (HP), cold isostatic pressing plus sintering (CIP+S), cold isostatic pressing plus sintering plus hot isostatic pressing (CIP+S+HIP), and sphere production by atomization or rotary electrode will be discussed. Conventional hot pressing blocks of beryllium with subsequent machining to finished shapes can be more expensive than production of a net shape by cold isostatic pressing and sintering. The three beryllium shapes to be considered here and proposed for ITER are: (1) cubic blocks (3 tomore » 17 cm on an edge), (2) tubular cylinders (33 to 50 mm i.d. by 62 mm o.d. by 8 m long), and (3) spheres (1--5 mm dia.). A rough cost estimate of the basic shape is presented which would need to be refined if the surface finish and tolerances required are better than the sintering process produces. The final cost of the beryllium in the blanket will depend largely on the machining and recycling of beryllium required to produce the finished product. The powder preparation will be discussed before shape fabrication. 10 refs., 6 figs.« less

  8. METHOD FOR SOLVENT-ISOSTATIC PRESSING

    DOEpatents

    Archibald, P.B.

    1962-09-18

    This invention provides a method for producing densely compacted bodies having relatively large dimensions. The method comprises the addition of a small quantity of a suitable solvent to a powder which is to be compacted. The solvent- moistened powder is placed inside a flexible bag, and the bag is suspended in an isostatic press. The solvent is squeezed out of the powder by the isostatic pressure, and the resulting compacted body is recovered. The presence of the solvent markedly decreases the proportion of void space in the powder, thereby resulting in a denser, more homogeneous compact. Another effect of the solvent is that it allows the isostatic pressing operation to be conducted at substantially lower pressures than are conventionally employed. (AEC)

  9. Beryllium-aluminum alloys for investment castings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nachtrab, W.T.; Levoy, N.

    1997-05-01

    Beryllium-aluminum alloys containing greater than 60 wt % beryllium are very favorable materials for applications requiring light weight and high stiffness. However, when produced by traditional powder metallurgical methods, these alloys are expensive and have limited applications. To reduce the cost of making beryllium-aluminum components, Nuclear Metals Inc. (NMI) and Lockheed Martin Electronics and Missiles have recently developed a family of patented beryllium-aluminum alloys that can be investment cast. Designated Beralcast, the alloys can achieve substantial weight savings because of their high specific strength and stiffness. In some cases, weight has been reduced by up to 50% over aluminum investmentmore » casting. Beralcast is now being used to make thin wall precision investment castings for several advanced aerospace applications, such as the RAH-66 Comanche helicopter and F-22 jet fighter. This article discusses alloy compositions, properties, casting method, and the effects of cobalt additions on strength.« less

  10. Beryllium Manufacturing Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldberg, A

    2006-06-30

    This report is one of a number of reports that will be combined into a handbook on beryllium. Each report covers a specific topic. To-date, the following reports have been published: (1) Consolidation and Grades of Beryllium; (2) Mechanical Properties of Beryllium and the Factors Affecting these Properties; (3) Corrosion and Corrosion Protection of Beryllium; (4) Joining of Beryllium; (5) Atomic, Crystal, Elastic, Thermal, Nuclear, and other Properties of Beryllium; and (6) Beryllium Coating (Deposition) Processes and the Influence of Processing Parameters on Properties and Microstructure. The conventional method of using ingot-cast material is unsuitable for manufacturing a beryllium product.more » Beryllium is a highly reactive metal with a high melting point, making it susceptible to react with mold-wall materials forming beryllium compounds (BeO, etc.) that become entrapped in the solidified metal. In addition, the grain size is excessively large, being 50 to 100 {micro}m in diameter, while grain sizes of 15 {micro}m or less are required to meet acceptable strength and ductility requirements. Attempts at refining the as-cast-grain size have been unsuccessful. Because of the large grain size and limited slip systems, the casting will invariably crack during a hot-working step, which is an important step in the microstructural-refining process. The high reactivity of beryllium together with its high viscosity (even with substantial superheat) also makes it an unsuitable candidate for precision casting. In order to overcome these problems, alternative methods have been developed for the manufacturing of beryllium. The vast majority of these methods involve the use of beryllium powders. The powders are consolidated under pressure in vacuum at an elevated temperature to produce vacuum hot-pressed (VHP) blocks and vacuum hot-isostatic-pressed (HIP) forms and billets. The blocks (typically cylindrical), which are produced over a wide range of sizes (up to 183 cm dia

  11. Crack-Free, Nondistorting Can For Hot Isostatic Pressing

    NASA Technical Reports Server (NTRS)

    Juhas, John J.

    1991-01-01

    New method of canning specimens made of composites of arc-sprayed and plasma-sprayed tape reduces outgassing and warping during hot isostatic pressing. Produces can having reliable, crack-free seal and thereby helps to ensure pressed product of high quality. Specimen placed in ring of refractory metal between two face sheets, also of refractory metal. Assembly placed in die in vacuum hot press, where simultaneously heated and pressed until plates become diffusion-welded to ring, forming sealed can around specimen. Specimen becomes partially densified, and fits snugly within can. Ready for further densification by hot isostatic pressing.

  12. Method for hot pressing beryllium oxide articles

    DOEpatents

    Ballard, Ambrose H.; Godfrey, Jr., Thomas G.; Mowery, Erb H.

    1988-01-01

    The hot pressing of beryllium oxide powder into high density compacts with little or no density gradients is achieved by employing a homogeneous blend of beryllium oxide powder with a lithium oxide sintering agent. The lithium oxide sintering agent is uniformly dispersed throughout the beryllium oxide powder by mixing lithium hydroxide in an aqueous solution with beryllium oxide powder. The lithium hydroxide is converted in situ to lithium carbonate by contacting or flooding the beryllium oxide-lithium hydroxide blend with a stream of carbon dioxide. The lithium carbonate is converted to lithium oxide while remaining fixed to the beryllium oxide particles during the hot pressing step to assure uniform density throughout the compact.

  13. Fracture toughness of hot-pressed beryllium

    NASA Technical Reports Server (NTRS)

    Lemon, D. D.; Brown, W. F., Jr.

    1985-01-01

    This paper presents the results of an investigation into the fracture toughness, sustained-load flaw growth, and fatigue-crack propagation resistance of S200E hot-pressed beryllium at room temperature. It also reviews the literature pertaining to the influence of various factors on the fracture toughness of hot-pressed beryllium determined using fatigue-cracked specimens.

  14. Selecting mirror materials for high-performance optical systems

    NASA Astrophysics Data System (ADS)

    Parsonage, Thomas B.

    1990-11-01

    The properties of four candidate mirror materials--beryllium, silicon carbide, a silicon carbide/aluminum iretal-matrix carposite and aluminum--are corrpared. Because of its high specific stiffness and dirrensional stability under changing mschanical and thermal loads , beryllium is the best choice . Berjllium mirrors have been made irore cost-conpetitive by new processing technologies in which mirror blanks are isostatically pressed to near-net shape directly fran beiyllium pc1ers. Isostatic pressing also improves material properties and mskes it possible to develop mirror rraterials with superior properties.

  15. METHOD OF BRAZING BERYLLIUM

    DOEpatents

    Hanks, G.S.; Keil, R.W.

    1963-05-21

    A process is described for brazing beryllium metal parts by coating the beryllium with silver (65- 75 wt%)-aluminum alloy using a lithium fluoride (50 wt%)-lithium chloride flux, and heating the coated joint to a temperature of about 700 un. Concent 85% C for about 10 minutes. (AEC)

  16. The Cryogenic Tensile Properties of an Extruded Aluminum-Beryllium Alloy

    NASA Technical Reports Server (NTRS)

    Gamwell, W. R.

    2002-01-01

    Basic mechanical properties; i.e., ultimate tensile strength, yield strength, percent elongation, and elastic modulus, were obtained for the aluminum-beryllium alloy, AlBeMet162, at cryogenic (-195.5 C (-320 F) and -252.8 C (-423 F)) temperatures. The material evaluated was purchased to the requirements of SAE-AMS7912, "Aluminum-Beryllium Alloy, Extrusions."

  17. Removal of glass adhered to sintered ceramics in hot isostatic pressing

    NASA Technical Reports Server (NTRS)

    1985-01-01

    In the hot isostatic pressing of ceramic materials in molten glass using an inert gas as a pressing medium, glass adhered to the sintered ceramics is heated to convert it to a porous glass and removed. Thus, Si3N4 powder was compacted at 5000 kg/sq cm, coated with a 0.5 mm thick BN, embedded in Pyrex glass in a graphite crucible, put inside a hot isostatic press containing Argon, hot pressed at 1750 C and 100 kg/sq cm; cooled, taken out from the crucible, heated at 1100 C for 30 minutes, cooled, and then glass adhered to the sintered body was removed.

  18. Joining of ceramics of different biofunction by hot isostatic pressing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jianguo; Harmansson, L.; Soeremark, R.

    1993-10-01

    Monolithic zirconia (Z) and zirconia-hydroxyapatite (Z/HA) composites were joined by cold isostatic pressing (CIP at 300 MPa) and subsequently by glass-encapsulated hot isostatic pressing (HIP at 1225 C, 1 h and 200 MPa). The physical and mechanical properties of the materials were measured. The fracture surface was studied using a light microscope. The results indicate a strength level of the joint similar to that of the corresponding composite material (Z/HA), 845 and 860 MPa, respectively. Similar experiments with monolithic alumina (A) and alumina-hydroxyapatite (A/HA) were carried out without success. Cracking occurred in the joint area during the cold isostatic pressingmore » process. It seems that ceramics with high green strength and similar green density are essential when joining ceramics by combined CIP and HIP processes.« less

  19. METHOD OF ALLOYING REACTIVE METALS WITH ALUMINUM OR BERYLLIUM

    DOEpatents

    Runnalls, O.J.C.

    1957-10-15

    A halide of one or more of the reactive metals, neptunium, cerium and americium, is mixed with aluminum or beryllium. The mass is heated at 700 to 1200 deg C, while maintaining a substantial vacuum of above 10/sup -3/ mm of mercury or better, until the halide of the reactive metal is reduced and the metal itself alloys with the reducing metal. The reaction proceeds efficiently due to the volatilization of the halides of the reducing metal, aluminum or beryllium.

  20. M3FT-17OR0301070211 - Preparation of Hot Isostatically Pressed AgZ Waste Form Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jubin, Robert Thomas; Bruffey, Stephanie H.; Jordan, Jacob A.

    The production of radioactive iodine-bearing waste forms that exhibit long-term stability and are suitable for permanent geologic disposal has been the subject of substantial research interest. One potential method of iodine waste form production is hot isostatic pressing (HIP). Recent studies at Oak Ridge National Laboratory (ORNL) have investigated the conversion of iodine-loaded silver mordenite (I-AgZ) directly to a waste form by HIP. ORNL has performed HIP with a variety of sample compositions and pressing conditions. The base mineral has varied among AgZ (in pure and engineered forms), silver-exchanged faujasite, and silverexchanged zeolite A. Two iodine loading methods, occlusion andmore » chemisorption, have been explored. Additionally, the effects of variations in temperature and pressure of the process have been examined, with temperature ranges of 525°C–1,100°C and pressure ranges of 100–300 MPa. All of these samples remain available to collaborators upon request. The sample preparation detailed in this document is an extension of that work. In addition to previously prepared samples, this report documents the preparation of additional samples to support stability testing. These samples include chemisorbed I-AgZ and pure AgI. Following sample preparation, each sample was processed by HIP by American Isostatic Presses Inc. and returned to ORNL for storage. ORNL will store the samples until they are requested by collaborators for durability testing. The sample set reported here will support waste form durability testing across the national laboratories and will provide insight into the effects of varied iodine content on iodine retention by the produced waste form and on potential improvements in waste form durability provided by the zeolite matrix.« less

  1. Bibliography on Hot Isostatic Pressing (HIP) Technology

    DTIC Science & Technology

    1992-11-01

    alloys are used mainly as compressor discs and fan blades . Today titanium alloys are more important as structural materials for modern warplanes and...2.5Fc, microstructure. fatigue life crack initiation, tensile properties 2. P/M Processing of Titanium Aluminides Moll, John H., Yolton, C. F...toughness, hardness, titanium additions niobium additions 2. Consolidation of Nickel Aluminide Powders Using Hot Isostatic Pressing Wright, R. N., Knibloe

  2. Glass Coats For Hot Isostatic Pressing

    NASA Technical Reports Server (NTRS)

    Ecer, Gunes M.

    1989-01-01

    Surface voids sealed from pressurizing gas. Coating technique enables healing of surface defects by hot isostatic pressing (HIP). Internal pores readily closed by HIP, but surface voids like cracks and pores in contact with pressurizing gas not healed. Applied to casting or weldment as thick slurry of two glass powders: one melts at temperature slightly lower than used for HIP, and another melts at higher temperature. For example, powder is glass of 75 percent SiO2 and 25 percent Na2O, while other powder SiO2. Liquid component of slurry fugitive organic binder; for example, mixture of cellulose acetate and acetone. Easy to apply, separates voids from surrounding gas, would not react with metal part under treatment, and easy to remove after pressing.

  3. Hot-isostatically pressed wasteforms for Magnox sludge immobilisation

    NASA Astrophysics Data System (ADS)

    Heath, Paul G.; Stewart, Martin W. A.; Moricca, Sam; Hyatt, Neil C.

    2018-02-01

    Thermal treatment technologies offer many potential benefits for the treatment of radioactive wastes including the passivation of reactive species and significant waste volume reductions. This paper presents a study investigating the production of wasteforms using Hot-isostatic pressing technology for the immobilisation of Magnox sludges from the UK's Sellafield Site. Simulants considered physically representative of these sludges were used to determine possible processing parameters and to determine the phase assemblages and morphologies produced during processing. The study showed hot-isostatic pressing is capable of processing Magnox sludges at up to 60 wt% (oxide basis) into dense, mixed ceramic wasteforms. The wasteforms produced are a glass-bonded ceramic of mixed magnesium titanates, encapsulating localised grains of periclase. The ability to co-process Magnox sludges with SIXEP sand/clinoptilolite slurries has also been demonstrated. The importance of these results is presented through a comparison of volume reduction data, which shows HIPing may provide a 20-fold volume reduction over the current cementitious baseline and double the volume reduction attainable for vitrification technologies.

  4. Method for welding beryllium

    DOEpatents

    Dixon, Raymond D.; Smith, Frank M.; O'Leary, Richard F.

    1997-01-01

    A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon.

  5. Method for welding beryllium

    DOEpatents

    Dixon, R.D.; Smith, F.M.; O`Leary, R.F.

    1997-04-01

    A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon. 9 figs.

  6. Consolidation of Si3N4 without additives (by hot isostatic pressing)

    NASA Technical Reports Server (NTRS)

    Yeh, H. C.

    1983-01-01

    The potential of using hot isostatic pressing (HIP'ing) technique to produce dense silicon nitride materials without or with a reduced amount of additives (much less than 5 w/o) was investigated. Hot isostatic pressing technique can provide higher pressure and temperature than hot pressing can, thus has the potential of requiring less densification aids to consolidate Si3N4 materials. It was anticipated that if such dense materials could be fabricated, the high temperature strength of the material should be improved significantly. Observations on the phase transformation, densification behavior, and microstructures of the samples are also documented. Density, microhardness, four point bend strength (room temperature and 1370 C) were measured on selected densified materials.

  7. High density crystalline boron prepared by hot isostatic pressing in refractory metal containers

    DOEpatents

    Hoenig, C.L.

    1993-08-31

    Boron powder is hot isostatically pressed in a refractory metal container to produce a solid boron monolith with a bulk density at least 2.22 g/cc and up to or greater than 2.34 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed or chemical vapor deposited onto a powder compact. Hot isostatic pressing at 1,800 C and 30 PSI (206.8 MPa) argon pressure for four hours produces a bulk density of 2.34 g/cc. Complex shapes can be made.

  8. High density crystalline boron prepared by hot isostatic pressing in refractory metal containers

    DOEpatents

    Hoenig, Clarence L.

    1993-01-01

    Boron powder is hot isostatically pressed in a refractory metal container to produce a solid boron monolith with a bulk density at least 2.22 g/cc and up to or greater than 2.34 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed or chemical vapor deposited onto a powder compact. Hot isostatic pressing at 1800.degree. C. and 30 KSI (206.8 MPa) argon pressure for four hours produces a bulk density of 2.34 g/cc. Complex shapes can be made.

  9. Cost effective aluminum beryllium mirrors for critical optics applications

    NASA Astrophysics Data System (ADS)

    Say, Carissa; Duich, Jack; Huskamp, Chris; White, Ray

    2013-09-01

    The unique performance of aluminum-beryllium frequently makes it an ideal material for manufacturing precision optical-grade metal mirrors. Traditional methods of manufacture utilize hot-pressed powder block in billet form which is subsequently machined to final dimensions. Complex component geometries such as lightweighted, non-plano mirrors require extensive tool path programming, fixturing, and CNC machining time and result in a high buy-to-fly ratio (the ratio of the mass of raw material purchased to the mass of the finished part). This increases the cost of the mirror structure as a significant percentage of the procurement cost is consumed in the form of machining, tooling, and scrap material that do not add value to the final part. Inrad Optics, Inc. and IBC Advanced Alloys Corp. undertook a joint study to evaluate the suitability of investment-cast Beralcast® 191 and 363 aluminum-beryllium as a precision mirror substrate material. Net shape investment castings of the desired geometry minimizes machining to just cleanup stock, thereby reducing the recurring procurement cost while still maintaining performance. The thermal stability of two mirrors, (one each of Beralcast® 191 and Beralcast® 363), was characterized from -40°F to +150°F. A representative pocketed mirror was developed, including the creation of a relevant geometry and production of a cast component to validate the approach. Information from the demonstration unit was used as a basis for a comparative cost study of the representative mirror produced in Beralcast® and one machined from a billet of AlBeMet® 162 (AlBeMet® is a registered trademark of Materion Corporation). The technical and financial results of these studies will be discussed in detail.

  10. Fundamental Aspects of Zeolite Waste Form Production by Hot Isostatic Pressing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jubin, Robert Thomas; Bruffey, Stephanie H.; Jordan, Jacob A.

    The direct conversion of iodine-bearing sorbents into a stable waste form is a research topic of interest to the US Department of Energy. The removal of volatile radioactive 129I from the off-gas of a nuclear fuel reprocessing facility will be necessary in order to comply with the regulatory requirements that apply to facilities sited within the United States (Jubin et al., 2012a), and any iodine-containing media or solid sorbents generated by this process would contain 129I and would be destined for eventual geological disposal. While recovery of iodine from some sorbents is possible, a method to directly convert iodineloaded sorbentsmore » to a durable waste form with little or no additional waste materials being formed and a potentially reduced volume would be beneficial. To this end, recent studies have investigated the conversion of iodine-loaded silver mordenite (I-AgZ) directly to a waste form by hot isostatic pressing (HIPing) (Bruffey and Jubin, 2015). Silver mordenite (AgZ), of the zeolite class of minerals, is under consideration for use in adsorbing iodine from nuclear reprocessing off-gas streams. Direct conversion of I-AgZ by HIPing may provide the following benefits: (1) a waste form of high density that is tolerant to high temperatures, (2) a waste form that is not significantly chemically hazardous, and (3) a robust conversion process that requires no pretreatment.« less

  11. Investigation of the High-Cycle Fatigue Life of Selective Laser Melted and Hot Isostatically Pressed Ti-6Al-4v

    DTIC Science & Technology

    2015-03-26

    INVESTIGATION OF THE HIGH -CYCLE FATIGUE LIFE OF SELECTIVE LASER MELTED AND HOT ISOSTATICALLY PRESSED TI-6AL-4V THESIS Kevin D. Rekedal...ENY-MS-15-M-212 INVESTIGATION OF THE HIGH -CYCLE FATIGUE LIFE OF SELECTIVE LASER MELTED AND HOT ISOSTATICALLY PRESSED TI-6AL-4V THESIS...AFIT-ENY-MS-15-M-212 INVESTIGATION OF THE HIGH -CYCLE FATIGUE LIFE OF SELECTIVE LASER MELTED AND HOT ISOSTATICALLY PRESSED TI-6AL-4V

  12. High density-high purity graphite prepared by hot isostatic pressing in refractory metal containers

    DOEpatents

    Hoenig, Clarence L.

    1994-01-01

    Porous graphite in solid form is hot isostatically pressed in a refractory metal container to produce a solid graphite monolith with a bulk density greater than or equal to 2.10 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed, chemically vapor deposited, or coated by some other suitable means onto graphite. Hot isostatic pressing at 2200.degree. C. and 30 KSI (206.8 MPa) argon pressure for two hours produces a bulk density of 2.10 g/cc. Complex shapes can be made.

  13. High density-high purity graphite prepared by hot isostatic pressing in refractory metal containers

    DOEpatents

    Hoenig, C.L.

    1994-08-09

    Porous graphite in solid form is hot isostatically pressed in a refractory metal container to produce a solid graphite monolith with a bulk density greater than or equal to 2.10 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed, chemically vapor deposited, or coated by some other suitable means onto graphite. Hot isostatic pressing at 2,200 C and 30 KSI (206.8 MPa) argon pressure for two hours produces a bulk density of 2.10 g/cc. Complex shapes can be made. 1 fig.

  14. [Preparing of Al2O3/ZrO2 composite dental ceramics through isostatic pressing technology].

    PubMed

    Liang, Xiao-Feng; Yin, Guang-Fu; Yang, Shi-Yuan; Wang, Jun-Xia

    2006-08-01

    To find out how to prepare high-density dental ceramics through isostatic pressing so that sintering shrinkage will be reduced. To prepare Al2O3/ZrO2 composite powder first, then to mold through dry-pressing, and to shape the green-body through isostatic pressing. The green-bodies were sintered at the temperature of 1 400 degrees C and kept at the temperature for different period of time (2 h, 3 h, 4 h). After that, the density and fracture strength were measured and the microstructure observed by scanning electron microscope (SEM). The sample product's density, line-shrinkage, and fracture strength of ceramics was rising with the sintering time lengthened. The sample product kept under the temperature of 1 400 degrees C for 4 hours, the fracture strength was (497.27 +/- 78.45) MPa and glass phase distributed evenly in the ceramics and the grains were integrated owing to the glass phase. The longer the sintering time, the more even the microstructure was. The sintering quality and the efficiency were improved through isostatic pressing.

  15. High density hexagonal boron nitride prepared by hot isostatic pressing in refractory metal containers

    DOEpatents

    Hoenig, Clarence L.

    1992-01-01

    Boron nitride powder with less than or equal to the oxygen content of starting powder (down to 0.5% or less) is hot isostatically pressed in a refractory metal container to produce hexagonal boron nitride with a bulk density greater than 2.0 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed or chemical vapor deposited onto a powder compact. Hot isostatic pressing at 1800.degree. C. and 30 KSI (206.8 MPa) argon pressure for four hours produces a bulk density of 2.21 g/cc. Complex shapes can be made.

  16. Effect of Hot Isostatic Pressing and Powder Feedstock on Porosity, Microstructure, and Mechanical Properties of Selective Laser Melted AlSi10Mg

    DOE PAGES

    Finfrock, Christopher B.; Exil, Andrea; Carroll, Jay D.; ...

    2018-06-06

    AlSi10Mg tensile bars were additively manufactured using the powder-bed selective laser melting process. Samples were subjected to stress relief annealing and hot isostatic pressing. Tensile samples built using fresh, stored, and reused powder feedstock were characterized for microstructure, porosity, and mechanical properties. Fresh powder exhibited the best mechanical properties and lowest porosity while stored and reused powder exhibited inferior mechanical properties and higher porosity. The microstructure of stress relieved samples was fine and exhibited (001) texture in the z-build direction. Microstructure for hot isostatic pressed samples was coarsened with fainter (001) texture. To investigate surface and interior defects, scanning electronmore » microscopy, optical fractography, and laser scanning microscopy techniques were employed. Hot isostatic pressing eliminated internal pores and reduced the size of surface porosity associated with the selective laser melting process. Hot isostatic pressing tended to increase ductility at the expense of decreasing strength. Furthermore, scatter in ductility of hot isostatic pressed parts suggests that the presence of unclosed surface porosity facilitated fracture with crack propagation inward from the surface of the part.« less

  17. Effect of Hot Isostatic Pressing and Powder Feedstock on Porosity, Microstructure, and Mechanical Properties of Selective Laser Melted AlSi10Mg

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finfrock, Christopher B.; Exil, Andrea; Carroll, Jay D.

    AlSi10Mg tensile bars were additively manufactured using the powder-bed selective laser melting process. Samples were subjected to stress relief annealing and hot isostatic pressing. Tensile samples built using fresh, stored, and reused powder feedstock were characterized for microstructure, porosity, and mechanical properties. Fresh powder exhibited the best mechanical properties and lowest porosity while stored and reused powder exhibited inferior mechanical properties and higher porosity. The microstructure of stress relieved samples was fine and exhibited (001) texture in the z-build direction. Microstructure for hot isostatic pressed samples was coarsened with fainter (001) texture. To investigate surface and interior defects, scanning electronmore » microscopy, optical fractography, and laser scanning microscopy techniques were employed. Hot isostatic pressing eliminated internal pores and reduced the size of surface porosity associated with the selective laser melting process. Hot isostatic pressing tended to increase ductility at the expense of decreasing strength. Furthermore, scatter in ductility of hot isostatic pressed parts suggests that the presence of unclosed surface porosity facilitated fracture with crack propagation inward from the surface of the part.« less

  18. Process and equipment development for hot isostatic pressing treatability study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bateman, Ken; Wahlquist, Dennis; Malewitz, Tim

    2015-03-01

    Battelle Energy Alliance (BEA), LLC, has developed processes and equipment for a pilot-scale hot isostatic pressing (HIP) treatability study to stabilize and volume reduce radioactive calcine stored at Idaho National Laboratory (INL). In 2009, the U. S. Department of Energy signed a Record of Decision with the state of Idaho selecting HIP technology as the method to treat 5,800 yd^3 (4,400 m^3) of granular zirconia and alumina calcine produced between 1953 and 1992 as a waste byproduct of spent nuclear fuel reprocessing. Since the 1990s, a variety of radioactive and hazardous waste forms have been remotely treated using HIP withinmore » INL hot cells. To execute the remote process at INL, waste is loaded into a stainless-steel or aluminum can, which is evacuated, sealed, and placed into a HIP furnace. The HIP simultaneously heats and pressurizes the waste, reducing its volume and increasing its durability. Two 1 gal cans of calcine waste currently stored in a shielded cask were identified as candidate materials for a treatability study involving the HIP process. Equipment and materials for cask-handling and calcine transfer into INL hot cells, as well as remotely operated equipment for waste can opening, particle sizing, material blending, and HIP can loading have been designed and successfully tested. These results demonstrate BEA’s readiness for treatment of INL calcine.« less

  19. Test fixture design for boron-aluminum and beryllium test panels

    NASA Technical Reports Server (NTRS)

    Breaux, C. G.

    1973-01-01

    A detailed description of the test fixture design and the backup analysis of the fixture assembly and its components are presented. The test fixture is required for the separate testing of two boron-aluminum and two beryllium compression panels. This report is presented in conjunction with a complete set of design drawings on the test fixture system.

  20. Cryogenic Fracture Toughness Evaluation of an Investment Cast Aluminum-Beryllium Alloy for Structural Applications

    NASA Technical Reports Server (NTRS)

    Gamwell, Wayne; McGill, Preston

    2006-01-01

    This document is a viewgraph presentation that details the fracture toughness of Aluminum-Beryllium Alloy for use in structures at cryogenic temperatures. Graphs and charts are presented in the presentation

  1. Beryllium

    USGS Publications Warehouse

    Foley, Nora K.; Jaskula, Brian W.; Piatak, Nadine M.; Schulte, Ruth F.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Beryllium is a mineral commodity that is used in a variety of industries to make products that are essential for the smooth functioning of a modern society. Two minerals, bertrandite (which is supplied domestically) and beryl (which is currently supplied solely by imports), are necessary to ensure a stable supply of high-purity beryllium metal, alloys, and metal-matrix composites and beryllium oxide ceramics. Although bertrandite is the source mineral for more than 90 percent of the beryllium produced globally, industrial beryl is critical for the production of the very high purity beryllium metal needed for some strategic applications. The current sole domestic source of beryllium is bertrandite ore from the Spor Mountain deposit in Utah; beryl is imported mainly from Brazil, China, Madagascar, Mozambique, and Portugal. High-purity beryllium metal is classified as a strategic and critical material by the Strategic Materials Protection Board of the U.S. Department of Defense because it is used in products that are vital to national security. Beryllium is maintained in the U.S. stockpile of strategic materials in the form of hot-pressed beryllium metal powder.Because of its unique chemical properties, beryllium is indispensable for many important industrial products used in the aerospace, computer, defense, medical, nuclear, and telecommunications industries. For example, high-performance alloys of beryllium are used in many specialized, high-technology electronics applications, as they are energy efficient and can be used to fabricate miniaturized components. Beryllium-copper alloys are used as contacts and connectors, switches, relays, and shielding for everything from cell phones to thermostats, and beryllium-nickel alloys excel in producing wear-resistant and shape-retaining high-temperature springs. Beryllium metal composites, which combine the fabrication ability of aluminum with the thermal conductivity and highly elastic modulus of beryllium, are ideal for

  2. Ductile Fracture Behaviour of Hot Isostatically Pressed Inconel 690 Superalloy

    NASA Astrophysics Data System (ADS)

    Cooper, A. J.; Brayshaw, W. J.; Sherry, A. H.

    2018-04-01

    Herein we assess the differences in Charpy impact behavior between Hot Isostatically Pressed and forged Inconel 690 alloy over the temperature range of 300 °C to - 196 °C. The impact toughness of forged 690 exhibited a relatively small temperature dependence, with a maximum difference of ca. 40 J measured between 300 °C and - 196 °C, whereas the HIP'd alloy exhibited a difference of approximately double that of the forged alloy over the same temperature range. We have conducted Charpy impact testing, tensile testing, and metallographic analyses on the as-received materials as well as fractography of the failed Charpy specimens in order to understand the mechanisms that cause the observed differences in material fracture properties. The work supports a recent series of studies which assess differences in fundamental fracture behavior between Hot Isostatically Pressed and forged austenitic stainless steel materials of equivalent grades, and the results obtained in this study are compared to those of the previous stainless steel investigations to paint a more general picture of the comparisons between HIP vs forged material fracture behavior. Inconel 690 was selected in this study since previous studies were unable to completely omit the effects of strain-induced martensitic transformation at the tip of the Chary V-notch from the fracture mechanism; Inconel 690 is unable to undergo strain-induced martensitic transformation due to the alloy's high nickel content, thereby providing a sister study with the omission of any martensitic transformation effects on ductile fracture behavior.

  3. Radiation hydrodynamic effects in two beryllium plates with an idealized aluminum joint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belkov, S.A.; Mkhitarian, L.S.; Vinokurov, O.A.

    A beryllium capsule formed from two hemispherical shells with a thin bond is one possible ignition target for the National Ignition Facility [J. A. Paisner {ital et al.}, Laser Focus World {bold 30}, 75 (1994)] Nonuniformities in density, opacity, and interface position at the joint between these hemishells will initiate two-dimensional (2-D) perturbations of the shock wave and material behind the shock as the shock passes through the shell perpendicular to the joint width. Rarefaction of material flow behind the shock front can cause the interface between the shell and joint material to oscillate in position. The amplitude of thesemore » oscillations may be comparable to the joint width. The evolution of these perturbations is studied by numerically simulating shock passage through flat beryllium plates containing aluminum joints. Using the MIMOSA-ND code [D. Sofronov {ital et al.}, Vopr. At. Nauki Tekh., Ser: Mat. modelirovanie fizicheskih processov {bold 2}, 3 (1990)] two different cases are calculated{emdash}a wide (10 {mu}m) and a narrow (1 {mu}m) joint of aluminum between two 150 {mu}m long semiinfinite beryllium plates. Both cases showed good agreement with an analytic representation of the oscillation behavior. For the narrow joint, a special technique allows the calculation of mixing between the joint and surrounding material caused by the Kelvin{endash}Helmholtz instability. {copyright} {ital 1999 American Institute of Physics.}« less

  4. Hot isostatically pressed manufacture of high strength MERL 76 disk and seal shapes

    NASA Technical Reports Server (NTRS)

    Eng, R. D.; Evans, D. J.

    1982-01-01

    The feasibility of using MERL 76, an advanced high strength direct hot isostatic pressed powder metallurgy superalloy, as a full scale component in a high technology, long life, commercial turbine engine were demonstrated. The component was a JT9D first stage turbine disk. The JT9D disk rim temperature capability was increased by at least 22 C and the weight of JT9D high pressure turbine rotating components was reduced by at least 35 pounds by replacement of forged Superwaspaloy components with hot isostatic pressed (HIP) MERL 76 components. The process control plan and acceptance criteria for manufacture of MERL 76 HIP consolidated components were generated. Disk components were manufactured for spin/burst rig test, experimental engine tests, and design data generation, which established lower design properties including tensile, stress-rupture, 0.2% creep and notched (Kt = 2.5) low cycle fatigue properties, Sonntag, fatigue crack propagation, and low cycle fatigue crack threshold data. Direct HIP MERL 76, when compared to conventionally forged Superwaspaloy, is demonstrated to be superior in mechanical properties, increased rim temperature capability, reduced component weight, and reduced material cost by at least 30% based on 1980 costs.

  5. Hot Isostatic Pressing of Engineered Forms of I-AgZ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jubin, Robert Thomas; Watkins, Thomas R.; Bruffey, Stephanie H.

    Hot isostatic pressing (HIP) is being considered for direct conversion of 129I-bearing materials to a radiological waste form. The removal of volatile radioactive 129I from the off-gas of a nuclear fuel reprocessing facility will be necessary to comply with regulatory requirements regarding reprocessing facilities sited within the United States, and any iodine-containing media or solid sorbents generated by offgas abatement will require disposal. Zeolite minerals such as silver-exchanged mordenite (AgZ) have been studied as potential iodine sorbents and will contain 129I as chemisorbed AgI. Oak Ridge National Laboratory (ORNL) has conducted several recent studies on the HIP of both iodine-loadedmore » AgZ (I-AgZ) and other iodine-bearing zeolite minerals. The goal of these research efforts is to achieve a stable, highly leach resistant material that is reduced in volume as compared to bulk iodine-loaded I-AgZ. Through the use of HIP, it may be possible to achieve this with the addition of little or no additional materials (waste formers). Other goals for the process include that the waste form will be tolerant to high temperatures and pressures, not chemically hazardous, and that the process will result in minimal secondary waste generation. This document describes the preparation of 27 samples that are distinct from previous efforts in that they are prepared exclusively with an engineered form of AgZ that is manufactured using a binder. Iodine was incorporated solely by chemisorption. This base material is expected to be more representative of an operational system than were samples prepared previously with pure minerals.« less

  6. Densification of oxide superconductors by hot isostatic pressing

    NASA Astrophysics Data System (ADS)

    Tien, J. K.; Borofka, J. C.; Hendrix, B. C.; Caulfield, T.; Reichman, S. H.

    1988-07-01

    Currently, consolidation of high Tc superconductor powders is done by sintering, which is not effective in the reduction of porosity. This work assesses the feasibility of hot isostatic pressing (HIP) to obtain fully dense bulk superconductor using HIP modeling and experimental verification. It is concluded that fully dense YBa2Cu3O7 can be obtained in reasonable times at temperatures down to around 650 °C. The trade-offs between temperature, time, and pressure are examined as well as the effects of powder particle size, powder grain size, and trapped gas pressure. The model has. been verified by experiment under three conditions: 100 MPa HIP at 900 °C for 2 hours, 100 MPa HIP at 750 °C for 2 hours, and sintering at 950 °C for 16 hours. The additional advantages of HIPing oxide superconductors are also discussed.

  7. CuCrZr alloy microstructure and mechanical properties after hot isostatic pressing bonding cycles

    NASA Astrophysics Data System (ADS)

    Frayssines, P.-E.; Gentzbittel, J.-M.; Guilloud, A.; Bucci, P.; Soreau, T.; Francois, N.; Primaux, F.; Heikkinen, S.; Zacchia, F.; Eaton, R.; Barabash, V.; Mitteau, R.

    2014-04-01

    ITER first wall (FW) panels are a layered structure made of the three following materials: 316L(N) austenitic stainless steel, CuCrZr alloy and beryllium. Two hot isostatic pressing (HIP) cycles are included in the reference fabrication route to bond these materials together for the normal heat flux design supplied by the European Union (EU). This reference fabrication route ensures sufficiently good mechanical properties for the materials and joints, which fulfil the ITER mechanical specifications, but often results in a coarse grain size for the CuCrZr alloy, which is not favourable, especially, for the thermal creep properties of the FW panels. To limit the abnormal grain growth of CuCrZr and make the ITER FW fabrication route more reliable, a study began in 2010 in the EU in the frame of an ITER task agreement. Two material fabrication approaches have been investigated. The first one was dedicated to the fabrication of solid CuCrZr alloy in close collaboration with an industrial copper alloys manufacturer. The second approach investigated was the manufacturing of CuCrZr alloy using the powder metallurgy (PM) route and HIP consolidation. This paper presents the main mechanical and microstructural results associated with the two CuCrZr approaches mentioned above. The mechanical properties of solid CuCrZr, PM CuCrZr and joints (solid CuCrZr/solid CuCrZr and solid CuCrZr/316L(N) and PM CuCrZr/316L(N)) are also presented.

  8. Cryogenic optical tests of a lightweight HIP beryllium mirror

    NASA Technical Reports Server (NTRS)

    Melugin, Ramsey K.; Miller, Jacob H.; Young, J. A.; Howard, Steven D.; Pryor, G. Mark

    1989-01-01

    Five interferometric tests were conducted at cryogenic temperatures on a lightweight, 50 cm diameter, hot isostatic pressed (HIP) beryllium mirror in the Ames Research Center (ARC) Cryogenic Optics Test Facility. The purpose of the tests was to determine the stability of the mirror's figure when cooled to cryogenic temperatures. Test temperatures ranged from room ambient to 8 K. One cycle to 8 K and five cycles to 80 K were performed. Optical and thermal test methods are described. Data is presented to show the amount of cryogenic distortion and hysteresis present in the mirror when measured with an earlier, Shack interferometer, and with a newly-acquired, phase-measuring interferometer.

  9. Lightweight Metal Matrix Composite Segmented for Manufacturing High-Precision Mirrors

    NASA Technical Reports Server (NTRS)

    Vudler, Vladimir

    2012-01-01

    High-precision mirrors for space applications are traditionally manufactured from one piece of material, such as lightweight glass sandwich or beryllium. The purpose of this project was to develop and test the feasibility of a manufacturing process capable of producing mirrors out of welded segments of AlBeMet(Registered Trademark) (AM162H). AlBeMet(Registered Trademark) is a HIP'd (hot isostatic pressed) material containing approximately 62% beryllium and 38% aluminum. As a result, AlBeMet shares many of the benefits of both of those materials for use in high performance mirrors, while minimizing many of their weaknesses.

  10. Hot isostatic pressing (HIP) of powder mixtures and composites: Packing, densification, and microstructural effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, E.K.H.; Funkenbusch, P.D.

    1993-06-01

    Hot isostatic pressing (HIP) of powder mixtures (containing differently sized components) and of composite powders is analyzed. Recent progress, including development of a simple scheme for estimating radial distribution functions, has made modeling of these systems practical. Experimentally, powders containing bimodal or continuous size distributions are observed to hot isostatically press to a higher density tinder identical processing conditions and to show large differences in the densification rate as a function of density when compared with the monosize powders usually assumed for modeling purposes. Modeling correctly predicts these trends and suggests that they can be partially, but not entirely, attributedmore » to initial packing density differences. Modeling also predicts increased deformation in the smaller particles within a mixture. This effect has also been observed experimentally and is associated with microstructural changes, such as preferential recrystallization of small particles. Finally, consolidation of a composite mixture containing hard, but deformable, inclusions has been modeled for comparison with existing experimental data. Modeling results match both the densification and microstructural observations reported experimentally. Densification is retarded due to contacts between the reinforcing particles which support a significant portion of the applied pressure. In addition, partitioning of deformation between soft matrix and hard inclusion powders results in increased deformation of the softer material.« less

  11. Hardness of pulsed electric current sintered and hot isostatically pressed Mo(Si,Al)2

    NASA Astrophysics Data System (ADS)

    Tanabe, Jun

    2005-05-01

    We improved the reactivity and mechanical characteristics of Mo(Si,Al)2 by pulsed electric current sintering (PECS) and hot isostatic pressing (HIP), and evaluated its reaction state and mechanical characteristics using energy dispersive spectroscopy (EDS), X-ray diffraction, and a hardness test. Mo(Si,Al)2 was generated by pretreatment using a furnace, and the application of the PECS and HIP treatments further densified the sintered body, resulting in an increase in the hardness.

  12. Dynamic Multiaxial Response of a Hot-Pressed Aluminum Nitride

    DTIC Science & Technology

    2012-01-05

    Hutchinson, Adv. Appl . Mech. 29 (1992). [34] H. Ming-Yuan, J.W. Hutchinson, Int. J. Solids Struct. 25 (1989) 1053. [35] J. Salem , L. Ghosn, Int. J...Dynamic Multiaxial Response of a Hot- Pressed Aluminum Nitride by Guangli Hu, C. Q. Chen, K. T. Ramesh, and J. W. McCauley ARL-RP-0487...Laboratory Aberdeen Proving Ground, MD 21005-5066 ARL-RP-0487 June 2014 Dynamic Multiaxial Response of a Hot- Pressed Aluminum Nitride

  13. Influence of hot isostatic pressing on ZrO2-CaO dental ceramics properties.

    PubMed

    Gionea, Alin; Andronescu, Ecaterina; Voicu, Georgeta; Bleotu, Coralia; Surdu, Vasile-Adrian

    2016-08-30

    Different hot isostatic pressing conditions were used to obtain zirconia ceramics, in order to assess the influence of HIP on phase transformation, compressive strength, Young's modulus and density. First, CaO stabilized zirconia powder was synthesized through sol-gel method, using zirconium propoxide, calcium isopropoxide and 2-metoxiethanol as precursors, then HIP treatment was applied to obtain final dense ceramics. Ceramics were morphologically and structurally characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Density measurements, compressive strength and Young's modulus tests were also performed in order to evaluate the effect of HIP treatment. The zirconia powders heat treated at 500°C for 2h showed a pure cubic phase with average particle dimension about 70nm. The samples that were hot isostatic pressed presented a mixture of monoclinic-tetragonal or monoclinic-cubic phases, while for pre-sintered samples, cubic zirconia was the single crystalline form. Final dense ceramics were obtained after HIP treatment, with relative density values higher than 94%. ZrO2-CaO ceramics presented high compressive strength, with values in the range of 500-708.9MPa and elastic behavior with Young's modulus between 1739MPa and 4372MPa. Finally zirconia ceramics were tested for biocompatibility allowing the normal development of MG63 cells in vitro. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Processing of surrogate nuclear fuel pellets for better dimensional control with dry bag isostatic pressing

    DOE PAGES

    Hoggan, Rita E.; Zuck, Larry D.; Cannon, W. Roger; ...

    2016-05-26

    A study of improved methods of processing fuel pellets was undertaken using ceria and zirconia/yttria/alumina as surrogates. Through proper granulation and vertical vibration (tapping) of the parts bag prior to dry bag isostatic pressing (DBIP), reproducibility of diameter profiles among multiple pellets of ceria was improved by almost an order of magnitude. Reproducibility of sintered pellets was sufficiently good to possibly avoid grinding. Deviation from the mean diameter along the length of multiple pellets, as well as, deviation from roundness, decreased after sintering. This is not generally observed with dry pressed pellets. Thus it is possible to machine to tolerancemore » before sintering if grinding is necessary.« less

  15. Development of beryllium-based neutron target system with three-layer structure for accelerator-based neutron source for boron neutron capture therapy.

    PubMed

    Kumada, Hiroaki; Kurihara, Toshikazu; Yoshioka, Masakazu; Kobayashi, Hitoshi; Matsumoto, Hiroshi; Sugano, Tomei; Sakurai, Hideyuki; Sakae, Takeji; Matsumura, Akira

    2015-12-01

    The iBNCT project team with University of Tsukuba is developing an accelerator-based neutron source. Regarding neutron target material, our project has applied beryllium. To deal with large heat load and blistering of the target system, we developed a three-layer structure for the target system that includes a blistering mitigation material between the beryllium used as the neutron generator and the copper heat sink. The three materials were bonded through diffusion bonding using a hot isostatic pressing method. Based on several verifications, our project chose palladium as the intermediate layer. A prototype of the neutron target system was produced. We will verify that sufficient neutrons for BNCT treatment are generated by the device in the near future. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Hot Isostatic Press Manufacturing Process Development for Fabrication of RERTR Monolithic Fuel Plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crapps, Justin M.; Clarke, Kester D.; Katz, Joel D.

    2012-06-06

    We use experimentation and finite element modeling to study a Hot Isostatic Press (HIP) manufacturing process for U-10Mo Monolithic Fuel Plates. Finite element simulations are used to identify the material properties affecting the process and improve the process geometry. Accounting for the high temperature material properties and plasticity is important to obtain qualitative agreement between model and experimental results. The model allows us to improve the process geometry and provide guidance on selection of material and finish conditions for the process strongbacks. We conclude that the HIP can must be fully filled to provide uniform normal stress across the bondingmore » interface.« less

  17. Microstructure and mechanical properties of hip-consolidated Rene 95 powders. [hot-isostatic pressed nickel-based powder metal

    NASA Technical Reports Server (NTRS)

    Shimanuki, Y.; Nishino, Y.; Masui, M.; Doi, H.

    1980-01-01

    The effects of heat-treatments on the microstructure of P/M Rene 95 (a nickel-based powder metal), consolidated by the hot-isostatic pressing (HIP), were examined. The microstructure of as-HIP'd specimen was characterized by highly serrated grain boundaries. Mechanical tests and microstructural observations reveal that the serrated grain boundaries improved ductility at both room and elevated temperatures by retarding crack propagation along grain boundaries.

  18. Effect of Temperature on the Fracture Toughness of Hot Isostatically Pressed 304L Stainless Steel

    NASA Astrophysics Data System (ADS)

    Cooper, A. J.; Brayshaw, W. J.; Sherry, A. H.

    2018-03-01

    Herein, we have performed J- Resistance multi-specimen fracture toughness testing of hot isostatically pressed (HIP'd) and forged 304L austenitic stainless steel, tested at elevated (300 °C) and cryogenic (- 140 °C) temperatures. The work highlights that although both materials fail in a pure ductile fashion, stainless steel manufactured by HIP displays a marked reduction in fracture toughness, defined using J 0.2BL, when compared to equivalently graded forged 304L, which is relatively constant across the tested temperature range.

  19. An Assessment of the Ductile Fracture Behavior of Hot Isostatically Pressed and Forged 304L Stainless Steel

    NASA Astrophysics Data System (ADS)

    Cooper, A. J.; Smith, R. J.; Sherry, A. H.

    2017-05-01

    Type 300 austenitic stainless steel manufactured by hot isostatic pressing (HIP) has recently been shown to exhibit subtly different fracture behavior from that of equivalent graded forged steel, whereby the oxygen remaining in the component after HIP manifests itself in the austenite matrix as nonmetallic oxide inclusions. These inclusions facilitate fracture by acting as nucleation sites for the initiation, growth, and coalescence of microvoids in the plastically deforming austenite matrix. Here, we perform analyses based on the Rice-Tracey (RT) void growth model, supported by instrumented Charpy and J-integral fracture toughness testing at ambient temperature, to characterize the degree of void growth ahead of both a V-notch and crack in 304L stainless steel. We show that the hot isostatically pressed (HIP'd) 304L steel exhibits a lower critical void growth at the onset of fracture than that observed in forged 304L steel, which ultimately results in HIP'd steel exhibiting lower fracture toughness at initiation and impact toughness. Although the reduction in toughness of HIP'd steel is not detrimental to its use, due to the steel's sufficiently high toughness, the study does indicate that HIP'd and forged 304L steel behave as subtly different materials at a microstructural level with respect to their fracture behavior.

  20. Influence of hot isostatic pressing on the structure and properties of an innovative low-alloy high-strength aluminum cast alloy based on the Al-Zn-Mg-Cu-Ni-Fe system

    NASA Astrophysics Data System (ADS)

    Akopyan, T. K.; Padalko, A. G.; Belov, N. A.

    2015-11-01

    Hot isostatic pressing (HIP) is applied for treatment of castings of innovative low-ally high-strength aluminum alloy, nikalin ATs6N0.5Zh based on the Al-Zn-Mg-Cu-Ni-Fe system. The influence of HIP on the structure and properties of castings is studied by means of three regimes of barometric treatment with different temperatures of isometric holding: t 1 = 505 ± 2°C, p 1 = 100 MPa, τ1 = 3 h (HIP1); t 2 = 525 ± 2°C, p 2 = 100 MPa, τ2 = 3 h (HIP2); and t 3 = 545 ± 2°C, p 3 = 100 MPa, τ3 = 3 h (HIP3). It is established that high-temperature HIP leads to actually complete elimination of porosity and additional improvement of the morphology of second phases. Improved structure after HIP provides improvement properties, especially of plasticity. In particular, after heat treatment according of regime HIP2 + T4 (T4 is natural aging), the alloy plasticity is improved by about two times in comparison with the initial state (from ~6 to 12%). While applying regime HIP3 + T6 (T6 is artificial aging for reaching the maximum strength), the plasticity has improved by more than three times in comparison with the initial state, as after treatment according to regimes HIP1 + T6 and HIP2 + T6 (from ~1.2 to ~5.0%), which are characterized by a lower HIP temperature.

  1. Porous mandrels provide uniform deformation in hydrostatic powder metallurgy

    NASA Technical Reports Server (NTRS)

    Gripshover, P. J.; Hanes, H. D.

    1967-01-01

    Porous copper mandrels prevent uneven deformation of beryllium machining blanks. The beryllium powder is arranged around these mandrels and hot isostatically pressed to form the blanks. The mandrels are then removed by leaching.

  2. Passivation of Plasmonic Colors on Bulk Silver by Atomic Layer Deposition of Aluminum Oxide.

    PubMed

    Guay, Jean-Michel; Killaire, Graham; Gordon, Peter G; Barry, Sean T; Berini, Pierre; Weck, Arnaud

    2018-05-01

    We report the passivation of angle-independent plasmonic colors on bulk silver by atomic layer deposition (ALD) of thin films of aluminum oxide. The colors are rendered by silver nanoparticles produced by laser ablation and redeposition on silver. We then apply a two-step approach to aluminum oxide conformal film formation via ALD. In the first step, a low-density film is deposited at low temperature to preserve and pin the silver nanoparticles. In the second step, a second denser film is deposited at a higher temperature to provide tarnish protection. This approach successfully protects the silver and plasmonic colors against tarnishing, humidity, and temperature, as demonstrated by aggressive exposure trials. The processing time associated with deposition of the conformal passivation layers meets industry requirements, and the approach is compatible with mass manufacturing.

  3. 30. BUILDING NO. 527, DEHYDRATING PRESSES, LOOKING SOUTH. ALUMINUM NARROWGUAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. BUILDING NO. 527, DEHYDRATING PRESSES, LOOKING SOUTH. ALUMINUM NARROW-GUAGE GONDOLA CAR IN LEFT BACKGROUND BROUGHT MOISTENED GUN COTTON FROM REST HOUSE (BUILDING NO. 320-B) IN CANS. (ONE OF THESE CANS IS ON UNLOADING PLATFORM RUNNING BESIDE PRESSES). CONTENTS OF CANS WERE UNLOADED INTO PRESSES BY HAND. - Picatinny Arsenal, 500 Area, Powder Factory & Power House, State Route 15 near I-80, Dover, Morris County, NJ

  4. Yb:Y2O3 transparent ceramics processed with hot isostatic pressing

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Ma, Jie; Zhang, Jian; Liu, Peng; Luo, Dewei; Yin, Danlei; Tang, Dingyuan; Kong, Ling Bing

    2017-09-01

    Highly transparent 5 at.% Yb:Y2O3 ceramics were fabricated by using a combination method of vacuum sintering and hot isostatic pressing (HIP). Co-precipitated Yb:Y2O3 powders, with 1 at.% ZrO2 as the sintering aid, were used as the starting material. The Yb:Y2O3 ceramics, vacuum sintered at 1700 °C for 2 h and HIPed at 1775 °C for 4 h, exhibited small grain size of 1.9 μm and highly dense microstructure. In-line optical transmittance of the ceramics reached 83.4% and 78.9% at 2000 and 600 nm, respectively. As the ceramic slab was pumped by a fiber-coupled laser diode at about 940 nm, a maximum output power of 0.77 W at 1076 nm was achieved, with a corresponding slope efficiency of 10.6%.

  5. Summary of Calcine Disposal Development Using Hot Isostatic Pressing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bateman, Ken; Wahlquist, Dennis; Hart, Edward

    2015-03-01

    Battelle Energy Alliance, LLC, has demonstrated the effectiveness of the hot isostatic press (HIP) process for treatment of hazardous high-level waste known as calcine that is stored at the Idaho Nuclear Technology and Engineering Center (INTEC) at Idaho National Laboratory. HIP trials performed with simulated calcines at Idaho National Laboratory’s Materials and Fuels Complex and an Australian Nuclear Science and Technology Organization facility from 2007 to 2010 produced a dense, monolithic waste form with increased chemical durability and effective (storage) volume reductions of ~10 to ~70% compared to granular calcine forms. In December 2009, the U.S. Department of Energy signedmore » an amended Record of Decision selecting HIP technology as the treatment method for the 4,400 m3 of granular zirconia and alumina calcine stored at INTEC. Testing showed that HIP treatment reduces the risks associated with radioactive and hazardous constituent release, post-production handling, and long-term (repository) storage of calcines and would result in estimated storage cost savings in the billions of dollars. Battelle Energy Alliance has the ability to complete pilot-scale HIP processing of INTEC calcine, which is the next necessary step in implementing HIP processing as a calcine treatment method.« less

  6. Microstructure of Dense Thin Sheets of gamma-TiAl Fabricated by Hot Isostatic Pressing of Tape-Cast Monotapes (Preprint)

    DTIC Science & Technology

    2007-02-01

    fabrication of dense thin sheets of gamma titanium aluminide . Polarized light microscopy revealed a fine-grained microstructure but a few isolated...HIPed (near-gamma) microstructure occurred. 15. SUBJECT TERMS gamma titanium aluminide , thin sheet, tape casting, hot isostatic pressing 16...sheets (250–300 μm thick) of gamma titanium aluminide (γ-TiAl). Polarized light microscopy revealed a fine-grained microstructure (average grain

  7. Mechanical properties of hot isostatically pressed zirconia (2 mol% yttria)-reinforced molybdenum disilicide composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Toshihiro; Hirota, Ken; Yamaguchi, Osamu

    1995-07-01

    Dense sintered composites of ZrO{sub 2} (2 mol% Y{sub 2}O{sub 3}) and MoSi{sub 2} have been fabricated by hot isostatic pressing for 2 h at 1400 C under 196 MPa. The ZrO{sub 2} particles in the composites consist of only t-ZrO{sub 2}. There is no reaction between ZrO{sub 2} and MoSi{sub 2}. Microstructures and mechanical properties are examined, in connection with increased ZrO{sub 2} content. The fracture toughness and bending strength of the composite with 40 mol% ZrO{sub 2} addition are 6.18 MPa{center_dot}m{sup 1/2} and 1034 MPa, respectively.

  8. Production of near-full density uranium nitride microspheres with a hot isostatic press

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMurray, Jacob W.; Kiggans, Jr., Jim O.; Helmreich, Grant W.

    Depleted uranium nitride (UN) kernels with diameters ranging from 420 to 858 microns and theoretical densities (TD) between 87 and 91 percent were postprocessed using a hot isostatic press (HIP) in an argon gas media. This treatment was shown to increase the TD up to above 97%. Uranium nitride is highly reactive with oxygen. Therefore, a novel crucible design was implemented to remove impurities in the argon gas via in situ gettering to avoid oxidation of the UN kernels. The density before and after each HIP procedure was calculated from average weight, volume, and ellipticity determined with established characterization techniquesmore » for particle. Furthermore, micrographs confirmed the nearly full densification of the particles using the gettering approach and HIP processing parameters investigated in this work.« less

  9. Hot isostatic pressing of SiC particulate reinforced metal matrix composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loh, N.L.; Wei, Z.; Xu, Z.

    1996-12-31

    Two as-cast SiC particulate reinforced A359-based composites were hot isostatically pressed for a fixed length of time but at various pressures (in the range 100--150 MPa) and temperatures (in the range 450--550 C). It was found that HIP treatment generally increased the ductility but reduced the yield stress drastically. The improvement of ductility was attributed to a reduction of the porosity levels. Quantitative image analyses showed that the HIP treatment reduced the porosity levels significantly. It is of interest to observe that increasing HIP temperature is more effective than increasing HIP pressure in terms of improvement in strength and ductility.more » Another interesting observation is that most eutectic Si particles were spheroidized during HIP. The spheroidization of Si was believed to contribute to the improvement of mechanical properties, because fracture initiation of the composites was observed to be related to either the breaking of Si particles or the debonding of Si particles from the nearby SiC particles.« less

  10. Manufacture of astroloy turbine disk shapes by hot isostatic pressing, volume 1

    NASA Technical Reports Server (NTRS)

    Eng, R. D.; Evans, D. J.

    1978-01-01

    The Materials in Advanced Turbine Engines project was conducted to demonstrate container technology and establish manufacturing procedures for fabricating direct Hot Isostatic Pressing (HIP) of low carbon Astroloy to ultrasonic disk shapes. The HIP processing procedures including powder manufacture and handling, container design and fabrication, and HIP consolidation techniques were established by manufacturing five HIP disks. Based upon dimensional analysis of the first three disks, container technology was refined by modifying container tooling which resulted in closer conformity of the HIP surfaces to the sonic shape. The microstructure, chemistry and mechanical properties of two HIP low carbon Astroloy disks were characterized. One disk was subjected to a ground base experimental engine test, and the results of HIP low carbon Astroloy were analyzed and compared to conventionally forged Waspaloy. The mechanical properties of direct HIP low carbon Astroloy exceeded all property goals and the objectives of reduction in material input weight and reduction in cost were achieved.

  11. Studies on the annealing and antibacterial properties of the silver-embedded aluminum/silica nanospheres

    PubMed Central

    2014-01-01

    Substantial silver-embedded aluminum/silica nanospheres with uniform diameter and morphology were successfully synthesized by sol-gel technique. After various annealing temperatures, the surface mechanisms of each sample were analyzed using scanning electron microscope, transmission electron microscope, and X-ray photoelectron spectroscopy. The chemical durability examinations and antibacterial tests of each sample were also carried out for the confirmation of its practical usage. Based on the result of the above analyses, the silver-embedded aluminum/silica nanospheres are eligible for fabricating antibacterial utensils. PMID:25136275

  12. Beryllium in the environment: a review.

    PubMed

    Taylor, Tammy P; Ding, Mei; Ehler, Deborah S; Foreman, Trudi M; Kaszuba, John P; Sauer, Nancy N

    2003-02-01

    Beryllium is an important industrial metal because of its unusual material properties: it is lighter than aluminum and six times stronger than steel. Often alloyed with other metals such as copper, beryllium is a key component of materials used in the aerospace and electronics industries. Beryllium has a small neutron cross-section, which makes it useful in the production of nuclear weapons and in sealed neutron sources. Unfortunately, beryllium is one of the most toxic elements in the periodic table. It is responsible for the often-fatal lung disease, Chronic Beryllium Disease (CBD) or berylliosis, and is listed as a Class A EPA carcinogen. Coal-fired power plants, industrial manufacturing and nuclear weapons production and disposal operations have released beryllium to the environment. This contamination has the potential to expose workers and the public to beryllium. Despite the increasing use of beryllium in industry, there is surprisingly little published information about beryllium fate and transport in the environment. This information is crucial for the development of strategies that limit worker and public exposure. This review summarizes the current understanding of beryllium health hazards, current regulatory mandates, environmental chemistry, geochemistry and environmental contamination.

  13. Transformation of Cs-IONSIV® into a ceramic wasteform by hot isostatic pressing

    NASA Astrophysics Data System (ADS)

    Chen, Tzu-Yu; Maddrell, Ewan R.; Hyatt, Neil C.; Gandy, Amy S.; Stennett, Martin C.; Hriljac, Joseph A.

    2018-01-01

    A simple method to directly convert Cs-exchanged IONSIV® IE-911 into a ceramic wasteform by hot isostatic pressing (1100 °C/190 MPa/2 hr) is presented. Two major Cs-containing phases, Cs2TiNb6O18 and Cs2ZrSi6O15, and a series of mixed oxides form. The microstructure and phase assemblage of the samples as a function of Cs content were examined using XRD, XRF, SEM and TEM/EDX. The chemical aqueous durability of the materials was investigated using the MCC-1 and PCT-B standard test methods. For HIPed Cs-IONSIV® samples, the MCC-1 normalised release rates of Cs were <1.57 × 10-1 g m-2 d-1 at 0-28 days, and <3.78 × 10-2 g m-2 d-1 for PCT-B at 7 days. The low rates are indicative of a safe long-term immobilisation matrix for Cs formed directly from spent IONSIV®. It was also demonstrated that the phase formation can be altered by adding Ti metal due to a controlled redox environment.

  14. Effect of Tooling Material on the Internal Surface Quality of Ti6Al4V Parts Fabricated by Hot Isostatic Pressing

    NASA Astrophysics Data System (ADS)

    Cai, Chao; Song, Bo; Wei, Qingsong; Yan, Wu; Xue, Pengju; Shi, Yusheng

    2017-01-01

    For the net-shape hot isostatic pressing (HIP) process, control of the internal surface roughness of as-HIPped parts remains a challenge for practical engineering. To reveal the evolution mechanism of the internal surface of the parts during the HIP process, the effect of different tooling materials (H13, T8, Cr12 steel, and graphite) as internal cores on the interfacial diffusion and surface roughness was systematically studied.

  15. Characterization of 316L(N)-IG SS joint produced by hot isostatic pressing technique

    NASA Astrophysics Data System (ADS)

    Nakano, J.; Miwa, Y.; Tsukada, T.; Kikuchi, M.; Kita, S.; Nemoto, Y.; Tsuji, H.; Jitsukawa, S.

    2002-12-01

    Type 316L(N) stainless steel of the international thermonuclear experimental reactor grade (316L(N)-IG SS) is being considered for the first wall/blanket module. Hot isostatic pressing (HIP) technique is expected for the fabrication of the module. To evaluate the integrity and susceptibility to stress corrosion cracking (SCC) of HIPed 316L(N)-IG SS, tensile tests in vacuum and slow strain rate tests in high temperature water were performed. Specimen with the HIPed joint had similar tensile properties to specimens of 316L(N)-IG SS, and did not show susceptibility to SCC in oxygenated water at 423 K. Thermally sensitized specimen was low susceptible to SCC even in the creviced condition. It is concluded that the tensile properties of HIPed SS are as high as those of the base alloy and the HIP process caused no deleterious effects.

  16. Densely packed aluminum-silver nanohelices as an ultra-thin perfect light absorber

    PubMed Central

    Jen, Yi-Jun; Huang, Yu-Jie; Liu, Wei-Chih; Lin, Yueh Weng

    2017-01-01

    Metals have been formed into nanostructures to absorb light with high efficiency through surface plasmon resonances. An ultra-thin plasmonic structure that exhibits strong absorption over wide ranges of wavelengths and angles of incidence is sought. In this work, a nearly perfect plasmonic nanostructure is fabricated using glancing angle deposition. The difference between the morphologies of obliquely deposited aluminum and silver nanohelices is exploited to form a novel three-dimensional structure, which is an aluminum-silver nanohelix array on a pattern-free substrate. With a thickness of only 470 nm, densely distributed nanohelices support rod-to-rod localized surface plasmons for broadband and polarization-independent light extinction. The extinctance remains high over wavelengths from 400 nm to 2000 nm and angles of incidence from 0° to 70°. PMID:28045135

  17. Magnetic and magneto elastic properties of cobalt ferrite ceramic compacted through cold isostatic pressing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Indla, Srinivas; Das, Dibakar, E-mail: ddse@uohyd.ernet.in; Chelvane, Arout

    2016-05-06

    Nano crystalline CoFe{sub 2}O{sub 4} powder was prepared by combustion synthesis method. As synthesized powder was calcined at an appropriate condition to remove the impurities and to promote phase formation. Phase pure CoFe{sub 2}O{sub 4} powder was pressed into cylindrical rod at an applied pressure of 200 MPa using a cold isostatic pressing. Sintering of the green compact at 1350°c for 12 hrs resulted in sintered cylindrical rod with ~85% of the theoretical density. Single phase cubic spinel structure was observed in the powder x-ray diffraction pattern of the sintered pellet. Scanning electron micrographs (SEM) of the as sintered pelletmore » revealed the microstructure to be composed of ferrite grains of average size ~4 µm. Saturation magnetization of 72 emu/g and coercivity of 355 Oe were observed for cobalt ferrite sample. The magnetostriction was measured on a circular disc (12 mm diameter and 12 mm length) with the strain gauge (350 Ω) mounted on the flat surface of the circular disc. Magnetostriciton of 180 ppm and strain derivative of 1 × 10{sup −9} m/A were observed for the sintered CoFe{sub 2}O{sub 4} sample.« less

  18. Tensile properties from room temperature to 1315 C of tungsten-lined tantalum-alloy (T-111) tubing fabricated by hot isostatic pressing

    NASA Technical Reports Server (NTRS)

    Buzzard, R. J.; Metroka, R. R.

    1974-01-01

    The effects were studied of a thin tungsten liner on the tensile properties of T-111 tubing considered for fuel cladding in a space power nuclear reactor concept. The results indicate that the metallurgically bonded liner had no appreciable effects on the properties of the T-111 tubing. A hot isostatic pressing method used to apply the liners is described along with a means for overcoming the possible embrittling effects of hydrogen contamination.

  19. Solubility and chemistry of materials encountered by beryllium mine and ore extraction workers: relation to risk.

    PubMed

    Deubner, David C; Sabey, Philip; Huang, Wenjie; Fernandez, Diego; Rudd, Abigail; Johnson, William P; Storrs, Jason; Larson, Rod

    2011-10-01

    Beryllium mine and ore extraction mill workers have low rates of beryllium sensitization and chronic beryllium disease relative to the level of beryllium exposure. The objective was to relate these rates to the solubility and composition of the mine and mill materials. Medical surveillance and exposure data were summarized. Dissolution of BeO, ore materials and beryllium hydroxide, Be(OH)(2) was measured in synthetic lung fluid. The ore materials were more soluble than BeO at pH 7.2 and similar at pH 4.5. Be(OH)(2) was more soluble than BeO at both pH. Aluminum dissolved along with beryllium from ore materials. Higher solubility of beryllium ore materials and Be(OH)(2) at pH 7.2 might shorten particle longevity in the lung. The aluminum content of the ore materials might inhibit the cellular immune response to beryllium.

  20. An electrolytic process for ultra fine beryllium

    NASA Technical Reports Server (NTRS)

    Lidman, W. G.; Griffiths, V.

    1972-01-01

    Studies were made on the electrolysis of a molten BeCl2-NaCl bath using a mercury cathode and beryllium anode. A quasi-amalgam was obtained. The beryllium was consolidated by direct hot pressing of the amalgam at temperatures in the range of 800 C and using pressures of 5,000, 10,000 and 20,000 psi. The work confirms the ability to produce ultrafine beryllium particles by electrolysis.

  1. Optimizing the Synthesis of Alumina Inserts Using Hot Isostatic Pressing (HIP)

    NASA Astrophysics Data System (ADS)

    Ariff, T. F.; Azhar, A. Z.; Sariff, M. N.; Rasid, S. N.; Zahari, S. Z.; Bahar, R.; Karim, M.; Nurul Amin, AKM

    2018-01-01

    Alumina or Aluminium Oxide (Al2O3) is well known for its high strength and hardness. Its low heat retention and low specific heat characteristics make it attractive to be used widely as a cutting tool for grinding, milling and turning processes. Various synthesis methods have been used for the purpose of enhancing the properties of the alumina inserts. However, the optimization process using Hot Isostatic Pressing (HIP) has not been performed. This research aims in finding the optimum parameters in synthesizing the alumina inserts (98Al2O3 1.6ZrO2 0.4MgO, 93Al2O3 6.4ZrO2 0.6MgO and 85Al2O3 14.5ZrO2 0.5MgO) using HIP at different temperatures (1200, 1250 and 1300°C) and sintering time (10, 30 and 60 minutes). Hardness, density, shrinkage and microstructure using SEM were analysed. The optimum sintering condition for the alumina insert was found in 98Al2O3 1.6ZrO2 0.4MgO sintered at 1300°C for 60 minutes for it exhibited the highest values of hardness (1917HV), density (3.95g/cm3), shrinkage (9.6%).

  2. Mineral resource of the month: beryllium

    USGS Publications Warehouse

    Shedd, Kim B.

    2006-01-01

    Beryllium metal is lighter than aluminum and stiffer than steel. These and other properties, including its strength, dimensional stability, thermal properties and reflectivity, make it useful for aerospace and defense applications, such as satellite and space-vehicle structural components. Beryllium’s nuclear properties, combined with its low density, make it useful as a neutron reflector and moderator in nuclear reactors. Because it is transparent to most X rays, beryllium is used as X-ray windows in medical, industrial and analytical equipment.

  3. Microstructure, Mechanical Properties, and Flatness of SEBM Ti-6Al-4V Sheet in As-Built and Hot Isostatically Pressed Conditions

    NASA Astrophysics Data System (ADS)

    Tang, H. P.; Wang, J.; Song, C. N.; Liu, N.; Jia, L.; Elambasseril, J.; Qian, M.

    2017-03-01

    Sheet (0.41-4.80 mm thick) or thin plate structures commonly exist in additively manufactured Ti-6Al-4V components for load-bearing applications. A batch of 64 Ti-6Al-4V sheet samples with dimensions of 210/180 mm × 42 mm × 3 mm have been additively manufactured by selective electron beam melting (SEBM). A comprehensive assessment was then made of their density, surface flatness, microstructure, and mechanical properties in both as-built and hot isostatically pressed conditions, including the influence of the hot isostatic pressing (HIP) temperature. In particular, standard long tensile (156 mm long, 2 mm thick) and fatigue (206 mm long, 2 mm thick) test sheet samples were used for assessment. As-built SEBM Ti-6Al-4V sheet samples with machined surfaces fully satisfied the minimum tensile property requirements for mill-annealed TIMETAL Ti-6Al-4V sheet products, whereas HIP-processed samples (2 mm thick) with machined surfaces achieved a high cycle fatigue (HCF) strength of 625 MPa (R = 0.06, 107 cycles), similar to mill-annealed Ti-6Al-4V (500-700 MPa). The unflatness was limited to 0.2 mm in both the as-built and HIP-processed conditions. A range of other revealing observations was discussed for the additive manufacturing of the Ti-6Al-4V sheet structures.

  4. Effect of reduced cobalt contents on hot isostatically pressed powder metallurgy U-700 alloys

    NASA Technical Reports Server (NTRS)

    Harf, F. H.

    1982-01-01

    The effect of reducing the cobalt content of prealloyed powders of UDIMET 700 (U-700) alloys to 12.7, 8.6, 4.3, and 0% was examined. The powders were hot isostatically pressed into billets, which were given heat treatments appropriate for turbine disks, namely partial solutioning at temperatures below the gamma prime solvus and four step aging treatments. Chemical analyses, metallographic examinations, and X-ray diffraction measurements were performed on the materials. Minor effects on gamma prime content and on room temperature and 650 C tensile properties were observed. Creep rupture lives at 650 C reached a maximum at the 8.4% concentration, while at 760 C a maximum in life was reached at the 4.3% cobalt level. Minimum creep rates increased with decreasing cobalt content at both test temperatures. Extended exposures at 760 and 815 C resulted in decreased tensile strengths and rupture lives for all alloys. Evidence of sigma phase formation was also found.

  5. Rapid Fabrication of Silver Nanowires through Photoreduction of Silver Nitrate from an Anodic-Aluminum-Oxide Template

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Hsuan; Chen, Kun-Tso; Ho, Jeng-Rong

    2011-06-01

    A method for rapidly fabricating dense and high-aspect-ratio silver nanowires, with wire diameter of 200 nm and wire length more than 30 µm, is reported. The fabrication process simply involves filling the silver nitrate solution into the pores of an anodic-aluminum-oxide (AAO) membrane through capillary attraction and irradiating the dried template AAO membrane using a pulsed ArF excimer laser. Through varying the thickness and pore diameter of the employed AAO membrane, the primary dimensions of the targeted silver nanowires can be plainly specified; and, by amending the initial concentration of the silver nitrate solution and adjusting the laser operation parameters, laser fluence and number of laser pulses, the surface morphology and size of the resulting nanowires can be finely regulated. The wire formation mechanism is considered through two stages: the period of precipitation of silver particles from the dried silver nitrate film through the laser-induced photoreduction; and, the phase of clustering, merging and fusing of the reduced particles to form nanowires in the template pores by the thermal energy owing to photothermal effect. This approach is straightforward and takes the advantage that all the fabrication processes can be executed in an ambient environment and at room temperature. In addition, by the excellence in local processing that the laser possesses, this method is suitable for precisely growing nanowires.

  6. Quantification and micron-scale imaging of spatial distribution of trace beryllium in shrapnel fragments and metallurgic samples with correlative fluorescence detection method and secondary ion mass spectrometry (SIMS)

    PubMed Central

    Abraham, Jerrold L.; Chandra, Subhash; Agrawal, Anoop

    2014-01-01

    Recently, a report raised the possibility of shrapnel-induced chronic beryllium disease (CBD) from long-term exposure to the surface of retained aluminum shrapnel fragments in the body. Since the shrapnel fragments contained trace beryllium, methodological developments were needed for beryllium quantification and to study its spatial distribution in relation to other matrix elements, such as aluminum and iron, in metallurgic samples. In this work, we developed methodology for quantification of trace beryllium in samples of shrapnel fragments and other metallurgic sample-types with main matrix of aluminum (aluminum cans from soda, beer, carbonated water, and aluminum foil). Sample preparation procedures were developed for dissolving beryllium for its quantification with the fluorescence detection method for homogenized measurements. The spatial distribution of trace beryllium on the sample surface and in 3D was imaged with a dynamic secondary ion mass spectrometry (SIMS) instrument, CAMECA IMS 3f SIMS ion microscope. The beryllium content of shrapnel (~100 ppb) was the same as the trace quantities of beryllium found in aluminum cans. The beryllium content of aluminum foil (~25 ppb) was significantly lower than cans. SIMS imaging analysis revealed beryllium to be distributed in the form of low micron-sized particles and clusters distributed randomly in X-Y-and Z dimensions, and often in association with iron, in the main aluminum matrix of cans. These observations indicate a plausible formation of Be-Fe or Al-Be alloy in the matrix of cans. Further observations were made on fluids (carbonated water) for understanding if trace beryllium in cans leached out and contaminated the food product. A direct comparison of carbonated water in aluminum cans and plastic bottles revealed that beryllium was below the detection limits of the fluorescence detection method (~0.01 ppb). These observations indicate that beryllium present in aluminum matrix was either present in an

  7. Quantification and micron-scale imaging of spatial distribution of trace beryllium in shrapnel fragments and metallurgic samples with correlative fluorescence detection method and secondary ion mass spectrometry (SIMS).

    PubMed

    Abraham, J L; Chandra, S; Agrawal, A

    2014-11-01

    Recently, a report raised the possibility of shrapnel-induced chronic beryllium disease from long-term exposure to the surface of retained aluminum shrapnel fragments in the body. Since the shrapnel fragments contained trace beryllium, methodological developments were needed for beryllium quantification and to study its spatial distribution in relation to other matrix elements, such as aluminum and iron, in metallurgic samples. In this work, we developed methodology for quantification of trace beryllium in samples of shrapnel fragments and other metallurgic sample-types with main matrix of aluminum (aluminum cans from soda, beer, carbonated water and aluminum foil). Sample preparation procedures were developed for dissolving beryllium for its quantification with the fluorescence detection method for homogenized measurements. The spatial distribution of trace beryllium on the sample surface and in 3D was imaged with a dynamic secondary ion mass spectrometry instrument, CAMECA IMS 3f secondary ion mass spectrometry ion microscope. The beryllium content of shrapnel (∼100 ppb) was the same as the trace quantities of beryllium found in aluminum cans. The beryllium content of aluminum foil (∼25 ppb) was significantly lower than cans. SIMS imaging analysis revealed beryllium to be distributed in the form of low micron-sized particles and clusters distributed randomly in X-Y- and Z dimensions, and often in association with iron, in the main aluminum matrix of cans. These observations indicate a plausible formation of Be-Fe or Al-Be alloy in the matrix of cans. Further observations were made on fluids (carbonated water) for understanding if trace beryllium in cans leached out and contaminated the food product. A direct comparison of carbonated water in aluminum cans and plastic bottles revealed that beryllium was below the detection limits of the fluorescence detection method (∼0.01 ppb). These observations indicate that beryllium present in aluminum matrix was either

  8. Bacopa monniera Stabilized Silver Nanoparticles Attenuates Oxidative Stress Induced by Aluminum in Albino Mice.

    PubMed

    Mahitha, B; Deva Prasad Raju, B; Mallikarjuna, K; Durga Mahalakshmi, Ch N; Sushmal, N John

    2015-02-01

    In the recent years usage of nanomedicine plays a promising strategy in the improvement of medical treatment. The ecofriendly synthesized silver nanoparticles has introduced a new opportunity to increase the efficacy of drug by reducing its side effects. In the present study, we investigated the antioxidant property of Bacopa monniera stabilized silver nanoparticles against aluminum induced toxicity in albino mice. Forty male albino mice were randomly divided into five groups. First group was treated as control, second group received aluminum acetate (5 mg/kg b . w), third group received Bacopa monniera extract (5 mg/kg b . w), fourth group received BmSNPs (5 mg/kg b . w), fifth group received aluminum acetate plus BmSNPs. Exposure to aluminum acetate significantly increased lipid peroxidation levels with a significant decrease in the antioxidant enzymes such as superoxide dismutase, catalase and glutathione peroxidase activities in the brain, liver and kidney of mice. Degenerative changes were also observed in brain, liver and kidney of aluminum treated mice. No significant changes in the oxidative stress were observed in the Bacopa monniera and BmSNPs alone treated mice. Whereas, co-administration of BmSNPs to Al treated mice showed a significant decrease in lipid peroxidation levels with a significant increase of SOD, CAT and GPx indicating the antioxidant potential of nanoparticles and in counteracting Al induced oxidative stress and histological response in male albino mice. These findings clearly implicate that BmSNPs are able to eradicate the oxidative stress and prevent the tissue damage in aluminum exposed mice.

  9. The substitution of nickel for cobalt in hot isostatically pressed powder metallurgy UDIMET 700 alloys

    NASA Technical Reports Server (NTRS)

    Harf, F. H.

    1985-01-01

    Nickel was substituted in various proportions for cobalt in a series of five hot-isostatically-pressed powder metallurgy alloys based on the UDIMET 700 composition. These alloys were given 5-step heat treatments appropriate for use in turbine engine disks. The resultant microstructures displayed three distinct sizes of gamma-prime particles in a gamma matrix. The higher cobalt-content alloys contained larger amounts of the finest gamma-prime particles, and had the lowest gamma-gamma-prime lattice mismatch. While all alloys had approximately the same tensile properties at 25 and 650 gamma C, the rupture lives at 650 and 760 C peaked in the alloys with cobalt contents between 12.7 and 4.3 pct. Minimum creep rates increased as cobalt contents were lowered, suggesting their correlation with the gamma-prime particle size distribution and the gamma-gamma-prime mismatch. It was also found that, on overaging at temperatures higher than suitable for turbine disk use, the high cobalt-content alloys were prone to sigma phase formation.

  10. Cyclic fatigue resistance of yttria-stabilized tetragonal zirconia polycrystals with hot isostatic press processing.

    PubMed

    Koyama, Taku; Sato, Toru; Yoshinari, Masao

    2012-01-01

    This study investigated the influence of surface roughness and cyclic loading on fatigue resistance in Y-TZP subjected to hot isostatic pressing (HIP). Fifty Y-TZP cylinders 3.0 mm in diameter were divided into Group A (polished by centerless method; TZP-CP) or Group B (blasted and acid-etched: TZP-SB150E). Twenty five cp-titanium cylinders (Ti-SB150E) were used as a control. Static and cyclic tests were carried out according to ISO 14801. The cyclic fatigue test was performed in distilled water at 37°C. Surface morphology and roughness as well as crystal phase on the surfaces were also evaluated. Fracture force under the static test was 1,765N (TZP-CP), 1,220N (TZP-SB150E), and 850 N (yield force, Ti-SB150E). Fracture values under the cyclic test decreased to approximately 70% of those under the static tests. These results indicate that HIPed Y-TZP with a 3.0-mm diameter has sufficient durability for application to dental implants.

  11. Hot isostatic pressing of silicon nitride with boron nitride, boron carbide, and carbon additions

    NASA Technical Reports Server (NTRS)

    Mieskowski, Diane M.; Sanders, William A.

    1989-01-01

    Si3N4 test bars containing additions of BN, B4C, and C, were hot isostatically pressed in Ta cladding at 1900 and 2050 C to 98.9 percent to 99.5 percent theoretical density. Room-temperature strength data on specimens containing 2 wt pct BN and 0.5 wt pct C were comparable to data obtained for Si3N4 sintered with Y2O3, Y2O3 and Al2O3, or ZrO2. The 1370 C strengths were less than those obtained for additions of Y2O3 or ZrO2 but greater than those obtained from a combination of Y2O3 and Al2O3. SEM fractography indicated that, as with other types of Si3N4, room-temperature strength was controlled by processing flaws. The decrease in strength at 1370 C was typical of Si3N4 having an amorphous grain-boundary phase. The primary advantage of nonoxide additions appears to be in facilitating specimen removal from the Ta cladding.

  12. Influence of cold isostatic pressing on the magnetic properties of Ni-Zn-Cu ferrite

    NASA Astrophysics Data System (ADS)

    Le, Trong Trung; Valdez-Nava, Zarel; Lebey, Thierry; Mazaleyrat, Frédéric

    2018-04-01

    In power electronics, there is the need to develop solutions to increase the power density of converters. Interleaved multicellular transformers allow interleaving many switching cells and, as a result, a possible increase in the power density. This converter is often composed of a magnetic core having the function of an intercell transformer (ICT) and, depending on the complexity of the designed architecture, its shape could be extremely complex. The switching frequencies (1-10 MHz) for the new wide band gap semiconductors (SiC, GaN) allow to interleave switching cell at higher frequencies than silicon-based semiconductors (<1 MHz). Intercell transformers must follow this increase in frequency times-fold the number of switching cells. Current applications for ICT transformers use Mn-Zn based materials, but their limit in frequency drive raises the need of higher frequency magnetic materials, such Ni-Zn ferrites. These materials can operate in medium and high power converters up to 10 MHz. We propose to use Ni0,30Zn0,57Cu0,15Fe2O4 ferrite and to compress it by cold isostatic pressing (CIP) into a a green ceramic block and to machine it to obtain the desired ICT of complex shape prior sintering. We compare the magnetic permeability spectra and hysteresis loops the CIP and uniaxially pressed ferrites. The effect of temperature and sintering time as well as high-pressure on properties will be presented in detail. The magnetic properties of the sintered cores are strongly dependent on the microstructure obtained.

  13. Effects of Temperature and Pressure of Hot Isostatic Pressing on the Grain Structure of Powder Metallurgy Superalloy

    PubMed Central

    Tan, Liming; He, Guoai; Liu, Feng; Li, Yunping; Jiang, Liang

    2018-01-01

    The microstructure with homogeneously distributed grains and less prior particle boundary (PPB) precipitates is always desired for powder metallurgy superalloys after hot isostatic pressing (HIPping). In this work, we studied the effects of HIPping parameters, temperature and pressure on the grain structure in PM superalloy FGH96, by means of scanning electron microscope (SEM), electron backscatter diffraction (EBSD), transmission electron microscope (TEM) and Time-of-flight secondary ion spectrometry (ToF-SIMS). It was found that temperature and pressure played different roles in controlling PPB precipitation and grain structure during HIPping, the tendency of grain coarsening under high temperature could be inhibited by increasing HIPping pressure which facilitates the recrystallization. In general, relatively high temperature and pressure of HIPping were preferred to obtain an as-HIPped superalloy FGH96 with diminished PPB precipitation and homogeneously refined grains. PMID:29495312

  14. Effects of Temperature and Pressure of Hot Isostatic Pressing on the Grain Structure of Powder Metallurgy Superalloy.

    PubMed

    Tan, Liming; He, Guoai; Liu, Feng; Li, Yunping; Jiang, Liang

    2018-02-24

    The microstructure with homogeneously distributed grains and less prior particle boundary (PPB) precipitates is always desired for powder metallurgy superalloys after hot isostatic pressing (HIPping). In this work, we studied the effects of HIPping parameters, temperature and pressure on the grain structure in PM superalloy FGH96, by means of scanning electron microscope (SEM), electron backscatter diffraction (EBSD), transmission electron microscope (TEM) and Time-of-flight secondary ion spectrometry (ToF-SIMS). It was found that temperature and pressure played different roles in controlling PPB precipitation and grain structure during HIPping, the tendency of grain coarsening under high temperature could be inhibited by increasing HIPping pressure which facilitates the recrystallization. In general, relatively high temperature and pressure of HIPping were preferred to obtain an as-HIPped superalloy FGH96 with diminished PPB precipitation and homogeneously refined grains.

  15. Materials Research for Advanced Inertial Instrumentation. Task 1. Dimensional Stability of Gyro Structural Materials

    DTIC Science & Technology

    1980-06-01

    instrument. The most common sources of such dimensional instability in instruments are: phase trans- formation, relief of resiiual stress, and microplastic ...the stress or by increasing the resistance of the material to microplastic deformation. Section 3 of this report is concerned with an investigation of...hot isostatically pressed (HIP) beryllium as a material with potentially greater resistance to microplastic deformation than the grades of beryllium

  16. Validation of cleaning method for various parts fabricated at a Beryllium facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Cynthia M.

    This study evaluated and documented a cleaning process that is used to clean parts that are fabricated at a beryllium facility at Los Alamos National Laboratory. The purpose of evaluating this cleaning process was to validate and approve it for future use to assure beryllium surface levels are below the Department of Energy’s release limits without the need to sample all parts leaving the facility. Inhaling or coming in contact with beryllium can cause an immune response that can result in an individual becoming sensitized to beryllium, which can then lead to a disease of the lungs called chronic berylliummore » disease, and possibly lung cancer. Thirty aluminum and thirty stainless steel parts were fabricated on a lathe in the beryllium facility, as well as thirty-two beryllium parts, for the purpose of testing a parts cleaning method that involved the use of ultrasonic cleaners. A cleaning method was created, documented, validated, and approved, to reduce beryllium contamination.« less

  17. Synroc-D Type Ceramics Produced by Hot Isostatic Pressing and Cold Crucible Melting for Immobilisation of (Al, U) Rich Nuclear Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vance, Eric R.; La Robina, Michael; Li, Huijun

    2007-07-01

    A synroc-D ceramic consisting mostly of spinel, hollandite, pyrochlore-structured CaUTi{sub 2}O{sub 7}, UO{sub 2}, and Ti-rich regions shows promise for immobilisation of a HLW containing mainly Al and U, together with fission products. Ceramics with virtually zero porosities and waste loadings of 50-60 wt% on an oxide basis were prepared by cold crucible melting (CCM) at {approx}1500 deg. C, and also by subsolidus hot isostatic pressing (HIP) at 1100 deg. C to prevent volatile losses. PCT leaching test values for Cs were < 13 g/L, with all other normalised elemental extractions being well below 1 g/L. (authors)

  18. Plasmon-induced optical switching of electrical conductivity in porous anodic aluminum oxide films encapsulated with silver nanoparticle arrays.

    PubMed

    Huang, Chen-Han; Lin, Hsing-Ying; Lau, Ben-Chao; Liu, Chih-Yi; Chui, Hsiang-Chen; Tzeng, Yonhua

    2010-12-20

    We report on plasmon induced optical switching of electrical conductivity in two-dimensional (2D) arrays of silver (Ag) nanoparticles encapsulated inside nanochannels of porous anodic aluminum oxide (AAO) films. The reversible switching of photoconductivity greatly enhanced by an array of closely spaced Ag nanoparticles which are isolated from each other and from the ambient by thin aluminum oxide barrier layers are attributed to the improved electron transport due to the localized surface plasmon resonance and coupling among Ag nanoparticles. The photoconductivity is proportional to the power, and strongly dependent on the wavelength of light illumination. With Ag nanoparticles being isolated from the ambient environments by a thin layer of aluminum oxide barrier layer of controlled thickness in nanometers to tens of nanometers, deterioration of silver nanoparticles caused by environments is minimized. The electrochemically fabricated nanostructured Ag/AAO is inexpensive and promising for applications to integrated plasmonic circuits and sensors.

  19. Thermal resistance of pressed contacts of aluminum and niobium at liquid helium temperatures

    DOE PAGES

    Dhuley, R. C.; Geelhoed, M. I.; Thangaraj, J. C. T.

    2018-06-15

    Here, we examine the resistance to heat flow across contacts of mechanically pressed aluminum and niobium near liquid helium temperatures for designing a thermally conducting joint of aluminum and superconducting niobium. Measurements in the temperature range of 3.5 K to 5.5 K show the thermal contact resistance to grow as a near-cubic function of decreasing temperature, indicating phonons to be the primary heat carriers across the interface. In the 4 kN to 14 kN range of pressing force the contact resistance shows linear drop with the increasing force, in agreement with the model of micro-asperity plastic deformation at pressed contacts.more » Several thermal contact resistance models as well as the phonon diffuse mismatch model of interface thermal resistance are compared with the experimental data. The diffuse mismatch model shows closest agreement. The joints are further augmented with thin foil of indium, which lowers the joint resistance by an order of magnitude. The developed joint has nearly 1 K*cm2/W of thermal resistance at 4.2 K, is demountable, and free of the thermally resistive interfacial alloy layer that typically exists at welded, casted, or soldered joints of dissimilar metals.« less

  20. Thermal resistance of pressed contacts of aluminum and niobium at liquid helium temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhuley, R. C.; Geelhoed, M. I.; Thangaraj, J. C. T.

    Here, we examine the resistance to heat flow across contacts of mechanically pressed aluminum and niobium near liquid helium temperatures for designing a thermally conducting joint of aluminum and superconducting niobium. Measurements in the temperature range of 3.5 K to 5.5 K show the thermal contact resistance to grow as a near-cubic function of decreasing temperature, indicating phonons to be the primary heat carriers across the interface. In the 4 kN to 14 kN range of pressing force the contact resistance shows linear drop with the increasing force, in agreement with the model of micro-asperity plastic deformation at pressed contacts.more » Several thermal contact resistance models as well as the phonon diffuse mismatch model of interface thermal resistance are compared with the experimental data. The diffuse mismatch model shows closest agreement. The joints are further augmented with thin foil of indium, which lowers the joint resistance by an order of magnitude. The developed joint has nearly 1 K*cm2/W of thermal resistance at 4.2 K, is demountable, and free of the thermally resistive interfacial alloy layer that typically exists at welded, casted, or soldered joints of dissimilar metals.« less

  1. Thermal Shock and Ablation Behavior of Tungsten Nozzle Produced by Plasma Spray Forming and Hot Isostatic Pressing

    NASA Astrophysics Data System (ADS)

    Wang, Y. M.; Xiong, X.; Zhao, Z. W.; Xie, L.; Min, X. B.; Yan, J. H.; Xia, G. M.; Zheng, F.

    2015-08-01

    Tungsten nozzle was produced by plasma spray forming (PSF, relative density of 86 ± 2%) followed by hot isostatic pressing (HIPing, 97 ± 2%) at 2000 °C and 180 MPa for 180 min. Scanning electron microscope, x-ray diffractometer, Archimedes method, Vickers hardness, and tensile tests have been employed to study microstructure, phase composition, density, micro-hardness, and mechanical properties of the parts. Resistance of thermal shock and ablation behavior of W nozzle were investigated by hot-firing test on solid rocket motor (SRM). Comparing with PSF nozzle, less damage was observed for HIPed sample after SRM test. Linear ablation rate of nozzle made by PSF was (0.120 ± 0.048) mm/s, while that after HIPing reduced to (0.0075 ± 0.0025) mm/s. Three types of ablation mechanisms including mechanical erosion, thermophysical erosion, and thermochemical ablation took place during hot-firing test. The order of degree of ablation was nozzle throat > convergence > dilation inside W nozzle.

  2. The effect of hot isostatic pressing parameters on microstructure and mechanical properties of Eurofer powder HIPed material

    NASA Astrophysics Data System (ADS)

    Gentzbittel, J. M.; Chu, I.; Burlet, H.

    2002-12-01

    The production of reduced activation ferritic/martensitic (RAFM) steel by powder metallurgy and high isostatic pressing (HIP) offers numerous advantages for different nuclear applications. The objective of this work is to optimise the Eurofer powder HIP process in order to obtain RAFM solid HIPed steel with similar mechanical properties to those of a forged material. Starting from the forged solid Eurofer steel batch, the material is atomized and the Eurofer powder is characterized in terms of granulometry, chemical composition, surface oxides, etc. Different compaction HIP cycle parameters in the temperature range (950-1100 °C) are tested. The chemical composition of the HIPed material is comparable to the initial forged Eurofer. All the obtained materials are fully dense and the microstructure of the compacted material is well martensitic. The prior austenite grain size seems to be constant in this temperature range. The mechanical tests performed at room temperature reveal acceptable hardness, tensile and Charpy impact properties regarding the ITER specification.

  3. Influence of surface treatment of yttria-stabilized tetragonal zirconia polycrystal with hot isostatic pressing on cyclic fatigue strength.

    PubMed

    Iijima, Toshihiko; Homma, Shinya; Sekine, Hideshi; Sasaki, Hodaka; Yajima, Yasutomo; Yoshinari, Masao

    2013-01-01

    Hot isostatic pressing processed yttria-stabilized tetragonal zirconia polycrystal (HIP Y-TZP) has the potential for application to implants due to its high mechanical performance. The aim of this study was to investigate the influence of surface treatment of HIP Y-TZP on cyclic fatigue strength. HIP Y-TZP specimens were subjected to different surface treatments. Biaxial flexural strength was determined by both static and cyclic fatigue testing. In the cyclic fatigue test, the load was applied at a frequency of 10 Hz for 10(6) cycles in distilled water at 37°C. The surface morphology, roughness, and crystal phase of the surfaces were also evaluated. The cyclic fatigue strength (888 MPa) of HIP Y-TZP with sandblasting and acid-etching was more than twice that of Y-TZP as specified in ISO 13356 for surgical implants (320 MPa), indicating the clinical potential of this material.

  4. Processing of Silver-Implanted Aluminum Nitride for Energy Harvesting Devices

    NASA Astrophysics Data System (ADS)

    Alleyne, Fatima Sierre

    One of the more attractive sources of green energy has roots in the popular recycling theme of other green technologies, now known by the term "energy scavenging." In its most promising conformation, energy scavenging converts cyclic mechanical vibrations in the environment or random mechanical pressure pulses, caused by sources ranging from operating machinery to human footfalls, into electrical energy via piezoelectric transducers. While commercial piezoelectrics have evolved to favor lead zirconate titanate (PZT) for its combination of superior properties, the presence of lead in these ceramic compounds raises resistance to their application in anything "green" due to potential health implications during their manufacturing, recycling, or in-service application, if leaching occurs. Therefore in this study we have pursued the application of aluminum nitride (AlN) as a non-toxic alternative to PZT, seeking processing pathways to augment the modest piezoelectric performance of AlN and exploit its compatibility with complementary-metal-oxide semiconductor (CMOS) manufacturing. Such piezoelectric transducers have been categorized as microelectromechanical systems (MEMS), which despite more than a decade of research in this field, is plagued by delamination at the electrode/piezoelectric interface. Consequently the electric field essential to generate and sustain the piezoelectric response of these devices is lost, resulting in device failure. Working on the hypothesis that buried conducting layers can both mitigate the delamination problem and generate sufficient electric field to engage the operation of resonator devices, we have undertaken a study of silver ion implantation to experimentally assess its feasibility. As with most ion implantation procedures employed in semiconductor fabrication, the implanted sample is subjected to a thermal treatment, encouraging diffusion-assisted precipitation of the implanted species at high enough concentrations. The objective

  5. Diffusion Bonding Beryllium to Reduced Activation Ferritic Martensitic Steel: Development of Processes and Techniques

    NASA Astrophysics Data System (ADS)

    Hunt, Ryan Matthew

    Only a few materials are suitable to act as armor layers against the thermal and particle loads produced by magnetically confined fusion. These candidates include beryllium, tungsten, and carbon fiber composites. The armor layers must be joined to the plasma facing components with high strength bonds that can withstand the thermal stresses resulting from differential thermal expansion. While specific joints have been developed for use in ITER (an experimental reactor in France), including beryllium to CuCrZr as well as tungsten to stainless steel interfaces, joints specific to commercially relevant fusion reactors are not as well established. Commercial first wall components will likely be constructed front Reduced Activation Ferritic Martensitic (RAFM) steel, which will need to be coating with one of the three candidate materials. Of the candidates, beryllium is particularly difficult to bond, because it reacts during bonding with most elements to form brittle intermetallic compounds. This brittleness is unacceptable, as it can lead to interface crack propagation and delamination of the armor layer. I have attempted to overcome the brittle behavior of beryllium bonds by developing a diffusion bonding process of beryllium to RAFM steel that achieves a higher degree of ductility. This process utilized two bonding aids to achieve a robust bond: a. copper interlayer to add ductility to the joint, and a titanium interlayer to prevent beryllium from forming unwanted Be-Cu intermetallics. In addition, I conducted a series of numerical simulations to predict the effect of these bonding aids on the residual stress in the interface. Lastly, I fabricated and characterized beryllium to ferritic steel diffusion bonds using various bonding parameters and bonding aids. Through the above research, I developed a process to diffusion bond beryllium to ferritic steel with a 150 M Pa tensile strength and 168 M Pa shear strength. This strength was achieved using a Hot Isostatic

  6. Effect of hot isostatic pressing on the structure and properties of cast polycrystalline gas-turbine blades made of nickel superalloys

    NASA Astrophysics Data System (ADS)

    Beresnev, A. G.

    2012-05-01

    A concept of a two-stage hot isostatic pressing (HIP) cycle is developed for castings made of nickel superalloys in order to minimize plastic deformation and the recrystallization ability of their structure. At the first stage of the cycle, diffusion pore dissolution is predominant due to the motion of vacancies toward grain boundaries in a polycrystal; at the second stage, retained coarse pores are filled during plastic deformation. The effect of uniform compression pressure during HIP and microstructure defects on the vacancy diffusion in nickel superalloys is estimated. A two-stage HIP regime is developed for processing of cast gas-turbine engine blades made of a ZhS6U alloy in order to substantially decrease the shrinkage porosity and to increase the high-temperature characteristics, including the creep and fatigue resistance.

  7. Tensile Fracture Behavior of 316L Austenitic Stainless Steel Manufactured by Hot Isostatic Pressing

    NASA Astrophysics Data System (ADS)

    Cooper, A. J.; Brayshaw, W. J.; Sherry, A. H.

    2018-02-01

    Herein we investigate how the oxygen content in hot isostatically pressed (HIP'd) 316L stainless steel affects the mechanical properties and tensile fracture behavior. This work follows on from previous studies, which aimed to understand the effect of oxygen content on the Charpy impact toughness of HIP'd steel. We expand on the work by performing room-temperature tensile testing on different heats of 316L stainless steel, which contain different levels of interstitial elements (carbon and nitrogen) as well as oxygen in the bulk material. Throughout the work we repeat the experiments on conventionally forged 316L steel as a reference material. The analysis of the work indicates that oxygen does not contribute to a measureable solution strengthening mechanism, as is the case with carbon and nitrogen in austenitic stainless steels (Werner in Mater Sci Eng A 101:93-98, 1988). Neither does oxygen, in the form of oxide inclusions, contribute to precipitation hardening due to the size and spacing of particles. However, the oxide particles do influence fracture behavior; fractography of the failed tension test specimens indicates that the average ductile dimple size is related to the oxygen content in the bulk material, the results of which support an on-going hypothesis relating oxygen content in HIP'd steels to their fracture mechanisms by providing additional sites for the initiation of ductile damage in the form of voids.

  8. Thermoelectric Properties of Hot-Pressed and PECS-Sintered Magnesium-Doped Copper Aluminum Oxide

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Morelli, Donald T.

    2011-05-01

    Copper aluminum oxide (CuAlO2) is considered as a potential candidate for thermoelectric applications. Partially magnesium-doped CuAlO2 bulk pellets were fabricated using solid-state reactions, hot-pressing, and pulsed electric current sintering (PECS) techniques. X-ray diffraction and scanning electron microscopy were adopted for structural analysis. High-temperature transport property measurements were performed on hot-pressed samples. Electrical conductivity increased with Mg doping before secondary phases became significant, while the Seebeck coefficient displayed the opposite trend. Thermal conductivity was consistently reduced as the Mg concentration increased. Effects of Mg doping, preparation conditions, and future modification on this material's properties are discussed.

  9. Microstructural Evolution and Mechanical Properties of Nanointermetallic Phase Dispersed Al65Cu20Ti15 Amorphous Matrix Composite Synthesized by Mechanical Alloying and Hot Isostatic Pressing

    NASA Astrophysics Data System (ADS)

    Roy, D.; Mitra, R.; Ojo, O. A.; Lojkowski, W.; Manna, I.

    2011-08-01

    The structure and mechanical properties of nanocrystalline intermetallic phase dispersed amorphous matrix composite prepared by hot isostatic pressing (HIP) of mechanically alloyed Al65Cu20Ti15 amorphous powder in the temperature range 573 K to 873 K (300 °C to 600 °C) with 1.2 GPa pressure were studied. Phase identification by X-ray diffraction (XRD) and microstructural investigation by transmission electron microscopy confirmed that sintering in this temperature range led to partial crystallization of the amorphous powder. The microstructures of the consolidated composites were found to have nanocrystalline intermetallic precipitates of Al5CuTi2, Al3Ti, AlCu, Al2Cu, and Al4Cu9 dispersed in amorphous matrix. An optimum combination of density (3.73 Mg/m3), hardness (8.96 GPa), compressive strength (1650 MPa), shear strength (850 MPa), and Young's modulus (182 GPa) were obtained in the composite hot isostatically pressed ("hipped") at 773 K (500 °C). Furthermore, these results were compared with those from earlier studies based on conventional sintering (CCS), high pressure sintering (HPS), and pulse plasma sintering (PPS). HIP appears to be the most preferred process for achieving an optimum combination of density and mechanical properties in amorphous-nanocrystalline intermetallic composites at temperatures ≤773 K (500 °C), while HPS is most suited for bulk amorphous alloys. Both density and volume fraction of intermetallic dispersoids were found to influence the mechanical properties of the composites.

  10. 9. VIEW OF FOUNDRY FURNACE, DEPLETED URANIUM INGOTS, BERYLLIUM INGOTS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW OF FOUNDRY FURNACE, DEPLETED URANIUM INGOTS, BERYLLIUM INGOTS, AND ALUMINUM SHAPES WERE PRODUCED IN THE FOUNDRY. (10/30/56) - Rocky Flats Plant, Non-Nuclear Production Facility, South of Cottonwood Avenue, west of Seventh Avenue & east of Building 460, Golden, Jefferson County, CO

  11. Beryllium fluoride film protects beryllium against corrosion

    NASA Technical Reports Server (NTRS)

    O donnell, P. M.; Odonnell, P. M.

    1967-01-01

    Film of beryllium fluoride protects beryllium against corrosion and stress corrosion cracking in water containing chloride ion concentrations. The film is formed by exposing the beryllium to fluorine gas at 535 degrees C or higher and makes beryllium suitable for space applications.

  12. Development of lightweight aluminum hollowcore solar cell array technology

    NASA Technical Reports Server (NTRS)

    Carlson, J. A.

    1971-01-01

    A baseline configuration for a three section folding array, with retraction capability, was developed which would utilize electroformed aluminum hollowcore substrates and beryllium frames. The three section array was not fabricated because of difficulties with impurities in the aluminum electroforming bath. A procedure was developed for etching the copper mandrel from virtually any size of aluminum hollowcore panel in approximately one hour. Procedures were developed for analyzing the content of peroxide, water, total aluminum, and lithium-aluminum-hydride in an aluminum electroforming solution.

  13. REMOVAL OF BERYLLIUM FROM DRINKING WATER BY CHEMICAL COAGULATION AND LIME SOFTENING

    EPA Science Inventory

    The effectiveness of conventional drinking water treatment and lime softening was evaluated for beryllium removal from two drinking water sources. ar test studies were conducted to determine how common coagulants (aluminum sulfate and ferric chloride and lime softening performed ...

  14. Isostatic Model and Isostatic Gravity Anomalies of the Arabian Plate and Surroundings

    NASA Astrophysics Data System (ADS)

    Kaban, Mikhail K.; El Khrepy, Sami; Al-Arifi, Nassir

    2016-04-01

    The isostatic modeling represents one of the most useful "geological" reduction methods of the gravity field. With the isostatic correction, it is possible to remove a significant part of the effect of deep density heterogeneity, which dominates in the Bouguer gravity anomalies. Although there exist several isostatic compensation schemes, it is usually supposed that a choice of the model is not an important factor to first order, since the total weight of compensating masses remains the same. We compare two alternative models for the Arabian plate and surrounding area. The Airy model gives very significant regional isostatic anomalies, which cannot be explained by the upper crust structure or disturbances of the isostatic equilibrium. Also, the predicted "isostatic" Moho is very different from existing seismic observations. The second isostatic model includes the Moho, which is based on seismic determinations. Additional compensation is provided by density variations within the lithosphere (chiefly in the upper mantle). According to this model, the upper mantle under the Arabian Shield is less dense than under the Platform. In the Arabian platform, the maximum density coincides with the Rub' al Khali, one of the richest oil basin in the world. This finding agrees with previous studies, showing that such basins are often underlain by dense mantle, possibly related to an eclogite layer that has caused their subsidence. The mantle density variations might be also a result of variations of the lithosphere thickness. With the combined isostatic model, it is possible to minimize regional anomalies over the Arabian plate. The residual local anomalies correspond well to tectonic structure of the plate. Still very significant anomalies, showing isostatic disturbances of the lithosphere, are associated with the Zagros fold belt, the collision zone of the Arabian and Eurasian plates.

  15. Role of aging time on the magnetic properties of Sm2Co17 permanent magnets processed through cold isostatic pressing

    NASA Astrophysics Data System (ADS)

    Ramudu, M.; Rajkumar, D. M.

    2018-04-01

    The effect of aging time on the magnetic properties of Sm2Co17 permanent magnets processed through a novel method of cold isostatic pressing was investigated. Sintered Sm2Co17 samples were subjected to different aging times in the range of 10-30 h and their respective microstructures were correlated with the magnetic properties obtained. The values of remanant magnetization (Br) were observed to be constant in samples aged from 10-20 h beyond which a gradual decrease in Br values was observed. The values of coercivity (Hc) displayed a sharp increase in samples aged from 10 to 20 h beyond which the coercivity values showed marginal improvement. Hence a good combination of magnetic properties could be achieved in samples aged for 20 h. A maximum energy product of 27 MGOe was achieved in the 20 h aged sample processed through a novel route.

  16. The effects of weld-repair and hot isostatic pressing on the fracture properties of Ti-5Al-2.5Sn ELI castings

    NASA Technical Reports Server (NTRS)

    Misra, M. S.; Lemeshewsky, S.; Bolstad, D.

    1982-01-01

    The Ti-5Al-2.5Sn extremely low interstitial alloy employed in the large castings which form the critical attachment fittings of the Space Shuttle External Tank was selected because of its high fracture resistance at cryogenic temperatures. Casting was selected over alternative fabrication methods because of its lower cost and adaptability to design changes, although it was found necessary to weld-repair surface and subsurface casting defects in order to reduce the scrap rate and maintain the inherent cost advantage of the castings. Hot Isostatic Pressing was experimentally found to heal the surface and internal defects of the castings, but did not improve tensile or fracture properties and was therefore rejected as a production technique. Production castings are instead weld-repaired, without any mechanical property degradation.

  17. Durable silver coating for mirrors

    DOEpatents

    Wolfe, Jesse D.; Thomas, Norman L.

    2000-01-01

    A durable multilayer mirror includes reflective layers of aluminum and silver and has high reflectance over a broad spectral range from ultraviolet to visible to infrared. An adhesion layer of a nickel and/or chromium alloy or nitride is deposited on an aluminum surface, and a thin layer of silver is then deposited on the adhesion layer. The silver layer is protected by a passivation layer of a nickel and/or chromium alloy or nitride and by one or more durability layers made of metal oxides and typically a first layer of metal nitride. The durability layers may include a composite silicon aluminum nitride and an oxinitride transition layer to improve bonding between nitride and oxide layers.

  18. Effect of the MgO on microstructure and optical properties of TAG (Tb3Al5O12) transparent ceramics using hot isostatic pressing

    NASA Astrophysics Data System (ADS)

    Zhang, Shouyi; Liu, Peng; Xu, Xiaodong; Zhang, Jian

    2018-06-01

    In this work, the TAG transparent ceramics doped with 0.4 wt.% TEOS and different concentration of MgO were fabricated by a reactive sintering process under vacuum sintering combined with hot isostatic pressing (HIP) treatment. The effect of MgO on the microstructure evolution and optical properties of delivered ceramics were investigated. The results showed that the TAG ceramics doped with 0.4 wt.% TEOS and 0.1 wt.% MgO exhibited the optimum optical transmittance, which can reach about 81% in the visible and near-infrared (NIR) regions. The addition of MgO inhibited the grain growth and accelerated the densification of TAG ceramic at the sintering temperature reached about 1600 °C.

  19. Specialized mechanical properties of pure aluminum by using non-equal channel angular pressing for developing its electrical applications

    NASA Astrophysics Data System (ADS)

    Fereshteh-Saniee, Faramarz; Asgari, Mohammad; Fakhar, Naeimeh

    2016-08-01

    Despite valuable electrical characteristics, the use of pure aluminum in different applications has been limited due to its low strength. Non-equal channel angular pressing (NECAP) is a recently proposed severe plastic deformation process with greater induced plastic strain and, consequently, better grain refinement in the product, compared with the well-known equal channel angular pressing technique. This research is concerned with the effects of the process temperature and ram velocity on the mechanical, workability and electrical properties of AA1060 aluminum alloy. Increasing the process temperature can concurrently increase the workability, ductility and electrical conductivity, while it has a reverse influence on the strength of the NECAPed specimen, although the strengths of all the products are higher than the as-received alloy. The influence of the ram speed on the mechanical properties of the processed samples is lower than the process temperature. Finally, a compromised process condition is introduced in order to attain a good combination of workability and strength with well-preserved electrical conductivity for electrical applications of components made of pure aluminum.

  20. Pair potentials for warm dense matter and their application to x-ray Thomson scattering in aluminum and beryllium.

    PubMed

    Harbour, L; Dharma-Wardana, M W C; Klug, D D; Lewis, L J

    2016-11-01

    Ultrafast laser experiments yield increasingly reliable data on warm dense matter, but their interpretation requires theoretical models. We employ an efficient density functional neutral-pseudoatom hypernetted-chain (NPA-HNC) model with accuracy comparable to ab initio simulations and which provides first-principles pseudopotentials and pair potentials for warm-dense matter. It avoids the use of (i) ad hoc core-repulsion models and (ii) "Yukawa screening" and (iii) need not assume ion-electron thermal equilibrium. Computations of the x-ray Thomson scattering (XRTS) spectra of aluminum and beryllium are compared with recent experiments and with density-functional-theory molecular-dynamics (DFT-MD) simulations. The NPA-HNC structure factors, compressibilities, phonons, and conductivities agree closely with DFT-MD results, while Yukawa screening gives misleading results. The analysis of the XRTS data for two of the experiments, using two-temperature quasi-equilibrium models, is supported by calculations of their temperature relaxation times.

  1. Preparation of tris(8-hydroxyquinolinato)aluminum thin films by sputtering deposition using powder and pressed powder targets

    NASA Astrophysics Data System (ADS)

    Kawasaki, Hiroharu; Ohshima, Tamiko; Yagyu, Yoshihito; Ihara, Takeshi; Tanaka, Rei; Suda, Yoshiaki

    2017-06-01

    Tris(8-hydroxyquinolinato)aluminum (Alq3) thin films, for use in organic electroluminescence displays, were prepared by a sputtering deposition method using powder and pressed powder targets. Experimental results suggest that Alq3 thin films can be prepared using powder and pressed powder targets, although the films were amorphous. The surface color of the target after deposition became dark brown, and the Fourier transform infrared spectroscopy spectrum changed when using a pressed powder target. The deposition rate of the film using a powder target was higher than that using a pressed powder target. That may be because the electron and ion densities of the plasma generated using the powder target are higher than those when using pressed powder targets under the same deposition conditions. The properties of a thin film prepared using a powder target were almost the same as those of a film prepared using a pressed powder target.

  2. Enhancement of the electrical characteristics of metal-free phthalocyanine films using cold isostatic pressing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsushima, Toshinori, E-mail: tmatusim@opera.kyushu-u.ac.jp, E-mail: adachi@cstf.kyushu-u.ac.jp; Adachi, Chihaya, E-mail: tmatusim@opera.kyushu-u.ac.jp, E-mail: adachi@cstf.kyushu-u.ac.jp; Japan Science and Technology Agency

    2014-12-15

    Spatial gaps between grains and other grains, substrates, or electrodes in organic electronic devices are one of the causes of the reduction in the electrical characteristics. In this study, we demonstrate that cold isostatic pressing (CIP) is an effective method to crush the gaps and enhance the electrical characteristics. CIP of metal-free phthalocyanine (H{sub 2}PC) films induced a decrease in the film thickness by 34%–40% because of the gap crush. The connection of smaller grains into a larger grain and planarization of the film surface were also observed in the CIP film. The crystal axes of the H{sub 2}PC crystallitesmore » were rearranged from the a-axis to the c-axis of the α-phase crystal structure in a direction perpendicular to the substrate by CIP, indicating favorable hole injection and transport in this direction because of a better overlap of π orbitals. Thermally stimulated current measurements showed that deep hole traps disappeared and the total hole-trap density decreased after CIP. These CIP-induced changes of the film thicknesses, crystal axes and the hole traps lead to a marked increase in the hole mobility of the H{sub 2}PC films from 2.0 × 10{sup −7} to 4.0 × 10{sup −4} cm{sup 2}/V s by 2000 times in the perpendicular direction. We believe that these findings are important for unveiling the underlying carrier injection and transport mechanisms of organic films and for enhancing the performance of future organic electronic devices.« less

  3. Enhancement of Fe diffusion in ZnSe/S laser crystals under hot isostatic pressing

    NASA Astrophysics Data System (ADS)

    Gafarov, Ozarfar; Martinez, Alan; Fedorov, Vladimir; Mirov, Sergey

    2017-02-01

    Many organic molecules have strong and narrow absorption features in the middle Infrared (mid-IR) spectral range. The ability to directly probe absorption features of molecules enables numerous mid-IR applications in non-invasive medical diagnosis, industrial processing and process control, environmental monitoring, etc. Thus, there is a strong demand for lasers operating in mid-IR spectral range. Transition metal (TM) doped II-VI semiconductors such as Fe/Cr:ZnSe/S are the material of choice for fabrication of mid-IR gain media due to favorable combination of properties: a four level energy structure, absence of excited state absorption , broad mid-IR vibronic absorption and emission bands. Despite the significant progress in post-growth thermal diffusion technology of TM:II-VI fabrication there are still some difficulties associated with diffusion of certain TM's in these materials. In this work we address the issue of poor diffusion of Fe in ZnSe/S polycrystals. It is well known that with the temperature increase the diffusion rate of impurity also increases. However, simple application of high temperatures during the diffusion process is problematic for ZnSe/S crystals due to their strong sublimation. The sublimation processes can be suppressed by application of high pressures. Hot isostatic pressing was utilized as the means for simultaneous application of high temperatures (1300°C) and high pressures (1000atm, 3000atm). It was determined that diffusion coefficient of Fe was improved 13 and 14 fold in ZnSe and ZnS, respectively, as compared to the standard diffusion at 950°C. The difference in diffusion coefficients can be due to strong increase in the grain size of polycrystals.

  4. 78 FR 42584 - Bureau of International Security and Nonproliferation: Report to Congress Pursuant to Section...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-16

    ...-finished metals such as aluminum and steel, coal, and software for integrating industrial processes. We...; boron; cobalt; copper; copper infiltrated tungsten; copper- beryllium; graphite; hastelloy; inconel; magnesium; molybdenum; nickel; niobium; silver infiltrated tungsten; steels (including, but not limited to...

  5. Aluminum X-ray mass-ablation rate measurements

    DOE PAGES

    Kline, John L.; Hager, Jonathan D.

    2016-10-15

    Measurements of the mass ablation rate of aluminum (Al) have been completed at the Omega Laser Facility. Measurements of the mass-ablation rate show Al is higher than plastic (CH), comparable to high density carbon (HDC), and lower than beryllium. The mass-ablation rate is consistent with predictions using a 1D Lagrangian code, Helios. Lastly, the results suggest Al capsules have a reasonable ablation pressure even with a higher albedo than beryllium or carbon ablators warranting further investigation into the viability of Al capsules for ignition should be pursued.

  6. Effects of long-time elevated temperature exposures on hot-isostatically-pressed power-metallurgy Udimet 700 alloys with reduced cobalt contents

    NASA Technical Reports Server (NTRS)

    Hart, F. H.

    1984-01-01

    Because almost the entire U.S. consumption of cobalt depends on imports, this metal has been designated "strategic'. The role and effectiveness of cobalt is being evaluated in commercial nickel-base superalloys. Udiment 700 type alloys in which the cobalt content was reduced from the normal 17% down to 12.7%, 8.5%, 4.3%, and 0% were prepared by standard powder metallurgy techniques and hot isostatically pressed into billets. Mechanical testing and microstructural investigations were performed. The mechanical properties of alloys with reduced cobalt contents which were heat-treated identically were equal or better than those of the standard alloy, except that creep rates tended to increase as cobalt was reduced. The effects of long time exposures at 760 C on mechanical properties and at 760 C and 845 C on microstructures were determined. Decreased tensile properties and shorter rupture lives with increased creep rates were observed in alloy modifications. The exposures caused gamma prime particle coarsening and formation of sigma phase in the alloys with higher cobalt contents. Exposure at 845 C also reduced the amount of MC carbides.

  7. Isostatic models and isostatic gravity anomalies of the Arabian plate and surroundings

    NASA Astrophysics Data System (ADS)

    Kaban, Mikhail K.; El Khrepy, Sami; Al-Arifi, Nassir

    2015-04-01

    Isostaic anomalies represent one of the most useful "geological" reduction of the gravity field. With the isostatic correction it is possible to remove a significant part of the effect of deep density heterogeneity, which dominates in the Bouguer gravity anomalies. This correction is based on the fact that a major part of the near-surface load is compensated by variations of the lithosphere boundaries (chiefly the Moho and LAB) and by density variations within the crust and upper mantle. It is usually supposed that it is less important to a first order, what is the actual compensation model when reducing the effect of compensating masses, since their total weight is exactly opposite to the near-surface load. We compare several compensating models for the Arabian plate and surrounding area. The Airy model gives very significant regional isostatic anomalies, which can not be explained by the upper crust structure or disturbances of the isostatic equilibrium. Also the predicted "isostatic" Moho is very different from the existing observations. The second group of the isostatic models includes the Moho, which is based on existing seismic determinations. Additional compensation is provided by density variations within the lithosphere (chiefly in the upper mantle). In this way we minimize regional anomalies over the Arabian plate. The residual local anomalies well correspond to tectonic structure of the plate. Still very significant anomalies are associated with the Zagros fold belt, the collision zone of the Arabian and Eurasian plates.

  8. Production of an impermeable composite of irradiated graphite and glass by hot isostatic pressing as a long term leach resistant waste form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fachinger, Johannes; Muller, Walter; Marsat, Eric

    2013-07-01

    or negligible porosity and a water impermeable structure. Structural analysis shows that the glass in the composite has replaced the pores in the graphite structure. The typical pore volume of a graphite material is in the range of 20 vol.%. Therefore no volume increase will occur in comparison with the former graphite material. This IGM material will allow the encapsulation of graphite with package densities larger than 1.5 ton per cubic meter. Therefore a huge volume saving can be achieved by such an alternative encapsulation method. Disposal performance is also enhanced since little or no leaching of radionuclides is observed due to the impermeability of the material NNL and FNAG have proved that IGM can be produced by hot isostatic pressing (HIP) which has several advantages for radioactive materials over the HVP process. - The sealed HIP container avoids the release of any radionuclides. - The outside of the waste package is not contaminated. - The HIP process time is shorter than the HVP process time. The isostatic press avoids anisotropic density distributions. - Simple filling of the HIP container has advantages over the filling of an axial die. (authors)« less

  9. Beryllium

    Cancer.gov

    Learn about beryllium, exposure to which can increase your risk of lung cancer. Beryllium is a naturally occurring, light-weight metal used in products such as aerospace components, transistors, nuclear reactors, and golf clubs. Most exposures occur to workers who produce such products.

  10. Some Properties of Beryllium Oxide and Beryllium Oxide - Columbium Ceramals

    NASA Technical Reports Server (NTRS)

    Robards, C F; Gangler, J J

    1951-01-01

    High-temperature tensile and thermal-shock investigations were conducted on beryllium oxide and beryllium oxide plus columbium metal additions. X-ray diffraction and metallographic results are given. The tensile strength of 6150 pounds per square inch for beryllium oxide at 1800 degrees F compared favorably with the zirconia bodies previously tested. Additions of 2, 5, 8, 10, 12, and 15 percent by weight of columbium metal failed to improve the shock resistance over that of pure beryllium oxide.

  11. Chronic Beryllium Disease

    MedlinePlus

    ... Newman LS. Re-examination of the blood lymphocyte transformation test in the diagnosis of chronic beryllium disease. ... et al. A study on the beryllium Lymphocyte Transformation Test and the beryllium levels in working environment. ...

  12. Development of Casting Process for Pressings of Pistons of Car Augmented Engines

    NASA Astrophysics Data System (ADS)

    Korostelev, V. F.; Denisov, M. S.

    2017-01-01

    Results of a study aimed at formation of a single-phase fine-grained structure in pistons during their production process involving isostatic pressing of liquid metal prior to the start of crystallization, pressing of the crystallizing metal, and holding under pressure in the process of cooling to the shop temperature are presented.

  13. Beryllium health effects in the era of the beryllium lymphocyte proliferation test.

    PubMed

    Maier, L A

    2001-05-01

    The beryllium lymphocyte proliferation test (BeLPT) has revolutionized our approach to the diagnosis, screening, and surveillance of beryllium health effects. Based on the development of a beryllium-specific cell-mediated immune response, the BeLPT has allowed us to define early health effects of beryllium, including beryllium sensitization (BeS), and chronic beryllium disease (CBD) at a subclinical stage. The use of this test as a screening tool has improved our understanding of these health effects. From a number of studies it is apparent that BeS precedes CBD and develops after as little as 9 weeks of beryllium exposure. CBD occurs within 3 months and up to 30 years after initial beryllium exposure. Exposure-response variables have been associated with BeS/CBD, including work as a machinist, chemical or metallurgical operator, laboratory technician, work in ceramics or beryllium metal production, and years of beryllium exposure. Recent studies have found BeS and CBD in workplaces in which the majority of exposures were below the 2 microg/m3 OSHA time-weighted average (TWA). Ideally, the BeLPT would be used in surveillance aimed at defining other risk-related processes, determining exposure variables which predict BeS and CBD, and defining the exposure level below which beryllium health effects do not occur. Unfortunately, the BeLPT can result in false negative tests and still requires an invasive procedure, a bronchoscopy, for the definitive diagnosis of CBD. Thus, research is needed to establish new tests to be used alone or in conjunction with the BeLPT to improve our ability to detect early beryllium health effects.

  14. Beryllium particle combustion

    NASA Technical Reports Server (NTRS)

    Prentice, J. L.

    1972-01-01

    A two-year study of the combustion efficiency of single beryllium droplets burning in a variety of oxidizers (primarily mixtures of oxygen/argon and oxygen/nitrogen) is summarized. An advanced laser heating technique was used to acquire systematic quantitative data on the burning of single beryllium droplets at atmospheric pressure. The research confirmed the sensitivity of beryllium droplet combustion to the chemistry of environmental species and provides experimental documentation for the nitrogen-induced droplet fragmentation of burning beryllium droplets.

  15. Phase decomposition of γ-U (bcc) in U-10 wt% Mo fuel alloy during hot isostatic pressing of monolithic fuel plate

    NASA Astrophysics Data System (ADS)

    Park, Y.; Eriksson, N.; Newell, R.; Keiser, D. D.; Sohn, Y. H.

    2016-11-01

    Eutectoid decomposition of γ-phase (cI2) into α-phase (oC4) and γ‧-phase (tI6) during the hot isostatic pressing (HIP) of the U-10 wt% Mo (U10Mo) alloy was investigated using monolithic fuel plate samples consisting of U10Mo fuel alloy, Zr diffusion barrier and AA6061 cladding. The decomposition of the γ-phase was observed because the HIP process is carried out near the eutectoid temperature, 555 °C. Initially, a cellular structure, consisting of γ‧-phase surrounded by α-phase, developed from the destabilization of the γ-phase. The cellular structure further developed into an alternating lamellar structure of α- and γ‧-phases. Using scanning electron microscopy and transmission electron microscopy, qualitative and quantitative microstructural analyses were carried out to identify the phase constituents, and elucidate the microstructural development based on time-temperature-transformation diagram of the U10Mo alloy. The destabilization of γ -phase into α- and γ‧-phases would be minimized when HIP process was carried out with rapid ramping/cooling rate and dwell temperature higher than 560 °C.

  16. A study of beryllium and beryllium-lithium complexes in single crystal silicon

    NASA Technical Reports Server (NTRS)

    Crouch, R. K.; Robertson, J. B.; Gilmer, T. E., Jr.

    1972-01-01

    When beryllium is thermally diffused into silicon, it gives rise to acceptor levels 191 MeV and 145 meV above the valence band. Quenching and annealing studies indicate that the 145-MeV level is due to a more complex beryllium configuration than the 191-MeV level. When lithium is thermally diffused into a beryllium-doped silicon sample, it produces two acceptor levels at 106 MeV and 81 MeV. Quenching and annealing studies indicate that these levels are due to lithium forming a complex with the defects responsible for the 191-MeV and 145-MeV beryllium levels, respectively. Electrical measurements imply that the lithium impurity ions are physically close to the beryllium impurity atoms. The ground state of the 106-MeV beryllium level is split into two levels, presumably by internal strains. Tentative models are proposed.

  17. Beryllium disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-12-20

    After two workers at the nuclear weapons plant at Oak Ridge National Laboratory in Tennessee were diagnosed earlier this year with chronic beryllium disease (CBD), a rare and sometimes fatal scarring of the lungs, the Department of Energy ordered up a 4-year probe. Now, part of that probe has begun - tests conducted by the Oak Ridge Associated Universities' Center for Epidemiological Research measuring beryllium sensitivity in 3,000 people who've been exposed to the metal's dust since Manhattan Project managers opened the Y-12 plant at Oak Ridge in 1943. Currently, 119 Y-12 employees process beryllium, which has a number ofmore » industrial uses, including rocket heat shields and nuclear weapon and electrical components. The disease often takes 20 to 25 years to develop, and the stricken employees haven't worked with beryllium for years. There is no cure for CBD, estimated to strike 2% of people exposed to the metal. Anti-inflammatory steroids alleviate such symptoms as a dry cough, weight loss, and fatigue. Like other lung-fibrosis diseases that are linked to lung cancer, some people suspect CBD might cause some lung cancer. While difficult to diagnose, about 900 cases of CBD have been reported since a Beryllium Case Registry was established in 1952. The Department of Energy (DOE) estimates that about 10,000 DOE employees and 800,000 people in private industry have worked with beryllium.« less

  18. Beryllium--important for national defense

    USGS Publications Warehouse

    Boland, M.A.

    2012-01-01

    Beryllium is one of the lightest and stiffest metals, but there was little industrial demand for it until the 1930s and 1940s when the aerospace, defense, and nuclear sectors began using beryllium and its compounds. Beryllium is now classified by the U.S. Department of Defense as a strategic and critical material because it is used in products that are vital to national security. The oxide form of beryllium was identified in 1797, and scientists first isolated metallic beryllium in 1828. The United States is the world's leading source of beryllium. A single mine at Spor Mountain, Utah, produced more than 85 percent of the beryllium mined worldwide in 2010. China produced most of the remainder, and less than 2 percent came from Mozambique and other countries. National stockpiles also provide significant amounts of beryllium for processing. To help predict where future beryllium supplies might be located, U.S.Geological Survey (USGS) scientists study how and where beryllium resources are concentrated in Earth's crust and use that knowledge to assess the likelihood that undiscovered beryllium resources may exist. Techniques to assess mineral resources have been developed by the USGS to support the stewardship of Federal lands and to better evaluate mineral resource availability in a global context. The USGS also compiles statistics and information on the worldwide supply of, demand for, and flow of beryllium. These data are used to inform U.S. national policymaking.

  19. Technical Basis for PNNL Beryllium Inventory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Michelle Lynn

    2014-07-09

    The Department of Energy (DOE) issued Title 10 of the Code of Federal Regulations Part 850, “Chronic Beryllium Disease Prevention Program” (the Beryllium Rule) in 1999 and required full compliance by no later than January 7, 2002. The Beryllium Rule requires the development of a baseline beryllium inventory of the locations of beryllium operations and other locations of potential beryllium contamination at DOE facilities. The baseline beryllium inventory is also required to identify workers exposed or potentially exposed to beryllium at those locations. Prior to DOE issuing 10 CFR 850, Pacific Northwest Nuclear Laboratory (PNNL) had documented the beryllium characterizationmore » and worker exposure potential for multiple facilities in compliance with DOE’s 1997 Notice 440.1, “Interim Chronic Beryllium Disease.” After DOE’s issuance of 10 CFR 850, PNNL developed an implementation plan to be compliant by 2002. In 2014, an internal self-assessment (ITS #E-00748) of PNNL’s Chronic Beryllium Disease Prevention Program (CBDPP) identified several deficiencies. One deficiency is that the technical basis for establishing the baseline beryllium inventory when the Beryllium Rule was implemented was either not documented or not retrievable. In addition, the beryllium inventory itself had not been adequately documented and maintained since PNNL established its own CBDPP, separate from Hanford Site’s program. This document reconstructs PNNL’s baseline beryllium inventory as it would have existed when it achieved compliance with the Beryllium Rule in 2001 and provides the technical basis for the baseline beryllium inventory.« less

  20. Impact Initiation of Rods of Pressed Polytetrafluoroethylene (PTFE) and Aluminum Powders

    NASA Astrophysics Data System (ADS)

    Mock, Willis, Jr.; Drotar, Jason T.

    2007-06-01

    A gas gun has been used to investigate the impact initiation of rods consisting of a mixture of 72 wt% PTFE (28 μm particle size) and 28 wt% aluminum (95 micron particle size) powders. The rods were 7.6 mm in diameter by 51 mm long, and were fabricated from material that had been pressed and sintered to a full density of 2.27 gm/cm^ 3. They were sabot-launched into steel anvils at impact velocities ranging from 468 to 970 m/sec. This corresponds to calculated initial impact stresses of 25 to 64 kbar, respectively. A framing camera was used to observe the time sequence of events. These include change in rod shape, fracture, and the initiation and evolution of the reaction phenomena. The time of observation of first light after impact was taken as the initiation time. Initiation occurred at discrete locations in the impacted material. At the lowest impact stress of 25 kbar no light was observed; this value was taken as the initiation threshold stress for this material. Above the initiation threshold, the initiation time dropped abruptly from 74 μs just above threshold to 14 μs at the highest impact velocity of 970 m/s. These results are compared with rod impact experiments for a similar material [1] in which the only major difference is a smaller aluminum particle size (9 micron). [1] W. Mock, Jr. and W. H. Holt, in Proc. APS Shock Compression of Condensed Matter--2005, p.1097.

  1. Corrosion protection for silver reflectors

    DOEpatents

    Arendt, Paul N.; Scott, Marion L.

    1991-12-31

    A method of protecting silver reflectors from damage caused by contact with gaseous substances which are often present in the atmosphere and a silver reflector which is so protected. The inventive method comprises at least partially coating a reflector with a metal oxide such as aluminum oxide to a thickness of 15 .ANG. or less.

  2. METHOD FOR JOINING ALUMINUM TO STAINLESS STEEL

    DOEpatents

    Lemon, L.C.

    1960-05-24

    Aluminum may be joined to stainless steel without the use of flux by tinning the aluminum with a tin solder containing 1% silver and 1% lead, tinning the stainless steel with a 50% lead 50% tin solder, and then sweating the tinned surfaces together.

  3. Defense programs beryllium good practice guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herr, M.

    1997-07-01

    Within the DOE, it has recently become apparent that some contractor employees who have worked (or are currently working) with and around beryllium have developed chronic beryllium disease (CBD), an occupational granulomatous lung disorder. Respiratory exposure to aerosolized beryllium, in susceptible individuals, causes an immunological reaction that can result in granulomatous scarring of the lung parenchyma, shortness of breath, cough, fatigue, weight loss, and, ultimately, respiratory failure. Beryllium disease was originally identified in the 1940s, largely in the fluorescent light industry. In 1950, the Atomic Energy Commission (AEC) introduced strict exposure standards that generally curtailed both the acute and chronicmore » forms of the disease. Beginning in 1984, with the identification of a CBD case in a DOE contractor worker, there was increased scrutiny of both industrial hygiene practices and individuals in this workforce. To date, over 100 additional cases of beryllium-specific sensitization and/or CBD have been identified. Thus, a disease previously thought to be largely eliminated by the adoption of permissible exposure standards 45 years ago is still a health risk in certain workforces. This good practice guide forms the basis of an acceptable program for controlling workplace exposure to beryllium. It provides (1) Guidance for minimizing worker exposure to beryllium in Defense Programs facilities during all phases of beryllium-related work, including the decontamination and decommissioning (D&D) of facilities. (2) Recommended controls to be applied to the handling of metallic beryllium and beryllium alloys, beryllium oxide, and other beryllium compounds. (3) Recommendations for medical monitoring and surveillance of workers exposed (or potentially exposed) to beryllium, based on the best current understanding of beryllium disease and medical diagnostic tests available. (4) Site-specific safety procedures for all processes of beryllium that is

  4. Comparison of structure, morphology, and leach characteristics of multi-phase ceramics produced via melt processing and hot isostatic pressing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dandeneau, Christopher S.; Hong, Tao; Brinkman, Kyle S.

    Melt processing of multi-phase ceramic waste forms offers potential advantages over traditional solid-state synthesis methods given both the prevalence of melters currently in use and the ability to reduce the possibility of airborne radionuclide contamination. In this work, multi-phase ceramics with a targeted hollandite composition of Ba 1.0Cs 0.3Cr 1.0Al 0.3Fe 1.0Ti 5.7O 16 were fabricated by melt processing at 1675 °C and hot isostatic pressing (HIP) at 1250 and 1300 °C. X-ray diffraction analysis (XRD) confirmed hollandite as the major phase in all specimens. Zirconolite/pyrochlore peaks and weaker perovskite reflections were observed after melt processing, while HIP samples displayedmore » prominent perovskite peaks and low-intensity zirconolite reflections. Melt processing produced specimens with large (>50 μm) well-defined hollandite grains, while HIP yielded samples with a more fine-grained morphology. Elemental analysis showed “islands” rich in Cs and Ti across the surface of the 1300 °C HIP sample, suggesting partial melting and partitioning of Cs into multiple phases. Photoemission data revealed multiple Cs 3d spin-orbit pairs for the HIP samples, with the lower binding energy doublets likely corresponding to Cs located in more leachable phases. Among all specimens examined, the melt-processed sample exhibited the lowest fractional release rates for Rb and Cs. However, the retention of Sr and Mo was greater in the HIP specimens.« less

  5. Comparison of structure, morphology, and leach characteristics of multi-phase ceramics produced via melt processing and hot isostatic pressing

    DOE PAGES

    Dandeneau, Christopher S.; Hong, Tao; Brinkman, Kyle S.; ...

    2018-02-08

    Melt processing of multi-phase ceramic waste forms offers potential advantages over traditional solid-state synthesis methods given both the prevalence of melters currently in use and the ability to reduce the possibility of airborne radionuclide contamination. In this work, multi-phase ceramics with a targeted hollandite composition of Ba 1.0Cs 0.3Cr 1.0Al 0.3Fe 1.0Ti 5.7O 16 were fabricated by melt processing at 1675 °C and hot isostatic pressing (HIP) at 1250 and 1300 °C. X-ray diffraction analysis (XRD) confirmed hollandite as the major phase in all specimens. Zirconolite/pyrochlore peaks and weaker perovskite reflections were observed after melt processing, while HIP samples displayedmore » prominent perovskite peaks and low-intensity zirconolite reflections. Melt processing produced specimens with large (>50 μm) well-defined hollandite grains, while HIP yielded samples with a more fine-grained morphology. Elemental analysis showed “islands” rich in Cs and Ti across the surface of the 1300 °C HIP sample, suggesting partial melting and partitioning of Cs into multiple phases. Photoemission data revealed multiple Cs 3d spin-orbit pairs for the HIP samples, with the lower binding energy doublets likely corresponding to Cs located in more leachable phases. Among all specimens examined, the melt-processed sample exhibited the lowest fractional release rates for Rb and Cs. However, the retention of Sr and Mo was greater in the HIP specimens.« less

  6. Comparison of structure, morphology, and leach characteristics of multi-phase ceramics produced via melt processing and hot isostatic pressing

    NASA Astrophysics Data System (ADS)

    Dandeneau, Christopher S.; Hong, Tao; Brinkman, Kyle S.; Vance, Eric R.; Amoroso, Jake W.

    2018-04-01

    Melt processing of multi-phase ceramic waste forms offers potential advantages over traditional solid-state synthesis methods given both the prevalence of melters currently in use and the ability to reduce the possibility of airborne radionuclide contamination. In this work, multi-phase ceramics with a targeted hollandite composition of Ba1.0Cs0.3Cr1.0Al0.3Fe1.0Ti5.7O16 were fabricated by melt processing at 1675 °C and hot isostatic pressing (HIP) at 1250 and 1300 °C. X-ray diffraction analysis (XRD) confirmed hollandite as the major phase in all specimens. Zirconolite/pyrochlore peaks and weaker perovskite reflections were observed after melt processing, while HIP samples displayed prominent perovskite peaks and low-intensity zirconolite reflections. Melt processing produced specimens with large (>50 μm) well-defined hollandite grains, while HIP yielded samples with a more fine-grained morphology. Elemental analysis showed "islands" rich in Cs and Ti across the surface of the 1300 °C HIP sample, suggesting partial melting and partitioning of Cs into multiple phases. Photoemission data revealed multiple Cs 3d spin-orbit pairs for the HIP samples, with the lower binding energy doublets likely corresponding to Cs located in more leachable phases. Among all specimens examined, the melt-processed sample exhibited the lowest fractional release rates for Rb and Cs. However, the retention of Sr and Mo was greater in the HIP specimens.

  7. Elastic collapse in disordered isostatic networks

    NASA Astrophysics Data System (ADS)

    Moukarzel, C. F.

    2012-02-01

    Isostatic networks are minimally rigid and therefore have, generically, nonzero elastic moduli. Regular isostatic networks have finite moduli in the limit of large sizes. However, numerical simulations show that all elastic moduli of geometrically disordered isostatic networks go to zero with system size. This holds true for positional as well as for topological disorder. In most cases, elastic moduli decrease as inverse power laws of system size. On directed isostatic networks, however, of which the square and cubic lattices are particular cases, the decrease of the moduli is exponential with size. For these, the observed elastic weakening can be quantitatively described in terms of the multiplicative growth of stresses with system size, giving rise to bulk and shear moduli of order e-bL. The case of sphere packings, which only accept compressive contact forces, is considered separately. It is argued that these have a finite bulk modulus because of specific correlations in contact disorder, introduced by the constraint of compressivity. We discuss why their shear modulus, nevertheless, is again zero for large sizes. A quantitative model is proposed that describes the numerically measured shear modulus, both as a function of the loading angle and system size. In all cases, if a density p>0 of overconstraints is present, as when a packing is deformed by compression or when a glass is outside its isostatic composition window, all asymptotic moduli become finite. For square networks with periodic boundary conditions, these are of order \\sqrt{p} . For directed networks, elastic moduli are of order e-c/p, indicating the existence of an "isostatic length scale" of order 1/p.

  8. Lightweight Aluminum/Nano composites for Automotive Drive Train Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chelluri, Bhanumathi; Knoth, Edward A.; Schumaker, Edward J.

    2012-12-14

    During Phase I, we successfully processed air atomized aluminum powders via Dynamic Magnetic Compaction (DMC) pressing and subsequent sintering to produce parts with properties similar to wrought aluminum. We have also showed for the first time that aluminum powders can be processed without lubes via press and sintering to 100 % density. This will preclude a delube cycle in sintering and promote environmentally friendly P/M processing. Processing aluminum powders via press and sintering with minimum shrinkage will enable net shape fabrication. Aluminum powders processed via a conventional powder metallurgy process produce too large a shrinkage. Because of this, sinter partsmore » have to be machined into specific net shape. This results in increased scrap and cost. Fully sintered aluminum alloy under this Phase I project has shown good particle-to-particle bonding and mechanical properties. We have also shown the feasibility of preparing nano composite powders and processing via pressing and sintering. This was accomplished by dispersing nano silicon carbide (SiC) powders into aluminum matrix comprising micron-sized powders (<100 microns) using a proprietary process. These composite powders of Al with nano SiC were processed using DMC press and sinter process to sinter density of 85-90%. The process optimization along with sintering needs to be carried out to produce full density composites.« less

  9. Behavior of Aluminum in Solid Propellant Combustion

    DTIC Science & Technology

    1982-06-01

    dry pressing 30% Valley Met H- 30 aluminum, 7% carnauba wax , and 63% 100 P AP. One sample was prepared using as received H-30, a second sample used pre...34propellant" formulations. The formulations included dry pressed AP/AI, and AP/AI/ Wax samples. Sandwiches were also prepared consisting of an aluminum...Binder flame instead of by aluminum exposure during accumulate break-up. Combustion of AP/AI/ Wax Samples A set of propellant samples were prepared by

  10. Damage prediction of 7025 aluminum alloy during equal-channel angular pressing

    NASA Astrophysics Data System (ADS)

    Ebrahimi, M.; Attarilar, Sh.; Gode, C.; Djavanroodi, F.

    2014-10-01

    Equal-channel angular pressing (ECAP) is a prominent technique that imposes severe plastic deformation into materials to enhance their mechanical properties. In this research, experimental and numerical approaches were utilized to investigate the mechanical properties, strain behavior, and damage prediction of ECAPed 7025 aluminum alloy in various conditions, such as die channel angle, outer corner angle, and friction coefficient. Experimental results indicate that, after the first pass, the yield strength, ultimate tensile strength, and hardness magnitude are improved by approximately 95%, 28%, and 48.5%, respectively, compared with the annealed state, mainly due to grain refinement during the deformation. Finite element analysis shows that the influence of die channel angle is more important than that of outer corner angle or friction coefficient on both the strain behavior and the damage prediction. Also, surface cracks are the main cause of damage during the ECAP process for every die channel angle except for 90°; however, the cracks initiated from the neighborhood of the central regions are the possible cause of damage in the ECAPed sample with the die channel angle of 90°.

  11. 5. VIEW OF BERYLLIUM PROCESSING AREA, ROLLING MILL. BERYLLIUM FORMING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW OF BERYLLIUM PROCESSING AREA, ROLLING MILL. BERYLLIUM FORMING BEGAN IN SIDE A OF THE BUILDING IN 1962. (11/5/73) - Rocky Flats Plant, Uranium Rolling & Forming Operations, Southeast section of plant, southeast quadrant of intersection of Central Avenue & Eighth Street, Golden, Jefferson County, CO

  12. The kinetics of dolomite reaction rim growth under isostatic and non-isostatic pressure conditions

    NASA Astrophysics Data System (ADS)

    Helpa, V.; Rybacki, E.; Morales, L. G.; Abart, R.; Dresen, G. H.

    2013-12-01

    During burial and exhumation, rocks are simultaneously exposed to metamorphic reactions and tectonic stresses. Therefore, the reaction rate of newly formed minerals may depend on chemical and mechanical driving forces. Here, we investigate the reaction kinetics of dolomite (CaMg[CO3]2) rim growth by solid-state reactions experiments on oriented calcite (CaCO3) and magnesite (MgCO3) single crystals under isostatic and non-isostatic pressure conditions. Cylindrical samples of 3-5 mm length and 7 mm diameter were drilled and polished perpendicular to the rhombohedral cleavage planes of natural clear crystals. The tests were performed using a Paterson-type deformation apparatus at P = 400 MPa confining pressure, temperatures, T, between 750 and 850°C, and reaction durations, t, of 2 - 146 h to calculate the kinetic parameters of dolomite rim growth under isostatic stress conditions. For non-isostatic reaction experiments we applied in addition differential stresses, σ, up to 40 MPa perpendicular to the contact interface at T = 750°C for 4 - 171 h duration, initiating minor inelastic deformation of calcite. The thickness of the resulting dolomite reaction rims increases linearly with the square root of time, indicating a diffusion-controlled reaction. The rims consist of two different textural domains. Granular dolomite grains (≈ 2 -5 μm grain size) form next to calcite and elongated palisade-shaped grains (1-6 μm diameter) grow perpendicular to the magnesite interface. Texture measurements with the electron backscatter diffraction technique indicate that the orientations of dolomite grains are mainly influenced by the orientation of the calcite educt crystal, in particular in the granular rim. To some extent, the texture of dolomite palisades is also influenced by the orientation of magnesite. The thickness of the two individual layers increases with temperature. At 400 MPa isostatic pressure, T = 750°C and t = 29 hours, a 5 μm thick granular dolomite layer

  13. Beryllium R&D for blanket application

    NASA Astrophysics Data System (ADS)

    Donne, M. Dalle; Longhurst, G. R.; Kawamura, H.; Scaffidi-Argentina, F.

    1998-10-01

    The paper describes the main problems and the R&D for the beryllium to be used as neutron multiplier in blankets. As the four ITER partners propose to use beryllium in the form of pebbles for their DEMO relevant blankets (only the Russians consider the porous beryllium option as an alternative) and the ITER breeding blanket will use beryllium pebbles as well, the paper is mainly based on beryllium pebbles. Also the work on the chemical reactivity of fully dense and porous beryllium in contact with water steam is described, due to the safety importance of this point.

  14. Beryllium Metal Supply Options

    DTIC Science & Technology

    1989-01-01

    vacuum evaporator treatment to form ABF crystals, which are separated in a horizontal bowl centrifuge and dried. Formation of Beryllium Fluoride The...addition, the high viscosity of the slag may cause poor pebble formation and yield. Thus, the following programs to improve efficiency have been suggested...and avoiding the formation of beryllium fines, which are difficult to recover. The production of a readily manageable beryllium sponge is desired, which

  15. Thermal shock induced oxidation of beryllium

    NASA Astrophysics Data System (ADS)

    Spilker, B.; Linke, J.; Pintsuk, G.; Wirtz, M.

    2017-12-01

    Beryllium has been chosen as a plasma facing material for the first wall of the experimental fusion reactor ITER, mainly because of its low atomic number and oxygen getter capabilities, which are favorable for a high plasma performance. While the steady state operational temperature of 250 °C has no deteriorating effect on the beryllium surface, transient plasma events can deposit power densities of up to 1 GW m-2 on the beryllium armor tiles. Previous research has shown that the oxidation of beryllium can occur under these thermal shock events. In the present study, S-65 grade beryllium specimens were exposed to 100 thermal shocks with an absorbed power density of 0.6 GW m-2 and a pulse duration of 1 ms, leading to a peak surface temperature of ˜800 °C. The induced surface morphology changes were compared to a steady state heated specimen at the same surface temperature with a holding time of 150 s. As a result, a pitting structure with an average pit diameter of ˜0.45 μm was observed on the thermal shock loaded surface, which was caused by beryllium oxide grain nucleation and subsequent erosion of the weakly bound beryllium oxide particles. In contrast, the steady state heated surface exhibited a more homogeneous beryllium oxide layer featuring small pits with diameters of tens of nm and showed the beryllium oxide grain nucleation in a beginning stage. The experiment demonstrated that thermal shock loading conditions can significantly accelerate the beryllium oxide grain nucleation. The resulting surface morphology change can potentially alter the fusion application relevant erosion, absorption, and retention characteristics of beryllium.

  16. Method for fabricating beryllium structures

    DOEpatents

    Hovis, Jr., Victor M.; Northcutt, Jr., Walter G.

    1977-01-01

    Thin-walled beryllium structures are prepared by plasma spraying a mixture of beryllium powder and about 2500 to 4000 ppm silicon powder onto a suitable substrate, removing the plasma-sprayed body from the substrate and placing it in a sizing die having a coefficient of thermal expansion similar to that of the beryllium, exposing the plasma-sprayed body to a moist atmosphere, outgassing the plasma-sprayed body, and then sintering the plasma-sprayed body in an inert atmosphere to form a dense, low-porosity beryllium structure of the desired thin-wall configuration. The addition of the silicon and the exposure of the plasma-sprayed body to the moist atmosphere greatly facilitate the preparation of the beryllium structure while minimizing the heretofore deleterious problems due to grain growth and grain orientation.

  17. Novel aqueous dual-channel aluminum-hydrogen peroxide battery

    NASA Astrophysics Data System (ADS)

    Marsh, Catherine; Licht, Stuart

    1994-06-01

    A dual-channel aluminum hydrogen peroxide battery is introduced with an open-circuit voltage of 1.9 volts, polarization losses of 0.9 mV cm(exp 2) mA(exp -1), and power densities of 1 W/cm(exp 2). Catholyte and anolyte cell compartments are separated by an Ir/Pd modified porous nickel cathode. Separation of catholyte and anolyte chambers prevents hydrogen peroxide poisoning of the aluminum anode. The battery is expressed by aluminum oxidation and aqueous solution phase hydrogen peroxide reduction for an overall battery discharge consisting of 2Al + 3H2O2 + 2OH(-) yields 2AlO2(-) + 4H2O E = 2.3 V. The search for electrical propulsion sources which fit the requirements for electrically powered vehicles has blurred the standard characteristics associated with electrochemical storage systems. Presently, electrochemical systems comprised of mechanically rechargeable primary batteries, secondary batteries, and fuel cells are candidates for electrochemical propulsion sources. While important advances in energy and power density continue for nonaqueous and molten electrolytes, aqueous electrolyte batteries often have an advantage in simplicity, conductivity, cost effectiveness, and environmental impact. Systems coupling aluminum anodes and aqueous electrolytes have been investigated. These systems include: aluminum/silver oxide, aluminum/manganese dioxide, aluminum air, aluminum/hydrogen peroxide aqueous batteries, and the recently introduced aluminum/ferricyanide and aluminum sulfur aqueous batteries. Conventional aqueous systems such as the nickel cadmium and lead-acid batteries are characterized by their relatively low energy densities and adverse environmental impact. Other systems have substantially higher theoretical energy capacities. While aluminum-silver oxide has demonstrated the highest steady-state power density, its high cost is an impediment for widespread utilization for electric propulsion.

  18. Large-area beryllium metal foils

    NASA Astrophysics Data System (ADS)

    Stoner, J. O., Jr.

    1997-02-01

    To manufacture beryllium filters having diameters up to 82 mm and thicknesses in the range 0.1-1 μm, it was necessary to construct apparatus in which the metal could safely be evaporated, and then to find an acceptable substrate and evaporation procedure. The metal was evaporated resistively from a tantalum dimple boat mounted in a baffled enclosure that could be placed in a conventional vacuum bell jar, obviating the need for a dedicated complete vacuum system. Substrates were 102 mm × 127 mm × 0.05 mm cleaved mica sheets, coated with 0.1 μm of NaCl, then with approximately 50 μg/cm 2 of cellulose nitrate. These were mounted on poly(methyl methacrylate) sheets 3 mm thick that were in turn clamped to a massive aluminum block for thermal stability. Details of the processes for evaporation, float off, and mounting are given, and the resulting foils described.

  19. Biomimetic evaluation of β tricalcium phosphate prepared by hot isostatic pressing

    PubMed Central

    Mateescu, Mihaela; Rguitti, Emmanuelle; Ponche, Arnaud; Descamps, Michel; Anselme, Karine

    2012-01-01

    Two types of completely densified β-TCP tablets were synthesized from a stoichiometric β-TCP powder. The first ones (TCP) were conventionally sintered, while the second ones (TCP-T) were sintered and treated by hot isostatic process (HIP). The HIP produced completely densified materials with relative densities greater than 99.9% and a transparent appearance of tablets. Samples were immersed in culture medium with (CM) or without serum (NCM) in static and dynamic conditions for a biomimetic evaluation. Similarly, SaOs-2 cells were cultured on samples in a static or dynamic flow perfusion system. The results of surface transformation in absence of cells showed that the dynamic condition increased the speed of calcium phosphate precipitations compared with the static condition. The morphology of precipitates was different with nature of tablets. The immersion in CM did impede this precipitation. XPS analysis of TCP-T tablets showed the presence of hydroxyapatite (HA) precipitates after incubation in NCM while octacalcium phosphate (OCP) precipitates were formed after incubation in CM. The analysis of the response of SaOs-2 cells on surfaces showed that the two types of materials are biocompatible. However, the dynamic mode of culture stimulated the differentiation of cells. Finally, it appears that the HIP treatment of TCP produces highly densified and transparent samples that display a good in vitro biocompatibility in static and dynamic culture conditions. Moreover, an interesting result of this work is the relationship between the presence of proteins in the immersion medium and the quality of precipitates formed on hipped TCP surface. PMID:23507861

  20. Fundamental properties of monolithic bentonite buffer material formed by cold isostatic pressing for high-level radioactive waste repository

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawakami, S.; Yamanaka, Y.; Kato, K.

    1999-07-01

    The methods of fabrication, handling, and emplacement of engineered barriers used in a deep geological repository for high level radioactive waste should be planned as simply as possible from the engineering and economic viewpoints. Therefore, a new concept of a monolithic buffer material around a waste package have been proposed instead of the conventional concept with the use of small blocks, which would decrease the cost for buffer material. The monolithic buffer material is composed of two parts of highly compacted bentonite, a cup type body and a cover. As the forming method of the monolithic buffer material, compaction bymore » the cold isostatic pressing process (CIP) has been employed. In this study, monolithic bentonite bodies with the diameter of about 333 mm and the height of about 455 mm (corresponding to the approx. 1/5 scale for the Japanese reference concept) were made by the CIP of bentonite powder. The dry densities: {rho}d of the bodies as a whole were measured and the small samples were cut from several locations to investigate the density distribution. The swelling pressure and hydraulic conductivity as function of the monolithic body density for CIP-formed specimens were also measured. High density ({rho}d: 1.4--2.0 Mg/m{sup 3}) and homogeneous monolithic bodies were formed by the CIP. The measured results of the swelling pressure (3--15 MPa) and hydraulic conductivity (0.5--1.4 x 10{sup {minus}13} m/s) of the specimens were almost the same as those for the uniaxial compacted bentonite in the literature. It is shown that the vacuum hoist system is an applicable handling method for emplacement of the monolithic bentonite.« less

  1. The electrical losses induced by silver paste in n-type silicon solar cells

    NASA Astrophysics Data System (ADS)

    Aoyama, Takayuki; Aoki, Mari; Sumita, Isao; Yoshino, Yasushi; Ohshita, Yoshio; Ogura, Atsushi

    2017-10-01

    Aluminum-added silver paste (Ag/Al paste) has been used for p+ emitter of n-type solar cells. The electrical losses due to shunting and recombination caused by the paste in the cells have been reported to originate from huge metallic spikes due to the aluminum. However, whether the aluminum actually induces the losses has not been clarified yet. In this study, the “floating contact method” is applied to aluminum-free silver (Al-free Ag) paste to investigate the effects of aluminum extraction from the Ag/Al paste and to understand how the aluminum principally induces the losses for the p+ emitter. Furthermore, the interfacial morphology between the Al-free Ag paste and p-type silicon is investigated. The Ag paste itself creates tiny crystallites for the p+ emitter, resulting in shunting and recombination. The result indicates that the aluminum addition to Ag paste is not the main reason for the electrical losses in the n-type solar cells.

  2. 10 CFR 850.20 - Baseline beryllium inventory.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Baseline beryllium inventory. 850.20 Section 850.20 Energy... Baseline beryllium inventory. (a) The responsible employer must develop a baseline inventory of the locations of beryllium operations and other locations of potential beryllium contamination, and identify the...

  3. Mineral resource of the month: beryllium

    USGS Publications Warehouse

    ,

    2013-01-01

    The article discusses information about Beryllium. It notes that Beryllium is a light metal that has a gray color. The metal is used in the production of parts and devices including bearings, computer-chip heat sinks, and output windows of X-ray tubes. The article mentions Beryllium's discovery in 1798 by French chemist, Louis-Nicolas Vanquelin. It cites that bertrandite and beryl are the principal mineral components for the commercial production of beryllium.

  4. Microstructural Evolution at Micro/Meso-Scale in an Ultrafine-Grained Pure Aluminum Processed by Equal-Channel Angular Pressing with Subsequent Annealing Treatment.

    PubMed

    Xu, Jie; Li, Jianwei; Zhu, Xiaocheng; Fan, Guohua; Shan, Debin; Guo, Bin

    2015-11-04

    Micro-forming with ultrafine-grained (UFG) materials is a promising direction for the fabrication of micro-electro-mechanical systems (MEMS) components due to the improved formability, good surface quality, and excellent mechanical properties it provides. In this paper, micro-compression tests were performed using UFG pure aluminum processed by equal-channel angular pressing (ECAP) with subsequent annealing treatment. Microstructural evolution was investigated by electron back-scattered diffraction (EBSD) and transmission electron microscopy (TEM). The results show that microstructural evolutions during compression tests at the micro/meso-scale in UFG pure Al are absolutely different from the coarse-grained (CG) materials. A lot of low-angle grain boundaries (LAGBs) and recrystallized fine grains are formed inside of the original large grains in CG pure aluminum after micro-compression. By contrast, ultrafine grains are kept with few sub-grain boundaries inside the grains in UFG pure aluminum, which are similar to the original microstructure before micro-compression. The surface roughness and coordinated deformation ability can be signmicrostructure; micro/meso-forming; ultrafine grains; ECAP; aluminumificantly improved with UFG pure aluminum, which demonstrates that the UFG materials have a strong potential application in micro/meso-forming.

  5. Silver to Black--and Back.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 2000

    2000-01-01

    Presents an activity that allows students to remove tarnish from silver using the reaction of tarnish with aluminum rather than the abrasion method of commercial tarnish removers. Makes suggestions for adapting the activity to an at-home investigation. (WRM)

  6. Relative SHG measurements of metal thin films: Gold, silver, aluminum, cobalt, chromium, germanium, nickel, antimony, titanium, titanium nitride, tungsten, zinc, silicon and indium tin oxide

    NASA Astrophysics Data System (ADS)

    Che, Franklin; Grabtchak, Serge; Whelan, William M.; Ponomarenko, Sergey A.; Cada, Michael

    We have experimentally measured the surface second-harmonic generation (SHG) of sputtered gold, silver, aluminum, zinc, tungsten, copper, titanium, cobalt, nickel, chromium, germanium, antimony, titanium nitride, silicon and indium tin oxide thin films. The second-harmonic response was measured in reflection using a 150 fs p-polarized laser pulse at 1561 nm. We present a clear comparison of the SHG intensity of these films relative to each other. Our measured relative intensities compare favorably with the relative intensities of metals with published data. We also report for the first time to our knowledge the surface SHG intensity of tungsten and antimony relative to that of well known metallic thin films such as gold and silver.

  7. Selective Electron Beam Manufacturing of Ti-6Al-4V Strips: Effect of Build Orientation, Columnar Grain Orientation, and Hot Isostatic Pressing on Tensile Properties

    NASA Astrophysics Data System (ADS)

    Wang, J.; Tang, H. P.; Yang, K.; Liu, N.; Jia, L.; Qian, M.

    2018-03-01

    Many novel designs for additive manufacturing (AM) contain thin-walled (≤ 3 mm) sections in different orientations. Selective electron beam melting (SEBM) is particularly suited to AM of such thin-walled titanium components because of its high preheating temperature and high vacuum. However, experimental data on SEBM of Ti-6Al-4V thin sections remains scarce because of the difficulty and high cost of producing long, thin and smooth strip tensile specimens (see Fig. 1). In this study, 80 SEBM Ti-6Al-4V strips (180 mm long, 42 mm wide, 3 mm thick) were built both vertically (V-strips) and horizontally (H-strips). Their density, microstructure and tensile properties were investigated. The V-strips showed clearly higher tensile strengths but lower elongation than the H-strips. Hot isostatic pressing (HIP) produced the same lamellar α-β microstructures in terms of the average α-lath thickness in both types of strips. The retained prior-β columnar grain boundaries after HIP showed no measurable influence on the tensile properties, irrespective of their length and orientation, because of the formation of randomly distributed fine α-laths.[Figure not available: see fulltext.

  8. METHOD OF WORKING BERYLLIUM

    DOEpatents

    Macherey, R.E.

    1959-02-01

    >A process is presented for fabricating beryllium metal. The billet cf beryllium metal is sheathed with a jacket of either copper or stainless steel. It may then be worked by drawing or the like at a tcmperature of 300 to 400 C.

  9. 10 CFR 850.33 - Beryllium emergencies.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Beryllium emergencies. (a) The responsible employer must comply with 29 CFR 1910.120(l) for handling beryllium emergencies related to decontamination and decommissioning operations. (b) The responsible employer must comply with 29 CFR 1910.120(q) for handling beryllium emergencies related to all other...

  10. YF-12 Lockalloy ventral fin program, volume 1. [design analysis, fabrication, and manufacturing of aircraft structures using aluminum and beryllium alloys for the lockheed YF-12 aircraft

    NASA Technical Reports Server (NTRS)

    Duba, R. J.; Haramis, A. C.; Marks, R. F.; Payne, L.; Sessing, R. C.

    1976-01-01

    Results are presented of the YF-12 Lockalloy Ventral Fin Program which was carried out by Lockheed Aircraft Corporation - Advanced Development Projects for the joint NASA/USAF YF-12 Project. The primary purpose of the program was to redesign and fabricate the ventral fin of the YF-12 research airplane (to reduce flutter) using Lockalloy, and alloy of beryllium and aluminum, as a major structural material. A secondary purpose, was to make a material characterization study (thermodynamic properties, corrosion; fatigue tests, mechanical properties) of Lockalloy to validate the design of the ventral fin and expand the existing data base on this material. All significant information pertinent to the design and fabrication of the ventral fin is covered. Emphasis throughout is given to Lockalloy fabrication and machining techniques and attendant personnel safety precautions. Costs are also examined. Photographs of tested alloy specimens are shown along with the test equipment used.

  11. Containerless processing of beryllium

    NASA Technical Reports Server (NTRS)

    Wouch, G.; Keith, G. H.; Frost, R. T.; Pinto, N. P.

    1977-01-01

    Melting and solidification of a beryllium alloy containing 1.5% BeO by weight in the weightless environment of space has produced cast beryllium with a relatively uniform dispersion of BeO throughout. Examination of the cast material shows that it is coarse grained, although the BeO is not heavily agglomerated in the flight specimen. Ground based comparison experiments show extreme agglomeration and segregation of BeO, resulting in large zones which are practically free of the oxide. Several postulated hypotheses for the failure to grain refine the beryllium are formulated. These are: (1) spherodization of the BeO particles during specimen preparation and during the molten phase of the experiment; (2) loss of nucleation potency through aging in the molten phase; and (3) inability of BeO to act as a grain refiner for beryllium. Further investigation with non spherodized particles and shorter dwell times molten may delineate which of these hypotheses are valid. The results of this flight experiment indicate that the weightless environment of space is an important asset in conducting research to find grain refiners for beryllium and other metals for which cast dispersions of grain refining agents cannot be prepared terrestrially due to gravitationally driven settling and agglomeration.

  12. Potential exposures and risks from beryllium-containing products.

    PubMed

    Willis, Henry H; Florig, H Keith

    2002-10-01

    Beryllium is the strongest of the lightweight metals. Used primarily in military applications prior to the end of the Cold War, beryllium is finding new applications in many commercial products, including computers, telecommunication equipment, and consumer and automotive electronics. The use of beryllium in nondefense consumer applications is of concern because beryllium is toxic. Inhalation of beryllium dust or vapor causes a chronic lung disease in some individuals at concentrations as low as 0.01 microg/m3 in air. As beryllium enters wider commerce, it is prudent to ask what risks this might present to the general public and to workers downstream of the beryllium materials industry. We address this question by evaluating the potential for beryllium exposure from the manufacturing, use, recycle, and disposal of beryllium-containing products. Combining a market study with a qualitative exposure analysis, we determine which beryllium applications and life cycle phases have the largest exposure potential. Our analysis suggests that use and maintenance of the most common types of beryllium-containing products do not result in any obvious exposures of concern, and that maintenance activities result in greater exposures than product use. Product disposal has potential to present significant individual risks, but uncertainties concerning current and future routes of product disposal make it difficult to be definitive. Overall, additional exposure and dose-response data are needed to evaluate both the health significance of many exposure scenarios, and the adequacy of existing regulations to protect workers and the public. Although public exposures to beryllium and public awareness and concern regarding beryllium risks are currently low, beryllium risks have psychometric qualities that may lead to rapidly heightened public concern.

  13. Effect of Barothermal Treatment on the Structure and the Mechanical Properties of a High-Strength Eutectic Al-Zn-Mg-Cu-Ni Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Akopyan, T. K.; Padalko, A. G.; Belov, N. A.; Karpova, Zh. A.

    2017-11-01

    The effect of barothermal treatment by hot isostatic pressing (HIP) on the structure and the properties of castings of a promising high-strength cast aluminum alloy, namely, nikalin ATs6N4 based on the Al‒Zn-Mg-Cu-Ni system, has been studied using two barothermal treatment regimes different in isothermal holding temperature. It is shown that the casting porosity substantially decreases after barothermal treatment; eutectic phase Al3Ni particles are additionally refined during exposure to the barothermal treatment temperature: the higher the HIP temperature, the more substantial the refinement. The improvement of the casting structure after HIP increases their mechanical properties. It is found, in particular, that the plasticity of the alloy in the state of the maximum hardening increases by a factor of more than 8 as compared to the initial state (from 0.82 to 6.9%).

  14. Beryllium chemical speciation in elemental human biological fluids.

    PubMed

    Sutton, Mark; Burastero, Stephen R

    2003-09-01

    The understanding of beryllium chemistry in human body fluids is important for understanding the prevention and treatment of chronic beryllium disease. Thermodynamic modeling has traditionally been used to study environmental contaminant migration and rarely in the examination of metal (particularly beryllium) toxicology. In this work, a chemical thermodynamic speciation code (MINTEQA2) has been used to model and understand the chemistry of beryllium in simulated human biological fluids such as intracellular, interstitial, and plasma fluids, a number of airway surface fluids for patients with lung conditions, saliva, sweat, urine, bile, gastric juice, and pancreatic fluid. The results show that predicted beryllium solubility and speciation vary markedly between each simulated biological fluid. Formation of beryllium hydroxide and/or phosphate was observed in most of the modeled fluids, and results support the postulation that beryllium absorption in the gastrointestinal tract may be limited by the formation of beryllium phosphate solids. It is also postulated that beryllium is potentially 13% less soluble in the airway surface fluid of a patient with asthma when compared to a "normal" case. The results of this work, supported by experimental validation, can aid in the understanding of beryllium toxicology. Our results can potentially be applied to assessing the feasibility of biological monitoring or chelation treatment of beryllium body burden.

  15. Aluminum Nanoholes for Optical Biosensing.

    PubMed

    Barrios, Carlos Angulo; Canalejas-Tejero, Víctor; Herranz, Sonia; Urraca, Javier; Moreno-Bondi, María Cruz; Avella-Oliver, Miquel; Maquieira, Ángel; Puchades, Rosa

    2015-07-09

    Sub-wavelength diameter holes in thin metal layers can exhibit remarkable optical features that make them highly suitable for (bio)sensing applications. Either as efficient light scattering centers for surface plasmon excitation or metal-clad optical waveguides, they are able to form strongly localized optical fields that can effectively interact with biomolecules and/or nanoparticles on the nanoscale. As the metal of choice, aluminum exhibits good optical and electrical properties, is easy to manufacture and process and, unlike gold and silver, its low cost makes it very promising for commercial applications. However, aluminum has been scarcely used for biosensing purposes due to corrosion and pitting issues. In this short review, we show our recent achievements on aluminum nanohole platforms for (bio)sensing. These include a method to circumvent aluminum degradation--which has been successfully applied to the demonstration of aluminum nanohole array (NHA) immunosensors based on both, glass and polycarbonate compact discs supports--the use of aluminum nanoholes operating as optical waveguides for synthesizing submicron-sized molecularly imprinted polymers by local photopolymerization, and a technique for fabricating transferable aluminum NHAs onto flexible pressure-sensitive adhesive tapes, which could facilitate the development of a wearable technology based on aluminum NHAs.

  16. Titanium dental copings prepared by a powder metallurgy method: a preliminary report.

    PubMed

    Eriksson, Mikael; Andersson, Matts; Carlström, Elis

    2004-01-01

    The purpose of this study was to determine if the Procera pressed-powder method can be used to fabricate titanium copings. Commercially pure titanium powder was used to prepare the copings. The powder was pressed onto an enlarged tooth preparation die of aluminum using cold isostatic pressing. The outer shape of the coping was formed using a Procera milling machine, and the copings were vacuum sintered. Titanium copings could be prepared using this method. The density of the sintered copings reached 97% to 99%+ of theoretic density, and the copings showed ductile behavior after sintering. Enlarging the tooth preparation die to compensate for the sintering shrinkage could optimize the final size of the copings. Ductile and dense titanium dental copings can be produced with powder-metal processing using cold isostatic pressing, followed by milling and sintering to final shape. The forming technique has, if properly optimized, a potential of becoming a more cost-efficient production method than spark erosion.

  17. Application of isostatic gravity anomaly in the Yellow Sea area

    NASA Astrophysics Data System (ADS)

    Hao, Z.; Qin, J.; Huang, W.; Wu, X.

    2017-12-01

    In order to study the deep crustal structure of the Yellow Sea area, we used the Airy-Heiskanen model to calculate the isostatic gravity anomaly of this area. Based on the Bouguer gravity anomaly and water depth data of this area, we chose the calculating parameters as standard crustal thickness 30 km, crust-mantle density difference 0.6g/cm3and grid spacing 0.1°×0.1°. This study reveals that there are six faults and four isostatic negative anomalies in the study area. The isostatic anomalies in much of Yellow Sea areas give priority to those with positive anomalies. The isostatic anomalies in North Yellow Sea are higher than South Yellow Sea with Jiashan-Xiangshui fault as the boundary. In the north of the study area, isostatic anomalies are characterized by large areas of positive anomaly. The change is relatively slow, and the trends give priority to the trend NE or NEE. In the middle of the north Yellow Sea basin, there is a local negative anomaly, arranged as a string of beads in NE to discontinuous distribution. Negative anomaly range is small, basically corresponds to the region's former Cenozoic sedimentary basin position. To the south of Jiashan-Xiangshui fault and west of Yellow Sea eastern margin fault, including most of the south Yellow Sea and Jiangsu province, the isostatic anomalies are lower. And the positive and negative anomalies are alternative distribution, and negative anomaly trap in extensive development. The trends give priority to NE, NEE, both to the NW. On the basis of the characteristics of isostatic gravity anomalies, it is concluded that the Yellow Sea belongs to continental crustal isostatic area whose isostatic anomalies is smooth and slow. ReferencesHeiskanen, W. A., F. A. V. Meinesz, and S. A. Korff (1958), The Earth and Its Gravity Field, McGraw-Hill, New York. Meng, X. J., X. H. Zhang, and J. Y. Yang (2014), Geophysical survey in eastern China seas and the characteristics of gravity and magnetic fields, Marine Geoglogy

  18. Beryllium for fusion application - recent results

    NASA Astrophysics Data System (ADS)

    Khomutov, A.; Barabash, V.; Chakin, V.; Chernov, V.; Davydov, D.; Gorokhov, V.; Kawamura, H.; Kolbasov, B.; Kupriyanov, I.; Longhurst, G.; Scaffidi-Argentina, F.; Shestakov, V.

    2002-12-01

    The main issues for the application of beryllium in fusion reactors are analyzed taking into account the latest results since the ICFRM-9 (Colorado, USA, October 1999) and presented at 5th IEA Be Workshop (10-12 October 2001, Moscow Russia). Considerable progress has been made recently in understanding the problems connected with the selection of the beryllium grades for different applications, characterization of the beryllium at relevant operational conditions (irradiation effects, thermal fatigue, etc.), and development of required manufacturing technologies. The key remaining problems related to the application of beryllium as an armour in near-term fusion reactors (e.g. ITER) are discussed. The features of the application of beryllium and beryllides as a neutron multiplier in the breeder blanket for power reactors (e.g. DEMO) in pebble-bed form are described.

  19. Beryllium contamination inside vehicles of machine shop workers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanderson, W.T.; Henneberger, P.K.; Martyny, J.

    1999-04-01

    Inhalation of beryllium particles causes a chronic, debilitating lung disease--chronic beryllium disease (CBD)--in immunologically sensitized workers. Evidence that very low concentrations of beryllium may initiate this chronic disease is provided by incidences of the illness in family members exposed to beryllium dust from workers` clothes and residents in neighborhoods surrounding beryllium refineries. This article describes the results of a cross-sectional survey to evaluate potential take-home beryllium exposures by measuring surface concentrations on the hands and in vehicles of workers at a precision machine shop where cases of CBD had recently been diagnosed. Many workers did not change out of theirmore » work clothes and shoes at the end of their shift, increasing the risk of taking beryllium home to their families. Wipe samples collected from workers` hands and vehicle surfaces were analyzed for beryllium content by inductively coupled argon plasma-atomic emission spectroscopy (ICP-AES). The results ranged widely, from nondetectable to 40 {micro}g/ft{sup 2} on workers` hands and up to 714 {micro}g/fg{sup 2} inside their vehicles, demonstrating that many workers carried residual beryllium on their hands and contaminated the inside of their vehicles when leaving work. The highest beryllium concentrations inside the workers` vehicles were found on the drivers` floor (GM = 19 {micro}g/ft{sup 2}, GSD = 4.9), indicating that workers were carrying beryllium on their shoes into their vehicles. A safe level of beryllium contamination on surfaces is not known, but it is prudent to reduce the potential for workers to carry beryllium away from the work site.« less

  20. Characterization and Formability of Titanium/Aluminum Laminate Composites Fabricated by Hot Pressing

    NASA Astrophysics Data System (ADS)

    Qin, Liang; Wang, Hui; Cui, Shengqiang; Wu, Qian; Fan, Minyu; Yang, Zonghui; Tao, Jie

    2017-07-01

    The Ti/Al laminate composites were prepared by hot pressing to investigate the forming performance due to the corresponding potential applications in both the aerospace and auto industry. The bonding interface morphology and element distributions were characterized by SEM and EDS. The phase constituent was detected by XRD. It was observed that these composites presented good bonding interfaces between Ti and Al layers, and no low-sized voids and intermetallic compounds formed at the interface. In addition, the formability of these laminate composites was studied by the uniaxial tension tests, the limit drawing ratio (LDR) and the forming limit curve (FLC) experiments, respectively. The results indicated that the flow stress increased along with the strain rate increment. A constitutive equation was developed for deformation behavioral description of these laminate composites. The LDR value was 1.8, and the most susceptible region to present cracks was located at the punch profile radius. The forming limit curve of the laminate composites was located between the curves of titanium and aluminum and intersected with the major strain line at approximately 0.31. The macroscopic cracks of the FLC sample demonstrated a saw-toothed crack feature.

  1. Occupational Exposure to Beryllium. Final rule.

    PubMed

    2017-01-09

    The Occupational Safety and Health Administration (OSHA) is amending its existing standards for occupational exposure to beryllium and beryllium compounds. OSHA has determined that employees exposed to beryllium at the previous permissible exposure limits face a significant risk of material impairment to their health. The evidence in the record for this rulemaking indicates that workers exposed to beryllium are at increased risk of developing chronic beryllium disease and lung cancer. This final rule establishes new permissible exposure limits of 0.2 micrograms of beryllium per cubic meter of air (0.2 [mu]g/m\\3\\) as an 8-hour time-weighted average and 2.0 [mu]g/m\\3\\ as a short-term exposure limit determined over a sampling period of 15 minutes. It also includes other provisions to protect employees, such as requirements for exposure assessment, methods for controlling exposure, respiratory protection, personal protective clothing and equipment, housekeeping, medical surveillance, hazard communication, and recordkeeping. OSHA is issuing three separate standards--for general industry, for shipyards, and for construction--in order to tailor requirements to the circumstances found in these sectors.

  2. Silver Sodalites Novel Optically Responsive Nanocomposites

    DTIC Science & Technology

    1988-01-01

    writing mechanim employed. The sodalite may be in the form of a self -suprting pressed disk, suspended in another material (e.g. glass or polymer), or...present study of silver sodalitas one can deduce that: i) silver sodalites can be synthesized with a variety of ptoraiac resposes ; ii) the distribution

  3. Diffusion welding of Cassegrainian concentrator cell stack assemblies. M.S. Thesis Final Report, Jun. 1983 - Sep. 1985

    NASA Technical Reports Server (NTRS)

    Gangl, K. J.

    1985-01-01

    Development of a procedure to join the components of the Cassegrainian concentrator photovoltaic cell stack assembly was studied. Diffusion welding was selected as the most promising process, and was concentrated on exclusively. All faying surfaces were coated with silver to promote welding. The first phase of the study consisted of developing the relationship between process parameters and joint strength using silver plated steel samples and an isostatic pressure system. In the second phase, mockups of the cell stack assembly were welded in a hot isostatic press. Excellent joint strength was achieved with parameters of 350 C and 10 ksi, but the delicate GaAs component could not survive the welding cycle without cracking. The tendency towards cracking was found to be affected by both temperature and pressure. Further work will be required in the future to solve this problem.

  4. Beryllium sensitization and disease among long-term and short-term workers in a beryllium ceramics plant.

    PubMed

    Henneberger, P K; Cumro, D; Deubner, D D; Kent, M S; McCawley, M; Kreiss, K

    2001-04-01

    Workers at a beryllium ceramics plant were tested for beryllium sensitization and disease in 1998 to determine whether the plant-wide prevalence of sensitization and disease had declined since the last screening in 1992; an elevated prevalence was associated with specific processes or with high exposures; exposure-response relationships differed for long-term workers hired before the last plant-wide screening and short-term workers hired since then. Current workers were asked to complete a questionnaire and to provide blood for the beryllium lymphocyte proliferation test (BeLPT). Those with an abnormal BeLPT were classified as sensitized, and were offered clinical evaluation for beryllium disease. Task- and time-specific measurements of airborne beryllium were combined with individual work histories to compute mean, cumulative, and peak beryllium exposures for each worker. The 151 participants represented 90% of 167 eligible workers. Fifteen (9.9% of 151) had an abnormal BeLPT and were split between long-term workers (8/77 = 10.4%) and short-term workers (7/74 = 9.5%). Beryllium disease was detected in 9.1% (7/77) of long-term workers but in only 1.4% (1/74) of short-term workers (P = 0.06), for an overall prevalence of 5.3% (8/151). These prevalences were similar to those observed in the earlier survey. The prevalence of sensitization was elevated in 1992 among machinists, and was still elevated in 1998 among long-term workers (7/40 = 18%) but not among short-term workers (2/36 = 6%) with machining experience. The prevalence of sensitization was also elevated in both groups of workers for the processes of lapping, forming, firing, and packaging. The data suggested a positive relationship between peak beryllium exposure and sensitization for long-term workers and between mean, cumulative, and peak exposure and sensitization for short-term workers, although these findings were not statistically significant. Long-term workers with either a high peak exposure or work

  5. Beryllium Laboratory Analysis--The Regulations May Drive the Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taruru, Seuri K

    Beryllium has many industry-specific applications, such as medical X-ray windows for diagnostic equipment, nuclear reactors, aerospace applications, precision instrumentation, and other consumer products for which lightness and rigidity is essential. According to the National Toxicology Program, beryllium oxide (BeO) is one of the most significant beryllium compounds in production. Although beryllium and its compounds have a wide array of beneficial uses, due to its unique properties it is not an ideal metal to be used in all situations. Exposure to beryllium is linked to beryllium sensitization and Chronic Beryllium Disease (CBD), which is incurable, debilitating, and potentially fatal. The Internationalmore » Agency for Research on Cancer classifies beryllium and beryllium compounds as “carcinogenic to humans” (Group I), and EPA classifies beryllium as a likely human carcinogen, the lung being the primary target organ. Laboratory analysis for beryllium samples has always presented a challenge to the analytical community. While most metals of interest to industrial hygienists have occupational exposure limits (OELs) in milligrams per cubic meter (mg/m 3), the beryllium OELs are in micrograms per cubic meter (μg/m3). Some regulatory agencies have recently published beryllium OELs so low that in some cases a laboratory limit of detection (LOD) in nanograms (ng) is required. For most substances, science drives the regulations, but for beryllium, regulations appear to be driving science to develop laboratory analytical methods that can adequately support the proposed OELs. (EPA has issued guidelines regarding ambient and community airborne beryllium exposure, but this article focuses on beryllium from an occupational exposure perspective.)« less

  6. Beryllium Laboratory Analysis--The Regulations May Drive the Science

    DOE PAGES

    Taruru, Seuri K

    2017-08-01

    Beryllium has many industry-specific applications, such as medical X-ray windows for diagnostic equipment, nuclear reactors, aerospace applications, precision instrumentation, and other consumer products for which lightness and rigidity is essential. According to the National Toxicology Program, beryllium oxide (BeO) is one of the most significant beryllium compounds in production. Although beryllium and its compounds have a wide array of beneficial uses, due to its unique properties it is not an ideal metal to be used in all situations. Exposure to beryllium is linked to beryllium sensitization and Chronic Beryllium Disease (CBD), which is incurable, debilitating, and potentially fatal. The Internationalmore » Agency for Research on Cancer classifies beryllium and beryllium compounds as “carcinogenic to humans” (Group I), and EPA classifies beryllium as a likely human carcinogen, the lung being the primary target organ. Laboratory analysis for beryllium samples has always presented a challenge to the analytical community. While most metals of interest to industrial hygienists have occupational exposure limits (OELs) in milligrams per cubic meter (mg/m 3), the beryllium OELs are in micrograms per cubic meter (μg/m3). Some regulatory agencies have recently published beryllium OELs so low that in some cases a laboratory limit of detection (LOD) in nanograms (ng) is required. For most substances, science drives the regulations, but for beryllium, regulations appear to be driving science to develop laboratory analytical methods that can adequately support the proposed OELs. (EPA has issued guidelines regarding ambient and community airborne beryllium exposure, but this article focuses on beryllium from an occupational exposure perspective.)« less

  7. Three-dimensional flow characteristics of aluminum alloy in multi-pass equal channel angular pressing

    NASA Astrophysics Data System (ADS)

    Jin, Young-Gwan; Son, Il-Heon; Im, Yong-Taek

    2010-06-01

    Experiments with a square specimen made of commercially pure aluminum alloy (AA1050) were conducted to investigate deformation behaviour during a multi-pass Equal Channel Angular Pressing (ECAP) for routes A, Bc, and C up to four passes. Three-dimensional finite element numerical simulations of the multi-pass ECAP were carried out in order to evaluate the influence of processing routes and number of passes on local flow behaviour by applying a simplified saturation model of flow stress under an isothermal condition. Simulation results were investigated by comparing them with the experimentally measured data in terms of load variations and microhardness distributions. Also, transmission electron microscopy analysis was employed to investigate the microstructural changes. The present work clearly shows that the three-dimensional flow characteristics of the deformed specimen were dependent on the strain path changes due to the processing routes and number of passes that occurred during the multi-pass ECAP.

  8. Filler wire for aluminum alloys and method of welding

    NASA Technical Reports Server (NTRS)

    Bjorkman, Jr., Gerald W. O. (Inventor); Cho, Alex (Inventor); Russell, Carolyn K. (Inventor)

    2003-01-01

    A weld filler wire chemistry has been developed for fusion welding 2195 aluminum-lithium. The weld filler wire chemistry is an aluminum-copper based alloy containing high additions of titanium and zirconium. The additions of titanium and zirconium reduce the crack susceptibility of aluminum alloy welds while producing good weld mechanical properties. The addition of silver further improves the weld properties of the weld filler wire. The reduced weld crack susceptibility enhances the repair weldability, including when planishing is required.

  9. Role of cold isostatic pressing in the formation of the properties of ZrO{sub 2}-base ceramics obtained from ultradisperse powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akimov, G.Y.; Prokhorov, I.Y.; Gorelik, I.V.

    1995-09-01

    The physicomechanical properties of ceramics obtained from plasmachemical and sol-gel powders of partially stabilized (3% Y{sub 2}O{sub 3}) zirconia (PSZ) and its compositions with 20% Al{sub 2}O{sub 3} by cold isostatic pressing (CIP) at a pressure of at most 2 GPa and sintering at 1300-1650{degrees}C are investigated. It is established that plasmachemical PSZ exhibits its best properties (K{sub 1c} = 7.8 MPa {center_dot} m{sup 1/2}, a strength of 650 MPa) only after complete disintegration at a CIP of 0.1 GPa and a sintering temperature of 1650{degrees}C, when the material is sintered to a density of 5.5 g/cm{sup 3}. After partialmore » stabilization and CIP at 0.1 GPa the plasmachemical composition of PSZ + 20% Al{sub 2}O{sub 3} is sintered at 1650{degrees}C to a density of 4.7 g/cm{sup 3}, but has K{sub 1c} = 8.5 MPa {center_dot} m{sup 1/2} and a strength of 700 MPa. The deagglomerated sol-gel powder exhibits properties at a level of K{sub 1c} = 12.4 MPa {center_dot} m{sup 1/2} and a strength of 950 MPa at a density above 6.0 g/cm{sup 3} after CIP at 0.3 GPa and sintering at 1450{degrees}C. The latter obviously has the best mechanical properties of all the investigated materials.« less

  10. Prevalence of beryllium sensitization among aluminium smelter workers

    PubMed Central

    Slade, M. D.; Cantley, L. F.; Kirsche, S. R.; Wesdock, J. C.; Cullen, M. R.

    2010-01-01

    Background Beryllium exposure occurs in aluminium smelters from natural contamination of bauxite, the principal source of aluminium. Aims To characterize beryllium exposure in aluminium smelters and determine the prevalence rate of beryllium sensitization (BeS) among aluminium smelter workers. Methods A population of 3185 workers from nine aluminium smelters owned by four different aluminium-producing companies were determined to have significant beryllium exposure. Of these, 1932 workers participated in medical surveillance programmes that included the serum beryllium lymphocyte proliferation test (BeLPT), confirmation of sensitization by at least two abnormal BeLPT test results and further evaluation for chronic beryllium disease in workers with BeS. Results Personal beryllium samples obtained from the nine aluminium smelters showed a range of <0.01–13.00 μg/m3 time-weighted average with an arithmetic mean of 0.25 μg/m3 and geometric mean of 0.06 μg/m3. Nine workers were diagnosed with BeS (prevalence rate of 0.47%, 95% confidence interval = 0.21–0.88%). Conclusions BeS can occur in aluminium smelter workers through natural beryllium contamination of the bauxite and further concentration during the refining and smelting processes. Exposure levels to beryllium observed in aluminium smelters are similar to those seen in other industries that utilize beryllium. However, compared with beryllium-exposed workers in other industries, the rate of BeS among aluminium smelter workers appears lower. This lower observed rate may be related to a more soluble form of beryllium found in the aluminium smelting work environment as well as the consistent use of respiratory protection. PMID:20610489

  11. Aluminum Nanoholes for Optical Biosensing

    PubMed Central

    Barrios, Carlos Angulo; Canalejas-Tejero, Víctor; Herranz, Sonia; Urraca, Javier; Moreno-Bondi, María Cruz; Avella-Oliver, Miquel; Maquieira, Ángel; Puchades, Rosa

    2015-01-01

    Sub-wavelength diameter holes in thin metal layers can exhibit remarkable optical features that make them highly suitable for (bio)sensing applications. Either as efficient light scattering centers for surface plasmon excitation or metal-clad optical waveguides, they are able to form strongly localized optical fields that can effectively interact with biomolecules and/or nanoparticles on the nanoscale. As the metal of choice, aluminum exhibits good optical and electrical properties, is easy to manufacture and process and, unlike gold and silver, its low cost makes it very promising for commercial applications. However, aluminum has been scarcely used for biosensing purposes due to corrosion and pitting issues. In this short review, we show our recent achievements on aluminum nanohole platforms for (bio)sensing. These include a method to circumvent aluminum degradation—which has been successfully applied to the demonstration of aluminum nanohole array (NHA) immunosensors based on both, glass and polycarbonate compact discs supports—the use of aluminum nanoholes operating as optical waveguides for synthesizing submicron-sized molecularly imprinted polymers by local photopolymerization, and a technique for fabricating transferable aluminum NHAs onto flexible pressure-sensitive adhesive tapes, which could facilitate the development of a wearable technology based on aluminum NHAs. PMID:26184330

  12. A Method for Welding Sheet Aluminum to SAE 4140 Steel

    DTIC Science & Technology

    1944-01-01

    Restricted Report 4A01 A METHOD FOR WELDING SHEET ALU-M TO SAE 4140 STEEL By W. F. Hess and E. F. Nippes, Jr. Welding Laboratory, Rensselaer Polytechnic...ALUMINUM High strength, duotilo welds of welding ourrent cmdplathg To SAE 4140S !I?EEG Introduction Tho problem of spat wel~ing aluminum to steel was...this procoduro, silver@atod SAE 4140 stool mpeci- mens were preheated to 70(F ~ and rapidly woldod to aluminum, after whioh tho welds were

  13. Beryllium surface levels in a military ammunition plant.

    PubMed

    Sanderson, Wayne T; Leonard, Stephanie; Ott, Darrin; Fuortes, Laurence; Field, William

    2008-07-01

    This study evaluated the presence of beryllium surface contamination in a U.S. conventional munitions plant as an indicator of possible past beryllium airborne and skin exposure and used these measurements to classify job categories by potential level of exposure. Surface samples were collected from production and nonproduction areas of the plant and at regional industrial reference sites with no known history of beryllium use. Surface samples of premoistened wiping material were analyzed for beryllium mass content using inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and results expressed as micrograms of beryllium per 100 square centimeters (micro g/100 cm(2)). Beryllium was detected in 87% of samples collected at the munitions plant and in 72% of the samples collected at regional reference sites. Two munitions plant samples from areas near sanders and grinders were above 3.0 micro g/100 cm(2) (U.S. Department of Energy surface contamination limit). The highest surface level found at the reference sites was 0.44 micro g/100 cm(2). Workers in areas where beryllium-containing alloy tools were sanded or ground, but not other work areas, may have been exposed to airborne beryllium concentrations above levels encountered in other industries where metal work is conducted. Surface sampling provided information useful for categorizing munitions plant jobs by level of past beryllium airborne and skin exposure and, subsequently, for identifying employees within exposure strata to be screened for beryllium sensitization.

  14. Beryllium Interactions in Molten Salts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. S. Smolik; M. F. Simpson; P. J. Pinhero

    Molten flibe (2LiF·BeF2) is a candidate as a cooling and tritium breeding media for future fusion power plants. Neutron interactions with the salt will produce tritium and release excess free fluorine ions. Beryllium metal has been demonstrated as an effective redox control agent to prevent free fluorine, or HF species, from reacting with structural metal components. The extent and rate of beryllium solubility in a pot design experiments to suppress continuously supplied hydrogen fluoride gas has been measured and modeled[ ]. This paper presents evidence of beryllium loss from specimens, a dependence of the loss upon bi-metal coupling, i.e., galvanicmore » effect, and the partitioning of the beryllium to the salt and container materials. Various posttest investigative methods, viz., scanning electron microscopy (SEM), Auger electron spectroscopy (AES) and x-ray photoelectron spectroscopy (XPS) were used to explore this behavior.« less

  15. Method for fabricating beryllium-based multilayer structures

    DOEpatents

    Skulina, Kenneth M.; Bionta, Richard M.; Makowiecki, Daniel M.; Alford, Craig S.

    2003-02-18

    Beryllium-based multilayer structures and a process for fabricating beryllium-based multilayer mirrors, useful in the wavelength region greater than the beryllium K-edge (111 .ANG. or 11.1 nm). The process includes alternating sputter deposition of beryllium and a metal, typically from the fifth row of the periodic table, such as niobium (Nb), molybdenum (Mo), ruthenium (Ru), and rhodium (Rh). The process includes not only the method of sputtering the materials, but the industrial hygiene controls for safe handling of beryllium. The mirrors made in accordance with the process may be utilized in soft x-ray and extreme-ultraviolet projection lithography, which requires mirrors of high reflectivity (>60%) for x-rays in the range of 60-140 .ANG. (60-14.0 nm).

  16. Exposure and genetics increase risk of beryllium sensitisation and chronic beryllium disease in the nuclear weapons industry.

    PubMed

    Van Dyke, Michael V; Martyny, John W; Mroz, Margaret M; Silveira, Lori J; Strand, Matt; Cragle, Donna L; Tankersley, William G; Wells, Susan M; Newman, Lee S; Maier, Lisa A

    2011-11-01

    Beryllium sensitisation (BeS) and chronic beryllium disease (CBD) are caused by exposure to beryllium with susceptibility affected by at least one well-studied genetic host factor, a glutamic acid residue at position 69 (E69) of the HLA-DPβ chain (DPβE69). However, the nature of the relationship between exposure and carriage of the DPβE69 genotype has not been well studied. The goal of this study was to determine the relationship between DPβE69 and exposure in BeS and CBD. Current and former workers (n=181) from a US nuclear weapons production facility, the Y-12 National Security Complex (Oak Ridge, Tennessee, USA), were enrolled in a case-control study including 35 individuals with BeS and 19 with CBD. HLA-DPB1 genotypes were determined by PCR-SSP. Beryllium exposures were assessed through worker interviews and industrial hygiene assessment of work tasks. After removing the confounding effect of potential beryllium exposure at another facility, multivariate models showed a sixfold (OR 6.06, 95% CI 1.96 to 18.7) increased odds for BeS and CBD combined among DPβE69 carriers and a fourfold (OR 3.98, 95% CI 1.43 to 11.0) increased odds for those exposed over an assigned lifetime-weighted average exposure of 0.1 μg/m(3). Those with both risk factors had higher increased odds (OR 24.1, 95% CI 4.77 to 122). DPβE69 carriage and high exposure to beryllium appear to contribute individually to the development of BeS and CBD. Among workers at a beryllium-using facility, the magnitude of risk associated with either elevated beryllium exposure or carriage of DPβE69 alone appears to be similar.

  17. Exposure and genetics increase risk of beryllium sensitisation and chronic beryllium disease in the nuclear weapons industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Dyke, M. V.; Colorado State Univ., Fort Collins, CO; Martyny, John W.

    2011-04-02

    Beryllium sensitisation (BeS) and chronic beryllium disease (CBD) are caused by exposure to beryllium with susceptibility affected by at least one well-studied genetic host factor, a glutamic acid residue at position 69 (E69) of the HLA-DPb chain (DPbE69). However, the nature of the relationship between exposure and carriage of the DPbE69 genotype has not been well studied. The goal of this study was to determine the relationship between DP{beta}E69 and exposure in BeS and CBD. Current and former workers (n=181) from a US nuclear weapons production facility, the Y-12 National Security Complex (Oak Ridge, Tennessee, USA), were enrolled in amore » case-control study including 35 individuals with BeS and 19 with CBD. HLA-DPB1 genotypes were determined by PCR-SSP. Beryllium exposures were assessed through worker interviews and industrial hygiene assessment of work tasks. After removing the confounding effect of potential beryllium exposure at another facility, multivariate models showed a sixfold (OR 6.06, 95% CI 1.96 to 18.7) increased odds for BeS and CBD combined among DP{beta}E69 carriers and a fourfold (OR 3.98, 95% CI 1.43 to 11.0) increased odds for those exposed over an assigned lifetime-weighted average exposure of 0.1 {micro}g/m{sup 3}. Those with both risk factors had higher increased odds (OR 24.1, 95% CI 4.77 to 122). DP{beta}E69 carriage and high exposure to beryllium appear to contribute individually to the development of BeS and CBD. Among workers at a beryllium-using facility, the magnitude of risk associated with either elevated beryllium exposure or carriage of DP{beta}E69 alone appears to be similar.« less

  18. Brazing of beryllium for structural applications

    NASA Technical Reports Server (NTRS)

    Vogan, J. W.

    1972-01-01

    Progress made in fabricating a beryllium compression tube structure and a stiffened beryllium panel. The compression tube was 7.6cm in diameter and 30.5cm long with titanium end fittings. The panel was 203cm long and stiffened with longitudinal stringers. Both units were assembled by brazing with BAg-18 braze alloy. The detail parts were fabricated by hot forming 0.305cm beryllium sheet and the brazing parameters established.

  19. Transition-Metal Decorated Aluminum Nanocrystals.

    PubMed

    Swearer, Dayne F; Leary, Rowan K; Newell, Ryan; Yazdi, Sadegh; Robatjazi, Hossein; Zhang, Yue; Renard, David; Nordlander, Peter; Midgley, Paul A; Halas, Naomi J; Ringe, Emilie

    2017-10-24

    Recently, aluminum has been established as an earth-abundant alternative to gold and silver for plasmonic applications. Particularly, aluminum nanocrystals have shown to be promising plasmonic photocatalysts, especially when coupled with catalytic metals or oxides into "antenna-reactor" heterostructures. Here, a simple polyol synthesis is presented as a flexible route to produce aluminum nanocrystals decorated with eight varieties of size-tunable transition-metal nanoparticle islands, many of which have precedence as heterogeneous catalysts. High-resolution and three-dimensional structural analysis using scanning transmission electron microscopy and electron tomography shows that abundant nanoparticle island decoration in the catalytically relevant few-nanometer size range can be achieved, with many islands spaced closely to their neighbors. When coupled with the Al nanocrystal plasmonic antenna, these small decorating islands will experience increased light absorption and strong hot-spot generation. This combination makes transition-metal decorated aluminum nanocrystals a promising material platform to develop plasmonic photocatalysis, surface-enhanced spectroscopies, and quantum plasmonics.

  20. METHOD FOR PREPARATION OF SINTERABLE BERYLLIUM OXIDE

    DOEpatents

    Sturm, B.J.

    1963-08-13

    High-purity beryllium oxide for nuclear reactor applications can be prepared by precipitation of beryllium oxalate monohydrate from aqueous solution at a temperature above 50 deg C and subsequent calcination of the precipitate. Improved purification with respect to metallic impurities is obtained, and the product beryllium oxide sinters reproducibly to a high density. (AEC)

  1. The Effect of Multi-pass Equal-Channel Angular Pressing (ECAP) for Consolidation of Aluminum-Nano Alumina Composite Powder on Wear Resistance

    NASA Astrophysics Data System (ADS)

    Derakhshandeh-Haghighi, Reza; Jenabali Jahromi, Seyed Ahmad

    2016-02-01

    The wear behavior of aluminum matrix composite powder with varying concentration of nano alumina particles, which was consolidated by equal-channel angular pressing (ECAP) at different passes, was determined by applying, 10 and 46 N loads, using a pin-on-disk machine. Optical and electronic microscopy, EDX analysis, and hardness measurement were performed in order to characterize the worn samples. The relative density of the samples after each pass of ECAP was determined using Archimedes principle. Within the studied range of loads, the wear loss decreased by increasing the number of ECAP passes.

  2. Chronic beryllium disease and beryllium sensitization at Rocky Flats: a case-control study.

    PubMed

    Viet, S M; Torma-Krajewski, J; Rogers, J

    2000-01-01

    A case-control study was conducted to evaluate the risk of chronic beryllium disease (CBD) and beryllium sensitization (SENS) associated with various levels of historical beryllium exposure at the Rocky Flats nuclear weapons facility. Fifty CBD and 74 SENS cases were matched to controls of the same age group, race, gender, and smoking status. A job exposure matrix was developed from job history data and fixed airhead (FAH) exposure data available from 1960 to 1988. Job titles and building areas were assigned factors based on exposure relative to a machinist in the Building 444 Beryllium Shop. Concurrence on these factors was obtained from past and present Rocky Flats industrial hygienists. Using the matrix, long-term mean and cumulative exposures were estimated for each subject. Both exposure estimates (p < 0.0001) and years of employment (p = 0.010) were found to be significantly higher for CBD cases as compared with their controls, but not so for the SENS cases as compared with their controls. Logistic regression analyses showed statistically significant relationships between both cumulative and mean exposure and CBD, but not for SENS. These findings suggest that reduced worker exposures might lower the future incidence of CBD, but may not necessarily lower the incidence of SENS.

  3. High strength particulate ceramics

    DOEpatents

    Liles, Kenneth J.; Hoyer, Jesse L.; Mlynarski, Kenneth W.

    1991-01-01

    This invention relates to new and useful hard, dense, composite materials made from metallic nitrides such as titanium nitride when combined with aluminum oxide and aluminum nitride and a process comprising the steps of: (1) mixing constituent materials using kerosene as a mixing medium; (2) screening, settling, filtering, and washing the mixture in acetone; (3) filling and sealing said materials in a latex mold; (4) isostatically pressing the material into a compacted powder; and (5) sintering the compacted powder in a gas atmosphere at 1,850.degree. C. for two hours.

  4. Inhibited solid propellant composition containing beryllium hydride

    NASA Technical Reports Server (NTRS)

    Thompson, W. W. (Inventor)

    1978-01-01

    An object of this invention is to provide a composition of beryllium hydride and carboxy-terminated polybutadiene which is stable. Another object of this invention is to provide a method for inhibiting the reactivity of beryllium hydride toward carboxy-terminated polybutadiene. It was found that a small amount of lecithin inhibits the reaction of beryllium hydride with the acid groups in carboxy terminated polybutadiene.

  5. Beryllium-stimulated neopterin as a diagnostic adjunct in chronic beryllium disease.

    PubMed

    Maier, Lisa A; Kittle, Lori A; Mroz, Margaret M; Newman, Lee S

    2003-06-01

    The diagnosis of chronic beryllium disease (CBD) relies on the beryllium lymphocyte proliferation test (BeLPT) to demonstrate a Be specific immune response. This test has improved early diagnosis, but cannot discriminate beryllium sensitization (BeS) from CBD. We previously found high neopterin levels in CBD patients' serum and questioned whether Be-stimulated neopterin production by peripheral blood cells in vitro might be useful in the diagnosis of CBD. CBD, BeS, Be exposed workers without disease (Be-exp) normal controls and sarcoidosis subjects were enrolled. Peripheral blood mononuclear cells (PBMN) were cultured in the presence and absence of beryllium sulfate. Neopterin levels were determined from cell supernatants by enzyme linked immunosorbent assay (ELISA). Clinical evaluation of CBD subjects included chest radiography, pulmonary function testing, exercise testing, and the BeLPT. CBD patients produced higher levels of neopterin in both unstimulated and Be-stimulated conditions compared to all other subjects (P < 0.0001). Unstimulated neopterin mononuclear cell levels overlapped among groups, however, Be-stimulated neopterin levels in CBD showed little overlap. Using a neopterin concentration of 2.5 ng/ml as a cutoff, Be-stimulated neopterin had a sensitivity of 80% and specificity of 100% for CBD and was able to differentiate CBD from BeS. Be-stimulated neopterin was inversely related to measures of pulmonary function, exercise capacity, and gas exchange. Neopterin may be a useful diagnostic adjunct in the non-invasive assessment of CBD, differentiating CBD from BeS. Further studies will be required to determine how it performs in workplace screening. Copyright 2003 Wiley-Liss, Inc.

  6. Chronic beryllium disease: Diagnosis and management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossman, M.D.

    1996-10-01

    Chronic beryllium disease is predominantly a pulmonary granulomatosis that was originally described in 1946. Symptoms usually include dyspnea and cough. Fever, anorexia, and weight loss are common. Skin lesions are the most common extrathoracic manifestation. Granulomatous hepatitis, hypercalcemia, and kidney stones can also occur. Radiographic and physiologic abnormalities are similar to those in sarcoidosis. While traditionally the pathologic changes included granulomas and cellular interstitial changes, the hallmark of the disease today is the well-formed granuloma. Immunologic studies have demonstrated a cell-mediated response to beryllium that is due to an accumulation of CD4{sup +} T cells at the site of diseasemore » activity. Diagnosis depends on the demonstration of pathologic changes (i.e., granuloma) and evidence that the granuloma was caused by a hypersensitivity to beryllium (i.e., positive lung proliferative response to beryllium). Using these criteria, the diagnosis of chronic beryllium disease can now be made before the onset of clinical symptoms. Whether, with early diagnosis, the natural course of this condition will be the same as when it was traditionally diagnosed is not known. Currently, corticosteroids are used to treat patients with significant symptoms or evidence of progressive disease. 21 refs.« less

  7. Investigation of Methods for Selectively Reinforcing Aluminum and Aluminum-Lithium Materials

    NASA Technical Reports Server (NTRS)

    Bird, R. Keith; Alexa, Joel A.; Messick, Peter L.; Domack, Marcia S.; Wagner, John A.

    2013-01-01

    Several studies have indicated that selective reinforcement offers the potential to significantly improve the performance of metallic structures for aerospace applications. Applying high-strength, high-stiffness fibers to the high-stress regions of aluminum-based structures can increase the structural load-carrying capability and inhibit fatigue crack initiation and growth. This paper discusses an investigation into potential methods for applying reinforcing fibers onto the surface of aluminum and aluminum-lithium plate. Commercially-available alumina-fiber reinforced aluminum alloy tapes were used as the reinforcing material. Vacuum hot pressing was used to bond the reinforcing tape to aluminum alloy 2219 and aluminum-lithium alloy 2195 base plates. Static and cyclic three-point bend testing and metallurgical analysis were used to evaluate the enhancement of mechanical performance and the integrity of the bond between the tape and the base plate. The tests demonstrated an increase in specific bending stiffness. In addition, no issues with debonding of the reinforcing tape from the base plate during bend testing were observed. The increase in specific stiffness indicates that selectively-reinforced structures could be designed with the same performance capabilities as a conventional unreinforced structure but with lower mass.

  8. Comparison of different pressing techniques for the preparation of n-type silicon-germanium thermoelectric alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harringa, J.L.; Cook, B.A.

    1996-06-01

    Improvements to state-of-the-art Si{sub 80}Ge{sub 20} thermoelectric alloys have been observed in laboratory-scale samples by the powder metallurgy techniques of mechanical alloying and hot pressing. Incorporating these improvements in large scale compacts for the production of thermoelectric generator elements is the next step in achieving higher efficiency RTGs. This paper discusses consolidation of large quantities of mechanically alloyed powders into production size compacts. Differences in thermoelectric properties are noted between the compacts prepared by the standard technique of hot uniaxial pressing and hot isostatic pressing. Most significant is the difference in carrier concentration between the alloys prepared by the twomore » consolidation techniques.« less

  9. Extraction of beryllium from refractory beryllium oxide with dilute ammonium bifluoride and determination by fluorescence: a multiparameter performance evaluation.

    PubMed

    Goldcamp, Michael J; Goldcamp, Diane M; Ashley, Kevin; Fernback, Joseph E; Agrawal, Anoop; Millson, Mark; Marlow, David; Harrison, Kenneth

    2009-12-01

    Beryllium exposure can cause a number of deleterious health effects, including beryllium sensitization and the potentially fatal chronic beryllium disease. Efficient methods for monitoring beryllium contamination in workplaces are valuable to help prevent dangerous exposures to this element. In this work, performance data on the extraction of beryllium from various size fractions of high-fired beryllium oxide (BeO) particles (from < 32 microm up to 212 microm) using dilute aqueous ammonium bifluoride (ABF) solution were obtained under various conditions. Beryllium concentrations were determined by fluorescence using a hydroxybenzoquinoline fluorophore. The effects of ABF concentration and volume, extraction temperature, sample tube types, and presence of filter or wipe media were examined. Three percent ABF extracts beryllium nearly twice as quickly as 1% ABF; extraction solution volume has minimal influence. Elevated temperatures increase the rate of extraction dramatically compared with room temperature extraction. Sample tubes with constricted tips yield poor extraction rates owing to the inability of the extraction medium to access the undissolved particles. The relative rates of extraction of Be from BeO of varying particle sizes were examined. Beryllium from BeO particles in fractions ranging from less than 32 microm up to 212 microm were subjected to various extraction schemes. The smallest BeO particles are extracted more quickly than the largest particles, although at 90 degrees C even the largest BeO particles reach nearly quantitative extraction within 4 hr in 3% ABF. Extraction from mixed cellulosic-ester filters, cellulosic surface-sampling filters, wetted cellulosic dust wipes, and cotton gloves yielded 90% or greater recoveries. Scanning electron microscopy of BeO particles, including partially dissolved particles, shows that dissolution in dilute ABF occurs not just on the exterior surface but also via accessing particles' interiors due to porosity

  10. The status of beryllium technology for fusion

    NASA Astrophysics Data System (ADS)

    Scaffidi-Argentina, F.; Longhurst, G. R.; Shestakov, V.; Kawamura, H.

    2000-12-01

    Beryllium was used for a number of years in the Joint European Torus (JET), and it is planned to be used extensively on the lower heat-flux surfaces of the reduced technical objective/reduced cost international thermonuclear experimental reactor (RTO/RC ITER). It has been included in various forms in a number of tritium breeding blanket designs. There are technical advantages but also a number of safety issues associated with the use of beryllium. Research in a variety of technical areas in recent years has revealed interesting issues concerning the use of beryllium in fusion. Progress in this research has been presented at a series of International Workshops on Beryllium Technology for Fusion. The most recent workshop was held in Karlsruhe, Germany on 15-17 September 1999. In this paper, a summary of findings presented there and their implications for the use of beryllium in the development of fusion reactors are presented.

  11. On the Role of Processing Parameters in Producing Recycled Aluminum AA6061 Based Metal Matrix Composite (MMC-AlR) Prepared Using Hot Press Forging (HPF) Process.

    PubMed

    Ahmad, Azlan; Lajis, Mohd Amri; Yusuf, Nur Kamilah

    2017-09-19

    Solid-state recycling, which involves the direct recycling of scrap metal into bulk material using severe plastic deformation, has emerged as a potential alternative to the conventional remelting and recycling techniques. Hot press forging has been identified as a sustainable direct recycling technique that has fewer steps and maintains excellent material performance. An experimental investigation was conducted to explore the hardness and density of a recycled aluminum-based metal matrix composite by varying operating temperature and holding time. A mixture of recycled aluminum, AA6061, and aluminum oxide were simultaneously heated to 430, 480, and 530 °C and forged for 60, 90, and 120 min. We found a positive increase in microhardness and density for all composites. The hardness increased approximately 33.85%, while density improved by about 15.25% whenever the temperature or the holding time were increased. Based on qualitative analysis, the composite endures substantial plastic deformation due to the presence of hardness properties due to the aluminum oxide embedded in the aluminum matrix. These increases were significantly affected by the operating temperature; the holding time also had a subordinate role in enhancing the metal matrix composite properties. Furthermore, in an effort to curb the shortage of primary resources, this study reviewed the promising performance of secondary resources produced by using recycled aluminum and aluminum oxide as the base matrix and reinforcement constituent, respectively. This study is an outline for machining practitioners and the manufacturing industry to help increase industry sustainability with the aim of preserving the Earth for our community in the future.

  12. On the Role of Processing Parameters in Producing Recycled Aluminum AA6061 Based Metal Matrix Composite (MMC-AlR) Prepared Using Hot Press Forging (HPF) Process

    PubMed Central

    Ahmad, Azlan; Lajis, Mohd Amri

    2017-01-01

    Solid-state recycling, which involves the direct recycling of scrap metal into bulk material using severe plastic deformation, has emerged as a potential alternative to the conventional remelting and recycling techniques. Hot press forging has been identified as a sustainable direct recycling technique that has fewer steps and maintains excellent material performance. An experimental investigation was conducted to explore the hardness and density of a recycled aluminum-based metal matrix composite by varying operating temperature and holding time. A mixture of recycled aluminum, AA6061, and aluminum oxide were simultaneously heated to 430, 480, and 530 °C and forged for 60, 90, and 120 min. We found a positive increase in microhardness and density for all composites. The hardness increased approximately 33.85%, while density improved by about 15.25% whenever the temperature or the holding time were increased. Based on qualitative analysis, the composite endures substantial plastic deformation due to the presence of hardness properties due to the aluminum oxide embedded in the aluminum matrix. These increases were significantly affected by the operating temperature; the holding time also had a subordinate role in enhancing the metal matrix composite properties. Furthermore, in an effort to curb the shortage of primary resources, this study reviewed the promising performance of secondary resources produced by using recycled aluminum and aluminum oxide as the base matrix and reinforcement constituent, respectively. This study is an outline for machining practitioners and the manufacturing industry to help increase industry sustainability with the aim of preserving the Earth for our community in the future. PMID:28925963

  13. Enhanced preventive programme at a beryllium oxide ceramics facility reduces beryllium sensitisation among new workers

    PubMed Central

    Cummings, Kristin J; Deubner, David C; Day, Gregory A; Henneberger, Paul K; Kitt, Margaret M; Kent, Michael S; Kreiss, Kathleen; Schuler, Christine R

    2007-01-01

    Background A 1998 survey at a beryllium oxide ceramics manufacturing facility found that 10% of workers hired in the previous 6 years had beryllium sensitisation as determined by the beryllium lymphocyte proliferation test (BeLPT). In response, the facility implemented an enhanced preventive programme to reduce sensitisation, including increased respiratory and dermal protection and particle migration control. Aim To assess the programme's effectiveness in preventing sensitisation. Methods In 2000, the facility began testing newly hired workers for beryllium sensitisation with the BeLPT at time of hire and during employment. The sensitisation rate and prevalence for workers hired from 2000 to 2004 were compared with that for workers hired from 1993 to 1998, who were tested in the 1998 survey. Facility environmental conditions for both time periods were evaluated. Results Newly hired workers in both cohorts worked for a mean of 16 months. Of the 97 workers hired from 2000 to 2004 with at least one employment BeLPT result, four had abnormal results at time of hire and one became sensitised during employment. Of the 69 workers hired from 1993 to 1998 and tested in 1998, six were found to be sensitised. The sensitisation rate for the 2000–4 workers was 0.7–2.7/1000 person‐months of employment, and that for the 1993–8 workers was 5.6/1000 person‐months, at least 2.1 (95% confidence interval (CI) 0.6 to 8.4) and up to 8.2 (95% CI 1.2 to 188.8) times higher than that for the 2000–4 workers. The sensitisation prevalence for the 2000–4 workers was 1% and that for the 1993–8 workers was 8.7%, 8.4 (95% CI 1.04 to 68.49) times higher than that for the 2000–4 workers. Airborne beryllium levels for production workers for the two time periods were similar. Conclusions A comprehensive preventive programme reduced beryllium sensitisation in new workers during the first years of employment, despite airborne beryllium levels for production workers that were

  14. SOLID STATE BONDING OF THORIUM WITH ALUMINUM

    DOEpatents

    Storchhelm, S.

    1959-12-01

    A method is described for bonding thorium and aluminum by placing clean surfaces of thorium and aluminum in contact with each other and hot pressing the metals together in a protective atmosphere at a temperature of about 375 to 575 deg C and at a pressure of at least 10 tsi to effect a bond.

  15. Beryllium Toxicity

    MedlinePlus

    ... Favorites Del.icio.us Digg Facebook Google Bookmarks Yahoo MyWeb Beryllium Toxicity Patient Education Care Instruction Sheet ... Favorites Del.icio.us Digg Facebook Google Bookmarks Yahoo MyWeb Page last reviewed: May 23, 2008 Page ...

  16. Effect of intermediate layers on atomic layer deposition-aluminum oxide protected silver mirrors

    NASA Astrophysics Data System (ADS)

    Fryauf, David M.; Diaz Leon, Juan J.; Phillips, Andrew C.; Kobayashi, Nobuhiko P.

    2017-07-01

    This work investigates intermediate materials deposited between silver (Ag) thin-film mirrors and an aluminum oxide (AlOx) barrier overlayer and compares the effects on mirror durability to environmental stresses. Physical vapor deposition of various fluorides, oxides, and nitrides in combination with AlOx by atomic layer deposition (ALD) is used to develop several coating recipes. Ag-AlOx samples with different intermediate materials undergo aggressive high-temperature (80°C), high-humidity (80%) (HTHH) testing for 10 days. Reflectivity of mirror samples is measured before and after HTHH testing, and image processing techniques are used to analyze the specular surface of the samples after HTHH testing. Among the seven intermediate materials used in this work, TiN, MgAl2O4, NiO, and Al2O3 intermediate layers offer more robust protection against chemical corrosion and moisture when compared with samples with no intermediate layer. In addition, results show that the performance of the ALD-AlOx barrier overlayer depends significantly on the ALD-growth process temperature. Because higher durability is observed in samples with less transparent TiN and NiO layers, we propose a figure of merit based on post-HTHH testing reflectivity change and specular reflective mirror surface area remaining after HTHH testing to judge overall barrier performance.

  17. Hydrogen transport behavior of beryllium

    NASA Astrophysics Data System (ADS)

    Anderl, R. A.; Hankins, M. R.; Longhurst, G. R.; Pawelko, R. J.; Macaulay-Newcombe, R. G.

    1992-12-01

    Beryllium is being evaluated for use as a plasma-facing material in the International Thermonuclear Experimental Reactor (ITER). One concern in the evaluation is the retention and permeation of tritium implanted into the plasma-facing surface. We performed laboratory-scale studies to investigate mechanisms that influence hydrogen transport and retention in beryllium foil specimens of rolled powder metallurgy product and rolled ingot cast beryllium. Specimen characterization was accomplished using scanning electron microscopy, Auger electron spectroscopy, and Rutherford backscattering spectrometry (RBS) techniques. Hydrogen transport was investigated using ion-beam permeation experiments and nuclear reaction analysis (NRA). Results indicate that trapping plays a significant role in permeation, re-emission, and retention, and that surface processes at both upstream and downstream surfaces are also important.

  18. Atomic Oxygen Durability of Second Surface Silver Microsheet Glass Concentrators

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Jaworske, Donald A.; Smith, Daniela C.; Mroz, Thaddeus S.

    1996-01-01

    Second surface silver microsheet glass concentrators are being developed for potential use in future solar dynamic space power systems. Traditional concentrators are aluminum honeycomb sandwich composites with either aluminum or graphite epoxy face sheets, where a reflective aluminum layer is deposited onto an organic leveling layer on the face sheet. To protect the underlying layers, a SiO2 layer is applied on top of the aluminum reflective layer. These concentrators may be vulnerable to atomic oxygen degradation due to possible atomic oxygen attack of the organic layers at defect sites in the protective and reflective coatings. A second surface microsheet glass concentrator would be inherently more atomic oxygen durable than these first surface concentrators. In addition, a second surface microsheet glass concentrator design provides a smooth optical surface and allows for silver to be used as a reflective layer, which would improve the reflectivity of the concentrator and the performance of the system. A potential threat to the performance of second surface microsheet glass concentrators is atomic oxygen attack of the underlying silver at seams and edges or at micrometeoroid and debris (MMD) impacts sites. Second surface silver microsheet glass concentrator samples were fabricated and tested for atomic oxygen durability. The samples were iteratively exposed to an atomic oxygen environment in a plasma asher. Samples were evaluated for potential degradation at fabrication seams, simulated MMD impact sites, and edges. Optical microscopy was used to evaluate atomic oxygen degradation. Reflectance was obtained for an impacted sample prior to and after atomic oxygen exposure. After an initial atomic oxygen exposure to an effective fluence of approx. 1 x 10(exp 21) atoms/cm(exp 2), oxidation of the silver at defect sites and edges was observed. Exposure to an additional approx. 1 x 10(exp 21) atoms/cm(exp 2) caused no observed increase in oxidation. Oxidation at an

  19. Investigation of the Microstructure and Mechanical Properties of Copper-Graphite Composites Reinforced with Single-Crystal α-Al₂O₃ Fibres by Hot Isostatic Pressing.

    PubMed

    Zhang, Guihang; Jiang, Xiaosong; Qiao, ChangJun; Shao, Zhenyi; Zhu, Degui; Zhu, Minhao; Valcarcel, Victor

    2018-06-11

    Single-crystal α-Al₂O₃ fibres can be utilized as a novel reinforcement in high-temperature composites owing to their high elastic modulus, chemical and thermal stability. Unlike non-oxide fibres and polycrystalline alumina fibres, high-temperature oxidation and polycrystalline particles boundary growth will not occur for single-crystal α-Al₂O₃ fibres. In this work, single-crystal α-Al₂O₃ whiskers and Al₂O₃ particles synergistic reinforced copper-graphite composites were fabricated by mechanical alloying and hot isostatic pressing techniques. The phase compositions, microstructures, and fracture morphologies of the composites were investigated using X-ray diffraction, a scanning electron microscope equipped with an X-ray energy-dispersive spectrometer (EDS), an electron probe microscopic analysis equipped with wavelength-dispersive spectrometer, and a transmission electron microscope equipped with EDS. The mechanical properties have been measured by a micro-hardness tester and electronic universal testing machine. The results show that the reinforcements were unevenly distributed in the matrix with the increase of their content and there were some micro-cracks located at the interface between the reinforcement and the matrix. With the increase of the Al₂O₃ whisker content, the compressive strength of the composites first increased and then decreased, while the hardness decreased. The fracture and strengthening mechanisms of the composite materials were explored on the basis of the structure and composition of the composites through the formation and function of the interface. The main strengthening mechanism in the composites was fine grain strengthening and solid solution strengthening. The fracture type of the composites was brittle fracture.

  20. Beryllium processing technology review for applications in plasma-facing components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castro, R.G.; Jacobson, L.A.; Stanek, P.W.

    1993-07-01

    Materials research and development activities for the International Thermonuclear Experimental Reactor (ITER), i.e., the next generation fusion reactor, are investigating beryllium as the first-wall containment material for the reactor. Important in the selection of beryllium is the ability to process, fabricate and repair beryllium first-wall components using existing technologies. Two issues that will need to be addressed during the engineering design activity will be the bonding of beryllium tiles in high-heat-flux areas of the reactor, and the in situ repair of damaged beryllium tiles. The following review summarizes the current technology associated with welding and joining of beryllium to itselfmore » and other materials, and the state-of-the-art in plasma-spray technology as an in situ repair technique for damaged beryllium tiles. In addition, a review of the current status of beryllium technology in the former Soviet Union is also included.« less

  1. Illness Absences Among Beryllium Sensitized Workers

    PubMed Central

    Watkins, Janice P.; Ellis, Elizabeth D.; Girardi, David J.; Cragle, Donna L.

    2014-01-01

    Objectives. This study examined absence rates among US Department of Energy workers who had beryllium sensitization (BeS) or were diagnosed with chronic beryllium disease (CBD) compared with those of other workers. Methods. We used the lymphocyte proliferation test to determine beryllium sensitivity. In addition, we applied multivariable logistic regression to compare absences from 2002 to 2011 between workers with BeS or CBD to those without, and survival analysis to compare time to first absence by beryllium sensitization status. Finally, we examined beryllium status by occupational group. Results. Fewer than 3% of the 19 305 workers were BeS, and workers with BeS or CBD had more total absences (odds ratio [OR] = 1.31; 95% confidence interval [CI] = 1.18, 1.46) and respiratory absences (OR = 1.51; 95% CI = 1.24, 1.84) than did other workers. Time to first absence for all causes and for respiratory conditions occurred earlier for workers with BeS or CBD than for other workers. Line operators and crafts personnel were at increased risk for BeS or CBD. Conclusions. Although not considered “diseased,” workers with BeS have higher absenteeism compared with nonsensitized workers. PMID:25211750

  2. Impact Initiation of Rods of Pressed Polytetrafluoroethylene (PTFE) and Aluminum Powders

    NASA Astrophysics Data System (ADS)

    Mock, Willis, Jr.

    2005-07-01

    A gas gun has been used to investigate the shock initiation of rods consisting of a mixture of 74 wt % PTFE (28 μm particle size) and 26 wt % aluminum (5 μm particle size) powders. The 7.6 mm diameter by 51 mm long rods were fabricated from material that had been pressed and sintered to a full density of 2.27 gm/cm^ 3. The rods were sabot-launched into 4340 steel anvils at impact velocities ranging from 104 to 777 m/s. This corresponds to calculated impact stresses of 3.3 to 48 kbar. The experiments were carried out in a 50-100 mtorr vacuum. A framing camera was used to observe the time sequence of events. These include changes in rod shape, fracture, and the initiation and evolution of the reaction phenomena. Observation of first visible light after impact was taken as the initiation time. Initiation of the reaction occurred at discrete locations in the rod material. At low velocity, no initiation occurred. Above an initiation threshold, the initiation time dropped abruptly from 56 μs just above threshold to 4 μs at the highest impact velocity. Two experiments were performed for pure PTFE material for comparison with the PTFE/Al rods. The pure PTFE showed more extensive radial flow without obvious brittle fracture. For the 784 m/s impact experiment, small points of light were observed on the edge of the mushroomed portion of the rod about 20 μs after impact, suggesting the onset of chemical reaction.

  3. Modeling Airborne Beryllium Concentrations From Open Air Dynamic Testing

    NASA Astrophysics Data System (ADS)

    Becker, N. M.

    2003-12-01

    A heightened awareness of airborne beryllium contamination from industrial activities was reestablished during the late 1980's and early 1990's when it became recognized that Chronic Beryllium Disease (CBD) had not been eradicated, and that the Occupational Health and Safety Administration standards for occupational air exposure to beryllium may not be sufficiently protective. This was in response to the observed CBD increase in multiple industrial settings where beryllium was manufactured and/or machined, thus producing beryllium particulates which are then available for redistribution by airborne transport. Sampling and modeling design activities were expanded at Los Alamos National Laboratory in New Mexico to evaluate potential airborne beryllium exposure to workers who might be exposed during dynamic testing activities associated with nuclear weapons Stockpile Stewardship. Herein is presented the results of multiple types of collected air measurements that were designed to characterize the production and dispersion of beryllium used in components whose performance is evaluated during high explosive detonation at open air firing sites. Data from fallout, high volume air, medium volume air, adhesive film, particle size impactor, and fine-particulate counting techniques will be presented, integrated, and applied in dispersion modeling to assess potential onsite and offsite personal exposures resulting from dynamic testing activities involving beryllium.

  4. Implanted Deuterium Retention and Release in Carbon-Coated Beryllium

    NASA Astrophysics Data System (ADS)

    Anderl, R. A.; Longhurst, G. R.; Pawelko, R. J.; Oates, M. A.

    1997-06-01

    Deuterium implantation experiments have been conducted on samples of clean and carbon-coated beryllium. These studies entailed preparation and characterization of beryllium samples coated with carbon thicknesses of 100, 500, and 1000 Å. Heat treatment of a beryllium sample coated with carbon to a thickness of approximately 100 Å revealed that exposure to a temperature of 400°C under high vacuum conditions was sufficient to cause substantial diffusion of beryllium through the carbon layer, resulting in more beryllium than carbon at the surface. Comparable concentrations of carbon and beryllium were observed in the bulk of the coating layer. Higher than expected oxygen levels were observed throughout the coating layer as well. Samples were exposed to deuterium implantation followed by thermal desorption without exposure to air. Differences were observed in deuterium retention and postimplantation release behavior in the carbon-coated samples as compared with bare samples. For comparable implantation conditions (sample temperature of 400°C and an incident deuterium flux of approximately 6 × 1019 D/m2-s), the quantity of deuterium retained in the bare sample was less than that retained in the carbon-coated samples. Further, the release of the deuterium took place at lower temperatures for the bare beryllium surfaces than for carbon-coated beryllium samples.

  5. The role of porosity and annealing in the impact fragmentation of an aluminum reactive material

    NASA Astrophysics Data System (ADS)

    Hooper, Joseph

    2017-06-01

    A reactive fragment has a unique structural requirement to survive explosive launch but then fragment catastrophically and combust upon impact. Suitable materials for this application tend to be metal composites with high ductility in compression but elastic-brittle behavior in tension. Characterizing the dynamic fragmentation of such materials is key for understanding their lethality. Here we consider a prototypical aluminum reactive frag material, formed via cold isostatic pressing of micron-scale powder followed by annealing. Samples were gun-launched into a target and recovered in a soft-catch medium of artificial snow, allowing for excellent recovery down to micron sizes and minimal contamination. Recovered fragment distributions were analyzed and compared to standard energy-balance theories. We study the effect of compaction pressure and annealing conditions on the fragmentation behavior at 500-800 m/s impacts, and find a particularly strong effect from short annealing periods. Though dynamic fracture occurs entirely along original particle boundaries in this material, recovery processes within the Al microstructure during annealing lead to a rapid decrease in the extent of fragmentation. This work was funded by the Office of Naval Research, program director Cliff Bedford.

  6. Manufacturing Methods for Process Effects on Aluminum Casting Allowables

    DTIC Science & Technology

    1985-03-01

    silicon ingot (25% Si) 4 . Copper as copper shot 5. Manganese as aluminum manganese ingot (10% Mn) 6 . Titanium and boron as titanium -boron wire 7. Silver...in stock form 4 . Silver in granule form. 5. Manganese (10 percent) in button form 6 . 201 refining salt ( Titanium -Boron) Melt chemistry is adjusted to...FAFB, OH 45433 4 . PERFORIN41N ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMSER(S) NOR 85-119 AFWAL-TR-.84- 4 117 I 6 *. NAME OF

  7. Large silver-cadmium technology program

    NASA Technical Reports Server (NTRS)

    Charlip, S.; Lerner, S.

    1971-01-01

    The effects of varying cell design on operation factors on the electrochemical performance of sealed, silver-cadmium cells were determined. A factorial experiment was conducted for all test cells constructed with organic separators. Three operating factors were evaluated: temperature, depth of discharge, and charge rate. The six construction factors considered were separator, absorber, electrolyte quantity, cadmium electrode type, cadmium-to-silver ratio, and auxiliary electrode. Test cells of 4 ampere-hour capacity were fabricated and cycled. The best performing cells, on a 94 minute orbit, at 40% depth of discharge, were those containing silver-treated fibrous sausage casings as the separator, and Teflon-ated, pressed cadmium electrodes. Cycling data of cells with inorganic separators (Astroset) are given. Best performance was shown by cells with nonwoven nylon absorbers. Rigid inorganic separators provided the best barrier to silver migration.

  8. Risk-based approach for controlling beryllium exposure in a manufacturing environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilmore, W. E.; Clawson, C. D.; Ellis, K. K.

    There are many diverse uses for beryllium in both military and industrial applications. Unfortunately, there are certain worker health risks associated with the manufacture and production of beryllium products. Respiratory illnesses due to prolonged contact with beryllium particulate are of paramount concern. However, these health risks can be controlled provided that the appropriate protective measures to prevent worker exposure from beryllium are in place. But it is no1 always a straightforward process to identify exactly what the beryllium protective measures should be in order to realize a true risk savings. Without prudent attention to a systematic inquiry and suitable evaluativemore » criteria, a program for controlling beryllium health risks can be lacking in completeness and overall effectiveness. One approach that took into account the necessary ingredients for risk-based determination of beryllium protective measures was developed for a beryllium operation at a Department of Energy (DOE) facility. The methodological framework that was applied at this facility, as well as a discussion of the final beryllium protective measures that were determined by this approach will be presented. Regulatory aspects for working with beryllium, as well as a risk-assessment strategy for ranking beryllium-handling activities with respect to exposure potential will also be discussed. The presentation will conclude with a synopsis of lessons-learned as gleaned from this case study, as well as providing the participants with a constructive blueprint that can be adapted to other processes involving beryllium.« less

  9. Method of making alloys of beryllium with plutonium and the like

    DOEpatents

    Runnals, O J.C.

    1959-02-24

    The production or alloys of beryllium with one or more of the metals uranium, plutonium, actinium, americium, curium, thorium, and cerium is described. A halide salt or the metal to be alloyed with the beryllium is heated at l3O0 deg C in the presence of beryllium to reduce the halide to metal and cause the latter to alloy directly with the beryllium. Although the heavy metal halides are more stable, thermodynamically, than the beryllium halides, the reducing reaction proceeds to completion if the beryllium halide product is continuously removed by vacuum distillation.

  10. METHOD OF MAKING ALLOYS OF BERYLLIUM WITH PLUTONIUM AND THE LIKE

    DOEpatents

    Runnals, O.J.C.

    1959-02-24

    The production of alloys of beryllium with one or more of the metals uranium, plutonium, actinium, americium, curium, thorium, and cerium are described. A halide salt of the metal to be alloyed with the beryllium is heated at 1300 deg C in the presence of beryllium to reduce the halide to metal and cause the latter to alloy directly with the beryllium. Although the heavy metal halides are more stable, thermodynamically, than the beryllium halides, the reducing reaction proceeds to completion if the beryllium halide product is continuously removed by vacuum distillation.

  11. Thermal Stability of Silver Paste Sintering on Coated Copper and Aluminum Substrates

    NASA Astrophysics Data System (ADS)

    Pei, Chun; Chen, Chuantong; Suganuma, Katsuaki; Fu, Guicui

    2018-01-01

    The thermal stability of silver (Ag) paste sintering on coated copper (Cu) and aluminum (Al) substrates has been investigated. Instead of conventional zincating or nickel plating, magnetron sputtering was used to achieve coating with titanium (Ti) and Ag. Silicon (Si) chips were bonded to coated Cu and Al substrates using a mixture of submicron Ag flakes and particles under 250°C and 0.4 MPa for 30 min. The joints were then subject to aging testing at 250°C for duration of 200 h, 500 h, and 1000 h. Two types of joints exhibited satisfactory initial shear strength above 45 MPa. However, the shear strength of the joints on Al substrate decreased to 28 MPa after 1000 h of aging, while no shear strength decline was detected for the joints on Cu substrate. Fracture surface analysis revealed that the vulnerable points of the two types of joints were (1) the Ag layer and (2) the interface between the Ti layer and Cu substrate. Based on the results of scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDS), and simulations, cracks in the Ag layer were identified as the cause of the shear strength degradation in the joints on Al substrate. The interface evolution of the joints on Cu substrate was ascribed to Cu migration and discontinuity points that initialized in the Ti layer. This study reveals that Al exhibited superior thermal stability with sintered Ag paste.

  12. Laser-initiated combustion studies of selected aluminum, copper, iron, and nickel alloys

    NASA Technical Reports Server (NTRS)

    Bransford, J. W.; Clark, A. F.

    1981-01-01

    The results of combustion studies at atmospheric pressure on ten metal alloys are presented. The alloys studied were aluminum alloys 1100, 2219, 6061, and tensile-50; 304, 347 and 21-6-9 stainless steel; inconel 600; beryllium copper and a bronze. It was found that once ignition was achieved all alloys would generally burn to completion. The overall combustion process appears to obey a first order rate process. Preliminary conclusions are presented along with recommendations for future work.

  13. Extreme ultraviolet reflection efficiencies of diamond-turned aluminum, polished nickel, and evaporated gold surfaces. [for telescope mirrors

    NASA Technical Reports Server (NTRS)

    Malina, R. F.; Cash, W.

    1978-01-01

    Measured reflection efficiencies are presented for flat samples of diamond-turned aluminum, nickel, and evaporated gold surfaces fabricated by techniques suited for EUV telescopes. The aluminum samples were 6.2-cm-diameter disks of 6061-T6, the electroless nickel samples were formed by plating beryllium disks with 7.5-microns of Kanigen. Gold samples were produced by coating the aluminum and nickel samples with 5 strips of evaporated gold. Reflection efficiencies are given for grazing angles in the 5-75 degree range. The results indicate that for wavelengths over about 100 A, the gold-coated nickel samples yield highest efficiencies. For shorter wavelengths, the nickel samples yield better efficiencies. 500 A is found to be the optimal gold thickness.

  14. Tuning jammed frictionless disk packings from isostatic to hyperstatic.

    PubMed

    Schreck, Carl F; O'Hern, Corey S; Silbert, Leonardo E

    2011-07-01

    We perform extensive computational studies of two-dimensional static bidisperse disk packings using two distinct packing-generation protocols. The first involves thermally quenching equilibrated liquid configurations to zero temperature over a range of thermal quench rates r and initial packing fractions followed by compression and decompression in small steps to reach packing fractions φ(J) at jamming onset. For the second, we seed the system with initial configurations that promote micro- and macrophase-separated packings followed by compression and decompression to φ(J). Using these protocols, we generate more than 10(4) static packings over a wide range of packing fraction, contact number, and compositional and positional order. We find that disordered, isostatic packings exist over a finite range of packing fractions in the large-system limit. In agreement with previous calculations, the most dilute mechanically stable packings with φ min ≈ 0.84 are obtained for r > r*, where r* is the rate above which φ(J) is insensitive to rate. We further compare the structural and mechanical properties of isostatic versus hyperstatic packings. The structural characterizations include the contact number, several order parameters, and mixing ratios of the large and small particles. We find that the isostatic packings are positionally and compositionally disordered (with only small changes in a number of order parameters), whereas bond-orientational and compositional order increase strongly with contact number for hyperstatic packings. In addition, we calculate the static shear modulus and normal mode frequencies (in the harmonic approximation) of the static packings to understand the extent to which the mechanical properties of disordered, isostatic packings differ from partially ordered packings. We find that the mechanical properties of the packings change continuously as the contact number increases from isostatic to hyperstatic.

  15. Preliminary isostatic residual gravity map of the Newfoundland Mountains 30' by 60' quadrangle and east part of the Wells 30' by 60' quadrangle, Box Elder County, Utah

    USGS Publications Warehouse

    Langenheim, Victoria; Athens, N.D.; Churchel, B.A.; Willis, H.; Knepprath, N.E.; Rosario, Jose J.; Roza, J.; Kraushaar, S.M.; Hardwick, C.L.

    2013-01-01

    A new isostatic residual gravity map of the Newfoundland Mountains and east of the Wells 30×60 quadrangles of Utah is based on compilation of preexisting data and new data collected by the Utah and U.S. Geological Surveys. Pronounced gravity lows occur over Grouse Creek Valley and locally beneath the Great Salt Lake Desert, indicating significant thickness of low-density Tertiary sedimentary rocks and deposits. Gravity highs coincide with exposures of dense pre-Cenozoic rocks in the Newfoundland, Silver Island, and Little Pigeon Mountains. Gravity values measured on pre-Tertiary basement to the north in the Bovine and Hogup Mountains are as much as 10mGal lower. Steep, linear gravity gradients may define basin-bounding faults concealed along the margins of the Newfoundland, Silver Island, and Little Pigeon Mountains, Lemay Island and the Pilot Range.

  16. FDTD analysis of Aluminum/a-Si:H surface plasmon waveguides

    NASA Astrophysics Data System (ADS)

    Lourenço, Paulo; Fantoni, Alessandro; Fernandes, Miguel; Vygranenko, Yuri; Vieira, Manuela

    2018-02-01

    The large majority of surface plasmon resonance based devices use noble metals, namely gold or silver, in their manufacturing process. These metals present low resistivity, which leads to low optical losses in the visible and near infrared spectrum ranges. Gold shows high environmental stability, which is essential for long-term operation, and silver's lower stability can be overcome through the deposition of an alumina layer, for instance. However, their high cost is a limiting factor if the intended target is large scale manufacturing. In this work, it is considered a cost-effective approach through the selection of aluminum as the plasmonic material and hydrogenated amorphous silicon instead of its crystalline counterpart. This surface plasmon resonance device relies on Fano resonance to improve its response to refractive index deviations of the surrounding environment. Fano resonance is highly sensitive to slight changes of the medium, hence the reason we incorporated this interference phenomenon in the proposed device. We report the results obtained when conducting Finite-Difference Time Domain algorithm based simulations on this metal-dielectric-metal structure when the active metal is aluminum, gold and silver. Then, we evaluate their sensitivity, detection accuracy and resolution, and the obtained results for our proposed device show good linearity and similar parameter performance as the ones obtained when using gold or silver as plasmonic materials.

  17. Beryllium Metal II. A Review of the Available Toxicity Data

    PubMed Central

    Strupp, Christian

    2011-01-01

    Beryllium metal was classified in Europe collectively with beryllium compounds, e.g. soluble salts. Toxicological equivalence was assumed despite greatly differing physicochemical properties. Following introduction of the Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) regulation, beryllium metal was classified as individual substance and more investigational efforts to appropriately characterize beryllium metal as a specific substance apart from soluble beryllium compounds was required. A literature search on toxicity of beryllium metal was conducted, and the resulting literature compiled together with the results of a recently performed study package into a comprehensive data set. Testing performed under Organisation for Economic Co-Operation and Development guidelines and Good Laboratory Practice concluded that beryllium metal was neither a skin irritant, an eye irritant, a skin sensitizer nor evoked any clinical signs of acute oral toxicity; discrepancies between the current legal classification of beryllium metal in the European Union (EU) and the experimental results were identified. Furthermore, genotoxicity and carcinogenicity were discussed in the context of the literature data and the new experimental data. It was concluded that beryllium metal is unlikely to be a classical nonthreshold mutagen. Effects on DNA repair and morphological cell transformation were observed but need further investigation to evaluate their relevance in vivo. Animal carcinogenicity studies deliver evidence of carcinogenicity in the rat; however, lung overload may be a species-specific confounding factor in the existing studies, and studies in other species do not give convincing evidence of carcinogenicity. Epidemiology has been intensively discussed over the last years and has the problem that the studies base on the same US beryllium production population and do not distinguish between metal and soluble compounds. It is noted that the correlation

  18. REACTIONS OF BERYLLIUM IN OXIDIZING ENVIRONMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, P.E.; Boes, D.J.

    1964-05-01

    To evaluate the potential health hazard of beryllium under certain circumstances, a study was made of the interaction of metallic beryllium with oxidizing environments. This study consisted of two parts. Beryllium was subjected to the action of hydrocarbon/hydrogen/oxygen flames at temperatures below and above the melting point. A determination was made of the amount of contamination by the oxide of the downstream flue gases. The experiments indicated that the oxidation rates and the contamination are relatively low below the melting point of beryllium (1283 deg C). Above this temperature, however, it was found that the molten metal burned rapidly whenmore » unprotected by an oxide layer. This caused a sharp increase in both rate of oxidation and in downstream contamination. The behavior of beryllium when surrounded by water substance was investigated. The experimental work was divided into two phases involving reaction in liquid water and in steam. In general, it was found that the oxide layer formed was at first tightly adherent and later became thick and porous. The time between these two conditions depended on temperature, decreasing sharply as the melting point was approached. Upon melting, the oxide layer tended to act as a crucible containing the liquid metal. Under suitable conditions, the liquid would break out of its cage and oxidize very rapidly. When this occurred, the surrounding steam was slightly contaminated with the oxide. (auth)« less

  19. Quantitative method of determining beryllium or a compound thereof in a sample

    DOEpatents

    McCleskey, T. Mark; Ehler, Deborah S.; John, Kevin D.; Burrell, Anthony K.; Collis, Gavin E.; Minogue, Edel M.; Warner, Benjamin P.

    2006-10-31

    A method of determining beryllium or a beryllium compound thereof in a sample, includes providing a sample suspected of comprising beryllium or a compound thereof, extracting beryllium or a compound thereof from the sample by dissolving in a solution, adding a fluorescent indicator to the solution to thereby bind any beryllium or a compound thereof to the fluorescent indicator, and determining the presence or amount of any beryllium or a compound thereof in the sample by measuring fluorescence.

  20. Quantitative method of determining beryllium or a compound thereof in a sample

    DOEpatents

    McCleskey, T. Mark; Ehler, Deborah S.; John, Kevin D.; Burrell, Anthony K.; Collis, Gavin E.; Minogue, Edel M.; Warner, Benjamin P.

    2010-08-24

    A method of determining beryllium or a beryllium compound thereof in a sample, includes providing a sample suspected of comprising beryllium or a compound thereof, extracting beryllium or a compound thereof from the sample by dissolving in a solution, adding a fluorescent indicator to the solution to thereby bind any beryllium or a compound thereof to the fluorescent indicator, and determining the presence or amount of any beryllium or a compound thereof in the sample by measuring fluorescence.

  1. The mechanical behavior of cross-rolled beryllium sheet

    NASA Technical Reports Server (NTRS)

    Henkener, J. A.; Spiker, I. K.; Castner, W. L.

    1992-01-01

    In response to the failure of a conical section of the Insat C satellite during certification testing, the use of beryllium for payload structures, particularly in sheet product form, is being reevaluated. A test program was initiated to study the tensile, shear, and out-of-plane failure modes of beryllium cross-rolled sheet and to apply data to the development of an appropriate failure criterion. Tensile test results indicated that sanding the surface of beryllium sheet has no significant effect on yield strength but can produce a profound reduction in ultimate strength and results obtained by finite element analysis. Critical examination of these test results may contribute to the modification of a JSC policy for the use of beryllium in orbiter and payload structures.

  2. Chronic beryllium disease in a precious metal refinery. Clinical epidemiologic and immunologic evidence for continuing risk from exposure to low level beryllium fumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cullen, M.R.; Kominsky, J.R.; Rossman, M.D.

    1987-01-01

    Five workers at a precious metal refinery developed granulomatous lung disease between 1972 and 1985. The original diagnosis was sarcoidosis, but 4 of the workers were subsequently proved to have hypersensitivity to beryllium by in vitro proliferative responses of lymphocytes obtained by bronchoalveolar lavage. Review of medical records of coworkers and extensive industrial hygiene surveillance of the plant demonstrated that 4 cases occurred in the furnace area where air concentrations of beryllium fume were consistently below the permissible exposure limit of 2 micrograms/M3. A single case has been recognized from parts of the refinery where exposures to cold beryllium dustmore » often exceeded the standard by as much as 20-fold. These data demonstrate that chronic beryllium disease still occurs and confirm the importance of specific immunologic testing in patients suspected of having sarcoidosis but with potential exposure to beryllium. The data raise concern about the adequacy of modern industrial controls, especially in the setting of exposure to highly respirable beryllium fumes.« less

  3. Detection of beryllium by laser-induced-breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Radziemski, Leon J.; Cremers, David A.; Loree, Thomas R.

    Using the new technique of laser-induced-breakdown spectroscopy (LIBS) a limit of detection was measured for beryllium in air of 0.5 ng/g ( w/w), which is one-third of the OSHA limit for the 8-h average exposure to beryllium. Approximately linear working curves were obtained over the concentration range 0.5 to 2 × 10 4 ng g -1. The potential application of this technique to a beryllium monitoring instrument is discussed.

  4. Development of Biomarkers for Chronic Beryllium Disease in Mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, Terry

    2013-01-25

    Beryllium is a strategic metal, indispensable for national defense programs in aerospace, telecommunications, electronics, and weaponry. Exposure to beryllium is an extensively documented occupational hazard that causes irreversible, debilitating granulomatous lung disease in as much as 3 - 5% of exposed workers. Mechanistic research on beryllium exposure-disease relationships has been severely limited by a general lack of a sufficient CBD animal model. We have now developed and tested an animal model which can be used for dissecting dose-response relationships and pathogenic mechanisms and for testing new diagnostic and treatment paradigms. We have created 3 strains of transgenic mice in whichmore » the human antigen-presenting moiety, HLA-DP, was inserted into the mouse genome. Each mouse strain contains HLA-DPB1 alleles that confer different magnitude of risk for chronic beryllium disease (CBD): HLA-DPB1*0401 (odds ratio = 0.2), HLA-DPB1*0201 (odds ratio = 15), HLA-DPB1*1701 (odds ratio = 240). Our preliminary work has demonstrated that the *1701 allele, as predicted by human studies, results in the greatest degree of sensitization in a mouse ear swelling test. We have also completed dose-response experiments examining beryllium-induced lung granulomas and identified susceptible and resistant inbred strains of mice (without the human transgenes) as well as quantitative trait loci that may contain gene(s) that modify the immune response to beryllium. In this grant application, we propose to use the transgenic and normal inbred strains of mice to identify biomarkers for the progression of beryllium sensitization and CBD. To achieve this goal, we propose to compare the sensitivity and accuracy of the lymphocyte proliferation test (blood and bronchoalveolar lavage fluid) with the ELISPOT test in the three HLA-DP transgenic mice strains throughout a 6 month treatment with beryllium particles. Because of the availability of high-throughput proteomics, we will also

  5. Variations in Crustal Structure, Lithospheric Flexural Strength, and Isostatic Compensation Mechanisms of Mars

    NASA Astrophysics Data System (ADS)

    Ding, M.; Lin, J.; Zuber, M. T.

    2014-12-01

    We analyze gravity and topography of Mars to investigate the spatial variations in crustal thickness, lithospheric strength, and mechanisms of support of prominent topographic features on Mars. The latest gravity model JGMRO110c (released in 2012) from the Mars Reconnaissance Orbiter mission has a spatial block size resolution of ~97 km (corresponding to degree-110), enabling us to resolve crustal structures at higher spatial resolution than those determined from previous degree-80 and 85 gravity models [Zuber et al., 2000; McGovern et al., 2002, 2004; Neumann et al., 2004; Belleguic et al., 2005]. Using the latest gravity data, we first inverted for a new version of crustal thickness model of Mars assuming homogeneous crust and mantle densities of 2.9 and 3.5 g/cm3. We calculated "isostatic" topography for the Airy local isostatic compensation mechanism, and "non-isostatic" topography after removing the isostatic part. We find that about 92% of the Martian surface is in relatively isostatic state, indicating either relatively small lithospheric strength and/or small vertical loading. Relatively isostatic regions include the hemispheric dichotomy, Hellas and Argyre Planitia, Noachis and Arabia Terra, and Terra Cimmeria. In contrast, regions with significant amount of non-isostatic topography include the Olympus, Ascraeus, Arsia, Pavonis, Alba, and Elysium Mons, Isidis Planitia and Valles Marineris. Their relatively large "non-isostatc topography" implies relatively strong lithospheric strength and large vertical loading. Spectral analysis of the admittance and correlation relationship between gravity and topography were conducted for the non-isostatic regions using the localized spectra method [Wieczorek and Simons, 2005, 2007] and thin-shell lithospheric flexural approximation [Forsyth, 1985; McGovern et al., 2002, 2004]. The best-fitting models reveal significant variations in the effective lithospheric thickness with the greatest values for the Olympus Mon

  6. Cryo-scatter measurements of beryllium

    NASA Astrophysics Data System (ADS)

    Lippey, Barret; Krone-Schmidt, Wilfried

    1991-12-01

    Bi-directional Reflection Distribution Function measurements were performed as a function of cryogenic temperature for various substrates. Substrates investigated include HIPed and sputtered beryllium produced from different powders and by various manufacturing and polishing processes. In some samples investigated, the BRDF at 10.6 microns increased by a factor of 2 to 5 during cooling from 300 to 30 Kelvin. On repeated temperature cycling the change in BRDF appeared to be totally elastic. The cryo-scatter effect does not occur for all types of beryllium.

  7. Extremely dense microstructure and enhanced ionic conductivity in hot-isostatic pressing treated cubic garnet-type solid electrolyte of Ga2O3-doped Li7La3Zr2O12

    NASA Astrophysics Data System (ADS)

    Qin, Shiying; Zhu, Xiaohong; Jiang, Yue; Ling, Ming’En; Hu, Zhiwei; Zhu, Jiliang

    A large number of pores and a low relative density that are frequently observed in solid electrolytes reduce severely their ionic conductivity and thus limit their applicability. Here, we report on the use of hot isostatic pressing (HIP) for ameliorating the garnet-type lithium-ion conducting solid electrolyte of Ga2O3-doped Li7La3Zr2O12 (Ga-LLZO) with nominal composition of Li6.55Ga0.15La3Zr2O12. The Ga-LLZO pellets were conventionally sintered at 1075∘C for 12h, and then were followed by HIP treatment at 120MPa and 1160∘C under an Ar atmosphere. It is found that the HIP-treated Ga-LLZO shows an extremely dense microstructure and a significantly enhanced ionic conductivity. Coherent with the increase in relative density from 90.5% (untreated) to 97.5% (HIP-treated), the ionic conductivity of the HIP-treated Ga-LLZO reaches as high as 1.13×10‑3S/cm at room temperature (25∘C), being two times higher than that of 4.58×10‑4S/cm for the untreated one.

  8. SOLID-STATE SYNTHESIS AND SOME PROPERTIES OF MAGNESIUM-DOPED COPPER ALUMINUM OXIDES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chang; Ren, Fei; Wang, Hsin

    2010-01-01

    Copper aluminum oxide (CuAlO2) with delafossite structure is a promising candidate for high temperature thermoelectric applications because of its modest band gap, high stability and low cost. We investigate magnesium doping on the aluminum site as a means of producing higher electrical conductivity and optimized Seebeck coefficient. Powder samples were synthesized using solid-state reaction and bulk samples were prepared using both cold-pressing and hot-pressing techniques. Composition analysis, microstructural examination and transport property measurements were performed, and the results suggest that while hot-pressing can achieve high density samples, secondary phases tend to form and lower the performance of the materials.

  9. Growth kinetics and microstructural evolution during hot isostatic pressing of U-10 wt.% Mo monolithic fuel plate in AA6061 cladding with Zr diffusion barrier

    NASA Astrophysics Data System (ADS)

    Park, Y.; Yoo, J.; Huang, K.; Keiser, D. D.; Jue, J. F.; Rabin, B.; Moore, G.; Sohn, Y. H.

    2014-04-01

    Phase constituents and microstructure changes in RERTR fuel plate assemblies as functions of temperature and duration of hot-isostatic pressing (HIP) during fabrication were examined. The HIP process was carried out as functions of temperature (520, 540, 560 and 580 °C for 90 min) and time (45-345 min at 560 °C) to bond 6061 Al-alloy to the Zr diffusion barrier that had been co-rolled with U-10 wt.% Mo (U10Mo) fuel monolith prior to the HIP process. Scanning and transmission electron microscopies were employed to examine the phase constituents, microstructure and layer thickness of interaction products from interdiffusion. At the interface between the U10Mo and Zr, following the co-rolling, the UZr2 phase was observed to develop adjacent to Zr, and the α-U phase was found between the UZr2 and U10Mo, while the Mo2Zr was found as precipitates mostly within the α-U phase. The phase constituents and thickness of the interaction layer at the U10Mo-Zr interface remained unchanged regardless of HIP processing variation. Observable growth due to HIP was only observed for the (Al,Si)3Zr phase found at the Zr/AA6061 interface, however, with a large activation energy of 457 ± 28 kJ/mole. Thus, HIP can be carried to improve the adhesion quality of fuel plate without concern for the excessive growth of the interaction layer, particularly at the U10Mo-Zr interface with the α-U, Mo2Zr, and UZr2 phases.

  10. Proton irradiation effects on beryllium - A macroscopic assessment

    NASA Astrophysics Data System (ADS)

    Simos, Nikolaos; Elbakhshwan, Mohamed; Zhong, Zhong; Camino, Fernando

    2016-10-01

    Beryllium, due to its excellent neutron multiplication and moderation properties, in conjunction with its good thermal properties, is under consideration for use as plasma facing material in fusion reactors and as a very effective neutron reflector in fission reactors. While it is characterized by unique combination of structural, chemical, atomic number, and neutron absorption cross section it suffers, however, from irradiation generated transmutation gases such as helium and tritium which exhibit low solubility leading to supersaturation of the Be matrix and tend to precipitate into bubbles that coalesce and induce swelling and embrittlement thus degrading the metal and limiting its lifetime. Utilization of beryllium as a pion production low-Z target in high power proton accelerators has been sought both for its low Z and good thermal properties in an effort to mitigate thermos-mechanical shock that is expected to be induced under the multi-MW power demand. To assess irradiation-induced changes in the thermal and mechanical properties of Beryllium, a study focusing on proton irradiation damage effects has been undertaken using 200 MeV protons from the Brookhaven National Laboratory Linac and followed by a multi-faceted post-irradiation analysis that included the thermal and volumetric stability of irradiated beryllium, the stress-strain behavior and its ductility loss as a function of proton fluence and the effects of proton irradiation on the microstructure using synchrotron X-ray diffraction. The mimicking of high temperature irradiation of Beryllium via high temperature annealing schemes has been conducted as part of the post-irradiation study. This paper focuses on the thermal stability and mechanical property changes of the proton irradiated beryllium and presents results of the macroscopic property changes of Beryllium deduced from thermal and mechanical tests.

  11. Development of New Front Side Metallization Method of Aluminum Electroplating for Silicon Solar Cell

    NASA Astrophysics Data System (ADS)

    Willis, Megan D.

    In this thesis, the methods of aluminum electroplating in an ionic liquid for silicon solar cell front side metallization were studied. It focused on replacing the current silver screen printing with an alternative metallization technology using a low-cost Earth-abundant metal for mass production, due to the high cost and limited availability of silver. A conventional aluminum electroplating method was employed for silicon solar cells fabrication on both p-type and n-type substrates. The highest efficiency of 17.9% was achieved in the n-type solar cell with a rear junction, which is comparable to that of the same structure cell with screen printed silver electrodes from industrial production lines. It also showed better spiking resistant performance than the common structure p-type solar cell. Further efforts were put on the development of a novel light-induced plating of aluminum technique. The aluminum was deposited directly on a silicon substrate without the assistance of a conductive seed layer, thus simplified and reduced the process cost. The plated aluminum has good adhesion to the silicon surface with the resistivity as low as 4x10-6 Ω-cm. A new demo tool was designed and set up for the light-induced plating experiment, aiming to utilize this technique in large-size solar cells fabrication and mass production. Besides the metallization methods, a comprehensive sensitivity analysis for the efficiency dispersion in the production of crystalline-Si solar cells was presented based on numerical simulations. Temperature variation in the diffusion furnace was the most significant cause of the efficiency dispersion. It was concluded that a narrow efficiency range of +/-0.5% absolute is achievable if the emitter diffusion temperature is confined to a 13°C window, while other cell parameters vary within their normal windows. Possible methods to minimize temperature variation in emitter diffusion were proposed.

  12. Carbide coated fibers in graphite-aluminum composites

    NASA Technical Reports Server (NTRS)

    Imprescia, R. J.; Levinson, L. S.; Reiswig, R. D.; Wallace, T. C.; Williams, J. M.

    1975-01-01

    Thin, uniform coats of titanium carbide, deposited on graphite fibers by chemical vapor deposition with thicknesses up to approximately 0.1 microns were shown to improve fiber strength significantly. For greater thicknesses, strength was degraded. The coats promote wetting of the fibers and infiltration of the fiber yarns with aluminum alloys, and act as protective barriers to inhibit reaction between the fibers and the alloys. Chemical vapor deposition was used to produce silicon carbide coats on graphite fibers. In general, the coats were nonuniform and were characterized by numerous surface irregularities. Despite these irregularities, infiltration of these fibers with aluminum alloys was good. Small graphite-aluminum composite samples were produced by vacuum hot-pressing of aluminum-infiltrated graphite yarn at temperatures above the metal liquidus.

  13. Process for synthesis of beryllium chloride dietherate

    DOEpatents

    Bergeron, Charles; Bullard, John E.; Morgan, Evan

    1991-01-01

    A low temperature method of producing beryllium chloride dietherate through the addition of hydrogen chloride gas to a mixture of beryllium metal in ether in a reaction vessel is described. A reflux condenser provides an exit for hydrogen produced form the reaction. A distillation condenser later replaces the reflux condenser for purifying the resultant product.

  14. Earth's isostatic gravity anomaly field: Contributions to National Geodetic Satellite Program

    NASA Technical Reports Server (NTRS)

    Khan, M. A.

    1973-01-01

    On the assumption that the compensation for the topographic load is achieved in the manner of Airy-Heiskenenan hypothesis at a compensation depth of 30 kilometers, the spherical harmonic coefficients of the isostatic reduction potential U are computed. The degree power spectra of these coefficients are compared with the power spectra of the isostatic reduction coefficients given by Uotila. Results are presented in tabular form.

  15. Evaluation of beryllium for space shuttle components

    NASA Technical Reports Server (NTRS)

    Trapp, A. E.

    1972-01-01

    Application of beryllium to specific full-scale space shuttle structural components and assemblies was studied. Material evaluations were conducted to check the mechanical properties of as-received material to gain design information on characteristics needed for the material in the space shuttle environment, and to obtain data needed for evaluating component and panel tests. Four beryllium structural assemblies were analyzed and designed. Selected components of these assemblies, representing areas of critical loading or design/process uncertainty, were designed and tested, and two panel assemblies were fabricated. Trends in cost and weight factors were determined by progressive estimation at key points of preliminary design, final design, and fabrication to aid in a cost/weight evaluation of the use of beryllium.

  16. Solid explosive plane-wave lenses pressed-to-shape with dies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olinger, B.

    2007-11-01

    Solid-explosive plane-wave lenses 1", 2" and 4¼" in diameter have been mass-produced from components pressed-to-shape with aluminum dies. The method used to calculate the contour between the solid plane-wave lens components pressed-to-shape with the dies is explained. The steps taken to press, machine, and assemble the lenses are described. The method of testing the lenses, the results of those tests, and the corrections to the dies are reviewed. The work on the ½", 8", and 12" diameter lenses is also discussed.

  17. 40 CFR 63.11166 - What General Provisions apply to primary beryllium production facilities?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Primary Nonferrous Metals Area Sources-Zinc, Cadmium, and Beryllium Primary Beryllium Production Facilities § 63.11166 What General Provisions apply to primary beryllium production facilities? (a) You must... primary beryllium production facilities? 63.11166 Section 63.11166 Protection of Environment ENVIRONMENTAL...

  18. Novel plasma source for safe beryllium spectral line studies in the presence of beryllium dust

    NASA Astrophysics Data System (ADS)

    Stankov, B. D.; Vinić, M.; Gavrilović Božović, M. R.; Ivković, M.

    2018-05-01

    Plasma source for beryllium spectral line studies in the presence of beryllium dust particles was realised. The guideline during construction was to prevent exposure to formed dust, considering the toxicity of beryllium. Plasma source characterization through determination of optimal working conditions is described. The necessary conditions for Be spectral line appearance and optimal conditions for line shape measurements are found. It is proven experimentally that under these conditions dust appears coincidently with the second current maximum. The electron density measured after discharge current maximum is determined from the peak separation of the hydrogen Balmer beta spectral line, and the electron temperature is determined from the ratios of the relative intensities of Be spectral lines emitted from successive ionized stages of atoms. Maximum values of electron density and temperature are measured to be 9.3 × 1022 m-3 and 16 800 K, respectively. Construction details and testing of the BeO discharge tube in comparison with SiO2 and Al2O3 discharge tubes are also presented in this paper.

  19. A Report on the Validation of Beryllium Strength Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, Derek Elswick

    2016-02-05

    This report discusses work on validating beryllium strength models with flyer plate and Taylor rod experimental data. Strength models are calibrated with Hopkinson bar and quasi-static data. The Hopkinson bar data for beryllium provides strain rates up to about 4000 per second. A limitation of the Hopkinson bar data for beryllium is that it only provides information on strain up to about 0.15. The lack of high strain data at high strain rates makes it difficult to distinguish between various strength model settings. The PTW model has been calibrated many different times over the last 12 years. The lack ofmore » high strain data for high strain rates has resulted in these calibrated PTW models for beryllium exhibiting significantly different behavior when extrapolated to high strain. For beryllium, the α parameter of PTW has recently been calibrated to high precision shear modulus data. In the past the α value for beryllium was set based on expert judgment. The new α value for beryllium was used in a calibration of the beryllium PTW model by Sky Sjue. The calibration by Sjue used EOS table information to model the temperature dependence of the heat capacity. Also, the calibration by Sjue used EOS table information to model the density changes of the beryllium sample during the Hopkinson bar and quasi-static experiments. In this paper, the calibrated PTW model by Sjue is compared against experimental data and other strength models. The other strength models being considered are a PTW model calibrated by Shuh- Rong Chen and a Steinberg-Guinan type model by John Pedicini. The three strength models are used in a comparison against flyer plate and Taylor rod data. The results show that the Chen PTW model provides better agreement to this data. The Chen PTW model settings have been previously adjusted to provide a better fit to flyer plate data, whereas the Sjue PTW model has not been changed based on flyer plate data. However, the Sjue model provides a reasonable

  20. Beryllium and compounds

    Integrated Risk Information System (IRIS)

    EPA / 635 / R - 98 / 008 TOXICOLOGICAL REVIEW OF BERYLLIUM AND COMPOUNDS ( CAS No . 7440 - 41 - 7 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) April 1998 U.S . Environmental Protection Agency Washington , DC DISCLAIMER This document has been reviewed in ac

  1. Compatibility of stainless steels and lithiated ceramics with beryllium

    NASA Astrophysics Data System (ADS)

    Flament, T.; Fauvet, P.; Sannier, J.

    1988-07-01

    The introduction of beryllium as a neutron multiplier in ceramic blankets of thermonuclear fusion reactors may give rise to the following compatibility problems: (i) oxidation of Be by ceramics (lithium aluminate and silicates) or by water vapour; (ii) interaction between beryllium and austenitic and martensitic steels. The studies were done in contact tests under vacuum and in tests under wet sweeping helium. The contact tests under vacuum have revealed that the interaction of beryllium with ceramics seems to be low up to 700°C, the interaction of beryllium with steels is significant and is characterized by the formation of a diffusion layer and of a brittle Be-Fe-Ni compound. With type 316 L austenitic steel, this interaction appears quite large at 600°C whereas it is noticeable only at 700°C with martensitic steels. The experiments carried out with sweeping wet helium at 600°C have evidenced a slight oxidation of beryllium due to water vapour which can be enhanced in the front of uncompletely dehydrated ceramics.

  2. Thermal Pyrolytic Graphite Enhanced Components

    NASA Technical Reports Server (NTRS)

    Hardesty, Robert E. (Inventor)

    2015-01-01

    A thermally conductive composite material, a thermal transfer device made of the material, and a method for making the material are disclosed. Apertures or depressions are formed in aluminum or aluminum alloy. Plugs are formed of thermal pyrolytic graphite. An amount of silicon sufficient for liquid interface diffusion bonding is applied, for example by vapor deposition or use of aluminum silicon alloy foil. The plugs are inserted in the apertures or depressions. Bonding energy is applied, for example by applying pressure and heat using a hot isostatic press. The thermal pyrolytic graphite, aluminum or aluminum alloy and silicon form a eutectic alloy. As a result, the plugs are bonded into the apertures or depressions. The composite material can be machined to produce finished devices such as the thermal transfer device. Thermally conductive planes of the thermal pyrolytic graphite plugs may be aligned in parallel to present a thermal conduction path.

  3. Post-hot isostatic pressing: a healing treatment for process related defects and laboratory grinding damage of dental zirconia?

    PubMed

    Scherrer, S S; Cattani-Lorente, M; Yoon, S; Karvonen, L; Pokrant, S; Rothbrust, F; Kuebler, J

    2013-09-01

    Processing parameters (powder granulation, compaction, debinding, greenbody shaping, sintering) and post-sinter rough, even fine grinding are influencing the final mechanical properties of 3Y-TZP. The hypothesis of this study was that post-sinter hot isostatic pressing (post-HIP) would be beneficial for improving reliability and strength of both sintered and coarse ground sintered zirconia by closing or reducing surface and/or small volume defects. 75 sintered bars of an experimental 3Y-TZP (3mm×4mm×45mm) with chamfered edges and 15μm diamond surface finish were provided by the manufacturer (Ivoclar Vivadent) and randomly distributed in five groups of N=15 each. G1 served as control (as received); G2 was post-HIPed at 1400°C and G3 at 1350°C, both using a pressure of 195MPa in Ar for 1h; G4 was coarse ground with 120μm diamond disk grain size; G5 was ground 120μm and post-HIPed at 1350°C at 195MPa, 1h in Ar. The specimens were fractured in air in 4 point-bending. Weibull characteristic strength (σ0) in MPa, m parameter (reliability) and confidence intervals (CI) at 90% confidence level are reported. Identification of the critical flaw was performed by SEM on the fractured surface of all specimens and XRD performed in all groups. G1: σ0=973 (932-1016), m=10.6 (7.45-15.1); G2: σ0=930 (871-995), m=6.9 (4.87-9.9); G3: σ0=898 (848-952), m=7.94 (5.6-11.4); G4: σ0=921 (857-991), m=6.35 (4.48-9.11); G5: σ0=881 (847-918), m=11.4 (8.03-16.3). G5 had a significantly lower σ0 than G1. No significant differences were seen in the reliability (m) among the groups. Fractography revealed critical intrinsic subsurface flaws of 10-60μm present in all groups resulting from the processing parameters. No "healing" (i.e. closing of defects by densification) resulted after post-HIP. Grinding sintered zirconia with 120μm diamond disks induced radial cracks of 10-20μm and an important pseudo-cubic phase transformation (56wt%) that was not completely removed after post

  4. Characterization of beryllium deformation using in-situ x-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magnuson, Eric Alan; Brown, Donald William; Clausen, Bjorn

    2015-08-24

    Beryllium’s unique mechanical properties are extremely important in a number of high performance applications. Consequently, accurate models for the mechanical behavior of beryllium are required. However, current models are not sufficiently microstructure aware to accurately predict the performance of beryllium under a range of processing and loading conditions. Previous experiments conducted using the SMARTS and HIPPO instruments at the Lujan Center(LANL), have studied the relationship between strain rate and texture development, but due to the limitations of neutron diffraction studies, it was not possible to measure the response of the material in real-time. In-situ diffraction experiments conducted at the Advancedmore » Photon Source have allowed the real time measurement of the mechanical response of compressed beryllium. Samples of pre-strained beryllium were reloaded orthogonal to their original load path to show the reorientation of already twinned grains. Additionally, the in-situ experiments allowed the real time tracking of twin evolution in beryllium strained at high rates. The data gathered during these experiments will be used in the development and validation of a new, microstructure aware model of the constitutive behavior of beryllium.« less

  5. Beryllium disease among construction trade workers at Department of Energy nuclear sites.

    PubMed

    Welch, Laura S; Ringen, Knut; Dement, John; Bingham, Eula; Quinn, Patricia; Shorter, Janet; Fisher, Miles

    2013-10-01

    A medical surveillance program was developed to identify current and former construction workers at significant risk for beryllium related disease from work at the DOE nuclear weapons facilities, and to improve surveillance among beryllium exposed workers. Medical examinations included a medical history and a beryllium blood lymphocyte proliferation test (BeLPT). Stratified and multivariate logistic regression analyses were used to explore the risk of disease by age, race, trade, and reported work in buildings where beryllium was used. After adjusting for covariates, the risk of BeS was significantly higher among boilermakers, roofers, and sheet metal workers, as suggested in the stratified analyses. Workers identified as sensitized to beryllium were interviewed to determine whether they had been subsequently diagnosed with chronic beryllium disease. Between 1998 and December 31, 2010 13,810 workers received a BeLPT through the BTMed program; 189 (1.4%) were sensitized to beryllium, and 28 reported that they had had a compensation claim accepted for CBD. These data on former construction workers gives us additional information about the predictive value of the blood BeLPT test for detection of CBD in populations with lower total lifetime exposures and more remote exposures than that experienced by current workers in beryllium machining operations. Through this surveillance program we have identified routes of exposures to beryllium and worked with DOE site personnel to identity and mitigate those exposures which still exist, as well as helping to focus attention on the risk for beryllium exposure among current demolition workers at these facilities. Copyright © 2013 Wiley Periodicals, Inc.

  6. Recent advances in understanding the biomolecular basis of chronic beryllium disease: a review.

    PubMed

    McCleskey, T Mark; Buchner, Virginia; Field, R William; Scott, Brian L

    2009-01-01

    In this review we summarize the work conducted over the past decade that has advanced our knowledge of pulmonary diseases associated with exposure to beryllium that has provided a molecular-based understanding of the chemistry, immunopathology, and immunogenetics of beryllium toxicity. Beryllium is a strong and lightweight metal that generates and reflects neutrons, resists corrosion, is transparent to X-rays, and conducts electricity. Beryllium is one of the most toxic elements on the periodic table, eliciting in susceptible humans (a) an allergic immune response known as beryllium sensitization (BeS); (b) acute beryllium disease, an acutely toxic, pneumonitis-like lung condition resulting from exposure to high beryllium concentrations that are rarely seen in modern industry; and (c) chronic beryllium disease (CBD) following either high or very low levels of exposure. Because of its exceptional strength, stability, and heat-absorbing capability, beryllium is used in many important technologies in the modern world. In the early 1940s, beryllium was recognized as posing an occupational hazard in manufacturing and production settings. Although acute beryllium disease is now rare, beryllium is an insidious poison with a latent toxicity and the risk of developing CBD persists. Chronic beryllium disease-a systemic granulomatous lung disorder caused by a specific delayed immune response to beryllium within a few months to several decades after exposure-has been called the "unrecognized epidemic". Although not a disease in itself, BeS, the innate immune response to beryllium identified by an abnormal beryllium lymphocyte proliferation test result, is a population-based predictor of CBD. Genetic susceptibility to CBD is associated with alleles of the major histocompatibility gene, human leukocyte antigen DP (HLA-DP) containing glutamic acid at the 69th position of the beta chain (HLA-DPbeta-E69). Other genes are likely to be involved in the disease process, and research on

  7. Growth kinetics and microstructural evolution during hot isostatic pressing of U-10 wt.% Mo monolithic fuel plate in AA6061 cladding with Zr diffusion barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y. Park; J. Yoo; K. Huang

    2014-04-01

    Phase constituents and microstructure changes in RERTR fuel plate assemblies as functions of temperature and duration of hot-isostatic pressing (HIP) during fabrication were examined. The HIP process was carried out as functions of temperature (520, 540, 560 and 580 °C for 90 min) and time (45–345 min at 560 °C) to bond 6061 Al-alloy to the Zr diffusion barrier that had been co-rolled with U-10 wt.% Mo (U10Mo) fuel monolith prior to the HIP process. Scanning and transmission electron microscopies were employed to examine the phase constituents, microstructure and layer thickness of interaction products from interdiffusion. At the interface betweenmore » the U10Mo and Zr, following the co-rolling, the UZr2 phase was observed to develop adjacent to Zr, and the a-U phase was found between the UZr2 and U10Mo, while the Mo2Zr was found as precipitates mostly within the a-U phase. The phase constituents and thickness of the interaction layer at the U10Mo-Zr interface remained unchanged regardless of HIP processing variation. Observable growth due to HIP was only observed for the (Al,Si)3Zr phase found at the Zr/AA6061 interface, however, with a large activation energy of 457 ± 28 kJ/mole. Thus, HIP can be carried to improve the adhesion quality of fuel plate without concern for the excessive growth of the interaction layer, particularly at the U10Mo-Zr interface with the a-U, Mo2Zr, and UZr2 phases.« less

  8. A laboratory means to produce tough aluminum sheet from powder

    NASA Technical Reports Server (NTRS)

    Singleton, O. R.; Royster, D. M.; Thomas, J. R.

    1990-01-01

    The rapid solidification of aluminum alloys as powder and the subsequent fabrication processes can be used to develop and tailor alloys to satisfy specific aerospace design requirements, including high strength and toughness. Laboratory procedures to produce aluminum powder-metallurgy (PM) materials are efficient but require evidence that the laboratory methods used can produce a product with superior properties. This paper describes laboratory equipment and procedures which can be used to produce tough aluminum PM sheet. The processing of a 2124 + 0.9 percent Zr aluminum alloy powder is used as an example. The fully hardened sheet product is evaluated in terms of properties and microstructure. The key features of the vacuum hot press pressing operation used to consolidate the powder are described. The 2124 + 0.9 percent Zr - T8 temper aluminum sheet produced was both strong (460-490 MPa yield strength) and tough (Kahn Tear unit-propagation- energy values over three times those typical for ingot metallurgy 2024-T81). Both the longitudinal and longitudinal-transverse directions of the sheet were tested. The microstructure was well refined with subgrains of one or two micrometers. Fine dispersoids of Al3Zr in the precipitate free regions adjacent to boundaries are believed to contribute to the improved toughness.

  9. Investigation of ITER candidate beryllium grades irradiated at high temperature

    NASA Astrophysics Data System (ADS)

    Kupriyanov, I. B.; Gorokhov, V. A.; Melder, R. R.; Ostrovsky, Z. E.; Gervash, A. A.

    1998-10-01

    Beryllium is one of the main candidate materials both for the neutron multiplier in a solid breeding blanket and for the plasma facing components. That is why the investigation of beryllium behaviour under the typical for fusion reactor loading, in particular under the neutron irradiation, is of a great importance. This paper presents some results of investigation of five beryllium grades (DshG-200, TR-30, TshG-56, TRR, TE-30, TIP-30) fabricated by VNIINM, Russia, and one (S-65) fabricated by Brush Wellman, USA. The average grain size of the investigated beryllium grades varied from 8 to 40 μm, beryllium oxide content was 0.7-3.2 wt.%, initial tensile strength 250-680 MPa. All the samples were irradiated in active zone of SM-3 reactor of 650-700°C up to the fast neutron fluence (5.5-6.2) × 10 21 cm -2 (2.7-3.0 dpa, helium content up to 1150 appm), E > 0.1 MeV. Irradiation swelling of the materials was revealed to be in the range of 0.3-1.7%. Beryllium grades TR-30 and TRR having the smallest grain size and highest beryllium oxide content, demonstrated minimal swelling, which did not exceed 0.3% at 700°C and fluence 5.5 × 10 21 cm -2. Mechanical properties and microstructure parameters measured before and after irradiation are also presented.

  10. Proton irradiation effects on beryllium – A macroscopic assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simos, Nikolaos; Elbakhshwan, Mohamed; Zhong, Zhong

    Beryllium, due to its excellent neutron multiplication and moderation properties, in conjunction with its good thermal properties, is under consideration for use as plasma facing material in fusion reactors and as a very effective neutron reflector in fission reactors. While it is characterized by unique combination of structural, chemical, atomic number, and neutron absorption cross section it suffers, however, from irradiation generated transmutation gases such as helium and tritium which exhibit low solubility leading to supersaturation of the Be matrix and tend to precipitate into bubbles that coalesce and induce swelling and embrittlement thus degrading the metal and limiting itsmore » lifetime. Utilization of beryllium as a pion production low-Z target in high power proton accelerators has been sought both for its low Z and good thermal properties in an effort to mitigate thermos-mechanical shock that is expected to be induced under the multi-MW power demand. To assess irradiation-induced changes in the thermal and mechanical properties of Beryllium, a study focusing on proton irradiation damage effects has been undertaken using 200 MeV protons from the Brookhaven National Laboratory Linac and followed by a multi-faceted post-irradiation analysis that included the thermal and volumetric stability of irradiated beryllium, the stress-strain behavior and its ductility loss as a function of proton fluence and the effects of proton irradiation on the microstructure using synchrotron X-ray diffraction. The mimicking of high temperature irradiation of Beryllium via high temperature annealing schemes has been conducted as part of the post-irradiation study. This study focuses on the thermal stability and mechanical property changes of the proton irradiated beryllium and presents results of the macroscopic property changes of Beryllium deduced from thermal and mechanical tests.« less

  11. Proton irradiation effects on beryllium – A macroscopic assessment

    DOE PAGES

    Simos, Nikolaos; Elbakhshwan, Mohamed; Zhong, Zhong; ...

    2016-07-01

    Beryllium, due to its excellent neutron multiplication and moderation properties, in conjunction with its good thermal properties, is under consideration for use as plasma facing material in fusion reactors and as a very effective neutron reflector in fission reactors. While it is characterized by unique combination of structural, chemical, atomic number, and neutron absorption cross section it suffers, however, from irradiation generated transmutation gases such as helium and tritium which exhibit low solubility leading to supersaturation of the Be matrix and tend to precipitate into bubbles that coalesce and induce swelling and embrittlement thus degrading the metal and limiting itsmore » lifetime. Utilization of beryllium as a pion production low-Z target in high power proton accelerators has been sought both for its low Z and good thermal properties in an effort to mitigate thermos-mechanical shock that is expected to be induced under the multi-MW power demand. To assess irradiation-induced changes in the thermal and mechanical properties of Beryllium, a study focusing on proton irradiation damage effects has been undertaken using 200 MeV protons from the Brookhaven National Laboratory Linac and followed by a multi-faceted post-irradiation analysis that included the thermal and volumetric stability of irradiated beryllium, the stress-strain behavior and its ductility loss as a function of proton fluence and the effects of proton irradiation on the microstructure using synchrotron X-ray diffraction. The mimicking of high temperature irradiation of Beryllium via high temperature annealing schemes has been conducted as part of the post-irradiation study. This study focuses on the thermal stability and mechanical property changes of the proton irradiated beryllium and presents results of the macroscopic property changes of Beryllium deduced from thermal and mechanical tests.« less

  12. Influence of Forming Conditions on Springback in V-bending Process Using Servo Press

    NASA Astrophysics Data System (ADS)

    Abe, Shinya; Takahashi, Susumu

    To improve fuel efficiency, aluminum alloys and high tensile steel sheets are increasingly being applied to automotive body parts. However, it is difficult to obtain accurate dimensions of formed parts. Therefore, technologies for reducing springback for the part formed by press are strongly demanded. It is said that the die holding time at the bottom dead center of a servo press slide can affect springback. To clarify the forming mechanisms of this phenomenon, a V bending test with a servo press was performed. Aluminum alloys sheets are applied as specimens. The location of press slide was measured by linear scales. It was found that the movement of the slide in a slide motion program differs from the actual movement of the slide. It is important to confirm if the slide is located in the position specified in the program. In addition, a springback angle measurement system is proposed that uses laser displacement measurement apparatus. Because it avoids human error, the proposed measurement system is more accurate than the image processing method.

  13. 40 CFR 468.20 - Applicability; description of the beryllium copper forming subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... beryllium copper forming subcategory. 468.20 Section 468.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS COPPER FORMING POINT SOURCE CATEGORY Beryllium Copper Forming Subcategory § 468.20 Applicability; description of the beryllium copper forming...

  14. 40 CFR 468.20 - Applicability; description of the beryllium copper forming subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... beryllium copper forming subcategory. 468.20 Section 468.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS COPPER FORMING POINT SOURCE CATEGORY Beryllium Copper Forming Subcategory § 468.20 Applicability; description of the beryllium copper forming...

  15. Effects of neutron irradiation at 70-200 °C in beryllium

    NASA Astrophysics Data System (ADS)

    Chakin, V. P.; Kazakov, V. A.; Melder, R. R.; Goncharenko, Yu. D.; Kupriyanov, I. B.

    2002-12-01

    At present beryllium is considered one of the metals to be used as a plasma facing and blanket material. This paper presents the investigations of several Russian beryllium grades fabricated by HE and HIP technologies. Beryllium specimens were irradiated in the SM reactor at 70-200 °C up to a neutron fluence (0.6-3.9)×10 22 cm -2 ( E>0.1 MeV). It is shown that the relative mass decrease of beryllium specimens that were in contact with the water coolant during irradiation achieved the value >1.5% at the maximum dose. Swelling was in the range of 0.2-1.5% and monotonically increasing with the neutron dose. During mechanical tensile and compression tests one could observe the absolute brittle destruction of the irradiated specimens at the reduced strength level in comparison to the initial state. A comparatively higher level of brittle strength was observed on beryllium specimens irradiated at 200 °C. The basic type of destruction of the irradiated beryllium specimens is brittle and intergranular with some fraction of transgranular chip.

  16. Proteomic analysis of beryllium-induced genotoxicity in an Escherichia coli mutant model system.

    PubMed

    Taylor-McCabe, Kirsten J; Wang, Zaolin; Sauer, Nancy N; Marrone, Babetta L

    2006-03-01

    Beryllium is the second lightest metal, has a high melting point and high strength-to-weight ratio, and is chemically stable. These unique chemical characteristics make beryllium metal an ideal choice as a component material for a wide variety of applications in aerospace, defense, nuclear weapons, and industry. However, inhalation of beryllium dust or fumes induces significant health effects, including chronic beryllium disease and lung cancer. In this study, the mutagenicity of beryllium sulfate (BeSO(4)) and the comutagenicity of beryllium with a known mutagen 1-methyl-3-nitro-1-nitrosoguanidine (MNNG) were evaluated using a forward mutant detection system developed in Escherichia coli. In this system, BeSO(4) was shown to be weakly mutagenic alone and significantly enhanced the mutagenicity of MNNG up to 3.5-fold over MNNG alone. Based on these results a proteomic study was conducted to identify the proteins regulated by BeSO(4). Using the techniques of 2-DE and oMALDI-TOF MS, we successfully identified 32 proteins being differentially regulated by beryllium and/or MNNG in the E. coli test system. This is the first study to describe the proteins regulated by beryllium in vitro, and the results suggest several potential pathways for the focus of further research into the mechanisms underlying beryllium-induced genotoxicity.

  17. Release of beryllium from mineral ores in artificial lung and skin surface fluids.

    PubMed

    Duling, Matthew G; Stefaniak, Aleksandr B; Lawrence, Robert B; Chipera, Steve J; Virji, M Abbas

    2012-06-01

    Exposure to some manufactured beryllium compounds via skin contact or inhalation can cause sensitization. A portion of sensitized persons who inhale beryllium may develop chronic beryllium disease (CBD). Little is understood about exposures to naturally occurring beryllium minerals. The purpose of this study was to assess the bioaccessibility of beryllium from bertrandite ore. Dissolution of bertrandite from two mine pits (Monitor and Blue Chalk) was evaluated for both the dermal and inhalation exposure pathways by determining bioaccessibility in artificial sweat (pH 5.3 and pH 6.5), airway lining fluid (SUF, pH 7.3), and alveolar macrophage phagolysosomal fluid (PSF, pH 4.5). Significantly more beryllium was released from Monitor pit ore than Blue Chalk pit ore in artificial sweat buffered to pH 5.3 (0.88 ± 0.01% vs. 0.36 ± 0.00%) and pH 6.5 (0.09 ± 0.00% vs. 0.03 ± 0.01%). Rates of beryllium released from the ores in artificial sweat were faster than previously measured for manufactured forms of beryllium (e.g., beryllium oxide), known to induce sensitization in mice. In SUF, levels of beryllium were below the analytical limit of detection. In PSF, beryllium dissolution was biphasic (initial rapid diffusion followed by latter slower surface reactions). During the latter phase, dissolution half-times were 1,400 to 2,000 days, and rate constants were ~7 × 10(-10) g/(cm(2)·day), indicating that bertrandite is persistent in the lung. These data indicate that it is prudent to control skin and inhalation exposures to bertrandite dusts.

  18. Development of Silver-Free Silicon Photovoltaic Solar Cells with All-Aluminum Electrodes

    NASA Astrophysics Data System (ADS)

    Sun, Wen-Cheng

    To date, the most popular and dominant material for commercial solar cells is crystalline silicon (or wafer-Si). It has the highest cell efficiency and cell lifetime out of all commercial solar cells. Although the potential of crystalline-Si solar cells in supplying energy demands is enormous, their future growth will likely be constrained by two major bottlenecks. The first is the high electricity input to produce crystalline-Si solar cells and modules, and the second is the limited supply of silver (Ag) reserves. These bottlenecks prevent crystalline-Si solar cells from reaching terawatt-scale deployment, which means the electricity produced by crystalline-Si solar cells would never fulfill a noticeable portion of our energy demands in the future. In order to solve the issue of Ag limitation for the front metal grid, aluminum (Al) electroplating has been developed as an alternative metallization technique in the fabrication of crystalline-Si solar cells. The plating is carried out in a near-room-temperature ionic liquid by means of galvanostatic electrolysis. It has been found that dense, adherent Al deposits with resistivity in the high 10--6 Ω-cm range can be reproducibly obtained directly on Si substrates and nickel seed layers. An all-Al Si solar cell, with an electroplated Al front electrode and a screen-printed Al back electrode, has been successfully demonstrated based on commercial p-type monocrystalline-Si solar cells, and its efficiency is approaching 15%. Further optimization of the cell fabrication process, in particular a suitable patterning technique for the front silicon nitride layer, is expected to increase the efficiency of the cell to ~18%. This shows the potential of Al electroplating in cell metallization is promising and replacing Ag with Al as the front finger electrode is feasible.

  19. Production and separation of carrier-free 7Be

    DOE PAGES

    Gharibyan, N.; Moody, K. J.; Tumey, S. J.; ...

    2015-10-24

    A high-purity carrier-free 7Be was efficiently isolated following proton bombardment of a lithium hydroxide - aluminum target. The separation of beryllium from lithium and aluminum was achieved through a hydrochloric acid elution system utilizing cation exchange chromatography. The beryllium recovery, +99%, was assessed through gamma spectroscopy while the chemical purity was established by mass spectrometry. In conclusion, the decontamination factors of beryllium from lithium and aluminum were determined to be 6900 and 300, respectively.

  20. Structure and mechanical properties of foils made of nanocrystalline beryllium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhigalina, O. M., E-mail: zhigal@ns.crys.ras.ru; Semenov, A. A.; Zabrodin, A. V.

    2016-07-15

    The phase composition and structural features of (45–90)-μm-thick foils obtained from nanocrystalline beryllium during multistep thermomechanical treatment have been established using electron microscopy, electron diffraction, electron backscattering diffraction, and energy-dispersive analysis. This treatment is shown to lead to the formation of a structure with micrometer- and submicrometer-sized grains. The minimum average size of beryllium grains is 352 nm. The inclusions of beryllium oxide (BeO) of different modifications with tetragonal (sp. gr. P4{sub 2}/mnm) and hexagonal (sp. gr. P6{sub 3}/mmc) lattices are partly ground during deformation to a size smaller than 100 nm and are located along beryllium grain boundaries inmore » their volume, significantly hindering migration during treatment. The revealed structural features of foils with submicrometer-sized crystallites provide the thermal stability of their structural state. Beryllium with this structure is a promising material for X-ray instrument engineering and for the production of ultrathin (less than 10 μm) vacuum-dense foils with very high physicomechanical characteristics.« less

  1. Bouguer gravity anomaly and isostatic residual gravity maps of the Tonopah 1 degree by 2 degrees Quadrangle, central Nevada

    USGS Publications Warehouse

    Plouff, Donald

    1992-01-01

    A residual isostatic gravity map (sheet 2) was prepared so that the regional effect of isostatic compensation present on the Bouguer gravity anomaly map (sheet 1) would be minimized. Isostatic corrections based on the Airy-Heiskanen system (Heiskanen and Vening Meinesz, 1958, p. 135-137) were estimated by using 3-minute topographic digitization and applying the method of Jachens and Roberts (1981). Parameters selected for the isostatic model were 25 km for the normal crustal thickness at sea level, 2.67 g/cm3 for the density of the crust, and 0.4 g/cm3 for the contrast in density between the crust and the upper mantle. These parameters were selected so that the isostatic residual gravity map would be consistent with isostatic residual gravity maps of the adjacent Walker Lake quadrangle (Plouff, 1987) and the state of Nevada (Saltus, 1988c).

  2. The beryllium "double standard" standard.

    PubMed

    Egilman, David S; Bagley, Sarah; Biklen, Molly; Golub, Alison Stern; Bohme, Susanna Rankin

    2003-01-01

    Brush Wellman, the world's leading producer and supplier of beryllium products, has systematically hidden cases of beryllium disease that occurred below the threshold limit value (TLV) and lied about the efficacy of the TLV in published papers, lectures, reports to government agencies, and instructional materials prepared for customers and workers. Hypocritically, Brush Wellman instituted a zero exposure standard for corporate executives while workers and customers were told the 2 microgram standard was "safe." Brush intentionally used its workers as "canaries for the plant," and referred to them as such. Internal documents and corporate depositions indicate that these actions were intentional and that the motive was money. Despite knowledge of the inadequacy of the TLV, Brush has successfully used it as a defense against lawsuits brought by injured workers and as a sales device to provide reassurance to customers. Brush's policy has reaped an untold number of victims and resulted in mass distribution of beryllium in consumer products. Such corporate malfeasance is perpetuated by the current market system, which is controlled by an organized oligopoly that creates an incentive for the neglect of worker health and safety in favor of externalizing costs to victimized workers, their families, and society at large.

  3. Risks of beryllium disease related to work processes at a metal, alloy, and oxide production plant.

    PubMed

    Kreiss, K; Mroz, M M; Zhen, B; Wiedemann, H; Barna, B

    1997-08-01

    To describe relative hazards in sectors of the beryllium industry, risk factors of beryllium disease and sensitisation related to work process were sought in a beryllium manufacturing plant producing pure metal, oxide, alloys, and ceramics. All 646 active employees were interviewed; beryllium sensitisation was ascertained with the beryllium lymphocyte proliferation blood test on 627 employees; clinical evaluation and bronchoscopy were offered to people with abnormal test results; and industrial hygiene measurements related to work processes taken in 1984-93 were reviewed. 59 employees (9.4%) had abnormal blood tests, 47 of whom underwent bronchoscopy. 24 new cases of beryllium disease were identified, resulting in a beryllium disease prevalence of 4.6%, including five known cases (29/632). Employees who had worked in ceramics had the highest prevalence of beryllium disease (9.0%). Employees in the pebble plant (producing beryllium metal) who had been employed after 1983 also had increased risk, with a prevalence of beryllium disease of 6.4%, compared with 1.3% of other workers hired in the same period, and a prevalence of abnormal blood tests of 19.2%. Logistic regression modelling confirmed these two risk factors for beryllium disease related to work processes and the dependence on time of the risk at the pebble plant. The pebble plant was not associated with the highest gravimetric industrial hygiene measurements available since 1984. Further characterisation of exposures in beryllium metal production may be important to understanding how beryllium exposures confer high contemporary risk of beryllium disease.

  4. Fabrication of aluminum-carbon composites

    NASA Technical Reports Server (NTRS)

    Novak, R. C.

    1973-01-01

    A screening, optimization, and evaluation program is reported of unidirectional carbon-aluminum composites. During the screening phase both large diameter monofilament and small diameter multifilament reinforcements were utilized to determine optimum precursor tape making and consolidation techniques. Difficulty was encountered in impregnating and consolidating the multifiber reinforcements. Large diameter monofilament reinforcement was found easier to fabricate into composites and was selected to carry into the optimization phase in which the hot pressing parameters were refined and the size of the fabricated panels was scaled up. After process optimization the mechanical properties of the carbon-aluminum composites were characterized in tension, stress-rupture and creep, mechanical fatigue, thermal fatigue, thermal aging, thermal expansion, and impact.

  5. Prevalence of beryllium sensitization among Department of Defense conventional munitions workers at low risk for exposure.

    PubMed

    Mikulski, Marek A; Sanderson, Wayne T; Leonard, Stephanie A; Lourens, Spencer; Field, R William; Sprince, Nancy L; Fuortes, Laurence J

    2011-03-01

    To estimate the prevalence of beryllium sensitization among former and current Department of Defense workers from a conventional munitions facility. Participants were screened by using Beryllium Lymphocyte Proliferation Test. Those sensitized were offered clinical evaluation for chronic beryllium disease. Eight (1.5%) of 524 screened workers were found sensitized to beryllium. Although the confidence interval was wide, the results suggested a possibly higher risk of sensitization among workers exposed to beryllium by occasional resurfacing of copper-2% beryllium alloy tools compared with workers with the lowest potential exposure (odds ratio = 2.6; 95% confidence interval, 0.23-29.9). The findings from this study suggest that Department of Defense workers with low overall exposure to beryllium had a low prevalence of beryllium sensitization. Sensitization rates might be higher where higher beryllium exposures presumably occurred, although this study lacked sufficient power to confirm this.

  6. Chronic beryllium disease and cancer risk estimates with uncertainty for beryllium released to the air from the Rocky Flats Plant.

    PubMed Central

    McGavran, P D; Rood, A S; Till, J E

    1999-01-01

    Beryllium was released into the air from routine operations and three accidental fires at the Rocky Flats Plant (RFP) in Colorado from 1958 to 1989. We evaluated environmental monitoring data and developed estimates of airborne concentrations and their uncertainties and calculated lifetime cancer risks and risks of chronic beryllium disease to hypothetical receptors. This article discusses exposure-response relationships for lung cancer and chronic beryllium disease. We assigned a distribution to cancer slope factor values based on the relative risk estimates from an occupational epidemiologic study used by the U.S. Environmental Protection Agency (EPA) to determine the slope factors. We used the regional atmospheric transport code for Hanford emission tracking atmospheric transport model for exposure calculations because it is particularly well suited for long-term annual-average dispersion estimates and it incorporates spatially varying meteorologic and environmental parameters. We accounted for model prediction uncertainty by using several multiplicative stochastic correction factors that accounted for uncertainty in the dispersion estimate, the meteorology, deposition, and plume depletion. We used Monte Carlo techniques to propagate model prediction uncertainty through to the final risk calculations. We developed nine exposure scenarios of hypothetical but typical residents of the RFP area to consider the lifestyle, time spent outdoors, location, age, and sex of people who may have been exposed. We determined geometric mean incremental lifetime cancer incidence risk estimates for beryllium inhalation for each scenario. The risk estimates were < 10(-6). Predicted air concentrations were well below the current reference concentration derived by the EPA for beryllium sensitization. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:10464074

  7. Isotopic Transmutations in Irradiated Beryllium and Their Implications on MARIA Reactor Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrzejewski, Krzysztof J.; Kulikowska, Teresa A

    2004-04-15

    Beryllium irradiated by neutrons with energies above 0.7 MeV undergoes (n,{alpha}) and (n,2n) reactions. The Be(n,{alpha}) reaction results in subsequent buildup of {sup 6}Li and {sup 3}He isotopes with large thermal neutron absorption cross sections causing poisoning of irradiated beryllium. The amount of the poison isotopes depends on the neutron flux level and spectrum. The high-flux MARIA reactor operated in Poland since 1975 consists of a beryllium matrix with fuel channels in cutouts of beryllium blocks. As the experimental determination of {sup 6}Li, {sup 3}H, and {sup 3}He content in the operational reactor is impossible, a systematic computational study ofmore » the effect of {sup 3}He and {sup 6}Li presence in beryllium blocks on MARIA reactor reactivity and power density distribution has been undertaken. The analysis of equations governing the transmutation has been done for neutron flux parameters typical for MARIA beryllium blocks. Study of the mutual influence of reactor operational parameters and the buildup of {sup 6}Li, {sup 3}H, and {sup 3}He in beryllium blocks has shown the necessity of a detailed spatial solution of transmutation equations in the reactor, taking into account the whole history of its operation. Therefore, fuel management calculations using the REBUS code with included chains for Be(n,{alpha})-initiated reactions have been done for the whole reactor lifetime. The calculated poisoning of beryllium blocks has been verified against the critical experiment of 1993. Finally, the current {sup 6}Li, {sup 3}H, and {sup 3}He contents, averaged for each beryllium block, have been calculated. The reactivity drop caused by this poisoning is {approx}7%.« less

  8. Synthesis of oxide-free aluminum nanoparticles for application to conductive film

    NASA Astrophysics Data System (ADS)

    Jong Lee, Yung; Lee, Changsoo; Lee, Hyuck Mo

    2018-02-01

    Aluminum nanoparticles are considered promising as alternatives to conventional ink materials, replacing silver and copper nanoparticles, due to their extremely low cost and low melting temperature. However, a serious obstacle to realizing their use as conductive ink materials is the oxidation of aluminum. In this research, we synthesized the oxide-free aluminum nanoparticles using catalytic decomposition and an oleic acid coating method, and these materials were applied to conductive ink for the first time. The injection time of oleic acid determines the size of the aluminum nanoparticles by forming a self-assembled monolayer on the nanoparticles instead of allowing the formation of an oxide phase. Fabricated nanoparticles were analyzed by transmission electron microscopy and x-ray photoelectron spectroscopy to verify their structural and chemical composition. In addition, conductive inks made of these nanoparticles exhibit electrical properties when they are sintered at over 300 °C in a reducing atmosphere. This result shows that aluminum nanoparticles can be used as an alternative conductive material in printed electronics and can solve the cost issues associated with noble metals.

  9. Isostatic anomaly characteristics and dynamic environment of New Britain Ocean trenches and neighboring Area in Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Yang, G.; Shen, C.; Wang, J.

    2017-12-01

    we calculated the Bouguer gravity anomaly and the Airy-Heiskanen isostatic anomaly in the New Britain ocean trenches and its surrounding areas of Papua New Guinea using the topography model and the gravity anomaly model from Scripps Institute of Oceanography, and analyzed the characteristics of isostatic anomaly and the earthquake dynamic environment of this region. The results show that there are obviously differences in the isostatic state between each block in the region, and the crustal tectonic movement is very intense in the regions with high positive or negative isostatic gravity anomalies; A number of sub-plates in this area is driven by the external tectonic action such as plate subduction and thrust of the Pacific plate, the Indian - Australian plate and the Eurasian plate. From the distribution of isostatic gravity anomaly, the tectonic action of anti-isostatic movement in this region is the main source of power; from the isostatic gravity and the spatial distribution of the earthquake, with the further contraction of the Indian-Australian plate, the southwestern part of the Solomon Haiya plate will become part of the Owen Stanley fold belt, the northern part will enter the lower part of the Bismarck plate, eastern part will enter the front of the Pacific plate, the huge earthquake will migrate to the north and east of the Solomon Haiya plate.

  10. Use of 41Ar production to measure ablator areal density in NIF beryllium implosions

    DOE PAGES

    Wilson, Douglas Carl; Cassata, W. S.; Sepke, S. M.; ...

    2017-02-06

    For the first time, 41Ar produced by the (n,Υ) reaction from 40Ar in the beryllium shell of a DT filled Inertial Confinement Fusion capsule has been measured. Ar is co-deposited with beryllium in the sputter deposition of the capsule shell. Combined with a measurement of the neutron yield, the radioactive 41Ar then quantifies the areal density of beryllium during the DT neutron production. Here, the measured 1.15 ± 0.17 × 10 +8 atoms of 41Ar are 2.5 times that from the best post-shot calculation, suggesting that the Ar and Be areal densities are correspondingly higher than those calculated. Possible explanationsmore » are that (1) the beryllium shell is compressed more than calculated, (2) beryllium has mixed into the cold DT ice, or more likely (3) less beryllium is ablated than calculated. Since only one DT filled beryllium capsule has been fielded at NIF, these results can be confirmed and expanded in the future.« less

  11. Isostatic Compensation of the Lunar Highlands

    NASA Astrophysics Data System (ADS)

    Sori, Michael M.; James, Peter B.; Johnson, Brandon C.; Soderblom, Jason M.; Solomon, Sean C.; Wieczorek, Mark A.; Zuber, Maria T.

    2018-02-01

    The lunar highlands are isostatically compensated at large horizontal scales, but the specific compensation mechanism has been difficult to identify. With topographic data from the Lunar Orbiter Laser Altimeter and gravity data from the Gravity Recovery and Interior Laboratory, we investigate support of highland topography. Poor correlation between crustal density and elevation shows that Pratt compensation is not important in the highlands. Using spectrally weighted admittance, we compared observed values of geoid-to-topography ratio (GTR) with those predicted by isostatic models. Observed GTRs are 25.8+7.5-5.7 m/km for the nearside highlands and 39.3+5.7-6.2 m/km for the farside highlands. These values are not consistent with flexural compensation of long-wavelength topography or Airy isostasy defined under an assumption of equal mass in crustal columns. Instead, the observed GTR values are consistent with models of Airy compensation in which isostasy is defined under a requirement of equal pressures at equipotential surfaces at depth. The gravity and topography data thus reveal that long-wavelength topography on the Moon is most likely compensated by variations in crustal thickness, implying that highland topography formed early in lunar history before the development of a thick elastic lithosphere.

  12. IRIS TOXICOLOGICAL REVIEW AND SUMMARY DOCUMENTS FOR BERYLLIUM AND COMPOUNDS

    EPA Science Inventory

    EPA's assessment of the noncancer health effects and carcinogenic potential of Beryllium was added to the IRIS database in 1998. The IRIS program is updating the IRIS assessment for Beryllium. This update will incorporate health effects information published since the last assess...

  13. Comparative activity of silver based antimicrobial composites for urinary catheters.

    PubMed

    Thokala, Nikhil; Kealey, Carmel; Kennedy, James; Brady, Damien B; Farrell, Joseph

    2018-04-04

    Biomedical polymers are an integral component in a wide range of medical device designs due to their range of desirable properties. However, extensive use of polymer materials in medical devices have also been associated with an increasing incidence of patient infections. Efforts to address this issue have included the incorporation of antimicrobial additives for developing novel antimicrobial polymeric materials. Silver with its high toxicity towards bacteria, oligodynamic effect and good thermal stability has been employed as an additive for polymeric medical devices. In the present study, commercially available elemental (Biogate) and ionic (Ultrafresh 16) silver additives were incorporated into a Polyamide 11 (PA 11) matrix using a compression press. These polymer composites were evaluated for their antimicrobial and ion release properties. Elemental silver composites were determined to retain their antimicrobial properties for extended periods and actively release silver ions for 84 days; whereas the ionic silver composites lost their ion release activity and therefore antibacterial activity after 56 days. Bacterial log reduction units of 3.87 for ionic silver and 2.41 for elemental silver was identified within 24 hr, when tested in accordance with ISO 22196 test standard; indicating that ionic silver is more efficient for short-term applications compared to elemental silver. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. IRIS Toxicological Review of Beryllium and Compounds (2008 ...

    EPA Pesticide Factsheets

    EPA is conducting a peer review and public comment of the scientific basis supporting the human health hazard and dose-response assessment of Beryllium that when finalized will appear on the Integrated Risk Information System (IRIS) database. An IRIS Toxicological Review of Beryllium and Compounds was published in 1988 and reassessed in 1998. The current draft (2007) only focuses on the cancer assessment and does not re-evaluate posted reference doses or reference concentrations.

  15. Actinide/beryllium neutron sources with reduced dispersion characteristics

    DOEpatents

    Schulte, Louis D.

    2012-08-14

    Neutron source comprising a composite, said composite comprising crystals comprising BeO and AmBe.sub.13, and an excess of beryllium, wherein the crystals have an average size of less than 2 microns; the size distribution of the crystals is less than 2 microns; and the beryllium is present in a 7-fold to a 75-fold excess by weight of the amount of AmBe.sub.13; and methods of making thereof.

  16. Screening for beryllium disease among construction trade workers at Department of Energy nuclear sites.

    PubMed

    Welch, Laura; Ringen, Knut; Bingham, Eula; Dement, John; Takaro, Tim; McGowan, William; Chen, Anna; Quinn, Patricia

    2004-09-01

    To determine whether current and former construction workers are at significant risk for occupational illnesses from work at the Department of Energy's (DOE) nuclear weapons facilities, screening programs were undertaken at the Hanford Nuclear Reservation, Oak Ridge Reservation, and the Savannah River Site. Medical examination for beryllium disease used a medical history and a beryllium blood lymphocyte proliferation test (BeLPT). Stratified and multivariate logistic regression analyses were used to explore the risk of disease by age, race, sex, trade, duration of DOE employment, reported work in buildings where beryllium was used, and time since last DOE site employment. Of the 3,842 workers included in this study, 34% reported exposure to beryllium. Overall, 2.2% of workers had at least one abnormal BeLPT test, and 1.4% were also abnormal on a second test. Regression analyses demonstrated increased risk of having at least one abnormal BeLPT to be associated with ever working in a site building where beryllium activities had taken place. The prevalence of beryllium sensitivity and chronic beryllium disease (CBD) in construction workers is described and the positive predictive value of the BeLPT in a population with less intense exposure to beryllium than other populations that have been screened is discussed. The BeLPT findings and finding of cases of CBD demonstrate that some of these workers had significant exposure, most likely, during maintenance, repair, renovation, or demolition in facilities where beryllium was used.

  17. Neutron counter based on beryllium activation

    NASA Astrophysics Data System (ADS)

    Bienkowska, B.; Prokopowicz, R.; Scholz, M.; Kaczmarczyk, J.; Igielski, A.; Karpinski, L.; Paducha, M.; Pytel, K.

    2014-08-01

    The fusion reaction occurring in DD plasma is followed by emission of 2.45 MeV neutrons, which carry out information about fusion reaction rate and plasma parameters and properties as well. Neutron activation of beryllium has been chosen for detection of DD fusion neutrons. The cross-section for reaction 9Be(n, α)6He has a useful threshold near 1 MeV, which means that undesirable multiple-scattered neutrons do not undergo that reaction and therefore are not recorded. The product of the reaction, 6He, decays with half-life T1/2 = 0.807 s emitting β- particles which are easy to detect. Large area gas sealed proportional detector has been chosen as a counter of β-particles leaving activated beryllium plate. The plate with optimized dimensions adjoins the proportional counter entrance window. Such set-up is also equipped with appropriate electronic components and forms beryllium neutron activation counter. The neutron flux density on beryllium plate can be determined from the number of counts. The proper calibration procedure needs to be performed, therefore, to establish such relation. The measurements with the use of known β-source have been done. In order to determine the detector response function such experiment have been modeled by means of MCNP5-the Monte Carlo transport code. It allowed proper application of the results of transport calculations of β- particles emitted from radioactive 6He and reaching proportional detector active volume. In order to test the counter system and measuring procedure a number of experiments have been performed on PF devices. The experimental conditions have been simulated by means of MCNP5. The correctness of simulation outcome have been proved by measurements with known radioactive neutron source. The results of the DD fusion neutron measurements have been compared with other neutron diagnostics.

  18. Hanford Site Beryllium Program: Past, Present, and Future - 12428

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, Mark; Garcia, Pete; Goeckner, Julie

    2012-07-01

    The U.S. Department of Energy (DOE) has a long history of beryllium use because of the element's broad application to many nuclear operations and processes. At the Hanford Site beryllium alloy was used to fabricate parts for reactors, including fuel rods for the N-Reactor during plutonium production. Because of continued confirmed cases of chronic beryllium disease (CBD), and data suggesting CBD occurs at exposures to low-level concentrations, the DOE decided to issue a rule to further protect federal and contractor workers from hazards associated with exposure to beryllium. When the beryllium rule was issued in 1999, each of the Hanfordmore » Site contractors developed a Chronic Beryllium Disease Prevention Program (CBDPP) and initial site wide beryllium inventories. A new site-wide CBDPP, applicable to all Hanford contractors, was issued in May, 2009. In the spring of 2010 the DOE Headquarters Office of Health, Safety, and Security (HSS) conducted an independent inspection to evaluate the status of implementation of the Hanford Site Chronic Beryllium Disease Prevention Program (CBDPP). The report identified four Findings and 12 cross-cutting Opportunities for Improvement (OFIs). A corrective action plan (CAP) was developed to address the Findings and crosscutting OFIs. The DOE directed affected site contractors to identify dedicated resources to participate in development of the CAP, along with involving stakeholders. The CAP included general and contractor-specific recommendations. Following initiation of actions to implement the approved CAP, it became apparent that additional definition of product deliverables was necessary to assure that expectations were adequately addressed and CAP actions could be closed. Consequently, a supplement to the original CAP was prepared and transmitted to DOE-HQ for approval. Development of the supplemental CAP was an eight month effort. From the onset a core group of CAP development members were identified to develop a

  19. Methods for the mitigation of the chemical reactivity of beryllium in steam

    NASA Astrophysics Data System (ADS)

    Druyts, F.; Alves, E. C.; Wu, C. H.

    2004-08-01

    In the safety assessment of future fusion reactors, the reaction of beryllium with steam remains one of the main concerns. In case of a loss of coolant accident (LOCA), the use of beryllium in combination with pressurised water as coolant can lead to excessive hydrogen production due to the reaction Be + H 2O = BeO + H 2 + heat. Therefore, we started an R&D programme aimed at investigating mitigation methods for the beryllium/steam reaction. Beryllium samples were implanted with either calcium or aluminium ions in a 210 kV ion implanter at ITN Lisbon. The chemical reactivity of these samples in steam was measured at SCK • CEN in a dedicated experimental facility providing coupled thermogravimetry/mass spectrometry. In comparison to reference undoped material, the reactivity of doped beryllium after 30 min of exposure decreased with a factor 2 to 4. The mitigating effect was higher for calcium-doped than for aluminium-doped samples.

  20. Determination of beryllium concentrations in UK ambient air

    NASA Astrophysics Data System (ADS)

    Goddard, Sharon L.; Brown, Richard J. C.; Ghatora, Baljit K.

    2016-12-01

    Air quality monitoring of ambient air is essential to minimise the exposure of the general population to toxic substances such as heavy metals, and thus the health risks associated with them. In the UK, ambient air is already monitored under the UK Heavy Metals Monitoring Network for a number of heavy metals, including nickel (Ni), arsenic (As), cadmium (Cd) and lead (Pb) to ensure compliance with legislative limits. However, the UK Expert Panel on Air Quality Standards (EPAQS) has highlighted a need to limit concentrations of beryllium (Be) in air, which is not currently monitored, because of its toxicity. The aim of this work was to analyse airborne particulate matter (PM) sampled onto filter papers from the UK Heavy Metals Monitoring Network for quantitative, trace level beryllium determination and compare the results to the guideline concentration specified by EPAQS. Samples were prepared by microwave acid digestion in a matrix of 2% sulphuric acid and 14% nitric acid, verified by the use of Certified Reference Materials (CRMs). The digested samples were then analysed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The filters from the UK Heavy Metals Monitoring Network were tested using this procedure and the average beryllium concentration across the network for the duration of the study period was 7.87 pg m-3. The highest site average concentration was 32.0 pg m-3 at Scunthorpe Low Santon, which is significantly lower than levels that are thought to cause harm. However the highest levels were observed at sites monitoring industrial point sources, indicating that beryllium is being used and emitted, albeit at very low levels, from these point sources. Comparison with other metals concentrations and data from the UK National Atmospheric Emissions Inventory suggests that current emissions of beryllium may be significantly overestimated.

  1. Evaluation of Defects inside Beryllium Foils using X-ray Computed Tomography and Shearing Interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakurai, Tatsuyuki; Kohmura, Yoshiki; Takeuchi, Akihisa

    2007-01-19

    When beryllium is used in transmission X-ray optical elements for spatially coherent beams, speckles are usually observed in the transmission images. These speckles seem to be caused by defects either inside or on the surface of beryllium foil. We measured highly polished beryllium foil using two methods, X-ray computed tomography and X-ray shearing interferometry. The results indicate that observed speckle pattern is caused by many voids inside beryllium or inner low-density regions.

  2. Effects of Beryllium and Compaction Pressure on the Thermal Diffusivity of Uranium Dioxide Fuel Pellets

    NASA Astrophysics Data System (ADS)

    Camarano, D. M.; Mansur, F. A.; Santos, A. M. M.; Ferraz, W. B.; Ferreira, R. A. N.

    2017-09-01

    In nuclear reactors, the performance of uranium dioxide (UO2) fuel is strongly dependent on the thermal conductivity, which directly affects the fuel pellet temperature, the fission gas release and the fuel rod mechanical behavior during reactor operation. The use of additives to improve UO2 fuel performance has been investigated, and beryllium oxide (BeO) appears as a suitable additive because of its high thermal conductivity and excellent chemical compatibility with UO2. In this paper, UO2-BeO pellets were manufactured by mechanical mixing, pressing and sintering processes varying the BeO contents and compaction pressures. Pellets with BeO contents of 2 wt%, 3 wt%, 5 wt% and 7 wt% BeO were pressed at 400 MPa, 500 MPa and 600 MPa. The laser flash method was applied to determine the thermal diffusivity, and the results showed that the thermal diffusivity tends to increase with BeO content. Comparing thermal diffusivity results of UO2 with UO2-BeO pellets, it was observed that there was an increase in thermal diffusivity of at least 18 % for the UO2-2 wt% BeO pellet pressed at 400 MPa. The maximum relative expanded uncertainty (coverage factor k = 2) of the thermal diffusivity measurements was estimated to be 9 %.

  3. Manufacture of low carbon astroloy turbine disk shapes by hot isostatic pressing. Volume 2, project 1

    NASA Technical Reports Server (NTRS)

    Eng, R. D.; Evans, D. J.

    1979-01-01

    The performance of a hot isotatic pressed disk installed in an experimental engine and exposed to realistic operating conditions in a 150-hour engine test and a 1000 cycle endurance test is documented. Post test analysis, based on visual, fluorescent penetrant and dimensional inspection, revealed no defects in the disk and indicated that the disk performed satisfactorily.

  4. Reduced temperature aluminum production in an electrolytic cell having an inert anode

    DOEpatents

    Dawless, Robert K.; Ray, Siba P.; Hosler, Robert B.; Kozarek, Robert L.; LaCamera, Alfred F.

    2000-01-01

    Aluminum is produced by electrolytic reduction of alumina in a cell having a cathode, an inert anode and a molten salt bath containing metal fluorides and alumina. The inert anode preferably contains copper, silver and oxides of iron and nickel. Reducing the molten salt bath temperature to about 900-950.degree. C. lowers corrosion on the inert anode constituents.

  5. Recycling WEEE: Extraction and concentration of silver from waste crystalline silicon photovoltaic modules.

    PubMed

    Dias, Pablo; Javimczik, Selene; Benevit, Mariana; Veit, Hugo; Bernardes, Andréa Moura

    2016-11-01

    Photovoltaic modules (or panels) are important power generators with limited lifespans. The modules contain known pollutants and valuable materials such as silicon, silver, copper, aluminum and glass. Thus, recycling such waste is of great importance. To date, there have been few published studies on recycling silver from silicon photovoltaic panels, even though silicon technology represents the majority of the photovoltaic market. In this study, the extraction of silver from waste modules is justified and evaluated. It is shown that the silver content in crystalline silicon photovoltaic modules reaches 600g/t. Moreover, two methods to concentrate silver from waste modules were studied, and the use of pyrolysis was evaluated. In the first method, the modules were milled, sieved and leached in 64% nitric acid solution with 99% sodium chloride; the silver concentration yield was 94%. In the second method, photovoltaic modules were milled, sieved, subjected to pyrolysis at 500°C and leached in 64% nitric acid solution with 99% sodium chloride; the silver concentration yield was 92%. The first method is preferred as it consumes less energy and presents a higher yield of silver. This study shows that the use of pyrolysis does not assist in the extraction of silver, as the yield was similar for both methods with and without pyrolysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. DETERMINING BERYLLIUM IN DRINKING WATER BY GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROSCOPY

    EPA Science Inventory

    A direct graphite furnace atomic absorption spectroscopy method for the analysis of beryllium in drinking water has been derived from a method for determining beryllium in urine. Ammonium phosphomolybdate and ascorbic acid were employed as matrix modifiers. The matrix modifiers s...

  7. PIXE analysis of medieval silver coins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelouahed, H. Ben, E-mail: habdelou@cern.ch; Gharbi, F.; Roumie, M.

    2010-01-15

    We applied the proton-induced X-ray emission (PIXE) analytical technique to twenty-eight medieval silver coins, selected from the Tunisian treasury. The purpose is to study the fineness evolution from the beginning of the 7th to the 15th centuries AD. Each silver coin was cleaned with a diluted acid solution and then exposed to a 3 MeV proton beam from a 1.7 MV tandem accelerator. To allow the simultaneous detection of light and heavy elements, a funny aluminum filter was positioned in front of the Si(Li) detector entrance which is placed at 135{sup o} to the beam direction. The elements Cu, Pb,more » and Au were observed in the studied coins along with the major component silver. The concentration of Ag, presumably the main constituent of the coins, varies from 55% to 99%. This significant variation in the concentration of the major constituent reveals the economical difficulties encountered by each dynasty. It could be also attributed to differences in the composition of the silver mines used to strike the coins in different locations. That fineness evolution also reflects the poor quality of the control practices during this medieval period. In order to verify the ability of PIXE analytical method to distinguish between apparently similar coins, we applied hierarchical cluster analysis to our results to classify them into different subgroups of similar elemental composition.« less

  8. Physicochemical characteristics of aerosol particles generated during the milling of beryllium silicate ores: implications for risk assessment.

    PubMed

    Stefaniak, Aleksandr B; Chipera, Steve J; Day, Gregory A; Sabey, Phil; Dickerson, Robert M; Sbarra, Deborah C; Duling, Mathew G; Lawrence, Robert B; Stanton, Marcia L; Scripsick, Ronald C

    2008-01-01

    Inhalation of beryllium dusts generated during milling of ores and cutting of beryl-containing gemstones is associated with development of beryllium sensitization and low prevalence of chronic beryllium disease (CBD). Inhalation of beryllium aerosols generated during primary beryllium production and machining of the metal, alloys, and ceramics are associated with sensitization and high rates of CBD, despite similar airborne beryllium mass concentrations among these industries. Understanding the physicochemical properties of exposure aerosols may help to understand the differential immunopathologic mechanisms of sensitization and CBD and lead to more biologically relevant exposure standards. Properties of aerosols generated during the industrial milling of bertrandite and beryl ores were evaluated. Airborne beryllium mass concentrations among work areas ranged from 0.001 microg/m(3) (beryl ore grinding) to 2.1 microg/m(3) (beryl ore crushing). Respirable mass fractions of airborne beryllium-containing particles were < 20% in low-energy input operation areas (ore crushing, hydroxide product drumming) and > 80% in high-energy input areas (beryl melting, beryl grinding). Particle specific surface area decreased with processing from feedstock ores to drumming final product beryllium hydroxide. Among work areas, beryllium was identified in three crystalline forms: beryl, poorly crystalline beryllium oxide, and beryllium hydroxide. In comparison to aerosols generated by high-CBD risk primary production processes, aerosol particles encountered during milling had similar mass concentrations, generally lower number concentrations and surface area, and contained no identifiable highly crystalline beryllium oxide. One possible explanation for the apparent low prevalence of CBD among workers exposed to beryllium mineral dusts may be that characteristics of the exposure material do not contribute to the development of lung burdens sufficient for progression from sensitization to

  9. Assessment of the beryllium lymphocyte proliferation test using statistical process control.

    PubMed

    Cher, Daniel J; Deubner, David C; Kelsh, Michael A; Chapman, Pamela S; Ray, Rose M

    2006-10-01

    Despite more than 20 years of surveillance and epidemiologic studies using the beryllium blood lymphocyte proliferation test (BeBLPT) as a measure of beryllium sensitization (BeS) and as an aid for diagnosing subclinical chronic beryllium disease (CBD), improvements in specific understanding of the inhalation toxicology of CBD have been limited. Although epidemiologic data suggest that BeS and CBD risks vary by process/work activity, it has proven difficult to reach specific conclusions regarding the dose-response relationship between workplace beryllium exposure and BeS or subclinical CBD. One possible reason for this uncertainty could be misclassification of BeS resulting from variation in BeBLPT testing performance. The reliability of the BeBLPT, a biological assay that measures beryllium sensitization, is unknown. To assess the performance of four laboratories that conducted this test, we used data from a medical surveillance program that offered testing for beryllium sensitization with the BeBLPT. The study population was workers exposed to beryllium at various facilities over a 10-year period (1992-2001). Workers with abnormal results were offered diagnostic workups for CBD. Our analyses used a standard statistical technique, statistical process control (SPC), to evaluate test reliability. The study design involved a repeated measures analysis of BeBLPT results generated from the company-wide, longitudinal testing. Analytical methods included use of (1) statistical process control charts that examined temporal patterns of variation for the stimulation index, a measure of cell reactivity to beryllium; (2) correlation analysis that compared prior perceptions of BeBLPT instability to the statistical measures of test variation; and (3) assessment of the variation in the proportion of missing test results and how time periods with more missing data influenced SPC findings. During the period of this study, all laboratories displayed variation in test results that

  10. Low temperature coefficient of resistance and high gage factor in beryllium-doped silicon

    NASA Technical Reports Server (NTRS)

    Robertson, J. B.; Littlejohn, M. A.

    1974-01-01

    The gage factor and resistivity of p-type silicon doped with beryllium was studied as a function of temperature, crystal orientation, and beryllium doping concentration. It was shown that the temperature coefficient of resistance can be varied and reduced to zero near room temperature by varying the beryllium doping level. Similarly, the magnitude of the piezoresistance gage factor for beryllium-doped silicon is slightly larger than for silicon doped with a shallow acceptor impurity such as boron, whereas the temperature coefficient of piezoresistance is about the same for material containing these two dopants. These results are discussed in terms of a model for the piezoresistance of compensated p-type silicon.

  11. Design of the beryllium window for Brookhaven Linac Isotope Producer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nayak, S.; Mapes, M.; Raparia, D.

    2015-11-01

    In the Brookhaven Linac Isotope Producer (BLIP) beam line, there were two Beryllium (Be) windows with an air gap to separate the high vacuum upstream side from low vacuum downstream side. There had been frequent window failures in the past which affected the machine productivity and increased the radiation dose received by workers due to unplanned maintenance. To improve the window life, design of Be window is reexamined. Detailed structural and thermal simulations are carried out on Be window for different design parameters and loading conditions to come up with better design to improve the window life. The new designmore » removed the air gap and connect the both beam lines with a Be window in-between. The new design has multiple advantages such as 1) reduces the beam energy loss (because of one window with no air gap), 2) reduces air activation due to nuclear radiation and 3) increased the machine reliability as there is no direct pressure load during operation. For quick replacement of this window, an aluminum bellow coupled with load binder was designed. There hasn’t been a single window failure since the new design was implemented in 2012.« less

  12. The acute toxicity of inhaled beryllium metal in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haley, P.J.; Finch, G.L.; Hoover, M.D.

    1990-01-01

    The authors exposed rats once by nose only for 50 min to a mean concentration of 800 [mu]g/m[sup 3] of beryllium metal to characterize the acute toxic effects within the lung. Histological changes within the lung and enzyme changes within bronchoalveolar lavage (BAL) fluid were evaluated at 3, 7, 10, 14, 31, 59, 115, and 171 days postexposure (dpe). Beryllium metal-exposed rats developed acute, necrotizing, hemorrhagic, exudative pneumonitis and intraalveolar fibrosis that peaked at 14 dpe. By 31 dpe, inflammatory lesions were replaced by minimal interstitial and intraalveolar fibrosis. Necrotizing inflammation was observed again at 59 dpe which progressed tomore » chronic-active inflammation by 115 dpe. Low numbers of diffusely distributed lymphocytes were also present but they were not associated with granulomas as is observed in beryllium-induced disease in man. Lymphocytes were not elevated in BAL samples collected from beryllium-exposed rats at any time after exposure. Lactate dehydrogenase (LDH), [beta]-glucuronidase, and protein levels were elevated in BAL fluid from 3 through 14 dpe but returned to near normal levels by 31 dpe. LDH increased once again at 59 dpe and remained elevated at 171 dpe. [beta]-Glucuronidase and protein levels were slightly, but not significantly, elevated from 31 through 171 dpe.« less

  13. Quantifying design trade-offs of beryllium targets on NIF

    NASA Astrophysics Data System (ADS)

    Yi, S. A.; Zylstra, A. B.; Kline, J. L.; Loomis, E. N.; Kyrala, G. A.; Shah, R. C.; Perry, T. S.; Kanzleiter, R. J.; Batha, S. H.; MacLaren, S. A.; Ralph, J. E.; Masse, L. P.; Salmonson, J. D.; Tipton, R. E.; Callahan, D. A.; Hurricane, O. A.

    2017-10-01

    An important determinant of target performance is implosion kinetic energy, which scales with the capsule size. The maximum achievable performance for a given laser is thus related to the largest capsule that can be imploded symmetrically, constrained by drive uniformity. A limiting factor for symmetric radiation drive is the ratio of hohlraum to capsule radii, or case-to-capsule ratio (CCR). For a fixed laser energy, a larger hohlraum allows for driving bigger capsules symmetrically at the cost of reduced peak radiation temperature (Tr). Beryllium ablators may thus allow for unique target design trade-offs due to their higher ablation efficiency at lower Tr. By utilizing larger hohlraum sizes than most modern NIF designs, beryllium capsules thus have the potential to operate in unique regions of the target design parameter space. We present design simulations of beryllium targets with a large CCR = 4.3 3.7 . These are scaled surrogates of large hohlraum low Tr beryllium targets, with the goal of quantifying symmetry tunability as a function of CCR. This work performed under the auspices of the U.S. DOE by LANL under contract DE-AC52- 06NA25396, and by LLNL under Contract DE-AC52-07NA27344.

  14. Measurements of interfacial thermal contact conductance between pressed alloys at low temperatures

    NASA Astrophysics Data System (ADS)

    Zheng, Jiang; Li, Yanzhong; Chen, Pengwei; Yin, Geyuan; Luo, Huaihua

    2016-12-01

    Interfacial thermal contact conductance is the primary factor limiting the heat transfer in many cryogenic engineering applications. This paper presents an experimental apparatus to measure interfacial thermal contact conductance between pressed alloys in a vacuum environment at low temperatures. The measurements of thermal contact conductance between pressed alloys are conducted by using the developed apparatus. The results show that the contact conductance increases with the decrease of surface roughness, the increase of interface temperature and contact pressure. The temperature dependence of thermal conductivity and mechanical properties is analyzed to explain the results. Thermal contact conductance of a pair of stainless steel specimens is obtained in the interface temperature range of 135-245 K and in the contact pressure range of 1-9 MPa. The results are regressed as a power function of temperature and load. Thermal conductance is also obtained between aluminums as well as between stainless steel and aluminum. The load exponents of the regressed relations for different contacts are compared. Existing theoretical models (the Cooper-Mikic-Yovanovich plastic model, the Mikic elastic model and the improved Kimura model) are reviewed and compared with the experimental results. The Cooper-Mikic-Yovanovich model predictions are found to be in good agreement with experimental results, especially with measurements between aluminums.

  15. Neutron counter based on beryllium activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bienkowska, B.; Prokopowicz, R.; Kaczmarczyk, J.

    2014-08-21

    The fusion reaction occurring in DD plasma is followed by emission of 2.45 MeV neutrons, which carry out information about fusion reaction rate and plasma parameters and properties as well. Neutron activation of beryllium has been chosen for detection of DD fusion neutrons. The cross-section for reaction {sup 9}Be(n, α){sup 6}He has a useful threshold near 1 MeV, which means that undesirable multiple-scattered neutrons do not undergo that reaction and therefore are not recorded. The product of the reaction, {sup 6}He, decays with half-life T{sub 1/2} = 0.807 s emitting β{sup −} particles which are easy to detect. Large areamore » gas sealed proportional detector has been chosen as a counter of β–particles leaving activated beryllium plate. The plate with optimized dimensions adjoins the proportional counter entrance window. Such set-up is also equipped with appropriate electronic components and forms beryllium neutron activation counter. The neutron flux density on beryllium plate can be determined from the number of counts. The proper calibration procedure needs to be performed, therefore, to establish such relation. The measurements with the use of known β–source have been done. In order to determine the detector response function such experiment have been modeled by means of MCNP5–the Monte Carlo transport code. It allowed proper application of the results of transport calculations of β{sup −} particles emitted from radioactive {sup 6}He and reaching proportional detector active volume. In order to test the counter system and measuring procedure a number of experiments have been performed on PF devices. The experimental conditions have been simulated by means of MCNP5. The correctness of simulation outcome have been proved by measurements with known radioactive neutron source. The results of the DD fusion neutron measurements have been compared with other neutron diagnostics.« less

  16. Evaluation and ranking of candidate ceramic wafer engine seal materials

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.

    1991-01-01

    Modern engineered ceramics offer high temperature capabilities not found in even the best superalloy metals. The high temperature properties of several selected ceramics including aluminum oxide, silicon carbide, and silicon nitride are reviewed as they apply to hypersonic engine seal design. A ranking procedure is employed to objectively differentiate among four different monolithic ceramic materials considered, including: a cold-pressed and sintered aluminum oxide; a sintered alpha-phase silicon carbide; a hot-isostatically pressed silicon nitride; and a cold-pressed and sintered silicon nitride. This procedure is used to narrow the wide range of potential ceramics considered to an acceptable number for future detailed and costly analyses and tests. The materials are numerically scored according to their high temperature flexural strength; high temperature thermal conductivity; resistance to crack growth; resistance to high heating rates; fracture toughness; Weibull modulus; and finally according to their resistance to leakage flow, where materials having coefficients of thermal expansion closely matching the engine panel material resist leakage flow best. The cold-pressed and sintered material (Kyocera SN-251) ranked the highest in the overall ranking especially when implemented in engine panels made of low expansion rate materials being considered for the engine, including Incoloy and titanium alloys.

  17. Introduction to beryllium: uses, regulatory history, and disease.

    PubMed

    Kolanz, M E

    2001-05-01

    Beryllium is an ubiquitous element in the environment, and it has many commercial applications. Because of its strength, electrical and thermal conductivity, corrosion resistance, and nuclear properties, beryllium products are used in the aerospace, automotive, energy, medical, and electronics industries. What eventually came to be known as chronic beryllium disease (CBD) was first identified in the 1940s, when a cluster of cases was observed in workers from the fluorescent light industry. The U.S. Atomic Energy Commission recommended the first 8-hour occupational exposure limit (OEL) for beryllium of 2.0 microg/m3 in 1949, which was later reviewed and accepted by the American Conference of Governmental Industrial Hygienists (ACGIH), the American Industrial Hygiene Association (AIHA), the American National Standards Institute (ANSI), the Occupational Safety and Health Administration (OSHA), and the vast majority of countries and standard-setting bodies worldwide. The 2.0 microg/m3 standard has been in use by the beryllium industry for more than 50 years and has been considered adequate to protect workers against clinical CBD. Recently, improved diagnostic techniques, including immunological testing and safer bronchoscopy, have enhanced our ability to identify subclinical CBD cases that would have formerly remained unidentified. Some recent epidemiological studies have suggested that some workers may develop CBD at exposures less than 2.0 microg/m3. ACGIH is currently reevaluating the adequacy of the current 2.0 microg/m3 guideline, and a plethora of research initiatives are under way to provide a better understanding of the cause of CBD. The research is focusing on the risk factors and exposure metrics that could be associated with CBD, as well as on efforts to better characterize the natural history of CBD. There is growing evidence that particle size and chemical form may be important factors that influence the risk of developing CBD. These research efforts are

  18. 2. VIEW IN ROOM 111, ATOMIC ABSORPTION BERYLLIUM ANALYSIS LABORATORY. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW IN ROOM 111, ATOMIC ABSORPTION BERYLLIUM ANALYSIS LABORATORY. AIR FILTERS AND SWIPES ARE DISSOLVED WITH ACIDS AND THE REMAINING RESIDUES ARE SUSPENDED IN NITRIC ACID SOLUTION. THE SOLUTION IS PROCESSED THROUGH THE ATOMIC ABSORPTION SPECTROPHOTOMETER TO DETECT THE PRESENCE AND LEVELS OF BERYLLIUM. - Rocky Flats Plant, Health Physics Laboratory, On Central Avenue between Third & Fourth Streets, Golden, Jefferson County, CO

  19. Mechanical properties of irradiated beryllium

    NASA Astrophysics Data System (ADS)

    Beeston, J. M.; Longhurst, G. R.; Wallace, R. S.; Abeln, S. P.

    1992-10-01

    Beryllium is planned for use as a neutron multiplier in the tritium breeding blanket of the International Thermonuclear Experimental Reactor (ITER). After fabricating samples of beryllium at densities varying from 80 to 100% of the theoretical density, we conducted a series of experiments to measure the effect of neutron irradiation on mechanical properties, especially strength and ductility. Samples were irradiated in the Advanced Test Reactor (ATR) to a neutron fluence of 2.6 × 10 25 n/m 2 ( E > 1 MeV) at an irradiation temperature of 75°C. These samples were subsequently compression-tested at room temperature, and the results were compared with similar tests on unirradiated specimens. We found that the irradiation increased the strength by approximately four times and reduced the ductility to approximately one fourth. Failure was generally ductile, but the 80% dense irradiated samples failed in brittle fracture with significant generation of fine particles and release of small quantities of tritium.

  20. Beryllium metal I. experimental results on acute oral toxicity, local skin and eye effects, and genotoxicity.

    PubMed

    Strupp, Christian

    2011-01-01

    The toxicity of soluble metal compounds is often different from that of the parent metal. Since no reliable data on acute toxicity, local effects, and mutagenicity of beryllium metal have ever been generated, beryllium metal powder was tested according to the respective Organisation for Economical Co-Operation and Development (OECD) guidelines. Acute oral toxicity of beryllium metal was investigated in rats and local effects on skin and eye in rabbits. Skin-sensitizing properties were investigated in guinea pigs (maximization method). Basic knowledge about systemic bioavailability is important for the design of genotoxicity tests on poorly soluble substances. Therefore, it was necessary to experimentally compare the capacities of beryllium chloride and beryllium metal to form ions under simulated human lung conditions. Solubility of beryllium metal in artificial lung fluid was low, while solubility in artificial lysosomal fluid was moderate. Beryllium chloride dissolution kinetics were largely different, and thus, metal extracts were used in the in vitro genotoxicity tests. Genotoxicity was investigated in vitro in a bacterial reverse mutagenicity assay, a mammalian cell gene mutation assay, a mammalian cell chromosome aberration assay, and an unscheduled DNA synthesis (UDS) assay. In addition, cell transformation was tested in a Syrian hamster embryo cell assay, and potential inhibition of DNA repair was tested by modification of the UDS assay. Beryllium metal was found not to be mutagenic or clastogenic based on the experimental in vitro results. Furthermore, treatment with beryllium metal extracts did not induce DNA repair synthesis, indicative of no DNA-damaging potential of beryllium metal. A cell-transforming potential and a tendency to inhibit DNA repair when the cell is severely damaged by an external stimulus were observed. Beryllium metal was also found not to be a skin or eye irritant, not to be a skin sensitizer, and not to have relevant acute oral

  1. Hot-pressed production and laser properties of ZnSe:Fe2+

    NASA Astrophysics Data System (ADS)

    Avetisov, R. I.; Balabanov, S. S.; Firsov, K. N.; Gavrishchuk, E. M.; Gladilin, A. A.; Ikonnikov, V. B.; Kalinushkin, V. P.; Kazantsev, S. Yu.; Kononov, I. G.; Zykova, M. P.; Mozhevitina, E. N.; Khomyakov, A. V.; Savin, D. V.; Timofeeva, N. A.; Uvarov, O. V.; Avetissov, I. Ch.

    2018-06-01

    A new approach for fabrication of laser elements in form of plates based on ZnSe:Fe2+ with undoped faces, combining the advantages of hot pressing and diffusion techniques has been proposed. CVD-ZnSe was used as a host material. 1 μm Fe film was deposited by electron-beam technique on one side of the polished CVD-ZnSe plate (20 mm in diameter and 2 mm in thickness). The elements were stacked in contact by iron surfaces, placed in a hot press-mold die, heated under vacuum to 1000 °C, exposed during 60 min with the application of 25 MPa uniaxial pressure. The iron film was dissolved in ZnSe matrix and elements welded together. The samples were subjected to hot isostatic pressing (HIP) during 29 h at 100 MPa argon pressure and 1300 °C. The influence of sintering and HIP processing conditions on local morphology and properties of the interface of welded elements was studied by SEM, TEM and optical microscopy. For all composite elements the lasing was obtained at a pumping by HF-laser at RT with high efficiency around 40%. The proposed technique removes restrictions on the size of laser elements and appears to be very promising for the management of the distribution profile of the doping component.

  2. 10 CFR Appendix A to Part 850 - Chronic Beryllium Disease Prevention Program Informed Consent Form

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Chronic Beryllium Disease Prevention Program Informed Consent Form A Appendix A to Part 850 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Pt. 850, App. A Appendix A to Part 850—Chronic Beryllium Disease Prevention Program Informed...

  3. 10 CFR Appendix A to Part 850 - Chronic Beryllium Disease Prevention Program Informed Consent Form

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Chronic Beryllium Disease Prevention Program Informed Consent Form A Appendix A to Part 850 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Pt. 850, App. A Appendix A to Part 850—Chronic Beryllium Disease Prevention Program Informed...

  4. 10 CFR Appendix A to Part 850 - Chronic Beryllium Disease Prevention Program Informed Consent Form

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Chronic Beryllium Disease Prevention Program Informed Consent Form A Appendix A to Part 850 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Pt. 850, App. A Appendix A to Part 850—Chronic Beryllium Disease Prevention Program Informed...

  5. 10 CFR Appendix A to Part 850 - Chronic Beryllium Disease Prevention Program Informed Consent Form

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Chronic Beryllium Disease Prevention Program Informed Consent Form A Appendix A to Part 850 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Pt. 850, App. A Appendix A to Part 850—Chronic Beryllium Disease Prevention Program Informed...

  6. 10 CFR Appendix A to Part 850 - Chronic Beryllium Disease Prevention Program Informed Consent Form

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Chronic Beryllium Disease Prevention Program Informed Consent Form A Appendix A to Part 850 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Pt. 850, App. A Appendix A to Part 850—Chronic Beryllium Disease Prevention Program Informed...

  7. Isostatic gravity map of the Point Sur 30 x 60 quadrangle and adjacent areas, California

    USGS Publications Warehouse

    Watt, J.T.; Morin, R.L.; Langenheim, V.E.

    2011-01-01

    This isostatic residual gravity map is part of a regional effort to investigate the tectonics and water resources of the central Coast Range. This map serves as a basis for modeling the shape of basins and for determining the location and geometry of faults in the area. Local spatial variations in the Earth's gravity field (after removing variations caused by instrument drift, earth-tides, latitude, elevation, terrain, and deep crustal structure), as expressed by the isostatic anomaly, reflect the distribution of densities in the mid- to upper crust, which in turn can be related to rock type. Steep gradients in the isostatic gravity field often indicate lithologic or structural boundaries. Gravity highs reflect the Mesozoic granitic and Franciscan Complex basement rocks that comprise both the northwest-trending Santa Lucia and Gabilan Ranges, whereas gravity lows in Salinas Valley and the offshore basins reflect the thick accumulations of low-density alluvial and marine sediment. Gravity lows also occur where there are thick deposits of low-density Monterey Formation in the hills southeast of Arroyo Seco (>2 km, Marion, 1986). Within the map area, isostatic residual gravity values range from approximately -60 mGal offshore in the northern part of the Sur basin to approximately 22 mGal in the Santa Lucia Range.

  8. Sampling and analysis plan for assessment of beryllium in soils surrounding TA-40 building 15

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruedig, Elizabeth

    Technical Area (TA) 40 Building 15 (40-15) is an active firing site at Los Alamos National Laboratory. The weapons facility operations (WFO) group plans to build an enclosure over the site in 2017, so that test shots may be conducted year-round. The enclosure project is described in PRID 16P-0209. 40-15 is listed on LANL OSH-ISH’s beryllium inventory, which reflects the potential for beryllium in/on soils and building surfaces at 40-15. Some areas in and around 40-15 have previously been sampled for beryllium, but past sampling efforts did not achieve complete spatial coverage of the area. This Sampling and Analysis Planmore » (SAP) investigates the area surrounding 40-15 via 9 deep (≥1-ft.) soil samples and 11 shallow (6-in.) soil samples. These samples will fill the spatial data gaps for beryllium at 40-15, and will be used to support OSH-ISH’s final determination of 40-15’s beryllium registry status. This SAP has been prepared by the Environmental Health Physics program in consultation with the Industrial Hygiene program. Industrial Hygiene is the owner of LANL’s beryllium program, and will make a final determination with regard to the regulatory status of beryllium at 40-15.« less

  9. Oxide segregation and melting behavior of transient heat load exposed beryllium

    NASA Astrophysics Data System (ADS)

    Spilker, B.; Linke, J.; Pintsuk, G.; Wirtz, M.

    2016-10-01

    In the experimental fusion reactor ITER, beryllium will be applied as first wall armor material. However, the ITER-like wall project at JET already experienced that the relatively low melting temperature of beryllium can easily be exceeded during plasma operation. Therefore, a detailed study was carried out on S-65 beryllium under various transient, ITER-relevant heat loads that were simulated in the electron beam facility JUDITH 1. Hereby, the absorbed power densities were in the range of 0.15-1.0 GW m-2 in combination with pulse durations of 1-10 ms and pulse numbers of 1-1000. In metallographic cross sections, the emergence of a transition region in a depth of ~70-120 µm was revealed. This transition region was characterized by a strong segregation of oxygen at the grain boundaries, determined with energy dispersive x-ray spectroscopy element mappings. The oxide segregation strongly depended on the maximum temperature reached at the end of the transient heat pulse in combination with the pulse duration. A threshold for this process was found at 936 °C for a pulse duration of 10 ms. Further transient heat pulses applied to specimens that had already formed this transition region resulted in the overheating and melting of the material. The latter occurred between the surface and the transition region and was associated with a strong decrease of the thermal conductivity due to the weakly bound grains across the transition region. Additionally, the transition region caused a partial separation of the melt layer from the bulk material, which could ultimately result in a full detachment of the solidified beryllium layers from the bulk armor. Furthermore, solidified beryllium filaments evolved in several locations of the loaded area and are related to the thermally induced crack formation. However, these filaments are not expected to account for an increase of the beryllium net erosion.

  10. Accelerator mass spectrometry detection of beryllium ions in the antigen processing and presentation pathway

    DOE PAGES

    Tooker, Brian C.; Brindley, Stephen M.; Chiarappa-Zucca, Marina L.; ...

    2014-06-16

    We report that exposure to small amounts of beryllium (Be) can result in beryllium sensitization and progression to Chronic Beryllium Disease (CBD). In CBD, beryllium is presented to Be-responsive T-cells by professional antigen-presenting cells (APC). This presentation drives T-cell proliferation and pro-inflammatory cytokine (IL-2, TNFα, and IFNγ) production and leads to granuloma formation. The mechanism by which beryllium enters an APC and is processed to become part of the beryllium antigen complex has not yet been elucidated. Developing techniques for beryllium detection with enough sensitivity has presented a barrier to further investigation. The objective of this study was to demonstratemore » that Accelerator Mass Spectrometry (AMS) is sensitive enough to quantify the amount of beryllium presented by APC to stimulate Be-responsive T-cells. To achieve this goal, APC - which may or may not stimulate Be-responsive T-cells - were cultured with Be-ferritin. Then, by utilizing AMS, the amount of beryllium processed for presentation was determined. Further, IFNγ intracellular cytokine assays were performed to demonstrate that Be-ferritin (at levels used in the experiments) could stimulate Be-responsive T-cells when presented by an APC of the correct HLA type (HLA-DP0201). The results indicated that Be-responsive T-cells expressed IFNγ only when APC with the correct HLA type were able to process Be for presentation. Utilizing AMS, we determined that APC with HLA-DP0201 had membrane fractions containing 0.17-0.59 ng Be and APC with HLA-DP0401 had membrane fractions bearing 0.40-0.45 ng Be. However, HLA-DP0401 APC had 20-times more Be associated with the whole cells (57.68-61.12 ng) then HLA-DP0201 APC (0.90-3.49 ng). As these findings demonstrate, AMS detection of picogram levels of Be processed by APC is possible. Further, regardless of form, Be requires processing by APC to successfully stimulate Be-responsive T-cells to generate IFNγ.« less

  11. Aluminum nanostructures for ultraviolet plasmonics

    NASA Astrophysics Data System (ADS)

    Martin, Jérôme; Khlopin, Dmitry; Zhang, Feifei; Schuermans, Silvère; Proust, Julien; Maurer, Thomas; Gérard, Davy; Plain, Jérôme

    2017-08-01

    An electromagnetic field is able to produce a collective oscillation of free electrons at a metal surface. This allows light to be concentrated in volumes smaller than its wavelength. The resulting waves, called surface plasmons can be applied in various technological applications such as ultra-sensitive sensing, Surface Enhanced Raman Spectroscopy, or metal-enhanced fluorescence, to name a few. For several decades plasmonics has been almost exclusively studied in the visible region by using nanoparticles made of gold or silver as these noble metals support plasmonic resonances in the visible and near-infrared range. Nevertheless, emerging applications will require the extension of nano-plasmonics toward higher energies, in the ultraviolet range. Aluminum is one of the most appealing metal for pushing plasmonics up to ultraviolet energies. The subsequent applications in the field of nano-optics are various. This metal is therefore a highly promising material for commercial applications in the field of ultraviolet nano-optics. As a consequence, aluminum (or ultraviolet, UV) plasmonics has emerged quite recently. Aluminium plasmonics has been demonstrated efficient for numerous potential applications including non-linear optics, enhanced fluorescence, UV-Surface Enhanced Raman Spectroscopy, optoelectronics, plasmonic assisted solid-state lasing, photocatalysis, structural colors and data storage. In this article, different preparation methods developed in the laboratory to obtain aluminum nanostructures with different geometries are presented. Their optical and morphological characterizations of the nanostructures are given and some proof of principle applications such as fluorescence enhancement are discussed.

  12. Utilizing Visual Effects Software for Efficient and Flexible Isostatic Adjustment Modelling

    NASA Astrophysics Data System (ADS)

    Meldgaard, A.; Nielsen, L.; Iaffaldano, G.

    2017-12-01

    The isostatic adjustment signal generated by transient ice sheet loading is an important indicator of past ice sheet extent and the rheological constitution of the interior of the Earth. Finite element modelling has proved to be a very useful tool in these studies. We present a simple numerical model for 3D visco elastic Earth deformation and a new approach to the design of such models utilizing visual effects software designed for the film and game industry. The software package Houdini offers an assortment of optimized tools and libraries which greatly facilitate the creation of efficient numerical algorithms. In particular, we make use of Houdini's procedural work flow, the SIMD programming language VEX, Houdini's sparse matrix creation and inversion libraries, an inbuilt tetrahedralizer for grid creation, and the user interface, which facilitates effortless manipulation of 3D geometry. We mitigate many of the time consuming steps associated with the authoring of efficient algorithms from scratch while still keeping the flexibility that may be lost with the use of commercial dedicated finite element programs. We test the efficiency of the algorithm by comparing simulation times with off-the-shelf solutions from the Abaqus software package. The algorithm is tailored for the study of local isostatic adjustment patterns, in close vicinity to present ice sheet margins. In particular, we wish to examine possible causes for the considerable spatial differences in the uplift magnitude which are apparent from field observations in these areas. Such features, with spatial scales of tens of kilometres, are not resolvable with current global isostatic adjustment models, and may require the inclusion of local topographic features. We use the presented algorithm to study a near field area where field observations are abundant, namely, Disko Bay in West Greenland with the intention of constraining Earth parameters and ice thickness. In addition, we assess how local

  13. Low CTE glass, SiC & Beryllium for lightweight mirror substrates

    NASA Astrophysics Data System (ADS)

    Geyl, Roland; Cayrel, Marc

    2005-10-01

    This paper is intended to analyze the relative merits of low CTE glass, SiC and Beryllium as candidates for lightweight mirror substrates in connection with real practical experience and example or three major projects using these three materials and running presently at SAGEM-REOSC. Beryllium and SiC have nice thermal and mechanical properties but machined glass ceramic can still well compete technically or economically in some cases.

  14. Screen Cage Ion Plating (SCIP) and scratch testing of polycrystalline aluminum oxide

    NASA Technical Reports Server (NTRS)

    Spalvins, Talivaldis; Sliney, Harold E.; Deadmore, Daniel L.

    1992-01-01

    A screen cage ion plating (SCIP) technique was developed to apply silver films on electrically nonconducting aluminum oxide. It is shown that SCIP has remarkable throwing power; surfaces to be coated need not be in direct line of sight with the evaporation source. Scratch tests, employing a diamond stylus with a 200 micro m radius tip, were performed on uncoated and on silver coated alumina. Subsequent surface analysis show that a significant amount of silver remains on the scratched surfaces, even in areas where high stylus load produced severe crack patterns in the ceramic. Friction coefficients were lowered during the scratch tests on the coated alumina indicating that this modification of the ion planting process should be useful for applying lubricating films of soft metals to electrical insulating materials. The very good throwing power of SCIP also strongly suggests general applicability of this process in other areas of technology, e.g., electronics, in addition to tribology.

  15. Environmental Screening of Electrode Materials for a Rechargeable Aluminum Battery with an AlCl₃/EMIMCl Electrolyte.

    PubMed

    Ellingsen, Linda Ager-Wick; Holland, Alex; Drillet, Jean-Francois; Peters, Willi; Eckert, Martin; Concepcion, Carlos; Ruiz, Oscar; Colin, Jean-François; Knipping, Etienne; Pan, Qiaoyan; Wills, Richard G A; Majeau-Bettez, Guillaume

    2018-06-01

    Recently, rechargeable aluminum batteries have received much attention due to their low cost, easy operation, and high safety. As the research into rechargeable aluminum batteries with a room-temperature ionic liquid electrolyte is relatively new, research efforts have focused on finding suitable electrode materials. An understanding of the environmental aspects of electrode materials is essential to make informed and conscious decisions in aluminum battery development. The purpose of this study was to evaluate and compare the relative environmental performance of electrode material candidates for rechargeable aluminum batteries with an AlCl₃/EMIMCl (1-ethyl-3-methylimidazolium chloride) room-temperature ionic liquid electrolyte. To this end, we used a lifecycle environmental screening framework to evaluate 12 candidate electrode materials. We found that all of the studied materials are associated with one or more drawbacks and therefore do not represent a "silver bullet" for the aluminum battery. Even so, some materials appeared more promising than others did. We also found that aluminum battery technology is likely to face some of the same environmental challenges as Li-ion technology but also offers an opportunity to avoid others. The insights provided here can aid aluminum battery development in an environmentally sustainable direction.

  16. Summary of Surface Swipe Sampling for Beryllium on Lead Bricks and Shielding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paik, S Y; Barron, D A

    2011-08-03

    Approximately 25,000 lbs of lead bricks at Site 300 were assessed by the Site 300 Industrial Hygienis tand Health Physicist for potential contamination of beryllium and radiation for reuse. These lead bricks and shielding had been used as shielding material during explosives tests that included beryllium and depleted uranium. Based on surface swipe sampling that was performed between July 26 and October 11, 2010, specifically for beryllium, the use of a spray encapsulant was found to be an effective means to limit removable surface contamination to levels below the DOE release limit for beryllium, which is 0.2 mcg/100 cm{sup 2}.more » All the surface swipe sampling data for beryllium and a timeline of when the samples were collected (and a brief description) are presented in this report. On December 15, 2010, the lead bricks and shielding were surveyed with an ion chamber and indicated dose rates less than 0.05 mrem per hour on contact. This represents a dose rate consistent with natural background. An additional suevey was performed on February 8, 2011, using a GM survey instrument to estimate total activity on the lead bricks and shielding, confirming safe levels of radioactivity. The vendor is licensed to possess and work with radioactive material.« less

  17. Silver Nanowire Exposure Results in Internalization and Toxicity to Daphnia Magna

    PubMed Central

    Scanlan, Leona D.; Reed, Robert B.; Loguinov, Alexandre V.; Antczak, Philipp; Tagmount, Abderrahmane; Aloni, Shaul; Nowinski, Daniel Thomas; Luong, Pauline; Tran, Christine; Karunaratne, Nadeeka; Pham, Don; Lin, Xin Xin; Falciani, Francesco; Higgins, Chris P.; Ranville, James F.; Vulpe, Chris D.; Gilbert, Benjamin

    2013-01-01

    Nanowires (NWs), high-aspect-ratio nanomaterials, are increasingly used in technological materials and consumer products and may have toxicological characteristics distinct from nanoparticles. We carried out a comprehensive evaluation of the physico-chemical stability of four silver nanowires (AgNWs) of two sizes and coatings and their toxicity to Daphnia magna. Inorganic aluminum-doped silica coatings were less effective than organic poly(vinyl pyrrolidone) coatings at preventing silver oxidation or Ag+ release and underwent a significant morphological transformation within one-hour following addition to low ionic strength Daphnia growth media. All AgNWs were highly toxic to D. magna but less toxic than ionic silver. Toxicity varied as a function of AgNW dimension, coating and solution chemistry. Ag+ release in the media could not account for observed AgNW toxicity. Single-particle inductively coupled plasma mass spectrometry (spICPMS) distinguished and quantified dissolved and nanoparticulate silver in microliter-scale volumes of Daphnia magna hemolymph with a limit of detection of approximately 10 ppb. The silver levels within the hemolymph of Daphnia exposed to both Ag+ and AgNW met or exceeded the initial concentration in the growth medium, indicating effective accumulation during filter feeding. Silver-rich particles were the predominant form of silver in hemolymph following exposure to both AgNWs and Ag+. Scanning electron microscopy (SEM) imaging of dried hemolymph found both AgNWs and silver precipitates that were not present in the AgNW stock or the growth medium. Both organic and inorganic coatings on the AgNW were transformed during ingestion or absorption. Pathway, gene ontology and clustering analyses of gene expression response indicated effects of AgNWs distinct from ionic silver on Daphnia magna. PMID:24099093

  18. Effect of Aluminum Particle Size on the Impact Initiation of Pressed Ptfe/al Composite Rods

    NASA Astrophysics Data System (ADS)

    Mock, Willis; Drotar, Jason T.

    2007-12-01

    A gas gun has been used to investigate the impact initiation of rods of a mixture of 72 wt% PTFE (polytetrafluoroethylene) and 28 wt% aluminum powders. The rods were sabot-launched in vacuum into steel anvils at impact velocities ranging from 468 to 969 m/s. A framing camera was used to observe the time sequence of events following impact. At the lowest impact stress of 25 kbar no light was observed. Above the initiation threshold, the initiation time dropped from 74 μs just above threshold to 14 μs at 64 kbar. These results are compared with earlier rod impact experiments for a similar material in which the only major difference is a smaller aluminum particle size.

  19. Development of beryllium honeycomb sandwich composite for structural and other related applications

    NASA Technical Reports Server (NTRS)

    Vogan, J. W.; Grant, L. A.

    1972-01-01

    The feasibility of fabricating large beryllium honeycomb panels was demonstrated. Both flat and curved sandwich structures were manufactured using practical, braze bonding techniques. The processes developed prove that metallurgically assembled beryllium honeycomb panels show decided potential where rigid, lightweight structures are required. Three panels, each 10 square feet in surface area, were fabricated, and radiographically inspected to determine integrity. This examination revealed a 97 percent braze in the final panel. It is believed that ceramic dies for forming and brazing would facilitate the fabrication techniques for higher production rates. Ceramic dies would yield a lower thermal gradient in the panel during the braze cycle. This would eliminate the small amount of face sheet wrinkling present in the panels. Hot forming the various panel components demonstrated efficient manufacturing techniques for scaling up and producing large numbers of hot formed beryllium components and panels. The beryllium honeycomb panel demonstrated very good vibrational loading characteristics under test with desirable damping characteristics.

  20. Ab Initio Simulation Beryllium in Solid Molecular Hydrogen: Elastic Constant

    NASA Astrophysics Data System (ADS)

    Guerrero, Carlo L.; Perlado, Jose M.

    2016-03-01

    In systems of inertial confinement fusion targets Deuterium-Tritium are manufactured with a solid layer, it must have specific properties to increase the efficiency of ignition. Currently there have been some proposals to model the phases of hydrogen isotopes and hence their high pressure, but these works do not allow explaining some of the structures present at the solid phase change effect of increased pressure. By means of simulation with first principles methods and Quantum Molecular Dynamics, we compare the structural difference of solid molecular hydrogen pure and solid molecular hydrogen with beryllium, watching beryllium inclusion in solid hydrogen matrix, we obtain several differences in mechanical properties, in particular elastic constants. For C11 the difference between hydrogen and hydrogen with beryllium is 37.56%. This may produce a non-uniform initial compression and decreased efficiency of ignition.

  1. Hot isostatic pressing of silicon nitride Sisub3n4 containing zircon, or zirconia and silica

    NASA Technical Reports Server (NTRS)

    Somiya, S.; Yoshimura, M.; Suzuki, T.; Nishimura, H.

    1980-01-01

    A hydrothermal synthesis apparatus with a 10 KB cylinder was used to obtain a sintered body of silicon nitride. The sintering auxiliary agents used were zircon (ZrSiO4) and a mixture of zirconia (ZrO2) and silica (SiO2). Experiments were conducted with the amounts of ZrSi04 or ArO2 and SiO2 varying over a wide range and the results compared to discover the quantity of additive which produced sintering in silicon nitride by the hot pressing method.

  2. The microstructure-processing-property relationships in an aluminum matrix composite system reinforced by aluminum-copper-iron alloy particles

    NASA Astrophysics Data System (ADS)

    Tang, Fei

    Solid state vacuum sintering was studied in tap densified Al powder and in hot quasi-isostatically forged samples composed of commercial inert gas atomized or high purity Al powder, generated by a gas atomization reaction synthesis (GARS) technique. The GARS process results in spherical Al powder with a far thinner surface oxide. The overall results indicated the enhanced ability of GARS-processed Al and Al alloy powders for solid state sintering, which may lead to simplification of current Al powder consolidation processing methods. Elemental Al-based composites reinforced with spherical Al-Cu-Fe alloy powders were produced by quasi-isostatic forging and vacuum hot pressing (VHP) consolidation methods. It was proved that spherical Al-Cu-Fe alloy powders can serve as an effective reinforcement particulate for elemental Al-based composites, because of their high hardness and a preferred type of matrix/reinforcement interfacial bonding, with reduced strain concentration around the particles. Ultimate tensile strength and yield strength of the composites were increased over the corresponding Al matrix values, far beyond typical observations. This remarkable strengthening was achieved without precipitation hardening and without severe strain hardening during consolidation because of the matrix choice (elemental Al) and the "low shear" consolidation methods utilized. This reinforcement effectiveness is further evidenced by elastic modulus measurements of the composites that are very close to the upper bound predictions of the rule of mixtures. The load partitioning measurements by neutron diffraction showed that composite samples made from GARS powders present significantly higher load transfer efficiency than the composites made from commercially atomized powders. Further analysis of the load sharing measurements and the calculated values of the mismatch of coefficient of thermal expansion (CTE) and the geometrically necessary dislocation (GND) effects suggest that

  3. MgB2 wire diameter reduction by hot isostatic pressing—a route for enhanced critical current density

    NASA Astrophysics Data System (ADS)

    Morawski, A.; Cetner, T.; Gajda, D.; Zaleski, A. J.; Häßler, W.; Nenkov, K.; Rindfleisch, M. A.; Tomsic, M.; Przysłupski, P.

    2018-07-01

    The effect of wire diameter reduction on the critical current density of pristine MgB2 wire was studied. Wires were treated by a hot isostatic pressing method at 570 °C and at pressures of up to 1.1 GPa. It was found that the wire diameter reduction induces an increase of up to 70% in the mass density of the superconducting cores. This feature leads to increases in critical current, critical current density, and pinning force density. The magnitude and field dependence of the critical current density are related to both grain connectivity and structural defects, which act as effective pinning centers. High field transport properties were obtained without doping of the MgB2 phase. A critical current density jc of 3500 A mm‑2 was reached at 4 K, 6 T for the best sample, which was a five-fold increase compared to MgB2 samples synthesized at ambient pressure.

  4. Silver-hafnium braze alloy

    DOEpatents

    Stephens, Jr., John J.; Hosking, F. Michael; Yost, Frederick G.

    2003-12-16

    A binary allow braze composition has been prepared and used in a bonded article of ceramic-ceramic and ceramic-metal materials. The braze composition comprises greater than approximately 95 wt % silver, greater than approximately 2 wt % hafnium and less than approximately 4.1 wt % hafnium, and less than approximately 0.2 wt % trace elements. The binary braze alloy is used to join a ceramic material to another ceramic material or a ceramic material, such as alumina, quartz, aluminum nitride, silicon nitride, silicon carbide, and mullite, to a metal material, such as iron-based metals, cobalt-based metals, nickel-based metals, molybdenum-based metals, tungsten-based metals, niobium-based metals, and tantalum-based metals. A hermetic bonded article is obtained with a strength greater than 10,000 psi.

  5. Assessment of Lead and Beryllium deposition and adsorption to exposed stream channel sediments

    NASA Astrophysics Data System (ADS)

    Pawlowski, E.; Karwan, D. L.

    2016-12-01

    The fallout radionuclides Beryllium-7 and Lead-210 have been shown to be effective sediment tracers that readily bind to particles. The adsorption capacity has primarily been assessed in marine and coastal environments with an important assumption being the radionuclides' uniform spatial distribution as fallout from the atmosphere. This neglects localized storm events that may mine stratospheric reserves creating variable distributions. To test this assumption atmospheric deposition is collected at the University of Minnesota St. Paul Campus weather station during individual storm events and subsequently analyzed for Beryllium-7 and Lead-210. This provides further insight into continental effects on radionuclide deposition. The study of Beryllium-7 and Lead-210 adsorption in marine and coastal environments has provided valuable insights into the processes that influence the element's binding to particles but research has been limited in freshwater river environments. These environments have greater variation in pH, iron oxide content, and dissolved organic carbon (DOC) levels which have been shown to influence the adsorption of Beryllium and Lead in marine settings. This research assesses the adsorption of Beryllium and Lead to river sediments collected from in-channel deposits by utilizing batch experiments that mimic the stream conditions from which the deposits were collected. Soils were collected from Difficult Run, VA, and the West Swan River, MN. Agitating the soils in a controlled solution of known background electrolyte and pH while varying the level of iron oxides and DOC in step provides a better understanding of the sorption of Lead and Beryllium under the conditions found within freshwater streams. Pairing the partitioning of Lead and Beryllium with their inputs to streams via depositional processes, from this study and others, allows for their assessment as possible sediment tracers and age-dating tools within the respective watersheds.

  6. Biocidal Defeat Agents Produced by Silver-Iodine Nanoenergetic Gas Generators

    NASA Astrophysics Data System (ADS)

    Davila, Ivan

    Nanostructured aluminum (Al), iodine pentoxide (I2O5) nano-rods, and silver oxide (Ag2O) nanoparticles, (Al-I2O5-Ag 2O) were used to compose the ternary thermite composition that serves as a Nanoenergetic Gas Generator (NGG). This composition produces biocidal gases giving the mixture the ability to destroy highly pathogenic microorganisms or bacteria. The dissemination of the biocidal gas in combustion chamber was observed using a high-speed camera. The testing of NGG combustion process against the living Escherichia coli (E.coli) K-12 strain cells, that were cultivated/placed on the sample/chamber surfaces, demonstrated that iodine and silver atoms clouds were deposited to the bacteria surface. The 10/75/15 wt % of I2O5/Ag2O/Al composition demonstrated the best performance for destroying of E.coli with efficiency over 99 %. The results of the experiments showed that gaseous silver and iodine generated from NGG combustion produces a strong biocidal environment that has a great potential to neutralize highly pathogenic microorganisms and bacteria.

  7. Percolating Contact Subnetworks on the Edge of Isostaticity

    DTIC Science & Technology

    2011-01-01

    pressure, and cyclic loading of photoelastic disks under constant vol- ume. D. M. Walker · A. Tordesillas (B) Department of Mathematics and Statistics ...Complex networks · Spanning trees · Force chains · Force cycles · Isostatic 1 Introduction Ioannis Vardoulakis and his collaborators brought soil ...57, 706–727 (2009) 2. Vardoulakis, I.: Shear-banding and liquefaction in granular mate- rials on the basis of a Cosserat continuum theory. Ingenieur

  8. Migration of Beryllium via Multiple Exposure Pathways among Work Processes in Four Different Facilities.

    PubMed

    Armstrong, Jenna L; Day, Gregory A; Park, Ji Young; Stefaniak, Aleksandr B; Stanton, Marcia L; Deubner, David C; Kent, Michael S; Schuler, Christine R; Virji, M Abbas

    2014-01-01

    Inhalation of beryllium is associated with the development of sensitization; however, dermal exposure may also be important. The primary aim of this study was to elucidate relationships among exposure pathways in four different manufacturing and finishing facilities. Secondary aims were to identify jobs with increased levels of beryllium in air, on skin, and on surfaces; identify potential discrepancies in exposure pathways, and determine if these are related to jobs with previously identified risk. Beryllium was measured in air, on cotton gloves, and on work surfaces. Summary statistics were calculated and correlations among all three measurement types were examined at the facility and job level. Exposure ranking strategies were used to identify jobs with higher exposures. The highest air, glove, and surface measurements were observed in beryllium metal production and beryllium oxide ceramics manufacturing jobs that involved hot processes and handling powders. Two finishing and distribution facilities that handle solid alloy products had lower exposures than the primary production facilities, and there were differences observed among jobs. For all facilities combined, strong correlations were found between air-surface (rp ≥ 0.77), glove-surface (rp ≥ 0.76), and air-glove measurements (rp ≥ 0.69). In jobs where higher risk of beryllium sensitization or disease has been reported, exposure levels for all three measurement types were higher than in jobs with lower risk, though they were not the highest. Some jobs with low air concentrations had higher levels of beryllium on glove and surface wipe samples, suggesting a need to further evaluate the causes of the discrepant levels. Although such correlations provide insight on where beryllium is located throughout the workplace, they cannot identify the direction of the pathways between air, surface, or skin. Ranking strategies helped to identify jobs with the highest combined air, glove, and/or surface exposures

  9. Antimicrobial properties of ternary eutectic aluminum alloys.

    PubMed

    Hahn, Claudia; Hans, Michael; Hein, Christina; Dennstedt, Anne; Mücklich, Frank; Rettberg, Petra; Hellweg, Christine Elisabeth; Leichert, Lars Ingo; Rensing, Christopher; Moeller, Ralf

    2018-06-27

    Several Escherichia coli deletion mutants of the Keio collection were selected for analysis to better understand which genes may play a key role in copper or silver homeostasis. Each of the selected E. coli mutants had a deletion of a single gene predicted to encode proteins for homologous recombination or contained functions directly linked to copper or silver transport or transformation. The survival of these strains on pure copper surfaces, stainless steel, and alloys of aluminum, copper and/or silver was investigated. When exposed to pure copper surfaces, E. coli ΔcueO was the most sensitive, whereas E. coli ΔcopA was the most resistant amongst the different strains tested. However, we observed a different trend in sensitivities in E. coli strains upon exposure to alloys of the system Al-Ag-Cu. While minor antimicrobial effects were detected after exposure of E. coli ΔcopA and E. coli ΔrecA to Al-Ag alloys, no effect was detected after exposure to Al-Cu alloys. The release of copper ions and cell-associated copper ion concentrations were determined for E. coli ΔcopA and the wild-type E. coli after exposure to pure copper surfaces. Altogether, compared to binary alloys, ternary eutectic alloys (Al-Ag-Cu) had the highest antimicrobial effect and thus, warrant further investigation.

  10. Method of bonding silver to glass and mirrors produced according to this method

    DOEpatents

    Pitts, J.R.; Thomas, T.M.; Czanderna, A.W.

    1984-07-31

    A method for adhering silver to a glass substrate for producing mirrors includes attaining a silicon enriched substrate surface by reducing the oxygen therein in a vacuum and then vacuum depositing a silver layer onto the silicon enriched surface. The silicon enrichment can be attained by electron beam bombardment, ion beam bombardment, or neutral beam bombardment. It can also be attained by depositing a metal, such as aluminum, on the substrate surface, allowing the metal to oxidize by pulling oxygen from the substrate surface, thereby leaving a silicon enriched surface, and then etching or eroding the metal oxide layer away to expose the silicon enriched surface. Ultraviolet rays can be used to maintain dangling silicon bonds on the enriched surface until covalent bonding with the silver can occur. This disclosure also includes encapsulated mirrors with diffusion layers built therein. One of these mirrors is assembled on a polymer substrate.

  11. Method of bonding silver to glass and mirrors produced according to this method

    DOEpatents

    Pitts, John R.; Thomas, Terence M.; Czanderna, Alvin W.

    1985-01-01

    A method for adhering silver to a glass substrate for producing mirrors includes attaining a silicon enriched substrate surface by reducing the oxygen therein in a vacuum and then vacuum depositing a silver layer onto the silicon enriched surface. The silicon enrichment can be attained by electron beam bombardment, ion beam bombardment, or neutral beam bombardment. It can also be attained by depositing a metal, such as aluminum, on the substrate surface, allowing the metal to oxidize by pulling oxygen from the substrate surface, thereby leaving a silicon enriched surface, and then etching or eroding the metal oxide layer away to expose the silicon enriched surface. Ultraviolet rays can be used to maintain dangling silicon bonds on the enriched surface until covalent bonding with the silver can occur. This disclosure also includes encapsulated mirrors with diffusion layers built therein. One of these mirrors is assembled on a polymer substrate.

  12. Short- and long-term response to corticosteroid therapy in chronic beryllium disease.

    PubMed

    Marchand-Adam, S; El Khatib, A; Guillon, F; Brauner, M W; Lamberto, C; Lepage, V; Naccache, J-M; Valeyre, D

    2008-09-01

    Chronic beryllium disease (CBD) is a granulomatous disorder that affects the lung after exposure to beryllium. The present study reports short- and long-term evolution of granulomatous and fibrotic components in eight patients with severe CBD receiving corticosteroid therapy. Eight patients with confirmed CBD were studied at baseline, after initial corticosteroid treatment (4-12 months), at relapse and at the final visit. Beryllium exposure, Glu(69) (HLA-DPB1 genes coding for glutamate at position beta69) polymorphism, symptoms, pulmonary function tests (PFT), serum angiotensin-converting enzyme (SACE) and high-resolution computed tomography (HRCT) quantification of pulmonary lesions were analysed. The CBD patients were observed for a median (range) of 69 (20-180) months. After stopping beryllium exposure, corticosteroids improved symptoms and PFT (vital capacity +26%, diffusing capacity of the lung for carbon monoxide +15%), and decreased SACE level and active lesion HRCT score. In total, 18 clinical relapses occurred after the treatment was tapered and these were associated with SACE and active lesion HRCT score impairment. At the final visit, corticosteroids had completely stabilised all parameters including both HRCT scores of active lesions and fibrotic lesions in six out of eight patients. Corticosteroids were beneficial in chronic beryllium disease. They were effective in suppressing granulomatosis lesions in all cases and in stopping the evolution to pulmonary fibrosis in six out of eight patients.

  13. Fluorescent lighting with aluminum nitride phosphors

    DOEpatents

    Cherepy, Nerine J.; Payne, Stephen A.; Seeley, Zachary M.; Srivastava, Alok M.

    2016-05-10

    A fluorescent lamp includes a glass envelope; at least two electrodes connected to the glass envelope; mercury vapor and an inert gas within the glass envelope; and a phosphor within the glass envelope, wherein the phosphor blend includes aluminum nitride. The phosphor may be a wurtzite (hexagonal) crystalline structure Al.sub.(1-x)M.sub.xN phosphor, where M may be drawn from beryllium, magnesium, calcium, strontium, barium, zinc, scandium, yttrium, lanthanum, cerium, praseodymium, europium, gadolinium, terbium, ytterbium, bismuth, manganese, silicon, germanium, tin, boron, or gallium is synthesized to include dopants to control its luminescence under ultraviolet excitation. The disclosed Al.sub.(1-x)M.sub.xN:Mn phosphor provides bright orange-red emission, comparable in efficiency and spectrum to that of the standard orange-red phosphor used in fluorescent lighting, Y.sub.2O.sub.3:Eu. Furthermore, it offers excellent lumen maintenance in a fluorescent lamp, and does not utilize "critical rare earths," minimizing sensitivity to fluctuating market prices for the rare earth elements.

  14. Diffusion bonded boron/aluminum spar-shell fan blade

    NASA Technical Reports Server (NTRS)

    Carlson, C. E. K.; Cutler, J. L.; Fisher, W. J.; Memmott, J. V. W.

    1980-01-01

    Design and process development tasks intended to demonstrate composite blade application in large high by-pass ratio turbofan engines are described. Studies on a 3.0 aspect radio space and shell construction fan blade indicate a potential weight savings for a first stage fan rotor of 39% when a hollow titanium spar is employed. An alternate design which featured substantial blade internal volume filled with titanium honeycomb inserts achieved a 14% potential weight savings over the B/M rotor system. This second configuration requires a smaller development effort and entails less risk to translate a design into a successful product. The feasibility of metal joining large subsonic spar and shell fan blades was demonstrated. Initial aluminum alloy screening indicates a distinct preference for AA6061 aluminum alloy for use as a joint material. The simulated airfoil pressings established the necessity of rigid air surfaces when joining materials of different compressive rigidities. The two aluminum alloy matrix choices both were successfully formed into blade shells.

  15. Fostering the Basic Instinct of Boron in Boron-Beryllium Interactions.

    PubMed

    Montero-Campillo, M Merced; Alkorta, Ibon; Elguero, José

    2018-03-29

    A set of complexes L 2 HB···BeX 2 (L = CNH, CO, CS, N 2 , NH 3 , NCCH 3 , PH 3 , PF 3 , PMe 3 , OH 2 ; X = H, F) containing a boron-beryllium bond is described at the M06-2X/6-311+G(3df,2pd)//M062-2X/6-31+G(d) level of theory. In this quite unusual bond, boron acts as a Lewis base and beryllium as a Lewis acid, reaching binding energies up to -283.3 kJ/mol ((H 2 O) 2 HB···BeF 2 ). The stabilization of these complexes is possible thanks to the σ-donor role of the L ligands in the L 2 HB···BeX 2 structures and the powerful acceptor nature of beryllium. According to the topology of the density, these B-Be interactions present positive laplacian values and negative energy densities, covering different degrees of electron sharing. ELF calculations allowed measuring the population in the interboundary B-Be region, which varies between 0.20 and 2.05 electrons upon switching from the weakest ((CS) 2 HB···BeH 2 ) to the strongest complex ((H 2 O) 2 HB···BeF 2 ). These B-Be interactions can be considered as beryllium bonds in most cases.

  16. Migration of Beryllium via Multiple Exposure Pathways among Work Processes in Four Different Facilities

    PubMed Central

    Armstrong, Jenna L.; Day, Gregory A.; Park, Ji Young; Stefaniak, Aleksandr B.; Stanton, Marcia L.; Deubner, David C.; Kent, Michael S.; Schuler, Christine R.; Virji, M. Abbas

    2016-01-01

    Inhalation of beryllium is associated with the development of sensitization; however, dermal exposure may also be important. The primary aim of this study was to elucidate relationships among exposure pathways in four different manufacturing and finishing facilities. Secondary aims were to identify jobs with increased levels of beryllium in air, on skin, and on surfaces; identify potential discrepancies in exposure pathways, and determine if these are related to jobs with previously identified risk. Beryllium was measured in air, on cotton gloves, and on work surfaces. Summary statistics were calculated and correlations among all three measurement types were examined at the facility and job level. Exposure ranking strategies were used to identify jobs with higher exposures. The highest air, glove, and surface measurements were observed in beryllium metal production and beryllium oxide ceramics manufacturing jobs that involved hot processes and handling powders. Two finishing and distribution facilities that handle solid alloy products had lower exposures than the primary production facilities, and there were differences observed among jobs. For all facilities combined, strong correlations were found between air-surface (rp ≥ 0.77), glove-surface (rp ≥ 0.76), and air-glove measurements (rp ≥ 0.69). In jobs where higher risk of beryllium sensitization or disease has been reported, exposure levels for all three measurement types were higher than in jobs with lower risk, though they were not the highest. Some jobs with low air concentrations had higher levels of beryllium on glove and surface wipe samples, suggesting a need to further evaluate the causes of the discrepant levels. Although such correlations provide insight on where beryllium is located throughout the workplace, they cannot identify the direction of the pathways between air, surface, or skin. Ranking strategies helped to identify jobs with the highest combined air, glove, and/or surface exposures

  17. Thermal Conductance of Pressed Bimetal Contact Pairs at Liquid Nitrogen Temperatures

    NASA Technical Reports Server (NTRS)

    Kittle, Peter; Salerno, Louis J.; Spivak, Alan L.

    1994-01-01

    Large Dewars often use aluminum radiation shields and stainless steel vent lines. A simple, low cost method of making thermal contact between the shield and the line is to deform the shield around the line. A knowledge of the thermal conductance of such a joint is needed to thermally analyze the system. The thermal conductance of pressed metal contacts consisting of one aluminum and one stainless steel contact has been measured at 77 K, with applied forces from 8.9 N to 267 N. Both 5052 or 5083 aluminum were used as the upper contact. The lower contact was 304L stainless steel. The thermal conductance was found to be linear in temperature over the narrow temperature range of measurement. As the force was increased, the thermal conductance ranged from roughly 9 to 21 mW/K within a range of errors from 3% to 8%. Within the range of error no difference could be found between the using either of the aluminum alloys as the upper contact. Extrapolating the data to zero applied force does not result in zero thermal conductance. Possible causes of this anomalous effect are discussed.

  18. Modelisation and distribution of neutron flux in radium-beryllium source (226Ra-Be)

    NASA Astrophysics Data System (ADS)

    Didi, Abdessamad; Dadouch, Ahmed; Jai, Otman

    2017-09-01

    Using the Monte Carlo N-Particle code (MCNP-6), to analyze the thermal, epithermal and fast neutron fluxes, of 3 millicuries of radium-beryllium, for determine the qualitative and quantitative of many materials, using method of neutron activation analysis. Radium-beryllium source of neutron is established to practical work and research in nuclear field. The main objective of this work was to enable us harness the profile flux of radium-beryllium irradiation, this theoretical study permits to discuss the design of the optimal irradiation and performance for increased the facility research and education of nuclear physics.

  19. Characterization of Beryllium Windows for Coherent X-ray Optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goto, Shunji; Yabashi, Makina; Tamasaku, Kenji

    2007-01-19

    Beryllium foils fabricated by several processes were characterized using spatially coherent x rays at 1-km beamline of SPring-8. By thickness dependence of bright x-ray spot density due to Fresnel diffraction from several-micron deficiencies, we found that speckles (bright x-ray spots) were due to voids with densities 103-104 mm-3 in powder foils and ingot foils. Compared with powder and ingot foils, a polished physical-vapor-deposited (PVD) beryllium foil gave highly uniform beams with no speckles. The PVD process eliminates the internal voids in principle and the PVD foil is the best for coherent x-ray applications.

  20. Method for removal of beryllium contamination from an article

    DOEpatents

    Simandl, Ronald F.; Hollenbeck, Scott M.

    2012-12-25

    A method of removal of beryllium contamination from an article is disclosed. The method typically involves dissolving polyisobutylene in a solvent such as hexane to form a tackifier solution, soaking the substrate in the tackifier to produce a preform, and then drying the preform to produce the cleaning medium. The cleaning media are typically used dry, without any liquid cleaning agent to rub the surface of the article and remove the beryllium contamination below a non-detect level. In some embodiments no detectible residue is transferred from the cleaning wipe to the article as a result of the cleaning process.

  1. An All-Solid-State Fiber-Shaped Aluminum-Air Battery with Flexibility, Stretchability, and High Electrochemical Performance.

    PubMed

    Xu, Yifan; Zhao, Yang; Ren, Jing; Zhang, Ye; Peng, Huisheng

    2016-07-04

    Owing to the high theoretical energy density of metal-air batteries, the aluminum-air battery has been proposed as a promising long-term power supply for electronics. However, the available energy density from the aluminum-air battery is far from that anticipated and is limited by current electrode materials. Herein we described the creation of a new family of all-solid-state fiber-shaped aluminum-air batteries with a specific capacity of 935 mAh g(-1) and an energy density of 1168 Wh kg(-1) . The synthesis of an electrode composed of cross-stacked aligned carbon-nanotube/silver-nanoparticle sheets contributes to the remarkable electrochemical performance. The fiber shape also provides the aluminum-air batteries with unique advantages; for example, they are flexible and stretchable and can be woven into a variety of textiles for large-scale applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Sampling and Analysis Issues Relating to the ACGIH Notice of Intended Change for the Beryllium Threshold Limit Value

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brisson, Michael J.; Ashley, Kevin

    2005-08-16

    Beryllium in various forms is widely used throughout the world in ceramics, aerospace and military applications, electronics, and sports equipment. Workplace exposure to beryllium is a growing industrial hygiene concern due to the potential for development of chronic beryllium disease (CBD), a lung condition with no known cure, in a small percentage of those exposed. There are workplace exposure limits for beryllium that have been in place for several decades. However, recent studies suggest that the current American Conference of Governmental Industrial Hygienists (ACGIH) Threshold Limit Value (TLV) and the Occupational Safety and Health Administration (OSHA) Permissible Exposure Limit (PEL)more » may not be sufficiently protective for workers who are potentially exposed to airborne beryllium. Early in 2005, ACGIH issued a Notice of Intended Change (NIC) to the current TLV for beryllium which entails a 100-fold reduction (from 2 to 0.02 micrograms per cubic meter of sampled air). It is noted that ACGIH TLVs do not carry legal force in the manner that OSHA PELs or other federal regulations do. Nevertheless, OSHA plans a beryllium rulemaking in the near future, and a reduction in the PEL is anticipated. Also, if this change in the TLV for beryllium is adopted, it is reasonable to assume that at least some sampling and analysis activities will need to be modified to address airborne beryllium at the lower levels. There are implications to both the industrial hygiene and the laboratory communities, which are discussed.« less

  3. Assessment of personal airborne exposures and surface contamination from x-ray vaporization of beryllium targets at the National Ignition Facility.

    PubMed

    Paik, Samuel Y; Epperson, Patrick M; Kasper, Kenneth M

    2017-06-01

    This article presents air and surface sampling data collected over the first two years since beryllium was introduced as a target material at the National Ignition Facility. Over this time, 101 experiments with beryllium-containing targets were executed. The data provides an assessment of current conditions in the facility and a baseline for future impacts as new, reduced regulatory limits for beryllium are being proposed by both the Occupational Safety and Health Administration and Department of Energy. This study also investigates how beryllium deposits onto exposed surfaces as a result of x-ray vaporization and the effectiveness of simple decontamination measures in reducing the amount of removable beryllium from a surface. Based on 1,961 surface wipe samples collected from entrant components (equipment directly exposed to target debris) and their surrounding work areas during routine reconfiguration activities, only one result was above the beryllium release limit of 0.2 µg/100 cm 2 and 27 results were above the analytical reporting limit of 0.01 µg/100 cm 2 , for a beryllium detection rate of 1.4%. Surface wipe samples collected from the internal walls of the NIF target chamber, however, showed higher levels of beryllium, with beryllium detected on 73% and 87% of the samples during the first and second target chamber entries (performed annually), respectively, with 23% of the samples above the beryllium release limit during the second target chamber entry. The analysis of a target chamber wall panel exposed during the first 30 beryllium-containing experiments (cumulatively) indicated that 87% of the beryllium contamination remains fixed onto the surface after wet wiping the surface and 92% of the non-fixed contamination was removed by decontaminating the surface using a dry wipe followed by a wet wipe. Personal airborne exposures assessed during access to entrant components and during target chamber entry indicated that airborne beryllium was not present

  4. Isostatic gravity map of the Nevada Test Site and vicinity, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ponce, D.A.; Harris, R.N.; Oliver, H.W.

    1988-12-31

    The isostatic gravity map of the Nevada Test Site (NTS) and vicinity is based on about 16,000 gravity stations. Principal facts of the gravity data were listed by Harris and others (1989) and their report included descriptions of base stations, high-precision and absolute gravity stations, and data accuracy. Observed gravity values were referenced to the International Gravity Standardization Net 1971 gravity datum described by Morelli (1974) and reduced using the Geodetic Reference System 1967 formula for the normal gravity on the ellipsoid (International Union of Geodesy and Geophysics, 1971). Free-air, Bouguer, curvature, and terrain corrections for a standard reduction densitymore » of 2.67 g/cm{sup 3} were made to compute complete Bouguer anomalies. Terrain corrections were made to a radial distance of 166.7 km from each station using a digital elevation model and a computer procedure by Plouff (1977) and, in general, include manually estimated inner-zone terrain corrections. Finally, isostatic corrections were made using a procedure by Simpson and others (1983) based on an Airy-Heiskanen model with local compensation (Heiskanen and Moritz, 1967) with an upper-crustal density of 2.67 g/cm{sup 3}, a crustal thickness of 25 km, and a density contrast between the lower-crust and upper-mantle of 0.4 g/cm{sup 3}. Isostatic corrections help remove the effects of long-wavelength anomalies related to topography and their compensating masses and, thus, enhance short- to moderate-wavelength anomalies caused by near surface geologic features. 6 refs.« less

  5. Simulation of Particle Size Effect on Dynamic Properties and Fracture of PTFE-W-Al Composites

    NASA Astrophysics Data System (ADS)

    Herbold, Eric; Cai, Jing; Benson, David; Nesterenko, Vitali

    2007-06-01

    Recent investigations of the dynamic compressive strength of cold isostatically pressed (CIP) composites of polytetrafluoroethylene (PTFE), tungsten and aluminum powders show significant differences depending on the size of metallic particles. PTFE and aluminum mixtures are known to be energetic under dynamic and thermal loading. The addition of tungsten increases density and overall strength of the sample. Multi-material Eulerian and arbitrary Lagrangian-Eulerian methods were used for the investigation due to the complexity of the microstructure, relatively large deformations and the ability to handle the formation of free surfaces in a natural manner. The calculations indicate that the observed dependence of sample strength on particle size is due to the formation of force chains under dynamic loading in samples with small particle sizes even at larger porosity in comparison with samples with large grain size and larger density.

  6. Infrared spectroscopic study of radiation-induced adsorption of n-hexane on a beryllium surface

    NASA Astrophysics Data System (ADS)

    Gadzhieva, N. N.

    2017-07-01

    Radiation-stimulated adsorption on a beryllium surface is studied by IR reflection-absorption spectroscopy. It is found that γ-irradiation at room temperature leads to the appearance of n-hexane adsorption centers on a beryllium surface according to molecular and dissociation mechanisms. The kinetics of n-hexane adsorption in a Be- n-hexane system is studied; activated dissociative chemisorption accompanied by formation of beryllium alkyls and surface hydrides is observed at absorbed doses 15 kGy ≤ Vγ ≤ 35 kGy. A possible mechanism of this process is suggested.

  7. The Darfur Swell, Africa: Gravity constraints on its isostatic compensation

    NASA Astrophysics Data System (ADS)

    Crough, S. Thomas

    The free-air gravity anomaly observed over the Darfur Swell is explainable by local isostatic balance with a root approximately 50 km deep on average. This root depth is similar to that inferred beneath other African domes and beneath oceanic midplate swells, suggesting that the Darfur Swell is a hotspot uplift created by lithospheric reheating.

  8. Hydrogen isotope retention in beryllium for tokamak plasma-facing applications

    NASA Astrophysics Data System (ADS)

    Anderl, R. A.; Causey, R. A.; Davis, J. W.; Doerner, R. P.; Federici, G.; Haasz, A. A.; Longhurst, G. R.; Wampler, W. R.; Wilson, K. L.

    Beryllium has been used as a plasma-facing material to effect substantial improvements in plasma performance in the Joint European Torus (JET), and it is planned as a plasma-facing material for the first wall (FW) and other components of the International Thermonuclear Experimental Reactor (ITER). The interaction of hydrogenic ions, and charge-exchange neutral atoms from plasmas, with beryllium has been studied in recent years with widely varying interpretations of results. In this paper we review experimental data regarding hydrogenic atom inventories in experiments pertinent to tokamak applications and show that with some very plausible assumptions, the experimental data appear to exhibit rather predictable trends. A phenomenon observed in high ion-flux experiments is the saturation of the beryllium surface such that inventories of implanted particles become insensitive to increased flux and to continued implantation fluence. Methods for modeling retention and release of implanted hydrogen in beryllium are reviewed and an adaptation is suggested for modeling the saturation effects. The TMAP4 code used with these modifications has succeeded in simulating experimental data taken under saturation conditions where codes without this feature have not. That implementation also works well under more routine conditions where the conventional recombination-limited release model is applicable. Calculations of tritium inventory and permeation in the ITER FW during the basic performance phase (BPP) using both the conventional recombination model and the saturation effects assumptions show a difference of several orders of magnitude in both inventory and permeation rate to the coolant.

  9. Optimization of silver-dielectric-silver nanoshell for sensing applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirzaditabar, Farzad; Saliminasab, Maryam

    2013-08-15

    In this paper, resonance light scattering (RLS) properties of a silver-dielectric-silver nanoshell, based on quasi-static approach and plasmon hybridization theory, are investigated. Scattering spectrum of silver-dielectric-silver nanoshell has two intense and clearly separated RLS peaks and provides a potential for biosensing based on surface plasmon resonance and surface-enhanced Raman scattering. The two RLS peaks in silver-dielectric-silver nanoshell are optimized by tuning the geometrical dimensions. In addition, the optimal geometry is discussed to obtain the high sensitivity of silver-dielectric-silver nanoshell. As the silver core radius increases, the sensitivity of silver-dielectric-silver nanoshell decreases whereas increasing the middle dielectric thickness increases the sensitivitymore » of silver-dielectric-silver nanoshell.« less

  10. 20 CFR 30.615 - What type of tort suits filed against beryllium vendors or atomic weapons employers may...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... beryllium vendors or atomic weapons employers may disqualify certain claimants from receiving benefits under... Special Provisions Effect of Tort Suits Against Beryllium Vendors and Atomic Weapons Employers § 30.615 What type of tort suits filed against beryllium vendors or atomic weapons employers may disqualify...

  11. 20 CFR 30.615 - What type of tort suits filed against beryllium vendors or atomic weapons employers may...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... beryllium vendors or atomic weapons employers may disqualify certain claimants from receiving benefits under... Special Provisions Effect of Tort Suits Against Beryllium Vendors and Atomic Weapons Employers § 30.615 What type of tort suits filed against beryllium vendors or atomic weapons employers may disqualify...

  12. 20 CFR 30.615 - What type of tort suits filed against beryllium vendors or atomic weapons employers may...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... beryllium vendors or atomic weapons employers may disqualify certain claimants from receiving benefits under... Special Provisions Effect of Tort Suits Against Beryllium Vendors and Atomic Weapons Employers § 30.615 What type of tort suits filed against beryllium vendors or atomic weapons employers may disqualify...

  13. 20 CFR 30.615 - What type of tort suits filed against beryllium vendors or atomic weapons employers may...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... beryllium vendors or atomic weapons employers may disqualify certain claimants from receiving benefits under... Special Provisions Effect of Tort Suits Against Beryllium Vendors and Atomic Weapons Employers § 30.615 What type of tort suits filed against beryllium vendors or atomic weapons employers may disqualify...

  14. 20 CFR 30.615 - What type of tort suits filed against beryllium vendors or atomic weapons employers may...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... beryllium vendors or atomic weapons employers may disqualify certain claimants from receiving benefits under... Special Provisions Effect of Tort Suits Against Beryllium Vendors and Atomic Weapons Employers § 30.615 What type of tort suits filed against beryllium vendors or atomic weapons employers may disqualify...

  15. Risk of beryllium sensitization in a low-exposed former nuclear weapons cohort from the Cold War era.

    PubMed

    Mikulski, Marek A; Leonard, Stephanie A; Sanderson, Wayne T; Hartley, Patrick G; Sprince, Nancy L; Fuortes, Laurence J

    2011-03-01

    The nuclear weapons industry has long been known as a source of beryllium exposure. A total of 1,004 former workers from a nuclear weapons assembly site in the Midwest were screened for sensitization to beryllium (BeS). The screenings were part of the Department of Energy (DOE) Former Worker Program established in 1996. Twenty-three (2.3%) workers were found sensitized to beryllium and this prevalence was comparable to other DOE sites. Occasional, direct exposure to beryllium through machining and grinding of copper-beryllium (Cu-Be) 2% alloy tools was found to increase the risk of sensitization compared to background exposure (OR = 3.83; 95% CI: 1.04-14.03) with a statistically significant trend (P = 0.03) revealing that particular jobs are associated with sensitization. Exposure potential in this study was estimated based on job titles and not personal exposure information. These results confirm the need to screen workers using beryllium alloy tools in other industries and for consideration of altering work practices. Copyright © 2010 Wiley-Liss, Inc.

  16. 20 CFR 30.206 - How does a claimant prove that the employee was a “covered beryllium employee” exposed to...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... was a âcovered beryllium employeeâ exposed to beryllium dust, particles or vapor in the performance of... beryllium dust, particles or vapor in the performance of duty? (a) Proof of employment at or physical... during a period when beryllium dust, particles, or vapor may have been present at such a facility, may be...

  17. 20 CFR 30.206 - How does a claimant prove that the employee was a “covered beryllium employee” exposed to...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... was a âcovered beryllium employeeâ exposed to beryllium dust, particles or vapor in the performance of... beryllium dust, particles or vapor in the performance of duty? (a) Proof of employment at or physical... during a period when beryllium dust, particles, or vapor may have been present at such a facility, may be...

  18. 20 CFR 30.206 - How does a claimant prove that the employee was a “covered beryllium employee” exposed to...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... was a âcovered beryllium employeeâ exposed to beryllium dust, particles or vapor in the performance of... beryllium dust, particles or vapor in the performance of duty? (a) Proof of employment at or physical... during a period when beryllium dust, particles, or vapor may have been present at such a facility, may be...

  19. 20 CFR 30.206 - How does a claimant prove that the employee was a “covered beryllium employee” exposed to...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... was a âcovered beryllium employeeâ exposed to beryllium dust, particles or vapor in the performance of... beryllium dust, particles or vapor in the performance of duty? (a) Proof of employment at or physical... during a period when beryllium dust, particles, or vapor may have been present at such a facility, may be...

  20. 20 CFR 30.206 - How does a claimant prove that the employee was a “covered beryllium employee” exposed to...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... was a âcovered beryllium employeeâ exposed to beryllium dust, particles or vapor in the performance of... beryllium dust, particles or vapor in the performance of duty? (a) Proof of employment at or physical... during a period when beryllium dust, particles, or vapor may have been present at such a facility, may be...

  1. One step HIP canning of powder metallurgy composites

    NASA Technical Reports Server (NTRS)

    Juhas, John J. (Inventor)

    1990-01-01

    A single step is relied on in the canning process for hot isostatic pressing (HIP) powder metallurgy composites. The binders are totally removed while the HIP can of compatible refractory metal is sealed at high vacuum and temperature. This eliminates outgassing during hot isostatic pressing.

  2. Assessment of personal airborne exposures and surface contamination from x-ray vaporization of beryllium targets at the National Ignition Facility

    DOE PAGES

    Paik, Samuel Y.; Epperson, Patrick M.; Kasper, Kenneth M.

    2017-02-28

    Here, this article presents air and surface sampling data collected over the first two years since beryllium was introduced as a target material at the National Ignition Facility. Over this time, 101 experiments with beryllium-containing targets were executed. The data provides an assessment of current conditions in the facility and a baseline for future impacts as new, reduced regulatory limits for beryllium are being proposed by both the Occupational Safety and Health Administration and Department of Energy. This study also investigates how beryllium deposits onto exposed surfaces as a result of x-ray vaporization and the effectiveness of simple decontamination measuresmore » in reducing the amount of removable beryllium from a surface. Based on 1,961 surface wipe samples collected from entrant components (equipment directly exposed to target debris) and their surrounding work areas during routine reconfiguration activities, only one result was above the beryllium release limit of 0.2 µg/100 cm 2 and 27 results were above the analytical reporting limit of 0.01 µg/100 cm 2, for a beryllium detection rate of 1.4%. Surface wipe samples collected from the internal walls of the NIF target chamber, however, showed higher levels of beryllium, with beryllium detected on 73% and 87% of the samples during the first and second target chamber entries (performed annually), respectively, with 23% of the samples above the beryllium release limit during the second target chamber entry. The analysis of a target chamber wall panel exposed during the first 30 beryllium-containing experiments (cumulatively) indicated that 87% of the beryllium contamination remains fixed onto the surface after wet wiping the surface and 92% of the non-fixed contamination was removed by decontaminating the surface using a dry wipe followed by a wet wipe. Personal airborne exposures assessed during access to entrant components and during target chamber entry indicated that airborne beryllium was

  3. A mortality study of workers exposed to insoluble forms of beryllium

    PubMed Central

    Boffetta, Paolo; Fordyce, Tiffani

    2014-01-01

    This study investigated lung cancer and other diseases related to insoluble beryllium compounds. A cohort of 4950 workers from four US insoluble beryllium manufacturing facilities were followed through 2009. Expected deaths were calculated using local and national rates. On the basis of local rates, all-cause mortality was significantly reduced. Mortality from lung cancer (standardized mortality ratio 96.0; 95% confidence interval 80.0, 114.3) and from nonmalignant respiratory diseases was also reduced. There were no significant trends for either cause of death according to duration of employment or time since first employment. Uterine cancer among women was the only cause of death with a significantly increased standardized mortality ratio. Five of the seven women worked in office jobs. This study confirmed the lack of an increase in mortality from lung cancer and nonmalignant respiratory diseases related to insoluble beryllium compounds. PMID:24589746

  4. Irradiated Beryllium Disposal Workshop, Idaho Falls, ID, May 29-30, 2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longhurst, Glen Reed; Anderson, Gail; Mullen, Carlan K

    2002-07-01

    In 2001, while performing routine radioactive decay heat rate calculations for beryllium reflector blocks for the Advanced Test Reactor (ATR), it became evident that there may be sufficient concentrations of transuranic isotopes to require classification of this irradiated beryllium as transuranic waste. Measurements on samples from ATR reflector blocks and further calculations confirmed that for reflector blocks and outer shim control cylinders now in the ATR canal, transuranic activities are about five times the threshold for classification. That situation implies that there is no apparent disposal pathway for this material. The problem is not unique to the ATR. The Highmore » Flux Isotope Reactor at Oak Ridge National Laboratory, the Missouri University Research Reactor at Columbia, Missouri and other reactors abroad must also deal with this issue. A workshop was held in Idaho Falls Idaho on May 29-30, 2002 to acquaint stakeholders with these findings and consider a path forward in resolving the issues attendant to disposition of irradiated material. Among the findings from this workshop were (1) there is a real potential for the US to be dependent on foreign sources for metallic beryllium within about a decade; (2) there is a need for a national policy on beryllium utilization and disposition and for a beryllium coordinating committee to be assembled to provide guidance on that policy; (3) it appears it will be difficult to dispose of this material at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico due to issues of Defense classification, facility radioactivity inventory limits, and transportation to WIPP; (4) there is a need for a funded DOE program to seek resolution of these issues including research on processing techniques that may make this waste acceptable in an existing disposal pathway or allow for its recycle.« less

  5. Comparison of the metal-to-ceramic bond strengths of four noble alloys with press-on-metal and conventional porcelain layering techniques.

    PubMed

    Khmaj, Mofida R; Khmaj, Abdulfatah B; Brantley, William A; Johnston, William M; Dasgupta, Tridib

    2014-11-01

    New noble alloys for metal ceramic restorations introduced by manufacturers are generally lower-cost alternatives to traditional higher-gold alloys. Information about the metal-to-ceramic bond strength for these alloys, which is needed for rational clinical selection, is often lacking. The purpose of this study was to evaluate the bond strength of 4 recently introduced noble alloys by using 2 techniques for porcelain application. Aquarius Hard (high-gold: 86.1 gold, 8.5 platinum, 2.6 palladium, 1.4 indium; values in wt. %), Evolution Lite (reduced-gold: 40.3 gold, 39.3 palladium, 9.3 indium, 9.2 silver, 1.8 gallium), Callisto 75 Pd (palladium-silver containing gold: 75.2 palladium, 7.1 silver, 2.5 gold, 9.3 tin, 1.0 indium), and Aries, (conventional palladium-silver: 63.7 palladium, 26.0 silver, 7.0 tin, 1.8 gallium, 1.5 indium) were selected for bonding to leucite-containing veneering porcelains. Ten metal ceramic specimens that met dimensional requirements for International Organization for Standardization (ISO) Standard 9693 were prepared for each alloy by using conventional porcelain layering and press-on-metal methods. The 3-point bending test in ISO Standard 9693 was used to determine bond strength. Values were compared with 2-way ANOVA (maximum likelihood analysis, SAS Mixed Procedure) and the Tukey test (α=.05). Means (standard deviations) for bond strength with conventional porcelain layering were as follows: Aquarius Hard (50.7 ±5.5 MPa), Evolution Lite (40.2 ±3.3 MPa), Callisto 75 Pd (37.2 ±3.9 MPa), and Aries (34.0 ±4.9 MPa). For the press-on-metal technique, bond strength results were as follows: Aquarius Hard (33.7 ±11.5 MPa), Evolution Lite (34.9 ±4.5 MPa), Callisto 75 Pd (37.2 ±11.9 MPa), and Aries (30.7 ±10.8 MPa). From statistical analyses, the following 3 significant differences were found for metal-to-ceramic bond strength: the bond strength for Aquarius Hard was significantly higher for conventional porcelain layers compared with

  6. Beryllium-10 dating of the duration and retreat of the last pinedale glacial sequence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gosse, J.C.; Klein, J.; Evenson, E.B.

    Accurate terrestrial glacial chronologies are needed for comparison with the marine record to establish the dynamics of global climate change during transitions from glacial to interglacial regimes. Cosmogenic beryllium-10 measurements in the Wind River Range indicate that the last glacial maximum (marine oxygen isotope stage 2) was achieved there by 21,700 {+-} 700 beryllium-10 years and lasted 5900 years. Ages of a sequence of recessional moraines and striated bedrock surfaces show that the initial deglaciation was rapid and that the entire glacial system retreated 33 kilometers to the cirque basin by 12,100 {+-} 500 beryllium-10 years.

  7. Synchrotron X-ray microbeam diffraction measurements of full elastic long range internal strain and stress tensors in commercial-purity aluminum processed by multiple passes of equal-channel angular pressing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phan, Thien Q.; Levine, Lyle E.; Lee, I-Fang

    Synchrotron X-ray microbeam diffraction was used to measure the full elastic long range internal strain and stress tensors of low dislocation density regions within the submicrometer grain/subgrain structure of equal-channel angular pressed (ECAP) aluminum alloy AA1050 after 1, 2, and 8 passes using route B C. This is the first time that full tensors were measured in plastically deformed metals at this length scale. The maximum (most tensile or least compressive) principal elastic strain directions for the unloaded 1 pass sample for the grain/subgrain interiors align well with the pressing direction, and are more random for the 2 and 8more » pass samples. The measurements reported here indicate that the local stresses and strains become increasingly isotropic (homogenized) with increasing ECAP passes using route BC. The average maximum (in magnitude) LRISs are -0.43 σ a for 1 pass, -0.44 σ a for 2 pass, and 0.14 σ a for the 8 pass sample. Furthermore, these LRISs are larger than those reported previously because those earlier measurements were unable to measure the full stress tensor. Significantly, the measured stresses are inconsistent with the two-component composite model.« less

  8. Synchrotron X-ray microbeam diffraction measurements of full elastic long range internal strain and stress tensors in commercial-purity aluminum processed by multiple passes of equal-channel angular pressing

    DOE PAGES

    Phan, Thien Q.; Levine, Lyle E.; Lee, I-Fang; ...

    2016-04-23

    Synchrotron X-ray microbeam diffraction was used to measure the full elastic long range internal strain and stress tensors of low dislocation density regions within the submicrometer grain/subgrain structure of equal-channel angular pressed (ECAP) aluminum alloy AA1050 after 1, 2, and 8 passes using route B C. This is the first time that full tensors were measured in plastically deformed metals at this length scale. The maximum (most tensile or least compressive) principal elastic strain directions for the unloaded 1 pass sample for the grain/subgrain interiors align well with the pressing direction, and are more random for the 2 and 8more » pass samples. The measurements reported here indicate that the local stresses and strains become increasingly isotropic (homogenized) with increasing ECAP passes using route BC. The average maximum (in magnitude) LRISs are -0.43 σ a for 1 pass, -0.44 σ a for 2 pass, and 0.14 σ a for the 8 pass sample. Furthermore, these LRISs are larger than those reported previously because those earlier measurements were unable to measure the full stress tensor. Significantly, the measured stresses are inconsistent with the two-component composite model.« less

  9. Electrically Conductive Anodized Aluminum Surfaces

    NASA Technical Reports Server (NTRS)

    Nguyen, Trung Hung

    2006-01-01

    Anodized aluminum components can be treated to make them sufficiently electrically conductive to suppress discharges of static electricity. The treatment was conceived as a means of preventing static electric discharges on exterior satin-anodized aluminum (SAA) surfaces of spacecraft without adversely affecting the thermal-control/optical properties of the SAA and without need to apply electrically conductive paints, which eventually peel off in the harsh environment of outer space. The treatment can also be used to impart electrical conductivity to anodized housings of computers, medical electronic instruments, telephoneexchange equipment, and other terrestrial electronic equipment vulnerable to electrostatic discharge. The electrical resistivity of a typical anodized aluminum surface layer lies between 10(exp 11) and 10(exp 13) Omega-cm. To suppress electrostatic discharge, it is necessary to reduce the electrical resistivity significantly - preferably to < or = 10(exp 9) Omega-cm. The present treatment does this. The treatment is a direct electrodeposition process in which the outer anodized surface becomes covered and the pores in the surface filled with a transparent, electrically conductive metal oxide nanocomposite. Filling the pores with the nanocomposite reduces the transverse electrical resistivity and, in the original intended outer-space application, the exterior covering portion of the nanocomposite would afford the requisite electrical contact with the outer-space plasma. The electrical resistivity of the nanocomposite can be tailored to a value between 10(exp 7) and 10(exp 12) Omega-cm. Unlike electrically conductive paint, the nanocomposite becomes an integral part of the anodized aluminum substrate, without need for adhesive bonding material and without risk of subsequent peeling. The electrodeposition process is compatible with commercial anodizing production lines. At present, the electronics industry uses expensive, exotic

  10. Physical and Electrical Characterization of Aluminum Polymer Capacitors

    NASA Technical Reports Server (NTRS)

    Liu, David (Donghang)

    2010-01-01

    Conductive polymer aluminum capacitor (PA capacitor) is an evolution of traditional wet electrolyte aluminum capacitors by replacing liquid electrolyte with a solid, highly conductive polymer. On the other hand, the cathode construction in polymer aluminum capacitors with coating of carbon and silver epoxy for terminal connection is more like a combination of the technique that solid tantalum capacitor utilizes. This evolution and combination result in the development of several competing capacitor construction technologies in manufacturing polymer aluminum capacitors. The driving force of this research on characterization of polymer aluminum capacitors is the rapid progress in IC technology. With the microprocessor speeds exceeding a gigahertz and CPU current demands of 80 amps and more, the demand for capacitors with higher peak current and faster repetition rates bring conducting polymer capacitors to the center o( focus. This is because this type of capacitors has been known for its ultra-low ESR and high capacitance. Polymer aluminum capacitors from several manufacturers with various combinations of capacitance, rated voltage, and ESR values were obtained and tested. The construction analysis of the capacitors revealed three different constructions: conventional rolled foil, the multilayer stacking V-shape, and a dual-layer sandwich structure. The capacitor structure and its impact on the electrical characteristics has been revealed and evaluated. A destructive test with massive current over stress to fail the polymer aluminum capacitors reveals that all polymer aluminum capacitors failed in a benign mode without ignition, combustion, or any other catastrophic failures. The extraordinary low ESR (as low as 3 mOMEGA), superior frequency independence reported for polymer aluminum capacitors have been confirmed. For the applications of polymer aluminum capacitors in space programs, a thermal vacuum cycle test was performed. The results, as expected, show no

  11. Beryllium and titanium cost-adjustment report

    NASA Astrophysics Data System (ADS)

    Owen, John; Ulph, Eric, Sr.

    1991-09-01

    This report summarizes cost adjustment factors for beryllium (Be, S200) and titanium (Ti, 6Al-4V) that were derived relative to aluminum (Al, 7075-T6). Aluminum is traditionally the material upon which many of the Cost Analysis Office, Missile Division cost estimating relationships (CERs) are based. The adjustment factors address both research and development and production (Q > 100) quantities. In addition, the factors derived include optical elements, normal structure, and structure with special requirements for minimal microcreep, such as sensor assembly parts and supporting components. Since booster cost per payload pound is an even larger factor in total missile launch costs than was initially presumed, the primary cost driver for all materials compared was the missiles' booster cost per payload pound for both R&D and production quantities. Al and Ti are 1.5 and 2.4 times more dense, respectively, than Be, and the cost to lift the heavier materials results in greater booster expense. In addition, Al and Ti must be 2.1 and 2.8, respectively, times the weight of a Be component to provide equivalent stiffness, based on the example component addressed in the report. These factors also increase booster costs. After review of the relative factors cited above, especially the lower costs for Be when stiffness and booster costs are taken into consideration, affordability becomes an important issue. When this study was initiated, both government and contractor engineers said that Be was the material to be used as a last resort because of its prohibitive cost and extreme toxicity. Although the initial price of Be may lead one to believe that any Be product would be extremely expensive, the total cost of Be used for space applications is actually competitive with or less costly than either Al or Ti. Also, the Be toxicity problem has turned out to be a non-issue for purchasers of finished Be components since no machining or grinding operations are required on the finished

  12. Influence of argon impurities on the elastic scattering of x-rays from imploding beryllium capsules

    NASA Astrophysics Data System (ADS)

    Saunders, A. M.; Chapman, D. A.; Kritcher, A. L.; Schoff, M.; Shuldberg, C.; Landen, O. L.; Glenzer, S. H.; Falcone, R. W.; Gericke, D. O.; Döppner, T.

    2018-03-01

    We investigate the effect of argon impurities on the elastic component of x-ray scattering spectra taken from directly driven beryllium capsule implosions at the OMEGA laser. The plasma conditions were obtained in a previous analysis [18] by fitting the inelastic scattering component. We show that the known argon impurity in the beryllium modifies the elastic scattering due to the larger number of bound electrons. We indeed find significant deviations in the elastic scattering from roughly 1 at.% argon contained in the beryllium. With knowledge of the argon impurity fraction, we use the elastic scattering component to determine the charge state of the compressed beryllium, as the fits are rather insensitive to the argon charge state. Finally, we discuss how doping small fractions of mid- or high-Z elements into low-Z materials could allow ionization balance studies in dense plasmas.

  13. An occurrence model for the national assessment of volcanogenic beryllium deposits

    USGS Publications Warehouse

    Foley, Nora K.; Seal, Robert R.; Piatak, Nadine M.; Hetland, Brianna

    2010-01-01

    The general occurrence model summarized here is intended to provide a descriptive basis for the identification and assessment of undiscovered beryllium deposits of a type and style similar to those found at Spor Mountain, Juab County, Utah. The assessment model is restricted in its application in order to provide a coherent basis for assessing the probability of the occurrence of similar economic deposits using the current U.S. Geological Survey methodology. The model is intended to be used to identify tracts of land where volcanogenic epithermal replacement-type beryllium deposits hosted by metaluminous to peraluminous rhyolite are most likely to occur. Only a limited number of deposits or districts of this type are known, and only the ores of the Spor Mountain district have been studied in detail. The model highlights those distinctive aspects and features of volcanogenic epithermal beryllium deposits that pertain to the development of assessment criteria and puts forward a baseline analysis of the geoenvironmental consequences of mining deposits of this type.

  14. Status of RF beryllium characterization for ITER Fist Wall

    NASA Astrophysics Data System (ADS)

    Kupriyanov, I. B.; Nikolaev, G. N.; Roedig, M.; Gervash, A. А.; Linke, I. J.; Kurbatova, L. A.; Perevalov, S. I.; Giniyatulin, R. N.

    2011-10-01

    The status of RF R&D activities in production and characterization of TGP-56FW beryllium grade is presented. The results of metallographic studies of microstructure and cracks morphology are reported for full-scale Be tiles (56 × 56 × 10 mm) subjected to VDE simulation tests in TSEFEY-M testing facility (VDE-10 MJ/m 2 during 0.1 s, 1 shot ) and following low cycle thermal fatigue tests (500 thermal cycles at 1.5 MW/m 2). First results of plasma disruption tests ( E = 1.2-5 MJ/m 2, 5 ms), which were obtained during the realization of Thermal Shock/VDE Qualification program of RF beryllium in JUDITH-1 facility, are also discussed.

  15. Concept for a beryllium divertor with in-situ plasma spray surface regeneration

    NASA Astrophysics Data System (ADS)

    Smith, M. F.; Watson, R. D.; McGrath, R. T.; Croessmann, C. D.; Whitley, J. B.; Causey, R. A.

    1990-04-01

    Two serious problems with the use of graphite tiles on the ITER divertor are the limited lifetime due to erosion and the difficulty of replacing broken tiles inside the machine. Beryllium is proposed as an alternative low-Z armor material because the plasma spray process can be used to make in-situ repairs of eroded or damaged surfaces. Recent advances in plasma spray technology have produced beryllium coatings of 98% density with a 95% deposition efficiency and strong adhesion to the substrate. With existing technology, the entire active region of the ITER divertor surface could be coated with 2 mm of beryllium in less than 15 h using four small plasma spray guns. Beryllium also has other potential advantages over graphite, e.g., efficient gettering of oxygen, ten times less tritium inventory, reduced problems of transient fueling from D/T exchange and release, no runaway erosion cascades from self-sputtering, better adhesion of redeposited material, as well as higher strength, ductility, and fracture toughness than graphite. A 2-D finite element stress analysis was performed on a 3 mm thick Be tile brazed to an OFHC soft-copper saddle block, which was brazed to a high-strength copper tube. Peak stresses remained 50% below the ultimate strength for both brazing and in-service thermal stresses.

  16. Evaluation of Aluminum Participation in the Development of Reactive Waves in Shock Compressed HMX

    NASA Astrophysics Data System (ADS)

    Pahl, R. J.; Trott, W. M.; Snedigar, S.; Castañeda, J. N.

    2006-07-01

    A series of gas gun tests has been performed to examine contributions to energy release from micron-sized and nanometric aluminum powder added to sieved (212-300μm) HMX. In the absence of added metal, 4-mm-thick, low-density (64-68% of theoretical maximum density) pressings of the sieved HMX respond to modest shock loading by developing distinctive reactive waves that exhibit both temporal and mesoscale spatial fluctuations. Parallel tests have been performed on samples containing 10% (by mass) aluminum in two particle sizes: 2-μm and 123-nm mean particle diameter, respectively. The finely dispersed aluminum initially suppresses wave growth from HMX reactions; however, after a visible induction period, the added metal drives rapid increases in the transmitted wave particle velocity. Wave profile variations as a function of the aluminum particle diameter are discussed.

  17. The Influence of Sediment Isostatic Adjustment on Sea-Level Change and Land Motion along the US Gulf Coast

    NASA Astrophysics Data System (ADS)

    Kuchar, J.; Milne, G. A.; Wolstencroft, M.; Love, R.; Tarasov, L.; Hijma, M.

    2017-12-01

    Sea level rise presents a hazard for coastal populations and the Mississippi Delta (MD) is a region particularly at risk due to the high rates of land subsidence. We apply a gravitationally self-consistent model of glacial and sediment isostatic adjustment (SIA) along with a realistic sediment load reconstruction in this region for the first time to determine isostatic contributions to relative sea level (RSL) and land motion. We determine optimal model parameters (Earth rheology and ice history) using a new high quality compaction-free sea level indicator database and a parameter space of four ice histories and 400 Earth rheologies. Using the optimal model parameters, we show that SIA is capable of lowering predicted RSL in the MD area by several metres over the Holocene and so should be taken into account when modelling these data. We compare modelled contemporary rates of vertical land motion with those inferred using GPS. This comparison indicates that isostatic processes can explain the majority of the observed vertical land motion north of latitude 30.7oN, where subsidence rates average about 1 mm/yr; however, vertical rates south of this latitude shows large data-model discrepancies of greater than 3 mm/yr, indicating the importance of non-isostatic processes controlling the observed subsidence. This discrepancy extends to contemporary RSL change, where we find that the SIA contribution in the Delta is on the order of 10-1 mm per year. We provide estimates of the isostatic contributions to 20th and 21st century sea level rates at Gulf Coast PSMSL tide gauge locations as well as vertical and horizontal land motion at GPS station locations near the Mississippi Delta.

  18. Method of preparing an electrode material of lithium-aluminum alloy

    DOEpatents

    Settle, Jack L.; Myles, Kevin M.; Battles, James E.

    1976-01-01

    A solid compact having a uniform alloy composition of lithium and aluminum is prepared as a negative electrode for an electrochemical cell. Lithium losses during preparation are minimized by dissolving aluminum within a lithium-rich melt at temperatures near the liquidus temperatures. The desired alloy composition is then solidified and fragmented. The fragments are homogenized to a uniform composition by annealing at a temperature near the solidus temperature. After comminuting to fine particles, the alloy material can be blended with powdered electrolyte and pressed into a solid compact having the desired electrode shape. In the preparation of some electrodes, an electrically conductive metal mesh is embedded into the compact as a current collector.

  19. Calculated power distribution of a thermionic, beryllium oxide reflected, fast-spectrum reactor

    NASA Technical Reports Server (NTRS)

    Mayo, W.; Lantz, E.

    1973-01-01

    A procedure is developed and used to calculate the detailed power distribution in the fuel elements next to a beryllium oxide reflector of a fast-spectrum, thermionic reactor. The results of the calculations show that, although the average power density in these outer fuel elements is not far from the core average, the power density at the very edge of the fuel closest to the beryllium oxide is about 1.8 times the core avearge.

  20. Silver(II) Oxide or Silver(I,III) Oxide?

    ERIC Educational Resources Information Center

    Tudela, David

    2008-01-01

    The often called silver peroxide and silver(II) oxide, AgO or Ag[subscript 2]O[subscript 2], is actually a mixed oxidation state silver(I,III) oxide. A thermochemical cycle, with lattice energies calculated within the "volume-based" thermodynamic approach, explain why the silver(I,III) oxide is more stable than the hypothetical silver(II) oxide.…

  1. Process for HIP canning of composites

    NASA Technical Reports Server (NTRS)

    Juhas, John J. (Inventor)

    1990-01-01

    A single step is relied on in the canning process for hot isostatic pressing (HIP) metallurgy composites. The composites are made from arc sprayed and plasma sprayed monotape. The HIP can is of compatible refractory metal and is sealed at high vacuum and temperature. This eliminates outgassing during hot isostatic pressing.

  2. Influence of argon impurities on the elastic scattering of x-rays from imploding beryllium capsules

    DOE PAGES

    Saunders, A. M.; Chapman, D. A.; Kritcher, A. L.; ...

    2018-03-01

    Here, we investigate the effect of argon impurities on the elastic component of x-ray scattering spectra taken from directly driven beryllium capsule implosions at the OMEGA laser. The plasma conditions were obtained in a previous analysis [18] by fitting the inelastic scattering component. We show that the known argon impurity in the beryllium modifies the elastic scattering due to the larger number of bound electrons. We indeed find significant deviations in the elastic scattering from roughly 1 at.% argon contained in the beryllium. With knowledge of the argon impurity fraction, we use the elastic scattering component to determine the chargemore » state of the compressed beryllium, as the fits are rather insensitive to the argon charge state. Lastly, we discuss how doping small fractions of mid- or high-Z elements into low-Z materials could allow ionization balance studies in dense plasmas.« less

  3. Is beryllium-induced lung cancer caused only by soluble forms and high exposure levels?

    PubMed

    Schubauer-Berigan, Mary K; Couch, James R; Deddens, James A

    2017-08-01

    The US Occupational Safety and Health Administration (OSHA) recently proposed a permissible exposure limit of 0.2 µg/m 3 for beryllium, based partly on extrapolated estimates of lung cancer risk from a pooled occupational cohort. The purpose of the present analysis was to evaluate whether cohort members exposed at lower levels to mainly insoluble forms of beryllium exhibit increased risk of lung cancer. We conducted Cox proportional hazards regression analyses among 75 lung cancer cases in age-based risk sets within two lower exposure plants in the pooled cohort followed from 1940 to 2005. We used categorical and power models to evaluate exposure-response patterns for mean and cumulative beryllium exposures in the two-plant cohort, comparing findings with the full pooled cohort. We also evaluated the distribution of exposure-years in each cohort by solubility class (soluble, insoluble and mixed). 98% of workers in the two-plant cohort were hired between 1955 and 1969. The mean beryllium exposure averaged 1.3 µg/m 3 and the predominant form was insoluble. Adjusting for confounders, we observed a monotonic increase in lung cancer mortality across exposure categories in the two-plant cohort. The exposure-response coefficients (per unit ln exposure) were 0.270 (p=0.061) for mean exposure and 0.170 (p=0.033) for cumulative exposure, compared with 0.155 and 0.094 (respectively) in the full cohort. The low-exposure levels at these two plants and the predominance of insoluble beryllium suggest that the overall pooled cohort findings on which OSHA's lung cancer risk assessment is based are relevant for current workers exposed to any form of beryllium. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. Paper-based silver-nanowire electronic circuits with outstanding electrical conductivity and extreme bending stability.

    PubMed

    Huang, Gui-Wen; Xiao, Hong-Mei; Fu, Shao-Yun

    2014-08-07

    Here a facile, green and efficient printing-filtration-press (PFP) technique is reported for room-temperature (RT) mass-production of low-cost, environmentally friendly, high performance paper-based electronic circuits. The as-prepared silver nanowires (Ag-NWs) are uniformly deposited at RT on a pre-printed paper substrate to form high quality circuits via vacuum filtration and pressing. The PFP circuit exhibits more excellent electrical property and bending stability compared with other flexible circuits made by existing techniques. Furthermore, practical applications of the PFP circuits are demonstrated.

  5. Isostatic and Decompensative Gravity Anomalies of the Arabian Plate and Surrounding Regions: a Key for the Crustal Structure

    NASA Astrophysics Data System (ADS)

    Kaban, M. K.; El Khrepy, S.; Al-Arifi, N. S.

    2016-12-01

    The isostatic anomalies are often considered as one of the most useful correction of the gravity field for investigation of the upper crust structure in many practical applications. By applying this correction, a substantial part of the effect of deep density heterogeneity, which dominates in the Bouguer gravity anomaly, can be removed. With this approach, it is not even necessary to know the deep density structure of the crust and upper mantle in details; it is sufficient to prescribe some type of compensation (regional vs. local) and a compensation depth. However, even when all the parameters are chosen correctly, this reduction of the gravity field does not show the full gravity effect of unknown anomalies in the crust. The last ones should be also compensated to some extent; therefore their impact is substantially reduced by the isostatic compensation. Long ago (Cordell et al., 1991), it was suggested a so-called decompensative correction of the isostatic anomalies, which provides a possibility to separate these effects. However, the decompensative correction is very sensitive to the parameters of the compensation scheme. In the present study we analyse the ways to choose these parameters and extend this approach by assuming a possibility for the regional compensation via elastic deformations of the lithosphere. Based on this technique, we estimate the isostatic and decompensative anomalies for the Arabian plate and surrounding regions. The parameters of the isostatic model are chosen based on previous studies. It was demonstrated that the decompensative correction is very significant at the mid-range wavelengths and may exceed 100 mGal, therefore ignoring this effect would lead to wrong conclusions about the upper crust structure. The total amplitude of the decompensative anomalies reaches ±250 mGal, evidencing for both, large density anomalies of the upper crust (including sediments) and strong isostatic disturbances of the lithosphere. These results improve

  6. Tritium retention in S-65 beryllium after 100 eV plasma exposure

    NASA Astrophysics Data System (ADS)

    Causey, Rion A.; Longhurst, Glen R.; Harbin, Wally

    1997-02-01

    The tritium plasma experiment (TPE) has been used to measure the retention of tritium in S-65 beryllium under conditions similar to that expected for the international thermonuclear experimental reactor (ITER). Beryllium samples 2 mm thick and 50 mm in diameter were exposed to a plasma of tritium and deuterium. The particle flux striking the samples was varied from approximately 1 × 10 17 ( D + T)/ cm2s up to about 3 × 10 18 ( D + T)/ cm2s. The beryllium samples were negatively biased to elevate the energy of the impinging ions to 100 eV. The temperature of the samples was varied from 373 K to 973 K. Exposure times of 1 h were used. Subsequent to the plasma exposure, the samples were outgassed in a separate system where 99% He and 1% H 2 gas was swept over the samples during heating. The sweep gas along with the released tritium was sent through an ionization chamber, through a copper oxide catalyst bed, and into a series of glycol bubblers. The amount of released tritium was determined both by the ionization chamber and by liquid scintillation counting of the glycol. Tritium retention in the beryllium disks varied from a high of 2.4 × 10 17 ( D + T)/ cm2 at 373 K to a low of 1 × 10 16 ( D + T)/ cm2 at 573 K. For almost every case, the tritium retention in the beryllium was less than that calculated using the C = 0 boundary condition at the plasma facing surface. It is believed that this lower than expected retention is due to rapid release of tritium from the large specific surface area created in the implant zone due to the production of voids, bubbles, and blisters.

  7. Fracture Analysis of MWCNT/Epoxy Nanocomposite Film Deposited on Aluminum Substrate.

    PubMed

    Her, Shiuh-Chuan; Chien, Pao-Chu

    2017-04-13

    Multi-walled carbon nanotube (MWCNT) reinforced epoxy films were deposited on an aluminum substrate by a hot-pressing process. Three-point bending tests were performed to determine the Young's modulus of MWCNT reinforced nanocomposite films. Compared to the neat epoxy film, nanocomposite film with 1 wt % of MWCNT exhibits an increase of 21% in the Young's modulus. Four-point-bending tests were conducted to investigate the fracture toughness of the MWCNT/epoxy nanocomposite film deposited on an aluminum substrate with interfacial cracks. Based on the Euler-Bernoulli beam theory, the strain energy in a film/substrate composite beam is derived. The difference of strain energy before and after the propagation of the interfacial crack are calculated, leading to the determination of the strain energy release rate. Experimental test results show that the fracture toughness of the nanocomposite film deposited on the aluminum substrate increases with the increase in the MWCNT content.

  8. Analysis of a spaceborne mirror on a main plate with isostatic mounts

    NASA Astrophysics Data System (ADS)

    Chan, Chia-Yen; Lien, Chun-Chieh; Huang, Po-Hsuan; Chang, Shenq-Tsong; Huang, Ting-Ming

    2014-09-01

    The paper is aimed at obtaining the deformation results and optical aberration configurations of a spaceborne mirror made of ZERODUR® glass on a main plate with three isostatic mounts for a space Cassegrain telescope. On the rear side of the main plate four screws will be locked to fix the focal plane assembly. The locking modes for the four screws will be simulated as push and pull motions in the Z axis for simplification. The finite element analysis and Zernike polynomial fitting are applied to the whole integrated optomechanical analysis process. Under the analysis, three isostatic mounts are bonded to the neutral plane of the mirror. The deformation results and optical aberration configurations under six types of push and pull motions as well as self-weight loading have been obtained. In addition, the comparison between the results under push and pull motions with 0.01 mm and 0.1 mm displacements in Z axis will be attained.

  9. Influence of the Structural Dichotomy of Antarctic Lithosphere on Regional Glacial-Isostatic Adjustment

    NASA Astrophysics Data System (ADS)

    Klemann, V.; Rau, D.; Martinec, Z.; Wolf, D.

    2009-05-01

    The strong structural dichotomy between East and West Antarctica is related to the West Antarctic Rift. The rheological implications are a reduction of the elastic-lithosphere thickness by a factor of more than 2 from East to West Antarctica as well as a strongly reduced mantle viscosity below West Antarctica and the Antarctic Peninsula. For modelling glacial-isostatic adjustment, we use a global viscoelastic earth model and apply the spectral finite-element method for the solution of the field equations. Ice models ICE-5G and IJ05 are used for parameterizing the last Pleistocene deglaciation. Lateral viscosity variations in the upper mantle are derived from variations in seismic velocity by applying scaling laws. Considering also lateral variations in the lithosphere structure, we study the implications of lateral variability on the glacial-isostatic adjustment of Antarctica.

  10. Effective elastic thicknesses of the lithosphere and mechanisms of isostatic compensation in Australia

    NASA Technical Reports Server (NTRS)

    Zuber, Maria T.; Bechtel, Timothy D.; Forsyth, Donald W.

    1989-01-01

    The isostatic compensation of Australia is investigated using an isostatic model for the Australian lithosphere that assumes regional compensation of an elastic plate which undergoes flexure in response to surface and subsurface loading. Using the coherence between Bouguer gravity and topography and two separate gravity/topography data sets, it was found that, for the continent as a whole, loads with wavelengths above 1500 km are locally compensated. Loads with wavelengths in the range 600-1500 km are partially supported by regional stresses, and loads with wavelengths less than 600 km are almost entirely supported by the strength of the lithosphere. It was found that the predicted coherence for a flexural model of a continuous elastic plate does not provide a good fit to the observed coherence of central Australia. The disagreement between model and observations is explained.

  11. Isostatic GOCE Moho model for Iran

    NASA Astrophysics Data System (ADS)

    Eshagh, Mehdi; Ebadi, Sahar; Tenzer, Robert

    2017-05-01

    One of the major issues associated with a regional Moho recovery from the gravity or gravity-gradient data is the optimal choice of the mean compensation depth (i.e., the mean Moho depth) for a certain area of study, typically for orogens characterised by large Moho depth variations. In case of selecting a small value of the mean compensation depth, the pattern of deep Moho structure might not be reproduced realistically. Moreover, the definition of the mean compensation depth in existing isostatic models affects only low-degrees of the Moho spectrum. To overcome this problem, in this study we reformulate the Sjöberg and Jeffrey's methods of solving the Vening-Meinesz isostatic problem so that the mean compensation depth contributes to the whole Moho spectrum. Both solutions are then defined for the vertical gravity gradient, allowing estimating the Moho depth from the GOCE satellite gravity-gradiometry data. Moreover, gravimetric solutions provide realistic results only when a priori information on the crust and upper mantle structure is known (usually from seismic surveys) with a relatively good accuracy. To investigate this aspect, we formulate our gravimetric solutions for a variable Moho density contrast to account for variable density of the uppermost mantle below the Moho interface, while taking into consideration also density variations within the sediments and consolidated crust down to the Moho interface. The developed theoretical models are applied to estimate the Moho depth from GOCE data at the regional study area of the Iranian tectonic block, including also parts of surrounding tectonic features. Our results indicate that the regional Moho depth differences between Sjöberg and Jeffrey's solutions, reaching up to about 3 km, are caused by a smoothing effect of Sjöberg's method. The validation of our results further shows a relatively good agreement with regional seismic studies over most of the continental crust, but large discrepancies are

  12. Adsorption of beryllium atoms and clusters both on graphene and in a bilayer of graphite investigated by DFT.

    PubMed

    Ferro, Yves; Fernandez, Nicolas; Allouche, Alain; Linsmeier, Christian

    2013-01-09

    We herein investigate the interaction of beryllium with a graphene sheet and in a bilayer of graphite by means of periodic DFT calculations. In all cases, we find the beryllium atoms to be more weakly bonded on graphene than in the bilayer. Be(2) forms both magnetic and non-magnetic structures on graphene depending on the geometrical configuration of adsorption. We find that the stability of the Be/bilayer system increases with the size of the beryllium clusters inserted into the bilayer of graphite. We also find a charge transfer from beryllium to the graphite layers. All these results are analysed in terms of electronic structure.

  13. Analysis of beryllium and depleted uranium: An overview of detection methods in aerosols and soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camins, I.; Shinn, J.H.

    We conducted a survey of commercially available methods for analysis of beryllium and depleted uranium in aerosols and soils to find a reliable, cost-effective, and sufficiently precise method for researchers involved in environmental testing at the Yuma Proving Ground, Yuma, Arizona. Criteria used for evaluation include cost, method of analysis, specificity, sensitivity, reproducibility, applicability, and commercial availability. We found that atomic absorption spectrometry with graphite furnace meets these criteria for testing samples for beryllium. We found that this method can also be used to test samples for depleted uranium. However, atomic absorption with graphite furnace is not as sensitive amore » measurement method for depleted uranium as it is for beryllium, so we recommend that quality control of depleted uranium analysis be maintained by testing 10 of every 1000 samples by neutron activation analysis. We also evaluated 45 companies and institutions that provide analyses of beryllium and depleted uranium. 5 refs., 1 tab.« less

  14. Method for the recovery of silver from silver zeolite

    DOEpatents

    Reimann, G.A.

    1985-03-05

    High purity silver is recovered from silver exchanged zeolite used to capture radioactive iodine from nuclear reactor and nuclear fuel reprocessing environments. The silver exchanged zeolite is heated with slag formers to melt and fluidize the zeolite and release the silver, the radioactivity removing with the slag. The silver containing metallic impurities is remelted and treated with oxygen and a flux to remove the metal impurities. About 98% of the silver in the silver exchanged zeolite having a purity of 99% or better is recoverable by the method.

  15. Method for the recovery of silver from silver zeolite

    DOEpatents

    Reimann, George A.

    1986-01-01

    High purity silver is recovered from silver exchanged zeolite used to capture radioactive iodine from nuclear reactor and nuclear fuel reprocessing environments. The silver exchanged zeolite is heated with slag formers to melt and fluidize the zeolite and release the silver, the radioactivity removing with the slag. The silver containing metallic impurities is remelted and treated with oxygen and a flux to remove the metal impurities. About 98% of the silver in the silver exchanged zeolite having a purity of 99% or better is recoverable by the method.

  16. The effect of grain size on aluminum anodes for Al-air batteries in alkaline electrolytes

    NASA Astrophysics Data System (ADS)

    Fan, Liang; Lu, Huimin

    2015-06-01

    Aluminum is an ideal material for metallic fuel cells. In this research, different grain sizes of aluminum anodes are prepared by equal channel angular pressing (ECAP) at room temperature. Microstructure of the anodes is examined by electron backscatter diffraction (EBSD) in scanning electron microscope (SEM). Hydrogen corrosion rates of the Al anodes in 4 mol L-1 NaOH are determined by hydrogen collection method. The electrochemical properties of the aluminum anodes are investigated in the same electrolyte using electrochemical impedance spectroscopy (EIS) and polarization curves. Battery performance is also tested by constant current discharge at different current densities. Results confirm that the electrochemical properties of the aluminum anodes are related to grain size. Finer grain size anode restrains hydrogen evolution, improves electrochemical activity and increases anodic utilization rate. The proposed method is shown to effectively improve the performance of Al-air batteries.

  17. 20 CFR 30.508 - What is beryllium sensitivity monitoring?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ENERGY EMPLOYEES OCCUPATIONAL ILLNESS COMPENSATION PROGRAM ACT OF 2000 CLAIMS FOR COMPENSATION UNDER THE ENERGY EMPLOYEES OCCUPATIONAL ILLNESS COMPENSATION PROGRAM ACT OF 2000, AS AMENDED Survivors; Payments... has established chronic beryllium disease. ...

  18. Purfication kinetics of beryllium during vacuum induction melting

    NASA Technical Reports Server (NTRS)

    Mukherjee, J. L.; Gupta, K. P.; Li, C. H.

    1972-01-01

    The kinetics of evaporation in binary alloys were quantitatively treated. The formalism so developed works well for several systems studied. The kinetics of purification of beryllium was studied through evaporation data actually acquired during vacuum induction melting. Normal evaporation equations are shown to be generally valid and useful for understanding the kinetics of beryllium purification. The normal evaporation analysis has been extended to cover cases of limited liquid diffusion. It was shown that under steady-state evaporation, the solute concentration near the surface may be up to six orders of magnitude different from the bulk concentration. Corrections for limited liquid diffusion are definitely needed for the highly evaporative solute elements, such as Zn, Mg, and Na, for which the computed evaporation times are improved by five orders of magnitude. The commonly observed logarithmic relation between evaporation time and final concentration further supports the validity of the normal evaporation equations.

  19. Extensional Fault Evolution and its Flexural Isostatic Response During Iberia-Newfoundland Rifted Margin Formation

    NASA Astrophysics Data System (ADS)

    Gómez-Romeu, J.; Kusznir, N.; Manatschal, G.; Roberts, A.

    2017-12-01

    During the formation of magma-poor rifted margins, upper lithosphere thinning and stretching is achieved by extensional faulting, however, there is still debate and uncertainty how faults evolve during rifting leading to breakup. Seismic data provides an image of the present-day structural and stratigraphic configuration and thus initial fault geometry is unknown. To understand the geometric evolution of extensional faults at rifted margins it is extremely important to also consider the flexural response of the lithosphere produced by fault displacement resulting in footwall uplift and hangingwall subsidence. We investigate how the flexural isostatic response to extensional faulting controls the structural development of rifted margins. To achieve our aim, we use a kinematic forward model (RIFTER) which incorporates the flexural isostatic response to extensional faulting, crustal thinning, lithosphere thermal loads, sedimentation and erosion. Inputs for RIFTER are derived from seismic reflection interpretation and outputs of RIFTER are the prediction of the structural and stratigraphic consequences of recursive sequential faulting and sedimentation. Using RIFTER we model the simultaneous tectonic development of the Iberia-Newfoundland conjugate rifted margins along the ISE01-SCREECH1 and TGS/LG12-SCREECH2 seismic lines. We quantitatively test and calibrate the model against observed target data restored to breakup time. Two quantitative methods are used to obtain this target data: (i) gravity anomaly inversion which predicts Moho depth and continental lithosphere thinning and (ii) reverse post-rift subsidence modelling to give water and Moho depths at breakup time. We show that extensional faulting occurs on steep ( 60°) normal faults in both proximal and distal parts of rifted margins. Extensional faults together with their flexural isostatic response produce not only sub-horizontal exhumed footwall surfaces (i.e. the rolling hinge model) and highly rotated (60

  20. Carbothermic Aluminum Production Using Scrap Aluminum As A Coolant

    DOEpatents

    LaCamera, Alfred F.

    2002-11-05

    A process for producing aluminum metal by carbothermic reduction of alumina ore. Alumina ore is heated in the presence of carbon at an elevated temperature to produce an aluminum metal body contaminated with about 10-30% by wt. aluminum carbide. Aluminum metal or aluminum alloy scrap then is added to bring the temperature to about 900-1000.degree. C. and precipitate out aluminum carbide. The precipitated aluminum carbide is filtered, decanted, or fluxed with salt to form a molten body having reduced aluminum carbide content.

  1. X-ray radiography of cavitation in a beryllium alloy nozzle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duke, Daniel J.; Matusik, Katarzyna E.; Kastengren, Alan L.

    In this study, making quantitative measurements of the vapor distribution in a cavitating nozzle is difficult, owing to the strong scattering of visible light at gas–liquid boundaries and wall boundaries, and the small lengths and time scales involved. The transparent models required for optical experiments are also limited in terms of maximum pressure and operating life. Over the past few years, x-ray radiography experiments at Argonne’s Advanced Photon Source have demonstrated the ability to perform quantitative measurements of the line of sight projected vapor fraction in submerged, cavitating plastic nozzles. In this paper, we present the results of new radiographymore » experiments performed on a submerged beryllium nozzle which is 520 μm in diameter, with a length/diameter ratio of 6. Beryllium is a light, hard metal that is very transparent to x-rays due to its low atomic number. We present quantitative measurements of cavitation vapor distribution conducted over a range of non-dimensional cavitation and Reynolds numbers, up to values typical of gasoline and diesel fuel injectors. A novel aspect of this work is the ability to quantitatively measure the area contraction along the nozzle with high spatial resolution. Analysis of the vapor distribution, area contraction and discharge coefficients are made between the beryllium nozzle and plastic nozzles of the same nominal geometry. When gas is dissolved in the fuel, the vapor distribution can be quite different from that found in plastic nozzles of the same dimensions, although the discharge coefficients are unaffected. In the beryllium nozzle, there were substantially fewer machining defects to act as nucleation sites for the precipitation of bubbles from dissolved gases in the fuel, and as such the effect on the vapor distribution was greatly reduced.« less

  2. X-ray radiography of cavitation in a beryllium alloy nozzle

    DOE PAGES

    Duke, Daniel J.; Matusik, Katarzyna E.; Kastengren, Alan L.; ...

    2017-01-17

    In this study, making quantitative measurements of the vapor distribution in a cavitating nozzle is difficult, owing to the strong scattering of visible light at gas–liquid boundaries and wall boundaries, and the small lengths and time scales involved. The transparent models required for optical experiments are also limited in terms of maximum pressure and operating life. Over the past few years, x-ray radiography experiments at Argonne’s Advanced Photon Source have demonstrated the ability to perform quantitative measurements of the line of sight projected vapor fraction in submerged, cavitating plastic nozzles. In this paper, we present the results of new radiographymore » experiments performed on a submerged beryllium nozzle which is 520 μm in diameter, with a length/diameter ratio of 6. Beryllium is a light, hard metal that is very transparent to x-rays due to its low atomic number. We present quantitative measurements of cavitation vapor distribution conducted over a range of non-dimensional cavitation and Reynolds numbers, up to values typical of gasoline and diesel fuel injectors. A novel aspect of this work is the ability to quantitatively measure the area contraction along the nozzle with high spatial resolution. Analysis of the vapor distribution, area contraction and discharge coefficients are made between the beryllium nozzle and plastic nozzles of the same nominal geometry. When gas is dissolved in the fuel, the vapor distribution can be quite different from that found in plastic nozzles of the same dimensions, although the discharge coefficients are unaffected. In the beryllium nozzle, there were substantially fewer machining defects to act as nucleation sites for the precipitation of bubbles from dissolved gases in the fuel, and as such the effect on the vapor distribution was greatly reduced.« less

  3. Evaluation of Cyclic Behavior of Aircraft Turbine Disk Alloys

    NASA Technical Reports Server (NTRS)

    Shahani, V.; Popp, H. G.

    1978-01-01

    An evaluation of the cyclic behavior of three aircraft engine turbine disk materials was conducted to compare their relative crack initiation and crack propagation resistance. The disk alloys investigated were Inconel 718, hot isostatically pressed and forged powder metallurgy Rene '95, and as-hot-isostatically pressed Rene '95. The objective was to compare the hot isostatically pressed powder metallurgy alloy forms with conventionally processed superalloys as represented by Inconel 718. Cyclic behavior was evaluated at 650 C both under continuously cycling and a fifteen minute tensile hold time cycle to simulate engine conditions. Analysis of the test data were made to evaluate the strain range partitioning and energy exhaustion concepts for predicting hold time effects on low cycle fatigue.

  4. Calculation and Experiment of Adding Top Beryllium Shims for Iran MNSR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebadati, Javad; Rezvanifard, Mehdi; Shahabi, Iraj

    2006-07-01

    Miniature Neutron Source Reactor which is called MNSR were put into operation on June 1994 in Esfahan Nuclear Technology Center (ENTC). At that time the excess reactivity at the cold condition was 3.85 mk. After 7 years of operation and fuel consumption the reactivity was reduced to 2.90 mk. To compensate this reduction and upgrade the reactor, Beryllium Shim were used at the top of the core. This paper discusses the steps for this accurate and sensitive task. Finally a layer of 1.5 mm Beryllium were added to restore the reactor life. (authors)

  5. Elemental Analysis of Beryllium Samples Using a Microzond-EGP-10 Unit

    NASA Astrophysics Data System (ADS)

    Buzoverya, M. E.; Karpov, I. A.; Gorodnov, A. A.; Shishpor, I. V.; Kireycheva, V. I.

    2017-12-01

    Results concerning the structural and elemental analysis of beryllium samples obtained via different technologies using a Microzond-EGP-10 unit with the help of the PIXE and RBS methods are presented. As a result, the overall chemical composition and the nature of inclusions were determined. The mapping method made it possible to reveal the structural features of beryllium samples: to select the grains of the main substance having different size and chemical composition, to visualize the interfaces between the regions of different composition, and to describe the features of the distribution of impurities in the samples.

  6. Effect of a high temperature and hydrostatic pressure on the structure and the properties of a high-strength cast AM5 (the 201.2 alloy type) aluminum alloy

    NASA Astrophysics Data System (ADS)

    Akopyan, T. K.; Padalko, A. G.; Belov, N. A.; Shurkin, P. K.

    2016-07-01

    The phase-transition temperatures of a high-strength cast AM5 aluminum alloy are determined at atmospheric pressure and an excess pressure of 100 MPa using differential barothermic analysis (DBA) and classical differential thermal analysis (DTA). An excess pressure of 100 MPa is shown to increase the critical temperatures of the alloy by 12-17°C (including an increase in the solidus temperature by 12°C), which makes it possible to increase the hot isostatic pressing (HIP) temperature above the temperature of heating for quenching. The following three barothermal treatment schedules at p = 100 MPa and τ = 3 h, which have different isothermal holding temperatures, are chosen to study the influence of HIP on the structure and the properties of alloy AM5 castings: HIP1 ( t 1 = 505 ± 2°C), HIP2 ( t 2 = 520 ± 2°C), and HIP3 ( t 3 = 540 ± 2°C). High-temperature HIP treatment is found to increase the casting density and improve the morphology of secondary phases additionally, which ensures an increase in the plasticity of the alloy. In particular, the plasticity of the alloy after heat treatment according to schedule HIP3 + T6 (T6 means artificial aging to achieve the maximum strength) increases by a factor of ˜1.5.

  7. Uptake of Au(III) Ions by Aluminum Hydroxide and Their Spontaneous Reduction to Elemental Gold (Au(0)).

    PubMed

    Yokoyama; Matsukado; Uchida; Motomura; Watanabe; Izawa

    2001-01-01

    The behavior of AuCl(4)(-) ions during the formation of aluminum hydroxide at pH 6 was examined. With an increase in NaCl concentration, the content of gold taken up by aluminum hydroxide decreased, suggesting that chloro-hydroxy complexes of Au(III) ion were taken up due to the formation of Al-O-Au bonds. It was found unexpectedly that the Au(III) ions taken up were spontaneously reduced to elemental gold without addition of a specific reducing reagent and then colloidal gold particles were formed. The mechanisms for the uptake of Au(III) ions by aluminum hydroxide and for their spontaneous reduction are discussed. Copyright 2001 Academic Press.

  8. 75 FR 80734 - Chronic Beryllium Disease Prevention Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ... Disease Prevention Program AGENCY: Office of Health, Safety and Security, Department of Energy. ACTION... and comments on issues related to its current chronic beryllium disease prevention program. The... disease prevention program. DATES: All comments on the issues presented in this document must be received...

  9. Gas hydrate dissociation off Svalbard induced by isostatic rebound rather than global warming.

    PubMed

    Wallmann, Klaus; Riedel, M; Hong, W L; Patton, H; Hubbard, A; Pape, T; Hsu, C W; Schmidt, C; Johnson, J E; Torres, M E; Andreassen, K; Berndt, C; Bohrmann, G

    2018-01-08

    Methane seepage from the upper continental slopes of Western Svalbard has previously been attributed to gas hydrate dissociation induced by anthropogenic warming of ambient bottom waters. Here we show that sediment cores drilled off Prins Karls Foreland contain freshwater from dissociating hydrates. However, our modeling indicates that the observed pore water freshening began around 8 ka BP when the rate of isostatic uplift outpaced eustatic sea-level rise. The resultant local shallowing and lowering of hydrostatic pressure forced gas hydrate dissociation and dissolved chloride depletions consistent with our geochemical analysis. Hence, we propose that hydrate dissociation was triggered by postglacial isostatic rebound rather than anthropogenic warming. Furthermore, we show that methane fluxes from dissociating hydrates were considerably smaller than present methane seepage rates implying that gas hydrates were not a major source of methane to the oceans, but rather acted as a dynamic seal, regulating methane release from deep geological reservoirs.

  10. Thermally stable and high reflectivity Al-doped silver thin films deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Loka, Chadrasekhar; Lee, Kwang; Joo, Sin Yong; Lee, Kee-Sun

    2018-03-01

    Thermally stable, high reflectance thin film coatings are indispensable in optoelectronic devices, especially as a potential back reflector for LEDs and solar cells. The silver has the drawback of agglomerating easily and poor thermal stability, which is limiting its application as a highly reflective coating in various optoelectronic applications. In this study, improved thermal stability by modification of the Ag film into an Ag/Al-doped Ag structure has been confirmed. In this paper, the surface morphology, optical reflectance, and thermal stability of the Ag/Al-doped Ag are investigated. The Ag/Al-doped Ag/sapphire films showed excellent thermal stability after annealing the films at 523 K with the highest reflectance about ∼86% as compared to the pure Ag films. The grain growth analysis results revealed that the Al-doping is effective to restrain the severe grain growth of silver films. The Auger electron spectroscopy results revealed that the outer diffusion of aluminum and the formation of Al-O bond at the outermost silver layer which is beneficial to retard the Ag grain growth.

  11. Thallium 2223 high T(sub c) superconductor in a silver matrix and its magnetic shielding, hermalcycle and time aging properties

    NASA Technical Reports Server (NTRS)

    Fei, X.; He, W. S.; Havenhill, A.; Ying, Z. Q.; Xin, Y.; Alzayed, N.; Wong, K. K.; Guo, Y.; Reichle, D.; Lucas, M. S. P.

    1995-01-01

    Superconducting Tl2Ba2Ca2Cu3O10 (Tl2223) was ground to powder. Mixture with silver powder (0-80% weight) and press to desired shape. After proper annealing, one can get good silver-content Tl2223 bulk superconductor. It is time-stable and has good superconducting property as same as pure Tl2223. It also has better mechanical property and far better thermal cycle property than pure Tl2223.

  12. Thallium 2223 high Tc superconductor in a silver matrix and its magnetic shielding, hermal cycle and time aging properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fei, X.; He, W.S.; Havenhill, A.

    1994-12-31

    Superconducting Tl{sub 2}Ba{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10} (Tl2223) was ground to powder. Mixture with silver powder (0--80% weight) and press to desired shape. After proper annealing, one can get good silver-content Tl2223 bulk superconductor. It is time-stable and has good superconducting property as same as pure Tl2223. It also has better mechanical property and far better thermal cycle property than pure Tl2223.

  13. Tribological properties of PM212: A high-temperature, self-lubricating, powder metallurgy composite

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Sliney, Harold E.

    1989-01-01

    This paper describes a research program to develop and evaluate a new high temperature, self-lubricating powder metallurgy composite, PM212. PM212 has the same composition as the plasma-sprayed coating, PS212, which contains 70 wt percent metal-bonded chromium carbide, 15 wt percent silver and 15 wt percent barium fluoride/calcium fluoride eutectic. The carbide acts as a wear resistant matrix and the silver and fluorides act as low and high temperature lubricants, respectively. The material is prepared by sequential cold press, cold isostatic pressing and sintering techniques. In this study, hemispherically tipped wear pins of PM212 were prepared and slid against superalloy disks at temperatures from 25 to 850 C in air in a pin-on-disk tribometer. Friction coefficients range from 0.29 to 0.38 and the wear of both the composite pins and superalloy disks was moderate to low in the 10(exp -5) to 10(exp -6) cubic mm/N-m range. Preliminary tests indicate that the material has a compressive strength of at least 130 MPa over the entire temperature range of 25 to 900 C. This material has promise for use as seal inserts, bushings, small inside diameter parts and other applications where plasma-sprayed coatings are impractical or too costly.

  14. Tribological properties of PM212 - A high temperature, self-lubricating, powder metallurgy composite

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Sliney, Harold E.

    1990-01-01

    This paper describes a research program to develop and evaluate a new high temperature, self-lubricating powder metallurgy composite, PM212. PM212 has the same composition as the plasma-sprayed coating, PS212, which contains 70 wt percent metal-bonded chromium carbide, 15 wt percent silver and 15 wt percent barium fluoride/calcium fluoride eutectic. The carbide acts as a wear resistant matrix and the silver and fluorides act as low and high temperature lubricants, respectively. The material is prepared by sequential cold press, cold isostatic pressing and sintering techniques. In this study, hemispherically tipped wear pins of PM212 were prepared and slid against superalloy disks at temperatures from 25 to 850 C in air in a pin-on-disk tribometer. Friction coefficients range from 0.29 to 0.38 and the wear of both the composite pins and superalloy disks was moderate to low in the 10(exp -5) to 10(exp -6) cubic mm/N-m range. Preliminary tests indicate that the material has a compressive strength of at least 130 MPa over the entire temperature range of 25 to 900 C. This material has promise for use as seal inserts, bushings, small inside diameter parts and other applications where plasma-sprayed coatings are impractical or too costly.

  15. Health hazard evaluation report No. HETA 81-163-1190, GTE Sylvania, Winchester, Kentucky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frederick, L.; Zey, J.; Rinsky, R.

    1982-09-01

    On January 14, 1981, NIOSH received a request to investigate five cases of sarcoidosis which occurred over a 5-year period among 750 employees who manufacture specialty light bulbs. The medical/epidemiological evaluation consisted of interviews with the five patients, a review of their medical and personnel records, a search for commonalities among the cases, and an attempt to determine usual incidence rates for sarcoidosis in the general population. NIOSH found that only four of the five identified cases had sarcoidosis as a final diagnosis, three of which were biopsy-confirmed. The fourth had no biopsy, but the other medical findings were characteristicsmore » of sarcoidosis. Environmental sampling was conducted for halogenated gases (hydrogen bromide, methyl iodide, and dibromomethane), isopropyl alcohol, ethyl alcohol, methyl alcohol, n-amyl acetate, and inorganic metals including lead, aluminum, silver, iron, zinc, magnesium, phosphorus, and beryllium. Airborne concentrations for all personal exposures were well below currently acceptable limits. NIOSH found no commonalities among the group other than working at the same plant. There were no biologically significant occupational exposures, and specifically, no exposure to beryllium. We were unable to establish a casual relationship between the cases and the work environment.« less

  16. Experimental investigation of amount of nano-Al2O3 on mechanical properties of Al-based nano-composites fabricated by powder metallurgy (PM)

    NASA Astrophysics Data System (ADS)

    Razzaqi, A.; Liaghat, Gh.; Razmkhah, O.

    2017-10-01

    In this paper, mechanical properties of Aluminum (Al) matrix nano-composites, fabricated by Powder Metallurgy (PM) method, has been investigated. Alumina (Al2O3) nano particles were added in amounts of 0, 2.5, 5, 7.5 and 10 weight percentages (wt%). For this purpose, Al powder (particle size: 20 µm) and nano-Al2O3 (particle size: 20 nm) in various weight percentages were mixed and milled in a blade mixer for 15 minutes in 1500 rpm. Then, the obtained mixture, compacted by means of a two piece die and uniaxial cold press of about 600 MPa and cold iso-static press (CIP), required for different tests. After that, the samples sintered in 600°C for 90 minutes. Compression and three-point bending tests performed on samples and the results, led us to obtain the optimized particle size for achieving best mechanical properties.

  17. Antibacterial activity and toxicity of silver - nanosilver versus ionic silver

    NASA Astrophysics Data System (ADS)

    Kvitek, L.; Panacek, A.; Prucek, R.; Soukupova, J.; Vanickova, M.; Kolar, M.; Zboril, R.

    2011-07-01

    The in vitro study of antibacterial activity of silver nanoparticles (NPs), prepared via modified Tollens process, revealed high antibacterial activity even at very low concentrations around several units of mg/L. These concentrations are comparable with concentrations of ionic silver revealing same antibacterial effect. However, such low concentrations of silver NPs did not show acute cytotoxicity to mammalian cells - this occurs at concentrations higher than 60 mg/L of silver, while the cytotoxic level of ionic silver is much more lower (approx. 1 mg/L). Moreover, the silver NPs exhibit lower acute ecotoxicity against the eukaryotic organisms such as Paramecium caudatum, Monoraphidium sp. and D. melanogaster. The silver NPs are toxic to these organisms at the concentrations higher than 30 mg/L of silver. On contrary, ionic silver retains its cytoxicity and ecotoxicity even at the concentration equal to 1 mg/L. The performed experiments demonstrate significantly lower toxicity of silver NPs against the eukaryotic organisms than against the prokaryotic organisms.

  18. Microstructure and Mechanical Properties of Long Ti-6Al-4V Rods Additively Manufactured by Selective Electron Beam Melting Out of a Deep Powder Bed and the Effect of Subsequent Hot Isostatic Pressing

    NASA Astrophysics Data System (ADS)

    Lu, S. L.; Tang, H. P.; Ning, Y. P.; Liu, N.; StJohn, D. H.; Qian, M.

    2015-09-01

    An array of eight long Ti-6Al-4V rods (diameter: 12 mm; height: 300 mm) have been additively manufactured, vertically and perpendicular to the powder bed, by selective electron beam melting (SEBM). The purpose was to identify and understand the challenges of fabricating Ti-6Al-4V samples or parts from a deep powder bed (more than 200-mm deep) by SEBM and the necessity of applying post heat treatment. The resulting microstructure and mechanical properties of these Ti-6Al-4V rods were characterized along their building ( i.e., axial) direction by dividing each rod into three segments (top, middle, and bottom), both before ( i.e., as-built) and after hot isostatic pressing (HIP). The as-built microstructure of each rod was inhomogeneous; it was coarsest in the top segment, which showed a near equilibrium α- β lamellar structure, and finest in the bottom segment, which featured a non-equilibrium mixed structure. The tensile properties varied along the rod axis, especially the ductility, but all tensile properties met the requirements specified by ASTM F3001-14. HIP increased the relative density from 99.03 pct of the theoretical density (TD) to 99.90 pct TD and homogenized the microstructure thereby leading to highly consistent tensile properties along the rod axis. The temperature of the stainless steel substrate used in the powder bed was monitored. The as-built inhomogeneous microstructure is attributed to the temperature gradient in the deep powder bed. Post heat treatment is thus necessary for Ti-6Al-4V samples or parts manufactured from a deep powder bed by SEBM. This differs from the additive manufacturing of small samples or parts from a shallow powder bed (less than 100-mm deep) by SEBM.

  19. Analysis of Dependence of the Properties of Alloy V95 on the Pressure Applied to Crystallizing Metal

    NASA Astrophysics Data System (ADS)

    Korostelev, V. F.; Khromova, L. P.; Denisov, M. S.

    2017-05-01

    Results of a study aimed at formation of a single-phase fine-grained structure in pistons from aluminum alloy V95 in the process of their fabrication, which involves isostatic pressing of liquid metal before the start of crystallization, application of pressure to the crystallizing metal, and holding under pressure in the process of cooling to the shop temperature, are presented. The ultimate strength and the structure of alloy V95 after casting with imposition of pressure are determined. An example of application of the method suggested for fabricating cast billets ∅ 82 × 70 mm in size with a uniform dense structure without gas shrinkage defects, volume and dendritic segregation is considered.

  20. Comparisons of global topographic/isostatic models to the Earth's observed gravity field

    NASA Technical Reports Server (NTRS)

    Rummel, Reiner; Rapp, Richard H.; Suenkel, Hans; Tscherning, C. Christian

    1988-01-01

    The Earth's gravitational potential, as described by a spherical harmonic expansion to degree 180, was compared to the potential implied by the topography and its isostatic compensation using five different hypothesis. Initially, series expressions for the Airy/Heiskanen topographic isostatic model were developed to the third order in terms of (h/R), where h is equivalent rock topography and R is a mean Earth radius. Using actual topographic developments for the Earth, it was found that the second and third terms of the expansion contributed 30 and 3 percents, of the first of the expansion. With these new equations it is possible to compute depths (D) of compensation, by degree, using 3 different criteria. The results show that the average depth implied by criterion I is 60 km while it is about 33 km for criteria 2 and 3 with smaller compensation depths at the higher degrees. Another model examined was related to the Vening-Meinesz regional hypothesis implemented in the spectral domain. Finally, oceanic and continental response functions were derived for the global data sets and comparisons made to locally determined values.

  1. ZIRCONIUM-TITANIUM-BERYLLIUM BRAZING ALLOY

    DOEpatents

    Gilliland, R.G.; Patriarca, P.; Slaughter, G.M.; Williams, L.C.

    1962-06-12

    A new and improved ternary alloy is described which is of particular utility in braze-bonding parts made of a refractory metal selected from Group IV, V, and VI of the periodic table and alloys containing said metal as a predominating alloying ingredient. The brazing alloy contains, by weight, 40 to 50 per cent zirconium, 40 to 50 per cent titanium, and the balance beryllium in amounts ranging from 1 to 20 per cent, said alloy having a melting point in the range 950 to 1400 deg C. (AEC)

  2. Global isostatic geoid anomalies for plate and boundary layer models of the lithosphere

    NASA Technical Reports Server (NTRS)

    Hager, B. H.

    1981-01-01

    Commonly used one dimensional geoid models predict that the isostatic geoid anomaly over old ocean basins for the boundary layer thermal model of the lithosphere is a factor of two greater than that for the plate model. Calculations presented, using the spherical analogues of the plate and boundary layer thermal models, show that for the actual global distribution of plate ages, one dimensional models are not accurate and a spherical, fully three dimensional treatment is necessary. The maximum difference in geoid heights predicted for the two models is only about two meters. The thermal structure of old lithosphere is unlikely to be resolvable using global geoid anomalies. Stripping the effects of plate aging and a hypothetical uniform, 35 km, isostatically-compensated continental crust from the observed geoid emphasizes that the largest-amplitude geoid anomaly is the geoid low of almost 120 m over West Antarctica, a factor of two greater than the low of 60 m over Ceylon.

  3. Electrocatalytic activity of silver decorated ceria microspheres for the oxygen reduction reaction and their application in aluminium-air batteries.

    PubMed

    Sun, Shanshan; Xue, Yejian; Wang, Qin; Li, Shihua; Huang, Heran; Miao, He; Liu, Zhaoping

    2017-07-11

    Nanosheet-constructing porous CeO 2 microspheres with silver nanoparticles anchored on the surface were developed as a highly efficient oxygen reduction reaction (ORR) catalyst. The aluminum-air batteries applying Ag-CeO 2 as the ORR catalyst exhibit a high output power density and low degradation rate of 345 mW cm -2 and 2.6% per 100 h, respectively.

  4. An isostatic model for the Tharsis province, Mars

    NASA Technical Reports Server (NTRS)

    Sleep, N. H.; Phillips, R. J.

    1979-01-01

    A crust-upper mantle configuration is proposed for the Tharsis province of Mars which is isostatic and satisfies the observed gravity data. The model is that of a low density upper mantle compensating loads at both the surface and crust-mantle boundary. Solutions are found for lithospheric thickness greater than about 300 km, for which the stress differences are less than 750 bars. This model for Tharsis is similar to the compensation mechanism under the Basin and Range province of the western United States. These provinces also compare favorably in the sense that they are both elevated regions of extensional tectonics and extensive volcanism.

  5. Analytical results and sample locality map of heavy-mineral-concentrate and rock samples from the Castle Peaks Wilderness Study Area (CDCA- 266), San Bernardino County, California

    USGS Publications Warehouse

    Adrian, B.M.; Frisken, J.G.; Malcolm, M.J.; Crock, J.G.

    1986-01-01

    The report presents water-quality and geohydrologic information for 106 public water-supply wells in Illinois. These wells were sampled during April to December 1984 as part of a pilot program to develop a ground-water observation network in the State. The pilot program was designed to sample single-aquifer wells from three major aquifer systems--(1) sand and gravel, both confined and unconfined; (2) Silurian dolomite; and (3) the Ironton-Galesville deep sandstone. Data are tabulated for water temperature, pH, specific conductance, oxidation-reduction potential, ammonia nitrogen, nitrate + nitrite nitrogen, phosphorus, silica, arsenic, lead, mercury, fluoride, chloride, sulfate, cyanide, phenols, selenium, residue on evaporation at 180 degrees Celsius, alkalinity, calcium, magnesium, sodium, potassium, barium, boron, beryllium, cadmium, chormium, copper, cobalt, iron, aluminum, manganese, nickel, silver, strontium, vanadium, zinc, and selected geohydrologic information.

  6. The Relationship of Aluminium and Silver to Neural Tube Defects; a Case Control

    PubMed Central

    Ramírez-Altamirano, María de Jesús; Fenton-Navarro, Patricia; Sivet-Chiñas, Elvira; Harp-Iturribarria, Flor de María; Martínez-Cruz, Ruth; Cruz, Pedro Hernández; Cruz, Margarito Martínez; Pérez-Campos, Eduardo

    2012-01-01

    Objective The purpose of this study was to identify the relationship of neurotoxic inorganic elements in the hair of patients with the diagnosis of Neural Tube Defects. Our initial hypothesis was that neurotoxic inorganic elements were associated with Neural Tube Defects. Methods Twenty-three samples of hair from newborns were obtained from the General Hospital, “Aurelio Valdivieso” in the city of Oaxaca, Mexico. The study group included 8 newborn infants with neural tube pathology. The control group was composed of 15 newborns without this pathology. The presence of inorganic elements in the hair samples was determined by inductively-coupled plasma spectroscopy (spectroscopic emission of the plasma). Findings The population of newborns with Neural Tube Defects showed significantly higher values of the following elements than the control group: Aluminium, Neural Tube Defects 152.77±51.06 µg/g, control group 76.24±27.89 µg/g; Silver, Neural Tube Defects 1.45±0.76, control group 0.25±0.53 µg/g; Potassium, Neural Tube Defects 553.87±77.91 µg/g, control group 341.13±205.90 µg/g. Association was found at 75 percentile between aluminium plus silver, aluminium plus potassium, silver plus potassium, and potassium plus sodium. Conclusion In the hair of newborns with Neural Tube Defects, the following metals were increased: aluminium, silver. Given the neurotoxicity of the same, and association of Neural Tube Defects with aluminum and silver, one may infer that they may be participating as factors in the development of Neural Tube Defects. PMID:23400307

  7. Sound Velocity and Strength of Beryllium along the Principal Hugoniot using Quartz Windows

    NASA Astrophysics Data System (ADS)

    McCoy, Chad; Knudson, Marcus; Desjarlais, Michael

    2017-06-01

    The measurement of the interface wave profile is a traditional method to determine the strength of a shocked material. A novel technique was developed to enable wave profile measurements with quartz windows, extending the range of pressures where wave profile measurements are possible beyond lithium fluoride windows. The technique uses the quartz sound velocity to map Lagrangian characteristics from the shock front back to the material interface and determine the particle velocity profile in a sample. This technique was applied to experiments conducted on beryllium at the Sandia Z Accelerator. We present measurements of the longitudinal and bulk sound velocity across the beryllium shock-melt transition and the strength of solid beryllium for pressures from 130 to 200 GPa. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. Isostatic gravity map with simplified geology of the Los Angeles 30 x 60 minute quadrangle

    USGS Publications Warehouse

    Wooley, R.J.; Yerkes, R.F.; Langenheim, V.E.; Chuang, F.C.

    2003-01-01

    This isostatic residual gravity map is part of the Southern California Areal Mapping Project (SCAMP) and is intended to promote further understanding of the geology in the Los Angeles 30 x 60 minute quadrangle, California, by serving as a basis for geophysical interpretations and by supporting both geological mapping and topical (especially earthquake) studies. Local spatial variations in the Earth's gravity field (after various corrections for elevation, terrain, and deep crustal structure explained below) reflect the lateral variation in density in the mid- to upper crust. Densities often can be related to rock type, and abrupt spatial changes in density commonly mark lithologic boundaries. The map shows contours of isostatic gravity overlain on a simplified geology including faults and rock types. The map is draped over shaded-relief topography to show landforms.

  9. Oral toxicity of silver ions, silver nanoparticles and colloidal silver--a review.

    PubMed

    Hadrup, Niels; Lam, Henrik R

    2014-02-01

    Orally administered silver has been described to be absorbed in a range of 0.4-18% in mammals with a human value of 18%. Based on findings in animals, silver seems to be distributed to all of the organs investigated, with the highest levels being observed in the intestine and stomach. In the skin, silver induces a blue-grey discoloration termed argyria. Excretion occurs via the bile and urine. The following dose-dependent animal toxicity findings have been reported: death, weight loss, hypoactivity, altered neurotransmitter levels, altered liver enzymes, altered blood values, enlarged hearts and immunological effects. Substantial evidence exists suggesting that the effects induced by particulate silver are mediated via silver ions that are released from the particle surface. With the current data regarding toxicity and average human dietary exposure, a Margin of Safety calculation indicates at least a factor of five before a level of concern to the general population is reached. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Impact of HFIR LEU Conversion on Beryllium Reflector Degradation Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilas, Dan

    2013-10-01

    An assessment of the impact of low enriched uranium (LEU) conversion on the factors that may cause the degradation of the beryllium reflector is performed for the High Flux Isotope Reactor (HFIR). The computational methods, models, and tools, comparisons with previous work, along with the results obtained are documented and discussed in this report. The report documents the results for the gas and neutronic poison production, and the heating in the beryllium reflector for both the highly enriched uranium (HEU) and LEU HFIR configurations, and discusses the impact that the conversion to LEU may have on these quantities. A time-averagingmore » procedure was developed to calculate the isotopic (gas and poisons) production in reflector. The sensitivity of this approach to different approximations is gauged and documented. The results show that the gas is produced in the beryllium reflector at a total rate of 0.304 g/cycle for the HEU configuration; this rate increases by ~12% for the LEU case. The total tritium production rate in reflector is 0.098 g/cycle for the HEU core and approximately 11% higher for the LEU core. A significant increase (up to ~25%) in the neutronic poisons production in the reflector during the operation cycles is observed for the LEU core, compared to the HEU case, for regions close to the core s horizontal midplane. The poisoning level of the reflector may increase by more than two orders of magnitude during long periods of downtime. The heating rate in the reflector is estimated to be approximately 20% lower for the LEU core than for the HEU core. The decrease is due to a significantly lower contribution of the heating produced by the gamma radiation for the LEU core. Both the isotopic (gas and neutronic poisons) production and the heating rates are spatially non-uniform throughout the beryllium reflector volume. The maximum values typically occur in the removable reflector and close to the midplane.« less

  11. The effect of processing and compositional changes on the tribology of PM212 in air

    NASA Technical Reports Server (NTRS)

    Bogdanski, Michael S.; Sliney, Harold E.; Dellacorte, Christopher

    1993-01-01

    The effects of processing and compositional variations on the tribological performance of PM212 were studied. PM212 is a self lubricating powder metallurgy composite, comprised of a wear resistant metal bonded chromium carbide matrix, containing the solid lubricants barium fluoride/calcium fluoride eutectic and silver. Several composites were formulated which had lubricant, matrix, and processing variations. Processing variations included sintering and hot isostatic pressing. Pins fabricated from the composites were slid against superalloys disks in a pin-on-disk tribometer to study the tribological properties. Several composites exhibited low friction and wear in sliding against a nickel based superalloy. The tribological performance by several different composites showed that the composition of PM212 can be altered without dramatically affecting performance.

  12. Silver deposition and tissue staining associated with wound dressings containing silver.

    PubMed

    Walker, Michael; Cochrane, Christine A; Bowler, Philip G; Parsons, David; Bradshaw, Peter

    2006-01-01

    Argyria is the general term used to denote a clinical condition in which excessive administration and deposition of silver causes a permanent irreversible gray-blue discoloration of the skin or mucous membranes. The amount of discoloration usually depends on the route of silver delivery (ie, oral or topical administration) along with the body's ability to absorb and excrete the administered silver compound. Argyria is accepted as a rare dermatosis but once silver particles are deposited, they remain immobile and may accumulate during the aging process. Topical application of silver salts (eg, silver nitrate solution) may lead to transient skin staining. To investigate their potential to cause skin staining, two silver-containing dressings (Hydrofiber and nanocrystalline) were applied to human skin samples taken from electively amputated lower limbs. The potential for skin discoloration was assayed using atomic absorption spectroscopy. When the dressings were hydrated with water, a significantly higher amount of silver was released from the nanocrystalline dressing compared to the Hydrofiber dressing (P <0.005), which resulted in approximately 30 times more silver deposition. In contrast, when saline was used as the hydration medium, the release rates were low for both dressings and not significantly different (silver deposition was minimal). Controlling the amount of silver released from silver-containing dressings should help reduce excessive deposition of silver into wound tissue and minimize skin staining.

  13. Predicting Print-thru for the Sub-scale Beryllium Mirror Demonstrator (SBMD)

    NASA Technical Reports Server (NTRS)

    Craig, Larry; J. Kevin Russell (Technical Monitor)

    2002-01-01

    This document presents a finite element method for predicting print-thru or quilting for a lightweight mirror in a low temperature environment. The mirror is represented with quadrilateral and triangular plate finite elements. The SBMD (Sub-scale Beryllium Mirror Demonstrator) is circular with a diameter of 50 cm and one flat side. The mirror structure is a thin-wall triangular cell core with a single facesheet. There is a 4 mm radius fillet between the facesheet and cell walls. It is made entirely of Beryllium. It is assumed that polishing the mirror surface creates a thin surface layer with different material properties. Finite element results are compared with measured values at cryogenic temperatures.

  14. Comparison of plastic, high density carbon, and beryllium as indirect drive NIF ablators

    NASA Astrophysics Data System (ADS)

    Kritcher, A. L.; Clark, D.; Haan, S.; Yi, S. A.; Zylstra, A. B.; Callahan, D. A.; Hinkel, D. E.; Berzak Hopkins, L. F.; Hurricane, O. A.; Landen, O. L.; MacLaren, S. A.; Meezan, N. B.; Patel, P. K.; Ralph, J.; Thomas, C. A.; Town, R.; Edwards, M. J.

    2018-05-01

    Detailed radiation hydrodynamic simulations calibrated to experimental data have been used to compare the relative strengths and weaknesses of three candidate indirect drive ablator materials now tested at the NIF: plastic, high density carbon or diamond, and beryllium. We apply a common simulation methodology to several currently fielded ablator platforms to benchmark the model and extrapolate designs to the full NIF envelope to compare on a more equal footing. This paper focuses on modeling of the hohlraum energetics which accurately reproduced measured changes in symmetry when changes to the hohlraum environment were made within a given platform. Calculations suggest that all three ablator materials can achieve a symmetric implosion at a capsule outer radius of ˜1100 μm, a laser energy of 1.8 MJ, and a DT ice mass of 185 μg. However, there is more uncertainty in the symmetry predictions for the plastic and beryllium designs. Scaled diamond designs had the most calculated margin for achieving symmetry and the highest fuel absorbed energy at the same scale compared to plastic or beryllium. A comparison of the relative hydrodynamic stability was made using ultra-high resolution capsule simulations and the two dimensional radiation fluxes described in this work [Clark et al., Phys. Plasmas 25, 032703 (2018)]. These simulations, which include low and high mode perturbations, suggest that diamond is currently the most promising for achieving higher yields in the near future followed by plastic, and more data are required to understand beryllium.

  15. Mechanisms of Superplastic Deformation of Nanocrystalline Silicon Carbide Ceramics

    DTIC Science & Technology

    2012-08-01

    These included the following: standard hot isostatic pressing (HIP), spark plasma sintering , ultra-high pressure HIP, and a multianvil pressure...96.8 2270 Multianvil apparatus 1200 3000 94.8 1130 Note: SPS = spark plasma sintering . 2 Figure 1. Ultra-high pressure HIP; 1600 °C, 980...strain rate sensitivity and flow stress. 15. SUBJECT TERMS silicon carbide, nanostructure, sintering , hot isostatic pressing, hardness 16. SECURITY

  16. Arsenic and fluoride removal from groundwater by electrocoagulation using a continuous filter-press reactor.

    PubMed

    Guzmán, Athziri; Nava, José L; Coreño, Oscar; Rodríguez, Israel; Gutiérrez, Silvia

    2016-02-01

    We investigated simultaneous arsenic and fluoride removal from ground water by electrocoagulation (EC) using aluminum as the sacrificial anode in a continuous filter-press reactor. The groundwater was collected at a depth of 320 m in the Bajío region in Guanajuato Mexico (arsenic 43 µg L(-1), fluoride 2.5 mg L(-1), sulfate 89.6 mg L(-1), phosphate 1.8 mg L(-1), hydrated silica 112.4 mg L(-1), hardness 9.8 mg L(-1), alkalinity 31.3 mg L(-1), pH 7.6 and conductivity 993 µS cm(-1)). EC was performed after arsenite was oxidized to arsenate by addition of 1 mg L(-1) hypochlorite. The EC tests revealed that at current densities of 4, 5 and 6 mA cm(-2) and flow velocities of 0.91 and 1.82 cm s(-1), arsenate was abated and residual fluoride concentration satisfies the WHO standard (CF < 1.5 mg L(-1)). Spectrometric analyses performed on aluminum flocs indicated that these are mainly composed of aluminum-silicates of calcium and magnesium. Arsenate removal by EC involves adsorption on aluminum flocs, while fluoride replaces a hydroxyl group from aluminum aggregates. The best EC was obtained at 4 mA cm(-2) and 1.82 cm s(-1) with electrolytic energy consumption of 0.34 KWh m(-3). Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Sustainable colloidal-silver-impregnated ceramic filter for point-of-use water treatment.

    PubMed

    Oyanedel-Craver, Vinka A; Smith, James A

    2008-02-01

    Cylindrical colloidal-silver-impregnated ceramic filters for household (point-of-use) water treatment were manufactured and tested for performance in the laboratory with respect to flow rate and bacteria transport. Filters were manufactured by combining clay-rich soil with water, grog (previously fired clay), and flour, pressing them into cylinders, and firing them at 900 degrees C for 8 h. The pore-size distribution of the resulting ceramic filters was quantified by mercury porosimetry. Colloidal silver was applied to filters in different quantities and ways (dipping and painting). Filters were also tested without any colloidal-silver application. Hydraulic conductivity of the filters was quantified using changing-head permeability tests. [3H]H2O water was used as a conservative tracer to quantify advection velocities and the coefficient of hydrodynamic dispersion. Escherichia coli (E. coli) was used to quantify bacterial transport through the filters. Hydraulic conductivity and pore-size distribution varied with filter composition; hydraulic conductivities were on the order of 10(-5) cm/s and more than 50% of the pores for each filter had diameters ranging from 0.02 to 15 microm. The filters removed between 97.8% and 100% of the applied bacteria; colloidal-silver treatments improved filter performance, presumably by deactivation of bacteria. The quantity of colloidal silver applied per filter was more important to bacteria removal than the method of application. Silver concentrations in effluent filter water were initially greater than 0.1 mg/L, but dropped below this value after 200 min of continuous operation. These results indicate that colloidal-silver-impregnated ceramic filters, which can be made using primarily local materials and labor, show promise as an effective and sustainable point-of-use water treatment technology for the world's poorest communities.

  18. Aluminum anode for aluminum-air battery - Part I: Influence of aluminum purity

    NASA Astrophysics Data System (ADS)

    Cho, Young-Joo; Park, In-Jun; Lee, Hyeok-Jae; Kim, Jung-Gu

    2015-03-01

    2N5 commercial grade aluminum (99.5% purity) leads to the lower aluminum-air battery performances than 4N high pure grade aluminum (99.99% purity) due to impurities itself and formed impurity complex layer which contained Fe, Si, Cu and others. The impurity complex layer of 2N5 grade Al declines the battery voltage on standby status. It also depletes discharge current and battery efficiency at 1.0 V which is general operating voltage of aluminum-air battery. However, the impurity complex layer of 2N5 grade Al is dissolved with decreasing discharge voltage to 0.8 V. This phenomenon leads to improvement of discharge current density and battery efficiency by reducing self-corrosion reaction. This study demonstrates the possibility of use of 2N5 grade Al which is cheaper than 4N grade Al as the anode for aluminum-air battery.

  19. Current and Future Uses of Aluminum in the Automotive Industry

    NASA Astrophysics Data System (ADS)

    Long, R. S.; Boettcher, E.; Crawford, D.

    2017-12-01

    Aluminum use is growing in automotive closures and body in white applications to improve vehicle performance and fuel economy. The auto industry is looking for higher-strength aluminum materials needed for strength-driven safety-critical parts. Through cooperation with industrial partners and support from the Department of Energy (DOE), multiple experimental 7xxx alloys were developed for automotive applications. The objective is to enable complex shapes to be formed at temperatures below 225°C. A demonstration part has been developed that is representative of the forming challenges within a current hot-stamped door ring component. This part tooling has been built and installed into a press line which includes blank heating and robotic transfer. Forming trials of these alloys are currently underway and the formability, strength and corrosion performance of these materials are being evaluated.

  20. Current and Future Uses of Aluminum in the Automotive Industry

    DOE PAGES

    Long, R. S.; Boettcher, E.; Crawford, D.

    2017-08-29

    Aluminum use is growing in automotive closures and body in white applications to improve vehicle performance and fuel economy. The auto industry is looking for higher strength aluminum materials needed for strength driven safety critical parts. Through cooperation with industrial partners and support from the Department of Energy (DOE), multiple experimental 7xxx alloys were developed for automotive applications. The objective is to enable complex shapes to be formed at temperatures below 225° C. A demonstration part has been developed that is representative of the forming challenges within a current hot stamped door ring component. This part tooling has been builtmore » and installed into a press line which includes blank heating and robotic transfer. Forming trials of these alloys are currently underway and the formability, strength and corrosion performance of these materials are being evaluated.« less

  1. Current and Future Uses of Aluminum in the Automotive Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, R. S.; Boettcher, E.; Crawford, D.

    Aluminum use is growing in automotive closures and body in white applications to improve vehicle performance and fuel economy. The auto industry is looking for higher strength aluminum materials needed for strength driven safety critical parts. Through cooperation with industrial partners and support from the Department of Energy (DOE), multiple experimental 7xxx alloys were developed for automotive applications. The objective is to enable complex shapes to be formed at temperatures below 225° C. A demonstration part has been developed that is representative of the forming challenges within a current hot stamped door ring component. This part tooling has been builtmore » and installed into a press line which includes blank heating and robotic transfer. Forming trials of these alloys are currently underway and the formability, strength and corrosion performance of these materials are being evaluated.« less

  2. First-principles equation-of-state table of beryllium based on density-functional theory calculations

    DOE PAGES

    Ding, Y. H.; Hu, S. X.

    2017-06-06

    Beryllium has been considered a superior ablator material for inertial confinement fusion (ICF) target designs. An accurate equation-of-state (EOS) of beryllium under extreme conditions is essential for reliable ICF designs. Based on density-functional theory (DFT) calculations, we have established a wide-range beryllium EOS table of density ρ = 0.001 to 500 g/cm 3 and temperature T = 2000 to 10 8 K. Our first-principle equation-of-state (FPEOS) table is in better agreement with the widely used SESAME EOS table (SESAME 2023) than the average-atom INFERNO and Purgatorio models. For the principal Hugoniot, our FPEOS prediction shows ~10% stiffer than the lastmore » two models in the maximum compression. Although the existing experimental data (only up to 17 Mbar) cannot distinguish these EOS models, we anticipate that high-pressure experiments at the maximum compression region should differentiate our FPEOS from INFERNO and Purgatorio models. Comparisons between FPEOS and SESAME EOS for off-Hugoniot conditions show that the differences in the pressure and internal energy are within ~20%. By implementing the FPEOS table into the 1-D radiation–hydrodynamic code LILAC, we studied in this paper the EOS effects on beryllium-shell–target implosions. Finally, the FPEOS simulation predicts higher neutron yield (~15%) compared to the simulation using the SESAME 2023 EOS table.« less

  3. First-principles equation-of-state table of beryllium based on density-functional theory calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Y. H.; Hu, S. X.

    Beryllium has been considered a superior ablator material for inertial confinement fusion (ICF) target designs. An accurate equation-of-state (EOS) of beryllium under extreme conditions is essential for reliable ICF designs. Based on density-functional theory (DFT) calculations, we have established a wide-range beryllium EOS table of density ρ = 0.001 to 500 g/cm 3 and temperature T = 2000 to 10 8 K. Our first-principle equation-of-state (FPEOS) table is in better agreement with the widely used SESAME EOS table (SESAME 2023) than the average-atom INFERNO and Purgatorio models. For the principal Hugoniot, our FPEOS prediction shows ~10% stiffer than the lastmore » two models in the maximum compression. Although the existing experimental data (only up to 17 Mbar) cannot distinguish these EOS models, we anticipate that high-pressure experiments at the maximum compression region should differentiate our FPEOS from INFERNO and Purgatorio models. Comparisons between FPEOS and SESAME EOS for off-Hugoniot conditions show that the differences in the pressure and internal energy are within ~20%. By implementing the FPEOS table into the 1-D radiation–hydrodynamic code LILAC, we studied in this paper the EOS effects on beryllium-shell–target implosions. Finally, the FPEOS simulation predicts higher neutron yield (~15%) compared to the simulation using the SESAME 2023 EOS table.« less

  4. The experience in production of composite refraction lenses from beryllium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semenov, A. A.; Zabrodin, A. V.; Gorlevskiy, V. V.

    2017-01-15

    The choice of beryllium-based material for the use in X-ray optics has been substantiated based on electron microscopy and X-ray diffraction data. The first results of applying refraction lenses made of this material are reported.

  5. Strengthening Aluminum Alloys for High Temperature Applications Using Nanoparticles of Al203 and Al3-X Compounds (X= Ti, V, Zr)

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2007-01-01

    In this paper the effect of nanoparticles A12O3 and A13-X compounds (X= Ti, V, Zr) on the improvement of mechanical properties of aluminum alloys for elevated temperature applications is presented. These nanoparticles were selected based on their chemical stability and low diffusions rates in aluminum matrix at high temperatures. The strengthening mechanism for aluminum alloy is based on the mechanical blocking of dislocation movements by these nanoparticles. Samples were prepared from A12O3 nanoparticle preforms, which were produced using ceramic injection molding process and pressure infiltrated by molten aluminum. A12O3 nanoparticles can also be homogeneously mixed with aluminum powder and consolidated into samples through hot pressing and sintering. On the other hand, the Al3-X nanoparticles are produced as precipitates via in situ reactions with molten aluminum alloys using conventional casting techniques. The degree of alloy strengthening using nanoparticles will depend on the materials, particle size, shape, volume fraction, and mean inter-particle spacing.

  6. The mechanical properties measurement of multiwall carbon nanotube reinforced nanocrystalline aluminum matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Manjula, E-mail: manjula.physics@gmail.com; Pal, Hemant; Sharma, Vimal

    Nanocrystalline aluminum matrix composite containing carbon nanotubes were fabricated using physical mixing method followed by cold pressing. The microstructure of the composite has been investigated using X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy techniques. These studies revealed that the carbon nanotubes were homogeneously dispersed throughout the metal matrix. The consolidated samples were pressureless sintered in inert atmosphere to further actuate a strong interface between carbon nanotubes and aluminum matrix. The nanoindentation tests carried out on considered samples showed that with the addition of 0.5 wt% carbon nanotubes, the hardness and elastic modulus of the aluminum matrix increased bymore » 21.2 % and 2 % repectively. The scratch tests revealed a decrease in the friction coefficient of the carbon nanotubes reinforced composite due to the presence of lubricating interfacial layer. The prepared composites were promising entities to be used in the field of sporting goods, construction materials and automobile industries.« less

  7. Glacial Isostatic Adjustment and Contemporary Sea Level Rise: An Overview

    NASA Astrophysics Data System (ADS)

    Spada, Giorgio

    2017-01-01

    Glacial isostatic adjustment (GIA) encompasses a suite of geophysical phenomena accompanying the waxing and waning of continental-scale ice sheets. These involve the solid Earth, the oceans and the cryosphere both on short (decade to century) and on long (millennia) timescales. In the framework of contemporary sea-level change, the role of GIA is particular. In fact, among the processes significantly contributing to contemporary sea-level change, GIA is the only one for which deformational, gravitational and rotational effects are simultaneously operating, and for which the rheology of the solid Earth is essential. Here, I review the basic elements of the GIA theory, emphasizing the connections with current sea-level changes observed by tide gauges and altimetry. This purpose is met discussing the nature of the "sea-level equation" (SLE), which represents the basis for modeling the sea-level variations of glacial isostatic origin, also giving access to a full set of geodetic variations associated with GIA. Here, the SLE is employed to characterize the remarkable geographical variability of the GIA-induced sea-level variations, which are often expressed in terms of "fingerprints". Using harmonic analysis, the spatial variability of the GIA fingerprints is compared to that of other components of contemporary sea-level change. In closing, some attention is devoted to the importance of the "GIA corrections" in the context of modern sea-level observations, based on tide gauges or satellite altimeters.

  8. The Influence of Sediment Isostatic Adjustment on Sea Level Change and Land Motion Along the U.S. Gulf Coast

    NASA Astrophysics Data System (ADS)

    Kuchar, Joseph; Milne, Glenn; Wolstencroft, Martin; Love, Ryan; Tarasov, Lev; Hijma, Marc

    2018-01-01

    Sea level rise presents a hazard for coastal populations, and the Mississippi Delta (MD) is a region particularly at risk due to the high rates of land subsidence. We apply a gravitationally self-consistent model of glacial and sediment isostatic adjustment (SIA) along with a realistic sediment load reconstruction in this region for the first time to determine isostatic contributions to relative sea level (RSL) and land motion. We determine optimal model parameters (Earth rheology and ice history) using a new high-quality compaction-free sea level indicator database. Using the optimal model parameters, we show that SIA can lower predicted RSL in the MD area by several meters over the Holocene and so should be taken into account when modeling these data. We compare modeled contemporary rates of vertical land motion with those inferred using GPS. This comparison indicates that isostatic processes can explain the majority of the observed vertical land motion north of latitude 30.7°N, where subsidence rates average about 1 mm/yr; however, subsidence south of this latitude shows large data-model discrepancies of greater than 3 mm/yr, indicating the importance of nonisostatic processes. This discrepancy extends to contemporary RSL change, where we find that the SIA contribution in the Delta is on the order of 10-1 mm/yr. We provide estimates of the isostatic contributions to 20th and 21st century sea level rates at Gulf Coast Permanent Service for Mean Sea Level tide gauge locations as well as vertical and horizontal land motion at GPS station locations near the MD.

  9. Ambipolar transport of silver nanoparticles decorated graphene oxide field effect transistors

    NASA Astrophysics Data System (ADS)

    Sarkar, Kalyan Jyoti; Sarkar, K.; Pal, B.; Kumar, Aparabal; Das, Anish; Banerji, P.

    2018-05-01

    In this article, we report ambipolar field effect transistor (FET) by using graphene oxide (GO) as a gate dielectric material for silver nanoparticles (AgNPs) decorated GO channel layer. GO was synthesized by Hummers' method. The AgNPs were prepared via photochemical reduction of silver nitrate solution by using monoethanolamine as a reducing agent. Morphological properties of channel layer were characterized by Field Effect Scanning Electron Microscopy (FESEM). Fourier Transform Infrared Spectroscopy (FTIR) was carried out to characterize GO thin film. For device fabrication gold (Au) was deposited as source-drain contact and aluminum (Al) was taken as bottom contact. Electrical measurements were performed by back gate configuration. Ambipolar transport behavior was explained from transfer characteristics. A maximum electron mobiliy of 6.65 cm2/Vs and a hole mobility of 2.46 cm2/Vs were extracted from the transfer characteristics. These results suggest that GO is a potential candidate as a gate dielectric material for thin film transistor applications and also provides new insights in GO based research.

  10. Consolidation of silicon nitride without additives

    NASA Technical Reports Server (NTRS)

    Sikora, P. F.; Yeh, H. C.

    1977-01-01

    The feasibility of producing a sound, dense Si3N4 body without additives was explored, using conventional gas hot isostatic pressing techniques and an uncommon hydraulic hot isostatic pressing technique. These two techniques produce much higher pressure 275-413 MN/m sq (40,000 - 60,000 psi) than hot-pressing techniques. Evaluation was based on density measurement, microscopic examination, both optical and electron, and X-ray diffraction analysis. The results are summarized as follows: (1) Si3N4 can be densified to high density, greater than 95% of theoretical, without additions. (2) The higher density Si3N4 specimens appear to be associated with a greater amount of alpha to beta transformation. (3) Under high pressure, the alpha to beta transformation can occur at a temperature as low as 1150 C. (4) Grain deformation and subsequent recrystallization and grain refinement result from hot isostatic pressing of Si3N4.

  11. Detection of beryllium treatment of natural sapphires by NRA

    NASA Astrophysics Data System (ADS)

    Gutiérrez, P. C.; Ynsa, M.-D.; Climent-Font, A.; Calligaro, T.

    2010-06-01

    Since the 1990's, artificial treatment of natural sapphires (Al 2O 3 crystals coloured by impurities) by diffusion of beryllium at high temperature has become a growing practice. This process permits to enhance the colour of these gemstones, and thus to increase their value. Detection of such a treatment - diffusion of tens of μg/g of beryllium in Al 2O 3 crystals - is usually achieved using high sensitivity techniques like laser-ablation inductively coupled plasma mass spectrometry (LA-ICP/MS) or laser-induced breakdown spectrometry (LIBS) which are unfortunately micro-destructive (leaving 50-100-μm diameter craters on the gems). The simple and non-destructive alternative method proposed in this work is based on the nuclear reaction 9Be(α, nγ) 12C with an external helium ion beam impinging on the gem directly placed in air. The 4439 keV prompt γ-ray tagging Be atoms are detected with a high efficiency bismuth germanate scintillator. Beam dose is monitored using the 2235 keV prompt γ-ray produced during irradiation by the aluminium of the sapphire matrix through the 27Al(α, pγ) 30Si nuclear reaction. The method is tested on a series of Be-treated sapphires previously analyzed by LA-ICP/MS to determine the optimal conditions to obtain a peak to background appropriate to reach the required μg/g sensitivity. Using a 2.8-MeV external He beam and a beam dose of 200 μC, beryllium concentrations from 5 to 16 μg/g have been measured in the samples, with a detection limit of 1 μg/g.

  12. Cost/benefit analysis of advanced materials technologies for future aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Bisset, J. W.

    1976-01-01

    The cost/benefits of advance commercial gas turbine materials are described. Development costs, estimated payoffs and probabilities of success are discussed. The materials technologies investigated are: (1) single crystal turbine blades, (2) high strength hot isostatic pressed turbine disk, (3) advanced oxide dispersion strengthened burner liner, (4) bore entry cooled hot isostatic pressed turbine disk, (5) turbine blade tip - outer airseal system, and (6) advance turbine blade alloys.

  13. Effect of Intensive Plastic Deformation on Microstructure and Mechanical Properties of Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Rakhadilov, Bauyrzhan; Uazyrkhanova, Gulzhaz; Myakinin, Alexandr; Uazyrkhanova, Zhuldyz

    2016-08-01

    In work it was studied the influence of intensive plastic deformation on structure and mechanical properties of aluminum alloys. Intensive plastic deformation was carried out by using equal-channel angular extrusion. It is shown that the most efficient angle of intersection of the channels is the angle of Φ=120°, which ensures defect-free parts at the highest possible level of accumulated strain (e=8). It is established that the intensive milling grain structures in aluminum alloys AMG6 and AMC occurs at ECAE-12 passes, while the intersection angle of the channels of 120°. After ECAE-12 in aluminum alloys the grain refinement reaches to the size of ∼⃒1.0-1.5 gm. It is determined that as a result of equal channel angular pressing, the microhardness of alloy AMG6 increases almost 4 times in comparison with the initial state, the microhardness of alloy AMC increases by almost 4.5 times in comparison with the initial state. It is shown that ECAE-12 mass loss is reduced to 5.4 and 5.6 mg, which shows an increase in wear-resistance of aluminum alloys AMG6 and AMC 13-14 %.

  14. Development of nanosized lanthanum strontium aluminum manganite as electrodes for potentiometric oxygen sensor

    DOE PAGES

    Mullen, Max R.; Spirig, John V.; Hoy, Julia; ...

    2014-11-01

    Nanocrystalline La0.8Sr0.2Al0.9Mn0.1O3 (LSAM) was synthesized by a microwave-assisted citrate method, and characterized by electron microscopy and X-ray diffraction. Electrical behavior of LSAM was investigated by impedance spectroscopy and activation energy of conduction was obtained. Joining of sintered bodies of LSAM and yttria-stabilized tetragonal zirconia polycrystals (YTZP), an extensively studied oxygen ion conducting electrolyte, was examined by isostatic hot pressing methods. Characteristics of the joining region were evaluated with microprobe Raman spectroscopy, and products formed at the interface, primarily strontium zirconate, was confirmed by examination of high temperature chemical reaction between LSAM and YTZP powders. Finally, the electrical properties of themore » LSAM were exploited for development of a high temperature oxygen sensor in which LSAM functioned as the electrode and YTZP as electrolyte.« less

  15. Measurement of the neutron angular distribution from a beryllium target bombarded with a 345-MeV/u 238U beam at the RIKEN RI beam factory

    NASA Astrophysics Data System (ADS)

    Nakao, Noriaki; Uwamino, Yoshitomo; Tanaka, Kanenobu

    2018-05-01

    The angular distribution of neutrons produced from a 4-mm-thick beryllium target bombarded with a 345-MeV/u 238U beam was measured outside the target chamber using bismuth and aluminum activation detectors at angles of 4.5°, 10°, 30°, 60°, 70° and 90° from the beam axis. Following two hours of irradiation and photo-peak analyses, the production rates of the radionuclides were obtained for the 209Bi(n,xn)210-xBi(x = 4-12) and 27Al(n,α)24Na reactions. Using the Particle and Heavy Ion Transport code System (PHITS), a Monte Carlo simulation of the production rates was performed and the ratios of the calculated to the experimental results (C/E) ranged from 0.6 to 1.0 generally and 0.4 to 1.3 in worst cases.

  16. Exposure-related health effects of silver and silver compounds: a review.

    PubMed

    Drake, Pamela L; Hazelwood, Kyle J

    2005-10-01

    A critical review of studies examining exposures to the various forms of silver was conducted to determine if some silver species are more toxic than others. The impetus behind conducting this review is that several occupational exposure limits and guidelines exist for silver, but the values for each depend on the form of silver as well as the individual agency making the recommendations. For instance, the American Conference of Governmental Industrial Hygienists has established separate threshold limit values for metallic silver (0.1 mg/m3) and soluble compounds of silver (0.01 mg/m3). On the other hand, the permissible exposure limit (PEL) recommended by the Occupational Safety and Health Administration and the Mine Safety and Health Administration and the recommended exposure limit set by the National Institute for Occupational Safety and Health is 0.01 mg/m3 for all forms of silver. The adverse effects of chronic exposure to silver are a permanent bluish-gray discoloration of the skin (argyria) or eyes (argyrosis). Most studies discuss cases of argyria and argyrosis that have resulted primarily from exposure to the soluble forms of silver. Besides argyria and argyrosis, exposure to soluble silver compounds may produce other toxic effects, including liver and kidney damage, irritation of the eyes, skin, respiratory, and intestinal tract, and changes in blood cells. Metallic silver appears to pose minimal risk to health. The current occupational exposure limits do not reflect the apparent difference in toxicities between soluble and metallic silver; thus, many researchers have recommended that separate PELs be established.

  17. Hot press and roll welding of titanium-6-percent-aluminum-4-percent-vanadium bar and sheet with auto-vacuum cleaning

    NASA Technical Reports Server (NTRS)

    Holko, K. H.

    1972-01-01

    Hot press butt welds were made in 0.5 in. diameter bar, and roll lap welds were made in 0.060 in. thick sheet of Ti-6A1-4V. For hot press welds made after auto-vacuum cleaning at 1800 F for 2 hours, weld strength and ductility equaled the parent metal properties. Only 5 minutes of pressing time were needed at 1800 F and 200 psi to make the hot press welds. Roll welds were made in sheet at 1750 F with only 10 percent deformation. The welds in the bar and sheet were metallurgically indistinguishable from the parent material.

  18. Rapid separation of beryllium and lanthanide derivatives by capillary gas chromatography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, Scott D.; Lucke, Richard B.; Douglas, Matt

    2012-09-04

    Previous studies describe derivatization of metal ions followed by analysis using gas chromatography, usually on packed columns. In many of these studies, stable and volatile derivatives were formed using fluorinated β-diketonate reagents. This paper extends previous work by investigating separations of the derivatives on small-diameter capillary gas chromatography columns and exploring on-fiber, solid-phase microextraction derivatization techniques for beryllium. The β-diketonate used for these studies was 1,1,1,2,2,6,6,7,7,7-decafluoro-3,5-heptanedione. Derivatization of lanthanides also required addition of a neutral donor, dibutyl sulfoxide, in addition to 1,1,1,2,2,6,6,7,7,7-decafluoro-3,5-heptanedione. Unoptimized separations on a 100-μm i.d. capillary column proved capable of rapid separations (within 15 min) of lanthanidemore » derivatives that are adjacent to one another in the periodic table. Full-scan mass spectra were obtained from derivatives containing 5 ng of each lanthanide. Studies also developed a simple on-fiber solid-phase microextraction derivatization of beryllium. Beryllium could be analyzed in the presence of other alkali earth elements (Ba(II) and Sr(II)) without interference. Finally, extension of the general approach was demonstrated for several additional elements (i.e. Cu(II), Cr(III), and Ga(III)).« less

  19. Photoemission study of tris(8-hydroxyquinoline) aluminum/aluminum oxide/tris(8-hydroxyquinoline) aluminum interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding Huanjun; Zorba, Serkan; Gao Yongli

    2006-12-01

    The evolution of the interface electronic structure of a sandwich structure involving aluminum oxide and tris(8-hydroxyquinoline) aluminum (Alq), i.e. (Alq/AlO{sub x}/Alq), has been investigated with photoemission spectroscopy. Strong chemical reactions have been observed due to aluminum deposition onto the Alq substrate. The subsequent oxygen exposure releases some of the Alq molecules from the interaction with aluminum. Finally, the deposition of the top Alq layer leads to an asymmetry in the electronic energy level alignment with respect to the AlO{sub x} interlayer.

  20. Engineered Escherichia coli Silver-Binding Periplasmic Protein That Promotes Silver Tolerance

    PubMed Central

    Hall Sedlak, Ruth; Hnilova, Marketa; Grosh, Carolynn; Fong, Hanson; Baneyx, Francois; Schwartz, Dan; Sarikaya, Mehmet; Tamerler, Candan

    2012-01-01

    Silver toxicity is a problem that microorganisms face in medical and environmental settings. Through exposure to silver compounds, some bacteria have adapted to growth in high concentrations of silver ions. Such adapted microbes may be dangerous as pathogens but, alternatively, could be potentially useful in nanomaterial-manufacturing applications. While naturally adapted isolates typically utilize efflux pumps to achieve metal resistance, we have engineered a silver-tolerant Escherichia coli strain by the use of a simple silver-binding peptide motif. A silver-binding peptide, AgBP2, was identified from a combinatorial display library and fused to the C terminus of the E. coli maltose-binding protein (MBP) to yield a silver-binding protein exhibiting nanomolar affinity for the metal. Growth experiments performed in the presence of silver nitrate showed that cells secreting MBP-AgBP2 into the periplasm exhibited silver tolerance in a batch culture, while those expressing a cytoplasmic version of the fusion protein or MBP alone did not. Transmission electron microscopy analysis of silver-tolerant cells revealed the presence of electron-dense silver nanoparticles. This is the first report of a specifically engineered metal-binding peptide exhibiting a strong in vivo phenotype, pointing toward a novel ability to manipulate bacterial interactions with heavy metals by the use of short and simple peptide motifs. Engineered metal-ion-tolerant microorganisms such as this E. coli strain could potentially be used in applications ranging from remediation to interrogation of biomolecule-metal interactions in vivo. PMID:22286990

  1. Method for manufacturing whisker preforms and composites

    DOEpatents

    Lessing, Paul A.

    1995-01-01

    A process for manufacturing Si.sub.3 N.sub.4 /SiAlON whiskers by mixing silicon carbide powder with aluminum nitride powder, adding impurities such as calcium oxide or potassium chloride to control whisker characteristics, forming the mixture in a boron nitrogen mold of desired shaped and hot isostatically pressing the formed mixture in a nitrogen environment to produce whiskers comprised substantially of SiAlON at the nucleating end of the whisker and Si.sub.3 N.sub.4 at the other end of the whisker. In one embodiment, reinforced composites are formed by impregnating the Si.sub.3 N.sub.4 /SiAlON whisker preform with a matrix material such as resin binders, liquid metals, intermetallics or ceramic materials.

  2. Method for manufacturing whisker preforms and composites

    DOEpatents

    Lessing, P.A.

    1995-11-07

    A process is disclosed for manufacturing Si{sub 3}N{sub 4}/SiAlON whiskers by mixing silicon carbide powder with aluminum nitride powder, adding impurities such as calcium oxide or potassium chloride to control whisker characteristics, forming the mixture in a boron nitrogen mold of desired shaped and hot isostatically pressing the formed mixture in a nitrogen environment to produce whiskers comprised substantially of SiAlON at the nucleating end of the whisker and Si{sub 3}N{sub 4} at the other end of the whisker. In one embodiment, reinforced composites are formed by impregnating the Si{sub 3}N{sub 4}/SiAlON whisker preform with a matrix material such as resin binders, liquid metals, intermetallics or ceramic materials.

  3. Silver Nanoparticles

    NASA Astrophysics Data System (ADS)

    Khaydarov, R. R.; Khaydarov, R. A.; Estrin, Y.; Evgrafova, S.; Scheper, T.; Endres, C.; Cho, S. Y.

    The bactericidal effect of silver nanoparticles obtained by a novel electrochemical method on Escherichia coli, Staphylococcus aureus, Aspergillus niger and Penicillium phoeniceum cultures has been studied. The tests conducted have demonstrated that synthesized silver nanoparticles — when added to water paints or cotton fabrics — show a pronounced antibacterial/antifungal effect. It was shown that smaller silver nanoparticles have a greater antibacterial/antifungal efficacy. The paper also provides a review of scientific literature with regard to recent developments in the field of toxicity of silver nanoparticles and its effect on environment and human health.

  4. Effects of Strain Path on the Microstructure of Aluminum Alloys During Equal Channel Angular Pressing (ECAP)

    DTIC Science & Technology

    2007-12-01

    processing route at this level. A recent study by Garcia-Infanta, et al., of a hypo- eutectic Al-7%Si alloy with spheroidal primary aluminum grains is a...compared with the model proposed by Garcia-Infanta, et al. [10]. Further, annealing studies will be performed to determine the recrystallization ...study conducted at 450°C as a function of time to assess recrystallization and grain growth. Two data points per sample were taken from different

  5. Control of molten salt corrosion of fusion structural materials by metallic beryllium

    NASA Astrophysics Data System (ADS)

    Calderoni, P.; Sharpe, P.; Nishimura, H.; Terai, T.

    2009-04-01

    A series of tests have been performed between 2001 and 2006 at the Safety and Tritium Applied Research facility of the Idaho National Laboratory to demonstrate chemical compatibility between the molten salt flibe (2LiF + BeF 2 in moles) and fusion structural materials once suitable fluoride potential control methods are established. The tests adopted metallic beryllium contact as main fluoride potential control, and the results have been published in recent years. A further step was to expose two specimens of low activation ferritic/martensitic steel 9Cr-2W to static corrosion tests that include an active corrosion agent (hydrofluoric gas) in controlled conditions at 530 °C, and the results of the tests are presented in this paper. The results confirmed the expected correlation of the HF recovery with the concentration of metallic impurities dissolved in the salt because of specimen corrosion. The metals concentration dropped to levels close to the detectable limit when the beryllium rod was inserted and increased once the content of excess beryllium in the system had been consumed by HF reduction and specimen corrosion progressed. Metallographic analysis of the samples after 500 h exposure in reactive conditions showed evidence of the formation of unstable chromium oxide layers on the specimen's surface.

  6. Control of molten salt corrosion of fusion structural materials by metallic beryllium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. Calderoni; P. Sharpe; H. Nishimura

    2009-04-01

    A series of tests have been performed between 2001 and 2006 at the Safety and Tritium Applied Research facility of the Idaho National Laboratory to demonstrate chemical compatibility between the molten salt flibe (2LiF+BeF2 in moles) and fusion structural materials once suitable fluoride potential control methods are established. The tests adopted metallic beryllium contact as main fluoride potential control, and the results have been published in recent years. A further step was to expose two specimens of low activation ferritic/martensitic steel 9Cr-2W to static corrosion tests that include an active corrosion agent (hydrofluoric gas) in controlled conditions at 530 C,more » and the results of the tests are presented in this paper. The results confirmed the expected correlation of the HF recovery with the concentration of metallic impurities dissolved in the salt because of specimen corrosion. The metals concentration dropped to level close to the detectable limit when the beryllium rod was inserted and increased once the content of excess beryllium in the system had been consumed by HF reduction and specimens corrosion progressed. Metallographic analysis of the samples after 500 hours exposure in reactive conditions showed evidence of the formation of unstable chromium oxide layers on the specimens surface.« less

  7. Isostatic gravity map of the Death Valley ground-water model area, Nevada and California

    USGS Publications Warehouse

    Ponce, D.A.; Blakely, R.J.; Morin, R.L.; Mankinen, E.A.

    2001-01-01

    An isostatic gravity map of the Death Valley groundwater model area was prepared from over 40,0000 gravity stations as part of an interagency effort by the U.S. Geological Survey and the U.S. Department of Energy to help characterize the geology and hydrology of southwest Nevada and parts of California.

  8. Strengthening Mechanisms in Nanostructured Al/SiCp Composite Manufactured by Accumulative Press Bonding

    NASA Astrophysics Data System (ADS)

    Amirkhanlou, Sajjad; Rahimian, Mehdi; Ketabchi, Mostafa; Parvin, Nader; Yaghinali, Parisa; Carreño, Fernando

    2016-10-01

    The strengthening mechanisms in nanostructured Al/SiCp composite deformed to high strain by a novel severe plastic deformation process, accumulative press bonding (APB), were investigated. The composite exhibited yield strength of 148 MPa which was 5 and 1.5 times higher than that of raw aluminum (29 MPa) and aluminum-APB (95 MPa) alloys, respectively. A remarkable increase was also observed in the ultimate tensile strength of Al/SiCp-APB composite, 222 MPa, which was 2.5 and 1.2 times greater than the obtained values for raw aluminum (88 MPa) and aluminum-APB (180 MPa) alloys, respectively. Analytical models well described the contribution of various strengthening mechanisms. The contributions of grain boundary, strain hardening, thermal mismatch, Orowan, elastic mismatch, and load-bearing strengthening mechanisms to the overall strength of the Al/SiCp microcomposite were 64.9, 49, 6.8, 2.4, 5.4, and 1.5 MPa, respectively. Whereas Orowan strengthening mechanism was considered as the most dominating strengthening mechanism in Al/SiCp nanocomposites, it was negligible for strengthening the microcomposite. Al/SiCp nanocomposite showed good agreement with quadratic summation model; however, experimental results exhibited good accordance with arithmetic and compounding summation models in the microcomposite. While average grain size of the composite reached 380 nm, it was less than 100 nm in the vicinity of SiC particles as a result of particle-stimulated nucleation mechanism.

  9. Irradiation effects in beryllium exposed to high energy protons of the NuMI neutrino source

    NASA Astrophysics Data System (ADS)

    Kuksenko, V.; Ammigan, K.; Hartsell, B.; Densham, C.; Hurh, P.; Roberts, S.

    2017-07-01

    A beryllium primary vacuum-to-air beam 'window' of the "Neutrinos at the Main Injector" (NuMI) beamline at Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, USA, has been irradiated by 120 GeV protons over 7 years, with a maximum integrated fluence at the window centre of 2.06 1022 p/cm2 corresponding to a radiation damage level of 0.48 dpa. The proton beam is pulsed at 0.5 Hz leading to an instantaneous temperature rise of 40 °C per pulse. The window is cooled by natural convection and is estimated to operate at an average of around 50 °C. The microstructure of this irradiated material was investigated by SEM/EBSD and Atom Probe Tomography, and compared to that of unirradiated regions of the beam window and that of stock material of the same PF-60 grade. Microstructural investigations revealed a highly inhomogeneous distribution of impurity elements in both unirradiated and irradiated conditions. Impurities were mainly localised in precipitates, and as segregations at grain boundary and dislocation lines. Low levels of Fe, Cu, Ni, C and O were also found to be homogeneously distributed in the beryllium matrix. In the irradiated materials, up to 440 appm of Li, derived from transmutation of beryllium was homogeneously distributed in solution in the beryllium matrix.

  10. Beryllium and Boron abundances in population II stars

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The scientific focus of this program was to undertake UV spectroscopic abundance analyses of extremely metal poor stars with attention to determining abundances of light elements such as beryllium and boron. The abundances are likely to reflect primordial abundances within the early galaxy and help to constrain models for early galactic nucleosynthesis. The general metal abundances of these stars are also important for understanding stellar evolution.

  11. Nanostructured Alloys as an Alternative to Copper-Beryllium

    DTIC Science & Technology

    2014-11-19

    2014 Presented by Jonathan McCrea Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of...unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Advanced Materials Integran Technologies...requirements for current and future copper-beryllium alloy needs/ applications ● Demonstrate with three distinct product forms :  1) Bulk material for

  12. PREPARATION OF COMPACTS MADE FROM URANIUM AND BERYLLIUM BY SINTERING

    DOEpatents

    Angier, R.P.

    1961-04-11

    A powder metallurgical method for making high-density compacts of uranium and beryllium is reported. Powdered UBe/sub 9/ and powdered Be are blended, compacted, and then sintered by rapidly heating to a temperature of approximately 1220 to 1280 deg C in an inert atmosphere.

  13. Design and manufacturing considerations for high-performance gimbals used for land, sea, air, and space

    NASA Astrophysics Data System (ADS)

    Sweeney, Mike; Redd, Lafe; Vettese, Tom; Myatt, Ray; Uchida, David; Sellers, Del

    2015-09-01

    High performance stabilized EO/IR surveillance and targeting systems are in demand for a wide variety of military, law enforcement, and commercial assets for land, sea, air, and space. Operating ranges, wavelengths, and angular resolution capabilities define the requirements for EO/IR optics and sensors, and line of sight stabilization. Many materials and design configurations are available for EO/IR pointing gimbals depending on trade-offs of size, weight, power (SWaP), performance, and cost. Space and high performance military aircraft applications are often driven toward expensive but exceptionally performing beryllium and aluminum beryllium components. Commercial applications often rely on aluminum and composite materials. Gimbal design considerations include achieving minimized mass and inertia simultaneous with demanding structural, thermal, optical, and scene stabilization requirements when operating in dynamic operational environments. Manufacturing considerations include precision lapping and honing of ball bearing interfaces, brazing, welding, and casting of complex aluminum and beryllium alloy structures, and molding of composite structures. Several notional and previously developed EO/IR gimbal platforms are profiled that exemplify applicable design and manufacturing technologies.

  14. Photoluminescence enhancement from GaN by beryllium doping

    NASA Astrophysics Data System (ADS)

    García-Gutiérrez, R.; Ramos-Carrazco, A.; Berman-Mendoza, D.; Hirata, G. A.; Contreras, O. E.; Barboza-Flores, M.

    2016-10-01

    High quality Be-doped (Be = 0.19 at.%) GaN powder has been grown by reacting high purity Ga diluted alloys (Be-Ga) with ultra high purity ammonia in a horizontal quartz tube reactor at 1200 °C. An initial low-temperature treatment to dissolve ammonia into the Ga melt produced GaN powders with 100% reaction efficiency. Doping was achieved by dissolving beryllium into the gallium metal. The powders synthesized by this method regularly consist of two particle size distributions: large hollow columns with lengths between 5 and 10 μm and small platelets in a range of diameters among 1 and 3 μm. The GaN:Be powders present a high quality polycrystalline profile with preferential growth on the [10 1 bar 1] plane, observed by means of X-ray diffraction. The three characteristics growth planes of the GaN crystalline phase were found by using high resolution TEM microscopy. The optical enhancing of the emission in the GaN powder is attributed to defects created with the beryllium doping. The room temperature photoluminescence emission spectra of GaN:Be powders, revealed the presence of beryllium on a shoulder peak at 3.39 eV and an unusual Y6 emission at 3.32eV related to surface donor-acceptor pairs. Also, a donor-acceptor-pair transition at 3.17 eV and a phonon replica transition at 3.1 eV were observed at low temperature (10 K). The well-known yellow luminescence band coming from defects was observed in both spectra at room and low temperature. Cathodoluminescence emission from GaN:Be powders presents two main peaks associated with an ultraviolet band emission and the yellow emission known from defects. To study the trapping levels related with the defects formed in the GaN:Be, thermoluminescence glow curves were obtained using UV and β radiation in the range of 50 and 150 °C.

  15. Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate

    PubMed Central

    2011-01-01

    Background The study investigated the distribution of silver after 28 days repeated oral administration of silver nanoparticles (AgNPs) and silver acetate (AgAc) to rats. Oral administration is a relevant route of exposure because of the use of silver nanoparticles in products related to food and food contact materials. Results AgNPs were synthesized with a size distribution of 14 ± 4 nm in diameter (90% of the nanoparticle volume) and stabilized in aqueous suspension by the polymer polyvinylpyrrolidone (PVP). The AgNPs remained stable throughout the duration of the 28-day oral toxicity study in rats. The organ distribution pattern of silver following administration of AgNPs and AgAc was similar. However the absolute silver concentrations in tissues were lower following oral exposure to AgNPs. This was in agreement with an indication of a higher fecal excretion following administration of AgNPs. Besides the intestinal system, the largest silver concentrations were detected in the liver and kidneys. Silver was also found in the lungs and brain. Autometallographic (AMG) staining revealed a similar cellular localization of silver in ileum, liver, and kidney tissue in rats exposed to AgNPs or AgAc. Using transmission electron microscopy (TEM), nanosized granules were detected in the ileum of animals exposed to AgNPs or AgAc and were mainly located in the basal lamina of the ileal epithelium and in lysosomes of macrophages within the lamina propria. Using energy dispersive x-ray spectroscopy it was shown that the granules in lysosomes consisted of silver, selenium, and sulfur for both AgNP and AgAc exposed rats. The diameter of the deposited granules was in the same size range as that of the administered AgNPs. No silver granules were detected by TEM in the liver. Conclusions The results of the present study demonstrate that the organ distribution of silver was similar when AgNPs or AgAc were administered orally to rats. The presence of silver granules containing

  16. Leaching of Silver from Silver-Impregnated Food Storage Containers

    ERIC Educational Resources Information Center

    Hauri, James F.; Niece, Brian K.

    2011-01-01

    The use of silver in commercial products has proliferated in recent years owing to its antibacterial properties. Food containers impregnated with micro-sized silver promise long food life, but there is some concern because silver can leach out of the plastic and into the stored food. This laboratory experiment gives students the opportunity to…

  17. Glacial isostatic crustal uplift in southern Victoria Land, Antarctica, from geologic and geodetic records

    NASA Astrophysics Data System (ADS)

    Konfal, S.; Wilson, T.; Bevis, M. G.; Kendrick, E. C.; Hall, B. L.

    2011-12-01

    Geologic records and geodetic measurements of glacial isostatic crustal motions are presented from the southern Victoria Land region of Antarctica. In much of the world, key records used for mapping and modeling glacial isostatic crustal motions come from raised paleoshorelines and beaches of ice-marginal lakes and seas. While such records are scarce in Antarctica, preserved paleoshorelines are present in the southern Victoria Land region of Antarctica. Light detection and ranging (LiDAR) data coverages of these features were acquired during the 2001-2002 austral summer field season by NASA's Airborne Topographic Mapper (ATM) system, resulting in 2 meter horizontal resolution digital elevation models (DEMs). This study utilizes these DEM data to derive crustal tilt values from observed changes in elevation along the length of the shorelines. Radiocarbon age data are correlated with the associated degree of shoreline tilt to derive a rate of crustal deformation since deglaciation. Modern rates of glacial isostatic crustal motion are derived from GPS stations in the same region. Campaign station occupation began in 1996-1997 under the TAMDEF (Transantarctic Mountain DEFormation Network) project, and continuous GPS data collected began in 1999 and continues under the ANET/POLENET (Antarctica Polar Earth Observing Network) project, enabling analysis of decadal scale time series. Integrated gradient curves from paleoshoreline records and GPS crustal velocities show exponential form and indicate tilting down to the east. Eastward tilt may be the result of substantial loss of East Antarctic ice, a collapsing forebulge linked to ice centers in the Ross Sea region or in interior West Antarctica, or differences in earth response due to laterally varying earth structure. Modeling of these new data, along with comparison of tilt directions to centers of ice mass loss, provide tests of these scenarios and yield new insights into earth models and ice history.

  18. Isostatic gravity map of the Monterey 30 x 60 minute quadrangle and adjacent areas, California

    USGS Publications Warehouse

    Langenheim, V.E.; Stiles, S.R.; Jachens, R.C.

    2002-01-01

    The digital dataset consists of one file (monterey_100k.iso) containing 2,385 gravity stations. The file, monterey_100k.iso, contains the principal facts of the gravity stations, with one point coded per line. The format of the data is described below. Each gravity station has a station name, location (latitude and longitude, NAD27 projection), elevation, and an observed gravity reading. The data are on the IGSN71 datum and the reference ellipsoid is the Geodetic Reference System 1967 (GRS67). The free-air gravity anomalies were calculated using standard formulas (Telford and others, 1976). The Bouguer, curvature, and terrain corrections were applied to the free-air anomaly at each station to determine the complete Bouguer gravity anomalies at a reduction density of 2.67 g/cc. An isostatic correction was then applied to remove the long-wavelength effect of deep crustal and/or upper mantle masses that isostatically support regional topography.

  19. Technology for High Pure Aluminum Oxide Production from Aluminum Scrap

    NASA Astrophysics Data System (ADS)

    Ambaryan, G. N.; Vlaskin, M. S.; Shkolnikov, E. I.; Zhuk, A. Z.

    2017-10-01

    In this study a simple ecologically benign technology of high purity alumina production is presented. The synthesis process consists of three steps) oxidation of aluminum in water at temperature of 90 °C) calcinations of Al hydroxide in atmosphere at 1100 °C) high temperature vacuum processing of aluminum alpha oxide at 1750 °C. Oxidation of aluminum scrap was carried out under intensive mixing in water with small addition of KOH as a catalyst. It was shown that under implemented experimental conditions alkali was continuously regenerated during oxidation reaction and synergistic effect of low content alkali aqueous solution and intensive mixing worked. The product of oxidation of aluminum scrap is the powder of Al(OH)3. Then it can be preliminary granulated or directly subjected to thermal treatment deleting the impurities from the product (aluminum oxide). It was shown the possibility to produce the high-purity aluminum oxide of 5N grade (99.999 %). Aluminum oxide, synthesized by means of the proposed method, meets the requirements of industrial manufacturers of synthetic sapphire (aluminum oxide monocrystals). Obtained high pure aluminum oxide can be also used for the manufacture of implants, artificial joints, microscalpels, high-purity ceramics and other refractory shapes for manufacture of ultra-pure products.

  20. IRIS Toxicological Review of Beryllium and Compounds (2008 External Review Draft)

    EPA Science Inventory

    EPA is conducting a peer review and public comment of the scientific basis supporting the human health hazard and dose-response assessment of Beryllium that when finalized will appear on the Integrated Risk Information System (IRIS) database.