Sample records for isothermal titration calorimetry

  1. Titration Calorimetry Standards and the Precision of Isothermal Titration Calorimetry Data

    PubMed Central

    Baranauskienė, Lina; Petrikaitė, Vilma; Matulienė, Jurgita; Matulis, Daumantas

    2009-01-01

    Current Isothermal Titration Calorimetry (ITC) data in the literature have relatively high errors in the measured enthalpies of protein-ligand binding reactions. There is a need for universal validation standards for titration calorimeters. Several inorganic salt co-precipitation and buffer protonation reactions have been suggested as possible enthalpy standards. The performances of several commercial calorimeters, including the VP-ITC, ITC200, and Nano ITC-III, were validated using these suggested standard reactions. PMID:19582227

  2. Isothermal Titration Calorimetry Can Provide Critical Thinking Opportunities

    ERIC Educational Resources Information Center

    Moore, Dale E.; Goode, David R.; Seney, Caryn S.; Boatwright, Jennifer M.

    2016-01-01

    College chemistry faculties might not have considered including isothermal titration calorimetry (ITC) in their majors' curriculum because experimental data from this instrumental method are often analyzed via automation (software). However, the software-based data analysis can be replaced with a spreadsheet-based analysis that is readily…

  3. Subsite binding energies of an exo-polygalacturonase using isothermal titration calorimetry

    USDA-ARS?s Scientific Manuscript database

    Thermodynamic parameters for binding of a series of galacturonic acid oligomers to an exo-polygalacturonase, RPG16 from Rhizopus oryzae, were determined by isothermal titration calorimetry. Binding of oligomers varying in chain length from two to five galacturonic acid residues is an exothermic proc...

  4. Thermodynamic investigations of protein's behaviour with ionic liquids in aqueous medium studied by isothermal titration calorimetry.

    PubMed

    Bharmoria, Pankaj; Kumar, Arvind

    2016-05-01

    While a number of reports appear on ionic liquids-proteins interactions, their thermodynamic behaviour using suitable technique like isothermal titration calorimetry is not systematically presented. Isothermal titration calorimetry (ITC) is a key technique which can directly measure the thermodynamic contribution of IL binding to protein, particularly the enthalpy, heat capacities and binding stoichiometry. Ionic liquids (ILs), owing to their unique and tunable physicochemical properties have been the central area of scientific research besides graphene in the last decade, and growing unabated. Their encounter with proteins in the biological system is inevitable considering their environmental discharge though most of them are recyclable for a number of cycles. In this article we will cover the thermodynamics of proteins upon interaction with ILs as osmolyte and surfactant. The up to date literature survey of IL-protein interactions using isothermal titration calorimetry will be discussed and parallel comparison with the results obtained for such studies with other techniques will be highlighted to demonstrate the accuracy of ITC technique. Net stability of proteins can be obtained from the difference in the free energy (ΔG) of the native (folded) and denatured (unfolded) state using the Gibbs-Helmholtz equation (ΔG=ΔH-TΔS). Isothermal titration calorimetry can directly measure the heat changes upon IL-protein interactions. Calculation of other thermodynamic parameters such as entropy, binding constant and free energy depends upon the proper fitting of the binding isotherms using various fitting models. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Isothermal Titration Calorimetry in the Student Laboratory

    ERIC Educational Resources Information Center

    Wadso, Lars; Li, Yujing; Li, Xi

    2011-01-01

    Isothermal titration calorimetry (ITC) is the measurement of the heat produced by the stepwise addition of one substance to another. It is a common experimental technique, for example, in pharmaceutical science, to measure equilibrium constants and reaction enthalpies. We describe a stirring device and an injection pump that can be used with a…

  6. Isothermal Titration Calorimetry and Macromolecular Visualization for the Interaction of Lysozyme and Its Inhibitors

    ERIC Educational Resources Information Center

    Wei, Chin-Chuan; Jensen, Drake; Boyle, Tiffany; O'Brien, Leah C.; De Meo, Cristina; Shabestary, Nahid; Eder, Douglas J.

    2015-01-01

    To provide a research-like experience to upper-division undergraduate students in a biochemistry teaching laboratory, isothermal titration calorimetry (ITC) is employed to determine the binding constants of lysozyme and its inhibitors, N-acetyl glucosamine trimer (NAG[subscript 3]) and monomer (NAG). The extremely weak binding of lysozyme/NAG is…

  7. Kinetic properties of two Rhizopus exo-polygalacturonase enzymes hydrolyzing galacturonic acid oligomers using isothermal titration calorimetry

    USDA-ARS?s Scientific Manuscript database

    The kinetic characteristics of two Rhizopus oryzae exo-polygalacturonases acting on galacturonic acid oligomers (GalpA) were determined using isothermal titration calorimetry (ITC). RPG15 hydrolyzing (GalpA)2 demonstrated a Km of 55 uM and kcat of 10.3 s^-1^ while RPG16 was shown to have greater af...

  8. Integration and global analysis of isothermal titration calorimetry data for studying macromolecular interactions.

    PubMed

    Brautigam, Chad A; Zhao, Huaying; Vargas, Carolyn; Keller, Sandro; Schuck, Peter

    2016-05-01

    Isothermal titration calorimetry (ITC) is a powerful and widely used method to measure the energetics of macromolecular interactions by recording a thermogram of differential heating power during a titration. However, traditional ITC analysis is limited by stochastic thermogram noise and by the limited information content of a single titration experiment. Here we present a protocol for bias-free thermogram integration based on automated shape analysis of the injection peaks, followed by combination of isotherms from different calorimetric titration experiments into a global analysis, statistical analysis of binding parameters and graphical presentation of the results. This is performed using the integrated public-domain software packages NITPIC, SEDPHAT and GUSSI. The recently developed low-noise thermogram integration approach and global analysis allow for more precise parameter estimates and more reliable quantification of multisite and multicomponent cooperative and competitive interactions. Titration experiments typically take 1-2.5 h each, and global analysis usually takes 10-20 min.

  9. Differential Binding Models for Direct and Reverse Isothermal Titration Calorimetry.

    PubMed

    Herrera, Isaac; Winnik, Mitchell A

    2016-03-10

    Isothermal titration calorimetry (ITC) is a technique to measure the stoichiometry and thermodynamics from binding experiments. Identifying an appropriate mathematical model to evaluate titration curves of receptors with multiple sites is challenging, particularly when the stoichiometry or binding mechanism is not available. In a recent theoretical study, we presented a differential binding model (DBM) to study calorimetry titrations independently of the interaction among the binding sites (Herrera, I.; Winnik, M. A. J. Phys. Chem. B 2013, 117, 8659-8672). Here, we build upon our DBM and show its practical application to evaluate calorimetry titrations of receptors with multiple sites independently of the titration direction. Specifically, we present a set of ordinary differential equations (ODEs) with the general form d[S]/dV that can be integrated numerically to calculate the equilibrium concentrations of free and bound species S at every injection step and, subsequently, to evaluate the volume-normalized heat signal (δQ(V) = δq/dV) of direct and reverse calorimetry titrations. Additionally, we identify factors that influence the shape of the titration curve and can be used to optimize the initial concentrations of titrant and analyte. We demonstrate the flexibility of our updated DBM by applying these differentials and a global regression analysis to direct and reverse calorimetric titrations of gadolinium ions with multidentate ligands of increasing denticity, namely, diglycolic acid (DGA), citric acid (CIT), and nitrilotriacetic acid (NTA), and use statistical tests to validate the stoichiometries for the metal-ligand pairs studied.

  10. pytc: Open-Source Python Software for Global Analyses of Isothermal Titration Calorimetry Data.

    PubMed

    Duvvuri, Hiranmayi; Wheeler, Lucas C; Harms, Michael J

    2018-05-08

    Here we describe pytc, an open-source Python package for global fits of thermodynamic models to multiple isothermal titration calorimetry experiments. Key features include simplicity, the ability to implement new thermodynamic models, a robust maximum likelihood fitter, a fast Bayesian Markov-Chain Monte Carlo sampler, rigorous implementation, extensive documentation, and full cross-platform compatibility. pytc fitting can be done using an application program interface or via a graphical user interface. It is available for download at https://github.com/harmslab/pytc .

  11. Applications of isothermal titration calorimetry - the research and technical developments from 2011 to 2015.

    PubMed

    Falconer, Robert J

    2016-10-01

    Isothermal titration calorimetry is a widely used biophysical technique for studying the formation or dissociation of molecular complexes. Over the last 5 years, much work has been published on the interpretation of isothermal titration calorimetry (ITC) data for single binding and multiple binding sites. As over 80% of ITC papers are on macromolecules of biological origin, this interpretation is challenging. Some researchers have attempted to link the thermodynamics constants to events at the molecular level. This review highlights work carried out using binding sites characterized using x-ray crystallography techniques that allow speculation about individual bond formation and the displacement of individual water molecules during ligand binding and link these events to the thermodynamic constants for binding. The review also considers research conducted with synthetic binding partners where specific binding events like anion-π and π-π interactions were studied. The revival of assays that enable both thermodynamic and kinetic information to be collected from ITC data is highlighted. Lastly, published criticism of ITC research from a physical chemistry perspective is appraised and practical advice provided for researchers unfamiliar with thermodynamics and its interpretation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Thermodynamics of Surfactants, Block Copolymers and Their Mixtures in Water: The Role of the Isothermal Calorimetry

    PubMed Central

    De Lisi, Rosario; Milioto, Stefania; Muratore, Nicola

    2009-01-01

    The thermodynamics of conventional surfactants, block copolymers and their mixtures in water was described to the light of the enthalpy function. The two methodologies, i.e. the van’t Hoff approach and the isothermal calorimetry, used to determine the enthalpy of micellization of pure surfactants and block copolymers were described. The van’t Hoff method was critically discussed. The aqueous copolymer+surfactant mixtures were analyzed by means of the isothermal titration calorimetry and the enthalpy of transfer of the copolymer from the water to the aqueous surfactant solutions. Thermodynamic models were presented to show the procedure to extract straightforward molecular insights from the bulk properties. PMID:19742173

  13. Van’t Hoff global analyses of variable temperature isothermal titration calorimetry data

    PubMed Central

    Freiburger, Lee A.; Auclair, Karine; Mittermaier, Anthony K.

    2016-01-01

    Isothermal titration calorimetry (ITC) can provide detailed information on the thermodynamics of biomolecular interactions in the form of equilibrium constants, KA, and enthalpy changes, ΔHA. A powerful application of this technique involves analyzing the temperature dependences of ITC-derived KA and ΔHA values to gain insight into thermodynamic linkage between binding and additional equilibria, such as protein folding. We recently developed a general method for global analysis of variable temperature ITC data that significantly improves the accuracy of extracted thermodynamic parameters and requires no prior knowledge of the coupled equilibria. Here we report detailed validation of this method using Monte Carlo simulations and an application to study coupled folding and binding in an aminoglycoside acetyltransferase enzyme. PMID:28018008

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rioux, Robert M.

    In this work, we have primarily utilized isothermal titration calorimetry (ITC) and complimentary catalyst characterization techniques to study and assess the impact of solution conditions (i.e., solid-liquid) interface on the synthesis of heterogeneous and electro-catalysts. Isothermal titration calorimetry is well-known technique from biochemistry/physics, but has been applied to a far lesser extent to characterize buried solid-liquid interfaces in materials science. We demonstrate the utility and unique information provided by ITC for two distinct catalytic systems. We explored the thermodynamics associated catalyst synthesis for two systems: (i) ion-exchange or strong electrostatic adsorption for Pt and Pd salts on silica and aluminamore » materials (ii) adsorption to provide covalent attachment of metal and metal-oxo clusters to Dion-Jacobsen perovskite materials.« less

  15. The effect of cholesterol on the partitioning of 1-octanol into POPC vesicles

    NASA Astrophysics Data System (ADS)

    Zakariaee Kouchaksaraee, Roja

    Microcalorimetry has become a method of choice for sensitive characterization of biomolecular interactions. In this study, isothermal titration calorimetry (ITC) was used to measure the partitioning of 1-octanol into lipid bilayers composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), a semi-unsaturated lipid, and cholesterol, a steroid, as a function of cholesterol molar concentration. The ITC instrument measures the heat evolved or absorbed upon titration of a liposome dispersion, at concentrations ranging from 0 to 40% cholesterol, into a suspension of 1-octanol in water. A model function was fit to the data in order to determine the partition coefficient of octanol into POPC bilayers and the enthalpy of interaction. I found that the partition coefficient increases and the heat of interaction becomes less negative with increasing cholesterol content, in contrast to results found by other groups for partitioning of alcohols into lipid-cholesterol bilayers containing saturated lipids. The heat of dilution of vesicles was also measured. Keywords: Partition coefficient; POPC; 1-Octanol; Cholesterol; Isothermal titration calorimetry; Lipid-alcohol interactions. Subject Terms: Calorimetry; Membranes (Biology); Biophysics; Biology -- Technique; Bilayer lipid membranes -- Biotechnology; Lipid membranes -- Biotechnology.

  16. Heat of supersaturation-limited amyloid burst directly monitored by isothermal titration calorimetry.

    PubMed

    Ikenoue, Tatsuya; Lee, Young-Ho; Kardos, József; Yagi, Hisashi; Ikegami, Takahisa; Naiki, Hironobu; Goto, Yuji

    2014-05-06

    Amyloid fibrils form in supersaturated solutions via a nucleation and growth mechanism. Although the structural features of amyloid fibrils have become increasingly clearer, knowledge on the thermodynamics of fibrillation is limited. Furthermore, protein aggregation is not a target of calorimetry, one of the most powerful approaches used to study proteins. Here, with β2-microglobulin, a protein responsible for dialysis-related amyloidosis, we show direct heat measurements of the formation of amyloid fibrils using isothermal titration calorimetry (ITC). The spontaneous fibrillation after a lag phase was accompanied by exothermic heat. The thermodynamic parameters of fibrillation obtained under various protein concentrations and temperatures were consistent with the main-chain dominated structural model of fibrils, in which overall packing was less than that of the native structures. We also characterized the thermodynamics of amorphous aggregation, enabling the comparison of protein folding, amyloid fibrillation, and amorphous aggregation. These results indicate that ITC will become a promising approach for clarifying comprehensively the thermodynamics of protein folding and misfolding.

  17. Interaction of phenazinium dyes with double-stranded poly(A): Spectroscopy and isothermal titration calorimetry studies

    NASA Astrophysics Data System (ADS)

    Khan, Asma Yasmeen; Saha, Baishakhi; Kumar, Gopinatha Suresh

    2014-10-01

    A comprehensive study on the binding of phenazinium dyes viz. janus green B, indoine blue, safranine O and phenosafranine with double stranded poly(A) using various spectroscopic and calorimetric techniques is presented. A higher binding of janus green B and indoine blue over safranine O and phenosafranine to poly(A) was observed from all experiments. Intercalative mode of binding of the dyes was inferred from fluorescence polarization anisotropy, iodide quenching and viscosity experiments. Circular dichroism study revealed significant perturbation of the secondary structure of poly(A) on binding of these dyes. Results from isothermal titration calorimetry experiments suggested that the binding was predominantly entropy driven with a minor contribution of enthalpy to the standard molar Gibbs energy. The results presented here may open new opportunities in the application of these dyes as RNA targeted therapeutic agents.

  18. Isoquinoline alkaloids and their binding with DNA: calorimetry and thermal analysis applications.

    PubMed

    Bhadra, Kakali; Kumar, Gopinatha Suresh

    2010-11-01

    Alkaloids are a group of natural products with unmatched chemical diversity and biological relevance forming potential quality pools in drug screening. The molecular aspects of their interaction with many cellular macromolecules like DNA, RNA and proteins are being currently investigated in order to evolve the structure activity relationship. Isoquinolines constitute an important group of alkaloids. They have extensive utility in cancer therapy and a large volume of data is now emerging in the literature on their mode, mechanism and specificity of binding to DNA. Thermodynamic characterization of the binding of these alkaloids to DNA may offer key insights into the molecular aspects that drive complex formation and these data can provide valuable information about the balance of driving forces. Various thermal techniques have been conveniently used for this purpose and modern calorimetric instrumentation provides direct and quick estimation of thermodynamic parameters. Thermal melting studies and calorimetric techniques like isothermal titration calorimetry and differential scanning calorimetry have further advanced the field by providing authentic, reliable and sensitive data on various aspects of temperature dependent structural analysis of the interaction. In this review we present the application of various thermal techniques, viz. isothermal titration calorimetry, differential scanning calorimetry and optical melting studies in the characterization of drug-DNA interactions with particular emphasis on isoquinoline alkaloid-DNA interaction.

  19. Isothermal titration calorimetry for measuring macromolecule-ligand affinity.

    PubMed

    Duff, Michael R; Grubbs, Jordan; Howell, Elizabeth E

    2011-09-07

    Isothermal titration calorimetry (ITC) is a useful tool for understanding the complete thermodynamic picture of a binding reaction. In biological sciences, macromolecular interactions are essential in understanding the machinery of the cell. Experimental conditions, such as buffer and temperature, can be tailored to the particular binding system being studied. However, careful planning is needed since certain ligand and macromolecule concentration ranges are necessary to obtain useful data. Concentrations of the macromolecule and ligand need to be accurately determined for reliable results. Care also needs to be taken when preparing the samples as impurities can significantly affect the experiment. When ITC experiments, along with controls, are performed properly, useful binding information, such as the stoichiometry, affinity and enthalpy, are obtained. By running additional experiments under different buffer or temperature conditions, more detailed information can be obtained about the system. A protocol for the basic setup of an ITC experiment is given.

  20. Isothermal Titration Calorimetry for Measuring Macromolecule-Ligand Affinity

    PubMed Central

    Duff,, Michael R.; Grubbs, Jordan; Howell, Elizabeth E.

    2011-01-01

    Isothermal titration calorimetry (ITC) is a useful tool for understanding the complete thermodynamic picture of a binding reaction. In biological sciences, macromolecular interactions are essential in understanding the machinery of the cell. Experimental conditions, such as buffer and temperature, can be tailored to the particular binding system being studied. However, careful planning is needed since certain ligand and macromolecule concentration ranges are necessary to obtain useful data. Concentrations of the macromolecule and ligand need to be accurately determined for reliable results. Care also needs to be taken when preparing the samples as impurities can significantly affect the experiment. When ITC experiments, along with controls, are performed properly, useful binding information, such as the stoichiometry, affinity and enthalpy, are obtained. By running additional experiments under different buffer or temperature conditions, more detailed information can be obtained about the system. A protocol for the basic setup of an ITC experiment is given. PMID:21931288

  1. Non-intercalative, deoxyribose binding of boric acid to calf thymus DNA.

    PubMed

    Ozdemir, Ayse; Gursaclı, Refiye Tekiner; Tekinay, Turgay

    2014-05-01

    The present study characterizes the effects of the boric acid binding on calf thymus DNA (ct-DNA) by spectroscopic and calorimetric methods. UV-Vis absorbance spectroscopy, circular dichroism (CD) spectroscopy, transmission electron microscopy (TEM), isothermal titration calorimetry (ITC), and Fourier transform infrared (FT-IR) spectroscopy were employed to characterize binding properties. Changes in the secondary structure of ct-DNA were determined by CD spectroscopy. Sizes and morphologies of boric acid-DNA complexes were determined by transmission electron microscopy (TEM). The kinetics of boric acid binding to calf thymus DNA (ct-DNA) was investigated by isothermal titration calorimetry (ITC). ITC results revealed that boric acid exhibits a moderate affinity to ct-DNA with a binding constant (K a) of 9.54 × 10(4) M(-1). FT-IR results revealed that boric acid binds to the deoxyribose sugar of DNA without disrupting the B-conformation at tested concentrations.

  2. Thermodynamic signature of secondary nano-emulsion formation by isothermal titration calorimetry.

    PubMed

    Fotticchia, Iolanda; Fotticchia, Teresa; Mattia, Carlo Andrea; Netti, Paolo Antonio; Vecchione, Raffaele; Giancola, Concetta

    2014-12-09

    The stabilization of oil in water nano-emulsions by means of a polymer coating is extremely important; it prolongs the shelf life of the product and makes it suitable for a variety of applications ranging from nutraceutics to cosmetics and pharmaceutics. To date, an effective methodology to assess the best formulations in terms of thermodynamic stability has yet to be designed. Here, we perform a complete physicochemical characterization based on isothermal titration calorimetry (ITC) compared to conventional dynamic light scattering (DLS) to identify polymer concentration domains that are thermodynamically stable and to define the degree of stability through thermodynamic functions depending upon any relevant parameter affecting the stability itself, such as type of polymer coating, droplet distance, etc. For instance, the method was proven by measuring the energetics in the case of two different biopolymers, chitosan and poly-L-lysine, and for different concentrations of the emulsion coated with poly-L-lysine.

  3. Energetics of genome ejection from phage revealed by isothermal titration calorimetry

    NASA Astrophysics Data System (ADS)

    Jeembaeva, Meerim; Jonsson, Bengt; Castelnovo, Martin; Evilevitch, Alex

    2009-03-01

    It has been experimentally shown that ejection of double-stranded DNA from phage is driven by internal pressure reaching tens of atmospheres. This internal pressure is partially responsible for delivery of DNA into the host cell. While several theoretical models and simulations nicely describe the experimental data of internal forces either resisting active packaging or equivalently favoring spontaneous ejection, there are no direct energy measurements available that would help to verify how quantitative these theories are. We performed direct measurements of the enthalpy responsible for DNA ejection from phage λ, using Isothermal Titration Calorimetry. The phage capsids were ``opened'' in vitro by titrating λ into a solution with LamB receptor and the enthalpy of DNA ejection process was measured. In his way, enthalpy stored in λ was determined as a function of packaged DNA length comparing wild-type phage λ (48.5 kb) with a shorter λ-DNA length mutant (37.7 kb). The temperature dependence of the ejection enthalpy was also investigated. The values obtained were in good agreement with existing models and provide a better understanding of ds- DNA packaging and release mechanisms in motor-packaged viruses (e.g., tailed bacteriophages, Herpes Simplex, and adenoviruses).

  4. Multi-site binding of epigallocatechin gallate to human serum albumin measured by NMR and isothermal titration calorimetry

    PubMed Central

    Eaton, Joshua D.

    2017-01-01

    The affinity of epigallocatechin gallate (EGCG) for human serum albumin (HSA) was measured in physiological conditions using NMR and isothermal titration calorimetry (ITC). NMR estimated the Ka (self-dissociation constant) of EGCG as 50 mM. NMR showed two binding events: strong (n1=1.8 ± 0.2; Kd1 =19 ± 12 μM) and weak (n2∼20; Kd2 =40 ± 20 mM). ITC also showed two binding events: strong (n1=2.5 ± 0.03; Kd1 =21.6 ± 4.0 μM) and weak (n2=9 ± 1; Kd2 =22 ± 4 mM). The two techniques are consistent, with an unexpectedly high number of bound EGCG. The strong binding is consistent with binding in the two Sudlow pockets. These results imply that almost all EGCG is transported in the blood bound to albumin and explains the wide tissue distribution and chemical stability of EGCG in vivo. PMID:28424370

  5. Exploring the palladium- and platinum-bis(pyridine) complex motif by NMR spectroscopy, X-ray crystallography, (tandem) mass spectrometry, and isothermal titration calorimetry: do substituent effects follow chemical intuition?

    PubMed

    Weilandt, Torsten; Löw, Nora L; Schnakenburg, Gregor; Daniels, Jörg; Nieger, Martin; Schalley, Christoph A; Lützen, Arne

    2012-12-21

    A series of ten palladium-bis(pyridine) complexes, as well as their corresponding platinum complexes, have been synthesized. The pyridine ligands in each series carried different σ-donor and/or π-acceptor/donor substituents at the para-position of their pyridine rings. These complexes were analysed by NMR spectroscopy, X-ray crystallography, (tandem) MS, and isothermal titration calorimetry (ITC) to validate whether these methods allowed us to obtain a concise and systematic picture of the relative and absolute thermodynamic stabilities of the complexes, as determined by the electronic effects of the substituents. Interestingly, the NMR spectroscopic data hardly correlated with the expected substituent effects but the heteronuclear platinum-phosphorus coupling constants did. Crystallographic data were found to be blurred by packing effects. Instead, tandem MS and ITC data were in line with each other and followed the expected trends. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Thermodynamic analysis of Bacillus subtilis endospore protonation using isothermal titration calorimetry

    NASA Astrophysics Data System (ADS)

    Harrold, Zoë R.; Gorman-Lewis, Drew

    2013-05-01

    Bacterial proton and metal adsorption reactions have the capacity to affect metal speciation and transport in aqueous environments. We coupled potentiometric titration and isothermal titration calorimetry (ITC) analyses to study Bacillus subtilis spore-proton adsorption. We modeled the potentiometric data using a four and five-site non-electrostatic surface complexation model (NE-SCM). Heats of spore surface protonation from coupled ITC analyses were used to determine site specific enthalpies of protonation based on NE-SCMs. The five-site model resulted in a substantially better model fit for the heats of protonation but did not significantly improve the potentiometric titration model fit. The improvement observed in the five-site protonation heat model suggests the presence of a highly exothermic protonation reaction circa pH 7 that cannot be resolved in the less sensitive potentiometric data. From the log Ks and enthalpies we calculated corresponding site specific entropies. Log Ks and site concentrations describing spore surface protonation are statistically equivalent to B. subtilis cell surface protonation constants. Spore surface protonation enthalpies, however, are more exothermic relative to cell based adsorption suggesting a different bonding environment. The thermodynamic parameters defined in this study provide insight on molecular scale spore-surface protonation reactions. Coupled ITC and potentiometric titrations can reveal highly exothermic, and possibly endothermic, adsorption reactions that are overshadowed in potentiometric models alone. Spore-proton adsorption NE-SCMs derived in this study provide a framework for future metal adsorption studies.

  7. Kinetic characteristics of polygalacturonase enzymes hydrolyzing galacturonic acid oligomers using isothermal titration calorimetry

    USDA-ARS?s Scientific Manuscript database

    Polygalacturonase enzymes hydrolyze the polygalacturonic acid chains found in pectin. Interest in polygalacturonase enzymes continues as they are useful in a number of industrial processes and conversely, detrimental, as they are involved in maceration of economically important crops. While a good...

  8. The mechanism of interactions between tea polyphenols and porcine pancreatic alpha‐amylase: Analysis by inhibition kinetics, fluorescence quenching, differential scanning calorimetry and isothermal titration calorimetry

    PubMed Central

    Sun, Lijun; Gidley, Michael J.

    2017-01-01

    Scope This study aims to use a combination of biochemical and biophysical methods to derive greater mechanistic understanding of the interactions between tea polyphenols and porcine pancreatic α‐amylase (PPA). Methods and results The interaction mechanism was studied through fluorescence quenching (FQ), differential scanning calorimetry (DSC) and isothermal titration calorimetry (ITC) and compared with inhibition kinetics. The results showed that a higher quenching effect of polyphenols corresponded to a stronger inhibitory activity against PPA. The red‐shift of maximum emission wavelength of PPA bound with some polyphenols indicated a potential structural unfolding of PPA. This was also suggested by the decreased thermostability of PPA with these polyphenols in DSC thermograms. Through thermodynamic binding analysis of ITC and inhibition kinetics, the equilibrium of competitive inhibition was shown to result from the binding of particularly galloylated polyphenols with specific sites on PPA. There were positive linear correlations between the reciprocal of competitive inhibition constant (1/K ic), quenching constant (K FQ) and binding constant (K itc). Conclusion The combination of inhibition kinetics, FQ, DSC and ITC can reasonably characterize the interactions between tea polyphenols and PPA. The galloyl moiety is an important group in catechins and theaflavins in terms of binding with and inhibiting the activity of PPA. PMID:28618113

  9. Zinc(II) complexation by some biologically relevant pH buffers.

    PubMed

    Wyrzykowski, D; Tesmar, A; Jacewicz, D; Pranczk, J; Chmurzyński, L

    2014-12-01

    The isothermal titration calorimetry (ITC) technique supported by potentiometric titration data was used to study the interaction of zinc ions with pH buffer substances, namely 2-(N-morpholino)ethanesulfonic acid (Mes), piperazine-N,N'-bis(2-ethanesulfonic acid) (Pipes), and dimethylarsenic acid (Caco). The displacement ITC titration method with nitrilotriacetic acid as a strong, competitive ligand was applied to determine conditional-independent thermodynamic parameters for the binding of Zn(II) to Mes, Pipes, and Caco. Furthermore, the relationship between the proposed coordination mode of the buffers and the binding enthalpy has been discussed. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Simultaneous determination of thermodynamic and kinetic parameters of aminopolycarbonate complexes of cobalt(II) and nickel(II) based on isothermal titration calorimetry data.

    PubMed

    Tesmar, Aleksandra; Wyrzykowski, Dariusz; Muñoz, Eva; Pilarski, Bogusław; Pranczk, Joanna; Jacewicz, Dagmara; Chmurzyński, Lech

    2017-04-01

    The influence of the different side chain residues on the thermodynamic and kinetic parameters for complexation reactions of the Co 2 + and Ni 2 + ions has been investigated by using the isothermal titration calorimetry (ITC) technique supported by potentiometric titration data. The study was concerned with the 2 common tripodal aminocarboxylate ligands, namely, nitrilotriacetic acid and N-(2-hydroxyethyl) iminodiacetic acid. Calorimetric measurements (ITC) were run in the 2-(N-morpholino)ethanesulfonic acid hydrate (2-(N-morpholino) ethanesulfonic acid), piperazine-N,N'-bis(2-ethanesulfonic acid), and dimethylarsenic acid buffers (0.1 mol L -1 , pH 6) at 298.15 K. The quantification of the metal-buffer interactions and their incorporation into the ITC data analysis enabled to obtain the pH-independent and buffer-independent thermodynamic parameters (K, ΔG, ΔH, and ΔS) for the reactions under study. Furthermore, the kinITC method was applied to obtain kinetic information on complexation reactions from the ITC data. Correlations, based on kinetic and thermodynamic data, between the kinetics of formation of Co 2 + and Ni 2 + complexes and their thermodynamic stabilities are discussed. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Simultaneous addition of two ligands: a potential strategy for estimating divalent ion affinities in EF-hand proteins by isothermal titration calorimetry.

    PubMed

    Henzl, Michael T; Markus, Lindsey A; Davis, Meredith E; McMillan, Andrew T

    2013-03-01

    Capable of providing a detailed thermodynamic picture of noncovalent association reactions, isothermal titration calorimetry (ITC) has become a popular method for studying protein-ligand interactions. We routinely employ the technique to study divalent ion-binding by two-site EF-hand proteins from the parvalbumin- and polcalcin lineages. The combination of high Ca(2+) affinity and relatively low Mg(2+) affinity, and the attendant complication of parameter correlation, conspire to make the simultaneous extraction of binding constants and -enthalpies for both ions challenging. Although global analysis of multiple ITC experiments can overcome these hurdles, our current experimental protocol includes upwards of 10 titrations - requiring a substantial investment in labor, machine time, and material. This paper explores the potential for using a smaller suite of experiments that includes simultaneous titrations with Ca(2+) and Mg(2+) at different ratios of the two ions. The results obtained for four proteins, differing substantially in their divalent ion-binding properties, suggest that the approach has merit. The Ca(2+)- and Mg(2+)-binding constants afforded by the streamlined analysis are in reasonable agreement with those obtained from the standard analysis protocol. Likewise, the abbreviated analysis provides comparable values for the Ca(2+)-binding enthalpies. However, the streamlined analysis can yield divergent values for the Mg(2+)-binding enthalpies - particularly those for lower affinity sites. This shortcoming can be remedied, in large measure, by including data from a direct Ca(2+) titration in the presence of a high, fixed Mg(2+) concentration. Copyright © 2013. Published by Elsevier Inc.

  12. Inclusion complex of benzocaine and β-cyclodextrin: 1H NMR and isothermal titration calorimetry studies

    NASA Astrophysics Data System (ADS)

    Mic, Mihaela; Pırnǎu, Adrian; Bogdan, Mircea; Turcu, Ioan

    2013-11-01

    The supramolecular structure of the inclusion complex of β-cyclodextrin with benzocaine in aqueous solution has been investigated by 1H NMR spectroscopy and isothermal titration nanocalorimetry (ITC). Analysis of 1H NMR data by continuous variation method indicates that the benzocaine: β-cyclodextrin inclusion complex occurs and has a 1:1 stoichiometry. Rotating frame NOE spectroscopy (ROESY) was used to ascertain the solution geometry of the host-guest complex which indicates that the benzocaine molecule was included with the aromatic ring into the cyclodextrin cavity. Although the affinity of benzocaine for cyclodextrin is relatively high, the association constant cannot be measured using ITC due to the low solubility of benzocaine in water.

  13. Calorimetry, activity, and micro-FTIR analysis of CO chemisorption, titration, and oxidation on supported Pt

    NASA Technical Reports Server (NTRS)

    Sermon, Paul A.; Self, Valerie A.; Vong, Mariana S. W.; Wurie, Alpha T.

    1990-01-01

    The value of in situ analysis on CO chemisorption, titration and oxidation over supported Pt catalysts using calorimetry, catalytic and micro-FTIR methods is illustrated using silica- and titania-supported samples. Isothermal CO-O and O2-CO titrations have not been widely used on metal surfaces and may be complicated if some oxide supports are reduced by CO titrant. However, they can illuminate the kinetics of CO oxidation on metal/oxide catalysts since during such titrations all O and CO coverages are scanned as a function of time. There are clear advantages in following the rates of the catalyzed CO oxidation via calorimetry and gc-ms simultaneously. At lower temperatures the evidence they provide is complementary. CO oxidation and its catalysis of CO oxidation have been extensively studied with hysteresis and oscillations apparent, and the present results suggest the benefits of a combined approach. Silica support porosity may be important in defining activity-temperature hysteresis. FTIR microspectroscopy reveals the chemical heterogeneity of the catalytic surfaces used; it is interesting that the evidence with regard to the dominant CO surface species and their reactivities with regard to surface oxygen for present oxide-supported Pt are different from those seen on graphite-supported Pt.

  14. Water molecules in the antibody-antigen interface of the structure of the Fab HyHEL-5-lysozyme complex at 1.7 A resolution: comparison with results from isothermal titration calorimetry.

    PubMed

    Cohen, Gerson H; Silverton, Enid W; Padlan, Eduardo A; Dyda, Fred; Wibbenmeyer, Jamie A; Willson, Richard C; Davies, David R

    2005-05-01

    The structure of the complex between hen egg-white lysozyme and the Fab HyHEL-5 at 2.7 A resolution has previously been reported [Cohen et al. (1996), Acta Cryst. D52, 315-326]. With the availability of recombinant Fab, the X-ray structure of the complex has been re-evaluated at 1.7 A resolution. The refined structure has yielded a detailed picture of the Fab-lysozyme interface, showing the high complementarity of the protein surfaces as well as several water molecules within the interface that complete the good fit. The model of the full complex has improved significantly, yielding an R(work) of 19.5%. With this model, the structural results can be compared with the results of isothermal titration calorimetry. An attempt has been made to estimate the changes in bound waters that accompany complex formation and the difficulties inherent in using the crystal structures to provide the information necessary to make this calculation are discussed.

  15. Antihypertensive Effects, Molecular Docking Study, and Isothermal Titration Calorimetry Assay of Angiotensin I-Converting Enzyme Inhibitory Peptides from Chlorella vulgaris.

    PubMed

    Xie, Jingli; Chen, Xujun; Wu, Junjie; Zhang, Yanyan; Zhou, Yan; Zhang, Lujia; Tang, Ya-Jie; Wei, Dongzhi

    2018-02-14

    The aim of this work is to explore angiotensin I-converting enzyme (ACE) inhibitory peptides from Chlorella vulgaris (C. vulgaris) and discover the inhibitory mechanism of the peptides. After C. vulgaris proteins were gastrointestinal digested in silico, several ACE inhibitory peptides with C-terminal tryptophan were screened. Among them, two novel noncompetitive ACE inhibitors, Thr-Thr-Trp (TTW) and Val-His-Trp (VHW), exhibited the highest inhibitory activity indicated by IC 50 values 0.61 ± 0.12 and 0.91 ± 0.31 μM, respectively. Both the peptides were demonstrated stable against gastrointestinal digestion and ACE hydrolysis. The peptides were administrated to spontaneously hypertensive rats (SHRs) in the dose 5 mg/kg body weight, and VHW could decrease 50 mmHg systolic blood pressure of SHRs (p < 0.05). Molecular docking displayed that both TTW and VHW formed six hydrogen bonds with active site pockets of ACE. Besides, isothermal titration calorimetry assay discovered that VHW could form more stable complex with ACE than TTW. Therefore, VHW was an excellent ACE inhibitor.

  16. M[superscript 2+]•EDTA Binding Affinities: A Modern Experiment in Thermodynamics for the Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    O'Brien, Leah C.; Root, Hannah B.; Wei, Chin-Chuan; Jensen, Drake; Shabestary, Nahid; De Meo, Cristina; Eder, Douglas J.

    2015-01-01

    Isothermal titration calorimetry was used to experimentally determine thermodynamic values for the ethylenediaminetetraacetic acid (EDTA)(aq) + M[superscript 2+](aq) reactions (M[superscript 2+] = Ca[superscript 2+] and Mg[superscript 2+]). Students showed that for reactions in a N-(2-hydroxyethyl)piperazine-N"-ethanesulfonic acid (HEPES)…

  17. Native ESI Mass Spectrometry Can Help to Avoid Wrong Interpretations from Isothermal Titration Calorimetry in Difficult Situations

    NASA Astrophysics Data System (ADS)

    Wolff, Philippe; Da Veiga, Cyrielle; Ennifar, Eric; Bec, Guillaume; Guichard, Gilles; Burnouf, Dominique; Dumas, Philippe

    2017-02-01

    We studied by native ESI-MS the binding of various DNA-polymerase-derived peptides onto DNA-polymerase processivity rings from Escherichia coli, Pseudomonas aeruginosa, and Mycobacterium tuberculosis. These homodimeric rings present two equivalent specific binding sites, which leads to successive formation during a titration experiment of singly- and doubly occupied rings. By using the ESI-MS free-ring spectrum as a ruler, we derived by robust linear regression the fractions of the different ring species at each step of a titration experiment. These results led to accurate Kd values (from 0.03 to 0.5 μM) along with the probability of peptide loss due to gas phase dissociation (GPD). We show that this good quality is due to the increased information content of a titration experiment with a homodimer. Isothermal titration calorimetry (ITC) led with the same binding model to Kd(ITC) values systematically higher than their ESI-MS counterparts and, often, to poor fit of the ITC curves. A processing with two competing modes of binding on the same site requiring determination of two (Kd, ΔH) pairs greatly improved the fits and yielded a second Kd(ITC) close to Kd(ESI-MS). The striking features are: (1) ITC detected a minor binding mode ( 20%) of `low-affinity' that did not appear with ESI-MS; (2) the simplest processing of ITC data with only one (Kd, ΔH) pair led wrongly to the Kd of the low-affinity binding mode but to the ΔH of the high-affinity binding mode. Analogous misleading results might well exist in published data based on ITC experiments.

  18. Native ESI Mass Spectrometry Can Help to Avoid Wrong Interpretations from Isothermal Titration Calorimetry in Difficult Situations.

    PubMed

    Wolff, Philippe; Da Veiga, Cyrielle; Ennifar, Eric; Bec, Guillaume; Guichard, Gilles; Burnouf, Dominique; Dumas, Philippe

    2017-02-01

    We studied by native ESI-MS the binding of various DNA-polymerase-derived peptides onto DNA-polymerase processivity rings from Escherichia coli, Pseudomonas aeruginosa, and Mycobacterium tuberculosis. These homodimeric rings present two equivalent specific binding sites, which leads to successive formation during a titration experiment of singly- and doubly occupied rings. By using the ESI-MS free-ring spectrum as a ruler, we derived by robust linear regression the fractions of the different ring species at each step of a titration experiment. These results led to accurate K d values (from 0.03 to 0.5 μM) along with the probability of peptide loss due to gas phase dissociation (GPD). We show that this good quality is due to the increased information content of a titration experiment with a homodimer. Isothermal titration calorimetry (ITC) led with the same binding model to K d (ITC) values systematically higher than their ESI-MS counterparts and, often, to poor fit of the ITC curves. A processing with two competing modes of binding on the same site requiring determination of two (K d , ΔH) pairs greatly improved the fits and yielded a second K d (ITC) close to K d (ESI-MS). The striking features are: (1) ITC detected a minor binding mode (~20%) of 'low-affinity' that did not appear with ESI-MS; (2) the simplest processing of ITC data with only one (K d , ΔH) pair led wrongly to the Kd of the low-affinity binding mode but to the ΔH of the high-affinity binding mode. Analogous misleading results might well exist in published data based on ITC experiments. Graphical Abstract ᅟ.

  19. Analysis of the interactions between human serum albumin/amphiphilic penicillin in different aqueous media: an isothermal titration calorimetry and dynamic light scattering study

    NASA Astrophysics Data System (ADS)

    Barbosa, Silvia; Taboada, Pablo; Mosquera, Victor

    2005-04-01

    The complexation process of the amphiphilic penicillins sodium cloxacillin and sodium dicloxacillin with the protein human serum albumin (HSA) in aqueous buffered solutions of pH 4.5 and 7.4 at 25 °C was investigated through isothermal titration calorimetry (ITC) and dynamic light scattering. ITC experiments were carried out in the very dilute regime and showed that although hydrophobic interactions are the leading forces for complexation, electrostatic interactions also play an important role. The possibility of the formation of hydrogen bonds is also deduced from experimental data. The thermodynamic quantities of the binding mechanism, i.e, the enthalpy, ΔHITCi, entropy, ΔSITCi, Gibbs energy, ΔGITCi, binding constant, KITCi and the number of binding sites, ni, were obtained. The binding was saturable and is characterised by Langmuir adsorption isotherms. From ITC data and following a theoretical model, the number of bound and free penicillin molecules was calculated. From Scatchard plots, KITCi and ni were obtained and compared with those from ITC data. The interaction potential between the HSA-penicillin complexes and their stability were determined at pH 7.4 from the dependence of the diffusion coefficients on protein concentration by application of the DLVO colloidal stability theory. The results indicate decreasing stability of the colloidal dispersion of the drug-protein complexes with increase in the concentration of added drug.

  20. Biphasic association of T7 RNA polymerase and a nucleotide analogue, cibacron blue as a model to understand the role of initiating nucleotide in the mechanism of enzyme action.

    PubMed

    Pai, Sudipta; Das, Mili; Banerjee, Rahul; Dasgupta, Dipak

    2011-08-01

    T7 RNA polymerase (T7 RNAP) is an enzyme that utilizes ribonucleotides to synthesize the nascent RNA chain in a template-dependent manner. Here we have studied the interaction of T7 RNAP with cibacron blue, an anthraquinone monochlorotriazine dye, its effect on the function of the enzyme and the probable mode of binding of the dye. We have used difference absorption spectroscopy and isothermal titration calorimetry to show that the dye binds T7 RNAP in a biphasic manner. The first phase of the binding is characterized by inactivation of the enzyme. The second binding site overlaps with the common substrate-binding site of the enzyme. We have carried out docking experiment to map the binding site of the dye in the promoter bound protein. Competitive displacement of the dye from the high affinity site by labeled GTP and isothermal titration calorimetry of high affinity GTP bound enzyme with the dye suggests a strong correlation between the high affinity dye binding and the high affinity GTP binding in T7 RNAP reported earlier from our laboratory.

  1. Energetics of Glutathione Binding to Human Eukaryotic Elongation Factor 1 Gamma: Isothermal Titration Calorimetry and Molecular Dynamics Studies.

    PubMed

    Tshabalala, Thabiso N; Tomescu, Mihai-Silviu; Prior, Allan; Balakrishnan, Vijayakumar; Sayed, Yasien; Dirr, Heini W; Achilonu, Ikechukwu

    2016-12-01

    The energetics of ligand binding to human eukaryotic elongation factor 1 gamma (heEF1γ) was investigated using reduced glutathione (GSH), oxidised glutathione (GSSG), glutathione sulfonate and S-hexylglutathione as ligands. The experiments were conducted using isothermal titration calorimetry, and the findings were supported using computational studies. The data show that the binding of these ligands to heEF1γ is enthalpically favourable and entropically driven (except for the binding of GSSG). The full length heEF1γ binds GSSG with lower affinity (K d  = 115 μM), with more hydrogen-bond contacts (ΔH = -73.8 kJ/mol) and unfavourable entropy (-TΔS = 51.7 kJ/mol) compared to the glutathione transferase-like N-terminus domain of heEF1γ, which did not show preference to any specific ligand. Computational free binding energy calculations from the 10 ligand poses show that GSSG and GSH consistently bind heEF1γ, and that both ligands bind at the same site with a folded bioactive conformation. This study reveals the possibility that heEF1γ is a glutathione-binding protein.

  2. Compressibility, isothermal titration calorimetry and dynamic light scattering analysis of the aggregation of the amphiphilic phenothiazine drug thioridazine hydrochloride in water/ethanol mixed solvent

    NASA Astrophysics Data System (ADS)

    Cheema, Mohammad Arif; Siddiq, Mohammad; Barbosa, Silvia; Castro, Emilio; Egea, José A.; Antelo, Luis T.; Taboada, Pablo; Mosquera, Víctor

    2007-07-01

    Thioridazine hydrochloride is a drug used in treatment of mental illness that shows side effects. Therefore, it is interesting to study the change of the physico-chemical properties of the drug in different environments to understand the mechanism of action of the drug. Thioridazine can be considered as a hydrotrope if we considered that the term comprise hydrophilic and hydrophobic moieties that form aggregates by a stacking mechanism as it is the case of all the phenothiazine tranquillizing drugs. The association properties of the amphiphilic phenothiazine drug thioridazine hydrochloride were investigated by density, ultrasound, isothermal titration calorimetry and dynamic light scattering (DLS), yielding values of the critical concentration, adiabatic apparent compressibilities and hydrodynamic radius. The DLS data were analyzed according to the treatment of the Derjaguin, Landau, Verwey and Overbeek (DLVO) theory to study the stability of the system. The aim of the study is to obtain information about the physico-chemical characterization of the drug in aqueous solution and the effect of ethanol on the aggregate stability of this amphiphilic drug. The phenothiazine tranquillizing drugs have interesting association characteristics that derive from their rigid, tricyclic hydrophobic groups.

  3. Membrane solubilisation and reconstitution by octylglucoside: comparison of synthetic lipid and natural lipid extract by isothermal titration calorimetry.

    PubMed

    Krylova, Oxana O; Jahnke, Nadin; Keller, Sandro

    2010-08-01

    We have studied the solubilisation and reconstitution of lipid membranes composed of either synthetic phosphatidylcholine or Escherichia. coli polar lipid extract by the non-ionic detergent octylglucoside. For both lipid systems, composition-dependent transformations of unilamellar vesicles into micelles or vice versa were followed by high-sensitivity isothermal titration calorimetry. Data obtained over a range of detergent and lipid concentrations could be rationalised in terms of a three-stage phase separation model involving bilayer, bilayer/micelle coexistence, and micellar ranges, yielding the detergent/lipid phase diagrams and the bilayer-to-micelle partition coefficients of both detergent and lipid. The most notable difference between the lipids investigated was a substantial widening of the bilayer/micelle coexistence range for E. coli lipid, which was due to an increased preference of the detergent and a decreased affinity of the lipid for the micellar phase as compared with the bilayer phase. These effects on the bilayer-to-micelle partition coefficients could be explained by the high proportion in E. coli membranes of lipids possessing negative spontaneous curvature, which hampers both their transfer into strongly curved micellar structures as well as the insertion of detergent into condensed bilayers.

  4. Misuse of thermodynamics in the interpretation of isothermal titration calorimetry data for ligand binding to proteins.

    PubMed

    Pethica, Brian A

    2015-03-01

    Isothermal titration calorimetry (ITC) has given a mass of data on the binding of small molecules to proteins and other biopolymers, with particular interest in drug binding to proteins chosen as therapeutic indicators. Interpretation of the enthalpy data usually follows an unsound protocol that uses thermodynamic relations in circumstances where they do not apply. Errors of interpretation include incomplete definitions of ligand binding and equilibrium constants and neglect of the non-ideality of the solutions under study, leading to unreliable estimates of standard free energies and entropies of binding. The mass of reported thermodynamic functions for ligand binding to proteins estimated from ITC enthalpies alone is consequently of uncertain thermodynamic significance and utility. ITC and related experiments to test the protocol assumptions are indicated. A thermodynamic procedure avoiding equilibrium constants or other reaction models and not requiring protein activities is given. The discussion draws attention to the fundamental but neglected relation between the thermodynamic activity and bioactivity of drugs and to the generally unknown thermodynamic status of ligand solutions, which for drugs relates directly to effective therapeutic dosimetry. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Double-stranded endonuclease activity in Bacillus halodurans clustered regularly interspaced short palindromic repeats (CRISPR)-associated Cas2 protein.

    PubMed

    Nam, Ki Hyun; Ding, Fran; Haitjema, Charles; Huang, Qingqiu; DeLisa, Matthew P; Ke, Ailong

    2012-10-19

    The CRISPR (clustered regularly interspaced short palindromic repeats) system is a prokaryotic RNA-based adaptive immune system against extrachromosomal genetic elements. Cas2 is a universally conserved core CRISPR-associated protein required for the acquisition of new spacers for CRISPR adaptation. It was previously characterized as an endoribonuclease with preference for single-stranded (ss)RNA. Here, we show using crystallography, mutagenesis, and isothermal titration calorimetry that the Bacillus halodurans Cas2 (Bha_Cas2) from the subtype I-C/Dvulg CRISPR instead possesses metal-dependent endonuclease activity against double-stranded (ds)DNA. This activity is consistent with its putative function in producing new spacers for insertion into the 5'-end of the CRISPR locus. Mutagenesis and isothermal titration calorimetry studies revealed that a single divalent metal ion (Mg(2+) or Mn(2+)), coordinated by a symmetric Asp pair in the Bha_Cas2 dimer, is involved in the catalysis. We envision that a pH-dependent conformational change switches Cas2 into a metal-binding competent conformation for catalysis. We further propose that the distinct substrate preferences among Cas2 proteins may be determined by the sequence and structure in the β1-α1 loop.

  6. Binding of copper to lysozyme: Spectroscopic, isothermal titration calorimetry and molecular docking studies

    NASA Astrophysics Data System (ADS)

    Jing, Mingyang; Song, Wei; Liu, Rutao

    2016-07-01

    Although copper is essential to all living organisms, its potential toxicity to human health have aroused wide concerns. Previous studies have reported copper could alter physical properties of lysozyme. The direct binding of copper with lysozyme might induce the conformational and functional changes of lysozyme and then influence the body's resistance to bacterial attack. To better understand the potential toxicity and toxic mechanisms of copper, the interaction of copper with lysozyme was investigated by biophysical methods including multi-spectroscopic measurements, isothermal titration calorimetry (ITC), molecular docking study and enzyme activity assay. Multi-spectroscopic measurements proved that copper quenched the intrinsic fluorescence of lysozyme in a static process accompanied by complex formation and conformational changes. The ITC results indicated that the binding interaction was a spontaneous process with approximately three thermodynamical binding sites at 298 K and the hydrophobic force is the predominant driven force. The enzyme activity was obviously inhibited by the addition of copper with catalytic residues Glu 35 and Asp 52 locating at the binding sites. This study helps to elucidate the molecular mechanism of the interaction between copper and lysozyme and provides reference for toxicological studies of copper.

  7. Thermodynamic aspects of dicarboxylate recognition by simple artificial receptors.

    PubMed

    Linton, B R; Goodman, M S; Fan, E; van Arman, S A; Hamilton, A D

    2001-11-02

    Recognition of dicarboxylates by bis-functional hydrogen-bonding receptors displays divergent thermodynamics in different solvent systems. NMR titration and isothermal titration calorimetry indicated that neutral bis-urea and bis-thiourea receptors form exothermic complexes with dicarboxylates in DMSO, with a near zero entropic contribution to binding. The increased binding strength of bis-guanidinium receptors precluded quantitative measurement of binding constants in DMSO, but titration calorimetry offered a qualitative picture of the association. Formation of these 1:1 complexes was also exothermic, but additional endothermic events occurred at both lower and higher host-guest ratios. These events indicated multiple binding equilibria but did not always occur at a discrete 2:1 or 1:2 host-guest molar ratio, suggesting higher aggregates. With increasing amounts of methanol as solvent, bis-guanidinium receptors form more endothermic complexes with dicarboxylates, with a favorable entropy of association. This switch from association driven by enthalpy to one driven by entropy may reflect a change from complexation involving the formation of hydrogen bonds to that promoted by solvent liberation from binding sites.

  8. Characterization of the Interaction Between Pancreatic Trypsin and an Enteric Copolymer as a Tool for Several Biotechnological Applications.

    PubMed

    Braia, Mauricio Javier; Loureiro, Dana Belén; Tubio, Gisela; Romanini, Diana

    2015-12-01

    Protein-polyelectrolyte complexes are very interesting systems since they can be applied in many long-established and emerging areas of biotechnology. From nanotechnology to industrial processing, these complexes are used for many purposes: to build multilayer particles for biosensors; to entrap and deliver proteins for pharmaceutical applications; to isolate and immobilize proteins. The enteric copolymer poly(methacrylic acid-co-methyl methacrylate) 1:2 (MMA) has been designed for drug delivery although its chemical properties allow to use it for other applications. Understanding the interaction between trypsin and this polymer is very important in order to optimize the mechanism of formation of this complex for different biotechnological applications.The formation of the trypsin-MMA complex was studied by spectroscopy and isothermal titration calorimetry. Structural analysis of trypsin was carried out by catalytic activity assays, circular dichroism and differential scanning calorimetry. Isothermal titration calorimetry experiments showed that the insoluble complex contains 12 trypsin molecules per MMA molecule at pH 5 and they interact with high affinity to form insoluble complexes. Both electrostatic and hydrophobic forces are involved in the formation of the complex. The structure of trypsin is not affected by the presence of MMA, although it interacts with some domains of trypsin affecting its thermal denaturation as seen in the differential scanning calorimetry experiments. Its catalytic activity is not altered. Dynamic light scattering demonstrated the presence of a soluble trypsin-copolymer complex at pH 5 and 8. Turbidimetric assays show that the insoluble complex can be dissolved by low ionic strength and/or pH in order to obtain free native trypsin. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Chelerythrine down regulates expression of VEGFA, BCL2 and KRAS by arresting G-Quadruplex structures at their promoter regions.

    PubMed

    Jana, Jagannath; Mondal, Soma; Bhattacharjee, Payel; Sengupta, Pallabi; Roychowdhury, Tanaya; Saha, Pranay; Kundu, Pallob; Chatterjee, Subhrangsu

    2017-01-19

    A putative anticancer plant alkaloid, Chelerythrine binds to G-quadruplexes at promoters of VEGFA, BCL2 and KRAS genes and down regulates their expression. The association of Chelerythrine to G-quadruplex at the promoters of these oncogenes were monitored using UV absorption spectroscopy, fluorescence anisotropy, circular dichroism spectroscopy, CD melting, isothermal titration calorimetry, molecular dynamics simulation and quantitative RT-PCR technique. The pronounced hypochromism accompanied by red shifts in UV absorption spectroscopy in conjunction with ethidium bromide displacement assay indicates end stacking mode of interaction of Chelerythrine with the corresponding G-quadruplex structures. An increase in fluorescence anisotropy and CD melting temperature of Chelerythrine-quadruplex complex revealed the formation of stable Chelerythrine-quadruplex complex. Isothermal titration calorimetry data confirmed that Chelerythrine-quadruplex complex formation is thermodynamically favourable. Results of quantative RT-PCR experiment in combination with luciferase assay showed that Chelerythrine treatment to MCF7 breast cancer cells effectively down regulated transcript level of all three genes, suggesting that Chelerythrine efficiently binds to in cellulo quadruplex motifs. MD simulation provides the molecular picture showing interaction between Chelerythrine and G-quadruplex. Binding of Chelerythrine with BCL2, VEGFA and KRAS genes involved in evasion, angiogenesis and self sufficiency of cancer cells provides a new insight for the development of future therapeutics against cancer.

  10. Biomolecule-nanoparticle interactions: Elucidation of the thermodynamics by isothermal titration calorimetry.

    PubMed

    Huang, Rixiang; Lau, Boris L T

    2016-05-01

    Nanomaterials (NMs) are often exposed to a broad range of biomolecules of different abundances. Biomolecule sorption driven by various interfacial forces determines the surface structure and composition of NMs, subsequently governs their functionality and the reactivity of the adsorbed biomolecules. Isothermal titration calorimetry (ITC) is a nondestructive technique that quantifies thermodynamic parameters through in-situ measurement of the heat absorption or release associated with an interaction. This review highlights the recent applications of ITC in understanding the thermodynamics of interactions between various nanoparticles (NPs) and biomolecules. Different aspects of a typical ITC experiment that are crucial for obtaining accurate and meaningful data, as well as the strengths, weaknesses, and challenges of ITC applications to NP research were discussed. ITC reveals the driving forces behind biomolecule-NP interactions and the effects of the physicochemical properties of both NPs and biomolecules by quantifying the crucial thermodynamics parameters (e.g., binding stoichiometry, ΔH, ΔS, and ΔG). Complimentary techniques would strengthen the interpretation of ITC results for a more holistic understanding of biomolecule-NP interactions. The thermodynamic information revealed by ITC and its complimentary characterizations is important for understanding biomolecule-NP interactions that are fundamental to the biomedical and environmental applications of NMs and their toxicological effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. A Universal Method for Fishing Target Proteins from Mixtures of Biomolecules using Isothermal Titration Calorimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, X.; Sun, Q; Kini, R

    2008-01-01

    The most challenging tasks in biology include the identification of (1) the orphan receptor for a ligand, (2) the ligand for an orphan receptor protein, and (3) the target protein(s) for a given drug or a lead compound that are critical for the pharmacological or side effects. At present, several approaches are available, including cell- or animal-based assays, affinity labeling, solid-phase binding assays, surface plasmon resonance, and nuclear magnetic resonance. Most of these techniques are not easy to apply when the target protein is unknown and the compound is not amenable to labeling, chemical modification, or immobilization. Here we demonstratemore » a new universal method for fishing orphan target proteins from a complex mixture of biomolecules using isothermal titration calorimetry (ITC) as a tracking tool. We took snake venom, a crude mixture of several hundred proteins/peptides, as a model to demonstrate our proposed ITC method in tracking the isolation and purification of two distinct target proteins, a major component and a minor component. Identities of fished out target proteins were confirmed by amino acid sequencing and inhibition assays. This method has the potential to make a significant advancement in the area of identifying orphan target proteins and inhibitor screening in drug discovery and characterization.« less

  12. Titration calorimetry of anesthetic-protein interaction: negative enthalpy of binding and anesthetic potency.

    PubMed

    Ueda, I; Yamanaka, M

    1997-04-01

    Anesthetic potency increases at lower temperatures. In contrast, the transfer enthalpy of volatile anesthetics from water to macromolecules is usually positive. The transfer decreases at lower temperature. It was proposed that a few selective proteins bind volatile anesthetics with negative delta H, and these proteins are involved in signal transduction. There has been no report on direct estimation of binding delta H of anesthetics to proteins. This study used isothermal titration calorimetry to analyze chloroform binding to bovine serum albumin. The calorimetrically measured delta H cal was -10.37 kJ.mol-1. Thus the negative delta H of anesthetic binding is not limited to signal transduction proteins. The binding was saturable following Fermi-Dirac statistics and is characterized by the Langmuir adsorption isotherms, which is interfacial. The high-affinity association constant, K, was 2150 +/- 132 M-1 (KD = 0.47 mM) with the maximum binding number, Bmax = 3.7 +/- 0.2. The low-affinity K was 189 +/- 3.8 M-1 (KD = 5.29 mM), with a Bmax of 13.2 +/- 0.3. Anesthetic potency is a function of the activity of anesthetic molecules, not the concentration. Because the sign of delta H determines the temperature dependence of distribution of anesthetic molecules, it is irrelevant to the temperature dependence of anesthetic potency.

  13. Titration calorimetry of anesthetic-protein interaction: negative enthalpy of binding and anesthetic potency.

    PubMed Central

    Ueda, I; Yamanaka, M

    1997-01-01

    Anesthetic potency increases at lower temperatures. In contrast, the transfer enthalpy of volatile anesthetics from water to macromolecules is usually positive. The transfer decreases at lower temperature. It was proposed that a few selective proteins bind volatile anesthetics with negative delta H, and these proteins are involved in signal transduction. There has been no report on direct estimation of binding delta H of anesthetics to proteins. This study used isothermal titration calorimetry to analyze chloroform binding to bovine serum albumin. The calorimetrically measured delta H cal was -10.37 kJ.mol-1. Thus the negative delta H of anesthetic binding is not limited to signal transduction proteins. The binding was saturable following Fermi-Dirac statistics and is characterized by the Langmuir adsorption isotherms, which is interfacial. The high-affinity association constant, K, was 2150 +/- 132 M-1 (KD = 0.47 mM) with the maximum binding number, Bmax = 3.7 +/- 0.2. The low-affinity K was 189 +/- 3.8 M-1 (KD = 5.29 mM), with a Bmax of 13.2 +/- 0.3. Anesthetic potency is a function of the activity of anesthetic molecules, not the concentration. Because the sign of delta H determines the temperature dependence of distribution of anesthetic molecules, it is irrelevant to the temperature dependence of anesthetic potency. PMID:9083685

  14. Beyond the detergent effect: a binding site for sodium dodecyl sulfate (SDS) in mammalian apoferritin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Renyu, E-mail: renyu.liu@uphs.upenn.edu; Bu, Weiming; Xi, Jin

    2012-05-01

    Using X-ray crystallography and isothermal titration calorimetry, we show that sodium dodecyl sulfate (SDS) binds specifically to a pre-formed internal cavity in horse-spleen apoferritin. Although sodium dodecyl sulfate (SDS) is widely used as an anionic detergent, it can also exert specific pharmacological effects that are independent of the surfactant properties of the molecule. However, structural details of how proteins recognize SDS are scarce. Here, it is demonstrated that SDS binds specifically to a naturally occurring four-helix bundle protein: horse apoferritin. The X-ray crystal structure of the apoferritin–SDS complex was determined at a resolution of 1.9 Å and revealed that themore » SDS binds in an internal cavity that has previously been shown to recognize various general anesthetics. A dissociation constant of 24 ± 9 µM at 293 K was determined by isothermal titration calorimetry. SDS binds in this cavity by bending its alkyl tail into a horseshoe shape; the charged SDS head group lies in the opening of the cavity at the protein surface. This crystal structure provides insights into the protein–SDS interactions that give rise to binding and may prove useful in the design of novel SDS-like ligands for some proteins.« less

  15. Double-stranded Endonuclease Activity in Bacillus halodurans Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated Cas2 Protein*

    PubMed Central

    Nam, Ki Hyun; Ding, Fran; Haitjema, Charles; Huang, Qingqiu; DeLisa, Matthew P.; Ke, Ailong

    2012-01-01

    The CRISPR (clustered regularly interspaced short palindromic repeats) system is a prokaryotic RNA-based adaptive immune system against extrachromosomal genetic elements. Cas2 is a universally conserved core CRISPR-associated protein required for the acquisition of new spacers for CRISPR adaptation. It was previously characterized as an endoribonuclease with preference for single-stranded (ss)RNA. Here, we show using crystallography, mutagenesis, and isothermal titration calorimetry that the Bacillus halodurans Cas2 (Bha_Cas2) from the subtype I-C/Dvulg CRISPR instead possesses metal-dependent endonuclease activity against double-stranded (ds)DNA. This activity is consistent with its putative function in producing new spacers for insertion into the 5′-end of the CRISPR locus. Mutagenesis and isothermal titration calorimetry studies revealed that a single divalent metal ion (Mg2+ or Mn2+), coordinated by a symmetric Asp pair in the Bha_Cas2 dimer, is involved in the catalysis. We envision that a pH-dependent conformational change switches Cas2 into a metal-binding competent conformation for catalysis. We further propose that the distinct substrate preferences among Cas2 proteins may be determined by the sequence and structure in the β1–α1 loop. PMID:22942283

  16. Chelerythrine down regulates expression of VEGFA, BCL2 and KRAS by arresting G-Quadruplex structures at their promoter regions

    NASA Astrophysics Data System (ADS)

    Jana, Jagannath; Mondal, Soma; Bhattacharjee, Payel; Sengupta, Pallabi; Roychowdhury, Tanaya; Saha, Pranay; Kundu, Pallob; Chatterjee, Subhrangsu

    2017-01-01

    A putative anticancer plant alkaloid, Chelerythrine binds to G-quadruplexes at promoters of VEGFA, BCL2 and KRAS genes and down regulates their expression. The association of Chelerythrine to G-quadruplex at the promoters of these oncogenes were monitored using UV absorption spectroscopy, fluorescence anisotropy, circular dichroism spectroscopy, CD melting, isothermal titration calorimetry, molecular dynamics simulation and quantitative RT-PCR technique. The pronounced hypochromism accompanied by red shifts in UV absorption spectroscopy in conjunction with ethidium bromide displacement assay indicates end stacking mode of interaction of Chelerythrine with the corresponding G-quadruplex structures. An increase in fluorescence anisotropy and CD melting temperature of Chelerythrine-quadruplex complex revealed the formation of stable Chelerythrine-quadruplex complex. Isothermal titration calorimetry data confirmed that Chelerythrine-quadruplex complex formation is thermodynamically favourable. Results of quantative RT-PCR experiment in combination with luciferase assay showed that Chelerythrine treatment to MCF7 breast cancer cells effectively down regulated transcript level of all three genes, suggesting that Chelerythrine efficiently binds to in cellulo quadruplex motifs. MD simulation provides the molecular picture showing interaction between Chelerythrine and G-quadruplex. Binding of Chelerythrine with BCL2, VEGFA and KRAS genes involved in evasion, angiogenesis and self sufficiency of cancer cells provides a new insight for the development of future therapeutics against cancer.

  17. Binding of urea and thiourea with a barbiturate derivative: experimental and theoretical approach.

    PubMed

    Dixit, Namrata; Shukla, P K; Mishra, P C; Mishra, Lallan; Roesky, Herbert W

    2010-01-14

    A barbiturate derivative [1,5-dihydro-5-[5-pyrimidine-2,4(1H,3H)-dionyl]-2H-chromeno[2,3-d] pyrimidine-2,4(3H)-dione)] (L1) possesses functionalities complementary to amide and thioamide. Hence its binding with urea and thiourea, is monitored using UV-vis and fluorescence titrations as well as isothermal titration calorimetry (ITC) study. Theoretical studies on hydrogen-bonded complexes of L1-urea and L1-thiourea in the gas phase, aqueous, and DMSO medium are carried out using density functional theory (DFT) at the B3LYP/6-31G** level. The theoretical calculations support the experimental results.

  18. Binding the Mammalian High Mobility Group Protein AT-hook 2 to AT-Rich Deoxyoligonucleotides: Enthalpy-Entropy Compensation

    PubMed Central

    Joynt, Suzanne; Morillo, Victor; Leng, Fenfei

    2009-01-01

    HMGA2 is a DNA minor-groove binding protein. We previously demonstrated that HMGA2 binds to AT-rich DNA with very high binding affinity where the binding of HMGA2 to poly(dA-dT)2 is enthalpy-driven and to poly(dA)poly(dT) is entropy-driven. This is a typical example of enthalpy-entropy compensation. To further study enthalpy-entropy compensation of HMGA2, we used isothermal-titration-calorimetry to examine the interactions of HMGA2 with two AT-rich DNA hairpins: 5′-CCAAAAAAAAAAAAAAAGCCCCCGCTTTTTTTTTTTTTTTGG-3′ (FL-AT-1) and 5′-CCATATATATATATATAGCCCCCGCTATATATATATATATGG-3′ (FL-AT-2). Surprisingly, we observed an atypical isothermal-titration-calorimetry-binding curve at low-salt aqueous solutions whereby the apparent binding-enthalpy decreased dramatically as the titration approached the end. This unusual behavior can be attributed to the DNA-annealing coupled to the ligand DNA-binding and is eliminated by increasing the salt concentration to ∼200 mM. At this condition, HMGA2 binding to FL-AT-1 is entropy-driven and to FL-AT-2 is enthalpy-driven. Interestingly, the DNA-binding free energies for HMGA2 binding to both hairpins are almost temperature independent; however, the enthalpy-entropy changes are dependent on temperature, which is another aspect of enthalpy-entropy compensation. The heat capacity change for HMGA2 binding to FL-AT-1 and FL-AT-2 are almost identical, indicating that the solvent displacement and charge-charge interaction in the coupled folding/binding processes for both binding reactions are similar. PMID:19450485

  19. Host-Guest Interaction of Cucurbit[8]uril with N-(3-Aminopropyl)cyclohexylamine: Cyclohexyl Encapsulation Triggered Ternary Complex.

    PubMed

    Xia, Yu; Wang, Chuan-Zeng; Tian, Mengkui; Tao, Zhu; Ni, Xin-Long; Prior, Timothy J; Redshaw, Carl

    2018-01-15

    The host-guest interaction of a series of cyclohexyl-appended guests with cucurbit[8]uril (Q[8]) was studied by ¹H NMR spectroscopy, isothermal titration calorimetry (ITC), and X-ray crystallography. The X-ray structure revealed that two cycloalkane moieties can be simultaneously encapsulated in the hydrophobic cavity of the Q[8] host to form a ternary complex for the first time.

  20. Evaluation of Staphylococcus aureus DNA aptamer by enzyme-linked aptamer assay and isothermal titration calorimetry.

    PubMed

    Bayraç, Ceren; Öktem, Hüseyin Avni

    2017-02-01

    To monitor the specificity of Staphylococcus aureus aptamer (SA-31) against its target cell, we used enzyme-linked aptamer assay. In the presence of target cell, horseradish peroxidase-conjugated streptavidin bound to biotin-labeled SA-31 showed specific binding to S  aureus among 3 different bacteria with limit of detection of 10 3 colony-forming unit per milliliter. The apparent K a was 1.39 μM -1  ± 0.3 μM -1 . The binding of SA-31 to membrane proteins extracted from cell surface was characterized using isothermal titration calorimetry, and the effect of changes in binding temperature and salt concentrations of binding buffer was evaluated based on thermodynamic parameters (K a , ΔH, and ΔG). Since binding of aptamer to its targets solely depends on its 3-dimensional structure under experimental conditions used in selection process, the change in temperature and ion concentration changed the affinity of SA-31 to its target on surface of bacteria. At 4°C, SA-31 did not show an affinity to its target with poor heat change upon injection of membrane fraction to aptamer solution. However, the apparent association constants of SA-31 slightly varied from K a  = 1.56 μM -1  ± 0.69 μM -1 at 25°C to K a  = 1.03 μM -1  ± 0.9 μM -1 at 37°C. At spontaneously occurring exothermic binding reactions, affinities of S aureus aptamer to its target were also 9.44 μM -1  ± 0.38 μM -1 at 50mM, 1.60 μM -1  ± 0.11 μM -1 at 137mM, and 3.28 μM -1  ± 0.46 μM -1 at 200 mM of salt concentration. In this study, it was demonstrated that enzyme-linked aptamer assay and isothermal titration calorimetry were useful tools for studying the fundamental binding mechanism between a DNA aptamer and its target on the outer surface of S aureus. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Chelerythrine down regulates expression of VEGFA, BCL2 and KRAS by arresting G-Quadruplex structures at their promoter regions

    PubMed Central

    Jana, Jagannath; Mondal, Soma; Bhattacharjee, Payel; Sengupta, Pallabi; Roychowdhury, Tanaya; Saha, Pranay; Kundu, Pallob; Chatterjee, Subhrangsu

    2017-01-01

    A putative anticancer plant alkaloid, Chelerythrine binds to G-quadruplexes at promoters of VEGFA, BCL2 and KRAS genes and down regulates their expression. The association of Chelerythrine to G-quadruplex at the promoters of these oncogenes were monitored using UV absorption spectroscopy, fluorescence anisotropy, circular dichroism spectroscopy, CD melting, isothermal titration calorimetry, molecular dynamics simulation and quantitative RT-PCR technique. The pronounced hypochromism accompanied by red shifts in UV absorption spectroscopy in conjunction with ethidium bromide displacement assay indicates end stacking mode of interaction of Chelerythrine with the corresponding G-quadruplex structures. An increase in fluorescence anisotropy and CD melting temperature of Chelerythrine-quadruplex complex revealed the formation of stable Chelerythrine-quadruplex complex. Isothermal titration calorimetry data confirmed that Chelerythrine-quadruplex complex formation is thermodynamically favourable. Results of quantative RT-PCR experiment in combination with luciferase assay showed that Chelerythrine treatment to MCF7 breast cancer cells effectively down regulated transcript level of all three genes, suggesting that Chelerythrine efficiently binds to in cellulo quadruplex motifs. MD simulation provides the molecular picture showing interaction between Chelerythrine and G-quadruplex. Binding of Chelerythrine with BCL2, VEGFA and KRAS genes involved in evasion, angiogenesis and self sufficiency of cancer cells provides a new insight for the development of future therapeutics against cancer. PMID:28102286

  2. Applications of isothermal titration calorimetry in pure and applied research--survey of the literature from 2010.

    PubMed

    Ghai, Rajesh; Falconer, Robert J; Collins, Brett M

    2012-01-01

    Isothermal titration calorimetry (ITC) is a biophysical technique for measuring the formation and dissociation of molecular complexes and has become an invaluable tool in many branches of science from cell biology to food chemistry. By measuring the heat absorbed or released during bond formation, ITC provides accurate, rapid, and label-free measurement of the thermodynamics of molecular interactions. In this review, we survey the recent literature reporting the use of ITC and have highlighted a number of interesting studies that provide a flavour of the diverse systems to which ITC can be applied. These include measurements of protein-protein and protein-membrane interactions required for macromolecular assembly, analysis of enzyme kinetics, experimental validation of molecular dynamics simulations, and even in manufacturing applications such as food science. Some highlights include studies of the biological complex formed by Staphylococcus aureus enterotoxin C3 and the murine T-cell receptor, the mechanism of membrane association of the Parkinson's disease-associated protein α-synuclein, and the role of non-specific tannin-protein interactions in the quality of different beverages. Recent developments in automation are overcoming limitations on throughput imposed by previous manual procedures and promise to greatly extend usefulness of ITC in the future. We also attempt to impart some practical advice for getting the most out of ITC data for those researchers less familiar with the method. Copyright © 2011 John Wiley & Sons, Ltd.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Arjun K.; Agnihotri, Pragati; Srivastava, Vijay Kumar

    Highlights: • L. donovani spermidine synthase and S-adenosylmethionine decarboxylase have been cloned and purified. • S-adenosylmethionine decarboxylase has autocatalytic property. • GST pull down assay shows the two proteins to form a metabolon. • Isothermal titration calorimetry shows that binding was exothermic having K{sub d} value of 0.4 μM. • Interaction confirmed by fluorescence spectroscopy and size exclusion chromatography. - Abstract: Polyamine biosynthesis pathway has long been considered an essential drug target for trypanosomatids including Leishmania. S-adenosylmethionine decarboxylase (AdoMetDc) and spermidine synthase (SpdSyn) are enzymes of this pathway that catalyze successive steps, with the product of the former, decarboxylated S-adenosylmethioninemore » (dcSAM), acting as an aminopropyl donor for the latter enzyme. Here we have explored the possibility of and identified the protein–protein interaction between SpdSyn and AdoMetDc. The protein–protein interaction has been identified using GST pull down assay. Isothermal titration calorimetry reveals that the interaction is thermodynamically favorable. Fluorescence spectroscopy studies also confirms the interaction, with SpdSyn exhibiting a change in tertiary structure with increasing concentrations of AdoMetDc. Size exclusion chromatography suggests the presence of the complex as a hetero-oligomer. Taken together, these results suggest that the enzymes indeed form a heteromer. Computational analyses suggest that this complex differs significantly from the corresponding human complex, implying that this complex could be a better therapeutic target than the individual enzymes.« less

  4. Isothermal titration calorimetry study of the interaction of sweeteners with fullerenols as an artificial sweet taste receptor model.

    PubMed

    Chen, Zhong-Xiu; Guo, Gang-Min; Deng, Shao-Ping

    2009-04-08

    A fullerenol-based synthetic sweetness receptor model, consisting of polyhydroxy groups for potential hydrogen bond donor along with a spherical hydrophobic center, was proposed according to the widely accepted sweetness hypothesis. An isothermal titration calorimetry (ITC) technique was used to study mimetic interaction of this sweet receptor model with a series of sweeteners having increasing sweetness intensity. The results showed that ITC is an effective method to provide thorough and precise characterization of the energies of molecular complex formation. Binding of all of the studied sweeteners with fullerenols was found through two sets of site models. More heat was released from sweeter synthetic compounds binding with fullerenols than from less sweet carbohydrates. The results imply that hydrogen bond formation is necessary for the sweeteners to bind to the fullerenol receptor in the first stage, whereas hydrophobic effect and conformation changes that lead to favorable entropy changes occur in most cases. The preliminary results of this study help to cover the lack of information about the thermodynamic basis of understanding of the initiation of the sweet sensation. It also adds complementary physicochemical measurements available for comparison with the sweetness hypothesis. On the other hand, a correlation between the thermodynamic parameters and sweetness intensity has been made as well, which exhibits potential as a useful tool in sensory analysis.

  5. Lectins as probes for assessing the accessibility of N-linked glycans in relation to the conformational changes of fibronectin.

    PubMed

    Agniel, Rémy; Vendrely, Charlotte; Poulouin, Laurent; Bascetin, Rümeyza; Benachour, Hamanou; Gallet, Olivier; Leroy-Dudal, Johanne

    2015-12-01

    Fibronectin, a ≈ 450-kDa protein with 4-9% (w/w) glycosylation, is a key component of extracellular matrices and has a high conformational lability regarding its functions. However, the accessibility and the role of glycosylated moieties associated with the conformational changes of fibronectin are poorly understood. Using lectins as probes, we developed an approach comprising dynamic light scattering, turbidimetry measurements, and isothermal titration calorimetry to assess the accessibility of glycosylated moieties of fibronectin undergoing thermal-induced conformational changes. Among a set of 14 lectins, fibronectin mainly reacted with mannose-binding lectins, specifically concanavalin A. When temperature was raised from 25 to 50 °C, fibronectin underwent progressive unfolding, but the conformation of concanavalin A was unaffected. Dynamic light scattering, turbidimetry measurements, and isothermal titration calorimetry showed increased concanavalin A binding to fibronectin during progressive thermal-induced unfolding of the protein core. Such data suggest that mannosylated residues are progressively exposed as fibronectin unfolds. Because oligosaccharide moieties can be differently exposed to cells, and the cell's responses could be modified physiologically or pathologically, modulation of fibronectin sugar chains could be relevant to its biological functions. Thus, lectins might be useful tools to probe the glycosylation accessibility accompanying changes in protein core folding, for which a better understanding would be of value for biological and biomedical research. Copyright © 2015 John Wiley & Sons, Ltd.

  6. A survey of the year 2007 literature on applications of isothermal titration calorimetry.

    PubMed

    Bjelić, Sasa; Jelesarov, Ilian

    2008-01-01

    Elucidation of the energetic principles of binding affinity and specificity is a central task in many branches of current sciences: biology, medicine, pharmacology, chemistry, material sciences, etc. In biomedical research, integral approaches combining structural information with in-solution biophysical data have proved to be a powerful way toward understanding the physical basis of vital cellular phenomena. Isothermal titration calorimetry (ITC) is a valuable experimental tool facilitating quantification of the thermodynamic parameters that characterize recognition processes involving biomacromolecules. The method provides access to all relevant thermodynamic information by performing a few experiments. In particular, ITC experiments allow to by-pass tedious and (rarely precise) procedures aimed at determining the changes in enthalpy and entropy upon binding by van't Hoff analysis. Notwithstanding limitations, ITC has now the reputation of being the "gold standard" and ITC data are widely used to validate theoretical predictions of thermodynamic parameters, as well as to benchmark the results of novel binding assays. In this paper, we discuss several publications from 2007 reporting ITC results. The focus is on applications in biologically oriented fields. We do not intend a comprehensive coverage of all newly accumulated information. Rather, we emphasize work which has captured our attention with originality and far-reaching analysis, or else has provided ideas for expanding the potential of the method. Copyright (c) 2008 John Wiley & Sons, Ltd.

  7. Insight into the interactions of proteinase inhibitor-alpha-2-macroglobulin with hypochlorite-thermal analysis and biophysical approach.

    PubMed

    Siddiqui, Tooba; Zia, Mohammad Khalid; Ali, Syed Saqib; Ahsan, Haseeb; Khan, Fahim Halim

    2018-05-17

    Hypochlorous acid, an active bleaching agent is one of the major oxidants produced by neutrophils under physiological conditions. It is a potent reactive oxygen species (ROS) which causes oxidation of biomolecules. Treatment of proteins with hypochlorite results in direct oxidative damage to proteins. Alpha-2-macroglobulin is a major proteinase inhibitor and it can inhibit proteinase of any kind regardless of specificity and catalytic mechanism. The proteinase-antiproteinase balance plays an important role in mediating inflammation associated tissue destruction. In this paper, we have studied hypochlorite induced modifications in proteinase inhibitor-alpha-2-macroglobulin via biophysical techniques such as absorption spectroscopy, fluorescence spectroscopy, circular dichroism (CD), fourier transform infrared spectrometery (FTIR) and isothermal titration calorimetry (ITC). It was found that hypochlorite decreases the anti-proteolytic potential and causes inactivation of sheep alpha-2-macroglobulin. It also causes structural and functional change in alpha-2-macroglobulin as evident by absorption spectroscopy and fluorescence spectroscopy. Change in secondary structure of alpha-2-macroglobulin was confirmed by CD and FTIR. Thermodynamics parameters such as entropy (ΔS), enthalpy (ΔH) and Gibb's free energy changes (ΔG). The number of binding sites (N) of alpha-2-macroglobulin-HOCl binding in solution was determined by isothermal titration calorimetry and it was found that binding of hypochlorite with alpha-2-macroglobulin was exothermic in nature. Copyright © 2017. Published by Elsevier B.V.

  8. Characterization of Streptococcus pneumoniae thymidylate kinase: steady-state kinetics of the forward reaction and isothermal titration calorimetry.

    PubMed Central

    Petit, Chantal M; Koretke, Kristin K

    2002-01-01

    Thymidylate kinase (TMK) catalyses the phosphorylation of dTMP to form dTDP in both the de novo and salvage pathways of dTTP synthesis. The tmk gene from the bacterial pathogen Streptococcus pneumoniae was identified. The gene, encoding a 212-amino-acid polypeptide (23352 Da), was cloned and overexpressed in Escherichia coli with an N-terminal hexahistidine tag. The enzyme was purified to homogeneity, and characterized in the forward reaction. The pH profile of TMK indicates that its activity is optimal at pH 8.5. The substrate specificity of the enzyme was examined; it was found that not only ATP, but also dATP and to a lesser extent CTP, could act as phosphate donors, and dTMP and dUMP could serve as phosphate acceptors. Furthermore, AZT-MP (3'-azido-3'-deoxythymidine 5'-monophosphate) was shown not to be a substrate for S. pneumoniae TMK. Steady-state kinetics and inhibition studies with adenosine 5'-[beta-thio]diphosphate and dTDP in addition to isothermal titration calorimetry were performed. The data showed that binding follows an ordered pathway, in which ATP binds first with a K(m) of 235 +/- 46 microM and a K(d) of 116 +/- 3 microM, and dTMP binds secondly with a K(m) of 66 +/- 12 microM and a K(d) of 53 +/- 2 microM. PMID:11964185

  9. Characterization of the kinetic and thermodynamic landscape of RNA folding using a novel application of isothermal titration calorimetry

    PubMed Central

    Vander Meulen, Kirk A.; Butcher, Samuel E.

    2012-01-01

    A novel isothermal titration calorimetry (ITC) method was applied to investigate RNA helical packing driven by the GAAA tetraloop–receptor interaction in magnesium and potassium solutions. Both the kinetics and thermodynamics were obtained in individual ITC experiments, and analysis of the kinetic data over a range of temperatures provided Arrhenius activation energies (ΔH‡) and Eyring transition state entropies (ΔS‡). The resulting rich dataset reveals strongly contrasting kinetic and thermodynamic profiles for this RNA folding system when stabilized by potassium versus magnesium. In potassium, association is highly exothermic (ΔH25°C = −41.6 ± 1.2 kcal/mol in 150 mM KCl) and the transition state is enthalpically barrierless (ΔH‡ = −0.6 ± 0.5). These parameters are sigificantly positively shifted in magnesium (ΔH25°C = −20.5 ± 2.1 kcal/mol, ΔH‡ = 7.3 ± 2.2 kcal/mol in 0.5 mM MgCl2). Mixed salt solutions approximating physiological conditions exhibit an intermediate thermodynamic character. The cation-dependent thermodynamic landscape may reflect either a salt-dependent unbound receptor conformation, or alternatively and more generally, it may reflect a small per-cation enthalpic penalty associated with folding-coupled magnesium uptake. PMID:22058128

  10. Thermodynamics of binding interactions between extracellular polymeric substances and heavy metals by isothermal titration microcalorimetry.

    PubMed

    Yan, Peng; Xia, Jia-Shuai; Chen, You-Peng; Liu, Zhi-Ping; Guo, Jin-Song; Shen, Yu; Zhang, Cheng-Cheng; Wang, Jing

    2017-05-01

    Extracellular polymeric substances (EPS) play a crucial role in heavy metal bio-adsorption using activated sludge, but the interaction mechanism between heavy metals and EPS remains unclear. Isothermal titration calorimetry was employed to illuminate the mechanism in this study. The results indicate that binding between heavy metals and EPS is spontaneous and driven mainly by enthalpy change. Extracellular proteins in EPS are major participants in the binding process. Environmental conditions have significant impact on the adsorption performance. Divalent and trivalent cations severely impeded the binding of heavy metal ions to EPS. Electrostatic interaction mainly attributed to competition between divalent cations and heavy metal ions; trivalent cations directly competed with heavy metal ions for EPS binding sites. Trivalent cations were more competitive than divalent cations for heavy metal ion binding because they formed complexing bonds. This study facilitates a better understanding about the interaction between heavy metals and EPS in wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Incorporation of rapid thermodynamic data in fragment-based drug discovery.

    PubMed

    Kobe, Akihiro; Caaveiro, Jose M M; Tashiro, Shinya; Kajihara, Daisuke; Kikkawa, Masato; Mitani, Tomoya; Tsumoto, Kouhei

    2013-03-14

    Fragment-based drug discovery (FBDD) has enjoyed increasing popularity in recent years. We introduce SITE (single-injection thermal extinction), a novel thermodynamic methodology that selects high-quality hits early in FBDD. SITE is a fast calorimetric competitive assay suitable for automation that captures the essence of isothermal titration calorimetry but using significantly fewer resources. We describe the principles of SITE and identify a novel family of fragment inhibitors of the enzyme ketosteroid isomerase displaying high values of enthalpic efficiency.

  12. Measurement of Nanomolar Dissociation Constants by Titration Calorimetry and Thermal Shift Assay – Radicicol Binding to Hsp90 and Ethoxzolamide Binding to CAII

    PubMed Central

    Zubrienė, Asta; Matulienė, Jurgita; Baranauskienė, Lina; Jachno, Jelena; Torresan, Jolanta; Michailovienė, Vilma; Cimmperman, Piotras; Matulis, Daumantas

    2009-01-01

    The analysis of tight protein-ligand binding reactions by isothermal titration calorimetry (ITC) and thermal shift assay (TSA) is presented. The binding of radicicol to the N-terminal domain of human heat shock protein 90 (Hsp90αN) and the binding of ethoxzolamide to human carbonic anhydrase (hCAII) were too strong to be measured accurately by direct ITC titration and therefore were measured by displacement ITC and by observing the temperature-denaturation transitions of ligand-free and ligand-bound protein. Stabilization of both proteins by their ligands was profound, increasing the melting temperature by more than 10 ºC, depending on ligand concentration. Analysis of the melting temperature dependence on the protein and ligand concentrations yielded dissociation constants equal to 1 nM and 2 nM for Hsp90αN-radicicol and hCAII-ethoxzolamide, respectively. The ligand-free and ligand-bound protein fractions melt separately, and two melting transitions are observed. This phenomenon is especially pronounced when the ligand concentration is equal to about half the protein concentration. The analysis compares ITC and TSA data, accounts for two transitions and yields the ligand binding constant and the parameters of protein stability, including the Gibbs free energy and the enthalpy of unfolding. PMID:19582223

  13. Novel pppGpp binding site at the C-terminal region of the Rel enzyme from Mycobacterium smegmatis.

    PubMed

    Syal, Kirtimaan; Joshi, Himanshu; Chatterji, Dipankar; Jain, Vikas

    2015-10-01

    Mycobacterium tuberculosis elicits the stringent response under unfavorable growth conditions, such as those encountered by the pathogen inside the host. The hallmark of this response is production of guanosine tetra- and pentaphosphates, collectively termed (p)ppGpp, which have pleiotropic effects on the bacterial physiology. As the stringent response is connected to survival under stress, it is now being targeted for developing inhibitors against bacterial persistence. The Rel enzyme in mycobacteria has two catalytic domains at its N-terminus that are involved in the synthesis and hydrolysis of (p)ppGpp, respectively. However, the function of the C-terminal region of the protein remained unknown. Here, we have identified a binding site for pppGpp in the C-terminal region of Rel. The binding affinity of pppGpp was quantified by isothermal titration calorimetry. The binding site was determined by crosslinking using the nucleotide analog azido-pppGpp, and examining the crosslink product by mass spectrometry. Additionally, mutations in the Rel protein were created to confirm the site of pppGpp binding by isothermal titration calorimetry. These mutants showed increased pppGpp synthesis and reduced hydrolytic activity. We believe that binding of pppGpp to Rel provides a feedback mechanism that allows the protein to detect and adjust the (p)ppGpp level in the cell. Our work suggests that such sites should also be considered while designing inhibitors to target the stringent response. © 2015 FEBS.

  14. A supramolecular miktoarm star polymer based on porphyrin metal complexation in water.

    PubMed

    Hou, Zhanyao; Dehaen, Wim; Lyskawa, Joël; Woisel, Patrice; Hoogenboom, Richard

    2017-07-25

    A novel supramolecular miktoarm star polymer was successfully constructed in water from a pyridine end-decorated polymer (Py-PmDEGA) and a metalloporphyrin based star polymer (ZnTPP-(PEG) 4 ) via metal-ligand coordination. The Py-PmDEGA moiety was prepared via a combination of reversible addition-fragmentation chain transfer polymerization (RAFT) and subsequent aminolysis and Michael addition reactions to introduce the pyridine end-group. The ZnTPP(PEG) 4 star-polymer was synthesized by the reaction between tetrakis(p-hydroxyphenyl)porphyrin and toluenesulfonyl-PEG, followed by insertion of a zinc ion into the porphyrin core. The formation of a well-defined supramolecular AB 4 -type miktoarm star polymer was unambiguously demonstrated via UV-Vis spectroscopic titration, isothermal titration calorimetry (ITC) and diffusion ordered NMR spectroscopy (DOSY).

  15. PNA containing isocytidine nucleobase: synthesis and recognition of double helical RNA

    PubMed Central

    Zengeya, Thomas; Li, Ming; Rozners, Eriks

    2011-01-01

    Peptide nucleic acid (PNA1) containing a 5-methylisocytidine (iC) nucleobase has been synthesized. Triple helix formation between PNA1 and RNA hairpins having variable base pairs interacting with iC was studied using isothermal titration calorimetry. The iC nucleobase recognized the proposed target, C-G inversion in polypurine tract of RNA, with slightly higher affinity than the natural nucleobases, though the sequence selectivity of recognition was low. Compared to non-modified PNA, PNA1 had lower affinity for its RNA target. PMID:21333533

  16. Assessing cooperativity in supramolecular systems.

    PubMed

    von Krbek, Larissa K S; Schalley, Christoph A; Thordarson, Pall

    2017-05-09

    This tutorial review summarises different aspects of cooperativity in supramolecular complexes. We propose a systematic categorisation of cooperativity into cooperative aggregation, intermolecular (allosteric) cooperativity, intramolecular (chelate) cooperativity and interannular cooperativity and discuss approaches to quantify them thermodynamically using cooperativity factors. A brief summary of methods to determine the necessary thermodynamic data is given with emphasis on isothermal titration calorimetry (ITC), a method still underrepresented in supramolecular chemistry, which however offers some advantages over others. Finally, a discussion of very few selected examples, which highlight different aspects to illustrate why such an analysis is useful, rounds up this review.

  17. Microcalorimetric and potentiometric titration studies on the adsorption of copper by extracellular polymeric substances (EPS), minerals and their composites.

    PubMed

    Fang, Linchuan; Huang, Qiaoyun; Wei, Xing; Liang, Wei; Rong, Xinming; Chen, Wenli; Cai, Peng

    2010-08-01

    Equilibrium adsorption experiments, isothermal titration calorimetry and potentiometric titration techniques were employed to investigate the adsorption of Cu(II) by extracellular polymeric substances (EPS) extracted from Pseudomonas putida X4, minerals (montmorillonite and goethite) and their composites. Compared with predicted values of Cu(II) adsorption on composites, the measured values of Cu(II) on EPS-montmorillonite composite increased, however, those on EPS-goethite composite decreased. Potentiometric titration results also showed that more surface sites were observed on EPS-montmorillonite composite and less reactive sites were found on EPS-goethite composite. The adsorption of Cu(II) on EPS molecules and their composites with minerals was an endothermic reaction, while that on minerals was exothermic. The positive values of enthalpy change (Delta H) and entropy change (DeltaS) for Cu(II) adsorption on EPS and mineral-EPS composites indicated that Cu(II) mainly interacts with carboxyl and phosphoryl groups as inner-sphere complexes on EPS molecules and their composites with minerals. (c) 2010 Elsevier Ltd. All rights reserved.

  18. Binding of the Biogenic Polyamines to Deoxyribonucleic Acids of Varying Base Composition: Base Specificity and the Associated Energetics of the Interaction

    PubMed Central

    Kabir, Ayesha; Suresh Kumar, Gopinatha

    2013-01-01

    Background The thermodynamics of the base pair specificity of the binding of the polyamines spermine, spermidine, putrescine, and cadaverine with three genomic DNAs Clostridium perfringens, 27% GC, Escherichia coli, 50% GC and Micrococcus lysodeikticus, 72% GC have been studied using titration calorimetry and the data supplemented with melting studies, ethidium displacement and circular dichroism spectroscopy results. Methodology/Principal Findings Isothermal titration calorimetry, differential scanning calorimetry, optical melting studies, ethidium displacement, circular dichroism spectroscopy are the various techniques employed to characterize the interaction of four polyamines, spermine, spermidine, putersine and cadaverine with the DNAs. Polyamines bound stronger with AT rich DNA compared to the GC rich DNA and the binding varied depending on the charge on the polyamine as spermine>spermidine >putrescine>cadaverine. Thermodynamics of the interaction revealed that the binding was entropy driven with small enthalpy contribution. The binding was influenced by salt concentration suggesting the contribution from electrostatic forces to the Gibbs energy of binding to be the dominant contributor. Each system studied exhibited enthalpy-entropy compensation. The negative heat capacity changes suggested a role for hydrophobic interactions which may arise due to the non polar interactions between DNA and polyamines. Conclusion/Significance From a thermodynamic analysis, the AT base specificity of polyamines to DNAs has been elucidated for the first time and supplemented by structural studies. PMID:23894663

  19. Calix[4]pyrrole as a Chloride Anion Receptor: Solvent and Counter-Cation Effects

    PubMed Central

    Sessler, Jonathan L.; Gross, Dustin E.; Cho, Won-Seob; Lynch, Vincent M.; Schmidtchen, Franz P.; Bates, Gareth W.; Light, Mark E.; Gale, Philip A.

    2008-01-01

    The interaction of calixpyrrole with several chloride salts has been studied in the solid state by X-ray crystallography as well as in solution by isothermal titration calorimetry (ITC) and 1H NMR spectroscopic titrations. The titration results in dimethylsulfoxide, acetonitrile, nitromethane, 1,2-dichloroethane and dichloromethane, carried out using various chloride salts, specifically tetraethylammonium (TEA), tetrapropylammonium (TPA), tetrabutylammonium (TBA), tetraethylphosphonium (TEP), tetrabutylphosphonium (TBP), and tetraphenylphosphonium (TPhP) showed no dependence on method of measurement. The resulting affinity constants (Ka's), on the other hand, were found to be highly dependent on the choice of solvent with Ka's ranging from 102−105 being recorded in the test solvents used for this study. In dichloromethane a strong dependence on the counter-cation was also seen, with the Ka's for the interaction with chloride ranging from 102−104. In the case of TPA, TBA and TBP the ITC data could not be fit to a 1:1 binding profile. PMID:16967979

  20. Non-additivity of functional group contributions in protein-ligand binding: a comprehensive study by crystallography and isothermal titration calorimetry.

    PubMed

    Baum, Bernhard; Muley, Laveena; Smolinski, Michael; Heine, Andreas; Hangauer, David; Klebe, Gerhard

    2010-04-09

    Additivity of functional group contributions to protein-ligand binding is a very popular concept in medicinal chemistry as the basis of rational design and optimized lead structures. Most of the currently applied scoring functions for docking build on such additivity models. Even though the limitation of this concept is well known, case studies examining in detail why additivity fails at the molecular level are still very scarce. The present study shows, by use of crystal structure analysis and isothermal titration calorimetry for a congeneric series of thrombin inhibitors, that extensive cooperative effects between hydrophobic contacts and hydrogen bond formation are intimately coupled via dynamic properties of the formed complexes. The formation of optimal lipophilic contacts with the surface of the thrombin S3 pocket and the full desolvation of this pocket can conflict with the formation of an optimal hydrogen bond between ligand and protein. The mutual contributions of the competing interactions depend on the size of the ligand hydrophobic substituent and influence the residual mobility of ligand portions at the binding site. Analysis of the individual crystal structures and factorizing the free energy into enthalpy and entropy demonstrates that binding affinity of the ligands results from a mixture of enthalpic contributions from hydrogen bonding and hydrophobic contacts, and entropic considerations involving an increasing loss of residual mobility of the bound ligands. This complex picture of mutually competing and partially compensating enthalpic and entropic effects determines the non-additivity of free energy contributions to ligand binding at the molecular level. (c) 2010 Elsevier Ltd. All rights reserved.

  1. Molecular Basis of Chemokine CXCL5-Glycosaminoglycan Interactions*

    PubMed Central

    2016-01-01

    Chemokines, a large family of highly versatile small soluble proteins, play crucial roles in defining innate and adaptive immune responses by regulating the trafficking of leukocytes, and also play a key role in various aspects of human physiology. Chemokines share the characteristic feature of reversibly existing as monomers and dimers, and their functional response is intimately coupled to interaction with glycosaminoglycans (GAGs). Currently, nothing is known regarding the structural basis or molecular mechanisms underlying CXCL5-GAG interactions. To address this missing knowledge, we characterized the interaction of a panel of heparin oligosaccharides to CXCL5 using solution NMR, isothermal titration calorimetry, and molecular dynamics simulations. NMR studies indicated that the dimer is the high-affinity GAG binding ligand and that lysine residues from the N-loop, 40s turn, β3 strand, and C-terminal helix mediate binding. Isothermal titration calorimetry indicated a stoichiometry of two oligosaccharides per CXCL5 dimer. NMR-based structural models reveal that these residues form a contiguous surface within a monomer and, interestingly, that the GAG-binding domain overlaps with the receptor-binding domain, indicating that a GAG-bound chemokine cannot activate the receptor. Molecular dynamics simulations indicate that the roles of the individual lysines are not equivalent and that helical lysines play a more prominent role in determining binding geometry and affinity. Further, binding interactions and GAG geometry in CXCL5 are novel and distinctly different compared with the related chemokines CXCL1 and CXCL8. We conclude that a finely tuned balance between the GAG-bound dimer and free soluble monomer regulates CXCL5-mediated receptor signaling and function. PMID:27471273

  2. Discovery of a novel general anesthetic chemotype using high-throughput screening.

    PubMed

    McKinstry-Wu, Andrew R; Bu, Weiming; Rai, Ganesha; Lea, Wendy A; Weiser, Brian P; Liang, David F; Simeonov, Anton; Jadhav, Ajit; Maloney, David J; Eckenhoff, Roderic G

    2015-02-01

    The development of novel anesthetics has historically been a process of combined serendipity and empiricism, with most recent new anesthetics developed via modification of existing anesthetic structures. Using a novel high-throughput screen employing the fluorescent anesthetic 1-aminoanthracene and apoferritin as a surrogate for on-pathway anesthetic protein target(s), we screened a 350,000 compound library for competition with 1-aminoanthracene-apoferritin binding. Hit compounds meeting structural criteria had their binding affinities for apoferritin quantified with isothermal titration calorimetry and were tested for γ-aminobutyric acid type A receptor binding using a flunitrazepam binding assay. Chemotypes with a strong presence in the top 700 and exhibiting activity via isothermal titration calorimetry were selected for medicinal chemistry optimization including testing for anesthetic potency and toxicity in an in vivo Xenopus laevis tadpole assay. Compounds with low toxicity and high potency were tested for anesthetic potency in mice. From an initial chemical library of more than 350,000 compounds, we identified 2,600 compounds that potently inhibited 1-aminoanthracene binding to apoferritin. A subset of compounds chosen by structural criteria (700) was successfully reconfirmed using the initial assay. Based on a strong presence in both the initial and secondary screens the 6-phenylpyridazin-3(2H)-one chemotype was assessed for anesthetic activity in tadpoles. Medicinal chemistry efforts identified four compounds with high potency and low toxicity in tadpoles, two were found to be effective novel anesthetics in mice. The authors demonstrate the first use of a high-throughput screen to successfully identify a novel anesthetic chemotype and show mammalian anesthetic activity for members of that chemotype.

  3. Stabilizers influence drug–polymer interactions and physicochemical properties of disulfiram-loaded poly-lactide-co-glycolide nanoparticles

    PubMed Central

    Hoda, Muddasarul; Sufi, Shamim Akhtar; Cavuturu, Bindumadhuri; Rajagopalan, Rukkumani

    2018-01-01

    Aim: Stabilizers are known to be an integral component of polymeric nanostructures. Ideally, they manipulate physicochemical properties of nanoparticles. Based on this hypothesis, we demonstrated that disulfiram (drug) and Poly-lactide-co-glycolide (polymer) interactions and physicochemical properties of their nanoparticles formulations are significantly influenced by the choice of stabilizers. Methodology: Electron microscopy, differential scanning calorimetry, x-ray diffraction, Raman spectrum analysis, isothermal titration calorimetry and in silico docking studies were performed. Results & discussion: Polysorbate 80 imparted highest crystallinity while Triton-X 100 imparted highest rigidity, possibly influencing drug bioavailability, blood-retention time, cellular uptake and sustained drug release. All the molecular interactions were hydrophobic in nature and entropy driven. Therefore, polymeric nanoparticles may be critically manipulated to streamline the passive targeting of drug-loaded nanoparticles. PMID:29379637

  4. Mechanism of Dimercaptosuccinic Acid Coated Superparamagnetic Iron Oxide Nanoparticles with Human Serum Albumin.

    PubMed

    Zhao, Lining; Song, Wei; Wang, Jing; Yan, Yunxing; Chen, Jiangwei; Liu, Rutao

    2015-12-01

    To research the mechanism of dimercaptosuccinic acid coated-superparamagnetic iron oxide nanoparticles (SPION) with human serum albumin (HSA), the methods of spectroscopy, molecular modeling calculation, and calorimetry were used in this paper. The inner filter effect of the fluorescence intensity was corrected to obtain the accurate results. Ultraviolet-visible absorption and circular dichroism spectra reflect that SPION changed the secondary structure with a loss of α-helix and loosened the protein skeleton of HSA; the activity of the protein was also affected by the increasing exposure of SPION. Fluorescence lifetime measurement indicates that the quenching mechanism type of this system was static quenching. The isothermal titration calorimetry measurement and molecular docking calculations prove that the predominant force of this system was the combination of Van der Waals' force and hydrogen bonds. © 2015 Wiley Periodicals, Inc.

  5. Investigation of interaction of an alkaloid harmaline with cucurbit[7]uril: A spectroscopic and calorimetric study

    NASA Astrophysics Data System (ADS)

    Ahmed, Sayeed Ashique; Seth, Debabrata

    2018-01-01

    The photophysics of an alkaloid harmaline in aqueous buffer solution and in the presence of cucurbit[7]uril have been studied. The photophysical properties of harmaline were modulated several folds due to addition of cucurbit[7]uril in the aqueous buffer solution. We have observed quenching of fluorescence intensity of harmaline with gradual addition of CB7. Isothermal titration calorimetry technique (ITC) was performed to get an idea about the thermodynamic parameters involved in the complexation process. From ITC, we observed that the complexation process was exothermic in nature and enthalpy driven process.

  6. Inhibition of Protein-Protein Interactions and Signaling by Small Molecules

    NASA Astrophysics Data System (ADS)

    Freire, Ernesto

    2010-03-01

    Protein-protein interactions are at the core of cell signaling pathways as well as many bacterial and viral infection processes. As such, they define critical targets for drug development against diseases such as cancer, arthritis, obesity, AIDS and many others. Until now, the clinical inhibition of protein-protein interactions and signaling has been accomplished with the use of antibodies or soluble versions of receptor molecules. Small molecule replacements of these therapeutic agents have been extremely difficult to develop; either the necessary potency has been hard to achieve or the expected biological effect has not been obtained. In this presentation, we show that a rigorous thermodynamic approach that combines differential scanning calorimetry (DSC) and isothermal titration calorimetry (ITC) provides a unique platform for the identification and optimization of small molecular weight inhibitors of protein-protein interactions. Recent advances in the development of cell entry inhibitors of HIV-1 using this approach will be discussed.

  7. Characterization of the 1st and 2nd EF-hands of NADPH oxidase 5 by fluorescence, isothermal titration calorimetry, and circular dichroism

    PubMed Central

    2012-01-01

    Background Superoxide generated by non-phagocytic NADPH oxidases (NOXs) is of growing importance for physiology and pathobiology. The calcium binding domain (CaBD) of NOX5 contains four EF-hands, each binding one calcium ion. To better understand the metal binding properties of the 1st and 2nd EF-hands, we characterized the N-terminal half of CaBD (NCaBD) and its calcium-binding knockout mutants. Results The isothermal titration calorimetry measurement for NCaBD reveals that the calcium binding of two EF-hands are loosely associated with each other and can be treated as independent binding events. However, the Ca2+ binding studies on NCaBD(E31Q) and NCaBD(E63Q) showed their binding constants to be 6.5 × 105 and 5.0 × 102 M-1 with ΔHs of -14 and -4 kJ/mol, respectively, suggesting that intrinsic calcium binding for the 1st non-canonical EF-hand is largely enhanced by the binding of Ca2+ to the 2nd canonical EF-hand. The fluorescence quenching and CD spectra support a conformational change upon Ca2+ binding, which changes Trp residues toward a more non-polar and exposed environment and also increases its α-helix secondary structure content. All measurements exclude Mg2+-binding in NCaBD. Conclusions We demonstrated that the 1st non-canonical EF-hand of NOX5 has very weak Ca2+ binding affinity compared with the 2nd canonical EF-hand. Both EF-hands interact with each other in a cooperative manner to enhance their Ca2+ binding affinity. Our characterization reveals that the two EF-hands in the N-terminal NOX5 are Ca2+ specific. Graphical abstract PMID:22490336

  8. Hydration Differences Explain the Large Variations in the Complexation Thermodynamics of Modified γ-Cyclodextrins with Bile Salts.

    PubMed

    Køhler, Jonatan; Schönbeck, Christian; Westh, Peter; Holm, René

    2016-01-28

    The structure and thermodynamics of inclusion complexes of seven different γ-cyclodextrins (γCDs) and three biologically relevant bile salts (BS) were investigated in the present study. Natural γCD and six modified γCDs [two methyl-γCDs, one sulfobutyl ether-γCD (SBEγCD), and three 2-hydroxypropyl-γCDs (HPγCD)] and their complexes with BS were investigated by isothermal titration calorimetry, NMR, and molecular dynamics simulations. With the exception of the fully methylated γCD, which did not bind the BSs investigated, all of the γCDs formed 1:1 complexes with the BS, and the structures were similar to those with natural γCD; i.e., the modifications of the γCD had limited structural impact on the formation of complexes. Isothermal titration calorimetry was carried out over in the temperature interval 5-55 °C to enable the calculation of the stability constant (K) and the thermodynamic parameters enthalpy (ΔH°), entropy (ΔS°), and heat capacity (ΔCp°). The stability constants decreased with an increased degree of substitution (DS), with methyl substituents having a lower effect on the stability constant than the sulfobutyl ether and hydroxypropyl substituents on the stability constants. Enthalpy-entropy compensation was observed, since both enthalpy and entropy increased with the degree of substitution, which may reflect dehydration of the hydrophobic surface on both CD and BS. Calculations based on ΔCp° data suggested that each of the substituents dehydrated 10-20 (hydroxypropyl), 22-33 (sulfobutyl ether), and 10-15 Å(2) (methyl) of the BS surface area, in reasonable agreement with estimates from the molecular dynamics simulations. Combined with earlier investigations on modified βCDs, these results indicate general trends of the substituents on the thermodynamics of complex formation.

  9. Isolation and characterisation of transport-defective substrate-binding mutants of the tetracycline antiporter TetA(B)

    PubMed Central

    Wright, David J.; Tate, Christopher G.

    2015-01-01

    The tetracycline antiporter TetA(B) is a member of the Major Facilitator Superfamily which confers tetracycline resistance to cells by coupling the efflux of tetracycline to the influx of protons down their chemical potential gradient. Although it is a medically important transporter, its structure has yet to be determined. One possibility for why this has proven difficult is that the transporter may be conformationally heterogeneous in the purified state. To overcome this, we developed two strategies to rapidly identify TetA(B) mutants that were transport-defective and that could still bind tetracycline. Up to 9 amino acid residues could be deleted from the loop between transmembrane α-helices 6 and 7 with only a slight decrease in affinity of tetracycline binding as measured by isothermal titration calorimetry, although the mutant was transport-defective. Scanning mutagenesis where all the residues between 2 and 389 were mutated to either valine, alanine or glycine (VAG scan) identified 15 mutants that were significantly impaired in tetracycline transport. Of these mutants, 12 showed no evidence of tetracycline binding by isothermal titration calorimetry performed on the purified transporters. In contrast, the mutants G44V and G346V bound tetracycline 4–5 fold more weakly than TetA(B), with Kds of 28 μM and 36 μM, respectively, whereas the mutant R70G bound tetracycline 3-fold more strongly (Kd 2.1 μM). Systematic mutagenesis is thus an effective strategy for isolating transporter mutants that may be conformationally constrained and which represent attractive targets for crystallisation and structure determination. PMID:26143388

  10. Biochemical and biophysical investigations of the interaction between human glucokinase and pro-apoptotic BAD.

    PubMed

    Rexford, Alix; Zorio, Diego A R; Miller, Brian G

    2017-01-01

    The glycolytic enzyme glucokinase (GCK) and the pro-apoptotic protein BAD reportedly reside within a five-membered complex that localizes to the mitochondria of mammalian hepatocytes and pancreatic β-cells. Photochemical crosslinking studies using a synthetic analog of BAD's BH3 domain and in vitro transcription/translation experiments support a direct interaction between BAD and GCK. To investigate the biochemical and biophysical consequences of the BAD:GCK interaction, we developed a method for the production of recombinant human BAD. Consistent with published reports, recombinant BAD displays high affinity for Bcl-xL (KD = 7 nM), and phosphorylation of BAD at S118, within the BH3 domain, abolishes this interaction. Unexpectedly, we do not detect association of recombinant, full-length BAD with recombinant human pancreatic GCK over a range of protein concentrations using various biochemical methods including size-exclusion chromatography, chemical cross-linking, analytical ultracentrifugation, and isothermal titration calorimetry. Furthermore, fluorescence polarization assays and isothermal titration calorimetry detect no direct interaction between GCK and BAD BH3 peptides. Kinetic characterization of GCK in the presence of high concentrations of recombinant BAD show modest (<15%) increases in GCK activity, observable only at glucose concentrations well below the K0.5 value. GCK activity is unaffected by BAD BH3 peptides. These results raise questions as to the mechanism of action of stapled peptide analogs modeled after the BAD BH3 domain, which reportedly enhance the Vmax value of GCK and stimulate insulin release in BAD-deficient islets. Based on our results, we postulate that the BAD:GCK interaction, and any resultant regulatory effect(s) upon GCK activity, requires the participation of additional members of the mitochondrial complex.

  11. Binding of Cu(II) ions to peptides studied by fluorescence spectroscopy and isothermal titration calorimetry.

    PubMed

    Makowska, Joanna; Żamojć, Krzysztof; Wyrzykowski, Dariusz; Uber, Dorota; Wierzbicka, Małgorzata; Wiczk, Wiesław; Chmurzyński, Lech

    2016-01-15

    Steady-state and time-resolved fluorescence quenching measurements supported by Isothermal Titration Calorimetry (ITC) were used to study the interactions of Cu(2+) with four peptides. Two of them were taken from the N-terminal part of the FBP28 protein (formin binding protein) WW domain: Tyr-Lys-Thr-Ala-Asp-Gly-Lys-Thr-Tyr-NH2 (D9) and its mutant Tyr-Lys-Thr-Ala-Asn-Gly-Lys-Thr-Tyr-NH2 (D9_M) as well as two mutated peptides from the B3 domain of the immunoglobulin binding protein G derived from Streptococcus: Asp-Val-Ala-Thr-Tyr-Thr-NH2 (J1) and Glu-Val-Ala-Thr-Tyr-Thr-NH2 (J2). The measurements were carried out at 298.15K in 20mM 2-(N-morpholino)ethanesulfonic acid (MES) buffer solution with a pH of 6. The fluorescence of all peptides was quenched by Cu(2+) ions. The stoichiometry, conditional stability constants and thermodynamic parameters for the interactions of the Cu(2+) ions with D9 and D9_M were determined from the calorimetric data. The values of the conditional stability constants were additionally determined from fluorescence quenching measurements and compared with those obtained from calorimetric studies. There was a good correlation between data obtained from the two techniques. On the other hand, the studies revealed that J1 and J2 do not exhibit an affinity towards metal ions. The obtained results prove that fluorescence quenching experiments may be successfully used in order to determine stability constants of complexes with fluorescent ligands. Finally, based on the obtained results, the coordinating properties of the peptides towards the Cu(2+) ions are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Electrostatic Interactions in the Binding Pathway of a Transient Protein Complex Studied by NMR and Isothermal Titration Calorimetry*

    PubMed Central

    Meneses, Erick; Mittermaier, Anthony

    2014-01-01

    Much of our knowledge of protein binding pathways is derived from extremely stable complexes that interact very tightly, with lifetimes of hours to days. Much less is known about weaker interactions and transient complexes because these are challenging to characterize experimentally. Nevertheless, these types of interactions are ubiquitous in living systems. The combination of NMR relaxation dispersion Carr–Purcell–Meiboom–Gill (CPMG) experiments and isothermal titration calorimetry allows the quantification of rapid binding kinetics for complexes with submillisecond lifetimes that are difficult to study using conventional techniques. We have used this approach to investigate the binding pathway of the Src homology 3 (SH3) domain from the Fyn tyrosine kinase, which forms complexes with peptide targets whose lifetimes are on the order of about a millisecond. Long range electrostatic interactions have been shown to play a critical role in the binding pathways of tightly binding complexes. The role of electrostatics in the binding pathways of transient complexes is less well understood. Similarly to previously studied tight complexes, we find that SH3 domain association rates are enhanced by long range electrostatics, whereas short range interactions are formed late in the docking process. However, the extent of electrostatic association rate enhancement is several orders of magnitudes less, whereas the electrostatic-free basal association rate is significantly greater. Thus, the SH3 domain is far less reliant on electrostatic enhancement to achieve rapid association kinetics than are previously studied systems. This suggests that there may be overall differences in the role played by electrostatics in the binding pathways of extremely stable versus transient complexes. PMID:25122758

  13. Dissecting the molecular assembly of the Toxoplasma gondii MyoA motility complex.

    PubMed

    Powell, Cameron J; Jenkins, Meredith L; Parker, Michelle L; Ramaswamy, Raghavendran; Kelsen, Anne; Warshaw, David M; Ward, Gary E; Burke, John E; Boulanger, Martin J

    2017-11-24

    Apicomplexan parasites such as Toxoplasma gondii rely on a unique form of locomotion known as gliding motility. Generating the mechanical forces to support motility are divergent class XIV myosins (MyoA) coordinated by accessory proteins known as light chains. Although the importance of the MyoA-light chain complex is well-established, the detailed mechanisms governing its assembly and regulation are relatively unknown. To establish a molecular blueprint of this dynamic complex, we first mapped the adjacent binding sites of light chains MLC1 and ELC1 on the MyoA neck (residues 775-818) using a combination of hydrogen-deuterium exchange mass spectrometry and isothermal titration calorimetry. We then determined the 1.85 Å resolution crystal structure of MLC1 in complex with its cognate MyoA peptide. Structural analysis revealed a bilobed architecture with MLC1 clamping tightly around the helical MyoA peptide, consistent with the stable 10 nm K d measured by isothermal titration calorimetry. We next showed that coordination of calcium by an EF-hand in ELC1 and prebinding of MLC1 to the MyoA neck enhanced the affinity of ELC1 for the MyoA neck 7- and 8-fold, respectively. When combined, these factors enhanced ELC1 binding 49-fold (to a K d of 12 nm). Using the full-length MyoA motor (residues 1-831), we then showed that, in addition to coordinating the neck region, ELC1 appears to engage the MyoA converter subdomain, which couples the motor domain to the neck. These data support an assembly model where staged binding events cooperate to yield high-affinity complexes that are able to maximize force transduction. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Probing the binding of Cu(2+) ions to a fragment of the Aβ(1-42) polypeptide using fluorescence spectroscopy, isothermal titration calorimetry and molecular dynamics simulations.

    PubMed

    Makowska, Joanna; Żamojć, Krzysztof; Wyrzykowski, Dariusz; Żmudzińska, Wioletta; Uber, Dorota; Wierzbicka, Małgorzata; Wiczk, Wiesław; Chmurzyński, Lech

    2016-09-01

    Steady-state and time-resolved fluorescence quenching measurements supported by isothermal titration calorimetry (ITC) and molecular dynamics simulations (MD), with the NMR-derived restraints, were used to investigate the interactions of Cu(2+) ions with a fragment of the Aβ(1-42) polypeptide, Aβ(5-16) with the following sequence: Ac-Arg-His-Asp-Ser-Gly-Tyr-Glu-Val-His-His-Gln-Lys-NH2, denoted as HZ1. The studies presented in this paper, when compared with our previous results (Makowska et al., Spectrochim. Acta A 153: 451-456), show that the affinity of the peptide to metal ions is conformation-dependent. All the measurements were carried out in 20mM 2-(N-morpholino)ethanesulfonic acid (MES) buffer solution, pH6.0. The Stern-Volmer equations, along with spectroscopic observations, were used to determine the quenching and binding parameters. The obtained results unequivocally suggest that Cu(2+) ions quench the fluorescence of HZ1 only through a static quenching mechanism, in contrast to the fragment from the N-terminal part of the FPB28 protein, with sequence Ac-Tyr-Lys-Thr-Ala-Asp-Gly-Lys-Thr-Tyr- NH2 (D9) and its derivative with a single point mutation: Ac-Tyr-Lys-Thr-Ala-Asn-Gly-Lys-Thr-Tyr- NH2 (D9_M), where dynamic quenching occurred. The thermodynamic parameters (ΔITCH, ΔITCS) for the interactions between Cu(2+) ions and the HZ1 peptide were determined from the calorimetric data. The conditional thermodynamic parameters suggest that, under the experimental conditions, the formation of the Cu(2+)-HZ1 complex is both an enthalpy and entropy driven process. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Discovery of a Novel General Anesthetic Chemotype Using High-throughput Screening

    PubMed Central

    McKinstry-Wu, Andrew R.; Bu, Weiming; Rai, Ganesha; Lea, Wendy A.; Weiser, Brian P.; Liang, David F.; Simeonov, Anton; Jadhav, Ajit; Maloney, David J.; Eckenhoff, Roderic G.

    2014-01-01

    Background The development of novel anesthetics has historically been a process of combined serendipity and empiricism, with most recent new anesthetics developed via modification of existing anesthetic structures. Methods Using a novel high-throughput screen employing the fluorescent anesthetic 1-aminoanthracene (1-AMA) and apoferritin as a surrogate for on-pathway anesthetic protein target(s), we screened a 350,000 compound library for competition with 1-AMA-apoferritin binding. Hit compounds meeting structural criteria had their binding affinities for apoferritin quantified with isothermal titration calorimetry and were tested for γ-aminobutyric acid type A-receptor binding using a flunitrazepam binding assay. Chemotypes with a strong presence in the top 700 and exhibiting activity via isothermal titration calorimetry were selected for medicinal chemistry optimization including testing for anesthetic potency and toxicity in an in vivo Xenopus laevis tadpole assay. Compounds with low toxicity and high potency were tested for anesthetic potency in mice. Results From an initial chemical library of over 350,000 compounds, we identified 2,600 compounds that potently inhibited 1-AMA binding to apoferritin. A subset of compounds chosen by structural criteria (700) was successfully reconfirmed using the initial assay. Based upon a strong presence in both the initial and secondary screens the 6-phenylpyridazin-3(2H)-one chemotype was assessed for anesthetic activity in tadpoles. Medicinal chemistry efforts identified four compounds with high potency and low toxicity in tadpoles, two were found to be effective novel anesthetics in mice. Conclusions We demonstrate the first use of a high-throughput screen to successfully identify a novel anesthetic chemotype and show mammalian anesthetic activity for members of that chemotype. PMID:25603205

  16. Binding of Cu(II) ions to peptides studied by fluorescence spectroscopy and isothermal titration calorimetry

    NASA Astrophysics Data System (ADS)

    Makowska, Joanna; Żamojć, Krzysztof; Wyrzykowski, Dariusz; Uber, Dorota; Wierzbicka, Małgorzata; Wiczk, Wiesław; Chmurzyński, Lech

    2016-01-01

    Steady-state and time-resolved fluorescence quenching measurements supported by Isothermal Titration Calorimetry (ITC) were used to study the interactions of Cu2 + with four peptides. Two of them were taken from the N-terminal part of the FBP28 protein (formin binding protein) WW domain: Tyr-Lys-Thr-Ala-Asp-Gly-Lys-Thr-Tyr-NH2 (D9) and its mutant Tyr-Lys-Thr-Ala-Asn-Gly-Lys-Thr-Tyr-NH2 (D9_M) as well as two mutated peptides from the B3 domain of the immunoglobulin binding protein G derived from Streptococcus: Asp-Val-Ala-Thr-Tyr-Thr-NH2 (J1) and Glu-Val-Ala-Thr-Tyr-Thr-NH2 (J2). The measurements were carried out at 298.15 K in 20 mM 2-(N-morpholino)ethanesulfonic acid (MES) buffer solution with a pH of 6. The fluorescence of all peptides was quenched by Cu2 + ions. The stoichiometry, conditional stability constants and thermodynamic parameters for the interactions of the Cu2 + ions with D9 and D9_M were determined from the calorimetric data. The values of the conditional stability constants were additionally determined from fluorescence quenching measurements and compared with those obtained from calorimetric studies. There was a good correlation between data obtained from the two techniques. On the other hand, the studies revealed that J1 and J2 do not exhibit an affinity towards metal ions. The obtained results prove that fluorescence quenching experiments may be successfully used in order to determine stability constants of complexes with fluorescent ligands. Finally, based on the obtained results, the coordinating properties of the peptides towards the Cu2 + ions are discussed.

  17. Design of inhibitors of orotidine monophosphate decarboxylase using bioisosteric replacement and determination of inhibition kinetics.

    PubMed

    Poduch, Ewa; Bello, Angelica M; Tang, Sishi; Fujihashi, Masahiro; Pai, Emil F; Kotra, Lakshmi P

    2006-08-10

    Inhibitors of orotidine monophosphate decarboxylase (ODCase) have applications in RNA viral, parasitic, and other infectious diseases. ODCase catalyzes the decarboxylation of orotidine monophosphate (OMP), producing uridine monophosphate (UMP). Novel inhibitors 6-amino-UMP and 6-cyano-UMP were designed on the basis of the substructure volumes in the substrate OMP and in an inhibitor of ODCase, barbituric acid monophosphate, BMP. A new enzyme assay method using isothermal titration calorimetry (ITC) was developed to investigate the inhibition kinetics of ODCase. The reaction rates were measured by monitoring the heat generated during the decarboxylation reaction of orotidine monophosphate. Kinetic parameters (k(cat) = 21 s(-1) and KM = 5 microM) and the molar enthalpy (DeltaH(app) = 5 kcal/mol) were determined for the decarboxylation of the substrate by ODCase. Competitive inhibition of the enzyme was observed and the inhibition constants (Ki) were determined to be 12.4 microM and 29 microM for 6-aza-UMP and 6-cyano-UMP, respectively. 6-Amino-UMP was found to be among the potent inhibitors of ODCase, having an inhibition constant of 840 nM. We reveal here the first inhibitors of ODCase designed by the principles of bioisosterism and a novel method of using isothermal calorimetry for enzyme inhibition studies.

  18. RNA targeting by small molecule alkaloids: Studies on the binding of berberine and palmatine to polyribonucleotides and comparison to ethidium

    NASA Astrophysics Data System (ADS)

    Islam, Md. Maidul; Suresh Kumar, Gopinatha

    2008-03-01

    The binding affinity, energetics and conformational aspects of the interaction of isoquinoline alkaloids berberine and palmatine to four single stranded polyribonucleotides polyguanylic acid [poly(G)], polyinosinic acid [poly(I)], polycytidylic acid [poly(C)] and polyuridylic acid [poly(U)] were studied by absorption, fluorescence, isothermal titration calorimetry and circular dichroism spectroscopy and compared with ethidium. Berberine, palmatine and ethidium binds strongly with poly(G) and poly(I) with affinity in the order 10 5 M -1 while their binding to poly(C) and poly(U) were very weak or practically nil. The same conclusions have also emerged from isothermal titration calorimetric studies. The binding of all the three compounds to poly(C) and poly(I) was exothermic and favored by both negative enthalpy change and positive entropy change. Conformational change in the polymer associated with the binding was observed in poly(I) with all the three molecules and poly(U) with ethidium but not in poly(G) and poly(C) revealing differences in the orientation of the bound molecules in the hitherto different helical organization of these polymers. These fundamental results may be useful and serve as database for the development of futuristic RNA based small molecule therapeutics.

  19. Drug-binding energetics of human α-1-acid glycoprotein assessed by isothermal titration calorimetry and molecular docking simulations

    PubMed Central

    Huang, Johnny X.; Cooper, Matthew A.; Baker, Mark A.; Azad, Mohammad A.K.; Nation, Roger L.; Li, Jian; Velkov, Tony

    2012-01-01

    This study utilizes sensitive, modern isothermal titration calorimetric (ITC) methods to characterize the microscopic thermodynamic parameters that drive the binding of basic drugs to α-1-acid glycoprotein (AGP) and thereby rationalize the thermodynamic data in relation to docking models and crystallographic structures of the drug-AGP complexes. The binding of basic compounds from the tricyclic antidepressant series, together with miaserine, chlorpromazine, disopyramide and cimetidine all displayed an exothermically driven binding interaction with AGP. The impact of protonation/deprotonation events, ionic strength, temperature and the individual selectivity of the A and F1*S AGP variants on drug-binding thermodynamics were characterized. A correlation plot of the thermodynamic parameters for all of the test compounds revealed enthalpy-entropy compensation is in effect. The exothermic binding energetics of the test compounds were driven by a combination of favorable (negative) enthalpic (ΔH°) and favorable (positive) entropic (ΔS°) contributions to the Gibbs free energy (ΔG°). Collectively, the data imply that the free energies that drive drug binding to AGP and its relationship to drug-serum residency evolve from the complex interplay of enthalpic and entropic forces from interactions with explicit combinations of hydrophobic and polar side-chain sub-domains within the multi-lobed AGP ligand binding cavity. PMID:23192962

  20. Elucidation of ionic interactions in the protic ionic liquid solutions by isothermal titration calorimetry.

    PubMed

    Rai, Gitanjali; Kumar, Anil

    2014-04-17

    The strong hydrogen-bonded network noted in protic ionic liquids (PILs) may lead to stronger interactions of the ionic entities of PILs with solvents (water, methanol, ethylene glycol, dimethylsulfoxide (DMSO), N,N'-dimethylformamide (DMF)) as compared with those of aprotic ionic liquids (APILs). The PILs used in this work are 1-methylimidazolium tetrafluoroborate, 2-methylpyridinium tetrafluoroborate, and N-methylpyrrolodinium tetrafluoroborate in comparison to 1-butyl-3-methylimidazolium tetrafluoroborate, which is classified as an APIL. In this work, the excess partial molar enthalpy, H(E)IL obtained from isothermal calorimetric titrations at 298.15 K is used to probe the nature of interactions of the PIL cations with solvent molecules against those present in APIL-solvent systems. This work also reports interesting flip-flopping in the thermal behavior of these PIL-solvent systems depending upon the structure of the cationic ring of a PIL. In some cases, these flip-flops are the specific fingerprints for specific PILs in a common solvent environment. The excess partial molar enthalpy at infinite dilution, H(E,∞)IL, of these PILs bears a critical dependence on the solvent properties. An analysis of relative apparent molar enthalpies, ϕL, of the PIL solutions by the ion interaction model of Pitzer yields important information on ionic interactions of these systems.

  1. Exopolysaccharides regulate calcium flow in cariogenic biofilms

    PubMed Central

    Varenganayil, Muth M.; Decho, Alan W.

    2017-01-01

    Caries-associated biofilms induce loss of calcium from tooth surfaces in the presence of dietary carbohydrates. Exopolysaccharides (EPS) provide a matrix scaffold and an abundance of primary binding sites within biofilms. The role of EPS in binding calcium in cariogenic biofilms is only partially understood. Thus, the aim of the present study is to investigate the relationship between the calcium dissolution rates and calcium tolerance of caries-associated bacteria and yeast as well as to examine the properties of EPS to quantify its binding affinity for dissolved calcium. Calcium dissolution was measured by dissolution zones on Pikovskaya’s agar. Calcium tolerance was assessed by isothermal microcalorimetry (IMC) by adding CaCl2 to the bacterial cultures. Acid-base titration and Fourier transform infrared (FTIR) spectroscopy were used to identify possible functional groups responsible for calcium binding, which was assessed by isothermal titration calorimetry (ITC). Lactobacillus spp. and mutans streptococci demonstrated calcium dissolution in the presence of different carbohydrates. All strains that demonstrated high dissolution rates also revealed higher rates of calcium tolerance by IMC. In addition, acidic functional groups were predominantly identified as possible binding sites for calcium ions by acid-base titration and FTIR. Finally, ITC revealed EPS to have a higher binding affinity for calcium compared, for example, to lactic acid. In conclusion, this study illustrates the role of EPS in terms of the calcium tolerance of cariogenic microbiota by determining the ability of EPS to control free calcium concentrations within the biofilms as a self-regulating mode of action in the pathogenesis of dental caries. PMID:29023506

  2. A comprehensive approach to ascertain the binding mode of curcumin with DNA

    NASA Astrophysics Data System (ADS)

    Haris, P.; Mary, Varughese; Aparna, P.; Dileep, K. V.; Sudarsanakumar, C.

    2017-03-01

    Curcumin is a natural phytochemical from the rhizoma of Curcuma longa, the popular Indian spice that exhibits a wide range of pharmacological properties like antioxidant, anticancer, anti-inflammatory, antitumor, and antiviral activities. In the published literatures we can see different studies and arguments on the interaction of curcumin with DNA. The intercalative binding, groove binding and no binding of curcumin with DNA were reported. In this context, we conducted a detailed study to understand the mechanism of recognition of dimethylsulfoxide-solubilized curcumin by DNA. The interaction of curcumin with calf thymus DNA (ctDNA) was confirmed by agarose gel electrophoresis. The nature of binding and energetics of interaction were studied by Isothermal Titration Calorimetry (ITC), Differential Scanning Calorimetry (DSC), UV-visible, fluorescence and melting temperature (Tm) analysis. The experimental data were compared with molecular modeling studies. Our investigation confirmed that dimethylsulfoxide-solubilized curcumin binds in the minor groove of the ctDNA without causing significant structural alteration to the DNA.

  3. Thermodynamics of micellization from heat-capacity measurements.

    PubMed

    Šarac, Bojan; Bešter-Rogač, Marija; Lah, Jurij

    2014-06-23

    Differential scanning calorimetry (DSC), the most important technique for studying the thermodynamics of structural transitions of biological macromolecules, is seldom used in quantitative thermodynamic studies of surfactant micellization/demicellization. The reason for this could be ascribed to an insufficient understanding of the temperature dependence of the heat capacity of surfactant solutions (DSC data) in terms of thermodynamics, which leads to problems with the design of experiments and interpretation of the output signals. We address these issues by careful design of DSC experiments performed with solutions of ionic and nonionic surfactants at various surfactant concentrations, and individual and global mass-action model analysis of the obtained DSC data. Our approach leads to reliable thermodynamic parameters of micellization for all types of surfactants, comparable with those obtained by using isothermal titration calorimetry (ITC). In summary, we demonstrate that DSC can be successfully used as an independent method to obtain temperature-dependent thermodynamic parameters for micellization. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Cross-platform comparison of nucleic acid hybridization: toward quantitative reference standards.

    PubMed

    Halvorsen, Ken; Agris, Paul F

    2014-11-15

    Measuring interactions between biological molecules is vitally important to both basic and applied research as well as development of pharmaceuticals. Although a wide and growing range of techniques is available to measure various kinetic and thermodynamic properties of interacting biomolecules, it can be difficult to compare data across techniques of different laboratories and personnel or even across different instruments using the same technique. Here we evaluate relevant biological interactions based on complementary DNA and RNA oligonucleotides that could be used as reference standards for many experimental systems. We measured thermodynamics of duplex formation using isothermal titration calorimetry, differential scanning calorimetry, and ultraviolet-visible (UV-vis) monitored denaturation/renaturation. These standards can be used to validate results, compare data from disparate techniques, act as a teaching tool for laboratory classes, or potentially to calibrate instruments. The RNA and DNA standards have many attractive features, including low cost, high purity, easily measurable concentrations, and minimal handling concerns, making them ideal for use as a reference material. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Cross-platform comparison of nucleic acid hybridization: toward quantitative reference standardsa

    PubMed Central

    Halvorsen, Ken; Agris, Paul F.

    2014-01-01

    Measuring interactions between biological molecules is vitally important to both basic and applied research, as well as development of pharmaceuticals. While a wide and growing range of techniques are available to measure various kinetic and thermodynamic properties of interacting biomolecules, it can be difficult to compare data across techniques of different laboratories and personnel, or even across different instruments using the same technique. Here we evaluate relevant biological interactions based on complementary DNA and RNA oligonucleotides that could be used as reference standards for many experimental systems. We measured thermodynamics of duplex formation using Isothermal Titration Calorimetry, Differential Scanning Calorimetry, and UV-Vis monitored denaturation/renaturation. These standards can be used to validate results, compare data from disparate techniques, act as a teaching tool for laboratory classes, or potentially to calibrate instruments. The RNA and DNA standards have many attractive features including low cost, high purity, easily measureable concentrations, and minimal handling concerns, making them ideal for use as a reference material. PMID:25124363

  6. Kinetically trapped metastable intermediate of a disulfide-deficient mutant of the starch-binding domain of glucoamylase.

    PubMed

    Sugimoto, Hayuki; Nakaura, Miho; Nishimura, Shigenori; Karita, Shuichi; Miyake, Hideo; Tanaka, Akiyoshi

    2009-08-01

    Refolding of a thermally unfolded disulfide-deficient mutant of the starch-binding domain of glucoamylase was investigated using differential scanning calorimetry, isothermal titration calorimetry, CD, and (1)H NMR. When the protein solution was rapidly cooled from a higher temperature, a kinetic intermediate was formed during refolding. The intermediate was unexpectedly stable compared with typical folding intermediates that have short half-lives. It was shown that this intermediate contained substantial secondary structure and tertiary packing and had the same binding ability with beta-cyclodextrin as the native state, suggesting that the intermediate is highly-ordered and native-like on the whole. These characteristics differ from those of partially folded intermediates such as molten globule states. Far-UV CD spectra showed that the secondary structure was once disrupted during the transition from the intermediate to the native state. These results suggest that the intermediate could be an off-pathway type, possibly a misfolded state, that has to undergo unfolding on its way to the native state.

  7. Influence of external factors on the self-assembly of two structurally related antidepressant drugs: a thermodynamic study

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Pichel, Manuel; Attwood, David; Taboada, Pablo; Mosquera, Víctor

    Apparent molal volumes and adiabatic compressibilities of aqueous solutions of the amphiphilic antidepressant drugs imipramine and desipramine hydrochlorides have been determined from density and ultrasound velocity measurements in the temperature range 288.15-313.15 K in buffered solution of pH 3.0 and 5.5. Critical concentrations for aggregation of these drugs were obtained from inflections on the plots of the sound velocity against drug concentration. Positive deviation from the Debye-Hückel limiting law of the apparent molal volume of imipramine provides evidence of limited association at concentrations below the critical concentration over the temperature range studied. Apparent molal adiabatic compressibilities of the aggregates formed by the drugs, calculated by combining the ultrasound velocity and density data, were typical of those for a stacked aggregate. The critical concentration and energy involved in the aggregation process of these drugs have been evaluated using isothermal titration calorimetry. The solvent-aggregate interactions have been discussed from compressibility and calorimetry data.

  8. Thermodynamics of the interaction of sweeteners and lactisole with fullerenols as an artificial sweet taste receptor model.

    PubMed

    Chen, Zhong-Xiu; Wu, Wen; Zhang, Wei-Bin; Deng, Shao-Ping

    2011-09-01

    The thermodynamics of the mimetic interaction of lactisole and sweeteners with fullerenols as a synthetic sweet receptor model was elucidated by Isothermal Titration Calorimetry (ITC) technique. The presence of lactisole resulted in great differences in thermodynamics of the sweeteners binding with fullerenols in which lactisole led to much more entropy contribution to the free energy compared with the interaction of sweeteners with fullerenols. Two interaction equilibrium states were found in ITC titration profiles and competitive binding of lactisole and sweeteners with fullerenols was disclosed. Our results indicated that the larger value of the ratio of two equilibrium constant K1/K2, the more effectively lactisole inhibited the sweetness of the sweetener. The combined results of sensory evaluation and ITC thermodynamics revealed that introducing a synthetic receptor model to interact with the sweeteners and inhibitors helps to understand the inhibition mechanism and the thermodynamic basis for the initiation of sweetness inhibition. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Study on the interaction mechanism between aromatic amino acids and quercetin

    NASA Astrophysics Data System (ADS)

    Gou, Xingxing; Pu, Xiaohua; Li, Zongxiao

    2017-11-01

    In this paper, we selected quercetin and aromatic amino acids (tryptophan, tyrosine, phenylalanine) as the research objects to investigate the change rules in the reaction process. The thermodynamic functions (Ka, Δ G, and Δ S) of the interactions between quercetin and aromatic amino acids (tryptophan, tyrosine, phenylalanine) were measured by isothermal titration calorimetry. The values of binding constant (Ka) reached maximum at 25°C; the entropies and Gibbs free energies were both negative at different temperatures. The kinetic parameters of quercetin and amino acids in the interaction process was determined by microcalorimetry. The results inferred that the driving force of the reaction was hydrogen bond or van der Waals force.

  10. ITC-derived binding affinity may be biased due to titrant (nano)-aggregation. Binding of halogenated benzotriazoles to the catalytic domain of human protein kinase CK2

    PubMed Central

    Winiewska, Maria; Bugajska, Ewa

    2017-01-01

    The binding of four bromobenzotriazoles to the catalytic subunit of human protein kinase CK2 was assessed by two complementary methods: Microscale Thermophoresis (MST) and Isothermal Titration Calorimetry (ITC). New algorithm proposed for the global analysis of MST pseudo-titration data enabled reliable determination of binding affinities for two distinct sites, a relatively strong one with the Kd of the order of 100 nM and a substantially weaker one (Kd > 1 μM). The affinities for the strong binding site determined for the same protein-ligand systems using ITC were in most cases approximately 10-fold underestimated. The discrepancy was assigned directly to the kinetics of ligand nano-aggregates decay occurring upon injection of the concentrated ligand solution to the protein sample. The binding affinities determined in the reverse ITC experiment, in which ligands were titrated with a concentrated protein solution, agreed with the MST-derived data. Our analysis suggests that some ITC-derived Kd values, routinely reported together with PDB structures of protein-ligand complexes, may be biased due to the uncontrolled ligand (nano)-aggregation, which may occur even substantially below the solubility limit. PMID:28273138

  11. Models for the Binary Complex of Bacteriophage T4 Gp59 Helicase Loading Protein. GP32 Single-Stranded DNA-Binding Protein and Ternary Complex with Pseudo-Y Junction DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinerman, Jennifer M.; Dignam, J. David; Mueser, Timothy C.

    2012-04-05

    The bacteriophage T4 gp59 helicase assembly protein (gp59) is required for loading of gp41 replicative helicase onto DNA protected by gp32 single-stranded DNA-binding protein. The gp59 protein recognizes branched DNA structures found at replication and recombination sites. Binding of gp32 protein (full-length and deletion constructs) to gp59 protein measured by isothermal titration calorimetry demonstrates that the gp32 protein C-terminal A-domain is essential for protein-protein interaction in the absence of DNA. Sedimentation velocity experiments with gp59 protein and gp32ΔB protein (an N-terminal B-domain deletion) show that these proteins are monomers but form a 1:1 complex with a dissociation constant comparable withmore » that determined by isothermal titration calorimetry. Small angle x-ray scattering (SAXS) studies indicate that the gp59 protein is a prolate monomer, consistent with the crystal structure and hydrodynamic properties determined from sedimentation velocity experiments. SAXS experiments also demonstrate that gp32ΔB protein is a prolate monomer with an elongated A-domain protruding from the core. Moreover, fitting structures of gp59 protein and the gp32 core into the SAXS-derived molecular envelope supports a model for the gp59 protein-gp32ΔB protein complex. Our earlier work demonstrated that gp59 protein attracts full-length gp32 protein to pseudo-Y junctions. A model of the gp59 protein-DNA complex, modified to accommodate new SAXS data for the binary complex together with mutational analysis of gp59 protein, is presented in the accompanying article (Dolezal, D., Jones, C. E., Lai, X., Brister, J. R., Mueser, T. C., Nossal, N. G., and Hinton, D. M. (2012) J. Biol. Chem. 287, 18596–18607).« less

  12. Kinetic, Thermodynamic, and Structural Insight into the Mechanism of Phosphopantetheine Adenylyltransferase from Mycobacterium tuberculosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wubben, Thomas J.; Mesecar, Andrew D.; UIC)

    Phosphopantetheine adenylyltransferase (PPAT) catalyzes the penultimate step in the coenzyme A (CoA) biosynthetic pathway, reversibly transferring an adenylyl group from ATP to 4'-phosphopantetheine (PhP) to form dephosphocoenzyme A. This reaction sits at the branch point between the de novo pathway and the salvage pathway, and has been shown to be a rate-limiting step in the biosynthesis of CoA. Importantly, bacterial and mammalian PPATs share little sequence homology, making the enzyme a potential target for antibiotic development. A series of steady-state kinetic, product inhibition, and direct binding studies with Mycobacterium tuberculosis PPAT (MtPPAT) was conducted and suggests that the enzyme utilizesmore » a nonrapid-equilibrium random bi-bi mechanism. The kinetic response of MtPPAT to the binding of ATP was observed to be sigmoidal under fixed PhP concentrations, but substrate inhibition was observed at high PhP concentrations under subsaturating ATP concentrations, suggesting a preferred pathway to ternary complex formation. Negative cooperativity in the kinetic response of MtPPAT to PhP binding was observed under certain conditions and confirmed thermodynamically by isothermal titration calorimetry, suggesting the formation of an asymmetric quaternary structure during sequential ligation of substrates. Asymmetry in binding was also observed in isothermal titration calorimetry experiments with dephosphocoenzyme A and CoA. X-ray structures of MtPPAT in complex with PhP and the nonhydrolyzable ATP analogue adenosine-5'-[({alpha},{beta})-methyleno]triphosphate were solved to 1.57 {angstrom} and 2.68 {angstrom}, respectively. These crystal structures reveal small conformational changes in enzyme structure upon ligand binding, which may play a role in the nonrapid-equilibrium mechanism. We suggest that the proposed kinetic mechanism and asymmetric character in MtPPAT ligand binding may provide a means of reaction and pathway regulation in addition to that of the previously determined CoA feedback.« less

  13. PHOENIX: a scoring function for affinity prediction derived using high-resolution crystal structures and calorimetry measurements.

    PubMed

    Tang, Yat T; Marshall, Garland R

    2011-02-28

    Binding affinity prediction is one of the most critical components to computer-aided structure-based drug design. Despite advances in first-principle methods for predicting binding affinity, empirical scoring functions that are fast and only relatively accurate are still widely used in structure-based drug design. With the increasing availability of X-ray crystallographic structures in the Protein Data Bank and continuing application of biophysical methods such as isothermal titration calorimetry to measure thermodynamic parameters contributing to binding free energy, sufficient experimental data exists that scoring functions can now be derived by separating enthalpic (ΔH) and entropic (TΔS) contributions to binding free energy (ΔG). PHOENIX, a scoring function to predict binding affinities of protein-ligand complexes, utilizes the increasing availability of experimental data to improve binding affinity predictions by the following: model training and testing using high-resolution crystallographic data to minimize structural noise, independent models of enthalpic and entropic contributions fitted to thermodynamic parameters assumed to be thermodynamically biased to calculate binding free energy, use of shape and volume descriptors to better capture entropic contributions. A set of 42 descriptors and 112 protein-ligand complexes were used to derive functions using partial least-squares for change of enthalpy (ΔH) and change of entropy (TΔS) to calculate change of binding free energy (ΔG), resulting in a predictive r2 (r(pred)2) of 0.55 and a standard error (SE) of 1.34 kcal/mol. External validation using the 2009 version of the PDBbind "refined set" (n = 1612) resulted in a Pearson correlation coefficient (R(p)) of 0.575 and a mean error (ME) of 1.41 pK(d). Enthalpy and entropy predictions were of limited accuracy individually. However, their difference resulted in a relatively accurate binding free energy. While the development of an accurate and applicable scoring function was an objective of this study, the main focus was evaluation of the use of high-resolution X-ray crystal structures with high-quality thermodynamic parameters from isothermal titration calorimetry for scoring function development. With the increasing application of structure-based methods in molecular design, this study suggests that using high-resolution crystal structures, separating enthalpy and entropy contributions to binding free energy, and including descriptors to better capture entropic contributions may prove to be effective strategies toward rapid and accurate calculation of binding affinity.

  14. Elucidation of the Interaction Mechanism with Liposomes of gH625-Peptide Functionalized Dendrimers

    PubMed Central

    Falanga, Annarita; Tarallo, Rossella; Carberry, Thomas; Galdiero, Massimiliano; Weck, Marcus; Galdiero, Stefania

    2014-01-01

    We have demonstrated that amide-based dendrimers functionalized with the membrane-interacting peptide gH625 derived from the herpes simplex virus type 1 (HSV-1) envelope glycoprotein H enter cells mainly through a non-active translocation mechanism. Herein, we investigate the interaction between the peptide-functionalized dendrimer and liposomes composed of PC/Chol using fluorescence spectroscopy, isothermal titration calorimetry, and surface plasmon resonance to get insights into the mechanism of internalization. The affinity for the membrane bilayer is very high and the interaction between the peptide-dendrimer and liposomes took place without evidence of pore formation. These results suggest that the presented peptidodendrimeric scaffold may be a promising material for efficient drug delivery. PMID:25423477

  15. Protein-ligand interactions investigated by thermal shift assays (TSA) and dual polarization interferometry (DPI).

    PubMed

    Grøftehauge, Morten K; Hajizadeh, Nelly R; Swann, Marcus J; Pohl, Ehmke

    2015-01-01

    Over the last decades, a wide range of biophysical techniques investigating protein-ligand interactions have become indispensable tools to complement high-resolution crystal structure determinations. Current approaches in solution range from high-throughput-capable methods such as thermal shift assays (TSA) to highly accurate techniques including microscale thermophoresis (MST) and isothermal titration calorimetry (ITC) that can provide a full thermodynamic description of binding events. Surface-based methods such as surface plasmon resonance (SPR) and dual polarization interferometry (DPI) allow real-time measurements and can provide kinetic parameters as well as binding constants. DPI provides additional spatial information about the binding event. Here, an account is presented of new developments and recent applications of TSA and DPI connected to crystallography.

  16. Protein–ligand interactions investigated by thermal shift assays (TSA) and dual polarization interferometry (DPI)

    PubMed Central

    Grøftehauge, Morten K.; Hajizadeh, Nelly R.; Swann, Marcus J.; Pohl, Ehmke

    2015-01-01

    Over the last decades, a wide range of biophysical techniques investigating protein–ligand interactions have become indispensable tools to complement high-resolution crystal structure determinations. Current approaches in solution range from high-throughput-capable methods such as thermal shift assays (TSA) to highly accurate techniques including microscale thermophoresis (MST) and isothermal titration calorimetry (ITC) that can provide a full thermodynamic description of binding events. Surface-based methods such as surface plasmon resonance (SPR) and dual polarization interferometry (DPI) allow real-time measurements and can provide kinetic parameters as well as binding constants. DPI provides additional spatial information about the binding event. Here, an account is presented of new developments and recent applications of TSA and DPI connected to crystallography. PMID:25615858

  17. Micellization Behavior of Long-Chain Substituted Alkylguanidinium Surfactants

    PubMed Central

    Bouchal, Roza; Hamel, Abdellah; Hesemann, Peter; In, Martin; Prelot, Bénédicte; Zajac, Jerzy

    2016-01-01

    Surface activity and micelle formation of alkylguanidinium chlorides containing 10, 12, 14 and 16 carbon atoms in the hydrophobic tail were studied by combining conductivity and surface tension measurements with isothermal titration calorimetry. The purity of the resulting surfactants, their temperatures of Cr→LC and LC→I transitions, as well as their propensity of forming birefringent phases, were assessed based on the results of 1H and 13C NMR, differential scanning calorimetry (DSC), and polarizing microscopy studies. Whenever possible, the resulting values of Krafft temperature (TK), critical micelle concentration (CMC), minimum surface tension above the CMC, chloride counter-ion binding to the micelle, and the standard enthalpy of micelle formation per mole of surfactant (ΔmicH°) were compared to those characterizing alkyltrimethylammonium chlorides or bromides with the same tail lengths. The value of TK ranged between 292 and 314 K and increased strongly with the increase in the chain length of the hydrophobic tail. Micellization was described as both entropy and enthalpy-driven. Based on the direct calorimetry measurements, the general trends in the CMC with the temperature, hydrophobic tail length, and NaCl addition were found to be similar to those of other types of cationic surfactants. The particularly exothermic character of micellization was ascribed to the hydrogen-binding capacity of the guanidinium head-group. PMID:26861309

  18. Thermodynamics and solvent linkage of macromolecule-ligand interactions

    PubMed Central

    Duff, Michael R.; Howell, Elizabeth E.

    2014-01-01

    Binding involves two steps, desolvation and association. While water is ubiquitous and occurs at high concentration, it is typically ignored. In vitro experiments typically use infinite dilution conditions, while in vivo, the concentration of water is decreased due to the presence of high concentrations of molecules in the cellular milieu. This review discusses isothermal titration calorimetry approaches that address the role of water in binding. For example, use of D2O allows the contribution of solvent reorganization to the enthalpy component to be assessed. Further, the addition of osmolytes will decrease the water activity of a solution and allow effects on Ka to be determined. In most cases, binding becomes tighter in the presence of osmolytes as the desolvation penalty associated with binding is minimized. In other cases, the osmolytes prefer to interact with the ligand or protein, and if their removal is more difficult than shedding water, then binding can be weakened. These complicating layers can be discerned by different slopes in ln(Ka) vs osmolality plots and by differential scanning calorimetry in the presence of the osmolyte. PMID:25462561

  19. Effects of self-aggregation on the hydration of an amphiphilic antidepressant drug in different aqueous media

    NASA Astrophysics Data System (ADS)

    Taboada, Pablo; Gutiérrez-Pichel, Manuel; Mosquera, Víctor

    2004-03-01

    Apparent molal volumes and adiabatic compressibilities of aqueous solutions of the amphiphilic antidepressant drug clomipramine hydrochloride have been determined from density and ultrasound velocity measurements in the temperature range 288.15-313.15 K in buffered aqueous solution of pH 3.0 and 5.5. Critical concentrations of aggregation of this drug were obtained from inflections on the plots of the sound velocity against drug concentration. Apparent molal adiabatic compressibilities of the aggregates formed by the drug, calculated by combining the ultrasound velocity and density data, were typical of those for a stacked aggregate. From the temperature dependence of the critical concentration and using the mass action model combined with the Phillips definition of the critical concentration the thermodynamic standard quantities: free Gibbs energy, enthalpy and entropy of aggregate formation were calculated. The critical concentration and energy involved in the aggregation process of this drug have been also evaluated experimentally using isothermal titration calorimetry at 298.15 K. The solvent-drug interactions have been discussed from compressibility and calorimetry data.

  20. Thermodynamics and solvent linkage of macromolecule–ligand interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duff, Michael R.; Howell, Elizabeth E.

    Binding involves two steps, desolvation and association. While water is ubiquitous and occurs at high concentration, it is typically ignored. In vitro experiments typically use infinite dilution conditions, while in vivo, the concentration of water is decreased due to the presence of high concentrations of molecules in the cellular milieu. Our paper discusses isothermal titration calorimetry approaches that address the role of water in binding. For example, use of D2O allows the contribution of solvent reorganization to the enthalpy component to be assessed. Furthermore, the addition of osmolytes will decrease the water activity of a solution and allow effects onmore » Ka to be determined. In most cases, binding becomes tighter in the presence of osmolytes as the desolvation penalty associated with binding is minimized. In other cases, the osmolytes prefer to interact with the ligand or protein, and if their removal is more difficult than shedding water, then binding can be weakened. Lastly, these complicating layers can be discerned by different slopes in ln(Ka) vs osmolality plots and by differential scanning calorimetry in the presence of the osmolyte.« less

  1. Thermodynamics and solvent linkage of macromolecule–ligand interactions

    DOE PAGES

    Duff, Michael R.; Howell, Elizabeth E.

    2014-11-21

    Binding involves two steps, desolvation and association. While water is ubiquitous and occurs at high concentration, it is typically ignored. In vitro experiments typically use infinite dilution conditions, while in vivo, the concentration of water is decreased due to the presence of high concentrations of molecules in the cellular milieu. Our paper discusses isothermal titration calorimetry approaches that address the role of water in binding. For example, use of D2O allows the contribution of solvent reorganization to the enthalpy component to be assessed. Furthermore, the addition of osmolytes will decrease the water activity of a solution and allow effects onmore » Ka to be determined. In most cases, binding becomes tighter in the presence of osmolytes as the desolvation penalty associated with binding is minimized. In other cases, the osmolytes prefer to interact with the ligand or protein, and if their removal is more difficult than shedding water, then binding can be weakened. Lastly, these complicating layers can be discerned by different slopes in ln(Ka) vs osmolality plots and by differential scanning calorimetry in the presence of the osmolyte.« less

  2. NMR and MD Investigations of Human Galectin-1/Oligosaccharide Complexes

    PubMed Central

    Meynier, Christophe; Feracci, Mikael; Espeli, Marion; Chaspoul, Florence; Gallice, Philippe; Schiff, Claudine; Guerlesquin, Françoise; Roche, Philippe

    2009-01-01

    Abstract The specific recognition of carbohydrates by lectins plays a major role in many cellular processes. Galectin-1 belongs to a family of 15 structurally related β-galactoside binding proteins that are able to control a variety of cellular events, including cell cycle regulation, adhesion, proliferation, and apoptosis. The three-dimensional structure of galectin-1 has been solved by x-ray crystallography in the free form and in complex with various carbohydrate ligands. In this work, we used a combination of two-dimensional NMR titration experiments and molecular-dynamics simulations with explicit solvent to study the mode of interaction between human galectin-1 and five galactose-containing ligands. Isothermal titration calorimetry measurements were performed to determine their affinities for galectin-1. The contribution of the different hexopyranose units in the protein-carbohydrate interaction was given particular consideration. Although the galactose moiety of each oligosaccharide is necessary for binding, it is not sufficient by itself. The nature of both the reducing sugar in the disaccharide and the interglycosidic linkage play essential roles in the binding to human galectin-1. PMID:20006954

  3. Poly(propyleneimine) glycodendrimers non-covalently bind ATP in a pH- and salt-dependent manner - model studies for adenosine analogue drug delivery.

    PubMed

    Gorzkiewicz, Michał; Buczkowski, Adam; Appelhans, Dietmar; Voit, Brigitte; Pułaski, Łukasz; Pałecz, Bartłomiej; Klajnert-Maculewicz, Barbara

    2018-06-10

    Adenosine analogue drugs (such as fludarabine or cladribine) require transporter-mediated uptake into cells and subsequent phosphorylation for anticancer activity. Therefore, application of nanocarrier systems for direct delivery of active triphosphate forms has been proposed. Here, we applied isothermal titration calorimetry and zeta potential titration to determine the stoichiometry and thermodynamic parameters of interactions between 4th generation poly(propyleneimine) dendrimers (unmodified or sugar-modified for increased biocompatibility) and ATP as a model adenosine nucleotide. We showed that glycodendrimers have the ability to efficiently interact with nucleoside triphosphates and to form stable complexes via electrostatic interactions between the ionized phosphate and amino groups on the nucleotide and the dendrimer, respectively. The complexation process is spontaneous, enthalpy-driven and depends on buffer composition (strongest interactions in organic buffer) and pH (more binding sites in acidic pH). These properties allow us to consider maltose-modified dendrimers as especially promising carriers for adenosine analogues. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Entropy-Driven Folding of an RNA Helical Junction: An Isothermal Titration Calorimetric Analysis of the Hammerhead Ribozyme†

    PubMed Central

    Mikulecky, Peter J.; Takach, Jennifer C.; Feig, Andrew L.

    2008-01-01

    Helical junctions are extremely common motifs in naturally occurring RNAs, but little is known about the thermodynamics that drive their folding. Studies of junction folding face several challenges: non-two-state folding behavior, superposition of secondary and tertiary structural energetics, and drastically opposing enthalpic and entropic contributions to folding. Here we describe a thermodynamic dissection of the folding of the hammerhead ribozyme, a three-way RNA helical junction, by using isothermal titration calorimetry of bimolecular RNA constructs. By using this method, we show that tertiary folding of the hammerhead core occurs with a highly unfavorable enthalpy change, and is therefore entropically driven. Furthermore, the enthalpies and heat capacities of core folding are the same whether supported by monovalent or divalent ions. These properties appear to be general to the core sequence of bimolecular hammerhead constructs. We present a model for the ion-induced folding of the hammerhead core that is similar to those advanced for the folding of much larger RNAs, involving ion-induced collapse to a structured, non-native state accompanied by rearrangement of core residues to produce the native fold. In agreement with previous enzymological and structural studies, our thermodynamic data suggest that the hammerhead structure is stabilized in vitro predominantly by diffusely bound ions. Our approach addresses several significant challenges that accompany the study of junction folding, and should prove useful in defining the thermodynamic determinants of stability in these important RNA motifs. PMID:15134461

  5. Multi-spectral and thermodynamic analysis of the interaction mechanism between Cu2+ and α-amylase and impact on sludge hydrolysis.

    PubMed

    Zhou, Ruiqi; Liu, Hong; Hou, Guangying; Ju, Lei; Liu, Chunguang

    2017-04-01

    An increasing amount of heavy metals (e.g., Cu 2+ ) is being discharged into sewage treatment plants and is accumulating in sludge, which is toxic to the enzyme in sludge or soil when the sludge is used as fertilizer, resulting in unfavorable effect on the biological treatment of sludge and the circulation and conversion of materials in soil. In this research, effect of Cu 2+ on sludge hydrolysis by α-amylase is studied from the respect of concentration and components of soluble organic matter in sludge, using three-dimensional fluorescence spectra. Results show that Cu 2+ exposure not only inhibits the hydrolysis of sludge due to the denaturation of α-amylase but also affects the components of soluble organic matter in sludge. In order to illuminate the interaction mechanism between Cu 2+ and α-amylase (a model of hydrolase in sludge), multi-spectra and isothermal titration microcalorimetry techniques are applied. Results show that the secondary structure of α-amylase is changed as that the α-helical content increases and the structure loosens. The microenvironment of amino acid residue in α-amylase is changed that the hydrophobicity decreases and the polarity increases with Cu 2+ exposure. Isothermal titration calorimetry results show that Van der Waals force and hydrogen bond exist in the interaction between Cu 2+ and α-amylase. Results from this research would favor the development of advanced process for the biological treatment of sludge containing heavy metals.

  6. Isothermal titration calorimetric studies on the interaction of the major bovine seminal plasma protein, PDC-109 with phospholipid membranes.

    PubMed

    Anbazhagan, V; Sankhala, Rajeshwer S; Singh, Bhanu Pratap; Swamy, Musti J

    2011-01-01

    The interaction of the major bovine seminal plasma protein, PDC-109 with lipid membranes was investigated by isothermal titration calorimetry. Binding of the protein to model membranes made up of diacyl phospholipids was found to be endothermic, with positive values of binding enthalpy and entropy, and could be analyzed in terms of a single type of binding sites on the protein. Enthalpies and entropies for binding to diacylphosphatidylcholine membranes increased with increase in temperature, although a clear-cut linear dependence was not observed. The entropically driven binding process indicates that hydrophobic interactions play a major role in the overall binding process. Binding of PDC-109 with dimyristoylphosphatidylcholine membranes containing 25 mol% cholesterol showed an initial increase in the association constant as well as enthalpy and entropy of binding with increase in temperature, whereas the values decreased with further increase in temperature. The affinity of PDC-109 for phosphatidylcholine increased at higher pH, which is physiologically relevant in view of the basic nature of the seminal plasma. Binding of PDC-109 to Lyso-PC could be best analysed in terms of two types of binding interactions, a high affinity interaction with Lyso-PC micelles and a low-affinity interaction with the monomeric lipid. Enthalpy-entropy compensation was observed for the interaction of PDC-109 with phospholipid membranes, suggesting that water structure plays an important role in the binding process.

  7. Isothermal Titration Calorimetric Studies on the Interaction of the Major Bovine Seminal Plasma Protein, PDC-109 with Phospholipid Membranes

    PubMed Central

    Anbazhagan, V.; Sankhala, Rajeshwer S.; Singh, Bhanu Pratap; Swamy, Musti J.

    2011-01-01

    The interaction of the major bovine seminal plasma protein, PDC-109 with lipid membranes was investigated by isothermal titration calorimetry. Binding of the protein to model membranes made up of diacyl phospholipids was found to be endothermic, with positive values of binding enthalpy and entropy, and could be analyzed in terms of a single type of binding sites on the protein. Enthalpies and entropies for binding to diacylphosphatidylcholine membranes increased with increase in temperature, although a clear-cut linear dependence was not observed. The entropically driven binding process indicates that hydrophobic interactions play a major role in the overall binding process. Binding of PDC-109 with dimyristoylphosphatidylcholine membranes containing 25 mol% cholesterol showed an initial increase in the association constant as well as enthalpy and entropy of binding with increase in temperature, whereas the values decreased with further increase in temperature. The affinity of PDC-109 for phosphatidylcholine increased at higher pH, which is physiologically relevant in view of the basic nature of the seminal plasma. Binding of PDC-109 to Lyso-PC could be best analysed in terms of two types of binding interactions, a high affinity interaction with Lyso-PC micelles and a low-affinity interaction with the monomeric lipid. Enthalpy-entropy compensation was observed for the interaction of PDC-109 with phospholipid membranes, suggesting that water structure plays an important role in the binding process. PMID:22022488

  8. Structural insights of the MLF1/14-3-3 interaction.

    PubMed

    Molzan, Manuela; Weyand, Michael; Rose, Rolf; Ottmann, Christian

    2012-02-01

    Myeloid leukaemia factor 1 (MLF1) binds to 14-3-3 adapter proteins by a sequence surrounding Ser34 with the functional consequences of this interaction largely unknown. We present here the high-resolution crystal structure of this binding motif [MLF1(29-42)pSer34] in complex with 14-3-3ε and analyse the interaction with isothermal titration calorimetry. Fragment-based ligand discovery employing crystals of the binary 14-3-3ε/MLF1(29-42)pSer34 complex was used to identify a molecule that binds to the interface rim of the two proteins, potentially representing the starting point for the development of a small molecule that stabilizes the MLF1/14-3-3 protein-protein interaction. Such a compound might be used as a chemical biology tool to further analyse the 14-3-3/MLF1 interaction without the use of genetic methods. Database Structural data are available in the Protein Data Bank under the accession number(s) 3UAL [14-3-3ε/MLF1(29-42)pSer34 complex] and 3UBW [14-3-3ε/MLF1(29-42)pSer34/3-pyrrolidinol complex] Structured digital abstract •  14-3-3 epsilon and MLF1 bind by x-ray crystallography (View interaction) •  14-3-3 epsilon and MLF1 bind by isothermal titration calorimetry (View Interaction: 1, 2). © 2011 The Authors Journal compilation © 2011 FEBS.

  9. Characterization of physiochemical and biological properties of an insulin/lauryl sulfate complex formed by hydrophobic ion pairing.

    PubMed

    Dai, Wei-Guo; Dong, Liang C

    2007-05-04

    An insulin/lauryl sulfate complex was prepared by hydrophobic ion pairing (HIP). The physiochemical and biological properties of the HIP complex were characterized using octanol/water partition measurement, isothermal titration calorimetry (ITC), ultraviolet-circular dichroism (UV-CD) and Fourier transform infrared spectroscopy (FTIR). Sodium dodecyl sulfate (SDS) bound to the insulin in a stoichiometric manner. The formed complex exhibited lipophilicity, and its insulin retained its native structure integrity. The in vivo bioactivity of the complex insulin was evaluated in rats by monitoring the plasma glucose level after intravenous (i.v.) injection, and the glucose level was compared with that for free insulin. The pharmacodynamic study result in rats showed that the complex insulin had in vivo bioactivity comparable to free insulin.

  10. External and internal guest binding of a highly charged supramolecular host in water: deconvoluting the very different thermodynamics.

    PubMed

    Sgarlata, Carmelo; Mugridge, Jeffrey S; Pluth, Michael D; Tiedemann, Bryan E F; Zito, Valeria; Arena, Giuseppe; Raymond, Kenneth N

    2010-01-27

    NMR, UV-vis, and isothermal titration calorimetry (ITC) measurements probe different aspects of competing host-guest equilibria as simple alkylammonium guest molecules interact with both the exterior (ion-association) and interior (encapsulation) of the [Ga(4)L(6)](12-) supramolecular assembly in water. Data obtained by each independent technique measure different components of the host-guest equilibria and only when analyzed together does a complete picture of the solution thermodynamics emerge. Striking differences between the internal and external guest binding are found. External binding is enthalpy driven and mainly due to attractive interactions between the guests and the exterior surface of the assembly while encapsulation is entropy driven as a result of desolvation and release of solvent molecules from the host cavity.

  11. pH-Sensitive Interactions between Cellulose Nanocrystals and DOPC Liposomes.

    PubMed

    Navon, Yotam; Radavidson, Harisoa; Putaux, Jean-Luc; Jean, Bruno; Heux, Laurent

    2017-09-11

    The interaction of 1,2 dioleolyl-sn-glycero-3-phosphatidylcholine (DOPC) vesicles with cellulose nanocrystals (CNCs) using several complementary techniques. Dynamic light scattering, zeta-potential, cryo-transmission electron microscopy and isothermal titration calorimetry (ITC) analyses confirmed the formation of pH-dependent CNC-liposome complexes. ITC was used to characterize the thermodynamic properties of this interaction. Positive values of enthalpy were found at pH lower than 5 where the charge sign of the constituents was opposite. The association was more pronounced at lower pH, as indicated by the higher values of association constant. We suggest that the positive enthalpy is derived from the release of counterions from the particle hydration shell during the association and that the charge of the vesicles plays a significant role in this interaction.

  12. Mass spectrometry for fragment screening.

    PubMed

    Chan, Daniel Shiu-Hin; Whitehouse, Andrew J; Coyne, Anthony G; Abell, Chris

    2017-11-08

    Fragment-based approaches in chemical biology and drug discovery have been widely adopted worldwide in both academia and industry. Fragment hits tend to interact weakly with their targets, necessitating the use of sensitive biophysical techniques to detect their binding. Common fragment screening techniques include differential scanning fluorimetry (DSF) and ligand-observed NMR. Validation and characterization of hits is usually performed using a combination of protein-observed NMR, isothermal titration calorimetry (ITC) and X-ray crystallography. In this context, MS is a relatively underutilized technique in fragment screening for drug discovery. MS-based techniques have the advantage of high sensitivity, low sample consumption and being label-free. This review highlights recent examples of the emerging use of MS-based techniques in fragment screening. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  13. Fine-tuned broad binding capability of human lipocalin-type prostaglandin D synthase for various small lipophilic ligands.

    PubMed

    Kume, Satoshi; Lee, Young-Ho; Nakatsuji, Masatoshi; Teraoka, Yoshiaki; Yamaguchi, Keisuke; Goto, Yuji; Inui, Takashi

    2014-03-18

    The hydrophobic cavity of lipocalin-type prostaglandin D synthase (L-PGDS) has been suggested to accommodate various lipophilic ligands through hydrophobic effects, but its energetic origin remains unknown. We characterized 18 buffer-independent binding systems between human L-PGDS and lipophilic ligands using isothermal titration calorimetry. Although the classical hydrophobic effect was mostly detected, all complex formations were driven by favorable enthalpic gains. Gibbs energy changes strongly correlated with the number of hydrogen bond acceptors of ligand. Thus, the broad binding capability of L-PGDS for ligands should be viewed as hydrophilic interactions delicately tuned by enthalpy-entropy compensation using combined effects of hydrophilic and hydrophobic interactions. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  14. Interaction surface and topology of Get3-Get4-Get5 protein complex, involved in targeting tail-anchored proteins to endoplasmic reticulum.

    PubMed

    Chang, Yi-Wei; Lin, Tai-Wen; Li, Yi-Chuan; Huang, Yu-Shan; Sun, Yuh-Ju; Hsiao, Chwan-Deng

    2012-02-10

    Recent work has uncovered the "GET system," which is responsible for endoplasmic reticulum targeting of tail-anchored proteins. Although structural information and the individual roles of most components of this system have been defined, the interactions and interplay between them remain to be elucidated. Here, we investigated the interactions between Get3 and the Get4-Get5 complex from Saccharomyces cerevisiae. We show that Get3 interacts with Get4-Get5 via an interface dominated by electrostatic forces. Using isothermal titration calorimetry and small-angle x-ray scattering, we further demonstrate that the Get3 homodimer interacts with two copies of the Get4-Get5 complex to form an extended conformation in solution.

  15. Accumulation of phosphatidylcholine on gut mucosal surface is not dominated by electrostatic interactions.

    PubMed

    Korytowski, Agatha; Abuillan, Wasim; Amadei, Federico; Makky, Ali; Gumiero, Andrea; Sinning, Irmgard; Gauss, Annika; Stremmel, Wolfgang; Tanaka, Motomu

    2017-05-01

    The accumulation of phosphatidylcholine (PC) in the intestinal mucus layer is crucial for the protection of colon epithelia from the bacterial attack. It has been reported that the depletion of PC is a distinct feature of ulcerative colitis. Here we addressed the question how PC interacts with its binding proteins, the mucins, which may establish the hydrophobic barrier against colonic microbiota. In the first step, the interactions of dioleoylphosphatidylcholine (DOPC) with two mucin preparations from porcine stomach, have been studied using dynamic light scattering, zeta potential measurement, and Langmuir isotherms, suggesting that mucin binds to the surface of DOPC vesicles. The enthalpy of mucin-PC interaction could be determined by isothermal titration calorimetry. The high affinity to PC found for both mucin types seems reasonable, as they mainly consist of mucin 2, a major constituent of the flowing mucus. Moreover, by the systematic variation of net charges, we concluded that the zwitterionic DOPC has the strongest binding affinity that cannot be explained within the electrostatic interactions between charged molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Interaction of Soybean 7S Globulin Peptide with Cell Membrane Model via Isothermal Titration Calorimetry, Quartz Crystal Microbalance with Dissipation, and Langmuir Monolayer Study.

    PubMed

    Zou, Yuan; Pan, Runting; Ruan, Qijun; Wan, Zhili; Guo, Jian; Yang, Xiaoquan

    2018-05-16

    To understand the underlying molecular mechanism of the cholesterol-lowering effect of soybean 7S globulins, the interactions of their pepsin-released peptides (7S-peptides) with cell membrane models consisting of dipalmitoylphosphatidylcholine (DPPC), dioleoylphosphatidylcholine (DOPC), and cholesterol (CHOL) were systematically studied. The results showed that 7S-peptides were bound to DPPC/DOPC/CHOL liposomes mainly through van der Waals forces and hydrogen bonds, and the presence of higher CHOL concentrations enhanced the binding affinity (e.g., DPPC/DOPC/CHOL = 1:1:0, binding ratio = 0.114; DPPC/DOPC/CHOL = 1:1:1, binding ratio = 2.02). Compression isotherms indicated that the incorporation of 7S-peptides increased the DPPC/DOPC/CHOL monolayer fluidity and the lipid raft size. The presence of CHOL accelerated the 7S-peptide accumulation on lipid rafts, which could serve as platforms for peptides to develop into β-sheet rich structures. These results allow us to hypothesize that 7S-peptides may indirectly influence membrane protein functions via altering the membrane organization in the enterocytes.

  17. Evidence of a two-step process and pathway dependency in the thermodynamics of poly(diallyldimethylammonium chloride)/poly(sodium acrylate) complexation.

    PubMed

    Vitorazi, L; Ould-Moussa, N; Sekar, S; Fresnais, J; Loh, W; Chapel, J-P; Berret, J-F

    2014-12-21

    Recent studies have pointed out the importance of polyelectrolyte assembly in the elaboration of innovative nanomaterials. Beyond their structures, many important questions on the thermodynamics of association remain unanswered. Here, we investigate the complexation between poly(diallyldimethylammonium chloride) (PDADMAC) and poly(sodium acrylate) (PANa) chains using a combination of three techniques: isothermal titration calorimetry (ITC), static and dynamic light scattering and electrophoresis. Upon addition of PDADMAC to PANa or vice-versa, the results obtained by the different techniques agree well with each other, and reveal a two-step process. The primary process is the formation of highly charged polyelectrolyte complexes of size 100 nm. The secondary process is the transition towards a coacervate phase made of rich and poor polymer droplets. The binding isotherms measured are accounted for using a phenomenological model that provides the thermodynamic parameters for each reaction. Small positive enthalpies and large positive entropies consistent with a counterion release scenario are found throughout this study. Furthermore, this work stresses the importance of the underestimated formulation pathway or mixing order in polyelectrolyte complexation.

  18. FecB, a periplasmic ferric-citrate transporter from E. coli, can bind different forms of ferric-citrate as well as a wide variety of metal-free and metal-loaded tricarboxylic acids.

    PubMed

    Banerjee, Sambuddha; Paul, Subrata; Nguyen, Leonard T; Chu, Byron C H; Vogel, Hans J

    2016-01-01

    The Escherichia coli Fec system, consisting of an outer membrane receptor (FecA), a periplasmic substrate binding protein (FecB) and an inner membrane permease-ATPase type transporter (FecC/D), plays an important role in the uptake and transport of Fe(3+)-citrate. Although several FecB sequences from various organisms have been reported, there are no biophysical or structural data available for this protein to date. In this work, using isothermal titration calorimetry (ITC), we report for the first time the ability of FecB to bind different species of Fe(3+)-citrate as well as other citrate complexes with trivalent (Ga(3+), Al(3+), Sc(3+) and In(3+)) and a representative divalent metal ion (Mg(2+)) with low μM affinity. Interestingly, ITC experiments with various iron-free di- and tricarboxylic acids show that FecB can bind tricarboxylates with μM affinity but not biologically relevant dicarboxylates. The ability of FecB to bind with metal-free citrate is also observed in (1)H,(15)N HSQC-NMR titration experiments reported here at two different pH values. Further, differential scanning calorimetry (DSC) experiments indicate that the ligand-bound form of FecB has greater thermal stability than ligand-free FecB under all pH and ligand conditions tested, which is consistent with the idea of domain closure subsequent to ligand binding for this type of periplasmic binding proteins.

  19. Thermodynamic Insight into the Solvation and Complexation Behavior of U(VI) in Ionic Liquid: Binding of CMPO with U(VI) Studied by Optical Spectroscopy and Calorimetry.

    PubMed

    Wu, Qi; Sun, Taoxiang; Meng, Xianghai; Chen, Jing; Xu, Chao

    2017-03-06

    The complexation of U(VI) with octylphenyl-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO, denoted as L) in ionic liquid (IL) C 4 mimNTf 2 was investigated by UV-vis absorption spectrophotometry and isothermal titration calorimetry. Spectro-photometric titration suggests that three successive complexes, UO 2 L j 2+ (j = 1-3), formed both in "dry" (water content < 250 ppm) and "wet" (water content ≈ 12 500 ppm) ionic liquid. However, the thermodynamic parameters are distinctly different in the two ILs. In dry IL, the complexation strength between CMPO and U(VI) is much stronger, with stability constants of the respective complexes more than 1 order of magnitude higher than that in wet IL. Energetically, the complexation of U(VI) with CMPO in dry IL is mainly driven by negative enthalpies. In contrast, the complexation in wet IL is overwhelmingly driven by highly positive entropies as a result of the release of a large amount of water molecules from the solvation sphere of U(VI). Moreover, comparisons between the fitted absorption spectra of complexes in wet IL and that of extractive samples from solvent extraction have identified the speciation involved in the extraction of U(VI) by CMPO in ionic liquid. The results from this study not only offer a thermodynamic insight into the complexation behavior of U(VI) with CMPO in IL but also provide valuable information for understanding the extraction behavior in the corresponding solvent extraction system.

  20. Microcalorimetric and potentiometric titration studies on the adsorption of copper by P. putida and B. thuringiensis and their composites with minerals.

    PubMed

    Fang, Linchuan; Cai, Peng; Li, Pengxiang; Wu, Huayong; Liang, Wei; Rong, Xingmin; Chen, Wenli; Huang, Qiaoyun

    2010-09-15

    In order to have a better understanding of the interactions of heavy metals with bacteria and minerals in soil and associated environments, isothermal titration calorimetry (ITC), potentiometric titration and equilibrium sorption experiments were conducted to investigate the adsorption behavior of Cu(II) by Bacillus thuringiensis, Pseudomonas putida and their composites with minerals. The interaction of montmorillonite with bacteria increased the reactive sites and resulted in greater adsorption for Cu(II) on their composites, while decreased adsorption sites and capacities for Cu(II) were observed on goethite-bacteria composites. A gram-positive bacterium B. thuringiensis played a more important role than a gram-negative bacterium P. putida in determining the properties of the bacteria-minerals interfaces. The enthalpy changes (DeltaH(ads)) from endothermic (6.14 kJ mol(-1)) to slightly exothermic (-0.78 kJ mol(-1)) suggested that Cu(II) is complexed with the anionic oxygen ligands on the surface of bacteria-mineral composites. Large entropies (32.96-58.89 J mol(-1) K(-1)) of Cu(II) adsorption onto bacteria-mineral composites demonstrated the formation of inner-sphere complexes in the presence of bacteria. The thermodynamic data implied that Cu(II) mainly bound to the carboxyl and phosphoryl groups as inner-sphere complexes on bacteria and mineral-bacteria composites. Copyright 2010 Elsevier B.V. All rights reserved.

  1. The DINGO dataset: a comprehensive set of data for the SAMPL challenge

    NASA Astrophysics Data System (ADS)

    Newman, Janet; Dolezal, Olan; Fazio, Vincent; Caradoc-Davies, Tom; Peat, Thomas S.

    2012-05-01

    Part of the latest SAMPL challenge was to predict how a small fragment library of 500 commercially available compounds would bind to a protein target. In order to assess the modellers' work, a reasonably comprehensive set of data was collected using a number of techniques. These included surface plasmon resonance, isothermal titration calorimetry, protein crystallization and protein crystallography. Using these techniques we could determine the kinetics of fragment binding, the energy of binding, how this affects the ability of the target to crystallize, and when the fragment did bind, the pose or orientation of binding. Both the final data set and all of the raw images have been made available to the community for scrutiny and further work. This overview sets out to give the parameters of the experiments done and what might be done differently for future studies.

  2. Direct identification of the site of binding on the chaperone SecB for the amino terminus of the translocon motor SecA.

    PubMed

    Randall, Linda L; Henzl, Michael T

    2010-06-01

    Protein export mediated by the general secretory Sec system in Escherichia coli proceeds by a dynamic transfer of a precursor polypeptide from the chaperone SecB to the SecA ATPase motor of the translocon and subsequently into and through the channel of the membrane-embedded SecYEG heterotrimer. The complex between SecA and SecB is stabilized by several separate sites of contact. Here we have demonstrated directly an interaction between the N-terminal residues 2 through 11 of SecA and the C-terminal 13 residues of SecB by isothermal titration calorimetry and analytical sedimentation velocity centrifugation. We discuss the unusual binding properties of SecA and SecB in context of a model for transfer of the precursor along the pathway of export.

  3. Tuning Riboswitch Regulation through Conformational Selection

    PubMed Central

    Wilson, Ross C.; Smith, Angela M.; Fuchs, Ryan T.; Kleckner, Ian R.; Henkin, Tina M.; Foster, Mark P.

    2010-01-01

    SUMMARY The SMK box riboswitch, which represents one of three known classes of S-adenosylmethionine (SAM)-responsive riboswitches, regulates gene expression in bacteria at the level of translation initiation. In contrast to most riboswitches, which contain separate domains responsible for ligand recognition and gene regulation, the ligand-binding and regulatory domains of the SMK box riboswitch are coincident. This property was exploited to allow the first atomic-level characterization of a functionally intact riboswitch in both the ligand-bound and ligand-free states. NMR spectroscopy revealed distinct mutually exclusive RNA conformations that are differentially populated in the presence or absence of the effector metabolite. Isothermal titration calorimetry and in vivo reporter assay results revealed the thermodynamic and functional consequences of this conformational equilibrium. We present a comprehensive model of the structural, thermodynamic, and functional properties of this compact RNA regulatory element. PMID:21075119

  4. Allosteric Communication Disrupted by a Small Molecule Binding to the Imidazole Glycerol Phosphate Synthase Protein-Protein Interface.

    PubMed

    Rivalta, Ivan; Lisi, George P; Snoeberger, Ning-Shiuan; Manley, Gregory; Loria, J Patrick; Batista, Victor S

    2016-11-29

    Allosteric enzymes regulate a wide range of catalytic transformations, including biosynthetic mechanisms of important human pathogens, upon binding of substrate molecules to an orthosteric (or active) site and effector ligands at distant (allosteric) sites. We find that enzymatic activity can be impaired by small molecules that bind along the allosteric pathway connecting the orthosteric and allosteric sites, without competing with endogenous ligands. Noncompetitive allosteric inhibitors disrupted allostery in the imidazole glycerol phosphate synthase (IGPS) enzyme from Thermotoga maritima as evidenced by nuclear magnetic resonance, microsecond time-scale molecular dynamics simulations, isothermal titration calorimetry, and kinetic assays. The findings are particularly relevant for the development of allosteric antibiotics, herbicides, and antifungal compounds because IGPS is absent in mammals but provides an entry point to fundamental biosynthetic pathways in plants, fungi, and bacteria.

  5. Fusaric acid induces a notochord malformation in zebrafish via copper chelation.

    PubMed

    Yin, Emily S; Rakhmankulova, Malika; Kucera, Kaury; de Sena Filho, Jose Guedes; Portero, Carolina E; Narváez-Trujillo, Alexandra; Holley, Scott A; Strobel, Scott A

    2015-08-01

    Over a thousand extracts were tested for phenotypic effects in developing zebrafish embryos to identify bioactive molecules produced by endophytic fungi. One extract isolated from Fusarium sp., a widely distributed fungal genus found in soil and often associated with plants, induced an undulated notochord in developing zebrafish embryos. The active compound was isolated and identified as fusaric acid. Previous literature has shown this phenotype to be associated with copper chelation from the active site of lysyl oxidase, but the ability of fusaric acid to bind copper ions has not been well described. Isothermal titration calorimetry revealed that fusaric acid is a modest copper chelator with a binding constant of 4.4 × 10(5) M(-1). These results shed light on the toxicity of fusaric acid and the potential teratogenic effects of consuming plants infected with Fusarium sp.

  6. A novel carbohydrate-binding surface layer protein from the hyperthermophilic archaeon Pyrococcus horikoshii.

    PubMed

    Goda, Shuichiro; Koga, Tomoyuki; Yamashita, Kenichiro; Kuriura, Ryo; Ueda, Toshifumi

    2018-04-08

    In Archaea and Bacteria, surface layer (S-layer) proteins form the cell envelope and are involved in cell protection. In the present study, a putative S-layer protein was purified from the crude extract of Pyrococcus horikoshii using affinity chromatography. The S-layer gene was cloned and expressed in Escherichia coli. Isothermal titration calorimetry analyses showed that the S-layer protein bound N-acetylglucosamine and induced agglutination of the gram-positive bacterium Micrococcus lysodeikticus. The protein comprised a 21-mer structure, with a molecular mass of 1,340 kDa, as determined using small-angle X-ray scattering. This protein showed high thermal stability, with a midpoint of thermal denaturation of 79 °C in dynamic light scattering experiments. This is the first description of the carbohydrate-binding archaeal S-layer protein and its characteristics.

  7. Controlled synthesis and inclusion ability of a hyaluronic acid derivative bearing beta-cyclodextrin molecules.

    PubMed

    Charlot, Aurélia; Heyraud, Alain; Guenot, Pierre; Rinaudo, Marguerite; Auzély-Velty, Rachel

    2006-03-01

    A new synthetic route to beta-cyclodextrin-linked hyaluronic acid (HA-CD) was developed. This was based on the preparation of a HA derivative selectively modified with adipic dihydrazide (HA-ADH) and a beta-cyclodextrin derivative possessing an aldehyde function on the primary face, followed by their coupling by a reductive amination-type reaction. The CD-polysaccharide was fully characterized in terms of chemical integrity and purity by high-resolution NMR spectroscopy. The complexation ability of the grafted CD was further demonstrated by isothermal titration calorimetry using sodium adamantane acetate (ADAc) and Ibuprofen as model guest molecules. The thermodynamic parameters for the complexation of these negatively charged guest molecules by the beta-CD grafted on negatively charged HA were shown to be largely influenced by the ionic strength of the aqueous medium.

  8. Calorimetric Studies and Structural Aspects of Ionic Liquids in Designing Sorption Materials for Thermal Energy Storage.

    PubMed

    Brünig, Thorge; Krekić, Kristijan; Bruhn, Clemens; Pietschnig, Rudolf

    2016-11-02

    The thermal properties of a series of twenty-four ionic liquids (ILs) have been determined by isothermal titration calorimetry (ITC) with the aim of simulating processes involving water sorption. For eleven water-free ILs, the molecular structures have been determined by X-ray crystallography in the solid state, which have been used to derive the molecular volumes of the ionic components of the ILs. Moreover, the structures reveal a high prevalence of hydrogen bonding in these compounds. A relationship between the molecular volumes and the experimentally determined energies of dilution could be established. The highest energies of dilution observed in this series were obtained for the acetate-based ILs, which underlines their potential as working fluids in sorption-based thermal energy storage systems. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Determination of thermodynamic parameters for complexation of calcium and magnesium with chondroitin sulfate isomers using isothermal titration calorimetry: Implications for calcium kidney-stone research

    NASA Astrophysics Data System (ADS)

    Rodgers, Allen L.; Jackson, Graham E.

    2017-04-01

    Chondroitin sulfate (CS) occurs in human urine. It has several potential binding sites for calcium and as such may play an inhibitory role in calcium oxalate and calcium phosphate (kidney stone disease by reducing the supersaturation (SS) and crystallization of these salts. Urinary magnesium is also a role player in determining speciation in stone forming processes. This study was undertaken to determine the thermodynamic parameters for binding of the disaccharide unit of two different CS isomers with calcium and magnesium. These included the binding constant K. Experiments were performed using an isothermal titration calorimeter (ITC) at 3 different pH levels in the physiological range in human urine. Data showed that interactions between the CS isomers and calcium and magnesium occur via one binding site, thought to be sulfate, and that log K values are 1.17-1.93 and 1.77-1.80 for these two metals respectively. Binding was significantly stronger in Mg-CS than in Ca-CS complexes and was found to be dependent on pH in the latter but not in the former. Furthermore, binding in Ca-CS complexes was dependent on the location of the sulfate binding site. This was not the case in the Mg-CS complexes. Interactions were shown to be entropy driven and enthalpy unfavourable. These findings can be used in computational modeling studies to predict the effects of the calcium and magnesium CS complexes on the speciation of calcium and the SS of calcium salts in real urine samples.

  10. Influence of the active compounds of Perilla frutescens leaves on lipid membranes.

    PubMed

    Duelund, Lars; Amiot, Arnaud; Fillon, Alexandra; Mouritsen, Ole G

    2012-02-24

    The leaves of the annual plant Perilla frutescens are used widely as a spice and a preservative in Asian food as well as in traditional medicine. The active compounds in the leaves are the cyclic monoterpene limonene (1) and its bio-oxidation products, perillaldehyde (2), perillyl alcohol (3), and perillic acid (4). These compounds are known to be biologically active and exhibit antimicrobial, anticancer, and anti-inflammatory effects that could all be membrane mediated. In order to assess the possible biophysical effects of these compounds on membranes quantitatively, the influence of limonene and its bio-oxidation products has been investigated on a membrane model composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) using differential scanning calorimetry (DSC), isothermal titration calorimetry (ITC), and electron paramagnetic resonance spectroscopy (EPR). It was found that limonene (1), perillyl alcohol (2), and perillaldehyde (3) partitioned into the DMPC membrane, whereas perillic acid (4) did not. The DSC results demonstrated that all the partitioning compounds strongly perturbed the phase transition of DMPC, whereas no perturbation of the local membrane order was detected by EPR spectroscopy. The results of the study showed that limonene (1) and its bio-oxidation products affect membranes in rather subtle ways.

  11. DNA binding properties and biological evaluation of dihydropyrimidinones derivatives as potential antitumor agents.

    PubMed

    Wang, Gongke; Li, Xiangrong; Gou, Yaping; Chen, Yuhan; Yan, Changling; Lu, Yan

    2013-10-01

    The binding properties of two medicinally important dihydropyrimidinones derivatives 5-(Ethoxycarbonyl)-6-methyl-4-phenyl-3,4-dihydropyrimidin-2(1H)-one (EMPD) and 5-(Ethoxycarbonyl)-6-methyl-4-(4-chlorophenyl)-3,4-dihydropyrimidin-2(1H)-one (EMCD) with calf-thymus DNA (ctDNA) were investigated by spectroscopy, viscosity, isothermal titration calorimetry (ITC) and molecular modeling techniques. Simultaneously, their biological activities were evaluated with MTT assay method. The binding constants determined with spectroscopic titration and ITC were found to be in the same order of 10(4)M(-1). According to the results of viscosity studies, fluorescence competitive binding experiment and ITC investigations, intercalative binding was evaluated as the dominant binding modes between the two compounds and ctDNA. Furthermore, the results of molecular modeling corroborated those obtained from spectroscopic, viscosimetric and ITC investigations. Evaluation of the antitumor activities of the two derivatives against different tumor cell lines proved that they exhibited significant tumor cell inhibition rate, accordingly blocking DNA transcription and replication. The present results favor the development of potential drugs related with dihydropyrimidinones derivatives in the treatment of some diseases. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Further insights into the metal ion binding abilities and the metalation pathway of a plant metallothionein from Musa acuminata

    PubMed Central

    Cabral, Augusto C. S.; Jakovleska, Jovana; Deb, Aniruddha; Penner-Hahn, James E.; Pecoraro, Vincent L.

    2017-01-01

    The superfamily of metallothioneins (MTs) combines a diverse group of metalloproteins, sharing the characteristics of rather low molecular weight and high cysteine content. The latter provides MTs with the capability to coordinate thiophilic metal ions, in particular those with a d10 electron configuration. The sub-family of plant MT3 proteins is only poorly characterized and there is a complete lack of three-dimensional structure information. Building upon our previous results on the Musa acuminata MT3 (musMT3) protein, the focus of the present work is to understand the metal cluster formation process, the role of the single histidine residue present in musMT3, and the metal ion binding affinity. We concentrate our efforts on the coordination of ZnII and CdII ions, using CoII as a spectroscopic probe for ZnII binding. The overall protein-fold is analysed with a combination of limited proteolytic digestion, mass spectrometry, and dynamic light scattering. Histidine coordination of metal ions is probed with extended X-ray absorption fine structure spectroscopy and CoII titration experiments. Initial experiments with isothermal titration calorimetry provide insights into the thermodynamics of metal ion binding. PMID:29218632

  13. Potential Protein Toxicity of Synthetic Pigments: Binding of Poncean S to Human Serum Albumin☆

    PubMed Central

    Gao, Hong-Wen; Xu, Qing; Chen, Ling; Wang, Shi-Long; Wang, Yuan; Wu, Ling-Ling; Yuan, Yuan

    2008-01-01

    Using various methods, e.g., spectrophotometry, circular dichroism, and isothermal titration calorimetry, the interaction of poncean S (PS) with human serum albumin (HSA) was characterized at pH 1.81, 3.56, and 7.40 using the spectral correction technique, and Langmuir and Temkin isothermal models. The consistency among results concerning, e.g., binding number, binding energy, and type of binding, showed that ion pair electrostatic attraction fixed the position of PS in HSA and subsequently induced a combination of multiple noncovalent bonds such as H-bonds, hydrophobic interactions, and van der Waals forces. Ion pair attraction and H-bonds produced a stable PS-HSA complex and led to a marked change in the secondary structure of HSA in acidic media. The PS-HSA binding pattern and the process of change in HSA conformation were also investigated. The potentially toxic effect of PS on the transport function of HSA in a normal physiological environment was analyzed. This work provides a useful experimental strategy for studying the interaction of organic substances with biomacromolecules, helping us to understand the activity or mechanism of toxicity of an organic compound. PMID:17905844

  14. Cd(II) Sorption on Montmorillonite-Humic acid-Bacteria Composites

    PubMed Central

    Du, Huihui; Chen, Wenli; Cai, Peng; Rong, Xingmin; Dai, Ke; Peacock, Caroline L.; Huang, Qiaoyun

    2016-01-01

    Soil components (e.g., clays, bacteria and humic substances) are known to produce mineral-organic composites in natural systems. Herein, batch sorption isotherms, isothermal titration calorimetry (ITC), and Cd K-edge EXAFS spectroscopy were applied to investigate the binding characteristics of Cd on montmorillonite(Mont)-humic acid(HA)-bacteria composites. Additive sorption and non-additive Cd(II) sorption behaviour is observed for the binary Mont-bacteria and ternary Mont-HA-bacteria composite, respectively. Specifically, in the ternary composite, the coexistence of HA and bacteria inhibits Cd adsorption, suggesting a “blocking effect” between humic acid and bacterial cells. Large positive entropies (68.1 ~ 114.4 J/mol/K), and linear combination fitting of the EXAFS spectra for Cd adsorbed onto Mont-bacteria and Mont-HA-bacteria composites, demonstrate that Cd is mostly bound to bacterial surface functional groups by forming inner-sphere complexes. All our results together support the assertion that there is a degree of site masking in the ternary clay mineral-humic acid-bacteria composite. Because of this, in the ternary composite, Cd preferentially binds to the higher affinity components-i.e., the bacteria. PMID:26792640

  15. Triton promotes domain formation in lipid raft mixtures.

    PubMed

    Heerklotz, H

    2002-11-01

    Biological membranes are supposed to contain functional domains (lipid rafts) made up in particular of sphingomyelin and cholesterol, glycolipids, and certain proteins. It is often assumed that the application of the detergent Triton at 4 degrees C allows the isolation of these rafts as a detergent-resistant membrane fraction. The current study aims to clarify whether and how Triton changes the domain properties. To this end, temperature-dependent transitions in vesicles of an equimolar mixture of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, egg sphingomyelin, and cholesterol were monitored at different Triton concentrations by differential scanning calorimetry and pressure perturbation calorimetry. Transitions initiated by the addition of Triton to the lipid mixture were studied by isothermal titration calorimetry, and the structure was investigated by (31)P-NMR. The results are discussed in terms of liquid-disordered (ld) and -ordered (lo) bilayer and micellar (mic) phases, and the typical sequence encountered with increasing Triton content or decreasing temperature is ld, ld + lo, ld + lo + mic, and lo + mic. That means that addition of Triton may create ordered domains in a homogeneous fluid membrane, which are, in turn, Triton resistant upon subsequent membrane solubilization. Hence, detergent-resistant membranes should not be assumed to resemble biological rafts in size, structure, composition, or even existence. Functional rafts may not be steady phenomena; they might form, grow, cluster or break up, shrink, and vanish according to functional requirements, regulated by rather subtle changes in the activity of membrane disordering or ordering compounds.

  16. Triton promotes domain formation in lipid raft mixtures.

    PubMed Central

    Heerklotz, H

    2002-01-01

    Biological membranes are supposed to contain functional domains (lipid rafts) made up in particular of sphingomyelin and cholesterol, glycolipids, and certain proteins. It is often assumed that the application of the detergent Triton at 4 degrees C allows the isolation of these rafts as a detergent-resistant membrane fraction. The current study aims to clarify whether and how Triton changes the domain properties. To this end, temperature-dependent transitions in vesicles of an equimolar mixture of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, egg sphingomyelin, and cholesterol were monitored at different Triton concentrations by differential scanning calorimetry and pressure perturbation calorimetry. Transitions initiated by the addition of Triton to the lipid mixture were studied by isothermal titration calorimetry, and the structure was investigated by (31)P-NMR. The results are discussed in terms of liquid-disordered (ld) and -ordered (lo) bilayer and micellar (mic) phases, and the typical sequence encountered with increasing Triton content or decreasing temperature is ld, ld + lo, ld + lo + mic, and lo + mic. That means that addition of Triton may create ordered domains in a homogeneous fluid membrane, which are, in turn, Triton resistant upon subsequent membrane solubilization. Hence, detergent-resistant membranes should not be assumed to resemble biological rafts in size, structure, composition, or even existence. Functional rafts may not be steady phenomena; they might form, grow, cluster or break up, shrink, and vanish according to functional requirements, regulated by rather subtle changes in the activity of membrane disordering or ordering compounds. PMID:12414701

  17. Probing the Energetics of Antigen-Antibody Recognition by Titration Microcalorimetry

    PubMed

    Jelesarov; Leder; Bosshard

    1996-06-01

    Our understanding of the energetics that govern antigen-antibody recognition lags behind the increasingly rapid accumulation of structural information on antigen-antibody complexes. Thanks to the development of highly sensitive microcalorimeters, the thermodynamic parameters of antigen-antibody interactions can now be measured with precision and using only nanomole quantities of protein. The method of choice is isothermal titration calorimetry, in which a solution of the antibody (or antigen) is titrated with small aliquots of the antigen (or antibody) and the heat change accompanying the formation of the antigen-antibody complex is measured with a sensitivity as high as 0.1 μcal s-1. The free energy of binding (DeltaG), the binding enthalpy (DeltaH), and the binding entropy (DeltaS) are usually obtained from a single experiment, and no spectroscopic or radioactive label must be introduced into the antigen or antibody. The often large and negative change in heat capacity (DeltaCp) accompanying the formation of an antigen-antibody complex is obtained from DeltaH measured at different temperatures. The basic theory and the principle of the measurements are reviewed and illustrated by examples. The thermodynamic parameters relate to the dynamic physical forces that govern the association of the freely moving antigen and antibody into a well-structured and unique complex. This information complements the static picture of the antigen-antibody complex that results from X-ray diffraction analysis. Attempts to correlate dynamic and static aspects are discussed briefly.

  18. Investigation on the interaction of catalase with sodium lauryl sulfonate and the underlying mechanisms.

    PubMed

    Wang, Jing; Jia, Rui; Wang, Jiaxi; Sun, Zhiqiang; Wu, Zitao; Liu, Rutao; Zong, Wansong

    2018-02-01

    As a classic type of anionic surfactants, sodium lauryl sulfonate (SLS) might change the structure and function of antioxidant enzyme catalase (CAT) through their direct interactions. However, the underlying molecular mechanism is still unknown. This study investigated the direct interaction of SLS with CAT molecule and the underlying mechanisms using multi-spectroscopic methods, isothermal titration calorimetry, and molecular docking studies. No obvious effects were observed on CAT structure and activity under low SLS concentration exposure. The particle size of CAT molecule decreased and CAT activity was slightly inhibited under high SLS concentration exposure. SLS prefers to bind to the interface of CAT mainly via van der Waals' forces and hydrogen bonds. Subsequently, SLS interacts with the amino acid residues around the heme groups of CAT via hydrophobic interactions and might inhibit CAT activity. © 2017 Wiley Periodicals, Inc.

  19. Interactions of tea tannins and condensed tannins with proteins.

    PubMed

    Frazier, Richard A; Deaville, Eddie R; Green, Rebecca J; Stringano, Elisabetta; Willoughby, Ian; Plant, John; Mueller-Harvey, Irene

    2010-01-20

    Binding parameters for the interactions of four types of tannins: tea catechins, grape seed proanthocyanidins, mimosa 5-deoxy proanthocyanidins, and sorghum procyanidins (mDP=17), with gelatin and bovine serum albumin (BSA) have been determined from isothermal titration calorimetry data. Equilibrium binding constants determined for the interaction with gelatin were in the range 10(4) to 10(6) M(-1) and in the order: sorghum procyanidins > grape seed proanthocyanidins > mimosa 5-deoxy proanthocyanidins > tea catechins. Interaction with BSA was generally weaker, with equilibrium binding constants of < or =10(3)M(-1) for grape seed proanthocyanidins, mimosa 5-deoxy proanthocyanidins and tea catechins, and 10(4)M(-1) for the sorghum procyanidins. In all cases the interactions with proteins were exothermic and involved multiple binding sites on the protein. The data are discussed in relation to the structures and the known nutritional effects of the condensed tannins.

  20. Thermodynamics of Pb(ii) and Zn(ii) binding to MT-3, a neurologically important metallothionein.

    PubMed

    Carpenter, M C; Shami Shah, A; DeSilva, S; Gleaton, A; Su, A; Goundie, B; Croteau, M L; Stevenson, M J; Wilcox, D E; Austin, R N

    2016-06-01

    Isothermal titration calorimetry (ITC) was used to quantify the thermodynamics of Pb(2+) and Zn(2+) binding to metallothionein-3 (MT-3). Pb(2+) binds to zinc-replete Zn7MT-3 displacing each zinc ion with a similar change in free energy (ΔG) and enthalpy (ΔH). EDTA chelation measurements of Zn7MT-3 and Pb7MT-3 reveal that both metal ions are extracted in a tri-phasic process, indicating that they bind to the protein in three populations with different binding thermodynamics. Metal binding is entropically favoured, with an enthalpic penalty that reflects the enthalpic cost of cysteine deprotonation accompanying thiolate ligation of the metal ions. These data indicate that Pb(2+) binding to both apo MT-3 and Zn7MT-3 is thermodynamically favourable, and implicate MT-3 in neuronal lead biochemistry.

  1. Application of linker technique to trap transiently interacting protein complexes for structural studies

    PubMed Central

    Reddy Chichili, Vishnu Priyanka; Kumar, Veerendra; Sivaraman, J.

    2016-01-01

    Protein-protein interactions are key events controlling several biological processes. We have developed and employed a method to trap transiently interacting protein complexes for structural studies using glycine-rich linkers to fuse interacting partners, one of which is unstructured. Initial steps involve isothermal titration calorimetry to identify the minimum binding region of the unstructured protein in its interaction with its stable binding partner. This is followed by computational analysis to identify the approximate site of the interaction and to design an appropriate linker length. Subsequently, fused constructs are generated and characterized using size exclusion chromatography and dynamic light scattering experiments. The structure of the chimeric protein is then solved by crystallization, and validated both in vitro and in vivo by substituting key interacting residues of the full length, unlinked proteins with alanine. This protocol offers the opportunity to study crucial and currently unattainable transient protein interactions involved in various biological processes. PMID:26985443

  2. Thermodynamics of grape and wine tannin interaction with polyproline: implications for red wine astringency.

    PubMed

    McRae, Jacqui M; Falconer, Robert J; Kennedy, James A

    2010-12-08

    The astringency of red wine is largely due to the interaction between wine tannins and salivary proline-rich proteins and is known to change as wine ages. To further understand the mechanisms behind wine astringency change over time, thermodynamics of the interactions between poly(l-proline) (PLP) and grape seed and skin tannins (preveraison (PV) and commercially ripe) or Shiraz wine tannins (2 years old and 9-10 years old) was analyzed using isothermal titration calorimetry (ITC). The nature of these interactions varied with changes to the tannin structure that are associated with maturation. The change in enthalpy associated with hydrophobic interaction and hydrogen bonding decreased with tannin age and the stoichiometry of binding indicated that grape tannins associated with more proline residues than wine tannins, irrespective of molecular size. These results could provide an explanation for the observed change in wine astringency quality with age.

  3. Identification of Bitterness-Masking Compounds from Cheese

    PubMed Central

    2012-01-01

    Bitterness-masking compounds were identified in a natural white mold cheese. The oily fraction of the cheese was extracted and further fractionated by using silica gel column chromatography. The four fractions obtained were characterized by thin-layer chromatography and nuclear magnetic resonance spectroscopy. The fatty acid-containing fraction was found to have the highest bitterness-masking activity against quinine hydrochloride. Bitterness-masking activity was quantitated using a method based on subjective equivalents. At 0.5 mM, the fatty acid mixture, which had a composition similar to that of cheese, suppressed the bitterness of 0.008% quinine hydrochloride to be equivalent to that of 0.0049–0.0060% and 0.5 mM oleic acid to that of 0.0032–0.0038% solution. The binding potential between oleic acid and the bitter compounds was estimated by isothermal titration calorimetry. These results suggest that oleic acid masked bitterness by forming a complex with the bitter compounds. PMID:22502602

  4. Thermally decarboxylated sodium bicarbonate: Interactions with water vapour, calorimetric study

    PubMed Central

    Volkova, Natalia; Hansson, Henri; Ljunggren, Lennart

    2012-01-01

    Isothermal titration calorimetry (ITC) was used to study interactions between water vapour and the surface of thermally converted sodium bicarbonate (NaHCO3). The decarboxylation degree of the samples was varied from 3% to 35% and the humidity range was 54–100%. The obtained enthalpy values were all exothermic and showed a positive linear correlation with decarboxylation degrees for each humidity studied. The critical humidity, 75% (RHo), was determined as the inflection point on a plot of the mean−ΔH kJ/mole Na2CO3 against RH. Humidities above the critical humidity lead to complete surface dissolution. The water uptake (m) was determined after each calorimetric experiment, complementing the enthalpy data. A mechanism of water vapour interaction with decarboxylated samples, including the formation of trona and Wegscheider’s salt on the bicarbonate surface is proposed for humidities below RHo. PMID:29403816

  5. Binding of cyclic carboxylates to octa-acid deep-cavity cavitand

    NASA Astrophysics Data System (ADS)

    Gibb, Corinne L. D.; Gibb, Bruce C.

    2014-04-01

    As part of the fourth statistical assessment of modeling of proteins and ligands (sampl.eyesopen.com) prediction challenge, the strength of association of nine guests ( 1- 9) binding to octa-acid host was determined by a combination of 1H NMR and isothermal titration calorimetry. Association constants in sodium tetraborate buffered (pH 9.2) aqueous solution ranged from 5.39 × 102 M-1 in the case of benzoate 1, up to 3.82 × 105 M-1 for trans-4-methylcyclohexanoate 7. Overall, the free energy difference between the free energies of complexation of these weakest and strongest binding guests was ΔΔG° = 3.88 kcal mol-1. Based on a multitude of previous studies, the anticipated order of strength of binding was close to that which was actually obtained. However, the binding of guest 3 (4-ethylbenzoate) was considerably stronger than initially estimated.

  6. Molecular Containers Bind Drugs of Abuse in Vitro and Reverse the Hyperlocomotive Effect of Methamphetamine in Rats.

    PubMed

    Ganapati, Shweta; Grabitz, Stephanie D; Murkli, Steven; Scheffenbichler, Flora; Rudolph, Maíra I; Zavalij, Peter Y; Eikermann, Matthias; Isaacs, Lyle

    2017-08-17

    We measured the affinity of five molecular container compounds (calabadions 1 and 2, CB[7], sulfocalix[4]arene, and HP-β-CD) toward seven drugs of abuse in homogenous aqueous solution at physiological pH by various methods ( 1 H NMR, UV/Vis, isothermal titration calorimetry [ITC]) and found binding constants (K a values) spanning from <10 2 to >10 8  m -1 . We also report X-ray crystal structures of CB[7]⋅methamphetamine and 1⋅methamphetamine. We found that 2, but not CB[7], was able to ameliorate the hyperlocomotive activity of rats treated with methamphetamine. The bioavailability of the calabadions and their convergent building block synthesis suggest potential for further structural optimization as reversal agents for intoxication with nonopioid drugs of abuse for which no treatments are currently available. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The Comparative Studies of Binding Activity of Curcumin and Didemethylated Curcumin with Selenite: Hydrogen Bonding vs Acid-Base Interactions

    NASA Astrophysics Data System (ADS)

    Liao, Jiahn-Haur; Wu, Tzu-Hua; Chen, Ming-Yi; Chen, Wei-Ting; Lu, Shou-Yun; Wang, Yi-Hsuan; Wang, Shao-Pin; Hsu, Yen-Min; Huang, Yi-Shiang; Huang, Zih-You; Lin, Yu-Ching; Chang, Ching-Ming; Huang, Fu-Yung; Wu, Shih-Hsiung

    2015-12-01

    In this report, the in vitro relative capabilities of curcumin (CCM) and didemethylated curcumin (DCCM) in preventing the selenite-induced crystallin aggregation were investigated by turbidity tests and isothermal titration calorimetry (ITC). DCCM showed better activity than CCM. The conformers of CCM/SeO32- and DCCM/SeO32- complexes were optimized by molecular orbital calculations. Results reveal that the selenite anion surrounded by CCM through the H-bonding between CCM and selenite, which is also observed via IR and NMR studied. For DCCM, the primary driving force is the formation of an acid-base adduct with selenite showing that the phenolic OH group of DCCM was responsible for forming major conformer of DCCM. The formation mechanisms of selenite complexes with CCM or DCCM explain why DCCM has greater activity than CCM in extenuating the toxicity of selenite as to prevent selenite-induced lens protein aggregation.

  8. Binding of warfarin influences the acid-base equilibrium of H242 in sudlow site I of human serum albumin.

    PubMed

    Perry, Jennifer L; Goldsmith, Michael R; Williams, T Richard; Radack, Kyle P; Christensen, Trine; Gorham, Justin; Pasquinelli, Melissa A; Toone, Eric J; Beratan, David N; Simon, John D

    2006-01-01

    Sudlow Site I of human serum albumin (HSA) is located in subdomain IIA of the protein and serves as a binding cavity for a variety of ligands. In this study, the binding of warfarin (W) is examined using computational techniques and isothermal titration calorimetry (ITC). The structure of the docked warfarin anion (W-) to Site I is similar to that revealed by X-ray crystallography, with a calculated binding constant of 5.8 x 10(5) M(-1). ITC experiments (pH 7.13 and I = 0.1) carried out in three different buffers (MOPs, phosphate and Tris) reveal binding of W- is accompanied by uptake of 0.30+/-0.02 protons from the solvent. This measurement suggests that the binding of W- is stabilized by an ion-pair interaction between protonated H242 and the phenoxide group of W-.

  9. Isoform-specific inhibition of cyclophilins.

    PubMed

    Daum, Sebastian; Schumann, Michael; Mathea, Sebastian; Aumüller, Tobias; Balsley, Molly A; Constant, Stephanie L; de Lacroix, Boris Féaux; Kruska, Fabian; Braun, Manfred; Schiene-Fischer, Cordelia

    2009-07-07

    Cyclophilins belong to the enzyme class of peptidyl prolyl cis-trans isomerases which catalyze the cis-trans isomerization of prolyl bonds in peptides and proteins in different folding states. Cyclophilins have been shown to be involved in a multitude of cellular functions like cell growth, proliferation, and motility. Among the 20 human cyclophilin isoenzymes, the two most abundant members of the cyclophilin family, CypA and CypB, exhibit specific cellular functions in several inflammatory diseases, cancer development, and HCV replication. A small-molecule inhibitor on the basis of aryl 1-indanylketones has now been shown to discriminate between CypA and CypB in vitro. CypA binding of this inhibitor has been characterized by fluorescence anisotropy- and isothermal titration calorimetry-based cyclosporin competition assays. Inhibition of CypA- but not CypB-mediated chemotaxis of mouse CD4(+) T cells by the inhibitor provided biological proof of discrimination in vivo.

  10. Aminosilane-Assisted Electrodeposition of Gold Nanodendrites and Their Catalytic Properties

    PubMed Central

    Hau, Nga Yu; Yang, Peixian; Liu, Chang; Wang, Jian; Lee, Po-Heng; Feng, Shien-Ping

    2017-01-01

    A promising alternative route for the synthesis of three-dimensional Au dendrites was developed by direct electrodeposition from a solution of HAuCl4 containing 3-aminopropyltriethoxysilane (APTS). Ultraviolet-visible spectroscopy, fourier transform infrared spectroscopy and isothermal titration calorimetry were used to study the interaction of APTS in electrolyte. The effect of APTS on the formation of the hierarchical structure of Au dendrites was investigated by cyclic voltammetry, rotating disk electrode, electrochemical impedance spectroscopy and quartz crystal microbalance. The growth directions of the trunks and branches of the Au dendrites can be controlled by sweep-potential electrodeposition to obtain more regular structures. The efficacy of as-synthesised Au dendrites was demonstrated in the enhanced electro-catalytic activity to methanol electro-oxidation and the high sensitivity of glucose detection, which have potential applications in direct-methanol fuel cells and non-enzymatic electrochemical glucose biosensors, respectively. PMID:28045064

  11. FGFR1 Kinase Inhibitors: Close Regioisomers Adopt Divergent Binding Modes and Display Distinct Biophysical Signatures.

    PubMed

    Klein, Tobias; Tucker, Julie; Holdgate, Geoffrey A; Norman, Richard A; Breeze, Alexander L

    2014-02-13

    The binding of a ligand to its target protein is often accompanied by conformational changes of both the protein and the ligand. This is of particular interest, since structural rearrangements of the macromolecular target and the ligand influence the free energy change upon complex formation. In this study, we use X-ray crystallography, isothermal titration calorimetry, and surface-plasmon resonance biosensor analysis to investigate the binding of pyrazolylaminopyrimidine inhibitors to FGFR1 tyrosine kinase, an important anticancer target. Our results highlight that structurally close analogs of this inhibitor series interact with FGFR1 with different binding modes, which are a consequence of conformational changes in both the protein and the ligand as well as the bound water network. Together with the collected kinetic and thermodynamic data, we use the protein-ligand crystal structure information to rationalize the observed inhibitory potencies on a molecular level.

  12. Exploring the mechanism of interaction between 5-(ethoxycarbonyl)-6-methyl-4-(4-methoxyphenyl)-3,4-dihydropyrimidin-2(1H)-one and human serum albumin: Spectroscopic, calorimetric and molecular modeling studies.

    PubMed

    Wang, Gongke; Li, Xiang; Ding, Xuelian; Wang, Dongchao; Yan, Changling; Lu, Yan

    2011-07-15

    In this paper, binding interaction of 5-(ethoxycarbonyl)-6-methyl-4-(4-methoxyphenyl)-3,4-dihydropyrimidin-2(1H)-one (EMMD) with human serum albumin (HSA) under physiological conditions was investigated by using spectroscopy, isothermal titration calorimetry (ITC) and molecular modeling techniques. The results of spectroscopic studies suggested that EMMD have a strong ability to quench the intrinsic fluorescence of HSA through static quenching procedure. ITC investigations indicated that drug-protein complex was stabilized by hydrophobic forces and hydrogen bonds, which was consistent with the results of molecular modeling studies. Competitive experiments indicated the displacement of warfarin by EMMD, which revealed that the binding site of EMMD to HSA was located at subdomain IIA. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Indole cytosolic phospholipase A2 alpha inhibitors: discovery and in vitro and in vivo characterization of 4-{3-[5-chloro-2-(2-{[(3,4-dichlorobenzyl)sulfonyl]amino}ethyl)-1-(diphenylmethyl)-1H-indol-3-yl]propyl}benzoic acid, efipladib.

    PubMed

    McKew, John C; Lee, Katherine L; Shen, Marina W H; Thakker, Paresh; Foley, Megan A; Behnke, Mark L; Hu, Baihua; Sum, Fuk-Wah; Tam, Steve; Hu, Yonghan; Chen, Lihren; Kirincich, Steven J; Michalak, Ronald; Thomason, Jennifer; Ipek, Manus; Wu, Kun; Wooder, Lane; Ramarao, Manjunath K; Murphy, Elizabeth A; Goodwin, Debra G; Albert, Leo; Xu, Xin; Donahue, Frances; Ku, M Sherry; Keith, James; Nickerson-Nutter, Cheryl L; Abraham, William M; Williams, Cara; Hegen, Martin; Clark, James D

    2008-06-26

    The optimization of a class of indole cPLA 2 alpha inhibitors is described herein. The importance of the substituent at C3 and the substitution pattern of the phenylmethane sulfonamide region are highlighted. Optimization of these regions led to the discovery of 111 (efipladib) and 121 (WAY-196025), which are shown to be potent, selective inhibitors of cPLA 2 alpha in a variety of isolated enzyme assays, cell based assays, and rat and human whole blood assays. The binding of these compounds has been further examined using isothermal titration calorimetry. Finally, these compounds have shown efficacy when dosed orally in multiple acute and chronic prostaglandin and leukotriene dependent in vivo models.

  14. Aminosilane-Assisted Electrodeposition of Gold Nanodendrites and Their Catalytic Properties

    NASA Astrophysics Data System (ADS)

    Hau, Nga Yu; Yang, Peixian; Liu, Chang; Wang, Jian; Lee, Po-Heng; Feng, Shien-Ping

    2017-01-01

    A promising alternative route for the synthesis of three-dimensional Au dendrites was developed by direct electrodeposition from a solution of HAuCl4 containing 3-aminopropyltriethoxysilane (APTS). Ultraviolet-visible spectroscopy, fourier transform infrared spectroscopy and isothermal titration calorimetry were used to study the interaction of APTS in electrolyte. The effect of APTS on the formation of the hierarchical structure of Au dendrites was investigated by cyclic voltammetry, rotating disk electrode, electrochemical impedance spectroscopy and quartz crystal microbalance. The growth directions of the trunks and branches of the Au dendrites can be controlled by sweep-potential electrodeposition to obtain more regular structures. The efficacy of as-synthesised Au dendrites was demonstrated in the enhanced electro-catalytic activity to methanol electro-oxidation and the high sensitivity of glucose detection, which have potential applications in direct-methanol fuel cells and non-enzymatic electrochemical glucose biosensors, respectively.

  15. Thermodynamic investigation of the binding of dissymmetric pyrenyl-gemini surfactants to DNA.

    PubMed

    Wettig, Shawn D; Deubry, Rubena; Akbar, Javed; Kaur, Tranum; Wang, Haitang; Sheinin, Tatiana; Joseph, Jamie W; Slavcev, Roderick A

    2010-05-14

    Gemini surfactants have demonstrated significant potential for use in constructing non-viral transfection vectors for the delivery of genes into cells to induce protein expression. Previously, two asymmetric gemini surfactants containing pyrenyl groups in one of the alkyl tails of the surfactants were synthesized as fluorescence probes for use in mechanistic studies of the transfection process. Here we present the results of a thermodynamic investigation of the binding interaction(s) between the pyrenyl-modified surfactants and DNA. The thermodynamics of the interactions have been examined using isothermal titration calorimetry, light scattering, zeta potential, and circular dichroism measurements. Distinct differences are observed between the interaction of 12-s-12 vs. the pyrene modified py-s-12 surfactants with DNA; an intercalated binding is found for the py-s-12 surfactants that disrupts the typical interactions observed between DNA and gemini surfactants.

  16. Multivalent small molecule pan-RAS inhibitors

    PubMed Central

    Welsch, Matthew E.; Kaplan, Anna; Chambers, Jennifer M.; Stokes, Michael E.; Bos, Pieter H.; Zask, Arie; Zhang, Yan; Sanchez-Martin, Marta; Badgley, Michael A.; Huang, Christine S.; Tran, Timothy H.; Akkiraju, Hemanth; Brown, Lewis M.; Nandakumar, Renu; Cremers, Serge; Yang, Wan S.; Tong, Liang; Olive, Kenneth P.; Ferrando, Adolfo; Stockwell, Brent R.

    2017-01-01

    SUMMARY Design of small molecules that disrupt protein-protein interactions, including the interaction of RAS proteins and their effectors, have potential use as chemical probes and therapeutic agents. We describe here the synthesis and testing of potential small molecule pan-RAS ligands, which were designed to interact with adjacent sites on the surface of oncogenic KRAS. One compound, termed 3144, was found to bind to RAS proteins using microscale thermophoresis, nuclear magnetic resonance spectroscopy and isothermal titration calorimetry, and to exhibit lethality in cells partially dependent on expression of RAS proteins. This compound was metabolically stable in liver microsomes and displayed anti-tumor activity in xenograft mouse cancer models. These findings suggest that pan-RAS inhibition may be an effective therapeutic strategy for some cancers, and that structure-based design of small molecules targeting multiple adjacent sites to create multivalent inhibitors may be effective for some proteins. PMID:28235199

  17. Interaction of Antiinflammatory Drugs with EPC Liposomes: Calorimetric Study in a Broad Concentration Range

    PubMed Central

    Matos, Carla; Lima, José L. C.; Reis, Salette; Lopes, António; Bastos, Margarida

    2004-01-01

    Isothermal titration calorimetry was used to characterize and quantify the partition of indomethacin and acemetacin between the bulk aqueous phase and the membrane of egg phosphatidylcholine vesicles. Significant electrostatic effects were observed due to binding of the charged drugs to the membrane, which implied the use of the Gouy-Chapman theory to calculate the interfacial concentrations. The binding/partition phenomenon was quantified in terms of the partition coefficient (Kp), and/or the equilibrium constant (Kb). Mathematical expressions were developed, either to encompass the electrostatic effects in the partition model, or to numerically relate partition coefficients and binding constants. Calorimetric titrations conducted under a lipid/drug ratio >100:1 lead to a constant heat release and were used to directly calculate the enthalpy of the process, ΔH, and indirectly, ΔG and ΔS. As the lipid/drug ratio decreased, the constancy of reaction enthalpy was tested in the fitting process. Under low lipid/drug ratio conditions simple partition was no longer valid and the interaction phenomenon was interpreted in terms of binding isotherms. A mathematical expression was deduced for quantification of the binding constants and the number of lipid molecules associated with one drug molecule. The broad range of concentrations used stressed the biphasic nature of the interaction under study. As the lipid/drug ratio was varied, the results showed that the interaction of both drugs does not present a unique behavior in all studied regimes: the extent of the interaction, as well as the binding stoichiometry, is affected by the lipid/drug ratio. The change in these parameters reflects the biphasic behavior of the interaction—possibly the consequence of a modification of the membrane's physical properties as it becomes saturated with the drug. PMID:14747330

  18. Experimental Investigation and Thermodynamic Assessment of Phase Equilibria in the PLLA/Dioxane/Water Ternary System for Applications in the Biomedical Field.

    PubMed

    Ruggiero, Flavia; Netti, Paolo Antonio; Torino, Enza

    2015-12-01

    Fundamental understanding of thermodynamic of phase separation plays a key role in tuning the desired features of biomedical devices. In particular, phase separation of ternary solution is of remarkable interest in processes to obtain biodegradable and biocompatible architectures applied as artificial devices to repair, replace, or support damaged tissues or organs. In these perspectives, thermally induced phase separation (TIPS) is the most widely used technique to obtained porous morphologies and, in addition, among different ternary systems, polylactic acid (PLLA)/dioxane/water has given promising results and has been largely studied. However, to increase the control of TIPS-based processes and architectures, an investigation of the basic energetic phenomena occurring during phase separation is still required. Here we propose an experimental investigation of the selected ternary system by using isothermal titration calorimetric approach at different solvent/antisolvent ratio and a thermodynamic explanation related to the polymer-solvents interactions in terms of energetic contribution to the phase separation process. Furthermore, relevant information about the phase diagrams and interaction parameters of the studied systems are furnished in terms of liquid-liquid miscibility gap. Indeed, polymer-solvents interactions are responsible for the mechanism of the phase separation process and, therefore, of the final features of the morphologies; the knowledge of such data is fundamental to control processes for the production of membranes, scaffolds and several nanostructures. The behavior of the polymer at different solvent/nonsolvent ratios is discussed in terms of solvation mechanism and a preliminary contribution to the understanding of the role of the hydrogen bonding in the interface phenomena is also reported. It is the first time that thermodynamic data of a ternary system are collected by mean of nano-isothermal titration calorimetry (nano-ITC). Supporting Information is available.

  19. Unfolding and Targeting Thermodynamics of a DNA Intramolecular Complex with Joined Triplex-Duplex Domains.

    PubMed

    Johnson, Sarah E; Reiling-Steffensmeier, Calliste; Lee, Hui-Ting; Marky, Luis A

    2018-01-25

    Our laboratory is interested in developing methods that can be used for the control of gene expression. In this work, we are investigating the reaction of an intramolecular complex containing a triplex-duplex junction with partially complementary strands. We used a combination of isothermal titration calorimetry (ITC), differential scanning calorimetry (DSC), and spectroscopy techniques to determine standard thermodynamic profiles for these targeting reactions. Specifically, we have designed single strands to target one loop (CTTTC) or two loops (CTTTC and GCAA) of this complex. Both reactions yielded exothermic enthalpies of -66.3 and -82.8 kcal/mol by ITC, in excellent agreement with the reaction enthalpies of -72.7 and -88.7 kcal/mol, respectively, obtained from DSC Hess cycles. The favorable heat contributions result from the formation of base-pair stacks involving mainly the unpaired bases of the loops. This shows that each complementary strand is able to invade and disrupt the secondary structure. The simultaneous targeting of two loops yielded a more favorable reaction free energy, by approximately -8 kcal/mol, which corresponds to the formation of roughly four base-pair stacks involving the unpaired bases of the 5'-GCAA loop. The main conclusion is that the targeting of loops with a large number of unpaired bases results in a more favorable reaction free energy.

  20. Porphyrin-substrate binding to murine ferrochelatase: effect on the thermal stability of the enzyme

    PubMed Central

    2004-01-01

    Ferrochelatase (EC 4.99.1.1), the terminal enzyme of the haem biosynthetic pathway, catalyses the chelation of Fe(II) into the protoporphyrin IX ring. The energetics of the binding between murine ferrochelatase and mesoporphyrin were determined using isothermal titration calorimetry, which revealed a stoichiometry of one molecule of mesoporphyrin bound per protein monomer. The binding is strongly exothermic, with a large intrinsic enthalpy (ΔH=−97.1 kJ · mol−1), and is associated with the uptake of two protons from the buffer. This proton transfer suggests that hydrogen bonding between ferrochelatase and mesoporphyrin is a key factor in the thermodynamics of the binding reaction. Differential scanning calorimetry thermograms indicated a co-operative two-state denaturation process with a single transition temperature of 56 °C for wild-type murine ferrochelatase. An increase in the thermal stability of ferrochelatase is dependent upon mesoporphyrin binding. Similarly, murine ferrochelatase variants, in which the active site Glu-289 was replaced by either glutamine or alanine and, when purified, contained specifically-bound protoporphyrin, exhibited enhanced protein stability when compared with wild-type ferrochelatase. However, in contrast with the wild-type enzyme, the thermal denaturation of ferrochelatase variants was best described as a non-co-operative denaturation process. PMID:15496139

  1. Influence of specific amino acid side-chains on the antimicrobial activity and structure of bovine lactoferrampin.

    PubMed

    Haney, Evan F; Nazmi, Kamran; Bolscher, Jan G M; Vogel, Hans J

    2012-06-01

    Lactoferrin is an 80 kDa iron binding protein found in the secretory fluids of mammals and it plays a major role in host defence. An antimicrobial peptide, lactoferrampin, was identified through sequence analysis of bovine lactoferrin and its antimicrobial activity against a wide range of bacteria and yeast species is well documented. In the present work, the contribution of specific amino acid residues of lactoferrampin was examined to evaluate the role that they play in membrane binding and bilayer disruption. The structures of all the bovine lactoferrampin derivatives were examined with circular dichroism and nuclear magnetic resonance spectroscopy, and their interactions with phospholipids were evaluated with differential scanning calorimetry and isothermal titration calorimetry techniques. From our results it is apparent that the amphipathic N-terminal helix anchors the peptide to membranes with Trp 268 and Phe 278 playing important roles in determining the strength of the interaction and for inducing peptide folding. In addition, the N-terminal helix capping residues (DLI) increase the affinity for negatively charged vesicles and they mediate the depth of membrane insertion. Finally, the unique flexibility in the cationic C-terminal region of bovine lactoferrampin does not appear to be essential for the antimicrobial activity of the peptide.

  2. Biochemical characterization of a phosphinate inhibitor of Escherichia coli MurC.

    PubMed

    Marmor, S; Petersen, C P; Reck, F; Yang, W; Gao, N; Fisher, S L

    2001-10-09

    The bacterial UDP-N-acetylmuramyl-L-alanine ligase (MurC) from Escherichia coli, an essential, cytoplasmic peptidoglycan biosynthetic enzyme, catalyzes the ATP-dependent ligation of L-alanine (Ala) and UDP-N-acetylmuramic acid (UNAM) to form UDP-N-acetylmuramyl-L-alanine (UNAM-Ala). The phosphinate inhibitor 1 was designed and prepared as a multisubstrate/transition state analogue. The compound exhibits mixed-type inhibition with respect to all three enzyme substrates (ATP, UNAM, Ala), suggesting that this compound forms dead-end complexes with multiple enzyme states. Results from isothermal titration calorimetry (ITC) studies supported these findings as exothermic binding was observed under conditions with free enzyme (K(d) = 1.80-2.79 microM, 95% CI), enzyme saturated with ATP (K(d) = 0.097-0.108 microM, 95% CI), and enzyme saturated with the reaction product ADP (K(d) = 0.371-0.751 microM, 95% CI). Titrations run under conditions of saturating UNAM or the product UNAM-Ala did not show heat effects consistent with competitive compound binding to the active site. The potent binding affinity observed in the presence of ATP is consistent with the inhibitor design and the proposed Ordered Ter-Ter mechanism for this enzyme; however, the additional binding pathways suggest that the inhibitor can also serve as a product analogue.

  3. Effects of methyl substitution on DNA binding enthalpies of enantiopure Ru(phenanthroline)2dipyridophenazine2+ complexes.

    PubMed

    Mårtensson, Anna K F; Lincoln, Per

    2018-04-25

    Isothermal titration calorimetry (ITC) has been utilized to investigate the effect of methyl substituents on the intercalating dppz ligand of the enantiomers of the parent complex Ru(phen)2dppz2+ (phen = 1,10-phenanthroline; dppz = dipyrido[3,2-a:2',3'-c]phenazine) on DNA binding thermodynamics. The methylated complexes (10-methyl-dppz and 11,12-dimethyl-dppz) have large, concentration-dependent, positive heats of dilution, and a strong endothermic background is also apparent in the ITC-profiles from titration of methylated complexes into poly(dAdT)2, which make direct comparison between complexes difficult. By augmenting a simple cooperative binding model with one equilibrium for complex self-aggregation in solution and one equilibrium for complex aggregation on saturated DNA, it was possible to find an excellent global fit to the experimental data with DNA affinity parameters restricted to be equal for all Δ-enantiomers as well as for all Λ-enantiomers. In general, enthalpic differences, compared to the unsubstituted complex, were small and less than 4 kJ mol-1, except for the heat of intercalation of Δ-10-methyl-dppz (-11,6 kJ mol-1) and Λ-11,12-dimethyl-dppz (+4.3 kJ mol-1).

  4. Thermodynamics of Host–Guest Interactions between Fullerenes and a Buckycatcher

    PubMed Central

    2015-01-01

    1H NMR and isothermal titration calorimetry (ITC) experiments were employed to obtain reliable thermodynamic data for the formation of the 1:1 inclusion complexes of fullerenes C60 and C70 with the buckycatcher (C60H28). NMR measurements were done in toluene-d8 and chlorobenzene-d5 at 288, 298, and 308 K, while the ITC titrations were performed in toluene, chlorobenzene, o-dichlorobenzene, anisole, and 1,1,2,2-tetrachloroethane at temperatures from 278 to 323 K. The association constants, Ka, obtained with both techniques are in very good agreement. The thermodynamic data obtained by ITC indicate that generally the host–guest association is enthalpy-driven. Interestingly, the entropy contributions are, with rare exceptions, slightly stabilizing or close to zero. Neither ΔH nor ΔS is constant over the temperature range studied, and these thermodynamic functions exhibit classical enthalpy/entropy compensation. The ΔCp values calculated from the temperature dependence of the calorimetric ΔH values are negative for the association of both fullerenes with the buckycatcher in toluene. The negative ΔCp values are consistent with some desolvation of the host-cavity and the guest in the inclusion complexes, C60@C60H28 and C70@C60H28. PMID:25248285

  5. Kinetic mechanism of the dimeric ATP sulfurylase from plants

    PubMed Central

    Ravilious, Geoffrey E.; Herrmann, Jonathan; Goo Lee, Soon; Westfall, Corey S.; Jez, Joseph M.

    2013-01-01

    In plants, sulfur must be obtained from the environment and assimilated into usable forms for metabolism. ATP sulfurylase catalyses the thermodynamically unfavourable formation of a mixed phosphosulfate anhydride in APS (adenosine 5′-phosphosulfate) from ATP and sulfate as the first committed step of sulfur assimilation in plants. In contrast to the multi-functional, allosterically regulated ATP sulfurylases from bacteria, fungi and mammals, the plant enzyme functions as a mono-functional, non-allosteric homodimer. Owing to these differences, here we examine the kinetic mechanism of soybean ATP sulfurylase [GmATPS1 (Glycine max (soybean) ATP sulfurylase isoform 1)]. For the forward reaction (APS synthesis), initial velocity methods indicate a single-displacement mechanism. Dead-end inhibition studies with chlorate showed competitive inhibition versus sulfate and non-competitive inhibition versus APS. Initial velocity studies of the reverse reaction (ATP synthesis) demonstrate a sequential mechanism with global fitting analysis suggesting an ordered binding of substrates. ITC (isothermal titration calorimetry) showed tight binding of APS to GmATPS1. In contrast, binding of PPi (pyrophosphate) to GmATPS1 was not detected, although titration of the E•APS complex with PPi in the absence of magnesium displayed ternary complex formation. These results suggest a kinetic mechanism in which ATP and APS are the first substrates bound in the forward and reverse reactions, respectively. PMID:23789618

  6. Sequence of ligand binding and structure change in the diphtheria toxin repressor upon activation by divalent transition metals.

    PubMed

    Rangachari, Vijayaraghavan; Marin, Vedrana; Bienkiewicz, Ewa A; Semavina, Maria; Guerrero, Luis; Love, John F; Murphy, John R; Logan, Timothy M

    2005-04-19

    The diphtheria toxin repressor (DtxR) is an Fe(II)-activated transcriptional regulator of iron homeostatic and virulence genes in Corynebacterium diphtheriae. DtxR is a two-domain protein that contains two structurally and functionally distinct metal binding sites. Here, we investigate the molecular steps associated with activation by Ni(II)Cl(2) and Cd(II)Cl(2). Equilibrium binding energetics for Ni(II) were obtained from isothermal titration calorimetry, indicating apparent metal dissociation constants of 0.2 and 1.7 microM for two independent sites. The binding isotherms for Ni(II) and Cd(II) exhibited a characteristic exothermic-endothermic pattern that was used to infer the metal binding sequence by comparing the wild-type isotherm with those of several binding site mutants. These data were complemented by measuring the distance between specific backbone amide nitrogens and the first equivalent of metal through heteronuclear NMR relaxation measurements. Previous studies indicated that metal binding affects a disordered to ordered transition in the metal binding domain. The coupling between metal binding and structure change was investigated using near-UV circular dichroism spectroscopy. Together, the data show that the first equivalent of metal is bound by the primary metal binding site. This binding orients the DNA binding helices and begins to fold the N-terminal domain. Subsequent binding at the ancillary site completes the folding of this domain and formation of the dimer interface. This model is used to explain the behavior of several mutants.

  7. Thermodynamics of aggregate formation between a non-ionic polymer and ionic surfactants: An isothermal titration calorimetric study.

    PubMed

    Patel, Salin Gupta; Bummer, Paul M

    2017-01-10

    This report examines the energetics of aggregate formation between hydroxypropyl methylcellulose (HPMC) and model ionic surfactants including sodium dodecyl sulfate (SDS) at pharmaceutically relevant concentrations using the isothermal titration calorimetry (ITC) technique and a novel treatment of calorimetric data that accounts for the various species formed. The influence of molecular weight of HPMC, temperature and ionic strength of solution on the aggregate formation process was explored. The interaction between SDS and HPMC was determined to be an endothermic process and initiated at a critical aggregation concentration (CAC). The SDS-HPMC interactions were observed to be cooperative in nature and dependent on temperature and ionic strength of the solution. Molecular weight of HPMC significantly shifted the interaction parameters between HPMC and SDS such that at the highest molecular weight (HPMC K-100M;>240kDa), although the general shape of the titration curve (enthalpogram) was observed to remain similar, the critical concentration parameters (CAC, polymer saturation concentration (C sat ) and critical micelle concentration (CMC)) were significantly altered and shifted to lower concentrations of SDS. Ionic strength was also observed to influence the critical concentration parameters for the SDS-HPMC aggregation and decreased to lower SDS concentrations with increasing ionic strength for both anionic and cationic surfactant-HPMC systems. From these data, other thermodynamic parameters of aggregation such as ΔH agg ° , ΔG agg ° , H agg ° , ΔS agg ° , and ΔC p were calculated and utilized to postulate the hydrophobic nature of SDS-HPMC aggregate formation. The type of ionic surfactant head group (anionic vs. cationic i.e., dodecyltrimethylammonium bromide (DTAB)) was found to influence the strength of HPMC-surfactant interactions wherein a distinct CAC signifying the strength of HPMC-DTAB interactions was not observed. The interpretation of the microcalorimetric data at different temperatures and ionic strengths while varying properties of polymer and surfactant was a very effective tool in investigating the nature and energetics of HPMC and ionic surfactant interactions. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. The Polybasic Region of the Polysialyltransferase ST8Sia-IV Binds Directly to the Neural Cell Adhesion Molecule, NCAM.

    PubMed

    Bhide, Gaurang P; Prehna, Gerd; Ramirez, Benjamin E; Colley, Karen J

    2017-03-14

    Polysialic acid (polySia) is a unique post-translational modification found on a small set of mammalian glycoproteins. Composed of long chains of α2,8-linked sialic acid, this large, negatively charged polymer attenuates protein and cell adhesion and modulates signaling mediated by its carriers and proteins that interact with these carriers. PolySia is crucial for the proper development of the nervous system and is upregulated during tissue regeneration and in highly invasive cancers. Our laboratory has previously shown that the neural cell adhesion molecule, NCAM, has an acidic surface patch in its first fibronectin type III repeat (FN1) that is critical for the polysialylation of N-glycans on the adjacent immunoglobulin domain (Ig5). We have also identified a polysialyltransferase (polyST) polybasic region (PBR) that may mediate substrate recognition. However, a direct interaction between the NCAM FN1 acidic patch and the polyST PBR has yet to be demonstrated. Here, we have probed this interaction using isothermal titration calorimetry and nuclear magnetic resonance (NMR) spectroscopy. We observe direct and specific binding between FN1 and the PBR peptide that is dependent upon acidic residues in FN1 and basic residues of the PBR. NMR titration experiments verified the role of the FN1 acidic patch in the recognition of the PBR and suggest a conformational change of the Ig5-FN1 linker region following binding of the PBR to the acidic patch. Finally, mutation of residues identified by NMR titration experiments impacts NCAM polysialylation, supporting their mechanistic role in protein-specific polysialylation.

  9. Discovery of isatin and 1H-indazol-3-ol derivatives as d-amino acid oxidase (DAAO) inhibitors.

    PubMed

    Szilágyi, Bence; Kovács, Péter; Ferenczy, György G; Rácz, Anita; Németh, Krisztina; Visy, Júlia; Szabó, Pál; Ilas, Janez; Balogh, György T; Monostory, Katalin; Vincze, István; Tábi, Tamás; Szökő, Éva; Keserű, György M

    2018-05-01

    d-Amino acid oxidase (DAAO) is a potential target in the treatment of schizophrenia as its inhibition increases brain d-serine level and thus contributes to NMDA receptor activation. Inhibitors of DAAO were sought testing [6+5] type heterocycles and identified isatin derivatives as micromolar DAAO inhibitors. A pharmacophore and structure-activity relationship analysis of isatins and reported DAAO inhibitors led us to investigate 1H-indazol-3-ol derivatives and nanomolar inhibitors were identified. The series was further characterized by pK a and isothermal titration calorimetry measurements. Representative compounds exhibited beneficial properties in in vitro metabolic stability and PAMPA assays. 6-fluoro-1H-indazol-3-ol (37) significantly increased plasma d-serine level in an in vivo study on mice. These results show that the 1H-indazol-3-ol series represents a novel class of DAAO inhibitors with the potential to develop drug candidates. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Solubilization of single-walled carbon nanotubes using a peptide aptamer in water below the critical micelle concentration.

    PubMed

    Li, Zha; Kameda, Tomoshi; Isoshima, Takashi; Kobatake, Eiry; Tanaka, Takeshi; Ito, Yoshihiro; Kawamoto, Masuki

    2015-03-24

    The solubilizing ability of single-walled carbon nanotubes (SWCNTs) in water with several dispersants was investigated. Among the dispersants, including low-molecular-weight surfactants, peptides, DNA, and a water-soluble polymer, the peptide aptamer, A2 (IFRLSWGTYFS), exhibited the highest dispersion capability below the critical micelle concentration at a concentration of 0.02 w/v%. The dispersion of supernatant aqueous solution of SWCNTs containing aptamer A2 was essentially unchanged for several months after high-speed ultracentrifugation and gave rise to an efficient and stable dispersion of the SWCNTs in water. From the results of isothermal titration calorimetry and molecular dynamics simulations, the effective binding capability of A2 was due to π-π interaction between aromatic groups in the peptide aptamer and the side walls of SWCNTs. Interestingly, the peptide aptamer showed the possibility of diameter separation of semiconducting SWCNTs using a uniform density gradient ultracentrifuge. These phenomena are encouraging results toward an effective approach to the dispersion and separation of SWCNTs.

  11. Untangling the Diverse Interior and Multiple Exterior Guest Interactions of a Supramolecular Host by the Simultaneous Analysis of Complementary Observables.

    PubMed

    Sgarlata, Carmelo; Raymond, Kenneth N

    2016-07-05

    The entropic and enthalpic driving forces for encapsulation versus sequential exterior guest binding to the [Ga4L6](12-) supramolecular host in solution are very different, which significantly complicates the determination of these thermodynamic parameters. The simultaneous use of complementary techniques, such as NMR, UV-vis, and isothermal titration calorimetry, enables the disentanglement of such multiple host-guest interactions. Indeed, data collected by each technique measure different components of the host-guest equilibria and together provide a complete picture of the solution thermodynamics. Unfortunately, commercially available programs do not allow for global analysis of different physical observables. We thus resorted to a novel procedure for the simultaneous refinement of multiple parameters (ΔG°, ΔH°, and ΔS°) by treating different observables through a weighted nonlinear least-squares analysis of a constrained model. The refinement procedure is discussed for the multiple binding of the Et4N(+) guest, but it is broadly applicable to the deconvolution of other intricate host-guest equilibria.

  12. Discrimination between Closely Related Cellular Metabolites by the SAM-I Riboswitch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montange, R.; Mondragon, E; van Tyne, D

    2010-01-01

    The SAM-I riboswitch is a cis-acting element of genetic control found in bacterial mRNAs that specifically binds S-adenosylmethionine (SAM). We previously determined the 2.9-{angstrom} X-ray crystal structure of the effector-binding domain of this RNA element, revealing details of RNA-ligand recognition. To improve this structure, variations were made to the RNA sequence to alter lattice contacts, resulting in a 0.5-{angstrom} improvement in crystallographic resolution and allowing for a more accurate refinement of the crystallographic model. The basis for SAM specificity was addressed by a structural analysis of the RNA complexed to S-adenosylhomocysteine (SAH) and sinefungin and by measuring the affinity ofmore » SAM and SAH for a series of mutants using isothermal titration calorimetry. These data illustrate the importance of two universally conserved base pairs in the RNA that form electrostatic interactions with the positively charged sulfonium group of SAM, thereby providing a basis for discrimination between SAM and SAH.« less

  13. Crystal structures of two novel dye-decolorizing peroxidases reveal a beta-barrel fold with a conserved heme-binding motif.

    PubMed

    Zubieta, Chloe; Krishna, S Sri; Kapoor, Mili; Kozbial, Piotr; McMullan, Daniel; Axelrod, Herbert L; Miller, Mitchell D; Abdubek, Polat; Ambing, Eileen; Astakhova, Tamara; Carlton, Dennis; Chiu, Hsiu-Ju; Clayton, Thomas; Deller, Marc C; Duan, Lian; Elsliger, Marc-André; Feuerhelm, Julie; Grzechnik, Slawomir K; Hale, Joanna; Hampton, Eric; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K; Klock, Heath E; Knuth, Mark W; Kumar, Abhinav; Marciano, David; Morse, Andrew T; Nigoghossian, Edward; Okach, Linda; Oommachen, Silvya; Reyes, Ron; Rife, Christopher L; Schimmel, Paul; van den Bedem, Henry; Weekes, Dana; White, Aprilfawn; Xu, Qingping; Hodgson, Keith O; Wooley, John; Deacon, Ashley M; Godzik, Adam; Lesley, Scott A; Wilson, Ian A

    2007-11-01

    BtDyP from Bacteroides thetaiotaomicron (strain VPI-5482) and TyrA from Shewanella oneidensis are dye-decolorizing peroxidases (DyPs), members of a new family of heme-dependent peroxidases recently identified in fungi and bacteria. Here, we report the crystal structures of BtDyP and TyrA at 1.6 and 2.7 A, respectively. BtDyP assembles into a hexamer, while TyrA assembles into a dimer; the dimerization interface is conserved between the two proteins. Each monomer exhibits a two-domain, alpha+beta ferredoxin-like fold. A site for heme binding was identified computationally, and modeling of a heme into the proposed active site allowed for identification of residues likely to be functionally important. Structural and sequence comparisons with other DyPs demonstrate a conservation of putative heme-binding residues, including an absolutely conserved histidine. Isothermal titration calorimetry experiments confirm heme binding, but with a stoichiometry of 0.3:1 (heme:protein). (c) 2007 Wiley-Liss, Inc.

  14. Entropy and biological systems: experimentally-investigated entropy-driven stacking of plant photosynthetic membranes.

    PubMed

    Jia, Husen; Liggins, John R; Chow, Wah Soon

    2014-02-24

    According to the Second Law of Thermodynamics, an overall increase of entropy contributes to the driving force for any physicochemical process, but entropy has seldom been investigated in biological systems. Here, for the first time, we apply Isothermal Titration Calorimetry (ITC) to investigate the Mg(2+)-induced spontaneous stacking of photosynthetic membranes isolated from spinach leaves. After subtracting a large endothermic interaction of MgCl₂ with membranes, unrelated to stacking, we demonstrate that the enthalpy change (heat change at constant pressure) is zero or marginally positive or negative. This first direct experimental evidence strongly suggests that an entropy increase significantly drives membrane stacking in this ordered biological structure. Possible mechanisms for the entropy increase include: (i) the attraction between discrete oppositely-charged areas, releasing counterions; (ii) the release of loosely-bound water molecules from the inter-membrane gap; (iii) the increased orientational freedom of previously-aligned water dipoles; and (iv) the lateral rearrangement of membrane components.

  15. Charge Effect on the Formation of Polyoxometalate-Based Supramolecular Polygons Driven by Metal Coordination.

    PubMed

    Piot, Madeleine; Hupin, Sébastien; Lavanant, Hélène; Afonso, Carlos; Bouteiller, Laurent; Proust, Anna; Izzet, Guillaume

    2017-07-17

    The metal-driven self-assembly of a Keggin-based hybrid bearing two remote pyridine units was investigated. The resulting supramolecular species were identified by combination of 2D diffusion NMR spectroscopy (DOSY) and electrospray ionization mass spectrometry (ESI-MS) as a mixture of molecular triangles and squares. This behavior is different from that of the structural analogue Dawson-based hybrid displaying a higher charge, which only led to the formation of molecular triangles. This study highlights the decisive effect of the charge of the POMs in their self-assembly processes that disfavors the formation of large assemblies. An isothermal titration calorimetry (ITC) experiment confirmed the stronger binding in the case of the Keggin hybrids. A correlation between the diffusion coefficient D and the molecular mass M of the POM-based building block and its coordination oligomers was also observed. We show that the diffusion coefficient of these compounds is mainly determined by their occupied volume rather than by their shape.

  16. Selective integrin endocytosis is driven by interactions between the integrin α-chain and AP2

    PubMed Central

    De Franceschi, Nicola; Arjonen, Antti; Elkhatib, Nadia; Denessiouk, Konstantin; Wrobel, Antoni G; Wilson, Thomas A; Pouwels, Jeroen; Montagnac, Guillaume; Owen, David J; Ivaska, Johanna

    2016-01-01

    Integrins are heterodimeric cell-surface adhesion molecules comprising one of possible 18 α-chains and one of possible 8 β-chains. They control a range of cell functions in a matrix- and ligand-specific manner. Integrins can be internalised by clathrin-mediated endocytosis (CME) through β subunit-based motifs found in all integrin heterodimers. However, whether specific integrin heterodimers can be selectively endocytosed was unknown. Here, we found that a subset of α subunits contain an evolutionarily conserved and functional YxxΦ motif directing integrins to selective internalisation by the most abundant endocytic clathrin adaptor, AP2. We determined the structure of the human integrin α4-tail motif in complex with AP2 C-µ2 subunit and confirmed the interaction by isothermal titration calorimetry. Mutagenesis of the motif impaired selective heterodimer endocytosis and attenuated integrin-mediated cell migration. We propose that integrins evolved to enable selective integrin-receptor turnover in response to changing matrix conditions. PMID:26779610

  17. Selective integrin endocytosis is driven by interactions between the integrin α-chain and AP2.

    PubMed

    De Franceschi, Nicola; Arjonen, Antti; Elkhatib, Nadia; Denessiouk, Konstantin; Wrobel, Antoni G; Wilson, Thomas A; Pouwels, Jeroen; Montagnac, Guillaume; Owen, David J; Ivaska, Johanna

    2016-02-01

    Integrins are heterodimeric cell-surface adhesion molecules comprising one of 18 possible α-chains and one of eight possible β-chains. They control a range of cell functions in a matrix- and ligand-specific manner. Integrins can be internalized by clathrin-mediated endocytosis (CME) through β subunit-based motifs found in all integrin heterodimers. However, whether specific integrin heterodimers can be selectively endocytosed was unknown. Here, we found that a subset of α subunits contain an evolutionarily conserved and functional YxxΦ motif directing integrins to selective internalization by the most abundant endocytic clathrin adaptor, AP2. We determined the structure of the human integrin α4-tail motif in complex with the AP2 C-μ2 subunit and confirmed the interaction by isothermal titration calorimetry. Mutagenesis of the motif impaired selective heterodimer endocytosis and attenuated integrin-mediated cell migration. We propose that integrins evolved to enable selective integrin-receptor turnover in response to changing matrix conditions.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damian, Luminita, E-mail: luminitadamian@microcal.eu.com; Universite de Toulouse, UPS, IPBS, F-31077 Toulouse; IUB, School of Engineering and Science, D-28727 Bremen

    Is single-strand DNA translatable? Since the 60s, the question still remains whether or not DNA could be directly translated into protein. Some discrepancies in the results were reported about functional translation of single-strand DNA but all results converged on a similar behavior of RNA and ssDNA in the initiation step. Isothermal Titration Calorimetry method was used to determine thermodynamic constants of interaction between single-strand DNA and S30 extract of Escherichia coli. Our results showed that the binding was not affected by the nature of the template tested and the dissociation constants were in the same range when ssDNA (K{sub d}more » = 3.62 {+-} 2.1 x 10{sup -8} M) or the RNA corresponding sequence (K{sub d} = 2.7 {+-} 0.82 x 10{sup -8} M) bearing SD/ATG sequences were used. The binding specificity was confirmed by antibiotic interferences which block the initiation complex formation. These results suggest that the limiting step in translation of ssDNA is the elongation process.« less

  19. Comparative Analysis of Binding Kinetics and Thermodynamics of Dipeptidyl Peptidase-4 Inhibitors and Their Relationship to Structure.

    PubMed

    Schnapp, Gisela; Klein, Thomas; Hoevels, Yvette; Bakker, Remko A; Nar, Herbert

    2016-08-25

    The binding kinetics and thermodynamics of dipeptidyl peptidase (DPP)-4 inhibitors (gliptins) were investigated using surface plasmon resonance and isothermal titration calorimetry. Binding of gliptins to DPP-4 is a rapid electrostatically driven process. Off-rates were generally slow partly because of reversible covalent bond formation by some gliptins, and partly because of strong and extensive interactions. Binding of all gliptins is enthalpy-dominated due to strong ionic interactions and strong solvent-shielded hydrogen bonds. Using a congeneric series of molecules which represented the intermediates in the lead optimization program of linagliptin, the onset of slow binding kinetics and development of the thermodynamic repertoire were analyzed in the context of incremental changes of the chemical structures. All compounds rapidly associated, and therefore the optimization of affinity and residence time is highly correlated. The major contributor to the increasing free energy of binding was a strong increase of binding enthalpy, whereas entropic contributions remained low and constant despite significant addition of lipophilicity.

  20. Microcalorimetric study of the adsorption of PEGylated lysozyme and PEG on a mildly hydrophobic resin: influence of ammonium sulfate.

    PubMed

    Werner, Albert; Blaschke, Tim; Hasse, Hans

    2012-08-07

    Adsorption of native as well as mono-, di-, and tri-PEGylated lysozyme on Toyopearl PPG-600M, a mildly hydrophobic resin is studied by isothermal titration calorimetry and by independent adsorption equilibrium measurements in sodium phosphate buffer at pH 7.0 and 25 °C. For PEGylation two different PEG sizes are used (5 and 10 kDa) which leads to six different forms of PEGylated lysozyme all of which are systematically studied. Additionally, the adsorption of five pure PEGs is explored. The ammonium sulfate concentration is varied from 600 to 1200 mM. The molar enthalpy of adsorption Δh(p)(ads) is determined from the calorimetric and the adsorption equilibrium data. It is found to be endothermic in all experiments. The comparison of the adsorption of different PEGylated forms shows that the adsorption of PEGylated lysozyme is driven by the adsorption of the PEG chain. The results provide insight into the adsorption mechanisms of polymer-modified proteins on hydrophobic chromatographic resins.

  1. Ethanol Concentration Influences the Mechanisms of Wine Tannin Interactions with Poly(L-proline) in Model Wine.

    PubMed

    McRae, Jacqui M; Ziora, Zyta M; Kassara, Stella; Cooper, Matthew A; Smith, Paul A

    2015-05-06

    Changes in ethanol concentration influence red wine astringency, and yet the effect of ethanol on wine tannin-salivary protein interactions is not well understood. Isothermal titration calorimetry (ITC) was used to measure the binding strength between the model salivary protein, poly(L-proline) (PLP) and a range of wine tannins (tannin fractions from a 3- and a 7-year old Cabernet Sauvignon wine) across different ethanol concentrations (5, 10, 15, and 40% v/v). Tannin-PLP interactions were stronger at 5% ethanol than at 40% ethanol. The mechanism of interaction changed for most tannin samples across the wine-like ethanol range (10-15%) from a combination of hydrophobic and hydrogen binding at 10% ethanol to only hydrogen binding at 15% ethanol. These results indicate that ethanol concentration can influence the mechanisms of wine tannin-protein interactions and that the previously reported decrease in wine astringency with increasing alcohol may, in part, relate to a decrease tannin-protein interaction strength.

  2. Astringency reduction in red wine by whey proteins.

    PubMed

    Jauregi, Paula; Olatujoye, Jumoke B; Cabezudo, Ignacio; Frazier, Richard A; Gordon, Michael H

    2016-05-15

    Whey is a by-product of cheese manufacturing and therefore investigating new applications of whey proteins will contribute towards the valorisation of whey and hence waste reduction. This study shows for the first time a detailed comparison of the effectiveness of gelatin and β-lactoglobulin (β-LG) as fining agents. Gelatin was more reactive than whey proteins to tannic acid as shown by both the astringency method (with ovalbumin as a precipitant) and the tannins determination method (with methylcellulose as a precipitant). The two proteins showed similar selectivity for polyphenols but β-LG did not remove as much catechin. The fining agent was removed completely or to a trace level after centrifugation followed by filtration which minimises its potential allergenicity. In addition, improved understanding of protein-tannin interactions was obtained by fluorescence, size measurement and isothermal titration calorimetry (ITC). Overall this study demonstrates that whey proteins have the potential of reducing astringency in red wine and can find a place in enology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Thermodynamic evidence for Ca2+-mediated self-aggregation of Lewis X gold glyconanoparticles. A model for cell adhesion via carbohydrate-carbohydrate interaction.

    PubMed

    de la Fuente, Jesús M; Eaton, Peter; Barrientos, Africa G; Menéndez, Margarita; Penadés, Soledad

    2005-05-04

    Thermodynamic evidence for the selective Ca(2+)-mediated self-aggregation via carbohydrate-carbohydrate interactions of gold glyconanoparticles functionalized with the disaccharides lactose (lacto-Au) and maltose (malto-Au), or the biologically relevant trisaccharide Lewis X (Le(X)-Au), was obtained by isothermal titration calorimetry. The aggregation process was also directly visualized by atomic force microscopy. It was shown in the case of the trisaccharide Lewis X that the Ca(2+)-mediated aggregation is a slow process that takes place with a decrease in enthalpy of 160 +/- 30 kcal mol(-)(1), while the heat evolved in the case of lactose and maltose glyconanoparticles was very low and thermal equilibrium was quickly achieved. Measurements in the presence of Mg(2+) and Na(+) cations confirm the selectivity for Ca(2+) of Le(X)-Au glyconanoparticles. The relevance of this result to cell-cell adhesion process mediated by carbohydrate-carbohydrate interactions is discussed.

  4. Functionalized magnetic nanoparticles for the decontamination of water polluted with cesium

    NASA Astrophysics Data System (ADS)

    Helal, Ahmed S.; Decorse, Philippe; Perruchot, Christian; Novak, Sophie; Lion, Claude; Ammar, Souad; El Hage Chahine, Jean-Michel; Hémadi, Miryana

    2016-05-01

    Magnetic nanoparticles are attracting considerable interest because of their potential applications in practically all fields of science and technology, including the removal of heavy metals from contaminated waters. It is, therefore, of great importance to adapt the surfaces of these nanoparticles according to the application. In this work advanced nanoparticles (NPs) with well-tailored surface functionalities were synthesized using the polyol method. The efficiency of a chelating agent, succinyl-β-cyclodextrin (SBCD), was first investigated spectrophotometrically and by Isothermal Titration Calorimetry (ITC). SBCD was then grafted onto nanoparticles previously functionalized with 3-aminopropyl triethoxsilane (NP-APTES). The resulting NP-SBCD system was then incubated with a solution of cesium. After magnetic separation, the solid residue was removed from the supernatant and characterized by X-Ray Photoelectron spectrometry (XPS), X-Ray Fluorescence spectrometry (XRF) and Superconducting QUantum Interference Device (SQUID) magnetometry. These characterizations show the presence of cesium in the solid residue, which indicates Cs uptake by the NP-SBCD system. This nanohybrid system constitutes a promising model for heavy metal decontamination.

  5. Intravenous anti-MRSA phosphatiosomes mediate enhanced affinity to pulmonary surfactants for effective treatment of infectious pneumonia.

    PubMed

    Hsu, Ching-Yun; Sung, Calvin T; Aljuffali, Ibrahim A; Chen, Chun-Han; Hu, Kai-Yin; Fang, Jia-You

    2018-02-01

    The aim of this study was to develop PEGylated phosphatidylcholine (PC)-rich nanovesicles (phosphatiosomes) carrying ciprofloxacin (CIPX) for lung targeting to eradicate extracellular and intracellular methicillin-resistant Staphylococcus aureus (MRSA). Soyaethyl morphonium ethosulfate (SME) was intercalated in the nanovesicle surface with the dual goals of achieving strengthened bactericidal activity of CIPX-loaded phosphatiosomes and delivery to the lungs. The isothermal titration calorimetry (ITC) results proved the strong association of SME phosphatiosomes with pulmonary surfactant. We demonstrated a superior anti-MRSA activity of SME phosphatiosomes compared to plain phosphatiosomes and to free CIPX. A synergistic effect of CIPX and SME nanocarriers was found in the biofilm eradication. SME phosphatiosomes were readily engulfed by the macrophages, restricting the intracellular MRSA count by 1-2 log units. SME phosphatiosomes efficiently accumulated in the lungs after intravenous injection. In a rat model of lung infection, the MRSA burden in the lungs could be decreased by 8-fold after SME nanosystem application. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Calorimetric and spectroscopic studies of the interaction between zidovudine and human serum albumin

    NASA Astrophysics Data System (ADS)

    Pîrnău, Adrian; Mic, Mihaela; Neamţu, Silvia; Floare, Călin G.; Bogdan, Mircea

    2018-02-01

    A quantitative analysis of the interaction between zidovudine (AZT) and human serum albumin (HSA) was achieved using Isothermal titration calorimetry (ITC) in combination with fluorescence and 1H NMR spectroscopy. ITC directly measure the heat during a biomolecular binding event and gave us thermodynamic parameters and the characteristic association constant. By fluorescence quenching, the binding parameters of AZT-HSA interaction was determined and location to binding site I of HSA was confirmed. Via T1 NMR selective relaxation time measurements the drug-protein binding extent was evaluated as dissociation constants Kd and the involvement of azido moiety of zidovudine in molecular complex formation was put in evidence. All three methods indicated a very weak binding interaction. The association constant determined by ITC (3.58 × 102 M- 1) is supported by fluorescence quenching data (2.74 × 102 M- 1). The thermodynamic signature indicates that at least hydrophobic and electrostatic type interactions played a main role in the binding process.

  7. Entropy and biological systems: Experimentally-investigated entropy-driven stacking of plant photosynthetic membranes

    PubMed Central

    Jia, Husen; Liggins, John R.; Chow, Wah Soon

    2014-01-01

    According to the Second Law of Thermodynamics, an overall increase of entropy contributes to the driving force for any physicochemical process, but entropy has seldom been investigated in biological systems. Here, for the first time, we apply Isothermal Titration Calorimetry (ITC) to investigate the Mg2+-induced spontaneous stacking of photosynthetic membranes isolated from spinach leaves. After subtracting a large endothermic interaction of MgCl2 with membranes, unrelated to stacking, we demonstrate that the enthalpy change (heat change at constant pressure) is zero or marginally positive or negative. This first direct experimental evidence strongly suggests that an entropy increase significantly drives membrane stacking in this ordered biological structure. Possible mechanisms for the entropy increase include: (i) the attraction between discrete oppositely-charged areas, releasing counterions; (ii) the release of loosely-bound water molecules from the inter-membrane gap; (iii) the increased orientational freedom of previously-aligned water dipoles; and (iv) the lateral rearrangement of membrane components. PMID:24561561

  8. Formation of polyelectrolyte complexes with diethylaminoethyl dextran: charge ratio and molar mass effect.

    PubMed

    Le Cerf, Didier; Pepin, Anne Sophie; Niang, Pape Momar; Cristea, Mariana; Karakasyan-Dia, Carole; Picton, Luc

    2014-11-26

    The formation of polyelectrolyte complexes (PECs) between carboxymethyl pullulan and DEAE Dextran, was investigated, in dilute solution, with emphasis on the effect of charge density (molar ratio or pH) and molar masses. Electrophoretic mobility measurements have evidenced that insoluble PECs (neutral electrophoretic mobility) occurs for charge ratio between 0.6 (excess of polycation) and 1 (stoichiometry usual value) according to the pH. This atypical result is explained by the inaccessibility of some permanent cationic charge when screened by pH dependant cationic ones (due to the Hoffman alkylation). Isothermal titration calorimetry (ITC) indicates an endothermic formation of PEC with a binding constant around 10(5) L mol(-1). Finally asymmetrical flow field flow fractionation coupled on line with static multi angle light scattering (AF4/MALS) evidences soluble PECs with very large average molar masses and size around 100 nm, in agreement with scrambled eggs multi-association between various polyelectrolyte chains. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Divers models of divalent cation interaction to calcium-binding proteins: techniques and anthology.

    PubMed

    Cox, Jos A

    2013-01-01

    Intracellular Ca(2+)-binding proteins (CaBPs) are sensors of the calcium signal and several of them even shape the signal. Most of them are equipped with at least two EF-hand motifs designed to bind Ca(2+). Their affinities are very variable, can display cooperative effects, and can be modulated by physiological Mg(2+) concentrations. These binding phenomena are monitored by four major techniques: equilibrium dialysis, fluorimetry with fluorescent Ca(2+) indicators, flow dialysis, and isothermal titration calorimetry. In the last quarter of the twentieth century reports on the ion-binding characteristics of several abundant wild-type CaBPs were published. With the advent of recombinant CaBPs it became possible to determine these properties on previously inaccessible proteins. Here I report on studies by our group carried out in the last decade on eight families of recombinant CaBPs, their mutants, or truncated domains. Moreover this chapter deals with the currently used methods for quantifying the binding of Ca(2+) and Mg(2+) to CaBPs.

  10. Twin-arginine translocase may have a role in the chaperone function of NarJ from Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Catherine S.; Howell, Jenika M.; Workentine, Matthew L.

    2006-04-28

    NarJ is a chaperone involved in folding, maturation, and molybdenum cofactor insertion of nitrate reductase A from Escherichia coli. It has also been shown that NarJ exhibits sequence homology to a family of chaperones involved in maturation and cofactor insertion of E. coli redox enzymes that are mediated by twin-arginine translocase (Tat) dependent translocation. In this study, we show that NarJ binds the N-terminal region of NarG through Far Western studies and isothermal titration calorimetry, and the binding event occurs towards a short peptide sequence that contains a homologous twin-arginine motif. Fractionation experiments also show that the interaction of NarJmore » to the cytoplasmic membrane exhibits Tat-dependence. Upon further investigation through Far Western blots, the interactome of NarJ also exhibits Tat-dependence. Together the data suggest that the Tat system may play a role in the maturation pathway of nitrate reductase A.« less

  11. The Comparative Studies of Binding Activity of Curcumin and Didemethylated Curcumin with Selenite: Hydrogen Bonding vs Acid-Base Interactions.

    PubMed

    Liao, Jiahn-Haur; Wu, Tzu-Hua; Chen, Ming-Yi; Chen, Wei-Ting; Lu, Shou-Yun; Wang, Yi-Hsuan; Wang, Shao-Pin; Hsu, Yen-Min; Huang, Yi-Shiang; Huang, Zih-You; Lin, Yu-Ching; Chang, Ching-Ming; Huang, Fu-Yung; Wu, Shih-Hsiung

    2015-12-04

    In this report, the in vitro relative capabilities of curcumin (CCM) and didemethylated curcumin (DCCM) in preventing the selenite-induced crystallin aggregation were investigated by turbidity tests and isothermal titration calorimetry (ITC). DCCM showed better activity than CCM. The conformers of CCM/SeO3(2-) and DCCM/SeO3(2-) complexes were optimized by molecular orbital calculations. Results reveal that the selenite anion surrounded by CCM through the H-bonding between CCM and selenite, which is also observed via IR and NMR studied. For DCCM, the primary driving force is the formation of an acid-base adduct with selenite showing that the phenolic OH group of DCCM was responsible for forming major conformer of DCCM. The formation mechanisms of selenite complexes with CCM or DCCM explain why DCCM has greater activity than CCM in extenuating the toxicity of selenite as to prevent selenite-induced lens protein aggregation.

  12. Size and molecular flexibility affect the binding of ellagitannins to bovine serum albumin.

    PubMed

    Dobreva, Marina A; Green, Rebecca J; Mueller-Harvey, Irene; Salminen, Juha-Pekka; Howlin, Brendan J; Frazier, Richard A

    2014-09-17

    Binding to bovine serum albumin of monomeric (vescalagin and pedunculagin) and dimeric ellagitannins (roburin A, oenothein B, and gemin A) was investigated by isothermal titration calorimetry and fluorescence spectroscopy, which indicated two types of binding sites. Stronger and more specific sites exhibited affinity constants, K1, of 10(4)-10(6) M(-1) and stoichiometries, n1, of 2-13 and dominated at low tannin concentrations. Weaker and less-specific binding sites had K2 constants of 10(3)-10(5) M(-1) and stoichiometries, n2, of 16-30 and dominated at higher tannin concentrations. Binding to stronger sites appeared to be dependent on tannin flexibility and the presence of free galloyl groups. Positive entropies for all but gemin A indicated that hydrophobic interactions dominated during complexation. This was supported by an exponential relationship between the affinity, K1, and the modeled hydrophobic accessible surface area and by a linear relationship between K1 and the Stern-Volmer quenching constant, K(SV).

  13. Conformational selection in a protein-protein interaction revealed by dynamic pathway analysis

    DOE PAGES

    Chakrabarti, Kalyan S.; Agafonov, Roman V.; Pontiggia, Francesco; ...

    2015-12-24

    Molecular recognition plays a central role in biology, and protein dynamics has been acknowledged to be important in this process. However, it is highly debated whether conformational changes happen before ligand binding to produce a binding-competent state (conformational selection) or are caused in response to ligand binding (induced fit). Proposals for both mechanisms in protein/protein recognition have been primarily based on structural arguments. However, the distinction between them is a question of the probabilities of going via these two opposing pathways. Here we present a direct demonstration of exclusive conformational selection in protein/protein recognition by measuring the flux for rhodopsinmore » kinase binding to its regulator recoverin, an important molecular recognition in the vision system. Using NMR spectroscopy, stopped-flow kinetics and isothermal titration calorimetry we show that recoverin populates a minor conformation in solution that exposes a hydrophobic binding pocket responsible for binding rhodopsin kinase. Lastly, protein dynamics in free recoverin limits the overall rate of binding.« less

  14. Saccharide substituted zinc phthalocyanines: optical properties, interaction with bovine serum albumin and near infrared fluorescence imaging for sentinel lymph nodes.

    PubMed

    Lu, Li; Lv, Feng; Cao, Bo; He, Xujun; Liu, Tianjun

    2014-01-03

    Saccharide-substituted zinc phthalocyanines, [2,9(10),16(17),23(24)-tetrakis((1-(β-D-glucose-2-yl)-1H-1,2,3-triazol-4-yl)methoxy)phthalocyaninato]zinc(II) and [2,9(10), 16(17),23(24)-tetrakis((1-(β-D-lactose-2-yl)-1H-1,2,3-triazol-4-yl)methoxy)phthalocyaninato] zinc(II), were evaluated as novel near infrared fluorescence agents. Their interaction with bovine serum albumin was investigated by fluorescence and circular dichroism spectroscopy and isothermal titration calorimetry. Near infrared imaging for sentinel lymph nodes in vivo was performed using nude mice as models. Results show that saccharide- substituted zinc phthalocyanines have favourable water solubility, good optical stability and high emission ability in the near infrared region. The interaction of lactose-substituted phthalocyanine with bovine serum albumin displays obvious differences to that of glucose- substituted phthalocyanine. Moreover, lactose-substituted phthalocyanine possesses obvious imaging effects for sentinel lymph nodes in vivo.

  15. Protein–ligand interactions investigated by thermal shift assays (TSA) and dual polarization interferometry (DPI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grøftehauge, Morten K., E-mail: m.k.groftehauge@durham.ac.uk; Hajizadeh, Nelly R.; Swann, Marcus J.

    2015-01-01

    The biophysical characterization of protein–ligand interactions in solution using techniques such as thermal shift assay, or on surfaces using, for example, dual polarization interferometry, plays an increasingly important role in complementing crystal structure determinations. Over the last decades, a wide range of biophysical techniques investigating protein–ligand interactions have become indispensable tools to complement high-resolution crystal structure determinations. Current approaches in solution range from high-throughput-capable methods such as thermal shift assays (TSA) to highly accurate techniques including microscale thermophoresis (MST) and isothermal titration calorimetry (ITC) that can provide a full thermodynamic description of binding events. Surface-based methods such as surface plasmonmore » resonance (SPR) and dual polarization interferometry (DPI) allow real-time measurements and can provide kinetic parameters as well as binding constants. DPI provides additional spatial information about the binding event. Here, an account is presented of new developments and recent applications of TSA and DPI connected to crystallography.« less

  16. The low binding affinity of D-serine at the ionotropic glutamate receptor GluD2 can be attributed to the hinge region

    NASA Astrophysics Data System (ADS)

    Tapken, Daniel; Steffensen, Thomas Bielefeldt; Leth, Rasmus; Kristensen, Lise Baadsgaard; Gerbola, Alexander; Gajhede, Michael; Jørgensen, Flemming Steen; Olsen, Lars; Kastrup, Jette Sandholm

    2017-04-01

    Ionotropic glutamate receptors (iGluRs) are responsible for most of the fast excitatory communication between neurons in our brain. The GluD2 receptor is a puzzling member of the iGluR family: It is involved in synaptic plasticity, plays a role in human diseases, e.g. ataxia, binds glycine and D-serine with low affinity, yet no ligand has been discovered so far that can activate its ion channel. In this study, we show that the hinge region connecting the two subdomains of the GluD2 ligand-binding domain is responsible for the low affinity of D-serine, by analysing GluD2 mutants with electrophysiology, isothermal titration calorimetry and molecular dynamics calculations. The hinge region is highly variable among iGluRs and fine-tunes gating activity, suggesting that in GluD2 this region has evolved to only respond to micromolar concentrations of D-serine.

  17. Spectroscopic and thermodynamic studies on ferulic acid - Alpha-2-macroglobulin interaction

    NASA Astrophysics Data System (ADS)

    Rehman, Ahmed Abdur; Sarwar, Tarique; Arif, Hussain; Ali, Syed Saqib; Ahsan, Haseeb; Tabish, Mohammad; Khan, Fahim Halim

    2017-09-01

    Ferulic acid is a major phenolic acid found in numerous plant species in conjugated form. It binds to enzymes and oligomeric proteins and modifies their structure and function. This study was designed to examine the interaction of ferulic acid, an active ingredient of some important medicines, with α2M, a key serum proteinase, under physiological conditions. The mechanism of interaction was studied by spectroscopic techniques such as, UV-visible absorption, fluorescence spectroscopy, circular dichroism along with isothermal titration calorimetry. Fluorescence quenching of α2M by ferulic acid demonstrated the formation of α2M-ferulic acid complex by static quenching mechanism. Binding parameters calculated by Stern-Volmer method showed that ferulic acid binds to α2M with moderate affinity of the order of ∼104 M-1. The thermodynamic signatures reveal that binding was enthalpy driven and hydrogen bonding played a major role in ferulic acid-α2M binding. CD spectra analysis suggests very little conformational changes in α2M on ferulic acid binding.

  18. Binding free energy prediction in strongly hydrophobic biomolecular systems.

    PubMed

    Charlier, Landry; Nespoulous, Claude; Fiorucci, Sébastien; Antonczak, Serge; Golebiowski, Jérome

    2007-11-21

    We present a comparison of various computational approaches aiming at predicting the binding free energy in ligand-protein systems where the ligand is located within a highly hydrophobic cavity. The relative binding free energy between similar ligands is obtained by means of the thermodynamic integration (TI) method and compared to experimental data obtained through isothermal titration calorimetry measurements. The absolute free energy of binding prediction was obtained on a similar system (a pyrazine derivative bound to a lipocalin) by TI, potential of mean force (PMF) and also by means of the MMPBSA protocols. Although the TI protocol performs poorly either with an explicit or an implicit solvation scheme, the PMF calculation using an implicit solvation scheme leads to encouraging results, with a prediction of the binding affinity being 2 kcal mol(-1) lower than the experimental value. The use of an implicit solvation scheme appears to be well suited for the study of such hydrophobic systems, due to the lack of water molecules within the binding site.

  19. Two distinct DNA sequences recognized by transcription factors represent enthalpy and entropy optima

    PubMed Central

    Yin, Yimeng; Das, Pratyush K; Jolma, Arttu; Zhu, Fangjie; Popov, Alexander; Xu, You; Nilsson, Lennart

    2018-01-01

    Most transcription factors (TFs) can bind to a population of sequences closely related to a single optimal site. However, some TFs can bind to two distinct sequences that represent two local optima in the Gibbs free energy of binding (ΔG). To determine the molecular mechanism behind this effect, we solved the structures of human HOXB13 and CDX2 bound to their two optimal DNA sequences, CAATAAA and TCGTAAA. Thermodynamic analyses by isothermal titration calorimetry revealed that both sites were bound with similar ΔG. However, the interaction with the CAA sequence was driven by change in enthalpy (ΔH), whereas the TCG site was bound with similar affinity due to smaller loss of entropy (ΔS). This thermodynamic mechanism that leads to at least two local optima likely affects many macromolecular interactions, as ΔG depends on two partially independent variables ΔH and ΔS according to the central equation of thermodynamics, ΔG = ΔH - TΔS. PMID:29638214

  20. Structural Insight into Amino Group-carrier Protein-mediated Lysine Biosynthesis

    PubMed Central

    Yoshida, Ayako; Tomita, Takeo; Fujimura, Tsutomu; Nishiyama, Chiharu; Kuzuyama, Tomohisa; Nishiyama, Makoto

    2015-01-01

    In the biosynthesis of lysine by Thermus thermophilus, the metabolite α-ketoglutarate is converted to the intermediate α-aminoadipate (AAA), which is protected by the 54-amino acid acidic protein LysW. In this study, we determined the crystal structure of LysZ from T. thermophilus (TtLysZ), an amino acid kinase that catalyzes the second step in the AAA to lysine conversion, which was in a complex with LysW at a resolution of 1.85 Å. A crystal analysis coupled with isothermal titration calorimetry of the TtLysZ mutants for TtLysW revealed tight interactions between LysZ and the globular and C-terminal extension domains of the LysW protein, which were mainly attributed to electrostatic forces. These results provided structural evidence for LysW acting as a protecting molecule for the α-amino group of AAA and also as a carrier protein to guarantee better recognition by biosynthetic enzymes for the efficient biosynthesis of lysine. PMID:25392000

  1. The two-step assemblies of basic-amino-Acid-rich Peptide with a highly charged polyoxometalate.

    PubMed

    Zhang, Teng; Li, Hong-Wei; Wu, Yuqing; Wang, Yizhan; Wu, Lixin

    2015-06-15

    Two-step assembly of a peptide from HPV16 L1 with a highly charged europium-substituted polyoxometalate (POM) cluster, accompanying a great luminescence enhancement of the inorganic polyanions, is reported. The mechanism is discussed in detail by analyzing the thermodynamic parameters from isothermal titration calorimetry (ITC), time-resolved fluorescent and NMR spectra. By comparing the actions of the peptide analogues, a binding process and model are proposed accordingly. The driving forces in each binding step are clarified, and the initial POM aggregation, basic-sequence and hydrophobic C termini of peptide are revealed to contribute essentially to the two-step assembly. The present study demonstrates both a meaningful preparation for bioinorganic materials and a strategy using POMs to modulate the assembly of peptides and even proteins, which could be extended to other proteins and/or viruses by using peptides and POMs with similar properties. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Thermodynamic study of dihydrogen phosphate dimerisation and complexation with novel urea- and thiourea-based receptors.

    PubMed

    Bregović, Nikola; Cindro, Nikola; Frkanec, Leo; Užarević, Krunoslav; Tomišić, Vladislav

    2014-11-24

    Complexation of dihydrogen phosphate by novel thiourea and urea receptors in acetonitrile and dimethyl sulfoxide was studied in detail by an integrated approach by using several methods (isothermal titration calorimetry, ESI-MS, and (1)H NMR and UV spectroscopy). Thermodynamic investigations into H2PO4(-) dimerisation, which is a process that has been frequently recognised, but rarely quantitatively described, were carried out as well. The corresponding equilibrium was taken into account in the anion-binding studies, which enabled reliable determination of the complexation thermodynamic quantities. In both solvents the thiourea derivatives exhibited considerably higher binding affinities with respect to those containing the urea moiety. In acetonitrile, 1:1 and 2:1 (anion/receptor) complexes formed, whereas in dimethyl sulfoxide only the significantly less stable complexes of 1:1 stoichiometry were detected. The solvent effects on the thermodynamic parameters of dihydrogen phosphate dimerisation and complexation reactions are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Nootkatone encapsulation by cyclodextrins: Effect on water solubility and photostability.

    PubMed

    Kfoury, Miriana; Landy, David; Ruellan, Steven; Auezova, Lizette; Greige-Gerges, Hélène; Fourmentin, Sophie

    2017-12-01

    Nootkatone (NO) is a sesquiterpenoid volatile flavor, used in foods, cosmetics and pharmaceuticals, possessing also insect repellent activity. Its application is limited because of its low aqueous solubility and stability; this could be resolved by encapsulation in cyclodextrins (CDs). This study evaluated the encapsulation of NO by CDs using phase solubility studies, Isothermal Titration Calorimetry, Nuclear Magnetic Resonance spectroscopy and molecular modeling. Solid CD/NO inclusion complex was prepared and characterized for encapsulation efficiency and loading capacity using UV-Visible. Thermal properties were investigated by thermogravimetric-differential thermal analysis and release studies were performed using multiple headspace extraction. Formation constants (K f ) proved the formation of stable inclusion complexes. NO aqueous solubility, photo- and thermal stability were enhanced and the release could be insured from solid complex in aqueous solution. This suggests that CDs are promising carrier to improve NO properties and, consequently, to enlarge its use in foods, cosmetics, pharmaceuticals and agrochemicals preparations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Thermodynamic analysis of the heterodimerization of leucine zippers of Jun and Fos transcription factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seldeen, Kenneth L.; McDonald, Caleb B.; Deegan, Brian J.

    2008-10-31

    Jun and Fos are components of the AP1 family of transcription factors and bind to the promoters of a diverse multitude of genes involved in critical cellular responses such as cell growth and proliferation, cell cycle regulation, embryonic development and cancer. Here, using the powerful technique of isothermal titration calorimetry, we characterize the thermodynamics of heterodimerization of leucine zippers of Jun and Fos. Our data suggest that the heterodimerization of leucine zippers is driven by enthalpic forces with unfavorable entropy change at physiological temperatures. Furthermore, the basic regions appear to modulate the heterodimerization of leucine zippers and may undergo atmore » least partial folding upon heterodimerization. Large negative heat capacity changes accompanying the heterodimerization of leucine zippers are consistent with the view that leucine zippers do not retain {alpha}-helical conformations in isolation and that the formation of the native coiled-coil {alpha}-helical dimer is attained through a coupled folding-dimerization mechanism.« less

  5. The low binding affinity of D-serine at the ionotropic glutamate receptor GluD2 can be attributed to the hinge region.

    PubMed

    Tapken, Daniel; Steffensen, Thomas Bielefeldt; Leth, Rasmus; Kristensen, Lise Baadsgaard; Gerbola, Alexander; Gajhede, Michael; Jørgensen, Flemming Steen; Olsen, Lars; Kastrup, Jette Sandholm

    2017-04-07

    Ionotropic glutamate receptors (iGluRs) are responsible for most of the fast excitatory communication between neurons in our brain. The GluD2 receptor is a puzzling member of the iGluR family: It is involved in synaptic plasticity, plays a role in human diseases, e.g. ataxia, binds glycine and D-serine with low affinity, yet no ligand has been discovered so far that can activate its ion channel. In this study, we show that the hinge region connecting the two subdomains of the GluD2 ligand-binding domain is responsible for the low affinity of D-serine, by analysing GluD2 mutants with electrophysiology, isothermal titration calorimetry and molecular dynamics calculations. The hinge region is highly variable among iGluRs and fine-tunes gating activity, suggesting that in GluD2 this region has evolved to only respond to micromolar concentrations of D-serine.

  6. The low binding affinity of D-serine at the ionotropic glutamate receptor GluD2 can be attributed to the hinge region

    PubMed Central

    Tapken, Daniel; Steffensen, Thomas Bielefeldt; Leth, Rasmus; Kristensen, Lise Baadsgaard; Gerbola, Alexander; Gajhede, Michael; Jørgensen, Flemming Steen; Olsen, Lars; Kastrup, Jette Sandholm

    2017-01-01

    Ionotropic glutamate receptors (iGluRs) are responsible for most of the fast excitatory communication between neurons in our brain. The GluD2 receptor is a puzzling member of the iGluR family: It is involved in synaptic plasticity, plays a role in human diseases, e.g. ataxia, binds glycine and D-serine with low affinity, yet no ligand has been discovered so far that can activate its ion channel. In this study, we show that the hinge region connecting the two subdomains of the GluD2 ligand-binding domain is responsible for the low affinity of D-serine, by analysing GluD2 mutants with electrophysiology, isothermal titration calorimetry and molecular dynamics calculations. The hinge region is highly variable among iGluRs and fine-tunes gating activity, suggesting that in GluD2 this region has evolved to only respond to micromolar concentrations of D-serine. PMID:28387240

  7. Conformational selection in a protein-protein interaction revealed by dynamic pathway analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakrabarti, Kalyan S.; Agafonov, Roman V.; Pontiggia, Francesco

    Molecular recognition plays a central role in biology, and protein dynamics has been acknowledged to be important in this process. However, it is highly debated whether conformational changes happen before ligand binding to produce a binding-competent state (conformational selection) or are caused in response to ligand binding (induced fit). Proposals for both mechanisms in protein/protein recognition have been primarily based on structural arguments. However, the distinction between them is a question of the probabilities of going via these two opposing pathways. Here we present a direct demonstration of exclusive conformational selection in protein/protein recognition by measuring the flux for rhodopsinmore » kinase binding to its regulator recoverin, an important molecular recognition in the vision system. Using NMR spectroscopy, stopped-flow kinetics and isothermal titration calorimetry we show that recoverin populates a minor conformation in solution that exposes a hydrophobic binding pocket responsible for binding rhodopsin kinase. Lastly, protein dynamics in free recoverin limits the overall rate of binding.« less

  8. Are We There Yet? Applying Thermodynamic and Kinetic Profiling on Embryonic Ectoderm Development (EED) Hit-to-Lead Program.

    PubMed

    Wang, Ying; Edalji, Rohinton P; Panchal, Sanjay C; Sun, Chaohong; Djuric, Stevan W; Vasudevan, Anil

    2017-10-26

    It is advocated that kinetic and thermodynamic profiling of bioactive compounds should be incorporated and utilized as complementary tools for hit and lead optimizations in drug discovery. To assess their applications in the EED hit-to-lead optimization process, large amount of thermodynamic and kinetic data were collected and analyzed via isothermal titration calorimetry (ITC) and surface plasmon resonance (SPR), respectively. Slower dissociation rates (k off ) of the lead compounds were observed as the program progressed. Analysis of the kinetic data indicated that compound cellular activity correlated with both K i and k off . Our analysis revealed that ITC data should be interpreted in the context of chiral purity of the compounds. The thermodynamic signatures of the EED aminopyrrolidine compounds were found to be mainly enthalpy driven with improved enthalpic contributions as the program progressed. Our study also demonstrated that significant challenges still exist in utilizing kinetic and thermodynamic parameters for hit selection.

  9. Calorimetry Studies of Ammonia, Nitric Acid, and Ammonium Nitrate

    DTIC Science & Technology

    1979-10-01

    50 microns of Hg. Glass ampules containing NH4NO3were filled in the dry box and then flame-sealed under a nitrogen atmosphere. A Karl - Fischer titration...was standardized by potentiometric titration against standard 1 N HCI, For calorimetric measurements, samples were transferred by syringe into weighed... potentiometric titration against standard 1 N NaOH, was 99.6 + 0.2 wt% HNO3. As a measure of tte extent of reaction with the wall oTthe3* calorimeter, HNO3

  10. Biophysical study of the non-steroidal anti-inflammatory drugs (NSAID) ibuprofen, naproxen and diclofenac with phosphatidylserine bilayer membranes.

    PubMed

    Manrique-Moreno, Marcela; Heinbockel, Lena; Suwalsky, Mario; Garidel, Patrick; Brandenburg, Klaus

    2016-09-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) represent an effective pain treatment option and therefore one of the most sold therapeutic agents worldwide. The study of the molecular interactions responsible for their physiological activity, but also for their side effects, is therefore important. This report presents data on the interaction of the most consumed NSAIDs (ibuprofen, naproxen and diclofenac) with one main phospholipid in eukaryotic cells, dimyristoylphosphatidylserine (DMPS). The applied techniques are Fourier-transform infrared spectroscopy (FTIR), with which in transmission the gel to liquid crystalline phase transition of the acyl chains in the absence and presence of the NSAID are monitored, supplemented by differential scanning calorimetry (DSC) data on the phase transition. FTIR in reflection (ATR, attenuated total reflectance) is applied to record the dependence of the interactions of the NSAID with particular functional groups observed in the DMPS spectrum such as the ester carbonyl and phosphate vibrational bands. With Förster resonance energy transfer (FRET) a possible intercalation of the NSAID into the DMPS liposomes and with isothermal titration calorimetry (ITC) the thermodynamics of the interaction are monitored. The data show that the NSAID react in a particular way with this lipid, but in some parameters the three NSAID clearly differ, with which now a clear picture of the interaction processes is possible. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Thermodynamic stability of carbonic anhydrase: measurements of binding affinity and stoichiometry using ThermoFluor.

    PubMed

    Matulis, Daumantas; Kranz, James K; Salemme, F Raymond; Todd, Matthew J

    2005-04-05

    ThermoFluor (a miniaturized high-throughput protein stability assay) was used to analyze the linkage between protein thermal stability and ligand binding. Equilibrium binding ligands increase protein thermal stability by an amount proportional to the concentration and affinity of the ligand. Binding constants (K(b)) were measured by examining the systematic effect of ligand concentration on protein stability. The precise ligand effects depend on the thermodynamics of protein stability: in particular, the unfolding enthalpy. An extension of current theoretical treatments was developed for tight binding inhibitors, where ligand effect on T(m) can also reveal binding stoichiometry. A thermodynamic analysis of carbonic anhydrase by differential scanning calorimetry (DSC) enabled a dissection of the Gibbs free energy of stability into enthalpic and entropic components. Under certain conditions, thermal stability increased by over 30 degrees C; the heat capacity of protein unfolding was estimated from the dependence of calorimetric enthalpy on T(m). The binding affinity of six sulfonamide inhibitors to two isozymes (human type 1 and bovine type 2) was analyzed by both ThermoFluor and isothermal titration calorimetry (ITC), resulting in a good correlation in the rank ordering of ligand affinity. This combined investigation by ThermoFluor, ITC, and DSC provides a detailed picture of the linkage between ligand binding and protein stability. The systematic effect of ligands on stability is shown to be a general tool to measure affinity.

  12. Thermodynamic Effects of Noncoded and Coded Methionine Substitutions in Calmodulin

    PubMed Central

    Yamniuk, Aaron P.; Ishida, Hiroaki; Lippert, Dustin; Vogel, Hans J.

    2009-01-01

    The methionine residues in the calcium (Ca2+) regulatory protein calmodulin (CaM) are structurally and functionally important. They are buried within the N- and C-domains of apo-CaM but become solvent-exposed in Ca2+-CaM, where they interact with numerous target proteins. Previous structural studies have shown that methionine substitutions to the noncoded amino acids selenomethionine, ethionine, or norleucine, or mutation to leucine do not impact the main chain structure of CaM. Here we used differential scanning calorimetry to show that these substitutions enhance the stability of both domains, with the largest increase in melting temperature (19–26°C) achieved with leucine or norleucine in the apo-C-domain. Nuclear magnetic resonance spectroscopy experiments also revealed the loss of a slow conformational exchange process in the Leu-substituted apo-C-domain. In addition, isothermal titration calorimetry experiments revealed considerable changes in the enthalpy and entropy of target binding to apo-CaM and Ca2+-CaM, but the free energy of binding was largely unaffected due to enthalpy-entropy compensation. Collectively, these results demonstrate that noncoded and coded methionine substitutions can be accommodated in CaM because of the structural plasticity of the protein. However, adjustments in side-chain packing and dynamics lead to significant differences in protein stability and the thermodynamics of target binding. PMID:19217866

  13. Lactoferrin denaturation induced by anionic surfactants: The role of the ferric ion in the protein stabilization.

    PubMed

    Ferreira, Gabriel Max Dias; Ferreira, Guilherme Max Dias; Agudelo, Álvaro Javier Patiño; Hudson, Eliara Acipreste; Dos Santos Pires, Ana Clarissa; da Silva, Luis Henrique Mendes

    2018-05-11

    Here, investigation was made of the interaction between Lactoferrin (Lf) and the anionic surfactants sodium dodecyl sulfate (SDS), sodium dodecylbenzene sulfonate (SDBS), and sodium decyl sulfate (DSS), using isothermal titration calorimetry, Nano differential scanning calorimetry (NanoDSC), and fluorescence spectroscopy. The Lf-surfactant interaction was enthalpically favorable (the integral enthalpy change ranged from -5.99 kJ mol -1 , for SDS at pH 3.0, to -0.61 kJ mol -1 , for DSS at pH 12.0) and promoted denaturation of the protein. The Lf denaturation efficiency followed the order DSS < SDS < SDBS. The extent of binding of the surfactants to Lf strongly depended on pH and the surfactant structure, reaching a maximum value of 505 SDBS molecules per gram of Lf at pH 3.0. The different efficiencies of the surfactants in denaturing Lf were attributed to the balance of hydrophobic and electrostatic interactions, which also depended on pH and the surfactant structure, highlighting the SDBS-tryptophan residue specific interaction, where SDBS acted as a quencher of fluorescence. Interestingly, the NanoDSC and fluorescence measurements showed that the ferric ion bound to Lf increased its stability against denaturation induced by the surfactants. The results have important implications for understanding the influence of surfactants on structural changes in metalloproteins. Copyright © 2017. Published by Elsevier B.V.

  14. Polymorphic Nucleic Acid Binding of Bioactive Isoquinoline Alkaloids and Their Role in Cancer

    PubMed Central

    Maiti, Motilal; Kumar, Gopinatha Suresh

    2010-01-01

    Bioactive alkaloids occupy an important position in applied chemistry and play an indispensable role in medicinal chemistry. Amongst them, isoquinoline alkaloids like berberine, palmatine and coralyne of protoberberine group, sanguinarine of the benzophenanthridine group, and their derivatives represent an important class of molecules for their broad range of clinical and pharmacological utility. In view of their extensive occurrence in various plant species and significantly low toxicities, prospective development and use of these alkaloids as effective anticancer agents are matters of great current interest. This review has focused on the interaction of these alkaloids with polymorphic nucleic acid structures (B-form, A-form, Z-form, HL-form, triple helical form, quadruplex form) and their topoisomerase inhibitory activity reported by several research groups using various biophysical techniques like spectrophotometry, spectrofluorimetry, thermal melting, circular dichroism, NMR spectroscopy, electrospray ionization mass spectroscopy, viscosity, isothermal titration calorimetry, differential scanning calorimetry, molecular modeling studies, and so forth, to elucidate their mode and mechanism of action for structure-activity relationships. The DNA binding of the planar sanguinarine and coralyne are found to be stronger and thermodynamically more favoured compared to the buckled structure of berberine and palmatine and correlate well with the intercalative mechanism of sanguinarine and coralyne and the partial intercalation by berberine and palmatine. Nucleic acid binding properties are also interpreted in relation to their anticancer activity. PMID:20814427

  15. Identification of the High-affinity Substrate-binding Site of the Multidrug and Toxic Compound Extrusion (MATE) Family Transporter from Pseudomonas stutzeri*

    PubMed Central

    Nie, Laiyin; Grell, Ernst; Malviya, Viveka Nand; Xie, Hao; Wang, Jingkang; Michel, Hartmut

    2016-01-01

    Multidrug and toxic compound extrusion (MATE) transporters exist in all three domains of life. They confer multidrug resistance by utilizing H+ or Na+ electrochemical gradients to extrude various drugs across the cell membranes. The substrate binding and the transport mechanism of MATE transporters is a fundamental process but so far not fully understood. Here we report a detailed substrate binding study of NorM_PS, a representative MATE transporter from Pseudomonas stutzeri. Our results indicate that NorM_PS is a proton-dependent multidrug efflux transporter. Detailed binding studies between NorM_PS and 4′,6-diamidino-2-phenylindole (DAPI) were performed by isothermal titration calorimetry (ITC), differential scanning calorimetry (DSC), and spectrofluorometry. Two exothermic binding events were observed from ITC data, and the high-affinity event was directly correlated with the extrusion of DAPI. The affinities are about 1 μm and 0.1 mm for the high and low affinity binding, respectively. Based on our homology model of NorM_PS, variants with mutations of amino acids that are potentially involved in substrate binding, were constructed. By carrying out the functional characterization of these variants, the critical amino acid residues (Glu-257 and Asp-373) for high-affinity DAPI binding were determined. Taken together, our results suggest a new substrate-binding site for MATE transporters. PMID:27235402

  16. Biophysical Characterization and Thermal Stability of Pneumococcal Histidine Triad Protein D in the Presence of Zinc and Manganese.

    PubMed

    Ausar, Salvador F; Jayasundara, Kavisha; Akawi, Lamees; Roque, Cristopher; Sheung, Anthony; Hu, Jian; Kirkitadze, Marina; Rahman, Nausheen

    2017-10-01

    The pneumococcal histidine triad protein D (PhtD) is believed to play a central role in pneumococcal metal ion homeostasis and has been proposed as a promising vaccine candidate against pneumococcal disease. To investigate for potential stabilizers, a panel of physiologically relevant metals was screened using the thermal shift assay and it was found that only Zn 2+ and Mn 2+ were able to increase PhtD melting temperature. Differential scanning calorimetry analysis revealed a sequential unfolding of PhtD and the presence of at least 3 independent folding domains that can be stabilized by Zn 2+ and Mn 2+ . UV spectroscopy and fluorescence quenching studies showed significant Zn 2+ -induced tertiary structure changes in PhtD characterized by decreased accessibility of inner tryptophan residues to the aqueous solvent. Isothermal titration calorimetry data show no apparent binding to Mn 2+ but revealed a Zn 2+ :PhtD exothermic interaction stoichiometry of 3:1 with strong enthalpic contribution, suggesting that 3 of the 5 histidine triads are accessible binding sites for Zn 2+ . Only Zn +2 , but not Mn +2 , was able to increase the thermal stability of PhtD in the presence of aluminum hydroxide adjuvant, making it a promising stabilizer excipient candidate in vaccine products containing PhtD. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  17. Nickel binding to NikA: an additional binding site reconciles spectroscopy, calorimetry and crystallography.

    PubMed

    Addy, Christine; Ohara, Masato; Kawai, Fumihiro; Kidera, Akinori; Ikeguchi, Mitsunori; Fuchigami, Sotaro; Osawa, Masanori; Shimada, Ichio; Park, Sam-Yong; Tame, Jeremy R H; Heddle, Jonathan G

    2007-02-01

    Intracellular nickel is required by Escherichia coli as a cofactor for a number of enzymes and is necessary for anaerobic respiration. However, high concentrations of nickel are toxic, so both import and export systems have evolved to control the cellular level of the metal. The nik operon in E. coli encodes a nickel-uptake system that includes the periplasmic nickel-binding protein NikA. The crystal structures of wild-type NikA both bound to nickel and in the apo form have been solved previously. The liganded structure appeared to show an unusual interaction between the nickel and the protein in which no direct bonds are formed. The highly unusual nickel coordination suggested by the crystal structure contrasted strongly with earlier X-ray spectroscopic studies. The known nickel-binding site has been probed by extensive mutagenesis and isothermal titration calorimetry and it has been found that even large numbers of disruptive mutations appear to have little effect on the nickel affinity. The crystal structure of a binding-site mutant with nickel bound has been solved and it is found that nickel is bound to two histidine residues at a position distant from the previously characterized binding site. This novel site immediately resolves the conflict between the crystal structures and other biophysical analyses. The physiological relevance of the two binding sites is discussed.

  18. Probing the interaction of the phytochemical 6-gingerol from the spice ginger with DNA.

    PubMed

    Haris, Poovvathingal; Mary, Varughese; Sudarsanakumar, Chellappanpillai

    2018-07-01

    6-Gingerol [5-hydroxy-1-(4-hydroxy-3-methoxyphenyl) decan-3-one], the bio-active ingredient of the popular Indian spice ginger (Zingiber officinale Roscoe), is well-known for its pharmacological and physiological actions. The potent antioxidant, antiemetic, antiulcer, antimicrobial, analgesic, hypoglycemic, antihypertensive, antihyperlipidemic, immunostimulant, anti-inflammatory, cardiotonic, and cancer prevention activities of 6-Gingerol has been investigated and explored. 6-Gingerol is a good candidate for the treatment of various cancers including prostrate, pancreatic, breast, skin, gastrointestinal, pulmonary, and renal cancer. In this study we report for the first time the molecular recognition of 6-Gingerol with calf thymus DNA (ctDNA) through experimental and molecular modeling techniques confirming a minor groove binding mode of 6-Gingerol with ctDNA. Fluorescence and UV-vis spectroscopic studies confirm the complex formation of 6-gingerol with ctDNA. The energetics and thermodynamics of the interaction of 6-Gingerol with ctDNA was explored by Isothermal Titration Calorimetry (ITC) and Differential Scanning Calorimetry (DSC). The ctDNA helix melting upon 6-Gingerol binding was examined by melting temperature T m analysis. Further the electrophoretic mobility shift assay confirms a possible groove binding of 6-Gingerol with ctDNA. Molecular docking and Molecular dynamics (MD) studies provide a detailed understanding on the interaction of 6-Gingerol binding in the minor groove of DNA which supports experimental results. Copyright © 2018. Published by Elsevier B.V.

  19. A more detailed picture of the interactions between virtual screening-derived hits and the DNA G-quadruplex: NMR, molecular modelling and ITC studies.

    PubMed

    Trotta, Roberta; De Tito, Stefano; Lauri, Ilaria; La Pietra, Valeria; Marinelli, Luciana; Cosconati, Sandro; Martino, Luigi; Conte, Maria R; Mayol, Luciano; Novellino, Ettore; Randazzo, Antonio

    2011-08-01

    The growing amount of literature about G-quadruplex DNA clearly demonstrates that such a structure is no longer viewed as just a biophysical strangeness but it is instead being considered as an important target for the treatment of various human disorders such as cancers or venous thrombosis. In this scenario, with the aim of finding brand new molecular scaffolds able to interact with the groove of the DNA quadruplex [d(TGGGGT)](4), we recently performed a successful structure-based virtual screening (VS) campaign. As a result, six molecules were found to be somehow groove binders. Herein, we report the results of novel NMR titration experiments of these VS-derived ligands with modified quadruplexes, namely [d(TGG(Br)GGT)](4) and [d(TGGGG(Br)T)](4). The novel NMR spectroscopy experiments combined with molecular modelling studies, allow for a more detailed picture of the interaction between each binder and the quadruplex DNA. Noteworthy, isothermal titration calorimetry (ITC) measurements on the above-mentioned compounds revealed that 2, 4, and 6 besides their relatively small dimensions bind the DNA quadruplex [d(TGGGGT)](4) with higher affinity than distamycin A, to the best of our knowledge, the most potent groove binder identified thus far. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  20. Iminosugar glycosidase inhibitors: structural and thermodynamic dissection of the binding of isofagomine and 1-deoxynojirimycin to beta-glucosidases.

    PubMed

    Zechel, David L; Boraston, Alisdair B; Gloster, Tracey; Boraston, Catherine M; Macdonald, James M; Tilbrook, D Matthew G; Stick, Robert V; Davies, Gideon J

    2003-11-26

    The design and synthesis of transition-state mimics reflects the growing need both to understand enzymatic catalysis and to influence strategies for therapeutic intervention. Iminosugars are among the most potent inhibitors of glycosidases. Here, the binding of 1-deoxynojirimycin and (+)-isofagomine to the "family GH-1" beta-glucosidase of Thermotoga maritima is investigated by kinetic analysis, isothermal titration calorimetry, and X-ray crystallography. The binding of both of these iminosugar inhibitors is driven by a large and favorable enthalpy. The greater inhibitory power of isofagomine, relative to 1-deoxynojirimycin, however, resides in its significantly more favorable entropy; indeed the differing thermodynamic signatures of these inhibitors are further highlighted by the markedly different heat capacity values for binding. The pH dependence of catalysis and of inhibition suggests that the inhibitory species are protonated inhibitors bound to enzymes whose acid/base and nucleophile are ionized, while calorimetry indicates that one proton is released from the enzyme upon binding at the pH optimum of catalysis (pH 5.8). Given that these results contradict earlier proposals that the binding of racemic isofagomine to sweet almond beta-glucosidase was entropically driven (Bülow, A. et al. J. Am. Chem. Soc. 2000, 122, 8567-8568), we reinvestigated the binding of 1-deoxynojirimycin and isofagomine to the sweet almond enzyme. Calorimetry confirms that the binding of isofagomine to sweet almond beta-glucosidases is, as observed for the T. maritima enzyme, driven by a large favorable enthalpy. The crystallographic structures of the native T. maritima beta-glucosidase, and its complexes with isofagomine and 1-deoxynojirimycin, all at approximately 2.1 A resolution, reveal that additional ordering of bound solvent may present an entropic penalty to 1-deoxynojirimycin binding that does not penalize isofagomine.

  1. Physicochemical perspectives (aggregation, structure and dynamics) of interaction between pluronic (L31) and surfactant (SDS).

    PubMed

    Prameela, G K S; Phani Kumar, B V N; Pan, A; Aswal, V K; Subramanian, J; Mandal, A B; Moulik, S P

    2015-11-11

    The influence of the water soluble non-ionic tri-block copolymer PEO-PPO-PEO [poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)] i.e., E2P16E2 (L31) on the microstructure and self-aggregation dynamics of the anionic surfactant sodium dodecylsulfate (SDS) in aqueous solution was investigated using cloud point (CP), isothermal titration calorimetry (ITC), high resolution nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR), and small-angle neutron scattering (SANS) measurements. CP provided the thermodynamic information on the Gibbs free energy, enthalpy, entropy and heat capacity changes pertaining to the phase separation of the system at elevated temperature. The ITC and NMR self-diffusion measurements helped to understand the nature of the binding isotherms of SDS in the presence of L31 in terms of the formation of mixed aggregates and free SDS micelles in solution. EPR analysis provided the micro-viscosity of the spin probe 5-DSA in terms of rotational correlation time. The SANS study indicated the presence of prolate ellipsoidal mixed aggregates, whose size increased with the increasing addition of L31. At a large [L31], SANS also revealed the progressive decreasing size of the ellipsoidal mixed aggregates of SDS-L31 into nearly globular forms with the increasing SDS addition. Wrapping of the spherical SDS micelles by L31 was also corroborated from (13)C NMR and SANS measurements.

  2. Binding Isotherms and Time Courses Readily from Magnetic Resonance.

    PubMed

    Xu, Jia; Van Doren, Steven R

    2016-08-16

    Evidence is presented that binding isotherms, simple or biphasic, can be extracted directly from noninterpreted, complex 2D NMR spectra using principal component analysis (PCA) to reveal the largest trend(s) across the series. This approach renders peak picking unnecessary for tracking population changes. In 1:1 binding, the first principal component captures the binding isotherm from NMR-detected titrations in fast, slow, and even intermediate and mixed exchange regimes, as illustrated for phospholigand associations with proteins. Although the sigmoidal shifts and line broadening of intermediate exchange distorts binding isotherms constructed conventionally, applying PCA directly to these spectra along with Pareto scaling overcomes the distortion. Applying PCA to time-domain NMR data also yields binding isotherms from titrations in fast or slow exchange. The algorithm readily extracts from magnetic resonance imaging movie time courses such as breathing and heart rate in chest imaging. Similarly, two-step binding processes detected by NMR are easily captured by principal components 1 and 2. PCA obviates the customary focus on specific peaks or regions of images. Applying it directly to a series of complex data will easily delineate binding isotherms, equilibrium shifts, and time courses of reactions or fluctuations.

  3. Wet Labs, Computers, and Spreadsheets.

    ERIC Educational Resources Information Center

    Durham, Bill

    1990-01-01

    Described are some commonly encountered chemistry experiments that have been modified for computerized data acquisition. Included are exercises in radioactivity, titration, calorimetry, kinetics, and electrochemistry. Software considerations and laboratory procedures are discussed. (CW)

  4. Tungsten Transport Protein A (WtpA) in Pyrococcus furiosus: the First Member of a New Class of Tungstate and Molybdate Transporters

    PubMed Central

    Bevers, Loes E.; Hagedoorn, Peter-Leon; Krijger, Gerard C.; Hagen, Wilfred R.

    2006-01-01

    A novel tungstate and molybdate binding protein has been discovered from the hyperthermophilic archaeon Pyrococcus furiosus. This tungstate transport protein A (WtpA) is part of a new ABC transporter system selective for tungstate and molybdate. WtpA has very low sequence similarity with the earlier-characterized transport proteins ModA for molybdate and TupA for tungstate. Its structural gene is present in the genome of numerous archaea and some bacteria. The identification of this new tungstate and molybdate binding protein clarifies the mechanism of tungstate and molybdate transport in organisms that lack the known uptake systems associated with the ModA and TupA proteins, like many archaea. The periplasmic protein of this ABC transporter, WtpA (PF0080), was cloned and expressed in Escherichia coli. Using isothermal titration calorimetry, WtpA was observed to bind tungstate (dissociation constant [KD] of 17 ± 7 pM) and molybdate (KD of 11 ± 5 nM) with a stoichiometry of 1.0 mol oxoanion per mole of protein. These low KD values indicate that WtpA has a higher affinity for tungstate than do ModA and TupA and an affinity for molybdate similar to that of ModA. A displacement titration of molybdate-saturated WtpA with tungstate showed that the tungstate effectively replaced the molybdate in the binding site of the protein. PMID:16952940

  5. Coacervation and aggregate transitions of a cationic ammonium gemini surfactant with sodium benzoate in aqueous solution.

    PubMed

    Wang, Ruijuan; Tian, Maozhang; Wang, Yilin

    2014-03-21

    Coacervation in an aqueous solution of cationic ammonium gemini surfactant hexamethylene-1,6-bis(dodecyldimethylammonium bromide) (C12C6C12Br2) with sodium benzoate (NaBz) has been investigated at 25 °C by turbidity titration, light microscopy, dynamic light scattering, cryogenic temperature transmission electron microscopy (Cryo-TEM), scanning electron microscopy (SEM), isothermal titration calorimetry, ζ potential and (1)H NMR measurements. There is a critical NaBz concentration of 0.10 M, only above which coacervation can take place. However, if the NaBz concentration is too large, coacervation also becomes difficult. Coacervation takes place at a very low concentration of C12C6C12Br2 and exists in a very wide concentration region of C12C6C12Br2. The phase behavior in the NaBz concentration from 0.15 to 0.50 M includes spherical micelles, threadlike micelles, coacervation, and precipitation. With increasing NaBz concentration, the phase boundaries of coacervation shift to higher C12C6C12Br2 concentration. Moreover, the C12C6C12Br2-NaBz aggregates in the coacervate are found to be close to charge neutralized. The Cryo-TEM and SEM images of the coacervate shows a layer-layer stacking structure consisting of a three-dimensional network formed by the assembly of threadlike micelles. Long, dense and almost uncharged threadlike micelles are the precursors of coacervation in the system.

  6. Ti(IV) and the Siderophore Desferrioxamine B: A Tight Complex Has Biological and Environmental Implications.

    PubMed

    Jones, Kayleigh E; Batchler, Kathleen L; Zalouk, Célia; Valentine, Ann M

    2017-02-06

    The siderophore desferrioxamine B (DFOB) binds Ti(IV) tightly and precludes its hydrolytic precipitation under biologically and environmentally relevant conditions. This interaction of DFOB with Ti(IV) is investigated by using spectro-potentiometric and spectro-photometric titrations, mass spectrometry, isothermal titration calorimetry (ITC), and computational modeling. The data from pH 2-10 suggest two one-proton equilibria among three species, with one species predominating below pH 3.5, a second from pH 3.5 to 8, and a third above pH 8. The latter species is prone to slow hydrolytic precipitation. Electrospray mass spectrometry allowed the detection of [Ti(IV) (HDFOB)] 2+ and [Ti(DFOB)] + ; these species were assigned as the pH < 3.5 and the 3.5 < pH < 8 species, respectively. The stability constant for Ti(IV)-DFOB was determined by using UV/vis-monitored competition with ethylenediaminetetraacetic acid (EDTA). Taking into consideration the available binding constant of Ti(IV) and EDTA, the data reveal values of log β 111 = 41.7, log β 110 = 38.1, and log β 11-1 = 30.1. The former value was supported by ITC, with the transfer of Ti(IV) from EDTA to DFOB determined to be both enthalpically and entropically favorable. Computational methods yielded a model of Ti-DFOB. The physiological and environmental implications of this tight interaction and the potential role of DFOB in solubilizing Ti(IV) are discussed.

  7. Isothermal titration calorimetry in nanoliter droplets with subsecond time constants.

    PubMed

    Lubbers, Brad; Baudenbacher, Franz

    2011-10-15

    We reduced the reaction volume in microfabricated suspended-membrane titration calorimeters to nanoliter droplets and improved the sensitivities to below a nanowatt with time constants of around 100 ms. The device performance was characterized using exothermic acid-base neutralizations and a detailed numerical model. The finite element based numerical model allowed us to determine the sensitivities within 1% and the temporal dynamics of the temperature rise in neutralization reactions as a function of droplet size. The model was used to determine the optimum calorimeter design (membrane size and thickness, junction area, and thermopile thickness) and sensitivities for sample volumes of 1 nL for silicon nitride and polymer membranes. We obtained a maximum sensitivity of 153 pW/(Hz)(1/2) for a 1 μm SiN membrane and 79 pW/(Hz)(1/2) for a 1 μm polymer membrane. The time constant of the calorimeter system was determined experimentally using a pulsed laser to increase the temperature of nanoliter sample volumes. For a 2.5 nanoliter sample volume, we experimentally determined a noise equivalent power of 500 pW/(Hz)(1/2) and a 1/e time constant of 110 ms for a modified commercially available infrared sensor with a thin-film thermopile. Furthermore, we demonstrated detection of 1.4 nJ reaction energies from injection of 25 pL of 1 mM HCl into a 2.5 nL droplet of 1 mM NaOH. © 2011 American Chemical Society

  8. Thermodynamic and NMR Studies of Solvent Effect on Enantiomeric Recognition for a Chiral Organiz Ammonium Cation by Chiral Diketopyridino-18- Crown-6 Type Ligands at 25.0 deg C.

    DTIC Science & Technology

    1994-05-11

    analyses, 1H NM&, and JR specPit oscopy. The purities were also determined quantitatively by a thermometric titration technique. 19 By titrting...enantiomers of NapEt with 18- crown-6 (SIGMA Chemical Company, its purity was 99.5% as determined by therm--ometric titration agtains a standard NaBr...isoperibol titration calorimetry at 25.0 - 0.1oC in CACi6CHOH solvent mixtures. The initial solution volume in the dewar was 20 mL Tne calorimeter (wac

  9. Interactions and release of two palmitoyl peptides from phytantriol cubosomes.

    PubMed

    Akhlaghi, Seyedeh Parinaz; Loh, Watson

    2017-08-01

    Phytantriol cubosomes loaded with two palmitoyl peptides (Palpepcubes), namely GHKcube and GQPRcube, were prepared using an ultrasonication protocol. The Palpepcubes dimensions were characterized by dynamic light scattering (DLS) and cryo-transmission electron microscopy (cryo-TEM). Small-angle X-ray scattering (SAXS) analyses revealed that the bicontinuous cubic structure remained even at palmitoyl peptide contents as high as 5wt.%, with an increase in the cell parameter from approximately 6.5 to 7.2nm. Isothermal titration calorimetry (ITC) was used to elucidate the interactions between the blank cubosomes and the palmitoyl peptides, revealing an exothermic process of interaction. Moreover, the in vitro release of the palmitoyl peptides from the Palpepcubes was studied using a dialysis method coupled with liquid chromatography-mass spectrometry (LC/MS) technique, in which a sustained release of up to a few days was observed. Finally, the stability of the aqueous solutions of the palmitoyl peptides and the Palpepcubes kept at room temperature and at low temperature (4°C) was studied by LC/MS method, indicating that incorporation into cubosomes increases the peptide stability significantly. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Structural and Mechanistic Insights into the Latrophilin3-FLRT3 Complex that Mediates Glutamatergic Synapse Development.

    PubMed

    Ranaivoson, Fanomezana M; Liu, Qun; Martini, Francesca; Bergami, Francesco; von Daake, Sventja; Li, Sheng; Lee, David; Demeler, Borries; Hendrickson, Wayne A; Comoletti, Davide

    2015-09-01

    Latrophilins (LPHNs) are adhesion-like G-protein-coupled receptors implicated in attention-deficit/hyperactivity disorder. Recently, LPHN3 was found to regulate excitatory synapse number through trans interactions with fibronectin leucine-rich repeat transmembrane 3 (FLRT3). By isothermal titration calorimetry, we determined that only the olfactomedin (OLF) domain of LPHN3 is necessary for FLRT3 association. By multi-crystal native single-wavelength anomalous diffraction phasing, we determined the crystal structure of the OLF domain. This structure is a five-bladed β propeller with a Ca(2+) ion bound in the central pore, which is capped by a mobile loop that allows the ion to exchange with the solvent. The crystal structure of the OLF/FLRT3 complex shows that LPHN3-OLF in the closed state binds with high affinity to the concave face of FLRT3-LRR with a combination of hydrophobic and charged residues. Our study provides structural and functional insights into the molecular mechanism underlying the contribution of LPHN3/FLRT3 to the development of glutamatergic synapses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcianò, G.; Huang, D. T., E-mail: d.huang@beatson.gla.ac.uk

    The Spt16–SSRP1 heterodimer is a histone chaperone that plays an important role in regulating chromatin assembly. Here, a crystal structure of the N-terminal domain of human Spt16 is presented and it is shown that this domain may contribute to histone binding. The histone chaperone FACT plays an important role in facilitating nucleosome assembly and disassembly during transcription. FACT is a heterodimeric complex consisting of Spt16 and SSRP1. The N-terminal domain of Spt16 resembles an inactive aminopeptidase. How this domain contributes to the histone chaperone activity of FACT remains elusive. Here, the crystal structure of the N-terminal domain (NTD) of humanmore » Spt16 is reported at a resolution of 1.84 Å. The structure adopts an aminopeptidase-like fold similar to those of the Saccharomyces cerevisiae and Schizosaccharomyces pombe Spt16 NTDs. Isothermal titration calorimetry analyses show that human Spt16 NTD binds histones H3/H4 with low-micromolar affinity, suggesting that Spt16 NTD may contribute to histone binding in the FACT complex. Surface-residue conservation and electrostatic analysis reveal a conserved acidic patch that may be involved in histone binding.« less

  12. Triazolopyridinyl-acrylonitrile derivatives as antimicrotubule agents: Synthesis, in vitro and in silico characterization of antiproliferative activity, inhibition of tubulin polymerization and binding thermodynamics.

    PubMed

    Briguglio, Irene; Laurini, Erik; Pirisi, Maria Antonietta; Piras, Sandra; Corona, Paola; Fermeglia, Maurizio; Pricl, Sabrina; Carta, Antonio

    2017-12-01

    In this paper we report the synthesis, in vitro anticancer activity, and the experimental/computational characterization of mechanism of action of a new series of E isomers of triazolo[4,5-b/c]pyridin-acrylonitrile derivatives (6c-g, 7d-e, 8d-e, 9c-f, 10d-e, 11d-e). All new compounds are endowed with moderate to interesting antiproliferative activity against 9 different cancer cell lines derived from solid and hematological human tumors. Fluorescence-based assays prove that these molecules interfere with tubulin polymerization. Furthermore, isothermal titration calorimetry (ITC) provides full tubulin/compound binding thermodynamics, thereby ultimately qualifying and quantifying the interactions of these molecular series with the target protein. Lastly, the analysis based on the tight coupling of in vitro and in silico modeling of the interactions between tubulin and the title compounds allows to propose a molecular rationale for their biological activity. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Novel protein-protein interaction between spermidine synthase and S-adenosylmethionine decarboxylase from Leishmania donovani.

    PubMed

    Mishra, Arjun K; Agnihotri, Pragati; Srivastava, Vijay Kumar; Pratap, J Venkatesh

    2015-01-09

    Polyamine biosynthesis pathway has long been considered an essential drug target for trypanosomatids including Leishmania. S-adenosylmethionine decarboxylase (AdoMetDc) and spermidine synthase (SpdSyn) are enzymes of this pathway that catalyze successive steps, with the product of the former, decarboxylated S-adenosylmethionine (dcSAM), acting as an aminopropyl donor for the latter enzyme. Here we have explored the possibility of and identified the protein-protein interaction between SpdSyn and AdoMetDc. The protein-protein interaction has been identified using GST pull down assay. Isothermal titration calorimetry reveals that the interaction is thermodynamically favorable. Fluorescence spectroscopy studies also confirms the interaction, with SpdSyn exhibiting a change in tertiary structure with increasing concentrations of AdoMetDc. Size exclusion chromatography suggests the presence of the complex as a hetero-oligomer. Taken together, these results suggest that the enzymes indeed form a heteromer. Computational analyses suggest that this complex differs significantly from the corresponding human complex, implying that this complex could be a better therapeutic target than the individual enzymes. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Inhibition of sortase A by chalcone prevents Listeria monocytogenes infection.

    PubMed

    Li, Hongen; Chen, Yutao; Zhang, Bing; Niu, Xiaodi; Song, Meng; Luo, Zhaoqing; Lu, Gejin; Liu, Bowen; Zhao, Xiaoran; Wang, Jianfeng; Deng, Xuming

    2016-04-15

    The critical role of sortase A in gram-positive bacterial pathogenicity makes this protein a good potential target for antimicrobial therapy. In this study, we report for the first time the crystal structure of Listeria monocytogenes sortase A and identify the active sites that mediate its transpeptidase activity. We also used a sortase A (SrtA) enzyme activity inhibition assay, simulation, and isothermal titration calorimetry analysis to discover that chalcone, an agent with little anti-L. monocytogenes activity, could significantly inhibit sortase A activity with an IC50 of 28.41 ± 5.34 μM by occupying the active site of SrtA. The addition of chalcone to a co-culture of L. monocytogenes and Caco-2 cells significantly inhibited bacterial entry into the cells and L. monocytogenes-mediated cytotoxicity. Additionally, chalcone treatment decreased the mortality of infected mice, the bacterial burden in target organs, and the pathological damage to L. monocytogenes-infected mice. In conclusion, these findings suggest that chalcone is a promising candidate for the development of treatment against L. monocytogenes infection. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Thermodynamic characterization of the multivalent interactions underlying rapid and selective translocation through the nuclear pore complex

    PubMed Central

    Hayama, Ryo; Sparks, Samuel; Hecht, Lee M.; Dutta, Kaushik; Karp, Jerome M.; Cabana, Christina M.; Rout, Michael P.; Cowburn, David

    2018-01-01

    Intrinsically disordered proteins (IDPs) play important roles in many biological systems. Given the vast conformational space that IDPs can explore, the thermodynamics of the interactions with their partners is closely linked to their biological functions. Intrinsically disordered regions of Phe–Gly nucleoporins (FG Nups) that contain multiple phenylalanine–glycine repeats are of particular interest, as their interactions with transport factors (TFs) underlie the paradoxically rapid yet also highly selective transport of macromolecules mediated by the nuclear pore complex. Here, we used NMR and isothermal titration calorimetry to thermodynamically characterize these multivalent interactions. These analyses revealed that a combination of low per-FG motif affinity and the enthalpy–entropy balance prevents high-avidity interaction between FG Nups and TFs, whereas the large number of FG motifs promotes frequent FG–TF contacts, resulting in enhanced selectivity. Our thermodynamic model underlines the importance of functional disorder of FG Nups. It helps explain the rapid and selective translocation of TFs through the nuclear pore complex and further expands our understanding of the mechanisms of “fuzzy” interactions involving IDPs. PMID:29374059

  16. Synthesis and binding affinity analysis of α1-2- and α1-6-O/S-linked dimannosides for the elucidation of sulfur in glycosidic bonds using quartz crystal microbalance sensors.

    PubMed

    Norberg, Oscar; Wu, Bin; Thota, Niranjan; Ge, Jian-Tao; Fauquet, Germain; Saur, Ann-Kathrin; Aastrup, Teodor; Dong, Hai; Yan, Mingdi; Ramström, Olof

    2017-11-27

    The role of sulfur in glycosidic bonds has been evaluated using quartz crystal microbalance methodology. Synthetic routes towards α1-2- and α1-6-linked dimannosides with S- or O-glycosidic bonds have been developed, and the recognition properties assessed in competition binding assays with the cognate lectin concanavalin A. Mannose-presenting QCM sensors were produced using photoinitiated, nitrene-mediated immobilization methods, and the subsequent binding study was performed in an automated flow-through instrumentation, and correlated with data from isothermal titration calorimetry. The recorded K d -values corresponded well with reported binding affinities for the O-linked dimannosides with affinities for the α1-2-linked dimannosides in the lower micromolar range. The S-linked analogs showed slightly disparate effects, where the α1-6-linked analog showed weaker affinity than the O-linked dimannoside, as well as positive apparent cooperativity, whereas the α1-2-analog displayed very similar binding compared to the O-linked structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Crystal Structures of Human SIRT[subscript 3] Displaying Substrate-induced Conformational Changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Lei; Wei, Wentao; Jiang, Yaobin

    2009-11-04

    SIRT3 is a major mitochondrial NAD{sup +}-dependent protein deacetylase playing important roles in regulating mitochondrial metabolism and energy production and has been linked to the beneficial effects of exercise and caloric restriction. SIRT3 is emerging as a potential therapeutic target to treat metabolic and neurological diseases. We report the first sets of crystal structures of human SIRT3, an apo-structure with no substrate, a structure with a peptide containing acetyl lysine of its natural substrate acetyl-CoA synthetase 2, a reaction intermediate structure trapped by a thioacetyl peptide, and a structure with the dethioacetylated peptide bound. These structures provide insights into themore » conformational changes induced by the two substrates required for the reaction, the acetylated substrate peptide and NAD+. In addition, the binding study by isothermal titration calorimetry suggests that the acetylated peptide is the first substrate to bind to SIRT3, before NAD{sup +}. These structures and biophysical studies provide key insight into the structural and functional relationship of the SIRT3 deacetylation activity.« less

  18. Thermodiffusion as a probe of protein hydration for streptavidin and the streptavidin-biotin complex

    NASA Astrophysics Data System (ADS)

    Niether, Doreen; Sarter, Mona; König, Bernd; Zamponi, Michaela; Fitter, Jörg; Stadler, Andreas; Wiegand, Simone

    2018-01-01

    Molecular recognition via protein-ligand interactions is of fundamental importance to numerous processes in living organisms. Microscale thermophoresis (MST) uses the sensitivity of the thermophoretic response upon ligand binding to access information on the reaction kinetics. Additionally, thermophoresis is promising as a tool to gain information on the hydration layer, as the temperature dependence of the thermodiffusion behaviour is sensitive to solute-solvent interactions. To quantify the influence of structural fluctuations and conformational motion of the protein on the entropy change of its hydration layer upon ligand binding, we combine quasi-elastic incoherent neutron scattering (QENS) and isothermal titration calorimetry (ITC) data from literature. However, preliminary results show that replacing water with deuterated water leads to changes of the thermophoretic measurements, which are similar to the changes observed upon binding by biotin. In order to gain a better understanding of the hydration layer all measurements need to be performed in heavy water. This will open a route to develop a microscopic understanding of the correlation between the strength and number of hydrogen bonds and the thermophoretic behaviour.

  19. Positronium formation studies in crystalline molecular complexes: Triphenylphosphine oxide - Acetanilide

    NASA Astrophysics Data System (ADS)

    Oliveira, F. C.; Denadai, A. M. L.; Guerra, L. D. L.; Fulgêncio, F. H.; Windmöller, D.; Santos, G. C.; Fernandes, N. G.; Yoshida, M. I.; Donnici, C. L.; Magalhães, W. F.; Machado, J. C.

    2013-04-01

    Hydrogen bond formation in the triphenylphosphine oxide (TPPO), acetanilide (ACN) supramolecular heterosynton system, named [TPPO0.5·ACN0.5], has been studied by Positron Annihilation Lifetime Spectroscopy (PALS) and supported by several analytical techniques. In toluene solution, Isothermal Titration Calorimetry (ITC) presented a 1:1 stoichiometry and indicated that the complexation process is driven by entropy, with low enthalpy contribution. X-ray structure determination showed the existence of a three-dimensional network of hydrogen bonds, allowing also the confirmation of the existence of a 1:1 crystalline molecular complex in solid state. The results of thermal analysis (TGA, DTA and DSC) and FTIR spectroscopy showed that the interactions in the complex are relatively weaker than those found in pure precursors, leading to a higher positronium formation probability at [TPPO0.5·ACN0.5]. These weak interactions in the complex enhance the possibility of the n- and π-electrons to interact with positrons and consequently, the probability of positronium formation is higher. Through the present work is shown that PALS is a sensible powerful tool to investigate intermolecular interactions in solid heterosynton supramolecular systems.

  20. The monomeric form of Neisseria DNA mimic protein DMP19 prevents DNA from binding to the histone-like HU protein

    PubMed Central

    Ko, Tzu-Ping; Liao, Yi-Ting; Hsu, Kai-Cheng

    2017-01-01

    DNA mimicry is a direct and effective strategy by which the mimic competes with DNA for the DNA binding sites on other proteins. Until now, only about a dozen proteins have been shown to function via this strategy, including the DNA mimic protein DMP19 from Neisseria meningitides. We have shown previously that DMP19 dimer prevents the operator DNA from binding to the transcription factor NHTF. Here, we provide new evidence that DMP19 monomer can also interact with the Neisseria nucleoid-associated protein HU. Using BS3 crosslinking, gel filtration and isothermal titration calorimetry assays, we found that DMP19 uses its monomeric form to interact with the Neisseria HU dimer. Crosslinking conjugated mass spectrometry was used to investigate the binding mode of DMP19 monomer and HU dimer. Finally, an electrophoretic mobility shift assay (EMSA) confirmed that the DNA binding affinity of HU is affected by DMP19. These results showed that DMP19 is bifunctional in the gene regulation of Neisseria through its variable oligomeric forms. PMID:29220372

  1. Solubilization of octane in cationic surfactant-anionic polymer complexes: Effect of ionic strength.

    PubMed

    Zhang, Hui; Deng, Lingli; Sun, Ping; Que, Fei; Weiss, Jochen

    2016-01-01

    Polymers may alter the ability of oppositely charged surfactant micelles to solubilize hydrophobic molecules depending on surfactant-polymer interactions. This study was conducted to investigate the effect of ionic strength on the solubilization thermodynamics of an octane oil-in-water emulsion in mixtures of an anionic polymer (carboxymethyl cellulose) and cationic cetyltrimethylammonium bromide (CTAB) surfactant micelles using isothermal titration calorimetry (ITC). Results indicated that the CTAB binding capacity of carboxymethyl cellulose increased with increasing NaCl concentrations up to 100 mM, and the thermodynamic behavior of octane solubilization in CTAB micelles, either in the absence or presence of polymer, was found to have a strong dependence on ionic strength. The increasing ionic strength caused the solubilization in CTAB micelles to be less endothermic or even exothermic, but increased the solubilization capacity. Based on the phase separation model, the solubilization was suggested to be driven by enthalpy. It is indicated that increasing ionic strength gave rise to a larger Gibbs energy decrease but a smaller unfavorable entropy increase for octane solubilization in cationic surfactant micelles. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Monomerization of viral entry inhibitor griffithsin elucidates the relationship between multivalent binding to carbohydrates and anti-HIV activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moulaei, Tinoush; Shenoy, Shilpa R.; Giomarelli, Barbara

    2010-10-28

    Mutations were introduced to the domain-swapped homodimer of the antiviral lectin griffithsin (GRFT). Whereas several single and double mutants remained dimeric, insertion of either two or four amino acids at the dimerization interface resulted in a monomeric form of the protein (mGRFT). Monomeric character of the modified proteins was confirmed by sedimentation equilibrium ultracentrifugation and by their high resolution X-ray crystal structures, whereas their binding to carbohydrates was assessed by isothermal titration calorimetry. Cell-based antiviral activity assays utilizing different variants of mGRFT indicated that the monomeric form of the lectin had greatly reduced activity against HIV-1, suggesting that the antiviralmore » activity of GRFT stems from crosslinking and aggregation of viral particles via multivalent interactions between GRFT and oligosaccharides present on HIV envelope glycoproteins. Atomic resolution crystal structure of a complex between mGRFT and nonamannoside revealed that a single mGRFT molecule binds to two different nonamannoside molecules through all three carbohydrate-binding sites present on the monomer.« less

  3. A combination of 19F NMR and surface plasmon resonance for site-specific hit selection and validation of fragment molecules that bind to the ATP-binding site of a kinase.

    PubMed

    Nagatoishi, Satoru; Yamaguchi, Sou; Katoh, Etsuko; Kajita, Keita; Yokotagawa, Takane; Kanai, Satoru; Furuya, Toshio; Tsumoto, Kouhei

    2018-05-01

    19 F NMR has recently emerged as an efficient, sensitive tool for analyzing protein binding to small molecules, and surface plasmon resonance (SPR) is also a popular tool for this purpose. Herein a combination of 19 F NMR and SPR was used to find novel binders to the ATP-binding pocket of MAP kinase extracellular regulated kinase 2 (ERK2) by fragment screening with an original fluorinated-fragment library. The 19 F NMR screening yielded a high primary hit rate of binders to the ERK2 ATP-binding pocket compared with the rate for the SPR screening. Hit compounds were evaluated and categorized according to their ability to bind to different binding sites in the ATP-binding pocket. The binding manner was characterized by using isothermal titration calorimetry and docking simulation. Combining 19 F NMR with other biophysical methods allows the identification of multiple types of hit compounds, thereby increasing opportunities for drug design using preferred fragments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Linear Precision Glycomacromolecules with Varying Interligand Spacing and Linker Functionalities Binding to Concanavalin A and the Bacterial Lectin FimH.

    PubMed

    Igde, Sinaida; Röblitz, Susanna; Müller, Anne; Kolbe, Katharina; Boden, Sophia; Fessele, Claudia; Lindhorst, Thisbe K; Weber, Marcus; Hartmann, Laura

    2017-12-01

    A series of precision glycomacromolecules is prepared following previously established solid phase synthesis allowing for controlled variations of interligand spacing and the overall number of carbohydrate ligands. In addition, now also different linkers are installed between the carbohydrate ligand and the macromolecular scaffold. The lectin binding behavior of these glycomacromolecules is then evaluated in isothermal titration calorimetry (ITC) and kinITC experiments using the lectin Concanavalin A (Con A) in its dimeric and tetrameric form. The results indicate that both sterical and statistical effects impact lectin binding of precision glycomacromolecules. Moreover, ITC results show that highest affinity toward Con A can be achieved with an ethyl phenyl linker, which parallels earlier findings with the bacterial lectin FimH. In this way, a first set of glycomacromolecule structures is selected for testing in a bacterial adhesion-inhibition study. Here, the findings point to a one-sugar binding mode mainly affected by sterical restraints of the nonbinding parts of the respective glycomacromolecule. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Probing the binding of phenolic aldehyde vanillin with bovine serum albumin: Evidence from spectroscopic and docking approach.

    PubMed

    Siddiqui, Gufran Ahmed; Siddiqi, Mohammad Khursheed; Khan, Rizwan Hasan; Naeem, Aabgeena

    2018-05-08

    The interactions of bovine serum albumin (BSA) with vanillin (VAN) were studied using UV-vis absorption, fluorescence, synchronous fluorescence, three dimensional fluorescence spectroscopy (3D), Fourier transform infrared spectroscopy (FTIR), circular dichroism (CD), and molecular docking techniques. The results revealed that VAN causes the static quenching of BSA by forming BSA-VAN complex. The thermodynamic parameters obtained using isothermal titration calorimetry (ITC) showed that the interaction between BSA and VAN is spontaneous and hydrogen bonding, van der Waals forces are mainly involved in stabilizing the complex. The distance between the donor and the acceptor was analyzed using fluorescence resonance energy transfer (FRET) which showed Forster distance of 2.58 nm. Molecular docking technique was applied to study the modes of interaction between BSA-VAN system and it was found that VAN bound to the sub-domain IIA of BSA. Structural analysis using 3D, synchronous fluorescence FTIR, and CD showed that upon binding of VAN, BSA exhibits small micro-environmental changes around tryptophan amino acid residue. Copyright © 2018. Published by Elsevier B.V.

  6. A difunctional squarylium indocyanine dye distinguishes dead cells through diverse staining of the cell nuclei/membranes.

    PubMed

    Li, Jie; Guo, Kunru; Shen, Jie; Yang, Wantai; Yin, Meizhen

    2014-04-09

    Functionalized fluorescent dyes have attracted great interest for the specific staining of subcellular organelles in multicellular organisms. A novel nanometer-sized water-soluble multi-functional squarylium indocyanine dye (D1) that contains four primary amines is synthesized. The dye exhibits good photostability, non-toxicity and biocompatibility. Isothermal titration calorimetry demonstrates that an affinity between D1 and DNA is higher than that between D1 and analogue of phospholipids. Analysis of circular dichroism spectra indicates that D1 targets to the DNA minor groove and aggregates to a helix. Because of the distinct affinity between the dye and subcellular organelles, the dye exhibits difunctional abilities to label the cell nuclei in fixed cells/tissue and the cell membranes in live cells/tissue. By combination of the two staining capabilities, the dye is further explored as a specific marker to distinguish apoptotic cells in live cells/tissue. The research opens a new way to design novel multifunctional dyes for life science applications. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Zebavidin - An Avidin-Like Protein from Zebrafish

    PubMed Central

    Taskinen, Barbara; Zmurko, Joanna; Ojanen, Markus; Kukkurainen, Sampo; Parthiban, Marimuthu; Määttä, Juha A. E.; Leppiniemi, Jenni; Jänis, Janne; Parikka, Mataleena; Turpeinen, Hannu; Rämet, Mika; Pesu, Marko; Johnson, Mark S.; Kulomaa, Markku S.; Airenne, Tomi T.; Hytönen, Vesa P.

    2013-01-01

    The avidin protein family members are well known for their high affinity towards D-biotin and high structural stability. These properties make avidins valuable tools for a wide range of biotechnology applications. We have identified a new member of the avidin family in the zebrafish (Danio rerio) genome, hereafter called zebavidin. The protein is highly expressed in the gonads of both male and female zebrafish and in the gills of male fish, but our data suggest that zebavidin is not crucial for the developing embryo. Biophysical and structural characterisation of zebavidin revealed distinct properties not found in any previously characterised avidins. Gel filtration chromatography and native mass spectrometry suggest that the protein forms dimers in the absence of biotin at low ionic strength, but assembles into tetramers upon binding biotin. Ligand binding was analysed using radioactive and fluorescently labelled biotin and isothermal titration calorimetry. Moreover, the crystal structure of zebavidin in complex with biotin was solved at 2.4 Å resolution and unveiled unique ligand binding and subunit interface architectures; the atomic-level details support our physicochemical observations. PMID:24204770

  8. Zinc Bioavailability from Phytate-Rich Foods and Zinc Supplements. Modeling the Effects of Food Components with Oxygen, Nitrogen, and Sulfur Donor Ligands.

    PubMed

    Tang, Ning; Skibsted, Leif H

    2017-10-04

    Aqueous solubility of zinc phytate (K sp = (2.6 ± 0.2) × 10 -47 mol 7 /L 7 ), essential for zinc bioavailability from plant foods, was found to decrease with increasing temperature corresponding to ΔH dis of -301 ± 22 kJ/mol and ΔS dis of -1901 ± 72 J/(mol K). Binding of zinc to phytate was found to be exothermic for the stronger binding site and endothermic for the weaker binding site. The solubility of the slightly soluble zinc citrate and insoluble zinc phytate was found to be considerably enhanced by the food components with oxygen donor, nitrogen donor, and sulfur donor ligands. The driving force for the enhanced solubility is mainly due to the complex formation between zinc and the investigated food components rather than ligand exchange and ternary complex formation as revealed by quantum mechanical calculations and isothermal titration calorimetry. Histidine and citrate are promising ligands for improving zinc absorption from phytate-rich foods.

  9. Measurement of radon and xenon binding to a cryptophane molecular host

    PubMed Central

    Jacobson, David R.; Khan, Najat S.; Collé, Ronald; Fitzgerald, Ryan; Laureano-Pérez, Lizbeth; Bai, Yubin; Dmochowski, Ivan J.

    2011-01-01

    Xenon and radon have many similar properties, a difference being that all 35 isotopes of radon (195Rn–229Rn) are radioactive. Radon is a pervasive indoor air pollutant believed to cause significant incidence of lung cancer in many geographic regions, yet radon affinity for a discrete molecular species has never been determined. By comparison, the chemistry of xenon has been widely studied and applied in science and technology. Here, both noble gases were found to bind with exceptional affinity to tris-(triazole ethylamine) cryptophane, a previously unsynthesized water-soluble organic host molecule. The cryptophane–xenon association constant, Ka = 42,000 ± 2,000 M-1 at 293 K, was determined by isothermal titration calorimetry. This value represents the highest measured xenon affinity for a host molecule. The partitioning of radon between air and aqueous cryptophane solutions of varying concentration was determined radiometrically to give the cryptophane–radon association constant Ka = 49,000 ± 12,000 M-1 at 293 K. PMID:21690357

  10. Binding of nitrogen-containing bisphosphonates (N-BPs) to the Trypanosoma cruzi farnesyl diphosphate synthase homodimer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Chuan-Hsiang; Gabelli, Sandra B.; Oldfield, Eric

    Bisphosphonates (BPs) are a class of compounds that have been used extensively in the treatment of osteoporosis and malignancy-related hypercalcemia. Some of these compounds act through inhibition of farnesyl diphosphate synthase (FPPS), a key enzyme in the synthesis of isoprenoids. Recently, nitrogen-containing bisphosphonates (N-BPs) used in bone resorption therapy have been shown to be active against Trypanosoma cruzi, the parasite that causes American trypanosomiasis (Chagas disease), suggesting that they may be used as anti-trypanosomal agents. The crystal structures of TcFPPS in complex with substrate (isopentenyl diphosphate, IPP) and five N-BP inhibitors show that the C-1 hydroxyl and the nitrogen-containing groupsmore » of the inhibitors alter the binding of IPP and the conformation of two TcFPPS residues, Tyr94 and Gln167. Isothermal titration calorimetry experiments suggest that binding of the first N-BPs to the homodimeric TcFPPS changes the binding properties of the second site. This mechanism of binding of N-BPs to TcFPPS is different to that reported for the binding of the same compounds to human FPPS.« less

  11. Interactions between antimicrobial polynorbornenes and phospholipid vesicles monitored by light scattering and microcalorimetry.

    PubMed

    Gabriel, Gregory J; Pool, Joanna G; Som, Abhigyan; Dabkowski, Jeffrey M; Coughlin, E Bryan; Muthukumar, M; Tew, Gregory N

    2008-11-04

    Antimicrobial polynorbornenes composed of facially amphiphilic monomers have been previously reported to accurately emulate the antimicrobial activity of natural host-defense peptides (HDPs). The lethal mechanism of most HDPs involves binding to the membrane surface of bacteria leading to compromised phospholipid bilayers. In this paper, the interactions between biomimetic vesicle membranes and these cationic antimicrobial polynorbornenes are reported. Vesicle dye-leakage experiments were consistent with previous biological assays and corroborated a mode of action involving membrane disruption. Dynamic light scattering (DLS) showed that these antimicrobial polymers cause extensive aggregation of vesicles without complete bilayer disintegration as observed with surfactants that efficiently solubilize the membrane. Fluorescence microscopy on vesicles and bacterial cells also showed polymer-induced aggregation of both synthetic vesicles and bacterial cells. Isothermal titration calorimetry (ITC) afforded free energy of binding values (Delta G) and polymer to lipid binding ratios, plus revealed that the interaction is entropically favorable (Delta S>0, Delta H>0). It was observed that the strength of vesicle binding was similar between the active polymers while the binding stoichiometries were dramatically different.

  12. Binding behaviors of p-sulfonatocalix[4]arene with gemini guests.

    PubMed

    Zhao, Hong-Xia; Guo, Dong-Sheng; Liu, Yu

    2013-02-14

    A dozen of homoditopic cations, possessing different spacer lengths and rigidities, as well as sizes, shapes, and charges of terminal groups, were synthesized as candidate gemini guests for the complexation of p-sulfonatocalix[4]arenes (SC4A). The 12 gemini guests are divided into five species according to the different terminal groups: imidazolium (G1-G3), pyridinium (G4-G6), quinolinium (G7), viologen (G8-G11), and 1,4-diazabicyclo[2.2.2]octane (DBO, G12). Their binding structures and stoichiometries with SC4A were examined by NMR spectroscopy, which is helpful to construct diverse highly ordered assemblies. The obtained results show that the length of the linkers, as well as the charge numbers on the end groups have a pronounced effect on the binding stoichiometry, whereas the size and shape of the terminal groups have no significant influence. Furthermore, both the stability constants and thermodynamic parameters of SC4A with the terminal subunits were determined by the isothermal titration calorimetry experiments, which are valuable to understand the binding behavior, giving quantitatively deep insight.

  13. Immobilization of flavan-3-ols onto sensor chips to study their interactions with proteins and pectins by SPR

    NASA Astrophysics Data System (ADS)

    Watrelot, Aude A.; Tran, Dong Tien; Buffeteau, Thierry; Deffieux, Denis; Le Bourvellec, Carine; Quideau, Stéphane; Renard, Catherine M. G. C.

    2016-05-01

    Interactions between plant polyphenols and biomacromolecules such as proteins and pectins have been studied by several methods in solution (e.g. isothermal titration calorimetry, dynamic light scattering, nuclear magnetic resonance and spectrophotometry). Herein, these interactions were investigated in real time by Surface Plasmon Resonance (SPR) analysis after immobilization of flavan-3-ols onto a sensor chip surface. (-)-epicatechin, (+)-catechin and flavan-3-ol oligomers with an average degree of polymerization of 2 and 8 were chemically modified using N-(2-(tritylthio)ethyl)propiolamide in order to introduce a spacer unit onto the catecholic B ring. Modified flavan-3-ols were then immobilized onto a carboxymethylated dextran surface (CM5). Immobilization was validated and further verified by evaluating flavan-3-ol interaction with bovine serum albumin (BSA), poly-L-proline or commercial pectins. BSA was found to have a stronger association with monomeric flavan-3-ols than oligomers. SPR analysis of selected flavan-3-ols immobilized onto CM5 sensor chips showed a stronger association for citrus pectins than apple pectins, regardless of flavan-3-ol degree of polymerization.

  14. Ultrasmall fluorescent nanoparticles derived from roast duck: their physicochemical characteristics and interaction with human serum albumin.

    PubMed

    Cong, Shuang; Bi, Jingran; Song, Xunyu; Yu, Chenxu; Tan, Mingqian

    2018-04-25

    Fluorescent nanoparticles (FNPs) produced from roast meat have drawn widespread attention due to their potential hazards to human health. In this paper, the presence of ultrasmall FNPs in roast duck and their interaction with human serum albumin (HSA) were reported. The processing-induced FNPs have an average size of 1.3 nm with a relative fluorescence quantum yield of 4.4%. X-ray photoelectron spectroscopy showed that the FNPs are composed of carbon (70.48%), nitrogen (6.25%), oxygen (22.17%) and sulfur (1.11%), with hydroxyl, carboxyl and amino groups present on their surface. The presence of FNPs could cause fluorescence quenching of HSA, which was ascribed to the static quenching mechanism via the electrostatic interaction as analyzed by isothermal titration calorimetry. The α-helix contents of HSA decreased after the addition of FNPs, demonstrating that these processing-induced FNPs could cause structural alteration of HSA. These results provided insights into the formation of nanoparticles in roast duck, and offered important information about the binding mechanism of these nanoparticles with HSA, which may have physiological implications.

  15. Interaction of Gramicidin S and its Aromatic Amino-Acid Analog with Phospholipid Membranes

    PubMed Central

    Jelokhani-Niaraki, Masoud; Hodges, Robert S.; Meissner, Joseph E.; Hassenstein, Una E.; Wheaton, Laura

    2008-01-01

    To investigate the mechanism of interaction of gramicidin S-like antimicrobial peptides with biological membranes, a series of five decameric cyclic cationic β-sheet-β-turn peptides with all possible combinations of aromatic D-amino acids, Cyclo(Val-Lys-Leu-D-Ar1-Pro-Val-Lys-Leu-D-Ar2-Pro) (Ar ≡ Phe, Tyr, Trp), were synthesized. Conformations of these cyclic peptides were comparable in aqueous solutions and lipid vesicles. Isothermal titration calorimetry measurements revealed entropy-driven binding of cyclic peptides to POPC and POPE/POPG lipid vesicles. Binding of peptides to both vesicle systems was endothermic—exceptions were peptides containing the Trp-Trp and Tyr-Trp pairs with exothermic binding to POPC vesicles. Application of one- and two-site binding (partitioning) models to binding isotherms of exothermic and endothermic binding processes, respectively, resulted in determination of peptide-lipid membrane binding constants (Kb). The Kb1 and Kb2 values for endothermic two-step binding processes corresponded to high and low binding affinities (Kb1 ≥ 100 Kb2). Conformational change of cyclic peptides in transferring from buffer to lipid bilayer surfaces was estimated using fluorescence resonance energy transfer between the Tyr-Trp pair in one of the peptide constructs. The cyclic peptide conformation expands upon adsorption on lipid bilayer surface and interacts more deeply with the outer monolayer causing bilayer deformation, which may lead to formation of nonspecific transient peptide-lipid porelike zones causing membrane lysis. PMID:18621820

  16. Data for the synthesis of resorcinol-formaldehyde aerogels in acidic and basic media.

    PubMed

    Molina-Campos, Daniel F; Fonseca-Correa, Rafael A; Vargas-Delgadillo, Diana P; Giraldo, Liliana; Moreno-Piraján, Juan Carlos

    2017-06-01

    The aim of this research is to synthesise carbon aerogels and to compare the differences in their textural, morphological and chemical properties when synthesised in basic and acidic media, and with two different types of pretreatment carbonization and activation with CO 2 . Four samples are prepared and characterised using TGA-DTA, SEM, DRX, isotherm determination of N 2 adsorption-desorption at -196 °C and immersion calorimetry. The data for pore distribution are reported using non-local density functional theory and quenched solid density functional theory. Finally, with the immersion calorimetry data, the consistency between the results using this technique and those obtained using the nitrogen isotherms is analysed.

  17. Probing the recognition surface of a DNA triplex: binding studies with intercalator-neomycin conjugates.

    PubMed

    Xue, Liang; Xi, Hongjuan; Kumar, Sunil; Gray, David; Davis, Erik; Hamilton, Paris; Skriba, Michael; Arya, Dev P

    2010-07-06

    Thermodynamic studies on the interactions between intercalator-neomycin conjugates and a DNA polynucleotide triplex [poly(dA).2poly(dT)] were conducted. To draw a complete picture of such interactions, naphthalene diimide-neomycin (3) and anthraquinone-neomycin (4) conjugates were synthesized and used together with two other analogues, previously synthesized pyrene-neomycin (1) and BQQ-neomycin (2) conjugates, in our investigations. A combination of experiments, including UV denaturation, circular dichroism (CD) titration, differential scanning calorimetry (DSC), and isothermal titration calorimetry (ITC), revealed that all four conjugates (1-4) stabilized poly(dA).2poly(dT) much more than its parent compound, neomycin. UV melting experiments clearly showed that the temperature (T(m3-->2)) at which poly(dA).2poly(dT) dissociated into poly(dA).poly(dT) and poly(dT) increased dramatically (>12 degrees C) in the presence of intercalator-neomycin conjugates (1-4) even at a very low concentration (2 muM). In contrast to intercalator-neomycin conjugates, the increment of T(m3-->2) of poly(dA).2poly(dT) induced by neomycin was negligible under the same conditions. The binding preference of intercalator-neomycin conjugates (1-4) to poly(dA).2poly(dT) was also confirmed by competition dialysis and a fluorescent intercalator displacement assay. Circular dichroism titration studies revealed that compounds 1-4 had slightly larger binding site size ( approximately 7-7.5) with poly(dA).2poly(dT) as compared to neomycin ( approximately 6.5). The thermodynamic parameters of these intercalator-neomycin conjugates with poly(dA).2poly(dT) were derived from an integrated van't Hoff equation using the T(m3-->2) values, the binding site size numbers, and other parameters obtained from DSC and ITC. The binding affinity of all tested ligands with poly(dA).2poly(dT) increased in the following order: neomycin < 1 < 3 < 4 < 2. Among them, the binding constant [(2.7 +/- 0.3) x 10(8) M(-1)] of 2 with poly(dA).2poly(dT) was the highest, almost 1000-fold greater than that of neomycin. The binding of compounds 1-4 with poly(dA).2poly(dT) was mostly enthalpy-driven and gave negative DeltaC(p) values. The results described here suggest that the binding affinity of intercalator-neomycin conjugates for poly(dA).2poly(dT) increases as a function of the surface area of the intercalator moiety.

  18. Temperature stability of proteins: Analysis of irreversible denaturation using isothermal calorimetry

    PubMed Central

    Schön, Arne; Clarkson, Benjamin R; Jaime, Maria; Freire, Ernesto

    2017-01-01

    The structural stability of proteins has been traditionally studied under conditions in which the folding/unfolding reaction is reversible, since thermodynamic parameters can only be determined under these conditions. Achieving reversibility conditions in temperature stability experiments has often required performing the experiments at acidic pH or other nonphysiological solvent conditions. With the rapid development of protein drugs, the fastest growing segment in the pharmaceutical industry, the need to evaluate protein stability under formulation conditions has acquired renewed urgency. Under formulation conditions and the required high protein concentration (~100 mg/mL), protein denaturation is irreversible and frequently coupled to aggregation and precipitation. In this article, we examine the thermal denaturation of hen egg white lysozyme (HEWL) under irreversible conditions and concentrations up to 100 mg/mL using several techniques, especially isothermal calorimetry which has been used to measure the enthalpy and kinetics of the unfolding and aggregation/precipitation at 12°C below the transition temperature measured by DSC. At those temperatures the rate of irreversible protein denaturation and aggregation of HEWL is measured to be on the order of 1 day−1. Isothermal calorimetry appears a suitable technique to identify buffer formulation conditions that maximize the long term stability of protein drugs. PMID:28722205

  19. Temperature stability of proteins: Analysis of irreversible denaturation using isothermal calorimetry.

    PubMed

    Schön, Arne; Clarkson, Benjamin R; Jaime, Maria; Freire, Ernesto

    2017-11-01

    The structural stability of proteins has been traditionally studied under conditions in which the folding/unfolding reaction is reversible, since thermodynamic parameters can only be determined under these conditions. Achieving reversibility conditions in temperature stability experiments has often required performing the experiments at acidic pH or other nonphysiological solvent conditions. With the rapid development of protein drugs, the fastest growing segment in the pharmaceutical industry, the need to evaluate protein stability under formulation conditions has acquired renewed urgency. Under formulation conditions and the required high protein concentration (∼100 mg/mL), protein denaturation is irreversible and frequently coupled to aggregation and precipitation. In this article, we examine the thermal denaturation of hen egg white lysozyme (HEWL) under irreversible conditions and concentrations up to 100 mg/mL using several techniques, especially isothermal calorimetry which has been used to measure the enthalpy and kinetics of the unfolding and aggregation/precipitation at 12°C below the transition temperature measured by DSC. At those temperatures the rate of irreversible protein denaturation and aggregation of HEWL is measured to be on the order of 1 day -1 . Isothermal calorimetry appears a suitable technique to identify buffer formulation conditions that maximize the long term stability of protein drugs. © 2017 Wiley Periodicals, Inc.

  20. Uranium extraction by complexation with siderophores

    NASA Astrophysics Data System (ADS)

    Bahamonde Castro, Cristina

    One of the major concerns of energy production is the environmental impact associated with the extraction of natural resources. Nuclear energy fuel is obtained from uranium, an abundant and naturally occurring element in the environment, but the currently used techniques for uranium extraction leave either a significant fingerprint (open pit mines) or a chemical residue that alters the pH of the environment (acid or alkali leaching). It is therefore clear that a new and greener approach to uranium extraction is needed. Bioleaching is one potential alternative. In bioleaching, complexants naturally produced from fungi or bacteria may be used to extract the uranium. In the following research, the siderophore enterobactin, which is naturally produced by bacteria to extract and solubilize iron from the environment, is evaluated to determine its potential for complexing with uranium. To determine whether enterobactin could be used for uranium extraction, its acid dissociation and its binding strength with the metal of interest must be determined. Due to the complexity of working with radioactive materials, lanthanides were used as analogs for uranium. In addition, polyprotic acids were used as structural and chemical analogs for the siderophore during method development. To evaluate the acid dissociation of enterobactin and the subsequent binding constants with lanthanides, three different analytical techniques were studied including: potentiometric titration, UltraViolet Visible (UV-Vis) spectrophotometry and Isothermal Titration Calorimetry (ITC). After evaluation of three techniques, a combination of ITC and potentiometric titrations was deemed to be the most viable way for studying the siderophore of interest. The results obtained from these studies corroborate the ideal pH range for enterobactin complexation to the lanthanide of interest and pave the way for determining the strength of complexation relative to other naturally occurring metals. Ultimately, this fundamental research enhances our current understanding of heavy metal complexation to naturally occurring complexants, which may enhance the metals mobility in the environment or potentially be used as a greener alternative in uranium extraction or remediation.

  1. Three-Dimensional Structure and Biophysical Characterization of Staphylococcus aureus Cell Surface Antigen-Manganese Transporter MntC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gribenko, Alexey; Mosyak, Lidia; Ghosh, Sharmistha

    MntC is a metal-binding protein component of the Mn 2 +-specific mntABC transporter from the pathogen Staphylococcus aureus. The protein is expressed during the early stages of infection and was proven to be effective at reducing both S. aureus and Staphylococcus epidermidis infections in a murine animal model when used as a vaccine antigen. MntC is currently being tested in human clinical trials as a component of a multiantigen vaccine for the prevention of S. aureus infections. To better understand the biological function of MntC, we are providing structural and biophysical characterization of the protein in this work. The three-dimensionalmore » structure of the protein was solved by X-ray crystallography at 2.2 Å resolution and suggests two potential metal binding modes, which may lead to reversible as well as irreversible metal binding. Precise Mn 2 +-binding affinity of the protein was determined from the isothermal titration calorimetry experiments using a competition approach. Differential scanning calorimetry experiments confirmed that divalent metals can indeed bind to MntC reversibly as well as irreversibly. Finally, Mn 2 +-induced structural and dynamics changes have been characterized using spectroscopic methods and deuterium–hydrogen exchange mass spectroscopy. Results of the experiments show that these changes are minimal and are largely restricted to the structural elements involved in metal coordination. Therefore, it is unlikely that antibody binding to this antigen will be affected by the occupancy of the metal-binding site by Mn 2 +.« less

  2. Binding of cationic pentapeptides with modified side chain lengths to negatively charged lipid membranes: Complex interplay of electrostatic and hydrophobic interactions.

    PubMed

    Hoernke, Maria; Schwieger, Christian; Kerth, Andreas; Blume, Alfred

    2012-07-01

    Basic amino acids play a key role in the binding of membrane associated proteins to negatively charged membranes. However, side chains of basic amino acids like lysine do not only provide a positive charge, but also a flexible hydrocarbon spacer that enables hydrophobic interactions. We studied the influence of hydrophobic contributions to the binding by varying the side chain length of pentapeptides with ammonium groups starting with lysine to lysine analogs with shorter side chains, namely omithine (Orn), alpha, gamma-diaminobutyric acid (Dab) and alpha, beta-diaminopropionic acid (Dap). The binding to negatively charged phosphatidylglycerol (PG) membranes was investigated by calorimetry, FT-infrared spectroscopy (FT-IR) and monolayer techniques. The binding was influenced by counteracting and sometimes compensating contributions. The influence of the bound peptides on the lipid phase behavior depends on the length of the peptide side chains. Isothermal titration calorimetry (ITC) experiments showed exothermic and endothermic effects compensating to a different extent as a function of side chain length. The increase in lipid phase transition temperature was more significant for peptides with shorter side chains. FTIR-spectroscopy revealed changes in hydration of the lipid bilayer interface after peptide binding. Using monolayer techniques, the contributions of electrostatic and hydrophobic effects could clearly be observed. Peptides with short side chains induced a pronounced decrease in surface pressure of PG monolayers whereas peptides with additional hydrophobic interactions decreased the surface pressure much less or even lead to an increase, indicating insertion of the hydrophobic part of the side chain into the lipid monolayer.

  3. The hydrophobic region of the DmsA twin-arginine leader peptide determines specificity with chaperone DmsD.

    PubMed

    Winstone, Tara M L; Tran, Vy A; Turner, Raymond J

    2013-10-29

    The system specific chaperone DmsD plays a role in the maturation of the catalytic subunit of dimethyl sulfoxide (DMSO) reductase, DmsA. Pre-DmsA contains a 45-amino acid twin-arginine leader peptide that is important for targeting and translocation of folded and cofactor-loaded DmsA by the twin-arginine translocase. DmsD has previously been shown to interact with the complete twin-arginine leader peptide of DmsA. In this study, isothermal titration calorimetry was used to investigate the thermodynamics of binding between synthetic peptides composed of different portions of the DmsA leader peptide and DmsD. Only those peptides that included the complete and contiguous hydrophobic region of the DmsA leader sequence were able to bind DmsD with a 1:1 stoichiometry. Each of the peptides that were able to bind DmsD also showed some α-helical structure as indicated by circular dichroism spectroscopy. Differential scanning calorimetry revealed that DmsD gained very little thermal stability upon binding any of the DmsA leader peptides tested. Together, these results suggest that a portion of the hydrophobic region of the DmsA leader peptide determines the specificity of binding and may produce helical properties upon binding to DmsD. Overall, this study demonstrates that the recognition of the DmsA twin-arginine leader sequence by the DmsD chaperone shows unexpected rules and confirms further that the biochemistry of the interaction of the chaperone with their leaders demonstrates differences in their molecular interactions.

  4. Crystallization of Polymers Investigated by Temperature-Modulated DSC

    PubMed Central

    Righetti, Maria Cristina

    2017-01-01

    The aim of this review is to summarize studies conducted by temperature-modulated differential scanning calorimetry (TMDSC) on polymer crystallization. This technique can provide several advantages for the analysis of polymers with respect to conventional differential scanning calorimetry. Crystallizations conducted by TMDSC in different experimental conditions are analysed and discussed, in order to illustrate the type of information that can be deduced. Isothermal and non-isothermal crystallizations upon heating and cooling are examined separately, together with the relevant mathematical treatments that allow the evolution of the crystalline, mobile amorphous and rigid amorphous fractions to be determined. The phenomena of ‘reversing’ and ‘reversible‘ melting are explicated through the analysis of the thermal response of various semi-crystalline polymers to temperature modulation. PMID:28772807

  5. Thermodynamic Analysis of Nickel(II) and Zinc(II) Adsorption to Biochar.

    PubMed

    Alam, Md Samrat; Gorman-Lewis, Drew; Chen, Ning; Flynn, Shannon L; Ok, Yong Sik; Konhauser, Kurt O; Alessi, Daniel S

    2018-05-21

    While numerous studies have investigated metal uptake from solution by biochar, few of these have developed a mechanistic understanding of the adsorption reactions that occur at the biochar surface. In this study, we explore a combined modeling and spectroscopic approach for the first time to describe the molecular level adsorption of Ni(II) and Zn(II) to five types of biochar. Following thorough characterization, potentiometric titrations were carried out to measure the proton (H + ) reactivity of each biochar, and the data was used to develop protonation models. Surface complexation modeling (SCM) supported by synchrotron-based extended X-ray absorption fine structure (EXAFS) was then used to gain insights into the molecular scale metal-biochar surface reactions. The SCM approach was combined with isothermal titration calorimetry (ITC) data to determine the thermodynamic driving forces of metal adsorption. Our results show that the reactivity of biochar toward Ni(II) and Zn(II) directly relates to the site densities of biochar. EXAFS along with FT-IR analyses, suggest that Ni(II) and Zn(II) adsorption occurred primarily through proton-active carboxyl (-COOH) and hydroxyl (-OH) functional groups on the biochar surface. SCM-ITC analyses revealed that the enthalpies of protonation are exothermic and Ni(II) and Zn(II) complexes with biochar surface are slightly exothermic to slightly endothermic. The results obtained from these combined approaches contribute to the better understanding of molecular scale metal adsorption onto the biochar surface, and will facilitate the further development of thermodynamics-based, predictive approaches to biochar removal of metals from contaminated water.

  6. Impact of protein and ligand impurities on ITC-derived protein-ligand thermodynamics.

    PubMed

    Grüner, Stefan; Neeb, Manuel; Barandun, Luzi Jakob; Sielaff, Frank; Hohn, Christoph; Kojima, Shun; Steinmetzer, Torsten; Diederich, François; Klebe, Gerhard

    2014-09-01

    The thermodynamic characterization of protein-ligand interactions by isothermal titration calorimetry (ITC) is a powerful tool in drug design, giving valuable insight into the interaction driving forces. ITC is thought to require protein and ligand solutions of high quality, meaning both the absence of contaminants as well as accurately determined concentrations. Ligands synthesized to deviating purity and protein of different pureness were titrated by ITC. Data curation was attempted also considering information from analytical techniques to correct stoichiometry. We used trypsin and tRNA-guanine transglycosylase (TGT), together with high affinity ligands to investigate the effect of errors in protein concentration as well as the impact of ligand impurities on the apparent thermodynamics. We found that errors in protein concentration did not change the thermodynamic properties obtained significantly. However, most ligand impurities led to pronounced changes in binding enthalpy. If protein binding of the respective impurity is not expected, the actual ligand concentration was corrected for and the thus revised data compared to thermodynamic properties obtained with the respective pure ligand. Even in these cases, we observed differences in binding enthalpy of about 4kJ⋅mol(-1), which is considered significant. Our results indicate that ligand purity is the critical parameter to monitor if accurate thermodynamic data of a protein-ligand complex are to be recorded. Furthermore, artificially changing fitting parameters to obtain a sound interaction stoichiometry in the presence of uncharacterized ligand impurities may lead to thermodynamic parameters significantly deviating from the accurate thermodynamic signature. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Characterization of complexes between phenethylamine enantiomers and β-cyclodextrin derivatives by capillary electrophoresis-Determination of binding constants and complex mobilities.

    PubMed

    Wahl, Joachim; Furuishi, Takayuki; Yonemochi, Etsuo; Meinel, Lorenz; Holzgrabe, Ulrike

    2017-04-01

    To optimize chiral separation conditions and to improve the knowledge of enantioseparation, it is important to know the binding constants K between analytes and cyclodextrins and the electrophoretic mobilities of the temporarily formed analyte-cyclodextrin-complexes. K values for complexes between eight phenethylamine enantiomers, namely ephedrine, pseudoephedrine, methylephedrine and norephedrine, and four different β-cyclodextrin derivatives were determined by affinity capillary electrophoresis. The binding constants were calculated from the electrophoretic mobility values of the phenethylamine enantiomers at increasing concentrations of cyclodextrins in running buffer. Three different linear plotting methods (x-reciprocal, y-reciprocal, double reciprocal) and nonlinear regression were used for the determination of binding constants with β-cyclodextrin, (2-hydroxypropyl)-β-cyclodextrin, methyl-β-cyclodextrin and 6-O-α-maltosyl-β-cyclodextrin. The cyclodextrin concentration in a 50 mM phosphate buffer pH 3.0 was varied from 0 to 12 mM. To investigate the influence of the binding constant values on the enantioseparation the observed electrophoretic selectivities were compared with the obtained K values and the calculated enantiomer-cyclodextrin-complex mobilities. The different electrophoretic mobilities of the temporarily formed complexes were crucial factors for the migration order and enantioseparation of ephedrine derivatives. To verify the apparent binding constants determined by capillary electrophoresis, a titration process using ephedrine enantiomers and β-cyclodextrin was carried out. Furthermore, the isothermal titration calorimetry measurements gave information about the thermal properties of the complexes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. l-Proline and RNA Duplex m-Value Temperature Dependence.

    PubMed

    Schwinefus, Jeffrey J; Baka, Nadia L; Modi, Kalpit; Billmeyer, Kaylyn N; Lu, Shutian; Haase, Lucas R; Menssen, Ryan J

    2017-08-03

    The temperature dependence of l-proline interactions with the RNA dodecamer duplex surface exposed after unfolding was quantified using thermal and isothermal titration denaturation monitored by uv-absorbance. The m-value quantifying proline interactions with the RNA duplex surface area exposed after unfolding was measured using RNA duplexes with GC content ranging between 17 and 83%. The m-values from thermal denaturation decreased with increasing GC content signifying increasingly favorable proline interactions with the exposed RNA surface area. However, m-values from isothermal titration denaturation at 25.0 °C were independent of GC content and less negative than those from thermal denaturation. The m-value from isothermal titration denaturation for a 50% GC RNA duplex decreased (became more negative) as the temperature increased and was in nearly exact agreement with the m-value from thermal denaturation. Since RNA duplex transition temperatures increased with GC content, the more favorable proline interactions with the high GC content duplex surface area observed from thermal denaturation resulted from the temperature dependence of proline interactions rather than the RNA surface chemical composition. The enthalpy contribution to the m-value was positive and small (indicating a slight increase in duplex unfolding enthalpy with proline) while the entropic contribution to the m-value was positive and increased with temperature. Our results will facilitate proline's use as a probe of solvent accessible surface area changes during biochemical reactions at different reaction temperatures.

  9. Glycolipid Biosurfactants Activate, Dimerize, and Stabilize Thermomyces lanuginosus Lipase in a pH-Dependent Fashion.

    PubMed

    Madsen, Jens Kvist; Kaspersen, Jørn Døvling; Andersen, Camilla Bertel; Nedergaard Pedersen, Jannik; Andersen, Kell Kleiner; Pedersen, Jan Skov; Otzen, Daniel E

    2017-08-15

    We present a study of the interactions between the lipase from Thermomyces lanuginosus (TlL) and the two microbially produced biosurfactants (BSs), rhamnolipid (RL) and sophorolipid (SL). Both RL and SL are glycolipids; however, RL is anionic, while SL is a mixture of anionic and non-ionic species. We investigate the interactions of RL and SL with TlL at pH 6 and 8 and observe different effects at the two pH values. At pH 8, neither RL nor SL had any major effect on TlL stability or activity. At pH 6, in contrast, both surfactants increase TlL's thermal stability and fluorescence and activity measurements indicate interfacial activation of TlL, resulting in 3- and 6-fold improved activity in SL and RL, respectively. Nevertheless, isothermal titration calorimetry reveals binding of only a few BS molecules per lipase. Size-exclusion chromatography and small-angle X-ray scattering suggest formation of TlL dimers with binding of small amounts of either RL or SL at the dimeric interface, forming an elongated complex. We conclude that RL and SL are compatible with TlL and constitute promising green alternatives to traditional surfactants.

  10. Comparative study of flavins binding with human serum albumin: a fluorometric, thermodynamic, and molecular dynamics approach.

    PubMed

    Sengupta, Abhigyan; Sasikala, Wilbee D; Mukherjee, Arnab; Hazra, Partha

    2012-06-04

    Flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) are derivatives of riboflavin (RF), a water-soluble vitamin, more commonly known as vitamin B(2). Flavins have attracted special attention in the last few years because of the recent discovery of a large number of flavoproteins. In this work, these flavins are used as extrinsic fluorescence markers for probing the microheterogeneous environment of a well-known transport protein, human serum albumin (HSA). Steady-state and time-resolved fluorescence experiments confirm that both FMN and FAD bind to the Sudlow's site-1 (SS1) binding pocket of HSA, where Trp214 resides. In the case of RF, a fraction of RF molecules binds at the SS1, whereas the major fraction of RF molecules remains unbound or surface bound to the protein. Moreover, flavin(s)-HSA interactions are monitored with the help of isothermal titration calorimetry, which provides free energy, enthalpy, and entropy changes of binding along with the binding constants. The molecular picture of binding interaction between flavins and HSA is well explored by docking and molecular dynamics studies. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process.

    PubMed

    Reshetnikov, Roman V; Sponer, Jiri; Rassokhina, Olga I; Kopylov, Alexei M; Tsvetkov, Philipp O; Makarov, Alexander A; Golovin, Andrey V

    2011-12-01

    A combination of explicit solvent molecular dynamics simulation (30 simulations reaching 4 µs in total), hybrid quantum mechanics/molecular mechanics approach and isothermal titration calorimetry was used to investigate the atomistic picture of ion binding to 15-mer thrombin-binding quadruplex DNA (G-DNA) aptamer. Binding of ions to G-DNA is complex multiple pathway process, which is strongly affected by the type of the cation. The individual ion-binding events are substantially modulated by the connecting loops of the aptamer, which play several roles. They stabilize the molecule during time periods when the bound ions are not present, they modulate the route of the ion into the stem and they also stabilize the internal ions by closing the gates through which the ions enter the quadruplex. Using our extensive simulations, we for the first time observed full spontaneous exchange of internal cation between quadruplex molecule and bulk solvent at atomistic resolution. The simulation suggests that expulsion of the internally bound ion is correlated with initial binding of the incoming ion. The incoming ion then readily replaces the bound ion while minimizing any destabilization of the solute molecule during the exchange. © The Author(s) 2011. Published by Oxford University Press.

  12. Boosting Affinity by Correct Ligand Preorganization for the S2 Pocket of Thrombin: A Study by Isothermal Titration Calorimetry, Molecular Dynamics, and High-Resolution Crystal Structures.

    PubMed

    Rühmann, Eggert H; Rupp, Melinda; Betz, Michael; Heine, Andreas; Klebe, Gerhard

    2016-02-04

    Structural preorganization to fix bioactive conformations at protein binding sites is a popular strategy to enhance binding affinity during late-stage optimization. The rationale for this enhancement relates to entropic advantages assigned to rigidified versus flexible ligands. We analyzed a narrow series of peptidomimetics binding to thrombin. The individual ligands exhibit at P2 a conformationally flexible glycine, more restricted alanine, N-methylglycine, N-methylhomoalanine, and largely rigidified proline moiety. Overall, affinity was found to increase by a factor of 1000, explained partly by an entropic advantage. All ligands adopt the same binding mode with small deviations. The residual mobility of the bound ligands is decreased across the series, and a protein side chain differs in its order/disorder behavior along with changes in the surface-water network pattern established across the newly generated protein-ligand surfaces. The enthalpy/entropy inventory displays a rather complex picture and emphasizes that thermodynamics can only be compared in terms of relative differences within a structurally similar ligand series. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The Interaction of Streptococcal Enolase with Canine Plasminogen: The Role of Surfaces in Complex Formation

    PubMed Central

    Balhara, Vinod; Deshmukh, Sasmit S.; Kálmán, László; Kornblatt, Jack A.

    2014-01-01

    The enolase from Streptococcus pyogenes (Str enolase F137L/E363G) is a homo-octamer shaped like a donut. Plasminogen (Pgn) is a monomeric protein composed of seven discrete separated domains organized into a lock washer. The enolase is known to bind Pgn. In past work we searched for conditions in which the two proteins would bind to one another. The two native proteins in solution would not bind under any of the tried conditions. We found that if the structures were perturbed binding would occur. We stated that only the non-native Str enolase or Pgn would interact such that we could detect binding. We report here the results of a series of dual polarization interferometry (DPI) experiments coupled with atomic force microscopy (AFM), isothermal titration calorimetry (ITC), dynamic light scattering (DLS), and fluorescence. We show that the critical condition for forming stable complexes of the two native proteins involves Str enolase binding to a surface. Surfaces that attract Str enolase are a sufficient condition for binding Pgn. Under certain conditions, Pgn adsorbed to a surface will bind Str enolase. PMID:24520380

  14. Structural characterization of Helicobacter pylori dethiobiotin synthetase reveals differences between family members

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porebski, Przemyslaw J.; Klimecka, Maria; Chruszcz, Maksymilian

    2012-07-11

    Dethiobiotin synthetase (DTBS) is involved in the biosynthesis of biotin in bacteria, fungi, and plants. As humans lack this pathway, DTBS is a promising antimicrobial drug target. We determined structures of DTBS from Helicobacter pylori (hpDTBS) bound with cofactors and a substrate analog, and described its unique characteristics relative to other DTBS proteins. Comparison with bacterial DTBS orthologs revealed considerable structural differences in nucleotide recognition. The C-terminal region of DTBS proteins, which contains two nucleotide-recognition motifs, differs greatly among DTBS proteins from different species. The structure of hpDTBS revealed that this protein is unique and does not contain a C-terminalmore » region containing one of the motifs. The single nucleotide-binding motif in hpDTBS is similar to its counterpart in GTPases; however, isothermal titration calorimetry binding studies showed that hpDTBS has a strong preference for ATP. The structural determinants of ATP specificity were assessed with X-ray crystallographic studies of hpDTBS-ATP and hpDTBS-GTP complexes. The unique mode of nucleotide recognition in hpDTBS makes this protein a good target for H. pylori-specific inhibitors of the biotin synthesis pathway.« less

  15. Crystal structure of the dopamine N-acetyltransferase–acetyl-CoA complex provides insights into the catalytic mechanism

    PubMed Central

    Cheng, Kuo-Chang; Liao, Jhen-Ni; Lyu, Ping-Chiang

    2012-01-01

    The daily cycle of melatonin biosynthesis in mammals is regulated by AANAT (arylalkylamine N-acetyltransferase; EC 2.3.1.87), making it an attractive target for therapeutic control of abnormal melatonin production in mood and sleep disorders. Drosophila melanogaster Dat (dopamine N-acetyltransferase) is an AANAT. Until the present study, no insect Dat structure had been solved, and, consequently, the structural basis for its acetyl-transfer activity was not well understood. We report in the present paper the high-resolution crystal structure for a D. melanogaster Dat–AcCoA (acetyl-CoA) complex obtained using one-edge (selenium) single-wavelength anomalous diffraction. A binding study using isothermal titration calorimetry suggested that the cofactor bound to Dat first before substrate. Examination of the complex structure and a substrate-docked model indicated that Dat contains a novel AANAT catalytic triad. Site-directed mutagenesis, kinetic studies and pH-rate profiles confirmed that Glu47, Ser182 and Ser186 were critical for catalysis. Collectively, the results of the present study suggest that Dat possesses a specialized active site structure dedicated to a catalytic mechanism. PMID:22716280

  16. Energetics of ligand-receptor binding affinity on endothelial cells: An in vitro model.

    PubMed

    Fotticchia, Iolanda; Guarnieri, Daniela; Fotticchia, Teresa; Falanga, Andrea Patrizia; Vecchione, Raffaele; Giancola, Concetta; Netti, Paolo Antonio

    2016-08-01

    Targeted therapies represent a challenge in modern medicine. In this contest, we propose a rapid and reliable methodology based on Isothermal Titration Calorimetry (ITC) coupled with confluent cell layers cultured around biocompatible templating microparticles to quantify the number of overexpressing receptors on cell membrane and study the energetics of receptor-ligand binding in near-physiological conditions. In the in vitro model here proposed we used the bEnd3 cell line as brain endothelial cells to mimic the blood brain barrier (BBB) cultured on dextran microbeads ranging from 67μm to 80μm in size (Cytodex) and the primary human umbilical vein cells (HUVEC) for comparison. The revealed affinity between transferrin (Tf) and transferrin receptor (TfR) in both systems is very high, Kd values are in the order of nM. Conversely, the value of TfRs/cell reveals a 100-fold increase in the number of TfRs per bEnd3 cells compared to HUVEC cells. The presented methodology can represent a novel and helpful strategy to identify targets, to address drug design and selectively deliver therapeutics that can cross biological barriers such as the blood brain barrier. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Ion Binding Energies Determining Functional Transport of ClC Proteins

    NASA Astrophysics Data System (ADS)

    Yu, Tao; Guo, Xu; Zou, Xian-Wu; Sang, Jian-Ping

    2014-06-01

    The ClC-type proteins, a large family of chloride transport proteins ubiquitously expressed in biological organisms, have been extensively studied for decades. Biological function of ClC proteins can be reflected by analyzing the binding situation of Cl- ions. We investigate ion binding properties of ClC-ec1 protein with the atomic molecular dynamics simulation approach. The calculated electrostatic binding energy results indicate that Cl- at the central binding site Scen has more binding stability than the internal binding site Sint. Quantitative comparison between the latest experimental heat release data isothermal titration calorimetry (ITC) and our calculated results demonstrates that chloride ions prefer to bind at Scen than Sint in the wild-type ClC-ec1 structure and prefer to bind at Sext and Scen than Sint in mutant E148A/E148Q structures. Even though the chloride ions make less contribution to heat release when binding to Sint and are relatively unstable in the Cl- pathway, they are still part contributors for the Cl- functional transport. This work provides a guide rule to estimate the importance of Cl- at the binding sites and how chloride ions have influences on the function of ClC proteins.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Shannon E.; Nguyen, Elaine; Ukachukwu, Chiamaka U.

    Dihydroneopterin triphosphate pyrophosphatase (DHNTPase), a member of the Mg2+ dependent Nudix hydrolase superfamily, is the recently-discovered enzyme that functions in the second step of the pterin branch of the folate biosynthetic pathway in E. coli. DHNTPase is of interest because inhibition of enzymes in bacterial folate biosynthetic pathways is a strategy for antibiotic development. We determined crystal structures of DHNTPase with and without activating, Mg2+-mimicking metals Co2+ and Ni2+. Four metal ions, identified by anomalous scattering, and stoichiometrically confirmed in solution by isothermal titration calorimetry, are held in place by Glu56 and Glu60 within the Nudix sequence motif, Glu117, waters,more » and a sulfate ion, of which the latter is further stabilized by a salt bridge with Lys7. In silico docking of the DHNTP substrate reveals a binding mode in which the pterin ring moiety is nestled in a largely hydrophobic pocket, the β-phosphate activated for nucleophilic attack overlays with the crystallographic sulfate and is in line with an activated water molecule, and remaining phosphate groups are stabilized by all four identified metal ions. The structures and binding data provide new details regarding DHNTPase metal requirements, mechanism, and suggest a strategy for efficient inhibition.« less

  19. Cyclotides Insert into Lipid Bilayers to Form Membrane Pores and Destabilize the Membrane through Hydrophobic and Phosphoethanolamine-specific Interactions*

    PubMed Central

    Wang, Conan K.; Wacklin, Hanna P.; Craik, David J.

    2012-01-01

    Cyclotides are a family of plant-derived circular proteins with potential therapeutic applications arising from their remarkable stability, broad sequence diversity, and range of bioactivities. Their membrane-binding activity is believed to be a critical component of their mechanism of action. Using isothermal titration calorimetry, we studied the binding of the prototypical cyclotides kalata B1 and kalata B2 (and various mutants) to dodecylphosphocholine micelles and phosphoethanolamine-containing lipid bilayers. Although binding is predominantly an entropy-driven process, suggesting that hydrophobic forces contribute significantly to cyclotide-lipid complex formation, specific binding to the phosphoethanolamine-lipid headgroup is also required, which is evident from the enthalpic changes in the free energy of binding. In addition, using a combination of dissipative quartz crystal microbalance measurements and neutron reflectometry, we elucidated the process by which cyclotides interact with bilayer membranes. Initially, a small number of cyclotides bind to the membrane surface and then insert first into the outer membrane leaflet followed by penetration through the membrane and pore formation. At higher concentrations of cyclotides, destabilization of membranes occurs. Our results provide significant mechanistic insight into how cyclotides exert their bioactivities. PMID:23129773

  20. Thermodynamic investigation of the interaction between cyclodextrins and preservatives - Application and verification in a mathematical model to determine the needed preservative surplus in aqueous cyclodextrin formulations.

    PubMed

    Holm, René; Olesen, Niels Erik; Alexandersen, Signe Dalgaard; Dahlgaard, Birgitte N; Westh, Peter; Mu, Huiling

    2016-05-25

    Preservatives are inactivated when added to conserve aqueous cyclodextrin (CD) formulations due to complex formation between CDs and the preservative. To maintain the desired conservation effect the preservative needs to be added in apparent surplus to account for this inactivation. The purpose of the present work was to establish a mathematical model, which defines this surplus based upon knowledge of stability constants and the minimal concentration of preservation to inhibit bacterial growth. The stability constants of benzoic acid, methyl- and propyl-paraben with different frequently used βCDs were determined by isothermal titration calorimetry. Based upon this knowledge mathematical models were constructed to account for the equilibrium systems and to calculate the required concentration of the preservations, which was evaluated experimentally based upon the USP/Ph. Eur./JP monograph. The mathematical calculations were able to predict the needed concentration of preservation in the presence of CDs; it clearly demonstrated the usefulness of including all underlying chemical equilibria in a mathematical model, such that the formulation design can be based on quantitative arguments. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Interaction of the dietary pigment curcumin with hemoglobin: energetics of the complexation.

    PubMed

    Basu, Anirban; Kumar, Gopinatha Suresh

    2014-08-01

    Thermodynamics of the interaction of the chemotherapeutic and chemopreventive dietary pigment, curcumin, with hemoglobin was studied by isothermal titration calorimetry. The binding was characterized to be exothermic. At 293.15 K, the equilibrium constant for curcumin-Hb complexation was found to be (4.88 ± 0.06) × 10(5) M(-1). The binding stoichiometry was calculated to be 1.08 ± 0.05, confirming a 1:1 complexation. The binding was driven by a large negative standard molar enthalpy change (ΔH(0) = -118.45 ± 0.05 kJ mol(-1)) and an unfavorable standard molar entropy change (TΔS(0) = -86.53 ± 0.01 kJ mol(-1)) at 293.15 K. Increasing the temperature favoured the binding, and the magnitude of the negative standard molar heat capacity change suggested the involvement of significant hydrophobic forces in the binding process. With increasing salt concentration, the magnitude of the equilibrium constant decreased slightly; and the complexation mostly involved non-polyelectrolytic forces contributing about 92-94% of the standard molar Gibbs energy change. DSC studies revealed that curcumin binding caused a partial unfolding of the protein.

  2. Binding sites for interaction of peroxiredoxin 6 with surfactant protein A

    PubMed Central

    Krishnaiah, Saikumari Y; Dodia, Chandra; Sorokina, Elena M; Li, Haitao; Feinstein, Sheldon I; Fisher, Aron B

    2016-01-01

    Peroxiredoxin 6 (Prdx6) is a bifunctional enzyme with peroxidase and phospholipase A2 (PLA2) activities. This protein participates in the degradation and remodeling of internalized dipalmitoylphosphatidylcholine (DPPC), the major phospholipid component of lung surfactant. We have shown previously that the PLA2 activity of Prdx6 is inhibited by the lung surfactant-associated protein called surfactant protein A (SP-A) through direct protein-protein interaction. Docking of SPA and Prdx6 was modeled using the ZDOCK (zlab.bu.edu) program in order to predict molecular sites for binding of the two proteins. The predicted peptide sequences were evaluated for binding to the opposite protein using isothermal titration calorimetry and circular dichroism measurement followed by determination of the effect of the SP-A peptide on the PLA2 activity of Prdx6. The sequences 195EEEAKKLFPK204.in the Prdx6 helix and 83DEELQTELYEIKHQIL99 in SP-A were identified as the sites for hydrophobic interaction and H+-bonding between the 2 proteins. Treatment of mouse endothelial cells with the SP-A peptide inhibited their recovery from lipid peroxidation associated with oxidative stress indicating inhibition of Prdx6 activity by the peptide in the intact cell. PMID:26723227

  3. The Role of Structural Enthalpy in Spherical Nucleic Acid Hybridization.

    PubMed

    Fong, Lam-Kiu; Wang, Ziwei; Schatz, George C; Luijten, Erik; Mirkin, Chad A

    2018-05-23

    DNA hybridization onto DNA-functionalized nanoparticle surfaces (e.g., in the form of a spherical nucleic acid (SNA)) is known to be enhanced relative to hybridization free in solution. Surprisingly, via isothermal titration calorimetry, we reveal that this enhancement is enthalpically, as opposed to entropically, dominated by ∼20 kcal/mol. Coarse-grained molecular dynamics simulations suggest that the observed enthalpic enhancement results from structurally confining the DNA on the nanoparticle surface and preventing it from adopting enthalpically unfavorable conformations like those observed in the solution case. The idea that structural confinement leads to the formation of energetically more stable duplexes is evaluated by decreasing the degree of confinement a duplex experiences on the nanoparticle surface. Both experiment and simulation confirm that when the surface-bound duplex is less confined, i.e., at lower DNA surface density or at greater distance from the nanoparticle surface, its enthalpy of formation approaches the less favorable enthalpy of duplex formation for the linear strand in solution. This work provides insight into one of the most important and enabling properties of SNAs and will inform the design of materials that rely on the thermodynamics of hybridization onto DNA-functionalized surfaces, including diagnostic probes and therapeutic agents.

  4. Modeling Complex Equilibria in ITC Experiments: Thermodynamic Parameters Estimation for a Three Binding Site Model

    PubMed Central

    Le, Vu H.; Buscaglia, Robert; Chaires, Jonathan B.; Lewis, Edwin A.

    2013-01-01

    Isothermal Titration Calorimetry, ITC, is a powerful technique that can be used to estimate a complete set of thermodynamic parameters (e.g. Keq (or ΔG), ΔH, ΔS, and n) for a ligand binding interaction described by a thermodynamic model. Thermodynamic models are constructed by combination of equilibrium constant, mass balance, and charge balance equations for the system under study. Commercial ITC instruments are supplied with software that includes a number of simple interaction models, for example one binding site, two binding sites, sequential sites, and n-independent binding sites. More complex models for example, three or more binding sites, one site with multiple binding mechanisms, linked equilibria, or equilibria involving macromolecular conformational selection through ligand binding need to be developed on a case by case basis by the ITC user. In this paper we provide an algorithm (and a link to our MATLAB program) for the non-linear regression analysis of a multiple binding site model with up to four overlapping binding equilibria. Error analysis demonstrates that fitting ITC data for multiple parameters (e.g. up to nine parameters in the three binding site model) yields thermodynamic parameters with acceptable accuracy. PMID:23262283

  5. Effects of protein-pheromone complexation on correlated chemical shift modulations.

    PubMed

    Perazzolo, Chiara; Wist, Julien; Loth, Karine; Poggi, Luisa; Homans, Steve; Bodenhausen, Geoffrey

    2005-12-01

    Major urinary protein (MUP) is a pheromone-carrying protein of the lipocalin family. Previous studies by isothermal titration calorimetry (ITC) show that the affinity of MUP for the pheromone 2-methoxy-3-isobutylpyrazine (IBMP) is mainly driven by enthalpy, with a small unfavourable entropic contribution. Entropic terms can be attributed in part to changes in internal motions of the protein upon binding. Slow internal motions can lead to correlated or anti-correlated modulations of the isotropic chemical shifts of carbonyl C' and amide N nuclei. Correlated chemical shift modulations (CSM/CSM) in MUP have been determined by measuring differences of the transverse relaxation rates of zero- and double-quantum coherences ZQC{C'N} and DQC{C'N}, and by accounting for the effects of correlated fluctuations of dipole-dipole couplings (DD/DD) and chemical shift anisotropies (CSA/CSA). The latter can be predicted from tensor parameters of C' and N nuclei that have been determined in earlier work. The effects of complexation on slow time-scale protein dynamics can be determined by comparing the temperature dependence of the relaxation rates of APO-MUP (i.e., without ligand) and HOLO-MUP (i.e., with IBMP as a ligand).

  6. Interactions between ionic liquid surfactant [C12mim]Br and DNA in dilute brine.

    PubMed

    He, Yunfei; Shang, Yazhuo; Liu, Zhenhai; Shao, Shuang; Liu, Honglai; Hu, Ying

    2013-01-01

    Interactions between ionic liquid surfactant [C(12)mim]Br and DNA in dilute brine were investigated in terms of various experimental methods and molecular dynamics (MD) simulation. It was shown that the aggregation of [C(12)mim]Br on DNA chains is motivated not only by electrostatic attractions between DNA phosphate groups and [C(12)mim]Br headgroups but also by hydrophobic interactions among [C(12)mim]Br alkyl chains. Isothermal titration calorimetry analysis indicated that the [C(12)mim]Br aggregation in the presence and absence of DNA are both thermodynamically favored driven by enthalpy and entropy. DNA undergoes size transition and conformational change induced by [C(12)mim]Br, and the charges of DNA are neutralized by the added [C(12)mim]Br. Various microstructures were observed such as DNA with loose coil conformation in nature state, necklace-like structures, and compact spherical aggregates. MD simulation showed that the polyelectrolyte collapses upon the addition of oppositely charged surfactants and the aggregation of surfactants around the polyelectrolyte was reaffirmed. The simulation predicted the gradual neutralization of the negatively charged polyelectrolyte by the surfactant, consistent with the experimental results. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Supramolecular interactions between triphenylphosphine oxide and benzamide evaluated by positron annihilation lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Oliveira, F. C.; Denadai, A. M. L.; Fulgêncio, F.; Oliveira, A. M.; Andrade, A. C. A.; Melo, A. C. A.; Yoshida, M. I.; Windmöller, D.; Magalhães, W. F.

    2017-04-01

    In the present work, intermolecular interactions between triphenylphosphine oxide (TPPO) and benzamide (BZM) has been studied in solid state by Positron Annihilation Lifetime Spectroscopy (PALS) and supported by several analytical techniques (in solid state and in solution) and by computational modeling (in gaseous phase). Isothermal Titration Calorimetry (ITC) in ethyl acetate solvent showed that complexation is a stepwise process, with 2:1 and 1:1 TPPO/BZM stoichiometries, both driven by entropy. HPLC analysis of isolated single crystal confirmed the existence of a 2:1 TPPO/BZM crystalline complex in solid state. The results of thermal analysis (TGA, DTA and DSC) and FTIR spectroscopy showed that the interactions in the complexes are relatively weaker than those found in pure precursors. Finally, PALS showed higher positronium formation probability (I3) at [TPPO0.62·BZM0.38] and [TPPO0.25·BZM0.75] molar fractions, corroborating the existence of two stoichiometries for the TPPO/BZM system and suggesting greater electronic availability of n- and π-electrons in heterosynton complexes, as resulting of interactions, bring forward new evidences of the participation of electronic excited states on the positronium formation mechanism.

  8. Conformational analysis of the Streptococcus pneumoniae hyaluronate lyase and characterization of its hyaluronan-specific carbohydrate-binding module.

    PubMed

    Suits, Michael D L; Pluvinage, Benjamin; Law, Adrienne; Liu, Yan; Palma, Angelina S; Chai, Wengang; Feizi, Ten; Boraston, Alisdair B

    2014-09-26

    For a subset of pathogenic microorganisms, including Streptococcus pneumoniae, the recognition and degradation of host hyaluronan contributes to bacterial spreading through the extracellular matrix and enhancing access to host cell surfaces. The hyaluronate lyase (Hyl) presented on the surface of S. pneumoniae performs this role. Using glycan microarray screening, affinity electrophoresis, and isothermal titration calorimetry we show that the N-terminal module of Hyl is a hyaluronan-specific carbohydrate-binding module (CBM) and the founding member of CBM family 70. The 1.2 Å resolution x-ray crystal structure of CBM70 revealed it to have a β-sandwich fold, similar to other CBMs. The electrostatic properties of the binding site, which was identified by site-directed mutagenesis, are distinct from other CBMs and complementary to its acidic ligand, hyaluronan. Dynamic light scattering and solution small angle x-ray scattering revealed the full-length Hyl protein to exist as a monomer/dimer mixture in solution. Through a detailed analysis of the small angle x-ray scattering data, we report the pseudoatomic solution structures of the monomer and dimer forms of the full-length multimodular Hyl. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Effects of surface compositional and structural heterogeneity on nanoparticle-protein interactions: different protein configurations.

    PubMed

    Huang, Rixiang; Carney, Randy P; Ikuma, Kaoru; Stellacci, Francesco; Lau, Boris L T

    2014-06-24

    As nanoparticles (NPs) enter into biological systems, they are immediately exposed to a variety and concentration of proteins. The physicochemical interactions between proteins and NPs are influenced by the surface properties of the NPs. To identify the effects of NP surface heterogeneity, the interactions between bovine serum albumin (BSA) and gold NPs (AuNPs) with similar chemical composition but different surface structures were investigated. Different interaction modes and BSA conformations were studied by dynamic light scattering, circular dichroism spectroscopy, fluorescence quenching and isothermal titration calorimetry (ITC). Depending on the surface structure of AuNPs, BSA seems to adopt either a "side-on" or an "end-on" conformation on AuNPs. ITC demonstrated that the adsorption of BSA onto AuNPs with randomly distributed polar and nonpolar groups was primarily driven by electrostatic interaction, and all BSA were adsorbed in the same process. The adsorption of BSA onto AuNPs covered with alternating domains of polar and nonpolar groups was a combination of different interactions. Overall, the results of this study point to the potential for utilizing nanoscale manipulation of NP surfaces to control the resulting NP-protein interactions.

  10. Interactions of U24 from Roseolovirus with WW domains: canonical vs noncanonical.

    PubMed

    Sang, Yurou; Zhang, Rui; Creagh, A Louise; Haynes, Charles A; Straus, Suzana K

    2017-06-01

    U24 is a C-terminal membrane-anchored protein found in both human herpes virus type 6 and 7 (HHV-6 and HHV-7), with an N-terminal segment that is rich in prolines (PPxY motif in both HHV-6A and 7; PxxP motif in HHV-6A). Previous work has shown that U24 interacts strongly with Nedd4 WW domains, in particular, hNedd4L-WW3*. It was also shown that this interaction depends strongly on the nature of the amino acids that are upstream from the PY motif in U24. In this contribution, data was obtained from pull-downs, isothermal titration calorimetry, and NMR to further determine what modulates U24:WW domain interactions. Specifically, 3 non-canonical WW domains from human Smad ubiquitination regulatory factor (Smurf), namely hSmurf2-WW2, hSmurf2-WW3, and a tandem construct hSmurf2-WW2 + 3, were studied. Overall, the interactions between U24 and these Smurf WW domains were found to be weaker than those in U24:Nedd4 WW domain pairs, suggesting that U24 function is tightly linked to specific E3 ubiqitin ligases.

  11. Binding of the cSH3 Domain of Grb2 Adaptor to Two Distinct RXXK Motifs within Gab1 Docker Employs Differential Mechanisms

    PubMed Central

    McDonald, Caleb B.; Seldeen, Kenneth L.; Deegan, Brian J.; Bhat, Vikas; Farooq, Amjad

    2010-01-01

    A ubiquitous component of cellular signaling machinery, Gab1 docker plays a pivotal role in routing extracellular information in the form of growth factors and cytokines to downstream targets such as transcription factors within the nucleus. Here, using isothermal titration calorimetry (ITC) in combination with macromolecular modeling (MM), we show that although Gab1 contains four distinct RXXK motifs, designated G1, G2, G3 and G4, only G1 and G2 motifs bind to the cSH3 domain of Grb2 adaptor and do so with distinct mechanisms. Thus, while the G1 motif strictly requires the PPRPPKP consensus sequence for high-affinity binding to the cSH3 domain, the G2 motif displays preference for the PXVXRXLKPXR consensus. Such sequential differences in the binding of G1 and G2 motifs arise from their ability to adopt distinct polyproline type II (PPII)- and 310-helical conformations upon binding to the cSH3 domain, respectively. Collectively, our study provides detailed biophysical insights into a key protein-protein interaction involved in a diverse array of signaling cascades central to health and disease. PMID:21472810

  12. New Strategies and Methods to Study Interactions between Tobacco Mosaic Virus Coat Protein and Its Inhibitors

    PubMed Central

    Li, Xiangyang; Chen, Zhuo; Jin, Linhong; Hu, Deyu; Yang, Song

    2016-01-01

    Studies of the targets of anti-viral compounds are hot topics in the field of pesticide research. Various efficient anti-TMV (Tobacco Mosaic Virus) compounds, such as Ningnanmycin (NNM), Antofine (ATF), Dufulin (DFL) and Bingqingxiao (BQX) are available. However, the mechanisms of the action of these compounds on targets remain unclear. To further study the mechanism of the action of the anti-TMV inhibitors, the TMV coat protein (TMV CP) was expressed and self-assembled into four-layer aggregate disks in vitro, which could be reassembled into infectious virus particles with TMV RNA. The interactions between the anti-TMV compounds and the TMV CP disk were analyzed by size exclusion chromatography, isothermal titration calorimetry and native-polyacrylamide gel electrophoresis methods. The results revealed that assembly of the four-layer aggregate disk was inhibited by NNM; it changed the four-layer aggregate disk into trimers, and affected the regular assembly of TMV CP and TMV RNA. The four-layer aggregate disk of TMV CP was little inhibited by ATF, DFL and BQX. Our results provide original data, as well as new strategies and methods, for research on the mechanism of action of anti-viral drugs. PMID:26927077

  13. Caseoperoxidase, Mixed β-Casein-SDS-Hemin-Imidazole Complex: A Nano Artificial Enzyme

    PubMed Central

    Moosavi-Movahedi, Zainab; Gharibi, Hussein; Hadi-Alijanvand, Hamid; Akbarzadeh, Mohammad; Esmaili, Mansoore; Atri, Maliheh S.; Sefidbakht, Yahya; Bohlooli, Mousa; Nazari, Khodadad; Javadian, Soheila; Hong, Jun; Saboury, Ali A.; Sheibani, Nader; Moosavi-Movahedi, Ali A.

    2016-01-01

    A novel peroxidase-like artificial enzyme, named “caseoperoxidase”, was biomimetically designed using a nano artificial amino acid apo-protein hydrophobic pocket. This four-component nano artificial enzyme containing heme-imidazole-β-casein-SDS exhibited high activity growth and kcat performance towards the native horseradish peroxidase (HRP) demonstrated by the steady state kinetics using UV-Vis spectrophotometry. The hydrophobicity and secondary structure of the caseoperoxidase were studied by ANS fluorescence and circular dichroism spectroscopy. Camel β-casein (Cβ-casein), with a flexible structure and exalted hydrophobicity, was selected as an appropriate apo-protein for the heme active site using a homology modeling method. Heme docking into the newly obtained Cβ-casein structure indicated one heme was mainly incorporated with Cβ-casein. The presence of a main electrostatic site for the active site in the Cβ-casein was also confirmed by experimental methods through Wyman binding potential and isothermal titration calorimetry. The existence of Cβ-casein protein in this biocatalyst lowered the suicide inactivation, and indicated that the obtained structure has a good protective role for the heme active-site. Additional further experiments confirmed the retention of caseoperoxidase structure and function as an artificial enzyme. PMID:25562503

  14. Caseoperoxidase, mixed β-casein-SDS-hemin-imidazole complex: a nano artificial enzyme.

    PubMed

    Moosavi-Movahedi, Zainab; Gharibi, Hussein; Hadi-Alijanvand, Hamid; Akbarzadeh, Mohammad; Esmaili, Mansoore; Atri, Maliheh S; Sefidbakht, Yahya; Bohlooli, Mousa; Nazari, Khodadad; Javadian, Soheila; Hong, Jun; Saboury, Ali A; Sheibani, Nader; Moosavi-Movahedi, Ali A

    2015-01-01

    A novel peroxidase-like artificial enzyme, named "caseoperoxidase", was biomimetically designed using a nano artificial amino acid apo-protein hydrophobic pocket. This four-component nano artificial enzyme containing heme-imidazole-β-casein-SDS exhibited high activity growth and k(cat) performance toward the native horseradish peroxidase demonstrated by the steady state kinetics using UV-vis spectrophotometry. The hydrophobicity and secondary structure of the caseoperoxidase were studied by ANS fluorescence and circular dichroism spectroscopy. Camel β-casein (Cβ-casein) was selected as an appropriate apo-protein for the heme active site because of its innate flexibility and exalted hydrophobicity. This selection was confirmed by homology modeling method. Heme docking into the newly obtained Cβ-casein structure indicated one heme was mainly incorporated with Cβ-casein. The presence of a main electrostatic site for the active site in the Cβ-casein was also confirmed by experimental methods through Wyman binding potential and isothermal titration calorimetry. The existence of Cβ-casein protein in this biocatalyst lowered the suicide inactivation and provided a suitable protective role for the heme active-site. Additional experiments confirmed the retention of caseoperoxidase structure and function as an artificial enzyme.

  15. Effect of inclusion of hydroxycinnamic and chlorogenic acids from green coffee bean in β-cyclodextrin on their interactions with whey, egg white and soy protein isolates.

    PubMed

    Budryn, Grażyna; Pałecz, Bartłomiej; Rachwał-Rosiak, Danuta; Oracz, Joanna; Zaczyńska, Donata; Belica, Sylwia; Navarro-González, Inmaculada; Meseguer, Josefina María Vegara; Pérez-Sánchez, Horacio

    2015-02-01

    The aim of the study was to characterise the interactions of hydroxycinnamic and chlorogenic acids (CHAs) from green coffee, with isolates of proteins from egg white (EWP), whey (WPC) and soy (SPI), depending on pH and temperature. The binding degree was determined by liquid chromatography coupled to a diode array detector and an ultrahigh resolution hybrid quadruple-time-of-flight mass spectrometer with ESI source (LC-QTOF-MS/MS). As a result of binding, the concentration of CHAs in proteins ranged from 9.44-12.2, 11.8-13.1 and 12.1-14.4g/100g for SPI, WPC and EWP, respectively. Thermodynamic parameters of protein-ligand interactions were determined by isothermal titration calorimetry (ITC) and energetics of interactions at the atomic level by molecular modelling. The amount of CHAs released during proteolytic digestion was in the range 0.33-2.67g/100g. Inclusion of CHAs with β-cyclodextrin strongly limited these interactions to a level of 0.03-0.06g/100g. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Tripeptide GGH as the Inhibitor of Copper-Amyloid-β-Mediated Redox Reaction and Toxicity.

    PubMed

    Hu, Xiaoyu; Zhang, Qian; Wang, Wei; Yuan, Zhi; Zhu, Xushan; Chen, Bing; Chen, Xingyu

    2016-09-21

    The Aβ complexes of some redox-active species, such as Cu, cause oxidative stress and induce severe toxicity by generating reactive oxygen species (ROS). Thus, Cu chelation therapy should be considered as a valuable strategy for the treatment of Alzheimer's disease (AD). However, more attention should be paid to the specific chelating ability of these chelating agents. Herein, a tripeptide GGH was used to selectively chelate the Cu(2+) in Aβ-Cu complex in the presence of other metal ions (e.g., K(+), Ca(2+), Ni(2+), Mg(2+), and Zn(2+)) as shown by isothermal titration calorimetry results. GGH decreased the level of HO(•) radicals by preventing the formation of intermediate Cu(I) ion. Thus, the Cu species completely lost its catalytic activity at a superequimolar GGH/Cu(II) ratio (4:1) as observed by UV-visible spectroscopy, coumarin-3-carboxylic acid fluorescence, and BCA assay. Moreover, (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay indicates that GGH increased PC-12 cell viability from 36% to 63%, and neurotoxicity partly triggered by ROS decreased. These results indicate potential development of peptide chelation therapy for AD treatment.

  17. Apo-states of calmodulin and CaBP1 control CaV1 voltage-gated calcium channel function through direct competition for the IQ domain

    PubMed Central

    Findeisen, Felix; Rumpf, Christine; Minor, Daniel L.

    2013-01-01

    In neurons, binding of calmodulin (CaM) or calcium-binding protein 1 (CaBP1) to the CaV1 (L-type) voltage-gated calcium channel IQ domain endows the channel with diametrically opposed properties. CaM causes calcium-dependent inactivation (CDI) and limits calcium entry, whereas CaBP1 blocks CDI and allows sustained calcium influx. Here, we combine isothermal titration calorimetry (ITC) with cell-based functional measurements and mathematical modeling to show that these calcium sensors behave in a competitive manner that is explained quantitatively by their apo-state binding affinities for the IQ domain. This competition can be completely blocked by covalent tethering of CaM to the channel. Further, we show that Ca2+/CaM has a sub-picomolar affinity for the IQ domain that is achieved without drastic alteration of calcium binding properties. The observation that the apo-forms of CaM and CaBP1 compete with each other demonstrates a simple mechanism for direct modulation of CaV1 function and suggests a means by which excitable cells may dynamically tune CaV activity. PMID:23811053

  18. Selection of staphylococcal enterotoxin B (SEB)-binding peptide using phage display technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soykut, Esra Acar; Dudak, Fahriye Ceyda; Boyaci, Ismail Hakki

    In this study, peptides were selected to recognize staphylococcal enterotoxin B (SEB) which cause food intoxication and can be used as a biological war agent. By using commercial M13 phage library, single plaque isolation of 38 phages was done and binding affinities were investigated with phage-ELISA. The specificities of the selected phage clones showing high affinity to SEB were checked by using different protein molecules which can be found in food samples. Furthermore, the affinities of three selected phage clones were determined by using surface plasmon resonance (SPR) sensors. Sequence analysis was realized for three peptides showing high binding affinitymore » to SEB and WWRPLTPESPPA, MNLHDYHRLFWY, and QHPQINQTLYRM amino acid sequences were obtained. The peptide sequence with highest affinity to SEB was synthesized with solid phase peptide synthesis technique and thermodynamic constants of the peptide-SEB interaction were determined by using isothermal titration calorimetry (ITC) and compared with those of antibody-SEB interaction. The binding constant of the peptide was determined as 4.2 {+-} 0.7 x 10{sup 5} M{sup -1} which indicates a strong binding close to that of antibody.« less

  19. Extracellular DNA Impedes the Transport of Vancomycin in Staphylococcus epidermidis Biofilms Preexposed to Subinhibitory Concentrations of Vancomycin

    PubMed Central

    Tseng, Boo Shan; Howlin, Robert P.; Deacon, Jill; Wharton, Julian A.; Thurner, Philipp J.; Gilmore, Brendan F.; Parsek, Matthew R.; Stoodley, Paul

    2014-01-01

    Staphylococcus epidermidis biofilm formation is responsible for the persistence of orthopedic implant infections. Previous studies have shown that exposure of S. epidermidis biofilms to sub-MICs of antibiotics induced an increased level of biofilm persistence. BODIPY FL-vancomycin (a fluorescent vancomycin conjugate) and confocal microscopy were used to show that the penetration of vancomycin through sub-MIC-vancomycin-treated S. epidermidis biofilms was impeded compared to that of control, untreated biofilms. Further experiments showed an increase in the extracellular DNA (eDNA) concentration in biofilms preexposed to sub-MIC vancomycin, suggesting a potential role for eDNA in the hindrance of vancomycin activity. Exogenously added, S. epidermidis DNA increased the planktonic vancomycin MIC and protected biofilm cells from lethal vancomycin concentrations. Finally, isothermal titration calorimetry (ITC) revealed that the binding constant of DNA and vancomycin was 100-fold higher than the previously reported binding constant of vancomycin and its intended cellular d-Ala-d-Ala peptide target. This study provides an explanation of the eDNA-based mechanism of antibiotic tolerance in sub-MIC-vancomycin-treated S. epidermidis biofilms, which might be an important factor for the persistence of biofilm infections. PMID:25267673

  20. Computational and experimental characterization of a pyrrolidinium-based ionic liquid for electrolyte applications

    NASA Astrophysics Data System (ADS)

    Torabifard, Hedieh; Reed, Luke; Berry, Matthew T.; Hein, Jason E.; Menke, Erik; Cisneros, G. Andrés

    2017-10-01

    The development of Li-ion batteries for energy storage has received significant attention. The synthesis and characterization of electrolytes in these batteries are an important component of this development. Ionic liquids (ILs) have been proposed as possible electrolytes in these devices. Thus, the accurate determination of thermophysical properties for these solvents becomes important for determining their applicability as electrolytes. In this contribution, we present the synthesis and experimental/computational characterization of thermodynamic and transport properties of a pyrrolidinium based ionic liquid as a first step to investigate the possible applicability of this class of ILs for Li-ion batteries. A quantum mechanical-based force field with many-body polarizable interactions has been developed for the simulation of spirocyclic pyrrolidinium, [sPyr+], with BF4- and Li+. Molecular dynamics calculations employing intra-molecular polarization predicted larger heat of vaporization and self-diffusion coefficients and smaller densities in comparison with the model without intra-molecular polarization, indicating that the inclusion of this term can significantly effect the inter-ionic interactions. The calculated properties are in good agreement with available experimental data for similar IL pairs and isothermal titration calorimetry data for [sPyr+][BF4-].

  1. Insights into the multi-equilibrium, superstructure system based on β-cyclodextrin and a highly water soluble guest.

    PubMed

    De Paula, Elgte Elmin B; De Sousa, Frederico B; Da Silva, Júlio César C; Fernandes, Flaviana R; Melo, Maria Norma; Frézard, Frédéric; Grazul, Richard M; Sinisterra, Rubén D; Machado, Flávia C

    2012-12-15

    Pentamidine isethionate (PNT) is an antiprotozoal active in many cases of leishmaniasis, despite the present limitations including high toxicity and parenteral administration. In the present work, a PNT encapsulation strategy into β-cyclodextrin cavity at 1:1 and 2:1 (βCD:PNT) molar ratios was used in order to improve the drug's physical and chemical properties. Combining thermodynamic and structural approaches such as isothermal titration calorimetry (ITC), electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance ((1)H NMR, and ROESY) the inclusion process and the thermodynamics parameters were identified. ITC and ESI-MS experimental data suggest the simultaneous formation of different supramolecular complexes in solution. Moreover, NMR data are in accordance with these results, suggesting a deep inclusion of PNT into the βCD cavity, through correlations observed in 2D ROESY contour maps. The systems were also characterized by FTIR, TG/DTA and SEM. These techniques indicate the formation of inclusion complex in the solid state. In vivo PNT activity was evaluated orally in mice. The inclusion complex showed a significant reduction of parasite load compared to free PNT. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Structural analysis of the DAP5 MIF4G domain and its interaction with eIF4A

    PubMed Central

    Virgili, Geneviève; Frank, Filipp; Feoktistova, Kateryna; Sawicki, Maxime; Sonenberg, Nahum; Fraser, Christopher S.; Nagar, Bhushan

    2013-01-01

    Summary Death-associated protein 5 (DAP5/p97) is a homolog of the eukaryotic initiation factor 4G (eIF4G) that promotes the IRES-driven translation of multiple cellular mRNAs. Central to its function is the middle domain (MIF4G), which recruits the RNA helicase eIF4A. The middle domain of eIF4G consists of tandem HEAT repeats that coalesce to form a solenoid-type structure. Here, we report the crystal structure of the DAP5 MIF4G domain. Its overall fold is very similar to that of eIF4G, however, significant conformational variations impart distinct surface properties that could explain the observed differences in IRES binding between the two proteins. Interestingly, quantitative analysis of the DAP5-eIF4A interaction using isothermal titration calorimetry reveals a 10-fold lower affinity than with the eIF4G-eIF4A interaction that appears to affect their ability to stimulate eIF4A RNA unwinding activity in vitro. This difference in stability of the complex may have functional implications in selecting the mode of translation initiation. PMID:23478064

  3. Structural, luminescence, thermodynamic and theoretical studies on mononuclear complexes of Eu(III) with pyridine monocarboxylate-N-oxides in aqueous solution

    NASA Astrophysics Data System (ADS)

    Dumpala, Rama Mohana Rao; Rawat, Neetika; Boda, Anil; Ali, Sk. Musharaf; Tomar, B. S.

    2018-02-01

    The mononuclear complexes formed by Eu(III) with three isomeric pyridine monocarboxylate-N-oxides namely picolinic acid-N-oxide (PANO), nicotinic acid-N-oxide (NANO) and isonicotinic acid-N-oxide (IANO) in aqueous solutions were studied by potentiometry, luminescence spectroscopy and isothermal titration calorimetry (ITC) to determine the speciation, coordination, luminescence properties and thermodynamic parameters of the complexes formed during the course of the reaction. More stable six membered chelate complexes with stoichiometry (MLi, i = 1-4) are formed by Eu(III) with PANO while non chelating ML and ML2 complexes are formed by NANO and IANO. The stability of Eu(III) complexes follow the order PANO > IANO > NANO. The ITC studies inferred an endothermic and innersphere complex formation of Eu(III)-PANO and Eu(III)-IANO whereas an exothermic and outer-sphere complex formation for Eu(III)-NANO. The luminescence life time data further supported the ITC results. Density functional theoretical calculations were carried out to optimize geometries of the complexes and to estimate the energies, structural parameters (bond distances, bond angles) and charges on individual atoms of the same. Theoretical approximations are found to be in good agreement with the experimental observations.

  4. Designing ligands to bind proteins

    PubMed Central

    Whitesides, George M.; Krishnamurthy, Vijay M.

    2009-01-01

    The ability to design drugs (so-called ‘rational drug design’) has been one of the long-term objectives of chemistry for 50 years. It is an exceptionally difficult problem, and many of its parts lie outside the expertise of chemistry. The much more limited problem – how to design tight-binding ligands (rational ligand design) – would seem to be one that chemistry could solve, but has also proved remarkably recalcitrant. The question is ‘Why is it so difficult?’ and the answer is ‘We still don't entirely know’. This perspective discusses some of the technical issues – potential functions, protein plasticity, enthalpy/entropy compensation, and others – that contribute, and suggests areas where fundamental understanding of protein–ligand interactions falls short of what is needed. It surveys recent technological developments (in particular, isothermal titration calorimetry) that will, hopefully, make now the time for serious progress in this area. It concludes with the calorimetric examination of the association of a series of systematically varied ligands with a model protein. The counterintuitive thermodynamic results observed serve to illustrate that, even in relatively simple systems, understanding protein–ligand association is challenging. PMID:16817982

  5. Solubilization of ibuprofen with β-cyclodextrin derivatives: energetic and structural studies.

    PubMed

    di Cagno, Massimiliano; Stein, Paul C; Skalko-Basnet, Nataša; Brandl, Martin; Bauer-Brandl, Annette

    2011-06-01

    The aim of this work was to investigate the complexation of ibuprofen as model drug with various β-cyclodextrins (native β-cyclodextrin, hydroxypropyl-β-cyclodextrin with two different molar degrees of substitution, and methyl-β-cyclodextrin). Solutions of the commercially available β-cyclodextrins were prepared in phosphate buffer (73mM). The pH value was adjusted to 7.4 and the solutions were isotonized with NaCl. A solution of ibuprofen was prepared in the same way. A thermal activity monitor was used for isothermal titration calorimetry (ITC). (1)H NMR analysis was employed to investigate the structures of the complexes. ITC analysis showed that each type of β-cyclodextrin had its characteristic values of both enthalpy and mass equilibrium constant for the complexation processes with the drug molecules. (1)H NMR spectroscopy of the complexes showed through significant differences in chemical shifts that the physical interaction between the cyclodextrins and ibuprofen molecules were also different, probably due to different three-dimensional arrangements of ibuprofen in the cyclodextrin cavity, induced by the different substituents bonded to the glucose rings. These differences were connected to the thermodynamic parameters of the complexes. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process

    PubMed Central

    Reshetnikov, Roman V.; Sponer, Jiri; Rassokhina, Olga I.; Kopylov, Alexei M.; Tsvetkov, Philipp O.; Makarov, Alexander A.; Golovin, Andrey V.

    2011-01-01

    A combination of explicit solvent molecular dynamics simulation (30 simulations reaching 4 µs in total), hybrid quantum mechanics/molecular mechanics approach and isothermal titration calorimetry was used to investigate the atomistic picture of ion binding to 15-mer thrombin-binding quadruplex DNA (G-DNA) aptamer. Binding of ions to G-DNA is complex multiple pathway process, which is strongly affected by the type of the cation. The individual ion-binding events are substantially modulated by the connecting loops of the aptamer, which play several roles. They stabilize the molecule during time periods when the bound ions are not present, they modulate the route of the ion into the stem and they also stabilize the internal ions by closing the gates through which the ions enter the quadruplex. Using our extensive simulations, we for the first time observed full spontaneous exchange of internal cation between quadruplex molecule and bulk solvent at atomistic resolution. The simulation suggests that expulsion of the internally bound ion is correlated with initial binding of the incoming ion. The incoming ion then readily replaces the bound ion while minimizing any destabilization of the solute molecule during the exchange. PMID:21893589

  7. Investigating the impacts of DNA binding mode and sequence on thermodynamic quantities and water exchange values for two small molecule drugs.

    PubMed

    Kenney, Rachael M; Buxton, Katherine E; Glazier, Samantha

    2016-09-01

    Doxorubicin and nogalamycin are antitumor antibiotics that interact with DNA via intercalation and threading mechanisms, respectively. Because the importance of water, particularly its impact on entropy changes, has been established in other biological processes, we investigated the role of water in these two drug-DNA binding events. We used the osmotic stress method to calculate the number of water molecules exchanged (Δnwater), and isothermal titration calorimetry to measure Kbinding, ΔH, and ΔS for two synthetic DNAs, poly(dA·dT) and poly(dG·dC), and calf thymus DNA (CT DNA). For nogalamycin, Δnwater<0 for CT DNA and poly(dG·dC). For doxorubicin, Δnwater>0 for CT DNA and Δnwater<0 for poly(dG·dC). For poly(dA·dT), Δnwater~0 with both drugs. Net enthalpy changes were always negative, but net entropy changes depended on the drug. The effect of water exchange on the overall sign of entropy change appears to be smaller than other contributions. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. From hit to lead: Structure-based discovery of naphthalene-1-sulfonamide derivatives as potent and selective inhibitors of fatty acid binding protein 4.

    PubMed

    Gao, Ding-Ding; Dou, Hui-Xia; Su, Hai-Xia; Zhang, Ming-Ming; Wang, Ting; Liu, Qiu-Feng; Cai, Hai-Yan; Ding, Hai-Peng; Yang, Zhuo; Zhu, Wei-Liang; Xu, Ye-Chun; Wang, He-Yao; Li, Ying-Xia

    2018-05-09

    Fatty acid binding protein 4 (FABP4) plays a critical role in metabolism and inflammatory processes and therefore is a potential therapeutic target for immunometabolic diseases such as diabetes and atherosclerosis. Herein, we reported the identification of naphthalene-1-sulfonamide derivatives as novel, potent and selective FABP4 inhibitors by applying a structure-based design strategy. The binding affinities of compounds 16dk, 16do and 16du to FABP4, at the molecular level, are equivalent to or even better than that of BMS309403. The X-ray crystallography complemented by the isothermal titration calorimetry studies revealed the binding mode of this series of inhibitors and the pivotal network of ordered water molecules in the binding pocket of FABP4. Moreover, compounds 16dk and 16do showed good metabolic stabilities in liver microsomes. Further extensive in vivo study demonstrated that 16dk and 16do exhibited a dramatic improvement in glucose and lipid metabolism, by decreasing fasting blood glucose and serum lipid levels, enhancing insulin sensitivity, and ameliorating hepatic steatosis in obese diabetic (db/db) mice. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  9. Identification of boric acid as a novel chemoattractant and elucidation of its chemoreceptor in Ralstonia pseudosolanacearum Ps29.

    PubMed

    Hida, Akiko; Oku, Shota; Nakashimada, Yutaka; Tajima, Takahisa; Kato, Junichi

    2017-08-17

    Chemotaxis enables bacteria to move toward more favorable environmental conditions. We observed chemotaxis toward boric acid by Ralstonia pseudosolanacearum Ps29. At higher concentrations, the chemotactic response of R. pseudosolanacearum toward boric acid was comparable to or higher than that toward L-malate, indicating that boric acid is a strong attractant for R. pseudosolanacearum. Chemotaxis assays under different pH conditions suggested that R. pseudosolanacearum recognizes B(OH) 3 (or B(OH 3 ) + B(OH) 4 - ) but not B(OH) 4 - alone. Our previous study revealed that R. pseudosolanacearum Ps29 harbors homologs of all 22R. pseudosolanacearum GMI1000 mcp genes. Screening of 22 mcp single-deletion mutants identified the RS_RS17100 homolog as the boric acid chemoreceptor, which was designated McpB. The McpB ligand-binding domain (LBD) was purified in order to characterize its binding to boric acid. Using isothermal titration calorimetry, we demonstrated that boric acid binds directly to the McpB LBD with a K D (dissociation constant) of 5.4 µM. Analytical ultracentrifugation studies revealed that the McpB LBD is present as a dimer that recognizes one boric acid molecule.

  10. Myricetin arrests human telomeric G-quadruplex structure: a new mechanistic approach as an anticancer agent.

    PubMed

    Mondal, Soma; Jana, Jagannath; Sengupta, Pallabi; Jana, Samarjit; Chatterjee, Subhrangsu

    2016-07-19

    The use of small molecules to arrest G-quadruplex structure has become a potential strategy for the development and design of a new class of anticancer therapeutics. We have studied the interaction of myricetin, a plant flavonoid and a putative anticancer agent, with human telomeric G-quadruplex TTAGGG(TTAGGG)3 DNA. Reverse transcription PCR data revealed significant repression in hTERT expression in MCF-7 breast cancer cells upon increasing the concentration of myricetin. Further, we conducted a telomeric repeat amplification protocol assay to confirm the inhibition of telomerase by myricetin. Optical spectroscopic techniques like circular dichroism, UV spectroscopy and fluorescence spectroscopy revealed the formation of a stable myricetin-G-quadruplex complex. The thermodynamic parameters of myricetin-G-quadruplex complex formation, presented through isothermal titration calorimetry studies, indicate the binding process to be thermodynamically favorable. In addition, high resolution NMR spectroscopy in conjunction with molecular dynamics simulation is employed to provide detailed mechanistic insights into the binding in the myricetin-G-quadruplex complex at the atomic level. Our results thus propose a new mode of action of myricetin as an anticancer agent via arresting telomeric G-quadruplex structure.

  11. Molecularly Imprinted Polymers with DNA Aptamer Fragments as Macromonomers.

    PubMed

    Zhang, Zijie; Liu, Juewen

    2016-03-01

    Molecularly imprinted polymers (MIPs) are produced in the presence of a template molecule. After removing the template, the cavity can selectively rebind the template. MIPs are attractive functional materials with a low cost and high stability, but traditional MIPs often suffer from low binding affinity. This study employs DNA aptamer fragments as macromonomers to improve MIPs. The DNA aptamer for adenosine was first split into two halves, fluorescently labeled, and copolymerized into MIPs. With a fluorescence quenching assay, the importance of imprinting was confirmed. Further studies were carried out using isothermal titration calorimetry (ITC). Compared to the mixture of the free aptamer fragments, their MIPs doubled the binding affinity. Each free aptamer fragment alone cannot bind adenosine, whereas MIPs containing each fragment are effective binders. We further shortened one of the aptamer fragments, and the DNA length was pushed to as short as six nucleotides, yielding MIPs with a dissociation constant of 27 μM adenosine. This study provides a new method for preparing functional MIP materials by combining high-affinity biopolymer fragments with low-cost synthetic monomers, allowing higher binding affinity and providing a method for signaling binding based on DNA chemistry.

  12. Design of a flexible organometallic tecton: host-guest chemistry with picric acid and self-assembly of platinum macrocycles.

    PubMed

    Jana, Achintya; Bhowmick, Sourav; Kaur, Supreet; Kashyap, Hemant K; Das, Neeladri

    2017-02-14

    The synthesis and characterization of a new pyrazine-based "flexible" and ditopic platinum(ii) organometallic molecule (3) is being reported. Flexibility in this molecule is due to the presence of ether functional groups that bridge the rigid core and periphery. Due to the presence of square planar Pt(ii) centers at the two ends, the molecule's potential to act as an acceptor building block in the construction of metallamacrocycles was tested. Upon reaction of 3 with various dicarboxylates in a 1 : 1 stoichiometric ratio, [2 + 2] self-assembled neutral metallacycles (M1-M3) were obtained in high yields. M1-M3 were characterized using multinuclear NMR, high resolution mass spectrometry and elemental analyses. The shape and dimensions of these supramolecular structures were also confirmed by optimizing the geometry using the density functional theory (DFT) approach. Computational studies suggest that M1-M3 are nanoscalar macrocyles. Furthermore, using isothermal titration calorimetry (ITC), it was shown that 3 can bind with picric acid (PA) to yield a 3·(PA) 2 host-guest complex. The magnitude of the binding constant indicates that 3 has significant affinity for PA.

  13. The Ca(2+)-EDTA chelation as standard reaction to validate Isothermal Titration Calorimeter measurements (ITC).

    PubMed

    Ràfols, Clara; Bosch, Elisabeth; Barbas, Rafael; Prohens, Rafel

    2016-07-01

    A study about the suitability of the chelation reaction of Ca(2+)with ethylenediaminetetraacetic acid (EDTA) as a validation standard for Isothermal Titration Calorimeter measurements has been performed exploring the common experimental variables (buffer, pH, ionic strength and temperature). Results obtained in a variety of experimental conditions have been amended according to the side reactions involved in the main process and to the experimental ionic strength and, finally, validated by contrast with the potentiometric reference values. It is demonstrated that the chelation reaction performed in acetate buffer 0.1M and 25°C shows accurate and precise results and it is robust enough to be adopted as a standard calibration process. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Study of interactions between hyaluronan and cationic surfactants by means of calorimetry, turbidimetry, potentiometry and conductometry.

    PubMed

    Krouská, J; Pekař, M; Klučáková, M; Šarac, B; Bešter-Rogač, M

    2017-02-10

    The thermodynamics of the micelle formation of the cationic surfactants tetradecyltrimethylammonium bromide (TTAB) and cetyltrimethylammonium bromide (CTAB) with and without the addition of hyaluronan of two molecular weights was studied in aqueous solution by titration calorimetry. Macroscopic phase separation, which was detected by calorimetry and also by conductometry, occurs when charges on the surfactant and hyaluronan are balanced. In contrast, turbidimetry and potentiometry showed hyaluronan-surfactant interactions at very low surfactant concentrations. The observed differences between systems prepared with CTAB and TTAB indicate that besides the electrostatic interactions, which probably predominate, hydrophobic effects also play a significant role in hyaluronan interactions with cationic surfactants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Chemistry of sustainability-Part I: Carbon dioxide as an organic synthon and Part II: Study of thermodynamics of cation exchange reactions in semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Sathe, Ajay A.

    Sustainability is an important part of the design and development of new chemical and energy conversion processes. Simply put sustainability is the ability to meet our needs without sacrificing the ability of the next generations to meet theirs. This thesis describes our efforts in developing two orthogonal strategies for the fixation of CO2 by utilizing high energy intermediates which are generated via oxidative or reductive processes on common organic substrates and of thermochemical measurements of cation exchange reactions which will aid the development of new materials relevant for energy conversion and storage. The first chapter lays a background for the challenges and opportunities for the use of CO2 in organic synthesis. The rapidly growing field of continuous flow processing in organic synthesis is introduced, and its importance in the development of sustainable chemical conversions is highlighted. The second chapter describes the development of a novel route to alpha-amino acids via reductive carboxylation of imines. A mechanistic proposal is presented and the reaction is shown to proceed through the intermediacy of alpha-amino alkyl metal species. Possible strategies for designing catalytic and enantioselective variants of the reaction are presented. The third chapter describes the development of a catalytic oxidative carboxylation of olefins to yield cyclic carbonates. The importance of flow chemistry and membrane separation is demonstrated by allowing the combination of mutually incompatible reagents in a single reaction sequence. While the use of carbon dioxide for synthesis of organic fine chemicals is not expected to help reduce the atmospheric carbon dioxide levels, or tackle climate change, it certainly has the potential to reduce our dependence on non-sustainable carbon feedstocks, and help achieve a carbon neutral chemical life cycle. Having described the use of carbon dioxide and flow chemistry for sustainable chemical conversion, the fourth chapter introduces the role of nanomaterials in sustainable solar energy conversion and storage. The use of cation exchange reactions in nanocrystals to access novel materials is highlighted. Despite having shown tremendous promise in the synthetic applications, the fundamental measurements of the thermodynamic and kinetic parameters of a cation exchange reaction are largely non-existent. This impedes the future growth of this powerful methodology. The technique of isothermal titration calorimetry is introduced, and its importance to studying the thermochemical changes occurring during cation exchange is outlined. The final chapter presents results obtained from the isothermal titration calorimetry on the prototypical cation exchange reaction between cadmium selenide and silver ions. The role of nanoparticle size, identity of the silver salt, solvent, surface ligands and temperature is studied. Recommendations for future investigations using ITC as well as other characterization techniques for discerning the kinetics of cation exchange are presented. I believe that a more unified mechanistic understanding of the cation exchange process in nanomaterials will aid the development of more efficient and robust materials for applications in a wide variety of fields.

  16. Water absorption of freeze-dried meat at different water activities: a multianalytical approach using sorption isotherm, differential scanning calorimetry, and nuclear magnetic resonance.

    PubMed

    Venturi, Luca; Rocculi, Pietro; Cavani, Claudio; Placucci, Giuseppe; Dalla Rosa, Marco; Cremonini, Mauro A

    2007-12-26

    Hydration of freeze-dried chicken breast meat was followed in the water activity range of aw=0.12-0.99 by a multianalytical approach comprising of sorption isotherm, differential scanning calorimetry (DSC), and nuclear magnetic resonance (NMR). The amount of frozen water and the shape of the T2-relaxogram were evaluated at each water content by DSC and NMR, respectively. Data revealed an agreement between sorption isotherm and DSC experiments about the onset of bulk water (aw=0.83-0.86), and NMR detected mobile water starting at aw=0.75. The origin of the short-transverse relaxation time part of the meat NMR signal was also reinvestigated through deuteration experiments and proposed to arise from protons belonging to plasticized matrix structures. It is proved both by D2O experiments and by gravimetry that the extra protons not contributing to the water content in the NMR experiments are about 6.4% of the total proton NMR CPMG signal of meat.

  17. Simultaneous Synchrotron WAXD and Fast Scanning (Chip) Calorimetry: On the (Isothermal) Crystallization of HDPE and PA11 at High Supercoolings and Cooling Rates up to 200 °C s(-1).

    PubMed

    Baeten, Dorien; Mathot, Vincent B F; Pijpers, Thijs F J; Verkinderen, Olivier; Portale, Giuseppe; Van Puyvelde, Peter; Goderis, Bart

    2015-06-01

    An experimental setup, making use of a Flash DSC 1 prototype, is presented in which materials can be studied simultaneously by fast scanning calorimetry (FSC) and synchrotron wide angle X-ray diffraction (WAXD). Accumulation of multiple, identical measurements results in high quality, millisecond WAXD patterns. Patterns at every degree during the crystallization and melting of high density polyethylene at FSC typical scanning rates from 20 up to 200 °C s(-1) are discussed in terms of the temperature and scanning rate dependent material crystallinities and crystal densities. Interestingly, the combined approach reveals FSC thermal lag issues, for which can be corrected. For polyamide 11, isothermal solidification at high supercooling yields a mesomorphic phase in less than a second, whereas at very low supercooling crystals are obtained. At intermediate supercooling, mixtures of mesomorphic and crystalline material are generated at a ratio proportional to the supercooling. This ratio is constant over the isothermal solidification time. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A supramolecular complex between proteinases and beta-cyclodextrin that preserves enzymatic activity: physicochemical characterization.

    PubMed

    Denadai, Angelo M L; Santoro, Marcelo M; Lopes, Miriam T P; Chenna, Angélica; de Sousa, Frederico B; Avelar, Gabriela M; Gomes, Marco R Túlio; Guzman, Fanny; Salas, Carlos E; Sinisterra, Rubén D

    2006-01-01

    Cyclodextrins are suitable drug delivery systems because of their ability to subtly modify the physical, chemical, and biological properties of guest molecules through labile interactions by formation of inclusion and/or association complexes. Plant cysteine proteinases from Caricaceae and Bromeliaceae are the subject of therapeutic interest, because of their anti-inflammatory, antitumoral, immunogenic, and wound-healing properties. In this study, we analyzed the association between beta-cyclodextrin (betaCD) and fraction P1G10 containing the bioactive proteinases from Carica candamarcensis, and described the physicochemical nature of the solid-state self-assembled complexes by Fourier transform infrared (FTIR) spectroscopy, thermogravimetry (TG), differential scanning calorimetry (DSC), X-ray powder diffraction (XRD), and nuclear magnetic resonance (NMR), as well as in solution by circular dichroism (CD), isothermal titration calorimetry (ITC), and amidase activity. The physicochemical analyses suggest the formation of a complex between P1G10 and betaCD. Higher secondary interactions, namely hydrophobic interactions, hydrogen bonding and van der Waals forces were observed at higher P1G10 : betaCD mass ratios. These results provide evidence of the occurrence of strong solid-state supramolecular non-covalent interactions between P1G10 and betaCD. Microcalorimetric analysis demonstrates that complexation results in a favorable enthalpic contribution, as has already been described during formation of similar betaCD inclusion compounds. The amidase activity of the complex shows that the enzyme activity is not readily available at 24 hours after dissolution of the complex in aqueous buffer; the proteinase becomes biologically active by the second day and remains stable until day 16, when a gradual decrease occurs, with basal activity attained by day 29. The reported results underscore the potential for betaCDs as candidates for complexing cysteine proteinases, resulting in supramolecular arrays with sustained proteolytic activity.

  19. Identification of novel inhibitors of the SARS coronavirus main protease 3CLpro.

    PubMed

    Bacha, Usman; Barrila, Jennifer; Velazquez-Campoy, Adrian; Leavitt, Stephanie A; Freire, Ernesto

    2004-05-04

    SARS (severe acute respiratory syndrome) is caused by a newly discovered coronavirus. A key enzyme for the maturation of this virus and, therefore, a target for drug development is the main protease 3CL(pro) (also termed SARS-CoV 3CL(pro)). We have cloned and expressed in Escherichia coli the full-length SARS-CoV 3CL(pro) as well as a truncated form containing only the catalytic domains. The recombinant proteins have been characterized enzymatically using a fluorescently labeled substrate; their structural stability in solution has been determined by differential scanning calorimetry, and novel inhibitors have been discovered. Expression of the catalytic region alone yields a protein with a reduced catalytic efficiency consistent with the proposed regulatory role of the alpha-helical domain. Differential scanning calorimetry indicates that the alpha-helical domain does not contribute to the structural stability of the catalytic domains. Analysis of the active site cavity reveals the presence of subsites that can be targeted with specific chemical functionalities. In particular, a cluster of serine residues (Ser139, Ser144, and Ser147) was identified near the active site cavity and was susceptible to being targeted by compounds containing boronic acid. This cluster is highly conserved in similar proteases from other coronaviruses, defining an attractive target for drug development. It was found that bifunctional aryl boronic acid compounds were particularly effective at inhibiting the protease, with inhibition constants as strong as 40 nM. Isothermal titration microcalorimetric experiments indicate that these inhibitors bind reversibly to 3CL(pro) in an enthalpically favorable fashion, implying that they establish strong interactions with the protease molecule, thus defining attractive molecular scaffolds for further optimization.

  20. Identification of a β-lactamase inhibitory protein variant that is a potent inhibitor of Staphylococcus PC1 β-lactamase

    PubMed Central

    Yuan, Ji; Chow, Dar-Chone; Huang, Wanzhi; Palzkill, Timothy

    2011-01-01

    The β-lactamase inhibitory protein (BLIP) binds and inhibits a diverse collection of class A β-lactamases. Widespread resistance to β-lactam antibiotics currently limits treatment strategies for Staphylococcus infections. The goal of this study was to determine the binding affinity of BLIP for S. aureus PC1 β-lactamase and to identify mutants that alter binding affinity. The BLIP inhibition constant (Ki) for the PC1 β-lactamase was measured at 350 nM and isothermal titration calorimetry (ITC) experiments indicated a binding constant (Kd) of 380 nM. A total of 23 residue positions in BLIP that contact β-lactamase were randomized and phage display was used to sort the libraries for tight binders to immobilized PC1 β-lactamase. The BLIP K74G mutant was the dominant clone selected and it was found to inhibit the PC1 β-lactamase with a Ki of 42 nM while calorimetry indicated a Kd of 26 nM. Molecular modeling studies suggested BLIP binds weakly to the PC1 β-lactamase due to the presence of alanine at position 104 of PC1. This position is occupied by glutamate in the TEM-1 enzyme where it forms a salt bridge with BLIP residue Lys74 that is important for the stability of the complex. This hypothesis was confirmed by showing that the A104E PC1 enzyme binds BLIP with 15-fold greater affinity than wild type PC1 β-lactamase. Kinetic measurements indicated similar association rates for all complexes with the variation in affinity due to altered dissociation rate constants suggesting changes in short-range interactions are responsible for the altered binding properties of the mutants. PMID:21238457

  1. Principal component analysis of chemical shift perturbation data of a multiple-ligand-binding system for elucidation of respective binding mechanism.

    PubMed

    Konuma, Tsuyoshi; Lee, Young-Ho; Goto, Yuji; Sakurai, Kazumasa

    2013-01-01

    Chemical shift perturbations (CSPs) in NMR spectra provide useful information about the interaction of a protein with its ligands. However, in a multiple-ligand-binding system, determining quantitative parameters such as a dissociation constant (K(d) ) is difficult. Here, we used a method we named CS-PCA, a principal component analysis (PCA) of chemical shift (CS) data, to analyze the interaction between bovine β-lactoglobulin (βLG) and 1-anilinonaphthalene-8-sulfonate (ANS), which is a multiple-ligand-binding system. The CSP on the binding of ANS involved contributions from two distinct binding sites. PCA of the titration data successfully separated the CSP pattern into contributions from each site. Docking simulations based on the separated CSP patterns provided the structures of βLG-ANS complexes for each binding site. In addition, we determined the K(d) values as 3.42 × 10⁻⁴ M² and 2.51 × 10⁻³ M for Sites 1 and 2, respectively. In contrast, it was difficult to obtain reliable K(d) values for respective sites from the isothermal titration calorimetry experiments. Two ANS molecules were found to bind at Site 1 simultaneously, suggesting that the binding occurs cooperatively with a partial unfolding of the βLG structure. On the other hand, the binding of ANS to Site 2 was a simple attachment without a significant conformational change. From the present results, CS-PCA was confirmed to provide not only the positions and the K(d) values of binding sites but also information about the binding mechanism. Thus, it is anticipated to be a general method to investigate protein-ligand interactions. Copyright © 2012 Wiley Periodicals, Inc.

  2. Exceptionally tight membrane-binding may explain the key role of the synaptotagmin-7 C 2 A domain in asynchronous neurotransmitter release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voleti, Rashmi; Tomchick, Diana R.; Südhof, Thomas C.

    Synaptotagmins (Syts) act as Ca2+ sensors in neurotransmitter release by virtue of Ca2+-binding to their two C2 domains, but their mechanisms of action remain unclear. Puzzlingly, Ca2+-binding to the C2B domain appears to dominate Syt1 function in synchronous release, whereas Ca2+-binding to the C2A domain mediates Syt7 function in asynchronous release. Here we show that crystal structures of the Syt7 C2A domain and C2AB region, and analyses of intrinsic Ca2+-binding to the Syt7 C2 domains using isothermal titration calorimetry, did not reveal major differences that could explain functional differentiation between Syt7 and Syt1. However, using liposome titrations under Ca2+ saturatingmore » conditions, we show that the Syt7 C2A domain has a very high membrane affinity and dominates phospholipid binding to Syt7 in the presence or absence of L-α-phosphatidylinositol 4,5-diphosphate (PIP2). For Syt1, the two Ca2+-saturated C2 domains have similar affinities for membranes lacking PIP2, but the C2B domain dominates binding to PIP2-containing membranes. Mutagenesis revealed that the dramatic differences in membrane affinity between the Syt1 and Syt7 C2A domains arise in part from apparently conservative residue substitutions, showing how striking biochemical and functional differences can result from the cumulative effects of subtle residue substitutions. Viewed together, our results suggest that membrane affinity may be a key determinant of the functions of Syt C2 domains in neurotransmitter release.« less

  3. Thermodynamics of Ligand Binding to a Heterogeneous RNA Population in the Malachite Green Aptamer

    PubMed Central

    Sokoloski, Joshua E.; Dombrowski, Sarah E.; Bevilacqua, Philip C.

    2011-01-01

    The malachite green aptamer binds two closely related ligands, malachite green (MG) and tetramethylrosamine (TMR), with near equal affinity. The MG ligand consists of three phenyl rings emanating from a central carbon, while TMR has two of the three rings connected by an ether linkage. The binding pockets for MG and TMR in the aptamer, known from high-resolution structure, differ only in the conformation of a few nucleotides. Herein, we applied isothermal titration calorimetry (ITC) to compare the thermodynamics for binding of MG and TMR to the aptamer. Binding heat capacities were obtained from ITC titrations over the temperature range of 15 to 60 °C. Two temperature regimes were found for MG binding: one from 15 to 45 °C where MG bound with a large negative heat capacity and an apparent stoichiometry (n) of ~0.4, and another from 50 to 60 °C where MG bound with positive heat capacity and n~1.1. The binding of TMR, on the other hand, revealed only one temperature regime for binding, with a more modest negative heat capacity and n~1.2. The large difference in heat capacity between the two ligands suggests that significantly more conformational rearrangement occurs upon the binding of MG than TMR, which is consistent with differences in solvent accessible surface area calculated for available ligand-bound structures. Lastly, we note that binding stoichiometry of MG was improved not only by raising the temperature, but also by lowering the concentration of Mg2+ or increasing the time between ITC injections. These studies suggest that binding of a dynamical ligand to a functional RNA requires the RNA itself to have significant dynamics. PMID:22192051

  4. Structural Reorganization and the Cooperative Binding of Single-stranded Telomere DNA in Sterkiella nova*

    PubMed Central

    Buczek, Pawel; Horvath, Martin P.

    2009-01-01

    In Sterkiella nova, α and β telomere proteins bind cooperatively with single-stranded DNA to form a ternary α·β·DNA complex. Association of telomere protein subunits is DNA-dependent, and α-β association enhances DNA affinity. To further understand the molecular basis for binding cooperativity, we characterized several possible stepwise assembly pathways using isothermal titration calorimetry. In one path, α and DNA first form a stable α·DNA complex followed by addition of β in a second step. Binding energy accumulates with nearly equal free energy of association for each of these steps. Heat capacity is nonetheless dramatically different with ΔCp = −305 ± 3 cal mol−1 K−1 for α binding with DNA and ΔCp = −2010 ± 20 cal mol−1 K−1 for addition of β to complete the α·β·DNA complex. By examining alternate routes including titration of single-stranded DNA with a preformed α·β complex, a significant portion of binding energy and heat capacity could be assigned to structural reorganization involving protein-protein interactions and repositioning of the DNA. Structural reorganization probably affords a mechanism to regulate high affinity binding of telomere single-stranded DNA with important implications for telomere biology. Regulation of telomere complex dissociation is thought to involve post-translational modifications in the lysine-rich C-terminal portion of β. We observed no difference in binding energetics or crystal structure when comparing complexes prepared with full-length β or a C-terminally truncated form, supporting interesting parallels between the intrinsically disordered regions of histones and this portion of β. PMID:17082188

  5. Heats of Mixing Using an Isothermal Titration Calorimeter: Associated Thermal Effects

    PubMed Central

    de Rivera, Manuel Rodríguez; Socorro, Fabiola; Matos, José S.

    2009-01-01

    The correct determination of the energy generated or absorbed in the sample cell of an Isothermal Titration Calorimeter (ITC) requires a thorough analysis of the calorimetric signal. This means the identification and quantification of any thermal effect inherent to the working method. In this work, it is carried out a review on several thermal effects, studied by us in previous work, and which appear when an ITC is used for measuring the heats of mixing of liquids in a continuous mode. These effects are due to: (i) the difference between the temperature of the injected liquid and the temperature of the mixture during the mixing process, (ii) the increase of the liquid volume located in the mixing cell and (iii) the stirring velocity. Besides, methods for the identification and quantification of the mentioned effects are suggested. PMID:19742175

  6. Effect of cholesterol on the interaction of the amphibian antimicrobial peptide DD K with liposomes.

    PubMed

    Verly, Rodrigo M; Rodrigues, Magali A; Daghastanli, Katia Regina P; Denadai, Angelo Márcio L; Cuccovia, Iolanda M; Bloch, Carlos; Frézard, Frédéric; Santoro, Marcelo M; Piló-Veloso, Dorila; Bemquerer, Marcelo P

    2008-01-01

    DD K is an antimicrobial peptide previously isolated from the skin of the amphibian Phyllomedusa distincta. The effect of cholesterol on synthetic DD K binding to egg lecithin liposomes was investigated by intrinsic fluorescence of tryptophan residue, measurements of kinetics of 5(6)-carboxyfluorescein (CF) leakage, dynamic light scattering and isothermal titration microcalorimetry. An 8 nm blue shift of tryptophan maximum emission fluorescence was observed when DD K was in the presence of lecithin liposomes compared to the value observed for liposomes containing 43 mol% cholesterol. The rate and the extent of CF release were also significantly reduced by the presence of cholesterol. Dynamic light scattering showed that lecithin liposome size increase from 115 to 140 nm when titrated with DD K but addition of cholesterol reduces the liposome size increments. Isothermal titration microcalorimetry studies showed that DD K binding both to liposomes containing cholesterol as to liposomes devoid of it is more entropically than enthalpically favored. Nevertheless, the peptide concentration necessary to furnish an adjustable titration curve is much higher for liposomes containing cholesterol at 43 mol% (2 mmol L(-1)) than in its absence (93 micromol L(-1)). Apparent binding constant values were 2160 and 10,000 L mol(-1), respectively. The whole data indicate that DD K binding to phosphatidylcholine liposomes is significantly affected by cholesterol, which contributes to explain the low hemolytic activity of the peptide.

  7. Removal of perfluorinated surfactants from wastewater by adsorption and ion exchange - Influence of material properties, sorption mechanism and modeling.

    PubMed

    Schuricht, Falk; Borovinskaya, Ekaterina S; Reschetilowski, Wladimir

    2017-04-01

    Perfluorooctane sulfonate (PFOS) has attracted increasing concern in recent years due to its world-wide distribution, persistence, bioaccumulation and potential toxicity. The influence of sorbent properties on the adsorptive elimination of PFOS from wastewater by activated carbons, polymer adsorbents and anion exchange resins was investigated with regard to their isotherms and kinetics. The batch and column tests were combined with physicochemical characterization methods, e.g., N 2 physisorption, mercury porosimetry, infrared spectroscopy, differential scanning calorimetry, titrations, as well as modeling. Sorption kinetics was successfully modelled applying the linear driving force (LDF) approach for surface diffusion after introducing a load dependency of the mass transfer coefficient β s . The big difference in the initial mass transfer coefficient β s,0 , when non-functionalized adsorbents and ion-exchange resins are compared, suggests that the presence of functional groups impedes the intraparticle mass transport. The more functional groups a resin possesses and the longer the alkyl moieties are the bigger is the decrease in sorption rate. But the selectivity for PFOS sorption is increasing when the character of the functional groups becomes more hydrophobic. Accordingly, ion exchange and hydrophobic interaction were found to be involved in the sorption processes on resins, while PFOS is only physisorptively bound to activated carbons and polymer adsorbents. In agreement with the different adsorption mechanisms, resins possess higher total sorption capacities than adsorbents. Hence, the latter ones are rendered more effective in PFOS elimination at concentrations in the low μg/L range, due to a less pronounced convex curvature of the sorption isotherm in this concentration range. Copyright © 2016. Published by Elsevier B.V.

  8. Thermodynamics of Aryl-Dihydroxyphenyl-Thiadiazole Binding to Human Hsp90

    PubMed Central

    Kazlauskas, Egidijus; Petrikaitė, Vilma; Michailovienė, Vilma; Revuckienė, Jurgita; Matulienė, Jurgita; Grinius, Leonas; Matulis, Daumantas

    2012-01-01

    The design of specific inhibitors against the Hsp90 chaperone and other enzyme relies on the detailed and correct understanding of both the thermodynamics of inhibitor binding and the structural features of the protein-inhibitor complex. Here we present a detailed thermodynamic study of binding of aryl-dihydroxyphenyl-thiadiazole inhibitor series to recombinant human Hsp90 alpha isozyme. The inhibitors are highly potent, with the intrinsic Kd approximately equal to 1 nM as determined by isothermal titration calorimetry (ITC) and thermal shift assay (TSA). Dissection of protonation contributions yielded the intrinsic thermodynamic parameters of binding, such as enthalpy, entropy, Gibbs free energy, and the heat capacity. The differences in binding thermodynamic parameters between the series of inhibitors revealed contributions of the functional groups, thus providing insight into molecular reasons for improved or diminished binding efficiency. The inhibitor binding to Hsp90 alpha primarily depended on a large favorable enthalpic contribution combined with the smaller favorable entropic contribution, thus suggesting that their binding was both enthalpically and entropically optimized. The enthalpy-entropy compensation phenomenon was highly evident when comparing the inhibitor binding enthalpies and entropies. This study illustrates how detailed thermodynamic analysis helps to understand energetic reasons for the binding efficiency and develop more potent inhibitors that could be applied for therapeutic use as Hsp90 inhibitors. PMID:22655030

  9. Inhibitory effects of magnolol and honokiol on human calcitonin aggregation

    PubMed Central

    Guo, Caiao; Ma, Liang; Zhao, Yudan; Peng, Anlin; Cheng, Biao; Zhou, Qiaoqiao; Zheng, Ling; Huang, Kun

    2015-01-01

    Amyloid formation is associated with multiple amyloidosis diseases. Human calcitonin (hCT) is a typical amyloidogenic peptide, its aggregation is associated with medullary carcinoma of the thyroid (MTC), and also limits its clinical application. Magnolia officinalis is a traditional Chinese herbal medicine; its two major polyphenol components, magnolol (Mag) and honokiol (Hon), have displayed multiple functions. Polyphenols like flavonoids and their derivatives have been extensively studied as amyloid inhibitors. However, the anti-amyloidogenic property of a biphenyl backbone containing polyphenols such as Mag and Hon has not been reported. In this study, these two compounds were tested for their effects on hCT aggregation. We found that Mag and Hon both inhibited the amyloid formation of hCT, whereas Mag showed a stronger inhibitory effect; moreover, they both dose-dependently disassembled preformed hCT aggregates. Further immuno-dot blot and dynamic light scattering studies suggested Mag and Hon suppressed the aggregation of hCT both at the oligomerization and the fibrillation stages, while MTT-based and dye-leakage assays demonstrated that Mag and Hon effectively reduced cytotoxicity caused by hCT aggregates. Furthermore, isothermal titration calorimetry indicated Mag and Hon both interact with hCT. Together, our study suggested a potential anti-amyloidogenic property of these two compounds and their structure related derivatives. PMID:26324190

  10. Advances in fragment-based drug discovery platforms.

    PubMed

    Orita, Masaya; Warizaya, Masaichi; Amano, Yasushi; Ohno, Kazuki; Niimi, Tatsuya

    2009-11-01

    Fragment-based drug discovery (FBDD) has been established as a powerful alternative and complement to traditional high-throughput screening techniques for identifying drug leads. At present, this technique is widely used among academic groups as well as small biotech and large pharmaceutical companies. In recent years, > 10 new compounds developed with FBDD have entered clinical development, and more and more attention in the drug discovery field is being focused on this technique. Under the FBDD approach, a fragment library of relatively small compounds (molecular mass = 100 - 300 Da) is screened by various methods and the identified fragment hits which normally weakly bind to the target are used as starting points to generate more potent drug leads. Because FBDD is still a relatively new drug discovery technology, further developments and optimizations in screening platforms and fragment exploitation can be expected. This review summarizes recent advances in FBDD platforms and discusses the factors important for the successful application of this technique. Under the FBDD approach, both identifying the starting fragment hit to be developed and generating the drug lead from that starting fragment hit are important. Integration of various techniques, such as computational technology, X-ray crystallography, NMR, surface plasmon resonance, isothermal titration calorimetry, mass spectrometry and high-concentration screening, must be applied in a situation-appropriate manner.

  11. Multispectroscopic and calorimetric studies on the binding of the food colorant tartrazine with human hemoglobin.

    PubMed

    Basu, Anirban; Suresh Kumar, Gopinatha

    2016-11-15

    Interaction of the food colorant tartrazine with human hemoglobin was studied using multispectroscopic and microcalorimetric techniques to gain insights into the binding mechanism and thereby the toxicity aspects. Hemoglobin spectrum showed hypochromic changes in the presence of tartrazine. Quenching of the fluorescence of hemoglobin occurred and the quenching mechanism was through a static mode as revealed from temperature dependent and time-resolved fluorescence studies. According to the FRET theory the distance between β-Trp37 of hemoglobin and bound tartrazine was evaluated to be 3.44nm. Synchronous fluorescence studies showed that tartrazine binding led to alteration of the microenvironment around the tryptophans more in comparison to tyrosines. 3D fluorescence and FTIR data provided evidence for conformational changes in the protein on binding. Circular dichroism studies revealed that the binding led to significant loss in the helicity of hemoglobin. The esterase activity assay further complemented the circular dichroism data. Microcalorimetric study using isothermal titration calorimetry revealed the binding to be exothermic and driven largely by positive entropic contribution. Dissection of the Gibbs energy change proposed the protein-dye complexation to be dominated by non-polyelectrolytic forces. Negative heat capacity change also corroborated the involvement of hydrophobic forces in the binding process. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Extracellular DNA impedes the transport of vancomycin in Staphylococcus epidermidis biofilms preexposed to subinhibitory concentrations of vancomycin.

    PubMed

    Doroshenko, Natalya; Tseng, Boo Shan; Howlin, Robert P; Deacon, Jill; Wharton, Julian A; Thurner, Philipp J; Gilmore, Brendan F; Parsek, Matthew R; Stoodley, Paul

    2014-12-01

    Staphylococcus epidermidis biofilm formation is responsible for the persistence of orthopedic implant infections. Previous studies have shown that exposure of S. epidermidis biofilms to sub-MICs of antibiotics induced an increased level of biofilm persistence. BODIPY FL-vancomycin (a fluorescent vancomycin conjugate) and confocal microscopy were used to show that the penetration of vancomycin through sub-MIC-vancomycin-treated S. epidermidis biofilms was impeded compared to that of control, untreated biofilms. Further experiments showed an increase in the extracellular DNA (eDNA) concentration in biofilms preexposed to sub-MIC vancomycin, suggesting a potential role for eDNA in the hindrance of vancomycin activity. Exogenously added, S. epidermidis DNA increased the planktonic vancomycin MIC and protected biofilm cells from lethal vancomycin concentrations. Finally, isothermal titration calorimetry (ITC) revealed that the binding constant of DNA and vancomycin was 100-fold higher than the previously reported binding constant of vancomycin and its intended cellular d-Ala-d-Ala peptide target. This study provides an explanation of the eDNA-based mechanism of antibiotic tolerance in sub-MIC-vancomycin-treated S. epidermidis biofilms, which might be an important factor for the persistence of biofilm infections. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calvo, Eric; Mans, Ben J.; Ribeiro, José M.C.

    The mosquito D7 salivary proteins are encoded by a multigene family related to the arthropod odorant-binding protein (OBP) superfamily. Forms having either one or two OBP domains are found in mosquito saliva. Four single-domain and one two-domain D7 proteins from Anopheles gambiae and Aedes aegypti (AeD7), respectively, were shown to bind biogenic amines with high affinity and with a stoichiometry of one ligand per protein molecule. Sequence comparisons indicated that only the C-terminal domain of AeD7 is homologous to the single-domain proteins from A. gambiae, suggesting that the N-terminal domain may bind a different class of ligands. Here, we describemore » the 3D structure of AeD7 and examine the ligand-binding characteristics of the N- and C-terminal domains. Isothermal titration calorimetry and ligand complex crystal structures show that the N-terminal domain binds cysteinyl leukotrienes (cysLTs) with high affinities (50-60 nM) whereas the C-terminal domain binds biogenic amines. The lipid chain of the cysLT binds in a hydrophobic pocket of the N-terminal domain, whereas binding of norepinephrine leads to an ordering of the C-terminal portion of the C-terminal domain into an alpha-helix that, along with rotations of Arg-176 and Glu-268 side chains, acts to bury the bound ligand.« less

  14. Soluble 1:1 complexes and insoluble 3:2 complexes - Understanding the phase-solubility diagram of hydrocortisone and γ-cyclodextrin.

    PubMed

    Schönbeck, Christian; Madsen, Tobias L; Peters, Günther H; Holm, René; Loftsson, Thorsteinn

    2017-10-15

    The molecular mechanisms underlying the drug-solubilizing properties of γ-cyclodextrin were explored using hydrocortisone as a model drug. The B S -type phase-solubility diagram of hydrocortisone with γ-cyclodextrin was thoroughly characterized by measuring the concentrations of hydrocortisone and γ-cyclodextrin in solution and the solid phase. The drug-solubilizer interaction was also studied by isothermal titration calorimetry from which a precise value of the 1:1 binding constant (K 11 =4.01mM -1 at 20°C) was obtained. The formation of water-soluble 1:1 complexes is responsible for the initial increase in hydrocortisone solubility while the precipitation of entities with a 3:2 ratio of γ-cyclodextrin:hydrocortisone is responsible for the plateau and the ensuing strong decrease in solubility once all solid hydrocortisone is used up. The complete phase-solubility diagram is well accounted for by a model employing the 1:1 binding constant and the solubility product of the precipitating 3:2 entity (K 32 S =5.51 mM 5 ). For such systems, a small surplus of γ-cyclodextrin above the optimum concentration may result in a significant decrease in drug solubility, and the implications for drug formulations are briefly discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. A new crystal structure of the bifunctional antibiotic simocyclinone D8 bound to DNA gyrase gives fresh insight into the mechanism of inhibition.

    PubMed

    Hearnshaw, Stephen J; Edwards, Marcus J; Stevenson, Clare E; Lawson, David M; Maxwell, Anthony

    2014-05-15

    Simocyclinone D8 (SD8) is an antibiotic produced by Streptomyces antibioticus that targets DNA gyrase. A previous structure of SD8 complexed with the N-terminal domain of the DNA gyrase A protein (GyrA) suggested that four SD8 molecules stabilized a tetramer of the protein; subsequent mass spectrometry experiments suggested that a protein dimer with two symmetry-related SD8s was more likely. This work describes the structures of a further truncated form of the GyrA N-terminal domain fragment with and without SD8 bound. The structure with SD8 has the two SD8 molecules bound within the same GyrA dimer. This new structure is entirely consistent with the mutations in GyrA that confer SD8 resistance and, by comparison with a new apo structure of the GyrA N-terminal domain, reveals the likely conformation changes that occur upon SD8 binding and the detailed mechanism of SD8 inhibition of gyrase. Isothermal titration calorimetry experiments are consistent with the crystallography results and further suggest that a previously observed complex between SD8 and GyrB is ~1000-fold weaker than the interaction with GyrA. Copyright © 2014. Published by Elsevier Ltd.

  16. A New Crystal Structure of the Bifunctional Antibiotic Simocyclinone D8 Bound to DNA Gyrase Gives Fresh Insight into the Mechanism of Inhibition

    PubMed Central

    Hearnshaw, Stephen J.; Edwards, Marcus J.; Stevenson, Clare E.; Lawson, David M.; Maxwell, Anthony

    2014-01-01

    Simocyclinone D8 (SD8) is an antibiotic produced by Streptomyces antibioticus that targets DNA gyrase. A previous structure of SD8 complexed with the N-terminal domain of the DNA gyrase A protein (GyrA) suggested that four SD8 molecules stabilized a tetramer of the protein; subsequent mass spectrometry experiments suggested that a protein dimer with two symmetry-related SD8s was more likely. This work describes the structures of a further truncated form of the GyrA N-terminal domain fragment with and without SD8 bound. The structure with SD8 has the two SD8 molecules bound within the same GyrA dimer. This new structure is entirely consistent with the mutations in GyrA that confer SD8 resistance and, by comparison with a new apo structure of the GyrA N-terminal domain, reveals the likely conformation changes that occur upon SD8 binding and the detailed mechanism of SD8 inhibition of gyrase. Isothermal titration calorimetry experiments are consistent with the crystallography results and further suggest that a previously observed complex between SD8 and GyrB is ~ 1000-fold weaker than the interaction with GyrA. PMID:24594357

  17. Apo states of calmodulin and CaBP1 control CaV1 voltage-gated calcium channel function through direct competition for the IQ domain.

    PubMed

    Findeisen, Felix; Rumpf, Christine H; Minor, Daniel L

    2013-09-09

    In neurons, binding of calmodulin (CaM) or calcium-binding protein 1 (CaBP1) to the CaV1 (L-type) voltage-gated calcium channel IQ domain endows the channel with diametrically opposed properties. CaM causes calcium-dependent inactivation and limits calcium entry, whereas CaBP1 blocks calcium-dependent inactivation (CDI) and allows sustained calcium influx. Here, we combine isothermal titration calorimetry with cell-based functional measurements and mathematical modeling to show that these calcium sensors behave in a competitive manner that is explained quantitatively by their apo-state binding affinities for the IQ domain. This competition can be completely blocked by covalent tethering of CaM to the channel. Further, we show that Ca(2+)/CaM has a sub-picomolar affinity for the IQ domain that is achieved without drastic alteration of calcium-binding properties. The observation that the apo forms of CaM and CaBP1 compete with each other demonstrates a simple mechanism for direct modulation of CaV1 function and suggests a means by which excitable cells may dynamically tune CaV activity. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Determining Membrane Protein-Lipid Binding Thermodynamics Using Native Mass Spectrometry.

    PubMed

    Cong, Xiao; Liu, Yang; Liu, Wen; Liang, Xiaowen; Russell, David H; Laganowsky, Arthur

    2016-04-06

    Membrane proteins are embedded in the biological membrane where the chemically diverse lipid environment can modulate their structure and function. However, the thermodynamics governing the molecular recognition and interaction of lipids with membrane proteins is poorly understood. Here, we report a method using native mass spectrometry (MS), to determine thermodynamics of individual ligand binding events to proteins. Unlike conventional methods, native MS can resolve individual ligand binding events and, coupled with an apparatus to control the temperature, determine binding thermodynamic parameters, such as for protein-lipid interactions. We validated our approach using three soluble protein-ligand systems (maltose binding protein, lysozyme, and nitrogen regulatory protein) and obtained similar results to those using isothermal titration calorimetry and surface plasmon resonance. We also determined for the first time the thermodynamics of individual lipid binding to the ammonia channel (AmtB), an integral membrane protein from Escherichia coli. Remarkably, we observed distinct thermodynamic signatures for the binding of different lipids and entropy-enthalpy compensation for binding lipids of variable chain length. Additionally, using a mutant form of AmtB that abolishes a specific phosphatidylglycerol (PG) binding site, we observed distinct changes in the thermodynamic signatures for binding PG, implying these signatures can identify key residues involved in specific lipid binding and potentially differentiate between specific lipid binding sites.

  19. Enhancement of the Rate of Pyrophosphate Hydrolysis by Nonenzymatic Catalysts and by Inorganic Pyrophosphatase*

    PubMed Central

    Stockbridge, Randy B.; Wolfenden, Richard

    2011-01-01

    To estimate the proficiency of inorganic pyrophosphatase as a catalyst, 31P NMR was used to determine rate constants and thermodynamics of activation for the spontaneous hydrolysis of inorganic pyrophosphate (PPi) in the presence and absence of Mg2+ at elevated temperatures. These values were compared with rate constants and activation parameters determined for the reaction catalyzed by Escherichia coli inorganic pyrophosphatase using isothermal titration calorimetry. At 25 °C and pH 8.5, the hydrolysis of MgPPi2− proceeds with a rate constant of 2.8 × 10−10 s−1, whereas E. coli pyrophosphatase was found to have a turnover number of 570 s−1 under the same conditions. The resulting rate enhancement (2 × 1012-fold) is achieved entirely by reducing the enthalpy of activation (ΔΔH‡ = −16.6 kcal/mol). The presence of Mg2+ ions or the transfer of the substrate from bulk water to dimethyl sulfoxide was found to increase the rate of pyrophosphate hydrolysis by as much as ∼106-fold. Transfer to dimethyl sulfoxide accelerated PPi hydrolysis by reducing the enthalpy of activation. Mg2+ increased the rate of PPi hydrolysis by both increasing the entropy of activation and reducing the enthalpy of activation. PMID:21460215

  20. The Binding Database: data management and interface design.

    PubMed

    Chen, Xi; Lin, Yuhmei; Liu, Ming; Gilson, Michael K

    2002-01-01

    The large and growing body of experimental data on biomolecular binding is of enormous value in developing a deeper understanding of molecular biology, in developing new therapeutics, and in various molecular design applications. However, most of these data are found only in the published literature and are therefore difficult to access and use. No existing public database has focused on measured binding affinities and has provided query capabilities that include chemical structure and sequence homology searches. We have created Binding DataBase (BindingDB), a public, web-accessible database of measured binding affinities. BindingDB is based upon a relational data specification for describing binding measurements via Isothermal Titration Calorimetry (ITC) and enzyme inhibition. A corresponding XML Document Type Definition (DTD) is used to create and parse intermediate files during the on-line deposition process and will also be used for data interchange, including collection of data from other sources. The on-line query interface, which is constructed with Java Servlet technology, supports standard SQL queries as well as searches for molecules by chemical structure and sequence homology. The on-line deposition interface uses Java Server Pages and JavaBean objects to generate dynamic HTML and to store intermediate results. The resulting data resource provides a range of functionality with brisk response-times, and lends itself well to continued development and enhancement.

  1. Study on the interaction of the toxic food additive carmoisine with serum albumins: a microcalorimetric investigation.

    PubMed

    Basu, Anirban; Kumar, Gopinatha Suresh

    2014-05-30

    The interaction of the synthetic azo dye and food colorant carmoisine with human and bovine serum albumins was studied by microcalorimetric techniques. A complete thermodynamic profile of the interaction was obtained from isothermal titration calorimetry studies. The equilibrium constant of the complexation process was of the order of 10(6)M(-1) and the binding stoichiometry was found to be 1:1 with both the serum albumins. The binding was driven by negative standard molar enthalpy and positive standard molar entropy contributions. The binding affinity was lower at higher salt concentrations in both cases but the same was dominated by mostly non-electrostatic forces at all salt concentrations. The polyelectrolytic forces contributed only 5-8% of the total standard molar Gibbs energy change. The standard molar enthalpy change enhanced whereas the standard molar entropic contribution decreased with rise in temperature but they compensated each other to keep the standard molar Gibbs energy change almost invariant. The negative standard molar heat capacity values suggested the involvement of a significant hydrophobic contribution in the complexation process. Besides, enthalpy-entropy compensation phenomenon was also observed in both the systems. The thermal stability of the serum proteins was found to be remarkably enhanced on binding to carmoisine. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Pyrrole- and Naphthobipyrrole-Strapped Calix[4]pyrroles as Azide Anion Receptors.

    PubMed

    Kim, Seung Hyeon; Lee, Juhoon; Vargas-Zúñiga, Gabriela I; Lynch, Vincent M; Hay, Benjamin P; Sessler, Jonathan L; Kim, Sung Kuk

    2018-03-02

    The binding interactions between the azide anion (N 3 - ) and the strapped calix[4]pyrroles 2 and 3 bearing auxiliary hydrogen bonding donors on the bridging moieties, as well as of normal calix[4]pyrrole 1, were investigated via 1 H NMR spectroscopic and isothermal titration calorimetry analyses. The resulting data revealed that receptors 2 and 3 have significantly higher affinities for the azide anion in organic media as compared with the unfunctionalized calix[4]pyrrole 1 and other azide receptors reported to date. Single crystal X-ray diffraction analyses and calculations using density functional theory revealed that receptor 2 binds CsN 3 in two distinct structural forms. As judged from the metric parameters, in the resulting complexes one limiting azide anion resonance contributor is favored over the other, with the specifics depending on the binding mode. In contrast to what is seen for 2, receptor 3 forms a CsN 3 complex in 20% CD 3 OD in CDCl 3 , wherein the azide anion is bound only vertically to the NH protons of the calix[4]pyrrole and the cesium cation is complexed within the cone shaped-calix[4]pyrrole bowl. The bound cesium cation is also in close proximity to a naphthobipyrrole subunit present in a different molecule, forming an apparent cation-π complex.

  3. Binding sites for interaction of peroxiredoxin 6 with surfactant protein A.

    PubMed

    Krishnaiah, Saikumari Y; Dodia, Chandra; Sorokina, Elena M; Li, Haitao; Feinstein, Sheldon I; Fisher, Aron B

    2016-04-01

    Peroxiredoxin 6 (Prdx6) is a bifunctional enzyme with peroxidase and phospholipase A2 (PLA2) activities. This protein participates in the degradation and remodeling of internalized dipalmitoylphosphatidylcholine (DPPC), the major phospholipid component of lung surfactant. We have shown previously that the PLA2 activity of Prdx6 is inhibited by the lung surfactant-associated protein called surfactant protein A (SP-A) through direct protein-protein interaction. Docking of SPA and Prdx6 was modeled using the ZDOCK (zlab.bu.edu) program in order to predict molecular sites for binding of the two proteins. The predicted peptide sequences were evaluated for binding to the opposite protein using isothermal titration calorimetry and circular dichroism measurement followed by determination of the effect of the SP-A peptide on the PLA2 activity of Prdx6. The sequences 195EEEAKKLFPK204.in the Prdx6 helix and 83DEELQTELYEIKHQIL99 in SP-A were identified as the sites for hydrophobic interaction and H(+)-bonding between the 2 proteins. Treatment of mouse endothelial cells with the SP-A peptide inhibited their recovery from lipid peroxidation associated with oxidative stress indicating inhibition of Prdx6 activity by the peptide in the intact cell. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Characterization of the binding of 8-anilinonaphthalene sulphonate to rat class Mu GST M1-1

    PubMed Central

    Kinsley, Nichole; Sayed, Yasien; Armstrong, Richard N.; Dirr, Heini W.

    2008-01-01

    Molecular docking and ANS-displacement experiments indicated that 8-anilinonaphthalene sulphonate (ANS) binds the hydrophobic site (H-site) in the active site of dimeric class Mu rGST M1-1. The naphthalene moiety provides most of the van der Waals contacts at the ANS-binding interface while the anilino group is able to sample different rotamers. The energetics of ANS binding were studied by isothermal titration calorimetry (ITC) over the temperature range of 5–30 °C. Binding is both enthalpically and entropically driven and displays a stoichiometry of one ANS molecule per subunit (or H-site). ANS binding is linked to the uptake of 0.5 protons at pH 6.5. Enthalpy of binding depends linearly upon temperature yielding a ΔCp of −80 ± 4 cal K−1 mol−1 indicating the burial of solvent-exposed nonpolar surface area upon ANS-protein complex formation. While ion-pair interactions between the sulfonate moiety of ANS and protein cationic groups may be significant for other ANS-binding proteins, the binding of ANS to rGST M1-1 is primarily hydrophobic in origin. The binding properties are compared with those of other GSTs and ANS-binding proteins. PMID:18703268

  5. Fluorinated diglucose detergents for membrane-protein extraction.

    PubMed

    Boussambe, Gildas Nyame Mendendy; Guillet, Pierre; Mahler, Florian; Marconnet, Anaïs; Vargas, Carolyn; Cornut, Damien; Soulié, Marine; Ebel, Christine; Le Roy, Aline; Jawhari, Anass; Bonneté, Françoise; Keller, Sandro; Durand, Grégory

    2018-05-29

    Fluorinated surfactants have scarcely been explored for the direct extraction of proteins from membranes because fluorination is believed to abrogate detergency. However, we have recently shown that a commercially available fluorinated surfactant readily solubilizes lipid membranes, thereby suggesting that fluorination per se does not interfere with detergent activity. In this work, we developed new fluorinated surfactants that exhibit detergency in terms of both lipid-vesicle solubilization and membrane-protein extraction. The compounds made and tested contain two glucose moieties as polar headgroup, a hydrogenated thioether linker, and a perfluorinated alkyl tail with either 4, 6, or 8 carbon atoms. The physicochemical properties of the micelles formed by the three fluorinated surfactants were evaluated by NMR spectroscopy, surface tensiometry, isothermal titration calorimetry, dynamic light scattering, small-angle X-ray scattering, and analytical ultracentrifugation. At 25°C, micellization was mainly entropy-driven, and the CMC values were found to decrease with chain length of the fluorinated tail, whereas the aggregation number increased with chain length. Remarkably, all three surfactants were found to solubilize lipid vesicles and extract a broad range of proteins from Escherichiacoli membranes. These findings demonstrate, for the first time, that nonionic fluorinated surfactants could be further exploited for the direct extraction and solubilization of membrane proteins. Copyright © 2018. Published by Elsevier Inc.

  6. Effect of Detergents on Galactoside Binding by Melibiose Permeases.

    PubMed

    Amin, Anowarul; Hariharan, Parameswaran; Chae, Pil Seok; Guan, Lan

    2015-09-29

    The effect of various detergents on the stability and function of the melibiose permeases of Escherichia coli (MelBEc) and Salmonella typhimurium (MelBSt) was studied. In n-dodecyl-β-d-maltoside (DDM) or n-undecyl-β-d-maltoside (UDM), WT MelBSt binds melibiose with an affinity similar to that in the membrane. However, with WT MelBEc or MelBSt mutants (Arg141 → Cys, Arg295 → Cys, or Arg363 → Cys), galactoside binding is not detected in these detergents, but binding to the phosphotransferase protein IIA(Glc) is maintained. In the amphiphiles lauryl maltose neopentyl glycol (MNG-3) or glyco-diosgenin (GDN), galactoside binding with all of the MelB proteins is observed, with slightly reduced affinities. MelBSt is more thermostable than MelBEc, and the thermostability of either MelB is largely increased in MNG-3 or GDN. Therefore, the functional defect with DDM or UDM likely results from the relative instability of the sensitive MelB proteins, and stability, as well as galactoside binding, is retained in MNG-3 or GDN. Furthermore, isothermal titration calorimetry of melibiose binding with MelBSt shows that the favorable entropic contribution to the binding free energy is decreased in MNG-3, indicating that the conformational dynamics of MelB is restricted in this detergent.

  7. Effect of detergents on galactoside binding by melibiose permeases

    PubMed Central

    Amin, Anowarul; Hariharan, Parameswaran; Chae, Pil Seok; Guan, Lan

    2015-01-01

    The effect of various detergents on the stability and function of melibiose permeases of Escherichia coli (MelBEc) or Salmonella typhimurium (MelBSt) were studied. In n-dodecyl-β-d-maltoside (DDM) or n-undecyl-β-d-maltoside (UDM), WT MelBSt binds melibiose with an affinity similar to that in the membrane. However, with WT MelBEc or MelBSt mutants (Arg141→Cys, Arg295→Cys or Arg363→Cys), galactoside binding is not detected in these detergents, but binding to the phosphotransferase protein IIAGlc is maintained. In the amphiphiles lauryl maltose neopentyl glycol (MNG-3) or glyco-diosgenin (GDN), galactoside binding with all the MelB proteins is observed, with slightly reduced affinities. MelBSt is more thermostable than MelBEc, and the thermostability of either MelB is largely increased in MNG-3 or GDN. Therefore, the functional defect with DDM or UDM likely results from relative instability of the sensitive MelB proteins, and stability, as well as galactoside binding, is retained in MNG-3 or GDN. Furthermore, isothermal titration calorimetry of melibiose binding with MelBSt shows that the favorable entropic contribution to the binding free energy is decreased in MNG-3, indicating that the conformational dynamics of MelB is restricted in this detergent. PMID:26352464

  8. Computational design of cyclic peptides for the customized oriented immobilization of globular proteins.

    PubMed

    Soler, Miguel A; Rodriguez, Alex; Russo, Anna; Adedeji, Abimbola Feyisara; Dongmo Foumthuim, Cedrix J; Cantarutti, Cristina; Ambrosetti, Elena; Casalis, Loredana; Corazza, Alessandra; Scoles, Giacinto; Marasco, Daniela; Laio, Alessandro; Fortuna, Sara

    2017-01-25

    The oriented immobilization of proteins, key for the development of novel responsive biomaterials, relies on the availability of effective probes. These are generally provided by standard approaches based on in vivo maturation and in vitro selection of antibodies and/or aptamers. These techniques can suffer technical problems when a non-immunogenic epitope needs to be targeted. Here we propose a strategy to circumvent this issue by in silico design. In our method molecular binders, in the form of cyclic peptides, are computationally evolved by stochastically exploring their sequence and structure space to identify high-affinity peptides for a chosen epitope of a target globular protein: here a solvent-exposed site of β2-microglobulin (β2m). Designed sequences were screened by explicit solvent molecular dynamics simulations (MD) followed by experimental validation. Five candidates gave dose-response surface plasmon resonance signals with dissociation constants in the micromolar range. One of them was further analyzed by means of isothermal titration calorimetry, nuclear magnetic resonance, and 250 ns of MD. Atomic-force microscopy imaging showed that this peptide is able to immobilize β2m on a gold surface. In short, we have shown by a variety of experimental techniques that it is possible to capture a protein through an epitope of choice by computational design.

  9. Molecular investigation on the binding of Cd(II) by the binary mixtures of montmorillonite with two bacterial species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Huihui; Qu, ChenChen; Liu, Jing

    Bacteria and phyllosilicate commonly coexist in the natural environment, producing various bacteria–clay complexes that are capable of immobilizing heavy metals, such as cadmium, via adsorption. However, the molecular binding mechanisms of heavy metals on these complex aggregates still remain poorly understood. This study investigated Cd adsorption on Gram-positive B. subtilis, Gram-negative P. putida and their binary mixtures with montmorillonite (Mont) using the Cd K-edge x-ray absorption spectroscopy (XAS) and isothermal titration calorimetry (ITC). We observed a lower adsorptive capacity for P. putida than B. subtilis, whereas P. putida–Mont and B. subtilis–Mont mixtures showed nearly identical Cd adsorption behaviors. EXAFS fitsmore » and ITC measurements demonstrated more phosphoryl binding of Cd in P. putida. The decreased coordination of C atoms around Cd and the reduced adsorption enthalpies and entropies for the binary mixtures compared to that for individual bacteria suggested that the bidentate Cd-carboxyl complexes in pure bacteria systems were probably transformed into monodentate complexes that acted as ionic bridging structure between bacteria and motmorillonite. This study clarified the binding mechanism of Cd at the bacteria–phyllosilicate interfaces from a molecular and thermodynamic view, which has an environmental significance for predicting the chemical behavior of trace elements in complex mineral–organic systems.« less

  10. Molecular tweezers with varying anions: a comparative study.

    PubMed

    Dutt, Som; Wilch, Constanze; Gersthagen, Thomas; Talbiersky, Peter; Bravo-Rodriguez, Kenny; Hanni, Matti; Sánchez-García, Elsa; Ochsenfeld, Christian; Klärner, Frank-Gerrit; Schrader, Thomas

    2013-07-05

    Selective binding of the phosphate-substituted molecular tweezer 1a to protein lysine residues was suggested to explain the inhibition of certain enzymes and the aberrant aggregation of amyloid petide Aβ42 or α-synuclein, which are assumed to be responsible for Alzheimer's and Parkinson's disease, respectively. In this work we systematically investigated the binding of four water-soluble tweezers 1a-d (substituted by phosphate, methanephosphonate, sulfate, or O-methylenecarboxylate groups) to amino acids and peptides containing lysine or arginine residues by using fluorescence spectroscopy, NMR spectroscopy, and isothermal titration calorimetry (ITC). The comparison of the experimental results with theoretical data obtained by a combination of QM/MM and ab initio(1)H NMR shift calculations provides clear evidence that the tweezers 1a-c bind the amino acid or peptide guest molecules by threading the lysine or arginine side chain through the tweezers' cavity, whereas in the case of 1d the guest molecule is preferentially positioned outside the tweezer's cavity. Attractive ionic, CH-π, and hydrophobic interactions are here the major binding forces. The combination of experiment and theory provides deep insight into the host-guest binding modes, a prerequisite to understanding the exciting influence of these tweezers on the aggregation of proteins and the activity of enzymes.

  11. The effects of cytosine methylation on general transcription factors

    NASA Astrophysics Data System (ADS)

    Jin, Jianshi; Lian, Tengfei; Gu, Chan; Yu, Kai; Gao, Yi Qin; Su, Xiao-Dong

    2016-07-01

    DNA methylation on CpG sites is the most common epigenetic modification. Recently, methylation in a non-CpG context was found to occur widely on genomic DNA. Moreover, methylation of non-CpG sites is a highly controlled process, and its level may vary during cellular development. To study non-CpG methylation effects on DNA/protein interactions, we have chosen three human transcription factors (TFs): glucocorticoid receptor (GR), brain and muscle ARNT-like 1 (BMAL1) - circadian locomotor output cycles kaput (CLOCK) and estrogen receptor (ER) with methylated or unmethylated DNA binding sequences, using single-molecule and isothermal titration calorimetry assays. The results demonstrated that these TFs interact with methylated DNA with different effects compared with their cognate DNA sequences. The effects of non-CpG methylation on transcriptional regulation were validated by cell-based luciferase assay at protein level. The mechanisms of non-CpG methylation influencing DNA-protein interactions were investigated by crystallographic analyses and molecular dynamics simulation. With BisChIP-seq assays in HEK-293T cells, we found that GR can recognize highly methylated sites within chromatin in cells. Therefore, we conclude that non-CpG methylation of DNA can provide a mechanism for regulating gene expression through directly affecting the binding of TFs.

  12. Spectroscopic and thermodynamic insights into the interaction between proflavine and human telomeric G-quadruplex DNA.

    PubMed

    Kumar, Vivek; Sengupta, Abhigyan; Gavvala, Krishna; Koninti, Raj Kumar; Hazra, Partha

    2014-09-25

    The G-quadruplex (GQ-DNA), an alternative structure motif of DNA, has emerged as a novel and exciting target for anticancer drug discovery. GQ-DNA formed in the presence of monovalent cations (Na(+)/K(+)) by human telomeric DNA is a point of interest due to their direct relevance for cellular aging and abnormal cell growths. Small molecules that selectively target and stabilize G-quadruplex structures are considered to be potential therapeutic anticancer agents. Herein, we probe G-quadruplex and proflavine (a well-known DNA intercalator, hence acting as an anticarcinogen) association through steady state and time-resolved fluorescence spectroscopy to explore the effect of stabilization of GQ-DNA by this well-known DNA intercalator. The structural modifications of G-quadruplex upon binding are highlighted through circular dichroism (CD) spectra. Moreover, a detailed insight into the thermodynamics of this interaction has been provided though isothermal titration calorimetry (ITC) studies. The thermodynamic parameters obtained from ITC help to gain knowledge about the nature as well as the driving forces of binding. This present study shows that proflavine (PF) can act as a stabilizer of telomeric GQ-DNA through an entropically as well as enthalpically feasible process with high binding affinity and thereby can be considered as a potential telomerase inhibitor.

  13. Structural Evidence for the Tetrameric Assembly of Chemokine CCL11 and the Glycosaminoglycan Arixtra™

    PubMed Central

    Dykstra, Andrew B.; Sweeney, Matt D.; Leary, Julie A.

    2013-01-01

    Understanding chemokine interactions with glycosaminoglycans (GAG) is critical as these interactions have been linked to a number of inflammatory medical conditions, such as arthritis and asthma. To better characterize in vivo protein function, comprehensive knowledge of multimeric species, formed by chemokines under native conditions, is necessary. Herein is the first report of a tetrameric assembly of the human chemokine CCL11, which was shown bound to the GAG Arixtra™. Isothermal titration calorimetry data indicated that CCL11 interacts with Arixtra, and ion mobility mass spectrometry (IM-MS) was used to identify ions corresponding to the CCL11 tetrameric species bound to Arixtra. Collisional cross sections (CCS) of the CCL11 tetramer-Arixtra noncovalent complex were compared to theoretical CCS values calculated using a preliminary structure of the complex deduced using X-ray crystallography. Experimental CCS values were in agreement with theoretical values, strengthening the IM-MS evidence for the formation of the noncovalent complex. Tandem mass spectrometry data of the complex indicated that the tetramer-GAG complex dissociates into a monomer and a trimer-GAG species, suggesting that two CC-like dimers are bridged by Arixtra. As development of chemokine inhibitors is of utmost importance to treatment of medical inflammatory conditions, these results provide vital insights into chemokine-GAG interactions. PMID:24970196

  14. Structural Evidence for the Tetrameric Assembly of Chemokine CCL11 and the Glycosaminoglycan Arixtra™.

    PubMed

    Dykstra, Andrew B; Sweeney, Matt D; Leary, Julie A

    2013-11-06

    Understanding chemokine interactions with glycosaminoglycans (GAG) is critical as these interactions have been linked to a number of inflammatory medical conditions, such as arthritis and asthma. To better characterize in vivo protein function, comprehensive knowledge of multimeric species, formed by chemokines under native conditions, is necessary. Herein is the first report of a tetrameric assembly of the human chemokine CCL11, which was shown bound to the GAG Arixtra™. Isothermal titration calorimetry data indicated that CCL11 interacts with Arixtra, and ion mobility mass spectrometry (IM-MS) was used to identify ions corresponding to the CCL11 tetrameric species bound to Arixtra. Collisional cross sections (CCS) of the CCL11 tetramer-Arixtra noncovalent complex were compared to theoretical CCS values calculated using a preliminary structure of the complex deduced using X-ray crystallography. Experimental CCS values were in agreement with theoretical values, strengthening the IM-MS evidence for the formation of the noncovalent complex. Tandem mass spectrometry data of the complex indicated that the tetramer-GAG complex dissociates into a monomer and a trimer-GAG species, suggesting that two CC-like dimers are bridged by Arixtra. As development of chemokine inhibitors is of utmost importance to treatment of medical inflammatory conditions, these results provide vital insights into chemokine-GAG interactions.

  15. Binding of the cSH3 domain of Grb2 adaptor to two distinct RXXK motifs within Gab1 docker employs differential mechanisms.

    PubMed

    McDonald, Caleb B; Seldeen, Kenneth L; Deegan, Brian J; Bhat, Vikas; Farooq, Amjad

    2011-01-01

    A ubiquitous component of cellular signaling machinery, Gab1 docker plays a pivotal role in routing extracellular information in the form of growth factors and cytokines to downstream targets such as transcription factors within the nucleus. Here, using isothermal titration calorimetry (ITC) in combination with macromolecular modeling (MM), we show that although Gab1 contains four distinct RXXK motifs, designated G1, G2, G3, and G4, only G1 and G2 motifs bind to the cSH3 domain of Grb2 adaptor and do so with distinct mechanisms. Thus, while the G1 motif strictly requires the PPRPPKP consensus sequence for high-affinity binding to the cSH3 domain, the G2 motif displays preference for the PXVXRXLKPXR consensus. Such sequential differences in the binding of G1 and G2 motifs arise from their ability to adopt distinct polyproline type II (PPII)- and 3(10) -helical conformations upon binding to the cSH3 domain, respectively. Collectively, our study provides detailed biophysical insights into a key protein-protein interaction involved in a diverse array of signaling cascades central to health and disease. Copyright © 2010 John Wiley & Sons, Ltd.

  16. Engineering the Pseudomonas aeruginosa II lectin: designing mutants with changed affinity and specificity

    NASA Astrophysics Data System (ADS)

    Kříž, Zdeněk; Adam, Jan; Mrázková, Jana; Zotos, Petros; Chatzipavlou, Thomais; Wimmerová, Michaela; Koča, Jaroslav

    2014-09-01

    This article focuses on designing mutations of the PA-IIL lectin from Pseudomonas aeruginosa that lead to change in specificity. Following the previous results revealing the importance of the amino acid triad 22-23-24 (so-called specificity-binding loop), saturation in silico mutagenesis was performed, with the intent of finding mutations that increase the lectin's affinity and modify its specificity. For that purpose, a combination of docking, molecular dynamics and binding free energy calculation was used. The combination of methods revealed mutations that changed the performance of the wild-type lectin and its mutants to their preferred partners. The mutation at position 22 resulted in 85 % in inactivation of the binding site, and the mutation at 23 did not have strong effects thanks to the side chain being pointed away from the binding site. Molecular dynamics simulations followed by binding free energy calculation were performed on mutants with promising results from docking, and also at those where the amino acid at position 24 was replaced for bulkier or longer polar chain. The key mutants were also prepared in vitro and their binding properties determined by isothermal titration calorimetry. Combination of the used methods proved to be able to predict changes in the lectin performance and helped in explaining the data observed experimentally.

  17. Thermodynamic and Kinetics Analysis of Peptides Derived from CapZ, NDR, p53, HDM2, and HDM4 Binding to Human S100B

    PubMed Central

    Wafer, Lucas N.; Streicher, Werner W.; McCallum, Scott A.; Makhatadze, George I.

    2012-01-01

    S100B is a member of the S100 subfamily of EF-hand proteins that has been implicated in malignant melanoma and neurodegenerative conditions such as Alzheimer's and Parkinson's disease. Calcium-induced conformational changes expose a hydrophobic binding cleft, facilitating interactions with a wide variety of nuclear, cytoplasmic, and extracellular target proteins. Previously, peptides derived from CapZ, p53, NDR, HDM2 and HDM4 have been shown to interact with S100B in a calcium-dependent manner. However, the thermodynamic and kinetic basis of these interactions remains largely unknown. To gain further insight, these peptides were screened against the S100B protein using isothermal titration calorimetry and nuclear magnetic resonance. All peptides were found to have binding affinities in the low micromolar to nanomolar range. Binding-induced changes in the line shapes of S100B backbone 1H and 15N were monitored to obtain the dissociation constants and the kinetic binding parameters. The large microscopic Kon rate constants observed in this study, Kon ≥1×107 M-1s-1, suggest that S100B utilizes a “fly casting mechanism” in the recognition of these peptide targets. PMID:22913742

  18. Metal ion coordination in the E. coli Nudix hydrolase dihydroneopterin triphosphate pyrophosphatase: New clues into catalytic mechanism

    PubMed Central

    Ukachukwu, Chiamaka U.; Freeman, Dana M.; Quirk, Stephen

    2017-01-01

    Dihydroneopterin triphosphate pyrophosphatase (DHNTPase), a member of the Mg2+ dependent Nudix hydrolase superfamily, is the recently-discovered enzyme that functions in the second step of the pterin branch of the folate biosynthetic pathway in E. coli. DHNTPase is of interest because inhibition of enzymes in bacterial folate biosynthetic pathways is a strategy for antibiotic development. We determined crystal structures of DHNTPase with and without activating, Mg2+-mimicking metals Co2+ and Ni2+. Four metal ions, identified by anomalous scattering, and stoichiometrically confirmed in solution by isothermal titration calorimetry, are held in place by Glu56 and Glu60 within the Nudix sequence motif, Glu117, waters, and a sulfate ion, of which the latter is further stabilized by a salt bridge with Lys7. In silico docking of the DHNTP substrate reveals a binding mode in which the pterin ring moiety is nestled in a largely hydrophobic pocket, the β-phosphate activated for nucleophilic attack overlays with the crystallographic sulfate and is in line with an activated water molecule, and remaining phosphate groups are stabilized by all four identified metal ions. The structures and binding data provide new details regarding DHNTPase metal requirements, mechanism, and suggest a strategy for efficient inhibition. PMID:28742822

  19. Interactions of EPS with soil minerals: A combination study by ITC and CLSM.

    PubMed

    Lin, Di; Ma, Wenting; Jin, Zhaoxia; Wang, Yixuan; Huang, Qiaoyun; Cai, Peng

    2016-02-01

    The adsorption of extracellular polymeric substances (EPS) from Pseudomonas putida on montmorillonite, kaolinite and goethite was investigated as a function of pH using batch studies coupled with confocal laser scanning microscopy (CLSM) and isothermal titration calorimetry (ITC). Characterization by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy showed that the extracted EPS contained carboxyl, phosphoryl, amino, and hydroxyl on functional groups as well as polysaccharides, protein and nucleic acid on components. The mass fraction of EPS adsorption on minerals decreased with the final pH increased from 3.0 to 9.0. The mass fraction of EPS-N adsorption varied with pH values and was higher than that of EPS-C or EPS-P on montmorillonite and kaolinite, while the mass fraction of EPS-P adsorption was the highest on goethite. CLSM results further demonstrated that proteins were predominantly distributed on the montmorillonite and kaolinite surfaces, while nucleic acids were mainly on the goethite surface. ITC results revealed that the adsorption process in all mineral systems was exothermic, and pH altered the heat effect of EPS-mineral reactions. The data obtained in this study would facilitate a better understanding of the adsorption mechanisms of EPS on minerals. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. The crystal structure of ribonuclease A in complex with thymidine-3'-monophosphate provides further insight into ligand binding.

    PubMed

    Doucet, Nicolas; Jayasundera, Thusitha B; Simonović, Miljan; Loria, J Patrick

    2010-08-15

    Thymidine-3'-monophosphate (3'-TMP) is a competitive inhibitor analogue of the 3'-CMP and 3'-UMP natural product inhibitors of bovine pancreatic ribonuclease A (RNase A). Isothermal titration calorimetry experiments show that 3'-TMP binds the enzyme with a dissociation constant (K(d)) of 15 microM making it one of the strongest binding members of the five natural bases found in nucleic acids (A, C, G, T, and U). To further investigate the molecular properties of this potent natural affinity, we have determined the crystal structure of bovine pancreatic RNase A in complex with 3'-TMP at 1.55 A resolution and we have performed NMR binding experiments with 3'-CMP and 3'-TMP. Our results show that binding of 3'-TMP is very similar to other natural and non-natural pyrimidine ligands, demonstrating that single nucleotide affinity is independent of the presence or absence of a 2'-hydroxyl on the ribose moiety of pyrimidines and suggesting that the pyrimidine binding subsite of RNase A is not a significant contributor of inhibitor discrimination. Accumulating evidence suggests that very subtle structural, chemical, and potentially motional variations contribute to ligand discrimination in this enzyme. 2010 Wiley-Liss, Inc.

  1. Influence of Ionic Liquids on Thermodynamics of Small Molecule-DNA Interaction: The Binding of Ethidium Bromide to Calf Thymus DNA.

    PubMed

    Mishra, Arpit; Ekka, Mary Krishna; Maiti, Souvik

    2016-03-17

    Ionic liquids (ILs) are salts with poor ionic coordination, resultantly remaining in liquid state below 100 °C and some may retain liquid state even at room temperature. ILs are known to provide a conducive environment for many biological enzymatic reactions, but their interaction with biomacromolecules are poorly understood. In the present study, we investigate the effect of various ionic liquids on DNA-small molecule interaction using calf thymus DNA (ctDNA)-ethidium bromide (EB) as a model system. The effect of various ionic liquids on these interactions is studied by an array of techniques such as circular dichroism (CD), UV melting, fluorescence exclusion and isothermal titration calorimetry. Interestingly, we observed that presence of IL increased the stability of ctDNA without altering its structure. The binding affinities Kbs for EB binding to ctDNA in the presence of 300 mM ILs are about half order of magnitude smaller than the Kbs in absence of ILs and correspond to a less favorable free energy. We noted that, when adjusted to corresponding buffer condition, the unfavorable shift in ΔG of ctDNA-EB interaction is attributed to decreased entropy in the case of ILs, whereas the same effect by NaCl was due to increased enthalpy.

  2. Improving the activity of the subtilisin nattokinase by site-directed mutagenesis and molecular dynamics simulation.

    PubMed

    Weng, Meizhi; Deng, Xiongwei; Bao, Wei; Zhu, Li; Wu, Jieyuan; Cai, Yongjun; Jia, Yan; Zheng, Zhongliang; Zou, Guolin

    2015-09-25

    Nattokinase (NK), a bacterial serine protease from Bacillus subtilis var. natto, is a potential cardiovascular drug exhibiting strong fibrinolytic activity. To broaden its commercial and medical applications, we constructed a single-mutant (I31L) and two double-mutants (M222A/I31L and T220S/I31L) by site-directed mutagenesis. Active enzymes were expressed in Escherichia coli with periplasmic secretion and were purified to homogeneity. The kinetic parameters of enzymes were examined by spectroscopy assay and isothermal titration calorimetry (ITC), and their fibrinolytic activities were determined by fibrin plate method. The substitution of Leu(31) for Ile(31) resulted in about 2-fold enhancement of catalytic efficiency (Kcat/KM) compared with wild-type NK. The specific activities of both double-mutants (M222A/I31L and T220S/I31L) were significantly increased when compared with the single-mutants (M222A and T220S) and the oxidative stability of M222A/I31L mutant was enhanced with respect to wild-type NK. This study demonstrates the feasibility of improving activity of NK by site-directed mutagenesis and shows successful protein engineering cases to improve the activity of NK as a potent therapeutic agent. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Selective monovalent cation association and exchange around Keplerate polyoxometalate macroanions in dilute aqueous solutions.

    PubMed

    Pigga, Joseph M; Teprovich, Joseph A; Flowers, Robert A; Antonio, Mark R; Liu, Tianbo

    2010-06-15

    The interaction between water-soluble Keplerate polyoxometalate {Mo(72)Fe(30)} macroions and small countercations is explored by laser light scattering, anomalous small-angle X-ray scattering (ASAXS), and isothermal titration calorimetry (ITC) techniques. The macroions are found to be able to select the type of associated counterions based upon the counterions' valence state and hydrated size, when multiple types of additional cations are present in solution (even among different monovalent cations). The preference goes to the cations with higher valences or smaller hydrated sizes if the valences are identical. This counterion exchange process changes the magnitude of the macroion-counterion interaction and, thus, is reflected in the dimension of the self-assembled {Mo(72)Fe(30)} blackberry supramolecular structures. The hydrophilic macroions exhibit a competitive recognition of various monovalent counterions in dilute solutions. A critical salt concentration (CSC) for each type of cation exists for the blackberry formation of {Mo(72)Fe(30)} macroions, above which the blackberry size increases significantly with the increasing total ionic strength in solution. The CSC values are much smaller for cations with higher valences and also decrease with the cations' hydrated size for various monovalent cations. The change of blackberry size corresponding to the change of ionic strength in solution is reversible.

  4. In vitro polymerization of microtubules with a fullerene derivative.

    PubMed

    Ratnikova, Tatsiana A; Govindan, Praveen Nedumpully; Salonen, Emppu; Ke, Pu Chun

    2011-08-23

    Fullerene derivative C(60)(OH)(20) inhibited microtubule polymerization at low micromolar concentrations. The inhibition was mainly attributed to the formation of hydrogen bonding between the nanoparticle and the tubulin heterodimer, the building block of the microtubule, as evidenced by docking and molecular dynamics simulations. Our circular dichroism spectroscopy measurement indicated changes in the tubulin secondary structures, while our guanosine-5'-triphosphate hydrolysis assay showed hindered release of inorganic phosphate by the nanoparticle. Isothermal titration calorimetry revealed that C(60)(OH)(20) binds to tubulin at a molar ratio of 9:1 and with a binding constant of 1.3 ± 0.16 × 10(6) M(-1), which was substantiated by the binding site and binding energy analysis using docking and molecular dynamics simulations. Our simulations further suggested that occupancy by the nanoparticles at the longitudinal contacts between tubulin dimers within a protofilament or at the lateral contacts of the M-loop and H5 and H12 helices of neighboring tubulins could also influence the polymerization process. This study offered a new molecular-level insight on how nanoparticles may reshape the assembly of cytoskeletal proteins, a topic of essential importance for illuminating cell response to engineered nanoparticles and for the advancement of nanomedicine. © 2011 American Chemical Society

  5. Role of Self-Association and Supersaturation in Oral Absorption of a Poorly Soluble Weakly Basic Drug.

    PubMed

    Narang, Ajit S; Badawy, Sherif; Ye, Qingmei; Patel, Dhaval; Vincent, Maria; Raghavan, Krishnaswamy; Huang, Yande; Yamniuk, Aaron; Vig, Balvinder; Crison, John; Derbin, George; Xu, Yan; Ramirez, Antonio; Galella, Michael; Rinaldi, Frank A

    2015-08-01

    Precipitation of weakly basic drugs in intestinal fluids can affect oral drug absorption. In this study, the implications of self-association of brivanib alaninate in acidic aqueous solution, leading to supersaturation at basic pH condition, on its solubility and oral absorption were investigated. Self-association of brivanib alaninate was investigated by proton NMR spectroscopy, surface tension measurement, dynamic light scattering, isothermal titration calorimetry, and molecular modeling. Drug solubility was determined in various pH media, and its tendency to supersaturate upon pH shift was investigated in buffered and biorelevant aqueous solutions. Pharmacokinetic modeling of human oral drug absorption was utilized for parameter sensitivity analyses of input variables. Brivanib alaninate exhibited continuous, and pH- and concentration-dependent self-association. This phenomenon resulted in positive deviation of drug solubility at acidic pH and the formation of a stable supersaturated drug solution in pH-shift assays. Consistent with the supersaturation phenomenon observed in vitro, oral absorption simulations necessitated invoking long precipitation time in the intestine to successfully predict in vivo data. Self-association of a weakly basic drug in acidic aqueous solution can increase its oral absorption by supersaturation and precipitation resistance at the intestinal pH. This consideration is important to the selection of parameters for oral absorption simulation.

  6. Interactions between lipid-free apolipoprotein-AI and a lipopeptide incorporating the RGDS cell adhesion motif

    NASA Astrophysics Data System (ADS)

    Castelletto, V.; Hamley, I. W.; Reza, M.; Ruokolainen, J.

    2014-11-01

    The interaction of a designed bioactive lipopeptide C16-GGGRGDS, comprising a hexadecyl lipid chain attached to a functional heptapeptide, with the lipid-free apoliprotein, Apo-AI, is examined. This apolipoprotein is a major component of high density lipoprotein and it is involved in lipid metabolism and may serve as a biomarker for cardiovascular disease and Alzheimers' disease. We find via isothermal titration calorimetry that binding between the lipopeptide and Apo-AI occurs up to a saturation condition, just above equimolar for a 10.7 μM concentration of Apo-AI. A similar value is obtained from circular dichroism spectroscopy, which probes the reduction in α-helical secondary structure of Apo-AI upon addition of C16-GGGRGDS. Electron microscopy images show a persistence of fibrillar structures due to self-assembly of C16-GGGRGDS in mixtures with Apo-AI above the saturation binding condition. A small fraction of spheroidal or possibly ``nanodisc'' structures was observed. Small-angle X-ray scattering (SAXS) data for Apo-AI can be fitted using a published crystal structure of the Apo-AI dimer. The SAXS data for the lipopeptide/Apo-AI mixtures above the saturation binding conditions can be fitted to the contribution from fibrillar structures coexisting with flat discs corresponding to Apo-AI/lipopeptide aggregates.

  7. Autoregulation and Virulence Control by the Toxin-Antitoxin System SavRS in Staphylococcus aureus

    PubMed Central

    Wen, Wen; Liu, Banghui; Xue, Lu; Zhu, Zhongliang; Niu, Liwen

    2018-01-01

    ABSTRACT Toxin-antitoxin (TA) systems play diverse physiological roles, such as plasmid maintenance, growth control, and persister cell formation, but their involvement in bacterial pathogenicity remains largely unknown. Here, we have identified a novel type II toxin-antitoxin system, SavRS, and revealed the molecular mechanisms of its autoregulation and virulence control in Staphylococcus aureus. Electrophoretic mobility shift assay and isothermal titration calorimetry data indicated that the antitoxin SavR acted as the primary repressor bound to its own promoter, while the toxin SavS formed a complex with SavR to enhance the ability to bind to the operator site. DNase I footprinting assay identified the SavRS-binding site containing a short and long palindrome in the promoter region. Further, mutation and DNase I footprinting assay demonstrated that the two palindromes were crucial for DNA binding and transcriptional repression. More interestingly, genetic deletion of the savRS system led to the increased hemolytic activity and pathogenicity in a mouse subcutaneous abscess model. We further identified two virulence genes, hla and efb, by real-time quantitative reverse transcription-PCR and demonstrated that SavR and SavRS could directly bind to their promoter regions to repress virulence gene expression. PMID:29440365

  8. Structural and functional characterization of Mycobacterium tuberculosis triosephosphate isomerase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connor, Sean E.; Capodagli, Glenn C.; Deaton, Michelle K.

    Tuberculosis (TB) is a major infectious disease that accounts for over 1.7 million deaths every year. Mycobacterium tuberculosis, the causative agent of tuberculosis, enters the human host by the inhalation of infectious aerosols. Additionally, one third of the world's population is likely to be infected with latent TB. The incidence of TB is on the rise owing in part to the emergence of multidrug-resistant strains. As a result, there is a growing need to focus on novel M. tuberculosis enzyme targets. M. tuberculosis triosephosphate isomerase (MtTPI) is an essential enzyme for gluconeogenetic pathways, making it a potential target for futuremore » therapeutics. In order to determine its structure, the X-ray crystal structure of MtTPI has been determined, as well as that of MtTPI bound with a reaction-intermediate analog. As a result, two forms of the active site were revealed. In conjunction with the kinetic parameters obtained for the MtTPI-facilitated conversion of dihydroxyacetone phosphate (DHAP) to D-glyceraldehyde-3-phosphate (D-GAP), this provides a greater structural and biochemical understanding of this enzyme. Additionally, isothermal titration calorimetry was used to determine the binding constant for a reaction-intermediate analog bound to the active site of MtTPI.« less

  9. Targeting the cell wall of Mycobacterium tuberculosis: a molecular modeling investigation of the interaction of imipenem and meropenem with L,D-transpeptidase 2.

    PubMed

    Silva, José Rogério A; Bishai, William R; Govender, Thavendran; Lamichhane, Gyanu; Maguire, Glenn E M; Kruger, Hendrik G; Lameira, Jeronimo; Alves, Cláudio N

    2016-01-01

    The single crystal X-ray structure of the extracellular portion of the L,D-transpeptidase (ex-LdtMt2 - residues 120-408) enzyme was recently reported. It was observed that imipenem and meropenem inhibit activity of this enzyme, responsible for generating L,D-transpeptide linkages in the peptidoglycan layer of Mycobacterium tuberculosis. Imipenem is more active and isothermal titration calorimetry experiments revealed that meropenem is subjected to an entropy penalty upon binding to the enzyme. Herein, we report a molecular modeling approach to obtain a molecular view of the inhibitor/enzyme interactions. The average binding free energies for nine commercially available inhibitors were calculated using MM/GBSA and Solvation Interaction Energy (SIE) approaches and the calculated energies corresponded well with the available experimentally observed results. The method reproduces the same order of binding energies as experimentally observed for imipenem and meropenem. We have also demonstrated that SIE is a reasonably accurate and cost-effective free energy method, which can be used to predict carbapenem affinities for this enzyme. A theoretical explanation was offered for the experimental entropy penalty observed for meropenem, creating optimism that this computational model can serve as a potential computational model for other researchers in the field.

  10. Thermodynamic properties distinguish human mitochondrial aspartyl-tRNA synthetase from bacterial homolog with same 3D architecture.

    PubMed

    Neuenfeldt, Anne; Lorber, Bernard; Ennifar, Eric; Gaudry, Agnès; Sauter, Claude; Sissler, Marie; Florentz, Catherine

    2013-02-01

    In the mammalian mitochondrial translation apparatus, the proteins and their partner RNAs are coded by two genomes. The proteins are nuclear-encoded and resemble their homologs, whereas the RNAs coming from the rapidly evolving mitochondrial genome have lost critical structural information. This raises the question of molecular adaptation of these proteins to their peculiar partner RNAs. The crystal structure of the homodimeric bacterial-type human mitochondrial aspartyl-tRNA synthetase (DRS) confirmed a 3D architecture close to that of Escherichia coli DRS. However, the mitochondrial enzyme distinguishes by an enlarged catalytic groove, a more electropositive surface potential and an alternate interaction network at the subunits interface. It also presented a thermal stability reduced by as much as 12°C. Isothermal titration calorimetry analyses revealed that the affinity of the mitochondrial enzyme for cognate and non-cognate tRNAs is one order of magnitude higher, but with different enthalpy and entropy contributions. They further indicated that both enzymes bind an adenylate analog by a cooperative allosteric mechanism with different thermodynamic contributions. The larger flexibility of the mitochondrial synthetase with respect to the bacterial enzyme, in combination with a preserved architecture, may represent an evolutionary process, allowing nuclear-encoded proteins to cooperate with degenerated organelle RNAs.

  11. The dynamic Atg13-free conformation of the Atg1 EAT domain is required for phagophore expansion.

    PubMed

    Lin, Mary G; Schöneberg, Johannes; Davies, Christopher W; Ren, Xuefeng; Hurley, James H

    2018-05-15

    Yeast macroautophagy begins with the de novo formation of a double-membrane phagophore at the preautophagosomal structure/phagophore assembly site (PAS), followed by its expansion into the autophagosome responsible for cargo engulfment. The kinase Atg1 is recruited to the PAS by Atg13 through interactions between the EAT domain of the former and the tMIM motif of the latter. Mass-spectrometry data have shown that, in the absence of Atg13, the EAT domain structure is strikingly dynamic, but the function of this Atg13-free dynamic state has been unclear. We used structure-based mutational analysis and quantitative and superresolution microscopy to show that Atg1 is present on autophagic puncta at, on average, twice the stoichiometry of Atg13. Moreover, Atg1 colocalizes with the expanding autophagosome in a manner dependent on Atg8 but not Atg13. We used isothermal titration calorimetry and crystal structure information to design an EAT domain mutant allele ATG1 DD that selectively perturbs the function of the Atg13-free state. Atg1 DD shows reduced PAS formation and does not support phagophore expansion, showing that the EAT domain has an essential function that is separate from its Atg13-dependent role in autophagy initiation.

  12. Characteristic Features of Kynurenine Aminotransferase Allosterically Regulated by (Alpha)-Ketoglutarate in Cooperation with Kynurenine

    PubMed Central

    Okada, Ken; Angkawidjaja, Clement; Koga, Yuichi; Takano, Kazufumi; Kanaya, Shigenori

    2012-01-01

    Kynurenine aminotransferase from Pyrococcus horikoshii OT3 (PhKAT), which is a homodimeric protein, catalyzes the conversion of kynurenine (KYN) to kynurenic acid (KYNA). We analyzed the transaminase reaction mechanisms of this protein with pyridoxal-5′-phosphate (PLP), KYN and α-ketoglutaric acid (2OG) or oxaloacetic acid (OXA). 2OG significantly inhibited KAT activities in kinetic analyses, suggesting that a KYNA biosynthesis is allosterically regulated by 2OG. Its inhibitions evidently were unlocked by KYN. 2OG and KYN functioned as an inhibitor and activator in response to changes in the concentrations of KYN and 2OG, respectively. The affinities of one subunit for PLP or 2OG were different from that of the other subunit, as confirmed by spectrophotometry and isothermal titration calorimetry, suggesting that the difference of affinities between subunits might play a role in regulations of the KAT reaction. Moreover, we identified two active and allosteric sites in the crystal structure of PhKAT-2OG complexes. The crystal structure of PhKAT in complex with four 2OGs demonstrates that two 2OGs in allosteric sites are effector molecules which inhibit the KYNA productions. Thus, the combined data lead to the conclusion that PhKAT probably is regulated by allosteric control machineries, with 2OG as the allosteric inhibitor. PMID:22792273

  13. Nicotine-based surface active ionic liquids: Synthesis, self-assembly and cytotoxicity studies.

    PubMed

    Singh, Gurbir; Kamboj, Raman; Singh Mithu, Venus; Chauhan, Vinay; Kaur, Taranjeet; Kaur, Gurcharan; Singh, Sukhprit; Singh Kang, Tejwant

    2017-06-15

    New ester-functionalized surface active ionic liquids (SAILs) based on nicotine, [C n ENic][Br] (n=8, 10 and 12), with bromide counterions have been synthesized, characterized and investigated for their self-assembly behavior in aqueous medium. Conductivity measurements in aqueous solutions of the investigated SAILs have provided information about their critical micelle concentration (cmc), and degree of counterion binding (β), where cmc was found to be 2-3-fold lower than homologous SAILs or conventional cationic surfactants. The inherent fluorescence of SAILs in the absence of any external fluorescent probe have shed light on cmc as well as interactions prevailing between the monomers in micelle at molecular level. The thermodynamic parameters related to micellization have been deduced from isothermal titration calorimetry (ITC) and conductivity measurements. 1 H NMR, spin-lattice (T 1 ) relaxation time and 2D 1 H- I H ROESY measurements have been exploited to get detailed account of internal structure of micelle. The size and shape of the micelles have been explored using dynamic light scattering (DLS) and transmission electron microscopy (TEM) measurements. The synthesized SAILs have been found to be non-cytotoxic towards C6-Glioma cell line, which adds to the possible utility of these SAILs for diverse biological applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Interaction of bovine serum albumin with N-acyl amino acid based anionic surfactants: Effect of head-group hydrophobicity.

    PubMed

    Ghosh, Subhajit; Dey, Joykrishna

    2015-11-15

    The function of a protein depends upon its structure and surfactant molecules are known to alter protein structure. For this reason protein-surfactant interaction is important in biological, pharmaceutical, and cosmetic industries. In the present work, interactions of a series of anionic surfactants having the same hydrocarbon chain length, but different amino acid head group, such as l-alanine, l-valine, l-leucine, and l-phenylalanine with the transport protein, bovine serum albumin (BSA), were studied at low surfactant concentrations using fluorescence and circular dichroism (CD) spectroscopy, and isothermal titration calorimetry (ITC). The results of fluorescence measurements suggest that the surfactant molecules bind simultaneously to the drug binding site I and II of the protein subdomain IIA and IIIA, respectively. The fluorescence as well as CD spectra suggest that the conformation of BSA goes to a more structured state upon surfactant binding at low concentrations. The binding constants of the surfactants were determined by the use of fluorescence as well as ITC measurements and were compared with that of the corresponding glycine-derived surfactant. The binding constant values clearly indicate a significant head-group effect on the BSA-surfactant interaction and the interaction is mainly hydrophobic in nature. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Energetic basis for selective recognition of T*G mismatched base pairs in DNA by imidazole-rich polyamides.

    PubMed

    Lacy, Eilyn R; Nguyen, Binh; Le, Minh; Cox, Kari K; OHare, Caroline; Hartley, John A; Lee, Moses; Wilson, W David

    2004-01-01

    To complement available structure and binding results and to develop a detailed understanding of the basis for selective molecular recognition of T.G mismatches in DNA by imidazole containing polyamides, a full thermodynamic profile for formation of the T.G-polyamide complex has been determined. The amide-linked heterocycles f-ImImIm and f-PyImIm (where f is formamido group, Im is imidazole and Py is pyrrole) were studied by using biosensor-surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) with a T.G mismatch containing DNA hairpin duplex and a similar DNA with only Watson-Crick base pairs. Large negative binding enthalpies for all of the polyamide-DNA complexes indicate that the interactions are enthalpically driven. SPR results show slower complex formation and stronger binding of f-ImImIm to the T.G than to the match site. The thermodynamic analysis indicates that the enhanced binding to the T.G site is the result of better entropic contributions. Negative heat capacity changes for the complex are correlated with calculated solvent accessible surface area changes and indicate hydrophobic contributions to complex formation. DNase I footprinting analysis in a long DNA sequence provided supporting evidence that f-ImImIm binds selectively to T.G mismatch sites.

  16. Energetic basis for selective recognition of T·G mismatched base pairs in DNA by imidazole-rich polyamides

    PubMed Central

    Lacy, Eilyn R.; Nguyen, Binh; Le, Minh; Cox, Kari K.; O'Hare, Caroline; Hartley, John A.; Lee, Moses; Wilson, W. David

    2004-01-01

    To complement available structure and binding results and to develop a detailed understanding of the basis for selective molecular recognition of T·G mismatches in DNA by imidazole containing polyamides, a full thermodynamic profile for formation of the T·G–polyamide complex has been determined. The amide-linked heterocycles f-ImImIm and f-PyImIm (where f is formamido group, Im is imidazole and Py is pyrrole) were studied by using biosensor-surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) with a T·G mismatch containing DNA hairpin duplex and a similar DNA with only Watson–Crick base pairs. Large negative binding enthalpies for all of the polyamide–DNA complexes indicate that the interactions are enthalpically driven. SPR results show slower complex formation and stronger binding of f-ImImIm to the T·G than to the match site. The thermodynamic analysis indicates that the enhanced binding to the T·G site is the result of better entropic contributions. Negative heat capacity changes for the complex are correlated with calculated solvent accessible surface area changes and indicate hydrophobic contributions to complex formation. DNase I footprinting analysis in a long DNA sequence provided supporting evidence that f-ImImIm binds selectively to T·G mismatch sites. PMID:15064359

  17. Adsorption of hydrogen chloride on microcrystalline silica. [solid rocket propellant exhaust

    NASA Technical Reports Server (NTRS)

    Kang, Y.; Wightman, J. P.

    1979-01-01

    The interaction of hydrogen chloride with quartz was studied to determine the extent to which silica can irreversibly remove hydrogen chloride from the atmosphere. Adsorption isotherms were measured at 30 C for hydrogen chloride on silica outgassed between 100 C and 400 C. Readsorption isotherms were also measured. The silica surface was characterized further by infrared spectroscopy, electron spectroscopy for chemical analysis, scanning electron microscopy, and immersional calorimetry. Ground debris samples obtained from the Kennedy Space Center, were likewise examined.

  18. Modeling of the non-isothermal crystallization kinetics of polyamide 6 composites during thermoforming

    NASA Astrophysics Data System (ADS)

    Kugele, Daniel; Dörr, Dominik; Wittemann, Florian; Hangs, Benjamin; Rausch, Julius; Kärger, Luise; Henning, Frank

    2017-10-01

    The combination of thermoforming processes of continuous-fiber reinforced thermoplastics and injection molding offers a high potential for cost-effective use in automobile mass production. During manufacturing, the thermoplastic laminates are initially heated up to a temperature above the melting point. This is followed by continuous cooling of the material during the forming process, which leads to crystallization under non-isothermal conditions. To account for phase change effects in thermoforming simulation, an accurate modeling of the crystallization kinetics is required. In this context, it is important to consider the wide range of cooling rates, which are observed during processing. Consequently, this paper deals with the experimental investigation of the crystallization at cooling rates varying from 0.16 K/s to 100 K/s using standard differential scanning calorimetry (DSC) and fast scanning calorimetry (Flash DSC). Two different modeling approaches (Nakamura model, modified Nakamura-Ziabicki model) for predicting crystallization kinetics are parameterized according to DSC measurements. It turns out that only the modified Nakamura-Ziabicki model is capable of predicting crystallization kinetics for all investigated cooling rates. Finally, the modified Nakamura-Ziabicki model is validated by cooling experiments using PA6-CF laminates with embedded temperature sensors. It is shown that the modified Nakamura-Ziabicki model predicts crystallization at non-isothermal conditions and varying cooling rates with a good accuracy. Thus, the study contributes to a deeper understanding of the non-isothermal crystallization and presents an overall method for modeling crystallization under process conditions.

  19. Crystallization kinetics of the Cu{sub 50}Zr{sub 50} metallic glass under isothermal conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Qian; Jian, Zengyun, E-mail: jianzengyun@xatu.edu.cn; Xu, Junfeng

    2016-12-15

    Amorphous structure of the melt-spun Cu{sub 50}Zr{sub 50} amorphous alloy ribbons were confirmed by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM). Isothermal crystallization kinetics of these alloy ribbons were investigated using differential scanning calorimetry (DSC). Besides, Arrhenius and Johnson-Mehl-Avrami (JMA) equations were utilized to obtain the isothermal crystallization kinetic parameters. As shown in the results, the local activation energy E{sub α} decreases by a large margin at the crystallized volume fraction α<0.1, which proves that crystallization process is increasingly easy. In addition, the local activation energy E{sub α} is basically constant at 0.1

  20. Higher Throughput Calorimetry: Opportunities, Approaches and Challenges

    PubMed Central

    Recht, Michael I.; Coyle, Joseph E.; Bruce, Richard H.

    2010-01-01

    Higher throughput thermodynamic measurements can provide value in structure-based drug discovery during fragment screening, hit validation, and lead optimization. Enthalpy can be used to detect and characterize ligand binding, and changes that affect the interaction of protein and ligand can sometimes be detected more readily from changes in the enthalpy of binding than from the corresponding free-energy changes or from protein-ligand structures. Newer, higher throughput calorimeters are being incorporated into the drug discovery process. Improvements in titration calorimeters come from extensions of a mature technology and face limitations in scaling. Conversely, array calorimetry, an emerging technology, shows promise for substantial improvements in throughput and material utilization, but improved sensitivity is needed. PMID:20888754

  1. Kinetics and thermodynamics of interaction between sulfonamide antibiotics and humic acids: Surface plasmon resonance and isothermal titration microcalorimetry analysis.

    PubMed

    Xu, Juan; Yu, Han-Qing; Sheng, Guo-Ping

    2016-01-25

    The presence of sulfonamide antibiotics in the environments has been recognized as a crucial issue. Their migration and transformation in the environment is determined by natural organic matters that widely exist in natural water and soil. In this study, the kinetics and thermodynamics of interactions between humic acids (HA) and sulfamethazine (SMZ) were investigated by employing surface plasmon resonance (SPR) combined with isothermal titration microcalorimetry (ITC) technologies. Results show that SMZ could be effectively bound with HA. The binding strength could be enhanced by increasing ionic strength and decreasing temperature. High pH was not favorable for the interaction. Hydrogen bond and electrostatic interaction may play important roles in driving the binding process, with auxiliary contribution from hydrophobic interaction. The results implied that HA existed in the environment may have a significant influence on the migration and transformation of organic pollutants through the binding process. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. The adsorption of cationic and amphoteric copolymers on glass surfaces: zeta potential measurements, adsorption isotherm determination, and FT Raman characterization.

    PubMed

    Tartakovsky, Alla; Drutis, Dane M; Carnali, Joseph O

    2003-07-15

    The adsorption of cationic and amphoteric copolymers onto controlled pore glass (CPG) powders has been studied by measurement of the powder particle zeta (zeta) potential, by determination of the adsorption isotherm, and by FT Raman measurements of the polymer-coated powder. The cationic polymers consisted chiefly of homopolymers of dimethyldiallylammonium chloride (DMDAAC) or copolymers of DMDAAC and acrylamide. The amphoteric polymers studied included copolymers of DMDAAC and acrylic acid. The comonomer ratio was varied to explore the dependence of cationic charge density on the extent and effect of adsorption. Both types of polymers adsorb onto the anionic glass surface via an ion-exchange mechanism. Consequently, a correspondingly higher mass of a low-charge-density copolymer adsorbs than of a cationic homopolymer. The presence of the anionic portion in the amphoteric polymers does not significantly alter this picture. The zeta potential, however, reflects the overall nature of the polymer. Cationic polymers effectively neutralize the glass surface, while amphoteric polymers leave the zeta potential net negative. Adsorption isotherms, determined via the depletion technique using colloidal titration, were used to "calibrate" a FT Raman method. The latter was used to determined the amount of adsorbed polymer under solution conditions in which colloidal titration could not be performed.

  3. Gelatinisation kinetics of corn and chickpea starches using DSC, RVA, and dynamic rheometry

    USDA-ARS?s Scientific Manuscript database

    The gelatinisation kinetics (non-isothermal) of corn and chickpea starches at different heating rates were calculated using differential scanning calorimetry (DSC), rapid visco analyser (RVA), and oscillatory dynamic rheometry. The data obtained from the DSC thermogram and the RVA profiles were fitt...

  4. Study of strength kinetics of sand concrete system of accelerated hardening

    NASA Astrophysics Data System (ADS)

    Sharanova, A. V.; Lenkova, D. A.; Panfilova, A. D.

    2018-04-01

    Methods of calorimetric analysis are used to study the dynamics of the hydration processes of concretes with different accelerator contents. The efficiency of the isothermal calorimetry method is shown for study of strength kinetics of concrete mixtures of accelerated hardening, promising for additive technologies in civil engineering.

  5. Iron loading site on the Fe-S cluster assembly scaffold protein is distinct from the active site.

    PubMed

    Rodrigues, Andria V; Kandegedara, Ashoka; Rotondo, John A; Dancis, Andrew; Stemmler, Timothy L

    2015-06-01

    Iron-sulfur (Fe-S) cluster containing proteins are utilized in almost every biochemical pathway. The unique redox and coordination chemistry associated with the cofactor allows these proteins to participate in a diverse set of reactions, including electron transfer, enzyme catalysis, DNA synthesis and signaling within several pathways. Due to the high reactivity of the metal, it is not surprising that biological Fe-S cluster assembly is tightly regulated within cells. In yeast, the major assembly pathway for Fe-S clusters is the mitochondrial ISC pathway. Yeast Fe-S cluster assembly is accomplished using the scaffold protein (Isu1) as the molecular foundation, with assistance from the cysteine desulfurase (Nfs1) to provide sulfur, the accessory protein (Isd11) to regulate Nfs1 activity, the yeast frataxin homologue (Yfh1) to regulate Nfs1 activity and participate in Isu1 Fe loading possibly as a chaperone, and the ferredoxin (Yah1) to provide reducing equivalents for assembly. In this report, we utilize calorimetric and spectroscopic methods to provide molecular insight into how wt-Isu1 from S. cerevisiae becomes loaded with iron. Isothermal titration calorimetry and an iron competition binding assay were developed to characterize the energetics of protein Fe(II) binding. Differential scanning calorimetry was used to identify thermodynamic characteristics of the protein in the apo state or under iron loaded conditions. Finally, X-ray absorption spectroscopy was used to characterize the electronic and structural properties of Fe(II) bound to Isu1. Current data are compared to our previous characterization of the D37A Isu1 mutant, and these suggest that when Isu1 binds Fe(II) in a manner not perturbed by the D37A substitution, and that metal binding occurs at a site distinct from the cysteine rich active site in the protein.

  6. Biochemical and biophysical characterization of the selenium-binding and reducing site in Arabidopsis thaliana homologue to mammals selenium-binding protein 1.

    PubMed

    Schild, Florie; Kieffer-Jaquinod, Sylvie; Palencia, Andrés; Cobessi, David; Sarret, Géraldine; Zubieta, Chloé; Jourdain, Agnès; Dumas, Renaud; Forge, Vincent; Testemale, Denis; Bourguignon, Jacques; Hugouvieux, Véronique

    2014-11-14

    The function of selenium-binding protein 1 (SBP1), present in almost all organisms, has not yet been established. In mammals, SBP1 is known to bind the essential element selenium but the binding site has not been identified. In addition, the SBP family has numerous potential metal-binding sites that may play a role in detoxification pathways in plants. In Arabidopsis thaliana, AtSBP1 over-expression increases tolerance to two toxic compounds for plants, selenium and cadmium, often found as soil pollutants. For a better understanding of AtSBP1 function in detoxification mechanisms, we investigated the chelating properties of the protein toward different ligands with a focus on selenium using biochemical and biophysical techniques. Thermal shift assays together with inductively coupled plasma mass spectrometry revealed that AtSBP1 binds selenium after incubation with selenite (SeO3(2-)) with a ligand to protein molar ratio of 1:1. Isothermal titration calorimetry confirmed the 1:1 stoichiometry and revealed an unexpectedly large value of binding enthalpy suggesting a covalent bond between selenium and AtSBP1. Titration of reduced Cys residues and comparative mass spectrometry on AtSBP1 and the purified selenium-AtSBP1 complex identified Cys(21) and Cys(22) as being responsible for the binding of one selenium. These results were validated by site-directed mutagenesis. Selenium K-edge x-ray absorption near edge spectroscopy performed on the selenium-AtSBP1 complex demonstrated that AtSBP1 reduced SeO3(2-) to form a R-S-Se(II)-S-R-type complex. The capacity of AtSBP1 to bind different metals and selenium is discussed with respect to the potential function of AtSBP1 in detoxification mechanisms and selenium metabolism. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Biochemical and Biophysical Characterization of the Selenium-binding and Reducing Site in Arabidopsis thaliana Homologue to Mammals Selenium-binding Protein 1*

    PubMed Central

    Schild, Florie; Kieffer-Jaquinod, Sylvie; Palencia, Andrés; Cobessi, David; Sarret, Géraldine; Zubieta, Chloé; Jourdain, Agnès; Dumas, Renaud; Forge, Vincent; Testemale, Denis; Bourguignon, Jacques; Hugouvieux, Véronique

    2014-01-01

    The function of selenium-binding protein 1 (SBP1), present in almost all organisms, has not yet been established. In mammals, SBP1 is known to bind the essential element selenium but the binding site has not been identified. In addition, the SBP family has numerous potential metal-binding sites that may play a role in detoxification pathways in plants. In Arabidopsis thaliana, AtSBP1 over-expression increases tolerance to two toxic compounds for plants, selenium and cadmium, often found as soil pollutants. For a better understanding of AtSBP1 function in detoxification mechanisms, we investigated the chelating properties of the protein toward different ligands with a focus on selenium using biochemical and biophysical techniques. Thermal shift assays together with inductively coupled plasma mass spectrometry revealed that AtSBP1 binds selenium after incubation with selenite (SeO32−) with a ligand to protein molar ratio of 1:1. Isothermal titration calorimetry confirmed the 1:1 stoichiometry and revealed an unexpectedly large value of binding enthalpy suggesting a covalent bond between selenium and AtSBP1. Titration of reduced Cys residues and comparative mass spectrometry on AtSBP1 and the purified selenium-AtSBP1 complex identified Cys21 and Cys22 as being responsible for the binding of one selenium. These results were validated by site-directed mutagenesis. Selenium K-edge x-ray absorption near edge spectroscopy performed on the selenium-AtSBP1 complex demonstrated that AtSBP1 reduced SeO32− to form a R-S-Se(II)-S-R-type complex. The capacity of AtSBP1 to bind different metals and selenium is discussed with respect to the potential function of AtSBP1 in detoxification mechanisms and selenium metabolism. PMID:25274629

  8. Production in Pichia pastoris of complementary protein-based polymers with heterodimer-forming WW and PPxY domains.

    PubMed

    Domeradzka, Natalia E; Werten, Marc W T; de Vries, Renko; de Wolf, Frits A

    2016-06-10

    Specific coupling of de novo designed recombinant protein polymers for the construction of precisely structured nanomaterials is of interest for applications in biomedicine, pharmaceutics and diagnostics. An attractive coupling strategy is to incorporate specifically interacting peptides into the genetic design of the protein polymers. An example of such interaction is the binding of particular proline-rich ligands by so-called WW-domains. In this study, we investigated whether these domains can be produced in the yeast Pichia pastoris as part of otherwise non-interacting protein polymers, and whether they bring about polymer coupling upon mixing. We constructed two variants of a highly hydrophilic protein-based polymer that differ only in their C-terminal extensions. One carries a C-terminal WW domain, and the other a C-terminal proline-rich ligand (PPxY). Both polymers were produced in P. pastoris with a purified protein yield of more than 2 g L(-1) of cell-free broth. The proline-rich module was found to be O-glycosylated, and uncommonly a large portion of the attached oligosaccharides was phosphorylated. Glycosylation was overcome by introducing a Ser → Ala mutation in the PPxY peptide. Tryptophan fluorescence monitored during titration of the polymer containing the WW domain with either the glycosylated or nonglycosylated PPxY-containing polymer revealed binding. The complementary polymers associated with a Kd of ~3 µM, regardless of glycosylation state of the PPxY domain. Binding was confirmed by isothermal titration calorimetry, with a Kd of ~9 µM. This article presents a blueprint for the production in P. pastoris of protein polymers that can be coupled using the noncovalent interaction between WW domains and proline-rich ligands. The availability of this highly specific coupling tool will hereafter allow us to construct various supramolecular structures and biomaterials.

  9. Nickel binding and [NiFe]-hydrogenase maturation by the metallochaperone SlyD with a single metal-binding site in Escherichia coli.

    PubMed

    Kaluarachchi, Harini; Altenstein, Matthias; Sugumar, Sonia R; Balbach, Jochen; Zamble, Deborah B; Haupt, Caroline

    2012-03-16

    SlyD (sensitive to lysis D) is a nickel metallochaperone involved in the maturation of [NiFe]-hydrogenases in Escherichia coli (E. coli) and specifically contributes to the nickel delivery step during enzyme biosynthesis. This protein contains a C-terminal metal-binding domain that is rich in potential metal-binding residues that enable SlyD to bind multiple nickel ions with high affinity. The SlyD homolog from Thermus thermophilus does not contain the extended cysteine- and histidine-rich C-terminal tail of the E. coli protein, yet it binds a single Ni(II) ion tightly. To investigate whether a single metal-binding motif can functionally replace the full-length domain, we generated a truncation of E. coli SlyD, SlyD155. Ni(II) binding to SlyD155 was investigated by using isothermal titration calorimetry, NMR and electrospray ionization mass spectrometry measurements. This in vitro characterization revealed that SlyD155 contains a single metal-binding motif with high affinity for nickel. Structural characterization by X-ray absorption spectroscopy and NMR indicated that nickel was coordinated in an octahedral geometry with at least two histidines as ligands. Heterodimerization between SlyD and another hydrogenase accessory protein, HypB, is essential for optimal hydrogenase maturation and was confirmed for SlyD155 via cross-linking experiments and NMR titrations, as were conserved chaperone and peptidyl-prolyl isomerase activities. Although these properties of SlyD are preserved in the truncated version, it does not modulate nickel binding to HypB in vitro or contribute to the maturation of [NiFe]-hydrogenases in vivo, unlike the full-length protein. This study highlights the importance of the unusual metal-binding domain of E. coli SlyD in hydrogenase biogenesis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. More than a simple lipophilic contact: a detailed thermodynamic analysis of nonbasic residues in the s1 pocket of thrombin.

    PubMed

    Baum, Bernhard; Mohamed, Menshawy; Zayed, Mohamed; Gerlach, Christof; Heine, Andreas; Hangauer, David; Klebe, Gerhard

    2009-07-03

    The field of medicinal chemistry aims to design and optimize small molecule leads into drug candidates that may positively interfere with pathological disease situations in humans or combat the growth of infective pathogens. From the plethora of crystal structures of protein-inhibitor complexes we have learned how molecules recognize each other geometrically, but we still have rather superficial understanding of why they bind to each other. This contribution surveys a series of 26 thrombin inhibitors with small systematic structural differences to elucidate the rationale for their widely deviating binding affinity from 185 microM to 4 nM as recorded by enzyme kinetic measurements. Five well-resolved (resolution 2.30 - 1.47 A) crystal structures of thrombin-inhibitor complexes and an apo-structure of the uncomplexed enzyme (1.50 A) are correlated with thermodynamic data recorded by isothermal titration calorimetry with 12 selected inhibitors from the series. Taking solubility data into account, the variation in physicochemical properties allows conclusions to be reached about the relative importance of the enthalpic binding features as well as to estimate the importance of the parameters more difficult to capture, such as residual ligand entropy and desolvation properties. The collected data reveal a comprehensive picture of the thermodynamic signature that explains the so far poorly understood attractive force experienced by m-chloro-benzylamides to thrombin.

  11. Interaction of anti-cancer drug-cisplatin with major proteinase inhibitor-alpha-2-macroglobulin: Biophysical and thermodynamic analysis.

    PubMed

    Zia, Mohammad Khalid; Siddiqui, Tooba; Ali, Syed Saqib; Ahsan, Haseeb; Khan, Fahim Halim

    2018-05-09

    Alpha-2-macroglobulin is a multifunctional, highly abundant, plasma protein which reacts with a wide variety of molecules and drugs including cisplatin. Cisplatin is commonly used anticancer drug widely used for treatment of testicular, bladder, ovarian, head and neck, lung and cervical cancers. This study is designed to examine the interaction of cisplatin with human alpha-2-macroglobulin through various biophysical techniques and drug binding through molecular modeling. Cisplatin alters the function of alpha-2-macroglobulin and the thiolesters are most likely the reactive sites for cisplatin. Our result suggests that cisplatin decreases the antiproteolytic potential and causes structural and functional change in human alpha-2-macroglobulin as evident by absorption and fluorescence spectroscopy. Change in secondary structure of alpha-2-macroglobulin was confirmed by CD and FTIR. Thermodynamics parameters such as entropy (ΔS), enthalpy (ΔH) and Gibb's free energy changes (ΔG) along with number of binding sites (N) of alpha-2-macroglobulin-cisplatin binding in solutions were determined by isothermal titration calorimetry (ITC). It was found that binding of cisplatin with alpha-2-macroglobulin was exothermic in nature. The interaction of drug with alpha-2-macroglobulin in the plasma could lead to structural alterations in the conformational status of alpha-2-macroglobulin resulting in its functional inactivation. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Heterotypic Sam-Sam association between Odin-Sam1 and Arap3-Sam: binding affinity and structural insights.

    PubMed

    Mercurio, Flavia A; Marasco, Daniela; Pirone, Luciano; Scognamiglio, Pasqualina L; Pedone, Emilia M; Pellecchia, Maurizio; Leone, Marilisa

    2013-01-02

    Arap3 is a phosphatidylinositol 3 kinase effector protein that plays a role as GTPase activator (GAP) for Arf6 and RhoA. Arap3 contains a sterile alpha motif (Sam) domain that has high sequence homology with the Sam domain of the EphA2-receptor (EphA2-Sam). Both Arap3-Sam and EphA2-Sam are able to associate with the Sam domain of the lipid phosphatase Ship2 (Ship2-Sam). Recently, we reported a novel interaction between the first Sam domain of Odin (Odin-Sam1), a protein belonging to the ANKS (ANKyrin repeat and Sam domain containing) family, and EphA2-Sam. In our latest work, we applied NMR spectroscopy, surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) to characterize the association between Arap3-Sam and Odin-Sam1. We show that these two Sam domains interact with low micromolar affinity. Moreover, by means of molecular docking techniques, supported by NMR data, we demonstrate that Odin-Sam1 and Arap3-Sam might bind with a topology that is common to several Sam-Sam complexes. The revealed structural details form the basis for the design of potential peptide antagonists that could be used as chemical tools to investigate functional aspects related to heterotypic Arap3-Sam associations. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Sinorhizobium meliloti chemotaxis to quaternary ammonium compounds is mediated by the chemoreceptor McpX.

    PubMed

    Webb, Benjamin A; Karl Compton, K; Castañeda Saldaña, Rafael; Arapov, Timofey D; Keith Ray, W; Helm, Richard F; Scharf, Birgit E

    2017-01-01

    The bacterium Sinorhizobium meliloti is attracted to seed exudates of its host plant alfalfa (Medicago sativa). Since quaternary ammonium compounds (QACs) are exuded by germinating seeds, we assayed chemotaxis of S. meliloti towards betonicine, choline, glycine betaine, stachydrine and trigonelline. The wild type displayed a positive response to all QACs. Using LC-MS, we determined that each germinating alfalfa seed exuded QACs in the nanogram range. Compared to the closely related nonhost species, spotted medic (Medicago arabica), unique profiles were released. Further assessments of single chemoreceptor deletion strains revealed that an mcpX deletion strain displayed little to no response to these compounds. Differential scanning fluorimetry showed interaction of the isolated periplasmic region of McpX (McpX PR and McpX 34-306 ) with QACs. Isothermal titration calorimetry experiments revealed tight binding to McpX PR with dissociation constants (K d ) in the nanomolar range for choline and glycine betaine, micromolar K d for stachydrine and trigonelline and a K d in the millimolar range for betonicine. Our discovery of S. meliloti chemotaxis to plant-derived QACs adds another role to this group of compounds, which are known to serve as nutrient sources, osmoprotectants and cell-to-cell signalling molecules. This is the first report of a chemoreceptor that mediates QACs taxis through direct binding. © 2016 John Wiley & Sons Ltd.

  14. Multiple C-terminal tail Ca2+/CaMs regulate CaV1.2 function but do not mediate channel dimerization

    PubMed Central

    Kim, Eun Young; Rumpf, Christine H; Van Petegem, Filip; Arant, Ryan J; Findeisen, Felix; Cooley, Elizabeth S; Isacoff, Ehud Y; Minor, Daniel L

    2010-01-01

    Interactions between voltage-gated calcium channels (CaVs) and calmodulin (CaM) modulate CaV function. In this study, we report the structure of a Ca2+/CaM CaV1.2 C-terminal tail complex that contains two PreIQ helices bridged by two Ca2+/CaMs and two Ca2+/CaM–IQ domain complexes. Sedimentation equilibrium experiments establish that the complex has a 2:1 Ca2+/CaM:C-terminal tail stoichiometry and does not form higher order assemblies. Moreover, subunit-counting experiments demonstrate that in live cell membranes CaV1.2s are monomers. Thus, contrary to previous proposals, the crystallographic dimer lacks physiological relevance. Isothermal titration calorimetry and biochemical experiments show that the two Ca2+/CaMs in the complex have different properties. Ca2+/CaM bound to the PreIQ C-region is labile, whereas Ca2+/CaM bound to the IQ domain is not. Furthermore, neither of lobes of apo-CaM interacts strongly with the PreIQ domain. Electrophysiological studies indicate that the PreIQ C-region has a role in calcium-dependent facilitation. Together, the data show that two Ca2+/CaMs can bind the CaV1.2 tail simultaneously and indicate a functional role for Ca2+/CaM at the C-region site. PMID:20953164

  15. Stapled Voltage-Gated Calcium Channel (CaV) α-Interaction Domain (AID) Peptides Act As Selective Protein-Protein Interaction Inhibitors of CaV Function.

    PubMed

    Findeisen, Felix; Campiglio, Marta; Jo, Hyunil; Abderemane-Ali, Fayal; Rumpf, Christine H; Pope, Lianne; Rossen, Nathan D; Flucher, Bernhard E; DeGrado, William F; Minor, Daniel L

    2017-06-21

    For many voltage-gated ion channels (VGICs), creation of a properly functioning ion channel requires the formation of specific protein-protein interactions between the transmembrane pore-forming subunits and cystoplasmic accessory subunits. Despite the importance of such protein-protein interactions in VGIC function and assembly, their potential as sites for VGIC modulator development has been largely overlooked. Here, we develop meta-xylyl (m-xylyl) stapled peptides that target a prototypic VGIC high affinity protein-protein interaction, the interaction between the voltage-gated calcium channel (Ca V ) pore-forming subunit α-interaction domain (AID) and cytoplasmic β-subunit (Ca V β). We show using circular dichroism spectroscopy, X-ray crystallography, and isothermal titration calorimetry that the m-xylyl staples enhance AID helix formation are structurally compatible with native-like AID:Ca V β interactions and reduce the entropic penalty associated with AID binding to Ca V β. Importantly, electrophysiological studies reveal that stapled AID peptides act as effective inhibitors of the Ca V α 1 :Ca V β interaction that modulate Ca V function in an Ca V β isoform-selective manner. Together, our studies provide a proof-of-concept demonstration of the use of protein-protein interaction inhibitors to control VGIC function and point to strategies for improved AID-based Ca V modulator design.

  16. Domain-specific interactions between MLN8237 and human serum albumin estimated by STD and WaterLOGSY NMR, ITC, spectroscopic, and docking techniques.

    PubMed

    Yang, Hongqin; Liu, Jiuyang; Huang, Yanmei; Gao, Rui; Tang, Bin; Li, Shanshan; He, Jiawei; Li, Hui

    2017-03-30

    Alisertib (MLN8237) is an orally administered inhibitor of Aurora A kinase. This small-molecule inhibitor is under clinical or pre-clinical phase for the treatment of advanced malignancies. The present study provides a detailed characterization of the interaction of MLN8237 with a drug transport protein called human serum albumin (HSA). STD and WaterLOGSY nuclear magnetic resonance (NMR)-binding studies were conducted first to confirm the binding of MLN8237 to HSA. In the ligand orientation assay, the binding sites of MLN8237 were validated through two site-specific spy molecules (warfarin sodium and ibuprofen, which are two known site-selective probes) by using STD and WaterLOGSY NMR competition techniques. These competition experiments demonstrate that both spy molecules do not compete with MLN8237 for the specific binding site. The AutoDock-based blind docking study recognizes the hydrophobic subdomain IB of the protein as the probable binding site for MLN8237. Thermodynamic investigations by isothermal titration calorimetry (ITC) reveal that the non-covalent interaction between MLN8237 and HSA (binding constant was approximately 10 5  M -1 ) is driven mainly by favorable entropy and unfavorable enthalpy. In addition, synchronous fluorescence, circular dichroism (CD), and 3D fluorescence spectroscopy suggest that MLN8237 may induce conformational changes in HSA.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonsor, Daniel A.; Günther, Sebastian; Beadenkopf, Robert

    Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) comprise a large family of cell surface adhesion molecules that bind to themselves and other family members to carry out numerous cellular functions, including proliferation, signaling, differentiation, tumor suppression, and survival. They also play diverse and significant roles in immunity and infection. The formation of CEACAM oligomers is caused predominantly by interactions between their N-terminal IgV domains. Although X-ray crystal structures of CEACAM IgV domain homodimers have been described, how CEACAMs form heterodimers or remain monomers is poorly understood. To address this key aspect of CEACAM function, we determined in this paper the crystalmore » structures of IgV domains that form a homodimeric CEACAM6 complex, monomeric CEACAM8, and a heterodimeric CEACAM6–CEACAM8 complex. To confirm and quantify these interactions in solution, we used analytical ultracentrifugation to measure the dimerization constants of CEACAM homodimers and isothermal titration calorimetry to determine the thermodynamic parameters and binding affinities of CEACAM heterodimers. We found the CEACAM6–CEACAM8 heterodimeric state to be substantially favored energetically relative to the CEACAM6 homodimer. Finally, our data provide a molecular basis for the adoption of the diverse oligomeric states known to exist for CEACAMs and suggest ways in which CEACAM6 and CEACAM8 regulate the biological functions of one another, as well as of additional CEACAMs with which they interact, both in cis and in trans.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stepanyuk, Galina A.; Serrano, Pedro; Peralta, Eigen

    RNA-binding protein 39 (RBM39) is a splicing factor and a transcriptional co-activator of estrogen receptors and Jun/AP-1, and its function has been associated with malignant progression in a number of cancers. The C-terminal RRM domain of RBM39 belongs to the U2AF homology motif family (UHM), which mediate protein–protein interactions through a short tryptophan-containing peptide known as the UHM-ligand motif (ULM). Here, crystal and solution NMR structures of the RBM39-UHM domain, and the crystal structure of its complex with U2AF65-ULM, are reported. The RBM39–U2AF65 interaction was confirmed by co-immunoprecipitation from human cell extracts, by isothermal titration calorimetry and by NMR chemicalmore » shift perturbation experiments with the purified proteins. When compared with related complexes, such as U2AF35–U2AF65 and RBM39–SF3b155, the RBM39-UHM–U2AF65-ULM complex reveals both common and discriminating recognition elements in the UHM–ULM binding interface, providing a rationale for the known specificity of UHM–ULM interactions. This study therefore establishes a structural basis for specific UHM–ULM interactions by splicing factors such as U2AF35, U2AF65, RBM39 and SF3b155, and a platform for continued studies of intermolecular interactions governing disease-related alternative splicing in eukaryotic cells.« less

  19. Intrinsic Thermodynamics and Structures of 2,4- and 3,4-Substituted Fluorinated Benzenesulfonamides Binding to Carbonic Anhydrases.

    PubMed

    Zubrienė, Asta; Smirnov, Alexey; Dudutienė, Virginija; Timm, David D; Matulienė, Jurgita; Michailovienė, Vilma; Zakšauskas, Audrius; Manakova, Elena; Gražulis, Saulius; Matulis, Daumantas

    2017-01-20

    The goal of rational drug design is to understand structure-thermodynamics correlations in order to predict the chemical structure of a drug that would exhibit excellent affinity and selectivity for a target protein. In this study we explored the contribution of added functionalities of benzenesulfonamide inhibitors to the intrinsic binding affinity, enthalpy, and entropy for recombinant human carbonic anhydrases (CA) CA I, CA II, CA VII, CA IX, CA XII, and CA XIII. The binding enthalpies of compounds possessing similar chemical structures and affinities were found to be very different, spanning a range from -90 to +10 kJ mol -1 , and are compensated by a similar opposing entropy contribution. The intrinsic parameters of binding were determined by subtracting the linked protonation reactions. The sulfonamide group pK a values of the compounds were measured spectrophotometrically, and the protonation enthalpies were measured by isothermal titration calorimetry (ITC). Herein we describe the development of meta- or ortho-substituted fluorinated benzenesulfonamides toward the highly potent compound 10 h, which exhibits an observed dissociation constant value of 43 pm and an intrinsic dissociation constant value of 1.1 pm toward CA IX, an anticancer target that is highly overexpressed in various tumors. Fluorescence thermal shift assays, ITC, and X-ray crystallography were all applied in this work. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Homologs of PROTEIN TARGETING TO STARCH Control Starch Granule Initiation in Arabidopsis Leaves[OPEN

    PubMed Central

    David, Laure C.; Abt, Melanie; Lu, Kuan-Jen

    2017-01-01

    The molecular mechanism that initiates the synthesis of starch granules is poorly understood. Here, we discovered two plastidial proteins involved in granule initiation in Arabidopsis thaliana leaves. Both contain coiled coils and a family-48 carbohydrate binding module (CBM48) and are homologs of the PROTEIN TARGETING TO STARCH (PTST) protein; thus, we named them PTST2 and PTST3. Chloroplasts in mesophyll cells typically contain five to seven granules, but remarkably, most chloroplasts in ptst2 mutants contained zero or one large granule. Chloroplasts in ptst3 had a slight reduction in granule number compared with the wild type, while those of the ptst2 ptst3 double mutant contained even fewer granules than ptst2. The ptst2 granules were larger but similar in morphology to wild-type granules, but those of the double mutant had an aberrant morphology. Immunoprecipitation showed that PTST2 interacts with STARCH SYNTHASE4 (SS4), which influences granule initiation and morphology. Overexpression of PTST2 resulted in chloroplasts containing many small granules, an effect that was dependent on the presence of SS4. Furthermore, isothermal titration calorimetry revealed that the CBM48 domain of PTST2, which is essential for its function, interacts with long maltooligosaccharides. We propose that PTST2 and PTST3 are critical during granule initiation, as they bind and deliver suitable maltooligosaccharide primers to SS4. PMID:28684429

  1. Counterion-Release Entropy Governs the Inhibition of Serum Proteins by Polyelectrolyte Drugs.

    PubMed

    Xu, Xiao; Ran, Qidi; Dey, Pradip; Nikam, Rohit; Haag, Rainer; Ballauff, Matthias; Dzubiella, Joachim

    2018-02-12

    Dendritic polyelectrolytes constitute high potential drugs and carrier systems for biomedical purposes. Still, their biomolecular interaction modes, in particular those determining the binding affinity to proteins, have not been rationalized. We study the interaction of the drug candidate dendritic polyglycerol sulfate (dPGS) with serum proteins using isothermal titration calorimetry (ITC) interpreted and complemented with molecular computer simulations. Lysozyme is first studied as a well-defined model protein to verify theoretical concepts, which are then applied to the important cell adhesion protein family of selectins. We demonstrate that the driving force of the strong complexation, leading to a distinct protein corona, originates mainly from the release of only a few condensed counterions from the dPGS upon binding. The binding constant shows a surprisingly weak dependence on dPGS size (and bare charge) which can be understood by colloidal charge-renormalization effects and by the fact that the magnitude of the dominating counterion-release mechanism almost exclusively depends on the interfacial charge structure of the protein-specific binding patch. Our findings explain the high selectivity of P- and L-selectins over E-selectin for dPGS to act as a highly anti-inflammatory drug. The entire analysis demonstrates that the interaction of proteins with charged polymeric drugs can be predicted by simulations with unprecedented accuracy. Thus, our results open new perspectives for the rational design of charged polymeric drugs and carrier systems.

  2. Dual thio-digalactoside-binding modes of human galectins as the structural basis for the design of potent and selective inhibitors

    PubMed Central

    Hsieh, Tung-Ju; Lin, Hsien-Ya; Tu, Zhijay; Lin, Ting-Chien; Wu, Shang-Chuen; Tseng, Yu-Yao; Liu, Fu-Tong; Hsu, Shang-Te Danny; Lin, Chun-Hung

    2016-01-01

    Human galectins are promising targets for cancer immunotherapeutic and fibrotic disease-related drugs. We report herein the binding interactions of three thio-digalactosides (TDGs) including TDG itself, TD139 (3,3’-deoxy-3,3’-bis-(4-[m-fluorophenyl]-1H-1,2,3-triazol-1-yl)-thio-digalactoside, recently approved for the treatment of idiopathic pulmonary fibrosis), and TAZTDG (3-deoxy-3-(4-[m-fluorophenyl]-1H-1,2,3-triazol-1-yl)-thio-digalactoside) with human galectins-1, -3 and -7 as assessed by X-ray crystallography, isothermal titration calorimetry and NMR spectroscopy. Five binding subsites (A–E) make up the carbohydrate-recognition domains of these galectins. We identified novel interactions between an arginine within subsite E of the galectins and an arene group in the ligands. In addition to the interactions contributed by the galactosyl sugar residues bound at subsites C and D, the fluorophenyl group of TAZTDG preferentially bound to subsite B in galectin-3, whereas the same group favored binding at subsite E in galectins-1 and -7. The characterised dual binding modes demonstrate how binding potency, reported as decreased Kd values of the TDG inhibitors from μM to nM, is improved and also offer insights to development of selective inhibitors for individual galectins. PMID:27416897

  3. Native Electrospray Ionization Mass Spectrometry Reveals Multiple Facets of Aptamer-Ligand Interactions: From Mechanism to Binding Constants.

    PubMed

    Gülbakan, Basri; Barylyuk, Konstantin; Schneider, Petra; Pillong, Max; Schneider, Gisbert; Zenobi, Renato

    2018-06-20

    Aptamers are oligonucleotide receptors obtained through an iterative selection process from random-sequence libraries. Though many aptamers for a broad range of targets with high affinity and selectivity have been generated, a lack of high-resolution structural data and the limitations of currently available biophysical tools greatly impede understanding of the mechanisms of aptamer-ligand interactions. Here we demonstrate that an approach based on native electrospray ionization mass spectrometry (ESI-MS) can be successfully applied to characterize aptamer-ligand complexes in all details. We studied an adenosine-binding aptamer (ABA), a l-argininamide-binding aptamer (LABA), and a cocaine-binding aptamer (CBA) and their noncovalent interactions with ligands by native ESI-MS and complemented these measurements by ion mobility spectrometry (IMS), isothermal titration calorimetry (ITC), and circular dichroism (CD) spectroscopy. The ligand selectivity of the aptamers and the respective complex stoichiometry could be determined by the native ESI-MS approach. The ESI-MS data can also help refining the binding model for aptamer-ligand complexes and deliver accurate aptamer-ligand binding affinities for specific and nonspecific binding events. For specific ligands, we found K d1 = 69.7 μM and K d2 = 5.3 μM for ABA (two binding sites); K d1 = 22.04 μM for LABA; and K d1 = 8.5 μM for CBA.

  4. Effect of Grape Seed Proanthocyanidin-Gelatin Colloidal Complexes on Stability and in Vitro Digestion of Fish Oil Emulsions.

    PubMed

    Su, Yu-Ru; Tsai, Yi-Chin; Hsu, Chun-Hua; Chao, An-Chong; Lin, Cheng-Wei; Tsai, Min-Lang; Mi, Fwu-Long

    2015-11-25

    The colloidal complexes composed of grape seed proanthocyanidin (GSP) and gelatin (GLT), as natural antioxidants to improve stability and inhibit lipid oxidation in menhaden fish oil emulsions, were evaluated. The interactions between GSP and GLT, and the chemical structures of GSP/GLT self-assembled colloidal complexes, were characterized by isothermal titration calorimetry (ITC), circular dichroism (CD), and Fourier transform infrared spectroscopic (FTIR) studies. Fish oil was emulsified with GLT to obtain an oil-in-water (o/w) emulsion. After formation of the emulsion, GLT was fixed by GSP to obtain the GSP/GLT colloidal complexes stabilized fish oil emulsion. Menhaden oil emulsified by GSP/GLT(0.4 wt %) colloidal complexes yielded an emulsion with smaller particles and higher emulsion stability as compared to its GLT emulsified counterpart. The GSP/GLT colloidal complexes inhibited the lipid oxidation in fish oil emulsions more effectively than free GLT because the emulsified fish oil was surrounded by the antioxidant GSP/GLT colloidal complexes. The digestion rate of the fish oil emulsified with the GSP/GLT colloidal complexes was reduced as compared to that emulsified with free GLT. The extent of free fatty acids released from the GSP/GLT complexes stabilized fish oil emulsions was 63.3% under simulated digestion condition, indicating that the fish oil emulsion was considerably hydrolyzed with lipase.

  5. Cm-p5: an antifungal hydrophilic peptide derived from the coastal mollusk Cenchritis muricatus (Gastropoda: Littorinidae).

    PubMed

    López-Abarrategui, Carlos; McBeth, Christine; Mandal, Santi M; Sun, Zhenyu J; Heffron, Gregory; Alba-Menéndez, Annia; Migliolo, Ludovico; Reyes-Acosta, Osvaldo; García-Villarino, Mónica; Nolasco, Diego O; Falcão, Rosana; Cherobim, Mariana D; Dias, Simoni C; Brandt, Wolfgang; Wessjohann, Ludger; Starnbach, Michael; Franco, Octavio L; Otero-González, Anselmo J

    2015-08-01

    Antimicrobial peptides form part of the first line of defense against pathogens for many organisms. Current treatments for fungal infections are limited by drug toxicity and pathogen resistance. Cm-p5 (SRSELIVHQRLF), a peptide derived from the marine mollusk Cenchritis muricatus peptide Cm-p1, has a significantly increased fungistatic activity against pathogenic Candida albicans (minimal inhibitory concentration, 10 µg/ml; EC50, 1.146 µg/ml) while exhibiting low toxic effects against a cultured mammalian cell line. Cm-p5 as characterized by circular dichroism and nuclear magnetic resonance revealed an α-helical structure in membrane-mimetic conditions and a tendency to random coil folding in aqueous solutions. Additional studies modeling Cm-p5 binding to a phosphatidylserine bilayer in silico and isothermal titration calorimetry using lipid monophases demonstrated that Cm-p5 has a high affinity for the phospholipids of fungal membranes (phosphatidylserine and phosphatidylethanolamine), only moderate interactions with a mammalian membrane phospholipid, low interaction with ergosterol, and no interaction with chitin. Adhesion of Cm-p5 to living C. albicans cells was confirmed by fluorescence microscopy with FITC-labeled peptide. In a systemic candidiasis model in mice, intraperitoneal administration of Cm-p5 was unable to control the fungal kidney burden, although its low amphiphaticity could be modified to generate new derivatives with improved fungicidal activity and stability. © FASEB.

  6. Synergistic foaming and surface properties of a weakly interacting mixture of soy glycinin and biosurfactant stevioside.

    PubMed

    Wan, Zhi-Li; Wang, Li-Ying; Wang, Jin-Mei; Yuan, Yang; Yang, Xiao-Quan

    2014-07-16

    The adsorption of the mixtures of soy glycinin (11S) with a biosurfactant stevioside (STE) at the air-water interface was studied to understand its relation with foaming properties. A combination of several techniques such as dynamic surface tension, dilatational rheology, fluorescence spectroscopy, and isothermal titration calorimetry (ITC) was used. In the presence of intermediate STE concentrations (0.25-0.5%), the weak binding of STE with 11S in bulk occurred by hydrophobic interactions, which could induce conformational changes of 11S, as evidenced by fluorescence and ITC. Accordingly, the strong synergy in reducing surface tension and the plateau in surface elasticity for mixed 11S-STE layers formed from the weakly interacting mixtures were clearly observed. This effect could be explained by the complexation with STE, which might facilitate the partial dissociation and further unfolding of 11S upon adsorption, thus enhancing the protein-protein and protein-STE interfacial interactions. These surface properties were positively reflected in foams produced by the weakly interacting system, which exhibited good foaming capacity and considerable stability probably due to better response to external stresses. However, at high STE concentrations (1-2%), as a consequence of the interface dominated by STE due to the preferential adsorption of STE molecules, the surface elasticity of layers dramatically decreased, and the resultant foams became less stable.

  7. Multiple C-terminal tail Ca(2+)/CaMs regulate Ca(V)1.2 function but do not mediate channel dimerization.

    PubMed

    Kim, Eun Young; Rumpf, Christine H; Van Petegem, Filip; Arant, Ryan J; Findeisen, Felix; Cooley, Elizabeth S; Isacoff, Ehud Y; Minor, Daniel L

    2010-12-01

    Interactions between voltage-gated calcium channels (Ca(V)s) and calmodulin (CaM) modulate Ca(V) function. In this study, we report the structure of a Ca(2+)/CaM Ca(V)1.2 C-terminal tail complex that contains two PreIQ helices bridged by two Ca(2+)/CaMs and two Ca(2+)/CaM-IQ domain complexes. Sedimentation equilibrium experiments establish that the complex has a 2:1 Ca(2+)/CaM:C-terminal tail stoichiometry and does not form higher order assemblies. Moreover, subunit-counting experiments demonstrate that in live cell membranes Ca(V)1.2s are monomers. Thus, contrary to previous proposals, the crystallographic dimer lacks physiological relevance. Isothermal titration calorimetry and biochemical experiments show that the two Ca(2+)/CaMs in the complex have different properties. Ca(2+)/CaM bound to the PreIQ C-region is labile, whereas Ca(2+)/CaM bound to the IQ domain is not. Furthermore, neither of lobes of apo-CaM interacts strongly with the PreIQ domain. Electrophysiological studies indicate that the PreIQ C-region has a role in calcium-dependent facilitation. Together, the data show that two Ca(2+)/CaMs can bind the Ca(V)1.2 tail simultaneously and indicate a functional role for Ca(2+)/CaM at the C-region site.

  8. Domain-specific interactions between MLN8237 and human serum albumin estimated by STD and WaterLOGSY NMR, ITC, spectroscopic, and docking techniques

    PubMed Central

    Yang, Hongqin; Liu, Jiuyang; Huang, Yanmei; Gao, Rui; Tang, Bin; Li, Shanshan; He, Jiawei; Li, Hui

    2017-01-01

    Alisertib (MLN8237) is an orally administered inhibitor of Aurora A kinase. This small-molecule inhibitor is under clinical or pre-clinical phase for the treatment of advanced malignancies. The present study provides a detailed characterization of the interaction of MLN8237 with a drug transport protein called human serum albumin (HSA). STD and WaterLOGSY nuclear magnetic resonance (NMR)-binding studies were conducted first to confirm the binding of MLN8237 to HSA. In the ligand orientation assay, the binding sites of MLN8237 were validated through two site-specific spy molecules (warfarin sodium and ibuprofen, which are two known site-selective probes) by using STD and WaterLOGSY NMR competition techniques. These competition experiments demonstrate that both spy molecules do not compete with MLN8237 for the specific binding site. The AutoDock-based blind docking study recognizes the hydrophobic subdomain IB of the protein as the probable binding site for MLN8237. Thermodynamic investigations by isothermal titration calorimetry (ITC) reveal that the non-covalent interaction between MLN8237 and HSA (binding constant was approximately 105 M−1) is driven mainly by favorable entropy and unfavorable enthalpy. In addition, synchronous fluorescence, circular dichroism (CD), and 3D fluorescence spectroscopy suggest that MLN8237 may induce conformational changes in HSA. PMID:28358124

  9. Characterization of a small acyl-CoA-binding protein (ACBP) from Helianthus annuus L. and its binding affinities.

    PubMed

    Aznar-Moreno, Jose A; Venegas-Calerón, Mónica; Du, Zhi-Yan; Garcés, Rafael; Tanner, Julian A; Chye, Mee-Len; Martínez-Force, Enrique; Salas, Joaquín J

    2016-05-01

    Acyl-CoA-binding proteins (ACBPs) bind to acyl-CoA esters and promote their interaction with other proteins, lipids and cell structures. Small class I ACBPs have been identified in different plants, such as Arabidopsis thaliana (AtACBP6), Brassica napus (BnACBP) and Oryza sativa (OsACBP1, OsACBP2, OsACBP3), and they are capable of binding to different acyl-CoA esters and phospholipids. Here we characterize HaACBP6, a class I ACBP expressed in sunflower (Helianthus annuus) tissues, studying the specificity of its corresponding recombinant HaACBP6 protein towards various acyl-CoA esters and phospholipids in vitro, particularly using isothermal titration calorimetry and protein phospholipid binding assays. This protein binds with high affinity to de novo synthetized derivatives palmitoly-CoA, stearoyl-CoA and oleoyl-CoA (Kd 0.29, 0.14 and 0.15 μM respectively). On the contrary, it showed lower affinity towards linoleoyl-CoA (Kd 5.6 μM). Moreover, rHaACBP6 binds to different phosphatidylcholine species (dipalmitoyl-PC, dioleoyl-PC and dilinoleoyl-PC), yet it displays no affinity towards other phospholipids like lyso-PC, phosphatidic acid and lysophosphatidic acid derivatives. In the light of these results, the possible involvement of this protein in sunflower oil synthesis is considered. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Optimization of the Alkyl Linker of TO Base Surrogate in Triplex-Forming PNA for Enhanced Binding to Double-Stranded RNA.

    PubMed

    Sato, Takaya; Sato, Yusuke; Nishizawa, Seiichi

    2017-03-23

    A series of triplex-forming peptide nucleic acid (TFP) probes carrying a thiazole orange (TO) base surrogate through an alkyl linker was synthesized, and the interactions between these so-called tFIT probes and purine-rich sequences within double-stranded RNA (dsRNA) were examined. We found that the TO base surrogate linker significantly affected both the binding affinity and the fluorescence response upon triplex formation with the target dsRNA. Among the probes examined, the TO base surrogate connected through the propyl linker in the tFIT probes increased the binding affinity by a factor of ten while maintaining its function as the fluorescent universal base. Isothermal titration calorimetry experiments revealed that the increased binding affinity resulted from the gain in the binding enthalpy, which could be explained by the enhanced π-stacking interaction between the TO base surrogate and the dsRNA part of the triplex. We expect that these results will provide a molecular basis for designing strong binding tFIT probes for fluorescence sensing of various kinds of purine-rich dsRNAs sequences including those carrying a pyrimidine-purine inversion. The obtained data also offers a new insight into further development of the universal bases incorporated in TFP. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A structural and mechanistic study of π-clamp-mediated cysteine perfluoroarylation.

    PubMed

    Dai, Peng; Williams, Jonathan K; Zhang, Chi; Welborn, Matthew; Shepherd, James J; Zhu, Tianyu; Van Voorhis, Troy; Hong, Mei; Pentelute, Bradley L

    2017-08-11

    Natural enzymes use local environments to tune the reactivity of amino acid side chains. In searching for small peptides with similar properties, we discovered a four-residue π-clamp motif (Phe-Cys-Pro-Phe) for regio- and chemoselective arylation of cysteine in ribosomally produced proteins. Here we report mutational, computational, and structural findings directed toward elucidating the molecular factors that drive π-clamp-mediated arylation. We show the significance of a trans conformation prolyl amide bond for the π-clamp reactivity. The π-clamp cysteine arylation reaction enthalpy of activation (ΔH ‡ ) is significantly lower than a non-π-clamp cysteine. Solid-state NMR chemical shifts indicate the prolyl amide bond in the π-clamp motif adopts a 1:1 ratio of the cis and trans conformation, while in the reaction product Pro3 was exclusively in trans. In two structural models of the perfluoroarylated product, distinct interactions at 4.7 Å between Phe1 side chain and perfluoroaryl electrophile moiety are observed. Further, solution 19 F NMR and isothermal titration calorimetry measurements suggest interactions between hydrophobic side chains in a π-clamp mutant and the perfluoroaryl probe. These studies led us to design a π-clamp mutant with an 85-fold rate enhancement. These findings will guide us toward the discovery of small reactive peptides to facilitate abiotic chemistry in water.

  12. Displacement of disordered water molecules from hydrophobic pocket creates enthalpic signature: binding of phosphonamidate to the S₁'-pocket of thermolysin.

    PubMed

    Englert, L; Biela, A; Zayed, M; Heine, A; Hangauer, D; Klebe, G

    2010-11-01

    Prerequisite for the design of tight binding protein inhibitors and prediction of their properties is an in-depth understanding of the structural and thermodynamic details of the binding process. A series of closely related phosphonamidates was studied to elucidate the forces underlying their binding affinity to thermolysin. The investigated inhibitors are identical except for the parts penetrating into the hydrophobic S₁'-pocket. A correlation of structural, kinetic and thermodynamic data was carried out by X-ray crystallography, kinetic inhibition assay and isothermal titration calorimetry. Binding affinity increases with larger ligand hydrophobic P₁'-moieties accommodating the S₁'-pocket. Surprisingly, larger P₁'-side chain modifications are accompanied by an increase in the enthalpic contribution to binding. In agreement with other studies, it is suggested that the release of largely disordered waters from an imperfectly hydrated pocket results in an enthalpically favourable integration of these water molecules into bulk water upon inhibitor binding. This enthalpically favourable process contributes more strongly to the binding energetics than the entropy increase resulting from the release of water molecules from the S₁'-pocket or the formation of apolar interactions between protein and inhibitor. Displacement of highly disordered water molecules from a rather imperfectly hydrated and hydrophobic specificity pocket can reveal an enthalpic signature of inhibitor binding. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Self-assembly and interactions of short antimicrobial cationic lipopeptides with membrane lipids: ITC, FTIR and molecular dynamics studies.

    PubMed

    Sikorska, Emilia; Dawgul, Małgorzata; Greber, Katarzyna; Iłowska, Emilia; Pogorzelska, Aneta; Kamysz, Wojciech

    2014-10-01

    In this work, the self-organization and the behavior of the surfactant-like peptides in the presence of biological membrane models were studied. The studies were focused on synthetic palmitic acid-containing lipopeptides, C16-KK-NH2 (I), C16-KGK-NH2 (II) and C16-KKKK-NH2 (III). The self-assembly was explored by molecular dynamics simulations using a coarse-grained force field. The critical micellar concentration was estimated by the surface tension measurements. The thermodynamics of the peptides binding to the anionic and zwitterionic lipids were established using isothermal titration calorimetry (ITC). The influence of the peptides on the lipid acyl chain ordering was determined using FTIR spectroscopy. The compounds studied show surface-active properties with a distinct CMC over the millimolar range. An increase in the steric and electrostatic repulsion between polar head groups shifts the CMC toward higher values and reduces the aggregation number. An analysis of the peptide-membrane binding revealed a unique interplay between the initial electrostatic and the subsequent hydrophobic interactions enabling the lipopeptides to interact with the lipid bilayer. In the case of C16-KKKK-NH2 (III), compensation of the electrostatic and hydrophobic interactions upon binding to the anionic membrane has been suggested and consequently no overall binding effects were noticed in ITC thermograms and FTIR spectra. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Pyrrole-indolinone SU11652 targets the nucleoside diphosphate kinase from Leishmania parasites.

    PubMed

    Vieira, Plínio Salmazo; Souza, Tatiana de Arruda Campos Brasil; Honorato, Rodrigo Vargas; Zanphorlin, Letícia Maria; Severiano, Kelven Ulisses; Rocco, Silvana Aparecida; de Oliveira, Arthur Henrique Cavalcante; Cordeiro, Artur Torres; Oliveira, Paulo Sérgio Lopes; de Giuseppe, Priscila Oliveira; Murakami, Mário Tyago

    2017-07-01

    Nucleoside diphosphate kinases (NDKs) are key enzymes in the purine-salvage pathway of trypanosomatids and have been associated with the maintenance of host-cell integrity for the benefit of the parasite, being potential targets for rational drug discovery and design. The NDK from Leishmania major (LmNDK) and mutants were expressed and purified to homogeneity. Thermal shift assays were employed to identify potential inhibitors for LmNDK. Calorimetric experiments, site-directed mutagenesis and molecular docking analysis were performed to validate the interaction and to evaluate the structural basis of ligand recognition. Furthermore, the anti-leishmanial activity of the newly identified and validated compound was tested in vitro against different Leishmania species. The molecule SU11652, a Sunitinib analog, was identified as a potential inhibitor for LmNDK and structural studies indicated that this molecule binds to the active site of LmNDK in a similar conformation to nucleotides, mimicking natural substrates. Isothermal titration calorimetry experiments combined with site-directed mutagenesis revealed that the residues H50 and H117, considered essential for catalysis, play an important role in ligand binding. In vitro cell studies showed that SU11652 had similar efficacy to Amphotericin b against some Leishmania species. Together, our results indicate the pyrrole-indolinone SU11652 as a promising scaffold for the rational design of new drugs targeting the enzyme NDK from Leishmania parasites. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Interactions of cisplatin analogues with lysozyme: a comparative analysis.

    PubMed

    Ferraro, Giarita; De Benedictis, Ilaria; Malfitano, Annamaria; Morelli, Giancarlo; Novellino, Ettore; Marasco, Daniela

    2017-10-01

    The biophysical characterization of drug binding to proteins plays a key role in structural biology and in the discovery and optimization of drug discovery processes. The search for optimal combinations of biophysical techniques that can correctly and efficiently identify and quantify binding of metal-based drugs to their final target is challenging, due to the physicochemical properties of these agents. Different cisplatin derivatives have shown different citotoxicities in most common cancer lines, suggesting that they exert their biological activity via different mechanisms of action. Here we carried out a comparative analysis, by studying the behaviours of three Pt-compounds under the same experimental conditions and binding assays to properly deepen the determinants of the different MAOs. Indeed we compared the results obtained using surface plasmon resonance, isothermal titration calorimetry, fluorescence spectroscopy and thermal shift assays based on circular dichroism experiments in the characterization of the formation of adducts obtained upon reaction of cisplatin, carboplatin and iodinated analogue of cisplatin, cis-Pt (NH 3 ) 2 I 2 , with the model protein hen egg white lysozyme, both at neutral and acid pHs. Further we reasoned on the applicability of employed techniques for the study the thermodynamics and kinetics of the reaction of a metallodrug with a protein and to reveal which information can be obtained using a combination of these analyses. Data were discussed on the light of the existing structural data collected on the platinated protein.

  16. Ligand binding to 2΄-deoxyguanosine sensing riboswitch in metabolic context

    PubMed Central

    Kim, Yong-Boum; Wacker, Anna; von Laer, Karl; Rogov, Vladimir V.; Suess, Beatrix

    2017-01-01

    Abstract The mfl-riboswitch is a transcriptional off-switch, which down-regulates expression of subunit β of ribonucleotide reductase in Mesoplasma florum upon 2΄-deoxyguanosine binding. We characterized binding of 2΄-deoxyguanosine to the mfl-aptamer domain (WT aptamer) and a sequence-stabilized aptamer (MT aptamer) under in vitro and ‘in-cell-like’ conditions by isothermal titration calorimetry (ITC) and nuclear magnetic resonance (NMR) spectroscopy. ‘In-cell-like’ environment was simulated by Bacillus subtilis cell extract, in which both aptamers remained sufficiently stable to detect the resonances of structural elements and ligand binding in 2D NMR experiments. Under ‘in-cell-like’-environment, (i) the WT aptamer bound the endogenous metabolite guanosine and (ii) 2΄-deoxyguanosine efficiently displaced guanosine from the WT aptamer. In contrast, MT aptamer exhibited moderate binding to 2΄-deoxyguanosine and weak binding to guanosine. NMR experiments indicated that binding of guanosine was not limited to the aptamer domain of the riboswitch but also the full-length mfl-riboswitch bound guanosine, impacting on the regulation efficiency of the riboswitch and hinting that, in addition to 2΄-deoxyguanosine, guanosine plays a role in riboswitch function in vivo. Reporter gene assays in B. subtilis demonstrated the regulation capacity of the WT aptamer, whereas the MT aptamer with lower affinity to 2΄-deoxyguanosine was not able to regulate gene expression. PMID:28115631

  17. Interaction of the iron–sulfur cluster assembly protein IscU with the Hsc66/Hsc20 molecular chaperone system of Escherichia coli

    PubMed Central

    Hoff, Kevin G.; Silberg, Jonathan J.; Vickery, Larry E.

    2000-01-01

    The iscU gene in bacteria is located in a gene cluster encoding proteins implicated in iron–sulfur cluster assembly and an hsc70-type (heat shock cognate) molecular chaperone system, iscSUA-hscBA. To investigate possible interactions between these systems, we have overproduced and purified the IscU protein from Escherichia coli and have studied its interactions with the hscA and hscB gene products Hsc66 and Hsc20. IscU and its iron–sulfur complex (IscU–Fe/S) stimulated the basal steady-state ATPase activity of Hsc66 weakly in the absence of Hsc20 but, in the presence of Hsc20, increased the ATPase activity up to 480-fold. Hsc20 also decreased the apparent Km for IscU stimulation of Hsc66 ATPase activity, and surface plasmon resonance studies revealed that Hsc20 enhances binding of IscU to Hsc66. Surface plasmon resonance and isothermal titration calorimetry further showed that IscU and Hsc20 form a complex, and Hsc20 may thereby aid in the targeting of IscU to Hsc66. These results establish a direct and specific role for the Hsc66/Hsc20 chaperone system in functioning with isc gene components for the assembly of iron–sulfur cluster proteins. PMID:10869428

  18. Effective binding of perhalogenated closo-borates to serum albumins revealed by spectroscopic and ITC studies

    NASA Astrophysics Data System (ADS)

    Kuperman, Marina V.; Losytskyy, Mykhaylo Yu.; Bykov, Alexander Yu.; Yarmoluk, Sergiy M.; Zhizhin, Konstantin Yu.; Kuznetsov, Nikolay T.; Varzatskii, Oleg A.; Gumienna-Kontecka, Elzbieta; Kovalska, Vladyslava B.

    2017-08-01

    The interactions of boron cluster compounds closo-borates with biomolecules are widely studied due to their efficiency as agents for boron neutron capture therapy of cancer. In present work the binding abilities of anionic halogen closo-borates [B10Hal10]2- (Hal = Cl, Br, I) and [B12Hal12]2- (Hal = Cl, I) towards bovine and human serum albumins were investigated by spectroscopic and isothermal titration calorimetry (ITC) methods. The protein fluorescence quenching method and ITC studies confirmed the complex formation. The degree of protein fluorescence quenching increased from chlorine to iodine boron derivatives that is attributed to external heavy atom effect. The ITC data point on the existence in the protein structure of two types of binding sites: with higher and lower affinity to closo-borates. Albumin-closo-borate complex binding ratio, n (4-5 anions per protein molecule) is higher than for the parent hydrogen closo-borates (2 anions per protein molecule). Binding constants estimated by fluorescent and ITC methods indicate higher affinity of halogen closo-borates to albumins (K in the range of 104-106 M-1) comparing to that of the hydrogen closo-borate (K about 103 M-1). Due to their high affinity and high binding ratio to albumins halogen closo-borates are proposed for further studies as agents for boron neutron capture therapy.

  19. Nanodisc-Targeted STD NMR Spectroscopy Reveals Atomic Details of Ligand Binding to Lipid Environments.

    PubMed

    Muñoz-García, Juan C; Inacio Dos Reis, Rosana; Taylor, Richard J; Henry, Alistair J; Watts, Anthony

    2018-05-18

    Saturation transfer difference (STD) NMR spectroscopy is one of the most popular ligand-based NMR techniques for the study of protein-ligand interactions. This is due to its robustness and the fact that it is focused on the signals of the ligand, without any need for NMR information on the macromolecular target. This technique is most commonly applied to systems involving different types of ligands (e.g., small organic molecules, carbohydrates or lipids) and a protein as the target, in which the latter is selectively saturated. However, only a few examples have been reported where membrane mimetics are the macromolecular binding partners. Here, we have employed STD NMR spectroscopy to investigate the interactions of the neurotransmitter dopamine with mimetics of lipid bilayers, such as nanodiscs, by saturation of the latter. In particular, the interactions between dopamine and model lipid nanodiscs formed either from charged or zwitterionic lipids have been resolved at the atomic level. The results, in agreement with previous isothermal titration calorimetry studies, show that dopamine preferentially binds to negatively charged model membranes, but also provide detailed atomic insights into the mode of interaction of dopamine with membrane mimetics. Our findings provide relevant structural information for the design of lipid-based drug carriers of dopamine and its structural analogues and are of general applicability to other systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The IκBα/NF-κB complex has two hot spots, one at either end of the interface

    PubMed Central

    Bergqvist, Simon; Ghosh, Gourisankar; Komives, Elizabeth A.

    2008-01-01

    IκBα binds to and inhibits the transcriptional activity of NF-κB family members via its ankyrin repeat (AR) domain. The binding affinity of IκBα with NF-κB(p50/p65) heterodimers and NF-κB(p65/65) homodimers is in the picomolar range, and in the cell, this results in long half-lives of the complexes. Direct binding experiments have been performed using surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) on a series of truncations and mutations in order to understand what regions of the interface are most important for the tight binding affinity of this complex. We previously showed that interactions between residues 305 and 321 of NF-κB(p65) with the first AR of IκBα are critical for the binding energy. Interactions in this region are responsible for more than 7 kcal/mol of the binding energy. Here we show equally drastic consequences for the binding energy occur upon truncation of even a few residues at the C terminus of IκBα. Thus, the interface actually has two hot spots, one at either end of the elongated and large surface of interaction. These results suggest a “squeeze” mechanism that leads to the extremely high affinity of the IκBα•NF-κB complex through stabilization of the ankyrin repeat domain. PMID:18824506

  1. Diverse oligomeric states of CEACAM IgV domains

    PubMed Central

    Bonsor, Daniel A.; Günther, Sebastian; Beadenkopf, Robert; Beckett, Dorothy; Sundberg, Eric J.

    2015-01-01

    Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) comprise a large family of cell surface adhesion molecules that bind to themselves and other family members to carry out numerous cellular functions, including proliferation, signaling, differentiation, tumor suppression, and survival. They also play diverse and significant roles in immunity and infection. The formation of CEACAM oligomers is caused predominantly by interactions between their N-terminal IgV domains. Although X-ray crystal structures of CEACAM IgV domain homodimers have been described, how CEACAMs form heterodimers or remain monomers is poorly understood. To address this key aspect of CEACAM function, we determined the crystal structures of IgV domains that form a homodimeric CEACAM6 complex, monomeric CEACAM8, and a heterodimeric CEACAM6–CEACAM8 complex. To confirm and quantify these interactions in solution, we used analytical ultracentrifugation to measure the dimerization constants of CEACAM homodimers and isothermal titration calorimetry to determine the thermodynamic parameters and binding affinities of CEACAM heterodimers. We found the CEACAM6–CEACAM8 heterodimeric state to be substantially favored energetically relative to the CEACAM6 homodimer. Our data provide a molecular basis for the adoption of the diverse oligomeric states known to exist for CEACAMs and suggest ways in which CEACAM6 and CEACAM8 regulate the biological functions of one another, as well as of additional CEACAMs with which they interact, both in cis and in trans. PMID:26483485

  2. Diverse oligomeric states of CEACAM IgV domains.

    PubMed

    Bonsor, Daniel A; Günther, Sebastian; Beadenkopf, Robert; Beckett, Dorothy; Sundberg, Eric J

    2015-11-03

    Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) comprise a large family of cell surface adhesion molecules that bind to themselves and other family members to carry out numerous cellular functions, including proliferation, signaling, differentiation, tumor suppression, and survival. They also play diverse and significant roles in immunity and infection. The formation of CEACAM oligomers is caused predominantly by interactions between their N-terminal IgV domains. Although X-ray crystal structures of CEACAM IgV domain homodimers have been described, how CEACAMs form heterodimers or remain monomers is poorly understood. To address this key aspect of CEACAM function, we determined the crystal structures of IgV domains that form a homodimeric CEACAM6 complex, monomeric CEACAM8, and a heterodimeric CEACAM6-CEACAM8 complex. To confirm and quantify these interactions in solution, we used analytical ultracentrifugation to measure the dimerization constants of CEACAM homodimers and isothermal titration calorimetry to determine the thermodynamic parameters and binding affinities of CEACAM heterodimers. We found the CEACAM6-CEACAM8 heterodimeric state to be substantially favored energetically relative to the CEACAM6 homodimer. Our data provide a molecular basis for the adoption of the diverse oligomeric states known to exist for CEACAMs and suggest ways in which CEACAM6 and CEACAM8 regulate the biological functions of one another, as well as of additional CEACAMs with which they interact, both in cis and in trans.

  3. A Combinatorial H4 Tail Library to Explore the Histone Code

    PubMed Central

    Garske, Adam L.; Craciun, Gheorghe; Denu, John M.

    2008-01-01

    Histone modifications modulate chromatin structure and function. A posttranslational modification-randomized, combinatorial library based on the first twenty-one residues of histone H4 was designed for systematic examination of proteins that interpret a histone code. The 800-member library represented all permutations of most known modifications within the N-terminal tail of histone H4. To determine its utility in a protein-binding assay, the on-bead library was screened with an antibody directed against phosphoserine 1 of H4. Among the hits, 59/60 sequences were phosphorylated at S1, while 30/30 of those selected from the non-hits were unphosphorylated. A 512-member version of the library was then used to determine the binding specificity of the double tudor domain of hJMJD2A, a histone demethylase involved in transcriptional repression. Global linear least squares fitting of modifications from the identified peptides (40 hits and 34 non-hits) indicated that methylation of K20 was the primary determinant for binding, but that phosphorylation/acetylation on neighboring sites attenuated the interaction. To validate the on-bead screen, isothermal titration calorimetry was performed with thirteen H4 peptides. Dissociation constants ranged from 1 mM - 1μM and corroborated the screening results. The general approach should be useful for probing the specificity of any histone-binding protein. PMID:18616348

  4. Structural Basis of the High Affinity Interaction between the Alphavirus Nonstructural Protein-3 (nsP3) and the SH3 Domain of Amphiphysin-2.

    PubMed

    Tossavainen, Helena; Aitio, Olli; Hellman, Maarit; Saksela, Kalle; Permi, Perttu

    2016-07-29

    We show that a peptide from Chikungunya virus nsP3 protein spanning residues 1728-1744 binds the amphiphysin-2 (BIN1) Src homology-3 (SH3) domain with an unusually high affinity (Kd 24 nm). Our NMR solution complex structure together with isothermal titration calorimetry data on several related viral and cellular peptide ligands reveal that this exceptional affinity originates from interactions between multiple basic residues in the target peptide and the extensive negatively charged binding surface of amphiphysin-2 SH3. Remarkably, these arginines show no fixed conformation in the complex structure, indicating that a transient or fluctuating polyelectrostatic interaction accounts for this affinity. Thus, via optimization of such dynamic electrostatic forces, viral peptides have evolved a superior binding affinity for amphiphysin-2 SH3 compared with typical cellular ligands, such as dynamin, thereby enabling hijacking of amphiphysin-2 SH3-regulated host cell processes by these viruses. Moreover, our data show that the previously described consensus sequence PXRPXR for amphiphysin SH3 ligands is inaccurate and instead define it as an extended Class II binding motif PXXPXRpXR, where additional positive charges between the two constant arginine residues can give rise to extraordinary high SH3 binding affinity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Polyamines Regulate Strawberry Fruit Ripening by Abscisic Acid, Auxin, and Ethylene.

    PubMed

    Guo, Jiaxuan; Wang, Shufang; Yu, Xiaoyang; Dong, Rui; Li, Yuzhong; Mei, Xurong; Shen, Yuanyue

    2018-05-01

    Polyamines (PAs) participate in many plant growth and developmental processes, including fruit ripening. However, it is not clear whether PAs play a role in the ripening of strawberry ( Fragaria ananassa ), a model nonclimacteric plant. Here, we found that the content of the PA spermine (Spm) increased more sharply after the onset of fruit coloration than did that of the PAs putrescine (Put) or spermidine (Spd). Spm dominance in ripe fruit resulted from abundant transcripts of a strawberry S -adenosyl-l-Met decarboxylase gene ( FaSAMDC ), which encodes an enzyme that generates a residue needed for PA biosynthesis. Exogenous Spm and Spd promoted fruit coloration, while exogenous Put and a SAMDC inhibitor inhibited coloration. Based on transcriptome data, up- and down-regulation of FaSAMDC expression promoted and inhibited ripening, respectively, which coincided with changes in several physiological parameters and their corresponding gene transcripts, including firmness, anthocyanin content, sugar content, polyamine content, auxin (indole-3-acetic acid [IAA]) content, abscisic acid (ABA) content, and ethylene emission. Using isothermal titration calorimetry, we found that FaSAMDC also had a high enzymatic activity with a K d of 1.7 × 10 -3 m In conclusion, PAs, especially Spm, regulate strawberry fruit ripening in an ABA-dominated, IAA-participating, and ethylene-coordinated manner, and FaSAMDC plays an important role in ripening. © 2018 American Society of Plant Biologists. All Rights Reserved.

  6. Structure of a highly acidic β-lactamase from the moderate halophile Chromohalobacter sp. 560 and the discovery of a Cs+-selective binding site

    PubMed Central

    Arai, Shigeki; Yonezawa, Yasushi; Okazaki, Nobuo; Matsumoto, Fumiko; Shibazaki, Chie; Shimizu, Rumi; Yamada, Mitsugu; Adachi, Motoyasu; Tamada, Taro; Kawamoto, Masahide; Tokunaga, Hiroko; Ishibashi, Matsujiro; Blaber, Michael; Tokunaga, Masao; Kuroki, Ryota

    2015-01-01

    Environmentally friendly absorbents are needed for Sr2+ and Cs+, as the removal of the radioactive Sr2+ and Cs+ that has leaked from the Fukushima Nuclear Power Plant is one of the most important problems in Japan. Halophilic proteins are known to have many acidic residues on their surface that can provide specific binding sites for metal ions such as Cs+ or Sr2+. The crystal structure of a halophilic β-lactamase from Chromohalobacter sp. 560 (HaBLA) was determined to resolutions of between 1.8 and 2.9 Å in space group P31 using X-ray crystallography. Moreover, the locations of bound Sr2+ and Cs+ ions were identified by anomalous X-ray diffraction. The location of one Cs+-specific binding site was identified in HaBLA even in the presence of a ninefold molar excess of Na+ (90 mM Na+/10 mM Cs+). From an activity assay using isothermal titration calorimetry, the bound Sr2+ and Cs+ ions do not significantly affect the enzymatic function of HaBLA. The observation of a selective and high-affinity Cs+-binding site provides important information that is useful for the design of artificial Cs+-binding sites that may be useful in the bioremediation of radioactive isotopes. PMID:25760604

  7. Recognition of Double Stranded RNA by Guanidine-Modified Peptide Nucleic Acids (GPNA)

    PubMed Central

    Gupta, Pankaj; Muse, Oluwatoyosi; Rozners, Eriks

    2011-01-01

    Double helical RNA has become an attractive target for molecular recognition because many non-coding RNAs play important roles in control of gene expression. Recently, we discovered that short peptide nucleic acids (PNA) bind strongly and sequence selectively to a homopurine tract of double helical RNA via triple helix formation. Herein we tested if the molecular recognition of RNA can be enhanced by α-guanidine modification of PNA. Our study was motivated by the discovery of Ly and co-workers that the guanidine modification greatly enhances the cellular delivery of PNA. Isothermal titration calorimetry showed that the guanidine-modified PNA (GPNA) had reduced affinity and sequence selectivity for triple helical recognition of RNA. The data suggested that in contrast to unmodified PNA, which formed a 1:1 PNA-RNA triple helix, GPNA preferred a 2:1 GPNA-RNA triplex-invasion complex. Nevertheless, promising results were obtained for recognition of biologically relevant double helical RNA. Consistent with enhanced strand invasion ability, GPNA derived from D-arginine recognized the transactivation response element (TAR) of HIV-1 with high affinity and sequence selectivity, presumably via Watson-Crick duplex formation. On the other hand, strong and sequence selective triple helices were formed by unmodified and nucelobase-modified PNAs and the purine rich strand of bacterial A-site. These results suggest that appropriate chemical modifications of PNA may enhance molecular recognition of complex non-coding RNAs. PMID:22146072

  8. Membrane Modulates Affinity for Calcium Ion to Create an Apparent Cooperative Binding Response by Annexin a5

    PubMed Central

    Gauer, Jacob W.; Knutson, Kristofer J.; Jaworski, Samantha R.; Rice, Anne M.; Rannikko, Anika M.; Lentz, Barry R.; Hinderliter, Anne

    2013-01-01

    Isothermal titration calorimetry was used to characterize the binding of calcium ion (Ca2+) and phospholipid to the peripheral membrane-binding protein annexin a5. The phospholipid was a binary mixture of a neutral and an acidic phospholipid, specifically phosphatidylcholine and phosphatidylserine in the form of large unilamellar vesicles. To stringently define the mode of binding, a global fit of data collected in the presence and absence of membrane concentrations exceeding protein saturation was performed. A partition function defined the contribution of all heat-evolving or heat-absorbing binding states. We find that annexin a5 binds Ca2+ in solution according to a simple independent-site model (solution-state affinity). In the presence of phosphatidylserine-containing liposomes, binding of Ca2+ differentiates into two classes of sites, both of which have higher affinity compared with the solution-state affinity. As in the solution-state scenario, the sites within each class were described with an independent-site model. Transitioning from a solution state with lower Ca2+ affinity to a membrane-associated, higher Ca2+ affinity state, results in cooperative binding. We discuss how weak membrane association of annexin a5 prior to Ca2+ influx is the basis for the cooperative response of annexin a5 toward Ca2+, and the role of membrane organization in this response. PMID:23746516

  9. Structural basis underlying CAC RNA recognition by the RRM domain of dimeric RNA-binding protein RBPMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teplova, Marianna; Farazi, Thalia A.; Tuschl, Thomas

    Abstract RNA-binding protein with multiple splicing (designated RBPMS) is a higher vertebrate mRNA-binding protein containing a single RNA recognition motif (RRM). RBPMS has been shown to be involved in mRNA transport, localization and stability, with key roles in axon guidance, smooth muscle plasticity, as well as regulation of cancer cell proliferation and migration. We report on structure-function studies of the RRM domain of RBPMS bound to a CAC-containing single-stranded RNA. These results provide insights into potential topologies of complexes formed by the RBPMS RRM domain and the tandem CAC repeat binding sites as detected by photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation. Thesemore » studies establish that the RRM domain of RBPMS forms a symmetrical dimer in the free state, with each monomer binding sequence-specifically to all three nucleotides of a CAC segment in the RNA bound state. Structure-guided mutations within the dimerization and RNA-binding interfaces of RBPMS RRM on RNA complex formation resulted in both disruption of dimerization and a decrease in RNA-binding affinity as observed by size exclusion chromatography and isothermal titration calorimetry. As anticipated from biochemical binding studies, over-expression of dimerization or RNA-binding mutants of Flag-HA-tagged RBPMS were no longer able to track with stress granules in HEK293 cells, thereby documenting the deleterious effects of such mutationsin vivo.« less

  10. Differential NtcA Responsiveness to 2-Oxoglutarate Underlies the Diversity of C/N Balance Regulation in Prochlorococcus.

    PubMed

    Domínguez-Martín, María A; López-Lozano, Antonio; Clavería-Gimeno, Rafael; Velázquez-Campoy, Adrián; Seidel, Gerald; Burkovski, Andreas; Díez, Jesús; García-Fernández, José M

    2017-01-01

    Previous studies showed differences in the regulatory response to C/N balance in Prochlorococcus with respect to other cyanobacteria, but no information was available about its causes, or the ecological advantages conferred to thrive in oligotrophic environments. We addressed the changes in key enzymes (glutamine synthetase, isocitrate dehydrogenase) and the ntcA gene (the global nitrogen regulator) involved in C/N metabolism and its regulation, in three model Prochlorococcus strains: MED4, SS120, and MIT9313. We observed a remarkable level of diversity in their response to azaserine, a glutamate synthase inhibitor which increases the concentration of the key metabolite 2-oxoglutarate, used to sense the C/N balance by cyanobacteria. Besides, we studied the binding between the global nitrogen regulator (NtcA) and the promoter of the glnA gene in the same Prochlorococcus strains, and its dependence on the 2-oxoglutarate concentration, by using isothermal titration calorimetry, surface plasmon resonance, and electrophoretic mobility shift. Our results show a reduction in the responsiveness of NtcA to 2-oxoglutarate in Prochlorococcus , especially in the MED4 and SS120 strains. This suggests a trend to streamline the regulation of C/N metabolism in late-branching Prochlorococcus strains (MED4 and SS120), in adaptation to the rather stable conditions found in the oligotrophic ocean gyres where this microorganism is most abundant.

  11. Reaction enthalpy from the binding of multivalent cations to anionic polyelectrolytes in dilute solutions

    NASA Astrophysics Data System (ADS)

    Hansch, Markus; Kaub, Hans Peter; Deck, Sascha; Carl, Nico; Huber, Klaus

    2018-03-01

    Dilute solutions of sodium poly(styrene sulfonate) (NaPSS) in the presence of Al3+, Ca2+, and Ba2+ were analysed by means of isothermal titration calorimetry (ITC) in order to investigate the heat effect of bond formation between those cations and the anionic SO3- residues of NaPSS. The selection of the cations was guided by the solution behavior of the corresponding PSS salts from a preceding study [M. Hansch et al., J. Chem. Phys. 148(1), 014901 (2018)], where bonds between Ba2+ and anionic PSS showed an increasing solubility with decreasing temperature and Al3+ exhibited the inverse trend. Unlike to Al3+ and Ba2+, Ca2+ is expected to behave as a purely electrostatically interacting bivalent cation and was thus included in the present study. Results from ITC satisfactorily succeeded to explain the temperature-dependent solution behavior of the salts with Al3+ and Ba2+ and confirmed the non-specific behavior of Ca2+. Additional ITC experiments with salts of Ca2+ and Ba2+ and sodium poly(acrylate) complemented the results on PSS by data from a chemically different polyanion. Availability of these joint sets of polyanion-cation combinations not only offers the chance to identify common features and subtle differences in the solution behavior of polyelectrolytes in the presence of multi-valent cations but also points to a new class of responsive materials.

  12. 2-Oxoglutarate levels control adenosine nucleotide binding by Herbaspirillum seropedicae PII proteins.

    PubMed

    Oliveira, Marco A S; Gerhardt, Edileusa C M; Huergo, Luciano F; Souza, Emanuel M; Pedrosa, Fábio O; Chubatsu, Leda S

    2015-12-01

    Nitrogen metabolism in Proteobacteria is controlled by the Ntr system, in which PII proteins play a pivotal role, controlling the activity of target proteins in response to the metabolic state of the cell. Characterization of the binding of molecular effectors to these proteins can provide information about their regulation. Here, the binding of ATP, ADP and 2-oxoglutarate (2-OG) to the Herbaspirillum seropedicae PII proteins, GlnB and GlnK, was characterized using isothermal titration calorimetry. Results show that these proteins can bind three molecules of ATP, ADP and 2-OG with homotropic negative cooperativity, and 2-OG binding stabilizes the binding of ATP. Results also show that the affinity of uridylylated forms of GlnB and GlnK for nucleotides is significantly lower than that of the nonuridylylated proteins. Furthermore, fluctuations in the intracellular concentration of 2-OG in response to nitrogen availability are shown. Results suggest that under nitrogen-limiting conditions, PII proteins tend to bind ATP and 2-OG. By contrast, after an ammonium shock, a decrease in the 2-OG concentration is observed causing a decrease in the affinity of PII proteins for ATP. This phenomenon may facilitate the exchange of ATP for ADP on the ligand-binding pocket of PII proteins, thus it is likely that under low ammonium, low 2-OG levels would favor the ADP-bound state. © 2015 FEBS.

  13. The Substrate-free and -bound Crystal Structures of the Duplicated Taurocyamine Kinase from the Human Parasite Schistosoma mansoni*

    PubMed Central

    Merceron, Romain; Awama, Ayman M.; Montserret, Roland; Marcillat, Olivier; Gouet, Patrice

    2015-01-01

    The taurocyamine kinase from the blood fluke Schistosoma mansoni (SmTK) belongs to the phosphagen kinase (PK) family and catalyzes the reversible Mg2+-dependent transfer of a phosphoryl group between ATP and taurocyamine. SmTK is derived from gene duplication, as are all known trematode TKs. Our crystallographic study of SmTK reveals the first atomic structure of both a TK and a PK with a bilobal structure. The two unliganded lobes present a canonical open conformation and interact via their respective C- and N-terminal domains at a helix-mediated interface. This spatial arrangement differs from that observed in true dimeric PKs, in which both N-terminal domains make contact. Our structures of SmTK complexed with taurocyamine or l-arginine compounds explain the mechanism by which an arginine residue of the phosphagen specificity loop is crucial for substrate specificity. An SmTK crystal was soaked with the dead end transition state analog (TSA) components taurocyamine-NO32−-MgADP. One SmTK monomer was observed with two bound TSAs and an asymmetric conformation, with the first lobe semiclosed and the second closed. However, isothermal titration calorimetry and enzyme kinetics experiments showed that the two lobes function independently. A small angle x-ray scattering model of SmTK-TSA in solution with two closed active sites was generated. PMID:25837252

  14. Heat capacity changes in RNA folding: application of perturbation theory to hammerhead ribozyme cold denaturation

    PubMed Central

    Mikulecky, Peter J.; Feig, Andrew L.

    2004-01-01

    In proteins, empirical correlations have shown that changes in heat capacity (ΔCP) scale linearly with the hydrophobic surface area buried upon folding. The influence of ΔCP on RNA folding has been widely overlooked and is poorly understood. In addition to considerations of solvent reorganization, electrostatic effects might contribute to ΔCPs of folding in polyanionic species such as RNAs. Here, we employ a perturbation method based on electrostatic theory to probe the hot and cold denaturation behavior of the hammerhead ribozyme. This treatment avoids much of the error associated with imposing two-state folding models on non-two-state systems. Ribozyme stability is perturbed across a matrix of solvent conditions by varying the concentration of NaCl and methanol co-solvent. Temperature-dependent unfolding is then monitored by circular dichroism spectroscopy. The resulting array of unfolding transitions can be used to calculate a ΔCP of folding that accurately predicts the observed cold denaturation temperature. We confirm the accuracy of the calculated ΔCP by using isothermal titration calorimetry, and also demonstrate a methanol-dependence of the ΔCP. We weigh the strengths and limitations of this method for determining ΔCP values. Finally, we discuss the data in light of the physical origins of the ΔCPs for RNA folding and consider their impact on biological function. PMID:15282329

  15. A highly efficient sorbitol dehydrogenase from Gluconobacter oxydans G624 and improvement of its stability through immobilization

    PubMed Central

    Kim, Tae-Su; Patel, Sanjay K. S.; Selvaraj, Chandrabose; Jung, Woo-Suk; Pan, Cheol-Ho; Kang, Yun Chan; Lee, Jung-Kul

    2016-01-01

    A sorbitol dehydrogenase (GoSLDH) from Gluconobacter oxydans G624 (G. oxydans G624) was expressed in Escherichia coli BL21(DE3)-CodonPlus RIL. The complete 1455-bp codon-optimized gene was amplified, expressed, and thoroughly characterized for the first time. GoSLDH exhibited Km and kcat values of 38.9 mM and 3820 s−1 toward L-sorbitol, respectively. The enzyme exhibited high preference for NADP+ (vs. only 2.5% relative activity with NAD+). GoSLDH sequencing, structure analyses, and biochemical studies, suggested that it belongs to the NADP+-dependent polyol-specific long-chain sorbitol dehydrogenase family. GoSLDH is the first fully characterized SLDH to date, and it is distinguished from other L-sorbose-producing enzymes by its high activity and substrate specificity. Isothermal titration calorimetry showed that the protein binds more strongly to D-sorbitol than other L-sorbose-producing enzymes, and substrate docking analysis confirmed a higher turnover rate. The high oxidation potential of GoSLDH for D-sorbitol was confirmed by cyclovoltametric analysis. Further, stability of GoSLDH significantly improved (up to 13.6-fold) after cross-linking of immobilized enzyme on silica nanoparticles and retained 62.8% residual activity after 10 cycles of reuse. Therefore, immobilized GoSLDH may be useful for L-sorbose production from D-sorbitol. PMID:27633501

  16. A highly efficient sorbitol dehydrogenase from Gluconobacter oxydans G624 and improvement of its stability through immobilization.

    PubMed

    Kim, Tae-Su; Patel, Sanjay K S; Selvaraj, Chandrabose; Jung, Woo-Suk; Pan, Cheol-Ho; Kang, Yun Chan; Lee, Jung-Kul

    2016-09-16

    A sorbitol dehydrogenase (GoSLDH) from Gluconobacter oxydans G624 (G. oxydans G624) was expressed in Escherichia coli BL21(DE3)-CodonPlus RIL. The complete 1455-bp codon-optimized gene was amplified, expressed, and thoroughly characterized for the first time. GoSLDH exhibited Km and kcat values of 38.9 mM and 3820 s(-1) toward L-sorbitol, respectively. The enzyme exhibited high preference for NADP(+) (vs. only 2.5% relative activity with NAD(+)). GoSLDH sequencing, structure analyses, and biochemical studies, suggested that it belongs to the NADP(+)-dependent polyol-specific long-chain sorbitol dehydrogenase family. GoSLDH is the first fully characterized SLDH to date, and it is distinguished from other L-sorbose-producing enzymes by its high activity and substrate specificity. Isothermal titration calorimetry showed that the protein binds more strongly to D-sorbitol than other L-sorbose-producing enzymes, and substrate docking analysis confirmed a higher turnover rate. The high oxidation potential of GoSLDH for D-sorbitol was confirmed by cyclovoltametric analysis. Further, stability of GoSLDH significantly improved (up to 13.6-fold) after cross-linking of immobilized enzyme on silica nanoparticles and retained 62.8% residual activity after 10 cycles of reuse. Therefore, immobilized GoSLDH may be useful for L-sorbose production from D-sorbitol.

  17. Neutral glycoconjugated amide-based calix[4]arenes: complexation of alkali metal cations in water.

    PubMed

    Cindro, Nikola; Požar, Josip; Barišić, Dajana; Bregović, Nikola; Pičuljan, Katarina; Tomaš, Renato; Frkanec, Leo; Tomišić, Vladislav

    2018-02-07

    Cation complexation in water presents a unique challenge in calixarene chemistry, mostly due to the fact that a vast majority of calixarene-based cation receptors is not soluble in water or their solubility has been achieved by introducing functionalities capable of (de)protonation. Such an approach inevitably involves the presence of counterions which compete with target cations for the calixarene binding site, and also rather often requires the use of ion-containing buffer solutions in order to control the pH. Herein we devised a new strategy towards the solution of this problem, based on introducing carbohydrate units at the lower or upper rim of calix[4]arenes which comprise efficient cation binding sites. In this context, we prepared neutral, water-soluble receptors with secondary or tertiary amide coordinating groups, and studied their complexation with alkali metal cations in aqueous and methanol (for the comparison purpose) solutions. Complexation thermodynamics was quantitatively characterized by UV spectrometry and isothermal titration calorimetry, revealing that one of the prepared tertiary amide derivatives is capable of remarkably efficient (log K ≈ 5) and selective binding of sodium cations among alkali metal cations in water. Given the ease of the synthetic procedure used, and thus the variety of accessible analogues, this study can serve as a platform for the development of reagents for diverse purposes in aqueous media.

  18. Structure of the effector-binding domain of the arabinose repressor AraR from Bacillus subtilis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Procházková, Kateřina; Čermáková, Kateřina; Pachl, Petr

    2012-02-01

    The crystal structure of the effector-binding domain of the transcriptional repressor AraR from B. subtilis in complex with the effector molecule (l-arabinose) was determined at 2.2 Å resolution. A detailed analysis of the crystal identified a dimer organization that is distinctive from that of other members of the GalR/LacI family. In Bacillus subtilis, the arabinose repressor AraR negatively controls the expression of genes in the metabolic pathway of arabinose-containing polysaccharides. The protein is composed of two domains of different phylogenetic origin and function: an N-terminal DNA-binding domain belonging to the GntR family and a C-terminal effector-binding domain that shows similaritymore » to members of the GalR/LacI family. The crystal structure of the C-terminal effector-binding domain of AraR in complex with the effector l-arabinose has been determined at 2.2 Å resolution. The l-arabinose binding affinity was characterized by isothermal titration calorimetry and differential scanning fluorimetry; the K{sub d} value was 8.4 ± 0.4 µM. The effect of l-arabinose on the protein oligomeric state was investigated in solution and detailed analysis of the crystal identified a dimer organization which is distinctive from that of other members of the GalR/LacI family.« less

  19. Stapled Voltage-Gated Calcium Channel (CaV) α-Interaction Domain (AID) Peptides Act As Selective Protein–Protein Interaction Inhibitors of CaV Function

    PubMed Central

    2017-01-01

    For many voltage-gated ion channels (VGICs), creation of a properly functioning ion channel requires the formation of specific protein–protein interactions between the transmembrane pore-forming subunits and cystoplasmic accessory subunits. Despite the importance of such protein–protein interactions in VGIC function and assembly, their potential as sites for VGIC modulator development has been largely overlooked. Here, we develop meta-xylyl (m-xylyl) stapled peptides that target a prototypic VGIC high affinity protein–protein interaction, the interaction between the voltage-gated calcium channel (CaV) pore-forming subunit α-interaction domain (AID) and cytoplasmic β-subunit (CaVβ). We show using circular dichroism spectroscopy, X-ray crystallography, and isothermal titration calorimetry that the m-xylyl staples enhance AID helix formation are structurally compatible with native-like AID:CaVβ interactions and reduce the entropic penalty associated with AID binding to CaVβ. Importantly, electrophysiological studies reveal that stapled AID peptides act as effective inhibitors of the CaVα1:CaVβ interaction that modulate CaV function in an CaVβ isoform-selective manner. Together, our studies provide a proof-of-concept demonstration of the use of protein–protein interaction inhibitors to control VGIC function and point to strategies for improved AID-based CaV modulator design. PMID:28278376

  20. Acetaminophen interacts with human hemoglobin: optical, physical and molecular modeling studies.

    PubMed

    Seal, Paromita; Sikdar, Jyotirmoy; Roy, Amartya; Haldar, Rajen

    2017-05-01

    Acetaminophen, a widely used analgesic and antipyretic drug has ample affinity to bind globular proteins. Here, we have illustrated a substantive study pertaining to the interaction of acetaminophen with human hemoglobin (HHb). Different spectroscopic (absorption, fluorescence, and circular dichroism (CD) spectroscopy), calorimetric, and molecular docking techniques have been employed in this study. Acetaminophen-induced graded alterations in absorbance and fluorescence of HHb confirm their interaction. Analysis of fluorescence quenching at different temperature and data obtained from isothermal titration calorimetry indicate that the interaction is static and the HHb has one binding site for the drug. The negative values of Gibbs energy change (ΔG 0 ) and enthalpy changes (ΔH 0 ) and positive value of entropy change (ΔS 0 ) strongly suggest that it is entropy-driven spontaneous and exothermic reaction. The reaction involves hydrophobic pocket of the protein which is further stabilized by hydrogen bonding as evidenced from ANS and sucrose binding studies. These findings were also supported by molecular docking simulation study using AutoDock 4.2. The interaction influences structural integrity as well as functional properties of HHb as evidenced by CD spectroscopy, increased rate of co-oxidation and decreased esterase activity of HHb. So, from these findings, we may conclude that acetaminophen interacts with HHb through hydrophobic and hydrogen bonding, and the interaction perturbs the structural and functional properties of HHb.

  1. Interactions of iron-bound frataxin with ISCU and ferredoxin on the cysteine desulfurase complex leading to Fe-S cluster assembly.

    PubMed

    Cai, Kai; Frederick, Ronnie O; Tonelli, Marco; Markley, John L

    2018-06-01

    Frataxin (FXN) is involved in mitochondrial iron‑sulfur (Fe-S) cluster biogenesis and serves to accelerate Fe-S cluster formation. FXN deficiency is associated with Friedreich ataxia, a neurodegenerative disease. We have used a combination of isothermal titration calorimetry and multinuclear NMR spectroscopy to investigate interactions among the components of the biological machine that carries out the assembly of iron‑sulfur clusters in human mitochondria. Our results show that FXN tightly binds a single Fe 2+ but not Fe 3+ . While FXN (with or without bound Fe 2+ ) does not bind the scaffold protein ISCU directly, the two proteins interact mutually when each is bound to the cysteine desulfurase complex ([NFS1] 2 :[ISD11] 2 :[Acp] 2 ), abbreviated as (NIA) 2 , where "N" represents the cysteine desulfurase (NFS1), "I" represents the accessory protein (ISD11), and "A" represents acyl carrier protein (Acp). FXN binds (NIA) 2 weakly in the absence of ISCU but more strongly in its presence. Fe 2+ -FXN binds to the (NIA) 2 -ISCU 2 complex without release of iron. However, upon the addition of both l-cysteine and a reductant (either reduced FDX2 or DTT), Fe 2+ is released from FXN as consistent with Fe 2+ -FXN being the proximal source of iron for Fe-S cluster assembly. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Concentration-dependent antagonistic persuasion of SDS and naphthalene derivatives on the fibrillation of stem bromelain.

    PubMed

    Qadeer, Atiyatul; Ahmad, Ejaz; Zaman, Masihuz; Khan, Mohd Wasif; Khan, Javed Masood; Rabbani, Gulam; Tarique, Khaja Faisal; Sharma, Gaurav; Gourinath, Samudrala; Nadeem, Sajid; Badr, Gamal; Khan, Rizwan Hasan

    2013-12-01

    Sodium dodecyl sulfate, a biological membrane mimetic, can be used to study the conversion of globular proteins into amyloid fibrils in vitro. Using multiple approaches, the effect of SDS was examined on stem bromelain (SB), a widely recognized therapeutic protein. SB is known to exist as a partially folded intermediate at pH 2.0, situation also encountered in the gastrointestinal tract (its site of absorption). In the presence of sub-micellar SDS concentration (500-1000 μM), this intermediate was found to exhibit great propensity to form large-sized β-sheeted aggregates with fibrillar morphology, the hall marks of amyloid structure. We also observed inhibition of fibrillation by two naphthalene-based compounds, ANS and bis-ANS. While bis-ANS significantly inhibited fibril formation at 50 μM, ANS did so at relatively higher concentration (400 μM). Alcohols, but not salts, were found to weaken the inhibitory action of these compounds suggesting the possible involvement of hydrophobic interactions in their binding to protein. Besides, isothermal titration calorimetry and molecular docking studies suggested that inhibition of fibrillation by these naphthalene derivatives is mediated not just through hydrophobic forces, but also by disruption of π-π interactions between the aromatic residues together with the inter-polypeptide chain repulsion among negatively charged ANS/bis-ANS bound SB. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Domain-specific interactions between MLN8237 and human serum albumin estimated by STD and WaterLOGSY NMR, ITC, spectroscopic, and docking techniques

    NASA Astrophysics Data System (ADS)

    Yang, Hongqin; Liu, Jiuyang; Huang, Yanmei; Gao, Rui; Tang, Bin; Li, Shanshan; He, Jiawei; Li, Hui

    2017-03-01

    Alisertib (MLN8237) is an orally administered inhibitor of Aurora A kinase. This small-molecule inhibitor is under clinical or pre-clinical phase for the treatment of advanced malignancies. The present study provides a detailed characterization of the interaction of MLN8237 with a drug transport protein called human serum albumin (HSA). STD and WaterLOGSY nuclear magnetic resonance (NMR)-binding studies were conducted first to confirm the binding of MLN8237 to HSA. In the ligand orientation assay, the binding sites of MLN8237 were validated through two site-specific spy molecules (warfarin sodium and ibuprofen, which are two known site-selective probes) by using STD and WaterLOGSY NMR competition techniques. These competition experiments demonstrate that both spy molecules do not compete with MLN8237 for the specific binding site. The AutoDock-based blind docking study recognizes the hydrophobic subdomain IB of the protein as the probable binding site for MLN8237. Thermodynamic investigations by isothermal titration calorimetry (ITC) reveal that the non-covalent interaction between MLN8237 and HSA (binding constant was approximately 105 M-1) is driven mainly by favorable entropy and unfavorable enthalpy. In addition, synchronous fluorescence, circular dichroism (CD), and 3D fluorescence spectroscopy suggest that MLN8237 may induce conformational changes in HSA.

  4. Structure-based design of diverse inhibitors of Mycobacterium tuberculosis N-acetylglucosamine-1-phosphate uridyltransferase: combined molecular docking, dynamic simulation, and biological activity.

    PubMed

    Soni, Vijay; Suryadevara, Priyanka; Sriram, Dharmarajan; Kumar, Santhosh; Nandicoori, Vinay Kumar; Yogeeswari, Perumal

    2015-07-01

    Persistent nature of Mycobacterium tuberculosis is one of the major factors which make the drug development process monotonous against this organism. The highly lipophilic cell wall, which constituting outer mycolic acid and inner peptidoglycan layers, acts as a barrier for the drugs to enter the bacteria. The rigidity of the cell wall is imparted by the peptidoglycan layer, which is covalently linked to mycolic acid by arabinogalactan. Uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) serves as the starting material in the biosynthesis of this peptidoglycan layers. This UDP-GlcNAc is synthesized by N-acetylglucosamine-1-phosphate uridyltransferase (GlmU(Mtb)), a bi-functional enzyme with two functional sites, acetyltransferase site and uridyltransferase site. Here, we report design and screening of nine inhibitors against UTP and NAcGlc-1-P of uridyltransferase active site of glmU(Mtb). Compound 4 was showing good inhibition and was selected for further analysis. The isothermal titration calorimetry (ITC) experiments showed the binding energy pattern of compound 4 to the uridyltransferase active site is similar to that of substrate UTP. In silico molecular dynamics (MD) simulation studies, for compound 4, carried out for 10 ns showed the protein-compound complex to be stable throughout the simulation with relative rmsd in acceptable range. Hence, these compounds can serve as a starting point in the drug discovery processes against Mycobacterium tuberculosis.

  5. Thermodynamics of melittin binding to lipid bilayers. Aggregation and pore formation.

    PubMed

    Klocek, Gabriela; Schulthess, Therese; Shai, Yechiel; Seelig, Joachim

    2009-03-31

    Lipid membranes act as catalysts for protein folding. Both alpha-helical and beta-sheet structures can be induced by the interaction of peptides or proteins with lipid surfaces. Melittin, the main component of bee venom, is a particularly well-studied example for the membrane-induced random coil-to-alpha-helix transition. Melittin in water adopts essentially a random coil conformation. The cationic amphipathic molecule has a high affinity for neutral and anionic lipid membranes and exhibits approximately 50-65% alpha-helix conformation in the membrane-bound state. At higher melittin concentrations, the peptide forms aggregates or pores in the membrane. In spite of the long-standing interest in melittin-lipid interactions, no systematic thermodynamic study is available. This is probably caused by the complexity of the binding process. Melittin binding to lipid vesicles is fast and occurs within milliseconds, but the binding process involves at least four steps, namely, (i) the electrostatic attraction of the cationic peptide to an anionic membrane surface, (ii) the hydrophobic insertion into the lipid membrane, (iii) the conformational change from random coil to alpha-helix, and (iv) peptide aggregation in the lipid phase. We have combined microelectrophoresis (measurement of the zeta potential), isothermal titration calorimetry, and circular dichroism spectroscopy to provide a thermodynamic analysis of the individual binding steps. We have compared melittin with a synthetic analogue, [D]-V(5,8),I(17),K(21)-melittin, for which alpha-helix formation is suppressed and replaced by beta-structure formation. The comparison reveals that the thermodynamic parameters for the membrane-induced alpha-helix formation of melittin are identical to those observed earlier for other peptides with an enthalpy h(helix) of -0.7 kcal/mol and a free energy g(helix) of -0.2 kcal/mol per peptide residue. These thermodynamic parameters hence appear to be of general validity for lipid-induced membrane folding. As g(helix) is negative, it further follows that helix formation leads to an enhanced membrane binding for the peptides or proteins involved. In this study, melittin binds by approximately 2 orders of magnitude better to the lipid membrane than [D]-V(5,8),I(17),K(21)-melittin which cannot form an alpha-helix. We also found conditions under which the isothermal titration experiment reports only the aggregation process. Melittin aggregation is an entropy-driven process with an endothermic heat of reaction (DeltaH(agg)) of approximately 2 kcal/mol and an aggregation constant of 20-40 M(-1).

  6. Isothermal crystallization kinetic modeling of poly(etherketoneketone) (PEKK)

    NASA Astrophysics Data System (ADS)

    Choupin, T.; Paris, C.; Cinquin, J.; Fayolle, B.; Régnier, G.

    2016-05-01

    Isothermal melt and cold crystallization kinetics of poly(etherketoneketone) (PEKK) have been investigated by differential scanning calorimetry. A modified Avrami model has been used to describe the two-stage crystallization of PEKK. The primary crystallization stage is assumed to be a two dimensional nucleation growth with an Avrami exponent of 2 whereas the secondary stage is assumed to be a one dimensional nucleation growth with an Avrami exponent of 1. The evolution of the crystallization constant rates depending on temperature has been modeled with the Hoffman and Lauritzen growth equation. The activation energy of nucleation constants Kg for both crystallizations are presented.

  7. Thermal and overcharge abuse analysis of a redox shuttle for overcharge protection of LiFePO4

    NASA Astrophysics Data System (ADS)

    Lamb, Joshua; Orendorff, Christopher J.; Amine, Khalil; Krumdick, Gregory; Zhang, Zhengcheng; Zhang, Lu; Gozdz, Antoni S.

    2014-02-01

    This work investigated the performance and abuse tolerance of cells protected using the redox shuttle 1,4-bis(2-methoxyethoxy)-2,5-di-tert-butylbenzene. The thermal efficiencies were evaluated using isothermal battery calorimetry. Cells containing the overcharge shuttle were observed to reach a steady state value of approximately 3.8 V, with a small variance in direct proportion to the applied current. In all cases the heat output from the cells was measured to reach ∼90% of the total input power. The heat output was also measured using isothermal calorimetry. At higher rates of overcharge, the data shows that the cell containing the shuttle rapidly reaches a steady state voltage, while the temperature increases until a moderately high steady state temperature is reached. The control cell meanwhile rapidly increases in both applied voltage and cell temperature until cell failure. Two cells in series were taken deliberately out of balance individually, then charged as a single pack to observe the time needed to bring the cells into balance with one another.

  8. Aromatic amino acids in the cellulose binding domain of Penicillium crustosum endoglucanase EGL1 differentially contribute to the cellulose affinity of the enzyme

    PubMed Central

    Xiong, Wei; Chen, Fang-Yuan; Xu, Li; Han, Zheng-Gang

    2017-01-01

    The cellulose binding domain (CBD) of cellulase binding to cellulosic materials is the initiation of a synergistic action on the enzymatic hydrolysis of the most abundant renewable biomass resources in nature. The binding of the CBD domain to cellulosic substrates generally relies on the interaction between the aromatic amino acids structurally located on the flat face of the CBD domain and the glucose rings of cellulose. In this study, we found the CBD domain of a newly cloned Penicillium crustosum endoglucanase EGL1, which was phylogenetically related to Aspergillus, Fusarium and Rhizopus, and divergent from the well-characterized Trichoderma reeseis cellulase CBD domain, contain two conserved aromatic amino acid-rich regions, Y451-Y452 and Y477-Y478-Y479, among which three amino acids Y451, Y477, and Y478 structurally sited on a flat face of this domain. Cellulose binding assays with green fluorescence protein as the marker, adsorption isotherm assays and an isothermal titration calorimetry assays revealed that although these three amino acids participated in this process, the Y451-Y452 appears to contribute more to the cellulose binding than Y477-Y478-Y479. Further glycine scanning mutagenesis and structural modelling revealed that the binding between CBD domain and cellulosic materials might be multi-amino-acids that participated in this process. The flexible poly-glucose molecule could contact Y451, Y477, and Y478 which form the contacting flat face of CBD domain as the typical model, some other amino acids in or outside the flat face might also participate in the interaction. Thus, it is possible that the conserved Y451-Y452 of CBD might have a higher chance of contacting the cellulosic substrates, contributing more to the affinity of CBD than the other amino acids. PMID:28475645

  9. On the real performance of cation exchange resins in wastewater treatment under conditions of cation competition: the case of heavy metal pollution.

    PubMed

    Prelot, Benedicte; Ayed, Imen; Marchandeau, Franck; Zajac, Jerzy

    2014-01-01

    Sorption performance of cation-exchange resins Amberlite® IRN77 and Amberlite™ IRN9652 toward Cs(I) and Sr(II) has been tested in single-component aqueous solutions and simulated waste effluents containing other monovalent (Effluent 1) or divalent (Effluent 2) metal cations, as well as nitrate, borate, or carbonate anions. The individual sorption isotherms of each main component were measured by the solution depletion method. The differential molar enthalpy changes accompanying the ion-exchange between Cs+ or Sr2+ ions and protons at the resin surface from single-component nitrate solutions were measured by isothermal titration calorimetry and they showed a higher specificity of the two resins toward cesium. Compared to the retention limits of both resins under such idealized conditions, an important depression in the maximum adsorption capacity toward each main component was observed in multication systems. The overall effect of ion exchange process appeared to be an unpredictable outcome of the individual sorption capacities of the two resins toward various cations as a function of the cation charge, size, and concentration. The cesium retention capacity of the resins was diminished to about 25% of the "ideal" value in Effluent 1 and 50% in Effluent 2; a further decrease to about 15% was observed upon concomitant strontium addition. The uptake of strontium by the resins was found to be less sensitive to the addition of other metal components: the greatest decrease in the amount adsorbed was 60% of the ideal value in the two effluents for Amberlite® IRN77 and 75% for Amberlite™ IRN9652. It was therefore demonstrated that any performance tests carried out under idealized conditions should be exploited with much caution to predict the real performance of cation exchange resins under conditions of cation competition.

  10. Design, synthesis and evaluation of a potent substrate analog inhibitor identified by scanning Ala/Phe mutagenesis, mimicking substrate co-evolution, against multidrug-resistant HIV-1 protease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yedidi, Ravikiran S.; Muhuhi, Joseck M.; Liu, Zhigang

    Highlights: •Inhibitors against MDR HIV-1 protease were designed, synthesized and evaluated. •Lead peptide (6a) showed potent inhibition (IC{sub 50}: 4.4 nM) of MDR HIV-1 protease. •(6a) Showed favorable binding isotherms against NL4-3 and MDR proteases. •(6a) Induced perturbations in the {sup 15}N-HSQC spectrum of MDR HIV-1 protease. •Molecular modeling suggested that (6a) may induce total flap closure inMDR protease. -- Abstract: Multidrug-resistant (MDR) clinical isolate-769, human immunodeficiency virus type-1 (HIV-1) protease (PDB ID: (1TW7)), was shown to exhibit wide-open flaps and an expanded active site cavity, causing loss of contacts with protease inhibitors. In the current study, the expanded activemore » site cavity of MDR769 HIV-1 protease was screened with a series of peptide-inhibitors that were designed to mimic the natural substrate cleavage site, capsid/p2. Scanning Ala/Phe chemical mutagenesis approach was incorporated into the design of the peptide series to mimic the substrate co-evolution. Among the peptides synthesized and evaluated, a lead peptide (6a) with potent activity (IC{sub 50}: 4.4 nM) was identified against the MDR769 HIV-1 protease. Isothermal titration calorimetry data showed favorable binding profile for 6aagainst both wild type and MDR769 HIV-1 protease variants. Nuclear magnetic resonance spectrum of {sup 15}N-labeled MDR769 HIV-1 protease in complex with 6a showed some major perturbations in chemical shift, supporting the peptide induced conformational changes in protease. Modeling analysis revealed multiple contacts between 6a and MDR769 HIV-1 protease. The lead peptide-inhibitor, 6a, with high potency and good binding profile can be used as the basis for developing potent small molecule inhibitors against MDR variants of HIV.« less

  11. Characterization of the evolution of the volume fraction of precipitates in aged AlMgSiCu alloys using DSC technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esmaeili, Shahrzad; Lloyd, David J.

    2005-11-15

    Differential scanning calorimetry is used to quantify the evolution of the volume fraction of precipitates during age hardening in AlMgSiCu alloys. The calorimetry tests are run on alloy samples after aging for various times at 180 deg. C and the change in the collective heat effects from the major precipitation and dissolution processes in each run are used to determine the precipitation state of the samples. The method is implemented on alloys with various thermal histories prior to artificial aging, including commercial pre-aging histories. The estimated values for the relative volume fraction of precipitates are compared with the results frommore » a newly developed analytical method using isothermal calorimetry and a related quantitative transmission electron microscopy work. Excellent agreement is obtained between the results from various methods.« less

  12. Gas-phase formaldehyde adsorption isotherm studies on activated carbon: correlations of adsorption capacity to surface functional group density.

    PubMed

    Carter, Ellison M; Katz, Lynn E; Speitel, Gerald E; Ramirez, David

    2011-08-01

    Formaldehyde (HCHO) adsorption isotherms were developed for the first time on three activated carbons representing one activated carbon fiber (ACF) cloth, one all-purpose granular activated carbon (GAC), and one GAC commercially promoted for gas-phase HCHO removal. The three activated carbons were evaluated for HCHO removal in the low-ppm(v) range and for water vapor adsorption from relative pressures of 0.1-0.9 at 26 °C where, according to the IUPAC isotherm classification system, the adsorption isotherms observed exhibited Type V behavior. A Type V adsorption isotherm model recently proposed by Qi and LeVan (Q-L) was selected to model the observed adsorption behavior because it reduces to a finite, nonzero limit at low partial pressures and it describes the entire range of adsorption considered in this study. The Q-L model was applied to a polar organic adsorbate to fit HCHO adsorption isotherms for the three activated carbons. The physical and chemical characteristics of the activated carbon surfaces were characterized using nitrogen adsorption isotherms, X-ray photoelectron spectroscopy (XPS), and Boehm titrations. At low concentrations, HCHO adsorption capacity was most strongly related to the density of basic surface functional groups (SFGs), while water vapor adsorption was most strongly influenced by the density of acidic SFGs.

  13. Lignin-coated cellulose nanocrystals as promising nucleating agent for poly(lactic acid)

    Treesearch

    Anju Gupta; William Simmons; Gregory T. Schueneman; Eric A. Mintz

    2016-01-01

    We report the effect of lignin-coated cellulose nanocrystals (L-CNCs) on the crystallization behavior of poly(lactic acid) (PLA). PLA/L-CNC nanocomposites were prepared by melt mixing, and the crystallization behavior of PLA was investigated using differential scanning calorimetry. Isothermal crystallization data were analyzed using Avrami and Lauritzen–Hoffman...

  14. Isothermal Crystallization Kinetics of Palm Oil as Influenced by Addition of a Commercial Phytosterol Ester Mixture.

    PubMed

    Daels, Eva; Goderis, Bart; Matton, Valerie; Foubert, Imogen

    2018-04-18

    In literature there is good agreement on the health-promoting effects of phytosterols. However, addition of phytosterol esters (PEs) to lipid (containing food products) may influence its crystallization behavior. This study investigated the crystallization kinetics of palm oil (PO) after addition of PEs in high concentrations (≥10%). The isothermal crystallization of the PE-PO blends was analyzed at a temperature of 20 °C and at a supercooling of 18.7 °C using differential scanning calorimetry and time-resolved synchrotron X-ray diffraction. At increasing PE concentrations, PO crystallization at an isothermal temperature of 20 °C started later and was slower and a smaller amount of crystals were formed. Furthermore, a delay in polymorphic transition from α to β' was observed. When the blends were isothermally crystallized at a supercooling of 18.7 °C, only two of these effects remained: the delay in polymorphic transition and the decrease in crystalline content.

  15. Enthalpy of Mixing in Al–Tb Liquid

    DOE PAGES

    Zhou, Shihuai; Tackes, Carl; Napolitano, Ralph

    2017-06-21

    The liquid-phase enthalpy of mixing for Al$-$Tb alloys is measured for 3, 5, 8, 10, and 20 at% Tb at selected temperatures in the range from 1364 to 1439 K. Methods include isothermal solution calorimetry and isoperibolic electromagnetic levitation drop calorimetry. Mixing enthalpy is determined relative to the unmixed pure (Al and Tb) components. The required formation enthalpy for the Al3Tb phase is computed from first-principles calculations. Finally, based on our measurements, three different semi-empirical solution models are offered for the excess free energy of the liquid, including regular, subregular, and associate model formulations. These models are also compared withmore » the Miedema model prediction of mixing enthalpy.« less

  16. Diverse oligomeric states of CEACAM IgV domains

    DOE PAGES

    Bonsor, Daniel A.; Günther, Sebastian; Beadenkopf, Robert; ...

    2015-10-19

    Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) comprise a large family of cell surface adhesion molecules that bind to themselves and other family members to carry out numerous cellular functions, including proliferation, signaling, differentiation, tumor suppression, and survival. They also play diverse and significant roles in immunity and infection. The formation of CEACAM oligomers is caused predominantly by interactions between their N-terminal IgV domains. Although X-ray crystal structures of CEACAM IgV domain homodimers have been described, how CEACAMs form heterodimers or remain monomers is poorly understood. To address this key aspect of CEACAM function, we determined in this paper the crystalmore » structures of IgV domains that form a homodimeric CEACAM6 complex, monomeric CEACAM8, and a heterodimeric CEACAM6–CEACAM8 complex. To confirm and quantify these interactions in solution, we used analytical ultracentrifugation to measure the dimerization constants of CEACAM homodimers and isothermal titration calorimetry to determine the thermodynamic parameters and binding affinities of CEACAM heterodimers. We found the CEACAM6–CEACAM8 heterodimeric state to be substantially favored energetically relative to the CEACAM6 homodimer. Finally, our data provide a molecular basis for the adoption of the diverse oligomeric states known to exist for CEACAMs and suggest ways in which CEACAM6 and CEACAM8 regulate the biological functions of one another, as well as of additional CEACAMs with which they interact, both in cis and in trans.« less

  17. Structural and functional characterization of the LldR from Corynebacterium glutamicum: a transcriptional repressor involved in l-lactate and sugar utilization

    PubMed Central

    Gao, Yong-Gui; Suzuki, Hiroaki; Itou, Hiroshi; Zhou, Yong; Tanaka, Yoshikazu; Wachi, Masaaki; Watanabe, Nobuhisa; Tanaka, Isao; Yao, Min

    2008-01-01

    LldR (CGL2915) from Corynebacterium glutamicum is a transcription factor belonging to the GntR family, which is typically involved in the regulation of oxidized substrates associated with amino acid metabolism. In the present study, the crystal structure of LldR was determined at 2.05-Å resolution. The structure consists of N- and C-domains similar to those of FadR, but with distinct domain orientations. LldR and FadR dimers achieve similar structures by domain swapping, which was first observed in dimeric assembly of transcription factors. A structural feature of Zn2+ binding in the regulatory domain was also observed, as a difference from the FadR subfamily. DNA microarray and DNase I footprint analyses suggested that LldR acts as a repressor regulating cgl2917-lldD and cgl1934-fruK-ptsF operons, which are indispensable for l-lactate and fructose/sucrose utilization, respectively. Furthermore, the stoichiometries and affinities of LldR and DNAs were determined by isothermal titration calorimetry measurements. The transcriptional start site and repression of LldR on the cgl2917-lldD operon were analysed by primer extension assay. Mutation experiments showed that residues Lys4, Arg32, Arg42 and Gly63 are crucial for DNA binding. The location of the putative ligand binding cavity and the regulatory mechanism of LldR on its affinity for DNA were proposed. PMID:18988622

  18. Formulation and Stabilization of Concentrated Edible Oil-in-Water Emulsions Based on Electrostatic Complexes of a Food-Grade Cationic Surfactant (Ethyl Lauroyl Arginate) and Cellulose Nanocrystals.

    PubMed

    Bai, Long; Xiang, Wenchao; Huan, Siqi; Rojas, Orlando J

    2018-05-14

    We report on high-internal-phase, oil-in-water Pickering emulsions that are stable against coalescence during storage. Viscous, edible oil (sunflower) was emulsified by combining naturally derived cellulose nanocrystals (CNCs) and a food-grade, biobased cationic surfactant obtained from lauric acid and L-arginine (ethyl lauroyl arginate, LAE). The interactions between CNC and LAE were elucidated by isothermal titration calorimetry (ITC) and supplementary techniques. LAE adsorption on CNC surfaces and its effect on nanoparticle electrostatic stabilization, aggregation state, and emulsifying ability was studied and related to the properties of resultant oil-in-water emulsions. Pickering systems with tunable droplet diameter and stability against oil coalescence during long-term storage were controllably achieved depending on LAE loading. The underlying stabilization mechanism was found to depend on the type of complex formed, the LAE structures adsorbed on the cellulose nanoparticles (as unimer or as adsorbed admicelles), the presence of free LAE in the aqueous phase, and the equivalent alkane number of the oil phase (sunflower and dodecane oils were compared). The results extend the potential of CNC in the formulation of high-quality and edible Pickering emulsions. The functional properties imparted by LAE, a highly effective molecule against food pathogens and spoilage organisms, open new opportunities in food, cosmetics, and pharmaceutical applications, where the presence of CNC plays a critical role in achieving synergistic effects with LAE.

  19. Synthesis and application of a new carboxylated cellulose derivative. Part I: Removal of Co(2+), Cu(2+) and Ni(2+) from monocomponent spiked aqueous solution.

    PubMed

    Teodoro, Filipe Simões; Ramos, Stela Nhandeyara do Carmo; Elias, Megg Madonyk Cota; Mageste, Aparecida Barbosa; Ferreira, Gabriel Max Dias; da Silva, Luis Henrique Mendes; Gil, Laurent Frédéric; Gurgel, Leandro Vinícius Alves

    2016-12-01

    A new carboxylated cellulose derivative (CTA) was prepared from the esterification of cellulose with 1,2,4-Benzenetricarboxylic anhydride. CTA was characterized by percent weight gain (pwg), amount of carboxylic acid groups (nCOOH), elemental analysis, FTIR, TGA, solid-state (13)C NMR, X-ray diffraction (DRX), specific surface area, pore size distribution, SEM and EDX. The best CTA synthesis condition yielded a pwg and nCOOH of 94.5% and 6.81mmolg(-1), respectively. CTA was used as an adsorbent material to remove Co(2+), Cu(2+) and Ni(2+) from monocomponent spiked aqueous solution. Adsorption studies were developed as a function of the solution pH, contact time and initial adsorbate concentration. Langmuir model better fitted the experimental adsorption data and the maximum adsorption capacities estimated by this model were 0.749, 1.487 and 1.001mmolg(-1) for Co(2+), Cu(2+) and Ni(2+), respectively. The adsorption mechanism was investigated by using isothermal titration calorimetry. The values of ΔadsH° were in the range from 5.36 to 8.09kJmol(-1), suggesting that the mechanism controlling the phenomenon is physisorption. Desorption and re-adsorption studies were also performed. Desorption and re-adsorption efficiencies were closer to 100%, allowing the recovery of both metal ions and CTA adsorbent. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Comparative serum albumin interactions and antitumor effects of Au(III) and Ga(III) ions.

    PubMed

    Sarioglu, Omer Faruk; Ozdemir, Ayse; Karaboduk, Kuddusi; Tekinay, Turgay

    2015-01-01

    In the present study, interactions of Au(III) and Ga(III) ions on human serum albumin (HSA) were studied comparatively via spectroscopic and thermal analysis methods: UV-vis absorbance spectroscopy, fluorescence spectroscopy, Fourier transform infrared (FT-IR) spectroscopy and isothermal titration calorimetry (ITC). The potential antitumor effects of these ions were studied on MCF-7 cells via Alamar blue assay. It was found that both Au(III) and Ga(III) ions can interact with HSA, however; Au(III) ions interact with HSA more favorably and with a higher affinity. FT-IR second derivative analysis results demonstrated that, high concentrations of both metal ions led to a considerable decrease in the α-helix content of HSA; while Au(III) led to around 5% of decrease in the α-helix content at 200μM, it was around 1% for Ga(III) at the same concentration. Calorimetric analysis gave the binding kinetics of metal-HSA interactions; while the binding affinity (Ka) of Au(III)-HSA binding was around 3.87×10(5)M(-1), it was around 9.68×10(3)M(-1) for Ga(III)-HSA binding. Spectroscopy studies overall suggest that both metal ions have significant effects on the chemical structure of HSA, including the secondary structure alterations. Antitumor activity studies on MCF7 tumor cell line with both metal ions revealed that, Au(III) ions have a higher antiproliferative activity compared to Ga(III) ions. Copyright © 2014 Elsevier GmbH. All rights reserved.

  1. Photochemically stable fluorescent heteroditopic ligands for zinc ion.

    PubMed

    Zhang, Lu; Zhu, Lei

    2008-11-07

    Photochemically stable fluorescent heteroditopic ligands (9 and 10) for zinc ion were prepared and studied. Two independent metal coordination-driven photophysical processes, chelation-enhanced fluorescence (CHEF) and internal (or intramolecular) charge transfer (ICT), were designed into our heteroditopic ligand framework. This strategy successfully relates three coordination states of a ligand, non-, mono-, and dicoordinated, to three fluorescence states, fluorescence OFF, ON at one wavelength, and ON at another wavelength. This ligand platform has provided chemical foundation for applications such as the quantification of zinc concentration over broad ranges (Zhang, L.; Clark, R. J.; Zhu, L. Chem.-Eur. J. 2008, 14, 2894-2903) and molecular logic functions (Zhang, L.; Whitfield, W. A.; Zhu, L. Chem. Commun. 2008, 1880-1882). The binding stoichiometries of dipicolylamino and 2,2'-bipyridyl, the two binding sites featured in heteroditopic ligands 7-10, were studied in acetonitrile using both Job's method of continuous variation and isothermal titration calorimetry (ITC). The fluorescence enhancement of 7-10 upon the formation of monozinc complexes (defined as the fluorescence quantum yield ratio of monozinc complex and free ligand) is qualitatively related to the highest occupied molecular orbital (HOMO) energy levels of their fluorophores. This is consistent with our hypothesis on the thermodynamics of the coordination-driven photophysical processes embodied in the designed heteroditopic system, which was supported by cyclic voltammetry studies. In conclusion, compounds 9 and 10 not only possess better photochemical stability but also display a higher degree of fluorescence turn-on upon formation of monozinc complexes than their vinyl counterparts 7 and 8.

  2. Elongated fibrillar structure of a streptococcal adhesin assembled by the high-affinity association of [alpha]- and PPII-helices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, Matthew R.; Rajashankar, Kanagalaghatta R.; Patel, Manisha H.

    2010-08-18

    Streptococcus mutans antigen I/II (AgI/II) is a cell surface-localized protein adhesin that interacts with salivary components within the salivary pellicle. AgI/II contributes to virulence and has been studied as an immunological and structural target, but a fundamental understanding of its underlying architecture has been lacking. Here we report a high-resolution (1.8 {angstrom}) crystal structure of the A{sub 3}VP{sub 1} fragment of S. mutans AgI/II that demonstrates a unique fibrillar form (155 {angstrom}) through the interaction of two noncontiguous regions in the primary sequence. The A{sub 3} repeat of the alanine-rich domain adopts an extended {alpha}-helix that intertwines with the P{submore » 1} repeat polyproline type II (PPII) helix to form a highly extended stalk-like structure heretofore unseen in prokaryotic or eukaryotic protein structures. Velocity sedimentation studies indicate that full-length AgI/II that contains three A/P repeats extends over 50 nanometers in length. Isothermal titration calorimetry revealed that the high-affinity association between the A{sub 3} and P{sub 1} helices is enthalpically driven. Two distinct binding sites on AgI/II to the host receptor salivary agglutinin (SAG) were identified by surface plasmon resonance (SPR). The current crystal structure reveals that AgI/II family proteins are extended fibrillar structures with the number of alanine- and proline-rich repeats determining their length.« less

  3. Intrinsic Thermodynamics and Structure Correlation of Benzenesulfonamides with a Pyrimidine Moiety Binding to Carbonic Anhydrases I, II, VII, XII, and XIII

    PubMed Central

    Kišonaitė, Miglė; Zubrienė, Asta; Čapkauskaitė, Edita; Smirnov, Alexey; Smirnovienė, Joana; Kairys, Visvaldas; Michailovienė, Vilma; Manakova, Elena; Gražulis, Saulius; Matulis, Daumantas

    2014-01-01

    The early stage of drug discovery is often based on selecting the highest affinity lead compound. To this end the structural and energetic characterization of the binding reaction is important. The binding energetics can be resolved into enthalpic and entropic contributions to the binding Gibbs free energy. Most compound binding reactions are coupled to the absorption or release of protons by the protein or the compound. A distinction between the observed and intrinsic parameters of the binding energetics requires the dissection of the protonation/deprotonation processes. Since only the intrinsic parameters can be correlated with molecular structural perturbations associated with complex formation, it is these parameters that are required for rational drug design. Carbonic anhydrase (CA) isoforms are important therapeutic targets to treat a range of disorders including glaucoma, obesity, epilepsy, and cancer. For effective treatment isoform-specific inhibitors are needed. In this work we investigated the binding and protonation energetics of sixteen [(2-pyrimidinylthio)acetyl]benzenesulfonamide CA inhibitors using isothermal titration calorimetry and fluorescent thermal shift assay. The compounds were built by combining four sulfonamide headgroups with four tailgroups yielding 16 compounds. Their intrinsic binding thermodynamics showed the limitations of the functional group energetic additivity approach used in fragment-based drug design, especially at the level of enthalpies and entropies of binding. Combined with high resolution crystal structural data correlations were drawn between the chemical functional groups on selected inhibitors and intrinsic thermodynamic parameters of CA-inhibitor complex formation. PMID:25493428

  4. Impact of molecular weight and degree of conjugation on the thermodynamics of DNA complexation and stability of polyethylenimine-graft-poly(ethylene glycol) copolymers.

    PubMed

    Smith, Ryan J; Beck, Rachel W; Prevette, Lisa E

    2015-01-01

    Poly(ethylene glycol) (PEG) is often conjugated to polyethylenimine (PEI) to provide colloidal stability to PEI-DNA polyplexes and shield charge leading to toxicity. Here, a library of nine cationic copolymers was synthesized by grafting three molecular weights (750, 2000, 5000Da) of PEG to linear PEI at three conjugation ratios. Using isothermal titration calorimetry, we have quantified the thermodynamics of the associations between the copolymers and DNA and determined the extent to which binding is hindered as a function of PEG molecular weight and conjugation ratio. Low conjugation ratios of 750Da PEG to PEI resulted in little decrease in DNA affinity, but a significant decrease-up to two orders of magnitude-was found for the other copolymers. We identified limitations in determination of affinity using indirect assays (electrophoretic mobility shift and ethidium bromide exclusion) commonly used in the field. Dynamic light scattering of the DNA complexes at physiological ionic strength showed that PEI modifications that did not reduce DNA affinity also did not confer significant colloidal stability, a finding that was supported by calorimetric data on the aggregation process. These results quantify the DNA interaction thermodynamics of PEGylated polycations for the first time and indicate that there is an optimum PEG chain length and degree of substitution in the design of agents that have desirable properties for effective in vivo gene delivery. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Intrinsic thermodynamics of inhibitor binding to human carbonic anhydrase IX.

    PubMed

    Linkuvienė, Vaida; Matulienė, Jurgita; Juozapaitienė, Vaida; Michailovienė, Vilma; Jachno, Jelena; Matulis, Daumantas

    2016-04-01

    Human carbonic anhydrase 9th isoform (CA IX) is an important marker of numerous cancers and is increasingly interesting as a potential anticancer drug target. Various synthetic aromatic sulfonamide-bearing compounds are being designed as potent inhibitors of CA IX. However, sulfonamide compound binding to CA IX is linked to several reactions, the deprotonation of the sulfonamide amino group and the protonation of the CA active site Zn(II)-bound hydroxide. These linked reactions significantly affect the affinities and other thermodynamic parameters such as enthalpies and entropies of binding. The observed and intrinsic affinities of compound binding to CA IX were determined by the fluorescent thermal shift assay. The enthalpies and entropies of binding were determined by the isothermal titration calorimetry. The pKa of CA IX was determined to be 6.8 and the enthalpy of CA IX-Zn(II)-bound hydroxide protonation was -24 kJ/mol. These values enabled the analysis of intrinsic thermodynamics of a library of compounds binding to CA IX. The most strongly binding compounds exhibited the intrinsic affinity of 0.01 nM and the observed affinity of 2 nM. The intrinsic thermodynamic parameters of compound binding to CA IX helped to draw the compound structure to thermodynamics relationship. It is important to distinguish the intrinsic from observed parameters of any disease target protein interaction with its inhibitors as drug candidates when drawing detailed compound structure to thermodynamics correlations. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Formation and biochemical characterization of tube/pelle death domain complexes: critical regulators of postreceptor signaling by the Drosophila toll receptor.

    PubMed

    Schiffmann, D A; White, J H; Cooper, A; Nutley, M A; Harding, S E; Jumel, K; Solari, R; Ray, K P; Gay, N J

    1999-09-07

    In Drosophila, the Toll receptor signaling pathway is required for embryonic dorso-ventral patterning and at later developmental stages for innate immune responses. It is thought that dimerization of the receptor by binding of the ligand spätzle causes the formation of a postreceptor activation complex at the cytoplasmic surface of the membrane. Two components of this complex are the adaptor tube and protein kinase pelle. These proteins both have "death domains", protein interaction motifs found in a number of signaling pathways, particularly those involved in apoptotic cell death. It is thought that pelle is bound by tube during formation of the activation complexes, and that this interaction is mediated by the death domains. In this paper, we show using the yeast two-hybrid system that the wild-type tube and pelle death domains bind together. Mutant tube proteins which do not support signaling in the embryo are also unable to bind pelle in the 2-hybrid assay. We have purified proteins corresponding to the death domains of tube and pelle and show that these form corresponding heterodimeric complexes in vitro. Partial proteolysis reveals a smaller core consisting of the minimal death domain sequences. We have studied the tube/pelle interaction with the techniques of surface plasmon resonance, analytical ultracentrifugation and isothermal titration calorimetry. These measurements produce a value of K(d) for the complex of about 0.5 microM.

  7. A novel lectin from Agrocybe aegerita shows high binding selectivity for terminal N-acetylglucosamine

    PubMed Central

    Jiang, Shuai; Chen, Yijie; Wang, Man; Yin, Yalin; Pan, Yongfu; Gu, Bianli; Yu, Guojun; Li, Yamu; Wong, Barry Hon Cheung; Liang, Yi; Sun, Hui

    2012-01-01

    A novel lectin was isolated from the mushroom Agrocybe aegerita (designated AAL-2) by affinity chromatography with GlcNAc (N-acetylglucosamine)-coupled Sepharose 6B after ammonium sulfate precipitation. The AAL-2 coding sequence (1224 bp) was identified by performing a homologous search of the five tryptic peptides identified by MS against the translated transcriptome of A. aegerita. The molecular mass of AAL-2 was calculated to be 43.175 kDa from MS, which was consistent with the data calculated from the amino acid sequence. To analyse the carbohydrate-binding properties of AAL-2, a glycan array composed of 465 glycan candidates was employed, and the result showed that AAL-2 bound with high selectivity to terminal non-reducing GlcNAc residues, and further analysis revealed that AAL-2 bound to terminal non-reducing GlcNAc residues with higher affinity than previously well-known GlcNAc-binding lectins such as WGA (wheatgerm agglutinin) and GSL-II (Griffonia simplicifolia lectin-II). ITC (isothermal titration calorimetry) showed further that GlcNAc bound to AAL-2 in a sequential manner with moderate affinity. In the present study, we also evaluated the anti-tumour activity of AAL-2. The results showed that AAL-2 could bind to the surface of hepatoma cells, leading to induced cell apoptosis in vitro. Furthermore, AAL-2 exerted an anti-hepatoma effect via inhibition of tumour growth and prolongation of survival time of tumour-bearing mice in vivo. PMID:22268569

  8. Dynamics, Conformational Entropy, and Frustration in Protein-Protein Interactions Involving an Intrinsically Disordered Protein Domain.

    PubMed

    Lindström, Ida; Dogan, Jakob

    2018-05-18

    Intrinsically disordered proteins (IDPs) are abundant in the eukaryotic proteome. However, little is known about the role of subnanosecond dynamics and the conformational entropy that it represents in protein-protein interactions involving IDPs. Using nuclear magnetic resonance side chain and backbone relaxation, stopped-flow kinetics, isothermal titration calorimetry, and computational studies, we have characterized the interaction between the globular TAZ1 domain of the CREB binding protein and the intrinsically disordered transactivation domain of STAT2 (TAD-STAT2). We show that the TAZ1/TAD-STAT2 complex retains considerable subnanosecond motions, with TAD-STAT2 undergoing only a partial disorder-to-order transition. We report here the first experimental determination of the conformational entropy change for both binding partners in an IDP binding interaction and find that the total change even exceeds in magnitude the binding enthalpy and is comparable to the contribution from the hydrophobic effect, demonstrating its importance in the binding energetics. Furthermore, we show that the conformational entropy change for TAZ1 is also instrumental in maintaining a biologically meaningful binding affinity. Strikingly, a spatial clustering of very high amplitude motions and a cluster of more rigid sites in the complex exist, which through computational studies we found to overlap with regions that experience energetic frustration and are less frustrated, respectively. Thus, the residual dynamics in the bound state could be necessary for faster dissociation, which is important for proteins that interact with multiple binding partners.

  9. Features of the Thermodynamics of Trivalent Lanthanide/Actinide Distribution Reactions by Tri-n-Octylphosphine Oxide and Bis(2-EthylHexyl) Phosphoric Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travis S. Grimes; Peter R. Zalupski

    2014-11-01

    A new methodology has been developed to study the thermochemical features of the biphasic transfer reactions of trisnitrato complexes of lanthanides and americium by a mono-functional solvating ligand (tri-n-octyl phosphine oxide - TOPO). Stability constants for successive nitrato complexes (M(NO3)x3-x (aq) where M is Eu3+, Am3+ or Cm3+) were determined to assist in the calculation of the extraction constant, Kex, for the metal ions under study. Enthalpies of extraction (?Hextr) for the lanthanide series (excluding Pm3+) and Am3+ by TOPO have been measured using isothermal titration calorimetry. The observed ?Hextr were found to be constant at ~29 kJ mol-1across themore » series from La3+-Er3+, with a slight decrease observed from Tm3+-Lu3+. These heats were found to be consistent with enthalpies determined using van ’t Hoff analysis of temperature dependent extraction studies. A complete set of thermodynamic parameters (?G, ?H, ?S) was calculated for Eu(NO3)3, Am(NO3)3 and Cm(NO3)3 extraction by TOPO and Am3+ and Cm3+ extraction by bis(2-ethylhexyl) phosphoric acid (HDEHP). A discussion comparing the energetics of these systems is offered. The measured biphasic extraction heats for the transplutonium elements, ?Hextr, presented in these studies are the first ever direct measurements offered using two-phase calorimetric techniques.« less

  10. Role of Conserved Glycine in Zinc-dependent Medium Chain Dehydrogenase/Reductase Superfamily*

    PubMed Central

    Tiwari, Manish Kumar; Singh, Raushan Kumar; Singh, Ranjitha; Jeya, Marimuthu; Zhao, Huimin; Lee, Jung-Kul

    2012-01-01

    The medium-chain dehydrogenase/reductase (MDR) superfamily consists of a large group of enzymes with a broad range of activities. Members of this superfamily are currently the subject of intensive investigation, but many aspects, including the zinc dependence of MDR superfamily proteins, have not yet have been adequately investigated. Using a density functional theory-based screening strategy, we have identified a strictly conserved glycine residue (Gly) in the zinc-dependent MDR superfamily. To elucidate the role of this conserved Gly in MDR, we carried out a comprehensive structural, functional, and computational analysis of four MDR enzymes through a series of studies including site-directed mutagenesis, isothermal titration calorimetry, electron paramagnetic resonance (EPR), quantum mechanics, and molecular mechanics analysis. Gly substitution by other amino acids posed a significant threat to the metal binding affinity and activity of MDR superfamily enzymes. Mutagenesis at the conserved Gly resulted in alterations in the coordination of the catalytic zinc ion, with concomitant changes in metal-ligand bond length, bond angle, and the affinity (Kd) toward the zinc ion. The Gly mutants also showed different spectroscopic properties in EPR compared with those of the wild type, indicating that the binding geometries of the zinc to the zinc binding ligands were changed by the mutation. The present results demonstrate that the conserved Gly in the GHE motif plays a role in maintaining the metal binding affinity and the electronic state of the catalytic zinc ion during catalysis of the MDR superfamily enzymes. PMID:22500022

  11. Structure, dynamics and RNA binding of the multi-domain splicing factor TIA-1

    PubMed Central

    Wang, Iren; Hennig, Janosch; Jagtap, Pravin Kumar Ankush; Sonntag, Miriam; Valcárcel, Juan; Sattler, Michael

    2014-01-01

    Alternative pre-messenger ribonucleic acid (pre-mRNA) splicing is an essential process in eukaryotic gene regulation. The T-cell intracellular antigen-1 (TIA-1) is an apoptosis-promoting factor that modulates alternative splicing of transcripts, including the pre-mRNA encoding the membrane receptor Fas. TIA-1 is a multi-domain ribonucleic acid (RNA) binding protein that recognizes poly-uridine tract RNA sequences to facilitate 5′ splice site recognition by the U1 small nuclear ribonucleoprotein (snRNP). Here, we characterize the RNA interaction and conformational dynamics of TIA-1 by nuclear magnetic resonance (NMR), isothermal titration calorimetry (ITC) and small angle X-ray scattering (SAXS). Our NMR-derived solution structure of TIA-1 RRM2–RRM3 (RRM2,3) reveals that RRM2 adopts a canonical RNA recognition motif (RRM) fold, while RRM3 is preceded by an non-canonical helix α0. NMR and SAXS data show that all three RRMs are largely independent structural modules in the absence of RNA, while RNA binding induces a compact arrangement. RRM2,3 binds to pyrimidine-rich FAS pre-mRNA or poly-uridine (U9) RNA with nanomolar affinities. RRM1 has little intrinsic RNA binding affinity and does not strongly contribute to RNA binding in the context of RRM1,2,3. Our data unravel the role of binding avidity and the contributions of the TIA-1 RRMs for recognition of pyrimidine-rich RNAs. PMID:24682828

  12. Superstructure based on β-CD self-assembly induced by a small guest molecule†

    PubMed Central

    De Sousa, Frederico B.; Lima, Ana C.; Denadai, Ângelo M. L.; Anconi, Cleber P. A.; De Almeida, Wagner B.; Novato, Willian T. G.; Dos Santos, Hélio F.; Drum, Chester L.; Langer, Robert

    2014-01-01

    The size, shape and surface chemistry of nanoparticles play an important role in cellular interaction. Thus, the main objective of the present study was the determination of the β-cyclodextrin (β-CD) self-assembly thermodynamic parameters and its structure, aiming to use these assemblies as a possible controlled drug release system. Light scattering measurements led us to obtain the β-CD’s critical aggregation concentration (cac) values, and consequently the thermodynamic parameters of the β-CD spontaneous self-assembly in aqueous solution: ΔaggGo = − 16.31 kJ mol−1, ΔaggHo = − 26.48 kJ mol−1 and TΔaggSo = − 10.53 kJ mol−1 at 298.15 K. Size distribution of the self-assembled nanoparticles below and above cac was 1.5 nm and 60–120 nm, respectively. The number of β-CD molecules per cluster and the second virial coefficient were identified through Debye’s plot and molecular dynamic simulations proposed the three-fold assembly for this system below cac. Ampicillin (AMP) was used as a drug model in order to investigate the key role of the guest molecule in the self-assembly process and the β-CD:AMP supramolecular system was studied in solution, aiming to determine the structure of the supramolecular aggregate. Results obtained in solution indicated that the β-CD’s cac was not affected by adding AMP. Moreover, different complex stoichiometries were identified by nuclear magnetic resonance and isothermal titration calorimetry experiments. PMID:22234498

  13. Effect of redox partner binding on CYP101D1 conformational dynamics.

    PubMed

    Batabyal, Dipanwita; Poulos, Thomas L

    2018-06-01

    We have compared the thermodynamics of substrate and redox partner binding of P450cam to its close homologue, CYP101D1, using isothermal titration calorimetry (ITC). CYP101D1 binds camphor about 10-fold more weakly than P450cam which is consistent with the inability of camphor to cause a complete low- to high-spin shift in CYP101D1. Even so molecular dynamics simulations show that camphor is very stable in the CYP101D1 active site similar to P450cam. ITC data on the binding of the CYP101D1 ferredoxin redox partner (abbreviated Arx) shows that the substrate-bound closed state of CYP101D1 binds Arx more tightly than the substrate-free open form. This is just the opposite to P450cam where Pdx (ferredoxin redox partner of P450cam) favors binding to the P450cam open state. In addition, CYP101D1-Arx binding has a large negative ΔS while the P450cam-Pdx has a much smaller ΔS indicating that interactions at the docking interface are different. The most obvious difference is that PDX D38 which forms an important ion pair with P450cam R112 at the center of the interface is Arx L39 in Arx. This suggests that Arx may adopt a different orientation than Pdx in order to optimize nonpolar interactions with Arx L39 . Copyright © 2018. Published by Elsevier Inc.

  14. Molecular details of the yeast frataxin-Isu1 interaction during mitochondrial Fe-S cluster assembly

    PubMed Central

    Cook, Jeremy D.; Kondapalli, Kalyan C.; Rawat, Swati; Childs, William C.; Murugesan, Yogapriya; Dancis, Andrew; Stemmler, Timothy L.

    2010-01-01

    Frataxin, a conserved nuclear encoded mitochondrial protein, plays a direct role in iron-sulfur cluster biosynthesis within the ISC assembly pathway. Humans with frataxin deficiency have Friedreich’s ataxia, a neurodegenerative disorder characterized by mitochondrial iron overload and disruption in Fe-S cluster synthesis. Biochemical and genetic studies have shown frataxin interacts with the iron-sulfur cluster assembly scaffold protein (in yeast, there are two: Isu1 and Isu2), indicating frataxin plays a direct role in cluster assembly, possibly by serving as an iron chaperone n the assembly pathway. Here we provide molecular details of how yeast frataxin (Yfh1) interacts with Isu1 as a structural module to better understand the multiprotein complex assembly that completes Fe-S cluster assembly; this complex also includes the cysteine desulfurase (Nfs1 in yeast) and the accessory protein (Isd11), together in the mitochondria. Thermodynamic binding parameters for protein partner and iron binding were measured for the yeast orthologs using isothermal titration calorimetry (ITC). Nuclear magnetic resonance spectroscopy was used to provide the molecular details to understand how Yfh1 interacts with Isu1. X-ray absorption studies were used to electronically and structurally characterize how iron is transferred to Isu1 and then incorporated into a Fe-S cluster. These results were combined with previously published data to generate a structural model for how the Fe-S cluster protein assembly complex can come together to accomplish Fe-S cluster assembly. PMID:20815377

  15. Crystal Structure of the Dithiol Oxidase DsbA Enzyme from Proteus Mirabilis Bound Non-covalently to an Active Site Peptide Ligand

    PubMed Central

    Kurth, Fabian; Duprez, Wilko; Premkumar, Lakshmanane; Schembri, Mark A.; Fairlie, David P.; Martin, Jennifer L.

    2014-01-01

    The disulfide bond forming DsbA enzymes and their DsbB interaction partners are attractive targets for development of antivirulence drugs because both are essential for virulence factor assembly in Gram-negative pathogens. Here we characterize PmDsbA from Proteus mirabilis, a bacterial pathogen increasingly associated with multidrug resistance. PmDsbA exhibits the characteristic properties of a DsbA, including an oxidizing potential, destabilizing disulfide, acidic active site cysteine, and dithiol oxidase catalytic activity. We evaluated a peptide, PWATCDS, derived from the partner protein DsbB and showed by thermal shift and isothermal titration calorimetry that it binds to PmDsbA. The crystal structures of PmDsbA, and the active site variant PmDsbAC30S were determined to high resolution. Analysis of these structures allows categorization of PmDsbA into the DsbA class exemplified by the archetypal Escherichia coli DsbA enzyme. We also present a crystal structure of PmDsbAC30S in complex with the peptide PWATCDS. The structure shows that the peptide binds non-covalently to the active site CXXC motif, the cis-Pro loop, and the hydrophobic groove adjacent to the active site of the enzyme. This high-resolution structural data provides a critical advance for future structure-based design of non-covalent peptidomimetic inhibitors. Such inhibitors would represent an entirely new antibacterial class that work by switching off the DSB virulence assembly machinery. PMID:24831013

  16. Binding and Inhibition of Spermidine Synthase from Plasmodium falciparum and Implications for In Vitro Inhibitor Testing

    PubMed Central

    Sprenger, Janina; Carey, Jannette; Svensson, Bo; Wengel, Verena

    2016-01-01

    The aminopropyltransferase spermidine synthase (SpdS) is a promising drug target in cancer and in protozoan diseases including malaria. Plasmodium falciparum SpdS (PfSpdS) transfers the aminopropyl group of decarboxylated S-adenosylmethionine (dcAdoMet) to putrescine or to spermidine to form spermidine or spermine, respectively. In an effort to understand why efficient inhibitors of PfSpdS have been elusive, the present study uses enzyme activity assays and isothermal titration calorimetry with verified or predicted inhibitors of PfSpdS to analyze the relationship between binding affinity as assessed by KD and inhibitory activity as assessed by IC50. The results show that some predicted inhibitors bind to the enzyme with high affinity but are poor inhibitors. Binding studies with PfSpdS substrates and products strongly support an ordered sequential mechanism in which the aminopropyl donor (dcAdoMet) site must be occupied before the aminopropyl acceptor (putrescine) site can be occupied. Analysis of the results also shows that the ordered sequential mechanism adequately accounts for the complex relationship between IC50 and KD and may explain the limited success of previous efforts at structure-based inhibitor design for PfSpdS. Based on PfSpdS active-site occupancy, we suggest a classification of ligands that can help to predict the KD−IC50 relations in future design of new inhibitors. The present findings may be relevant for other drug targets that follow an ordered sequential mechanism. PMID:27661085

  17. RVX-297- a novel BD2 selective inhibitor of BET bromodomains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharenko, Olesya A., E-mail: olesya@zenithepigenetics.com; Gesner, Emily M.; Patel, Reena G.

    Bromodomains are epigenetic readers that specifically bind to the acetyl lysine residues of histones and transcription factors. Small molecule BET bromodomain inhibitors can disrupt this interaction which leads to potential modulation of several disease states. Here we describe the binding properties of a novel BET inhibitor RVX-297 that is structurally related to the clinical compound RVX-208, currently undergoing phase III clinical trials for the treatment of cardiovascular diseases, but is distinctly different in its biological and pharmacokinetic profiles. We report that RVX-297 preferentially binds to the BD2 domains of the BET bromodomain and Extra Terminal (BET) family of protein. Wemore » demonstrate the differential binding modes of RVX-297 in BD1 and BD2 domains of BRD4 and BRD2 using X-ray crystallography, and describe the structural differences driving the BD2 selective binding of RVX-297. The isothermal titration calorimetry (ITC) data illustrate the related differential thermodynamics of binding of RVX-297 to single as well as dual BET bromodomains. - Highlights: • A novel inhibitor of BET bromodomains, RVX-297 is described. • The differential binding modes of RVX-297 in BD1 and BD2 domains of BRD4 and BRD2 using X-ray crystallography are described. • RVX-297 preferentially binds to the BD2 domains of the BET bromodomains. • The structural and thermodynamic properties of the BD2 selective binding of RVX-297 are characterized.« less

  18. Superrepression through Altered Corepressor-Activated Protein:Protein Interactions.

    PubMed

    He, Chenlu; Custer, Gregory; Wang, Jingheng; Matysiak, Silvina; Beckett, Dorothy

    2018-02-20

    Small molecules regulate transcription in both eukaryotes and prokaryotes by either enhancing or repressing assembly of transcription regulatory complexes. For allosteric transcription repressors, superrepressor mutants can exhibit increased sensitivity to small molecule corepressors. However, because many transcription regulatory complexes assemble in multiple steps, the superrepressor phenotype can reflect changes in any or all of the individual assembly steps. Escherichia coli biotin operon repression complex assembly, which responds to input biotin concentration, occurs via three coupled equilibria, including corepressor binding, holorepressor dimerization, and binding of the dimer to DNA. A genetic screen has yielded superrepressor mutants that repress biotin operon transcription in vivo at biotin concentrations much lower than those required by the wild type repressor. In this work, isothermal titration calorimetry and sedimentation measurements were used to determine the superrepressor biotin binding and homodimerization properties. The results indicate that, although all variants exhibit biotin binding affinities similar to that measured for BirA wt , five of the six superrepressors show altered homodimerization energetics. Molecular dynamics simulations suggest that the altered dimerization results from perturbation of an electrostatic network that contributes to allosteric activation of BirA for dimerization. Modeling of the multistep repression complex assembly for these proteins reveals that the altered sensitivity of the transcription response to biotin concentration is readily explained solely by the altered superrepressor homodimerization energetics. These results highlight how coupled equilibria enable alterations in a transcription regulatory response to input signal through an indirect mechanism.

  19. A universal entropy-driven mechanism for thioredoxin–target recognition

    PubMed Central

    Palde, Prakash B.; Carroll, Kate S.

    2015-01-01

    Cysteine residues in cytosolic proteins are maintained in their reduced state, but can undergo oxidation owing to posttranslational modification during redox signaling or under conditions of oxidative stress. In large part, the reduction of oxidized protein cysteines is mediated by a small 12-kDa thiol oxidoreductase, thioredoxin (Trx). Trx provides reducing equivalents for central metabolic enzymes and is implicated in redox regulation of a wide number of target proteins, including transcription factors. Despite its importance in cellular redox homeostasis, the precise mechanism by which Trx recognizes target proteins, especially in the absence of any apparent signature binding sequence or motif, remains unknown. Knowledge of the forces associated with the molecular recognition that governs Trx–protein interactions is fundamental to our understanding of target specificity. To gain insight into Trx–target recognition, we have thermodynamically characterized the noncovalent interactions between Trx and target proteins before S-S reduction using isothermal titration calorimetry (ITC). Our findings indicate that Trx recognizes the oxidized form of its target proteins with exquisite selectivity, compared with their reduced counterparts. Furthermore, we show that recognition is dependent on the conformational restriction inherent to oxidized targets. Significantly, the thermodynamic signatures for multiple Trx targets reveal favorable entropic contributions as the major recognition force dictating these protein–protein interactions. Taken together, our data afford significant new insight into the molecular forces responsible for Trx–target recognition and should aid the design of new strategies for thiol oxidoreductase inhibition. PMID:26080424

  20. A Key Evolutionary Mutation Enhances DNA Binding of the FOXP2 Forkhead Domain.

    PubMed

    Morris, Gavin; Fanucchi, Sylvia

    2016-04-05

    Forkhead box (FOX) transcription factors share a conserved forkhead DNA binding domain (FHD) and are key role players in the development of many eukaryotic species. Their involvement in various congenital disorders and cancers makes them clinically relevant targets for novel therapeutic strategies. Among them, the FOXP subfamily of multidomain transcriptional repressors is unique in its ability to form DNA binding homo and heterodimers. The truncated FOXP2 FHD, in the absence of the leucine zipper, exists in equilibrium between monomeric and domain-swapped dimeric states in vitro. As a consequence, determining the DNA binding properties of the FOXP2 FHD becomes inherently difficult. In this work, two FOXP2 FHD hinge loop mutants have been generated to successfully prevent both the formation (A539P) and the dissociation (F541C) of the homodimers. This allows for the separation of the two species for downstream DNA binding studies. Comparison of DNA binding of the different species using electrophoretic mobility shift assay, fluorescence anisotropy and isothermal titration calorimetry indicates that the wild-type FOXP2 FHD binds DNA as a monomer. However, comparison of the DNA-binding energetics of the monomer and wild-type FHD, reveals that there is a difference in the mechanism of binding between the two species. We conclude that the naturally occurring reverse mutation (P539A) seen in the FOXP subfamily increases DNA binding affinity and may increase the potential for nonspecific binding compared to other FOX family members.

Top