Science.gov

Sample records for isotope abundance analysis

  1. Isotopic abundance in atom trap trace analysis

    SciTech Connect

    Lu, Zheng-Tian; Hu, Shiu-Ming; Jiang, Wei; Mueller, Peter

    2014-03-18

    A method and system for detecting ratios and amounts of isotopes of noble gases. The method and system is constructed to be able to measure noble gas isotopes in water and ice, which helps reveal the geological age of the samples and understand their movements. The method and system uses a combination of a cooled discharge source, a beam collimator, a beam slower and magneto-optic trap with a laser to apply resonance frequency energy to the noble gas to be quenched and detected.

  2. Measurement of isotope abundance variations in nature by gravimetric spiking isotope dilution analysis (GS-IDA).

    PubMed

    Chew, Gina; Walczyk, Thomas

    2013-04-02

    Subtle variations in the isotopic composition of elements carry unique information about physical and chemical processes in nature and are now exploited widely in diverse areas of research. Reliable measurement of natural isotope abundance variations is among the biggest challenges in inorganic mass spectrometry as they are highly sensitive to methodological bias. For decades, double spiking of the sample with a mix of two stable isotopes has been considered the reference technique for measuring such variations both by multicollector-inductively coupled plasma mass spectrometry (MC-ICPMS) and multicollector-thermal ionization mass spectrometry (MC-TIMS). However, this technique can only be applied to elements having at least four stable isotopes. Here we present a novel approach that requires measurement of three isotope signals only and which is more robust than the conventional double spiking technique. This became possible by gravimetric mixing of the sample with an isotopic spike in different proportions and by applying principles of isotope dilution for data analysis (GS-IDA). The potential and principle use of the technique is demonstrated for Mg in human urine using MC-TIMS for isotopic analysis. Mg is an element inaccessible to double spiking methods as it consists of three stable isotopes only and shows great potential for metabolically induced isotope effects waiting to be explored.

  3. Ion Mobility Mass Spectrometry Direct Isotope Abundance Analysis

    SciTech Connect

    Manuel J. Manard, Stephan Weeks, Kevin Kyle

    2010-05-27

    The nuclear forensics community is currently engaged in the analysis of illicit nuclear or radioactive material for the purposes of non-proliferations and attribution. One technique commonly employed for gathering nuclear forensics information is isotope analysis. At present, the state-of-the-art methodology for obtaining isotopic distributions is thermal ionization mass spectrometry (TIMS). Although TIMS is highly accurate at determining isotope distributions, the technique requires an elementally pure sample to perform the measurement. The required radiochemical separations give rise to sample preparation times that can be in excess of one to two weeks. Clearly, the nuclear forensics community is in need of instrumentation and methods that can expedite their decision making process in the event of a radiological release or nuclear detonation. Accordingly, we are developing instrumentation that couples a high resolution IM drift cell to the front end of a MS. The IM cell provides a means of separating ions based upon their collision cross-section and mass-to-charge ratio (m/z). Two analytes with the same m/z, but with different collision cross-sections (shapes) would exit the cell at different times, essentially enabling the cell to function in a similar manner to a gas chromatography (GC) column. Thus, molecular and atomic isobaric interferences can be effectively removed from the ion beam. The mobility selected chemical species could then be introduced to a MS for high-resolution mass analysis to generate isotopic distributions of the target analytes. The outcome would be an IM/MS system capable of accurately measuring isotopic distributions while concurrently eliminating isobaric interferences and laboratory radiochemical sample preparation. The overall objective of this project is developing instrumentation and methods to produce near real-time isotope distributions with a modular mass spectrometric system that performs the required gas-phase chemistry and

  4. ANALYSIS OF RICIN TOXIN PREPARATIONS FOR CARBOHYDRATE AND FATTY ACID ABUNDANCE AND ISOTOPE RATIO INFORMATION

    SciTech Connect

    Wunschel, David S.; Kreuzer-Martin, Helen W.; Antolick, Kathryn C.; Colburn, Heather A.; Moran, James J.; Melville, Angela M.

    2009-12-01

    This report describes method development and preliminary evaluation for analyzing castor samples for signatures of purifying ricin. Ricin purification from the source castor seeds is essentially a problem of protein purification using common biochemical methods. Indications of protein purification will likely manifest themselves as removal of the non-protein fractions of the seed. Two major, non-protein, types of biochemical constituents in the seed are the castor oil and various carbohydrates. The oil comprises roughly half the seed weight while the carbohydrate component comprises roughly half of the remaining “mash” left after oil and hull removal. Different castor oil and carbohydrate components can serve as indicators of specific toxin processing steps. Ricinoleic acid is a relatively unique fatty acid in nature and is the most abundant component of castor oil. The loss of ricinoleic acid indicates a step to remove oil from the seeds. The relative amounts of carbohydrates and carbohydrate-like compounds, including arabinose, xylose, myo-inositol fucose, rhamnose, glucosamine and mannose detected in the sample can also indicate specific processing steps. For instance, the differential loss of arabinose relative to mannose and N-acetyl glucosamine indicates enrichment for the protein fraction of the seed using protein precipitation. The methods developed in this project center on fatty acid and carbohydrate extraction from castor samples followed by derivatization to permit analysis by gas chromatography-mass spectrometry (GC-MS). Method descriptions herein include: the source and preparation of castor materials used for method evaluation, the equipment and description of procedure required for chemical derivatization, and the instrument parameters used in the analysis. Two types of derivatization methods describe analysis of carbohydrates and one procedure for analysis of fatty acids. Two types of GC-MS analysis is included in the method development, one

  5. {sup 39}Ar Detection at the 10{sup -16} Isotopic Abundance Level with Atom Trap Trace Analysis

    SciTech Connect

    Jiang, W.; Williams, W.; Bailey, K.; O'Connor, T. P.; Mueller, P.; Davis, A. M.; Hu, S.-M.; Sun, Y. R.; Lu, Z.-T.; Purtschert, R.; Sturchio, N. C.

    2011-03-11

    Atom trap trace analysis, a laser-based atom counting method, has been applied to analyze atmospheric {sup 39}Ar (half-life=269 yr), a cosmogenic isotope with an isotopic abundance of 8x10{sup -16}. In addition to the superior selectivity demonstrated in this work, the counting rate and efficiency of atom trap trace analysis have been improved by 2 orders of magnitude over prior results. The significant applications of this new analytical capability lie in radioisotope dating of ice and water samples and in the development of dark matter detectors.

  6. Sims Analysis of Water Abundance and Hydrogen Isotope in Lunar Highland Plagioclase

    NASA Technical Reports Server (NTRS)

    Hui, Hejiu; Guan, Yunbin; Chen, Yang; Peslier, Anne H.; Zhang, Youxue; Liu, Yang; Rossman, George R.; Eiler, John M.; Neal, Clive R.

    2015-01-01

    The detection of indigenous water in mare basaltic glass beads has challenged the view established since the Apollo era of a "dry" Moon. Since this discovery, measurements of water in lunar apatite, olivine-hosted melt inclusions, agglutinates, and nominally anhydrous minerals have confirmed that lunar igneous materials contain water, implying that some parts of lunar mantle may have as much water as Earth's upper mantle. The interpretation of hydrogen (H) isotopes in lunar samples, however, is controversial. The large variation of H isotope ratios in lunar apatite (delta Deuterium = -202 to +1010 per mille) has been taken as evidence that water in the lunar interior comes from the lunar mantle, solar wind protons, and/or comets. The very low deuterium/H ratios in lunar agglutinates indicate that solar wind protons have contributed to their hydrogen content. Conversely, H isotopes in lunar volcanic glass beads and olivine-hosted melt inclusions being similar to those of common terrestrial igneous rocks, suggest a common origin for water in both Earth and Moon. Lunar water could be inherited from carbonaceous chondrites, consistent with the model of late accretion of chondrite-type materials to the Moon as proposed by. One complication about the sources of lunar water, is that geologic processes (e.g., late accretion and magmatic degassing) may have modified the H isotope signatures of lunar materials. Recent FTIR analyses have shown that plagioclases in lunar ferroan anorthosite contain approximately 6 ppm H2O. So far, ferroan anorthosite is the only available lithology that is believed to be a primary product of the lunar magma ocean (LMO). A possible consequence is that the LMO could have contained up to approximately 320 ppm H2O. Here we examine the possible sources of water in the LMO through measurements of water abundances and H isotopes in plagioclase of two ferroan anorthosites and one troctolite from lunar highlands.

  7. MGA (Multi-Group Analysis): A gamma-ray spectrum analysis code for determining plutonium isotopic abundances

    SciTech Connect

    Gunnink, R

    1990-04-03

    Nondestructive measurements of x-ray and gamma-ray emissions can be used to analyze a sample for plutonium. This report describes the methods and algorithms we have developed for analyzing gamma-ray spectra obtained by using a germanium detector system to accurately determine the relative abundances of various actinide isotopes in a sample. Our methodology requires no calibrations and can be used to measure virtually any size and type of plutonium sample. Measurement times can be as short as a few minutes; measurements are frequently accurate to within 1%. Our methods have been programmed into a computerized analysis code called MGA (Multi-Group Analysis). Our current versions can be run on personal computers (IBM type) and on the DEC VAX microcomputer. Spectral analysis times are usually far less than a minute. 28 refs., 26 figs., 1 tab.

  8. A robust method for ammonium nitrogen isotopic analysis in freshwater and seawater at natural abundance levels

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Altabet, M. A.; Wu, T.; Hadas, O.

    2006-12-01

    Natural ammonium N isotopic abundance has been increasingly used in studies of marine and freshwater biogeochemistry. However, current methods are time-consuming, subject to interference from DON, and not reliable at low concentrations. Our new method for determining the δ15N of ammonium overcomes these difficulties by employing the oxidation of ammonium to nitrite followed by conversion of nitrite to nitrous oxide. In the first step, ammonium is quantitatively oxidized by hypobromite at pH~12. After the addition of sodium arsenite to consume excess hypobromite, yield is verified by colorimetric NO2-measurement using sulfanilamide and naphthyl ethylenediamine (NED). Nitrite is further reduced to N2O by a 1:1 sodium azide and acetic acid buffer solution using previously established procedures. Buffer concentration can be varied according to sample matrix to ensure that a reaction pH between 2 and 4 is reached. The product nitrous oxide is then isotopically analyzed using a continuous flow purge and cryogenic trap system coupled to an isotope ratio mass spectrometer. Reliable δ15N values (±0.31‰) are obtained over a concentration range of 0.5 μM to 20 μM using 20 ml volumes of either fresh or seawater samples. Reagent blanks are very low, about 0.05 μM. There is no interference from any of the nitrogen containing compounds tested except short chain aliphatic amino acid (i.e. glycine) which typically are not present at sufficiently high environmental concentrations to pose a problem.

  9. Paleodietary reconstruction using stable isotopes and abundance analysis of bovids from the Shungura Formation of South Omo, Ethiopia.

    PubMed

    Negash, Enquye W; Alemseged, Zeresenay; Wynn, Jonathan G; Bedaso, Zelalem K

    2015-11-01

    Preservation of the stable carbon isotopic composition of fossil tooth enamel enables us to estimate the relative proportion of C3 versus C4 vegetation in an animal's diet, which, combined with analysis of faunal abundance, may provide complementary methods of paleoenvironmental reconstruction. To this end, we analyzed stable carbon isotopic composition (δ(13)C values) of tooth enamel from four bovid tribes (Tragelaphini, Aepycerotini, Reduncini, and Alcelaphini) derived from six members of the Shungura Formation (Members B, C, D, F, G, and L; ages from ca. 2.90-1.05 Ma (millions of years ago) in the Lower Omo Valley of southwestern Ethiopia. The bovids show a wide range of δ(13)C values within taxa and stratigraphic members, as well as temporal changes in the feeding strategies of taxa analyzed throughout the middle to late Pliocene and early Pleistocene. Such variation suggests that the use of actualistic approaches for paleoenvironmental reconstruction may not always be warranted. Alcelaphini was the only taxon analyzed that retained a consistent dietary preference throughout the sequence, with entirely C4-dominated diets. Reduncini had a mixed C3/C4 to C4-dominated diet prior to 2.4 Ma, after which this taxon shifted to a largely C4-dominated diet. Aepycerotini generally showed a mixed C3/C4 diet, with a period of increased C4 diet from 2.5 to 2.3 Ma. Tragelaphini showed a range of mixed C3/C4 diets, with a median value that was briefly nearer the C4 end member from 2.9 to 2.4 Ma but was otherwise towards the C3 end member. These isotopic results, combined with relative abundance data for these bovids, imply that the environment of the Lower Omo Valley consisted of a mosaic of closed woodlands, with riverine forests and open grasslands. However, our data also signify that the overall environment gradually became more open, and that C4 grasses became more dominant. Finally, these results help document the range and extent of environments and potential diets

  10. MGA: A gamma-ray spectrum analysis code for determining plutonium isotopic abundances. Volume 3, FORTRAN listing of the GA code

    SciTech Connect

    Gunnink, R

    1991-09-01

    Nondestructive measurements of x-ray and gamma-ray emissions can be used to determine the abundances of various actinides in a sample. Volume 1 of this report describes the methods and algorithms we have developed to determine the relative isotopic abundances of actinides in a sample, by analyzing gamma-ray spectra obtained using germanium detector systems. Volume 2 is a guide to using the MGA (Multiple Group Analysis) computer program we have written to perform plutonium isotopic analyses. This report contains a listing of the FORTRAN instructions of the code.

  11. Helium isotopic abundance variation in nature

    SciTech Connect

    Holden, N.E.

    1993-08-01

    The isotopic abundance of helium in nature has been reviewed. This atomic weight value is based on the value of helium in the atmosphere, which is invariant around the world and up to a distance of 100,000 feet. Helium does vary in natural gas, volcanic rocks and gases, ocean floor sediments, waters of various types and in radioactive minerals and ores due to {alpha} particle decay of radioactive nuclides.

  12. The new face of isotopic NMR at natural abundance.

    PubMed

    Jézéquel, Tangi; Joubert, Valentin; Giraudeau, Patrick; Remaud, Gérald S; Akoka, Serge

    2017-02-01

    The most widely used method for isotope analysis at natural abundance is isotope ratio monitoring by Mass Spectrometry (irm-MS) which provides bulk isotopic composition in (2) H, (13) C, (15) N, (18) O or (34) S. However, in the 1980s, the direct access to Site-specific Natural Isotope Fractionation by Nuclear Magnetic Resonance (SNIF-NMR(TM) ) was immediately recognized as a powerful technique to authenticate the origin of natural or synthetic products. The initial - and still most popular - application consisted in detecting the chaptalization of wines by irm-(2) H NMR. The approach has been extended to a wide range of methodologies over the last decade, paving the way to a wide range of applications, not only in the field of authentication but also to study metabolism. In particular, the emerging irm-(13) C NMR approach delivers direct access to position-specific (13) C isotope content at natural abundance. After highlighting the application scope of irm-NMR ((2) H and (13) C), this article describes the major improvements which made possible to reach the required accuracy of 1‰ (0.1%) in irm-(13) C NMR. The last part of the manuscript summarizes the different steps to perform isotope analysis as a function of the sample properties (concentration, peak overlap) and the kind of targeted isotopic information (authentication, affiliation). Copyright © 2016 John Wiley & Sons, Ltd.

  13. Raman scattering method and apparatus for measuring isotope ratios and isotopic abundances

    DOEpatents

    Harney, Robert C.; Bloom, Stewart D.

    1978-01-01

    Raman scattering is used to measure isotope ratios and/or isotopic abundances. A beam of quasi-monochromatic photons is directed onto the sample to be analyzed, and the resulting Raman-scattered photons are detected and counted for each isotopic species of interest. These photon counts are treated mathematically to yield the desired isotope ratios or isotopic abundances.

  14. THE ATOMIC WEIGHTS COMMISSION AND ISOTOPIC ABUNDANCE RATIO DETERMINATIONS.

    SciTech Connect

    HOLDEN, N.E.

    2005-08-07

    Following Thomson's discovery of stable isotopes in non-radioactive chemical elements, the derivation of atomic weight values from mass spectrometric measurements of isotopic abundance ratios moved very slowly. Forty years later, only 3 1/2 % of the recommended values were based on mass spectrometric measurements and only 38% in the first half century. It might be noted that two chemical elements (tellurium and mercury) are still based on chemical measurements, where the atomic weight value calculated from the relative isotopic abundance measurement either agrees with the value from the chemical measurement or the atomic weight value calculated from the relative isotopic abundance measurement falls within the uncertainty of the chemical measurement of the atomic weight. Of the 19 chemical elements, whose atomic weight is based on non-corrected relative isotopic abundance measurements, five of these are two isotope systems (indium, iridium, lanthanum, lutetium and tantalum) and one is a three-isotope system (oxygen).

  15. The Abundance and Isotopic Composition of Hg in Extraterrestrial Materials

    NASA Technical Reports Server (NTRS)

    Lauretta, D. S.

    2004-01-01

    During the past three year grant period we made excellent progress in our study of the abundances and isotopic compositions of Hg and other volatile trace elements in extraterrestrial materials. As part of my startup package I received funds to construct a state-of-the-art experimental facility to study gas-solid reaction kinetics. Much of our effort was spent developing the methodology to measure the abundance and isotopic composition of Hg at ultratrace levels in solid materials. In our first study, the abundance and isotopic composition of Hg was determined in bulk samples of the Murchison (CM) and Allende (CV) carbonaceous chondrites. We have continued our study of mercury in primitive meteorites and expanded the suite of meteorites to include other members of the CM and CV chondrite group as well as CI and CO chondrites. Samples of the CI chondrite Orgueil, the CM chondrites Murray, Nogoya, and Cold Bokkeveld, the CO chondrites Kainsaz, Omans, and Isna, and the CV chondrites Vigarano, Mokoia, and Grosnaja were tested. We have developed a thermal analysis ICP-MS technique and applied it to the study of a suite of thermally labile elements (Zn, As, Se, Cd, In, Sn, Sb, Te, Hg, Au, Tl, Pb, and Bi) in geologic materials as well.

  16. Resonance ionization mass spectrometry for isotopic abundance measurements

    NASA Technical Reports Server (NTRS)

    Miller, C. M.

    1986-01-01

    Resonance ionization mass spectrometry (RIMS) is a relatively new laser-based technique for the determination of isotopic abundances. The resonance ionization process depends upon the stepwise absorption of photons from the laser, promoting atoms of the element of interest through progressively higher electronic states until an ion is formed. Sensitivity arises from the efficiency of the resonant absorption process when coupled with the power available from commercial laser sources. Selectivity derives naturally from the distinct electronic structure of different elements. This isobaric discrimination has provided the major impetus for development of the technique. Resonance ionization mass spectrometry was used for analysis of the isotopic abundances of the rare earth lutetium. Isobaric interferences from ytterbium severely effect the ability to measure small amounts of the neutron-deficient Lu isotopes by conventional mass spectrometric techniques. Resonance ionization for lutetium is performed using a continuous-wave laser operating at 452 nm, through a sequential two-photon process, with one photon exciting the intermediate resonance and the second photon causing ionization. Ion yields for microgram-sized quantities of lutetium lie between 10(6) and 10(7) ions per second, at overall ionization efficiencies approaching 10(-4). Discrimination factors against ytterbium greater than 10(6) have been measured. Resonance ionization for technetium is also being explored, again in response to an isobaric interference, molybdenum. Because of the relatively high ionization potential for Tc, three-photon, two-color RIMS processes are being developed.

  17. The Abundance and Isotopic Composition of Hg in Extraterrestrial Materials

    NASA Technical Reports Server (NTRS)

    Blum, J. D.; Klaue, Bjorn

    2005-01-01

    During the three year grant period we made excellent progress in our study of the abundances and isotopic compositions of Hg and other volatile trace elements in extraterrestrial materials. At the time the grant started, our collaborating PI, Dante Lauretts, was a postdoctoral research associate working with Peter Buseck at Arizona State University. The work on chondritic Hg was done in collaboration with Dante Lauretta and Peter Buseck and this study was published in Lauretta et a1 (2001a). In July, 2001 Dante Lauretta accepted a position as an Assistant Professor in the Lunar and Planetary Laboratory at the University of Arizona. His funding was transferred and this grant has supported much of his research activities during his first two years at the U of A. Several other papers are in preparation and will be published soon. We presented papers on this topic at Goldschmidt Conferences, the Lunar and Planetary Science Conferences, and the Annual Meetings of the Meteoritical Society. The work done under this grant has spurred several new directions of inquiry, which we are still pursuing. Included in this paper are the studies of bulk abundances and isotopic compositions of metreoritic Mercury, and the development of a thermal analysis ICP-MS technique applied to thermally liable elements.

  18. Elemental and isotopic abundances in the solar wind

    NASA Technical Reports Server (NTRS)

    Geiss, J.

    1972-01-01

    The use of collecting foils and lunar material to assay the isotopic composition of the solar wind is reviewed. Arguments are given to show that lunar surface correlated gases are likely to be most useful in studying the history of the solar wind, though the isotopic abundances are thought to give a good approximation to the solar wind composition. The results of the analysis of Surveyor material are also given. The conditions leading to a significant component of the interstellar gas entering the inner solar system are reviewed and suggestions made for experimental searches for this fraction. A critical discussion is given of the different ways in which the basic solar composition could be modified by fractionation taking place between the sun's surface and points of observation such as on the Moon or in interplanetary space. An extended review is made of the relation of isotopic and elemental composition of the interplanetary gas to the dynamic behavior of the solar corona, especially processes leading to fractionation. Lastly, connection is made between the subject of composition, nucleosynthesis and the convective zone of the sun, and processes leading to modification of initial accretion of certain gases on the Earth and Moon.

  19. LITERATURE SURVEY ON ISOTOPIC ABUNDANCE RATIO MEASUREMENTS - 2001-2005

    SciTech Connect

    HOLDEN, N.E.

    2005-08-13

    Along with my usual weekly review of the published literature for new nuclear data, I also search for new candidates for best measurements of isotopic abundances from a single source. Most of the published articles, that I previously had found in the Research Library at the Brookhaven Lab, have already been sent to the members of the Atomic Weights Commission, by either Michael Berglund or Thomas Walczyk. In the last few days, I checked the published literature for any other articles in the areas of natural variations in isotopic abundance ratios, measurements of isotopic abundance ratios on samples of extra-terrestrial material and isotopic abundance ratio measurements performed using ICPMS instruments. Hopefully this information will be of interest to members of the Commission, the sub-committee on isotopic abundance measurements (SIAM), members of the former sub-committee on natural isotopic fractionation (SNIF), the sub-committee on extra-terrestrial isotope ratios (SETIR), the RTCE Task Group and the Guidelines Task Group, who are dealing with ICPMS and TIMS comparisons. In the following report, I categorize the publications in one of four areas. Measurements performed using either positive or negative ions with Thermal Ionization Mass Spectrometer, TIMS, instruments; measurements performed on Inductively Coupled Plasma Mass Spectrometer, ICPMS, instruments; measurements of natural variations of the isotopic abundance ratios; and finally measurements on extra-terrestrial samples with instrumentation of either type. There is overlap in these areas. I selected out variations and ET results first and then categorized the rest of the papers by TIMS and ICPMS.

  20. Literature survey of isotopic abundance data for 1987-1989

    SciTech Connect

    Holden, N.E. )

    1989-08-09

    I have compiled all of the data on isotopic abundance measurements and their variation in nature for the time period since the last General Assembly. Most of the data deals with the variations in the abundances as given by per mil deviations from some standard. As such, they are not of major interest to the Atomic Weights Commission. However, there were some measurements which are of general interest in this list.

  1. Isotope-abundance variations of selected elements (IUPAC technical report)

    USGS Publications Warehouse

    Coplen, T.B.; Böhlke, J.K.; De Bievre, P.; Ding, T.; Holden, N.E.; Hopple, J.A.; Krouse, H.R.; Lamberty, A.; Peiser, H.S.; Revesz, K.; Rieder, S.E.; Rosman, K.J.R.; Roth, E.; Taylor, P.D.P.; Vocke, R.D.; Xiao, Y.K.

    2002-01-01

    Documented variations in the isotopic compositions of some chemical elements are responsible for expanded uncertainties in the standard atomic weights published by the Commission on Atomic Weights and Isotopic Abundances of the International Union of Pure and Applied Chemistry. This report summarizes reported variations in the isotopic compositions of 20 elements that are due to physical and chemical fractionation processes (not due to radioactive decay) and their effects on the standard atomic-weight uncertainties. For 11 of those elements (hydrogen, lithium, boron, carbon, nitrogen, oxygen, silicon, sulfur, chlorine, copper, and selenium), standard atomic-weight uncertainties have been assigned values that are substantially larger than analytical uncertainties because of common isotope-abundance variations in materials of natural terrestrial origin. For 2 elements (chromium and thallium), recently reported isotope-abundance variations potentially are large enough to result in future expansion of their atomic-weight uncertainties. For 7 elements (magnesium, calcium, iron, zinc, molybdenum, palladium, and tellurium), documented isotope variations in materials of natural terrestrial origin are too small to have a significant effect on their standard atomic-weight uncertainties. This compilation indicates the extent to which the atomic weight of an element in a given material may differ from the standard atomic weight of the element. For most elements given above, data are graphically illustrated by a diagram in which the materials are specified in the ordinate and the compositional ranges are plotted along the abscissa in scales of (1) atomic weight, (2) mole fraction of a selected isotope, and (3) delta value of a selected isotope ratio.

  2. The abundance and isotopic composition of water in eucrites

    NASA Astrophysics Data System (ADS)

    Barrett, T. J.; Barnes, J. J.; TartèSe, R.; Anand, M.; Franchi, I. A.; Greenwood, R. C.; Charlier, B. L. A.; Grady, M. M.

    2016-06-01

    Volatile elements play a key role in the dynamics of planetary evolution. Extensive work has been carried out to determine the abundance, distribution, and source(s) of volatiles in planetary bodies such as the Earth, Moon, and Mars. A recent study showed that the water in apatite from eucrites has similar hydrogen isotopic compositions compared to water in terrestrial rocks and carbonaceous chondrites, suggesting that water accreted very early in the inner solar system given the ancient crystallization ages (~4.5 Ga) of eucrites. Here, the measurements of water (reported as equivalent H2O abundances) and the hydrogen isotopic composition (δD) of apatite from five basaltic eucrites and one cumulate eucrite are reported. Apatite H2O abundances range from ~30 to ~3500 ppm and are associated with a weighted average δD value of -34 ± 67‰. No systematic variations or correlations are observed in H2O abundance or δD value with eucrite geochemical trend or metamorphic grade. These results extend the range of previously published hydrogen isotope data for eucrites and confirm the striking homogeneity in the H-isotopic composition of water in eucrites, which is consistent with a common source for water in the inner solar system.

  3. Mass Spectrometric Measurement of Martian Krypton and Xenon Isotopic Abundance

    NASA Technical Reports Server (NTRS)

    Mahaffy, P.; Mauersberger, K.

    1993-01-01

    The Viking gas chromatograph mass spectrometer experiment provided significant data on the atmospheric composition at the surface of Mars, including measurements of several isotope ratios. However, the limited dynamic range of this mass spectrometer resulted in marginal measurements for the important Kr and Xe isotopic abundance. The Xe-129 to Xe-132 ratio was measured with an uncertainty of 70%, but none of the other isotope ratios for these species were obtained. Accurate measurement of the Xe and Kr isotopic abundance in this atmosphere provides an important data point in testing theories of planetary formation and atmospheric evolution. The measurement is also essential for a stringent test for the Martian origin of the SNC meteorites, since the Kr and Xe fractionation pattern seen in gas trapped in glassy nodules of an SNC (EETA 79001) is unlike any other known solar system resevoir. Current flight mass spectrometer designs combined with the new technology of a high-performance vacuum pumping system show promise for a substantial increase in gas throughput and the dynamic range required to accurately measure these trace species. Various aspects of this new technology are discussed.

  4. Calcium isotope analysis by mass spectrometry.

    PubMed

    Boulyga, Sergei F

    2010-01-01

    The variations in the isotopic composition of calcium caused by fractionation in heterogeneous systems and by nuclear reactions can provide insight into numerous biological, geological, and cosmic processes, and therefore isotopic analysis finds a wide spectrum of applications in cosmo- and geochemistry, paleoclimatic, nutritional, and biomedical studies. The measurement of calcium isotopic abundances in natural samples has challenged the analysts for more than three decades. Practically all Ca isotopes suffer from significant isobaric interferences, whereas low-abundant isotopes can be particularly affected by neighboring major isotopes. The extent of natural variations of stable isotopes appears to be relatively limited, and highly precise techniques are required to resolve isotopic effects. Isotope fractionation during sample preparation and measurements and instrumental mass bias can significantly exceed small isotope abundance variations in samples, which have to be investigated. Not surprisingly, a TIMS procedure developed by Russell et al. (Russell et al., 1978. Geochim Cosmochim Acta 42: 1075-1090) for Ca isotope measurements was considered as revolutionary for isotopic measurements in general, and that approach is used nowadays (with small modifications) for practically all isotopic systems and with different mass spectrometric techniques. Nevertheless, despite several decades of calcium research and corresponding development of mass spectrometers, the available precision and accuracy is still not always sufficient to achieve the challenging goals. The present article discusses figures of merits of presently used analytical methods and instrumentation, and attempts to critically assess their limitations. In Sections 2 and 3, mass spectrometric methods applied to precise stable isotope analysis and to the determination of (41)Ca are described. Section 4 contains a short summary of selected applications, and includes tracer experiments and the potential use

  5. Meteoritic Sulfur Isotopic Analysis

    NASA Technical Reports Server (NTRS)

    Thiemens, Mark H.

    1996-01-01

    Funds were requested to continue our program in meteoritic sulfur isotopic analysis. We have recently detected a potential nucleosynthetic sulfur isotopic anomaly. We will search for potential carriers. The documentation of bulk systematics and the possible relation to nebular chemistry and oxygen isotopes will be explored. Analytical techniques for delta(sup 33), delta(sup 34)S, delta(sup 36)S isotopic analysis were improved. Analysis of sub milligram samples is now possible. A possible relation between sulfur isotopes and oxygen was detected, with similar group systematics noted, particularly in the case of aubrites, ureilites and entstatite chondrites. A possible nucleosynthetic excess S-33 has been noted in bulk ureilites and an oldhamite separate from Norton County. High energy proton (approximately 1 GeV) bombardments of iron foils were done to experimentally determine S-33, S-36 spallogenic yields for quantitation of isotopic measurements in iron meteorites. Techniques for measurement of mineral separates were perfected and an analysis program initiated. The systematic behavior of bulk sulfur isotopes will continue to be explored.

  6. Atom trap trace analysis of krypton isotopes

    SciTech Connect

    Bailey, K.; Chen, C. Y.; Du, X.; Li, Y. M.; Lu, Z.-T.; O'Connor, T. P.; Young, L.

    1999-11-17

    A new method of ultrasensitive isotope trace analysis has been developed. This method, based on the technique of laser manipulation of neutral atoms, has been used to count individual {sup 85}Kr and {sup 81}Kr atoms present in a natural krypton gas sample with isotopic abundances in the range of 10{sup {minus}11} and 10{sup {minus}13}, respectively. This method is free of contamination from other isotopes and elements and can be applied to several different isotope tracers for a wide range of applications. The demonstrated detection efficiency is 1 x 10{sup {minus}7}. System improvements could increase the efficiency by many orders of magnitude.

  7. An investigation of techniques for the measurement and interpretation of cosmic ray isotopic abundances. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Wiedenbeck, M. E.

    1977-01-01

    An instrument, the Caltech High Energy Isotope Spectrometer Telescope was developed to measure isotopic abundances of cosmic ray nuclei by employing an energy loss - residual energy technique. A detailed analysis was made of the mass resolution capabilities of this instrument. A formalism, based on the leaky box model of cosmic ray propagation, was developed for obtaining isotopic abundance ratios at the cosmic ray sources from abundances measured in local interstellar space for elements having three or more stable isotopes, one of which is believed to be absent at the cosmic ray sources. It was shown that the dominant sources of uncertainty in the derived source ratios are uncorrelated errors in the fragmentation cross sections and statistical uncertainties in measuring local interstellar abundances. These results were applied to estimate the extent to which uncertainties must be reduced in order to distinguish between cosmic ray production in a solar-like environment and in various environments with greater neutron enrichments.

  8. Isotopic abundances - Inferences on solar system and planetary evolution

    NASA Astrophysics Data System (ADS)

    Wasserburg, G. J.

    1987-12-01

    For matter that has been removed from a region of nucleosynthetic activity and the effects of interactions with nuclear active particles, the only changes in nuclear abundances that can occur in an isolated system derive from the decay of radioactive nuclei of an element to yield the nucleus of another element. These two related nuclei furnish the absolute chronometers of geologic and cosmic time, through the decay of spontaneously radioactive parent nuclei and the accumulation of daughter nuclei. For systems related to such cosmic processes as the formation of the solar system from the precursor interstellar medium, and involving the very early evolution of the sun, there may arise considerable complexity, due to the intrinsic isotopic heterogeneity of the medium and the presence of short-lived nuclei.

  9. Isotopic abundances of magnesium in five G and K dwarfs

    NASA Astrophysics Data System (ADS)

    Tomkin, J.; Lambert, D. L.

    1980-02-01

    The paper reports on an analysis of high-resolution low-noise Reticon observations of MgH lines in the spectra of Mu Cas, Epsilon Eri, 61 Cyg A and B, and Gmb 1830 by spectrum synthesis. It is shown that the mixtures of the isotopes in Mu Cas, Epsilon Eri, and 61 Cyg A and B are not significantly different from the terrestrial mixture. Attention is also given to a nonterrestrial mixture which is found in Gmb 1830.

  10. Determining the Local Abundance of Martian Methane and its 13-C/l2-C and D/H Isotopic Ratios for Comparison with Related Gas and Soil Analysis on the 2011 Mars Science Laboratory (MSL) Mission

    NASA Technical Reports Server (NTRS)

    Webster, Christopher R.; Mahaffy, Paul R.

    2011-01-01

    Understanding the origin of Martian methane will require numerous complementary measurements from both in situ and remote sensing investigations and laboratory work to correlate planetary surface geophysics with atmospheric dynamics and chemistry. Three instruments (Quadrupole Mass Spectrometer (QMS), Gas Chromatograph (GC) and Tunable Laser Spectrometer (TLS)) with sophisticated sample handling and processing capability make up the Sample Analysis at Mars (SAM) analytical chemistry suite on NASA s 2011 Mars Science Laboratory (MSL) Mission. Leveraging off the SAM sample and gas processing capability that includes methane enrichment, TLS has unprecedented sensitivity for measuring absolute methane (parts-per-trillion), water, and carbon dioxide abundances in both the Martian atmosphere and evolved from heated soil samples. In concert with a wide variety of associated trace gases (e.g. SO2, H2S, NH3, higher hydrocarbons, organics, etc.) and other isotope ratios measured by SAM, TLS will focus on determining the absolute abundances of methane, water and carbon dioxide, and their isotope ratios: 13C/12C and D/H in methane; 13C/12C and 18O/17O/16O in carbon dioxide; and 18O/17O/16O and D/H in water. Measurements near the MSL landing site will be correlated with satellite (Mars Express, Mars 2016) and ground-based observations.

  11. s-process studies - Xenon and krypton isotopic abundances

    NASA Technical Reports Server (NTRS)

    Clayton, D. D.; Ward, R. A.

    1978-01-01

    We propose an analysis of the s-process contributions to the isotopes of xenon and krypton. The object is to aid studies of the possibility that meteorites may contain gas that was carried in presolar grains that were grown in stellar ejecta and that were not degassed prior to incorporation into parent bodies. That model suggests routine interstellar fractionation of s-isotopes from r-isotopes owing to differential incorporation into dust. We show that a deficiency of s-process nuclei cannot yield details of Xe-X, but the gross similarities are strong enough to lead one to think that such a deficiency may play a role in a more complicated explanation. We predict the existence of an s-rich complement somewhere if fractional separation of this type has played a role in Xe-X. We show that the analogous decomposition of krypton is more uncertain, and we call for measurements of neutron-capture cross sections to alleviate these uncertainties.

  12. Uranium Isotopic Analysis with the FRAM Isotopic Analysis Code

    SciTech Connect

    Duc T. Vo; Thomas E. Sampson

    1999-05-01

    FRAM is the acronym for Fixed-energy Response-function Analysis with Multiple efficiency. This software was developed at Los Alamos National Laboratory originally for plutonium isotopic analysis. Later, it was adapted for uranium isotopic analysis in addition to plutonium. It is a code based on a self-calibration using several gamma-ray peaks for determining the isotopic ratios. The versatile-parameter database structure governs all facets of the data analysis. User editing of the parameter sets allows great flexibility in handling data with different isotopic distributions, interfering isotopes, and different acquisition parameters such as energy calibration and detector type.

  13. Mercury Abundances and Isotopic Compositions in the Murchison (CM) and Allende (CV)Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Lauretta, D. S.; Klaue, B.; Blum, J. D.; Buseck, P. R.

    2001-01-01

    The abundance and isotopic composition of Hg was determined in bulk samples of both the Murchison (CM) and Allende (CV) carbonaceous chondrites using single- and multi-collector inductively coupled plasma mass spectrometry (ICP-MS). The bulk abundances of Hg are 294 6 15 ng/g in Murchison and 30.0 6 1.5 ng/g in Allende. These values are within the range of previous measurements of bulk Hg abundances by neutron activation analysis (NAA). Prior studies suggested that both meteorites contain isotopically anomalous Hg, with d l 96/202Hg values for the anomalous, thermal-release components from bulk samples ranging from 2260 %o to 1440 9/00 in Murchison and from 2620 9/00 to 1540 9/00 in Allende (Jovanovic and Reed, 1976a; 1976b; Kumar and Goel, 1992). Our multi-collector ICP-MS measurements suggest that the relative abundances of all seven stable Hg isotopes in both meteorites are identical to terrestrial values within 0.2 to 0.5 9/00m. On-line thermal-release experiments were performed by coupling a programmable oven with the singlecollector ICP-MS. Powdered aliquots of each meteorite were linearly heated from room temperature to 900 C over twenty-five minutes under an Ar atmosphere to measure the isotopic composition of Hg released fiom the meteorites as a h c t i o n of temperature. In separate experiments, the release profiles of S and Se were determined simultaneously with Hg to constrain the Hg distribution within the meteorites and to evaluate the possibility of Se interferences in previous NAA studies. The Hg-release patterns differ between Allende and Murchison. The Hg-release profile for Allende contains two distinct peaks, at 225" and 343"C, whereas the profile for Murchison has only one peak, at 344 C. No isotopically anomalous Hg was detected in the thermal-release experiments at a precision level of 5 to 30 9/00, depending on the isotope ratio. In both meteorites the Hg peak at ;340"C correlates with a peak in the S-release profile. This correlation

  14. On the volatile inventory of Titan from isotopic abundances in nitrogen and methane.

    PubMed

    Lunine, J I; Yung, Y L; Lorenz, R D

    1999-01-01

    We analyze recently published nitrogen and hydrogen isotopic data to constrain the initial volatile abundances on Saturn's giant moon Titan. The nitrogen data are interpreted in terms of a model of non-thermal escape processes that lead to enhancement in the heavier isotope. We show that these data do not, in fact, strongly constrain the abundance of nitrogen present in Titan's early atmosphere, and that a wide range of initial atmospheric masses (all larger than the present value) can yield the measured enhancement. The enrichment in deuterated methane is now much better determined than it was when Pinto et al. (1986. Nature 319, 388-390) first proposed a photochemical mechanism to preferentially retain the deuterium. We develop a simple linear theory to provide a more reliable estimate of the relative dissociation rates of normal and deuterated methane. We utilize the improved data and models to compute initial methane reservoirs consistent with the observed enhancement. The result of this analysis agrees with an independent estimate for the initial methane abundance based solely on the present-day rate of photolysis and an assumption of steady state. This consistency in reservoir size is necessary but not sufficient to infer that methane photolysis has proceeded steadily over the age of the solar system to produce large quantities of less volatile organics. Our analysis indicates an epoch of early atmospheric escape of nitrogen, followed by a later addition of methane by outgassing from the interior. The results also suggest that Titan's volatile inventory came in part or largely from a circum-Saturnian disk of material more reducing than the surrounding solar nebula. Many of the ambiguities inherent in the present analysis can be resolved through Cassini-Huygens data and a program of laboratory studies on isotopic and molecular exchange processes. The value of, and interest in, the Cassini-Huygens data can be greatly enhanced if such a program were undertaken

  15. Specific activity and isotope abundances of strontium in purified strontium-82

    SciTech Connect

    Fitzsimmons, J. M.; Medvedev, D. G.; Mausner, L. F.

    2015-11-12

    A linear accelerator was used to irradiate a rubidium chloride target with protons to produce strontium-82 (Sr-82), and the Sr-82 was purified by ion exchange chromatography. The amount of strontium associated with the purified Sr-82 was determined by either: ICP-OES or method B which consisted of a summation of strontium quantified by gamma spectroscopy and ICP-MS. The summation method agreed within 10% to the ICP-OES for the total mass of strontium and the subsequent specific activities were determined to be 0.25–0.52 TBq mg-1. Method B was used to determine the isotope abundances by weight% of the purified Sr-82, and the abundances were: Sr-82 (10–20.7%), Sr-83 (0–0.05%), Sr-84 (35–48.5%), Sr-85 (16–25%), Sr-86 (12.5–23%), Sr-87 (0%), and Sr-88 (0–10%). The purified strontium contained mass amounts of Sr-82, Sr-84, Sr-85, Sr-86, and Sr-88 in abundances not associated with natural abundance, and 90% of the strontium was produced by the proton irradiation. A comparison of ICP-OES and method B for the analysis of Sr-82 indicated analysis by ICP-OES would be easier to determine total mass of strontium and comply with regulatory requirements. An ICP-OES analytical method for Sr-82 analysis was established and validated according to regulatory guidelines.

  16. High Spatial Resolution Isotopic Abundance Measurements by Secondary Ion Mass Spectrometry: Status and Prospects

    NASA Astrophysics Data System (ADS)

    McKeegan, K. D.

    2007-12-01

    Secondary Ion Mass Spectrometry, SIMS or ion microprobe analysis, has become an important tool for geochemistry because of its ability study the distributions of elemental and isotopic abundances in situ on polished samples with high (typically a few microns to sub-micron) spatial resolution. In addition, SIMS exhibits high sensitivity for a wide range of elements (H to Pu) so that isotope analyses can sometimes be performed for elements that comprise only trace quantities of some mineral phase (e.g., Pb in zircon) or on major and/or minor elements in very small samples (e.g., presolar dust grains). Offsetting these positive attributes are analytical difficulties due to the complexity of the sputtering source of analyte ions: (1) relatively efficient production of molecular ion species (especially from a complex matrix such as most natural minerals) that cause interferences at the same nominal mass as atomic ions of interest, and (2) quantitation problems caused by variations in the ionization efficiencies of different elements and/or isotopes depending upon the chemical state of the sample surface during sputtering--the so-called "matrix effects". Despite the availability of high mass resolution instruments (e.g., SHRIMP II/RG, CAMECA 1270/1280/NanoSIMS), the molecular ion interferences effectively limit the region of the mass table that can be investigated in most samples to isotope systems at Ni or lighter or at Os or heavier. The matrix effects and the sensitivity of instrumental mass discrimination to the physical state of the sample surface can hamper reproducibility and have contributed to a view that SIMS analyses, especially for so- called stable isotopes, are most appropriate for extraterrestrial samples which are often small, rare, and can exhibit large magnitude isotopic effects. Recent improvements in instrumentation and technique have extended the scope of SIMS isotopic analyses and applications now range from geochronology to paleoclimatology to

  17. Determination of lithium isotopes at natural abundance levels by atomic absorption spectrometry

    USGS Publications Warehouse

    Meier, A.L.

    1982-01-01

    The relationships of the absorption of 6Li and 7Li hollow cathode lamp emissions are used to determine lithium isotopic composition in the natural abundance range of geologic materials. Absorption was found to have a nonlinear dependence upon total lithium concentration and isotopic composition. A method using nonlinear equations to describe the relationship of the absorption of 6Li and 7Li lamp radiation is proposed as a means of calculating isotopic composition that is independent of total lithium concentration.

  18. Anatomy of a cluster IDP. Part 2: Noble gas abundances, trace element geochemistry, isotopic abundances, and trace organic chemistry of several fragments from L2008#5

    NASA Technical Reports Server (NTRS)

    Thomas, K. L.; Clemett, S. J.; Flynn, G. J.; Keller, L. P.; Mckay, David S.; Messenger, S.; Nier, A. O.; Schlutter, D. J.; Sutton, S. R.; Walker, R. M.

    1994-01-01

    The topics discussed include the following: noble gas content and release temperatures; trace element abundances; heating summary of cluster fragments; isotopic measurements; and trace organic chemistry.

  19. System and method for high precision isotope ratio destructive analysis

    DOEpatents

    Bushaw, Bruce A; Anheier, Norman C; Phillips, Jon R

    2013-07-02

    A system and process are disclosed that provide high accuracy and high precision destructive analysis measurements for isotope ratio determination of relative isotope abundance distributions in liquids, solids, and particulate samples. The invention utilizes a collinear probe beam to interrogate a laser ablated plume. This invention provides enhanced single-shot detection sensitivity approaching the femtogram range, and isotope ratios that can be determined at approximately 1% or better precision and accuracy (relative standard deviation).

  20. The abundance of the radioactive isotope Al-26 in galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Wiedenbeck, M. E.

    1983-01-01

    Satellite observations of the isotopic composition of aluminum in low energy cosmic rays (E/M = 200 MeV/amu) have been used to determine the abundance of the unstable isotope Al-26 (T1/2 = 0.87 Myr). The observed abundance ratio, Al-26/Al-27 = 0.036 (+0.037, -0.022), is in good agreement with previous balloon observations and yields a cosmic ray confinement time consistent with values based on the abundance of Be-10.

  1. Empirical Solar Abundance Scaling Laws of Supernova {gamma} Process Isotopes

    SciTech Connect

    Hayakawa, Takehito; Iwamoto, Nobuyuki; Kajino, Toshitaka; Shizum, Toshiyuki; Umeda, Hideyuki; Nomoto, Ken'Ichi

    2008-11-11

    Analyzing the solar system abundances, we have found two empirical abundance scaling laws concerning the p- and s-nuclei with the same atomic number. They are evidence that the 27 p-nuclei are synthesized by the supernova {gamma}-process. The scalings lead to a novel concept of 'universality of {gamma}-process' that the s/p and p/p ratios of nuclei produced by individual {gamma}-processes are almost constant, respectively. We have calculated the ratios of materials produced by the {gamma}-process based on core-collapse supernova explosion models under various astrophysical conditions and found that the scalings hold for individual {gamma}-processes independent of the conditions assumed. The results further suggest an extended universality that the s/p ratios in the {gamma}-process layers are not only constant but also centered on a specific value of 3. With this specific value and the scaling of the s/p ratios, we estimate that the ratios of the s-process abundance contributions from the AGB stars to the massive stars are almost 6.7 for the s-nuclei of A>90 in the solar system.

  2. Isotope-abundance variations and atomic weights of selected elements: 2016 (IUPAC Technical Report)

    USGS Publications Warehouse

    Coplen, Tyler B.; Shrestha, Yesha

    2016-01-01

    There are 63 chemical elements that have two or more isotopes that are used to determine their standard atomic weights. The isotopic abundances and atomic weights of these elements can vary in normal materials due to physical and chemical fractionation processes (not due to radioactive decay). These variations are well known for 12 elements (hydrogen, lithium, boron, carbon, nitrogen, oxygen, magnesium, silicon, sulfur, chlorine, bromine, and thallium), and the standard atomic weight of each of these elements is given by IUPAC as an interval with lower and upper bounds. Graphical plots of selected materials and compounds of each of these elements have been published previously. Herein and at the URL http://dx.doi.org/10.5066/F7GF0RN2, we provide isotopic abundances, isotope-delta values, and atomic weights for each of the upper and lower bounds of these materials and compounds.

  3. Carbon and nitrogen biogeochemistry in the ocean: A study using stable isotope natural abundance

    NASA Technical Reports Server (NTRS)

    Rau, G. H.; Desmarais, David J.

    1985-01-01

    Determining the biogeochemical pathways traveled by carbon and nitrogen in the ocean is fundamental to the understanding of how the ocean participates in the cycling of these elements within the biosphere. Because biological production, metabolism, and respiration can significantly alter the natural abundance of C-13 and N-15, these abundances can provide important information about the nature of these biological processes and their variability in the marine environment. The research initially seeks to characterize the spatial and temporal patterns of stable isotope abundances in organic matter, and to relate these abundances to C and N biogeochemical processes within selected areas of the northeastern Pacific Ocean.

  4. On krypton isotopic abundances in the sun and in the solar wind

    NASA Technical Reports Server (NTRS)

    Marti, K.

    1980-01-01

    The Kr isotopic systematics in the meteorite Pesyanoe which is known to contain solar-type gases, are reported. Discrepancies in the isotopic data of fractions released at stepwise increasing temperatures cannot be reconciled with spallation Kr components, although spallation effects are significant. Fractionation mechanisms on the parent body and in the solar wind source region are considered and the implications for solar abundances discussed.

  5. Element distribution and noble gas isotopic abundances in lunar meteorite Allan Hills A81005

    NASA Technical Reports Server (NTRS)

    Kraehenbuehl, U.; Eugster, O.; Niedermann, S.

    1986-01-01

    Antarctic meteorite ALLAN HILLS A81005, an anorthositic breccia, is recognized to be of lunar origin. The noble gases in this meteorite were analyzed and found to be solar-wind implanted gases, whose absolute and relative concentrations are quite similar to those in lunar regolith samples. A sample of this meteorite was obtained for the analysis of the noble gas isotopes, including Kr(81), and for the determination of the elemental abundances. In order to better determine the volume derived from the surface correlated gases, grain size fractions were prepared. The results of the instrumental measurements of the gamma radiation are listed. From the amounts of cosmic ray produced noble gases and respective production rates, the lunar surface residence times were calculated. It was concluded that the lunar surface time is about half a billion years.

  6. Natural abundance variations in stable isotopes and their potential uses in animal physiological ecology.

    PubMed

    Gannes, L Z; Martínez del Rio, C; Koch, P

    1998-03-01

    Chemical, biological, and physical processes lead to distinctive "isotopic signatures" in biological materials that allow tracing of the origins of organic substances. Isotopic variation has been extensively used by plant physiological ecologists and by paleontologists, and recently ecologists have adopted the use of stable isotopes to measure ecosystem patterns and processes. To date, animal physiological ecologists have made minimal use of naturally occurring stable isotopes as tracers. Here we provide a review of the current and potential uses of naturally occurring stable isotopes in animal physiological ecology. We outline the physical and biological processes that lead to variation in isotopic abundance in plants and animals. We summarize current uses in animal physiological ecology (diet reconstruction and animal movement patterns), and suggest areas of research where the use of stable isotopes can be fruitful (protein balance and turnover and the allocation of dietary nutrients). We argue that animal physiological ecologists can benefit from including the measurement of naturally occurring stable isotopes in their battery of techniques. We also argue that animal physiologists can make an important contribution to the emerging field of stable isotopes in biology by testing experimentally the plethora of assumptions upon which the techniques rely.

  7. Natural abundances of carbon isotopes in acetate from a coastal marine sediment

    NASA Technical Reports Server (NTRS)

    Blair, N. E.; Martens, C. S.; Des Marais, D. J.

    1987-01-01

    Measurements of the natural abundances of carbon isotopes were made in acetate samples isolated from the anoxic marine sediment of Cape Lookout Bight, North Carolina. The typical value of the total acetate carbon isotope ratio (delta 13C) was -16.1 +/- 0.2 per mil. The methyl and carboxyl groups were determined to be -26.4 +/- 0.3 and -6.0 +/- 0.3 per mil, respectively, for one sample. The isotopic composition of the acetate is thought to have resulted from isotopic discriminations that occurred during the cycling of that molecule. Measurements of this type, which have not been made previously in the natural environment, may provide information about the dominant microbial pathways in anoxic sediments as well as the processes that influence the carbon isotopic composition of biogenic methane from many sources.

  8. Isotopic Analysis and Evolved Gases

    NASA Technical Reports Server (NTRS)

    Swindle, Timothy D.; Boynton, William V.; Chutjian, Ara; Hoffman, John H.; Jordan, Jim L.; Kargel, Jeffrey S.; McEntire, Richard W.; Nyquist, Larry

    1996-01-01

    Precise measurements of the chemical, elemental, and isotopic composition of planetary surface material and gases, and observed variations in these compositions, can contribute significantly to our knowledge of the source(s), ages, and evolution of solar system materials. The analyses discussed in this paper are mostly made by mass spectrometers or some other type of mass analyzer, and address three broad areas of interest: (1) atmospheric composition - isotopic, elemental, and molecular, (2) gases evolved from solids, and (3) solids. Current isotopic data on nine elements, mostly from in situ analysis, but also from meteorites and telescopic observations are summarized. Potential instruments for isotopic analysis of lunar, Martian, Venusian, Mercury, and Pluto surfaces, along with asteroid, cometary and icy satellites, surfaces are discussed.

  9. Studies of Isotopic Abundances through Gamma-Ray Lines

    NASA Astrophysics Data System (ADS)

    Diehl, Roland

    2006-07-01

    Cosmic gamma-ray lines convey isotopic information from sites of nucleosynthesis and from their surrounding interstellar medium. With recent space-borne gamma-ray spectrometers of high resolution (INTEGRAL, RHESSI), new results have been obtained for 44Ti from the Cas A core-collapse supernova, from long-lived radioactive 26Al and 60Fe, and from positron annihilation in our Galaxy: 44Ti ejection from Cas A may be on the low side of previously-reported values, and/or at velocities >7000 km s-1. 26Al sources apparently share the Galactic rotation in the inner Galaxy, and thus allow to estimate a total mass of 26Al in the Galaxy of 2.8 Msolar from the measured flux. The 60Fe production in massive stars appears lower than predicted by standard models, as constrained by the recent, though marginal, 60Fe detections. Positron annihilation in the Galaxy shows a remarkable bulge component, which is difficult to understand in terms of nucleosynthetic production of the positrons.

  10. Isotopic analysis of planetary solids

    NASA Astrophysics Data System (ADS)

    Tulej, M.; Riedo, A.; Neuland, M.; Meyer, S.; Wurz, P.

    2013-09-01

    Isotopic analysis of planetary surfaces is of considerable interest for planetology. Studies of isotope composition can deliver information on radio-isotope chronology of planetary soil/regolith, an insight to processes that altered planetary surface (space weathering) or on possible biogenic processes that occurred or still occur on the planet. Mass spectrometry is a well-suited method that delivers accurate and precise isotope composition. Among other instruments (LAZMA and LAMS), the miniature laser ablation/ionisation mass analyser, LMS developed in Bern for in situ space research can be used to measure the elemental and isotopic composition of planetary solids. LMS support mass spectrometric investigation with a mass resolution of m/Δm≈500-1500, dynamic range of at least 8 decades and detection sensitivity of ~10 ppb. Current studies of various solid materials and standard reference materials show that isotope composition can be conducted with an accuracy and precision at per mill level if the isotope concentration exceeds 10-100 ppm. Implications of the studies for in situ application are discussed.

  11. Chemical Abundance Analysis of the Symbiotic Red Giants

    NASA Astrophysics Data System (ADS)

    Galan, Cezary; Mikolajewska, Joanna; Hinkle, Kenneth H.

    2015-01-01

    The study of symbiotic stars - the long period, interacting binary systems - composed of red giant donor and a hot, compact companion is important for our understanding of binary stellar evolution in systems where mass loss or transfer take place involving RGB/AGB stars. The elemental abundances of symbiotic giants can track the mass exchange history and can determine their parent stellar population. However, the number of these objects with fairly well determined photospheric composition is insufficient for statistical considerations. Here we present the detailed chemical abundance analysis obtained for the first time for 14 M-type symbiotic giants. The analysis is based on the high resolution (R ˜ 50000), high S/N ˜ 100, near-IR spectra (at H- and K-band regions) obtained with Phoenix/Gemini South spectrometer. Spectrum synthesis employing standard LTE analysis and atmosphere models was used to obtain photospheric abundances of CNO and elements around the iron peak (Sc, Ti, Fe, and Ni). Our analysis reveals mostly slightly sub-solar or near-solar metallicities. We obtained significantly subsolar metallicities for RW Hya, RT Ser, and Hen 3-1213 and slightly super-solar metallicity in V455 Sco. The very low ^{12}C/^{13}C isotopic ratios, ˜6-11, and significant enrichment in nitrogen ^{14}N isotope in almost all giants in our sample indicate that they have experienced the first dredge-up.

  12. Line formation in solar granulation. VII. CO lines and the solar C and O isotopic abundances

    NASA Astrophysics Data System (ADS)

    Scott, P. C.; Asplund, M.; Grevesse, N.; Sauval, A. J.

    2006-09-01

    CO spectral line formation in the Sun has long been a source of consternation for solar physicists, as have the elemental abundances it seems to imply. We modelled solar CO line formation using a realistic, ab initio, time-dependent 3D radiative-hydrodynamic model atmosphere. Results were compared with space-based observations from the ATMOS space shuttle experiment. We employed weak 12C16O, 13C16O and 12C18O lines from the fundamental (Δ v = 1) and first overtone (Δ v = 2) bands to determine the solar carbon abundance, as well as the 12C/13C and 16O/18O isotopic ratios. A weighted solar carbon abundance of logɛ_C=8.39 ± 0.05 was found. We note with satisfaction that the derived abundance is identical to our recent 3D determination based on C i, [C i], C2 and CH lines, increasing our confidence in the accuracy of both results. Identical calculations were carried out using 1D models, but only the 3D model was able to produce abundance agreement between different CO lines and the other atomic and molecular diagnostics. Solar 12C/13C and 16O/18O ratios were measured as 86.8+3.9-3.7 (δ13C = 30+46-44) and 479+29-28 (δ18O = 41+67-59), respectively. These values may require current theories of solar system formation, such as the CO self-shielding hypothesis, to be revised. Excellent agreement was seen between observed and predicted weak CO line shapes, without invoking micro- or macroturbulence. Agreement breaks down for the strongest CO lines however, which are formed in very high atmospheric layers. Whilst the line asymmetries (bisectors) were reasonably well reproduced, line strengths predicted on the basis of C and O abundances from other diagnostics were weaker than observed. The simplest explanation is that temperatures are overestimated in the highest layers of the 3D simulation. Thus, our analysis supports the presence of a COmosphere above the traditional photospheric temperature minimum, with an average temperature of less than 4000 K. This shortcoming of

  13. Isotopic abundances of Hg in mercury stars inferred from the Hg II line at 3984 A

    NASA Technical Reports Server (NTRS)

    White, R. E.; Vaughan, A. H., Jr.; Preston, G. W.; Swings, J. P.

    1976-01-01

    Wavelengths of the Hg II absorption feature at 3984 A in 30 Hg stars are distributed uniformly from the value for the terrestrial mix to a value that corresponds to nearly pure Hg-204. The wavelengths are correlated loosely with effective temperatures inferred from Q(UBV). Relative isotopic abundances derived from partially resolved profiles of the 3984-A line in iota CrB, chi Lup, and HR 4072 suggest that mass-dependent fractionation has occurred in all three stars. It is supposed that such fractionation occurs in all Hg stars, and a scheme whereby isotopic compositions can be inferred from a comparison of stellar wavelengths and equivalent widths with those calculated for a family of fractionated isotopic mixes. Theoretical profiles calculated for the derived isotopic composition agree well with high-resolution interferometric profiles obtained for three of the stars.

  14. The Oxygen Isotopic Composition of MIL 090001: A CR2 Chondrite with Abundant Refractory Inclusions

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.; McKeegan, K. D.; Sharp, Z. D.

    2012-01-01

    MIL 090001 is a large (>6 kg) carbonaceous chondrite that was classified as a member of the CV reduced subgroup (CVred) that was recovered during the 2009-2010 ANSMET field season [1]. Based on the abundance of refractory inclusions and the extent of aqueous alteration, Keller [2] suggested a CV2 classification. Here we report additional mineralogical and petrographic data for MIL 090001, its whole-rock oxygen isotopic composition and ion microprobe analyses of individual phases. The whole rock oxygen isotopic analyses show that MIL 090001 should be classified as a CR chondrite.

  15. Absolute Isotopic Abundance Ratios and Atomic Weight of a Reference Sample of Nickel

    PubMed Central

    Gramlich, J. W.; Machlan, L. A.; Barnes, I. L.; Paulsen, P. J.

    1989-01-01

    Absolute values have been obtained for the isotopic abundance ratios of a reference sample of nickel (Standard Reference Material 986), using thermal ionization mass spectrometry. Samples of known isotopic composition, prepared from nearly isotopically pure separated nickel isotopes, were used to calibrate the mass spectrometers. The resulting absolute isotopic ratios are: 58Ni/60Ni=2.596061±0.000728, 61Ni/60Ni=0.043469±0.000015,62Ni/60Ni=0.138600±0.000045, and 64Ni/60Ni=0.035295±0.000024, which yield atom percents of 58Ni=68.076886 ±0.005919, 60Ni = 26.223146±0.005144,61Ni=1.139894±0.000433, 62Ni =3.634528±0.001142, and 64Ni =0.925546±0.000599. The atomic weight calculated from this isotopic composition is 58.693353 ±0.000147. The indicated uncertainties are overall limits of error based on two standard deviations of the mean and allowances for the effects of known sources of possible systematic error. PMID:28053421

  16. Carbon, hydrogen and nitrogen in carbonaceous chondrites Abundances and isotopic compositions in bulk samples

    NASA Technical Reports Server (NTRS)

    Kerridge, J. F.

    1985-01-01

    Whole-rock samples of 25 carbonaceous chondrites were analyzed for contents of C, H and N and delta C-13, delta D and delta N-15. Inhomogeneous distribution of these isotopes within individual meteorites is pronounced in several cases. Few systematic intermeteorite trends were observed; N data are suggestive of isotopic inhomogeneity in the early solar system. Several chondrites revealed unusual compositions which would repay further, more detailed study. The data are also useful for classification of carbonaceous chondrites; N abundance and isotopic compositions can differentiate existing taxonomic groups with close to 100 percent reliability; Al Rais and Renazzo clearly constitute a discrete 'grouplet', and there are hints that both CI and CM groups may each be divisible into two subgroups.

  17. Can heavy isotopes increase lifespan? Studies of relative abundance in various organisms reveal chemical perspectives on aging

    PubMed Central

    2016-01-01

    Stable heavy isotopes co‐exist with their lighter counterparts in all elements commonly found in biology. These heavy isotopes represent a low natural abundance in isotopic composition but impose great retardation effects in chemical reactions because of kinetic isotopic effects (KIEs). Previous isotope analyses have recorded pervasive enrichment or depletion of heavy isotopes in various organisms, strongly supporting the capability of biological systems to distinguish different isotopes. This capability has recently been found to lead to general decline of heavy isotopes in metabolites during yeast aging. Conversely, supplementing heavy isotopes in growth medium promotes longevity. Whether this observation prevails in other organisms is not known, but it potentially bears promise in promoting human longevity. PMID:27554342

  18. Boron abundances and isotopic ratios of olivine grains on Itokawa returned by the Hayabusa spacecraft

    NASA Astrophysics Data System (ADS)

    Fujiya, Wataru; Hoppe, Peter; Ott, Ulrich

    2016-09-01

    We report the B abundances and isotopic ratios of two olivine grains from the S-type asteroid Itokawa sampled by the Hayabusa spacecraft. Olivine grains from the Dar al Gani (DaG) 989 LL6 chondrite were used as a reference. Since we analyzed polished thin sections in both cases, we expect the contribution from the solar wind B (rich in 10B) to be minimal because the solar wind was implanted only within very thin layers of the grain surface. The Itokawa and DaG 989 olivine grains have homogeneous B abundances (~400 ppb) and 11B/10B ratios compatible with the terrestrial standard and bulk chondrites. The observed homogeneous B abundances and isotopic ratios of the Itokawa olivine grains are likely the result of thermal metamorphism which occurred in the parent asteroid of Itokawa, which had a similar composition as LL chondrites. The chondritic B isotopic ratios of the Itokawa samples suggest that they contain little cosmogenic B (from cosmic-ray spallation reactions) rich in 10B. This observation is consistent with the short cosmic-ray exposure ages of Itokawa samples inferred from the small concentrations of cosmogenic 21Ne. If other Itokawa samples have little cosmogenic B as well, the enrichment in 10B found previously on the surface of another Itokawa particle (as opposed to the bulk grain study here) may be attributed to implanted solar wind B.

  19. Analysis of hydrogen isotope mixtures

    DOEpatents

    Villa-Aleman, Eliel

    1994-01-01

    An apparatus and method for determining the concentrations of hydrogen isotopes in a sample. Hydrogen in the sample is separated from other elements using a filter selectively permeable to hydrogen. Then the hydrogen is condensed onto a cold finger or cryopump. The cold finger is rotated as pulsed laser energy vaporizes a portion of the condensed hydrogen, forming a packet of molecular hydrogen. The desorbed hydrogen is ionized and admitted into a mass spectrometer for analysis.

  20. Study on strontium isotope abundance-ratio measurements by using a 13-MeV proton beam

    NASA Astrophysics Data System (ADS)

    Jeong, Cheol-Ki; Jang, Han; Lee, Goung-Jin

    2016-09-01

    The Rb-Sr dating method is used in dating Paleozoic and Precambrian rocks. This method measures the 87Rb and the 87Sr concentrations by using thermal ionization mass spectrometry (TIMS) [J. Hefne et al., Inter. J. Phys. Sci. 3(1), 28 (2008)]. In addition, it calculates the initial 87Sr/86Sr ratio to increase the reliability of Rb-Sr dating. In this study, the 87Sr/86Sr ratio was measured by using a 13-MeV proton accelerator. Proton kinetic energies are in the range of tens of megaelectronvolts, and protons have large absorption cross-sections for ( p, n) reactions with most substances. After absorbing a proton with such a high kinetic energy, an element is converted into a nuclide with its atomic number increased by one via nuclear transmutation. These nuclides usually have short half-lives and return to the original state through radioactive decay. When a strontium sample is irradiated with protons, nuclear transmutation occurs; thus, the strontium isotope present in the sample changes to a yttrium isotope, which is an activated radioisotope. Based on this, the 87Sr/86Sr ratio was calculated by analyzing the gamma-rays emitted by each yttrium isotope. The KIRAMS-13 cyclotron at the Cyclotron Center of Chosun University, where 13-MeV protons can be extracted, was utilized in our experiment. The 87Sr/86Sr isotope ratio was computed for samples irradiated with these protons, and the result was similar to the isotope ratio for the Standard Reference Material, i.e., 98.2 ± 3.4%. As part of the analysis, proton activation analyses were performed using 13-MeV protons, and the experimental results of this research suggest a possible approach for measuring the strontium-isotope abundance ratio of samples.

  1. 13C and 15N natural isotope abundance reflects breast cancer cell metabolism

    NASA Astrophysics Data System (ADS)

    Tea, Illa; Martineau, Estelle; Antheaume, Ingrid; Lalande, Julie; Mauve, Caroline; Gilard, Francoise; Barillé-Nion, Sophie; Blackburn, Anneke C.; Tcherkez, Guillaume

    2016-09-01

    Breast cancer is the most common cancer in women worldwide. Despite the information provided by anatomopathological assessment and molecular markers (such as receptor expression ER, PR, HER2), breast cancer therapies and prognostics depend on the metabolic properties of tumor cells. However, metabolomics have not provided a robust and congruent biomarker yet, likely because individual metabolite contents are insufficient to encapsulate all of the alterations in metabolic fluxes. Here, we took advantage of natural 13C and 15N isotope abundance to show there are isotopic differences between healthy and cancer biopsy tissues or between healthy and malignant cultured cell lines. Isotope mass balance further suggests that these differences are mostly related to lipid metabolism, anaplerosis and urea cycle, three pathways known to be impacted in malignant cells. Our results demonstrate that the isotope signature is a good descriptor of metabolism since it integrates modifications in C partitioning and N excretion altogether. Our present study is thus a starting point to possible clinical applications such as patient screening and biopsy characterization in every cancer that is associated with metabolic changes.

  2. 13C and 15N natural isotope abundance reflects breast cancer cell metabolism

    PubMed Central

    Tea, Illa; Martineau, Estelle; Antheaume, Ingrid; Lalande, Julie; Mauve, Caroline; Gilard, Francoise; Barillé-Nion, Sophie; Blackburn, Anneke C.; Tcherkez, Guillaume

    2016-01-01

    Breast cancer is the most common cancer in women worldwide. Despite the information provided by anatomopathological assessment and molecular markers (such as receptor expression ER, PR, HER2), breast cancer therapies and prognostics depend on the metabolic properties of tumor cells. However, metabolomics have not provided a robust and congruent biomarker yet, likely because individual metabolite contents are insufficient to encapsulate all of the alterations in metabolic fluxes. Here, we took advantage of natural 13C and 15N isotope abundance to show there are isotopic differences between healthy and cancer biopsy tissues or between healthy and malignant cultured cell lines. Isotope mass balance further suggests that these differences are mostly related to lipid metabolism, anaplerosis and urea cycle, three pathways known to be impacted in malignant cells. Our results demonstrate that the isotope signature is a good descriptor of metabolism since it integrates modifications in C partitioning and N excretion altogether. Our present study is thus a starting point to possible clinical applications such as patient screening and biopsy characterization in every cancer that is associated with metabolic changes. PMID:27678172

  3. Krypton isotope analysis using near-resonant stimulated Raman spectroscopy

    SciTech Connect

    Whitehead, C.A.; Cannon, B.D.; Wacker, J.F.

    1994-12-01

    A method for measuring low relative abundances of {sup 85}Kr in one liter or less samples of air has been under development here at Pacific Northwest Laboratory. The goal of the Krypton Isotope Laser Analysis (KILA) method is to measure ratios of 10{sup {minus}10} or less of {sup 85}Kr to more abundant stable krypton. Mass spectrometry and beta counting are the main competing technologies used in rare-gas trace analysis and are limited in application by such factors as sample size, counting times, and selectivity. The use of high-resolution lasers to probe hyperfine levels to determine isotopic abundance has received much attention recently. In this study, we report our progress on identifying and implementing techniques for trace {sup 85}Kr analysis on small gas samples in a static cell as well as limitations on sensitivity and selectivity for the technique. High-resolution pulsed and cw lasers are employed in a laser-induced fluorescence technique that preserves the original sample. This technique, is based on resonant isotopic depletion spectroscopy (RIDS) in which one isotope is optically depleted while preserving the population of a less abundant isotope. The KILA method consists of three steps. In the first step, the 1s{sub 5} metastable level of krypton is populated via radiative cascade following two-photon excitation of the 2p{sub 6} energy level. Next, using RBDS, the stable krypton isotopes are optically depleted to the ground state through the 1s{sub 4} level with the bulk of the {sup 85}Kr population being preserved. Finally, the remaining metastable population is probed to determine {sup 85}Kr concentration. The experimental requirements for each of these steps are outlined below.

  4. Biosynthesis of gallic acid in Rhus typhina: discrimination between alternative pathways from natural oxygen isotope abundance.

    PubMed

    Werner, Roland A; Rossmann, Andreas; Schwarz, Christine; Bacher, Adelbert; Schmidt, Hanns-Ludwig; Eisenreich, Wolfgang

    2004-10-01

    The biosynthetic pathway of gallic acid in leaves of Rhus typhina is studied by oxygen isotope ratio mass spectrometry at natural oxygen isotope abundance. The observed delta18O-values of gallic acid indicate an 18O-enrichment of the phenolic oxygen atoms of more than 30 per thousand above that of the leaf water. This enrichment implies biogenetical equivalence with oxygen atoms of carbohydrates but not with oxygen atoms introduced by monooxygenase activation of molecular oxygen. It can be concluded that all phenolic oxygen atoms of gallic acid are retained from the carbohydrate-derived precursor 5-dehydroshikimate. This supports that gallic acid is synthesized entirely or predominantly by dehydrogenation of 5-dehydroshikimate.

  5. ISO/GUM UNCERTAINTIES AND CIAAW (UNCERTAINTY TREATMENT FOR RECOMMENDED ATOMIC WEIGHTS AND ISOTOPIC ABUNDANCES)

    SciTech Connect

    HOLDEN,N.E.

    2007-07-23

    The International Organization for Standardization (ISO) has published a Guide to the expression of Uncertainty in Measurement (GUM). The IUPAC Commission on Isotopic Abundance and Atomic Weight (CIAAW) began attaching uncertainty limits to their recommended values about forty years ago. CIAAW's method for determining and assigning uncertainties has evolved over time. We trace this evolution to their present method and their effort to incorporate the basic ISO/GUM procedures into evaluations of these uncertainties. We discuss some dilemma the CIAAW faces in their present method and whether it is consistent with the application of the ISO/GUM rules. We discuss the attempt to incorporate variations in measured isotope ratios, due to natural fractionation, into the ISO/GUM system. We make some observations about the inconsistent treatment in the incorporation of natural variations into recommended data and uncertainties. A recommendation for expressing atomic weight values using a tabulated range of values for various chemical elements is discussed.

  6. Abundances in red giant stars - Carbon and oxygen isotopes in carbon-rich molecular envelopes

    NASA Technical Reports Server (NTRS)

    Wannier, P. G.; Sahai, R.

    1987-01-01

    Millimeter-wave observations have been made of isotopically substituted CO toward the envelopes of 11 carbon-rich stars. In every case, C-13O was detected and model calculations were used to estimate the C-12/C-13 abundance ratio. C-17O was detected toward three, and possibly four, envelopes, with sensitive upper limits for two others. The CO-18 variant was detected in two envelopes. New results include determinations of oxygen isotopic ratios in the two carbon-rich protoplanetary nebulae CRL 26688 and CRL 618. As with other classes of red giant stars, the carbon-rich giants seem to be significantly, though variably, enriched in O-17. These results, in combination with observations in interstellar molecular clouds, indicate that current knowledge of stellar production of the CNO nuclides is far from satisfactory.

  7. Quantifying nitrogen process rates in a constructed wetland using natural abundance stable isotope signatures and stable isotope amendment experiments.

    PubMed

    Erler, Dirk V; Eyre, Bradley D

    2010-01-01

    This study describes the spatial variability in nitrogen (N) transformation within a constructed wetland (CW) treating domestic effluent. Nitrogen cycling within the CW was driven by settlement and mineralization of particulate organic nitrogen and uptake of NO3-. The concentration of NO3- was found to decrease, as the delta15N-NO3- signature increased, as water flowed through the CW, allowing denitrification rates to be estimated on the basis of the degree of fractionation of delta15N-NO3-. Estimates of denitrification hinged on the determination of a net isotope effect (eta), which was influenced byprocesses that enrich or deplete 15NO3- (e.g., nitrification), as well as the rate constants associated with the different processes involved in denitrification (i.e., diffusion and enzyme activity). The influence of nitrification on eta was quantified; however, it remained unclear how eta varied due to variability in denitrification rate constants. A series of stable isotope amendment experiments was used to further constrain the value of eta and calculate rates of denitrification, and nitrification, within the wetland. The maximum calculated rate of denitrification was 956 +/- 187 micromol N m(-2) h(-1), and the maximum rate of nitrification was 182 +/- 28.9 micromol N m(-2) h(-1). Uptake of NO3- was quantitatively more important than denitrification throughoutthe wetland. Rates of N cycling varied spatially within thewetland, with denitrification dominating in the downstream deoxygenated region of the wetland. Studies that use fractionation of N to derive rate estimates must exercise caution when interpreting the net isotope effect. We suggest a sampling procedure for future natural abundance studies that may help improve the accuracy of N cycling rate estimates.

  8. Absolute isotopic composition of molybdenum and the solar abundances of the p-process nuclides Mo92,94

    NASA Astrophysics Data System (ADS)

    Wieser, M. E.; de Laeter, J. R.

    2007-05-01

    The isotopic composition of molybdenum has been measured with high precision using a thermal ionization mass spectrometer, the linearity of which has been verified by measuring the isotopically-certified reference material for strontium (NIST 987). The abundance sensitivity of the mass spectrometer in the vicinity of the molybdenum ion beams has been carefully examined to ensure the absence of tailing effects. Particular care was given to ensuring that potential isobaric interferences from zirconium and ruthenium did not affect the measurement of the isotopic composition of molybdenum. Gravimetric mixtures of two isotopically enriched isotopes, Mo92 and Mo98, were analyzed mass spectrometrically to calibrate the mass spectrometer, in order to establish the isotope fractionation of the spectrometer for the molybdenum isotopes. This enabled the “absolute” isotopic composition of molybdenum to be determined. An accurate determination of the isotopic composition is required in order to calculate the atomic weight of molybdenum, which is one of the least accurately known values of all the elements. The absolute isotope abundances (in atom %) of molybdenum measured in this experiment are as follows: Mo92=14.5246±0.0015; Mo94=9.1514±0.0074; Mo95=15.8375±0.0098; Mo96=16.672±0.019; Mo97=9.5991±0.0073; Mo98=24.391±0.018; and Mo100=9.824±0.050, with uncertainties at the 1s level. These values enable an atomic weight Ar(Mo) of 95.9602±0.0023 (1s) to be calculated, which is slightly higher than the current Standard Atomic Weight Ar(Mo) =95.94±0.02 and with a much improved uncertainty interval. These “absolute” isotope abundances also enable the Solar System abundances of molybdenum to be calculated for astrophysical purposes. Of particular interest are the Solar System abundances of the two p-process nuclides—Mo92 and Mo94, which are present in far greater abundance than p-process theory suggests. The Solar System abundances for Mo92 and Mo94 of 0.364±0

  9. Construction of confidence regions for isotopic abundance patterns in LC/MS data sets for rigorous determination of molecular formulas.

    PubMed

    Ipsen, Andreas; Want, Elizabeth J; Ebbels, Timothy M D

    2010-09-01

    It has long been recognized that estimates of isotopic abundance patterns may be instrumental in identifying the many unknown compounds encountered when conducting untargeted metabolic profiling using liquid chromatography/mass spectrometry. While numerous methods have been developed for assigning heuristic scores to rank the degree of fit of the observed abundance patterns with theoretical ones, little work has been done to quantify the errors that are associated with the measurements made. Thus, it is generally not possible to determine, in a statistically meaningful manner, whether a given chemical formula would likely be capable of producing the observed data. In this paper, we present a method for constructing confidence regions for the isotopic abundance patterns based on the fundamental distribution of the ion arrivals. Moreover, we develop a method for doing so that makes use of the information pooled together from the measurements obtained across an entire chromatographic peak, as well as from any adducts, dimers, and fragments observed in the mass spectra. This greatly increases the statistical power, thus enabling the analyst to rule out a potentially much larger number of candidate formulas while explicitly guarding against false positives. In practice, small departures from the model assumptions are possible due to detector saturation and interferences between adjacent isotopologues. While these factors form impediments to statistical rigor, they can to a large extent be overcome by restricting the analysis to moderate ion counts and by applying robust statistical methods. Using real metabolic data, we demonstrate that the method is capable of reducing the number of candidate formulas by a substantial amount, even when no bromine or chlorine atoms are present. We argue that further developments in our ability to characterize the data mathematically could enable much more powerful statistical analyses.

  10. Principal component analysis on chemical abundances spaces

    NASA Astrophysics Data System (ADS)

    Ting, Yuan-Sen; Freeman, Kenneth C.; Kobayashi, Chiaki; De Silva, Gayandhi M.; Bland-Hawthorn, Joss

    2012-04-01

    In preparation for the High Efficiency and Resolution Multi-Element Spectrograph (HERMES) chemical tagging survey of about a million Galactic FGK stars, we estimate the number of independent dimensions of the space defined by the stellar chemical element abundances [X/Fe]. This leads to a way to study the origin of elements from observed chemical abundances using principal component analysis. We explore abundances in several environments, including solar neighbourhood thin/thick disc stars, halo metal-poor stars, globular clusters, open clusters, the Large Magellanic Cloud and the Fornax dwarf spheroidal galaxy. By studying solar-neighbourhood stars, we confirm the universality of the r-process that tends to produce [neutron-capture elements/Fe] in a constant ratio. We find that, especially at low metallicity, the production of r-process elements is likely to be associated with the production of α-elements. This may support the core-collapse supernovae as the r-process site. We also verify the overabundances of light s-process elements at low metallicity, and find that the relative contribution decreases at higher metallicity, which suggests that this lighter elements primary process may be associated with massive stars. We also verify the contribution from the s-process in low-mass asymptotic giant branch (AGB) stars at high metallicity. Our analysis reveals two types of core-collapse supernovae: one produces mainly α-elements, the other produces both α-elements and Fe-peak elements with a large enhancement of heavy Fe-peak elements which may be the contribution from hypernovae. Excluding light elements that may be subject to internal mixing, K and Cu, we find that the [X/Fe] chemical abundance space in the solar neighbourhood has about six independent dimensions both at low metallicity (-3.5 ≲ [Fe/H] ≲-2) and high metallicity ([Fe/H] ≳-1). However the dimensions come from very different origins in these two cases. The extra contribution from low-mass AGB

  11. Abundance, distribution, and isotopic composition of particulate black carbon in the northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Yang, Weifeng; Guo, Laodong

    2014-11-01

    There exists increasing evidence supporting the important role of black carbon in global carbon cycles. Particulate black carbon (PBC) is allochthonous and has distinct reactivities compared to the bulk particulate organic carbon (tot-POC) in marine environments. However, the abundance, geochemical behavior of PBC and its importance in oceanic carbon budget remain poorly understood. Here we report the abundance, distribution, and stable isotopic signatures of BC derived from the chemo-thermal oxidation (CTO-375) method (BCCTO) in the Gulf of Mexico. Our results show that BCCTO abundance decreased from shelf to basin, and more than a half of riverine BCCTO could be removed over the shelf. Moreover, BCCTO is much more refractory compared to the tot-POC and has δ13C values lower than those of BC-excluded POC. These results highlight the significance of PBC in marine carbon cycles and potentially suggest the need for a new end-member term in quantifying POC sources in the ocean.

  12. Atmospheric Trace Gas Abundances and Stable Isotope Ratios via IR-LIF

    NASA Technical Reports Server (NTRS)

    Blake, Geoffrey A.

    2004-01-01

    We propose to develop new technologies with support provided by PIDDP that will enable the in situ measurements of abundances and stable isotope ratios in important radiatively and biogenically active gases such as carbon dioxide, carbon monoxide, water, methane, nitrous oxide, and hydrogen sulfide to very high precision (0.1 per mil or better for the isotopic ratios, for example). Such measurements, impossible at present, could provide pivotal new constraints on the global (bio)geochemical budgets of these critical species, and could also be used to examine the dynamics of atmospheric transport on Mars, Titan, and other solar system bodies. We believe the combination of solid state light sources with imaging of the IR laser induced fluorescence (IR-LIF) via newly available detector arrays will make such in situ measurements possible for the first time. Even under ambient terrestrial conditions, the LIF yield from vibrational excitation of species such as water and carbon dioxide should produce emission measures well in excess of ten billion photons/sec from samples volumes of order 1 c.c. These count rates can, in principle, yield detection limits into the sub-ppt range that are required for the in situ isotopic study of atmospheric trace gases. While promising, such technologies are relatively immature, but developing rapidly, and there are a great many uncertainties regarding their applicability to in situ IR-LIF planetary studies. We therefore feel PIDDP support will be critical to developing these new tools, and propose a three-year program to combine microchip near-IR lasers with low background detection axes and state-of-the-art HgCdTe detectors developed for astronomical spectroscopy to investigate the sensitivity of IR-LIF under realistic planetary conditions, to optimize the optical pumping and filtering schemes for important species, and to apply the spectrometer to the non-destructive measurement of stable isotopes in a variety of test samples. These

  13. Abundances in red giant stars - Nitrogen isotopes in carbon-rich molecular envelopes

    NASA Technical Reports Server (NTRS)

    Wannier, P. G.; Andersson, B.-G.; Olofsson, H.; Ukita, N.; Young, K.

    1991-01-01

    Results are presented of millimeter- and submillimeter-wave observations of HCN and HCCCN that were made of the circmustellar envelopes of eight carbon stars, including the two protoplanetary nebulae CRL 618 and CRL 2688. The observations yield a measure of the double ratio (N-14)(C-13)/(N-15)(C-12). Measured C-12/C-13 ratios are used to estimate the N-14/N-15 abundance ratio, with the resulting lower limits in all eight envelopes and possible direct determinations in two envelopes. The two determinations and four of the remaining six lower limits are found to be in excess of the terrestrial value of N-14/N-15 = 272, indicating an evolution of the nitrogen isotope ratio, which is consistent with stellar CNO processing. Observations of thermal SiO (v = 0, J = 2-1) emission show that the Si-29/Si-28 ratio can be determined in carbon stars, and further observations are indicated.

  14. Stable carbon isotope analysis of coprocessing materials

    SciTech Connect

    Winschel, R.A.; Lancet, M.S.; Burke, F.P.

    1991-04-01

    This is the final report which was a thirty-four month project conducted to develop and demonstrate stable carbon isotope analysis as a method to quantitatively distinguish the source of carbon in products of coal/petroleum coprocessing. The work included assessing precision, accuracy, the range of application and the significance of selective isotopic fractionation effects. A method was devised to correct for selective isotopic fractionation errors. The method was demonstrated through application with samples from twelve continuous-unit coprocessing tests. A data base of carbon isotope analyses is appended. 21 refs.

  15. Chlorine Isotopes: As a Possible Tracer of Fluid/Bio-Activities on Mars and a Progress Report on Chlorine Isotope Analysis by TIMs

    NASA Technical Reports Server (NTRS)

    Nakamura, N.; Nyquist, L.E.; Reese, Y.; Shih, C-Y.; Numata, M.; Fujitani, T.; Okano, O.

    2009-01-01

    Significantly large mass fractionations between chlorine isotopes (Cl-35, Cl-37) have been reported for terrestrial materials including both geological samples and laboratory materials. Also, the chlorine isotopic composition can be used as a tracer for early solar system processes. Moreover, chlorine is ubiquitous on the Martian surface. Typical chlorine abundances in Gusev soils are approx.0.5 %. The global surface average chlorine abundance also is approx.0.5 %. Striking variations among outcrop rocks at Meridiani were reported with some chlorine abundances as high as approx.2%. Characterizing conditions under which chlorine isotopic fractionation may occur is clearly of interest to planetary science. Thus, we have initiated development of a chlorine isotopic analysis technique using TIMS at NASA-JSC. We present here a progress report on the current status of development at JSC and discuss the possible application of chlorine isotopic analysis to Martian meteorites in a search for fluid- and possibly biological activity on Mars.

  16. Amino acid isotopic analysis in agricultural systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A relatively new approach to stable isotopic analysis—referred to as compound-specific isotopic analysis (CSIA)—has emerged, centering on the measurement of 15N:14N ratios in amino acids (glutamic acid and phenylalanine). CSIA has recently been used to generate trophic position estimates among anima...

  17. Abundance and isotopic composition of gases in the martian atmosphere from the Curiosity rover.

    PubMed

    Mahaffy, Paul R; Webster, Christopher R; Atreya, Sushil K; Franz, Heather; Wong, Michael; Conrad, Pamela G; Harpold, Dan; Jones, John J; Leshin, Laurie A; Manning, Heidi; Owen, Tobias; Pepin, Robert O; Squyres, Steven; Trainer, Melissa

    2013-07-19

    Volume mixing and isotope ratios secured with repeated atmospheric measurements taken with the Sample Analysis at Mars instrument suite on the Curiosity rover are: carbon dioxide (CO2), 0.960(±0.007); argon-40 ((40)Ar), 0.0193(±0.0001); nitrogen (N2), 0.0189(±0.0003); oxygen, 1.45(±0.09) × 10(-3); carbon monoxide, < 1.0 × 10(-3); and (40)Ar/(36)Ar, 1.9(±0.3) × 10(3). The (40)Ar/N2 ratio is 1.7 times greater and the (40)Ar/(36)Ar ratio 1.6 times lower than values reported by the Viking Lander mass spectrometer in 1976, whereas other values are generally consistent with Viking and remote sensing observations. The (40)Ar/(36)Ar ratio is consistent with martian meteoritic values, which provides additional strong support for a martian origin of these rocks. The isotopic signature δ(13)C from CO2 of ~45 per mil is independently measured with two instruments. This heavy isotope enrichment in carbon supports the hypothesis of substantial atmospheric loss.

  18. Hg stable isotope analysis by the double-spike method.

    PubMed

    Mead, Chris; Johnson, Thomas M

    2010-06-01

    Recent publications suggest great potential for analysis of Hg stable isotope abundances to elucidate sources and/or chemical processes that control the environmental impact of mercury. We have developed a new MC-ICP-MS method for analysis of mercury isotope ratios using the double-spike approach, in which a solution containing enriched (196)Hg and (204)Hg is mixed with samples and provides a means to correct for instrumental mass bias and most isotopic fractionation that may occur during sample preparation and introduction into the instrument. Large amounts of isotopic fractionation induced by sample preparation and introduction into the instrument (e.g., by batch reactors) are corrected for. This may greatly enhance various Hg pre-concentration methods by correcting for minor fractionation that may occur during preparation and removing the need to demonstrate 100% recovery. Current precision, when ratios are normalized to the daily average, is 0.06 per thousand, 0.06 per thousand, 0.05 per thousand, and 0.05 per thousand (2sigma) for (202)Hg/(198)Hg, (201)Hg/(198)Hg, (200)Hg/(198)Hg, and (199)Hg/(198)Hg, respectively. This is slightly better than previously published methods. Additionally, this precision was attained despite the presence of large amounts of other Hg isotopes (e.g., 5.0% atom percent (198)Hg) in the spike solution; substantially better precision could be achieved if purer (196)Hg were used.

  19. The Determination of the Natural Abundance of the Isotopes of Chlorine: An Introductory Experiment in Mass Spectrometry.

    ERIC Educational Resources Information Center

    O'Malley, Rebecca M.

    1982-01-01

    Describes a laboratory experiment which introduces basic principles and experimental techniques of mass spectrometry for fourth year undergraduate (B.Sc.) students. Laboratory procedures, background information, and discussion of results are provided for the experiment in which the natural isotopic abundance of chlorine is determined. (Author/JN)

  20. Siderophile and chalcophile element abundances in oceanic basalts, Pb isotope evolution and growth of the earth's core

    NASA Technical Reports Server (NTRS)

    Newsom, H. E.; White, W. M.; Jochum, K. P.; Hofmann, A. W.

    1986-01-01

    The hypothesis that the mantle Pb isotope ratios reflect continued extraction of Pb into the earth's core over geologic time is evaluated by studying the depeletion of chalcophile and siderophile elements in the mantle. Oceanic basalt samples are analyzed in order to determine the Pb, Sr, and Nd isotropic compositions and the abundances of siderophile and chalcophile elements and incompatible lithophile elements. The data reveal that there is no systematic variation of siderophile or chalcophile element abundances relative to abundances of lithophile elements and the Pb/Ce ratio of the mantle is constant. It is suggested that the crust formation involves nonmagmatic and magmatic processes.

  1. Uranium and plutonium isotopic analysis using MGA++

    SciTech Connect

    Buckley, W; Clark, D; Friensehner, A; Parker, W; Raschke, K; Romine, W; Ruhter, W; Wang, T-F; kreek, S

    1998-07-01

    The Lawrence Livermore National Laboratory develops sophisticated gamma-ray analysis codes for the isotopic analysis of nuclear materials based on the principles used in the original MultiGroup Analysis (MGA) code. Over the years, the MGA methodology has been upgraded and expanded far beyond its original capabilities and is now comprised of a suite of codes known as MGA++. The early MGA code analyzed Pu gamma-ray data collected with high-purity germanium (HPGe) detectors to yield Pu isotopic ratios. While the original MGA code relied solely on the lower-energy gamma rays (around 100 keV), the most recent addition to the MGA++ code suite, MGAHI, analyzes Pu data using higher-energy gamma rays (200 keV and higher) and is particulatly useful for Pu samples - that are enclosed in thick-walled containers. The MGA++ suite also includes capabilities to perform U isotopic analysis on data collected with either HPGe or cadmium-zinc-tellutide (CZT) detectors. These codes are commercially available and are known as U235 and CZTU, respectively. A graphical user interface has also been developed for viewing the data and the fitting procedure. In addition, we are developing new codes that will integrate into the MGA++ suite. These will include Pu isotopic analysis capabilities for data collected with CZT detectors, U isotopic analysis with HPGe detectors which utilizes only higher energy gamma rays, and isotopic analyses on mixtures of Pu and U.

  2. The origin of aubrites: Evidence from lithophile trace element abundances and oxygen isotope compositions

    NASA Astrophysics Data System (ADS)

    Barrat, J. A.; Greenwood, R. C.; Keil, K.; Rouget, M. L.; Boesenberg, J. S.; Zanda, B.; Franchi, I. A.

    2016-11-01

    We report the abundances of a selected set of ;lithophile; trace elements (including lanthanides, actinides and high field strength elements) and high-precision oxygen isotope analyses of a comprehensive suite of aubrites. Two distinct groups of aubrites can be distinguished: (a) the main-group aubrites display flat or light-REE depleted REE patterns with variable Eu and Y anomalies; their pyroxenes are light-REE depleted and show marked negative Eu anomalies; (b) the Mount Egerton enstatites and the silicate fraction from Larned display distinctive light-REE enrichments, and high Th/Sm ratios; Mount Egerton pyroxenes have much less pronounced negative Eu anomalies than pyroxenes from the main-group aubrites. Leaching experiments were undertaken to investigate the contribution of sulfides to the whole rock budget of the main-group aubrites. Sulfides contain in most cases at least 50% of the REEs and of the actinides. Among the elements we have analyzed, those displaying the strongest lithophile behaviors are Rb, Ba, Sr and Sc. The homogeneity of the Δ17O values obtained for main-group aubrite falls [Δ17O = +0.009 ± 0.010‰ (2σ)] suggests that they originated from a single parent body whose differentiation involved an early phase of large-scale melting that may have led to the development of a magma ocean. This interpretation is at first glance in agreement with the limited variability of the shapes of the REE patterns of these aubrites. However, the trace element concentrations of their phases cannot be used to discuss this hypothesis, because their igneous trace-element signatures have been modified by subsolidus exchange. Finally, despite similar O isotopic compositions, the marked light-REE enrichments displayed by Mount Egerton and Larned suggest that they are unrelated to the main-group aubrites and probably originated from a distinct parent body.

  3. Stable carbon isotope analysis of coprocessing materials

    SciTech Connect

    Burke, F.P.; Winschel, R.A.; Lancet, M.S.

    1990-05-01

    Consol R D is developing and demonstrating stable carbon isotope analysis as a method quantitatively distinguish coal-derived and petroleum-derived carbon in products from coal/petroleum coprocessing. The approach taken is to develop the method, then demonstrate its application on authentic continuous-unit products. The significance of selective isotopic fractionation is being determined and, if necessary, corrections will be applied to account for it. Activities for this quarter include: method development -- investigation of selective fractionation. Three petroleum atmospheric still bottoms (ASBs) were separated by distillation and solubility fractionation to determine the homogeneity of the carbon isotope ratios of the separated fractions. These same three petroleum ASBs and three geographically distinct coals were pyrolyzed at 800{degree}F for 30 min and hydrogenated over a CoMo catalyst at 750{degree}F for 60 min to determine the effects of these treatments on the isotopic compositions of the produce fractions. Twelve coal liquefaction oils were analyzed for carbon isotope ratios. These oils were derived from subbituminous and bituminous coals from the first- and second-stage reactors in the thermal/catalytic and modes; validation and application, analysis. Carbon isotope analyses of samples from HRI bench unit coprocessing run 238-2 (Taiheiyo coal/Maya VSB) were analyzed. A method to correct for selective isotopic fractionation was developed and applied to the data. Five coprocessing samples were analyzed at the request of SRI International. 12 refs., 15 figs., 24 tabs.

  4. Determination of the abundance and carbon isotope composition of elemental carbon in sediments

    NASA Astrophysics Data System (ADS)

    Bird, Michael I.; Gröcke, Darren R.

    1997-08-01

    We report measurements of the susceptibility of a variety of elemental and organic carbon samples to oxidative degradation using both acid dichromate and basic peroxide reagents. Organic carbon is rapidly oxidized using either reagent, or both reagents sequentially. Elemental carbon exhibits a wide range of susceptibilities to oxidation related both to the degree to which the precursor plant material was carbonized during pyrolysis and to the surface area available for oxidation. Despite a range of susceptibilities, a component of oxidation-resistant elemental carbon has been identified which can be reproducibly separated from organic contaminants. The carbon isotope composition (δ 13C value) of the precursor plant materials underwent a 0-1.6‰ decrease during the production of the elemental carbon by pyrolysis, while the subsequent oxidative degradation of the samples resulted in only small (generally < 0.5%o) changes in the δ 13C value of the remaining elemental carbon. The results suggest that the technique can be used to obtain records of elemental carbon abundance in marine sediment cores, and thus a record of the intensity of biomass burning on adjacent continental land masses in the geologic past. In addition, the δ 13C value of the elemental carbon can provide an indication of the type of vegetation being burnt.

  5. Methods and limitations of 'clumped' CO2 isotope (Delta47) analysis by gas-source isotope ratio mass spectrometry.

    PubMed

    Huntington, K W; Eiler, J M; Affek, H P; Guo, W; Bonifacie, M; Yeung, L Y; Thiagarajan, N; Passey, B; Tripati, A; Daëron, M; Came, R

    2009-09-01

    The geochemistry of multiply substituted isotopologues ('clumped-isotope' geochemistry) examines the abundances in natural materials of molecules, formula units or moieties that contain more than one rare isotope (e.g. (13)C(18)O(16)O, (18)O(18)O, (15)N(2), (13)C(18)O(16)O(2) (2-)). Such species form the basis of carbonate clumped-isotope thermometry and undergo distinctive fractionations during a variety of natural processes, but initial reports have provided few details of their analysis. In this study, we present detailed data and arguments regarding the theoretical and practical limits of precision, methods of standardization, instrument linearity and related issues for clumped-isotope analysis by dual-inlet gas-source isotope ratio mass spectrometry (IRMS). We demonstrate long-term stability and subtenth per mil precision in 47/44 ratios for counting systems consisting of a Faraday cup registered through a 10(12) ohm resistor on three Thermo-Finnigan 253 IRMS systems. Based on the analyses of heated CO(2) gases, which have a stochastic distribution of isotopes among possible isotopologues, we document and correct for (1) isotopic exchange among analyte CO(2) molecules and (2) subtle nonlinearity in the relationship between actual and measured 47/44 ratios. External precisions of approximately 0.01 per thousand are routinely achieved for measurements of the mass-47 anomaly (a measure mostly of the abundance anomaly of (13)C-(18)O bonds) and follow counting statistics. The present technical limit to precision intrinsic to our methods and instrumentation is approximately 5 parts per million (ppm), whereas precisions of measurements of heterogeneous natural materials are more typically approximately 10 ppm (both 1 s.e.). These correspond to errors in carbonate clumped-isotope thermometry of +/-1.2 degrees C and +/-2.4 degrees C, respectively.

  6. Stable carbon isotope analysis of coprocessing materials

    SciTech Connect

    Lancet, M.S.; Winschel, R.A.; Burke, F.P.

    1991-03-01

    Research on coprocessing materials/products continued. Major topics reported here are described below. Microautoclave runs are described in which gases and insoluble organic matter produced from five coals and gases produced from three petroleum resids were analyzed to study feedstock/product selective isotopic fractionation. Selective isotopic fractionation was further explored through isotope analysis of the feed New Mexico coal and products from a continuous coal liquefaction run (HRI CC-10 or 227-68). Feeds (Texas lignite/Maya VSB) and products from two HRI continuous coprocessing runs (227-54 and 238-12) were analyzed. The results were corrected for selective isotopic fractionation and carbon sourcing was performed for the product fractions. {sup 1}H-NMR and phenolic -OH determinations are reported for all continuous unit samples obtained under this contract. 13 refs., 17 figs., 40 tabs.

  7. Stable isotope dilution assays in mycotoxin analysis.

    PubMed

    Rychlik, Michael; Asam, Stefan

    2008-01-01

    The principle and applications of stable isotope dilution assays (SIDAs) in mycotoxin analysis are critically reviewed. The general section includes historical aspects of SIDAs, the prerequisites and limitations of the use of stable isotopically labelled internal standards, and possible calibration procedures. In the application section actual SIDAs for the analysis of trichothecenes, zearalenone, fumonisins, patulin, and ochratoxin A are presented. The syntheses and availability of labelled mycotoxins for use as internal standards is reviewed and specific advances in food analysis and toxicology are demonstrated. The review indicates that LC-MS applications, in particular, require the use of stable isotopically labelled standards to compensate for losses during clean-up and for discrimination due to ion suppression. As the commercial availability of these compounds continues to increase, SIDAs can be expected to find expanding use in mycotoxin analysis.

  8. Stable carbon isotope analysis of coprocessing materials

    SciTech Connect

    Lancet, M.S.; Winschel, R.A.; Burke, F.P.

    1991-01-01

    Consol R D is developing and demonstrating stable carbon isotope analysis as a method to quantitatively distinguish coal-derived and petroleum-derived carbon in products from coal/petroleum coprocessing. The approach taken is to develop the method, then demonstrate its application an authentic continuous-unit products. The experimental details used for stable carbon isotope analyses by the organization that performs most of those analyses under this contract are described. A method was developed previously under this contract to correct the carbon sourcing calculations performed from stable carbon isotope analyses for selective isotopic fractionation. The method relies on three assumptions. This quarter, a study was completed to define the sensitivity of the carbon sourcing results to errors in the assumptions. Carbon contents and carbon isotope ratios were determined for the available feeds and product fractions from HRI bench-scale coprocessing Run 238-10 (Texas lignite/Hondo vacuum still bottoms (VSB), Texas lignite/Cold Lake VSB and Westerholt coal/Cold Lake VSB). These data were used for carbon sourcing calculations and individual feedstock conversion calculations. A previously devised means for correcting for selective isotope fractionation was applied. 6 refs., 30 figs., 16 tabs.

  9. Thorium isotopic analysis by alpha spectrometry.

    PubMed

    Gingell, T

    2001-01-01

    The technique of alpha spectrometry is used to detect alpha particles and to determine their energy. In this way the technique is able to provide simultaneously quantitative information (i.e. the activity) and qualitative information (the identity) on any radionuclide that emits an alpha particle. The longer-lived naturally occurring isotopes of thorium are all alpha emitters so the technique can be used to quantify them directly and this is extremely important if radiation doses due to intakes of these isotopes into the body are to be accurately assessed. The principle of the technique is discussed, its advantages and disadvantages, and the instrumentation that is commonly used today. The need for radiochemical separation is discussed and illustrated by reference to analysis procedures in current use for thorium isotopic analysis. Practical issues such as detection limits, quality control procedures. sample throughput and cost will be covered.

  10. The potential for application of ink stable isotope analysis in questioned document examination.

    PubMed

    Chesson, Lesley A; Tipple, Brett J; Barnette, Janet E; Cerling, Thure E; Ehleringer, James R

    2015-01-01

    We investigated a novel application of stable isotope abundance analysis of nitrogen (15N), carbon (13C), hydrogen (2H), and oxygen (18O) to characterize pen ink. We focused on both ballpoint and gel pen inks. We found that the isotope ratios of ink from pens purchased together in a package were similar and within-package stable isotope ratio variability was not significantly larger than the variability of isotope reference materials used during analysis. In contrast, the isotope ratios of ink from pens of the same brand purchased in three states of the continental USA were significantly different from each other and there was isotope ratio variation among pens of the same brand but different, unknown production periods. The stable isotope ratios of inked paper were statistically distinguishable using measured δ15N values. Paper inked with different gel pens was statistically distinguishable using measured δ2H values. The capacity of stable isotope ratios to differentiate among ballpoint inks as well as gel inks shows that stable isotope analysis may be a useful and quantifiable investigative technique for questioned document examination, although current sample size requirements limit its utility. Application of the technique in casework will require the development of micro-scale sampling and analysis methods.

  11. Three-stage mass spectrometer for isotopic analysis of radionuclides in environmental samples

    SciTech Connect

    Halverson, J.E.

    1981-09-01

    A three-stage mass spectrometer was constructed for isotopic analysis of several radioactive as well as stable elements at environmental levels. The spectrometer is interfaced to a digital computer, which controls the operation of the spectrometer, accumulates data, reduces data, and prints a final result. The spectrometer has demonstrated the capability of measuring the isotopic composition of plutonium samples as small as 0.005 picogram and has an abundance sensitivity greater than 10/sup 8/.

  12. On strontium isotopic anomalies and odd-A p-process abundances. [in solar system

    NASA Technical Reports Server (NTRS)

    Clayton, D. D.

    1978-01-01

    Several aspects of the nucleosynthesis of Sr isotopes are considered in an attempt to shed light on the problem of the Sr isotopic anomalies discovered in an inclusion of the Allende meteorite. Decomposition of the Sr isotopes into average r-, s-, and p-process nucleosynthetic classes is performed. It is suggested that the Allende inclusion most likely has an excess of s-process Sr and that the initial Sr-87/Sr-86 isotopic ratio is probably slightly more primitive than basaltic achondrites. The results also show that Sn-115 is mostly due to the r-process and that odd-A yields are very small. It is concluded that if the Sr anomaly in the inclusion is an average s enhancement, it argues somewhat in favor of a model of gas/dust fractionation of s and r isotopes during accumulation of the inclusion parent in the protosolar cloud.

  13. On the isotope analysis of cometary dust

    NASA Technical Reports Server (NTRS)

    Begemann, Friedrich

    1989-01-01

    It is thought that comets are an intimate mixture of ices and sub-micron to pebble sized silicates. Based on experience with carbonaceous chrondrites, part of the smallest grains are expected to be primary condensates carrying the unadulterated isotopic signature of their place of origin. In order to extract this information a grain-by-grain analysis will be necessary.

  14. Lithium isotopes and light lithophile element abundances in shergottites: Evidence for both magmatic degassing and subsolidus diffusion

    NASA Astrophysics Data System (ADS)

    Udry, Arya; McSween, Harry Y.; Hervig, Richard L.; Taylor, Lawrence A.

    2016-01-01

    Degassed magmatic water was potentially the major source of surficial water on Mars. We measured Li, B, and Be abundances and Li isotope profiles in pyroxenes, olivines, and maskelynite from four compositionally different shergottites—Shergotty, QUE 94201, LAR 06319, and Tissint—using secondary ion mass spectrometry (SIMS). All three light lithophile elements (LLE) are incompatible: Li and B are soluble in H2O-rich fluids, whereas Be is insoluble. In the analyzed shergottites, Li concentration decreases and Be concentration increases from cores to rims in pyroxenes. However, B concentrations do not vary consistently with Li and Be abundances, except in QUE 94201 pyroxenes. Additionally, abundances of these three elements in olivines show a normal igneous-fractionation trend consistent with the crystallization of olivine before magma ascent and degassing. We expect that kinetic effects would lead to fractionation of 6Li in the vapor phase compared to 7Li during degassing. The Li isotope profiles, with increasing δ7Li from cores to rims, as well as Li and B profiles indicate possible degassing of hydrous fluids only for the depleted shergottite QUE 94201, as also supported by degassing models. Conversely, Shergotty, LAR 06319, and Tissint appear to have been affected by postcrystallization diffusion, based on their LLE and Li isotope profiles, accompanied by diffusion models. This process may represent an overlay on a degassing pattern. The LLE profiles and isotope profiles in QUE 94201 support the hypothesis that degassing of some basaltic shergottite magmas provided water to the Martian surface, although evidence may be obscured by subsolidus diffusion processes.

  15. Stable carbon isotope analysis of coprocessing materials

    SciTech Connect

    Winschel, R.A.; Lancet, M.S.; Burke, F.P.

    1990-07-01

    Consol R D is developing and demonstrating stable carbon isotope analysis as a method to quantitatively distinguish coal-derived and petroleum-derived carbon in products from coal/petroleum coprocessing. The approach taken is to develop the method, then demonstrate its application on authentic continuous-unit products. The significance of selective isotopic fractionation is being determined and, if necessary, corrections will be applied to account for it. Precision, accuracy and range of applicability are being defined. The value of accessory analytical techniques also is being assessed. The program is designed to address a substantial, demonstrated need of coprocessing research (both exploratory and development) for a technique to quantitatively distinguish the contributions of the individual coprocessing feedstocks to the various products. The carbon isotope technique currently is in routine use for other applications. Progress is discussed. 7 refs., 7 figs., 12 tabs.

  16. Oxygen isotopic abundances in calcium- aluminum-rich inclusions from ordinary chondrites: implications for nebular heterogeneity.

    PubMed

    McKeegan, K D; Leshin, L A; Russell, S S; MacPherson, G J

    1998-04-17

    The oxygen isotopic compositions of two calcium-aluminum-rich inclusions (CAIs) from the unequilibrated ordinary chondrite meteorites Quinyambie and Semarkona are enriched in 16O by an amount similar to that in CAIs from carbonaceous chondrites. This may indicate that most CAIs formed in a restricted region of the solar nebula and were then unevenly distributed throughout the various chondrite accretion regions. The Semarkona CAI is isotopically homogeneous and contains highly 16O-enriched melilite, supporting the hypothesis that all CAI minerals were originally 16O-rich, but that in most carbonaceous chondrite inclusions some minerals exchanged oxygen isotopes with an external reservoir following crystallization.

  17. Analysis of the site-specific carbon isotope composition of propane by gas source isotope ratio mass spectrometer

    NASA Astrophysics Data System (ADS)

    Piasecki, Alison; Sessions, Alex; Lawson, Michael; Ferreira, A. A.; Neto, E. V. Santos; Eiler, John M.

    2016-09-01

    Site-specific isotope ratio measurements potentially provide valuable information about the formation and degradation of complex molecules-information that is lost in conventional bulk isotopic measurements. Here we discuss the background and possible applications of such measurements, and present a technique for studying the site-specific carbon isotope composition of propane at natural abundance based on mass spectrometric analysis of the intact propane molecule and its fragment ions. We demonstrate the feasibility of this approach through measurements of mixtures of natural propane and propane synthesized with site-specific 13C enrichment, and we document the limits of precision of our technique. We show that mass balance calculations of the bulk δ13C of propane based on our site-specific measurements is generally consistent with independent constraints on bulk δ13C. We further demonstrate the accuracy of the technique, and illustrate one of its simpler applications by documenting the site-specific carbon isotope signature associated with gas phase diffusion of propane, confirming that our measurements conform to the predictions of the kinetic theory of gases. This method can be applied to propane samples of moderate size (tens of micromoles) isolated from natural gases. Thus, it provides a means of studying the site-specific stable isotope systematics of propane at natural isotope abundances on sample sizes that are readily recovered from many natural environments. This method may also serve as a model for future techniques that apply high-resolution mass spectrometry to study the site-specific isotopic distributions of larger organic molecules, with potential applications to biosynthesis, forensics and other geochemical subjects.

  18. Determination of the natural abundance δ15N of taurine by gas chromatography-isotope ratio measurement mass spectrometry.

    PubMed

    Tea, Illa; Antheaume, Ingrid; Besnard, Jorick; Robins, Richard J

    2010-12-15

    The measurement of the nitrogen isotope ratio of taurine (2-aminoethanesulphonic acid) in biological samples has a large number of potential applications. Taurine is a small water-soluble molecule which is notoriously difficult to analyze due to its polarity and functionality. A method is described which allows the determination of the natural abundance δ(15)N values of taurine and structural analogues, such as 3-amino-1-propanesulphonic acid (APSA), by isotope ratio mass spectrometry interfaced to gas chromatography (GC-irm-MS). The one-step protocol exploits the simultaneous derivatization of both functionalities of these aminosulphonic acids by reaction with triethylorthoacetate (TEOA). Conditions have been established which ensure quantitative reaction thus avoiding any nitrogen isotope fractionation during derivatization and workup. The differences in the δ(15)N values of derivatized and non-derivatized taurine and APSA all fall within the working range of 0.4‰ (-0.02 to 0.39‰). When applied to four sources of taurine with various δ(15)N values, the method achieved excellent reproducibility and accuracy. The optimized method enables the determination of the natural abundance δ(15)N values of taurine over the concentration range 1.5-7.84 µmol.mL(-1) in samples of biological origin.

  19. Temporal variation in mycorrhizal diversity and carbon and nitrogen stable isotope abundance in the wintergreen meadow orchid Anacamptis morio.

    PubMed

    Ercole, Enrico; Adamo, Martino; Rodda, Michele; Gebauer, Gerhard; Girlanda, Mariangela; Perotto, Silvia

    2015-02-01

    Many adult orchids, especially photoautotrophic species, associate with a diverse range of mycorrhizal fungi, but little is known about the temporal changes that might occur in the diversity and functioning of orchid mycorrhiza during vegetative and reproductive plant growth. Temporal variations in the spectrum of mycorrhizal fungi and in stable isotope natural abundance were investigated in adult plants of Anacamptis morio, a wintergreen meadow orchid. Anacamptis morio associated with mycorrhizal fungi belonging to Tulasnella, Ceratobasidium and a clade of Pezizaceae (Ascomycetes). When a complete growing season was investigated, multivariate analyses indicated significant differences in the mycorrhizal fungal community. Among fungi identified from manually isolated pelotons, Tulasnella was more common in autumn and winter, the pezizacean clade was very frequent in spring, and Ceratobasidium was more frequent in summer. By contrast, relatively small variations were found in carbon (C) and nitrogen (N) stable isotope natural abundance, A. morio samples showing similar (15)N enrichment and (13)C depletion at the different sampling times. These observations suggest that, irrespective of differences in the seasonal environmental conditions, the plant phenological stages and the associated fungi, the isotopic content in mycorrhizal A. morio remains fairly constant over time.

  20. Mercury (Hg) in meteorites: Variations in abundance, thermal release profile, mass-dependent and mass-independent isotopic fractionation

    NASA Astrophysics Data System (ADS)

    Meier, Matthias M. M.; Cloquet, Christophe; Marty, Bernard

    2016-06-01

    We have measured the concentration, isotopic composition and thermal release profiles of Mercury (Hg) in a suite of meteorites, including both chondrites and achondrites. We find large variations in Hg concentration between different meteorites (ca. 10 ppb to 14,000 ppb), with the highest concentration orders of magnitude above the expected bulk solar system silicates value. From the presence of several different Hg carrier phases in thermal release profiles (150-650 °C), we argue that these variations are unlikely to be mainly due to terrestrial contamination. The Hg abundance of meteorites shows no correlation with petrographic type, or mass-dependent fractionation of Hg isotopes. Most carbonaceous chondrites show mass-independent enrichments in the odd-numbered isotopes 199Hg and 201Hg. We show that the enrichments are not nucleosynthetic, as we do not find corresponding nucleosynthetic deficits of 196Hg. Instead, they can partially be explained by Hg evaporation and redeposition during heating of asteroids from primordial radionuclides and late-stage impact heating. Non-carbonaceous chondrites, most achondrites and the Earth do not show these enrichments in vapor-phase Hg. All meteorites studied here have however isotopically light Hg (δ202Hg = ∼-7 to -1) relative to the Earth's average crustal values, which could suggest that the Earth has lost a significant fraction of its primordial Hg. However, the late accretion of carbonaceous chondritic material on the order of ∼2%, which has been suggested to account for the water, carbon, nitrogen and noble gas inventories of the Earth, can also contribute most or all of the Earth's current Hg budget. In this case, the isotopically heavy Hg of the Earth's crust would have to be the result of isotopic fractionation between surface and deep-Earth reservoirs.

  1. Natural-abundance stable carbon isotopes of small-subunit ribosomal RNA (SSU rRNA) from Guaymas Basin (Mexico)

    NASA Astrophysics Data System (ADS)

    MacGregor, B. J.; Mendlovitz, H.; Albert, D.; Teske, A. P.

    2012-12-01

    Small-subunit ribosomal RNA (SSU rRNA) is a phylogenetically informative molecule found in all species. Because it is poorly preserved in most environments, it is a useful marker for active microbial populations. We are using the natural-abundance stable carbon isotopic composition of specific microbial groups to help identify the carbon substrates contributing to microbial biomass in a variety of marine environments. At Guaymas Basin, hydrothermal fluids interact with abundant sedimentary organic carbon to produce natural gas and petroleum. Where this reaches the sediment surface, it can support dense patches of seafloor life, including Beggiatoa mats. We report here on the stable carbon isotopic composition of SSU rRNA from a Beggiatoa mat transect, a cold background site, a warm site with high oil concentration, and a second Beggiatoa mat. The central part of the transect mat overlay the steepest temperature gradient, and was visually dominated by orange Beggiatoa. This was fringed by white Beggiatoa mat and bare, but still warm, sediment. Methane concentrations were saturating beneath the orange and white mats and at the oily site, lower beneath bare sediment, and below detection at the background site. Our initial hypotheses were that rRNA isotopic composition would be strongly influenced by methane supply, and that archaeal rRNA might be lighter than bacterial due to contributions from methanogens and anaerobic methane oxidizers. We used biotin-labeled oligonucleotides to capture Bacterial and Archaeal SSU rRNA for isotopic determination. Background-site rRNA was isotopically heaviest, and bacterial RNA from below 2 cm at the oily site was lightest, consistent with control by methane. Within the transect mat, however, the pattern was more complicated; at some sediment depths, rRNA from the mat periphery was isotopically lightest. Part of this may be due to the spatially and temporally variable paths followed by hydrothermal fluid, which can include horizontal

  2. The source charge and isotopic abundances of cosmic rays with Z = 9-16 - A study using new fragmentation cross sections

    NASA Technical Reports Server (NTRS)

    Webber, W. R.; Gupta, M.; Soutoul, A.; Ferrando, P.

    1990-01-01

    The cosmic ray source charge and isotopic abundances for charges with Z = 9-16 are reexamined using newly measured fragmentation cross sections in a standard Galactic propagation model. Compared with earlier studies, the cosmic-ray data are now consistent with no excess of Si-29 and Si-30 in the source relative to the solar coronal abundances. The excess of Mg-25 and Mg-26 is now about 1 sigma or less relative to solar coronal isotopic abundances, leaving Ne-22 as the only clearly established neutron-rich isotopic excess in the cosmic ray source. Better estimates of the source abundances of elements obtained using the new cross sections permit the conclusion that high first ionization potential (FIP) elements have a wide spread of compositional differences in the cosmic-ray source relative to solar coronal abundances, whereas elements with a low FIP have a composition similar to the solar corona.

  3. Further analysis of the IRIS iron isotope experiment

    NASA Technical Reports Server (NTRS)

    Tarle, G.; Ahlen, S. P.; Cartwright, B. G.; Solarz, M.

    1980-01-01

    The IRIS Fe isotope experiment was extended to atomic charges of Z = 19, with isotopic distributions for 500 events ranging from 18 to 28. Normalization of the detector response functions at Fe-56 produced a single well resolved peak at Sc-45, establishing the resolution and mass scale of the device over the entire charge region. The abundance distributions for the predominantly primary isotopes Ca-40, Fe-54, Fe-56, Ni-58, and Ni-60 do not indicate a large admixture of material with distinctly nonsolar abundances.

  4. Oxygen isotopes in nitrite: Analysis, calibration, and equilibration

    USGS Publications Warehouse

    Casciotti, K.L.; Böhlke, J.K.; McIlvin, M.R.; Mroczkowski, S.J.; Hannon, J.E.

    2007-01-01

    Nitrite is a central intermediate in the nitrogen cycle and can persist in significant concentrations in ocean waters, sediment pore waters, and terrestrial groundwaters. To fully interpret the effect of microbial processes on nitrate (NO3-), nitrite (NO2-), and nitrous oxide (N2O) cycling in these systems, the nitrite pool must be accessible to isotopic analysis. Furthermore, because nitrite interferes with most methods of nitrate isotopic analysis, accurate isotopic analysis of nitrite is essential for correct measurement of nitrate isotopes in a sample that contains nitrite. In this study, nitrite salts with varying oxygen isotopic compositions were prepared and calibrated and then used to test the denitrifier method for nitrite oxygen isotopic analysis. The oxygen isotopic fractionation during nitrite reduction to N2O by Pseudomonas aureofaciens was lower than for nitrate conversion to N2O, while oxygen isotopic exchange between nitrite and water during the reaction was similar. These results enable the extension of the denitrifier method to oxygen isotopic analysis of nitrite (in the absence of nitrate) and correction of nitrate isotopes for the presence of nitrite in "mixed" samples. We tested storage conditions for seawater and freshwater samples that contain nitrite and provide recommendations for accurate oxygen isotopic analysis of nitrite by any method. Finally, we report preliminary results on the equilibrium isotope effect between nitrite and water, which can play an important role in determining the oxygen isotopic value of nitrite where equilibration with water is significant. ?? 2007 American Chemical Society.

  5. Stable carbon isotope analysis of coprocessing materials

    SciTech Connect

    Lancet, M.S.; Winschel, R.A.; Burke, F.P.

    1991-02-01

    Consol R D is developing and demonstrating stable carbon isotope analysis as a method to quantitatively distinguish coal-derived and petroleum-derived carbon in products from coal/petroleum coprocessing. The approach taken is develop the method, then demonstrate its application on authentic continuous-unit products. The significance of selective isotopic fractionation is being determined and, when necessary, corrections are applied to account for it. Precision, accuracy and range of applicability are being defined. The value of accessory analytical techniques also is being assessed. Previously reported data on samples from HRI bench-scale coprocessing Runs 227-53 (Texas lignite/Maya ASB and Texas lignite/Maya VSB) and 238-1 (Westerholt coal/Cold Lake VSB) were corrected for selective isotopic fractionation. Carbon sourcing was performed on samples from HRI bench-scale coprocessing Run 227-60 (Texas lignite/Maya VSB) and samples from UOP bench-scale coprocessing Run 26 (Illinois 6 coal/Lloydminster vacuum resid); the latter data were corrected for isotopic fractionation, though the former could not be corrected. A paper presented at the 1990 DOE Direct Liquefaction Contractor's Review Meeting is appended. 15 refs., 21 figs., 22 tabs.

  6. A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater

    USGS Publications Warehouse

    Sigman, D.M.; Casciotti, K.L.; Andreani, M.; Barford, C.; Galanter, M.; Böhlke, J.K.

    2001-01-01

    We report a new method for measurement of the isotopic composition of nitrate (NO3-) at the natural-abundance level in both seawater and freshwater. The method is based on the isotopic analysis of nitrous oxide (N2O) generated from nitrate by denitrifying bacteria that lack N2O-reductase activity. The isotopic composition of both nitrogen and oxygen from nitrate are accessible in this way. In this first of two companion manuscripts, we describe the basic protocol and results for the nitrogen isotopes. The precision of the method is better than 0.2‰ (1 SD) at concentrations of nitrate down to 1 μM, and the nitrogen isotopic differences among various standards and samples are accurately reproduced. For samples with 1 μM nitrate or more, the blank of the method is less than 10% of the signal size, and various approaches may reduce it further.

  7. Abundances and isotopic compositions of rhenium and osmium in pyrite samples from the Huaibei coalfield, Anhui, China

    USGS Publications Warehouse

    Liu, Gaisheng; Chou, C.-L.; Peng, Z.; Yang, G.

    2008-01-01

    Two pyrite samples from the Shihezi Formation (Lower Permian), Huaibei coalfield, Anhui, China, have been analyzed for abundances and isotopic compositions of rhenium and osmium using negative thermal ion mass spectrometry. The Re-Os ages of the pyrites are 64.4 and 226 Ma, which are younger than the formation age of the coal seam. The pyrite samples may consist of pyrite formed at various stages during the history of coal formation. The ??Osvalues of the two pyrite samples are +17 and +18, respectively. Such high ??Osvalues are reported for the first time for recycles crustal materials from a sedimentary basin. ?? Springer-Verlag 2007.

  8. Silver isotope variations in chondrites: Volatile depletion and the initial 107Pd abundance of the solar system

    NASA Astrophysics Data System (ADS)

    Schönbächler, M.; Carlson, R. W.; Horan, M. F.; Mock, T. D.; Hauri, E. H.

    2008-11-01

    The extinct radionuclide 107Pd decays to 107Ag (half-life of 6.5 Ma) and is an early solar system chronometer with outstanding potential to study volatile depletion in the early solar system. Here, a comprehensive Ag isotope study of carbonaceous and ordinary chondrites is presented. Carbonaceous chondrites show limited variations ( ɛ107Ag = -2.1 to +0.8) in Ag isotopic composition that correlate with the Pd/Ag ratios. Assuming a strictly radiogenic origin of these variations, a new initial 107Pd/ 108Pd of 5.9 (±2.2) × 10 -5 for the solar system can be deduced. Comparing the Pd-Ag and Mn-Cr data for carbonaceous chondrites suggests that Mn-Cr and Pd-Ag fractionation took place close to the time of calcium-aluminium-rich inclusion (CAI) and chondrule formation ˜4568 Ma ago. Using the new value for the initial 107Pd abundance, the revised ages for the iron-rich meteorites Gibeon (IVA, 8.5 +3.2/-4.6 Ma), Grant (IIIAB, 13.0 +3.5/-4.9 Ma) and Canyon Diablo (IA, 19.5 +24.1/-10.4 Ma) are consistent with cooling rates and the closure temperature of the Pd-Ag system. In contrast to carbonaceous chondrites, ordinary chondrites show large stable isotope fractionation of order of 1 permil for 107Ag/ 109Ag. This indicates that different mechanisms of volatile depletion were active in carbonaceous and ordinary chondrites. Nebular processes and accretion, as experienced by carbonaceous chondrites, did not led to significant Ag isotope fractionation, while the significant Ag isotope variations in ordinary chondrites are most likely inflicted by open system parent body metamorphism.

  9. Tracing the source of cooking oils with an integrated approach of using stable carbon isotope and fatty acid abundance.

    PubMed

    Liu, Weiguo; Yang, Hong; Wang, Zheng; Liu, Jinzhao

    2012-08-15

    We report a new approach to identify swill-cooked oils that are recycled from tainted food and livestock waste from commercial vegetable and animal oils by means of carbon isotope values and relative abundance of fatty acids. We test this method using 40 cooking oil samples of different types with known sources. We found significant differences in both total organic carbon isotope as well as compound-specific isotope values and fatty acid C(14)/C(18) ratios between commercial vegetable oils refined from C(3) plants (from -35.7 to -27.0‰ and from 0 to 0.15) and animal oils (from -28.3 to -14.3‰ and from 0.1 to 0.6). Tested swill-cooked oils, which were generally refined by mixing with animal waste illegally, fall into a narrow δ(13)C/fatty acid ratio distribution: from -25.9 to -24.1‰ and from 0.1 to 0.2. Our data demonstrate that the index of a cross-plotting between fatty acid δ(13)C values and C(14)/C(18) ratios can be used to distinguish clean commercial cooking oils from illegal swill-cooked oils.

  10. Abundance analysis of the outer halo globular cluster Palomar 14

    NASA Astrophysics Data System (ADS)

    Çalışkan, Ş.; Christlieb, N.; Grebel, E. K.

    2012-01-01

    We determine the elemental abundances of nine red giant stars belonging to Palomar 14 (Pal 14). Pal 14 is an outer halo globular cluster (GC) at a distance of ~70 kpc. Our abundance analysis is based on high-resolution spectra and one-dimensional stellar model atmospheres. We derived the abundances for the iron peak elements Sc, V, Cr, Mn, Co, Ni, the α-elements O, Mg, Si, Ca, Ti, the light odd element Na, and the neutron-capture elements Y, Zr, Ba, La, Ce, Nd, Eu, Dy, and Cu. Our data do not permit us to investigate light element (i.e., O to Mg) abundance variations. The neutron-capture elements show an r-process signature. We compare our measurements with the abundance ratios of inner and other outer halo GCs, halo field stars, GCs of recognized extragalactic origin, and stars in dwarf spheroidal galaxies (dSphs). The abundance pattern of Pal 14 is almost identical to those of Pal 3 and Pal 4, the next distant members of the outer halo GC population after Pal 14. The abundance pattern of Pal 14 is also similar to those of the inner halo GCs, halo field stars, and GCs of recognized extragalactic origin, but differs from what is customarily found in dSphs field stars. The abundance properties of Pal 14, as well as those of the other outer halo GCs, are thus compatible with an accretion origin from dSphs. Whether or not GC accretion played a role, it seems that the formation conditions of outer halo GCs and GCs in dSphs were similar. Based on observations collected at the European Southern Observatory, Chile (Program IDs 077.B-0769).Tables A.1 and A.2 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/537/A83

  11. Theoretical effect of diffusion on isotopic abundance ratios in rocks and associated fluids

    USGS Publications Warehouse

    Senftle, F.E.; Bracken, J.T.

    1955-01-01

    Diffusion is considered as a possible process of isotope fractionation taking place throughout geologic time. Both diffusion in solids and diffusion in liquids are taken as possible mechanisms, the latter being more important. Arguments are presented to show that if significant fractionation takes place within a crystal by outward diffusion under solid-state conditions, enrichment will be evident only in elements of minor concentration. Similar conclusions are inferred for solid-state diffusion across a boundary or for diffusion in liquids. No isotopic enrichment can be expected in relatively large bodies of diffusion transported material. Although the necessary data to confirm these conclusions are scanty, it seems worth while to undertake further work in this direction. ?? 1955.

  12. Abundance of Hepatic Transporters in Caucasians: A Meta-Analysis

    PubMed Central

    Burt, Howard J.; Riedmaier, Arian Emami; Harwood, Matthew D.; Crewe, H. Kim; Gill, Katherine L.

    2016-01-01

    This study aimed to derive quantitative abundance values for key hepatic transporters suitable for in vitro–in vivo extrapolation within a physiologically based pharmacokinetic modeling framework. A meta-analysis was performed whereby data on abundance measurements, sample preparation methods, and donor demography were collated from the literature. To define values for a healthy Caucasian population, a subdatabase was created whereby exclusion criteria were applied to remove samples from non-Caucasian individuals, those with underlying disease, or those with subcellular fractions other than crude membrane. Where a clinically relevant active genotype was known, only samples from individuals with an extensive transporter phenotype were included. Authors were contacted directly when additional information was required. After removing duplicated samples, the weighted mean, geometric mean, standard deviation, coefficient of variation, and between-study homogeneity of transporter abundances were determined. From the complete database containing 24 transporters, suitable abundance data were available for 11 hepatic transporters from nine studies after exclusion criteria were applied. Organic anion transporting polypeptides OATP1B1 and OATP1B3 showed the highest population abundance in healthy adult Caucasians. For several transporters, the variability in abundance was reduced significantly once the exclusion criteria were applied. The highest variability was observed for OATP1B3 > OATP1B1 > multidrug resistance protein 2 > multidrug resistance gene 1. No relationship was found between transporter expression and donor age. To our knowledge, this study provides the first in-depth analysis of current quantitative abundance data for a wide range of hepatic transporters, with the aim of using these data for in vitro–in vivo extrapolation, and highlights the significance of investigating the background of tissue(s) used in quantitative transporter proteomic studies. Similar

  13. Models of earth structure inferred from neodymium and strontium isotopic abundances

    PubMed Central

    Wasserburg, G. J.; DePaolo, D. J.

    1979-01-01

    A simplified model of earth structure based on the Nd and Sr isotopic characteristics of oceanic and continental tholeiitic flood basalts is presented, taking into account the motion of crustal plates and a chemical balance for trace elements. The resulting structure that is inferred consists of a lower mantle that is still essentially undifferentiated, overlain by an upper mantle that is the residue of the original source from which the continents were derived. PMID:16592688

  14. CNO abundances and carbon isotope ratios in evolved stars of the open clusters NGC 2324, NGC 2477, and NGC 3960

    NASA Astrophysics Data System (ADS)

    Tautvaišienė, Gražina; Drazdauskas, Arnas; Bragaglia, Angela; Randich, Sofia; Ženovienė, Renata

    2016-10-01

    Aims: Our main aim is to determine carbon-to-nitrogen and carbon isotope ratios for evolved giants in the open clusters NGC 2324, NGC 2477, and NGC 3960, which have turn-off masses of about 2 M⊙, and to compare them with predictions of theoretical models. Methods: High-resolution spectra were analysed using a differential synthetic spectrum method. Abundances of carbon were derived using the C2 Swan (0, 1) band heads at 5135 and 5635.5 Å. The wavelength interval 7940-8130 Å with strong CN features was analysed to determine nitrogen abundances and carbon isotope ratios. The oxygen abundances were determined from the [O i] line at 6300 Å. Results: The mean values of the CNO abundances are [C/Fe] = -0.35 ± 0.06 (s.d.), [N/Fe] = 0.28 ± 0.05, and [O/Fe] = -0.02 ± 0.10 in seven stars of NGC 2324; [C/Fe] = -0.26 ± 0.02, [N/Fe] = 0.39 ± 0.04, and [O/Fe] = -0.11 ± 0.06 in six stars of NGC 2477; and [C/Fe] = -0.39 ± 0.04, [N/Fe] = 0.32 ± 0.05, and [O/Fe] = -0.19 ± 0.06 in six stars of NGC 3960. The mean C/N ratio is equal to 0.92 ± 0.12, 0.91 ± 0.09, and 0.80 ± 0.13, respectively. The mean 12C /13C ratio is equal to 21 ± 1, 20 ± 1, and 16 ± 4, respectively. The 12C /13C and C/N ratios of stars in the investigated open clusters were compared with the ratios predicted by stellar evolution models. Conclusions: The mean values of the 12C /13C and C/N ratios in NGC 2324 and NGC 2477 agree well with the first dredge-up and thermohaline-induced extra-mixing models, which are similar for intermediate turn-off mass stars. The 12C /13C ratios in the investigated clump stars of NGC 3960 span from 10 to 20. The mean carbon isotope and C/N ratios in NGC 3960 are close to predictions of the model in which the thermohaline- and rotation-induced (if rotation velocity at the zero-age main sequence was 30% of the critical velocity) extra-mixing act together. Based on observations collected at ESO telescopes under programmes 072.D-0550 and 074.D-0571.

  15. Helium Isotopes and Noble Gas Abundances of Cave Dripping Water in Three Caves in East Asia

    NASA Astrophysics Data System (ADS)

    Chen, A. T.; Shen, C. C.; Tan, M.; Li, T.; Uemura, R.; Asami, R.

    2015-12-01

    Paleo-temperature recorded in nature archives is a critical parameter to understand climate change in the past. With advantages of unique inert chemical characteristics and sensitive solubilities with temperature, dissolved noble gases in speleothem inclusion water were recently proposed to retrieve terrestrial temperature history. In order to accurately apply this newly-developed speleothem noble gas temperature (NGT) as a reliable proxy, a fundamental issue about behaviors of noble gases in the karst should be first clarified. In this study, we measured noble gas contents in air and dripping water to evaluate any ratio deviation between noble gases. Cave dripping water samples was collected from three selected caves, Shihua Cave in northern China, Furong Cave in southwestern, and Gyukusen Cave in an island located in the western Pacific. For these caves are characterized by a thorough mixing and long-term storage of waters in a karst aquifer by the absence of seasonal oxygen isotope shifts. Ratios of dripping water noble gases are statistically insignificant from air data. Helium isotopic ratios in the dripping water samples match air value. The results indicate that elemental and isotopic signatures of noble gases from air can be frankly preserved in the epikarst and support the fidelity of NGT techniques.

  16. Determining the isotopic abundance of a labeled compound by mass spectrometry and how correcting for natural abundance distribution using analogous data from the unlabeled compound leads to a systematic error.

    PubMed

    Schenk, David J; Lockley, William J S; Elmore, Charles S; Hesk, Dave; Roberts, Drew

    2016-04-01

    When the isotopic abundance or specific activity of a labeled compound is determined by mass spectrometry (MS), it is necessary to correct the raw MS data to eliminate ion intensity contributions, which arise from the presence of heavy isotopes at natural abundance (e.g., a typical carbon compound contains ~1.1% (13) C per carbon atom). The most common approach is to employ a correction in which the mass-to-charge distribution of the corresponding unlabeled compound is used to subtract the natural abundance contributions from the raw mass-to-charge distribution pattern of the labeled compound. Following this correction, the residual intensities should be due to the presence of the newly introduced labeled atoms only. However, this will only be the case when the natural abundance mass isotopomer distribution of the unlabeled compound is the same as that of the labeled species. Although this may be a good approximation, it cannot be accurate in all cases. The implications of this approximation for the determination of isotopic abundance and specific activity have been examined in practice. Isotopically mixed stable-atom labeled valine batches were produced, and both these and [(14) C6 ]carbamazepine were analyzed by MS to determine the extent of the error introduced by the approach. Our studies revealed that significant errors are possible for small highly-labeled compounds, such as valine, under some circumstances. In the case with [(14) C6 ]carbamazepine, the errors introduced were minor but could be significant for (14) C-labeled compounds with particular isotopic distributions. This source of systematic error can be minimized, although not eliminated, by the selection of an appropriate isotopic correction pattern or by the use of a program that varies the natural abundance distribution throughout the correction.

  17. Analysis of organic molecules and isotopes from a Mars lander

    NASA Astrophysics Data System (ADS)

    Mahaffy, P. R.; Atreya, S. K.; Brinckerhoff, W. B.; Cabane, M.; Coll, P.; Harpold, D. N.; Niemann, H. B.; Owen, T.; Raulin, F.; Israel, G.

    2003-04-01

    A key objective for several of the next set of lander missions to Mars will be a search for the location and nature of organic molecules and other disequilibrium compounds that may reveal the nature of present or ancient biotic or prebiotic processes on Mars. Ongoing development and definition of instrumentation that can carry out this analysis will be described. For example, an instrument suite presently under development to be proposed for inclusion on the 2009 Mars Science Laboratory consists of an advanced gas chromatograph mass spectrometer (GCMS) together with a laser desorption time-of-flight mass spectrometer (LD-tof-MS). This measurement suite is designated SAM (for Sample Analysis at Mars). SAM is designed to carry out analysis of both atmospheric gases and volatiles released from solid phase soils, rock samples, and ices. Volatile organic molecules and their pyrolysis products are analyzed by the GCMS and refractory organics by both the pyrolysis and the LD-tof-MS. The LD-tof-MS also provides abundances for a range of major and trace elements in collected samples. Additional measurement objectives include higher precision measurements than have been obtained to date of abundances and isotope ratios of the noble gases, nitrogen, and a range of light elements. SAM can also contribute to the identification of various minerals through evolved gas analysis of stable thermal decomposition products such as H2O, CO2, and oxides of nitrogen and sulfur.

  18. Stable isotope natural abundance of nitrous oxide emitted from Antarctic tundra soils: effects of sea animal excrement depositions.

    PubMed

    Zhu, Renbin; Liu, Yashu; Li, Xianglan; Sun, Jianjun; Xu, Hua; Sun, Liguang

    2008-11-01

    Nitrous oxide (N2O), a greenhouse gas, is mainly emitted from soils during the nitrification and denitrification processes. N2O stable isotope investigations can help to characterize the N2O sources and N2O production mechanisms. N2O isotope measurements have been conducted for different types of global terrestrial ecosystems. However, no isotopic data of N2O emitted from Antarctic tundra ecosystems have been reported although the coastal ice-free tundra around Antarctic continent is the largest sea animal colony on the global scale. Here, we report for the first time stable isotope composition of N2O emitted from Antarctic sea animal colonies (including penguin, seal and skua colonies) and normal tundra soils using in situ field observations and laboratory incubations, and we have analyzed the effects of sea animal excrement depositions on stable isotope natural abundance of N2O. For all the field sites, the soil-emitted N2O was 15N- and 18O-depleted compared with N2O in local ambient air. The mean delta values of the soil-emitted N2O were delta15N = -13.5 +/- 3.2 per thousand and delta18O = 26.2 +/- 1.4 per thousand for the penguin colony, delta15N = -11.5 +/- 5.1 per thousand and delta18O = 26.4 +/- 3.5 per thousand for the skua colony and delta15N = -18.9 +/- 0.7 per thousand and delta18O = 28.8 +/- 1.3 per thousand for the seal colony. In the soil incubations, the isotopic composition of N2O was measured under N2 and under ambient air conditions. The soils incubated under the ambient air emitted very little N2O (2.93 microg N2O--N kg(-1)). Under N2 conditions, much more N2O was formed (9.74 microg N2O--N kg(-1)), and the mean delta15N and delta18O values of N2O were -19.1 +/- 8.0 per thousand and 21.3 +/- 4.3 per thousand, respectively, from penguin colony soils, and -17.0 +/- 4.2 per thousand and 20.6 +/- 3.5 per thousand, respectively, from seal colony soils. The data from in situ field observations and laboratory experiments point to denitrification as the

  19. A chart of cosmic ray isotopes. [showing radioactive decay, abundance and nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Waddington, C. J.

    1975-01-01

    A chart has been prepared that lists some of the properties relevant to cosmic ray studies of all the significant nuclides between lithium and nickel. On this chart there are shown all the possible decays that might be of interest in the unique conditions experienced by cosmic ray nuclei, various abundance figures and the probable nucleosynthesis processes of origin.

  20. The Abundance and Isotopic Composition of Water in Howardite-Eucrite-Diogenite Meteorites

    NASA Astrophysics Data System (ADS)

    Barrett, T. J.; Tartèse, R.; Anand, M.; Franchi, I. A.; Grady, M. M.; Greenwood, R. C.; Charlier, B. L. A.

    2014-09-01

    Using SIMs techniques we measure OH abundances and D/H ratios in apatite grains from two Eucrites (DaG 945, DaG 844).The average δD values of these two samples are also similar to carbonaceous chondrites, the Earth and the Moon.

  1. Evaluation of accurate mass and relative isotopic abundance measurements in the LTQ-orbitrap mass spectrometer for further metabolomics database building.

    PubMed

    Xu, Ying; Heilier, Jean-François; Madalinski, Geoffrey; Genin, Eric; Ezan, Eric; Tabet, Jean-Claude; Junot, Christophe

    2010-07-01

    Recently, high-resolution mass spectrometry has been largely employed for compound identification, thanks to accurate mass measurements. As additional information, relative isotope abundance (RIA) is often needed to reduce the number of candidates prior to tandem MS(n). Here, we report on the evaluation of the LTQ-Orbitrap, in terms of accurate mass and RIA measurements for building further metabolomics spectral databases. Accurate mass measurements were achieved in the ppm range, using external calibration within 24 h, and remained at <5 ppm over a one-week period. The experimental relative abundances of (M+1) isotopic ions were evaluated in different data sets. First of all, 137 solutions of commercial compounds were analyzed by flow injection analysis in both the positive and negative ion modes. It was found that the ion abundance was the main factor impacting the accuracy of RIA measurements. It was possible to define some intensity thresholds above which errors were systematically <20% of their theoretical values. The same type of results were obtained with analyses from two biological media. Otherwise, no significant effect of ion transmission between the LTQ ion trap and the Orbitrap analyzer on RIA measurement errors was found, whereas the reliability of RIA measurements was dramatically improved by reducing the mass detection window. It was also observed that the signal integration method had a significant impact on RIA measurement errors, with the most-reliable results being obtained with peak height integrations. Finally, automatic integrations using the data preprocessing software XCMS and MZmine gave results similar to those obtained by manual integration, suggesting that it is relevant to use the RIA information in automatic elemental composition determination software from metabolomic peak tables.

  2. Applications of stable isotope analysis in mammalian ecology.

    PubMed

    Walter, W David; Kurle, Carolyn M; Hopkins, John B

    2014-01-01

    In this editorial, we provide a brief introduction and summarize the 10 research articles included in this Special Issue on Applications of stable isotope analysis in mammalian ecology. The first three articles report correction and discrimination factors that can be used to more accurately estimate the diets of extinct and extant mammals using stable isotope analysis. The remaining seven applied research articles use stable isotope analysis to address a variety of wildlife conservation and management questions from the oceans to the mountains.

  3. Chemical Abundance Analysis of Moving Group W11450 (Latham 1)

    NASA Astrophysics Data System (ADS)

    O'Connell, Julia E.; Martens, Kylee; Frinchaboy, Peter M.

    2016-12-01

    We present elemental abundances for all seven stars in Moving Group W11450 (Latham 1) to determine if they may be chemically related. These stars appear to be both spatially and kinematically related, but no spectroscopic abundance analysis exists in literature. Abundances for eight elements were derived via equivalent width analyses of high-resolution (R ˜ 60,000), high-signal-to-noise ratio (< {{S}}/{{N}}> ˜ 100) spectra obtained with the Otto Struve 2.1 m telescope and the Sandiford Echelle Spectrograph at McDonald Observatory. The large star-to-star scatter in metallicity, -0.55 ≤ [Fe/H] ≤slant 0.06 dex (σ = 0.25), implies these stars were not produced from the same chemically homogeneous molecular cloud, and are therefore not part of a remnant or open cluster as previously proposed. Prior to this analysis, it was suggested that two stars in the group, W11449 and W11450, are possible wide binaries. The candidate wide binary pair show similar chemical abundance patterns with not only iron but with other elements analyzed in this study, suggesting the proposed connection between these two stars may be real.

  4. Chemical abundance analysis of π Dra and HR 7545

    NASA Astrophysics Data System (ADS)

    Elmaslı, Aslı; Nasolo, Yahya

    2017-02-01

    We carried out detailed abundance analysis of two A-type stars; π Dra and HR 7545. High resolution echelle spectra of these stars were obtained at the TÜBİTAK National Observatory. We determined the fundamental parameters of each target star using traditional methods. We also plotted the stars on the H-R diagram and calculated the masses from evolutionary tracks and ages from isochrones.

  5. Abundance analysis of s-process enhanced barium stars

    NASA Astrophysics Data System (ADS)

    Mahanta, Upakul; Karinkuzhi, Drisya; Goswami, Aruna; Duorah, Kalpana

    2016-12-01

    Detailed chemical composition studies of stars with enhanced abundances of neutron-capture elements can provide observational constraints for neutron-capture nucleosynthesis studies and clues for understanding their contribution to the Galactic chemical enrichment. We present abundance results from high-resolution spectral analyses of a sample of four chemically peculiar stars characterized by s-process enhancement. High-resolution spectra (R ˜ 42 000) of these objects spanning a wavelength range from 4000 to 6800 Å are taken from the ELODIE archive. We have estimated the stellar atmospheric parameters, the effective temperature Teff, the surface gravity log g and metallicity [Fe/H] from local thermodynamic equilibrium analysis using model atmospheres. We report estimates of elemental abundances for several neutron-capture elements, Sr, Y, Zr, Ba, La, Ce, Pr, Nd, Sm, Eu and Dy. While HD 49641 and HD 58368 show [Ba/Fe] ≥ 1.16, the other two objects HD 119650 and HD 191010 are found to be mild barium stars with [Ba/Fe] ˜ 0.4. The derived abundances of the elements are interpreted on the basis of existing theories for understanding their origin and evolution.

  6. Carbon-isotopic analysis of dissolved acetate

    NASA Technical Reports Server (NTRS)

    Gelwicks, J. T.; Hayes, J. M.

    1990-01-01

    Heating of dried, acetate-containing solids together with oxalic acid dihydrate conveniently releases acetic acid for purification by gas chromatography. For determination of the carbon-isotopic composition of total acetate, the acetate-containing zone of the chromatographic effluent can be routed directly to a combustion furnace coupled to a vacuum system allowing recovery, purification, and packaging of CO2 for mass-spectrometric analysis. For analysis of methyl carbon, acetic acid can be cryogenically trapped from the chromatographic effluent, then transferred to a tube containing excess NaOH. The tube is evacuated, sealed, and heated to 500 degrees C to produce methane by pyrolysis of sodium acetate. Subsequent combustion of the methane allows determination of the 13C content at the methyl position in the parent acetate. With typical blanks, the standard deviation of single analyses is less than 0.4% for acetate samples larger than 5 micromoles. A full treatment of uncertainties is outlined.

  7. Carbon-isotopic analysis of dissolved acetate.

    PubMed

    Gelwicks, J T; Hayes, J M

    1990-01-01

    Heating of dried, acetate-containing solids together with oxalic acid dihydrate conveniently releases acetic acid for purification by gas chromatography. For determination of the carbon-isotopic composition of total acetate, the acetate-containing zone of the chromatographic effluent can be routed directly to a combustion furnace coupled to a vacuum system allowing recovery, purification, and packaging of CO2 for mass-spectrometric analysis. For analysis of methyl carbon, acetic acid can be cryogenically trapped from the chromatographic effluent, then transferred to a tube containing excess NaOH. The tube is evacuated, sealed, and heated to 500 degrees C to produce methane by pyrolysis of sodium acetate. Subsequent combustion of the methane allows determination of the 13C content at the methyl position in the parent acetate. With typical blanks, the standard deviation of single analyses is less than 0.4% for acetate samples larger than 5 micromoles. A full treatment of uncertainties is outlined.

  8. Compound specific stable isotope analysis vs. bulk stable isotope analysis of agricultural food products

    NASA Astrophysics Data System (ADS)

    Psomiadis, David; Horváth, Balázs; Nehlich, Olaf; Bodiselitsch, Bernd

    2015-04-01

    The bulk analysis of stable isotopes (carbon, nitrogen, sulphur, oxygen and hydrogen) from food staples is a common tool for inferring origin and/or fraud of food products. Many studies have shown that bulk isotope analyses of agricultural products are able to separate large geographical areas of food origin. However, in micro-localities (regions, districts, and small ranges) these general applications fail in precision and discriminative power. The application of compound specific analysis of specific components of food products helps to increase the precision of established models. Compound groups like fatty acids (FAMEs), vitamins or amino acids can help to add further detailed information on physiological pathways and local conditions (micro-climate, soil, water availability) and therefore might add further information for the separation of micro-localities. In this study we are aiming to demonstrate the power and surplus of information of compound specific isotope analysis in comparison to bulk analysis of agricultural products (e.g. olive oil, cereal crops or similar products) and discuss the advantages and disadvantages of such (labor intense) analysis methods. Here we want to identify tools for further detailed analysis of specific compounds with high powers of region separation for better prediction models.

  9. Null model analysis of species associations using abundance data.

    PubMed

    Ulrich, Werner; Gotelli, Nicholas J

    2010-11-01

    reinforces a previous meta-analysis of presence/absence matrices. However, using two of the metrics we detected a significant pattern of aggregation for plants and for the interaction matrices (which include plant-pollinator data sets). These results suggest that abundance matrices, analyzed with an appropriate null model, may be a powerful tool for quantifying patterns of species segregation and aggregation.

  10. Atomic Beam Laser Spectrometer for In-field Isotopic Analysis

    SciTech Connect

    Castro, Alonso

    2016-06-22

    This is a powerpoint presentation for the DTRA quarterly program review that goes into detail about the atomic beam laser spectrometer for in-field isotopic analysis. The project goals are the following: analysis of post-detonation debris, determination of U and Pu isotopic composition, and fieldable prototype: < 2ft3, < 1000W.

  11. Abundant climatic information in water stable isotope record from a maritime glacier on southeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhao, Huabiao; Xu, Baiqing; Li, Zhen; Wang, Mo; Li, Jiule; Zhang, Xiaolong

    2017-02-01

    Climatic significance of ice core stable isotope record in the Himalayas and southern Tibetan Plateau (TP), where the climate is alternately influenced by Indian summer monsoon and mid-latitude westerlies, is still debated. A newly drilled Zuoqiupu ice core from a temperate maritime glacier on the southeastern TP covering 1942-2011 is investigated in terms of the relationships between δ18O and climate parameters. Distinct seasonal variation of δ18O is observed due to high precipitation amount in this area. Thus the monsoon (June to September) and non-monsoon (October to May) δ18O records are reconstructed, respectively. The temperature effect is identified in the annual δ18O record, which is predominantly contributed by temperature control on the non-monsoon precipitation δ18O record. Conversely, the negative correlation between annual δ18O record and precipitation amount over part of Northeast India is mostly contributed by the monsoon precipitation δ18O record. The variation of monsoon δ18O record is greatly impacted by the Indian summer monsoon strength, while that of non-monsoon δ18O record is potentially associated with the mid-latitude westerly activity. The relationship between Zuoqiupu δ18O record and Sea Surface Temperature (SST) is found to be inconsistent before and after the climate shift of 1976/1977. In summer monsoon season, the role of SST in the monsoon δ18O record is more important in eastern equatorial Pacific Ocean and tropical Indian Ocean before and after the shift, respectively. In non-monsoon season, however, the Atlantic Multidecadal Oscillation has a negative impact before but positive impact after the climate shift on the non-monsoon δ18O record.

  12. Abundance and Isotopic Composition of Gases in the Martian Atmosphere: First Results from the Mars Curiosity Rover

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul; Webster, Chris R.; Atreya, Sushil K.; Franz, Heather; Wong, Michael; Conrad, Pamela G.; Harpold, Dan; Jones, John J.; Leshin, Laurie, A.; Manning, Heidi; Owen, Tobias; Pepin, Robert O.; Squyres, Steven; Trainer, Melissa

    2013-01-01

    Repeated measurements of the composition of the Mars atmosphere from Curiosity Rover yield a (40)Ar/N2 ratio 1.7 times greater and the (40)Ar/(36)Ar ratio 1.6 times smaller than the Viking Lander values in 1976. The unexpected change in (40)Ar/N2 ratio probably results from different instrument characteristics although we cannot yet rule out some unknown atmospheric process. The new (40)Ar/(36)Ar ratio is more aligned with Martian meteoritic values. Besides Ar and N2 the Sample Analysis at Mars instrument suite on the Curiosity Rover has measured the other principal components of the atmosphere and the isotopes. The resulting volume mixing ratios are: CO2 0.960(+/- 0.007); (40)Ar 0.0193(+/- 0.0001); N2 0.0189(+/- 0.0003); O2 1.45(+/- 0.09) x 10(exp -3); and CO 5.45(+/- 3.62) x 10(exp 4); and the isotopes (40)Ar/(36)Ar 1.9(+/- 0.3) x 10(exp 3), and delta (13)C and delta (18)O from CO2 that are both several tens of per mil more positive than the terrestrial averages. Heavy isotope enrichments support the hypothesis of large atmospheric loss. Moreover, the data are consistent with values measured in Martian meteorites, providing additional strong support for a Martian origin for these rocks.

  13. High-resolution abundance analysis of HD 140283

    NASA Astrophysics Data System (ADS)

    Siqueira-Mello, C.; Andrievsky, S. M.; Barbuy, B.; Spite, M.; Spite, F.; Korotin, S. A.

    2015-12-01

    Context. HD 140283 is a reference subgiant that is metal poor and confirmed to be a very old star. The element abundances of this type of old star can constrain the nature and nucleosynthesis processes that occurred in its (even older) progenitors. The present study may shed light on nucleosynthesis processes yielding heavy elements early in the Galaxy. Aims: A detailed analysis of a high-quality spectrum is carried out, with the intent of providing a reference on stellar lines and abundances of a very old, metal-poor subgiant. We aim to derive abundances from most available and measurable spectral lines. Methods: The analysis is carried out using high-resolution (R = 81 000) and high signal-to-noise ratio (800 analysis in non-LTE (NLTE) is based on the MULTI code. We present LTE abundances for 26 elements, and NLTE calculations for the species C i, O i, Na i, Mg i, Al i, K i, Ca i, Sr ii, and Ba ii lines. Results: The abundance analysis provided an extensive line list suitable for metal-poor subgiant stars. The results for Li, CNO, α-, and iron peak elements are in good agreement with literature. The newly NLTE Ba abundance, along with a NLTE Eu correction and a 3D Ba correction from literature, leads to [Eu/Ba] = + 0.59 ± 0.18. This result confirms a dominant r-process contribution, possibly together with a very small contribution from the main s-process, to the neutron-capture elements in HD 140283. Overabundances of the lighter heavy elements and the high abundances derived for Ba, La, and Ce favour the operation of the weak r-process in HD 140283

  14. A Differential Abundance Analysis of Very Metal-poor Stars

    NASA Astrophysics Data System (ADS)

    O'Malley, Erin M.; McWilliam, Andrew; Chaboyer, Brian; Thompson, Ian

    2017-04-01

    We have performed a differential line-by-line chemical abundance analysis, ultimately relative to the Sun, of nine very metal-poor main-sequence (MS) halo stars, near [Fe/H] = ‑2 dex. Our abundances range from -2.66≤slant [{Fe}/{{H}}]≤slant -1.40 dex with conservative uncertainties of 0.07 dex. We find an average [α/Fe] = 0.34 ± 0.09 dex, typical of the Milky Way. While our spectroscopic atmosphere parameters provide good agreement with Hubble Space Telescope parallaxes, there is significant disagreement with temperature and gravity parameters indicated by observed colors and theoretical isochrones. Although a systematic underestimate of the stellar temperature by a few hundred degrees could explain this difference, it is not supported by current effective temperature studies and would create large uncertainties in the abundance determinations. Both 1D and < 3{{D}}> hydrodynamical models combined with separate 1D non-LTE effects do not yet account for the atmospheres of real metal-poor MS stars, but a fully 3D non-LTE treatment may be able to explain the ionization imbalance found in this work.

  15. Earthworm eco-physiological characteristics and quantification of earthworm feeding in vermifiltration system for sewage sludge stabilization using stable isotopic natural abundance.

    PubMed

    Li, Xiaowei; Xing, Meiyan; Yang, Jian; Dai, Xiaohu

    2014-07-15

    Previous studies showed that the presence of earthworm improves treatment performance of vermifilter (VF) for sewage sludge stabilization, but earthworm eco-physiological characteristics and effects in VF were not fully investigated. In this study, earthworm population, enzymatic activity, gut microbial community and stable isotopic abundance were investigated in the VF. Results showed that biomass, average weight, number and alkaline phosphatase activity of the earthworms tended to decrease, while protein content and activities of peroxidase and catalase had an increasing tendency as the VF depth. Earthworm gut microbial communities were dominated by Gammaproteobacteria, and the percentages arrived to 76-92% of the microbial species detected. (15)N and (13)C natural abundance of the earthworms decreased with operation time, and increased as the VF depth. Quantitative analysis using δ(15)N showed that earthworm feeding and earthworm-microorganism interaction were responsible for approximately 21% and 79%, respectively, of the enhanced volatile suspended solid reduction due to the presence of earthworm. The finding provides a quantitative insight into how earthworms influence on sewage sludge stabilization in vermifiltration system.

  16. Estimating Culicoides sonorensis biting midge abundance using digital image analysis.

    PubMed

    Osborne, C J; Mayo, C E; Mullens, B A; Maclachlan, N J

    2014-12-01

    ImageJ is an open-source software tool used for a variety of scientific objectives including cell counting, shape analysis and image correction. This technology has previously been used to estimate mosquito abundance in surveillance efforts. However, the utility of this application for estimating abundance or parity in the surveillance of Culicoides spp. (Diptera: Ceratopogonidae) has not yet been tested. Culicoides sonorensis (Wirth and Jones), a biting midge often measuring 2.0-2.5 mm in length, is an economically important vector of ruminant arboviruses in California. Current surveillance methods use visual sorting for the characteristics of midges and are very time-intensive for large studies. This project tested the utility of ImageJ as a tool to assist in gross trap enumeration as well as in parity analysis of C. sonorensis in comparison with traditional visual methods of enumeration using a dissecting microscope. Results confirmed that automated counting of midges is a reliable means of approximating midge numbers under certain conditions. Further evaluation confirmed accurate and time-efficient parity analysis in comparison with hand sorting. The ImageJ software shows promise as a tool that can assist and expedite C. sonorensis surveillance. Further, these methods may be useful in other insect surveillance activities.

  17. Trophic hierarchies revealed via amino acid isotopic analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite the potential of isotopic methods to illuminate trophic function, accurate estimates of lifetime feeding tendencies have remained elusive. A relatively new approach—referred to as compound-specific isotopic analysis (CSIA)—has emerged, centering on the measurement of 15N:14N ratios in amino ...

  18. Use of stable isotope analysis in determining aquatic food webs

    EPA Science Inventory

    Stable isotope analysis is a useful tool for describing resource-consumer dynamics in ecosystems. In general, organisms of a given trophic level or functional feeding group will have a stable isotope ratio identifiable different than their prey because of preferential use of one ...

  19. Millimeter-scale variations of stable isotope abundances in carbonates from banded iron-formations in the Hamersley Group of Western Australia

    NASA Technical Reports Server (NTRS)

    Baur, M. E.; Hayes, J. M.; Studley, S. A.; Walter, M. R.

    1985-01-01

    Several diamond drill cores from formations within the Hamersley Group of Western Australia have been studied for evidence of short-range variations in the isotopic compositions of the carbonates. For a set of 32 adjacent microbands analyzed in a specimen from the Marra Mamba Iron Formation, carbon isotope compositions of individual microbands ranged from -2.8 to -19.8 per mil compared to PDB and oxygen isotope compositions ranged from 10.2 to 20.8 per mil compared to SMOW. A pattern of alternating abundances was present, with the average isotopic contrasts between adjacent microbands being 3.0 per mil for carbon and 3.1 per mil for oxygen. Similar results were obtained for a suite of 34 microbands (in four groups) from the Bruno's Band unit of the Mount Sylvia Formation. Difficulties were experienced in preparing samples of single microbands from the Dales Gorge Member of the Brockman Iron Formation, but overall isotopic compositions were in good agreement with values reported by previous authors. Chemical analyses showed that isotopically light carbon and oxygen were correlated with increased concentrations of iron. The preservation of these millimeter-scale variations in isotopic abundances is interpreted as inconsistent with a metamorphic origin for the isotopically light carbon in the BIF carbonates. A biological origin is favored for the correlated variations in 13C and Fe, and it is suggested that the 13C-depleted carbonates may derive either from fermentative metabolism or from anaerobic respiration. A model is presented in which these processes occur near the sediment-water interface and are coupled with an initial oxidative precipitation of the iron.

  20. Proteome Analysis using Selective Incorporation of Isotopically Labeled Amino Acids

    SciTech Connect

    Veenstra, Timothy D.; Martinovic, Suzana; Anderson, Gordon A.; Pasa-Tolic, Liljiana; Smith, Richard D.

    2000-01-01

    A method is described for identifying intact proteins from genomic databases using a combination of accurate molecular mass measurements and partial amino acid content. An initial demonstration was conducted for proteins isolated from Escherichia coli (E. coli) using a multiple auxotrophic strain of K12. Proteins were extracted from the organism grown in natural isotopic abundance minimal medium and also minimal medium containing isotopically labeled leucine (Leu-D10), were mixed and analyzed by capillary isoelectric focusing (CIEF) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FTICR). The incorporation of the isotopically labeled Leu residue has no effect on the CIEF separation of the protein, therefore both versions of the protein are observed within the same FTICR spectrum. The difference in the molecular mass of the natural isotopic abundance and Leu-D10 isotopically labeled proteins is used to determine the number of Leu residues present in that particular protein. Knowledge of the molecular mass and number of Leu residues present can be used to unambiguously identify the intact protein. Preliminary results show the efficacy of using this method to unambiguously identify proteins isolated from E. coli.

  1. Symbiotic nitrogen fixation in a tropical rainforest: 15N natural abundance measurements supported by experimental isotopic enrichment.

    PubMed

    Pons, Thijs L; Perreijn, Kristel; van Kessel, Chris; Werger, Marinus J A

    2007-01-01

    * Leguminous trees are very common in the tropical rainforests of Guyana. Here, species-specific differences in N(2) fixation capability among nodulating legumes growing on different soils and a possible limitation of N(2) fixation by a relatively high nitrogen (N) and low phosphorus (P) availability in the forest were investigated. * Leaves of 17 nodulating species and 17 non-nodulating reference trees were sampled and their delta(15)N values measured. Estimates of N(2) fixation rates were calculated using the (15)N natural abundance method. Pot experiments were conducted on the effect of N and P availability on N(2) fixation using the (15)N-enriched isotope dilution method. * Nine species showed estimates of > 33% leaf N derived from N(2) fixation, while the others had low or undetectable N(2) fixation rates. High N and low P availability reduced N(2) fixation substantially. * The results suggest that a high N and low P availability in the forest limit N(2) fixation. At the forest ecosystem level, N(2) fixation was estimated at c. 6% of total N uptake by the tree community. We conclude that symbiotic N(2) fixation plays an important role in maintaining high amounts of soil available N in undisturbed forest.

  2. MeV He3/He4 isotope abundances in solar energetic particle events: SOHO/COSTEP observations

    NASA Astrophysics Data System (ADS)

    Bothmer, V.:; Sierks, H.; Böhm, E.; Kunow, H.

    2001-08-01

    We present first results based on a systematic survey of 4-41 MeV/N 3He/4He isotope abundances with ratios >0.01 detected by the COmprehensive SupraThermal and Energetic Particle analyzer (COSTEP) onboard the SOHO (SOlar and Heliospheric Observatory) spacecraft. More than about 25% of the identified events showed 3He/4He ratios in the range 0.1-1. For events with sufficiently high detector count rates the atomic mass plots can be resolved up to a time resolution of about 1 hour. These events are most suitable for comparisons with in situ solar wind plasma and magnetic field measurements and SOHO's optical white-light and extreme ultraviolet (EUV) observations of the Sun. The correlations show an association with passages of shock associated coronal mass ejections (CMEs) in the solar wind that inhibit high He/H plasma overabundances. It is likely that the CMEs have been released in strong magnetic reconfiguration processes at the solar source sites. Here we present a brief overview of such an event detected on October 30, 2000. 1. Introduction The SOHO/COSTEP instrument measures solar energetic particles (SEPs) at MeV energies in the interplanetary medium. The solid state detectors are capable to detect 3 He/4 He-enrichments at these energies (Müller-Mellin et al., 1995). Usually, the 3 He/4 He-ratio in the solar wind is at the order of 10-4 , but occasionally ratios up to about values of ~1 or even above have been observed in SEP events (e.g., Mason et al., 1999). The origin of these isotope abundances has commonly been attributed to impulsive solar flares and wave-particle interaction mechanisms (Temerin and Roth, 1992). However, fully satisfying physical explanations are still lacking. Here we present first results of a systematic survey of the He-measurements taken by COSTEP since launch in 1995 until the end of the year 2000. 2. Data For this study we have analyzed SOHO/COSTEP measurements of 4.3-40.9 MeV/N helium particles as well as COSTEP data covering

  3. Abundance and isotope systematics of carbon in subglacial basalts, geothermal gases and fluids from Iceland's rift zones

    NASA Astrophysics Data System (ADS)

    Barry, P. H.; Hilton, D. R.; Fueri, E.; Halldorsson, S. A.; Fischer, T. P.; Gronvold, K.

    2010-12-01

    P. H. BARRY1*, D. R. HILTON1, E. FÜRI1, S.A. HALLDÓRSON1, T.P. FISCHER2, K. GRONVOLD3 1 Scripps Institution of Oceanography, UCSD, La Jolla, California 92093, USA (*Correspondence: pbarry@ucsd.edu). 2University of New Mexico, Albuquerque, NM 87131, USA. 3University of Iceland, Askja, Sturlugata 7, IS-101, Reykjavik, Iceland Carbon dioxide (CO2) is the dominant non-aqueous volatile species found in oceanic basalts and geothermal fluids and serves as the carrier gas for trace volatiles such as He and other noble gases. The aim of this study is to identify the superimposed effects of degassing and crustal contamination on the CO2 systematics of the Icelandic hotspot in order to reveal and characterize the carbon abundance and isotopic features of the underlying mantle source. Our approach involves coupling CO2 with He, utilizing the sensitivity of 3He/4He ratios to reveal mantle and crustal inputs. We report new C-isotope (δ13C) and abundance characteristics for a suite of 47 subglacial basalts and 50 geothermal gases and fluids from Iceland. CO2 contents in hyaloclastite glasses are extremely low (10-100 ppm) and likely residual following extensive degassing whereas geothermal fluids are dominated by CO2 (>90 %). C-isotopes range from -27.2 to -3.6 ‰ (vs. PDB) for basalts and from -18.8 to 2.86 ‰ (vs. PDB) for geothermal samples (mean = -4.2 ± 3.6 ‰). CO2/3He ratios range from 108 to 1012 for basalts and from 105 to 1012 for geothermal samples: In both cases, our results extend He-CO2 relationships over a much broader range than reported previously [1]. Taken together, these data suggest that several processes including mixing, degassing, and/or syn- or post-eruptive crustal contamination may act to modify CO2 source characteristics. Equilibrium degassing models are compatible with ~75 % of the basalt data, and preliminary results indicate that initial Icelandic source characteristics are ~500 ppm CO2 and δ13C ~ -5 ‰ (vs. PDB). These values are high

  4. Major and trace element abundances, and Sr and Nd isotopic composition of Carbonatites from Amba Dongar, Gujarat, India

    NASA Astrophysics Data System (ADS)

    Chandra, Jyoti; Paul, Debajyoti; Viladkar, Shrinivas G.; Sensarma, Sarajit

    2015-04-01

    Despite significant progress during the last decade, the petrogenesis of carbonatites is still highly debated regarding the exact mechanism of carbonatite magma generation (fractional crystallization of carbonated-silicate magmas, liquid immiscibility of carbonated-silicate magmas, partial melting of carbonated mantle peridotite or carbonated lherzolitic mantle) and its evolution. The Amba Dongar carbonatite complex in Chhota Udaipur district, Gujarat is the youngest Indian carbonatite complex, which intruded into the ~ 90 Ma Bagh sandstones and limestone and 68-65 Ma Deccan flood basalts. The emplacement age (40Ar/39Ar age of 65±0.3 Ma; Ray and Pande, 1999) coincides with the age of main pulse of Deccan flood basalts at ca. 65 Ma. We report new geochemical data (major oxide and trace element abundances, and Sr and Nd isotopic ratios) on 23 carbonatite samples from Amba Dongar. The Amba Dongar carbonatite complex consists of carbonatite (sövite, and ankerite), and associated nephelinite, phonolite, and both pre- and post-carbonatite basalts. Detailed minerology of carbonatite include dominant calcite along with pyrochlore, apatite, magnetite, aegirine-augite and accessory phases. Apatite crystals are observed in carbonatite as well as in nephelinite. In sövites, apatite occur in various forms including cumulus, clusters and scattered within and along the boundary of calcite crystals. Two generation of apatite crystals are commonly observed in sövite and nephelinite; textural changes suggest presence of different five pulses of sövitic magma during the emplacement of the sövite ring dike. Bulk major oxides and trace element (including REEs) compositions of carbonatites and associated silicate rocks are determined by WD-XRF and ICP-MS, respectively. Major oxides abundances are consistent with the already available data on the Amba Dongar carbonatite complex. Trace element concentrations for the sövite reveals high concentrations of Sr (929-7476 ppm), Ba (344

  5. A novel sample decomposition technique at atmospheric pressure for the determination of Os abundances in iron meteorites using isotope dilution inductively coupled plasma-mass spectrometry.

    PubMed

    Hattori, M; Hirata, T

    2001-06-01

    A safe and reliable analytical technique for the determination of Os abundances in ten iron meteorites of various chemical groups was developed using isotope dilution inductively coupled plasma-mass spectrometry coupled with a sample decomposition technique. A major advantage of the sample decomposition technique developed here is that the pressure inside the reaction flask is not increased through the decomposition reaction because the flask is a fully opened system, obviating the risk of explosion of the glass apparatus. Another advantage is that there is no restriction in the sample size being decomposed. In this study, about 2 g of metallic sample were decomposed safely, and this sample size, > 10 times larger than that typically used for the Carius tube technique, allows one to obtain more reliable Os data for heterogeneous samples. The metallic samples were decomposed in a glass flask purged with Ar. Since the O2 was purged from the reaction flask, Os was not oxidised to volatile OsO4, thereby preventing significant evaporation loss of Os. The typical recovery of Os throughout the sample decomposition and separation processes was > 80%, and the total Os blank through the decomposition of a 1 g amount of sample was less than 20 pg. Os abundances were determined by means of stable isotope dilution mass spectrometry using a 190Os-enriched isotopic tracer. Except for Sikhote-Alin, the measured Os abundances in almost all the iron meteorites exhibited a good agreement with the previously published Os abundance data, within the analytical uncertainty achieved in this study (2-5%). For the Sikhote-Alin meteorite, on the basis of a better correlation between Os and Ir abundances, we believe that our Os abundance data should be more reliable. The Os abundance data obtained in this work clearly demonstrated the suitability of the newly developed sample decomposition procedure for low level Os determinations.

  6. Mercury speciation in seafood using isotope dilution analysis: a review.

    PubMed

    Clémens, Stéphanie; Monperrus, Mathilde; Donard, Olivier F X; Amouroux, David; Guérin, Thierry

    2012-01-30

    Mercury is a toxic compound that can contaminate humans through food and especially via fish consumption. Mercury's toxicity depends on the species, with methylmercury being the most hazardous form for humans. Hg speciation analysis has been and remains a widely studied subject because of the potential difficulty of preserving the initial distribution of mercury species in the analysed sample. Accordingly, many analytical methods have been developed and most of them incur significant loss and/or cross-species transformations during sample preparation. Therefore, to monitor and correct artefact formations, quantification by isotope dilution is increasingly used and provides significant added value for analytical quality assurance and quality control. This review presents and discusses the two different modes of application of isotope dilution analysis for elemental speciation (i.e. species-unspecific isotope dilution analysis and species-specific isotope dilution analysis) and the different quantification techniques (i.e. classical and multiple spike isotope dilution analyses). Isotope tracers are thus used at different stages of sample preparation to determine the extent of inter-species transformations and correct such analytical artefacts. Finally, a synthesis of the principal methods used for mercury speciation in seafood using isotope dilution analysis is presented.

  7. Aberrant Water Homeostasis Detected by Stable Isotope Analysis

    PubMed Central

    O'Grady, Shannon P.; Wende, Adam R.; Remien, Christopher H.; Valenzuela, Luciano O.; Enright, Lindsey E.; Chesson, Lesley A.; Abel, E. Dale; Cerling, Thure E.; Ehleringer, James R.

    2010-01-01

    While isotopes are frequently used as tracers in investigations of disease physiology (i.e., 14C labeled glucose), few studies have examined the impact that disease, and disease-related alterations in metabolism, may have on stable isotope ratios at natural abundance levels. The isotopic composition of body water is heavily influenced by water metabolism and dietary patterns and may provide a platform for disease detection. By utilizing a model of streptozotocin (STZ)-induced diabetes as an index case of aberrant water homeostasis, we demonstrate that untreated diabetes mellitus results in distinct combinations, or signatures, of the hydrogen (δ2H) and oxygen (δ18O) isotope ratios in body water. Additionally, we show that the δ2H and δ18O values of body water are correlated with increased water flux, suggesting altered blood osmolality, due to hyperglycemia, as the mechanism behind this correlation. Further, we present a mathematical model describing the impact of water flux on the isotopic composition of body water and compare model predicted values with actual values. These data highlight the importance of factors such as water flux and energy expenditure on predictive models of body water and additionally provide a framework for using naturally occurring stable isotope ratios to monitor diseases that impact water homeostasis. PMID:20657736

  8. Use of Stable Isotopes in Forensic Analysis of Microorganisms

    SciTech Connect

    Kreuzer-Martin, Helen W.; Hegg, Eric L.

    2012-01-18

    The use of isotopic signatures for forensic analysis of biological materials is well-established, and the same general principles that apply to interpretation of stable isotope content of C, N, O, and H apply to the analysis of microorganisms. Heterotrophic microorganisms derive their isotopic content from their growth substrates, which are largely plant and animal products, and the water in their culture medium. Thus the isotope signatures of microbes are tied to their growth environment. The C, N, O, and H isotope ratios of spores have been demonstrated to constitute highly discriminating signatures for sample matching. They can rule out specific samples of media and/or water as possible production media, and can predict isotope ratio ranges of the culture media and water used to produce a given sample. These applications have been developed and tested through analyses of approximately 250 samples of Bacillus subtilis spores and over 500 samples of culture media, providing a strong statistical basis for data interpretation. A Bayesian statistical framework for integrating stable isotope data with other types of signatures derived from microorganisms has been able to characterize the culture medium used to produce spores of various Bacillus species, leveraging isotopic differences in different medium types and demonstrating the power of data integration for forensic investigations.

  9. Isotope ratio determination in boron analysis.

    PubMed

    Sah, R N; Brown, P H

    1998-01-01

    Traditionally, boron (B) isotope ratios have been determined using thermal ionization mass spectrometry (TIMS) and, to some extent, secondary ion mass spectrometry (SIMS). Both TIMS and SIMS use a high-resolution mass analyzer, but differ in analyte ionization methods. TIMS uses electrons from a hot filament, whereas SIMS employs an energetic primary ion beam of Ga+, Cs+, or O- for analyte ionization. TIMS can be used in negative or positive ion modes with high sensitivity and precision of B isotope ratio determination. However, isobaric interferences may be a problem, if the sample is not well purified and/or memory of the previous sample is not removed. Time-consuming sample preparation, analyte (B) purification, and sample determination processes limit the applications of TIMS for routine analyses. SIMS can determine B and its isotope ratio in intact solid samples without destroying them, but has poorer resolution and sensitivity than TIMS, and is difficult to standardize for biological samples. Development of plasma-source mass spectrometry (MS) enabled the determination of B concentration and isotope ratio without requiring sample purification. Commonly used plasma-source MS uses an Ar inductively coupled plasma (ICP) as an ionization device interfaced to a low-resolution quadrupole mass analyzer. The quadrupole ICP-MS is less precise than TIMS and SIMS, but is a popular method for B isotope ratio determination because of its speed and convenience. B determination by ICP-MS suffers no spectroscopic interferences. However, sample matrices, memory effects, and some instrument parameters may affect the accuracy and precision of B isotope ratio determination if adequate precautions are not taken. New generations of plasma-source MS instruments using high-resolution mass analyzers provide better sensitivity and precision than the currently used quadrupole ICP-MS. Because of the convenience and high sample throughput, the high-resolution ICP-MS is expected to be the

  10. Abundance analysis of barium and mild barium stars

    NASA Astrophysics Data System (ADS)

    Smiljanic, R.; Porto de Mello, G. F.; da Silva, L.

    2007-06-01

    Aims:We compare and discuss abundances and trends in normal giants, mild barium, and barium stars, searching for differences and similarities between barium and mild barium stars that could help shed some light on the origin of these similar objects. Also, we search for nucleosynthetic effects possibly related to the s-process that were observed in the literature for elements like Cu in other types of s-process enriched stars. Methods: High signal to noise, high resolution spectra were obtained for a sample of normal, mild barium, and barium giants. Atmospheric parameters were determined from the Fe i and Fe ii lines. Abundances for Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Y, Zr, Ba, La, Ce, Nd, Sm, Eu, and Gd, were determined from equivalent widths and model atmospheres in a differential analysis, with the red giant ɛ Vir as the standard star. Results: The different levels of s-process overabundances of barium and mild barium stars were earlier suggested to be related to the stellar metallicity. Contrary to this suggestion, we found in this work no evidence of barium and mild barium having a different range in metallicity. However, comparing the ratio of abundances of heavy to light s-process elements, we found some evidence that they do not share the same neutron exposure parameter. The exact mechanism controlling this difference is still not clear. As a by-product of this analysis we identify two normal red giants misclassified as mild barium stars. The relevance of this finding is discussed. Concerning the suggested nucleosynthetic effects possibly related to the s-process, for elements like Cu, Mn, V and Sc, we found no evidence for an anomalous behavior in any of the s-process enriched stars analyzed here. However, further work is still needed since a clear [Cu/Fe] vs. [Ba/Fe] anticorrelation exists for other s-process enriched objects. Observations collected at ESO, La Silla, Chile, within the ON/ESO agreements. Tables 8-10 are only

  11. Influence of relative abundance of isotopes on depth resolution for depth profiling of metal coatings by laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Fariñas, Juan C; Coedo, Aurora G; Dorado, Teresa

    2010-04-15

    A systematic study on the influence of relative abundance of isotopes of elements in the coating (A(c)) and in the substrate (A(s)) on both shape of time-resolved signals and depth resolution (Delta z) was performed for depth profile analysis of metal coatings on metal substrates by ultraviolet (266 nm) nanosecond laser ablation inductively coupled plasma quadrupole mass spectrometry. Five coated samples with coating thicknesses of the same order of magnitude (20-30 microm) were tested: nickel coating on aluminium, chromium and copper, and steel coated with copper and zinc. A laser repetition rate of 1 Hz and a laser fluence of 21 J cm(-2) were used. Five different depth profile types were established, which showed a clear dependence on A(c)/A(s) ratio. In general, depth profiles obtained for ratios above 1-10 could not be used to determine Delta z. We found that Delta z increased non-linearly with A(c)/A(s) ratio. The best depth profile types, leading to highest depth resolution and reproducibility, were attained in all cases by using the isotopes with low/medium A(c) values and with the highest A(s) values. In these conditions, an improvement of up to 4 times in Delta z values was achieved. The average ablation rates were in the range from 0.55 microm pulse(-1) for copper coating on steel to 0.83 microm pulse(-1) for zinc coating on steel, and the Delta z values were between 2.74 microm for nickel coating on chromium and 5.91 microm for nickel coating on copper, with RSD values about 5-8%.

  12. Nickel isotope abundances of type I deep-sea spheres and of iron-nickel spherules from sediments in Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Xue, S.; Herzog, G. F.; Hall, G. S.; Bi, D.; Brownlee, D. E.

    1995-12-01

    Nickel isotope abundances were measured by ICP-MS in twenty-one whole, type I deep-sea spheres, in Ni-rich cores and oxide shells separated from three others, and in Fe-Ni alloy spherules from Alberta, Canada. The nickel isotopes in the whole deep-sea spheres are mass fractionated from 0.4 to 2.4%/ AMU. These: values correspond to open system vaporization losses of Ni as high as 94% (relative). The degree of mass fractionation correlates well with bulk nickel content in most cases. Taken together with published iron isotope data, the nickel isotope results indicate a pre-loss Fe/Ni ratio of about 12 for many spheres. Similar ratios are observed in the following types of meteoritic material: EL-chondrite metal; IA, IIE, IIIA, and IVA iron meteorites; and metal from pallasites and mesosiderites. Metal cores separated from three deep-sea spheres contain between 40 and 52% Ni, with mass fractionations ranging from undetectable to a high of 0.8%/AMU. Within experimental error, the degree of Ni mass fractionation in each oxide shell was the same as that in the corresponding core. No mass-dependent isotopic fractionation of nickel was observed in Ni-rich spherules recovered from Alberta sands of Pleistocene age. In general, Ni-rich samples have low degrees of isotopic fractionation which suggests that the most rapid vaporization of Ni occurs when both Fe and Ni have been oxidized.

  13. Multivariate Stable Isotope Analysis to Determine Linkages between Benzocaine Seizures

    NASA Astrophysics Data System (ADS)

    Kemp, H. F.; Meier-Augenstein, W.; Collins, M.; Salouros, H.; Cunningham, A.; Harrison, M.

    2012-04-01

    In July 2010, a woman was jailed for nine years in the UK after the prosecution successfully argued that attempting to import a cutting agent was proof of involvement in a conspiracy to supply Cocaine. That landmark ruling provided law enforcement agencies with much greater scope to tackle those involved in this aspect of the drug trade, specifically targeting those importing the likes of benzocaine or lidocaine. Huge quantities of these compounds are imported into the UK and between May and August 2010, four shipments of Benzocaine amounting to more then 4 tons had been seized as part of Operation Kitley, a joint initiative between the UK Border Agency and the Serious Organised Crime Agency (SOCA). By diluting cocaine, traffickers can make it go a lot further for very little cost, leading to huge profits. In recent years, dealers have moved away from inert substances, like sugar and baby milk powder, in favour of active pharmaceutical ingredients (APIs), including anaesthetics like Benzocaine and Lidocaine. Both these mimic the numbing effect of cocaine, and resemble it closely in colour, texture and some chemical behaviours, making it easier to conceal the fact that the drug has been diluted. API cutting agents have helped traffickers to maintain steady supplies in the face of successful interdiction and even expand the market in the UK, particularly to young people aged from their mid teens to early twenties. From importation to street-level, the purity of the drug can be reduced up to a factor of 80 and street level cocaine can have a cocaine content as low as 1%. In view of the increasing use of Benzocaine as cutting agent for Cocaine, a study was carried out to investigate if 2H, 13C, 15N and 18O stable isotope signatures could be used in conjunction with multivariate chemometric data analysis to determine potential linkage between benzocaine exhibits seized from different locations or individuals to assist with investigation and prosecution of drug

  14. Basalt Pb isotope analysis and the prehistoric settlement of Polynesia.

    PubMed

    Weisler, M I; Woodhead, J D

    1995-03-14

    The prehistoric settlement of the Pacific Ocean has intrigued scholars and stimulated anthropological debate for the past two centuries. Colonized over a few millennia during the mid to late Holocene, the islands of the Pacific--displaying a wide diversity of geological and biotic variability--provided the stage for endless "natural experiments" in human adaptation. Crucial to understanding the evolution and transformation of island societies is documenting the relative degree of interisland contacts after island colonization. In the western Pacific, ideal materials for archaeologically documenting interisland contact--obsidian, pottery, and shell ornaments--are absent or of limited geographic distribution in Polynesia. Consequently, archaeologists have relied increasingly on fine-grained basalt artifacts as a means for documenting colonization routes and subsequent interisland contacts. Routinely used x-ray fluorescence characterization of oceanic island basalt has some problems for discriminating source rocks and artifacts in provenance studies. The variation in trace and major element abundances is largely controlled by near-surface magma-chamber processes and is broadly similar between most oceanic islands. We demonstrate that Pb isotope analysis accurately discriminates rock source and is an excellent technique for charting the scale, frequency, and temporal span of imported fine-grained basalt artifacts found throughout Polynesia. The technique adds another tool for addressing evolutionary models of interaction, isolation, and cultural divergence in the eastern Pacific.

  15. Cumulative fission yields of short-lived isotopes under natural-abundance-boron-carbide-moderated neutron spectrum

    SciTech Connect

    Finn, Erin C.; Metz, Lori A.; Greenwood, Lawrence R.; Pierson, Bruce; Wittman, Richard S.; Friese, Judah I.; Kephart, Rosara F.

    2015-04-09

    The availability of gamma spectroscopy data on samples containing mixed fission products at short times after irradiation is limited. Due to this limitation, data interpretation methods for gamma spectra of mixed fission product samples, where the individual fission products have not been chemically isolated from interferences, are not well-developed. The limitation is particularly pronounced for fast pooled neutron spectra because of the lack of available fast reactors in the United States. Samples containing the actinide isotopes 233, 235, 238U, 237Np, and 239Pu individually were subjected to a 2$ pulse in the Washington State University 1 MW TRIGA reactor. To achieve a fission-energy neutron spectrum, the spectrum was tailored using a natural abundance boron carbide capsule to absorb neutrons in the thermal and epithermal region of the spectrum. Our tailored neutron spectrum is unique to the WSU reactor facility, consisting of a soft fission spectrum that contains some measurable flux in the resonance region. This results in a neutron spectrum at greater than 0.1 keV with an average energy of 70 keV, similar to fast reactor spectra and approaching that of 235U fission. Unique fission product gamma spectra were collected from 4 minutes to 1 week after fission using single-crystal high purity germanium detectors. Cumulative fission product yields measured in the current work generally agree with published fast pooled fission product yield values from ENDF/B-VII, though a bias was noted for 239Pu. The present work contributes to the compilation of energy-resolved fission product yield nuclear data for nuclear forensic purposes.

  16. Isotopic ratio correlation for the isotopic composition analysis of plutonium in Am-Pu mixed samples having high americium content.

    PubMed

    Patra, Sabyasachi; Agarwal, Chhavi; Chaudhury, Sanhita; Newton Nathaniel, T; Gathibandhe, M; Goswami, A

    2013-08-01

    Interference of high amount of americium in the plutonium isotopic composition analysis has been studied by simulating gamma-ray spectra for Am-Pu samples over a wide composition range (5-97% (241)Am) for both power and research reactor grade plutonium. An alternate way for isotopic composition analysis has been proposed by correlating the isotopic ratios available in our old database with the experimentally obtained (241)Pu/(239)Pu isotopic ratio. The proposed method has been validated using simulated spectra of known isotopic compositions.

  17. Rb, Sr and strontium isotopic composition, K/Ar age and large ion lithophile trace element abundances in rocks and glasses from the Wanapitei Lake impact structure

    NASA Technical Reports Server (NTRS)

    Winzer, S. R.; Lum, R. K. L.; Schuhmann, S.

    1976-01-01

    Shock metamorphosed rocks and shock-produced melt glasses from the Wanapitei Lake impact structure have been examined petrographically and by electron microprobe. Eleven clasts exhibiting varying degrees of shock metamorphism and eight impact-produced glasses have been analyzed for Rb, Sr and Sr isotopic composition. Five clasts and one glass have also been analyzed for large ion lithophile (LIL) trace element abundances including Li, Rb, Sr, and Ba and the REE's. The impact event forming the Wanapitei Lake structure occurred 37 m.y. ago based on K/Ar dating of glass and glassy whole-rock samples. Rb/Sr isotopic dating failed to provide a meaningful whole-rock or internal isochron. The isotopic composition of the glasses can be explained by impact-produced mixing and melting of metasediments.

  18. A method for carbon stable isotope analysis of methyl halides and chlorofluorocarbons at pptv concentrations.

    PubMed

    Archbold, Marie E; Redeker, Kelly R; Davis, Simon; Elliot, Trevor; Kalin, Robert M

    2005-01-01

    A pre-concentration system has been validated for use with a gas chromatography/mass spectrometry/isotope ratio mass spectrometer (GC/MS/IRMS) to determine ambient air (13)C/(12)C ratios for methyl halides (MeCl and MeBr) and chlorofluorocarbons (CFCs). The isotopic composition of specific compounds can provide useful information on their atmospheric budgets and biogeochemistry that cannot be ascertained from abundance measurements alone. Although pre-concentration systems have been previously used with a GC/MS/IRMS for atmospheric trace gas analysis, this is the first study also to report system validation tests. Validation results indicate that the pre-concentration system and subsequent separation technologies do not significantly alter the stable isotopic ratios of the target methyl halides, CFC-12 (CCl(2)F(2)) and CFC-113 (C(2)Cl(3)F(3)). Significant, but consistent, isotopic shifts of -27.5 per thousand to -25.6 per thousand do occur within the system for CFC-11 (CCl(3)F), although the shift is correctible. The method presented has the capacity to separate these target halocarbons from more than 50 other compounds in ambient air samples. Separation allows for the determination of stable carbon isotope ratios of five of these six target trace atmospheric constituents within ambient air for large volume samples (isotope results similar to published values for (13)C/(12)C analysis of MeCl (-39.1 per thousand) and CFC-113 (-28.1 per thousand). However, this is the first paper reporting stable carbon isotope signatures for CFC-11 (-29.4 per thousand) and CFC-12 (-37.0 per thousand).

  19. Determining the geochemical structure of the mantle from surface isotope distribution patterns? Insights from Ne and He isotopes and abundance ratios

    NASA Astrophysics Data System (ADS)

    Stroncik, N.; Niedermann, S.; Schnabel, E.; Erzinger, J.

    2011-12-01

    It is a common procedure among geochemists to use surface distribution patterns of e.g. Sr, Nd, Pb or He isotopes of lavas erupted at oceanic islands to map the geochemical structure of the Earth's mantle. Advances in noble gas mass spectrometry within the last decade resulting in an increasing availability of Ne isotope data sets allow us to test the strength of this approach. 4He and 21Ne are coupled through the same parent nuclides and therefore should show analogous isotope distribution patterns. Here we present He and Ne fusion data of fresh olivines derived from Big Island, Hawaii, together with He and Ne fusion data of fresh glasses from the Easter Seamount Chain (ESC), indicating that the observed isotope distribution patterns are mainly controlled by melting and shallow mixing processes. He isotopic ratios of the investigated olivines vary from MORB-like (8 ± 1 RA) to ratios more typical for a primitive mantle source (up to 20 and 26 RA for Hawaii and the ESC, respectively; RA = atmospheric 3He/4He ratio of 1.39 x 10-6). In contrast, all Ne isotope data plot within error limits along the Loihi-Kilauea line in a Ne three-isotope diagram. The Loihi-Kilauea line is regarded to be typical for a primitive mantle source. Thus, the Ne isotope data are inconsistent with any kind of zoned plume model or even a heterogeneous mantle source. The combined He and Ne data show that these He and Ne isotope systematics are produced by a pre-degassing fractionation process and subsequent melt mixing. Basically, this process causes a He deficit in melts generated by the plume, as shown by 3He/22NeS below current estimates of solar or planetary composition and 4He/21Ne* lower than the production ratio, making the He isotopic composition more susceptible to changes than the Ne isotopic composition. This can best be explained by a model in which He is fractionated from Ne during formation of melts from a plume (or enriched parts of a plume) at low melting degrees, which

  20. Evolution, Abundance and Biocalcification of Calcareous Nannoplankton During the Aptian (Early Cretaceous): Causes and Consequences for C Isotopic Anomalies, Climate Changes and the Carbon Cycle.

    NASA Astrophysics Data System (ADS)

    Erba, E.

    2005-12-01

    The mid Cretaceous is marked by extreme greenhouse conditions, coeval with emplacement of large igneous provinces, C isotopic anomalies, major changes in structure and composition of the oceans, and accelerated rates in the evolutionary history of calcareous plankton. The Aptian is a crucial interval to decipher links between biotic evolution and environmental pressure: it is appealing for understanding nannofloral biocalcification and feedbacks in the carbonate system and in the global carbon cycle. Ontong Java, Manihiki and Kerguelen Plateaus formed in the Aptian affecting the ocean-atmosphere system with excess CO2, changes in Ca2+ and Mg2+ concentrations, and varying nutrient cycling. Two large C isotopic anomalies are associated with episodes of prolonged high primary productivity, changes in alkality, global warming and cooling, anoxia, speciations and extinctions in planktonic communities. Nannofossil diversity, abundance and biocalcification are quantified in continuous, complete, pelagic sections to derive biosphere-geosphere interactions at short and long time scales. The early Aptian C isotopic anomaly interrupts a speciation episode in calcareous nannoplankton paralleled by a drastic reduction in nannofossil paleofluxes culminating in the nannoconid crisis preceding the Oceanic Anoxic Event 1a and the negative C isotopic spike linked to clathrate melting presumably triggered by the thermal maximum at the onset of the mid Cretaceous greenhouse climate. No extinctions are recorded. In the early late Aptian resumption of nannoconid production and appearance of several taxa are coeval with a return to normal C isotopic values. The occurrence of calpionellids and diversified planktonic foraminifers indicate successful biocalcification and restoration of the thermocline. In the late Aptian a drop in nannofossil abundance and accelerated extinction rates are associated with another C isotopic excursion under cool conditions possibly due to a prolonged volcanic

  1. Optimizing sample pretreatment for compound-specific stable carbon isotopic analysis of amino sugars in marine sediment

    NASA Astrophysics Data System (ADS)

    Zhu, R.; Lin, Y.-S.; Lipp, J. S.; Meador, T. B.; Hinrichs, K.-U.

    2014-09-01

    Amino sugars are quantitatively significant constituents of soil and marine sediment, but their sources and turnover in environmental samples remain poorly understood. The stable carbon isotopic composition of amino sugars can provide information on the lifestyles of their source organisms and can be monitored during incubations with labeled substrates to estimate the turnover rates of microbial populations. However, until now, such investigation has been carried out only with soil samples, partly because of the much lower abundance of amino sugars in marine environments. We therefore optimized a procedure for compound-specific isotopic analysis of amino sugars in marine sediment, employing gas chromatography-isotope ratio mass spectrometry. The whole procedure consisted of hydrolysis, neutralization, enrichment, and derivatization of amino sugars. Except for the derivatization step, the protocol introduced negligible isotopic fractionation, and the minimum requirement of amino sugar for isotopic analysis was 20 ng, i.e., equivalent to ~8 ng of amino sugar carbon. Compound-specific stable carbon isotopic analysis of amino sugars obtained from marine sediment extracts indicated that glucosamine and galactosamine were mainly derived from organic detritus, whereas muramic acid showed isotopic imprints from indigenous bacterial activities. The δ13C analysis of amino sugars provides a valuable addition to the biomarker-based characterization of microbial metabolism in the deep marine biosphere, which so far has been lipid oriented and biased towards the detection of archaeal signals.

  2. Optimizing sample pretreatment for compound-specific stable carbon isotopic analysis of amino sugars in marine sediment

    NASA Astrophysics Data System (ADS)

    Zhu, R.; Lin, Y.-S.; Lipp, J. S.; Meador, T. B.; Hinrichs, K.-U.

    2014-01-01

    Amino sugars are quantitatively significant constituents of soil and marine sediment, but their sources and turnover in environmental samples remain poorly understood. The stable carbon isotopic composition of amino sugars can provide information on the lifestyles of their source organisms and can be monitored during incubations with labeled substrates to estimate the turnover rates of microbial populations. However, until now, such investigation has been carried out only with soil samples, partly because of the much lower abundance of amino sugars in marine environments. We therefore optimized a procedure for compound-specific isotopic analysis of amino sugars in marine sediment employing gas chromatography-isotope ratio mass spectrometry. The whole procedure consisted of hydrolysis, neutralization, enrichment, and derivatization of amino sugars. Except for the derivatization step, the protocol introduced negligible isotopic fractionation, and the minimum requirement of amino sugar for isotopic analysis was 20 ng, i.e. equivalent to ~ 8 ng of amino sugar carbon. Our results obtained from δ13C analysis of amino sugars in selected marine sediment samples showed that muramic acid had isotopic imprints from indigenous bacterial activities, whereas glucosamine and galactosamine were mainly derived from organic detritus. The analysis of stable carbon isotopic compositions of amino sugars opens a promising window for the investigation of microbial metabolisms in marine sediments and the deep marine biosphere.

  3. Method for isotopic analysis of chlorinated organic compounds

    DOEpatents

    Holt, Ben D.; Sturchio, Neil C.

    1999-01-01

    The present invention provides a method for preparing a VOC sample for carbon and chlorine isotope ratio analysis by mass spectrometer. A VOC sample is placed in a combustion tube and reacted with CuO to form CO.sub.2 and CuCl. The CO.sub.2 is then extracted and analyzed for the carbon isotope ratio. The CuCl is separated from the excess CuO and reacted with CH.sub.3 I to form CH.sub.3 Cl, extracted and analyzed for chlorine isotope ratio.

  4. Method for isotopic analysis of chlorinated organic compounds

    DOEpatents

    Holt, B.D.; Sturchio, N.C.

    1999-08-24

    The present invention provides a method for preparing a VOC sample for carbon and chlorine isotope ratio analysis by mass spectrometer. A VOC sample is placed in a combustion tube and reacted with CuO to form CO{sub 2} and CuCl. The CO{sub 2} is then extracted and analyzed for the carbon isotope ratio. The CuCl is separated from the excess CuO and reacted with CH{sub 3}I to form CH{sub 3}Cl, extracted and analyzed for chlorine isotope ratio. 9 figs.

  5. Direct uranium isotope ratio analysis of single micrometer-sized glass particles

    PubMed Central

    Kappel, Stefanie; Boulyga, Sergei F.; Prohaska, Thomas

    2012-01-01

    We present the application of nanosecond laser ablation (LA) coupled to a ‘Nu Plasma HR’ multi collector inductively coupled plasma mass spectrometer (MC-ICP-MS) for the direct analysis of U isotope ratios in single, 10–20 μm-sized, U-doped glass particles. Method development included studies with respect to (1) external correction of the measured U isotope ratios in glass particles, (2) the applied laser ablation carrier gas (i.e. Ar versus He) and (3) the accurate determination of lower abundant 236U/238U isotope ratios (i.e. 10−5). In addition, a data processing procedure was developed for evaluation of transient signals, which is of potential use for routine application of the developed method. We demonstrate that the developed method is reliable and well suited for determining U isotope ratios of individual particles. Analyses of twenty-eight S1 glass particles, measured under optimized conditions, yielded average biases of less than 0.6% from the certified values for 234U/238U and 235U/238U ratios. Experimental results obtained for 236U/238U isotope ratios deviated by less than −2.5% from the certified values. Expanded relative total combined standard uncertainties Uc (k = 2) of 2.6%, 1.4% and 5.8% were calculated for 234U/238U, 235U/238U and 236U/238U, respectively. PMID:22595724

  6. Evaluation of bioremediation systems utilizing stable carbon isotope analysis

    SciTech Connect

    Van de Velde, K.; Nowell, C.; Marley, M.C.

    1994-12-31

    Carbon, whether in an organic or inorganic form, is composed primarily of two stable isotopes, carbon-12 and carbon-13. The ratio of carbon-12 to carbon-13 is approximately 99:1. The stable carbon isotope ratios of most natural carbon materials of biological interest range from approximately 0 to {minus}110 per mil ({per_thousand}) versus the PDB standard. Utilizing stable carbon isotope analysis, it is often possible to determine the source(s) of the liberated carbon dioxide, thereby confirming successful mineralization of the targeted carbon compound(s) and, if the carbon dioxide results from multiple carbon compounds, in what ratio the carbon compounds are mineralized. Basic stable isotope `theory` recommended sampling procedures and analysis protocols are reviewed. A case study involving fuel oil presented on the application of stable carbon isotope analysis for the monitoring and evaluation of in situ bioremediation. At the site, where a field bioventing study was being conducted, multiple potential sources of carbon dioxide production existed. Additional potential applications of stable carbon isotope analysis for bioremediation evaluation and monitoring are discussed.

  7. Stable carbon isotope analysis of coprocessing materials

    SciTech Connect

    Lancet, M.S.; Winschel, R.A.; Burke, F.P.

    1991-01-01

    The purpose of obtaining stable carbon isotope analyses of coprocessing products is to determine the amount of coal (or petroleum) carbon that is present in any reaction product. This carbon-sourcing of distillate fractions, soluble resid, and insoluble organic matter, etc. is useful in modeling reactions, and evaluating synergistic effects if they exist.

  8. Stable carbon isotope analysis of coprocessing materials

    SciTech Connect

    Lancet, M.S.; Winschel, R.A.; Burke, F.P.

    1991-12-31

    The purpose of obtaining stable carbon isotope analyses of coprocessing products is to determine the amount of coal (or petroleum) carbon that is present in any reaction product. This carbon-sourcing of distillate fractions, soluble resid, and insoluble organic matter, etc. is useful in modeling reactions, and evaluating synergistic effects if they exist.

  9. Stable carbon isotope analysis of coprocessing materials

    SciTech Connect

    Burke, F.P.; Winschel, R.A.; Lancet, M.S.

    1989-06-01

    The program is designed to address a substantial, demonstrated need of the coprocessing community (both exploratory and development) for a technique to quantitatively distinguish the contributions of the individual coprocessing feedstocks to the various products. The carbon isotope technique is currently in routine use for other applications. Results achieved this quarter include: Feed and product fractions from a Kentucky 9 coal/Kentucky tar sand bitumen coprocessing bench unit run at the Kentucky Center for Applied Energy Research (CAER) were analyzed for carbon isotope ratios. Corrections were made to the coal carbon recoveries and selectivities from the products of HRI Run 227-53. Feeds (Westerholt coal/Cold Lake VSB) and products from two periods of HRI coprocessing Run 238-1 were analyzed. Three petroleum samples and three coal samples were pyrolyzed at 800{degree}F for 30 min to determine the effect of pyrolysis on the isotopic homogeneity of each petroleum and coal sample. Products from each pyrolysis test were separated into five fractions; an additional set of coprocessing samples and a set of two-stage coal liquefaction samples were obtained from HRI for future work; work performed by the Pennsylvania State University show that microscopy is a promising method for distinguishing coal and petroleum products in residual coprocessing materials; and coal and petroleums that have large differences in carbon isotope ratios were identified for Auburn University. 7 refs., 2 figs., 12 tabs.

  10. Soil Carbon: Compositional and Isotopic Analysis

    SciTech Connect

    Moran, James J.; Alexander, M. L.; Laskin, Alexander

    2016-11-01

    This is a short chapter to be included in the next edition of the Encyclopedia of Soil Science. The work here describes techniques being developed at PNNL for investigating organic carbon in soils. Techniques discussed include: laser ablation isotope ratio mass spectrometry, laser ablation aerosol mass spectrometry, and nanospray desorption electrospray ionization mass spectrometry.

  11. In Situ Analysis of Organics and Isotopes at Mars

    NASA Astrophysics Data System (ADS)

    Mahaffy, P. R.; Atreya, S. K.; Brinckerhoff, W. B.; Cabane, M.; Coll, P.; Demick, J.; Harpold, D. N.; Ming, D.; Niemann, H.; Owen, T.; Raulin, F.; Scott, J.; Webster, C.

    2003-05-01

    The recent success of the "follow the water" imperative for Mars exploration is tempered by the fact that more than 2 decades after Viking, much remains unknown about the state of carbon at the planet's surface. Therefore, a key objective for lander missions that follow MER will be a search for the location and nature of organic molecules and other carbon containing species. Reduced or partially oxidized compounds may reveal the nature of ancient or even present biotic or prebiotic processes. Ongoing definition and development of advanced techniques and protocols to "follow the carbon" will be described. For example, an instrument suite presently under development to be proposed for inclusion on the 2009 Mars Science Laboratory consists of an advanced gas chromatograph mass spectrometer (GCMS) with derivatization capability coupled with a laser desorption time-of-flight mass spectrometer (LDMS) and a tunable laser spectrometer (TLS). The suite is designated SAM (for Sample Analysis at Mars) and is designed to carry out analysis of both atmospheric gases and volatiles released from solid phase soils, rock samples, and ices. Volatile organic molecules and their pyrolysis products are analyzed by the GCMS and TLS, and refractory organics and elements by the LDMS. Additional objectives include higher precision measurements than have been obtained, to date, of the abundances and isotope ratios of the noble gases and a range of light elements including H, C, O, and N in both the atmosphere and soil. SAM can also contribute to geochemical objectives with the identification of various minerals through evolved gas analysis (EGA) of stable thermal decomposition products such as H2O, CO2, and oxides of nitrogen and sulfur using the MS and TLS as the detector. Recent EGA studies on Mars analogue materials that illustrate this capability are described. This work is supported by funding from NASA and CNES

  12. Molecular Isotopic Distribution Analysis (MIDAs) with Adjustable Mass Accuracy

    NASA Astrophysics Data System (ADS)

    Alves, Gelio; Ogurtsov, Aleksey Y.; Yu, Yi-Kuo

    2014-01-01

    In this paper, we present Molecular Isotopic Distribution Analysis (MIDAs), a new software tool designed to compute molecular isotopic distributions with adjustable accuracies. MIDAs offers two algorithms, one polynomial-based and one Fourier-transform-based, both of which compute molecular isotopic distributions accurately and efficiently. The polynomial-based algorithm contains few novel aspects, whereas the Fourier-transform-based algorithm consists mainly of improvements to other existing Fourier-transform-based algorithms. We have benchmarked the performance of the two algorithms implemented in MIDAs with that of eight software packages (BRAIN, Emass, Mercury, Mercury5, NeutronCluster, Qmass, JFC, IC) using a consensus set of benchmark molecules. Under the proposed evaluation criteria, MIDAs's algorithms, JFC, and Emass compute with comparable accuracy the coarse-grained (low-resolution) isotopic distributions and are more accurate than the other software packages. For fine-grained isotopic distributions, we compared IC, MIDAs's polynomial algorithm, and MIDAs's Fourier transform algorithm. Among the three, IC and MIDAs's polynomial algorithm compute isotopic distributions that better resemble their corresponding exact fine-grained (high-resolution) isotopic distributions. MIDAs can be accessed freely through a user-friendly web-interface at http://www.ncbi.nlm.nih.gov/CBBresearch/Yu/midas/index.html.

  13. Light stable isotope analysis of meteorites by ion microprobe

    NASA Technical Reports Server (NTRS)

    Mcsween, Harry Y., Jr.

    1994-01-01

    The main goal was to develop the necessary secondary ion mass spectrometer (SIMS) techniques to use a Cameca ims-4f ion microprobe to measure light stable isotope ratios (H, C, O and S) in situ and in non-conducting mineral phases. The intended application of these techniques was the analysis of meteorite samples, although the techniques that have been developed are equally applicable to the investigation of terrestrial samples. The first year established techniques for the analysis of O isotope ratios (delta O-18 and delta O-17) in conducting mineral phases and the measurement of S isotope ratios (delta S-34) in a variety of sulphide phases. In addition, a technique was developed to measure delta S-34 values in sulphates, which are insulators. Other research undertaken in the first year resulted in SIMS techniques for the measurement of wide variety of trace elements in carbonate minerals, with the aim of understanding the nature of alteration fluids in carbonaceous chondrites. In the second year we developed techniques for analyzing O isotope ratios in nonconducting mineral phases. These methods are potentially applicable to the measurement of other light stable isotopes such as H, C and S in insulators. Also, we have further explored the analytical techniques used for the analysis of S isotopes in sulphides by analyzing troilite in a number of L and H ordinary chondrites. This was done to see if there was any systematic differences with petrological type.

  14. Nicotine, acetanilide and urea multi-level 2H-, 13C- and 15N-abundance reference materials for continuous-flow isotope ratio mass spectrometry.

    PubMed

    Schimmelmann, Arndt; Albertino, Andrea; Sauer, Peter E; Qi, Haiping; Molinie, Roland; Mesnard, François

    2009-11-01

    Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the delta values of these reference materials should bracket the isotopic range of samples with unknown delta values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW-SLAP) and carbonates (NBS 19 and L-SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA-IRMS). At present only L-glutamic acids USGS40 and USGS41 satisfy these requirements for delta13C and delta15N, with the limitation that L-glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on-line (i.e. continuous flow) hydrogen reductive gas chromatography-isotope ratio mass-spectrometry (GC-IRMS), (ii) five nicotines for oxidative C, N gas chromatography-combustion-isotope ratio mass-spectrometry (GC-C-IRMS, or GC-IRMS), and (iii) also three acetanilide and three urea reference materials for on-line oxidative EA-IRMS for C and N. Isotopic off-line calibration against international stable isotope measurement standards at Indiana University adhered to the 'principle of identical treatment'. The new reference materials cover the following isotopic ranges: delta2H(nicotine) -162 to -45 per thousand, delta13C(nicotine) -30.05 to +7.72 per thousand, delta15N(nicotine) -6.03 to +33.62 per thousand; delta15N(acetanilide) +1.18 to +40.57 per thousand; delta13C(urea) -34.13 to +11.71 per thousand, delta15N(urea) +0.26 to +40.61 per thousand (recommended delta values refer to calibration with NBS 19, L-SVEC, IAEA-N-1, and IAEA-N-2). Nicotines fill a gap as

  15. Nicotine, acetanilide and urea multi-level2H-,13C- and15N-abundance reference materials for continuous-flow isotope ratio mass spectrometry

    USGS Publications Warehouse

    Schimmelmann, A.; Albertino, A.; Sauer, P.E.; Qi, H.; Molinie, R.; Mesnard, F.

    2009-01-01

    Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the S values of these reference materials should bracket the isotopic range of samples with unknown S values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW-SLAP) and carbonates (NBS 19 and L-SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA-IRMS). At present only L-glutamic acids USGS40 and USGS41 satisfy these requirements for ??13C and ??13N, with the limitation that L-glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on-line (i.e. continuous flow) hydrogen reductive gas chromatography-isotope ratio mass-spectrometry (GC-IRMS), (ii) five nicotines for oxidative C, N gas chromatography-combustion-isotope ratio mass-spectrometry (GC-C-IRMS, or GC-IRMS), and (iii) also three acetanilide and three urea reference materials for on-line oxidative EA-IRMS for C and N. Isotopic off-line calibration against international stable isotope measurement standards at Indiana University adhered to the 'principle of identical treatment'. The new reference materials cover the following isotopic ranges: ??2Hnicotine -162 to -45%o, ??13Cnicotine -30.05 to +7.72%, ?? 15Nnicotine -6.03 to +33.62%; ??15N acetanilide +1-18 to +40.57%; ??13Curea -34.13 to +11.71%, ??15Nurea +0.26 to +40.61% (recommended ?? values refer to calibration with NBS 19, L-SVEC, IAEA-N-1, and IAEA-N-2). Nicotines fill a gap as the first organic nitrogen stable isotope reference materials for GC-IRMS that are available with different ??13N

  16. Rock type identification and abundance estimation from hyperspectral analysis

    NASA Astrophysics Data System (ADS)

    Feng, Jilu

    This study explores the usefulness of hyperspectral data to discriminate rock units and estimate the abundance of sulfides in rocks. Airborne visible-near infrared (VIS-NIR) hyperspectral data collected from northern Cape Smith, Quebec and laboratory thermal infrared reflectance (TIR) data measured on rock samples from eight different mines in the Sudbury Basin, Ontario are involved in the analysis. The study addressed four different geological application scenarios with the aim of retrieving useful lithological information from rock spectra while minimizing the influence of varying environmental factors. The research first examines the effects of topography on the selection of rock endmembers from airborne VIS_NIR spectra and demonstrates how a topographic correction process can improve the discrimination of rock units. It demonstrates that traditional ways of selecting spectral endmembers from hyperspectral data for areas of rugged terrain cannot provide representative rock unit signatures. The second part of the research targeted the mapping of wall rock in an underground environment using TIR spectra. Rock samples from mines of the Sudbury Basin in Ontario were measured using naturally broken surfaces both dry and wet to address environmental conditions encountered underground. An innovative method applying a spectral angle mapper on the 2nd derivative of rock spectra from 700--1300 cm-1 was proved to be robust to remove the effect of liquid water, local geometry and disseminated sulfide ores while preserving diagnostic rock signatures for mapping. The study then focuses on retrieving sulfide information from TIR to estimate ore (total sulfide abundance) grade on naturally broken rock faces and separate ore-bearing rocks from their host rocks in an underground environment regardless of rock types. An important finding is that reflectance at 1319 cm -1, where most silicate rocks demonstrate low reflectance, is related to total sulfide concentration in rocks

  17. Determination of geographic provenance of cotton fibres using multi-isotope profiles and multivariate statistical analysis

    NASA Astrophysics Data System (ADS)

    Daeid, N. Nic; Meier-Augenstein, W.; Kemp, H. F.

    2012-04-01

    The analysis of cotton fibres can be particularly challenging within a forensic science context where discrimination of one fibre from another is of importance. Normally cotton fibre analysis examines the morphological structure of the recovered material and compares this with that of a known fibre from a particular source of interest. However, the conventional microscopic and chemical analysis of fibres and any associated dyes is generally unsuccessful because of the similar morphology of the fibres. Analysis of the dyes which may have been applied to the cotton fibre can also be undertaken though this can be difficult and unproductive in terms of discriminating one fibre from another. In the study presented here we have explored the potential for Isotope Ratio Mass Spectrometry (IRMS) to be utilised as an additional tool for cotton fibre analysis in an attempt to reveal further discriminatory information. This work has concentrated on un-dyed cotton fibres of known origin in order to expose the potential of the analytical technique. We report the results of a pilot study aimed at testing the hypothesis that multi-element stable isotope analysis of cotton fibres in conjunction with multivariate statistical analysis of the resulting isotopic abundance data using well established chemometric techniques permits sample provenancing based on the determination of where the cotton was grown and as such will facilitate sample discrimination. To date there is no recorded literature of this type of application of IRMS to cotton samples, which may be of forensic science relevance.

  18. Evaluating microbial carbon sources in Athabasca oil sands tailings ponds using natural abundance stable and radiocarbon isotopes

    NASA Astrophysics Data System (ADS)

    Ahad, J. M.; Pakdel, H.

    2013-12-01

    Natural abundance stable (δ13C) and radiocarbon (Δ14C) isotopes of phospholipid fatty acids (PLFAs) were used to evaluate the carbon sources utilized by the active microbial populations in surface sediments from Athabasca oil sands tailings ponds. The absence of algal-specific PLFAs at three of the four sites investigated, in conjunction with δ13C signatures for PLFAs that were generally within ~3‰ of that reported for oil sands bitumen (~ -30‰), indicated that the microbial communities growing on petroleum constituents were dominated by aerobic heterotrophs. The Δ14C values of PLFAs ranged from -906 to -586‰ and pointed to a significant uptake of fossil carbon (up to ~90% of microbial carbon derived from petroleum), particularly in PLFAs (e.g., cy17:0 and cy19:0) often associated with petroleum hydrocarbon degrading bacteria. The comparatively higher levels of 14C in other, less specific PLFAs (e.g., 16:0) indicated the preferential uptake of younger organic matter by the general microbial population (~50-80% of microbial carbon derived from petroleum). Since the main carbon pools in tailings sediment were essentially 'radiocarbon dead' (i.e., no detectable 14C), the principal source for this modern carbon is considered to be the Athabasca River, which provides the bulk of the water used in the bitumen extraction process. The preferential uptake of the minor amount of young and presumably more biodegradable material present in systems otherwise dominated by recalcitrant petroleum constituents has important implications for remediation strategies. On the one hand, it implies that mining-related organic contaminants could persist in the environment long after tailings pond reclamation has begun. Alternatively, it may be that the young, labile organic matter provided by the Athabasca River plays an important role in stimulating or supporting the microbial utilization of petroleum carbon in oil sands tailings ponds via co-metabolism or priming processes

  19. Strong anion exchange liquid chromatographic separation of protein amino acids for natural 13C-abundance determination by isotope ratio mass spectrometry.

    PubMed

    Abaye, Daniel A; Morrison, Douglas J; Preston, Tom

    2011-02-15

    Amino acids are the building blocks of proteins and the analysis of their (13)C abundances is greatly simplified by the use of liquid chromatography (LC) systems coupled with isotope ratio mass spectrometry (IRMS) compared with gas chromatography (GC)-based methods. To date, various cation exchange chromatography columns have been employed for amino acid separation. Here, we report strong anion exchange chromatography (SAX) coupled to IRMS with a Liquiface interface for amino acid δ(13)C determination. Mixtures of underivatised amino acids (0.1-0.5 mM) and hydrolysates of representative proteins (prawns and bovine serum albumin) were resolved by LC/IRMS using a SAX column and inorganic eluents. Background inorganic carbon content was minimised through careful preparation of alkaline reagents and use of a pre-injector on-line carbonate removal device. SAX chromatography completely resolved 11 of the 16 expected protein amino acids following acid hydrolysis in underivatised form. Basic and neutral amino acids were resolved with 35 mM NaOH in isocratic mode. Elution of the aromatic and acidic amino acids required a higher hydroxide concentration (180 mM) and a counterion (NO 3-, 5-25 mM). The total run time was 70 min. The average δ(13)C precision of baseline-resolved peaks was 0.75‰ (range 0.04 to 1.06‰). SAX is a viable alternative to cation chromatography, especially where analysis of basic amino acids is important. The technology shows promise for (13)C amino acid analysis in ecology, archaeology, forensic science, nutrition and protein metabolism.

  20. Novel concept for the mass spectrometric determination of absolute isotopic abundances with improved measurement uncertainty: Part 1 - theoretical derivation and feasibility study

    NASA Astrophysics Data System (ADS)

    Rienitz, Olaf; Pramann, Axel; Schiel, Detlef

    2010-01-01

    The development of a new method for the experimental determination of absolute isotopic abundances using a modified isotope dilution mass spectrometry (IDMS) technique is described. The intention and thus main application will be the quantification of molar masses M of highly enriched materials with improved measurement uncertainty (Urel(M) [approximate] 10-8 with k = 2). In part 1 of the current work, the theoretical foundation of the new method and its mathematical derivation is shown in detail, while part 2 will cover the experiments based on the new method described. Its core idea is the introduction of a virtual element (VE) consisting of all isotopes but the one having the largest or smallest abundance. IDMS is used to determine the mass fraction of this VE in its matrix, namely the element itself. A new set of equations serve to calculate all isotopic abundances (even the large one omitted with the introduction of the VE) merely from the mass fraction of the VE. A comprehensive uncertainty budget according to the Guide to the Expression of Uncertainty in Measurement (GUM) was set up in order to discuss and validate the novel concept. The hypothetical input data of the uncertainty budget were estimated to resemble a silicon material highly enriched with respect to 28Si used in the context of the international Avogadro Project. Considering the calculated results, the experimental determination of the molar mass of the above mentioned silicon seems very promising. As far as the authors know, this will be the first time IDMS was applied to determine a molar mass.

  1. Isotopic analysis of cometary organic matter

    NASA Astrophysics Data System (ADS)

    Kerridge, J. F.

    1991-04-01

    Carbon isotope ratios have been measured for CN in the coma of Comet Halley and for several CHON particles emitted by Halley. Of these, only the CHON-particle data may be reasonably related to organic matter in the cometary nucleus, but the true range of (C-13)/(C-12) values in those particles is quite uncertain. The D/H ratio in H2O in the Halley coma resembles that in Titan/Uranus.

  2. Nitrate dynamics in natural plants: insights based on the concentration and natural isotope abundances of tissue nitrate

    PubMed Central

    Liu, Xue-Yan; Koba, Keisuke; Makabe, Akiko; Liu, Cong-Qiang

    2014-01-01

    The dynamics of nitrate (NO−3), a major nitrogen (N) source for natural plants, has been studied mostly through experimental N addition, enzymatic assay, isotope labeling, and genetic expression. However, artificial N supply may not reasonably reflect the N strategies in natural plants because NO−3 uptake and reduction may vary with external N availability. Due to abrupt application and short operation time, field N addition, and isotopic labeling hinder the elucidation of in situ NO−3-use mechanisms. The concentration and natural isotopes of tissue NO−3 can offer insights into the plant NO−3 sources and dynamics in a natural context. Furthermore, they facilitate the exploration of plant NO−3 utilization and its interaction with N pollution and ecosystem N cycles without disturbing the N pools. The present study was conducted to review the application of the denitrifier method for concentration and isotope analyses of NO−3 in plants. Moreover, this study highlights the utility and advantages of these parameters in interpreting NO−3 sources and dynamics in natural plants. We summarize the major sources and reduction processes of NO−3 in plants, and discuss the implications of NO−3 concentration in plant tissues based on existing data. Particular emphasis was laid on the regulation of soil NO−3 and plant ecophysiological functions in interspecific and intra-plant NO−3 variations. We introduce N and O isotope systematics of NO−3 in plants and discuss the principles and feasibilities of using isotopic enrichment and fractionation factors; the correlation between concentration and isotopes (N and O isotopes: δ18O and Δ17O); and isotope mass-balance calculations to constrain sources and reduction of NO−3 in possible scenarios for natural plants are deliberated. Finally, we offer a preliminary framework of intraplant δ18O-NO−3 variation, and summarize the uncertainties in using tissue NO−3 parameters to interpret plant NO−3 utilization

  3. Nitrate dynamics in natural plants: insights based on the concentration and natural isotope abundances of tissue nitrate.

    PubMed

    Liu, Xue-Yan; Koba, Keisuke; Makabe, Akiko; Liu, Cong-Qiang

    2014-01-01

    The dynamics of nitrate (NO(-) 3), a major nitrogen (N) source for natural plants, has been studied mostly through experimental N addition, enzymatic assay, isotope labeling, and genetic expression. However, artificial N supply may not reasonably reflect the N strategies in natural plants because NO(-) 3 uptake and reduction may vary with external N availability. Due to abrupt application and short operation time, field N addition, and isotopic labeling hinder the elucidation of in situ NO(-) 3-use mechanisms. The concentration and natural isotopes of tissue NO(-) 3 can offer insights into the plant NO(-) 3 sources and dynamics in a natural context. Furthermore, they facilitate the exploration of plant NO(-) 3 utilization and its interaction with N pollution and ecosystem N cycles without disturbing the N pools. The present study was conducted to review the application of the denitrifier method for concentration and isotope analyses of NO(-) 3 in plants. Moreover, this study highlights the utility and advantages of these parameters in interpreting NO(-) 3 sources and dynamics in natural plants. We summarize the major sources and reduction processes of NO(-) 3 in plants, and discuss the implications of NO(-) 3 concentration in plant tissues based on existing data. Particular emphasis was laid on the regulation of soil NO(-) 3 and plant ecophysiological functions in interspecific and intra-plant NO(-) 3 variations. We introduce N and O isotope systematics of NO(-) 3 in plants and discuss the principles and feasibilities of using isotopic enrichment and fractionation factors; the correlation between concentration and isotopes (N and O isotopes: δ(18)O and Δ(17)O); and isotope mass-balance calculations to constrain sources and reduction of NO(-) 3 in possible scenarios for natural plants are deliberated. Finally, we offer a preliminary framework of intraplant δ(18)O-NO(-) 3 variation, and summarize the uncertainties in using tissue NO(-) 3 parameters to interpret

  4. Stable isotopic analysis of porcine, bovine, and ovine heparins.

    PubMed

    Jasper, John P; Zhang, Fuming; Poe, Russell B; Linhardt, Robert J

    2015-02-01

    The assessment of provenance of heparin is becoming a major concern for the pharmaceutical industry and its regulatory bodies. Batch-specific [carbon (δ(13) C), nitrogen (δ(15) N), oxygen (δ(18) O), sulfur (δ(34) S), and hydrogen (δD)] stable isotopic compositions of five different animal-derived heparins were performed. Measurements readily allowed their differentiation into groups and/or subgroups based on their isotopic provenance. Principle component analysis showed that a bivariate plot of δ(13) C and δ(18) O is the best single, bivariate plot that results in the maximum discrimination ability when only two stable isotopes are used to describe the variation in the data set. Stable isotopic analyses revealed that (1) stable isotope measurements on these highly sulfated polysaccharide (molecular weight ∼15 kDa) natural products ("biologics") were feasible; (2) in bivariate plots, the δ(13) C versus δ(18) O plot reveals a well-defined relationship for source differentiation of hogs raised in the United States from hogs raised in Europe and China; (3) the δD versus δ(18) O plot revealed the most well-defined relationship for source differentiation based on the hydrologic environmental isotopes of water (D/H and (18) O/(16) O); and (4) the δ(15) N versus δ(18) O and δ(34) S versus δ(18) O relationships are both very similar, possibly reflecting the food sources used by the different heparin producers.

  5. Isotopic trace analysis by atomic mass spectrometry

    SciTech Connect

    Stoffels, J.J.

    1993-12-01

    All the production facilities at Hanford are now shut down. However, the legacy from half a century of plutonium production includes 177 underground storage tanks of up to one million gallons each containing the largest accumulation of high-level radioactive waste in what used to be called ``the free world.`` Hanford`s new mission, in addition to a spectrum of ongoing research and development, is radioactive waste management and environmental restoration. Isotope-ratio mass spectrometry will continue to be an essential tool in monitoring the progress of that mission.

  6. Technical Note: A simple method for vaterite precipitation in isotopic equilibrium: implications for bulk and clumped isotope analysis

    NASA Astrophysics Data System (ADS)

    Kluge, T.; John, C. M.

    2014-12-01

    Calcium carbonate (CaCO3) plays an important role in the natural environment as a major constituent of the skeleton and supporting structure of marine life and has high economic importance as additive in food, chemicals and medical products. Pure CaCO3 occurs in the three different polymorphs calcite, aragonite and vaterite, whereof calcite is the most abundant and best characterized mineral. In contrast, little is known about the rare polymorph vaterite, in particular with regard to the oxygen isotope fractionation between H2O and the mineral. Synthetic precipitation of vaterite in the laboratory typically involves rapid processes and isotopic non-equilibrium, which excludes isotope studies focused on characterization of vaterite at equilibrium conditions. Here, we used a new experimental approach that enables vaterite mineral formation from an isotopically equilibrated solution. The solution consists of a ~ 0.007 mol L-1 CaCO3 solution that is saturated with NaCl at room temperature (up to 6.5 mol L-1). Vaterite precipitated as single phase or major phase (≥ 94%) in experiments performed between 23 and 91 °C. Only at 80 °C was vaterite a minor phase with a relative abundance of 27%. The high mineral yield of up to 235 mg relative to a total dissolved CaCO3 amount of 370 mg enables an investigation of the oxygen isotope fractionation between mineral and water, and the determination of clumped isotope values in vaterite.

  7. Abundance Analysis of the Silicon Star HR 6958

    NASA Astrophysics Data System (ADS)

    Kato, Ken-Ichi

    2003-12-01

    The elemental composition of the chemically peculiar star HR6958 has been studied with emphasis on doubly ionized rare earths. A visual region spectrum taken with the ELODIE spectrograph at the Haute-Provence Observatory was analyzed. A total of 40 elements including Pr III, Nd III, Tb III, Dy III, Ho III, and Er III were identified and their abundances computed. He is deficient by over 1dex with respect to the Sun; the light elements (C-Ca), except for Si, have solar abundances; the iron group elements (Sc-Fe) are overabundant by 1 dex to 2dex, with Ti and Cr highly overabundant; and the lanthanide rare earths are overabundant by 3dex to 4dex. This abundance pattern with He deficient, Si, Ti, Cr, Sr, and Pr overabundant indicates that HR6958 is a member of Si stars.

  8. Enantioselective stable isotope analysis (ESIA) of polar Herbicides

    NASA Astrophysics Data System (ADS)

    Maier, Michael; Qiu, Shiran; Elsner, Martin

    2013-04-01

    The complexity of aquatic systems makes it challenging to assess the environmental fate of chiral micropolutants. As an example, chiral herbicides are frequently detected in the environment (Buser and Muller, 1998); however, hydrological data is needed to determine their degradability from concentration measurements. Otherwise declining concentrations cannot unequivocally be attributed to degradation, but could also be caused by dilution effects. In contrast, isotope ratios or enantiomeric ratios are elegant alternatives that are independent of dilution and can even deliver insights into reaction mechanisms. To combine the advantages of both approaches we developed an enatioselective stable isotope analysis (ESIA) method to investigate the fate of the chiral herbicides 4-CPP ((RS)-2-(4-chlorophenoxy)-propionic acid), mecoprop (2-(4-Chloro-2-methylphenoxy)-propionic acid) and dichlorprop (2-(2,4-Dichlorophenoxy)-propionic acid). After testing the applicable concentration range of the method, enantioselective isotope fractionation was investigated by microbial degradation using dichlorprop as a model compound. The method uses enantioselective gas-chromatography (GC) to separate enantiomers. Subsequently samples are combusted online to CO2 and carbon isotope ratios are determined for each enantiomer by isotope-ratio-mass-spectrometry (IRMS). Because the analytes contain a polar carboxyl-group, samples were derivatised prior to GC-IRMS analysis with methanolic BF3 solution. Precise carbon isotope analysis (2σ ≤0.5‰) was achieved with a high sensitivity of ≥ 7 ng C that is needed on column for one analysis. Microbial degradation of the model compound dichlorprop was conducted with Delftia acidovorans MC1 and pronounced enantiomer fractionation, but no isotope fractionation was detected. The absence of isotope fractionation can be explained by two scenarios: either the degrading enzyme has no isotopic preference, or another step in the reaction without an isotopic

  9. In Situ Oxygen Isotope Analysis of Conodonts by SIMS and Its Implication for Paleo-sea Surface Temperature

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Chen, J.; Chen, Z.; Chen, Y.; Wang, R.; Tang, G.; Li, X.; Lv, J.; Zhuang, X.

    2013-12-01

    Oxygen isotope composition of biogenic apatite is potentially useful in paleotemperature reconstruction of contemporaneous surface seawater temperature (SST). Combined with abundant researches on their biostratigraphy, the geochemical analysis of conodonts contains more significant signatures indicating paleoenvironmental changes. However, the small size is always a limited factor for the accurate analysis. In this work, we tested the oxygen isotope of conodont using Cameca IMS-1280 secondary ion mass spectrometry (SIMS) for the first time and acquired reliable records on contemporaneous SST. We found that SST raised rapidly following the Late Permian biocrisis, implying that the rapid increase in paleo-temperature may have been one of the crucial killers responsible for the Permian-Triassic mass extinction. Compared with the previous Ag3PO4 method, our analysis technique is faster with both high resolution and high spatial resolution, so we can avoid the position easily contaminated during the late diagensis and acquire the original oxygen isotopic compositions.

  10. Enantiomeric and Isotopic Analysis of Organic Compounds in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Cooper, George

    2004-01-01

    Carbonaceous meteorites are relatively enriched in soluble organic compounds. The Murchison and Murray meteorites contain numerous compounds of interest in the study of early solar system organic chemistry and organic compounds of potential importance for the origin of life. These include: amino acids, amides, carboxylic acids, and polyols. This talk will focus on the enantiomeric and isotopic analysis of individual meteoritic compounds - primarily polyol acids. The analyses will determine if, in addition to certain amino acids from Murchison, another potentially important class of prebiotic compounds also contains enantiomeric excesses, i.e., excesses that could have contributed to the current homochirality of life. Preliminary enantiomeric and isotopic (C- 13) measurements of Murchison glyceric acid show that it is indeed extraterrestrial. C-13 and D isotope analysis of meteoritic sugar alcohols (glycerol, threitol, ribitol, etc.) has shown that they are also indigenous to the meteorite.

  11. Selection of Isotopes and Elements for Fuel Cycle Analysis

    SciTech Connect

    Steven J. Piet

    2009-04-01

    Fuel cycle system analysis simulations examine how the selection among fuel cycle options for reactors, fuel, separation, and waste management impact uranium ore utilization, waste masses and volumes, radiotoxicity, heat to geologic repositories, isotope-dependent proliferation resistance measures, and so forth. Previously, such simulations have tended to track only a few actinide and fission product isotopes, those that have been identified as important to a few criteria from the standpoint of recycled material or waste, taken as a whole. After accounting for such isotopes, the residual mass is often characterized as “fission product other” or “actinide other”. However, detailed assessment of separation and waste management options now require identification of key isotopes and residual mass for Group 1A/2A elements (Rb, Cs, Sr, Ba), inert gases (Kr, Xe), halogens (Br, I), lanthanides, transition metals, transuranic (TRU), uranium, actinide decay products. The paper explains the rationale for a list of 81 isotopes and chemical elements to better support separation and waste management assessment in dynamic system analysis models such as Verifiable Fuel Cycle Simulation (VISION)

  12. Connecting laboratory behavior to field function through stable isotope analysis

    PubMed Central

    Larson, Eric R.; Pangle, Kevin L.

    2016-01-01

    Inherent difficulties of tracking and observing organisms in the field often leave researchers with no choice but to conduct behavioral experiments under laboratory settings. However, results of laboratory experiments do not always translate accurately to natural conditions. A fundamental challenge in ecology is therefore to scale up from small area and short-duration laboratory experiments to large areas and long durations over which ecological processes generally operate. In this study, we propose that stable isotope analysis may be a tool that can link laboratory behavioral observations to past field interactions or function of individual organisms. We conducted laboratory behavioral assays to measure dominance of invasive rusty crayfish, Orconectes rusticus, and used stable isotope analysis to hindcast trophic positions of these crayfish under preceding natural conditions. We hypothesized that more dominant crayfish in our assays would have higher trophic positions if dominance were related to competitive ability or willingness to pursue high-risk, high-reward prey. We did not find a relationship between crayfish dominance and trophic position, and therefore infer that laboratory dominance of crayfish may not necessarily relate to their ecology in the field. However, this is to our knowledge the first attempt to directly relate laboratory behavior to field performance via stable isotope analysis. We encourage future studies to continue to explore a possible link between laboratory and field behavior via stable isotope analysis, and propose several avenues to do so. PMID:27077010

  13. Trophic hierarchies illuminated via amino acid isotopic analysis.

    PubMed

    Steffan, Shawn A; Chikaraishi, Yoshito; Horton, David R; Ohkouchi, Naohiko; Singleton, Merritt E; Miliczky, Eugene; Hogg, David B; Jones, Vincent P

    2013-01-01

    Food web ecologists have long sought to characterize the trophic niches of animals using stable isotopic analysis. However, distilling trophic position from isotopic composition has been difficult, largely because of the variability associated with trophic discrimination factors (inter-trophic isotopic fractionation and routing). We circumvented much of this variability using compound-specific isotopic analysis (CSIA). We examined the (15)N signatures of amino acids extracted from organisms reared in pure culture at four discrete trophic levels, across two model communities. We calculated the degree of enrichment at each trophic level and found there was a consistent trophic discrimination factor (~7.6‰). The constancy of the CSIA-derived discrimination factor permitted unprecedented accuracy in the measurement of animal trophic position. Conversely, trophic position estimates generated via bulk-(15)N analysis significantly underestimated trophic position, particularly among higher-order consumers. We then examined the trophic hierarchy of a free-roaming arthropod community, revealing the highest trophic position (5.07) and longest food chain ever reported using CSIA. High accuracy in trophic position estimation brings trophic function into sharper focus, providing greater resolution to the analysis of food webs.

  14. Connecting laboratory behavior to field function through stable isotope analysis.

    PubMed

    Glon, Mael G; Larson, Eric R; Pangle, Kevin L

    2016-01-01

    Inherent difficulties of tracking and observing organisms in the field often leave researchers with no choice but to conduct behavioral experiments under laboratory settings. However, results of laboratory experiments do not always translate accurately to natural conditions. A fundamental challenge in ecology is therefore to scale up from small area and short-duration laboratory experiments to large areas and long durations over which ecological processes generally operate. In this study, we propose that stable isotope analysis may be a tool that can link laboratory behavioral observations to past field interactions or function of individual organisms. We conducted laboratory behavioral assays to measure dominance of invasive rusty crayfish, Orconectes rusticus, and used stable isotope analysis to hindcast trophic positions of these crayfish under preceding natural conditions. We hypothesized that more dominant crayfish in our assays would have higher trophic positions if dominance were related to competitive ability or willingness to pursue high-risk, high-reward prey. We did not find a relationship between crayfish dominance and trophic position, and therefore infer that laboratory dominance of crayfish may not necessarily relate to their ecology in the field. However, this is to our knowledge the first attempt to directly relate laboratory behavior to field performance via stable isotope analysis. We encourage future studies to continue to explore a possible link between laboratory and field behavior via stable isotope analysis, and propose several avenues to do so.

  15. Trophic Hierarchies Illuminated via Amino Acid Isotopic Analysis

    PubMed Central

    Steffan, Shawn A.; Chikaraishi, Yoshito; Horton, David R.; Ohkouchi, Naohiko; Singleton, Merritt E.; Miliczky, Eugene; Hogg, David B.; Jones, Vincent P.

    2013-01-01

    Food web ecologists have long sought to characterize the trophic niches of animals using stable isotopic analysis. However, distilling trophic position from isotopic composition has been difficult, largely because of the variability associated with trophic discrimination factors (inter-trophic isotopic fractionation and routing). We circumvented much of this variability using compound-specific isotopic analysis (CSIA). We examined the 15N signatures of amino acids extracted from organisms reared in pure culture at four discrete trophic levels, across two model communities. We calculated the degree of enrichment at each trophic level and found there was a consistent trophic discrimination factor (~7.6‰). The constancy of the CSIA-derived discrimination factor permitted unprecedented accuracy in the measurement of animal trophic position. Conversely, trophic position estimates generated via bulk-15N analysis significantly underestimated trophic position, particularly among higher-order consumers. We then examined the trophic hierarchy of a free-roaming arthropod community, revealing the highest trophic position (5.07) and longest food chain ever reported using CSIA. High accuracy in trophic position estimation brings trophic function into sharper focus, providing greater resolution to the analysis of food webs. PMID:24086703

  16. Trophic spectra under the lens of amino acid isotopic analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent advances in compound specific isotopic ratio analysis (CSIRA) have allowed researchers to measure trophic fractionation of 15N in specific amino acids, namely glutamic acid and phenylalanine. These amino acids have proven useful in food web studies because of the wide and consistent disparity...

  17. Using Stable Isotope Ratio Analysis to Distinguish Perchlorate Sources

    DTIC Science & Technology

    2011-03-30

    Desert - natural nitrogen fertilizer 2. Mineral deposits – Death Valley, CA 3. Southwest soils and groundwater B. Other Anthropogenic 1. Fireworks 2...Herbicides Gunpowder Fireworks Road Flares Taiwanese Natural (Chile)  3 7 C l ( p e r m i l ) 18O (per mil) Forensic Isotopic Analysis: Chilean vs

  18. Hydrogen isotope abundances in the solar system. Part II: Meteorites with terrestrial-like D / H ratio

    NASA Astrophysics Data System (ADS)

    Robert, François; Javoy, Marc; Halbout, Jérôme; Dimon, Bernard; Merlivat, Liliane

    1987-07-01

    Hydrogen isotopic compositions were determined by progressive pyrolysis in type 6 to type 3 ordinary chondrites. A marked decrease in the isotopic composition patterns was observed at intermediate temperatures (250-300°C) and results from the pyrolysis of a D-depleted component. A δD value of-400‰ for this component can be inferred from a mathematical treatment of the H concentration release pattern. At higher temperatures (600 to 900°C) the bimodal δD pattern was observed in Hedjaz (L3-L6) with negative δD values, suggesting the presence of a carbonaceous chondrite-like organic polymer in this meteorite. A peak in the δD pattern was observed at high temperature in all the analyzed samples, suggesting that D-rich H is widespread among meteorites. A minimum of 50% of the total H is concentrated in the fine-grained particles (the "holy smoke") of equilibrated chondrites, reinforcing the idea that H is associated with the C. An internal correlation between the bulk isotopic composition of HT H 2 and the maximum measured D/H ratio is interpreted as the result of either the mixing of two components (Model 1), namely a D-depleted H at -400‰ and a D-rich H at +5000‰, or a progressive isotopic fractionation of a D-depleted reservoir (Model 2). The first model (the favored one) implies that the two components were present in different proportions at the time of the formation of each meteorite, and that metamorphism has homogeneized the two phases. The uniqueness of the two isotopic end-members for all meteorites is not demonstrated. The second model relates the isotopic fractionation of the D-rich phase to the degree of equilibration of chondrites. All the isotopic variations reported in this work for ordinary chondrites can be explained quantitatively by either one of these two models. The upper and lower limits for the D/Hratios of the D-rich and of the D-depleted H in meteorites are calculated to be 1.1 × 10 -3 and 9 × 10 -5, respectively.

  19. Stable Isotope Ratios and the Forensic Analysis of Microorganisms

    SciTech Connect

    Kreuzer-Martin, Helen W.; Jarman, Kristin H.

    2007-06-01

    In the aftermath of the anthrax letters of 2001, researchers have been exploring various analytical signatures for the purpose of characterizing the production environment of microorganisms. One such signature is stable isotope ratios, which in heterotrophs are a function of nutrient and water sources. Here we discuss the use of stable isotope ratios in microbe forensics, using as a database the carbon, nitrogen, oxygen and hydrogen stable isotope ratios of 247 separate cultures of B. subtilis 6051 spores produced on a total of 32 different culture media. In the context of using stable isotope ratios as a signature for sample matching, we present an analysis of variation between individual samples, between cultures produced in tandem, and between cultures produced in the same medium but at different times. Additionally, we correlate the stable isotope ratios of carbon, nitrogen, oxygen, and hydrogen for growth medium nutrients or water with those of spores and show examples of how these relationships can be used to exclude nutrient or water samples as possible growth substrates for specific cultures.

  20. Discrimination of ginseng cultivation regions using light stable isotope analysis.

    PubMed

    Kim, Kiwook; Song, Joo-Hyun; Heo, Sang-Cheol; Lee, Jin-Hee; Jung, In-Woo; Min, Ji-Sook

    2015-10-01

    Korean ginseng is considered to be a precious health food in Asia. Today, thieves frequently compromise ginseng farms by pervasive theft. Thus, studies regarding the characteristics of ginseng according to growth region are required in order to deter ginseng thieves and prevent theft. In this study, 6 regions were selected on the basis of Korea regional criteria (si, gun, gu), and two ginseng-farms were randomly selected from each of the 6 regions. Then 4-6 samples of ginseng were acquired from each ginseng farm. The stable isotopic compositions of H, O, C, and N of the collected ginseng samples were analyzed. As a result, differences in the hydrogen isotope ratios could be used to distinguish regional differences, and differences in the nitrogen isotope ratios yielded characteristic information regarding the farms from which the samples were obtained. Thus, stable isotope values could be used to differentiate samples according to regional differences. Therefore, stable isotope analysis serves as a powerful tool to discriminate the regional origin of Korean ginseng samples from across Korea.

  1. STABLE CARBON ISOTOPE ANALYSIS OF SUBFOSSIL WOOD FROM AUSTRIAN ALPS

    PubMed Central

    KŁUSEK, MARZENA; PAWEŁCZYK, SŁAWOMIRA

    2015-01-01

    The presented studies were carried out in order to check the usefulness of subfossil wood for stable isotope analysis. The aim of research was also to define the optimal method of subfossil samples preparation. Subfossil samples used during the presented studies are a part of the multi-century dendrochronological scale. This chronology originates in an area situated around a small mountain lake — Schwarzersee, in Austria. The obtained results of stable carbon isotope measurements confirmed that the method of α-cellulose extraction by the application of acidic sodium chlorite and sodium hydroxide solutions removes resins and other mobile compounds from wood. Therefore, in the case of the analysed samples, the additional chemical process of extractives removing was found to be unnecessary. Studied wood samples contained an adequate proportion of α-cellulose similar to the values characteristic for the contemporary trees. This proved an adequate wood preservation which is essential for the conduction of isotopic research. PMID:26346297

  2. Stable isotope analysis of breath using the optogalvanic effect

    NASA Astrophysics Data System (ADS)

    Murnick, Daniel E.; Colgan, M. J.; Lie, H. P.; Stoneback, D.

    1996-05-01

    A new technique based on the optogalvanic effect has been developed for the measurement of stable isotope ratios in the carbon dioxide of exhaled breath. Data obtained before and after ingestion of harmless stable isotope labeled compounds, metabolized to carbon dioxide, can be used for sensitive noninvasive diagnostics of various disease conditions. The technique uses the specificity of laser resonance spectroscopy and achieves sensitivity and accuracy typical of sophisticated isotope ratio mass spectrometers. Using fixed frequency carbon dioxide lasers, 13C/12C ratios can be determined with a precision of 2 ppm with 100 second averaging times. Multiple samples can be analyzed simultaneously providing real time continuous calibration. In a first application, analysis of 13C/12C ratios in exhaled human breath after ingestion of 13C labeled urea is being developed as a diagnostic for the bacterium H-pylori, known to be the causative agent for most peptic and duodenal ulcers.

  3. ``Recycling'' Geophysics: Monitoring and Isotopic Analysis of Engineered Biological Systems

    NASA Astrophysics Data System (ADS)

    Doherty, R.; Singh, K. P.; Ogle, N.; Ntarlagiannis, D.

    2010-12-01

    The emerging sub discipline of biogeophysics has provoked debate on the mechanisms of microbial processes that may contribute to geophysical signatures. At field scales geophysical signatures are often non unique due to the many parameters (physical, chemical, and biological) that are involved. It may be easier to apply geophysical techniques such as electrodic potential (EP), self potential (SP) and induced polarization (IP) to engineered biological systems where there is a degree of control over the design of the physical and chemical domain. Here we present results of a column experiment that was designed to anaerobically biodegrade dissolved organic matter in landfill leachate. The column utilises a recycled porous media (concrete) to help sequester organic carbon. Electrodic potential, self potential and induced polarisation are used in conjunction with chemical and isotopic techniques to monitor the effectiveness of this approach. Preliminary carbon and oxygen isotopic analysis on concrete from the column in contact with leachate show isotopic enrichment suggesting abiotic precipitation of carbonates.

  4. Automated CO2 extraction from air for clumped isotope analysis in the atmo- and biosphere

    NASA Astrophysics Data System (ADS)

    Hofmann, Magdalena; Ziegler, Martin; Pons, Thijs; Lourens, Lucas; Röckmann, Thomas

    2015-04-01

    The conventional stable isotope ratios 13C/12C and 18O/16O in atmospheric CO2 are a powerful tool for unraveling the global carbon cycle. In recent years, it has been suggested that the abundance of the very rare isotopologue 13C18O16O on m/z 47 might be a promising tracer to complement conventional stable isotope analysis of atmospheric CO2 [Affek and Eiler, 2006; Affek et al. 2007; Eiler and Schauble, 2004; Yeung et al., 2009]. Here we present an automated analytical system that is designed for clumped isotope analysis of atmo- and biospheric CO2. The carbon dioxide gas is quantitatively extracted from about 1.5L of air (ATP). The automated stainless steel extraction and purification line consists of three main components: (i) a drying unit (a magnesium perchlorate unit and a cryogenic water trap), (ii) two CO2 traps cooled with liquid nitrogen [Werner et al., 2001] and (iii) a GC column packed with Porapak Q that can be cooled with liquid nitrogen to -30°C during purification and heated up to 230°C in-between two extraction runs. After CO2 extraction and purification, the CO2 is automatically transferred to the mass spectrometer. Mass spectrometric analysis of the 13C18O16O abundance is carried out in dual inlet mode on a MAT 253 mass spectrometer. Each analysis generally consists of 80 change-over-cycles. Three additional Faraday cups were added to the mass spectrometer for simultaneous analysis of the mass-to-charge ratios 44, 45, 46, 47, 48 and 49. The reproducibility for δ13C, δ18O and Δ47 for repeated CO2 extractions from air is in the range of 0.11o (SD), 0.18o (SD) and 0.02 (SD)o respectively. This automated CO2 extraction and purification system will be used to analyse the clumped isotopic signature in atmospheric CO2 (tall tower, Cabauw, Netherlands) and to study the clumped isotopic fractionation during photosynthesis (leaf chamber experiments) and soil respiration. References Affek, H. P., Xu, X. & Eiler, J. M., Geochim. Cosmochim. Acta 71, 5033

  5. Frontiers of QC Laser spectroscopy for high precision isotope ratio analysis of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Emmenegger, Lukas; Mohn, Joachim; Harris, Eliza; Eyer, Simon; Ibraim, Erkan; Tuzson, Béla

    2016-04-01

    An important milestone for laser spectroscopy was achieved when isotope ratios of greenhouse gases were reported at precision levels that allow addressing research questions in environmental sciences. Real-time data with high temporal resolution at moderate cost and instrument size make the optical approach highly attractive, complementary to the well-established isotope-ratio mass-spectrometry (IRMS) method. Especially appealing, in comparison to IRMS, is the inherent specificity to structural isomers having the same molecular mass. Direct absorption in the MIR in single or dual QCL configuration has proven highly reliable for the sta-ble isotopes of CO2, N2O and CH4. The longest time series of real-time measurements is currently available for δ13C and δ18O in CO2 at the high-alpine station Jung-fraujoch. At this well-equipped site, QCL based direct absorption spectroscopy (QCLAS) measurements are ongoing since 2008 1,2. Applications of QCLAS for N2O and CH4 stable isotopes are considerably more challenging because of the lower atmospheric mixing ratios, especially for the less abundant species, such as N218O and CH3D. For high precision (< 0.1 ‰) measurements in ambient air, QCLAS may be combined with a fully automated preconcentration unit yielding an up to 500 times concentration increase and the capability to separate the target gas from spectral interferants by se-quential desorption 3. Here, we review our recent developments on high precision isotope ratio analysis of greenhouse gases, with special focus on the isotopic species of N2O and CH4. Furthermore, we show environ-mental applications illustrating the highly valuable information that isotope ratios of atmospheric trace gases can carry. For example, the intramolecular distribution of 15N in N2O gives important information on the geochemical cycle of N2O4-6, while the analysis of δ13C and δ D in CH4 may be applied to disentangle microbial, fossil and landfill sources 7. 1 Sturm, P., Tuzson, B

  6. Variations in Os- and Mo-isotope compositions and trace element abundances across the Permo-Triassic boundary, Meishan, China: Proxy evidence for large-scale oceanic anoxia?

    NASA Astrophysics Data System (ADS)

    Cohen, A. S.; Saunders, A.; Zhang, H.; Li, J.

    2009-12-01

    We have carried out Os-isotope analyses, and major and trace element determinations, on samples from the Permo-Triassic section at Meishan B sections, adjacent to the GSSP, China, to assess environmental change at the P-Tr boundary (Bed 27) and the underlying main extinction horizon (Bed 25). Major and trace element abundances were determined by XRF on 38 samples from a 2.3-metre interval of limestone, shale and dolomitic marl from Bed 24a to Bed 32. Re, Os and Mo abundances, and Os-isotope compositions, were determined on a subset of 26 samples, predominantly dark-coloured mudrocks; new Mo-isotope data will be presented. Initial 187Os/188Os(t=250Ma) ranges from 0.3 to 2, with no obvious pattern of change up-section. The data thus provide no unambiguous evidence at Meishan for major perturbation of seawater 187Os/188Os in this region of Palaeotethys, at least at the scale of the sampling. This is unlike early Jurassic and end-Cretaceous boundary sections, and mid-Cretaceous OAE intervals, which record substantial shifts in seawater 187Os/188Os that clearly reflect the influence of LIP emplacement. Major changes in elemental abundances occur between Beds 24 and Bed 27, accompanying the documented excursion in d13C. Redox- and biologically-sensitive elements such as Cu, Ni, P, V and Zn show strong fluctuations in abundance throughout Bed 24, even when abundances are normalised using Al2O3 to minimise the effects of carbonate dilution. In the lower part of Bed 27, however, the Al2O3-normalised concentrations of these elements decrease by an order of magnitude, and remain consistently low in the overlying Triassic marls. The relative decreases in Re and Os abundances throughout Bed 27 are even more substantial. Whilst these decreases are partly an artefact of Al-normalisation, the changes are accompanied by large increases in ratios involving lithogenous elements such as REE, Nb, Zr, Th and Ti. The data thus record a dramatic change in the marine depositional

  7. Isotopic disproportionation during hydrogen isotopic analysis of nitrogen-bearing organic compounds

    USGS Publications Warehouse

    Nair, Sreejesh; Geilmann, Heike; Coplen, Tyler B.; Qi, Haiping; Gehre, Matthias; Schimmelmann, Arndt; Brand, Willi A.

    2015-01-01

    Rationale High-precision hydrogen isotope ratio analysis of nitrogen-bearing organic materials using high-temperature conversion (HTC) techniques has proven troublesome in the past. Formation of reaction products other than molecular hydrogen (H2) has been suspected as a possible cause of incomplete H2 yield and hydrogen isotopic fractionation. Methods The classical HTC reactor setup and a modified version including elemental chromium, both operated at temperatures in excess of 1400 °C, have been compared using a selection of nitrogen-bearing organic compounds, including caffeine. A focus of the experiments was to avoid or suppress hydrogen cyanide (HCN) formation and to reach quantitative H2 yields. The technique also was optimized to provide acceptable sample throughput. Results The classical HTC reaction of a number of selected compounds exhibited H2 yields from 60 to 90 %. Yields close to 100 % were measured for the experiments with the chromium-enhanced reactor. The δ2H values also were substantially different between the two types of experiments. For the majority of the compounds studied, a highly significant relationship was observed between the amount of missing H2and the number of nitrogen atoms in the molecules, suggesting the pyrolytic formation of HCN as a byproduct. A similar linear relationship was found between the amount of missing H2 and the observed hydrogen isotopic result, reflecting isotopic fractionation. Conclusions The classical HTC technique to produce H2 from organic materials using high temperatures in the presence of glassy carbon is not suitable for nitrogen-bearing compounds. Adding chromium to the reaction zone improves the yield to 100 % in most cases. The initial formation of HCN is accompanied by a strong hydrogen isotope effect, with the observed hydrogen isotope results on H2 being substantially shifted to more negative δ2H values. The reaction can be understood as an initial disproportionation leading to H2 and HCN

  8. Mantle in the Manihiki Plateau source with ultra-depleted incompatible element abundances but FOZO-like isotopic signature

    NASA Astrophysics Data System (ADS)

    Golowin, R.; Hoernle, K.; Portnyagin, M.; Hauff, F.; Gurenko, A.; Garbe-Schoenberg, C. D.; Werner, R.

    2014-12-01

    The ~120Ma Manihiki Plateau basement consists of high-Ti tholeiitic basalts with EM-I type isotopic signatures, similar to the Singgalo basalts at Ontong Java, and low-Ti tholeiitic basalts with FOZO (Kwaimbaita/Kroenke) to HIMU-type isotopic compositions, similar to late stage volcanism on Hikurangi and Manihiki Plateaus (Hoernle et al. 2010; Timm et al. 2011). The low-Ti basalts have affinities to boninites and have been interpreted to be derived from residual mantle wedge mantle (Ingle et al. 2007). New major, volatile and trace element and radiogenic isotope data have been generated from fresh low-Ti glass samples recovered during R/V Sonne cruises SO193 and SO225. The low-Ti samples have distinctly lower Ti/V ratios compared to lavas from Ontong Java Plateau (Kwaimbaita-Kroenke and Singgalo), but similar to boninitic rocks. Glasses and melt inclusions in olivine have low volatile contents (0.12-0.25 wt% H2O). Olivine chemistry points to derivation from peridotite source. Therefore we interpret the low-Ti lavas to have formed through melting of dry and depleted peridotite at high temperatures, consistent with Timm et al (2011). The low-Ti group is characterized by U-shaped trace element patterns. The glass samples form linear mixing arrays on radiogenic isotope diagrams, pointing to the involvement of two components: 1) a component ultra-depleted in highly incompatible elements (UDC) but with intermediate Pb, Sr and Nd isotopic compositions, being similar to Kwaimbaita/Kroenke lavas from Ontong Java, and 2) an enriched component with HIMU-type incompatible element and isotopic characteristics, similar to late-stage volcanism on Manihiki, Hikurangi and Ontong Java (e.g. Hoernle et al. 2010). The ultra-depleted, FOZO-like mantle component could represent second stage melting of FOZO type mantle or re-melting of young recycled oceanic lithosphere within the plume head. Enrichment with HIMU type melts is required to explain the enrichment in the most incompatible

  9. Use of Isotope Abundance of 15NO3-N in a Nitrate Rich Stream Below a Wastewater Treatment Plant to Evaluate Denitrification

    NASA Astrophysics Data System (ADS)

    Lofton, D.; Hershey, A. E.

    2005-05-01

    Using natural isotope abundances of nitrate-nitrogen, in conjunction with nitrate concentrations along a stream transect, can provide information about nitrate input versus downstream export and losses due to denitrification. Given that denitrifying microbes prefer the lighter isotope, isotopic fractionation should occur in nitrate rich streams resulting in enrichment of 15NO3-N if denitrification is an important process resulting in an inverse relationship between nitrate and δ 15NO3-N. Conversely, if the relationship between 15NO3-N and δ 15N is not inversely proportional, denitrification is likely of minor importance in the reach. Variable nonlinear patterns could be indicative of 15NO3-N rich input from groundwater, tributaries or concentrations in excess of microbial demand leading to massive downstream export. We measured stream 15NO3-N concentrations in an urban stream receiving high nitrogen inputs from a wastewater treatment plant. Although observed NO3-N concentrations varied from 3-6 mg L-1 in the stream reach, the relationship between ln NO3 and δ 15NO3-N was very weak, suggesting limited importance of denitrification.

  10. Demonstration of compound-specific isotope analysis of hydrogen isotope ratios in chlorinated ethenes.

    PubMed

    Kuder, Tomasz; Philp, Paul

    2013-02-05

    High-temperature pyrolysis conversion of organic analytes to H(2) in hydrogen isotope ratio compound-specific isotope analysis (CSIA) is unsuitable for chlorinated compounds such as trichloroethene (TCE) and cis-1,2-dichloroethene (DCE), due to competition from HCl formation. For this reason, the information potential of hydrogen isotope ratios of chlorinated ethenes remains untapped. We present a demonstration of an alternative approach where chlorinated analytes reacted with chromium metal to form H(2) and minor amounts of HCl. The values of δ(2)H were obtained at satisfactory precision (± 10 to 15 per thousand), however the raw data required daily calibration by TCE and/or DCE standards to correct for analytical bias that varies over time. The chromium reactor has been incorporated into a purge and trap-CSIA method that is suitable for CSIA of aqueous environmental samples. A sample data set was obtained for six specimens of commercial product TCE. The resulting values of δ(2)H were between -184 and +682 ‰, which significantly widened the range of manufactured TCE δ(2)H signatures identified by past work. The implications of this finding to the assessment of TCE contamination are discussed.

  11. Temporal molecular and isotopic analysis of active bacterial communities in two New Zealand sponges.

    PubMed

    Simister, Rachel; Taylor, Michael W; Rogers, Karyne M; Schupp, Peter J; Deines, Peter

    2013-07-01

    The characterization of changes in microbial communities is an essential step towards a better understanding of host-microbe associations. It is well established that sponges (phylum Porifera) harbour a diverse and abundant microbial community, but it is not known whether these microbial communities change over time. Here, we followed two sponge species (Ancorina alata and Tethya stolonifera) over a 2-year sampling period using RNA (16S rRNA)-based amplicon pyrosequencing and bulk stable isotope analysis (δ(13) C and δ(15)N). A total of 4468 unique operational taxonomic units (OTUs) was identified, which were affiliated with 26 bacterial phyla. Bacterial communities of both sponge species were remarkably stable throughout the monitoring period, driven by a small number of OTUs that dominated their respective communities. Variability of sponge-associated bacterial communities was driven by OTUs that were low in abundance or transient over time. Stable isotope analysis provided evidence of both bacteria- and host-derived nutrients and their variability throughout the season. While δ(15) N values were similar, significant differences were found in δ(13) C of sponge tissue, indicative of a varying reliance on particulate organic matter as a carbon source. Further temporal studies, such as those undertaken here, will be highly valuable to identify which members of a sponge bacterial community are truly symbiotic in nature.

  12. Documenting the diet in ancient human populations through stable isotope analysis of hair.

    PubMed Central

    Macko, S A; Engel, M H; Andrusevich, V; Lubec, G; O'Connell, T C; Hedges, R E

    1999-01-01

    Fundamental to the understanding of human history is the ability to make interpretations based on artefacts and other remains which are used to gather information about an ancient population. Sequestered in the organic matrices of these remains can be information, for example, concerning incidence of disease, genetic defects and diet. Stable isotopic compositions, especially those made on isolates of collagen from bones, have been used to help suggest principal dietary components. A significant problem in the use of collagen is its long-term stability, and the possibility of isotopic alteration during early diagenesis, or through contaminating condensation reactions. In this study, we suggest that a commonly overlooked material, human hair, may represent an ideal material to be used in addressing human diets of ancient civilizations. Through the analysis of the amino-acid composition of modern hair, as well as samples that were subjected to radiation (thus simulating ageing of the hair) and hair from humans that is up to 5200 years old, we have observed little in the way of chemical change. The principal amino acids observed in all of these samples are essentially identical in relative abundances and content. Dominating the compositions are serine, glutamic acid, threonine, glycine and leucine, respectively accounting for approximately 15%, 17%, 10%, 8% and 8% of the total hydrolysable amino acids. Even minor components (for example, alanine, valine, isoleucine) show similar constancy between the samples of different ages. This constancy clearly indicates minimal alteration of the amino-acid composition of the hair. Further, it would indicate that hair is well preserved and is amenable to isotopic analysis as a tool for distinguishing sources of nutrition. Based on this observation, we have isotopically characterized modern individuals for whom the diet has been documented. Both stable nitrogen and carbon isotope compositions were assessed, and together provide an

  13. Absorption spectroscopy of uranium plasma for remote isotope analysis of next-generation nuclear fuel

    NASA Astrophysics Data System (ADS)

    Miyabe, M.; Oba, M.; Iimura, H.; Akaoka, K.; Maruyama, Y.; Ohba, H.; Tampo, M.; Wakaida, I.

    2013-07-01

    To determine experimental conditions suitable for isotope analysis, we studied the plume dynamics of uranium. A uranium oxide sample was ablated by 2nd harmonic radiation from a Nd:YAG laser at a fluence of 0.5 J/cm2. The temporal evolution of the ablation plume was investigated in vacuum and helium environments. In vacuum, the flow velocity perpendicular to the sample surface was determined to be 2.7 km/s for neutral atoms and 4.0 km/s for singly charged atoms. These velocities are about 20 % lower than those of cerium measured under similar conditions. From the evolution of the plume in helium, we found that an observation time of 3-5 μs and an observation height of about 2.5 mm are most suited for obtaining higher sensitivity. Observation times less than 3 μs were unsuitable for precise isotope analysis since the spectral modifications arising from the Doppler splitting effect are different between the two uranium isotopes. Using the established conditions, we evaluated the calibration curve linearity, limit of detection, and precision for three samples having different abundances of 235U.

  14. A natural abundance stable isotope tracer experiment to define SO2 oxidation pathways and their fractionation during heterogeneous oxidation

    NASA Astrophysics Data System (ADS)

    Amiri, N.; Norman, A. L.

    2015-12-01

    Sulfate aerosols have crucial direct and indirect effects on climate from radiative cooling to modifying clouds by formation of cloud condensation nuclei. Secondary sulfate aerosols are formed by oxidation of SO2 and subsequent nucleation and growth and the characteristics of primary aerosol sulfate can be modified by oxidation of SO2. There are several known oxidation pathways for SO2; gaseous phase OH oxidation and aqueous phase H2O2, O3 and transition metal oxides oxidation. The SO2 oxidation pathway affects the characteristics of the aerosols formed. Stable isotope techniques are useful in determining the oxidation pathway of SO2 due to unique fractionation patterns (Harris et al., 2012). However, there are still gaps in our understanding of the oxidation pathways and fractionations affecting SO2 and secondary sulfate. A tracer experiment to investigate the oxidation of SO2 and fractionation using size segregated aerosols in the presence of different compounds is described. Two high volume samplers situated to measure background sulfate upwind, and the results of a tracer experiment, downwind, is described. After sufficient size segregated aerosol sulfate has been collected, a source of SO2 with known isotopic composition is introduced to the second high volume sampler. Changes in the isotopic composition for size segregated aerosol sulfate in comparison to the first high volume sampler are investigated. The amount of fractionation during heterogeneous oxidation of SO2 on pre-existing aerosols is calculated using the concentrations and known isotopic composition and compared to data from laboratory and field experiments. The experiment is performed downwind of sources of organic compounds such as pine forests, and characterized using co-located canister samples, to determine the effects of SO2 oxidation on secondary aerosol sulfate.

  15. Abundance, stable isotopic composition, and export fluxes of DOC, POC, and DIC from the Lower Mississippi River during 2006-2008

    NASA Astrophysics Data System (ADS)

    Cai, Yihua; Guo, Laodong; Wang, Xuri; Aiken, George

    2015-11-01

    Sources, abundance, isotopic compositions, and export fluxes of dissolved inorganic carbon (DIC), dissolved and colloidal organic carbon (DOC and COC), and particulate organic carbon (POC), and their response to hydrologic regimes were examined through monthly sampling from the Lower Mississippi River during 2006-2008. DIC was the most abundant carbon species, followed by POC and DOC. Concentration and δ13C of DIC decreased with increasing river discharge, while those of DOC remained fairly stable. COC comprised 61 ± 3% of the bulk DOC with similar δ13C abundances but higher percentages of hydrophobic organic acids than DOC, suggesting its aromatic and diagenetically younger status. POC showed peak concentrations during medium flooding events and at the rising limb of large flooding events. While δ13C-POC increased, δ15N of particulate nitrogen decreased with increasing discharge. Overall, the differences in δ13C between DOC or DIC and POC show an inverse correlation with river discharge. The higher input of soil organic matter and respired CO2 during wet seasons was likely the main driver for the convergence of δ13C between DIC and DOC or POC, whereas enhanced in situ primary production and respiration during dry seasons might be responsible for their isotopic divergence. Carbon export fluxes from the Mississippi River were estimated to be 13.6 Tg C yr-1 for DIC, 1.88 Tg C yr-1 for DOC, and 2.30 Tg C yr-1 for POC during 2006-2008. The discharge-normalized DIC yield decreased during wet seasons, while those of POC and DOC increased and remained constant, respectively, implying variable responses in carbon export to the increasing discharge.

  16. Abundance, stable isotopic composition, and export fluxes of DOC, POC, and DIC from the Lower Mississippi River during 2006–2008

    USGS Publications Warehouse

    Cai, Yihua; Guo, Laodong; Wang, Xuri; Aiken, George R.

    2015-01-01

    Sources, abundance, isotopic compositions, and export fluxes of dissolved inorganic carbon (DIC), dissolved and colloidal organic carbon (DOC and COC), and particulate organic carbon (POC), and their response to hydrologic regimes were examined through monthly sampling from the Lower Mississippi River during 2006–2008. DIC was the most abundant carbon species, followed by POC and DOC. Concentration and δ13C of DIC decreased with increasing river discharge, while those of DOC remained fairly stable. COC comprised 61 ± 3% of the bulk DOC with similar δ13C abundances but higher percentages of hydrophobic organic acids than DOC, suggesting its aromatic and diagenetically younger status. POC showed peak concentrations during medium flooding events and at the rising limb of large flooding events. While δ13C-POC increased, δ15N of particulate nitrogen decreased with increasing discharge. Overall, the differences in δ13C between DOC or DIC and POC show an inverse correlation with river discharge. The higher input of soil organic matter and respired CO2 during wet seasons was likely the main driver for the convergence of δ13C between DIC and DOC or POC, whereas enhanced in situ primary production and respiration during dry seasons might be responsible for their isotopic divergence. Carbon export fluxes from the Mississippi River were estimated to be 13.6 Tg C yr−1 for DIC, 1.88 Tg C yr−1 for DOC, and 2.30 Tg C yr−1 for POC during 2006–2008. The discharge-normalized DIC yield decreased during wet seasons, while those of POC and DOC increased and remained constant, respectively, implying variable responses in carbon export to the increasing discharge.

  17. Application Of Stable Isotope Analysis To Study Temporal Changes In Foraging Ecology In A Highly Endangered Amphibian

    PubMed Central

    Gillespie, J. Hayley

    2013-01-01

    Background Understanding dietary trends for endangered species may be essential to assessing the effects of ecological disturbances such as habitat modification, species introductions or global climate change. Documenting temporal variation in prey selection may also be crucial for understanding population dynamics. However, the rarity, secretive behaviours and obscure microhabitats of some endangered species can make direct foraging observations difficult or impossible. Furthermore, the lethality or invasiveness of some traditional methods of dietary analysis (e.g. gut contents analysis, gastric lavage) makes them inappropriate for such species. Stable isotope analysis facilitates non-lethal, indirect analysis of animal diet that has unrealized potential in the conservation of endangered organisms, particularly amphibians. Methodology/findings I determined proportional contributions of aquatic macroinvertebrate prey to the diet of an endangered aquatic salamander Eurycea sosorum over a two-year period using stable isotope analysis of 13/12C and 15/14N and the Bayesian stable isotope mixing model SIAR. I calculated Strauss’ dietary electivity indices by comparing these proportions with changing relative abundance of potential prey species through time. Stable isotope analyses revealed that a previously unknown prey item (soft-bodied planarian flatworms in the genus Dugesia) made up the majority of E. sosorum diet. Results also demonstrate that E. sosorum is an opportunistic forager capable of diet switching to include a greater proportion of alternative prey when Dugesia populations decline. There is also evidence of intra-population dietary variation. Conclusions/significance Effective application of stable isotope analysis can help circumvent two key limitations commonly experienced by researchers of endangered species: the inability to directly observe these species in nature and the invasiveness or lethality of traditional methods of dietary analysis. This

  18. Using Nuclear Resonance Fluorescence for Nondestructive Isotopic Analysis

    SciTech Connect

    Ludewigt, Bernhard A.; Mozin, Vladimir; Haefner, Andrew; Quiter, Brian

    2010-07-14

    Nuclear resonance fluorescence (NRF) has been studied as one of the nondestructive analysis (NDA) techniques currently being investigated by a multi-laboratory collaboration for the determination of Pu mass in spent fuel. In NRF measurements specific isotopes are identified by their characteristic lines in recorded gamma spectra. The concentration of an isotope in a material can be determined from measured NRF signal intensities if NRF cross sections and assay geometries are known. The potential of NRF to quantify isotopic content and Pu mass in spent fuel has been studied. The addition of NRF data to MCNPX and an improved treatment of the elastic photon scattering at backward angles has enabled us to more accurately simulate NRF measurements on spent fuel assemblies. Using assembly models from the spent fuel assembly library generated at LANL, NRF measurements are simulated to find the best measurement configurations, and to determine measurement sensitivities and times, and photon source and gamma detector requirements. A first proof-of-principal measurement on a mock-up assembly with a bremsstrahlung photon source demonstrated isotopic sensitivity to approximately 1% limited by counting statistics. Data collection rates are likely a limiting factor of NRF-based measurements of fuel assemblies but new technological advances may lead to drastic improvements.

  19. Technical Note: A simple method for vaterite precipitation for isotopic studies: implications for bulk and clumped isotope analysis

    NASA Astrophysics Data System (ADS)

    Kluge, T.; John, C. M.

    2015-06-01

    Calcium carbonate (CaCO3) plays an important role in the natural environment as a major constituent of the skeleton and supporting structure of marine life and has high economic importance as an additive in food, chemicals and medical products. Anhydrous CaCO3 occurs in the three different polymorphs calcite, aragonite and vaterite, whereof calcite is the most abundant and best characterized mineral. In contrast, little is known about the rare polymorph vaterite, in particular with regard to the oxygen isotope fractionation between H2O and the mineral. Synthetic precipitation of vaterite in the laboratory typically involves rapid processes and isotopic non-equilibrium, which excludes isotope studies focused on the characterization of vaterite under equilibrium conditions. Here, we used a new experimental approach that enables vaterite mineral formation from an isotopically equilibrated solution. The solution consists of a ~0.007 mol L-1 CaCO3 solution that is saturated with NaCl at room temperature (up to 6.4 mol L-1). Vaterite precipitated as single phase or major phase (≥94%) in experiments performed between 23 and 91 °C. Only at 80 °C was vaterite a minor phase with a relative abundance of 27%. The high mineral yield per experiment of up to 235 mg relative to the initially dissolved CaCO3 amount of on average 360 mg enables an investigation of the oxygen isotope fractionation between the mineral and water, and the determination of clumped isotope values in vaterite.

  20. On-site isotopic analysis of dissolved inorganic carbon using an isotope ratio infrared spectrometer

    NASA Astrophysics Data System (ADS)

    Stoltmann, Tim; Mandic, Magda; Stöbener, Nils; Wapelhorst, Eric; Aepfler, Rebecca; Hinrichs, Kai-Uwe; Taubner, Heidi; Jost, Hj; Elvert, Marcus

    2016-04-01

    An Isotope Ratio Infrared Spectrometer (IRIS) has been adapted to perform measurements of δ13C of dissolved inorganic carbon (DIC) in marine pore waters. The resulting prototype allowed highly automated analysis of δ13C isotopic ratios and CO2 concentration. We achieved a throughput of up to 70 samples per day with DIC contents as low as 1.7 μmol C. We achieved an internal precision of 0.066 ‰ and an external precision of 0.16 ‰, which is comparable to values given for Isotope Ratio Mass Spectrometers (IRMS). The prototype instrument is field deployable, suitable for shipboard analysis of deep sea core pore waters. However, the validation of the prototype was centered around a field campaign in Eckernförde Bay, NW- Baltic Sea. As a proof of concept, a shallow site within an area of submarine groundwater discharge (SGD) and a site outside this area was investigated. We present profiles of δ13C of DIC over 50 cm exhibiting well understood methane turnover processes (anaerobic oxidation of methane). At the lowest point below the seafloor, microbial reduction of CO2 to CH4 dominates. 12CO2 is reduced preferentially over 13CO2, leading to more positive δ13C values in the remaining DIC pool; in layers closer to the surface, the oxidation of CH4 to CO2 becomes more prominent. Since the CH4 pool is enriched in 12C a shift to more negative δ13C can be observed in the DIC pool. In the upper 15 cm, the pore water DIC mixes with the sea water DIC, increasing δ13C again. Finally, we will present recent developments to further improve performance and future plans for deployments on research cruises.

  1. On-site isotopic analysis of dissolved inorganic carbon using an isotope ratio infrared spectrometer

    NASA Astrophysics Data System (ADS)

    Jost, H. J. H.; Stoltmann, T.; Stöbener, N.; Wapelhorst, E.; Mandic, M.; Aepfler, R.; Hinrichs, K. U.; Taubner, H.; Elvert, M.

    2015-12-01

    An Isotope Ratio Infrared Spectrometer (IRIS) has been adapted to perform measurements of δ13C of dissolved inorganic carbon (DIC) in marine pore waters. The resulting prototype allowed highly automated analysis of δ13C isotopic ratios and CO2 concentration. We achieved a throughput of up to 70 samples per day with DIC contents as low as 1.7 μmol C. We achieved an internal precision of 0.066 ‰ and an external precision of 0.16 ‰, which is comparable to values given for Isotope Ratio Mass Spectrometers (IRMS). The prototype instrument is field deployable, suitable for shipboard analysis of deep sea core pore waters. However, the validation of the prototype was centered around a field campaign in Eckernförde Bay, NW- Baltic Sea. As a proof of concept, a shallow site within an area of submarine groundwater discharge (SGD) and a site outside this area was investigated. We present profiles of δ13C of DIC over 50 cm exhibiting well understood methane turnover processes (anaerobic oxidation of methane). At the lowest point below the seafloor, microbial reduction of CO2 to CH4 dominates. 12CO2 is reduced preferentially over 13CO2, leading to more positive δ13C values in the remaining DIC pool; in layers closer to the surface, the oxidation of CH4 to CO2 becomes more prominent. Since the CH4 pool is enriched in 12C a shift to more negative δ13C can be observed in the DIC pool. In the upper 15 cm, the pore water DIC mixes with the sea water DIC, increasing δ13C again. Finally, we will present recent developments to further improve performance and future plans for deployments on research cruises.

  2. Mars Molecular and Isotopic Analysis Research Study

    NASA Technical Reports Server (NTRS)

    Manning, Heidi L. K.

    1998-01-01

    Recently, the Martian atmosphere and surface constituents have become of great interest. The Viking in situ gas chromatograph mass spectrometer experiment contributed greatly to our knowledge of the composition of the Martian atmosphere. However, important questions remain such as the abundance of water on Mars. The Viking experiment employed solid reagents to enhance their carbon measurements. Techniques of chemical conversion using simple solid reagents have advanced considerably in the past 20 years. In this investigation we researched the advancements in techniques to reversibly adsorb and desorb water and focused on the techniques potentially useful for the temperatures and pressures on the Martian surface. During the granting period from June 15, 1998 to August 14, 1998, a literature study of the material appropriate for use in a chemical conversion device and the availability of these materials were undertaken. The focus of this investigation was searching for methods and materials potentially useful in enhancing the measurements of water. Three different methods were considered for the means to extract water from a given gas sample. These methods included adsorption in a desiccant, adsorption on a clean metal surface, and adsorption in a carbon molecular sieve or zeolite. Each method was evaluated with feasibility and reversibility in mind. By far the simplest and perhaps cheapest way to remove water from a gaseous sample is by means of a bulk desiccant. Desiccants are commercially available from many companies including those that supply chemicals. The main feature of a desiccant is its ability to rapidly bind or absorb water from the atmosphere. Calcium chloride, for example, is frequently incorporated into drying tubes by organic chemists when reactions require the absence of water. Other desiccants include sodium hydroxide, calcium hydride, and commercial products such as Drierite, available from Aldrich Chemical. The disadvantage to most desiccants is

  3. Abundance Anomaly of the 13C Isotopic Species of c-C3H2 in the Low-mass Star Formation Region L1527

    NASA Astrophysics Data System (ADS)

    Yoshida, Kento; Sakai, Nami; Tokudome, Tomoya; López-Sepulcre, Ana; Watanabe, Yoshimasa; Takano, Shuro; Lefloch, Bertrand; Ceccarelli, Cecilia; Bachiller, Rafael; Caux, Emmanuel; Vastel, Charlotte; Yamamoto, Satoshi

    2015-07-01

    The rotational spectral lines of c-C3H2 and two kinds of the 13C isotopic species, c-{}13{{CCCH}}2 ({C}2v symmetry) and c-{{CC}}13{{CH}}2 (Cs symmetry), have been observed in the 1-3 mm band toward the low-mass star-forming region L1527. We have detected 7, 3, and 6 lines of c-C3H2, c-{}13{{CCCH}}2, and c-{{CC}}13{{CH}}2, respectively, with the Nobeyama 45 m telescope and 34, 6, and 13 lines, respectively, with the IRAM 30 m telescope, where seven, two, and two transitions, respectively, are observed with both telescopes. With these data, we have evaluated the column densities of the normal and 13C isotopic species. The [c-C3H2]/[c-{}13{{CCCH}}2] ratio is determined to be 310 ± 80, while the [c-C3H2]/[c-{{CC}}13{{CH}}2] ratio is determined to be 61 ± 11. The [c-C3H2]/[c-{}13{{CCCH}}2] and [c-C3H2]/[c-{{CC}}13{{CH}}2] ratios expected from the elemental 12C/13C ratio are 60-70 and 30-35, respectively, where the latter takes into account the statistical factor of 2 for the two equivalent carbon atoms in c-C3H2. Hence, this observation further confirms the dilution of the 13C species in carbon-chain molecules and their related molecules, which are thought to originate from the dilution of 13C+ in the gas-phase C+ due to the isotope exchange reaction: {}13{{{C}}}++{CO}\\to {}13{CO}+{{{C}}}+. Moreover, the abundances of the two 13C isotopic species are different from each other. The ratio of c-{}13{{CCCH}}2 species relative to c-{{CC}}13{{CH}}2 is determined to be 0.20 ± 0.05. If 13C were randomly substituted for the three carbon atoms, the [c-{}13{{CCCH}}2]/[c-{{CC}}13{{CH}}2] ratio would be 0.5. Hence, the observed ratio indicates that c-{{CC}}13{{CH}}2 exists more favorably. Possible origins of the different abundances are discussed. Based on observations carried out with the IRAM 30 m Telescope and the NRO 45 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain). NRO is a branch of the National Astronomical Observatory of Japan

  4. UNiquant, a Program for Quantitative Proteomics Analysis Using Stable Isotope Labeling

    PubMed Central

    Huang, Xin; Tolmachev, Aleksey V.; Shen, Yulei; Liu, Miao; Huang, Lin; Zhang, Zhixin; Anderson, Gordon A.; Smith, Richard D.; Chan, Wing C.; Hinrichs, Steven H.; Fu, Kai; Ding, Shi-Jian

    2011-01-01

    Stable isotope labeling (SIL) methods coupled with nanoscale liquid chromatography and high resolution tandem mass spectrometry are increasingly useful for elucidation of the proteome-wide differences between multiple biological samples. Development of more effective programs for the sensitive identification of peptide pairs and accurate measurement of the relative peptide/protein abundance are essential for quantitative proteomic analysis. We developed and evaluated the performance of a new program, termed UNiquant, for analyzing quantitative proteomics data using stable isotope labeling. UNiquant was compared with two other programs, MaxQuant and Mascot Distiller, using SILAC-labeled complex proteome mixtures having either known or unknown heavy/light ratios. For the SILAC-labeled Jeko-1 cell proteome digests with known heavy/light ratios (H/L = 1:1, 1:5, and 1:10), UNiquant quantified a similar number of peptide pairs as MaxQuant for the H/L = 1:1 and 1:5 mixtures. In addition, UNiquant quantified significantly more peptides than MaxQuant and Mascot Distiller in the H/L = 1:10 mixtures. UNiquant accurately measured relative peptide/protein abundance without the need for post-measurement normalization of peptide ratios, which is required by the other programs. PMID:21158445

  5. Automated SIMS Isotopic Analysis Of Small Dust Particles

    NASA Astrophysics Data System (ADS)

    Nittler, L.; Alexander, C.; Gyngard, F.; Morgand, A.; Zinner, E. K.

    2009-12-01

    The isotopic compositions of sub-μm to μm sized dust grains are of increasing interest in cosmochemistry, nuclear forensics and terrestrial aerosol research. Because of its high sensitivity and spatial resolution, Secondary Ion Mass Spectrometry (SIMS) is the tool of choice for measuring isotopes in such small samples. Indeed, SIMS has enabled an entirely new sub-field of astronomy: presolar grains in meteorites. In recent years, the development of the Cameca NanoSIMS ion probe has extended the reach of isotopic measurements to particles as small as 100 nm in diameter, a regime where isotopic precision is strongly limited by the total number of atoms in the sample. Many applications require obtaining isotopic data on large numbers of particles, necessitating the development of automated techniques. One such method is isotopic imaging, wherein images of multiple isotopes are acquired, each containing multiple dispersed particles, and image processing is used to determine isotopic ratios for individual particles. This method is powerful, but relatively inefficient for raster-based imaging on the NanoSIMS. Modern computerized control of instrumentation has allowed for another approach, analogous to commercial automated SEM-EDS particle analysis systems, in which images are used solely to locate particles followed by fully automated grain-by-grain analysis. The first such system was developed on the Carnegie Institution’s Cameca ims-6f, and was used to generate large databases of presolar grains. We have recently developed a similar system for the NanoSIMS, whose high sensitivity allows for smaller grains to be analyzed with less sample consumption than is possible with the 6f system. The 6f and NanoSIMS systems are functionally identical: an image of dispersed grains is obtained with sufficient statistical precision for an algorithm to identify the positions of individual particles, the primary ion beam is deflected to each particle in turn and rastered in a small

  6. Assessing Friction Stress on a Liquid Lubricant by Stable Isotope Analysis

    DTIC Science & Technology

    2014-07-17

    multivariate data and test if significant isotopic shifts or FTIR spectral changes could be related to sliding cycles. δ13C Isotope ratios only were...chloride solvent (run alone) and exported to Matlab® for modeling and analysis. 2.4. Data Analysis Isotope ratio values were calculated and output...in spreadsheet format by IsoDAT NT software (Thermo-Fisher). Isotope ratio data for each identified peak were collated, transferred to Matlab

  7. Carbon isotopic analysis of atmospheric methane by isotope-ratio-monitoring gas chromatography-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Merritt, Dawn A.; Hayes, J. M.; Marais, David J. Des

    1995-01-01

    Less than 15 min are required for the determination of δ13CPDB with a precision of 0.2‰ (1σ, single measurement) in 5-mL samples of air containing CH4 at natural levels (1.7 ppm). An analytical system including a sample-introduction unit incorporating a preparative gas chromatograph (GC) column for separation of CH4 from N2, O2, and Ar is described. The 15-min procedure includes time for operation of that system, high-resolution chromatographic separation of the CH4, on-line combustion and purification of the products, and isotopic calibration. Analyses of standards demonstrate that systematic errors are absent and that there is no dependence of observed values of δ on sample size. For samples containing 100 ppm or more CH4, preconcentration is not required and the analysis time is less than 5 min. The system utilizes a commercially available, high-sensitivity isotope-ratio mass spectrometer. For optimal conditions of sample handling and combustion, performance of the system is within a factor of 2 of the shot-noise limit. The potential exists therefore for analysis of samples as small as 15 pmol CH4 with a standard deviation of <1‰.

  8. Carbon isotopic analysis of atmospheric methane by isotope-ratio-monitoring gas chromatography-mass spectrometry

    NASA Technical Reports Server (NTRS)

    Merritt, Dawn A.; Hayes, J. M.; Des Marais, David J.

    1995-01-01

    Less than 15 min are required for the determination of delta C(sub PDB)-13 with a precision of 0.2 ppt(1 sigma, single measurement) in 5-mL samples of air containing CH4 at natural levels (1.7 ppm). An analytical system including a sample-introduction unit incorporating a preparative gas chromatograph (GC) column for separation of CH4 from N2, O2, and Ar is described. The 15-min procedure includes time for operation of that system, high-resolution chromatographic separation of the CH4, on-line combustion and purification of the products, and isotopic calibration. Analyses of standards demonstrate that systematic errors are absent and that there is no dependence of observed values of delta on sample size. For samples containing 100 ppm or more CH4, preconcentration is not required and the analysis time is less than 5 min. The system utilizes a commercially available, high-sensitivity isotope-ratio mass spectrometer. For optimal conditions of smaple handling and combustion, performance of the system is within a factor of 2 of the shot-noise limit. The potential exists therefore for analysis of samples as small as 15 pmol CH4 with a standard deviation of less than 1 ppt.

  9. The Hobby-Eberly Telescope Chemical Abundances of Stars in the Halo (CASH) Project III. Abundance Analysis of Three Bright Hamburg/ESO Survey Stars

    NASA Astrophysics Data System (ADS)

    Davies, L. A.; Frebel, A.; Cowan, J. J.; Allende Prieto, C.; Sneden, C.

    2008-08-01

    We present an abundance analysis of three newly discovered stars from the Hamburg/ESO survey for which HET observations have been obtained as part of the CASH project. Light elemental abundances of all three stars agree with those of other metal-poor stars. This means that they likely formed from well-mixed gas. Upper limits on the heavier neutron-capture abundances have not eliminated the possibility that these stars are r-process enhanced. However, the measured barium abundances are rather low.

  10. Isotopic ratio outlier analysis global metabolomics of Caenorhabditis elegans.

    PubMed

    Stupp, Gregory S; Clendinen, Chaevien S; Ajredini, Ramadan; Szewc, Mark A; Garrett, Timothy; Menger, Robert F; Yost, Richard A; Beecher, Chris; Edison, Arthur S

    2013-12-17

    We demonstrate the global metabolic analysis of Caenorhabditis elegans stress responses using a mass-spectrometry-based technique called isotopic ratio outlier analysis (IROA). In an IROA protocol, control and experimental samples are isotopically labeled with 95 and 5% (13)C, and the two sample populations are mixed together for uniform extraction, sample preparation, and LC-MS analysis. This labeling strategy provides several advantages over conventional approaches: (1) compounds arising from biosynthesis are easily distinguished from artifacts, (2) errors from sample extraction and preparation are minimized because the control and experiment are combined into a single sample, (3) measurement of both the molecular weight and the exact number of carbon atoms in each molecule provides extremely accurate molecular formulas, and (4) relative concentrations of all metabolites are easily determined. A heat-shock perturbation was conducted on C. elegans to demonstrate this approach. We identified many compounds that significantly changed upon heat shock, including several from the purine metabolism pathway. The metabolomic response information by IROA may be interpreted in the context of a wealth of genetic and proteomic information available for C. elegans . Furthermore, the IROA protocol can be applied to any organism that can be isotopically labeled, making it a powerful new tool in a global metabolomics pipeline.

  11. Isotopic Ratio Outlier Analysis Global Metabolomics of Caenorhabditis elegans

    PubMed Central

    Szewc, Mark A.; Garrett, Timothy; Menger, Robert F.; Yost, Richard A.; Beecher, Chris; Edison, Arthur S.

    2014-01-01

    We demonstrate the global metabolic analysis of Caenorhabditis elegans stress responses using a mass spectrometry-based technique called Isotopic Ratio Outlier Analysis (IROA). In an IROA protocol, control and experimental samples are isotopically labeled with 95% and 5% 13C, and the two sample populations are mixed together for uniform extraction, sample preparation, and LC-MS analysis. This labeling strategy provides several advantages over conventional approaches: 1) compounds arising from biosynthesis are easily distinguished from artifacts, 2) errors from sample extraction and preparation are minimized because the control and experiment are combined into a single sample, 3) measurement of both the molecular weight and the exact number of carbon atoms in each molecule provides extremely accurate molecular formulae, and 4) relative concentrations of all metabolites are easily determined. A heat shock perturbation was conducted on C. elegans to demonstrate this approach. We identified many compounds that significantly changed upon heat shock, including several from the purine metabolism pathway, which we use to demonstrate the approach. The metabolomic response information by IROA may be interpreted in the context of a wealth of genetic and proteomic information available for C. elegans. Furthermore, the IROA protocol can be applied to any organism that can be isotopically labeled, making it a powerful new tool in a global metabolomics pipeline. PMID:24274725

  12. Assessment of marine-derived nutrients in the Copper River Delta, Alaska, using natural abundance of the stable isotopes of nitrogen, sulfur, and carbon

    USGS Publications Warehouse

    Kline, Thomas C.; Woody, Carol Ann; Bishop, Mary Anne; Powers, Sean P.; Knudsen, E. Eric

    2007-01-01

    We performed nitrogen, sulfur, and carbon stable isotope analysis (SIA) on maturing and juvenile anadromous sockeye and coho salmon, and periphyton in two Copper River delta watersheds of Alaska to trace salmonderived nutrients during 2003–2004. Maturing salmon were isotopically enriched relative to alternate freshwater N, S, and C sources as expected, with differences consistent with species trophic level differences, and minor system, sex, and year-to-year differences, enabling use of SIA to trace these salmon-derived nutrients. Periphyton naturally colonized, incubated, and collected using Wildco Periphtyon Samplers in and near spawning sites was 34S- and 15N-enriched, as expected, and at all freshwater sites was 13C-depleted. At nonspawning and coho-only sites, periphyton 34S and 15N was generally low. However, 34S was low enough at some sites to be suggestive of sulfate reduction, complicating the use of S isotopes. Juvenile salmon SIA ranged in values consistent with using production derived from re-mineralization as well as direct utilization, but only by a minority fraction of coho salmon. Dependency on salmon-derived nutrients ranged from relatively high to relatively low, suggesting a space-limited system. No one particular isotope was found to be superior for determining the relative importance of salmon-derived nutrients.

  13. Distribution, abundance and carbon isotopic composition of gaseous hydrocarbons in Big Soda Lake, Nevada - An alkaline, meromictic lake

    NASA Technical Reports Server (NTRS)

    Oremland, R. S.; Des Marais, D. J.

    1983-01-01

    The study of the distribution and isotopic composition of low molecular weight hydrocarbon gases at the Big Soda Lake, Nevada, has shown that while neither ethylene nor propylene were found in the lake, ethane, propane, isobutane and n-butane concentrations all increased with water column depth. It is concluded that methane has a biogenic origin in both the sediments and the anoxic water column, and that C2-C4 alkanes have biogenic origins in the monimolimnion water and shallow sediments. The changes observed in delta C-13/CH4/ and CH4/(C2H6 + C3H8) with depth in the water column and sedimeents are probably due to bacterial processes, which may include anaerobic methane oxidation and different rates of methanogenesis, and C2-to-C4 alkane production by microorganisms.

  14. Volatile abundances and oxygen isotopes in basaltic to dacitic lavas on mid-ocean ridges: The role of assimilation at spreading centers

    USGS Publications Warehouse

    Wanless, V.D.; Perfit, M.R.; Ridley, W.I.; Wallace, P.J.; Grimes, Craig B.; Klein, E.M.

    2011-01-01

    Most geochemical variability in MOR basalts is consistent with low- to moderate-pressure fractional crystallization of various mantle-derived parental melts. However, our geochemical data from MOR high-silica glasses, including new volatile and oxygen isotope data, suggest that assimilation of altered crustal material plays a significant role in the petrogenesis of dacites and may be important in the formation of basaltic lavas at MOR in general. MOR high-silica andesites and dacites from diverse areas show remarkably similar major element trends, incompatible trace element enrichments, and isotopic signatures suggesting similar processes control their chemistry. In particular, very high Cl and elevated H2O concentrations and relatively light oxygen isotope ratios (~ 5.8‰ vs. expected values of ~ 6.8‰) in fresh dacite glasses can be explained by contamination of magmas from a component of ocean crust altered by hydrothermal fluids. Crystallization of silicate phases and Fe-oxides causes an increase in δ18O in residual magma, but assimilation of material initially altered at high temperatures results in lower δ18O values. The observed geochemical signatures can be explained by extreme fractional crystallization of a MOR basalt parent combined with partial melting and assimilation (AFC) of amphibole-bearing altered oceanic crust. The MOR dacitic lavas do not appear to be simply the extrusive equivalent of oceanic plagiogranites. The combination of partial melting and assimilation produces a distinct geochemical signature that includes higher incompatible trace element abundances and distinct trace element ratios relative to those observed in plagiogranites.

  15. Hanford Isotope Project strategic business analysis Cesium-137 (Cs-137)

    SciTech Connect

    1995-10-01

    The purpose of this business analysis is to address the beneficial reuse of Cesium 137 (Cs-137) in order to utilize a valuable national asset and possibly save millions of tax dollars. Food irradiation is the front runner application along with other uses. This business analysis supports the objectives of the Department of Energy National Isotope Strategy distributed in August 1994 which describes the DOE plans for the production and distribution of isotope products and services. As part of the Department`s mission as stated in that document. ``The Department of Energy will also continue to produce and distribute other radioisotopes and enriched stable isotopes for medical diagnostics and therapeutics, industrial, agricultural, and other useful applications on a businesslike basis. This is consistent with the goals and objectives of the National Performance Review. The Department will endeavor to look at opportunities for private sector to co-fund or invest in new ventures. Also, the Department will seek to divest from ventures that can more profitably or reliably be operated by the private sector.``

  16. Abundance analysis of the halo giant HD 122563 with three-dimensional model stellar atmospheres

    NASA Astrophysics Data System (ADS)

    Collet, R.; Nordlund, Å.; Asplund, M.; Hayek, W.; Trampedach, R.

    We present a preliminary local thermodynamic equilibrium (LTE) abundance analysis of the template halo red giant HD122563 based on a realistic, three-dimensional (3D), time-dependent, hydrodynamical model atmosphere of the very metal-poor star. We compare the results of the 3D analysis with the abundances derived by means of a standard LTE analysis based on a classical, 1D, hydrostatic model atmosphere of the star. Due to the different upper photospheric temperature stratifications predicted by 1D and 3D models, we find large, negative, 3D-1D LTE abundance differences for low-excitation OH and Fe I lines. We also find trends with lower excitation potential in the derived Fe LTE abundances from Fe I lines, in both the 1D and 3D analyses. Such trends may be attributed to the neglected departures from LTE in the spectral line formation calculations.

  17. A Differential Abundance Analysis of the Wide Binary Pair HD 219542 A and B

    NASA Astrophysics Data System (ADS)

    Sadakane, Kozo; Ohkubo, Michiko; Honda, Satoshi

    2003-10-01

    The abundances of 22 elements (Li through Zr) in the A and B components of the visual pair HD 219542 were determined and compared using a differential analysis technique. Both components were found to be metal rich, [Fe/H] = +0.13, in the brighter component (A) and [Fe/H] = +0.08 in the fainter component (B). The abundances of three elements (Sc, Ti, and Fe) are definitely higher (by 0.05dex) in component A than in component B. On the other hand, both components have nearly identical abundances of the light element Si. No evidence has been found for differences in the abundances for C, O, Na, Mg, Al, S, Ca, V, Cr, Mn, Co, Ni, Cu, Zn, Sr, Y, and Zr. No clear correlation has been found between the differences in the abundance between the two components and the condensation temperature (Tc).

  18. Statistical analysis from recent abundance determinations in HgMn stars

    NASA Astrophysics Data System (ADS)

    Ghazaryan, S.; Alecian, G.

    2016-08-01

    To better understand the hot chemically peculiar group of HgMn stars, we have considered a compilation of a large number of recently published data obtained for these stars from spectroscopy. We compare these data to the previous compilation by Smith. We confirm the main trends of the abundance peculiarities, namely the increasing overabundances with increasing atomic number of heavy elements, and their large spread from star to star. For all the measured elements, we have looked for correlations between abundances and effective temperature (Teff). In addition to the known correlation for Mn, some other elements are found to show some connection between their abundances and Teff. We have also checked if multiplicity is a determinant parameter for abundance peculiarities determined for these stars. A statistical analysis using a Kolmogorov-Smirnov test shows that the abundances anomalies in the atmosphere of HgMn stars do not present significant dependence on the multiplicity.

  19. Genomic analysis of membrane protein families: abundance and conserved motifs

    PubMed Central

    Liu, Yang; Engelman, Donald M; Gerstein, Mark

    2002-01-01

    Background Polytopic membrane proteins can be related to each other on the basis of the number of transmembrane helices and sequence similarities. Building on the Pfam classification of protein domain families, and using transmembrane-helix prediction and sequence-similarity searching, we identified a total of 526 well-characterized membrane protein families in 26 recently sequenced genomes. To this we added a clustering of a number of predicted but unclassified membrane proteins, resulting in a total of 637 membrane protein families. Results Analysis of the occurrence and composition of these families revealed several interesting trends. The number of assigned membrane protein domains has an approximately linear relationship to the total number of open reading frames (ORFs) in 26 genomes studied. Caenorhabditis elegans is an apparent outlier, because of its high representation of seven-span transmembrane (7-TM) chemoreceptor families. In all genomes, including that of C. elegans, the number of distinct membrane protein families has a logarithmic relation to the number of ORFs. Glycine, proline, and tyrosine locations tend to be conserved in transmembrane regions within families, whereas isoleucine, valine, and methionine locations are relatively mutable. Analysis of motifs in putative transmembrane helices reveals that GxxxG and GxxxxxxG (which can be written GG4 and GG7, respectively; see Materials and methods) are among the most prevalent. This was noted in earlier studies; we now find these motifs are particularly well conserved in families, however, especially those corresponding to transporters, symporters, and channels. Conclusions We carried out a genome-wide analysis on patterns of the classified polytopic membrane protein families and analyzed the distribution of conserved amino acids and motifs in the transmembrane helix regions in these families. PMID:12372142

  20. Stable isotope analysis of energy dynamics in aquatic ecosystems suggests trophic shifts following severe wildfire

    NASA Astrophysics Data System (ADS)

    Martens, A. M.; Silins, U.; Bladon, K. D.; Williams, C.; Wagner, M. J.; Luchkow, E.

    2015-12-01

    Wildfire alters landscapes and can have significant impacts on stream ecosystems. The 2003 Lost Creek wildfire was one of the most severe on Alberta's eastern rocky mountain slopes, resulting in elevated sediment production and nutrient (phosphorus, nitrogen, and carbon) export in impacted streams. These resulted in increased algal productivity and macroinvertebrate abundance and diversity, and as a result, fish in watersheds draining wildfire affected catchments were larger than those in the same age class from reference (unburned) watersheds. In the present investigation, stable isotope analysis of C and N was utilized to evaluate ecosystem energy dynamics and describe trophic relationships in those watersheds. Aquatic invertebrates from burned catchments showed enrichment in δ13C and δ15N relative to algae suggesting a reliance on algae (autochthony) as a primary source of energy. Invertebrates from unburned systems were depleted in δ13C relative to algae indicating reliance on allochthonous or terrestrial primary energy sources. Preliminary analysis of δ15N in macroinvertebrates showed slight enrichment in burned catchments suggesting a trophic shift. More comprehensive macroinvertebrate sampling and identification has been conducted; isotopic analysis will provide greater resolution of how specific families within feeding guilds have been affected by wildfire. This will provide more robust insights into how wildfires may impact stream ecology in mountain environments.

  1. The Abundance and Isotopic Signature of Chlorine in UrKREEP: Implications for the Early Degassing of the Moon

    NASA Technical Reports Server (NTRS)

    Boyce, J. W.; Kanee, S.; McCubbin, F. M.; Barnes, J. J.; Bricker, H.; Treiman. A. H.

    2017-01-01

    Initally, the elevated delta-37 Cl values of lunar materials were attributed to volcanic degassing[1]. However, chlorine isotope ratios of apatite in lunarmare basalts appear to reflect mixing between two reservoirs.One component, with elevated delta-37 Cl is greater than or equal to + (25%) ([2] may represent the urKREEP--the final product of the crystallization of the lunar magma ocean. The second component, with delta-37 Cl is approximately (0%), is inferred to represent either a mare basalt reservoir or meteoritic materials. The idea that high delta-37 Cl is related to urKREEP suggest a global enrichment that occurred earlier in the lunar history [2,3]. Here we test this urKREEP-mixing hypothesis more rigorously, and report the observed limits of the model. We then use the results to calculate the Cl content of the urKREEP component and use those results to update estimates of the bulk Cl content of the Moon. This allows us to speculate on the mechanisms of loss of Cl from the lunar magma ocean.

  2. A three-dimensional hydrodynamical line profile analysis of iron lines and barium isotopes in HD 140283

    NASA Astrophysics Data System (ADS)

    Gallagher, A. J.; Ludwig, H.-G.; Ryan, S. G.; Aoki, W.

    2015-07-01

    Context. Heavy-elements, i.e. those beyond the iron peak, mostly form via two neutron capture processes: the slow (s-) and the rapid (r-) process. Metal-poor stars should contain fewer isotopes that form via the s-process, according to currently accepted theory. It has been shown in several investigations that theory and observation do not agree well, raising questions on the validity of either the methodology or the theory. Aims: We analyse the metal-poor star HD 140283, for which we have a high quality spectrum. We test whether a three-dimensional (3D) local thermodynamic equilibrium (LTE) stellar atmosphere and spectrum synthesis code permits a more reliable analysis of the iron abundance and barium isotope ratio than a one-dimensional (1D) LTE analysis. Methods: Using 3D hydrodynamical model atmospheres, we examine 91 iron lines of varying strength and formation depth. This provides us with the star's rotational speed. With this, we model the barium isotope ratio by exploiting the hyperfine structure of the singly ionised 4554 Å resonance line, and study the impact of the uncertainties in the stellar parameters. Results: The star's rotational speed was found to be 1.65 ± 0.05 km s-1. Barium isotopes under the 3D paradigm show a dominant r-process signature as 77 ± 6 ± 17% (fodd = 0.38 ± 0.02 ± 0.06) of barium isotopes form via the r-process, where errors represent the assigned random and systematic errors, respectively. We find that 3D LTE fits reproduce iron line profiles better than those in 1D, but do not provide a unique abundance (within the uncertainties). However, we demonstrate that the isotopic ratio is robust against this shortcoming. Conclusions: Our barium isotope result agrees well with currently accepted theory regarding the formation of the heavy-elements during the early Galaxy. The improved fit to the asymmetric iron line profiles suggests that the current state of 3D LTE modelling provides excellent simulations of fluid flows. However

  3. Characterization of phenols biodegradation by compound specific stable isotope analysis

    NASA Astrophysics Data System (ADS)

    Wei, Xi; Gilevska, Tetyana; Wenzig, Felix; Hans, Richnow; Vogt, Carsten

    2015-04-01

    -cresol degradation and 2.2±0.3‰ for m-cresol degradation, respectively. The carbon isotope fractionation patterns of phenol degradation differed more profoundly. Oxygen-dependent monooxygenation of phenol by A.calcoaceticus as the initial reaction yielded ƐC values of -1.5±0.02‰. In contrast, the anaerobic degradation initiated by ATP-dependent carboxylation performed by Thauera aromatia DSM 6984, produced no detectable fractionation (ƐC 0±0.1‰). D. cetonica showed a slight inverse carbon isotope fractionation (ƐC 0.4±0.1‰). In conclusion, a validated method for compound specific stable isotope analysis was developed for phenolic compounds, and the first data set of carbon enrichment factors upon the biodegradation of phenol and cresols with different activation mechanisms has been obtained in the present study. Carbon isotope fractionation analysis is a potentially powerful tool to monitor phenolic compounds degradation in the environment.

  4. A Low Abundance of 135Cs in the Early Solar System from Barium Isotopic Signatures of Volatile-depleted Meteorites

    NASA Astrophysics Data System (ADS)

    Brennecka, Gregory A.; Kleine, Thorsten

    2017-03-01

    Precise knowledge of the abundances of short-lived radionuclides at the start of the solar system leads to fundamental information about the stellar environment of solar system formation. Previous investigations of the short-lived {}135{Cs} \\to {}135{Ba} system (t 1/2 = 2.3 Ma) have resulted in a range of calculated initial amounts of 135Cs, with most estimates elevated to a level that requires extraneous input of material to the protoplanetary disk. Such an array of proposed 135Cs/133Cs initial solar system values has severely restricted the system’s use as both a possible chronometer and as an informant about supernovae input. However, if 135Cs was as abundant in the early solar system as previously proposed, the resulting deficits in its daughter product 135Ba would be easily detectable in volatile-depleted parent bodies (i.e., having sub-chondritic Cs/Ba) from the very early solar system. In this work, we show that angrites and eucrites, which were volatile-depleted within ∼1 million years of the start of the solar system, do not possess deficits in 135Ba compared to other planetary bodies. From this, we calculate an upper limit for the initial 135Cs/133Cs of 2.8 × 10‑6, well below previous estimates. This significantly lower initial 135Cs/133Cs ratio now suggests that all of the 135Cs present in the early solar system was inherited simply from galactic chemical evolution and no longer requires an addition from an external stellar source such as an asymptotic giant branch star or SN II, corroborating evidence from several other short-lived radionuclides.

  5. Micron-scale coupled carbon isotope and nitrogen abundance variations in diamonds: Evidence for episodic diamond formation beneath the Siberian Craton

    NASA Astrophysics Data System (ADS)

    Wiggers de Vries, D. F.; Bulanova, G. P.; De Corte, K.; Pearson, D. G.; Craven, J. A.; Davies, G. R.

    2013-01-01

    The internal structure and growth history of six macro-diamonds from kimberlite pipes in Yakutia (Russia) were investigated with cathodoluminescence imaging and coupled carbon isotope and nitrogen abundance analyses along detailed core to rim traverses. The diamonds are characterised by octahedral zonation with layer-by-layer growth. High spatial resolution SIMS profiles establish that there is no exchange of the carbon isotope composition across growth boundaries at the μm scale and that isotopic variations observed between (sub)zones within the diamonds are primary. The macro-diamonds have δ13C values that vary within 2‰ of -5.3‰ and their nitrogen contents range between 0-1334 at. ppm. There are markedly different nitrogen aggregation states between major growth zones within individual diamonds that demonstrate Yakutian diamonds grew in multiple growth events. Growth intervals were punctuated by stages of dissolution now associated with <10 μm wide zones of nitrogen absent type II diamond. Across these resorption interfaces carbon isotope ratios and nitrogen contents record shifts between 0.5-2.3‰ and up to 407 at. ppm, respectively. Co-variation in δ13C value-nitrogen content suggests that parts of individual diamonds precipitated in a Rayleigh process from either oxidised or reduced fluids/melts, with two single diamonds showing evidence of both fluid types. Modelling the co-variation establishes that nitrogen is a compatible element in diamond relative to its growth medium and that the nitrogen partition coefficient is different between oxidised (3-4.1) and reduced (3) sources. The reduced sources have δ13C values between -7.3‰ and -4.6‰, while the oxidised sources have higher δ13C values between -5.8‰ and -1.8‰ (if grown from carbonatitic media) or between -3.8‰ and +0.2‰ (if grown from CO2-rich media). It is therefore concluded that individual Yakutian diamonds originate from distinct fluids/melts of variable compositions. The

  6. Application of Natural Isotopic Abundance ¹H-¹³C- and ¹H-¹⁵N-Correlated Two-Dimensional NMR for Evaluation of the Structure of Protein Therapeutics.

    PubMed

    Arbogast, Luke W; Brinson, Robert G; Marino, John P

    2016-01-01

    Methods for characterizing the higher-order structure of protein therapeutics are in great demand for establishing consistency in drug manufacturing, for detecting drug product variations resulting from modifications in the manufacturing process, and for comparing a biosimilar to an innovator reference product. In principle, solution NMR can provide a robust approach for characterization of the conformation(s) of protein therapeutics in formulation at atomic resolution. However, molecular weight limitations and the perceived need for stable isotope labeling have to date limited its practical applications in the biopharmaceutical industry. Advances in NMR magnet and console technologies, cryogenically cooled probes, and new rapid acquisition methodologies, particularly selective optimized flip-angle short transient pulse schemes and nonuniform sampling, have greatly ameliorated these limitations. Here, we describe experimental methods for the collection and analysis of 2D (1)H(N)-(15)N-amide- and (1)H-(13)C-methyl-correlated spectra applied to protein drug products at natural isotopic abundance, including representatives from the rapidly growing class of monoclonal antibody (mAb) therapeutics. Practical aspects of experimental setup and data acquisition for both standard and rapid acquisition NMR techniques are described. Furthermore, strategies for the statistical comparison of 2D (1)H(N)-(15)N-amide- and (1)H-(13)C-methyl-correlated spectra are detailed.

  7. A landscape analysis of cougar distribution and abundance in Montana, USA.

    PubMed

    Riley, S J; Malecki, R A

    2001-09-01

    Recent growth in the distribution and abundance of cougars (Puma concolor) throughout western North America has created opportunities, challenges, and problems for wildlife managers and raises questions about what factors affect cougar populations. We present an analysis of factors thought to affect cougar distribution and abundance across the broad geographical scales on which most population management decisions are made. Our objectives were to: (1) identify and evaluate landscape parameters that can be used to predict the capability of habitats to support cougars, and (2) evaluate factors that may account for the recent expansion in cougar numbers. Habitat values based on terrain ruggedness and forested cover explained 73% of the variation in a cougar abundance index. Indices of cougar abundance also were spatially and temporally correlated with ungulate abundance. An increase in the number and total biomass of ungulate prey species is hypothesized to account for recent increases in cougars. Cougar populations in Montana are coping with land development by humans when other components of habitat and prey populations are sufficient. Our analysis provides a better understanding of what may have influenced recent growth in cougar distribution and abundance in Montana and, when combined with insights about stakeholder acceptance capacity, offers a basis for cougar management at broad scales. Long-term conservation of cougars necessitates a better understanding of ecosystem functions that affect prey distribution and abundance, more accurate estimates of cougar populations, and management abilities to integrate these components with human values.

  8. Enantiomeric and Isotopic Analysis of Sugar Derivatives in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Cooper, George; Asiyo, Cynthia; Turk, Kendra; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    Several classes of organic compounds are found in carbonaceous meteorites including amino acids, carboxylic acids, hydroxy acids, purines, and pyrimidines. Such compounds are thought to have been delivered to the early Earth in asteroids and comets and may have played a role in the origin of life. Likewise, sugar derivatives are critical to all known lifeforms. Recent analyses of the Murchison and Murray carbonaceous meteorites revealed a diverse suite of such derivatives, i.e., sugar alcohols, and sugar acids. This presentation will focus primarily on the analysis of individual sugar acids - their enantiomeric and isotopic composition. Analysis of these compounds may reveal the nature of past (or present) meteoritic sugars themselves. For example, if parent sugars decomposed (by well-known mechanisms) to give the present acids, were their enantiomeric ratios preserved? Combined with other evidence, the enantiomeric composition of such compounds as glyceric acid and (especially) rare acids may help to answer such questions. C-13 and D isotope analysis of meteoritic sugar alcohols (glycerol, threitol, ribitol, etc.) as a group revealed that they were indigenous to the meteorite. Preliminary C-13 analysis of glyceric acid shows that it is also extraterrestrial.

  9. Stable isotope analysis of white paints and likelihood ratios.

    PubMed

    Farmer, N; Meier-Augenstein, W; Lucy, D

    2009-06-01

    Architectural paints are commonly found as trace evidence at scenes of crime. Currently the most widely used technique for the analysis of architectural paints is Fourier Transformed Infra-Red Spectroscopy (FTIR). There are, however, limitations to the forensic analysis of white paints, and the ability to discriminate between samples. Isotope ratio mass spectrometry (IRMS) has been investigated as a potential tool for the analysis of architectural white paints, where no preparation of samples prior to analysis is required. When stable isotope profiles (SIPs) are compared, there appears to be no relationship between paints from the same manufacturer, or between paints of the same type. Unlike existing techniques, IRMS does not differentiate resin samples solely on the basis of modifier or oil-type, but exploits additional factors linked to samples such as geo-location where oils added to alkyd formulations were grown. In combination with the use of likelihood ratios, IRMS shows potential, with a false positive rate of 2.6% from a total of 1275 comparisons.

  10. Trace determination of zinc by substoichiometric isotope dilution analysis

    SciTech Connect

    Sandhya, D.; Priya, S.; Subramanian, M.O.S.

    1996-09-01

    A radiometric method based on substoichiometric isotope dilution analysis using 1,10-phenanthroline and a substoichiometric amount of eosin was developed for determining trace amounts of zinc. Evaluation of various metal ion interferences shows that as little as 0.2 {mu}g Zn could be determined in an aqueous-phase volume of 60 mL. The method has been successfully applied to the determination of Zn in city waste incineration ash, cadmium metal, Fourts-B tablets, Boro-plus ointment, and magnesium alloy samples. 12 refs., 3 figs., 3 tabs.

  11. Isotopic Biogeochemistry

    NASA Technical Reports Server (NTRS)

    Hayes, J. M.

    1985-01-01

    An overview is provided of the biogeochemical research. The funding, productivity, personnel and facilities are reviewed. Some of the technical areas covered are: carbon isotopic records; isotopic studies of banded iron formations; isotope effects in microbial systems; studies of organic compounds in ancient sediments; and development in isotopic geochemistry and analysis.

  12. Volatile, isotope, and organic analysis of martian fines with the Mars Curiosity rover.

    PubMed

    Leshin, L A; Mahaffy, P R; Webster, C R; Cabane, M; Coll, P; Conrad, P G; Archer, P D; Atreya, S K; Brunner, A E; Buch, A; Eigenbrode, J L; Flesch, G J; Franz, H B; Freissinet, C; Glavin, D P; McAdam, A C; Miller, K E; Ming, D W; Morris, R V; Navarro-González, R; Niles, P B; Owen, T; Pepin, R O; Squyres, S; Steele, A; Stern, J C; Summons, R E; Sumner, D Y; Sutter, B; Szopa, C; Teinturier, S; Trainer, M G; Wray, J J; Grotzinger, J P

    2013-09-27

    Samples from the Rocknest aeolian deposit were heated to ~835°C under helium flow and evolved gases analyzed by Curiosity's Sample Analysis at Mars instrument suite. H2O, SO2, CO2, and O2 were the major gases released. Water abundance (1.5 to 3 weight percent) and release temperature suggest that H2O is bound within an amorphous component of the sample. Decomposition of fine-grained Fe or Mg carbonate is the likely source of much of the evolved CO2. Evolved O2 is coincident with the release of Cl, suggesting that oxygen is produced from thermal decomposition of an oxychloride compound. Elevated δD values are consistent with recent atmospheric exchange. Carbon isotopes indicate multiple carbon sources in the fines. Several simple organic compounds were detected, but they are not definitively martian in origin.

  13. Distribution, abundance and carbon isotopic composition of gaseous hydrocarbons in Big Soda Lake, Nevada: An alkaline, meromictic lake

    USGS Publications Warehouse

    Oremland, R.S.; Des Marais, D.J.

    1983-01-01

    Distribution and isotopic composition (??13C) of low molecular weight hydrocarbon gases were studied in Big Soda Lake (depth = 64 m), an alkaline, meromictic lake with permanently anoxic bottom waters. Methane increased with depth in the anoxic mixolimnion (depth = 20-35 m), reached uniform concentrations (55 ??M/l) in the monimolimnion (35-64 m) and again increased with depth in monimolimnion bottom sediments (>400 ??M/kg below 1 m sub-bottom depth). The ??13C[CH4] values in bottom sediment below 1 m sub-bottom depth (<-70 per mil) increased with vertical distance up the core (??13C[CH4] = -55 per mil at sediment surface). Monimolimnion ??13C[CH4] values (-55 to -61 per mil) were greater than most ??13C[CH4] values found in the anoxic mixolimnion (92% of samples had ??13C[CH4] values between -20 and -48 per mil). No significant concentrations of ethylene or propylene were found in the lake. However ethane, propane, isobutane and n-butane concentrations all increased with water column depth, with respective maximum concentrations of 260, 80, 23 and 22 nM/l encountered between 50-60 m depth. Concentrations of ethane, propane and butanes decreased with depth in the bottom sediments. Ratios of CH4 [C2H6 + C3H8] were high (250-620) in the anoxic mixolimnion, decreased to ~161 in the monimolimnion and increased with depth in the sediment to values as high as 1736. We concluded that methane has a biogenic origin in both the sediments and the anoxic water column and that C2-C4 alkanes have biogenic origins in the monimolimnion water and shallow sediments. The changes observed in ??13C[CH4] and CH4 (C2H6 + C3H8) with depth in the water column and sediments are probably caused by bacteria] processes. These might include anaerobic methane oxidation and different rates of methanogenesis and C2 to C4 alkane production by microorganisms. ?? 1983.

  14. Structural and Isotopic Analysis of Organic Matter in Carbonaceous Chondrites

    NASA Astrophysics Data System (ADS)

    Gilmour, I.

    2003-12-01

    The most ancient organic molecules available for study in the laboratory are those carried to Earth by infalling carbonaceous chondrite meteorites. All the classes of compounds normally considered to be of biological origin are represented in carbonaceous meteorites and, aside from some terrestrial contamination; it is safe to assume that these organic species were produced by nonbiological methods of synthesis. In effect, carbonaceous chondrites are a natural laboratory containing organic molecules that are the product of ancient chemical evolution. Understanding the sources of organic molecules in meteorites and the chemical processes that led to their formation has been the primary research goal. Circumstellar space, the solar nebulae, and asteroidal meteorite parent bodies have all been suggested as environments where organic matter may have been formed. Determination of the provenance of meteoritic organic matter requires detailed structural and isotopic information, and the fall of the Murchison CM2 chondrite in 1969 enabled the first systematic organic analyses to be performed on comparatively pristine samples of extraterrestrial organic material. Prior to that, extensive work had been undertaken on the organic matter in a range of meteorite samples galvanized, in part, by the controversial debate in the early 1960s on possible evidence for former life in the Orgueil carbonaceous chondrite (Fitch et al., 1962; Meinschein et al., 1963). It was eventually demonstrated that the suggested biogenic material was terrestrial contamination ( Fitch and Anders, 1963; Anders et al., 1964); however, the difficulties created by contamination have posed a continuing problem in the analysis and interpretation of organic material in meteorites (e.g., Watson et al., 2003); this has significant implications for the return of extraterrestrial samples by space missions. Hayes (1967) extensively reviewed data acquired prior to the availability of Murchison samples

  15. Assessment of international reference materials for isotope-ratio analysis (IUPAC Technical Report)

    USGS Publications Warehouse

    Brand, Willi A.; Coplen, Tyler B.; Vogl, Jochen; Rosner, Martin; Prohaska, Thomas

    2014-01-01

    Since the early 1950s, the number of international measurement standards for anchoring stable isotope delta scales has mushroomed from 3 to more than 30, expanding to more than 25 chemical elements. With the development of new instrumentation, along with new and improved measurement procedures for studying naturally occurring isotopic abundance variations in natural and technical samples, the number of internationally distributed, secondary isotopic reference materials with a specified delta value has blossomed in the last six decades to more than 150 materials. More than half of these isotopic reference materials were produced for isotope-delta measurements of seven elements: H, Li, B, C, N, O, and S. The number of isotopic reference materials for other, heavier elements has grown considerably over the last decade. Nevertheless, even primary international measurement standards for isotope-delta measurements are still needed for some elements, including Mg, Fe, Te, Sb, Mo, and Ge. It is recommended that authors publish the delta values of internationally distributed, secondary isotopic reference materials that were used for anchoring their measurement results to the respective primary stable isotope scale.

  16. Tracing magma sources in an arc-arc collision zone: Helium and carbon isotope and relative abundance systematics of the Sangihe Arc, Indonesia

    NASA Astrophysics Data System (ADS)

    Jaffe, Lillie A.; Hilton, David R.; Fischer, Tobias P.; Hartono, Udi

    2004-04-01

    The Sangihe Arc is presently colliding with the Halmahera Arc in northeastern Indonesia, forming the world's only extant example of an arc-arc collision zone. We report the first helium and carbon isotopic and relative abundance data from the Sangihe Arc volcanoes as a means to trace magma origins in this complicated tectonic region. Results of this study define a north-south trend in 3He/4He, CO2/3He, and δ13C, suggesting that there are variations in primary magma source characteristics along the strike of the arc. The northernmost volcanoes (Awu and Karangetang) have higher CO2/3He and δ13C (up to 179 × 109 and -0.4‰, respectively) and lower 3He/4He (˜5.4 RA) than the southernmost volcanoes (Ruang, Lokon, and Mahawu). Resolving the arc CO2 into component structures (mantle-derived, plus slab-derived organic and carbonate CO2), the northern volcanoes contain an unusually high (>90%) contribution of CO2 derived from isotopically heavy carbonate associated with the subducting slab (sediment and altered oceanic basement). Furthermore, the overall slab contribution (CO2 of carbonate and organic origin) relative to carbon of mantle wedge origin is significantly enhanced in the northern segment of the arc. These observations may be caused by greater volumes of sediment subduction in the northern arc, along-strike variability in subducted sediment composition, or enhanced slab-derived fluid/melt production resulting from the superheating of the slab as collision progresses southward.

  17. Stable isotope analysis indicates a lack of inter- and intra-specific dietary redundancy among ecologically important coral reef fishes

    NASA Astrophysics Data System (ADS)

    Plass-Johnson, J. G.; McQuaid, C. D.; Hill, J. M.

    2013-06-01

    Parrotfish are critical consumers on coral reefs, mediating the balance between algae and corals, and are often categorised into three functional groups based on adult morphology and feeding behaviour. We used stable isotope analysis (δ13C, δ15N) to investigate size-related ontogenetic dietary changes in multiple species of parrotfish on coral reefs around Zanzibar. We compared signatures among species and functional groups (scrapers, excavators and browsers) as well as ontogenetic stages (immature, initial and terminal phase) within species. Stable isotope analysis suggests that ontogenetic dietary shifts occurred in seven of the nine species examined; larger individuals had enriched δ13C values, with no relationship between size and δ15N. The relationship between fish length and δ13C signature was maintained when species were categorised as scrapers and excavators, but was more pronounced for scrapers than excavators, indicating stronger ontogenetic changes. Isotopic mixing models classified the initial phase of both the most abundant excavator ( Chlorurus sordidus) as a scraper and the immature stage of the scraper Scarus ghobban (the largest species) as an excavator, indicating that diet relates to size rather than taxonomy. The results indicate that parrotfish may show similar intra-group changes in diet with length, but that their trophic ecology is more complex than suggested by morphology alone. Stable isotope analyses indicate that feeding ecology may differ among species within functional groups, and according to ontogenetic stage within a species.

  18. Chemical Conversion of PON to Nitrous Oxide for Nitrogen Isotopic Analysis : High- Sensitivity Tracer Assay for Nitrogen Fixation

    NASA Astrophysics Data System (ADS)

    Tsunogai, U.; Kido, T.; Hirota, A.; Ohkubo, S.; Komatsu, D. D.; Nakagawa, F.

    2006-12-01

    We present a method for high-sensitivity nitrogen isotopic analysis of particulate organic nitrogen (PON) in seawater and freshwater, for the aim of measuring the rate of nitrogen fixation through 15N2 tracer technique for samples that contain low numeric abundance of organisms. The method composed of the traditional oxidation/reduction methods: such as oxidation of PON to nitrate using persulfate, the reduction of nitrate to nitrite using spongy cadmium, and further reduction of nitrite to nitrous oxide using sodium azide in an acetic acid buffer. Then, Nitrous oxide is purged from the water and trapped cryogenically with subsequent release into a gas chromatography column to analyze stable nitrogen isotopic compositions using a continuous-flow isotope ratio mass spectrometer. A standard deviation less than 0.3 ‰ for nitrogen was found for PON samples containing more than 80 nmolN, with a blank nitrogen of 20 nmolN. Nitrogen isotopic fractionation were consistent within each batch of analysis. Besides, we found that we can also determine nitrogen isotopic compositions of total dissolved nitrogen (TDN, sum of NO3-, NO2-, ammonium, and DON), by applying the method for filtrate samples. Our method may prove to obtain isotopic information for lower quantities of PON and TDN than other methods, so that we can reduce quantities of water samples needed for incubation to determine the nitrogen fixation rate in both seawater and freshwater. Besides, the method is also useful to determine the rate of nitrogen fixation by the small size fraction in ocean. We will also present the results obtained at western subtropical North Pacific to support our conclusions.

  19. Flow injection analysis-isotope ratio mass spectrometry for bulk carbon stable isotope analysis of alcoholic beverages.

    PubMed

    Jochmann, Maik A; Steinmann, Dirk; Stephan, Manuel; Schmidt, Torsten C

    2009-11-25

    A new method for bulk carbon isotope ratio determination of water-soluble samples is presented that is based on flow injection analysis-isotope ratio mass spectrometry (FIA-IRMS) using an LC IsoLink interface. Advantages of the method are that (i) only very small amounts of sample are required (2-5 microL of the sample for up to 200 possible injections), (ii) it avoids complex sample preparation procedures such as needed for EA-IRMS analysis (only sample dilution and injection,) and (iii) high throughput due to short analysis times is possible (approximately 15 min for five replicates). The method was first tested and evaluated as a fast screening method with industrially produced ethanol samples, and additionally the applicability was tested by the measurement of 81 alcoholic beverages, for example, whiskey, brandy, vodka, tequila, and others. The minimal sample concentration required for precise and reproducible measurements was around 50 microL L(-1) ethanol/water (1.71 mM carbon). The limit of repeatability was determined to be r=0.49%. FIA-IRMS represents a fast screening method for beverage authenticity control. Due to this, samples can be prescreened as a decisive criterion for more detailed investigations by HPLC-IRMS or multielement GC-IRMS measurements for a verification of adulteration.

  20. Sampling soil-derived CO2 for analysis of isotopic composition: a comparison of different techniques.

    PubMed

    Bertolini, Teresa; Inglima, Ilaria; Rubino, Mauro; Marzaioli, Fabio; Lubritto, Carmine; Subke, Jens-Arne; Peressotti, Alessandro; Cotrufo, M Francesca

    2006-03-01

    A new system for soil respiration measurement [P. Rochette, L.B. Flanagan, E.G. Gregorich. Separating soil respiration into plant and soil components using analyses of the natural abundance of carbon-13. Soil Sci. Soc. Am. J., 63, 1207-1213 (1999).] was modified in order to collect soil-derived CO2 for stable isotope analysis. The aim of this study was to assess the suitability of this modified soil respiration system to determine the isotopic composition (delta13C) of soil CO2 efflux and to measure, at the same time, the soil CO2 efflux rate, with the further advantage of collecting only one air sample. A comparison between different methods of air collection from the soil was carried out in a laboratory experiment. Our system, as well as the other dynamic chamber approach tested, appeared to sample the soil CO2, which is enriched with respect to the soil CO2 efflux, probably because of a mass dependent fractionation during diffusion and because of the atmospheric contribution in the upper soil layer. On the contrary, the static accumulation of CO2 into the chamber headspace allows sampling of delta13C-CO2 of soil CO2 efflux.

  1. In situ analysis of silicon isotopes using UV-femtosecond laser ablation MC-ICP- MS

    NASA Astrophysics Data System (ADS)

    Chmeleff, J.; Horn, I.; Steinhoefel, G.; von Blanckenburg, F.

    2006-12-01

    Here we present results from the development of a novel in situ approach to measure accurate and precise ^{30}Si/^{28}Si and ^{29}Si/^{28}Si ratios in minerals and glasses. Silicon is the most abundant non- volatile element in the solar system and after oxygen, the second most abundant in upper crust. It is the dominant solute in rivers that drain our continents, supplying 80% of the dissolved Si entering the oceans. Weathering of continents is thus providing material for the formation of clays and soils, and nutrients for the aquatic biosphere. The ratios of stable silicon isotopes fingerprint many of these processes, and them ^{30}Si/^{28}Si ratios in terrestrial reservoirs (represented as δ ^{30}Si) range from -4 to +3 per mil. To date, most silicon isotope studies have been measured by gas source MS or, more recently, MC- ICPMS after sample decomposition and Si purification. While SIMS studies have presented the first in situ- measurements, laser ablation stable isotope ratio analysis is an obvious alternative. However, principle limitations of the ablation physics introduced by the nanosecond lasers traditionally employed have prevented the measurement of accurate isotope ratios. Our in-house built 196nm UV-femtosecond laser ablation system coupled to high-resolution MC-ICPMS avoids these difficulties (Horn et al. 2006, GCA 70). We have developed an in situ-method for precise and rapid measurements of ^{29}Si/^{28}Si and ^{30}Si/^{28}Si ratios in silicates at a spatial resolution of 50 micrometers. Sample-standard bracketing is used to correct for the mass discrimination and the possible drift occurring between two measurements. δ^{30}Si is calculated with NIST NBS28 (synthetic quartz sand) as bracketing standard. Two international standards were measured and compared: IRMM017 (pure metal) gives a δ^{29}Si of -0.680±0.030 (2 sigma n=25) per mil and δ^{30}Si of -1.32±0.040 (2 sigma n=25) per mil against NBS28, which is in accordance with previous

  2. Analysis of the galactosyltransferase reaction by positional isotope exchange and secondary deuterium isotope effects

    SciTech Connect

    Kim, S.C.; Singh, A.N.; Raushel, F.M.

    1988-11-15

    The mechanism of the galactosyltransferase-catalyzed reaction was probed using positional isotope exchange, alpha-secondary deuterium isotope effects, and inhibition studies with potential transition state analogs. Incubation of (beta-18O2, alpha beta-18O)UDP-galactose and alpha-lactalbumin with galactosyltransferase from bovine milk did not result in any positional isotope exchange. The addition of 4-deoxy-4-fluoroglucose as a dead-end inhibitor did not induce any detectable positional isotope exchange. alpha-Secondary deuterium isotope effects of 1.21 +/- 0.04 on Vmax and 1.05 +/- 0.04 on Vmax/KM were observed for (1-2H)-UDP-galactose. D-Glucono-1,5-lactone, D-galactono-1,4-lactone, D-galactono-1,5-lactone, nojirimycin, and deoxynojirimycin, did not inhibit the galactosyl transfer reaction at concentrations less than 1.0 mM. The magnitude of the secondary deuterium isotope effect supports a mechanism in which the anomeric carbon of the galactosyl moiety has substantial sp2 character in the transition state. Therefore, the cleavage of the bond between the galactose and UDP moieties in the transition state has proceeded to a much greater extent than the formation of the bond between the galactose and the incoming glucose. The lack of a positional isotope exchange reaction indicates that the beta-phosphoryl group of the UDP is not free to rotate in the absence of an acceptor substrate.

  3. Spectral analysis software improves confidence in plant and soil water stable isotope analyses performed by isotope ratio infrared spectroscopy (IRIS).

    PubMed

    West, A G; Goldsmith, G R; Matimati, I; Dawson, T E

    2011-08-30

    Previous studies have demonstrated the potential for large errors to occur when analyzing waters containing organic contaminants using isotope ratio infrared spectroscopy (IRIS). In an attempt to address this problem, IRIS manufacturers now provide post-processing spectral analysis software capable of identifying samples with the types of spectral interference that compromises their stable isotope analysis. Here we report two independent tests of this post-processing spectral analysis software on two IRIS systems, OA-ICOS (Los Gatos Research Inc.) and WS-CRDS (Picarro Inc.). Following a similar methodology to a previous study, we cryogenically extracted plant leaf water and soil water and measured the δ(2)H and δ(18)O values of identical samples by isotope ratio mass spectrometry (IRMS) and IRIS. As an additional test, we analyzed plant stem waters and tap waters by IRMS and IRIS in an independent laboratory. For all tests we assumed that the IRMS value represented the "true" value against which we could compare the stable isotope results from the IRIS methods. Samples showing significant deviations from the IRMS value (>2σ) were considered to be contaminated and representative of spectral interference in the IRIS measurement. Over the two studies, 83% of plant species were considered contaminated on OA-ICOS and 58% on WS-CRDS. Post-analysis, spectra were analyzed using the manufacturer's spectral analysis software, in order to see if the software correctly identified contaminated samples. In our tests the software performed well, identifying all the samples with major errors. However, some false negatives indicate that user evaluation and testing of the software are necessary. Repeat sampling of plants showed considerable variation in the discrepancies between IRIS and IRMS. As such, we recommend that spectral analysis of IRIS data must be incorporated into standard post-processing routines. Furthermore, we suggest that the results from spectral analysis be

  4. Quantitative determination of mineral types and abundances from reflectance spectra using principal components analysis

    NASA Technical Reports Server (NTRS)

    Smith, M. O.; Adams, J. B.; Johnson, P. E.

    1985-01-01

    A procedure was developed for analyzing remote reflectance spectra, including multispectral images, that quantifies parameters such as types of mineral mixtures, the abundances of mixed minerals, and particle sizes. Principal components analysis reduced the spectral dimensionality and allowed testing the uniqueness and validity of spectral mixing models. By analyzing variations in the overall spectral reflectance curves, the type of spectral mixture was identified, mineral abundances quantified and the effects of particle size identified. The results demonstrate an advantage in classification accuracy over classical forms of analysis that ignore effects of particle-size or mineral-mixture systematics on spectra. The approach is applicable to remote sensing data of planetary surfaces for quantitative determinations of mineral abundances.

  5. Coenzyme F430, quantification and isotope analysis from the Eel River Basin California

    NASA Astrophysics Data System (ADS)

    Bird, L. R.; Fulton, J. M.; Dawson, K.; Orphan, V. J.; Freeman, K. H.

    2012-12-01

    Large amounts of methane are oxidized by communities of methanotrophic archaea and sulphate-reducing bacteria, preventing this greenhouse gas from reaching the atmosphere (Orphan et al., 2001; Scheller et al., 2010). Methyl-coenzyme M reductase, an enzyme traditionally associated with methanogenesis, has recently been linked to the anaerobic oxidation of methane suggesting methane oxidation follows a pathway similar to reverse methanogenesis. Coenzyme F430, a tetrapyrrole-nickel complex within the active site of methyl-coenzyme M, is used in methanogenesis and is hypothesized to play a key role in archaeal methanotrophy (Scheller et al., 2010). We recently developed a method to extract and isolate F430 from natural sediments so it can be purified for carbon and nitrogen stable isotope analysis. Sediments are extracted using an ultrasonic homogenizer, first in water (pH 7), then twice in dilute formic acid (pH 3). The combined extract is neutralized and the F430-containing fraction is isolated using Sephadex and Amberlite column chromatography. Further purification is performed using two dimensional high performance liquid chromatography, first with a reverse phase C-18 column followed by separation on a ThermoFisher Hypercarb column. F430 is then quantified using photo diode array detection with fractions collected for isotope analysis using a nano-scale elemental analyzer isotope ratio mass spectrometer (nano-EA-IRMS; Polissar et al., 2009). Compound identity and purity are confirmed using molar C:N ratios, UV absorbance and MSn detection of the parent ion (m/z 905). Here, we report F430 concentrations and isotopic data determined from active seep sediment cores from the Eel River Basin (California), a site where the anoxic oxidation of methane occurs. A spike in the concentration of F430 is observed at the 3-6 cm depth horizon corresponding with peak abundance in ANME-2/Desulfosarcina/Desulfococcus aggregate counts. Carbon isotope values of F430 are significantly

  6. Oxygen isotope corrections for online δ34S analysis

    USGS Publications Warehouse

    Fry, B.; Silva, S.R.; Kendall, C.; Anderson, R.K.

    2002-01-01

    Elemental analyzers have been successfully coupled to stable-isotope-ratio mass spectrometers for online measurements of the δ34S isotopic composition of plants, animals and soils. We found that the online technology for automated δ34S isotopic determinations did not yield reproducible oxygen isotopic compositions in the SO2 produced, and as a result calculated δ34S values were often 1–3‰ too high versus their correct values, particularly for plant and animal samples with high C/S ratio. Here we provide empirical and analytical methods for correcting the S isotope values for oxygen isotope variations, and further detail a new SO2-SiO2 buffering method that minimizes detrimental oxygen isotope variations in SO2.

  7. Comprehensive Isotopic and Elemental Analysis of a Multi-Oxide Glass By Multicollector ICP-MS in Isotope Substitution Studies

    SciTech Connect

    v, Mitroshkov; JV, Ryan

    2016-04-07

    Multicollector ICP-MS was used to comprehensively analyze different types of isotopically-modified glass created in order to investigate the processes of glass corrosion in the water. The analytical methods were developed for the analyses of synthesized, isotopically-modified solid glass and the release of glass constituents upon contact with deionized water. To validate the methods, results from an acid digestion sample of the Analytical Reference Glass (ARG) showed good agreement when compared to data from multiple prior analyses on the same glass [Smith-1]. In this paper, we present the results of this comprehensive analysis from the acid digestion of six types of isotopically-modified glass and the release of glass constituents into water corrosion after one year of aqueous corrosion.

  8. Refinement and evaluation of an automated mass spectrometer for nitrogen isotope analysis by the Rittenberg technique

    PubMed Central

    Mulvaney, R. L.; Liu, Y. P.

    1991-01-01

    An apparatus designed to automatically perform hypobromite oxidations of ammonium salt samples for nitrogen isotope analyses with a mass spectrometer was modified to improve performance and reduce analysis time. As modified, reference N2 is admitted to the mass spectrometer between samples from a dedicated inlet manifold, for calibration at the same pressure as that of the preceding sample. Analyses can be performed on samples containing 10 μg to 1 mg of N (or more), at a rate of up to 350 samples/day. When operated with a double-collector mass spectrometer, the standard deviation at the natural abundance level (10 analyses, 50-150 μg N) was <0.0001 atom % 15N. Very little memory was observed when natural abundance samples (0.366 atom % 15N) were analysed. following samples containing 40 atom % 15N. Analyses in the range, 0.2 to 1 atom % 15N (50-150 μg N), were in good agreement with manual Rittenberg analyses (1 mg N) using a dual-inlet system, and precision was comparable. For enrichments of 2 to 20 atom % 15N, automated analyses were slightly lower than manual analyses, which was attributed to outgassing of N2 from the plastic microplate used to contain samples. PMID:18924914

  9. Comparative Analysis of Mars Odyssey GRS Chemical Abundances with Other Mission Global Datasets

    NASA Astrophysics Data System (ADS)

    Hahn, B. C.; McLennan, S. M.; Odyssey GRS Science Team

    2006-12-01

    The 2001 Mars Odyssey Gamma-Ray Spectrometer (GRS) instrument package has returned chemical abundance maps of the Martian surface for a suite of elements (Fe, Si, Cl, H, K, Th). Due to a low resolution (>250 km footprint), smoothing effects inherent to the instruments, and the data processing methods, analysis of smaller geologic features can be statistically problematic. However, mean elemental abundances can be determined for larger geologic provinces and specifically defined regions with enough areal extent to produce sufficiently robust statistics. Here we compare GRS-derived element abundances to other Martian global datasets in order to evaluate statistically and geologically meaningful differences. Although outlier regions exist, GRS data reveal a Martian surface more chemically homogeneous than the surfaces of the Earth or moon. Chemical variations are often subtle and difficult to discern. However, even with muted variation and large uncertainties, comparing GRS elemental means and other datasets still reveal statistically robust differences using standard z-statistic tests at high confidence intervals. Note that "statistically significant" differences may not be geologically significant. This method has been employed to determine subtle but statistically significant variations in several element abundances with apparent surface age (e.g., Fe and Cl abundances increase with younger ages; K and Th decrease with younger ages) revealing possible constraints on crustal evolution and surficial processes. We also compared the variations in elemental abundances to variations in specific mineralogies and dust abundance as determined by the Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) instrument. This allows an important link between chemistry and mineralogy and further helps constrain the effects of surface dust on remote sensing data.

  10. Mathematical modeling of isotope labeling experiments for metabolic flux analysis.

    PubMed

    Nargund, Shilpa; Sriram, Ganesh

    2014-01-01

    Isotope labeling experiments (ILEs) offer a powerful methodology to perform metabolic flux analysis. However, the task of interpreting data from these experiments to evaluate flux values requires significant mathematical modeling skills. Toward this, this chapter provides background information and examples to enable the reader to (1) model metabolic networks, (2) simulate ILEs, and (3) understand the optimization and statistical methods commonly used for flux evaluation. A compartmentalized model of plant glycolysis and pentose phosphate pathway illustrates the reconstruction of a typical metabolic network, whereas a simpler example network illustrates the underlying metabolite and isotopomer balancing techniques. We also discuss the salient features of commonly used flux estimation software 13CFLUX2, Metran, NMR2Flux+, FiatFlux, and OpenFLUX. Furthermore, we briefly discuss methods to improve flux estimates. A graphical checklist at the end of the chapter provides a reader a quick reference to the mathematical modeling concepts and resources.

  11. NEON AND CNO ABUNDANCES FOR EXTREME HELIUM STARS-A NON-LTE ANALYSIS

    SciTech Connect

    Pandey, Gajendra; Lambert, David L. E-mail: dll@astro.as.utexas.edu

    2011-02-01

    A non-LTE (NLTE) abundance analysis was carried out for three extreme helium stars (EHes): BD+10{sup 0} 2179, BD-9{sup 0} 4395, and LS IV+6{sup 0} 002, from their optical spectra with NLTE model atmospheres. NLTE TLUSTY model atmospheres were computed with H, He, C, N, O, and Ne treated in NLTE. Model atmosphere parameters were chosen from consideration of fits to observed He I line profiles and ionization equilibria of C and N ions. The program SYNSPEC was then used to determine the NLTE abundances for Ne as well as H, He, C, N, and O. LTE neon abundances from Ne I lines in the EHes: LSE 78, V1920 Cyg, HD 124448, and PV Tel, are derived from published models and an estimate of the NLTE correction applied to obtain the NLTE Ne abundance. We show that the derived abundances of these key elements, including Ne, are well matched with semi-quantitative predictions for the EHe resulting from a cold merger (i.e., no nucleosynthesis during the merger) of an He white dwarf with a C-O white dwarf.

  12. Isotopic analysis of eggs: evaluating sample collection and preparation.

    PubMed

    Rock, Luc; Rowe, Sylwia; Czerwiec, Agnieszka; Richmond, Harold

    2013-02-15

    Egg traceability/authenticity is a worldwide concern. Stable isotope techniques have been suggested as a tool to address this issue. To further validate the use of these techniques, a research project was undertaken to evaluate what effect sample collection and preparation have on the measured isotopic composition of egg components. The timing of egg collection, the timing of egg preparation after collection, and the use of pasteurisation were investigated. The C, N, O, and S isotopic compositions of egg components from 7 different production systems were measured. Two sets of eggs were collected (4 months apart). It was found that the 'isotopic fingerprint' of a particular production system was maintained over time, and that it may be possible to trace liquid egg products based on isotopic data from fresh eggs. The findings from this study support the integration of stable isotope techniques in egg traceability/authenticity systems.

  13. Source apportionment of atmospheric PAHs in the western Balkans by natural abundance radiocarbon analysis.

    PubMed

    Zencak, Zdenek; Klanova, Jana; Holoubek, Ivan; Gustafsson, Orjan

    2007-06-01

    Progress in source apportionment of priority combustion-derived atmospheric pollutants can be made by an inverse approach to inventory emissions, namely, receptor-based compound class-specific radiocarbon analysis (CCSRA) of target pollutants. In the present study, CCSRA of the combustion-derived polycyclic aromatic hydrocarbons (PAHs) present in the atmosphere of the countries of the former republic of Yugoslavia was performed. The carbon stable isotope composition (delta13C) of PAHs varied between -27.68 and -27.19 per thousand, whereas delta14C values ranged from -568 per thousand for PAHs sampled in Kosovo to -288 per thousand for PAHs sampled in the Sarajevo area. The application of an isotopic mass balance model to these delta14C data revealed a significant contribution (35-65%) from the combustion of non-fossil material to the atmospheric PAH pollution, even in urban and industrialized areas. Furthermore, consistency was observed between the isotopic composition of PAHs obtained by high-volume sampling and those collected by passive sampling. This encourages the use of passive samplers for CCSRA applications. This marks the first time that a CCSRA investigation could be executed on a geographically wide scale, providing a quantitative field-based source apportionment, which points out that also non-fossil combustion processes should be targeted for remedial action.

  14. Source apportionment of atmospheric PAHs in the Western Balkans by natural abundance radiocarbon analysis

    SciTech Connect

    Zdenek Zencak; Jana Klanova; Ivan Holoubek; Oerjan Gustafsson

    2007-06-01

    Progress in source apportionment of priority combustion-derived atmospheric pollutants can be made by an inverse approach to inventory emissions, namely, receptor-based compound class-specific radiocarbon analysis (CCSRA) of target pollutants. In the present study, CCSRA of the combustion-derived polycyclic aromatic hydrocarbons (PAHs) present in the atmosphere of the countries of the former republic of Yugoslavia was performed. The carbon stable isotope composition ({delta}{sup 13}C) of PAHs varied between -27.68 and -27.19{per_thousand}, whereas {Delta}{sup 14}C values ranged from -568{per_thousand} for PAHs sampled in Kosovo to -288{per_thousand} for PAHs sampled in the Sarajevo area. The application of an isotopic mass balance model to these {Delta}{sup 14}C data revealed a significant contribution (35-65%) from the combustion of non-fossil material to the atmospheric PAH pollution, even in urban and industrialized areas. Furthermore, consistency was observed between the isotopic composition of PAHs obtained by high-volume sampling and those collected by passive sampling. This encourages the use of passive samplers for CCSRA applications. This marks the first time that a CCSRA investigation could be executed on a geographically wide scale, providing a quantitative field-based source apportionment, which points out that also non-fossil combustion processes should be targeted for remedial action. 36 refs., 1 fig., 3 tabs.

  15. Stable isotope analysis of precipitation samples obtained via crowdsourcing reveals the spatiotemporal evolution of Superstorm Sandy.

    PubMed

    Good, Stephen P; Mallia, Derek V; Lin, John C; Bowen, Gabriel J

    2014-01-01

    Extra-tropical cyclones, such as 2012 Superstorm Sandy, pose a significant climatic threat to the northeastern United Sates, yet prediction of hydrologic and thermodynamic processes within such systems is complicated by their interaction with mid-latitude water patterns as they move poleward. Fortunately, the evolution of these systems is also recorded in the stable isotope ratios of storm-associated precipitation and water vapor, and isotopic analysis provides constraints on difficult-to-observe cyclone dynamics. During Superstorm Sandy, a unique crowdsourced approach enabled 685 precipitation samples to be obtained for oxygen and hydrogen isotopic analysis, constituting the largest isotopic sampling of a synoptic-scale system to date. Isotopically, these waters span an enormous range of values (> 21‰ for δ(18)O, > 160‰ for δ(2)H) and exhibit strong spatiotemporal structure. Low isotope ratios occurred predominantly in the west and south quadrants of the storm, indicating robust isotopic distillation that tracked the intensity of the storm's warm core. Elevated values of deuterium-excess (> 25‰) were found primarily in the New England region after Sandy made landfall. Isotope mass balance calculations and Lagrangian back-trajectory analysis suggest that these samples reflect the moistening of dry continental air entrained from a mid-latitude trough. These results demonstrate the power of rapid-response isotope monitoring to elucidate the structure and dynamics of water cycling within synoptic-scale systems and improve our understanding of storm evolution, hydroclimatological impacts, and paleo-storm proxies.

  16. The relative abundances of resolved l2CH2D2 and 13CH3D and mechanisms controlling isotopic bond ordering in abiotic and biotic methane gases

    NASA Astrophysics Data System (ADS)

    Young, E. D.; Kohl, I. E.; Lollar, B. Sherwood; Etiope, G.; Rumble, D.; Li (李姝宁), S.; Haghnegahdar, M. A.; Schauble, E. A.; McCain, K. A.; Foustoukos, D. I.; Sutclife, C.; Warr, O.; Ballentine, C. J.; Onstott, T. C.; Hosgormez, H.; Neubeck, A.; Marques, J. M.; Pérez-Rodríguez, I.; Rowe, A. R.; LaRowe, D. E.; Magnabosco, C.; Yeung, L. Y.; Ash, J. L.; Bryndzia, L. T.

    2017-04-01

    We report measurements of resolved 12CH2D2 and 13CH3D at natural abundances in a variety of methane gases produced naturally and in the laboratory. The ability to resolve 12CH2D2 from 13CH3D provides unprecedented insights into the origin and evolution of CH4. The results identify conditions under which either isotopic bond order disequilibrium or equilibrium are expected. Where equilibrium obtains, concordant Δ12CH2D2 and Δ13CH3D temperatures can be used reliably for thermometry. We find that concordant temperatures do not always match previous hypotheses based on indirect estimates of temperature of formation nor temperatures derived from CH4/H2 D/H exchange, underscoring the importance of reliable thermometry based on the CH4 molecules themselves. Where Δ12CH2D2 and Δ13CH3D values are inconsistent with thermodynamic equilibrium, temperatures of formation derived from these species are spurious. In such situations, while formation temperatures are unavailable, disequilibrium isotopologue ratios nonetheless provide novel information about the formation mechanism of the gas and the presence or absence of multiple sources or sinks. In particular, disequilibrium isotopologue ratios may provide the means for differentiating between methane produced by abiotic synthesis vs. biological processes. Deficits in 12CH2D2 compared with equilibrium values in CH4 gas made by surface-catalyzed abiotic reactions are so large as to point towards a quantum tunneling origin. Tunneling also accounts for the more moderate depletions in 13CH3D that accompany the low 12CH2D2 abundances produced by abiotic reactions. The tunneling signature may prove to be an important tracer of abiotic methane formation, especially where it is preserved by dissolution of gas in cool hydrothermal systems (e.g., Mars). Isotopologue signatures of abiotic methane production can be erased by infiltration of microbial communities, and Δ12CH2D2 values are a key tracer of microbial recycling.

  17. Identification of Biodegradation Pathways in a Multi-Process Phytoremediation System (MPPS) Using Natural Abundance 14C Analysis of PLFA

    NASA Astrophysics Data System (ADS)

    Cowie, B. R.; Greenberg, B. M.; Slater, G. F.

    2008-12-01

    Optimizing remediation of petroleum-contaminated soils requires thorough understanding of the mechanisms and pathways involved in a proposed remediation system. In many engineered and natural attenuation systems, multiple degradation pathways may contribute to observed contaminant mass losses. In this study, biodegradation in the soil microbial community was identified as a major pathway for petroleum hydrocarbon removal in a Multi-Process Phytoremediation System (MPPS) using natural abundance 14C analysis of Phospholipid Fatty Acids (PLFA). In contaminated soils, PLFA were depleted in Δ14C to less than -800‰, directly demonstrating microbial uptake and utilization of petroleum derived carbon (Δ14C = -992‰) during bioremediation. Mass balance indicated that more than 80% of microbial carbon was derived from petroleum hydrocarbons and a maximum of 20% was produced from metabolism of modern carbon sources. In contrast, in a nearby uncontaminated control soil, the microbial community maintained a nearly modern 14C signature, suggesting preferential degradation of more labile, recent carbon. Mass balance using δ13C and Δ14C of soil CO2 demonstrated that mineralization of petroleum carbon contributed 60-65% of soil CO2 at the contaminated site. The remainder was derived from atmospheric (27-30%) and decomposition of non- petroleum natural organic carbon (5-10%). The clean control exhibited substantially lower CO2 concentrations that were derived from atmospheric (55%) and natural organic carbon (45%) sources. This study highlights the value of using multiple carbon isotopes to identify degradation pathways in petroleum- contaminated soils undergoing phytoremediation and the power of natural abundance 14C to detect petroleum metabolism in natural microbial communities.

  18. Quantitative Analysis by Isotopic Dilution Using Mass Spectroscopy: The Determination of Caffeine by GC-MS.

    ERIC Educational Resources Information Center

    Hill, Devon W.; And Others

    1988-01-01

    Describes a laboratory technique for quantitative analysis of caffeine by an isotopic dilution method for coupled gas chromatography-mass spectroscopy. Discusses caffeine analysis and experimental methodology. Lists sample caffeine concentrations found in common products. (MVL)

  19. CD −24°17504 REVISITED: A NEW COMPREHENSIVE ELEMENT ABUNDANCE ANALYSIS

    SciTech Connect

    Jacobson, Heather R.; Frebel, Anna

    2015-07-20

    With [Fe/H] ∼ −3.3, CD −24°17504 is a canonical metal-poor main-sequence turn-off star. Though it has appeared in numerous literature studies, the most comprehensive abundance analysis for the star based on high-resolution, high signal-to-noise ratio (S/N) spectra is nearly 15 years old. We present a new detailed abundance analysis for 21 elements based on combined archival Keck-HIRES and Very Large Telescope-UVES spectra of the star that is higher in both spectral resolution and S/N than previous data. Our results are very similar to those of an earlier comprehensive study of the star, but we present for the first time a carbon abundance from the CH G-band feature as well as improved upper limits for neutron-capture species such as Y, Ba, and Eu. In particular, we find that CD −24°17504 has [Fe/H] = −3.41, [C/Fe] = +1.10, [Sr/H] = −4.68, and [Ba/H] ≤ −4.46, making it a carbon-enhanced metal-poor star with neutron-capture element abundances among the lowest measured in Milky Way halo stars.

  20. Hanford isotope project strategic business analysis yttrium-90 (Y-90)

    SciTech Connect

    1995-10-01

    The purpose of this analysis is to address the short-term direction for the Hanford yttrium-90 (Y-90) project. Hanford is the sole DOE producer of Y-90, and is the largest repository for its source in this country. The production of Y-90 is part of the DOE Isotope Production and Distribution (IP and D) mission. The Y-90 is ``milked`` from strontium-90 (Sr-90), a byproduct of the previous Hanford missions. The use of Sr-90 to produce Y-90 could help reduce the amount of waste material processed and the related costs incurred by the clean-up mission, while providing medical and economic benefits. The cost of producing Y-90 is being subsidized by DOE-IP and D due to its use for research, and resultant low production level. It is possible that the sales of Y-90 could produce full cost recovery within two to three years, at two curies per week. Preliminary projections place the demand at between 20,000 and 50,000 curies per year within the next ten years, assuming FDA approval of one or more of the current therapies now in clinical trials. This level of production would incentivize private firms to commercialize the operation, and allow the government to recover some of its sunk costs. There are a number of potential barriers to the success of the Y-90 project, outside the control of the Hanford Site. The key issues include: efficacy, Food and Drug Administration (FDA) approval and medical community acceptance. There are at least three other sources for Y-90 available to the US users, but they appear to have limited resources to produce the isotope. Several companies have communicated interest in entering into agreements with Hanford for the processing and distribution of Y-90, including some of the major pharmaceutical firms in this country.

  1. Biometrics from the carbon isotope ratio analysis of amino acids in human hair.

    PubMed

    Jackson, Glen P; An, Yan; Konstantynova, Kateryna I; Rashaid, Ayat H B

    2015-01-01

    This study compares and contrasts the ability to classify individuals into different grouping factors through either bulk isotope ratio analysis or amino-acid-specific isotope ratio analysis of human hair. Using LC-IRMS, we measured the isotope ratios of 14 amino acids in hair proteins independently, and leucine/isoleucine as a co-eluting pair, to provide 15 variables for classification. Multivariate analysis confirmed that the essential amino acids and non-essential amino acids were mostly independent variables in the classification rules, thereby enabling the separation of dietary factors of isotope intake from intrinsic or phenotypic factors of isotope fractionation. Multivariate analysis revealed at least two potential sources of non-dietary factors influencing the carbon isotope ratio values of the amino acids in human hair: body mass index (BMI) and age. These results provide evidence that compound-specific isotope ratio analysis has the potential to go beyond region-of-origin or geospatial movements of individuals-obtainable through bulk isotope measurements-to the provision of physical and characteristic traits about the individuals, such as age and BMI. Further development and refinement, for example to genetic, metabolic, disease and hormonal factors could ultimately be of great assistance in forensic and clinical casework.

  2. Long-term Records of Pacific Salmon Abundance From Sediment Core Analysis: Relationships to Past Climatic Change, and Implications for the Future

    NASA Astrophysics Data System (ADS)

    Finney, B.

    2002-12-01

    The response of Pacific salmon to future climatic change is uncertain, but will have large impacts on the economy, culture and ecology of the North Pacific Rim. Relationships between sockeye salmon populations and climatic change can be determined by analyzing sediment cores from lakes where sockeye return to spawn. Sockeye salmon return to their natal lake system to spawn and subsequently die following 2 - 3 years of feeding in the North Pacific Ocean. Sockeye salmon abundance can be reconstructed from stable nitrogen isotope analysis of lake sediment cores as returning sockeye transport significant quantities of N, relatively enriched in N-15, from the ocean to freshwater systems. Temporal changes in the input of salmon-derived N, and hence salmon abundance, can be quantified through downcore analysis of N isotopes. Reconstructions of sockeye salmon abundance from lakes in several regions of Alaska show similar temporal patterns, with variability occurring on decadal to millennial timescales. Over the past 2000 years, shifts in sockeye salmon abundance far exceed the historical decadal-scale variability. A decline occurred from about 100 BC - 800 AD, but salmon were consistently more abundant 1200 - 1900 AD. Declines since 1900 AD coincide with the period of extensive commercial fishing. Correspondence between these records and paleoclimatic data suggest that changes in salmon abundance are related to large scale climatic changes over the North Pacific. For example, the increase in salmon abundance c.a. 1200 AD corresponds to a period of glacial advance in southern Alaska, and a shift to drier conditions in western North America. Although the regionally coherent patterns in reconstructed salmon abundance are consistent with the hypothesis that climate is an important driver, the relationships do not always follow patterns observed in the 20th century. A main feature of recorded climate variability in this region is the alternation between multi-decade periods of

  3. Stable Isotope Labeling for Improved Comparative Analysis of RNA Digests by Mass Spectrometry.

    PubMed

    Paulines, Mellie June; Limbach, Patrick A

    2017-03-01

    Even with the advent of high throughput methods to detect modified ribonucleic acids (RNAs), mass spectrometry remains a reliable method to detect, characterize, and place post-transcriptional modifications within an RNA sequence. Here we have developed a stable isotope labeling comparative analysis of RNA digests (SIL-CARD) approach, which improves upon the original (18)O/(16)O labeling CARD method. Like the original, SIL-CARD allows sequence or modification information from a previously uncharacterized in vivo RNA sample to be obtained by direct comparison with a reference RNA, the sequence of which is known. This reference is in vitro transcribed using a (13)C/(15)N isotopically enriched nucleoside triphosphate (NTP). The two RNAs are digested with an endonuclease, the specificity of which matches the labeled NTP used for transcription. As proof of concept, several transfer RNAs (tRNAs) were characterized by SIL-CARD, where labeled guanosine triphosphate was used for the reference in vitro transcription. RNase T1 digestion products from the in vitro transcript will be 15 Da higher in mass than the same digestion products from the in vivo tRNA that are unmodified, leading to a doublet in the mass spectrum. Singlets, rather than doublets, arise if a sequence variation or a post-transcriptional modification is present that results in a relative mass shift different from 15 Da. Moreover, the use of the in vitro synthesized tRNA transcript allows for quantitative measurement of RNA abundance. Overall, SIL-CARD simplifies data analysis and enhances quantitative RNA modification mapping by mass spectrometry. Graphical Abstract ᅟ.

  4. Stable Isotope Labeling for Improved Comparative Analysis of RNA Digests by Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Paulines, Mellie June; Limbach, Patrick A.

    2017-03-01

    Even with the advent of high throughput methods to detect modified ribonucleic acids (RNAs), mass spectrometry remains a reliable method to detect, characterize, and place post-transcriptional modifications within an RNA sequence. Here we have developed a stable isotope labeling comparative analysis of RNA digests (SIL-CARD) approach, which improves upon the original 18O/16O labeling CARD method. Like the original, SIL-CARD allows sequence or modification information from a previously uncharacterized in vivo RNA sample to be obtained by direct comparison with a reference RNA, the sequence of which is known. This reference is in vitro transcribed using a 13C/15N isotopically enriched nucleoside triphosphate (NTP). The two RNAs are digested with an endonuclease, the specificity of which matches the labeled NTP used for transcription. As proof of concept, several transfer RNAs (tRNAs) were characterized by SIL-CARD, where labeled guanosine triphosphate was used for the reference in vitro transcription. RNase T1 digestion products from the in vitro transcript will be 15 Da higher in mass than the same digestion products from the in vivo tRNA that are unmodified, leading to a doublet in the mass spectrum. Singlets, rather than doublets, arise if a sequence variation or a post-transcriptional modification is present that results in a relative mass shift different from 15 Da. Moreover, the use of the in vitro synthesized tRNA transcript allows for quantitative measurement of RNA abundance. Overall, SIL-CARD simplifies data analysis and enhances quantitative RNA modification mapping by mass spectrometry.

  5. Stable Isotope Labeling for Improved Comparative Analysis of RNA Digests by Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Paulines, Mellie June; Limbach, Patrick A.

    2017-01-01

    Even with the advent of high throughput methods to detect modified ribonucleic acids (RNAs), mass spectrometry remains a reliable method to detect, characterize, and place post-transcriptional modifications within an RNA sequence. Here we have developed a stable isotope labeling comparative analysis of RNA digests (SIL-CARD) approach, which improves upon the original 18O/16O labeling CARD method. Like the original, SIL-CARD allows sequence or modification information from a previously uncharacterized in vivo RNA sample to be obtained by direct comparison with a reference RNA, the sequence of which is known. This reference is in vitro transcribed using a 13C/15N isotopically enriched nucleoside triphosphate (NTP). The two RNAs are digested with an endonuclease, the specificity of which matches the labeled NTP used for transcription. As proof of concept, several transfer RNAs (tRNAs) were characterized by SIL-CARD, where labeled guanosine triphosphate was used for the reference in vitro transcription. RNase T1 digestion products from the in vitro transcript will be 15 Da higher in mass than the same digestion products from the in vivo tRNA that are unmodified, leading to a doublet in the mass spectrum. Singlets, rather than doublets, arise if a sequence variation or a post-transcriptional modification is present that results in a relative mass shift different from 15 Da. Moreover, the use of the in vitro synthesized tRNA transcript allows for quantitative measurement of RNA abundance. Overall, SIL-CARD simplifies data analysis and enhances quantitative RNA modification mapping by mass spectrometry.

  6. Reducing the matrix effects in chemical analysis: fusion of isotope dilution and standard addition methods

    NASA Astrophysics Data System (ADS)

    Pagliano, Enea; Meija, Juris

    2016-04-01

    The combination of isotope dilution and mass spectrometry has become an ubiquitous tool of chemical analysis. Often perceived as one of the most accurate methods of chemical analysis, it is not without shortcomings. Current isotope dilution equations are not capable of fully addressing one of the key problems encountered in chemical analysis: the possible effect of sample matrix on measured isotope ratios. The method of standard addition does compensate for the effect of sample matrix by making sure that all measured solutions have identical composition. While it is impossible to attain such condition in traditional isotope dilution, we present equations which allow for matrix-matching between all measured solutions by fusion of isotope dilution and standard addition methods.

  7. Isotope coded protein labeling coupled immunoprecipitation (ICPL-IP): a novel approach for quantitative protein complex analysis from native tissue.

    PubMed

    Vogt, Andreas; Fuerholzner, Bettina; Kinkl, Norbert; Boldt, Karsten; Ueffing, Marius

    2013-05-01

    High confidence definition of protein interactions is an important objective toward the understanding of biological systems. Isotope labeling in combination with affinity-based isolation of protein complexes has increased in accuracy and reproducibility, yet, larger organisms--including humans--are hardly accessible to metabolic labeling and thus, a major limitation has been its restriction to small animals, cell lines, and yeast. As composition as well as the stoichiometry of protein complexes can significantly differ in primary tissues, there is a great demand for methods capable to combine the selectivity of affinity-based isolation as well as the accuracy and reproducibility of isotope-based labeling with its application toward analysis of protein interactions from intact tissue. Toward this goal, we combined isotope coded protein labeling (ICPL)(1) with immunoprecipitation (IP) and quantitative mass spectrometry (MS). ICPL-IP allows sensitive and accurate analysis of protein interactions from primary tissue. We applied ICPL-IP to immuno-isolate protein complexes from bovine retinal tissue. Protein complexes of immunoprecipitated β-tubulin, a highly abundant protein with known interactors as well as the lowly expressed small GTPase RhoA were analyzed. The results of both analyses demonstrate sensitive and selective identification of known as well as new protein interactions by our method.

  8. Lipid Correction for Carbon Stable Isotope Analysis of Deep-sea Fishes

    EPA Science Inventory

    Lipid extraction is used prior to stable isotope analysis of fish tissues to remove variability in the carbon stable isotope ratio (d13C) caused by varying lipid content among samples. Our objective was to evaluate an application of a mass balance correction for the effect of lip...

  9. Distinctive serum protein profiles involving abundant proteins in lung cancer patients based upon antibody microarray analysis

    PubMed Central

    Gao, Wei-Min; Kuick, Rork; Orchekowski, Randal P; Misek, David E; Qiu, Ji; Greenberg, Alissa K; Rom, William N; Brenner, Dean E; Omenn, Gilbert S; Haab, Brian B; Hanash, Samir M

    2005-01-01

    Background Cancer serum protein profiling by mass spectrometry has uncovered mass profiles that are potentially diagnostic for several common types of cancer. However, direct mass spectrometric profiling has a limited dynamic range and difficulties in providing the identification of the distinctive proteins. We hypothesized that distinctive profiles may result from the differential expression of relatively abundant serum proteins associated with the host response. Methods Eighty-four antibodies, targeting a wide range of serum proteins, were spotted onto nitrocellulose-coated microscope slides. The abundances of the corresponding proteins were measured in 80 serum samples, from 24 newly diagnosed subjects with lung cancer, 24 healthy controls, and 32 subjects with chronic obstructive pulmonary disease (COPD). Two-color rolling-circle amplification was used to measure protein abundance. Results Seven of the 84 antibodies gave a significant difference (p < 0.01) for the lung cancer patients as compared to healthy controls, as well as compared to COPD patients. Proteins that exhibited higher abundances in the lung cancer samples relative to the control samples included C-reactive protein (CRP; a 13.3 fold increase), serum amyloid A (SAA; a 2.0 fold increase), mucin 1 and α-1-antitrypsin (1.4 fold increases). The increased expression levels of CRP and SAA were validated by Western blot analysis. Leave-one-out cross-validation was used to construct Diagonal Linear Discriminant Analysis (DLDA) classifiers. At a cutoff where all 56 of the non-tumor samples were correctly classified, 15/24 lung tumor patient sera were correctly classified. Conclusion Our results suggest that a distinctive serum protein profile involving abundant proteins may be observed in lung cancer patients relative to healthy subjects or patients with chronic disease and may have utility as part of strategies for detecting lung cancer. PMID:16117833

  10. Dynamic nuclear polarization NMR enables the analysis of Sn-Beta zeolite prepared with natural abundance ¹¹⁹Sn precursors.

    PubMed

    Gunther, William R; Michaelis, Vladimir K; Caporini, Marc A; Griffin, Robert G; Román-Leshkov, Yuriy

    2014-04-30

    The catalytic activity of tin-containing zeolites, such as Sn-Beta, is critically dependent on the successful incorporation of the tin metal center into the zeolite framework. However, synchrotron-based techniques or solid-state nuclear magnetic resonance (ssNMR) of samples enriched with (119)Sn isotopes are the only reliable methods to verify framework incorporation. This work demonstrates, for the first time, the use of dynamic nuclear polarization (DNP) NMR for characterizing zeolites containing ~2 wt % of natural abundance Sn without the need for (119)Sn isotopic enrichment. The biradicals TOTAPOL, bTbK, bCTbK, and SPIROPOL functioned effectively as polarizing sources, and the solvent enabled proper transfer of spin polarization from the radical's unpaired electrons to the target nuclei. Using bCTbK led to an enhancement (ε) of 75, allowing the characterization of natural-abundance (119)Sn-Beta with excellent signal-to-noise ratios in <24 h. Without DNP, no (119)Sn resonances were detected after 10 days of continuous analysis.

  11. Zeptosens' protein microarrays: a novel high performance microarray platform for low abundance protein analysis.

    PubMed

    Pawlak, Michael; Schick, Eginhard; Bopp, Martin A; Schneider, Michael J; Oroszlan, Peter; Ehrat, Markus

    2002-04-01

    Protein microarrays are considered an enabling technology, which will significantly expand the scope of current protein expression and protein interaction analysis. Current technologies, such as two-dimensional gel electrophoresis (2-DE) in combination with mass spectrometry, allowing the identification of biologically relevant proteins, have a high resolving power, but also considerable limitations. As was demonstrated by Gygi et al. (Proc. Nat. Acad. Sci. USA 2000,97, 9390-9395), most spots in 2-DE, observed from whole cell extracts, are from high abundance proteins, whereas low abundance proteins, such as signaling molecules or kinases, are only poorly represented. Protein microarrays are expected to significantly expedite the discovery of new markers and targets of pharmaceutical interest, and to have the potential for high-throughput applications. Key factors to reach this goal are: high read-out sensitivity for quantification also of low abundance proteins, functional analysis of proteins, short assay analysis times, ease of handling and the ability to integrate a variety of different targets and new assays. Zeptosens has developed a revolutionary new bioanalytical system based on the proprietary planar waveguide technology which allows us to perform multiplexed, quantitative biomolecular interaction analysis with highest sensitivity in a microarray format upon utilizing the specific advantages of the evanescent field fluorescence detection. The analytical system, comprising an ultrasensitive fluorescence reader and microarray chips with integrated microfluidics, enables the user to generate a multitude of high fidelity data in applications such as protein expression profiling or investigating protein-protein interactions. In this paper, the important factors for developing high performance protein microarray systems, especially for targeting low abundant messengers of relevant biological information, will be discussed and the performance of the system will

  12. Nitrogen isotopes in the recent solar wind from the analysis of genesis targets: evidence for large scale isotope heterogeneity in the nascent solar system

    SciTech Connect

    Wiens, Roger C; Marty, Bernard; Zimmermann, Laurent; Burnard, Peter G; Burnett, Donald L; Heber, Veronika S; Wieler, Rainer; Bochsler, Peter

    2009-01-01

    Nitrogen, the fifth most abundant element in the universe, displays the largest stable isotope variations in the solar system reservoirs after hydrogen. Yet the value of isotopic composition of solar nitrogen, presumably the best proxy of the protosolar nebula composition, is not known. Nitrogen isotopes trapped in Genesis spacecraft target material indicate a 40 % depletion of {sup 15}N in solar wind N relative to inner planets and meteorites, and define a composition for the present-day Sun undistinguishable from that of Jupiter's atmosphere. These results indicate that the isotopic composition of of nitrogen in the outer convective zone of the Sun (OCZ) has not changed through time, and is representative of the protosolar nebula. Large {sup 15}N enrichments during e.g., irradiation, or contributions from {sup 15}N-rich presolar components, are required to account for planetary values.

  13. Laboratory and field methods for stable isotope analysis in human biology.

    PubMed

    Reitsema, Laurie J

    2015-01-01

    Stable isotope analysis (SIA; carbon, hydrogen, nitrogen, sulfur, and oxygen) of human tissues offers a means for assessing diet among living humans. Stable isotope ratios of broad categories of food and drink food vary systematically, and stable isotope ratios in consumer tissues represent a composite of the isotopic ratios of food and drink consumed during an individual's life. Isotopic evidence for diet is independent of errors in informant recall, and accrues during time periods when researchers are absent. Beyond diet reconstruction, tissue stable isotope ratios are sensitive to excursions from homeostasis, such as starvation and rapid growth. Because of their relationship to diet, geographic location, hydration, and nutritional status, stable isotope signatures in human tissues offer a window into human biocultural adaptations, past and present. This article describes methods for SIA that may be usefully applied in studies of living humans, with emphasis placed on carbon and nitrogen. Some of the ecological, physiological, and evolutionary applications of stable isotope data among living humans are discussed. By incorporating SIA in research, human biologists facilitate a productive dialog with bioarchaeologists, who routinely use stable isotope evidence, mingling different perspectives on human biology and behavior.

  14. Non-lethal sampling of walleye for stable isotope analysis: a comparison of three tissues

    USGS Publications Warehouse

    Chipps, Steven R.; VanDeHey, J.A.; Fincel, M.J.

    2012-01-01

    Stable isotope analysis of fishes is often performed using muscle or organ tissues that require sacrificing animals. Non-lethal sampling provides an alternative for evaluating isotopic composition for species of concern or individuals of exceptional value. Stable isotope values of white muscle (lethal) were compared with those from fins and scales (non-lethal) in walleye, Sander vitreus (Mitchill), from multiple systems, size classes and across a range of isotopic values. Isotopic variability was also compared among populations to determine the potential of non-lethal tissues for diet-variability analyses. Muscle-derived isotope values were enriched compared with fins and depleted relative to scales. A split-sample validation technique and linear regression found that isotopic composition of walleye fins and scales was significantly related to that in muscle tissue for both δ13C and δ15N (r2 = 0.79–0.93). However, isotopic variability was significantly different between tissue types in two of six populations for δ15N and three of six populations for δ13C. Although species and population specific, these findings indicate that isotopic measures obtained from non-lethal tissues are indicative of those obtained from muscle.

  15. Quantitative Analysis of the Spectrum of the B3 Abundance Standard iota Herculis

    NASA Astrophysics Data System (ADS)

    Peters, Geraldine J.; Adelman, S. J.; Gulliver, A.

    2010-01-01

    Iota Herculis is an ultrasharp-lined B3IV star that historically has been considered as an abundance standard for the early B stars. New abundances of the lighter and Fe group elements have been determined with the aid of high resolution spectral data from HST/STIS and the Dominion Astrophysical Observatory. The HST spectra were obtained with the STIS E140M and E230M gratings and cover the region 1160-2350 A with a 2-pixel spectral resolution that varies from 0.03-0.08 A. The DAO spectral atlas covers 3820-5350 A in the second order with a 2-pixel resolution 0.072 A. We compare theoretical spectra computed from the NLTE code TLUSTY/SYNSPEC (I. Hubeny & T. Lanz, ApJ, 439,875,1995) and the LTE code ATLAS9/SYNTHE (R. Kurucz, 1993, CD-ROMs 13 & 18) with the observations. The model parameters adopted for the star are Teff = 17,500 K, log g = 3.75, Vturb = 0 km/s, and vsin i = 5 km/s. Solar abundances appear to prevail for the lighter elements but the abundances of Fe group elements are 0.1-0.3 dex below the solar values given by Asplund, Grevesse, & Sauval (2005). In general the NLTE calculations fit the observations better, especially for lines formed high in the atmosphere such as the C I lines near 1260 A. The detailed analysis of the spectrum of this standard star not only allows one to determine the abundances in the atmosphere of a typical field B star but also presents the opportunity to assess the accuracy of atomic parameters for UV lines and find astrophysical f-values. The authors appreciate support from NASA and STScI grants NAG5-11802 and GO-09848. SJA was a guest observer at DAO.

  16. 13C/12C isotope ratio MS analysis of testosterone, in chemicals and pharmaceutical preparations.

    PubMed

    de la Torre, X; González, J C; Pichini, S; Pascual, J A; Segura, J

    2001-02-01

    The 13C/12C ratio can be used to detect testosterone misuse in sport because (semi)-synthetic testosterone is supposed to have a 13C abundance different from that of endogenous natural human testosterone. In this study, gas chromatography/combustion isotope ratio mass spectrometry (GC/C/IRMS) analysis for the measurement of the delta 13C/1000 value of testosterone from esterified forms of 13 pharmaceutical preparations, six reagent grade chemicals and three bulk materials (raw materials used in pharmaceutical proarations) obtained world-wide was investigated after applying a strong acidic solvolytic procedure. Mean delta 13C/1000 values of non esterified (free) testosterone from chemicals and bulk materials of several testosterone esters were in the range: -25.91/-32.82/1000 while the value obtained for a (semi)-synthetic, reagent grade, free testosterone was -27.36/1000. The delta 13C/1000 results obtained for testosterone from the pharmaceuticals investigated containing testosterone esters were quite homogeneous (mean and S.D. of delta 13C/1000 values of free testosterone: 27.43 +/- 0.76/1000), being the range between -26.18 and -30.04/1000. Values described above were clearly different from those reported by several authors for endogenous natural human testosterone and its main metabolites excreted into the urine in non-consumers of testosterone (delta 13C/1000 range: from -21.3 to -24.4/1000), while they were similar to those of urinary testosterone and metabolites from individuals treated with testosterone esters and testosterone precursors. This finding justifies the fact that administration of these pharmaceutical formulations led to a statistical decrease of carbon isotope ratio of urinary testosterone and its main metabolites in treated subjects.

  17. Mammoth tooth enamel growth rates inferred from stable isotope analysis and histology

    NASA Astrophysics Data System (ADS)

    Metcalfe, Jessica Z.; Longstaffe, Fred J.

    2012-05-01

    Mammoth (Mammuthus sp.) teeth are relatively abundant in Quaternary deposits from Eurasia and North America, and their isotopic compositions can be used to reconstruct past seasonal patterns in precipitation, diet, and migration. Strategies for collecting and interpreting such data, however, are strongly dependent on growth rates, which can vary among species, individuals, and within teeth. In this study, we use histological and isotopic measurements to determine enamel growth rates for a Columbian mammoth (Mammuthus columbi) tooth in two directions. Using histology, the growth rate through the enamel thickness (ET; perpendicular to the height of the tooth) is estimated at 0.8 to 1.5 mm/yr. Isotopic sampling through the innermost 0.36 mm of the ET recovered less than half a period of variation (i.e., half an inferred year of growth), which is consistent with the histological estimate for ET growth rate. A combination of histological and isotopic measurements suggests that the enamel extension rate (growth in the height of the tooth) is 13-14 mm/yr. Knowledge of enamel growth rates should improve the design and interpretation of future isotopic studies of mammoth teeth. The combination of histological and isotopic measurements may also prove useful in determining growth rates for other extinct taxa.

  18. Cu isotope fractionation during bornite dissolution: An in situ X-ray diffraction analysis

    SciTech Connect

    Wall, Andrew J.; Mathur, Ryan; Post, Jeffrey E.; Heaney, Peter J.

    2012-10-24

    Low-temperature ore deposits exhibit a large variation in {delta}{sup 65}Cu ({approx}12{per_thousand}), and this range has been attributed, in part, to isotope fractionation during weathering reactions of primary minerals such as chalcocite and chalcopyrite. Here, we examine the fractionation of Cu isotopes during dissolution of another important Cu ore mineral, bornite, using a novel approach that combines time-resolved X-ray diffraction (XRD) and isotope analysis of reaction products. During the initial stages of bornite oxidative dissolution by ferric sulfate (< 5 mol% of total Cu leached), dissolved Cu was enriched in isotopically heavy Cu ({sup 65}Cu) relative to the solid, with an average apparent isotope fractionation ({Delta}{sub aq - min} = {delta}{sup 65}Cu{sub aq} - {delta}{sup 65}Cu{sub min}{sup 0}) of 2.20 {+-} 0.25{per_thousand}. When > 20 mol% Cu was leached from the solid, the difference between the Cu isotope composition of the aqueous and mineral phases approached zero, with {Delta}{sub aq - min}{sup 0} values ranging from - 0.21 {+-} 0.61{per_thousand} to 0.92 {+-} 0.25{per_thousand}. XRD analysis allowed us to correlate changes in the atomic structure of bornite with the apparent isotope fractionation as the dissolution reaction progressed. These data revealed that the greatest degree of apparent fractionation is accompanied by a steep contraction in the unit-cell volume, which we identified as a transition from stoichiometric to non-stoichiometric bornite. We propose that the initially high {Delta}{sub aq - min} values result from isotopically heavy Cu ({sup 65}Cu) concentrating within Cu{sup 2+} during dissolution. The decrease in the apparent isotope fractionation as the reaction progresses occurs from the distillation of isotopically heavy Cu ({sup 65}Cu) during dissolution or kinetic isotope effects associated with the depletion of Cu from the surfaces of bornite particles.

  19. Quantitative Analysis of Age Specific Variation in the Abundance of Human Female Parotid Salivary Proteins

    PubMed Central

    Ambatipudi, Kiran S.; Lu, Bingwen; Hagen, Fred K; Melvin, James E.; Yates, John R.

    2010-01-01

    Summary Human saliva is a protein-rich, easily accessible source of potential local and systemic biomarkers to monitor changes that occur under pathological conditions; however little is known about the changes in abundance associated with normal aging. In this study, we performed a comprehensive proteomic profiling of pooled saliva collected from the parotid glands of healthy female subjects, divided into two age groups 1 and 2 (20–30 and 55–65 years old, respectively). Hydrophobic charge interaction chromatography was used to separate high from low abundant proteins prior to characterization of the parotid saliva using multidimensional protein identification technology (MudPIT). Collectively, 532 proteins were identified in the two age groups. Of these proteins, 266 were identified exclusively in one age group, while 266 proteins were common to both groups. The majority of the proteins identified in the two age groups belonged to the defense and immune response category. Of note, several defense related proteins (e.g. lysozyme, lactoferrin and histatin-1) were significantly more abundant in group 2 as determined by G-test. Selected representative mass spectrometric findings were validated by western blot analysis. Our study reports the first quantitative analysis of differentially regulated proteins in ductal saliva collected from young and older female subjects. This study supports the use of high-throughput proteomics as a robust discovery tool. Such results provide a foundation for future studies to identify specific salivary proteins which may be linked to age-related diseases specific to women. PMID:19764810

  20. Analysis of Hydrogen Isotopic Exchange: Lava Creek Tuff Ash and Isotopically Labeled Water

    NASA Astrophysics Data System (ADS)

    Ross, A. M.; Seligman, A. N.; Bindeman, I. N.; Nolan, G. S.

    2015-12-01

    Nolan and Bindeman (2013) placed secondarily hydrated ash from the 7.7 ka eruption of Mt. Mazama (δD=-149‰, 2.3wt% H2Ot) in isotopically labeled water (+650 ‰ δD, +56 ‰ δ18O) and observed that the H2Ot and δ18O values remained constant, but the δD values of ash increased with the surrounding water at 20, 40 and 70 °C. We expand on this work by conducting a similar experiment with ash from the 640 ka Lava Creek Tuff (LCT, δD of -128 ‰; 2.1 wt.% H2Ot) eruption of Yellowstone to see if significantly older glass (with a hypothesized gel layer on the surface shielding the interior from alteration) produces the same results. We have experiments running at 70, 24, and 5 °C, and periodically remove ~1.5 mg of glass to measure the δD (‰) and H2Ot (wt.%) of water extracted from the glass on a TC/EA MAT 253 continuous flow system. After 600 hours, the δD of the samples left at 5 and 24 °C remains at -128 ‰, but increased 8‰ for the 70 °C run series. However, there is no measurable change in wt.% of H2Ot, indicating that hydrogen exchange is not dictated by the addition of water. We are measuring and will report further progress of isotope exchange. We also plan to analyze the water in the LCT glass for δ18O (‰) to see if, as is the case for the Mt. Mazama glass, the δ18O (‰) remains constant. We also analyzed Mt. Mazama glass from the Nolan and Bindeman (2013) experiments that have now been sitting in isotopically labeled water at room temperature for ~5 years. The water concentration is still unchanged (2.3 wt.% H2Ot), and the δD of the water in the glass is now -111 ‰, causing an increase of 38 ‰. Our preliminary results show that exchange of hydrogen isotopes of hydrated glass is not limited by the age of the glass, and that the testing of hydrogen isotopes of secondarily hydrated glass, regardless of age, may not be a reliable paleoclimate indicator.

  1. Experimental and theoretical oscillator strengths of Mg i for accurate abundance analysis

    NASA Astrophysics Data System (ADS)

    Pehlivan Rhodin, A.; Hartman, H.; Nilsson, H.; Jönsson, P.

    2017-02-01

    Context. With the aid of stellar abundance analysis, it is possible to study the galactic formation and evolution. Magnesium is an important element to trace the α-element evolution in our Galaxy. For chemical abundance analysis, such as magnesium abundance, accurate and complete atomic data are essential. Inaccurate atomic data lead to uncertain abundances and prevent discrimination between different evolution models. Aims: We study the spectrum of neutral magnesium from laboratory measurements and theoretical calculations. Our aim is to improve the oscillator strengths (f-values) of Mg i lines and to create a complete set of accurate atomic data, particularly for the near-IR region. Methods: We derived oscillator strengths by combining the experimental branching fractions with radiative lifetimes reported in the literature and computed in this work. A hollow cathode discharge lamp was used to produce free atoms in the plasma and a Fourier transform spectrometer recorded the intensity-calibrated high-resolution spectra. In addition, we performed theoretical calculations using the multiconfiguration Hartree-Fock program ATSP2K. Results: This project provides a set of experimental and theoretical oscillator strengths. We derived 34 experimental oscillator strengths. Except from the Mg i optical triplet lines (3p 3P°0,1,2-4s 3S1), these oscillator strengths are measured for the first time. The theoretical oscillator strengths are in very good agreement with the experimental data and complement the missing transitions of the experimental data up to n = 7 from even and odd parity terms. We present an evaluated set of oscillator strengths, gf, with uncertainties as small as 5%. The new values of the Mg i optical triplet line (3p 3P°0,1,2-4s 3S1) oscillator strength values are 0.08 dex larger than the previous measurements.

  2. Stable isotope analysis of Pacific salmon: insight into trophic status and oceanographic conditions over the last 30 years

    NASA Astrophysics Data System (ADS)

    Satterfield, Franklin R.; Finney, Bruce P.

    Food web interactions and the response of Pacific salmon to physical processes in the North Pacific Ocean over interannual and interdecadal timescales are explored using naturally occurring stable isotope ratios of carbon ( 13C/ 12C) and nitrogen ( 15N/ 14N). Stable isotope analyses of five species of sexually mature North Pacific salmon from Alaska ( Oncorhynchus spp.) cluster into three groups: chinook salmon ( O. tshawytscha) have the highest values, followed by coho ( O. kisutch), with chum ( O. keta), sockeye ( O. nerka), and pink ( O. gorbuscha) together having the lowest values. Although detailed isotopic data on salmon prey are lacking, there are limited data on relevant prey items from areas in which they are found in high abundance. These data suggest that the characteristics of the sockeye, pink and chum we have analyzed are compatible with their diets including open ocean squid and zooplankton, which are in general agreement with stomach content analyses. Isotope relationships between muscle and scale show consistent relationships for both δ13C ( R2=0.98) and δ 15N ( R2=0.90). Thus, scales, which have been routinely archived for many systems, can be used for retrospective analyses. Archived sockeye salmon scales spanning 1966-1999 from Red Lake, Kodiak Island, Alaska were analyzed for their stable isotope ratios of carbon and nitrogen. The δ15N record displays a decreasing trend of ~3‰ from 1969-1982 and an increasing trend of ~3‰ from 1982-1992, while the variations in δ13C are relatively minor. These trends may result from factors such as shifts in trophic level of feeding and/or feeding location, or may originate at the base of the food web via changes in processes such as nutrient cycling or primary productivity. Detailed studies on prey isotopic variability and its controls are needed to distinguish between these factors, and thus to improve the use of stable isotope analysis as a tool to learn more about present and past ecosystem change

  3. Stable carbon and oxygen isotopic analysis of atmospheric carbon monoxide using continuous-flow isotope ratio MS by isotope ratio monitoring of CO.

    PubMed

    Tsunogai, Urumu; Nakagawa, Fumiko; Komatsu, Daisuke D; Gamo, Toshitaka

    2002-11-15

    We have developed a rapid and simple measurement system for both content and stable isotopic compositions (13C and 18O) of atmospheric CO, using continuous-flow isotope ratio mass spectrometry by simultaneously monitoring the CO+ ion currents at masses 28, 29, and 30. The analytical system consisted sequentially of a sample trapping port (liquid nitrogen temperature silica gel and molecular sieve 5A), a gas dryer, a CO purification column (molecular sieve 5A), a cryofocusing unit, and a final purification column using a GC capillary. Analytical precision of 0.2 per thousand for 13C and 0.4 per thousand for 18O can be realized for samples that contain as little as 300 pmol of CO within 40 min for one sample analysis. Analytical blanks associated with the method are less than 1 pmol. The extent of analytical error in delta13C due to mass-independent fractionation of oxygen in natural CO is estimated to be less than 0.3 per thousand. Based on this system, we report herein a kinetic isotopic effect during CO consumption in soil.

  4. First stable isotope analysis of Asiatic wild ass tail hair from the Mongolian Gobi.

    PubMed

    Horacek, Micha; Sturm, Martina Burnik; Kaczensky, Petra

    Stable isotope analysis has become a powerful tool to study feeding ecology, water use or movement pattern in contemporary, historic and ancient species. Certain hair and teeth grow continuously, and when sampled longitudinally can provide temporally explicit information on dietary regime and movement pattern. In an initial trial, we analysed a tail sample of an Asiatic wild ass (Equus hemionus) from the Mongolian Gobi. We found seasonal variations in H, C and N isotope patterns, likely being the result of temporal variations in available feeds, water supply and possibly physiological status. Thus stable isotope analysis shows promise to study the comparative ecology of the three autochthonous equid species in the Mongolian Gobi.

  5. Correction of MS data for naturally occurring isotopes in isotope labelling experiments.

    PubMed

    Millard, Pierre; Letisse, Fabien; Sokol, Serguei; Portais, Jean-Charles

    2014-01-01

    Mass spectrometry (MS) in combination with isotope labelling experiments is widely used for investigations of metabolism and other biological processes. Quantitative applications-e.g., (13)C metabolic flux analysis-require correction of raw MS data (isotopic clusters) for the contribution of all naturally abundant isotopes. This chapter describes how to perform such correction using the software IsoCor. This flexible, user-friendly software can be used to exploit any isotopic tracer, from well-known ((13)C, (15)N, (18)O, etc.) to unusual ((57)Fe, (77)Se, etc.) isotopes. It also provides options-e.g., correction for the isotopic purity of the tracer-to improve the accuracy of quantitative isotopic studies, and allows automated correction of large datasets that can be collected with modern MS methods.

  6. Oceanic and Climate phasing analysis across Marine Isotope Stage 3

    NASA Astrophysics Data System (ADS)

    Henry, G., III; McManus, J. F.; Curry, W. B.; Roberts, N. L.; Piotrowski, A. M.; Keigwin, L. D.

    2015-12-01

    Glacial climate oscillated between cold stadial periods similar to the Last Glacial Maximum and warmer periods more similar to today from 25,000 to 60,000 years BP, an envelop of time referred to as marine isotope stage three (MIS3). The sudden warmings (Dansgaard-Oeschger events) and ice sheet surges (Heinrich events) have long captured researchers' attention as a means of exploring significant perturbations to the climate system. The climate dynamics associated with these events have been recently elucidated throughhigh-resolution analysis of ice and sediment core archives. In particular, it has been recently demonstrated through synchronization of Greenlandic and Antarctic ice cores that abrupt climate events propagated from the Northern to Southern hemisphere. Likewise, during Heinrich events ice rafted detritus appeared in the Northern North Atlantic generally after cold stadial conditions had already been established. These results indict the ocean's conveyor as the vehicle hemispheric partitioning heat across these events. Here we test the phased response of multiple paleoproxies sensitive to circulation across these abrupt climate events through all of MIS3. Through correlation analysis of multiple paleoproxy records generated from a high accumulation sediment core taken from the Bermuda Rise, we examine the phase relationship of high latitude climate records with the kinematic circulation proxy Pa/Th, benthic d13C and d18O, SST, d18Osw, CaCO3 content, 230Th-normalized bulk and component fluxes in order to infer the sequence of change across these abrupt millennial events. We find that shifts in water mass composition precede increases in temperatures across the identified time interval, while the export of Pa relative to Th increases in tandem with changes in with Bermuda Rise SST estimates during warmings, but lags during cooling. Rapid shifts in thorium normalized carbonate flux supply secondary evidence for changes in preservation accompanying changes

  7. Characterization of phenol and cresol biodegradation by compound-specific stable isotope analysis.

    PubMed

    Wei, Xi; Gilevska, Tetyana; Wetzig, Felix; Dorer, Conrad; Richnow, Hans-Hermann; Vogt, Carsten

    2016-03-01

    Microbial degradation of phenol and cresols can occur under oxic and anoxic conditions by different degradation pathways. One recent technique to take insight into reaction mechanisms is compound-specific isotope analysis (CSIA). While enzymes and reaction mechanisms of several degradation pathways have been characterized in (bio)chemical studies, associated isotope fractionation patterns have been rarely reported, possibly due to constraints in current analytical methods. In this study, carbon enrichment factors and apparent kinetic isotope effects (AKIEc) of the initial steps of different aerobic and anaerobic phenol and cresols degradation pathways were analyzed by isotope ratio mass spectrometry connected with liquid chromatography (LC-IRMS). Significant isotope fractionation was detected for aerobic ring hydroxylation, anoxic side chain hydroxylation, and anoxic fumarate addition, while anoxic carboxylation reactions produced small and inconsistent fractionation. The results suggest that several microbial degradation pathways of phenol and cresols are detectable in the environment by CSIA.

  8. Development of isotope dilution gamma-ray spectrometry for plutonium analysis

    SciTech Connect

    Li, T.K.; Parker, J.L. ); Kuno, Y.; Sato, S.; Kurosawa, A.; Akiyama, T. )

    1991-01-01

    We are studying the feasibility of determining the plutonium concentration and isotopic distribution of highly radioactive, spent-fuel dissolver solutions by employing high-resolution gamma-ray spectrometry. The study involves gamma-ray plutonium isotopic analysis for both dissolver and spiked dissolver solution samples, after plutonium is eluted through an ion-exchange column and absorbed in a small resin bead bag. The spike is well characterized, dry plutonium containing {approximately}98% of {sup 239}Pu. By using measured isotopic information, the concentration of elemental plutonium in the dissolver solution can be determined. Both the plutonium concentration and the isotopic composition of the dissolver solution obtained from this study agree well with values obtained by traditional isotope dilution mass spectrometry (IDMS). Because it is rapid, easy to operate and maintain, and costs less, this new technique could be an alternative method to IDMS for input accountability and verification measurements in reprocessing plants. 7 refs., 4 figs., 4 tabs.

  9. The Ontogenetically Variable Trophic Niche of a Praying Mantid Revealed by Stable Isotope Analysis.

    PubMed

    Hurd, Lawrence E; Dehart, Pieter A P; Taylor, Joseph M; Campbell, Meredith C; Shearer, Megan M

    2015-04-01

    Praying mantids have been shown to exert strong influences on arthropod community composition. However, they may not occupy the same trophic level throughout their lives. Trophic shifting over a life cycle could explain the documented variation in results from field studies, but specific interactions of predators within food webs have been difficult to determine simply by comparing control and treatment assemblages in field experiments. We examined the trophic position of the Chinese praying mantid, Tenodera aridifolia sinensis (Saussure), using stable isotope analysis (SIA). We measured the δ(13)C and δ(15)N of field-collected arthropods, and of laboratory groups of mantids fed known diets of these arthropods chosen from the most abundant trophic guilds: herbivores (sap feeders and plant chewers), and carnivores. We also collected mantids from the field over a growing season and compared their SIA values to those of the laboratory groups. Both δ(13)C and δ(15)N of mantids fed carnivorous prey (spiders or other mantids) were higher than those fed herbivores (grasshoppers). SIA values from field-collected mantids were highly variable, and indicated that they did not take prey from trophic guilds in proportion to their abundances, i.e., were not frequency-dependent predators. Further, δ(15)N decreased from a high at egg hatch to a low at the third instar as early nymphs fed mainly on lower trophic levels, and increased steadily thereafter as they shifted to feeding on higher levels. We suggest that the community impact of generalist predators can be strongly influenced by ontogenetic shifts in diet.

  10. A retro-biosynthetic approach to the prediction of biosynthetic pathways from position-specific isotope analysis as shown for tramadol

    PubMed Central

    Romek, Katarzyna M.; Nun, Pierrick; Remaud, Gérald S.; Silvestre, Virginie; Taïwe, Germain Sotoing; Lecerf-Schmidt, Florine; Boumendjel, Ahcène; De Waard, Michel; Robins, Richard J.

    2015-01-01

    Tramadol, previously only known as a synthetic analgesic, has now been found in the bark and wood of roots of the African medicinal tree Nauclea latifolia. At present, no direct evidence is available as to the biosynthetic pathway of its unusual skeleton. To provide guidance as to possible biosynthetic precursors, we have adopted a novel approach of retro-biosynthesis based on the position-specific distribution of isotopes in the extracted compound. Relatively recent developments in isotope ratio monitoring by 13C NMR spectrometry make possible the measurement of the nonstatistical position-specific natural abundance distribution of 13C (δ13Ci) within the molecule with better than 1‰ precision. Very substantial variation in the 13C positional distribution is found: between δ13Ci = −11 and −53‰. Distribution is not random and it is argued that the pattern observed can substantially be interpreted in relation to known causes of isotope fractionation in natural products. Thus, a plausible biosynthetic scheme based on sound biosynthetic principals of precursor–substrate relationships can be proposed. In addition, data obtained from the 18O/16O ratios in the oxygen atoms of the compound add support to the deductions made from the carbon isotope analysis. This paper shows how the use of 13C NMR at natural abundance can help with proposing a biosynthetic route to compounds newly found in nature or those difficult to tackle by conventional means. PMID:26106160

  11. A retro-biosynthetic approach to the prediction of biosynthetic pathways from position-specific isotope analysis as shown for tramadol.

    PubMed

    Romek, Katarzyna M; Nun, Pierrick; Remaud, Gérald S; Silvestre, Virginie; Taïwe, Germain Sotoing; Lecerf-Schmidt, Florine; Boumendjel, Ahcène; De Waard, Michel; Robins, Richard J

    2015-07-07

    Tramadol, previously only known as a synthetic analgesic, has now been found in the bark and wood of roots of the African medicinal tree Nauclea latifolia. At present, no direct evidence is available as to the biosynthetic pathway of its unusual skeleton. To provide guidance as to possible biosynthetic precursors, we have adopted a novel approach of retro-biosynthesis based on the position-specific distribution of isotopes in the extracted compound. Relatively recent developments in isotope ratio monitoring by (13)C NMR spectrometry make possible the measurement of the nonstatistical position-specific natural abundance distribution of (13)C (δ(13)Ci) within the molecule with better than 1‰ precision. Very substantial variation in the (13)C positional distribution is found: between δ(13)Ci = -11 and -53‰. Distribution is not random and it is argued that the pattern observed can substantially be interpreted in relation to known causes of isotope fractionation in natural products. Thus, a plausible biosynthetic scheme based on sound biosynthetic principals of precursor-substrate relationships can be proposed. In addition, data obtained from the (18)O/(16)O ratios in the oxygen atoms of the compound add support to the deductions made from the carbon isotope analysis. This paper shows how the use of (13)C NMR at natural abundance can help with proposing a biosynthetic route to compounds newly found in nature or those difficult to tackle by conventional means.

  12. Study of medical isotope production facility stack emissions and noble gas isotopic signature using automatic gamma-spectra analysis platform

    NASA Astrophysics Data System (ADS)

    Zhang, Weihua; Hoffmann, Emmy; Ungar, Kurt; Dolinar, George; Miley, Harry; Mekarski, Pawel; Schrom, Brian; Hoffman, Ian; Lawrie, Ryan; Loosz, Tom

    2013-04-01

    The nuclear industry emissions of the four CTBT (Comprehensive Nuclear-Test-Ban Treaty) relevant radioxenon isotopes are unavoidably detected by the IMS along with possible treaty violations. Another civil source of radioxenon emissions which contributes to the global background is radiopharmaceutical production companies. To better understand the source terms of these background emissions, a joint project between HC, ANSTO, PNNL and CRL was formed to install real-time detection systems to support 135Xe, 133Xe, 131mXe and 133mXe measurements at the ANSTO and CRL 99Mo production facility stacks as well as the CANDU (CANada Deuterium Uranium) primary coolant monitoring system at CRL. At each site, high resolution gamma spectra were collected every 15 minutes using a HPGe detector to continuously monitor a bypass feed from the stack or CANDU primary coolant system as it passed through a sampling cell. HC also conducted atmospheric monitoring for radioxenon at approximately 200 km distant from CRL. A program was written to transfer each spectrum into a text file format suitable for the automatic gamma-spectra analysis platform and then email the file to a server. Once the email was received by the server, it was automatically analysed with the gamma-spectrum software UniSampo/Shaman to perform radionuclide identification and activity calculation for a large number of gamma-spectra in a short period of time (less than 10 seconds per spectrum). The results of nuclide activity together with other spectrum parameters were saved into the Linssi database. This database contains a large amount of radionuclide information which is a valuable resource for the analysis of radionuclide distribution within the noble gas fission product emissions. The results could be useful to identify the specific mechanisms of the activity release. The isotopic signatures of the various radioxenon species can be determined as a function of release time. Comparison of 133mXe and 133Xe activity

  13. Abundance analysis of the supergiant stars HD 80057 and HD 80404 based on their UVES Spectra

    NASA Astrophysics Data System (ADS)

    Tanrıverdi, T.; Baştürk, Ö.

    2016-08-01

    This study presents elemental abundances of the early A-type supergiant HD 80057 and the late A-type supergiant HD 80404. High resolution and high signal-to-noise ratio spectra published by the UVES Paranal Observatory Project (Bagnulo et al., 2003) were analyzed to compute their elemental abundances using ATLAS9 (Kurucz, 1993; 2005; Sbordone et al., 2004). In our analysis we assumed local thermodynamic equilibrium. The atmospheric parameters of HD 80057 used in this study are from Firnstein and Przybilla (2012), and that of HD 80404 are derived from spectral energy distribution, ionization equilibria of Cr I/II and Fe I/II, the fits to the wings of Balmer and Paschen lines as Teff = 7700 ± 150 K and log g = 1.60 ± 0.15 (in cgs). The microturbulent velocities of HD 80057 and HD 80404 have been determined as 4.3 ± 0.1 and 2.2 ± 0.0 km s^-1, respectively. The rotational velocities are 15 ± 1 and 7 ± 2 km s^-1 and their macroturbulence velocities are 24 ± 2 and 2 ± 1 km s^1. We have given the abundances of 25 ions of 19 elements for HD 80057 and 36 ions of 25 elements for HD 80404. The abundances are close to solar values, except for some elements (Na, Sc, Ti, V, Ba, and Sr). We have found the metallicities [M/H] for HD 80057 and HD 80404 as -0.16 ± 0.24 and -0.04 ± 0.16 dex, respectively. The evolutionary status of these stars are discussed and their nitrogen-to-carbon (N/C) and nitrogen-to-oxygen (N/O) ratios show that they are in their blue supergiant phase before the red supergiant region.

  14. Detailed abundance analysis of five field blue horizontal-branch stars

    NASA Astrophysics Data System (ADS)

    Kafando, I.; LeBlanc, F.; Robert, C.

    2016-06-01

    Previous studies have shown that hot blue horizontal-branch (BHB) stars in globular clusters present abundance anomalies of certain chemical elements in their atmosphere; some metals are overabundant while helium is underabundant. Vertical stratification of chemical species, including iron, is also found in the atmosphere of a number of these objects. The aim of our work is to do a detailed abundance analysis of BHB stars found in the field. We studied the stars HD 128801, HD 143459, HD 213781, and HZ 27, using our high-resolution spectra in the visible region obtained with ESPaDOnS at the Canada-France-Hawaii Telescope, and also Feige 86, using existing Ultraviolet and Visual Echelle Spectrograph visible spectra from the ESO archives. We searched for vertical stratification of the elements identified in our five stars, with the ZEEMAN2 code and stellar model atmospheres of PHOENIX. We confirm here the star rotational and radial velocities previously found, along with their average abundances. For the three cooler stars in our sample (HD 128801, HD 143459, and HZ 27), most elements detected are underabundant. For the two hotter stars (Feige 86 and HD 213781), the abundances of most elements are near or above their solar value. Of all the elements studied, only phosphorus is clearly found to be vertically stratified in the atmosphere of HD 213781. Marginal indications of vertical stratification of iron is observed for Feige 86. The chemical properties of the five field BHB stars are consistent with those of their globular-cluster counterparts.

  15. Chemical analysis of CH stars - II. Atmospheric parameters and elemental abundances

    NASA Astrophysics Data System (ADS)

    Karinkuzhi, Drisya; Goswami, Aruna

    2015-01-01

    We present detailed chemical analyses for a sample of 12 stars selected from the CH star catalogue of Bartkevicius. The sample includes two confirmed binaries, four objects that are known to show radial velocity variations and the rest with no information on the binary status. A primary objective is to examine if all these objects exhibit chemical abundances characteristics of CH stars, based on detailed chemical composition study using high-resolution spectra. We have used high-resolution (R ˜ 42 000) spectra from the ELODIE archive. These spectra cover 3900 to 6800 Å in the wavelength range. We have estimated the stellar atmospheric parameters, the effective temperature Teff, the surface gravity log g, and metallicity [Fe/H] from local thermodynamic equilibrium analysis using model atmospheres. Estimated temperatures of these objects cover a wide range from 4200 to 6640 K, the surface gravity from 0.6 to 4.3 and metallicity from -0.13 to -1.5. We report updates on elemental abundances for several heavy elements, Sr, Y, Zr, Ba, La, Ce, Pr, Nd, Sm, Eu and Dy. For the object HD 89668, we present the first abundance analyses results. Enhancement of heavy elements relative to Fe, a characteristic property of CH stars is evident from our analyses in the case of four objects, HD 92545, HD 104979, HD 107574 and HD 204613. A parametric-model-based study is performed to understand the relative contributions from the s- and r-process to the abundances of the heavy elements.

  16. Spectral Properties of Cool Stars: Extended Abundance Analysis of 1,617 Planet-search Stars

    NASA Astrophysics Data System (ADS)

    Brewer, John M.; Fischer, Debra A.; Valenti, Jeff A.; Piskunov, Nikolai

    2016-08-01

    We present a catalog of uniformly determined stellar properties and abundances for 1,617 F, G, and K stars using an automated spectral synthesis modeling procedure. All stars were observed using the HIRES spectrograph at Keck Observatory. Our procedure used a single line list to fit model spectra to observations of all stars to determine effective temperature, surface gravity, metallicity, projected rotational velocity, and the abundances of 15 elements (C, N, O, Na, Mg, Al, Si, Ca, Ti, V, Cr, Mn, Fe, Ni, and Y). Sixty percent of the sample had Hipparcos parallaxes and V-band photometry, which we combined with the spectroscopic results to obtain mass, radius, and luminosity. Additionally, we used the luminosity, effective temperature, metallicity and α-element enhancement to interpolate in the Yonsei-Yale isochrones to derive mass, radius, gravity, and age ranges for those stars. Finally, we determined new relations between effective temperature and macroturbulence for dwarfs and subgiants. Our analysis achieved precisions of 25 K in {T}{eff}, 0.01 dex in [M/H], 0.028 dex for {log}g, and 0.5 km s-1 in v\\sin i based on multiple observations of the same stars. The abundance results were similarly precise, between ˜0.01 and ˜0.04 dex, though trends with respect to {T}{eff} remained for which we derived empirical corrections. The trends, though small, were much larger than our uncertainties and are shared with published abundances. We show that changing our model atmosphere grid accounts for most of the trend in [M/H] between 5000 and 5500 K, indicating a possible problem with the atmosphere models or opacities.

  17. Characterization of wines according the geographical origin by analysis of isotopes and minerals and the influence of harvest on the isotope values.

    PubMed

    Dutra, S V; Adami, L; Marcon, A R; Carnieli, G J; Roani, C A; Spinelli, F R; Leonardelli, S; Vanderlinde, R

    2013-12-01

    We studied Brazilian wines produced by microvinification from Cabernet Sauvignon and Merlot grapes, vintages 2007 and 2008, from the Serra Gaúcha, Campanha and Serra do Sudeste regions, in order to differentiate them according to geographical origin by using isotope and mineral element analyses. In addition, the influence of vintage production in isotope values was verified. Isotope analysis was performed by isotope ratio mass spectrometry (IRMS), and the determination of minerals was by flame atomic absorption (FAA). The best parameters to classify the wines in the 2008 vintage were Rb and Li. The results of the δ(13)C of wine ethanol, Rb and Li showed a significant difference between the varieties regardless of the region studied. The δ(18)O values of water and δ(13)C of ethanol showed significant differences, regardless of the variety. Discriminant analysis of isotope and minerals values allowed to classify approximately 80% of the wines from the three regions studied.

  18. An approach to remove albumin for the proteomic analysis of low abundance biomarkers in human serum.

    PubMed

    Ahmed, Nuzhat; Barker, Gillian; Oliva, Karen; Garfin, David; Talmadge, Kenneth; Georgiou, Harry; Quinn, Michael; Rice, Greg

    2003-10-01

    Proteomic technologies are being used to discover and identify disease-associated biomarkers. The application of these technologies in the search for potential diagnostic/prognostic biomarkers in the serum of patients has been limited by the presence of highly abundant albumin and immunoglobulins that constitute approximately 60-97% of the total serum proteins. The purpose of the study was to evaluate whether treatment of human serum with Affi-Gel Blue alone or in combination with Protein A (Aurum serum protein mini kit, Bio-Rad) before two-dimensional gel electrophoresis (2-DE) analysis removed high abundance proteins to allow the visualization of low abundant proteins. Serum samples were treated with either Affi-Gel Blue or Aurum kit and then subjected to 2-DE using 11 cm, pH 4-7 isoelectric focussing strips for the first dimension and 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis for second dimension. Protein spots were visualized using a fluorescent protein dye (SYPRO Ruby, Bio-Rad). Comparison between treatment methods showed significant removal of albumin by both Affi-Gel Blue and Aurum kit and considerable differences in the protein profile of the gels after each treatment. Direct comparison between treatments revealed twenty-eight protein spots unique to Affi-Gel Blue while only two spots were unique after Aurum kit treatment. Unique spots in Affi-Gel Blue and Aurum kit treated serum were not visualized in untreated serum. Sixteen hours of Affi-Gel Blue treatment resulted in enhanced visualization of fifty-three protein spots by two-fold, thirty-one by five-fold, twelve by ten-fold and six by twenty-fold. In parallel after Aurum kit treatment two-, five-, ten- and twenty-fold enhancements of thirty, thirteen, eight and five protein spots, respectively, were observed. The pattern of increased visualization of protein spots with both treatment methods was similar. In conclusion, treatment of serum samples with Affi-Gel Blue or Aurum kit before

  19. Stable isotope dietary analysis of the Tianyuan 1 early modern human

    PubMed Central

    Hu, Yaowu; Shang, Hong; Tong, Haowen; Nehlich, Olaf; Liu, Wu; Zhao, Chaohong; Yu, Jincheng; Wang, Changsui; Trinkaus, Erik; Richards, Michael P.

    2009-01-01

    We report here on the isotopic analysis of the diet of one of the oldest modern humans found in Eurasia, the Tianyuan 1 early modern human dating to ≈40,000 calendar years ago from Tianyuan Cave (Tianyuandong) in the Zhoukoudian region of China. Carbon and nitrogen isotope analysis of the human and associated faunal remains indicate a diet high in animal protein, and the high nitrogen isotope values suggest the consumption of freshwater fish. To confirm this inference, we measured the sulfur isotope values of terrestrial and freshwater animals around the Zhoukoudian area and of the Tianyuan 1 human, which also support the interpretation of a substantial portion of the diet from freshwater fish. This analysis provides the direct evidence for the consumption of aquatic resources by early modern humans in China and has implications for early modern human subsistence and demography. PMID:19581579

  20. High Resolution Gamma Ray Analysis of Medical Isotopes

    NASA Astrophysics Data System (ADS)

    Chillery, Thomas

    2015-10-01

    Compton-suppressed high-purity Germanium detectors at the University of Massachusetts Lowell have been used to study medical radioisotopes produced at Brookhaven Linac Isotope Producer (BLIP), in particular isotopes such as Pt-191 used for cancer therapy in patients. The ability to precisely analyze the concentrations of such radio-isotopes is essential for both production facilities such as Brookhaven and consumer hospitals across the U.S. Without accurate knowledge of the quantities and strengths of these isotopes, it is possible for doctors to administer incorrect dosages to patients, thus leading to undesired results. Samples have been produced at Brookhaven and shipped to UML, and the advanced electronics and data acquisition capabilities at UML have been used to extract peak areas in the gamma decay spectra. Levels of Pt isotopes in diluted samples have been quantified, and reaction cross-sections deduced from the irradiation parameters. These provide both cross checks with published work, as well as a rigorous quantitative framework with high quality state-of-the-art detection apparatus in use in the experimental nuclear physics community.

  1. Stable (2)H isotope analysis of modern-day human hair and nails can aid forensic human identification.

    PubMed

    Fraser, Isla; Meier-Augenstein, Wolfram

    2007-01-01

    Continuous-flow isotope ratio mass spectrometry (CF-IRMS) was used to compare (2)H isotopic composition at natural abundance level of human scalp hair and fingernail samples collected from subjects worldwide with interpolated delta(2)H precipitation values at corresponding locations. The results showed a strong correlation between delta(2)H values of meteoric water and hair (r(2) = 0.86), while the corresponding correlation for nails was not as strong (r(2) = 0.6). Offsets of -180 per thousand and -127 per thousand were observed when calculating solutions of the linear regression analyses for delta(2)H vs. delta(18)O correlation plots of hair and nail samples, respectively. Compared with the +10 per thousand offset of the global meteoric water line equation these findings suggested that delta(18)O data from hair and nail would be of limited diagnostic value. The results of this pilot study provide for the first time tentative correlations of (2)H isotopic composition of human hair and nails with local water. Linear regression analyses for measured delta(2)H values of human hair and nails vs. water yielded delta(2)H(hair) = 0.49 x delta(2)H(water) - 35 and delta(2)H(nails) = 0.38 x delta(2)H(water) - 49, respectively. The results suggest that (2)H isotopic analysis of hair and nail samples can be used to provide information regarding an individual's recent geographical life history and, hence, location. The benefit of this technique is to aid identification of victims of violent crime and mass disasters in circumstances where traditional methods such as DNA and fingerprinting cannot be brought to bear (or at least not immediately).

  2. Application of dual carbon-bromine isotope analysis for investigating abiotic transformations of tribromoneopentyl alcohol (TBNPA).

    PubMed

    Kozell, Anna; Yecheskel, Yinon; Balaban, Noa; Dror, Ishai; Halicz, Ludwik; Ronen, Zeev; Gelman, Faina

    2015-04-07

    Many of polybrominated organic compounds, used as flame retardant additives, belong to the group of persistent organic pollutants. Compound-specific isotope analysis is one of the potential analytical tools for investigating their fate in the environment. However, the isotope effects associated with transformations of brominated organic compounds are still poorly explored. In the present study, we investigated carbon and bromine isotope fractionation during degradation of tribromoneopentyl alcohol (TBNPA), one of the widely used flame retardant additives, in three different chemical processes: transformation in aqueous alkaline solution (pH 8); reductive dehalogenation by zero-valent iron nanoparticles (nZVI) in anoxic conditions; oxidative degradation by H2O2 in the presence of CuO nanoparticles (nCuO). Two-dimensional carbon-bromine isotope plots (δ(13)C/Δ(81)Br) for each reaction gave different process-dependent isotope slopes (Λ(C/Br)): 25.2 ± 2.5 for alkaline hydrolysis (pH 8); 3.8 ± 0.5 for debromination in the presence of nZVI in anoxic conditions; ∞ in the case of catalytic oxidation by H2O2 with nCuO. The obtained isotope effects for both elements were generally in agreement with the values expected for the suggested reaction mechanisms. The results of the present study support further applications of dual carbon-bromine isotope analysis as a tool for identification of reaction pathway during transformations of brominated organic compounds in the environment.

  3. Compound-Specific Isotope Analysis of Diesel Fuels in a Forensic Investigation

    NASA Astrophysics Data System (ADS)

    Muhammad, Syahidah; Frew, Russell; Hayman, Alan

    2015-02-01

    Compound-specific isotope analysis (CSIA) offers great potential as a tool to provide chemical evidence in a forensic investigation. Many attempts to trace environmental oil spills were successful where isotopic values were particularly distinct. However, difficulties arise when a large data set is analyzed and the isotopic differences between samples are subtle. In the present study, discrimination of diesel oils involved in a diesel theft case was carried out to infer the relatedness of the samples to potential source samples. This discriminatory analysis used a suite of hydrocarbon diagnostic indices, alkanes, to generate carbon and hydrogen isotopic data of the compositions of the compounds which were then processed using multivariate statistical analyses to infer the relatedness of the data set. The results from this analysis were put into context by comparing the data with the δ13C and δ2H of alkanes in commercial diesel samples obtained from various locations in the South Island of New Zealand. Based on the isotopic character of the alkanes, it is suggested that diesel fuels involved in the diesel theft case were distinguishable. This manuscript shows that CSIA when used in tandem with multivariate statistical analysis provide a defensible means to differentiate and source-apportion qualitatively similar oils at the molecular level. This approach was able to overcome confounding challenges posed by the near single-point source of origin i.e. the very subtle differences in isotopic values between the samples.

  4. Compound-specific isotope analysis of diesel fuels in a forensic investigation

    PubMed Central

    Muhammad, Syahidah A.; Frew, Russell D.; Hayman, Alan R.

    2015-01-01

    Compound-specific isotope analysis (CSIA) offers great potential as a tool to provide chemical evidence in a forensic investigation. Many attempts to trace environmental oil spills were successful where isotopic values were particularly distinct. However, difficulties arise when a large data set is analyzed and the isotopic differences between samples are subtle. In the present study, discrimination of diesel oils involved in a diesel theft case was carried out to infer the relatedness of the samples to potential source samples. This discriminatory analysis used a suite of hydrocarbon diagnostic indices, alkanes, to generate carbon and hydrogen isotopic data of the compositions of the compounds which were then processed using multivariate statistical analyses to infer the relatedness of the data set. The results from this analysis were put into context by comparing the data with the δ13C and δ2H of alkanes in commercial diesel samples obtained from various locations in the South Island of New Zealand. Based on the isotopic character of the alkanes, it is suggested that diesel fuels involved in the diesel theft case were distinguishable. This manuscript shows that CSIA when used in tandem with multivariate statistical analysis provide a defensible means to differentiate and source-apportion qualitatively similar oils at the molecular level. This approach was able to overcome confounding challenges posed by the near single-point source of origin, i.e., the very subtle differences in isotopic values between the samples. PMID:25774366

  5. Study of the Role of Terrestrial Processes in the Carbon Cycle Based on Measurements of the Abundance and Isotopic Composition of Atmospheric CO2

    SciTech Connect

    Piper, Stephen C; Keeling, Ralph F

    2012-01-03

    The main objective of this project was to continue research to develop carbon cycle relationships related to the land biosphere based on remote measurements of atmospheric CO2 concentration and its isotopic ratios 13C/12C, 18O/16O, and 14C/12C. The project continued time-series observations of atmospheric carbon dioxide and isotopic composition begun by Charles D. Keeling at remote sites, including Mauna Loa, the South Pole, and eight other sites. Using models of varying complexity, the concentration and isotopic measurements were used to study long-term change in the interhemispheric gradients in CO2 and 13C/12C to assess the magnitude and evolution of the northern terrestrial carbon sink, to study the increase in amplitude of the seasonal cycle of CO2, to use isotopic data to refine constraints on large scale changes in isotopic fractionation which may be related to changes in stomatal conductance, and to motivate improvements in terrestrial carbon cycle models. The original proposal called for a continuation of the new time series of 14C measurements but subsequent descoping to meet budgetary constraints required termination of measurements in 2007.

  6. Femtosecond Laser Ablation Multicollector ICPMS Analysis of Uranium Isotopes in NIST Glass

    SciTech Connect

    Duffin, Andrew M.; Springer, Kellen WE; Ward, Jesse D.; Jarman, Kenneth D.; Robinson, John W.; Endres, Mackenzie C.; Hart, Garret L.; Gonzalez, Jhanis J.; Oropeza, Dayana; Russo, Richard; Willingham, David G.; Naes, Benjamin E.; Fahey, Albert J.; Eiden, Gregory C.

    2015-02-06

    We have utilized femtosecond laser ablation coupled to multi-collector inductively couple plasma mass spectrometry to measure the uranium isotopic content of NIST 61x (x=0,2,4,6) glasses. The uranium content of these glasses is a linear two-component mixing between isotopically natural uranium and the isotopically depleted spike used in preparing the glasses. Laser ablation results match extremely well, generally within a few ppm, with solution analysis following sample dissolution and chemical separation. In addition to isotopic data, sample utilization efficiency measurements indicate that over 1% of ablated uranium atoms reach a mass spectrometer detector, making this technique extremely efficient. Laser sampling also allows for spatial analysis and our data indicate that rare uranium concentration inhomogeneities exist in NIST 616 glass.

  7. An approach to remove alpha amylase for proteomic analysis of low abundance biomarkers in human saliva.

    PubMed

    Deutsch, Omer; Fleissig, Yoram; Zaks, Batia; Krief, Guy; Aframian, Doron J; Palmon, Aaron

    2008-11-01

    Proteomic characterization of human whole saliva for the identification of disease-specific biomarkers is guaranteed to be an easy-to-use and powerful diagnostic tool for defining the onset, progression and prognosis of human systemic diseases and, in particular, oral diseases. The high abundance of proteins, mainly alpha amylase, hampers the detection of low abundant proteins appearing in the disease state and therefore should be removed. In the present study a 2-DE was used to analyze human whole saliva following the removal of alpha amylase by affinity adsorption to potato starch. After alpha amylase removal whole saliva was analyzed by SDS-PAGE showing at least sixfold removal efficiency and by an alpha amylase activity assay showing 97% reduced activity. MS identification of the captured alpha amylase after elution demonstrated specific removal; 2-DE analysis showed the selective removal of alpha amylase and consequently increased gel resolution. MS identification of protein spots in the 60 kDa area revealed 15 proteins, which were masked before alpha amylase removal. In conclusion, treatment of human whole saliva with an alpha amylase removal device increases gel resolution and enables a higher protein sample for analysis.

  8. Mapping of replication initiation sites in human ribosomal DNA by nascent-strand abundance analysis.

    PubMed Central

    Yoon, Y; Sanchez, J A; Brun, C; Huberman, J A

    1995-01-01

    New techniques for mapping mammalian DNA replication origins are needed. We have modified the existing nascent-strand size analysis technique (L. Vassilev and E.M. Johnson, Nucleic Acids Res. 17:7693-7705, 1989) to provide an independent means of studying replication initiation sites. We call the new method nascent-strand abundance analysis. We confirmed the validity of this method with replicating simian virus 40 DNA as a model. We then applied nascent-strand abundance and nascent-strand size analyses to mapping of initiation sites in human (HeLa) ribosomal DNA (rDNA), a region previously examined exclusively by two-dimensional gel electrophoresis methods (R.D. Little, T.H.K. Platt, and C.L. Schildkraut, Mol. Cell. Biol. 13:6600-6613, 1993). Our results partly confirm those obtained by two-dimensional gel electrophoresis techniques. Both studies suggest that replication initiates at relatively high frequency a few kilobase pairs upstream of the transcribed region and that many additional low-frequency initiation sites are distributed through most of the remainder of the ribosomal DNA repeat unit. PMID:7739533

  9. Quantifying plant phenotypes with isotopic labeling and metabolic flux analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Analyses of metabolic flux using stable isotopes in plants have traditionally been restricted to tissues with presumed homogeneous cell populations such as developing seeds, cell suspensions, or cultured roots and root tips. It is now possible to describe these and other more complex tissues such a...

  10. Generator Coordinate Method Analysis of Xe and Ba Isotopes

    NASA Astrophysics Data System (ADS)

    Higashiyama, Koji; Yoshinaga, Naotaka; Teruya, Eri

    Nuclear structure of Xe and Ba isotopes is studied in terms of the quantum-number projected generator coordinate method (GCM). The GCM reproduces well the energy levels of high-spin states as well as low-lying states. The structure of the low-lying states is analyzed through the GCM wave functions.

  11. STABLE CHLORINE ISOTOPE ANALYSIS OF CHLORINATED ORGANIC CONTAMINANTS

    EPA Science Inventory

    The biogeochemical cycling of chlorinated organic contaminants in the environment is often difficult to understand because of the complex distributions of these compounds and variability of sources. To address these issues from an isotopic perspective, we have measured the, 37Cl...

  12. The isotopic composition of enriched Si: a data analysis

    NASA Astrophysics Data System (ADS)

    Bulska, E.; Drozdov, M. N.; Mana, G.; Pramann, A.; Rienitz, O.; Sennikov, P.; Valkiers, S.

    2011-04-01

    To determine the Avogadro constant by counting the atoms in quasi-perfect spheres made of a silicon crystal highly enriched with 28Si, the isotopic composition of the crystal was measured in different laboratories by different measurement methods. This paper examines the consistency of the measurement results.

  13. Use of Multiple Endmember Spectral Mixture Analysis and Radiative Transfer Model to Derive Lunar Mineral Abundance Maps

    NASA Astrophysics Data System (ADS)

    Li, L.; Lucey, P. G.

    2009-03-01

    A new approach combining multiple endmemeber spectral mixture analysis (MESMA) and radiative transfer model (RTM) is proposed to generate lunar global mineral abundance maps from Clementine 1 km UVVIS data.

  14. Helium Abundance of Saturn from Cassini VIMS and CIRS Combined Analysis

    NASA Astrophysics Data System (ADS)

    Banfield, D. J.; Gierasch, P. J.; Conrath, B. J.; Nicholson, P. D.; Hedman, M. M.

    2013-12-01

    The Cassini VIMS instrument has obtained about 11 stellar occultations of sufficient quality that they can be used to infer the atmospheric structure where the stellar light cuts through Saturn's atmosphere on its way to thespacecraft. For 5 of these stellar occultations, the Cassini CIRS instrument obtained spectra of Saturn's limb at nearly the same time and place. By combining these observations, we have previously demonstrated that we can produce an estimate of the Helium abundance on Saturn (e.g., Banfield et al., DPS BAAS, 2011). The Helium abundance of Saturn is of great interest due to its leverage on our understanding of the formation and internal evolution processes of the giant planets in our Solar System, as well as giant exoplanets in other solar systems. The Helium abundance is also of significant interest due to a long-standing discrepancy between estimates obtained using a combined IR Spectra/Radio Science Occultation technique (He/H2~0.03, Conrath et al., '84) and those obtained using IR spectra alone (He/H2~0.13, Conrath & Gautier, '00). We will present our results from the Cassini VIMS/CIRS analysis of this problem. The technique uses the Cassini CIRS limb spectra to produce an estimate of the temperature profile between about 0.01 mbar and 5 mbar. The VIMS stellar occultations are used to produce a scale height profile over a similar vertical region, but with much better information content (and thus tighter constraints) between about 1 mbar and 5 mbar. By comparing these two results and demanding consistency we can infer the mean molecular mass of the atmosphere (and thus the Helium abundance) in the region of overlap (~1mbar to 5 mbar). Realistically, both sets of observations are quite challenging to perform. The signal levels are relatively low for the CIRS limb spectra (compared to nadir spectra), making calibration especially challenging. Not all VIMS occultations are successful with variable stellar baselines or stray light corrupting the

  15. The {sup 13}C-pocket structure in AGB models: constraints from zirconium isotope abundances in single mainstream SiC grains

    SciTech Connect

    Liu, Nan; Davis, Andrew M.; Pellin, Michael J.; Gallino, Roberto; Bisterzo, Sara; Savina, Michael R.

    2014-06-20

    We present postprocess asymptotic giant branch (AGB) nucleosynthesis models with different {sup 13}C-pocket internal structures to better explain zirconium isotope measurements in mainstream presolar SiC grains by Nicolussi et al. and Barzyk et al. We show that higher-than-solar {sup 92}Zr/{sup 94}Zr ratios can be predicted by adopting a {sup 13}C-pocket with a flat {sup 13}C profile, instead of the previous decreasing-with-depth {sup 13}C profile. The improved agreement between grain data for zirconium isotopes and AGB models provides additional support for a recent proposal of a flat {sup 13}C profile based on barium isotopes in mainstream SiC grains by Liu et al.

  16. A measurement of the energy spectra and relative abundance of the cosmic-ray H and He isotopes over a broad energy range

    NASA Technical Reports Server (NTRS)

    Webber, W. R.; Yushak, S. M.

    1983-01-01

    The measurements reported of these isotopes were made using two sets of detectors during the same minimum modulation period in 1977. One measurement was made with a balloon-borne telescope, the other with telescopes on the Voyager spacecraft. It is noted that together they provide the widest energy range yet available for studying these isotopes: 14-150 MeV per nucleon for H2 and 10-290 MeV per nucleon for He-3. The simultaneous helium isotope observations are used to give a mutually consistent picture of galactic propagation and solar modulation. The data define the form of the interstellar H-1 and He-4 spectra, an interstellar matter path length for both H-1 and He-4, and a total residual modulation for He-4. The H-2 observations suggest a picture that is very similar for the galactic propagation of H-1 and He-4.

  17. Isotope Analysis of Individual Aerosol Particles - a New Tool for Studying Heterogeneous Processes

    NASA Astrophysics Data System (ADS)

    Winterholler, B.; Hoppe, P.; Huth, J.; Andreae, M. O.; Foley, S.

    2006-12-01

    Sources of atmospheric sulfur and its oxidation pathways are studied by isotope analysis of sulfate particles. conventional gas mass spectrometry averages the isotopic compositions of millions of aerosol grains and, therefore, several different types of sulphur aerosol. The new Cameca NanoSIMS 50 ion microprobe technique permits isotope analyses of individual aerosol particles down to 0.5 μm diameter. Combining the chemical composition and isotopic signature of individual particles enables source apportionment of non-sea-salt (nss) sulfate and elucidating mixing processes between nss sulfate and sea-salt sulfate for each sample. Results from aerosol samples collected in Mace Head (Western Ireland) are presented. These samples represent different airmass types, such as clean marine boundary layer air, moderately polluted air and strongly polluted air transported from the continent. Fresh aerosol preserves the original isotopic signature of sea-salt and nss sulfate in separate particles, the latter being present predominantly in the form of ammonium sulfate. This enables us to identify oxidation of nss sulfate in deliquescent sea salt particles by means of their sulfur isotope ratio. Cloud processing however, leads to a complete homogenization as far as the sulfur isotopic signature is concerned.

  18. Carbon and Sulfur Isotopic Composition of Yellowknife Bay Sediments: Measurements by the Sample Analysis at Mars (SAM) Quadrupole Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Franz, H. B.; Mahaffy, P. R.; Stern, J. C.; Eigenbrode, J. L.; Steele, A.; Ming, D. W.; McAdam, A. C.; Freissinet, C.; Glavin, D. P.; Archer, P. D.; Brunner, A. E.; Grotzinger,J. P.; Jones, J. H.; Leshin, L. A.; Miller, K.; Morris, R. V.; Navarro-Gonzalez, R.; Niles, P. B.; Owen, T. C.; Summons, R. E.; Sutter, B.; Webster, C. R.

    2014-01-01

    Since landing at Gale Crater in Au-gust 2012, the Sample Analysis at Mars (SAM) instru-ment suite on the Mars Science Laboratory (MSL) “Curiosity” rover has analyzed solid samples from the martian regolith in three locations, beginning with a scoop of aeolian deposits from the Rocknest (RN) sand shadow. Curiosity subsequently traveled to Yellowknife Bay, where SAM analyzed samples from two separate holes drilled into the Sheepbed Mudstone, designated John Klein (JK) and Cumberland (CB). Evolved gas analysis (EGA) of all samples revealed the presence of H2O as well as O-, C- and S-bearing phas-es, in most cases at abundances below the detection limit of the CheMin instrument. In the absence of definitive mineralogical identification by CheMin, SAM EGA data can help provide clues to the mineralogy of volatile-bearing phases through examination of tem-peratures at which gases are evolved from solid sam-ples. In addition, the isotopic composition of these gas-es may be used to identify possible formation scenarios and relationships between phases. Here we report C and S isotope ratios for CO2 and SO2 evolved from the JK and CB mudstone samples as measured with SAM’s quadrupole mass spectrometer (QMS) and draw com-parisons to RN.

  19. Chemical abundance analysis of 13 southern symbiotic giants from high-resolution spectra at ˜1.56 μm

    NASA Astrophysics Data System (ADS)

    Gałan, Cezary; Mikołajewska, Joanna; Hinkle, Kenneth H.; Joyce, Richard R.

    2017-04-01

    Symbiotic stars (SySt) are binaries composed of a star in the later stages of evolution and a stellar remnant. The enhanced mass-loss from the giant drives interacting mass exchange and makes these systems laboratories for understanding binary evolution. Studies of the chemical compositions are particularly useful since this parameter has strong impact on the evolutionary path. The previous paper in this series presented photospheric abundances for 24 giants in S-type SySt enabling a first statistical analysis. Here, we present results for an additional sample of 13 giants. The aims are to improve statistics of chemical composition involved in the evolution of SySt, to study evolutionary status, mass transfer and to interpret this in terms of Galactic populations. High-resolution, near-IR spectra are used, employing the spectrum synthesis method in a classical approach, to obtain abundances of CNO and elements around the iron peak (Fe, Ti, Ni). Low-resolution spectra in the region around the Ca II triplet were used for spectral classification. The metallicities obtained cover a wide range with a maximum around ∼- 0.2 dex. The enrichment in the 14N isotope indicates that these giants have experienced the first dredge-up. Relative O and Fe abundances indicate that most SySt belong to the Galactic disc; however, in a few cases, the extended thick-disc/halo is suggested. Difficult to explain, relatively high Ti abundances can indicate that adopted microturbulent velocities were too small by ∼0.2-0.3 km s-1. The revised spectral types for V2905 Sgr, and WRAY 17-89 are M3 and M6.5, respectively.

  20. Image segmentation for uranium isotopic analysis by SIMS: Combined adaptive thresholding and marker controlled watershed approach

    SciTech Connect

    Willingham, David G.; Naes, Benjamin E.; Heasler, Patrick G.; Zimmer, Mindy M.; Barrett, Christopher A.; Addleman, Raymond S.

    2016-05-31

    A novel approach to particle identification and particle isotope ratio determination has been developed for nuclear safeguard applications. This particle search approach combines an adaptive thresholding algorithm and marker-controlled watershed segmentation (MCWS) transform, which improves the secondary ion mass spectrometry (SIMS) isotopic analysis of uranium containing particle populations for nuclear safeguards applications. The Niblack assisted MCWS approach (a.k.a. SEEKER) developed for this work has improved the identification of isotopically unique uranium particles under conditions that have historically presented significant challenges for SIMS image data processing techniques. Particles obtained from five NIST uranium certified reference materials (CRM U129A, U015, U150, U500 and U850) were successfully identified in regions of SIMS image data 1) where a high variability in image intensity existed, 2) where particles were touching or were in close proximity to one another and/or 3) where the magnitude of ion signal for a given region was count limited. Analysis of the isotopic distributions of uranium containing particles identified by SEEKER showed four distinct, accurately identified 235U enrichment distributions, corresponding to the NIST certified 235U/238U isotope ratios for CRM U129A/U015 (not statistically differentiated), U150, U500 and U850. Additionally, comparison of the minor uranium isotope (234U, 235U and 236U) atom percent values verified that, even in the absence of high precision isotope ratio measurements, SEEKER could be used to segment isotopically unique uranium particles from SIMS image data. Although demonstrated specifically for SIMS analysis of uranium containing particles for nuclear safeguards, SEEKER has application in addressing a broad set of image processing challenges.

  1. Stable isotope analysis of dissolved carbon species of Hot Lake, WA

    NASA Astrophysics Data System (ADS)

    Courtney, S.; Moran, J.; Cory, A. B.; Lindemann, S. R.; Fredrickson, J.

    2013-12-01

    Hot Lake is a hypersaline, meromictic lake in north-central Washington. The lake is epsomitic, with seasonably-variable salinity (.2 to 2 M magnesium sulfate) and produces carbonates and salt precipitates. The maximum depth of the lake is around 2.5 m, and below a thermocline there is intense solar heat retention in the monolimnion, often exceeding 50°C. Despite these extreme and variable conditions, a microbial mat of up to 1.5 cm thick thrives annually in Hot Lake. The mat is widespread throughout the lake at water depths (during our experiments) ranging from 60cm-140cm. It is comprised of a variety of cyanobacteria along with other autotrophic and heterotrophic bacteria. These populations are visibly stratified with four consistent laminae displaying differences in bacterial pigmentation. Many of the layers contain carbonate species, but the full relationship between the mat and the carbonate crystallization is not known. We are studying the microbial interactions and carbon cycling of the mat communities, using stable isotope analysis of the mat and the lake water, both in situ and ex situ. We are exploring the incorporation and movement of carbon in the mat, spatially and temporally, to understand the fixation mechanisms and metabolic processes at play in this environment. This was done primarily using stable isotope ratio mass spectrometry. The focus of this work is on the study and measurement of dissolved organic and inorganic carbon using a GasBench and IRMS setup, following methods adapted from Lang et al. (2012). To account for the unique chemistry of Hot Lake, trials on the effects of oxidation conditions and salinity were done on lab-synthesized samples to compare to Hot Lake results. The majority of lake water analyses were done in conjunction with a stable isotope probing (SIP) experiment, completed during two 24-hour periods at Hot Lake in June and July of 2013. The SIP experiments included ex situ incubations (in separate glass containers on the

  2. CN and CH Abundance Analysis in a Sample of Eight Galactic Globular Clusters

    NASA Astrophysics Data System (ADS)

    Smolinski, Jason P.; Lee, Y.; Beers, T. C.; Martell, S. L.; An, D.; Sivarani, T.

    2011-01-01

    Galactic globular clusters exhibit star-to-star variations in their light element abundances that are not predicted by formation and evolution models involving single stellar generations. Recently it has been suggested that internal pollution from early supernovae and AGB winds may have played important roles in forming a second generation of enriched stars. We present updated results of a CN and CH abundance analysis of stars from the base to the tip of the red giant branch, and in some cases down onto the main sequence, for eight globular clusters with available photometric and spectroscopic data from SDSS-I and SDSS-II/SEGUE. These results include a discussion of the radial distribution of CN enrichment and how this may impact the current paradigm. Funding for SDSS-I and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web Site is http://www.sdss.org/. This work was supported in part by grants PHY 02-16783 and PHY 08-22648: Physics Frontiers Center/Joint Institute for Nuclear Astrophysics (JINA), awarded by the U.S. National Science Foundation.

  3. Global Analysis of Condition-specific Subcellular Protein Distribution and Abundance*

    PubMed Central

    Jung, Sunhee; Smith, Jennifer J.; von Haller, Priska D.; Dilworth, David J.; Sitko, Katherine A.; Miller, Leslie R.; Saleem, Ramsey A.; Goodlett, David R.; Aitchison, John D.

    2013-01-01

    Cellular control of protein activities by modulation of their abundance or compartmentalization is not easily measured on a large scale. We developed and applied a method to globally interrogate these processes that is widely useful for systems-level analyses of dynamic cellular responses in many cell types. The approach involves subcellular fractionation followed by comprehensive proteomic analysis of the fractions, which is enabled by a data-independent acquisition mass spectrometry approach that samples every available mass to charge channel systematically to maximize sensitivity. Next, various fraction-enrichment ratios are measured for all detected proteins across different environmental conditions and used to group proteins into clusters reflecting changes in compartmentalization and relative conditional abundance. Application of the approach to characterize the response of yeast proteins to fatty acid exposure revealed dynamics of peroxisomes and novel dynamics of MCC/eisosomes, specialized plasma membrane domains comprised of membrane compartment occupied by Can1 (MCC) and eisosome subdomains. It also led to the identification of Fat3, a fatty acid transport protein of the plasma membrane, previously annotated as Ykl187. PMID:23349476

  4. Abundance quantification by independent component analysis of hyperspectral imagery for oil spill coverage calculation

    NASA Astrophysics Data System (ADS)

    Han, Zhongzhi; Wan, Jianhua; Zhang, Jie; Zhang, Hande

    2016-08-01

    The estimation of oil spill coverage is an important part of monitoring of oil spills at sea. The spatial resolution of images collected by airborne hyper-spectral remote sensing limits both the detection of oil spills and the accuracy of estimates of their size. We consider at-sea oil spills with zonal distribution in this paper and improve the traditional independent component analysis algorithm. For each independent component we added two constraint conditions: non-negativity and constant sum. We use priority weighting by higher-order statistics, and then the spectral angle match method to overcome the order nondeterminacy. By these steps, endmembers can be extracted and abundance quantified simultaneously. To examine the coverage of a real oil spill and correct our estimate, a simulation experiment and a real experiment were designed using the algorithm described above. The result indicated that, for the simulation data, the abundance estimation error is 2.52% and minimum root mean square error of the reconstructed image is 0.030 6. We estimated the oil spill rate and area based on eight hyper-spectral remote sensing images collected by an airborne survey of Shandong Changdao in 2011. The total oil spill area was 0.224 km2, and the oil spill rate was 22.89%. The method we demonstrate in this paper can be used for the automatic monitoring of oil spill coverage rates. It also allows the accurate estimation of the oil spill area.

  5. Analysis of Carbohydrate and Fatty Acid Marker Abundance in Ricin Toxin Preparations for Forensic Information

    SciTech Connect

    Colburn, Heather A.; Wunschel, David S.; Kreuzer-Martin, Helen W.; Moran, James J.; Antolick, Kathryn C.; Melville, Angela M.

    2010-07-15

    One challenge in the forensic analysis of ricin samples is determining the method and extent of sample preparation. Ricin purification from the source castor seeds is essentially a protein purification through removal of the non-protein fractions of the seed. Two major, non-protein constituents in the seed are the castor oil and carbohydrates. Ricinoleic acid is a relatively unique fatty acid in nature and is the most abundant component of castor oil, which comprises roughly half the seed weight. The carbohydrate component comprises roughly half of the remaining “mash” left after oil and hull removal. We used derivatization of carbohydrate and fatty acid markers followed by identification and quantification using gas chromatography/mass spectrometry (GC/MS) to assess compositional changes in ricin samples purified by different methods. The loss of ricinoleic acid indicated steps for oil removal had occurred. Changes to the carbohydrate content of the sample were also observed following protein precipitation. The differential loss of arabinose relative to mannose indicated removal of the major carbohydrate fraction of the seed and enrichment of the protein content. Taken together, these changes in fatty acid and carbohydrate abundance are indicative of the preparation method used for each sample.

  6. Degradation and Volatilization of Chlorofluorocarbons in Contaminated Groundwater Explored by Stable Carbon Isotope Analysis

    NASA Astrophysics Data System (ADS)

    Horst, A.; Lacrampe-Couloume, G.; Sherwood Lollar, B.

    2015-12-01

    Chlorofluorocarbons (CFCs) are ozone depleting compounds whose production was phased out by the regulations of the Montreal Protocol (1987). Accidental release and disposal also led to contamination of groundwater at many locations, however, and this legacy persists. Although very stable, CFCs may degrade via abiotic and biotic pathways. Quantification of the degree of transformation of CFCs has been challenging due to other processes such as dilution, sorption and volatilization. Compound specific stable carbon isotope analysis (CSIA) has been successfully applied for a variety of priority pollutants to distinguish degradation from other processes and to quantify transformation rates. A Purge & Trap - CSIA method developed in our lab was applied to determine the stable carbon isotopic signature of CFCs and HCFCs (hydrochlorofluorocarbons) in groundwater samples from a contaminated site. Preliminary results suggest that degradation of CFCs and HCFCs may result in enriched δ13C values, consistent with fractionation during bond breakage as has been reported for many other hydrocarbon pollutants. The effect of volatile loss during sampling on the isotopic signatures of CFCs was examined in laboratory experiments. Volatilization from pure phase CFCs showed a small inverse isotope effect during open system volatilization, opposite to the normal isotope effect generally observed during biodegradation. For volatilization of CFCs dissolved in water a much smaller isotope effect was observed. An important result from this work is that any volatile loss may introduce only a small change in CFC isotopic signatures in groundwater, and importantly, due to the opposite direction of isotope effects associated with volatilization versus degradation, any effects of volatile loss on the isotopic signatures cannot be confused with transformation of CFCs. At most, volatilization might contribute to a conservative estimate of the extent of degradation.

  7. Degradation and Volatilization of Chlorofluorocarbons in Contaminated Groundwater Explored by Stable Carbon Isotope Analysis

    NASA Astrophysics Data System (ADS)

    Hangx, S.; Pijnenburg, R. P.; Niemeijer, A. R.; Bakker, E.; Samuelson, J. E.; Spiers, C. J.

    2014-12-01

    Chlorofluorocarbons (CFCs) are ozone depleting compounds whose production was phased out by the regulations of the Montreal Protocol (1987). Accidental release and disposal also led to contamination of groundwater at many locations, however, and this legacy persists. Although very stable, CFCs may degrade via abiotic and biotic pathways. Quantification of the degree of transformation of CFCs has been challenging due to other processes such as dilution, sorption and volatilization. Compound specific stable carbon isotope analysis (CSIA) has been successfully applied for a variety of priority pollutants to distinguish degradation from other processes and to quantify transformation rates. A Purge & Trap - CSIA method developed in our lab was applied to determine the stable carbon isotopic signature of CFCs and HCFCs (hydrochlorofluorocarbons) in groundwater samples from a contaminated site. Preliminary results suggest that degradation of CFCs and HCFCs may result in enriched δ13C values, consistent with fractionation during bond breakage as has been reported for many other hydrocarbon pollutants. The effect of volatile loss during sampling on the isotopic signatures of CFCs was examined in laboratory experiments. Volatilization from pure phase CFCs showed a small inverse isotope effect during open system volatilization, opposite to the normal isotope effect generally observed during biodegradation. For volatilization of CFCs dissolved in water a much smaller isotope effect was observed. An important result from this work is that any volatile loss may introduce only a small change in CFC isotopic signatures in groundwater, and importantly, due to the opposite direction of isotope effects associated with volatilization versus degradation, any effects of volatile loss on the isotopic signatures cannot be confused with transformation of CFCs. At most, volatilization might contribute to a conservative estimate of the extent of degradation.

  8. Carbon and chlorine isotope analysis to identify abiotic degradation pathways of 1,1,1-trichloroethane.

    PubMed

    Palau, Jordi; Shouakar-Stash, Orfan; Hunkeler, Daniel

    2014-12-16

    This study investigates dual C-Cl isotope fractionation during 1,1,1-TCA transformation by heat-activated persulfate (PS), hydrolysis/dehydrohalogenation (HY/DH) and Fe(0). Compound-specific chlorine isotope analysis of 1,1,1-TCA was performed for the first time, and transformation-associated isotope fractionation ε bulk C and ε bulk Cl values were -4.0 ± 0.2‰ and no chlorine isotope fractionation with PS, -1.6 ± 0.2‰ and -4.7 ± 0.1‰ for HY/DH, -7.8 ± 0.4‰ and -5.2 ± 0.2‰ with Fe(0). Distinctly different dual isotope slopes (Δδ13C/Δδ37Cl): ∞ with PS, 0.33 ± 0.04 for HY/DH and 1.5 ± 0.1 with Fe(0) highlight the potential of this approach to identify abiotic degradation pathways of 1,1,1-TCA in the field. The trend observed with PS agreed with a C-H bond oxidation mechanism in the first reaction step. For HY/DH and Fe(0) pathways, different slopes were obtained although both pathways involve cleavage of a C-Cl bond in their initial reaction step. In contrast to the expected larger primary carbon isotope effects relative to chlorine for C-Cl bond cleavage, ε bulk C < ε bulk Cl was observed for HY/DH and in a similar range for reduction by Fe(0), suggesting the contribution of secondary chlorine isotope effects. Therefore, different magnitude of secondary chlorine isotope effects could at least be partly responsible for the distinct slopes between HY/DH and Fe(0) pathways. Following this dual isotope approach, abiotic transformation processes can unambiguously be identified and quantified.

  9. Assessing connectivity of estuarine fishes based on stable isotope ratio analysis

    NASA Astrophysics Data System (ADS)

    Herzka, Sharon Z.

    2005-07-01

    Assessing connectivity is fundamental to understanding the population dynamics of fishes. I propose that isotopic analyses can greatly contribute to studies of connectivity in estuarine fishes due to the high diversity of isotopic signatures found among estuarine habitats and the fact that variations in isotopic composition at the base of a food web are reflected in the tissues of consumers. Isotopic analysis can be used for identifying nursery habitats and estimating their contribution to adult populations. If movement to a new habitat is accompanied by a shift to foods of distinct isotopic composition, recent immigrants and residents can be distinguished based on their isotopic ratios. Movement patterns thus can be reconstructed based on information obtained from individuals. A key consideration is the rate of isotopic turnover, which determines the length of time that an immigrant to a given habitat will be distinguishable from a longtime resident. A literature survey indicated that few studies have measured turnover rates in fishes and that these have focused on larvae and juveniles. These studies reveal that biomass gain is the primary process driving turnover rates, while metabolic turnover is either minimal or undetectable. Using a simple dilution model and biomass-specific growth rates, I estimated that young fishes with fast growth rates will reflect the isotopic composition of a new diet within days or weeks. Older or slower-growing individuals may take years or never fully equilibrate. Future studies should evaluate the factors that influence turnover rates in fishes during various stages of the life cycle and in different tissues, as well as explore the potential for combining stable isotope and otolith microstructure analyses to examine the relationship between demographic parameters, movement and connectivity.

  10. The Conflict between Cheetahs and Humans on Namibian Farmland Elucidated by Stable Isotope Diet Analysis

    PubMed Central

    Voigt, Christian C.; Thalwitzer, Susanne; Melzheimer, Jörg; Blanc, Anne-Sophie; Jago, Mark; Wachter, Bettina

    2014-01-01

    Large areas of Namibia are covered by farmland, which is also used by game and predator species. Because it can cause conflicts with farmers when predators, such as cheetahs (Acinonyx jubatus), hunt livestock, we assessed whether livestock constitutes a significant part of the cheetah diet by analysing the stable isotope composition of blood and tissue samples of cheetahs and their potential prey species. According to isotopic similarities, we defined three isotopic categories of potential prey: members of a C4 food web with high δ15N values (gemsbok, cattle, springhare and guinea fowl) and those with low δ15N values (hartebeest, warthog), and members of a C3 food web, namely browsers (eland, kudu, springbok, steenbok and scrub hare). We quantified the trophic discrimination of heavy isotopes in cheetah muscle in 9 captive individuals and measured an enrichment for 15N (3.2‰) but not for 13C in relation to food. We captured 53 free-ranging cheetahs of which 23 were members of groups. Cheetahs of the same group were isotopically distinct from members of other groups, indicating that group members shared their prey. Solitary males (n = 21) and males in a bachelor groups (n = 11) fed mostly on hartebeest and warthogs, followed by browsers in case of solitary males, and by grazers with high δ15N values in case of bachelor groups. Female cheetahs (n = 9) predominantly fed on browsers and used also hartebeest and warthogs. Mixing models suggested that the isotopic prey category that included cattle was only important, if at all, for males living in bachelor groups. Stable isotope analysis of fur, muscle, red blood cells and blood plasma in 9 free-ranging cheetahs identified most individuals as isotopic specialists, focussing on isotopically distinct prey categories as their food. PMID:25162403

  11. The conflict between cheetahs and humans on Namibian farmland elucidated by stable isotope diet analysis.

    PubMed

    Voigt, Christian C; Thalwitzer, Susanne; Melzheimer, Jörg; Blanc, Anne-Sophie; Jago, Mark; Wachter, Bettina

    2014-01-01

    Large areas of Namibia are covered by farmland, which is also used by game and predator species. Because it can cause conflicts with farmers when predators, such as cheetahs (Acinonyx jubatus), hunt livestock, we assessed whether livestock constitutes a significant part of the cheetah diet by analysing the stable isotope composition of blood and tissue samples of cheetahs and their potential prey species. According to isotopic similarities, we defined three isotopic categories of potential prey: members of a C4 food web with high δ15N values (gemsbok, cattle, springhare and guinea fowl) and those with low δ15N values (hartebeest, warthog), and members of a C3 food web, namely browsers (eland, kudu, springbok, steenbok and scrub hare). We quantified the trophic discrimination of heavy isotopes in cheetah muscle in 9 captive individuals and measured an enrichment for 15N (3.2‰) but not for 13C in relation to food. We captured 53 free-ranging cheetahs of which 23 were members of groups. Cheetahs of the same group were isotopically distinct from members of other groups, indicating that group members shared their prey. Solitary males (n = 21) and males in a bachelor groups (n = 11) fed mostly on hartebeest and warthogs, followed by browsers in case of solitary males, and by grazers with high δ15N values in case of bachelor groups. Female cheetahs (n = 9) predominantly fed on browsers and used also hartebeest and warthogs. Mixing models suggested that the isotopic prey category that included cattle was only important, if at all, for males living in bachelor groups. Stable isotope analysis of fur, muscle, red blood cells and blood plasma in 9 free-ranging cheetahs identified most individuals as isotopic specialists, focussing on isotopically distinct prey categories as their food.

  12. Direct mutation analysis by high-throughput sequencing: from germline to low-abundant, somatic variants

    PubMed Central

    Gundry, Michael; Vijg, Jan

    2011-01-01

    DNA mutations are the source of genetic variation within populations. The majority of mutations with observable effects are deleterious. In humans mutations in the germ line can cause genetic disease. In somatic cells multiple rounds of mutations and selection lead to cancer. The study of genetic variation has progressed rapidly since the completion of the draft sequence of the human genome. Recent advances in sequencing technology, most importantly the introduction of massively parallel sequencing (MPS), have resulted in more than a hundred-fold reduction in the time and cost required for sequencing nucleic acids. These improvements have greatly expanded the use of sequencing as a practical tool for mutation analysis. While in the past the high cost of sequencing limited mutation analysis to selectable markers or small forward mutation targets assumed to be representative for the genome overall, current platforms allow whole genome sequencing for less than $5,000. This has already given rise to direct estimates of germline mutation rates in multiple organisms including humans by comparing whole genome sequences between parents and offspring. Here we present a brief history of the field of mutation research, with a focus on classical tools for the measurement of mutation rates. We then review MPS, how it is currently applied and the new insight into human and animal mutation frequencies and spectra that has been obtained from whole genome sequencing. While great progress has been made, we note that the single most important limitation of current MPS approaches for mutation analysis is the inability to address low-abundance mutations that turn somatic tissues into mosaics of cells. Such mutations are at the basis of intra-tumor heterogeneity, with important implications for clinical diagnosis, and could also contribute to somatic diseases other than cancer, including aging. Some possible approaches to gain access to low-abundance mutations are discussed, with a

  13. Direct mutation analysis by high-throughput sequencing: from germline to low-abundant, somatic variants.

    PubMed

    Gundry, Michael; Vijg, Jan

    2012-01-03

    DNA mutations are the source of genetic variation within populations. The majority of mutations with observable effects are deleterious. In humans mutations in the germ line can cause genetic disease. In somatic cells multiple rounds of mutations and selection lead to cancer. The study of genetic variation has progressed rapidly since the completion of the draft sequence of the human genome. Recent advances in sequencing technology, most importantly the introduction of massively parallel sequencing (MPS), have resulted in more than a hundred-fold reduction in the time and cost required for sequencing nucleic acids. These improvements have greatly expanded the use of sequencing as a practical tool for mutation analysis. While in the past the high cost of sequencing limited mutation analysis to selectable markers or small forward mutation targets assumed to be representative for the genome overall, current platforms allow whole genome sequencing for less than $5000. This has already given rise to direct estimates of germline mutation rates in multiple organisms including humans by comparing whole genome sequences between parents and offspring. Here we present a brief history of the field of mutation research, with a focus on classical tools for the measurement of mutation rates. We then review MPS, how it is currently applied and the new insight into human and animal mutation frequencies and spectra that has been obtained from whole genome sequencing. While great progress has been made, we note that the single most important limitation of current MPS approaches for mutation analysis is the inability to address low-abundance mutations that turn somatic tissues into mosaics of cells. Such mutations are at the basis of intra-tumor heterogeneity, with important implications for clinical diagnosis, and could also contribute to somatic diseases other than cancer, including aging. Some possible approaches to gain access to low-abundance mutations are discussed, with a brief

  14. Carbon-13 isotopic abundance and concentration of atmospheric methane for background air in the Southern and Northern Hemispheres from 1978 to 1989

    SciTech Connect

    Stevens, C.M.; Sepanski; Morris, L.J.

    1995-03-01

    Atmospheric methane (CH{sub 4}) may become an increasingly important contributor to global warming in future years. Its atmospheric concentration has risen, doubling over the past several hundred years, and additional methane is thought to have a much greater effect on climate, on a per molecule basis, than additional C0{sub 2} at present day concentrations (Shine et al. 1990). The causes of the increase of atmospheric CH{sub 4} have been difficult to ascertain because of a lack of quantitative knowledge of the fluxes (i.e., net emissions) from the numerous anthropogenic and natural sources. The goal of CH{sub 4} isotopic studies is to provide a constraint (and so reduce the uncertainties) in estimating the relative fluxes from the various isotopically distinct sources, whose combined fluxes must result in the measured atmospheric isotopic composition, after the fractionating effect of the atmospheric removal process is considered. In addition, knowledge of the spatial and temporal changes in the isotopic composition of atmospheric CH{sub 4}, along with estimates of the fluxes from some of the major sources, makes it possible to calculate growth rates for sources whose temporal emissions trends would be difficult to measure directly.

  15. High-resolution abundance analysis of very metal-poor r-I stars

    NASA Astrophysics Data System (ADS)

    Siqueira Mello, C.; Hill, V.; Barbuy, B.; Spite, M.; Spite, F.; Beers, T. C.; Caffau, E.; Bonifacio, P.; Cayrel, R.; François, P.; Schatz, H.; Wanajo, S.

    2014-05-01

    Context. Moderately r-process-enriched stars (r-I; +0.3 ≤ [Eu/Fe] ≤ +1.0) are at least four times as common as those that are greatly enriched in r-process elements (r-II; [Eu/Fe] > +1.0), and the abundances in their atmospheres are important tools for obtaining a better understanding of the nucleosynthesis processes responsible for the origin of the elements beyond the iron peak. Aims: The main aim of this work is to derive abundances for a sample of seven metal-poor stars with -3.4 ≤ [Fe/H] ≤ -2.4 classified as r-I stars, to understand the role of these stars for constraining the astrophysical nucleosynthesis event(s) that is (are) responsible for the production of the r-process, and to investigate whether they differ, in any significant way, from the r-II stars. Methods: We carried out a detailed abundance analysis based on high-resolution spectra obtained with the VLT/UVES spectrograph, using spectra in the wavelength ranges 3400-4500 Å, 6800-8200 Å, and 8700-10 000 Å, with resolving power R ~ 40 000 (blue arm) and R ~ 55 000 (red arm). The OSMARCS LTE 1D model atmosphere grid was employed, along with the spectrum synthesis code Turbospectrum. Results: We have derived abundances of the light elements Li, C, and N, the α-elements Mg, Si, S, Ca, and Ti, the odd-Z elements Al, K, and Sc, the iron-peak elements V, Cr, Mn, Fe, Co, and Ni, and the trans-iron elements from the first peak (Sr, Y, Zr, Mo, Ru, and Pd), the second peak (Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb), the third peak (Os and Ir, as upper limits), and the actinides (Th) regions. The results are compared with values for these elements for r-II and "normal" very and extremely metal-poor stars reported in the literature, ages based on radioactive chronometry are explored using different models, and a number of conclusions about the r-process and the r-I stars are presented. Hydrodynamical models were used for some elements, and general behaviors for the 3D corrections

  16. Sources of organic matter in Ria Formosa revealed by stable isotope analysis

    NASA Astrophysics Data System (ADS)

    Machás, Raquel; Santos, Rui

    1999-07-01

    The aim of this study is to assess the major sources of organic matter for macroconsumers in the Ria Formosa tidal lagoon. The C, S and N isotopic natural abundances of abundant primary producers of particulate organic matter (POM) and Mytilus galloprovincialis muscle and digestive gland were analysed. The chlorophyll a (Chl a), the suspended particulate matter (SPM) and the POM were measured along the Faro-Olhão channel. The range of variation of stable isotope values among primary producers in Ria Formosa was low suggesting difficulties in the assessment of their relative contribution to higher levels of the food web. Chl a values decreased from outer station to inner station, while SPM and POM values increased. The multiple isotope approach illustrates that POM values along the Faro-Olhão channel, may result from a mixture of upland plants, benthic plants and phytoplankton. Mussel values indicate a selective diet of benthic macrophytes and phytoplankton, with the relative proportions of each determined by the location in the channel. During winters, the upland plants may be an important source of organic matter in the inner lagoon while phytoplankton was an important source of organic matter in the outer lagoon.

  17. MS fragment isotope ratio analysis for evaluation of citrus essential oils by HRGC-MS.

    PubMed

    Satake, Atsushi; Furukawa, Kiyoshi; Ueno, Takao; Ukeda, Hiroyuki; Sawamura, Masayoshi

    2004-02-01

    To evaluate the origin of citrus essential oils, the isotope ratio of fragment peaks on HRGC-MS of the volatile compounds from various citrus oils was measured. The MS fragment ratio was found by the ratio of fragment peak intensity, m+1/m (m/z). This ratio reflects the isotope effect of volatile compounds, that is, it provides information about locality, quality, and species for essential oils. Multivariate analysis based on the MS fragment ratio of monoterpene hydrocarbons clearly distinguished three citrus species, yuzu, lemon, and lime. The carbonyl fractions were also extracted from citrus essential oils by the sodium hydrogensulfite method. The isotope ratio of MS fragments of octanal, nonanal, and decanal was also examined. The results suggest that there was no significant difference in the individual fragment isotope ratios of the three aldehydes.

  18. Isotope ratio analysis by HRGC-MS of monoterpene hydrocarbons from citrus essential oils.

    PubMed

    Satake, Atsushi; Une, Akitoshi; Ueno, Takao; Ukeda, Hiroyuki; Sawamura, Masayoshi

    2003-03-01

    The isotope ratio of monoterpene hydrocarbons in citrus essential oils of different origins was measured by ordinary high-resolution gas chromatography-mass spectrometry (HRGC-MS). The isotope ratio (Ir) was determined by the ratio of the isotope peak intensity (m/z 137) to the molecular mass peak intensity (m/z 136) of the monoterpene hydrocarbons. The accuracy of Ir was examined by measuring monoterpene hydrocarbon standards and 13C-labeled compounds. The isotope fingerprints based on the values of monoterpene hydrocarbons from lemon, lime and yuzu essential oils were determined. These citrus essential oils were also discriminated by a principal component analysis of their Ir data. The characteristic vectors showed that alpha-terpinene, beta-pinene and beta-phellandrene were important components for distinguishing between the citrus species. It is suggested that this technique will be applicable to evaluate the quality, genuineness and origin of citrus fruits and their products.

  19. Trophic partitioning in tropical rain forest birds: insights from stable isotope analysis.

    PubMed

    Herrera, L Gerardo; Hobson, Keith A; Rodríguez, Malinalli; Hernandez, Patricia

    2003-08-01

    Bird communities reach their highest taxonomic and trophic diversity in tropical rain forest, but the use of different foraging strategies to meet food requirements in such competitive environments is poorly understood. Conventional dietary analyses are poorly suited to investigate dietary patterns in complex systems. We used stable carbon ((13)C/(12)C) and nitrogen ((15)N/(14)N) isotope analysis of whole blood to examine avian trophic patterns and sources of diet in the tropical rain forest of Los Tuxtlas, Veracruz, Mexico. We used stable nitrogen isotope analysis to delineate trophic levels, and stable carbon isotope analysis to distinguish the relative contribution of C-3 and CAM/C-4 ultimate sources of proteins to diets. There was large inter- and intraspecific variation in whole blood delta(13)C and delta(15)N values in 23 species of birds. Stable nitrogen isotope analysis separated birds into several trophic levels, including species that obtained their dietary protein mostly from plants, insects or a combination of both food sources. Stable carbon isotope analysis showed that most birds fed on C3-based foods but Stub-tailed Spadebills (Platyrinchus cancrominus) included C-3- and C-4/CAM-specialist individuals. Our analyses provided insights into the nutritional contribution of plant and animal sources of protein and distinguish their photosynthetic origin over relatively long average time periods.

  20. In situ analysis of carbon isotopes in North American diamonds

    NASA Astrophysics Data System (ADS)

    van Rythoven, A. D.; Hauri, E. H.; Wang, J.; McCandless, T.; Shirey, S. B.; Schulze, D. J.

    2010-12-01

    Diamonds from three North American kimberlite occurrences were investigated with cathodoluminescence (CL) and secondary ion mass spectrometry (SIMS) to determine their growth history and carbon isotope composition. Diamonds analyzed include fourteen from Lynx (Quebec), twelve from Kelsey Lake (Colorado) and eleven from A154 South (Diavik mine, Northwest Territories). Growth histories for the diamonds vary from simple to highly complex based on their CL images and depending on the individual stone. Deformation laminae are evident in CL images of the Lynx diamonds that typically are brownish in color. Two to five points per diamond were analyzed by SIMS for carbon isotope composition. Sample heterogeneity is minimal in terms of δ13C (vs. PDB) values. Points within single diamond had a maximum range of approximately 1 ‰. The results for the A154 South (-6.4 to -3 ‰) and Kelsey Lake (-11.2 to -2.6 ‰) stones were in accordance with earlier reported values. The Lynx kimberlite stones have anomalously high ratios and range from -3.5 to +0.2 ‰ (average: -1.4 ‰). No previous carbon isotope analyses on diamonds from Lynx or any other eastern Superior craton occurrence have been published. The diamonds possess carbon isotope ratios higher than those for the only other reported analyses of Superior craton diamonds at Wawa, Ontario (-5.5 to -1.1 ‰). In global terms, the only published analyses of diamonds that consistently contain even higher values are those from New South Wales (Australia). However, these diamonds are alluvial and contain eclogitic and/or exotic mineral inclusions. The Lynx diamonds are entirely peridotitic and from a primary deposit. The unusually low (i.e. >-5‰) δ13C values of the Lynx (and Wawa) diamonds may indicate a different carbon reservoir for the Superior craton mantle as compared to other cratons.

  1. Isotopic analysis of Bothrops atrox in Amazonian forest

    NASA Astrophysics Data System (ADS)

    Martinez, M. G.; Silva, A. M.; Chalkidis, H.; de Oliveira Júnior, R. C.; Camargo, P. B.

    2012-12-01

    The poisoning of snakes is considered a public health problem, especially in populations from rural areas of tropical and subtropical countries. In Brazil, the 26,000 snakebites, 90% are of the genus Bothrops, and Bothrops atrox species predominant in the Amazon region including all the Brazilian Amazon. Research shows that using stable isotopes, we can verify the isotopic composition of tissues of animals that depend mainly on food, water ingested and inhaled gases. For this study, samples taken from Bothrops atrox (B. atrox), in forest using pitfall traps and fall ("Pitt-fall traps with drift fence"). The analyzes were performed by mass spectrometry, where the analytical error is 0.3‰ for carbon and 0.5‰ to nitrogen. The results of the forest animals are significantly different from results of animal vivarium. The average values of the tissues and venoms of snakes of the forest for carbon-13 and nitrogen-15 are: δ13C = -24.68‰ and δ15N = 14.22‰ and mean values of tissue and poisons snakes vivarium (Instituto Butantan) to carbon-13 and nitrogen-15 are δ13C = -20.47‰ and δ15N = 8.36‰, with a significantly different due to different sources of food animals. Based on all results isotopic δ13C and δ15N, we can suggest that changes as the power of the serpent, (nature and captivity), changes occur in relation to diet and environment as the means of the isotopic data are quite distinct, showing that these changes can also cause metabolic changes in the body of the animal itself and the different periods of turnover of each tissue analyzed.

  2. Compound-Specific Isotope Analysis of Amino Acids for Stardust-Returned Samples

    NASA Technical Reports Server (NTRS)

    Cook, Jamie; Elsila, Jamie E.; Stern J. C.; Glavin, D. P.; Dworkin, J. P.

    2008-01-01

    Significant portions of the early Earth's prebiotic organic inventory , including amino acids, could have been delivered to the Earth's sur face by comets and their fragments. Analysis of comets via spectrosc opic observations has identified many organic molecules, including me thane, ethane, arnmonia, cyanic acid, formaldehyde, formamide, acetal ehyde, acetonitrile, and methanol. Reactions between these identifie d molecules could allow the formation of more complex organics such a s amino acids. Isotopic analysis could reveal whether an extraterrest rial signature is present in the Stardust-exposed amines and amino ac ids. Although bulk isotopic analysis would be dominated by the EACA contaminant's terrestrial signature, compoundspecific isotope analysi s (CSIA) could determine the signature of each of the other individua l amines. Here, we report on progress made towards CSIA of the amino acids glycine and EACA in Stardustreturned samples.

  3. Is it really organic?--multi-isotopic analysis as a tool to discriminate between organic and conventional plants.

    PubMed

    Laursen, K H; Mihailova, A; Kelly, S D; Epov, V N; Bérail, S; Schjoerring, J K; Donard, O F X; Larsen, E H; Pedentchouk, N; Marca-Bell, A D; Halekoh, U; Olesen, J E; Husted, S

    2013-12-01

    Novel procedures for analytical authentication of organic plant products are urgently needed. Here we present the first study encompassing stable isotopes of hydrogen, carbon, nitrogen, oxygen, magnesium and sulphur as well as compound-specific nitrogen and oxygen isotope analysis of nitrate for discrimination of organically and conventionally grown plants. The study was based on wheat, barley, faba bean and potato produced in rigorously controlled long-term field trials comprising 144 experimental plots. Nitrogen isotope analysis revealed the use of animal manure, but was unable to discriminate between plants that were fertilised with synthetic nitrogen fertilisers or green manures from atmospheric nitrogen fixing legumes. This limitation was bypassed using oxygen isotope analysis of nitrate in potato tubers, while hydrogen isotope analysis allowed complete discrimination of organic and conventional wheat and barley grains. It is concluded, that multi-isotopic analysis has the potential to disclose fraudulent substitutions of organic with conventionally cultivated plants.

  4. Linking cases of illegal shootings of the endangered California condor using stable lead isotope analysis

    SciTech Connect

    Finkelstein, Myra E.; Kuspa, Zeka E.; Welch, Alacia; Eng, Curtis; Clark, Michael; Burnett, Joseph; Smith, Donald R.

    2014-10-15

    Lead poisoning is preventing the recovery of the critically endangered California condor (Gymnogyps californianus) and lead isotope analyses have demonstrated that ingestion of spent lead ammunition is the principal source of lead poisoning in condors. Over an 8 month period in 2009, three lead-poisoned condors were independently presented with birdshot embedded in their tissues, evidencing they had been shot. No information connecting these illegal shooting events existed and the timing of the shooting(s) was unknown. Using lead concentration and stable lead isotope analyses of feathers, blood, and recovered birdshot, we observed that: i) lead isotope ratios of embedded shot from all three birds were measurably indistinguishable from each other, suggesting a common source; ii) lead exposure histories re-constructed from feather analysis suggested that the shooting(s) occurred within the same timeframe; and iii) two of the three condors were lead poisoned from a lead source isotopically indistinguishable from the embedded birdshot, implicating ingestion of this type of birdshot as the source of poisoning. One of the condors was subsequently lead poisoned the following year from ingestion of a lead buckshot (blood lead 556 µg/dL), illustrating that ingested shot possess a substantially greater lead poisoning risk compared to embedded shot retained in tissue (blood lead ∼20 µg/dL). To our knowledge, this is the first study to use lead isotopes as a tool to retrospectively link wildlife shooting events. - Highlights: • We conducted a case-based analysis of illegal shootings of California condors. • Blood and feather Pb isotopes were used to reconstruct the illegal shooting events. • Embedded birdshot from the three condors had the same Pb isotope ratios. • Feather and blood Pb isotopes indicated that the condors were shot in a common event. • Ingested shot causes substantially greater lead exposure compared to embedded shot.

  5. VizieR Online Data Catalog: Extended abundance analysis of cool stars (Brewer+, 2016)

    NASA Astrophysics Data System (ADS)

    Brewer, J. M.; Fischer, D. A.; Valenti, J. A.; Piskunov, N.

    2016-10-01

    The stellar spectra in this study were all collected using the HIRES spectrograph (R~70000) on the Keck I telescope as part of one or more radial-velocity planet-search programs under the collaborative umbrella known as the California Planet Survey (CPS; Howard+ 2010ApJ...721.1467H). In addition to stellar spectra, our data also include 20 spectra of four different asteroids (4 Vesta, 1036 Ganymed, 3 Juno, and 10 Hygiea) from five epochs throughout the 10-year period covered by the observations in our sample. These spectra provided disk-integrated solar spectra and were obtained to help calibrate our analysis by providing small zero-point offsets for solar parameters and abundances. (4 data files).

  6. Comparative feeding ecology of abyssal and hadal fishes through stomach content and amino acid isotope analysis

    NASA Astrophysics Data System (ADS)

    Gerringer, M. E.; Popp, B. N.; Linley, T. D.; Jamieson, A. J.; Drazen, J. C.

    2017-03-01

    The snailfishes, family Liparidae (Scorpaeniformes), have found notable success in the hadal zone from 6000-8200 m, comprising the dominant ichthyofauna in at least five trenches worldwide. Little is known about the biology of these deepest-living fishes, nor the factors that drive their success at hadal depths. Using recent collections from the Mariana Trench, Kermadec Trench, and neighboring abyssal plains, this study investigates the potential role of trophic ecology in structuring fish communities at the abyssal-hadal boundary. Stomach contents were analyzed from two species of hadal snailfishes, Notoliparis kermadecensis and a newly-discovered species from the Mariana Trench. Amphipods comprised the majority (Kermadec: 95.2%, Mariana: 97.4% index of relative importance) of stomach contents in both species. Decapod crustaceans, polychaetes (N. kermadecensis only), and remains of carrion (squid and fish) were minor dietary components. Diet analyses of abyssal species (families Macrouridae, Ophidiidae, Zoarcidae) collected from near the trenches and the literature are compared to those of the hadal liparids. Stomachs from abyssal fishes also contained amphipods, however macrourids had a higher trophic plasticity with a greater diversity of prey items, including larger proportions of carrion and fish remains; supporting previous findings. Suction-feeding predatory fishes like hadal liparids may find an advantage to descending into the trench - where amphipods are abundant. More generalist feeders and scavengers relying on carrion, such as macrourids, might not benefit from this nutritional advantage at hadal depths. Compound specific isotope analysis of amino acids was used to estimate trophic level of these species (5.3±0.2 Coryphaenoides armatus, 5.2±0.2 C. yaquinae, 4.6±0.2 Spectrunculus grandis, 4.2±0.2 N. kermadecensis, 4.4±0.2 Mariana snailfish). Source amino acid δ15N values were especially high in hadal liparids (8.0±0.3‰ Kermadec, 6.7±0.2

  7. Diet of spotted bats (Euderma maculatum) in Arizona as indicated by fecal analysis and stable isotopes

    EPA Science Inventory

    We assessed diet of spotted bats (Euderma maculatum (J.A. Allen, 1891)) by visual analysis of bat feces and stable carbon (δ13C) and nitrogen (δ15N) isotope analysis of bat feces, wing, hair, and insect prey. We collected 33 fecal samples from spotted bats and trapped 3755 insect...

  8. Stable isotope dilution analysis of hydrologic samples by inductively coupled plasma mass spectrometry

    USGS Publications Warehouse

    Garbarino, J.R.; Taylor, H.E.

    1987-01-01

    Inductively coupled plasma mass spectrometry is employed in the determination of Ni, Cu, Sr, Cd, Ba, Ti, and Pb in nonsaline, natural water samples by stable isotope dilution analysis. Hydrologic samples were directly analyzed without any unusual pretreatment. Interference effects related to overlapping isobars, formation of metal oxide and multiply charged ions, and matrix composition were identified and suitable methods of correction evaluated. A comparability study snowed that single-element isotope dilution analysis was only marginally better than sequential multielement isotope dilution analysis. Accuracy and precision of the single-element method were determined on the basis of results obtained for standard reference materials. The instrumental technique was shown to be ideally suited for programs associated with certification of standard reference materials.

  9. The applicability of MGA method for depleted and natural uranium isotopic analysis in the presence of actinides (232Th, 237Np, 233Pa and 241Am).

    PubMed

    Yücel, Haluk

    2007-11-01

    The multi-group analysis (MGA) method for the determination of uranium isotopic abundances in depleted uranium (DU) and natural uranium (NU) samples is applied in this study. A set of non-destructive gamma-ray measurements of DU and NU samples were performed using a planar Ge detector. The relative abundances of 235U and 238U isotopes were compared with the declared values of the standards. The relative abundance for 235U obtained by MGA for a "clean" DU or NU sample with a content of uranium>1wt% is determined with an accuracy of about +/-5%. However, when several actinides such as 232Th, 237Np, 233Pa and 241Am are present along with uranium isotopes simulating "dirty" DU or NU, it has been observed that MGA method gives erroneous results. The 235U abundance results for the samples were 6-25 times higher than the declared values in the presence of above-mentioned actinides, since MGA is utilized the X-ray and gamma-ray peaks in the 80-130 keV energy region, covering XKalpha and XKbeta regions. After the least-squares fitting of the spectra, it is found that the increases in the intensities of the X-ray and gamma-ray peaks of uranium are remarkably larger in the complex 80-130 keV region. On the other hand, it is observed that the interferences of the actinide peaks are relatively less dominant in the higher gamma-ray region of 130-300 keV. The results imply the need for dirty DU and NU samples that the MGA method should utilize the higher energy gamma-rays (up to 1001 keV of (234m)Pa) combined with lower energies of the spectra, which may be collected in a two detector mode (a planar Ge and a high efficient coaxial Ge).

  10. Developing Model Constraints on Northern Extra-Tropical Carbon Cycling Based on measurements of the Abundance and Isotopic Composition of Atmospheric CO2

    SciTech Connect

    Keeling, Ralph

    2014-12-12

    The objective of this project was to perform CO2 data syntheses and modeling activities to address two central questions: 1) how much has the seasonal cycle in atmospheric CO2 at northern high latitudes changed since the 1960s, and 2) how well do prognostic biospheric models represent these changes. This project also supported the continuation of the Scripps time series of CO2 isotopes and concentration at ten baseline stations distributed globally.

  11. Heterogeneity of elemental composition and natural abundance of stables isotopes of C and N in soils and leaves of mangroves at their southernmost West Atlantic range.

    PubMed

    Tognella, M M P; Soares, M L G; Cuevas, E; Medina, E

    2016-01-01

    Mangrove communities were selected in the state of Santa Catarina, Brazil, near their southernmost limit of distribution, to study mineral nutrient relation in soils and plants. Communities included three true mangrove species, Rhizophora mangle, Laguncularia racemosa and Avicennia germinans, and two associated species, the fern Acrostichum danaeifolium, and the grass Spartina densiflora. The sites included communities in the lower Río Tavares near Florianopolis city, Sonho beach near Palhoça city, and the Santo Antonio lagoon. These sites included a full range of mangroves under humid climate where winter temperatures, instead of salinity, may be the main factor regulating their productive capacity and species composition. Soil salinity was determined by the concentration of soluble Na, and soil C and N were linearly correlated indicating their association in organic matter. Tavares site showed higher specific conductivity, and concentrations of Na and Mg in the soil layer below 40 cm depth, indicating larger influence of marine water. Isotopic signature of C increased with soil depth suggesting that microorganisms decomposing organic matter are releasing 13C depleted CO2. Nitrogen isotopic signature decreased with soil depth, indicating enrichment in 15N possibly as a result of denitrification in the upper soil layers. Mineral elements in leaf tissues showed A. schaueriana with higher concentrations of N, P, Na, K, Cu, Zn, and Na/Ca ratio. Spartina densiflora was characterized by the lowest N and K concentrations, and the highest concentrations of Al and Fe. Rhizophora mangle and L. racemosa had the highest Ca concentrations. Carbon isotopic signatures identified S. densiflora as a C4 plant, and A. schaueriana as the mangrove species occupying comparatively more water stressed microsites than the rest. Leaf nitrogen isotopic signatures were positive, in correspondence with the soil values. The results support the hypothesis that sites sampled were comparatively

  12. Growth versus metabolic tissue replacement in mouse tissues determined by stable carbon and nitrogen isotope analysis

    NASA Astrophysics Data System (ADS)

    Macavoy, S. E.; Jamil, T.; Macko, S. A.; Arneson, L. S.

    2003-12-01

    Stable isotope analysis is becoming an extensively used tool in animal ecology. The isotopes most commonly used for analysis in terrestrial systems are those of carbon and nitrogen, due to differential carbon fractionation in C3 and C4 plants, and the approximately 3‰ enrichment in 15N per trophic level. Although isotope signatures in animal tissues presumably reflect the local food web, analysis is often complicated by differential nutrient routing and fractionation by tissues, and by the possibility that large organisms are not in isotopic equilibrium with the foods available in their immediate environment. Additionally, the rate at which organisms incorporate the isotope signature of a food through both growth and metabolic tissue replacement is largely unknown. In this study we have assessed the rate of carbon and nitrogen isotopic turnover in liver, muscle and blood in mice following a diet change. By determining growth rates, we were able to determine the proportion of tissue turnover caused by growth versus that caused by metabolic tissue replacement. Growth was found to account for approximately 10% of observed tissue turnover in sexually mature mice (Mus musculus). Blood carbon was found to have the shortest half-life (16.9 days), followed by muscle (24.7 days). Liver carbon turnover was not as well described by the exponential decay equations as other tissues. However, substantial liver carbon turnover was observed by the 28th day after diet switch. Surprisingly, these tissues primarily reflect the carbon signature of the protein, rather than carbohydrate, source in their diet. The nitrogen signature in all tissues was enriched by 3 - 5‰ over their dietary protein source, depending on tissue type, and the isotopic turnover rates were comparable to those observed in carbon.

  13. Stable isotope fractionation analysis as a tool to monitor biodegradation in contaminated acquifers

    NASA Astrophysics Data System (ADS)

    Meckenstock, Rainer U.; Morasch, Barbara; Griebler, Christian; Richnow, Hans H.

    2004-12-01

    The assessment of biodegradation in contaminated aquifers has become an issue of increasing importance in the recent years. To some extent, this can be related to the acceptance of intrinsic bioremediation or monitored natural attenuation as a means to manage contaminated sites. Among the few existing methods to detect biodegradation in the subsurface, stable isotope fractionation analysis (SIFA) is one of the most promising approaches which is pronounced by the drastically increasing number of applications. This review covers the recent laboratory and field studies assessing biodegradation of contaminants via stable isotope analysis. Stable isotope enrichment factors have been found that vary from no fractionation for dioxygenase reactions converting aromatic hydrocarbons over moderate fractionation by monooxygenase reactions ( ɛ=-3‰) and some anaerobic studies on microbial degradation of aromatic hydrocarbons ( ɛ=-1.7‰) to larger fractionations by anaerobic dehalogenation reactions of chlorinated solvents ( ɛ=between -5‰ and -30‰). The different isotope enrichment factors can be related to the respective biochemical reactions. Based on that knowledge, we discuss under what circumstances SIFA can be used for a qualitative or even a quantitative assessment of biodegradation in the environment. In a steadily increasing number of cases, it was possible to explain biodegradation processes in the field based on isotope enrichment factors obtained from laboratory experiments with pure cultures and measured isotope values from the field. The review will focus on the aerobic and anaerobic degradation of aromatic hydrocarbons and chlorinated solvents as the major contaminants of groundwater. Advances in the instrumental development for stable isotope analysis are only mentioned if it is important for the understanding of the application.

  14. Microbial degradation of alpha-cypermethrin in soil by compound-specific stable isotope analysis.

    PubMed

    Xu, Zemin; Shen, Xiaoli; Zhang, Xi-Chang; Liu, Weiping; Yang, Fangxing

    2015-09-15

    To assess microbial degradation of alpha-cypermethrin in soil, attenuation of alpha-cypermethrin was investigated by compound-specific stable isotope analysis. The variations of the residual concentrations and stable carbon isotope ratios of alpha-cypermethrin were detected in unsterilized and sterilized soils spiked with alpha-cypermethrin. After an 80 days' incubation, the concentrations of alpha-cypermethrin decreased to 0.47 and 3.41 mg/kg in the unsterilized soils spiked with 2 and 10 mg/kg, while those decreased to 1.43 and 6.61 mg/kg in the sterilized soils. Meanwhile, the carbon isotope ratios shifted to -29.14 ± 0.22‰ and -29.86 ± 0.33‰ in the unsterilized soils spiked with 2 and 10 mg/kg, respectively. The results revealed that microbial degradation contributed to the attenuation of alpha-cypermethrin and induced the carbon isotope fractionation. In order to quantitatively assess microbial degradation, a relationship between carbon isotope ratios and residual concentrations of alpha-cypermethrin was established according to Rayleigh equation. An enrichment factor, ϵ = -1.87‰ was obtained, which can be employed to assess microbial degradation of alpha-cypermethrin. The significant carbon isotope fractionation during microbial degradation suggests that CSIA is a proper approach to qualitatively detect and quantitatively assess the biodegradation during attenuation process of alpha-cypermethrin in the field.

  15. Approaching the Final Frontier in Lateral Resolution for Isotopic and Chemical Analysis with CHILI

    NASA Astrophysics Data System (ADS)

    Davis, A. M.; Stephan, T.; Pellin, M.; Savina, M.; Yokochi, R.; Trappitsch, R.; Liu, N.; King, A.

    2011-12-01

    The small sizes of samples returned by recent (Stardust, Hayabusa) and future (OSIRIS-REx) sample return missions to comets and asteroids, as well as the small sizes of presolar grains in and interplanetary dust particles (IDPs) are driving improvements in lateral resolution and sensitivity beyond what is available with current state-of-the-art secondary ion mass spectrometry (SIMS) instruments. SIMS lateral resolution has reached ~50 nm and useful yields are at most a few percent. We are completing construction of CHILI (the CHicago Instrument for Laser Ionization), a resonant ionization mass spectrometry (RIMS) nanobeam instrument designed for isotopic and chemical analysis at the few-nm scale with a useful yield of ≥35% [1]. CHILI is equipped with a COBRA-FIB high resolution liquid metal ion gun (LMIG) and an e-CLIPSE Plus field emission electron gun from Orsay Physics, each of which can be focused to <4 nm. The electron gun will be used for secondary electron imaging, as the built-in optical microscope is diffraction-limited to ~0.5 μm. A piezoelectric stage capable of reproducible nm-scale motions and equipped with a sample holder that will accept a wide variety of sample mounts is operational. The flight tube for the time-of-flight mass spectrometer mounted vertically above the sample chamber; this assembly is mounted in the center of an H-shaped laser table equipped with active vibration cancellation devices. The table has been demonstrated to have a vertical vibrational amplitude of less than 0.2 nm. Resonant ionization will be done with six Ti:sapphire tunable solid state lasers pumped with three 40W Nd:YLF lasers, which will allow two to three elements to be analyzed simultaneously. Ion detection in existing RIMS instruments [2,3] is done with a microchannel plate with a single anode. Isotope ratio precision is limited by counting statistics, as no more than one ion of the most abundant isotope of an element can be counted for each pulse. CHILI will

  16. Validation of Chlorine and Oxygen Isotope Ratio Analysis to Differentiate Perchlorate Sources and to Document Perchlorate Biodegradation

    DTIC Science & Technology

    2011-12-01

    Guidance Document Validation of Chlorine and Oxygen Isotope Ratio Analysis To Differentiate Perchlorate Sources and to Document Perchlorate...Manual for Forensic Analysis of Perchlorate in Grotmdwater using W912-HQ-0 5-C-0022 Chlorine and Oxygen Isotopic Analyses 5b. GRANT NUMBER NA 5c...natural. Chlorine and oxygen isotopic analyses of perchlorate provide the primaty direct approach whereby different sources of perchlorate can be

  17. Sr Isotope Analysis of Lacustrine Fossils Reveals Paleohydrological Reorganisation in the Turkana Basin Through the Holocene.

    NASA Astrophysics Data System (ADS)

    Vonhof, H.; Lubbe, J. V. D.; Joordens, J. J.; Feibel, C. S.; Junginger, A.; Garcin, Y.; Krause-Nehring, J.; Beck, C.; Johnson, T. C.

    2015-12-01

    Lake Turkana in northern Kenya is one of the largest lakes in the East African Rift System (EARS) that experienced significant climate-driven lake level variation over the Holocene. Arguably the most important feature of Holocene climate change in the EARS is the termination of the African Humid Period (AHP), that caused a ~70 meter lake level drop in Lake Turkana. The precise hydrological response to the termination of the AHP is potentially complex, because Lake Turkana lies at the cross roads of two large atmospheric convection systems; the Intertropical Convergence Zone (ITCZ) and the Congo Air Boundary (CAB). Shifting of these atmospheric systems around the end of the AHP dramatically rearranged spatial rainfall patterns in the Turkana Basin catchment, causing changes in relative runoff contributions from the different sub-catchments in the Turkana Basin. We here present a Holocene Turkana lake water Sr-isotope reconstruction, based on the analysis of well-dated lacustrine ostracods and shells. This reconstruction reveals consistently high Sr isotope values for the early Holocene, followed by a remarkable drop of Sr isotope ratios around the AHP termination. We interpret this pattern to represent a westward shift in the location of the CAB, leading to the reduction and eventual shutdown of runoff contribution from the Chew Bahir Basin to the Turkana Basin at the end of the AHP. The record demonstrates the exceptional suitability of Sr isotope data for this type of paleohydrological reconstructions. This is mainly due to the chemically conservative Sr-isotope mass balance in EARS lake systems, which is insensitive to environmental change at seasonal timescales that so often overprints the longer term climate signal in stable (oxygen and carbon) isotope records of these lakes. Furthermore, when Sr-isotope signatures of the contributing sub-catchments are known, the observed Sr isotope trends can be interpreted in terms of spatial shifts in climate driven runoff

  18. Estimating pathway-specific contributions to biodegradation in aquifers based on dual isotope analysis: theoretical analysis and reactive transport simulations.

    PubMed

    Centler, Florian; Heße, Falk; Thullner, Martin

    2013-09-01

    At field sites with varying redox conditions, different redox-specific microbial degradation pathways contribute to total contaminant degradation. The identification of pathway-specific contributions to total contaminant removal is of high practical relevance, yet difficult to achieve with current methods. Current stable-isotope-fractionation-based techniques focus on the identification of dominant biodegradation pathways under constant environmental conditions. We present an approach based on dual stable isotope data to estimate the individual contributions of two redox-specific pathways. We apply this approach to carbon and hydrogen isotope data obtained from reactive transport simulations of an organic contaminant plume in a two-dimensional aquifer cross section to test the applicability of the method. To take aspects typically encountered at field sites into account, additional simulations addressed the effects of transverse mixing, diffusion-induced stable-isotope fractionation, heterogeneities in the flow field, and mixing in sampling wells on isotope-based estimates for aerobic and anaerobic pathway contributions to total contaminant biodegradation. Results confirm the general applicability of the presented estimation method which is most accurate along the plume core and less accurate towards the fringe where flow paths receive contaminant mass and associated isotope signatures from the core by transverse dispersion. The presented method complements the stable-isotope-fractionation-based analysis toolbox. At field sites with varying redox conditions, it provides a means to identify the relative importance of individual, redox-specific degradation pathways.

  19. Isotope ratio analysis of individual sub-micrometer plutonium particles with inductively coupled plasma mass spectrometry.

    PubMed

    Esaka, Fumitaka; Magara, Masaaki; Suzuki, Daisuke; Miyamoto, Yutaka; Lee, Chi-Gyu; Kimura, Takaumi

    2010-12-15

    Information on plutonium isotope ratios in individual particles is of great importance for nuclear safeguards, nuclear forensics and so on. Although secondary ion mass spectrometry (SIMS) is successfully utilized for the analysis of individual uranium particles, the isobaric interference of americium-241 to plutonium-241 makes difficult to obtain accurate isotope ratios in individual plutonium particles. In the present work, an analytical technique by a combination of chemical separation and inductively coupled plasma mass spectrometry (ICP-MS) is developed and applied to isotope ratio analysis of individual sub-micrometer plutonium particles. The ICP-MS results for individual plutonium particles prepared from a standard reference material (NBL SRM-947) indicate that the use of a desolvation system for sample introduction improves the precision of isotope ratios. In addition, the accuracy of the (241)Pu/(239)Pu isotope ratio is much improved, owing to the chemical separation of plutonium and americium. In conclusion, the performance of the proposed ICP-MS technique is sufficient for the analysis of individual plutonium particles.

  20. Recent developments in application of stable isotope analysis on agro-product authenticity and traceability.

    PubMed

    Zhao, Yan; Zhang, Bin; Chen, Gang; Chen, Ailiang; Yang, Shuming; Ye, Zhihua

    2014-02-15

    With the globalisation of agro-product markets and convenient transportation of food across countries and continents, the potential for distribution of mis-labelled products increases accordingly, highlighting the need for measures to identify the origin of food. High quality food with identified geographic origin is a concern not only for consumers, but also for agriculture farmers, retailers and administrative authorities. Currently, stable isotope ratio analysis in combination with other chemical methods gradually becomes a promising approach for agro-product authenticity and traceability. In the last five years, a growing number of research papers have been published on tracing agro-products by stable isotope ratio analysis and techniques combining with other instruments. In these reports, the global variety of stable isotope compositions has been investigated, including light elements such as C, N, H, O and S, and heavy isotopes variation such as Sr and B. Several factors also have been considered, including the latitude, altitude, evaporation and climate conditions. In the present paper, an overview is provided on the authenticity and traceability of the agro-products from both animal and plant sources by stable isotope ratio analysis.

  1. Compound specific isotope analysis to investigate pesticide degradation in lysimeter experiments at field conditions

    NASA Astrophysics Data System (ADS)

    Ryabenko, Evgenia; Elsner, Martin; Bakkour, Rani; Hofstetter, Thomas; Torrento, Clara; Hunkeler, Daniel

    2015-04-01

    The frequent detection of organic micropollutants such as pesticides, consumer care products or pharmaceuticals in water is an increasing concern for human and ecosystem health. Degradation analysis of these compounds can be challenging in complex systems due to the fact that metabolites are not always found and mass balances frequently cannot be closed. Many abiotic and biotic degradation pathways cause, however, distinct isotope fractionation, where light isotopes are transferred preferentially from the reactant to the product pool (normal isotope fractionation). Compound-specific isotope analysis (CSIA) of multiple elements is a particularly powerful method to evaluate organic micropollutant transformation, because it can even give pathway-specific isotope fractionation (1,2). Available CSIA field studies, however, have focused almost exclusively on volatile petroleum and chlorinated hydrocarbons, which are present in high concentrations in the environment and can be extracted easily from water for GC-IRMS analysis. In the case of micropollutants, such as pesticides, CSIA in more challenging since it needs to be conducted at lower concentrations and requires pre-concentration, purification and high chromatographic performance (3). In this study we used lysimeters experiments to analyze transformation of atrazine, acetochlor, metolachlor and chloridazone by studying associated isotope fractionation. The project combines a) analytical method development for CSIA, b) identification of pathways of micropollutant degradation and c) quantification of transformation processes under field condition. The pesticides were applied both, at the soil surface and below the top soil under field-relevant concentrations in May 2014. After typical irrigation of the lysimeters, seepage water was collected in 50L bottles and stored for further SPE and CSIA. Here we present the very first result of a) analytical method development, b) improvement of SPE methods for complex pesticide

  2. Atomic Weights and Isotopic Compositions

    National Institute of Standards and Technology Data Gateway

    SRD 144 Atomic Weights and Isotopic Compositions (Web, free access)   The atomic weights are available for elements 1 through 111, and isotopic compositions or abundances are given when appropriate.

  3. Microcalorimeter Q-spectroscopy for rapid isotopic analysis of trace actinide samples

    NASA Astrophysics Data System (ADS)

    Croce, M. P.; Bond, E. M.; Hoover, A. S.; Kunde, G. J.; Mocko, V.; Rabin, M. W.; Weisse-Bernstein, N. R.; Wolfsberg, L. E.; Bennett, D. A.; Hays-Wehle, J.; Schmidt, D. R.; Ullom, J. N.

    2015-06-01

    We are developing superconducting transition-edge sensor (TES) microcalorimeters that are optimized for rapid isotopic analysis of trace actinide samples by Q-spectroscopy. By designing mechanically robust TESs and simplified detector assembly methods, we have developed a detector for Q-spectroscopy of actinides that can be assembled in minutes. We have characterized the effects of each simplification and present the results. Finally, we show results of isotopic analysis of plutonium samples with Q-spectroscopy detectors and compare the results to mass spectrometry.

  4. Stable isotope analysis of the karst hydrological systems in the Bay of Kvarner (Croatia).

    PubMed

    Mance, D; Hunjak, T; Lenac, D; Rubinić, J; Roller-Lutz, Z

    2014-08-01

    Here we present the results of the first systematic analysis of the stable isotope composition of the karst hydrological systems in the Bay of Kvarner. Gaussian mixture modelling, time series analysis and autoregressive integrated moving average (ARIMA) modelling were applied using the stable isotope compositions of the karst groundwater. This study revealed that the recharge is dominated by winter precipitation, the dual-porosity system is dominated by baseflow, the hinterlands of the individual springs have different degrees of karstification and the springs within the Rječina River catchment have higher recharge elevations than the springs in the Bakar Bay catchment.

  5. Essentials of iron, chromium, and calcium isotope analysis of natural materials by thermal ionization mass spectrometry

    USGS Publications Warehouse

    Fantle, M.S.; Bullen, T.D.

    2009-01-01

    The use of isotopes to understand the behavior of metals in geological, hydrological, and biological systems has rapidly expanded in recent years. One of the mass spectrometric techniques used to analyze metal isotopes is thermal ionization mass spectrometry, or TIMS. While TIMS has been a useful analytical technique for the measurement of isotopic composition for decades and TIMS instruments are widely distributed, there are significant difficulties associated with using TIMS to analyze isotopes of the lighter alkaline earth elements and transition metals. Overcoming these difficulties to produce relatively long-lived and stable ion beams from microgram-sized samples is a non-trivial task. We focus here on TIMS analysis of three geologically and environmentally important elements (Fe, Cr, and Ca) and present an in-depth look at several key aspects that we feel have the greatest potential to trouble new users. Our discussion includes accessible descriptions of different analytical approaches and issues, including filament loading procedures, collector cup configurations, peak shapes and interferences, and the use of isotopic double spikes and related error estimation. Building on previous work, we present quantitative simulations, applied specifically in this study to Fe and Ca, that explore the effects of (1) time-variable evaporation of isotopically homogeneous spots from a filament and (2) interferences on the isotope ratios derived from a double spike subtraction routine. We discuss how and to what extent interferences at spike masses, as well as at other measured masses, affect the double spike-subtracted isotope ratio of interest (44Ca/40Ca in the case presented, though a similar analysis can be used to evaluate 56Fe/54Fe and 53Cr/52Cr). The conclusions of these simulations are neither intuitive nor immediately obvious, making this examination useful for those who are developing new methodologies. While all simulations are carried out in the context of a

  6. Maintaining high precision of isotope ratio analysis over extended periods of time.

    PubMed

    Brand, Willi A

    2009-06-01

    Stable isotope ratios are reliable and long lasting process tracers. In order to compare data from different locations or different sampling times at a high level of precision, a measurement strategy must include reliable traceability to an international stable isotope scale via a reference material (RM). Since these international RMs are available in low quantities only, we have developed our own analysis schemes involving laboratory working RM. In addition, quality assurance RMs are used to control the long-term performance of the delta-value assignments. The analysis schemes allow the construction of quality assurance performance charts over years of operation. In this contribution, the performance of three typical techniques established in IsoLab at the MPI-BGC in Jena is discussed. The techniques are (1) isotope ratio mass spectrometry with an elemental analyser for delta(15)N and delta(13)C analysis of bulk (organic) material, (2) high precision delta(13)C and delta(18)O analysis of CO(2) in clean-air samples, and (3) stable isotope analysis of water samples using a high-temperature reaction with carbon. In addition, reference strategies on a laser ablation system for high spatial resolution delta(13)C analysis in tree rings is exemplified briefly.

  7. Rapid determination of bacterial abundance, biovolume, morphology, and growth by neural network-based image analysis

    PubMed

    Blackburn; Hagstrom; Wikner; Cuadros-Hansson; Bjornsen

    1998-09-01

    Annual bacterial plankton dynamics at several depths and locations in the Baltic Sea were studied by image analysis. Individual bacteria were classified by using an artificial neural network which also effectively identified nonbacterial objects. Cell counts and frequencies of dividing cells were determined, and the data obtained agreed well with visual observations and previously published values. Cell volumes were measured accurately by comparison with bead standards. The survey included 690 images from a total of 138 samples. Each image contained approximately 200 bacteria. The images were analyzed automatically at a rate of 100 images per h. Bacterial abundance exhibited coherent patterns with time and depth, and there were distinct subsurface peaks in the summer months. Four distinct morphological classes were resolved by the image analyzer, and the dynamics of each could be visualized. The bacterial growth rates estimated from frequencies of dividing cells were different from the bacterial growth rates estimated by the thymidine incorporation method. With minor modifications, the image analysis technique described here can be used to analyze other planktonic classes.

  8. Rapid Determination of Bacterial Abundance, Biovolume, Morphology, and Growth by Neural Network-Based Image Analysis

    PubMed Central

    Blackburn, Nicholas; Hagström, Åke; Wikner, Johan; Cuadros-Hansson, Rocio; Bjørnsen, Peter Koefoed

    1998-01-01

    Annual bacterial plankton dynamics at several depths and locations in the Baltic Sea were studied by image analysis. Individual bacteria were classified by using an artificial neural network which also effectively identified nonbacterial objects. Cell counts and frequencies of dividing cells were determined, and the data obtained agreed well with visual observations and previously published values. Cell volumes were measured accurately by comparison with bead standards. The survey included 690 images from a total of 138 samples. Each image contained approximately 200 bacteria. The images were analyzed automatically at a rate of 100 images per h. Bacterial abundance exhibited coherent patterns with time and depth, and there were distinct subsurface peaks in the summer months. Four distinct morphological classes were resolved by the image analyzer, and the dynamics of each could be visualized. The bacterial growth rates estimated from frequencies of dividing cells were different from the bacterial growth rates estimated by the thymidine incorporation method. With minor modifications, the image analysis technique described here can be used to analyze other planktonic classes. PMID:9726867

  9. Use of isotopic analysis of vertebrae in reconstructing ontogenetic feeding ecology in white sharks.

    PubMed

    Estrada, James A; Rice, Aaron N; Natanson, Lisa J; Skomal, Gregory B

    2006-04-01

    We conducted stable 13C and 15N analysis on white shark vertebrae and demonstrated that incremental analysis of isotopes along the radius of a vertebral centrum produces a chronological record of dietary information, allowing for reconstruction of an individual's trophic history. Isotopic data showed significant enrichments in 15N with increasing sampling distance from the centrum center, indicating a correlation between body size and trophic level. Additionally, isotopic values verified two distinct ontogenetic trophic shifts in the white shark: one following parturition, marking a dietary switch from yolk to fish; and one at a total length of >341 cm, representing a known diet shift from fish to marine mammals. Retrospective trophic-level reconstruction using vertebral tissue will have broad applications in future studies on the ecology of threatened, endangered, or extinct species to determine life-long feeding patterns, which would be impossible through other methods.

  10. Isotopic composition analysis and age dating of uranium samples by high resolution gamma ray spectrometry

    NASA Astrophysics Data System (ADS)

    Apostol, A. I.; Pantelica, A.; Sima, O.; Fugaru, V.

    2016-09-01

    Non-destructive methods were applied to determine the isotopic composition and the time elapsed since last chemical purification of nine uranium samples. The applied methods are based on measuring gamma and X radiations of uranium samples by high resolution low energy gamma spectrometric system with planar high purity germanium detector and low background gamma spectrometric system with coaxial high purity germanium detector. The ;Multigroup γ-ray Analysis Method for Uranium; (MGAU) code was used for the precise determination of samples' isotopic composition. The age of the samples was determined from the isotopic ratio 214Bi/234U. This ratio was calculated from the analyzed spectra of each uranium sample, using relative detection efficiency. Special attention is paid to the coincidence summing corrections that have to be taken into account when performing this type of analysis. In addition, an alternative approach for the age determination using full energy peak efficiencies obtained by Monte Carlo simulations with the GESPECOR code is described.

  11. Potential of the compound specific isotope analysis of individual amino acid for studying past nitrogen cycle

    NASA Astrophysics Data System (ADS)

    Choi, Bohyung; Shin, Kyung-Hoon

    2016-04-01

    The nitrogen isotope ratio of bulk sediment has been widely used for studying nitrogen cycle in the marine environment. However, since organic nitrogen in sediment is regarded as a mixture of organic matter, it is challenging to identify its exact sources. Recently, compound specific nitrogen isotope analysis of amino acid (CSIA AAs) has been introduced as a potential tool for complement of bulk nitrogen isotope since amino acid more directly reflects information on primary producer and trophic position. However, studies on CSIA of amino acid in sediments are scarce due to the complexities of the analytical method and relatively high analytica costl. In this study, we established a method of the CSIA AAs which is more suitable for the analysis of sediments and accessed if the CSIA AAs can be used for the study of past nitrogen cycle.

  12. Feasibility study of plutonium isotopic analysis of resin beads by nondestructive gamma-ray spectroscopy

    SciTech Connect

    Li, T.K.

    1985-01-01

    We have initiated a feasibility study on the use of nondestructive low-energy gamma-ray spectroscopy for plutonium isotopic analysis on resin beads. Seven resin bead samples were measured, with each sample containing an average of 9 ..mu..g of plutonium; the isotopic compositions of the samples varied over a wide range. The gamma-ray spectroscopy results, obtained from 4-h counting-time measurements, were compared with mass spectrometry results. The average ratios of gamma-ray spectroscopy to mass spectrometry were 1.014 +- 0.025 for /sup 238/Pu//sup 239/Pu, 0.996 +- 0.018 for /sup 240/Pu//sup 239/Pu, and 0.980 +- 0.038 for /sup 241/Pu//sup 239/Pu. The rapid, automated, and accurate nondestructive isotopic analysis of resin beads may be very useful to process technicians and International Atomic Energy Agency inspectors. 3 refs., 1 fig., 3 tabs.

  13. The influence of trophic level and feeding location of the levels of organochlorine contaminants in seabird eggs as revealed by stable carbon and nitrogen isotope analysis

    SciTech Connect

    Hobson, K.; Jarman, W.M.; Bott, J.A.; Bacon, C.E.; Sydeman, W.

    1994-12-31

    Seabird eggs have been used extensively to assay contaminants in marine food webs, but links to trophic level or feeding location have remained poorly understood due to limitations inherent in conventional dietary studies. Stable-isotope analysis of bird eggs may be used to infer trophic position and feeding location of adult seabirds and can be readily correlated with measurements of egg contaminant levels. The authors measured stable-carbon ({delta}{sup 13}C) and nitrogen ({delta}{sup 15}N) isotope abundance, and organochlorine contaminants (DDTs, PCBs, chlordanes, etc.) in eggs from Cassin`s Auklet (Ptychoramphus aleutica), Common Murre (Uria aalge), Pigeon Guillemot (Cepphus columba). Rhinoceros Auklet (Cerorhinca monocerata), Pelagic Cormorant (Phalacrocorax pelagicus), Brandt`s Cormorant (Phalacrocorax penicillatus), and Western Gull (Larus) from Southeast Farallon Island together with rockfish (Sebastes spp.), anchovy (Engraulis spp.), and euphausiid prey from the Gulf of the Farallones. Consistent with its planktivorous diet and pelagic feeding habits, Cassin`s Auklet showed the lowest mean {delta}{sup 15}N value and the least enriched {delta}{sup 13}C values. Measures of trophic level and foraging location were constructed for all other seabirds relative to these isotopic endpoints. Contaminant levels in the eggs and fish will be interpreted in light of the stable-isotope results.

  14. Coupling a high-temperature catalytic oxidation total organic carbon analyzer to an isotope ratio mass spectrometer to measure natural-abundance delta13C-dissolved organic carbon in marine and freshwater samples.

    PubMed

    Panetta, Robert J; Ibrahim, Mina; Gélinas, Yves

    2008-07-01

    The stable isotope composition of dissolved organic carbon (delta(13)C-DOC) provides powerful information toward understanding carbon sources and cycling, but analytical limitations have precluded its routine measurement in natural samples. Recent interfacing of wet oxidation-based dissolved organic carbon analyzers and isotope ratio mass spectrometers has simplified the measurement of delta(13)C-DOC in freshwaters, but the analysis of salty estuarine/marine samples still proves difficult. Here we describe the coupling of the more widespread high-temperature catalytic oxidation-based total organic carbon analyzer to an isotope ratio mass spectrometer (HTC-IRMS) through cryogenic trapping of analyte gases exiting the HTC analyzer for routine analysis of delta(13)C-DOC in aquatic and marine samples. Targeted elimination of major sources of background CO2 originating from the HTC analyzer allows for the routine measurement of samples over the natural range of DOC concentrations (from 40 microM to over 2000 microM), and salinities (<0.1-36 g/kg). Because consensus reference natural samples for delta(13)C-DOC do not exist, method validation was carried out with water-soluble stable isotope standards as well as previously measured natural samples (IAEA sucrose, Suwannee River Fulvic Acids, Deep Sargasso Sea consensus reference material, and St. Lawrence River water) and result in excellent delta(13)C-DOC accuracy (+/-0.2 per thousand) and precision (+/-0.3 per thousand).

  15. Monitoring of the aerobe biodegradation of chlorinated organic solvents by stable isotope analysis

    NASA Astrophysics Data System (ADS)

    Horváth, Anikó; Futó, István; Palcsu, László

    2014-05-01

    Our chemical-biological basic research aims to eliminate chlorinated environmental contaminants from aquifers around industrial areas in the frame of research program supported by the European Social Fund (TÁMOP-4.2.2.A-11/1/KONV-2012-0043). The most careful and simplest way includes the in situ biodegradation with the help of cultured and compound specific strains. Numerous members of Pseudomonas bacteria are famous about function of bioremediation. They can metabolism the environmental hazardous chemicals like gas oils, dyes, and organic solvents. Our research based on the Pseudomonas putida F1 strain, because its ability to degrade halogenated hydrocarbons such as trichloroethylene. Several methods were investigated to estimate the rate of biodegradation, such as the measurement of the concentration of the pollutant along the contamination pathway, the microcosm's studies or the compound specific stable isotope analysis. In this area in the Transcarpathian basin we are pioneers in the stable isotope monitoring of biodegradation. The main goal is to find stable isotope fractionation factors by stable isotope analysis, which can help us to estimate the rate and effectiveness of the biodegradation. The subsequent research period includes the investigation of the method, testing its feasibility and adaptation in the environment. Last but not least, the research gives an opportunity to identify the producer of the contaminant based on the stable isotope composition of the contaminant.

  16. Compound-specific stable isotope analysis of herbicides in stream water: a combined monitoring and modeling approach to assess pollutant degradation at catchment scale

    NASA Astrophysics Data System (ADS)

    Lutz, Stefanie; Van der Velde, Ype; Elsayed, Omniea; Imfeld, Gwenael; Lefrancq, Marie; Payraudeau, Sylvain; Van Breukelen, Boris

    2014-05-01

    Compound-specific stable isotope analysis (CSIA) measures the isotopic composition of a compound, i.e. the relative abundance of light and heavy stable isotopes of an element contained in the compound (e.g. 12C and 13C). As degradation processes may induce a change in isotopic composition (i.e. isotope fractionation), CSIA allows distinguishing degradation from non-destructive processes such as dilution or sorption. CSIA can be combined with model-assisted interpretation to evaluate degradation of contaminants in the environment. Although CSIA methods have also been developed for diffuse pollutants such as pesticides and nitrate, they have not yet been continuously applied in monitoring of diffuse pollution in surface water. Results of a virtual experiment of isotope fractionation at hillslope scale have suggested that CSIA qualifies as a feasible and useful complement to concentration measurements of diffuse pollutants (Lutz et al., 2013). We now present the first continuously measured concentration and carbon CSIA data of herbicides from a 49-ha agricultural catchment (Alsace, France). Stream concentrations of two chloroacetanilide herbicides, i.e. S-metolachlor and acetochlor, were highest (65 μg/L) following an extreme rainfall event in the first month after herbicide application, and subsequently decreased to background concentration level (0.1 μg/L). This decrease was accompanied by an increase of more than 2 ‰ in carbon isotope ratios, which was also observed in surface runoff samples from a plot experiment in the study catchment. The increase of carbon isotope ratios over time indicates the occurrence of herbicide degradation during transport to the stream, and thus demonstrates the advantage of CSIA over pesticide concentration measurements only. Despite providing evidence of herbicide degradation, the field CSIA data do not allow for a comprehensive characterization of herbicide sources, fate and transport in the study catchment. Therefore, we

  17. VARIATION IN JUVENILE COHO SALMON SUMMER ABUNDANCE: HIERARCHICAL ANALYSIS OF HABITAT EFFECTS

    EPA Science Inventory

    Varying habitat conditions found across a stream network during the summer months may limit the abundance of salmonids such as coho (Oncorhynchus kisutch). We examined the abundance of juvenile coho salmon across a stream network in an Oregon coast range basin from 2002 through ...

  18. High-precision isotopic analysis of palmitoylcarnitine by liquid chromatography/electrospray ionization ion-trap tandem mass spectrometry.

    PubMed

    Guo, ZengKui; Yarasheski, Kevin; Jensen, Michael D

    2006-01-01

    Single quadrupole gas chromatography/mass spectrometry (GC/MS) has been widely used for isotopic analysis in metabolic investigations using stable isotopes as tracers. However, its inherent shortcomings prohibit it from broader use, including low isotopic precision and the need for chemical derivatization of the analyte. In order to improve isotopic detection power, liquid chromatography/electrospray ionization ion-trap tandem mass spectrometry (LC/ESI-itMS2) has been evaluated for its isotopic precision and chemical sensitivity for the analysis of [13C]palmitoylcarnitine. Over the enrichment range of 0.4-10 MPE (molar % excess), the isotopic response of LC/ESI-itMS2 to [13C]palmitoylcarnitine was linear (r = 1.00) and the average isotopic precision (standard deviation, SD) was 0.11 MPE with an average coefficient of variation (CV) of 5.6%. At the lower end of isotopic enrichments (0.4-0.9 MPE), the isotopic precision was 0.05 MPE (CV = 8%). Routine analysis of rat skeletal muscle [13C4]palmitoylcarnitine demonstrated an isotopic precision of 0.03 MPE for gastrocnemius (n = 16) and of 0.02 MPE for tibialis anterior (n = 16). The high precision enabled the detection of a small (0.08 MPE) but significant (P = 0.01) difference in [13C4]palmitoylcarnitine enrichments between the two muscles, 0.51 MPE (CV = 5.8%) and 0.43 MPE (CV = 4.6%), respectively. Therefore, the system demonstrated an isotopic lower detection limit (LDL) of < or =0.1 MPE (2 x SD) that has been impossible previously with other organic mass spectrometry instruments. LC/ESI-itMS2 systems have the potential to advance metabolic investigations using stable isotopes to a new level by significantly increasing the isotopic solving power.

  19. Origin of the eclogitic clasts with graphite-bearing and graphite-free lithologies in the Northwest Africa 801 (CR2) chondrite: Possible origin from a Moon-sized planetary body inferred from chemistry, oxygen isotopes and REE abundances

    NASA Astrophysics Data System (ADS)

    Hiyagon, H.; Sugiura, N.; Kita, N. T.; Kimura, M.; Morishita, Y.; Takehana, Y.

    2016-08-01

    In order to clarify the origin of the eclogitic clasts found in the NWA801 (CR2) chondrite (Kimura et al., 2013), especially, that of the high pressure and temperature (P-T) condition (∼3 GPa and ∼1000 °C), we conducted ion microprobe analyses of oxygen isotopes and rare earth element (REE) abundances in the clasts. Oxygen isotopic compositions of the graphite-bearing lithology (GBL) and graphite-free lithology (GFL) show a slope ∼0.6 correlation slightly below the CR-CH-CB chondrites field in the O three-isotope-diagram, with a large variation for the former and almost homogeneous composition for the latter. The average REE abundances of the two lithologies show almost unfractionated patterns. Based on these newly obtained data, as well as mineralogical observations, bulk chemistry, and considerations about diffusion timescales for various elements, we discuss in detail the formation history of the clasts. Consistency of the geothermobarometers used by Kimura et al. (2013), suggesting equilibration of various elements among different mineral pairs, provides a strong constraint for the duration of the high P-T condition. We suggest that the high P-T condition lasted 102-103 years. This clearly precludes a shock high pressure (HP) model, and hence, strongly supports a static HP model. A static HP model requires a Moon-sized planetary body of ∼1500 km in radius. Furthermore, it implies two successive violent collisions, first at the formation of the large planetary body, when the clasts were placed its deep interior, and second, at the disruption of the large planetary body, when the clasts were expelled out of the parent body and later on transported to the accretion region of the CR chondrites. We also discuss possible origin of O isotopic variations in GBL, and presence/absence of graphite in GBL/GFL, respectively, in relation to smelting possibly occurred during the igneous process(es) which formed the two lithologies. Finally we present a possible

  20. Precise determination of the absolute isotopic abundance ratio and the atomic weight of chlorine in three international reference materials by the positive thermal ionization mass spectrometer-Cs2Cl+-graphite method.

    PubMed

    Wei, Hai-Zhen; Jiang, Shao-Yong; Xiao, Ying-Kai; Wang, Jun; Lu, Hai; Wu, Bin; Wu, He-Pin; Li, Qing; Luo, Chong-Guang

    2012-12-04

    Because the variation in chlorine isotopic abundances of naturally occurring chlorine bearing substances is significant, the IUPAC Inorganic Chemistry Division, Commission on Isotopic Abundances and Atomic Weights (CIAAW-IUPAC) decided that the uncertainty of atomic weight of chlorine (A(r)(Cl)) should be increased so that the implied range was related to terrestrial variability in 1999 (Coplen, T. B. Atomic weights of the elements 1999 (IUPAC Technical Report), Pure Appl. Chem.2001, 73(4), 667-683; and then, it emphasized that the standard atomic weights of ten elements including chlorine were not constants of nature but depend upon the physical, chemical, and nuclear history of the materials in 2009 (Wieser, M. E.; Coplen, T. B. Pure Appl. Chem.2011, 83(2), 359-396). According to the agreement by CIAAW that an atomic weight could be defined for one specified sample of terrestrial origin (Wieser, M. E.; Coplen, T. B. Pure Appl. Chem.2011, 83(2), 359-396), the absolute isotope ratios and atomic weight of chlorine in standard reference materials (NIST 975, NIST 975a, ISL 354) were accurately determined using the high-precision positive thermal ionization mass spectrometer (PTIMS)-Cs(2)Cl(+)-graphite method. After eliminating the weighing error caused from evaporation by designing a special weighing container and accurately determining the chlorine contents in two highly enriched Na(37)Cl and Na(35)Cl salts by the current constant coulometric titration, one series of gravimetric synthetic mixtures prepared from two highly enriched Na(37)Cl and Na(35)Cl salts was used to calibrate two thermal ionization mass spectrometers in two individual laboratories. The correction factors (i.e., K(37/35) = R(37/35meas)/R(37/35calc)) were obtained from five cycles of iterative calculations on the basis of calculated and determined R((37)Cl/(35)Cl) values in gravimetric synthetic mixtures. The absolute R((37)Cl/(35)Cl) ratios for NIST SRM 975, NIST 975a, and ISL 354 by the precise

  1. Isotopic analysis of uranium in natural waters by alpha spectrometry

    USGS Publications Warehouse

    Edwards, K.W.

    1968-01-01

    A method is described for the determination of U234/U238 activity ratios for uranium present in natural waters. The uranium is coprecipitated from solution with aluminum phosphate, extracted into ethyl acetate, further purified by ion exchange, and finally electroplated on a titanium disc for counting. The individual isotopes are determined by measurement of the alpha-particle energy spectrum using a high resolution low-background alpha spectrometer. Overall chemical recovery of about 90 percent and a counting efficiency of 25 percent allow analyses of water samples containing as little as 0.10 ?g/l of uranium. The accuracy of the method is limited, on most samples, primarily by counting statistics.

  2. Compound-Specific Isotope Analysis of Nitroaromatic Contaminant Transformations by Nitroarene Dioxygenases

    NASA Astrophysics Data System (ADS)

    Pati, Sarah G.; Kohler, Hans-Peter E.; Hofstetter, Thomas B.

    2014-05-01

    Dioxygenation is an important biochemical reaction that often initiates the mineralization of recalcitrant organic contaminants such as nitroaromatic explosives, chlorinated benzenes, and polycyclic aromatic hydrocarbons. However, to assess the extent of dioxygenation in contaminated environments is difficult because of competing transformation processes and further reactions of the dioxygenation products. Compound-specific isotope analysis (CSIA) offers a new approach to reliably quantify biodegradation initiated by dioxygenation based on changes in stable isotope ratios of the pollutant. For CSIA it is essential to know the kinetic isotope effects (KIEs) pertinent to the dioxygenation mechanism of organic contaminants. Unfortunately, the range of KIEs of such reactions is poorly constrained although many dioxygenase enzymes with a broad substrate specificity have been reported. Dioxygenase enzymes usually exhibit complex reaction kinetics involving multiple substrates and substrate-specific binding modes which makes the determination of KIEs challenging. The goal of this study was to explore the magnitude and variability of 13C-, 2H-, and 15N-KIEs for the dioxygenation of one contaminant class, that is nitroaromatic contaminants (NACs). To this end, we investigated the C, H, and N isotope fractionation during the dioxygenation of nitrobenzene (NB), 2-nitrotoluene (2-NT), and 3-nitrotoluene (3-NT) by pure cultures, E. coli clones, cell extracts, and purified enzymes. From isotope fractionations measured in the substrates and reaction products, we determined dioxygenation KIEs for different combinations of the three substrates with nitrobenzene dioxygenase (NBDO) and 2-nitrotoluene dioxygenase (2NTDO). The 13C-, 2H-, and 15N-KIEs for the dioxygenation of NB by NBDO were consistent for all experimental systems considered (i.e., Comamonas sp. Strain JS765, E. coli clones, cell extracts of E. coli clones, and purified NBDO). This observation suggests that the isotope

  3. Sulfur isotopic analysis of carbonyl sulfide and its application for biogeochemical cycles

    NASA Astrophysics Data System (ADS)

    Hattori, Shohei; Kamezaki, Kazuki; Ogawa, Takahiro; Toyoda, Sakae; Katayama, Yoko; Yoshida, Naohiro

    2016-04-01

    Carbonyl sulfide (OCS or COS) is the most abundant gas containing sulfur in the atmosphere, with an average mixing ratio of 500 p.p.t.v. in the troposphere. OCS is suggested as a sulfur source of the stratospheric sulfate aerosols (SSA) which plays an important role in Earth's radiation budget and ozone depletion. Therefore, OCS budget should be validated for prediction of climate change, but the global OCS budget is imbalance. Recently we developed a promising new analytical method for measuring the stable sulfur isotopic compositions of OCS using nanomole level samples: the direct isotopic analytical technique of on-line gas chromatography-isotope ratio mass spectrometry (GC-IRMS) using fragmentation ions S+ (Hattori et al., 2015). The first measurement of the δ34S value for atmospheric OCS coupled with isotopic fractionation for OCS sink reactions in the stratosphere (Hattori et al., 2011; Schmidt et al., 2012; Hattori et al., 2012) explains the reported δ34S value for background stratospheric sulfate, suggesting that OCS is a potentially important source for background (nonepisodic or nonvolcanic) stratospheric sulfate aerosols. This new method measuring δ34S values of OCS can be used to investigate OCS sources and sinks in the troposphere to better understand its cycle. It is known that some microorganisms in soil can degrade OCS, but the mechanism and the contribution to the OCS in the air are still uncertain. In order to determine sulfur isotopic enrichment factor of OCS during degradation via microorganisms, incubation experiments were conducted using strains belonging to the genera Mycobacterium, Williamsia and Cupriavidus, isolated from natural soil environments (Kato et al., 2008). As a result, sulfur isotope ratios of OCS were increased during degradation of OCS, indicating that reaction for OC32S is faster than that for OC33S and OC34S. OCS degradation via microorganisms is not mass-independent fractionation (MIF) process, suggesting that this

  4. Compound-Specific Chlorine Isotope Analysis of Tetrachloromethane and Trichloromethane by Gas Chromatography-Isotope Ratio Mass Spectrometry vs Gas Chromatography-Quadrupole Mass Spectrometry: Method Development and Evaluation of Precision and Trueness.

    PubMed

    Heckel, Benjamin; Rodríguez-Fernández, Diana; Torrentó, Clara; Meyer, Armin; Palau, Jordi; Domènech, Cristina; Rosell, Mònica; Soler, Albert; Hunkeler, Daniel; Elsner, Martin

    2017-03-21

    Compound-specific chlorine isotope analysis of tetrachloromethane (CCl4) and trichloromethane (CHCl3) was explored by both, gas chromatography-isotope ratio mass spectrometry (GC-IRMS) and GC-quadrupole MS (GC-qMS), where GC-qMS was validated in an interlaboratory comparison between Munich and Neuchâtel with the same type of commercial GC-qMS instrument. GC-IRMS measurements analyzed CCl isotopologue ions, whereas GC-qMS analyzed the isotopologue ions CCl3, CCl2, CCl (of CCl4) and CHCl3, CHCl2, CHCl (of CHCl3), respectively. Lowest amount dependence (good linearity) was obtained (i) in H-containing fragment ions where interference of (35)Cl- to (37)Cl-containing ions was avoided; (ii) with tuning parameters favoring one predominant rather than multiple fragment ions in the mass spectra. Optimized GC-qMS parameters (dwell time 70 ms, 2 most abundant ions) resulted in standard deviations of 0.2‰ (CHCl3) and 0.4‰ (CCl4), which are only about twice as large as 0.1‰ and 0.2‰ for GC-IRMS. To compare also the trueness of both methods and laboratories, samples from CCl4 and CHCl3 degradation experiments were analyzed and calibrated against isotopically different reference standards for both CCl4 and CHCl3 (two of each). Excellent agreement confirms that true results can be obtained by both methods provided that a consistent set of isotopically characterized reference materials is used.

  5. Effects of nitrate and water on the oxygen isotopic analysis of barium sulfate precipitated from solution

    USGS Publications Warehouse

    Hannon, Janet E.; Bohlke, Johnkarl F.; Mroczkowski, Stanley J.

    2008-01-01

    BaSO4 precipitated from mixed salt solutions by common techniques for SO isotopic analysis may contain quantities of H2O and NOthat introduce errors in O isotope measurements. Experiments with synthetic solutions indicate that δ18O values of CO produced by decomposition of precipitated BaSO4 in a carbon reactor may be either too low or too high, depending on the relative concentrations of SO and NO and the δ18O values of the H2O, NO, and SO. Typical δ18O errors are of the order of 0.5 to 1‰ in many sample types, and can be larger in samples containing atmospheric NO, which can cause similar errors in δ17O and Δ17O. These errors can be reduced by (1) ion chromatographic separation of SO from NO, (2) increasing the salinity of the solutions before precipitating BaSO4 to minimize incorporation of H2O, (3) heating BaSO4 under vacuum to remove H2O, (4) preparing isotopic reference materials as aqueous samples to mimic the conditions of the samples, and (5) adjusting measured δ18O values based on amounts and isotopic compositions of coexisting H2O and NO. These procedures are demonstrated for SO isotopic reference materials, synthetic solutions with isotopically known reagents, atmospheric deposition from Shenandoah National Park, Virginia, USA, and sulfate salt deposits from the Atacama Desert, Chile, and Mojave Desert, California, USA. These results have implications for the calibration and use of O isotope data in studies of SOsources and reaction mechanisms.

  6. Enhanced understanding of ectoparasite: host trophic linkages on coral reefs through stable isotope analysis

    USGS Publications Warehouse

    Demopoulos, Amanda W. J.; Sikkel, Paul C.

    2015-01-01

    Parasitism, although the most common type of ecological interaction, is usually ignored in food web models and studies of trophic connectivity. Stable isotope analysis is widely used in assessing the flow of energy in ecological communities and thus is a potentially valuable tool in understanding the cryptic trophic relationships mediated by parasites. In an effort to assess the utility of stable isotope analysis in understanding the role of parasites in complex coral-reef trophic systems, we performed stable isotope analysis on three common Caribbean reef fish hosts and two kinds of ectoparasitic isopods: temporarily parasitic gnathiids (Gnathia marleyi) and permanently parasitic cymothoids (Anilocra). To further track the transfer of fish-derived carbon (energy) from parasites to parasite consumers, gnathiids from host fish were also fed to captive Pederson shrimp (Ancylomenes pedersoni) for at least 1 month. Parasitic isopods had δ13C and δ15N values similar to their host, comparable with results from the small number of other host–parasite studies that have employed stable isotopes. Adult gnathiids were enriched in 15N and depleted in13C relative to juvenile gnathiids, providing insights into the potential isotopic fractionation associated with blood-meal assimilation and subsequent metamorphosis. Gnathiid-fed Pedersen shrimp also had δ13C values consistent with their food source and enriched in 15N as predicted due to trophic fractionation. These results further indicate that stable isotopes can be an effective tool in deciphering cryptic feeding relationships involving parasites and their consumers, and the role of parasites and cleaners in carbon transfer in coral-reef ecosystems specifically.

  7. Enhanced understanding of ectoparasite–host trophic linkages on coral reefs through stable isotope analysis

    PubMed Central

    Demopoulos, Amanda W.J.; Sikkel, Paul C.

    2015-01-01

    Parasitism, although the most common type of ecological interaction, is usually ignored in food web models and studies of trophic connectivity. Stable isotope analysis is widely used in assessing the flow of energy in ecological communities and thus is a potentially valuable tool in understanding the cryptic trophic relationships mediated by parasites. In an effort to assess the utility of stable isotope analysis in understanding the role of parasites in complex coral-reef trophic systems, we performed stable isotope analysis on three common Caribbean reef fish hosts and two kinds of ectoparasitic isopods: temporarily parasitic gnathiids (Gnathia marleyi) and permanently parasitic cymothoids (Anilocra). To further track the transfer of fish-derived carbon (energy) from parasites to parasite consumers, gnathiids from host fish were also fed to captive Pederson shrimp (Ancylomenes pedersoni) for at least 1 month. Parasitic isopods had δ13C and δ15N values similar to their host, comparable with results from the small number of other host–parasite studies that have employed stable isotopes. Adult gnathiids were enriched in 15N and depleted in 13C relative to juvenile gnathiids, providing insights into the potential isotopic fractionation associated with blood-meal assimilation and subsequent metamorphosis. Gnathiid-fed Pedersen shrimp also had δ13C values consistent with their food source and enriched in 15N as predicted due to trophic fractionation. These results further indicate that stable isotopes can be an effective tool in deciphering cryptic feeding relationships involving parasites and their consumers, and the role of parasites and cleaners in carbon transfer in coral-reef ecosystems specifically. PMID:25830112

  8. Chemical Imaging and Stable Isotope Analysis of Atmospheric Particles by NanoSIMS (Invited)

    NASA Astrophysics Data System (ADS)

    Sinha, B.; Harris, E. J.; Pöhlker, C.; Wiedemann, K. T.; van Pinxteren, D.; Tilgner, A.; Fomba, K. W.; Schneider, J.; Roth, A.; Gnauk, T.; Fahlbusch, B.; Mertes, S.; Lee, T.; Collett, J. L.; Shiraiwa, M.; Gunthe, S. S.; Smith, M.; Artaxo, P. P.; Gilles, M.; Kilcoyne, A. L.; Moffet, R.; Weigand, M.; Martin, S. T.; Poeschl, U.; Andreae, M. O.; Hoppe, P.; Herrmann, H.; Borrmann, S.

    2013-12-01

    Chemical imaging analysis of the internal distribution of chemical compounds by a combination of SEM-EDX, and NanoSIMS allows investigating the physico-chemical properties and isotopic composition of individual aerosol particles. Stable sulphur isotope analysis provides insight into the sources, sinks and oxidation pathways of SO2 in the environment. Oxidation by OH radicals, O3 and H2O2 enriches the heavier isotope in the product sulphate, whereas oxidation by transition metal ions (TMI), hypohalites and hypohalous acids depletes the heavier isotope in the product sulphate. The isotope fractionation during SO2 oxidation by stabilized Criegee Intermediate radicals is unknown. We studied the relationship between aerosol chemical composition and predominant sulphate formation pathways in continental clouds in Central Europe and during the wet season in the Amazon rain forest. Sulphate formation in continental clouds in Central Europe was studied during HCCT-2010, a lagrangian-type field experiment, during which an orographic cloud was used as a natural flow-through reactor to study in-cloud aerosol processing (Harris et al. 2013). Sulphur isotopic compositions in SO2 and H2SO4 gas and particulate sulphate were measured and changes in the sulphur isotope composition of SO2 between the upwind and downwind measurement sites were used to determine the dominant SO2 chemical removal process occurring in the cloud. Changes in the isotopic composition of particulate sulphate revealed that transition metal catalysis pathway was the dominant SO2 oxidation pathway. This reaction occurred primarily on coarse mineral dust particles. Thus, sulphate produced due to in-cloud SO2 oxidation is removed relatively quickly from the atmosphere and has a minor climatic effect. The aerosol samples from the Amazonian rainforest, a pristine tropical environment, were collected during the rainy season. The samples were found to be dominated by SOA particles in the fine mode and primary

  9. Oxygen isotope analysis of fossil organic matter by secondary ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Tartèse, Romain; Chaussidon, Marc; Gurenko, Andrey; Delarue, Frédéric; Robert, François

    2016-06-01

    We have developed an analytical procedure for the measurement of oxygen isotope composition of fossil organic matter by secondary ion mass spectrometry (SIMS) at the sub-per mill level, with a spatial resolution of 20-30 μm. The oxygen isotope composition of coal and kerogen samples determined by SIMS are on average consistent with the bulk oxygen isotope compositions determined by temperature conversion elemental analysis - isotope ratio mass spectrometry (TC/EA-IRMS), but display large spreads of δ18O of ∼5-10‰, attributed to mixing of remnants of organic compounds with distinct δ18O signatures. Most of the δ18O values obtained on two kerogen residues extracted from the Eocene Clarno and Early Devonian Rhynie continental chert samples and on two immature coal samples range between ∼10‰ and ∼25‰. Based on the average δ18O values of these samples, and on the O isotope composition of water processed by plants that now constitute the Eocene Clarno kerogen, we estimated δ18Owater values ranging between around -11‰ and -1‰, which overall correspond well within the range of O isotope compositions for present-day continental waters. SIMS analyses of cyanobacteria-derived organic matter from the Silurian Zdanow chert sample yielded δ18O values in the range 12-20‰. Based on the O isotope composition measured on recent cyanobacteria from the hypersaline Lake Natron (Tanzania), and on the O isotope composition of the lake waters in which they lived, we propose that δ18O values of cyanobacteria remnants are enriched by about ∼18 ± 2‰ to 22 ± 2‰ relative to coeval waters. This relationship suggests that deep ocean waters in which the Zdanow cyanobacteria lived during Early Silurian times were characterised by δ18O values of around -5 ± 4‰. This study, establishing the feasibility of micro-analysis of Phanerozoic fossil organic matter samples by SIMS, opens the way for future investigations of kerogens preserved in Archean cherts and of the

  10. Mucus: A new tissue fraction for rapid determination of fish diet switching using stable isotope analysis

    EPA Science Inventory

    Stable isotope analysis of diet switching by fishes often is hampered by slow turnover rates of the tissues analyzed (usually muscle or fins). We examined epidermal mucus as a potentially faster turnover “tissue” that might provide a more rapid assessment of diet switching. In a ...

  11. GRPAUT: a program for Pu isotopic analysis (a user's guide). ISPO task A. 76

    SciTech Connect

    Fleissner, J G

    1981-01-30

    GRPAUT is a modular program for performing automated Pu isotopic analysis supplied to the International Atomic Energy Agency (IAEA) per ISPO Task A.76. Section I of this user's guide for GRPAUT presents an overview of the various programs and disk files that are used in performing a Pu isotopic analysis. Section II describes the program GRFEDT which is used in creating and editing the analysis parameter file that contains all the spectroscopic information needed at runtime by GRPAUT. An example of the dialog and output of GRFEDT is shown in Appendix B. Section III describes the operation of the various GRPAUT modules: GRPNL2, the peak stripping module; EFFCH2, the efficiency calculation module; and ISOAUT, the isotopic calculation module. (A description of the peak fitting methodology employed by GRPNL2 is presented in Appendix A.) Finally, Section IV outlines the procedure for determining the peak shape constants for a detector system and describes the operation of the program used to create and edit the peak shape parameter files. An output of GRPAUT, showing an example of a complete isotopic analysis, is presented in Appendix C. Source listings of all the Fortran programs supplied to the Agency under ISPO Task A.76 are contained in Appendix E.

  12. Linking ramped pyrolysis isotope data to oil content through PAH analysis

    NASA Astrophysics Data System (ADS)

    Pendergraft, Matthew A.; Dincer, Zeynep; Sericano, José L.; Wade, Terry L.; Kolasinski, Joanna; Rosenheim, Brad E.

    2013-12-01

    Ramped pyrolysis isotope (13C and 14C) analysis coupled with polycyclic aromatic hydrocarbon (PAH) analysis demonstrates the utility of ramped pyrolysis in screening for oil content in sediments. Here, sediments from Barataria Bay, Louisiana, USA that were contaminated by oil from the 2010 BP Deepwater Horizon spill display relationships between oil contamination, pyrolysis profiles, and isotopic composition. Sediment samples with low PAH concentrations are thermochemically stable until higher temperatures, while samples containing high concentrations of PAHs pyrolyze at low temperatures. High PAH samples are also depleted in radiocarbon (14C), especially in the fractions that pyrolyze at low temperatures. This lack of radiocarbon in low temperature pyrolyzates is indicative of thermochemically unstable, 14C-free oil content. This study presents a proof of concept that oil contamination can be identified by changes in thermochemical stability in organic material and corroborated by isotope analysis of individual pyrolyzates, thereby providing a basis for application of ramped pyrolysis isotope analysis to samples deposited in different environments for different lengths of time.

  13. Grazing food web view from compound-specific stable isotope analysis of amino acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of the trophic position (TP) of organisms in food webs allows ecologists to track energy flow and trophic linkages among organisms in complex networks of ecosystems. Compound-specific stable isotope analysis (CSIA) of amino acids has been employed as a relatively new method with the high p...

  14. Analysis of tarnished plant bug movement using carbon and nitrogen isotopes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tarnished plant bug, Lygus lineolaris (Palisot de Beauvois), is the primary pest of cotton across the Midsouth of the United States. Movement into cotton fields occurs during the summer from other host plants, both cultivated and wild. Stable isotope analysis (SIA) has been used in other studies to ...

  15. Mucus: a new tissue fraction for rapid determination of fish diet switching using stable isotope analysis.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stable isotope analysis of diet switching by fishes is often hampered by slow turnover rates of the tissues analyzed (usually muscle or fins). We examined epidermal mucus as a potentially faster turnover “tissue” that might provide a more rapid assessment of diet switching. In a controlled hatchery...

  16. Isotopic Dilution Analysis and Secular Equilibrium Study: Two Complementary Radiochemistry Experiments.

    ERIC Educational Resources Information Center

    Williams, Kathryn R.; Lipford, Levin C.

    1985-01-01

    Describes a complementary pair of radiochemistry experiments for instruction of isotopic dilution analysis and secular equilibrium. Both experiments use the readily available cesium-137 nuclide and the simple precipitation technique for cesium with the tetraphenylborate anion. Procedures used and typical results obtained are provided and…

  17. A Very Much Faster and More Sensitive In Situ Stable Isotope Analysis Instrument

    NASA Astrophysics Data System (ADS)

    Coleman, M.; Christensen, L. E.; Kriesel, J. M.; Kelly, J. F.; Moran, J. J.; Vance, S.

    2016-10-01

    We are developing, Capillary Absorption Spectrometry (CAS) for H and O stable isotope analyses, giving > 4 orders of magnitude improved sensitivity, allowing analysis of 5 nano-moles of water and coupled to laser sampling to free water from hydrated minerals and ice.

  18. Bayesian change point analysis of abundance trends for pelagic fishes in the upper San Francisco Estuary

    USGS Publications Warehouse

    Thompson, James R.; Kimmerer, Wim J.; Brown, Larry R.; Newman, Ken B.; Mac Nally, Ralph; Bennett, William A.; Feyrer, Frederick; Fleishman, Erica

    2010-01-01

    We examined trends in abundance of four pelagic fish species (delta smelt, longfin smelt, striped bass, and threadfin shad) in the upper San Francisco Estuary, California, USA, over 40 years using Bayesian change point models. Change point models identify times of abrupt or unusual changes in absolute abundance (step changes) or in rates of change in abundance (trend changes). We coupled Bayesian model selection with linear regression splines to identify biotic or abiotic covariates with the strongest associations with abundances of each species. We then refitted change point models conditional on the selected covariates to explore whether those covariates could explain statistical trends or change points in species abundances. We also fitted a multispecies change point model that identified change points common to all species. All models included hierarchical structures to model data uncertainties, including observation errors and missing covariate values. There were step declines in abundances of all four species in the early 2000s, with a likely common decline in 2002. Abiotic variables, including water clarity, position of the 2‰ isohaline (X2), and the volume of freshwater exported from the estuary, explained some variation in species' abundances over the time series, but no selected covariates could explain statistically the post-2000 change points for any species.

  19. High-resolution elemental abundance analysis of the open cluster IC 4756

    NASA Astrophysics Data System (ADS)

    Ting, Yuan-Sen; De Silva, Gayandhi M.; Freeman, Kenneth C.; Parker, Stacey Jo

    2012-11-01

    We present detailed elemental abundances of 12 subgiants in the open cluster IC 4756 including Na, Al, Mg, Si, Ca, Ti, Cr, Ni, Fe, Zn and Ba. We measure the cluster to have [Fe/H] = -0.01 ± 0.10. Most of the measured star-to-star [X/H] abundance variation is below σ < 0.03, as expected from a coeval stellar population preserving natal abundance patterns, supporting the use of elemental abundances as a probe to reconstruct dispersed clusters. We find discrepancies between Cr I and Cr II abundances as well as between Ti I and Ti II abundances, where the ionized abundances are larger by about 0.2 dex. This follows other such studies which demonstrate the effects of overionization in cool stars. IC 4756 are supersolar in Mg, Si, Na and Al, but are solar in the other elements. The fact that IC 4756 is supersolar in some α-elements (Mg, Si) but solar in the others (Ca, Ti) suggests that the production of α-elements is not simply one dimensional and could be exploited for chemical tagging.

  20. Isolation and derivatization of plasma taurine for stable isotope analysis by gas chromatography-mass spectrometry

    SciTech Connect

    Irving, C.S.; Klein, P.D.

    1980-09-01

    A method for the isolation and derivatization of plasma taurine is described that allows stable isotope determinations of taurine to be made by gas chromatography-mass spectrometry. The isolation procedure can be applied to 0.1 ml of plasma; the recovery of plasma taurine was 70 to 80%. For gc separation, taurine was converted to its dimethylaminomethylene methyl ester derivative which could not be detected by hydrogen flame ionization, but could be monitored readily by NH/sub 3/ chemical ionization mass spectrometry. The derivatization reaction occurred partially on-column and required optimization of injection conditions. Using stable isotope ratiometry multiple ion detection, (M + 2 + H)/sup +//(M + H)/sup +/ ion ratio of natural abundance taurine was determined with a standard deviation of less than +-0.07% of the ratio. The (1,2-/sup 13/C)taurine/taurine mole ratios of standard mixtures could be accurately determined to 0.001. This stable isotope gc-ms method is suitable for studying the plasma kinetics of (1,2-/sup 13/C)taurine in infants who are at risk with respect to taurine depletion.

  1. Relativistic astrophysics. [design analysis and performance tests of Cerenkov counters for detection of iron isotopes

    NASA Technical Reports Server (NTRS)

    Price, P. B.

    1976-01-01

    The design, experimental testing, and calibration (error analysis) of a high resolution Cerenkov-scintillation detector is presented. The detector is capable of detecting iron isotopes and heavy ions of cosmic rays, and of performing direct measurements of individual neighboring isotopes at charge resolution 26. It utilizes Lexan (trademark) sheets, and has been used in flight packages of balloons and on the Skylab. The detector will be able to provide more information on violet astrophysical processes, such as thermonuclear reactions on neutron stars. Ground support and display equipment which are to be used in conjunction with the detector are also discussed.

  2. INCA: a computational platform for isotopically non-stationary metabolic flux analysis.

    PubMed

    Young, Jamey D

    2014-05-01

    13C flux analysis studies have become an essential component of metabolic engineering research. The scope of these studies has gradually expanded to include both isotopically steady-state and transient labeling experiments, the latter of which are uniquely applicable to photosynthetic organisms and slow-to-label mammalian cell cultures. Isotopomer network compartmental analysis (INCA) is the first publicly available software package that can perform both steady-state metabolic flux analysis and isotopically non-stationary metabolic flux analysis. The software provides a framework for comprehensive analysis of metabolic networks using mass balances and elementary metabolite unit balances. The generation of balance equations and their computational solution is completely automated and can be performed on networks of arbitrary complexity.

  3. Linking cases of illegal shootings of the endangered California condor using stable lead isotope analysis.

    PubMed

    Finkelstein, Myra E; Kuspa, Zeka E; Welch, Alacia; Eng, Curtis; Clark, Michael; Burnett, Joseph; Smith, Donald R

    2014-10-01

    Lead poisoning is preventing the recovery of the critically endangered California condor (Gymnogyps californianus) and lead isotope analyses have demonstrated that ingestion of spent lead ammunition is the principal source of lead poisoning in condors. Over an 8 month period in 2009, three lead-poisoned condors were independently presented with birdshot embedded in their tissues, evidencing they had been shot. No information connecting these illegal shooting events existed and the timing of the shooting(s) was unknown. Using lead concentration and stable lead isotope analyses of feathers, blood, and recovered birdshot, we observed that: i) lead isotope ratios of embedded shot from all three birds were measurably indistinguishable from each other, suggesting a common source; ii) lead exposure histories re-constructed from feather analysis suggested that the shooting(s) occurred within the same timeframe; and iii) two of the three condors were lead poisoned from a lead source isotopically indistinguishable from the embedded birdshot, implicating ingestion of this type of birdshot as the source of poisoning. One of the condors was subsequently lead poisoned the following year from ingestion of a lead buckshot (blood lead 556 µg/dL), illustrating that ingested shot possess a substantially greater lead poisoning risk compared to embedded shot retained in tissue (blood lead ~20 µg/dL). To our knowledge, this is the first study to use lead isotopes as a tool to retrospectively link wildlife shooting events.

  4. Compound Specific Isotope Analysis of Fatty Acids in Southern African Aerosols

    NASA Astrophysics Data System (ADS)

    Billmark, K. A.; Macko, S. A.; Swap, R. J.

    2003-12-01

    This study, conducted as a part of the Southern African Regional Science Initiative (SAFARI 2000), applied compound specific isotope analysis to describe aerosols at source regions and rural locations. Stable carbon isotopic compositions of individual fatty acids were determined for aerosol samples collected at four sites throughout southern Africa. Mongu, Zambia and Skukuza, South Africa were chosen for their location within intense seasonal Miombo woodland savanna and bushveld savanna biomass burning source regions, respectively. Urban aerosols were collected at Johannesburg, South Africa and rural samples were collected at Sua Pan, Botswana. Fatty acid isotopic compositions varied temporally. Urban aerosols showed significant isotopic enrichment of selected short chain fatty acids (C < 20) compared to aerosols produced during biomass combustion. Sua Pan short chain fatty acid signatures were significantly different from the other non-urban sites, which suggests that sources other than biomass combustion products, such as organic eolian material, impact the Sua Pan aerosol profile. However, a high degree of correlation between Sua Pan and Skukuza long chain fatty acid δ 13C values confirm atmospheric linkages between the two areas and that isotopic signatures of combusted fatty acids are unaltered during atmospheric transport highlighting their potential for use as a conservative tracer.

  5. Stable carbon isotope analysis of coprocessing materials: Quarterly technical progress report, October 1--December 31, 1988

    SciTech Connect

    Burke, F.P.; Winschel, R.A.; Lancet, M.S.

    1989-03-01

    Consol R and D will develop and demonstrate stable carbon isotope analysis as a method to quantitatively distinguish coal-derived and petroleum-derived carbon in products from coal/petroleum coprocessing. The approach taken will be to develop the method, then demonstrate its application on authentic continuous-unit products. The significance of selective isotopic fractionation will be determined and, if necessary, corrections will be applied to account for it. Precision, accuracy and range of applicability will be defined. The value of accessory analytical techniques will also be assessed. Results achieved this quarter include: feed and product fractions from hydroprocessing bench unit runs at the Kentucky Center for Applied Energy Research (CAER) were received, and samples from a Kentucky tar sand bitumen-only run were analyzed for carbon isotope ratios. Repeat carbon isotope analyses of seven samples from HRI Coprocessing Run 227-53 resulted in improved carbon balances for one run period. Athabasca ASB, Cold Lake ASB and Maya ASB were fractionated by distillation and solubility fractionation to determine the homogeneity of each petroleum with respect to carbon isotope ratios. 9 figs., 2 tabs.

  6. Collection of NO and NO2 for isotopic analysis of NO(x) emissions.

    PubMed

    Fibiger, Dorothy L; Hastings, Meredith G; Lew, Audrey F; Peltier, Richard E

    2014-12-16

    There have been several measurements made of the nitrogen isotopic composition of gaseous NOx (NOx = NO + NO2) from various emission sources, utilizing a wide variety of methods to collect the NOx in solution as nitrate or nitrite. However, previous collection techniques have not been verified for complete or efficient capture of NOx such that the isotopic composition of NOx remains unaltered during collection. Here, we present a method of collecting NOx (NO + NO2) in solution as nitrate to evaluate the nitrogen isotopic composition of the NOx (δ(15)N-NOx). Using a 0.25 M KMnO4 and 0.5 M NaOH solution, quantitative NOx collection was achieved under a variety of conditions in laboratory and field settings, allowing for isotopic analysis without correcting for fractionations. The uncertainty across the entire analytic procedure is ±1.5‰ (1σ). With this method, a more robust inventory of NOx source isotopic composition is possible, which has implications for studies of air quality and acid deposition.

  7. Detailed Abundance Analysis of a Metal-poor Giant in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Ryde, N.; Fritz, T. K.; Rich, R. M.; Thorsbro, B.; Schultheis, M.; Origlia, L.; Chatzopoulos, S.

    2016-11-01

    We report the first results from our program to examine the metallicity distribution of the Milky Way nuclear star cluster connected to Sgr A*, with the goal of inferring the star formation and enrichment history of this system, as well as its connection and relationship with the central 100 pc of the bulge/bar system. We present the first high-resolution (R ˜ 24,000), detailed abundance analysis of a K = 10.2 metal-poor, alpha-enhanced red giant projected at 1.5 pc from the Galactic center, using NIRSPEC on Keck II. A careful analysis of the dynamics and color of the star locates it at about {26}-16+54 pc line-of-sight distance in front of the nuclear cluster. It probably belongs to one of the nuclear components (cluster or disk), not to the bar/bulge or classical disk. A detailed spectroscopic synthesis, using a new line list in the K band, finds [Fe/H] ˜ -1.0 and [α/Fe] ˜ +0.4, consistent with stars of similar metallicity in the bulge. As known giants with comparable [Fe/H] and alpha enhancement are old, we conclude that this star is most likely to be a representative of the ˜10 Gyr old population. This is also the most metal-poor-confirmed red giant yet discovered in the vicinity of the nuclear cluster of the Galactic center. We consider recent reports in the literature of a surprisingly large number of metal-poor giants in the Galactic center, but the reported gravity of {log}g˜ 4 for these stars calls into question their reported metallicities.

  8. Understanding N2O sources and sinks with laser based isotopic analysis

    NASA Astrophysics Data System (ADS)

    Mohn, J.

    2015-12-01

    Nitrous oxide (N2O) is a potent greenhouse gas and the strongest stratospheric ozone-destroying substance released in the 21st century. Main N2O emissions are linked to different microbial pathways, therefore sources are disperse and highly variable, complicating their interpretation. Isotopic measurements have great potential to distinguish between individual source and sink processes. Developments in laser spectroscopy allow both the intramolecular distribution of 15N substitutions (15N14N16O versus 14N15N16O) and the oxygen isotopic composition of N2O to be measured in real-time, at high precision and in excellent compatibility to IRMS [1]. In a number of laboratory and pilot plant studies we investigated the isotopic signature of distinct microbial and abiotic N2O production and consumption pathways in soil and aqueous solution [e.g. 2-4]. Specific pathways were favoured by selection of the nitrogen substrates and process conditions and their isotopic signatures identified by real-time laser spectroscopic analysis. Results from our laboratory studies are in accordance with pure culture experiments and can therefore be applied to other ecosystems. High precision isotopic analysis at ambient N2O concentration is feasible by combining laser spectroscopy with automated preconcentration. Field deployment was demonstrated by real-time monitoring of the isotopic composition of N2O emissions above an intensively managed grassland in central Switzerland. The responses of the N2O isotopic signatures were analysed with respect to management events and climatic conditions [5]. In a follow-up project we combine real-time N2O isotopic analysis at a tall tower in central Switzerland with atmospheric transport simulations and a biogeochemical model of surface fluxes of N2O isotopomers. The working hypothesis is that this approach will allow us to quantify regional N2O sources, identify emission hot spots, and constrain source processes, which will significantly advance our

  9. Studies on accuracy of trichothecene multitoxin analysis using stable isotope dilution assays.

    PubMed

    Asam, S; Rychlik, M

    2007-12-01

    Critical parameters in mycotoxin analysis were examined by using stable isotope-labelled tricho-thecenes. Sample weight was downsized to 1 g without loosing precision when sufficiently homogenized samples were taken for analysis. Complete extraction of trichothecenes could be achieved with a solvent mixture of acetonitrile+water (84+16; v+v) even without the use of stable isotope labelled standards. However, in particular for the analysis of deoxynivalenol the absolute amount of water in the solvent volume used for extraction appeared critical. Depending on the matrix a low water amount resulted in too low quantitative values when no stable isotope-labelled standards are applied to correct for incomplete extraction. In this case the used extraction volume had to be at least 10 ml for 1 g sample when acetonitrile + water (84+16; v+v) was used as extraction solvent.Losses during sample preparation using two different clean-up columns were not observed. On the contrary, matrix suppression in the ESI-interface of the LC-MS equipment was found to be a serious problem. Depending on the matrix, the latter effect resulted in considerably lower values for trichothecenes when no stable isotope-labelled standards were used to counterbalance this suppression.

  10. Groundwater and Wetland Contributions to Stream Acidification: An Isotopic Analysis

    NASA Astrophysics Data System (ADS)

    Wels, Christoph; Cornett, R. Jack; Lazerte, Bruce D.

    1990-12-01

    Stream water pH may be influenced by (1) the flow paths and (2) the residence time of water that contributes to streamflow, when these hydrologic factors interact with the biogeochemical processes that neutralize H+ ions in the catchment. This paper presents measures of the volumes of groundwater contributing to streamflow, the groundwater residence times, and the sources of stream water acidity found during spring runoff in three basins on the Canadian Shield. Isotopic hydrograph separations were used to estimate the relative contributions of groundwater to spring runoff. The contributions of old (premelt) groundwater to spring runoff were greater (60%) in a well-buffered, third-order basin than in a more acidic first-order basin (49%). Using a simple mixing model, a larger groundwater reservoir (420 mm unit depth) and longer residence time (162 days) were estimated in the third-order basin. The lowest stream pH (4.8) was observed in a second-order basin with a wetland that collects drainage from about 79% of the basin. In this basin the principal source of H+ ions was the conifer-sphagnum wetland. We conclude that the hypotheses that the pH of these streams was proportional to (1) a fraction of streamflow contributed by groundwater or (2) the residence time of water in a basin are rejected. More attention must be focused upon the source of acidity generated in wetlands, since these are ubiquitous in small basins.

  11. Coordinated Mineralogical and Isotopic Analysis of a Cosmic Symplectite Identified in a Stardust Terminal Particle

    NASA Technical Reports Server (NTRS)

    Nguyen, A. N.; Berger, E. L.; Nakamura-Messenger, K.; Messenger, S.

    2014-01-01

    Comet Wild-2 samples returned by the Stardust spacecraft contain a chemically diverse mixture of material, underscoring the complex nature of comets. Studies of entire Stardust aerogel tracks afford the opportunity to examine the fine-grained particle fragments distributed along the length of the track as well as the terminal particles. Previous TEM characterization of a terminal particle (TP) in track #147 revealed a symplectically intergrown iron sulfide and oxide assemblage. Mineralogically similar assemblages, known as cosmic symplectites (COS, formerly termed "new-PCP"), have only been identified in the primitive carbonaceous chondrite Acfer 094. Meteoritic COS have isotopically heavy O compositions (delta (sup 17), O-18 = 180per mille) that point to interactions with early solar system primordial water. In this study we report mineralogical and O isotopic measurements of the Wild-2 COS assemblage. Experimental: Track #147 is a "bulbous"-type track (4600 microns long) containing 7 terminal particles. The TPs were removed from the track, embedded in epoxy, and ultramicrotomed. A JEOL 2500SE 200 keV field-emission scanning-transmission electron microscope was used to obtain quantitative elemental maps and detailed mineralogical characterization. Following TEM analysis, two thin sections of TP4 (12 microns) were analyzed for O isotopes by raster ion imaging with the JSC NanoSIMS 50L. All three O isotopes were measured simultaneously using electron multipliers. San Carlos olivine grains were used as isotopic standards. Results and Discussion: The COS in the Wild-2 track #147 TP4 sample consists of symplectically intergrown pentlandite and nanocrystalline maghemite which coexists with high-Ca pyroxene with Na and Cr (kosmochlor component). This kosmochlor component could have a nebular origin and be precursors to type II chondrules in ordinary chondrites. Yet pentlandite is not a stable phase in the nebula. The COS in Acfer 094 also consists of pentlandite, but

  12. An optical region elemental abundance analysis of the chemically peculiar HgMn star chi Lupi

    NASA Technical Reports Server (NTRS)

    Wahlgren, Glenn M.; Adelman, Saul J.; Robinson, Richard D.

    1994-01-01

    The optical spectrum of the chemically peculiar HgMn type binary star chi Lupi has been analyzed to determine atmospheric parameters and elemental abundances. Echelle spectra were obtained with the 3.9 m Anglo-Australian telescope to exploit the extreme shape-lined nature of the spectrum. This study was undertaken in support of ultraviolet analyses currently underway that utilize echell spectra obtained with the Hubble Space Telescope. For the B9.5 V primary star we obtain T(sub eff) = 10650 K, log g = 3.9, and xi = 0 km/s, while for the A2 V secondary, T(sub eff) = 9200 K, log g = 4.0, and xi = 2 km/s. Most of the elemental abundances are typical of HgMn stars with similar T(sub eff) showing an overall iron-peak elemental abundance distribution that is basically solar in nature with enhancement of the light elements Si, P, and S, as well as all detected elements heavier than the iron group. Abundances for several elements have been determined for the first time in this star, including several of the rare-earths. The secondary star spectrum shows Am star characteristics. We also discuss the relative merits of the equivalent width and synthetic spectrum techniques in determining the elemental abundences, concluding that the synthetic spectrum technique is necessary for obtaining abundances with the utmost accuracy.

  13. Enhanced forensic discrimination of pollutants by position-specific isotope analysis using isotope ratio monitoring by (13)C nuclear magnetic resonance spectrometry.

    PubMed

    Julien, Maxime; Nun, Pierrick; Höhener, Patrick; Parinet, Julien; Robins, Richard J; Remaud, Gérald S

    2016-01-15

    In forensic environmental investigations the main issue concerns the inference of the original source of the pollutant for determining the liable party. Isotope measurements in geochemistry, combined with complimentary techniques for contaminant identification, have contributed significantly to source determination at polluted sites. In this work we have determined the intramolecular (13)C profiles of several molecules well-known as pollutants. By giving additional analytical parameters, position-specific isotope analysis performed by isotope ratio monitoring by (13)C nuclear magnetic resonance (irm-(13)C NMR) spectrometry gives new information to help in answering the major question: what is the origin of the detected contaminant? We have shown that isotope profiling of the core of a molecule reveals both the raw materials and the process used in its manufacture. It also can reveal processes occurring between the contamination site 'source' and the sampling site. Thus, irm-(13)C NMR is shown to be a very good complement to compound-specific isotope analysis currently performed by mass spectrometry for assessing polluted sites involving substantial spills of pollutant.

  14. Development of high through-put Sr isotope analysis for monitoring reservoir integrity for CO{sub 2} storage.

    SciTech Connect

    Wall, Andy; Jain, Jinesh; Stewart, Brian; Capo, Rosemary; Hakala, Alexandra J.; Hammack, Richard; Guthrie, George

    2012-01-01

    Recent innovations in multi-collector ICP-mass spectrometry (MC-ICP-MS) have allowed for rapid and precise measurements of isotope ratios in geological samples. Naturally occurring Sr isotopes has the potential for use in Monitoring, Verification, and Accounting (MVA) associated with geologic CO2 storage. Sr isotopes can be useful for: Sensitive tracking of brine migration; Determining seal rock leakage; Studying fluid/rock reactions. We have optimized separation chemistry procedures that will allow operators to prepare samples for Sr isotope analysis off site using rapid, low cost methods.

  15. Analysis of plasma histamine: a modification of the enzymatic isotopic assay

    SciTech Connect

    Rauls, D.O.; Ting, S.; Lund, M.

    1986-05-01

    The enzymatic isotopic analysis of histamine requires extraction and concentration of (/sup 3/H)-1-methylhistamine from the reaction mixture. The assay was modified to include enzymatic reaction at 0 degrees C to reduce blank values and direct application of protein-free reaction mixture to a thin-layer chromatography plate for isolating of the product. The analysis was quantitative down to 100 pg/ml of histamine, adequate for monitoring plasma histamine content.

  16. Advancement and application of gas chromatography isotope ratio mass spectrometry techniques for atmospheric trace gas analysis

    NASA Astrophysics Data System (ADS)

    Giebel, Brian M.

    2011-12-01

    The use of gas chromatography isotope ratio mass spectrometry (GC-IRMS) for compound specific stable isotope analysis is an underutilized technique because of the complexity of the instrumentation and high analytical costs. However stable isotopic data, when coupled with concentration measurements, can provide additional information on a compounds production, transformation, loss, and cycling within the biosphere and atmosphere. A GC-IRMS system was developed to accurately and precisely measure delta13C values for numerous oxygenated volatile organic compounds having natural and anthropogenic sources. The OVOCs include methanol, ethanol, acetone, methyl ethyl ketone, 2-pentanone, and 3-pentanone. Guided by the requirements for analysis of trace components in air, the GC-IRMS system was developed with the goals of increasing sensitivity, reducing dead-volume and peak band broadening, optimizing combustion and water removal, and decreasing the split ratio to the IRMS. The technique relied on a two-stage preconcentration system, a low-volume capillary reactor and water trap, and a balanced reference gas delivery system. Measurements were performed on samples collected from two distinct sources (i.e. biogenic and vehicle emissions) and ambient air collected from downtown Miami and Everglades National Park. However, the instrumentation and the method have the capability to analyze a variety of source and ambient samples. The measured isotopic signatures that were obtained from source and ambient samples provide a new isotopic constraint for atmospheric chemists and can serve as a new way to evaluate their models and budgets for many OVOCs. In almost all cases, OVOCs emitted from fuel combustion were enriched in 13C when compared to the natural emissions of plants. This was particularly true for ethanol gas emitted in vehicle exhaust, which was observed to have a uniquely enriched isotopic signature that was attributed to ethanol's corn origin and use as an alternative

  17. RVC-CAL library for endmember and abundance estimation in hyperspectral image analysis

    NASA Astrophysics Data System (ADS)

    Lazcano López, R.; Madroñal Quintín, D.; Juárez Martínez, E.; Sanz Álvaro, C.

    2015-10-01

    Hyperspectral imaging (HI) collects information from across the electromagnetic spectrum, covering a wide range of wavelengths. Although this technology was initially developed for remote sensing and earth observation, its multiple advantages - such as high spectral resolution - led to its application in other fields, as cancer detection. However, this new field has shown specific requirements; for instance, it needs to accomplish strong time specifications, since all the potential applications - like surgical guidance or in vivo tumor detection - imply real-time requisites. Achieving this time requirements is a great challenge, as hyperspectral images generate extremely high volumes of data to process. Thus, some new research lines are studying new processing techniques, and the most relevant ones are related to system parallelization. In that line, this paper describes the construction of a new hyperspectral processing library for RVC-CAL language, which is specifically designed for multimedia applications and allows multithreading compilation and system parallelization. This paper presents the development of the required library functions to implement two of the four stages of the hyperspectral imaging processing chain--endmember and abundances estimation. The results obtained show that the library achieves speedups of 30%, approximately, comparing to an existing software of hyperspectral images analysis; concretely, the endmember estimation step reaches an average speedup of 27.6%, which saves almost 8 seconds in the execution time. It also shows the existence of some bottlenecks, as the communication interfaces among the different actors due to the volume of data to transfer. Finally, it is shown that the library considerably simplifies the implementation process. Thus, experimental results show the potential of a RVC-CAL library for analyzing hyperspectral images in real-time, as it provides enough resources to study the system performance.

  18. In-situ Isotopic Analysis at Nanoscale using Parallel Ion Electron Spectrometry: A Powerful New Paradigm for Correlative Microscopy

    PubMed Central

    Yedra, Lluís; Eswara, Santhana; Dowsett, David; Wirtz, Tom

    2016-01-01

    Isotopic analysis is of paramount importance across the entire gamut of scientific research. To advance the frontiers of knowledge, a technique for nanoscale isotopic analysis is indispensable. Secondary Ion Mass Spectrometry (SIMS) is a well-established technique for analyzing isotopes, but its spatial-resolution is fundamentally limited. Transmission Electron Microscopy (TEM) is a well-known method for high-resolution imaging down to the atomic scale. However, isotopic analysis in TEM is not possible. Here, we introduce a powerful new paradigm for in-situ correlative microscopy called the Parallel Ion Electron Spectrometry by synergizing SIMS with TEM. We demonstrate this technique by distinguishing lithium carbonate nanoparticles according to the isotopic label of lithium, viz. 6Li and 7Li and imaging them at high-resolution by TEM, adding a new dimension to correlative microscopy. PMID:27350565

  19. Distinguishing sources of N2O in European grasslands by stable isotope analysis.

    PubMed

    Wrage, Nicole; Lauf, Jutta; del Prado, Agustin; Pinto, Miriam; Pietrzak, Stefan; Yamulki, Sirwan; Oenema, Oene; Gebauer, Gerhard

    2004-01-01

    Nitrifiers and denitrifiers are the main producers of the greenhouse gas nitrous oxide (N(2)O). Knowledge of the respective contributions of each of these microbial groups to N(2)O production is a prerequisite for the development of effective mitigation strategies for N(2)O. Often, the differentiation is made by the use of inhibitors. Measurements of the natural abundance of the stable isotopes of N and O in N(2)O have been suggested as an alternative for the often unreliable inhibition studies. Here, we tested the natural abundance incubation method developed by Tilsner et al.1 with soils from four European grasslands differing in long-term management practices. Emission rates of N(2)O and stable isotope natural abundance of N(2)O and mineral N were measured in four different soil incubations: a control with 60% water-filled pore space (WFPS), a treatment with 60% WFPS and added ammonium (NH(4) (+)) to support nitrifiers, a control with 80% WFPS and a treatment with 80% WFPS and added nitrate (NO(3) (-)) to support denitrifiers. Decreases in NH(4) (+) concentrations, linked with relative (15)N-enrichment of residual NH(4) (+) and production of (15)N-depleted NO(3) (-), showed that nitrification was the main process for mineral N conversions. The N(2)O production, however, was generally dominated by reduction processes, as indicated by the up to 20 times larger N(2)O production under conditions favouring denitrification than under conditions favouring nitrification. Interestingly, the N(2)O concentration in the incubation atmospheres often levelled off or even decreased, accompanied by increases in delta(15)N and delta(18)O values of N(2)O. This points to uptake and further reduction of N(2)O to N(2), even under conditions with small concentrations of N(2)O in the atmosphere. The measurements of the natural abundances of (15)N and (18)O proved to be a valuable integral part of the natural abundance incubation method. Without these measurements, nitrification would

  20. Precise Analysis of Gallium Isotopic Composition by MC-ICP-MS.

    PubMed

    Yuan, Wei; Chen, Jiu Bin; Birck, Jean-Louis; Yin, Zuo Ying; Yuan, Sheng Liu; Cai, Hong Ming; Wang, Zhong Wei; Huang, Qiang; Wang, Zhu Hong

    2016-10-04

    Though an isotope approach could be beneficial for better understanding the biogeochemical cycle of gallium (Ga), an analogue of the monoisotopic element aluminum (Al), the geochemistry of Ga isotopes has not been widely elaborated. We developed a two-step method for purifying Ga from geological (biological) samples for precise measurement of Ga isotope ratio using multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS). Ga was thoroughly separated from other matrix elements using two chromatographic columns loaded with AG 1-X4 and Ln-spec resin, respectively. The separation method was carefully calibrated using both synthetic and natural samples and validated by assessing the extraction yield (99.8 ± 0.8%, 2SD, n = 23) and the reproducibility (2SD uncertainty better than 0.05‰, n = 116) of the measured isotopic ratio (expressed as δ(71)Ga). The validation of the whole protocol, together with instrumental analysis, was confirmed by the investigation of the matrix effect, the result of a standard addition experiment, and the comparison of Ga isotope measurement on two mass spectrometers-Nu Plasma II and Neptune Plus. Although the measurements using the sample-standard bracketing (SSB) correction method on both instruments resulted in identical δ(71)Ga values for reference materials, the modified empirical external normalization (MEEN) method gave relatively better precision compared to SSB on Neptune. Our preliminary results showed large variation of δ(71)Ga (up to 1.83‰) for 10 standards, with higher values in industrially produced materials, implying potential application of Ga isotopes.

  1. Testing isosource: stable isotope analysis of a tropical fishery with diverse organic matter sources.

    PubMed

    Benstead, Jonathan P; March, James G; Fry, Brian; Ewel, Katherine C; Pringle, Catherine M

    2006-02-01

    We sampled consumers and organic matter sources (mangrove litter, freshwater swamp-forest litter, seagrasses, seagrass epiphytes, and marine particulate organic matter [MPOM]) from four estuaries on Kosrae, Federated States of Micronesia for stable isotope (sigma13C and sigma34S) analysis. Unique mixing solutions cannot be calculated in a dual-isotope, five-endmember scenario, so we tested IsoSource, a recently developed statistical procedure that calculates ranges in source contributions (i.e., minimum and maximum possible). Relatively high minimum contributions indicate significant sources, while low maxima indicate otherwise. Litter from the two forest types was isotopically distinguishable but had low average minimum contributions (0-8% for mangrove litter and 0% for swamp-forest litter among estuaries). Minimum contribution of MPOM was also low, averaging 0-13% among estuaries. Instead, local marine sources dominated contributions to consumers. Minimum contributions of seagrasses averaged 8-47% among estuaries (range 0-88% among species). Minimum contributions of seagrass epiphytes averaged 5-27% among estuaries (range 0-69% among species). IsoSource enabled inclusion of five organic matter sources in our dual-isotope analysis, ranking trophic importance as follows: seagrasses > seagrass epiphytes > MPOM > mangrove forest > freshwater swamp-forest. IsoSource is thus a useful step toward understanding which of multiple organic matter sources support food webs; more detailed work is necessary to identify unique solutions.

  2. Analysis of growth and tissue replacement rates by stable sulfur isotope turnover.

    NASA Astrophysics Data System (ADS)

    Arneson, L. S.; Macko, S. A.; Macavoy, S. E.

    2003-12-01

    Stable isotope analysis has become a powerful tool to study animal ecology. Analysis of stable isotope ratios of elements such as carbon, nitrogen, sulfur, hydrogen, oxygen and others have been used to trace migratory routes, reconstruct dietary sources and determine the physiological condition of individual animals. The isotopes most commonly used are carbon, due to differential carbon fractionation in C3 and C4 plants, and nitrogen, due to the approximately 3% enrichment in 15N per trophic level. Although all cells express sulfur-containing compounds, such as cysteine, methionine, and coenzyme A, the turnover rate of sulfur in tissues has not been examined in most studies, owing to the difficulty in determining the δ 34S signature. In this study, we have assessed the rate of sulfur isotopic turnover in mouse tissues following a diet change from terrestrial (7%) to marine (19%) source. Turnover models reflecting both growth rate and metabolic tissue replacement will be developed for blood, liver, fat and muscle tissues.

  3. Keratin decomposition by trogid beetles: evidence from a feeding experiment and stable isotope analysis

    NASA Astrophysics Data System (ADS)

    Sugiura, Shinji; Ikeda, Hiroshi

    2014-03-01

    The decomposition of vertebrate carcasses is an important ecosystem function. Soft tissues of dead vertebrates are rapidly decomposed by diverse animals. However, decomposition of hard tissues such as hairs and feathers is much slower because only a few animals can digest keratin, a protein that is concentrated in hairs and feathers. Although beetles of the family Trogidae are considered keratin feeders, their ecological function has rarely been explored. Here, we investigated the keratin-decomposition function of trogid beetles in heron-breeding colonies where keratin was frequently supplied as feathers. Three trogid species were collected from the colonies and observed feeding on heron feathers under laboratory conditions. We also measured the nitrogen (δ15N) and carbon (δ13C) stable isotope ratios of two trogid species that were maintained on a constant diet (feathers from one heron individual) during 70 days under laboratory conditions. We compared the isotopic signatures of the trogids with the feathers to investigate isotopic shifts from the feathers to the consumers for δ15N and δ13C. We used mixing models (MixSIR and SIAR) to estimate the main diets of individual field-collected trogid beetles. The analysis indicated that heron feathers were more important as food for trogid beetles than were soft tissues under field conditions. Together, the feeding experiment and stable isotope analysis provided strong evidence of keratin decomposition by trogid beetles.

  4. IsoWeb: a bayesian isotope mixing model for diet analysis of the whole food web.

    PubMed

    Kadoya, Taku; Osada, Yutaka; Takimoto, Gaku

    2012-01-01

    Quantitative description of food webs provides fundamental information for the understanding of population, community, and ecosystem dynamics. Recently, stable isotope mixing models have been widely used to quantify dietary proportions of different food resources to a focal consumer. Here we propose a novel mixing model (IsoWeb) that estimates diet proportions of all consumers in a food web based on stable isotope information. IsoWeb requires a topological description of a food web, and stable isotope signatures of all consumers and resources in the web. A merit of IsoWeb is that it takes into account variation in trophic enrichment factors among different consumer-resource links. Sensitivity analysis using realistic hypothetical food webs suggests that IsoWeb is applicable to a wide variety of food webs differing in the number of species, connectance, sample size, and data variability. Sensitivity analysis based on real topological webs showed that IsoWeb can allow for a certain level of topological uncertainty in target food webs, including erroneously assuming false links, omission of existent links and species, and trophic aggregation into trophospecies. Moreover, using an illustrative application to a real food web, we demonstrated that IsoWeb can compare the plausibility of different candidate topologies for a focal web. These results suggest that IsoWeb provides a powerful tool to analyze food-web structure from stable isotope data. We provide R and BUGS codes to aid efficient applications of IsoWeb.

  5. Stable isotope analysis of molecular oxygen from silicates and oxides using CO2 laser extraction

    NASA Technical Reports Server (NTRS)

    Perry, Eugene

    1996-01-01

    A laser-excited system for determination of the oxygen isotope composition of small quantities of silicate and oxide minerals was constructed and tested at JSC. This device is the first reported to use a commercially available helium cryostat to transfer and purify oxygen gas quantitatively within the system. The system uses oxygen gas instead of the conventional CO2 for mass spectrometer analyses. This modification of technique permits determination of all three stable oxygen isotopes, an essential requirement for oxygen isotope analysis of meteoritic material. Tests of the system included analysis of standard silicate materials NBS 28 and UWMG2 garnet, six SNC meteorites, and inclusions and chondrules from the Allende meteorite. Calibration with terrestrial standards was excellent. Meteorite values are close to published values and show no evidence of terrestrial oxygen contamination. The one limitation observed is that, in some runs on fine-grained SNC matrix material, sample results were affected by other samples in the sample holder within the reaction chamber. This reemphasizes the need for special precautions in dealing with fine-grained, reactive samples. Performance of the JSC instrument compares favorably with that of any other instrument currently producing published oxygen isotope data.

  6. Method for the purification of polybrominated diphenyl ethers in sediment for compound-specific isotope analysis.

    PubMed

    Zeng, Yan-Hong; Luo, Xiao-Jun; Chen, Hua-Shan; Chen, She-Jun; Wu, Jiang-Ping; Mai, Bi-Xian

    2013-07-15

    A purification method for lower polybrominated diphenyl ethers (PBDEs, from tri- to hexa-BDE) in sediment for compound-specific isotope analysis (CSIA) was developed in this study. The compounds were extracted using a Soxhlet apparatus with addition of activated alumina and Florisil in the paper tube during the Soxhlet extraction provided for less complex extracts. Then, the extract was isolated from polar compounds using a multi-layer silica gel column, separated into different fractions using alumina/silica (Al/Si) gel columns and finally purified using a Florisil column. The mean recoveries of the major PBDE congeners in the spiked samples ranged from 76.2% to 82.4%. The purity of the samples was verified by GC-MS in full scan mode. The stable isotopic integrity of the spiked samples after the purification was tested by comparing the stable carbon isotope ratios (δ(13)C) of the processed and the unprocessed standard materials. The differences in the δ(13)C values for each compound between the processed and unprocessed standards were less than 0.5‰, with the exception of BDE100 (0.54‰). Finally, the purification and isotope analysis method was successfully applied to measure the δ(13)C of PBDEs in sediments. This application of the method indicated that CSIA seems to be a promising method for providing intrinsic characteristics for further environmental fate studies of PBDEs.

  7. Evaluating abundance and trends in a Hawaiian avian community using state-space analysis

    USGS Publications Warehouse

    Camp, Richard J.; Brinck, Kevin W.; Gorresen, P.M.; Paxton, Eben

    2015-01-01

    Estimating population abundances and patterns of change over time are important in both ecology and conservation. Trend assessment typically entails fitting a regression to a time series of abundances to estimate population trajectory. However, changes in abundance estimates from year-to-year across time are due to both true variation in population size (process variation) and variation due to imperfect sampling and model fit. State-space models are a relatively new method that can be used to partition the error components and quantify trends based only on process variation. We compare a state-space modelling approach with a more traditional linear regression approach to assess trends in uncorrected raw counts and detection-corrected abundance estimates of forest birds at Hakalau Forest National Wildlife Refuge, Hawai‘i. Most species demonstrated similar trends using either method. In general, evidence for trends using state-space models was less strong than for linear regression, as measured by estimates of precision. However, while the state-space models may sacrifice precision, the expectation is that these estimates provide a better representation of the real world biological processes of interest because they are partitioning process variation (environmental and demographic variation) and observation variation (sampling and model variation). The state-space approach also provides annual estimates of abundance which can be used by managers to set conservation strategies, and can be linked to factors that vary by year, such as climate, to better understand processes that drive population trends.

  8. Compound-Specific Stable Carbon Isotope Analysis of Chlorofluorocarbons in Groundwater.

    PubMed

    Horst, Axel; Lacrampe-Couloume, Georges; Sherwood Lollar, Barbara

    2015-10-20

    Chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs), controlled substances due to their role in stratospheric ozone loss, also occur as dissolved contaminants in groundwaters. Stable carbon isotopic signatures may provide valuable new information on the fate of these compounds as has been seen for other priority hydrocarbon contaminants, but to date no method for extraction and isotopic analysis of dissolved CFCs from groundwaters has been developed. Here we describe a cryogenic purge and trap system coupled to continuous flow compound-specific stable carbon isotope analysis mass spectrometry for concentrations as low as 35 μg/L. The method is validated by comparing isotopic signatures from water extracted CFCs against a new suite of isotopic CFC standards. Fractionation of CFCs in volatilization experiments from pure-phase CFC-11 and CFC-113 resulted in enrichment factors (ε) of +1.7 ± 0.1‰ and +1.1 ± 0.1‰, respectively, indicating that such volatile loss, if significant, would produce a more (13)C depleted signature in the remaining CFCs. Importantly, no significant fractionation was observed during volatile extraction of dissolved CFCs from aqueous solutions. δ(13)C values for groundwaters from a CFC-contaminated site were, on average, more enriched than δ(13)C values for pure compounds. Such enriched δ(13)C values have been seen in other hydrocarbon contaminants such as chlorinated ethenes and ethanes due to in situ degradation, but definitive interpretation of such enriched signatures in field samples requires additional experiments to characterize fractionation of CFCs during biodegradation. The establishment of a robust and sensitive method of extraction and analysis, as described here, provides the foundation for such future directions.

  9. A rapid method for depletion of Rubisco from soybean (Glycine max) leaf for proteomic analysis of lower abundance proteins.

    PubMed

    Krishnan, Hari B; Natarajan, Savithiry S

    2009-12-01

    2-DE analysis of complex plant proteomes has limited dynamic resolution because only abundant proteins can be detected. Proteomic assessment of the low abundance proteins within leaf tissue is difficult when it is comprised of 30-50% of the CO(2) fixation enzyme Rubisco. Resolution can be improved through depletion of Rubisco using fractionation techniques based upon different physiological or biochemical principles. We have developed a fast and simple fractionation technique using 10 mM Ca(2+) and 10 mM phytate to precipitate Rubisco from soybean leaf soluble protein extract. This method is not only rapid, but also inexpensive, and capable of removing 85% of the extremely abundant Rubisco enzyme from soybean leaf soluble protein extract. This method allowed for roughly 230 previously inconspicuous protein spots in soybean leaf to be more easily detectable (3-fold increase in vol%) using fluorescent detection and allowed 28 phosphorylated proteins previously undetected, to be isolated and identified by MALDI-TOF-MS.

  10. Formation of Apollo 16 impactites and the composition of late accreted material: Constraints from Os isotopes, highly siderophile elements and sulfur abundances

    NASA Astrophysics Data System (ADS)

    Gleißner, Philipp; Becker, Harry

    2017-03-01

    Fe-Ni metal-schreibersite-troilite intergrowths in Apollo 16 impact melt rocks and new highly siderophile element (HSE) and S abundance data indicate that millimeter-scale closed-system fractional crystallization processes during cooling of impactor-derived metal melt droplets in impact-melts are the main reason for compositional variations and strong differences in abundances and ratios of HSE in multiple aliquots from Apollo 16 impact melt rocks. Element ratios obtained from linear regression of such data are therefore prone to error, but weighted averages take into account full element budgets in the samples and thus represent a more accurate estimate of their impactor contributions. Modeling of solid metal-liquid metal partitioning in the Fe-Ni-S-P system and HSE patterns in impactites from different landing sites suggest that bulk compositions of ancient lunar impactites should be representative of impact melt compositions and that large-scale fractionation of the HSE by in situ segregation of solid metal or sulfide liquid in impact melt sheets most likely did not occur. The compositional record of lunar impactites indicates accretion of variable amounts of chondritic and non-chondritic impactor material and the mixing of these components during remelting of earlier ejecta deposits. The non-chondritic composition appears most prominently in some Apollo 16 impactites and is characterized by suprachondritic HSE/Ir ratios which increase from refractory to moderately volatile HSE and exhibit a characteristic enrichment of Ru relative to Pt. Large-scale fractional crystallization of solid metal from sulfur and phosphorous rich metallic melt with high P/S in planetesimal or embryo cores is currently the most likely process that may have produced these compositions. Similar materials or processes may have contributed to the HSE signature of the bulk silicate Earth (BSE).

  11. Chromatographic speciation of Cr(III)-species, inter-species equilibrium isotope fractionation and improved chemical purification strategies for high-precision isotope analysis.

    PubMed

    Larsen, K K; Wielandt, D; Schiller, M; Bizzarro, M

    2016-04-22

    Chromatographic purification of chromium (Cr), which is required for high-precision isotope analysis, is complicated by the presence of multiple Cr-species with different effective charges in the acid digested sample aliquots. The differing ion exchange selectivity and sluggish reaction rates of these species can result in incomplete Cr recovery during chromatographic purification. Because of large mass-dependent inter-species isotope fractionation, incomplete recovery can affect the accuracy of high-precision Cr isotope analysis. Here, we demonstrate widely differing cation distribution coefficients of Cr(III)-species (Cr(3+), CrCl(2+) and CrCl2(+)) with equilibrium mass-dependent isotope fractionation spanning a range of ∼1‰/amu and consistent with theory. The heaviest isotopes partition into Cr(3+), intermediates in CrCl(2+) and the lightest in CrCl2(+)/CrCl3°. Thus, for a typical reported loss of ∼25% Cr (in the form of Cr(3+)) through chromatographic purification, this translates into 185 ppm/amu offset in the stable Cr isotope ratio of the residual sample. Depending on the validity of the mass-bias correction during isotope analysis, this further results in artificial mass-independent effects in the mass-bias corrected (53)Cr/(52)Cr (μ(53)Cr* of 5.2 ppm) and (54)Cr/(52)Cr (μ(54)Cr* of 13.5 ppm) components used to infer chronometric and nucleosynthetic information in meteorites. To mitigate these fractionation effects, we developed strategic chemical sample pre-treatment procedures that ensure high and reproducible Cr recovery. This is achieved either through 1) effective promotion of Cr(3+) by >5 days exposure to HNO3H2O2 solutions at room temperature, resulting in >∼98% Cr recovery for most types of sample matrices tested using a cationic chromatographic retention strategy, or 2) formation of Cr(III)-Cl complexes through exposure to concentrated HCl at high temperature (>120 °C) for several hours, resulting in >97.5% Cr recovery using a

  12. Chromatographic speciation of Cr(III)-species, inter-species equilibrium isotope fractionation and improved chemical purification strategies for high-precision isotope analysis

    PubMed Central

    Larsen, K.K.; Wielandt, D.; Schiller, M.; Bizzarro, M.

    2016-01-01

    Chromatographic purification of chromium (Cr), which is required for high-precision isotope analysis, is complicated by the presence of multiple Cr-species with different effective charges in the acid digested sample aliquots. The differing ion exchange selectivity and sluggish reaction rates of these species can result in incomplete Cr recovery during chromatographic purification. Because of large mass-dependent inter-species isotope fractionation, incomplete recovery can affect the accuracy of high-precision Cr isotope analysis. Here, we demonstrate widely differing cation distribution coefficients of Cr(III)-species (Cr3+, CrCl2+ and CrCl2+) with equilibrium mass-dependent isotope fractionation spanning a range of ~1‰/amu and consistent with theory. The heaviest isotopes partition into Cr3+, intermediates in CrCl2+ and the lightest in CrCl2+/CrCl3°. Thus, for a typical reported loss of ~25% Cr (in the form of Cr3+) through chromatographic purification, this translates into 185 ppm/amu offset in the stable Cr isotope ratio of the residual sample. Depending on the validity of the mass-bias correction during isotope analysis, this further results in artificial mass-independent effects in the mass-bias corrected 53Cr/52Cr (μ53 Cr* of 5.2 ppm) and 54Cr/52Cr (μ54Cr* of 13.5 ppm) components used to infer chronometric and nucleosynthetic information in meteorites. To mitigate these fractionation effects, we developed strategic chemical sample pre-treatment procedures that ensure high and reproducible Cr recovery. This is achieved either through 1) effective promotion of Cr3+ by >5 days exposure to HNO3 —H2O2 solutions at room temperature, resulting in >~98% Cr recovery for most types of sample matrices tested using a cationic chromatographic retention strategy, or 2) formation of Cr(III)-Cl complexes through exposure to concentrated HCl at high temperature (>120 °C) for several hours, resulting in >97.5% Cr recovery using a chromatographic elution strategy that

  13. Isotopic Analysis of Fingernails as a USGS Open House Demonstration of the Use of Stable Isotopes in Foodweb Studies

    NASA Astrophysics Data System (ADS)

    Silva, S. R.; Kendall, C.; Young, M. B.; Choy, D.

    2011-12-01

    The USGS Isotope Tracers Project uses stable isotopes and tritium to add a unique dimension of chemical information to a wide range of environmental investigations. The use and application of isotopes is usually an unfamiliar and even esoteric topic to the general public. Therefore during three USGS open house events, as a public outreach effort, we demonstrated the use of stable isotopes by analyzing nitrogen and carbon isotopes from very small fragments of fingernail from willing participants. We titled the exhibit "You Are What You Eat". The results from all participants were plotted on a graph indicating the general influence of different food groups on the composition of body tissues as represented by fingernails. All participants were assigned a number and no personal-identification information was collected. A subset of participants provided us with an estimate of the number of days a week various foods were eaten and if they were vegetarians, vegans or non-vegetarians. Volunteers from our research group were on hand to explain and discuss fundamental concepts such as how foods attain their isotopic composition, the difference between C3 and C4 plants, the effects of assimilation, trophic enrichment, and the various uses of stable isotopes in environmental studies. The results of the fingernail analyses showed the variation of the range of isotopic compositions among about 400 people at each event, the distinct influence of C4 plants (mainly corn and cane sugar) on our carbon isotopic composition, and the isotopic differences between vegetarians and non vegetarians among other details (http://wwwrcamnl.wr.usgs.gov/isoig/projects/fingernails/). A poll of visitors attending the open house event in 2006 indicated that "You Are What You Eat" was among the most popular exhibits. Following the first two open house events we were contacted by a group of researchers from Brazil who had completed a very similar study. Our collaboration resulted in a publication in

  14. Actinide abundances in ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Hagee, B.; Bernatowicz, T. J.; Podosek, F. A.; Johnson, M. L.; Burnett, D. S.

    1990-01-01

    Measurements of actinide and light REE (LREE) abundances and of phosphate abundances in equilibrated ordinary chondrites were obtained and were used to define the Pu abundance in the solar system and to determine the degree of variation of actinide and LREE abundances. The results were also used to compare directly the Pu/U ratio with the earlier obtained ratio determined indirectly, as (Pu/Nd)x(Nd/U), assuming that Pu behaves chemically as a LREE. The data, combined with high-accuracy isotope-dilution data from the literature, show that the degree of gram-scale variability of the Th, U, and LREE abundances for equilibrated ordinary chondrites is a factor of 2-3 for absolute abundances and up to 50 percent for relative abundances. The observed variations are interpreted as reflecting the differences in the compositions and/or proportions of solar nebula components accreted to ordinary chondrite parent bodies.

  15. Isotopic Analysis of the Explosive Urea Nitrate and Its Component Ions for Forensic Applications

    NASA Astrophysics Data System (ADS)

    Aranda, R.; Stern, L. A.; McCormick, M. C.; Mothershead, R. F.; Barrow, J. A.

    2008-12-01

    Urea nitrate (UN) is an explosive used in improvised explosive devices. UN (CH5N2O+NO3-) can be synthesized from readily available chemicals and was the main explosive used in the 1993 bombing of the World Trade Center. Isotopic analysis of this explosive has the potential to elucidate the isotopic ratios of the starting materials and geographic information on the location of synthesis. However, depending on the synthesis of the explosive, variable amounts of residual nitric acid may remain, yielding differing contributions of the components to the bulk UN δ15N values. Since δ15N nitrate values cannot be extrapolated from a single component and the bulk value, it is critical to separate the explosive into urea° and potassium nitrate. Therefore, we developed a method to isolate the components of UN for isotopic analysis through the neutralization of urea and separation via methanol washes. The urea in the explosive is neutralized with a 1.1:1 mole ratio of potassium hydroxide:urea in water resulting in urea° and potassium nitrate. The solution is then dried and the urea and potassium nitrate are separated using methanol. Urea and nitrate were isolated from samples of pre-blast UN and the completeness of the extraction was confirmed with a urease assay and a nitrate detection assay on the appropriate components. Isotopic analysis of the isolated urea and potassium nitrate were performed using an EA-IRMS, with the addition of sucrose to the potassium nitrate to aid combustion. For samples of relatively pure UN, the bulk UN δ15N value is stoichiometrically equivalent to the measured δ15N values of the isolated urea and nitrate in a 2:1 ratio. However, some explosive samples contained an excess of nitric acid due to poor preparation. As a result, the bulk UN δ15N values were biased towards the δ15N value of the nitrate. We are conducting experiments to compare the isotopic values of the initial starting reactants in the UN synthesis and the isotopic composition

  16. Ultratrace Uranium Fingerprinting with Isotope Selective Laser Ionization Spectrometry

    SciTech Connect

    Ziegler, Summer L.; Bushaw, Bruce A.

    2008-08-01

    Uranium isotope ratios can provide source information for tracking uranium contamination in a variety of fields, ranging from occupational bioassay to monitoring aftereffects of nuclear accidents. We describe the development of Isotope Selective Laser Ionization Spectrometry (ISLIS) for ultratrace measurement of the minor isotopes 234U, 235U, and 236U with respect to 238U. Optical isotopic selectivity in three-step excitation with single-mode continuous wave lasers is capable of measuring the minor isotopes at relative abundances below 1 ppm, and is not limited by isobaric interferences such as 235UH+ during measurement of 236U. This relative abundance limit approaches the threshold for measurement of uranium minor isotopes with conventional mass spectrometry, typically 10-7, but without mass spectrometric analysis of the laser-created ions. Uranyl nitrate standards from an international blind comparison were used to test analytical performance for different isotopic compositions and with quantities ranging from 11 ng to 10 µg total uranium. Isotopic ratio determination was demonstrated over a linear dynamic range of 7 orders of magnitude with a few percent relative precision and detection limits below 500 fg for the minor isotopes.

  17. Hydrocarbons and fuels analyses with the supersonic gas chromatography mass spectrometry--the novel concept of isomer abundance analysis.

    PubMed

    Fialkov, Alexander B; Gordin, Alexander; Amirav, Aviv

    2008-06-27

    Hydrocarbon analysis with standard GC-MS is confronted by the limited range of volatile compounds amenable for analysis and by the similarity of electron ionization mass spectra for many compounds which show weak or no molecular ions for heavy hydrocarbons. The use of GC-MS with supersonic molecular beams (Supersonic GC-MS) significantly extends the range of heavy hydrocarbons that can be analyzed, and provides trustworthy enhanced molecular ion to all hydrocarbons. In addition, unique isomer mass spectral features are obtained in the ionization of vibrationally cold hydrocarbons. The availability of molecular ions for all hydrocarbons results in the ability to obtain unique chromatographic isomer distribution patterns that can serve as a new method for fuel characterization and identification. Examples of the applicability and use of this novel isomer abundance analysis (IAA) method to diesel fuel, kerosene and oil analyses are shown. It is suggested that in similarity to the "three ions method" for identification purposes, three isomer abundance patterns can serve for fuel characterization. The applications of the Supersonic GC-MS for engine motor oil analysis and transformer oil analysis are also demonstrated and discussed, including the capability to achieve fast 1-2s sampling without separation for oil and fuel fingerprinting. The relatively fast analysis of biodiesel is described, demonstrating the provision of molecular ions to heavy triglycerides. Isomer abundance analysis with the Supersonic GC-MS could find broad range of applications including petrochemicals and fuel analysis, arson analysis, environmental oil/fuel spill analysis, fuel adulteration analysis and motor oil analysis.

  18. Understanding N2O sources and sinks with laser based isotopic analysis

    NASA Astrophysics Data System (ADS)

    Mohn, Joachim; Harris, Eliza; Tuzson, Béla; Emmenegger, Lukas

    2015-04-01

    Nitrous oxide (N2O) is a potent greenhouse gas and the strongest ozone-destroying substance. The main emissions of N2O are linked to different microbial processes, therefore the sources are disperse and highly variable, complicating the development of effective mitigation strategies. Isotopic measurements have great potential to unravel spatial and temporal variations in sources, sinks and chemistry of N2O. Recent developments in quantum cascade laser spectroscopy (QCLAS) [1] allow both the intermolecular distribution of 15N substitutions ('site preference'; 15N14N16O versus 14N1