Science.gov

Sample records for isotope dual-labelling approach

  1. Dual Label Stable Isotope Incubations Followed By Single Cell Nanosims Analyses To Investigate Microscale Phototroph-Heterotroph Interactions

    NASA Astrophysics Data System (ADS)

    Mayali, X.; Samo, T. J.; Nilson, D.; Arandia Gorostidi, N.; alonso Saez, L.; Moran, X. A.; Weber, P. K.

    2015-12-01

    In natural ecosystems such as lakes and oceans as well as human-engineered systems for sunlight-regulated biomass production (such as algal biofuel ponds), the interaction between autotrophic and heterotrophic processes are critical to determine whether such systems are net autotrophic or heterotrophic. Traditional methods to quantify autotrophy and heterotrophy include primary productivity and bacterial production measurements using radiolabeled substrates that quantify these processes on the bulk scale. To examine the microscale interactions between individual autotrophic and heterotrophic cells, we incubate mixed microbial assemblages with 13C-bicarbonate and 15N-leucine to label individual autotrophs and heterotrophs, respectively. We use nano imaging secondary ion mass spectrometry (with a Cameca NanoSIMS 50) to quantify the incorporation of the rare isotopes by single cells. We will present results from experiments examining the impact of warming on the exchange of C and N between algal and bacterial cells from the coastal Atlantic Ocean, which suggest that increased temperature may strengthen physical interactions and exchange. We will also present data from experiments examining the influence of attached bacteria on the cell-specific inorganic carbon fixation rates of biofuel-producing algal cultures which suggest that certain algal-attached bacterial groups grow faster than when free-living and influence algal growth. We conclude that the examination of individual cells uncover interactions that would be difficult, if not impossible, to investigate with bulk methods.

  2. Absorption of folate from fortified cereal-grain products and of supplemental folate consumed with or without food determined by using a dual-label stable-isotope protocol.

    PubMed

    Pfeiffer, C M; Rogers, L M; Bailey, L B; Gregory, J F

    1997-12-01

    The absorption of folic acid in fortified white and whole-wheat bread, rice, or pasta or in solution was evaluated in human subjects with use of a single-dose, dual-label, stable-isotope protocol that did not involve prior loading of subjects with nonlabeled folate. In each of five sequential trials, 14 adults received a single oral dose of [13C5]folic acid in one of the four fortified cereal-grain products or in water concurrently with an intravenous injection of [2H2]folic acid. In two additional trials, subjects received oral [13C5]folic acid with or without a light breakfast meal. In all trials, urine was collected 24-36 h postdosing and the isotopic labeling of urinary folates determined. Isotope excretion ratios of urinary folates (% [13C5]folate dose/% [2H2]folate dose), which were used as criteria of absorption, indicated no significant differences among the various fortified foods and the control (P = 0.607). Because statistical power was sufficient to have detected a 50% difference from the control, these results suggest that [13C5]folic acid in these fortified cereal-grain foods was highly available. This study also suggests that fortification will contribute effectively to the folate status of the population. Consuming [13C5]folic acid after a light breakfast meal led to a small reduction in absorption relative to the control without food (P < 0.085). Between-subject variation in this protocol exceeded that observed in previous studies conducted using prior saturation of subjects with nonlabeled folic acid. We recommend that either prior saturation or multiple doses be used in future applications of this technique to improve precision.

  3. Legomedicine-A Versatile Chemo-Enzymatic Approach for the Preparation of Targeted Dual-Labeled Llama Antibody-Nanoparticle Conjugates.

    PubMed

    van Lith, Sanne A M; van Duijnhoven, Sander M J; Navis, Anna C; Leenders, William P J; Dolk, Edward; Wennink, Jos W H; van Nostrum, Cornelus F; van Hest, Jan C M

    2017-02-15

    Conjugation of llama single domain antibody fragments (Variable Heavy chain domains of Heavy chain antibodies, VHHs) to diagnostic or therapeutic nanoparticles, peptides, proteins, or drugs offers many opportunities for optimized targeted cancer treatment. Currently, mostly nonspecific conjugation strategies or genetic fusions are used that may compromise VHH functionality. In this paper we present a versatile modular approach for bioorthogonal VHH modification and conjugation. First, sortase A mediated transPEGylation is used for introduction of a chemical click moiety. The resulting clickable VHHs are then used for conjugation to other groups employing the Cu(+)-independent strain-promoted alkyne-azide cycloadition (SPAAC) reaction. Using this approach, tail-to-tail bispecific VHHs and VHH-targeted nanoparticles are generated without affecting VHH functionality. Furthermore, this approach allows the bioconjugation of multiple moieties to VHHs for simple and convenient production of VHH-based theranostics.

  4. Legomedicine—A Versatile Chemo-Enzymatic Approach for the Preparation of Targeted Dual-Labeled Llama Antibody–Nanoparticle Conjugates

    PubMed Central

    2017-01-01

    Conjugation of llama single domain antibody fragments (Variable Heavy chain domains of Heavy chain antibodies, VHHs) to diagnostic or therapeutic nanoparticles, peptides, proteins, or drugs offers many opportunities for optimized targeted cancer treatment. Currently, mostly nonspecific conjugation strategies or genetic fusions are used that may compromise VHH functionality. In this paper we present a versatile modular approach for bioorthogonal VHH modification and conjugation. First, sortase A mediated transPEGylation is used for introduction of a chemical click moiety. The resulting clickable VHHs are then used for conjugation to other groups employing the Cu+-independent strain-promoted alkyne–azide cycloadition (SPAAC) reaction. Using this approach, tail-to-tail bispecific VHHs and VHH-targeted nanoparticles are generated without affecting VHH functionality. Furthermore, this approach allows the bioconjugation of multiple moieties to VHHs for simple and convenient production of VHH-based theranostics. PMID:28045502

  5. A Modular Dual Labeling Scaffold That Retains Agonistic Properties for Somatostatin Receptor Targeting.

    PubMed

    Ghosh, Sukhen C; Rodriguez, Melissa; Carmon, Kendra S; Voss, Julie; Wilganowski, Nathaniel L; Schonbrunn, Agnes; Azhdarinia, Ali

    2017-06-01

    Fluorescence-guided surgery is an emerging imaging technique that can enhance the ability of surgeons to detect tumors when compared with visual observation. To facilitate characterization, fluorescently labeled probes have been dual-labeled with a radionuclide to enable cross-validation with nuclear imaging. In this study, we selected the somatostatin receptor (SSTR) imaging agent, DOTA-Phe1-Tyr3-octreotide (DOTA-TOC), as the foundation for developing a dual-labeled analog. We hypothesized that a customized dual labeling approach with a multimodality chelation (MMC) scaffold would minimize steric effects of dye conjugation and retain agonist properties. Methods: An MMC-conjugate (MMC-TOC) was synthesized on solid-phase and compared to an analog prepared using conventional methods (DA-TOC). Both analogs were conjugated to IRDye 800 using copper-free click chemistry. The resulting compounds, MMC(IR800)-TOC and DA(IR800)-TOC, were labeled with Cu and (64)Cu and tested in vitro in SSTR subtype-2 (SSTR2)-overexpressing HEK-293 cells to assess agonist properties, and in AR42J rat pancreatic cancer cells to determine receptor binding characteristics. Multimodality imaging was performed in AR42J xenografts. Results: Cu-MMC(IR800)-TOC demonstrated higher potency for cyclic adenosine monophosphate (cAMP) inhibition (EC50: 0.21±0.05 vs. 1.38±0.22 nM) and receptor internalization (EC50: 41.8±17.2 vs. 455±172 nM) compared to Cu-DA(IR800)-TOC. Radioactive uptake studies showed that blocking with octreotide caused a dose-dependent reduction in (64)Cu-MMC(IR800)-TOC uptake while (64)Cu-DA(IR800)-TOC was not affected. In vivo studies revealed higher tumor uptake for (64)Cu-MMC(IR800)-TOC compared to (64)Cu-DA(IR800)-TOC (5.2±0.2 vs. 3.6±0.4 %ID/g). In vivo blocking studies with octreotide reduced tumor uptake of (64)Cu-MMC(IR800)-TOC by 66%. Excretion of (64)Cu-MMC(IR800)-TOC was primarily through the liver and spleen whereas (64)Cu-DA(IR800)-TOC was cleared through the

  6. Sourcing explosives: a multi-isotope approach.

    PubMed

    Widory, David; Minet, Jean-Jacques; Barbe-Leborgne, Martine

    2009-06-01

    Although explosives are easily identified with current instrumental techniques, it is generally impossible to distinguish between sources of the same substance. To alleviate this difficulty, we present a multi-stable isotope (delta13C, delta15N, delta18O, deltaD) approach for appraising the possibility of discriminating explosives. The results from 30 distinct PETN, TNT and ANFO samples show that the different families of explosives are clearly differentiated by both their specific isotope signatures and their combination with corresponding element concentrations. Coupling two or more of the studied isotope systematics yields an even more precise differentiation on the basis of their raw-material origin and/or manufacturing process.

  7. Near-Infrared Quantum Dot and (89)Zr Dual-Labeled Nanoparticles for in Vivo Cerenkov Imaging.

    PubMed

    Zhao, Yiming; Shaffer, Travis M; Das, Sudeep; Pérez-Medina, Carlos; Mulder, Willem J M; Grimm, Jan

    2017-02-15

    Cerenkov luminescence (CL) is an emerging imaging modality that utilizes the light generated during the radioactive decay of many clinical used isotopes. Although it is increasingly used for background-free imaging and deep tissue photodynamic therapy, in vivo applications of CL suffer from limited tissue penetration. Here, we propose to use quantum dots (QDs) as spectral converters that can transfer the CL UV-blue emissions to near-infrared light that is less scattered or absorbed in vivo. Experiments on tissue phantoms showed enhanced penetration depth and increased transmitted intensity for CL in the presence of near-infrared (NIR) QDs. To realize this concept for in vivo imaging applications, we developed three types of NIR QDs and (89)Zr dual-labeled nanoparticles based on lipid micelles, nanoemulsions, and polymeric nanoplatforms, which enable codelivery of the radionuclide and the QDs for maximized spectral conversion efficiency. We finally demonstrated the application of these self-illuminating nanoparticles for imaging of lymph nodes and tumors in a prostate cancer mouse model.

  8. A Generic Isotope Identification Approach for nuclear instrumentation

    SciTech Connect

    Corre, G.; Boudergui, K.; Sannie, G.; Kondrasovs, V.

    2015-07-01

    Isotope identification is generally done from spectra from high intrinsic resolution such as germanium. A lot of approaches are proposed in the literature. Most of them are not efficient with poor energy resolution detectors such as non-loaded scintillators. The proposed approach is a new isotope identification principle to deal with the overall range of nuclear detectors. The proposed method allows the identification of isotopes using detectors with poor intrinsic resolution and lower counting than the existing techniques. (authors)

  9. Dietary absorption of sediment-bound fluoranthene by a deposit-feeding gastropod using the {sup 14}C:{sup 51}Cr dual-labeling method

    SciTech Connect

    Forbes, V.E.; Forbes, T.L.

    1997-05-01

    Polycyclic aromatic hydrocarbons (PAH) constitute a broad class of toxic, environmentally persistent, particle-reactive organic compounds that are ubiquitous in aquatic and terrestrial ecosystems. This study was designed to measure ingestion and dietary absorption of the PAH, fluoranthene, by two genotypes of a deposit-feeding gastropod using the {sup 14}C:{sup 51}Cr dual-labeling method. Sediment processing rate, fluoranthene ingestion rate, selective ingestion of fluoranthene-containing particles, and fluoranthene absorption rate varied as a function of snail body size and genotype. Absorption efficiency of sediment-bound fluoranthene did not vary as a function of body size but differed between genotypes, averaging 42 to 46% for Clone A and 22 to 36% for Clone B. The authors could detect no significant metabolism of ingested fluoranthene to dissolved organic carbon or CO{sub 2} during 24 h following its ingestion. The {sup 14}C:{sup 51}Cr dual-labeling method provides a powerful approach for investigating the dietary absorption of sediment-bound contaminants by (1) allowing the calculation of ingestion selectivity, sediment processing rate, contaminant ingestion rate, and absorption efficiency in individual, small invertebrates; (2) permitting estimation of the fraction of ingested/absorbed contaminant that is metabolized and released via different routes following its ingestion; and (3) facilitating evaluation of the relative importance of porewater versus ingested sediment as routes of contaminant uptake by animals.

  10. Simultaneous detection of imidacloprid and parathion by the dual-labeled time-resolved fluoroimmunoassay.

    PubMed

    Shi, Haiyan; Sheng, Enze; Feng, Lu; Zhou, Liangliang; Hua, Xiude; Wang, Minghua

    2015-10-01

    A highly sensitive direct dual-labeled time-resolved fluoroimmunoassay (TRFIA) to detect parathion and imidacloprid simultaneously in food and environmental matrices was developed. Europium (Eu(3+)) and samarium (Sm(3+)) were used as fluorescent labels by coupling separately with L1-Ab and A1P1-Ab. Under optimal assay conditions, the half-maximal inhibition concentration (IC50) and limit of detection (LOD, IC10) were 10.87 and 0.025 μg/L for parathion and 7.08 and 0.028 μg/L for imidacloprid, respectively. The cross-reactivities (CR) were negligible except for methyl-parathion (42.4 %) and imidaclothiz (103.4 %). The average recoveries of imidacloprid ranged from 78.9 to 104.2 % in water, soil, rice, tomato, and Chinese cabbage with a relative standard deviation (RSD) of 2.4 to 11.6 %, and those of parathion were from 81.5 to 110.9 % with the RSD of 3.2 to 10.5 %. The results of TRFIA for the authentic samples were validated by comparison with gas chromatography (GC) analyses, and satisfactory correlations (parathion: R (2) = 0.9918; imidacloprid: R (2) = 0.9908) were obtained. The results indicate that the dual-labeled TRFIA is convenient and reliable to detect parathion and imidacloprid simultaneously in food and environmental matrices.

  11. Specific detection of Mycobacterium sp. genomic DNA using dual labeled gold nanoparticle based electrochemical biosensor.

    PubMed

    Thiruppathiraja, Chinnasamy; Kamatchiammal, Senthilkumar; Adaikkappan, Periyakaruppan; Santhosh, Devakirubakaran Jayakar; Alagar, Muthukaruppan

    2011-10-01

    The present study was aimed at the development and evaluation of a DNA electrochemical biosensor for Mycobacterium sp. genomic DNA detection in a clinical specimen using a signal amplifier as dual-labeled AuNPs. The DNA electrochemical biosensors were fabricated using a sandwich detection strategy involving two kinds of DNA probes specific to Mycobacterium sp. genomic DNA. The probes of enzyme ALP and the detector probe both conjugated on the AuNPs and subsequently hybridized with target DNA immobilized in a SAM/ITO electrode followed by characterization with CV, EIS, and DPV analysis using the electroactive species para-nitrophenol generated by ALP through hydrolysis of para-nitrophenol phosphate. The effect of enhanced sensitivity was obtained due to the AuNPs carrying numerous ALPs per hybridization and a detection limit of 1.25 ng/ml genomic DNA was determined under optimized conditions. The dual-labeled AuNP-facilitated electrochemical sensor was also evaluated by clinical sputum samples, showing a higher sensitivity and specificity and the outcome was in agreement with the PCR analysis. In conclusion, the developed electrochemical sensor demonstrated unique sensitivity and specificity for both genomic DNA and sputum samples and can be employed as a regular diagnostics tool for Mycobacterium sp. monitoring in clinical samples.

  12. Enzyme-antibody dual labeled gold nanoparticles probe for ultrasensitive detection of κ-casein in bovine milk samples.

    PubMed

    Li, Y S; Zhou, Y; Meng, X Y; Zhang, Y Y; Liu, J Q; Zhang, Y; Wang, N N; Hu, P; Lu, S Y; Ren, H L; Liu, Z S

    2014-11-15

    A dual labeled probe was synthesized by coating gold nanoparticles (AuNPs) with anti-κ-CN monoclonal antibody (McAb) and horseradish peroxidase (HRP) enzyme on their surface. The McAb was used as detector and HRP was used as label for signal amplification catalytically oxidize the substrate. AuNPs were used as bridges between the McAb and HRP. Based on the probe, an immunoassay was developed for ultrasensitive detection of κ-CN in bovine milk samples. The assay has a linear response range within 4.2-560 ng mL(-1). The limit of detection (LOD) was 4.2 ng mL(-1) which was 10 times lower than that of traditional McAb-HRP based ELISA. The recoveries of κ-CN from three brand bovine milk samples were from 95.8% to 111.0% that had a good correlation (R(2)=0.998) with those obtained by official standard Kjeldahl method. For higher sensitivity and as simple as the traditional ELISA, the developed immunoassay could provide an alternative approach for ultrasensitive detection of κ-CN in bovine milk sample.

  13. New approaches to the Moon's isotopic crisis

    PubMed Central

    Melosh, H. J.

    2014-01-01

    Recent comparisons of the isotopic compositions of the Earth and the Moon show that, unlike nearly every other body known in the Solar System, our satellite's isotopic ratios are nearly identical to the Earth's for nearly every isotopic system. The Moon's chemical make-up, however, differs from the Earth's in its low volatile content and perhaps in the elevated abundance of oxidized iron. This surprising situation is not readily explained by current impact models of the Moon's origin and offers a major clue to the Moon's formation, if we only could understand it properly. Current ideas to explain this similarity range from assuming an impactor with the same isotopic composition as the Earth to postulating a pure ice impactor that completely vaporized upon impact. Several recent proposals follow from the suggestion that the Earth–Moon system may have lost a great deal of angular momentum during early resonant interactions. The isotopic constraint may be the most stringent test yet for theories of the Moon's origin. PMID:25114301

  14. Dual labeling of lipopolysaccharides for SPECT-CT imaging and fluorescence microscopy.

    PubMed

    Duheron, Vincent; Moreau, Mathieu; Collin, Bertrand; Sali, Wahib; Bernhard, Claire; Goze, Christine; Gautier, Thomas; Pais de Barros, Jean-Paul; Deckert, Valérie; Brunotte, François; Lagrost, Laurent; Denat, Franck

    2014-03-21

    Lipopolysaccharides (LPS) or endotoxins are amphipathic, pro-inflammatory components of the outer membrane of Gram-negative bacteria. In the host, LPS can trigger a systemic inflammatory response syndrome. To bring insight into in vivo tissue distribution and cellular uptake of LPS, dual labeling was performed with a bimodal molecular probe designed for fluorescence and nuclear imaging. LPS were labeled with DOTA-Bodipy-NCS, and pro-inflammatory properties were controlled after each labeling step. LPS were then radiolabeled with (111)In and subsequently injected intravenously into wild-type, C57B16 mice, and their in vivo behavior was followed by single photon emission computed tomography coupled with X-ray computed tomography (SPECT-CT) and fluorescence microscopy. Time course of liver uptake of radiolabeled LPS ((111)In-DOTA-Bodipy-LPS) was visualized over a 24-h period in the whole animal by SPECT-CT. In complementary histological analyses with fluorescent microscopy, the bulk of injected (111)In-DOTA-Bodipy-LPS was found to localize early within the liver. Serum kinetics of unlabeled and DOTA-Bodipy-labeled LPS in mouse plasma were similar as ascertained by direct quantitation of β-hydroxymyristate, and DOTA-Bodipy-LPS was found to retain the potent, pro-inflammatory property of the unlabeled molecule as assessed by serum cytokine assays. It is concluded that the dual labeling process, involving the formation of covalent bonds between a DOTA-Bodipy-NCS probe and LPS molecules is relevant for imaging and kinetic analysis of LPS biodistribution, both in vivo and ex vivo. Data of the present study come in direct and visual support of a lipopolysaccharide transport through which pro-inflammatory LPS can be transported from the periphery to the liver for detoxification. The (111)In-DOTA-Bodipy-LPS probe arises here as a relevant tool to identify key components of LPS detoxification in vivo.

  15. Experience with a General Gamma-Ray Isotopic Analysis Approach

    SciTech Connect

    Ruhter, W D

    2003-06-18

    The gamma-ray data analysis methodology originally developed for the MGA code to determine the relative detection efficiency curve may also be used to determine the relative amounts of the isotopes being measured. This analysis approach is based on the fact that the intensity of any given gamma ray from a sample is determined by the amount of the emitting isotope present in the sample, the emission probability for the gamma ray being measured, the sample self attenuation, the attenuation due to absorbers between the sample and detector, and the detector efficiency. An equation can be written that describes a measured gamma-ray peak intensity in terms of these parameters. By selecting appropriate gamma-ray peaks from the isotopes of interest, we can solve a set of equations for the values of the parameters in any particular measurement including the relative amounts of the selected isotopes. The equations representing the peak intensities are very nonlinear and require an iterative least squares method to solve. We have developed software to ensure that during the iterative process the parameters stay within their appropriate ranges and converge properly in solving the set of equations under various measurement conditions. We have utilized and reported on this approach for determining the plutonium isotopic abundances in samples enriched in Pu-238 and to determine the U-235 enrichment of uranium samples in thick-walled containers. Recently, we have used this approach to determine the plutonium isotopic abundances of plutonium samples in thick-walled containers. We will report on this most recent application, and how this general approach can be adapted quickly to any isotopic analysis problem.

  16. Dual Labeling Biotin Switch Assay to Reduce Bias Derived from Different Cysteine Subpopulations: A Method to Maximize S-Nitrosylation Detection

    PubMed Central

    Chung, Heaseung Sophia; Murray, Christopher I.; Venkatraman, Vidya; Crowgey, Erin L.; Rainer, Peter P.; Cole, Robert N.; Bomgarden, Ryan D.; Rogers, John C.; Balkan, Wayne; Hare, Joshua M.; Kass, David A.; Van Eyk, Jennifer E.

    2016-01-01

    Rationale S-nitrosylation (SNO), an oxidative post-translational modification of cysteine residues, responds to changes in the cardiac redox-environment. Classic biotin switch assay and its derivatives are the most common methods used for detecting SNO. In this approach, the labile SNO group is selectively replaced with a single stable tag. To date, a variety of thiol-reactive tags have been introduced. However, these methods have not produced a consistent dataset which suggests an incomplete capture by a single tag and potentially the presence of different cysteine subpopulations. Objective To investigate potential labeling bias in the existing methods with a single tag to detect SNO, explore if there are distinct cysteine subpopulations, and then, develop a strategy to maximize the coverage of SNO proteome. Methods and Results We obtained SNO-modified cysteine datasets for wild-type and S-nitrosoglutathione reductase (GSNOR) knock-out mouse hearts (GSNOR is a negative regulator of GSNO production) and NO-induced human embryonic kidney cell using two labeling reagents; the cysteine-reactive pyridyldithiol and iodoacetyl based tandem mass tags. Comparison revealed that <30% of the SNO-modified residues were detected by both tags, while the remaining SNO sites were only labeled by one reagent. Characterization of the two distinct subpopulations of SNO residues indicated that pyridyldithiol reagent preferentially labels cysteine residues that are more basic and hydrophobic. Based on this observation, we proposed a parallel dual labeling strategy followed by an optimized proteomics workflow. This enabled the profiling of 493 SNO-sites in GSNOR knock-out hearts. Conclusions Using a protocol comprising two tags for dual labeling maximizes overall detection of SNO by reducing the previously unrecognized labeling bias derived from different cysteine subpopulations. PMID:26338901

  17. Radiogenic isotopic approaches for quantifying radionuclide transport (Invited)

    NASA Astrophysics Data System (ADS)

    Maher, K.; Depaolo, D. J.; Singleton, M. J.; Christensen, J. N.; Conrad, M. E.

    2009-12-01

    Naturally occurring variations in the isotopic compositions of U and Sr provide unique opportunities for assessing the fate and transport of radionuclides at field-scale conditions. When coupled with reactive transport models, U and Sr isotopes may also provide additional constraints on the rates of sediment-fluid or sediment-waste interactions. Such isotopic approaches can be useful for sites where subsurface characterization is complicated by a lack of accessibility or the presence of substantial heterogeneity. In addition, a variety of quantitative modeling approaches of different complexity can be used to evaluate experimentally determined parameters for radionuclide mobility at the field-scale. At the Hanford Site in eastern Washington, 87Sr/86Sr and 234U/238U ratios have been used to quantify the residence time of Sr and U in the unsaturated zone, the long-term background infiltration rate through the unsaturated zone, and to assess the influence of enhanced wastewater discharge on the regional unconfined aquifer. As a result of different processing techniques or due to interactions between caustic waste and the natural sediment, waste plumes may also inherit isotopic fingerprints (e.g. 234U/238U, 235U/238U, 236U/238U; δ15N & δ18O of nitrate) that can be used to resolve multiple sources of contamination. Finally, enriched isotopic tracers can be applied to experimental manipulations to assess the retardation of a variety of contaminants. Collectively this isotopic data contributes unique perspectives on both the hydrologic conditions across the site and the mobility of key radionuclides. Predicting the long-term fate and transport of radionuclides in the environment is often challenging due to natural heterogeneity and incomplete characterization of the subsurface, however detailed analysis of isotopic variations can provide one additional means of characterizing the subsurface.

  18. Nitrogen isotope and mass balance approach in the Elbe Estuary

    NASA Astrophysics Data System (ADS)

    Sanders, Tina; Wankel, Scott D.; Dähnke, Kirstin

    2017-04-01

    The supply of bioavailable nitrogen is crucial to primary production in the world's oceans. Especially in estuaries, which act as a nutrient filter for coastal waters, microbial nitrogen turnover and removal has a particular significance. Nitrification as well as other nitrogen-based processes changes the natural abundance of the stable isotope, which can be used as proxies for sources and sinks as well as for process identification. The eutrophic Elbe estuary in northern Germany is loaded with fertilizer-derived nitrogen, but management efforts have started to reduce this load effectively. However, an internal nitrate source in turn gained in importance and the estuary changed from a sink to a source of dissolved inorganic nitrogen: Nitrification is responsible for significant estuarine nutrient regeneration, especially in the Hamburg Port. In our study, we aimed to quantify sources and sinks of nitrogen based on a mass and stable isotope budget in the Elbe estuary. A model was developed reproduce internal N-cycling and associated isotope changes. For that approach we measured dissolved inorganic nitrogen (DIN), particulate nitrogen and their stable isotopes in a case study in July 2013. We found an almost closed mass balance of nitrogen, with only low lost or gains which we attribute to sediment resuspension. The isotope values of different DIN components and the model approach both support a high fractionation of up to -25‰ during nitrification. However, the nitrogen balance and nitrogen stable isotopes suggest that most important processes are remineralization of organic matter to ammonium and further on the oxidation to nitrate. Denitrification and nitrate assimilation play a subordinate role in the Elbe Estuary.

  19. Alternative Approaches to Uncertainty Calculations for TIMS Isotopic Measurements

    NASA Astrophysics Data System (ADS)

    Thomas, R. B.; Essex, R. M.; Goldberg, S. A.

    2006-12-01

    Two methods of estimating uncertainty for TIMS U isotopic ratio measurements were evaluated. Although these methods represent fundamentally different approaches both are consistent with the principles outlined in the ISO "Guide to the Expression of Uncertainty in Measurements" (GUM). In the "Discrete Component" approach all of the identifiable sources of random variability associated with the mass spectrometer (gain variability, baseline variability, cup efficiency variability, Schottky noise, counting statistics) are individually assessed to estimate measurement reproducibility. The second approach is an "Integrated" method, which uses observed reproducibility of repeated identical sample measurements to confound the various components of random variability. Evaluation of the uncertainty budgets for the two methods shows that the relative importance of an uncertainty component in a measurement is highly dependent on the measurement technique and the isotopic ratio of the measured value. For example, the uncertainty of the ^{235}U/^{238}U ratio of the material analyzed in this study will generally be dominated by the uncertainty of the CRM used to determine the mass fractionation factor. The more extreme 234U/^{238}U and ^{236}U/^{238}U ratios are often dominated by other factors such as internal and external reproducibility. Although both methods are consistent with the GUM principles, there are many instrumental factors that can produce measurement variability but are not readily quantifiable (i.e., small differences in run conditions, filament geometry, sample loading, etc). Accordingly, the Discrete Component determination can accurately estimate internal reproducibility of an isotopic measurement but will not sufficiently characterize analysis-to- analysis variability that is inherent in all measurements. The Integrated approach to uncertainty evaluation has the advantage of not requiring the quantification of an extensive set of variables and also greatly

  20. Probing the Activities of Soil Invertebrates Using Stable Isotope Approaches

    NASA Astrophysics Data System (ADS)

    Evershed, R. P.

    2004-12-01

    Soil dwelling invertebrates play a vital role in determining the physical properties and nutrient cycling in soil. Their diverse behaviours influence organic litter, water and gas transport. They impact on other soil biota, e.g. microbes, plants, other invertebrates, etc. via their various grazing and predatory activities, and their role in the comminution of litter influences the activities of other decomposer organisms. However, major challenges exist in the study of the activities of such invertebrates due to the small sizes of many of the key organisms and the opaque nature of soil. This paper will provide an overview of a number of new approaches that have been developed to investigate the behaviours of soil invertebrates. The techniques we employ are based on the use of stable isotopes, exploiting both natural abundance labelling and artificially isotopically enriched tracers. Experiments range from simple feeding and choice experiments in laboratory arenas to pot-based microcosm studies, and field experiments (Chamberlain et al., 2004; Black et al. in press). The philosophy underpinning this research is to exploit fundamental biochemical information to determine the activities of organisms. Thus, compound-specific stable isotope determinations are one of our major goals since these yield high specificity stable isotopic information, often at the biochemical building block level. Compound-specific approaches also have the virtue of enhancing analytical sensitivity, such that the δ 13C values of the biochemical components of individual specimens of low microgram-sized organisms, i.e. mesoinvertebrates, can be recorded their behaviours investigated (Evans et al., 2003; Black et al. in press).

  1. Nitrate in groundwater: an isotopic multi-tracer approach.

    PubMed

    Widory, David; Kloppmann, Wolfram; Chery, Laurence; Bonnin, Jacky; Rochdi, Houda; Guinamant, Jean-Luc

    2004-08-01

    In spite of increasing efforts to reduce nitrogen inputs into groundwater from intensive agriculture, nitrate (NO3) remains one of the major pollutants of drinking-water resources worldwide. Determining the source(s) of NO3 contamination in groundwater is an important first step for improving groundwater quality by emission control, and it is with this aim that we investigated the viability of an isotopic multi-tracer approach (delta15N, delta11B, 87Sr/86Sr), in addition to conventional hydrogeologic analysis, in two small catchments of the Arguenon watershed (Brittany, France). The main anthropogenic sources (fertilizer, sewage effluent, and hog, cattle and poultry manure) were first characterized by their specific B, N and Sr isotope signatures, and compared to those observed in the ground- and surface waters. Chemical and isotopic evidence shows that both denitrification and mixing within the watershed have the effect of buffering NO3 contamination in the groundwater. Coupled delta11B, delta15N and 87Sr/86Sr results indicate that a large part of the NO3 contamination in the Arguenon watershed originates from the spreading of animal manure, with hog manure being a major contributor. Point sources, such as sewage effluents, contribute to the NO3 budget of the two watersheds.

  2. Nitrate in groundwater: an isotopic multi-tracer approach

    NASA Astrophysics Data System (ADS)

    Widory, David; Kloppmann, Wolfram; Chery, Laurence; Bonnin, Jacky; Rochdi, Houda; Guinamant, Jean-Luc

    2004-08-01

    In spite of increasing efforts to reduce nitrogen inputs into groundwater from intensive agriculture, nitrate (NO 3) remains one of the major pollutants of drinking-water resources worldwide. Determining the source(s) of NO 3 contamination in groundwater is an important first step for improving groundwater quality by emission control, and it is with this aim that we investigated the viability of an isotopic multi-tracer approach ( δ15N, δ11B, 87Sr/ 86Sr), in addition to conventional hydrogeologic analysis, in two small catchments of the Arguenon watershed (Brittany, France). The main anthropogenic sources (fertilizer, sewage effluent, and hog, cattle and poultry manure) were first characterized by their specific B, N and Sr isotope signatures, and compared to those observed in the ground- and surface waters. Chemical and isotopic evidence shows that both denitrification and mixing within the watershed have the effect of buffering NO 3 contamination in the groundwater. Coupled δ11B, δ15N and 87Sr/ 86Sr results indicate that a large part of the NO 3 contamination in the Arguenon watershed originates from the spreading of animal manure, with hog manure being a major contributor. Point sources, such as sewage effluents, contribute to the NO 3 budget of the two watersheds.

  3. Site-specific protection and dual labeling of human epidermal growth factor (hEGF) for targeting, imaging, and cargo delivery.

    PubMed

    Sonntag, Michael H; Ibach, Jenny; Nieto, Lidia; Verveer, Peter J; Brunsveld, Luc

    2014-05-12

    Well-defined human epidermal growth factor (hEGF) constructs featuring selectively addressable labels are urgently needed to address outstanding questions regarding hEGF biology. A protein-engineering approach was developed to provide access to hEGF constructs that carry two cysteine-based site-specific orthogonal labeling sites in multi-milligram quantities. Also, a site-selective (de)protection and labeling approach was devised, which allows selective modification of these hEGF constructs. The hEGF, featuring three native disulfide bonds, was expressed featuring additional sulfhydryl groups, in the form of cysteine residues, as orthogonal ligation sites at both the N and C termini. Temporary protection of the N-terminal cysteine unit, in the form of a thiazolidine ring, avoids interference with protein folding and enables sequential labeling in conjunction with the cysteine residue at the C terminus. Based on thus-generated hEGF constructs, sequential and site-specific labeling with a variety of molecular probes could be demonstrated, thus leading to a biological fully functional hEGF with specifically incorporated fluorophores or protein cargo and native cellular targeting and uptake profiles. Thus, this novel strategy provides a robust entry to high-yielding access of hEGF and rapid and easy site-specific and multifunctional dual labeling of this growth factor. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Detection of genetic variation using dual-labeled peptide nucleic acid (PNA) probe-based melting point analysis.

    PubMed

    Hur, Deokhwe; Kim, Myoung Sug; Song, Minsik; Jung, Jinwook; Park, Heekyung

    2015-01-01

    Thermal denaturation of probe-target hybrid is highly reproducible, and which makes probe melting point analysis reliable in the detection of mutations, polymorphisms and epigenetic differences in DNA. To improve resolution of these detections, we used dual-labeled (quencher and fluorescence), full base of peptide nucleic acid (PNA) probe for fluorescence probe based melting point analysis. Because of their uncharged nature and peptide bond-linked backbone, PNA probes have more favorable hybridization properties, which make a large difference in the melting temperature between specific hybridization and partial hybridization. Here, we have shown that full base dual-labeled PNA is apt material for fluorescence probe-based melting point analysis with large difference in the melting temperature between full specific hybridization and that of partial hybridization, including insertion and deletion. In case of narrowly distributed mutations, PNA probe effectively detects three mutations in a single reaction tube with three probes. Moreover, we successfully diagnose virus analogues with amplification and melting temperature signal. Lastly, Melting temperature of PNA oligomer can be easily adjusted just by adding gamma-modified PNA probe. The PNA probes offer advantage of improved flexibility in probe design, which could be used in various applications in mutation detection among a wide range of spectrums.

  5. An isotopic approach to measuring nitrogen balance in caribou

    USGS Publications Warehouse

    Gustine, D.D.; Barboza, P.S.; Adams, L.G.; Farnell, R.G.; Parker, K.L.

    2011-01-01

    Nutritional restrictions in winter may reduce the availability of protein for reproduction and survival in northern ungulates. We refined a technique that uses recently voided excreta on snow to assess protein status in wild caribou (Rangifer tarandus) in late winter. Our study was the first application of this non-invasive, isotopic approach to assess protein status of wild caribou by determining dietary and endogenous contributions of nitrogen (N) to urinary urea. We used isotopic ratios of N (??15N) in urine and fecal samples to estimate the proportion of urea N derived from body N (p-UN) in pregnant, adult females of the Chisana Herd, a small population that ranged across the Alaska-Yukon border. We took advantage of a predator-exclosure project to examine N status of penned caribou in April 2006. Lichens were the primary forage (>40%) consumed by caribou in the pen and ?? 15N of fiber tracked the major forages in their diets. The ??15N of urinary urea for females in the pen was depleted relative (-1.3 ?? 1.0 parts per thousand [??], x?? ?? SD) to the ??15N of body N (2.7 ?? 0.7??). A similar proportion of animals in the exclosure lost core body mass (excluding estimates of fetal and uterine tissues; 55%) and body protein (estimated by isotope ratios; 54%). This non-invasive technique could be applied at various spatial and temporal scales to assess trends in protein status of free-ranging populations of northern ungulates. Intra- and inter-annual estimates of protein status could help managers monitor effects of foraging conditions on nutritional constraints in ungulates, increase the efficiency and efficacy of management actions, and help prepare stakeholders for potential changes in population trends. ?? 2010 The Wildlife Society.

  6. Mechanistic approach to multi-element isotope modeling of organic contaminant degradation.

    PubMed

    Jin, Biao; Rolle, Massimo

    2014-01-01

    We propose a multi-element isotope modeling approach to simultaneously predict the evolution of different isotopes during the transformation of organic contaminants. The isotopic trends of different elements are explicitly simulated by tracking position-specific isotopologues that contain the isotopes located at fractionating positions. Our approach is self-consistent and provides a mechanistic description of different degradation pathways that accounts for the influence of both primary and secondary isotope effects during contaminant degradation. The method is particularly suited to quantitatively describe the isotopic evolution of relatively large organic contaminant molecules. For such compounds, an integrated approach, simultaneously considering all possible isotopologues, would be impractical due to the large number of isotopologues. We apply the proposed modeling approach to the degradation of toluene, methyl tert-butyl ether (MTBE) and nitrobenzene observed in previous experimental studies. Our model successfully predicts the multi-element isotope data (both 2D and 3D), and accurately captures the distinct trends observed for different reaction pathways. The proposed approach provides an improved and mechanistic methodology to interpret multi-element isotope data and to predict the extent of multi-element isotope fractionation that goes beyond commonly applied modeling descriptions and simplified methods based on the ratio between bulk enrichment factors or on linear regression in dual-isotope plots.

  7. ImmunoPET and Near-Infrared Fluorescence Imaging of Pancreatic Cancer with a Dual-Labeled Bispecific Antibody Fragment.

    PubMed

    Luo, Haiming; England, Christopher G; Goel, Shreya; Graves, Stephen A; Ai, Fanrong; Liu, Bai; Theuer, Charles P; Wong, Hing C; Nickles, Robert J; Cai, Weibo

    2017-03-24

    Dual-targeted imaging agents have shown improved targeting efficiencies in comparison to single-targeted entities. The purpose of this study was to quantitatively assess the tumor accumulation of a dual-labeled heterobifunctional imaging agent, targeting two overexpressed biomarkers in pancreatic cancer, using positron emission tomography (PET) and near-infrared fluorescence (NIRF) imaging modalities. A bispecific immunoconjugate (heterodimer) of CD105 and tissue factor (TF) Fab' antibody fragments was developed using click chemistry. The heterodimer was dual-labeled with a radionuclide ((64)Cu) and fluorescent dye. PET/NIRF imaging and biodistribution studies were performed in four-to-five week old nude athymic mice bearing BxPC-3 (CD105/TF(+/+)) or PANC-1 (CD105/TF(-/-)) tumor xenografts. A blocking study was conducted to investigate the specificity of the tracer. Ex vivo tissue staining was performed to compare TF/CD105 expression in tissues with PET tracer uptake to validate in vivo results. PET imaging of (64)Cu-NOTA-heterodimer-ZW800 in BxPC-3 tumor xenografts revealed enhanced tumor uptake (21.0 ± 3.4%ID/g; n = 4) compared to the homodimer of TRC-105 (9.6 ± 2.0%ID/g; n = 4; p < 0.01) and ALT-836 (7.6 ± 3.7%ID/g; n = 4; p < 0.01) at 24 h postinjection. Blocking studies revealed that tracer uptake in BxPC-3 tumors could be decreased by 4-fold with TF blocking and 2-fold with CD105 blocking. In the negative model (PANC-1), heterodimer uptake was significantly lower than that found in the BxPC-3 model (3.5 ± 1.1%ID/g; n = 4; p < 0.01). The specificity was confirmed by the successful blocking of CD105 or TF, which demonstrated that the dual targeting with (64)Cu-NOTA-heterodimer-ZW800 provided an improvement in overall tumor accumulation. Also, fluorescence imaging validated the PET imaging, allowing for clear delineation of the xenograft tumors. Dual-labeled heterodimeric imaging agents, like (64)Cu-NOTA-heterodimer-ZW800, may increase the overall tumor

  8. Description of C isotopes within RMF+BCS approach

    SciTech Connect

    Saxena, G.; Singh, D.; Kaushik, M.

    2013-06-03

    In the present investigations we have employed relativistic mean-field plus BCS (RMF + BCS) approach to carry out a systematic study for the ground state properties of even-even C Isotopes. One of the prime reason of this study has been to look into the role of low lying states in neutron rich reason near neutron drip line. It is found that irrespective of whether any resonant state exists or not, the occupancy of weakly bound neutron single particle states having low orbital angular momentum, (l = 0 or 1), with a well spread wave function due to the absence or very small strength of centrifugal barrier, helps to cause the occurrence of nuclei with widely extended neutron density. Such nuclei are found to have characteristically very small two-neutron separation energy and large neutron rms radius akin to that observed in weakly bound systems.

  9. Influence of chelator and near-infrared dye labeling on biocharacteristics of dual-labeled trastuzumab-based imaging agents

    PubMed Central

    Aldrich, Melissa B; Yang, Zhi; Zhou, Nina; Xie, Qing; Liu, Chen; Sevick-Muraca, Eva

    2016-01-01

    Objective To investigate the effect of fluorescent dye labeling on the targeting capabilities of 111In- (DTPA)n-trastuzumab-(IRDye 800)m. Methods Trastuzumab-based conjugates were synthesized and conjugated with diethylenetriaminepentaacetic acid (DTPA) at molar ratios of 1, 2, 3 and 5 and with a fluorescent dye (IRDye 800CW) at molar ratios of 1, 3 and 5. Immunoreactivity and internalization were assessed on SKBR-3 cells, overexpressing human epidermal growth factor receptor 2. The stability in human serum and phosphate-buffered saline (PBS) was evaluated. The biodistribution of dual-labeled conjugates was compared with that of 111In-(DTPA)2-trastuzumab in a SKBR-3 xenograft model to evaluate the effect of dye-to-protein ratio. Results All trastuzumab-based conjugates exhibited a high level of chemical and optical purity. Flow cytometry results showed that increasing dye-to-protein ratios were associated with decreased immunoreactivity. Stability studies revealed that the conjugate was stable in PBS, while in human serum, increased degradation and protein precipitation were observed with increasing dye-to-protein ratios. At 4 h, the percentages of internalization of dual-labeled conjugates normalized by dye-to-protein ratio (m) were 24.88%±2.10%, 19.99%±0.59%, and 17.47%±1.26% for "m" equal to 1, 3, and 5, respectively. A biodistribution study revealed a progressive decrease in tumor uptake with an increase in the dye-to-protein ratios. The liver, spleen and kidney showed a marked uptake with increased dye-to-protein ratios, particularly in the latter. Conclusions With non-specific-site conjugation of the fluorescent dye with a protein based on imaging agent, the increase in dye-to-protein ratios negatively impacted the immunoreactivity and stability, indicating a reduced tumor uptake. PMID:27478322

  10. Integrating Stable Isotope - Reactive Transport Model Approach for Assessment of Chlorinated Solvent Degradation

    DTIC Science & Technology

    2016-06-01

    FINAL REPORT Integrated Stable Isotope – Reactive Transport Model Approach for Assessment of Chlorinated Solvent Degradation ESTCP Project... Chlorinated Solvent Degradation 5b. GRANT NUMBER ER-201029 Final Report 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Kuder, Tomasz; Philp, Richard, P...of ESTCP Project ER-201029 Integrated Stable Isotope – Reactive Transport Model Approach for Assessment of Chlorinated Solvent Degradation. The

  11. Biomarker and molecular isotope approaches to deconvolve the terrestrial carbon isotope record: modern and Eocene calibrations

    NASA Astrophysics Data System (ADS)

    Diefendorf, A. F.; Freeman, K. H.; Wing, S.; Currano, E. D.

    2010-12-01

    Climate, biome, and plant community are important predictors of carbon isotope patterns recorded in leaves and leaf waxes. However, signatures recorded by terrestrial organic carbon and lipids that have mixed floral sources (e.g., n-alkanes) potentially reflect both plant community changes and climate. More taxonomically specific proxies for plants (i.e., di- and tri-terpenoids for conifers and angiosperms, respectively), can help to resolve the relative influences of changing community and climate, provided differences in biomarker production and lipid biosynthetic fractionation among plants can be better constrained. We present biomarker abundance and carbon isotope values for lipids from leaves, branches and bark of 44 tree species, representing 21 families including deciduous and evergreen conifers and angiosperms. n-alkane production differs greatly between conifer and angiosperm leaves. Both deciduous and evergreen angiosperms make significantly more n-alkanes than conifers, with n-alkanes not detected in over half of the conifers in our study. Terpenoid abundances scale strongly with leaf habit: evergreen species have significantly higher abundances. We combine these relative differences in lipid production with published estimates of fluxes for leaf litter from conifer and angiosperm trees to develop a new proxy approach for estimating paleo plant community inputs to ancient soils and sediments. To test our modern calibration results, we have evaluated n-alkanes and terpenoids from laterally extensive (~18 km) carbonaceous shales and mudstones in Eocene sediments (52.6 Ma) at Fifteenmile Creek in the Bighorn Basin (WY, USA). Our terpenoid-based proxy predicts on average a 40% conifer community, which is remarkably close in agreement with a fossil-based estimate of 36%. n-alkane carbon isotope fractionation (leaf-lipid) differs among plant types, with conifer n-alkanes about 2-3‰ 13C enriched relative to those in angiosperms. Since conifer leaves are

  12. p16/Ki-67 dual labeling and urinary cytology results according to the New Paris System for Reporting Urinary Cytology: Impact of extended follow-up.

    PubMed

    Piaton, Eric; Advenier, Anne-Sophie; Carré, Christian; Decaussin-Petrucci, Myriam; Mège-Lechevallier, Florence; Hutin, Karine; Nennig, Cindy; Colombel, Marc; Ruffion, Alain

    2017-07-01

    Overexpression of p16(INK4a) has been identified in urothelial malignancies both cytologically and histologically. In addition, p16/Ki-67 dual labeling has been shown to identify high-grade urothelial cancer cells and some progression cases within a 12-month delay. The Paris System for Reporting Urinary Cytology (TPS) was published in late 2015. Its aim is to clarify the criteria for diagnosing or, conversely, excluding high-grade urothelial carcinoma (HGUC). Dual labeling was performed on archived ThinPrep-based Papanicolaou slides. A total of 208 samples (negative for high-grade urothelial carcinoma [NHGUC], 59; consistent with low-grade urothelial neoplasia [LGUN], 24; atypical urothelial cells [AUC], 15; and suspicious for or showing HGUC, 110) were analyzed for p16/Ki-67 after reclassification according to TPS. We assessed the oncologic status of the patients with cystoscopy, urinary cytology, histology, and prolonged 36-month follow-up data. The sensitivity of p16/Ki-67 for life-threatening lesions was not different from that of urinary cytology (82.8% vs 83.6%; P = 1). However, among patients with samples classified as NHGUC and AUC, disease-free survival was significantly shorter for dual-labeled cases versus cases with negative dual labeling (P < .0001). The same tendency was observed in patients with histologically proven LGUN (P < .0001). As for specificity in patients with negative cystoscopy and cytology combined, prolonged follow-up showed 90% overall survival at 24 months. A long-term evaluation of p16/Ki-67 dual labeling may identify HGUC and progression in cases with negative/low-grade urinary cytology results, and there are potential implications for the clinical management of patients after the conservative treatment of non-muscle-invasive urothelial carcinoma. Cancer Cytopathol 2017;125:552-62. © 2017 American Cancer Society. © 2017 American Cancer Society.

  13. Nitrogen isotopes in Tree-Rings - An approach combining soil biogeochemistry and isotopic long series with statistical modeling

    NASA Astrophysics Data System (ADS)

    Savard, Martine M.; Bégin, Christian; Paré, David; Marion, Joëlle; Laganière, Jérôme; Séguin, Armand; Stefani, Franck; Smirnoff, Anna

    2016-04-01

    Monitoring atmospheric emissions from industrial centers in North America generally started less than 25 years ago. To compensate for the lack of monitoring, previous investigations have interpreted tree-ring N changes using the known chronology of human activities, without facing the challenge of separating climatic effects from potential anthropogenic impacts. Here we document such an attempt conducted in the oil sands (OS) mining region of Northeastern Alberta, Canada. The reactive nitrogen (Nr)-emitting oil extraction operations began in 1967, but air quality measurements were only initiated in 1997. To investigate if the beginning and intensification of OS operations induced changes in the forest N-cycle, we sampled white spruce (Picea glauca (Moench) Voss) stands located at various distances from the main mining area, and receiving low, but different N deposition. Our approach combines soil biogeochemical and metagenomic characterization with long, well dated, tree-ring isotopic series. To objectively delineate the natural N isotopic behaviour in trees, we have characterized tree-ring N isotope (15N/14N) ratios between 1880 and 2009, used statistical analyses of the isotopic values and local climatic parameters of the pre-mining period to calibrate response functions and project the isotopic responses to climate during the extraction period. During that period, the measured series depart negatively from the projected natural trends. In addition, these long-term negative isotopic trends are better reproduced by multiple-regression models combining climatic parameters with the proxy for regional mining Nr emissions. These negative isotopic trends point towards changes in the forest soil biogeochemical N cycle. The biogeochemical data and ultimate soil mechanisms responsible for such changes will be discussed during the presentation.

  14. Isotope approach to assess hydrologic connections during Marcellus Shale drilling.

    PubMed

    Sharma, Shikha; Mulder, Michon L; Sack, Andrea; Schroeder, Karl; Hammack, Richard

    2014-01-01

    Water and gas samples were collected from (1) nine shallow groundwater aquifers overlying Marcellus Shale in north-central West Virginia before active shale gas drilling, (2) wells producing gas from Upper Devonian sands and Middle Devonian Marcellus Shale in southwestern Pennsylvania, (3) coal-mine water discharges in southwestern Pennsylvania, and (4) streams in southwestern Pennsylvania and north-central West Virginia. Our preliminary results demonstrate that the oxygen and hydrogen isotope composition of water, carbon isotope composition of dissolved inorganic carbon, and carbon and hydrogen isotope compositions of methane in Upper Devonian sands and Marcellus Shale are very different compared with shallow groundwater aquifers, coal-mine waters, and stream waters of the region. Therefore, spatiotemporal stable isotope monitoring of the different sources of water before, during, and after hydraulic fracturing can be used to identify migrations of fluids and gas from deep formations that are coincident with shale gas drilling. © 2013, National Ground Water Association.

  15. Heavy element stable isotope ratios: analytical approaches and applications.

    PubMed

    Tanimizu, Masaharu; Sohrin, Yoshiki; Hirata, Takafumi

    2013-03-01

    Continuous developments in inorganic mass spectrometry techniques, including a combination of an inductively coupled plasma ion source and a magnetic sector-based mass spectrometer equipped with a multiple-collector array, have revolutionized the precision of isotope ratio measurements, and applications of inorganic mass spectrometry for biochemistry, geochemistry, and marine chemistry are beginning to appear on the horizon. Series of pioneering studies have revealed that natural stable isotope fractionations of many elements heavier than S (e.g., Fe, Cu, Zn, Sr, Ce, Nd, Mo, Cd, W, Tl, and U) are common on Earth, and it had been widely recognized that most physicochemical reactions or biochemical processes induce mass-dependent isotope fractionation. The variations in isotope ratios of the heavy elements can provide new insights into past and present biochemical and geochemical processes. To achieve this, the analytical community is actively solving problems such as spectral interference, mass discrimination drift, chemical separation and purification, and reduction of the contamination of analytes. This article describes data calibration and standardization protocols to allow interlaboratory comparisons or to maintain traceability of data, and basic principles of isotope fractionation in nature, together with high-selectivity and high-yield chemical separation and purification techniques for stable isotope studies.

  16. Detecting changes in the thiol redox state of proteins following a decrease in oxygen concentration using a dual labeling technique.

    PubMed

    Lui, James K C; Lipscombe, Richard; Arthur, Peter G

    2010-01-01

    Cells are routinely exposed to hyperoxic conditions when cultured in the presence of 95% air and 5% carbon dioxide. Hyperoxic conditions can increase the generation of reactive oxygen species and cause oxidative stress. Oxidative stress has been proposed to cause cells in culture to behave differently from cells in vivo. One route by which oxidative stress could affect cellular function is through alterations in protein function caused by the oxidation of thiol groups (-SH) of redox-sensitive cysteine residues. To test whether changes in oxygen concentration were sufficient to cause changes in the thiol redox state of proteins, we developed a sensitive method involving the labeling of reduced and oxidized cysteine residues with fluorescent tags. Using this dual labeling method, we found 62 of 411 protein spots that were significantly more reduced following a 30 min decrease in oxygen concentration. We conclude that the elevated oxygen concentration characteristic of typical cell culture conditions has the potential to affect cellular behavior through changes in the thiol redox state of proteins.

  17. In Vivo Tumor Vasculature Targeted PET/NIRF Imaging with TRC105(Fab)-Conjugated, Dual-Labeled Mesoporous Silica Nanoparticles

    PubMed Central

    2015-01-01

    Multifunctional mesoporous silica nanoparticles (MSN) with well-integrated multimodality imaging properties have generated increasing research interest in the past decade. However, limited progress has been made in developing MSN-based multimodality imaging agents to image tumors. We describe the successful conjugation of, copper-64 (64Cu, t1/2 = 12.7 h), 800CW (a near-infrared fluorescence [NIRF] dye), and TRC105 (a human/murine chimeric IgG1 monoclonal antibody) to the surface of MSN via well-developed surface engineering procedures, resulting in a dual-labeled MSN for in vivo targeted positron emission tomography (PET) imaging/NIRF imaging of the tumor vasculature. Pharmacokinetics and tumor targeting efficacy/specificity in 4T1 murine breast tumor-bearing mice were thoroughly investigated through various in vitro, in vivo, and ex vivo experiments. Dual-labeled MSN is an attractive candidate for future cancer theranostics. PMID:24937108

  18. Detection and tracking of dual-labeled HIV particles using wide-field live cell imaging to follow viral core integrity

    PubMed Central

    Mamede, Joao I.; Hope, Thomas J.

    2016-01-01

    Summary Live cell imaging is a valuable technique that allows the characterization of the dynamic processes of the HIV-1 life-cycle. Here, we present a method of production and imaging of dual-labeled HIV viral particles that allows the visualization of two events. Varying release of the intravirion fluid phase marker reveals virion fusion and the loss of the integrity of HIV viral cores with the use of live wide-field fluorescent microscopy. PMID:26714704

  19. Tracing Cadmium in the Environment: an Evolving Stable Isotope Approach

    NASA Astrophysics Data System (ADS)

    Bullen, T. D.; Bouse, R. M.; Brown, C. L.; Croteau, M.; Luoma, S. N.; Topping, B. R.

    2005-05-01

    Cadmium (Cd) is a trace constituent in rocks and waters, and like many transition metals is an essential dietary nutrient at low levels but highly toxic in elevated doses. In many respects, cadmium behaves chemically like calcium (Ca) and thus substitutes for Ca in liquid-solid partitioning reactions and generally follows Ca through biogeochemical cycles and metabolic processes. Cd is comprised of 8 stable isotopes, and given the isotopic systematics of environmental Ca it is likely that variations in the stable isotope composition of Cd in natural materials will result from both inorganic and biologic processes. In order to assess the potential of Cd isotope variations to reveal information about sources, metabolic and biogeochemical pathways and fates of environmental Cd, we have initiated a broad study of the stable isotope composition of Cd in a variety of natural and anthropogenically-influenced systems. As an example, here we report the results of the first systematic study of the stable isotope composition of Cd in biologic materials. We focused on the isotopic variability of Cd in tissues of two species of clam collected from the San Francisco Bay estuary, Potamocorbula amurensis which resides in brackish water and Corbicula fluminea which resides in fresh and slightly brackish water. Both clam species concentrate Cd in their soft and hard tissues. During both low-flow conditions in August and high-flow conditions in April, δ116Cd of soft tissues of Potamocorbula was consistently negative and increased down-estuary with increasing salinity (δ116Cd is defined as the per mil difference of the 116Cd/110Cd ratio between a sample and our standard, igneous rock BIR-1). Samples collected in August were systematically displaced to higher δ116Cd than those collected in April. Soft tissues of Corbicula collected in both August and April from upstream, fully fresh-water sampling sites had identical δ116Cd, while soft tissues of Corbicula collected from our site at

  20. Identification of squid species by melting temperature shifts on fluorescence melting curve analysis (FMCA) using single dual-labeled probe

    NASA Astrophysics Data System (ADS)

    Koh, Eunjung; Song, Ha Jeong; Kwon, Na Young; Kim, Gi Won; Lee, Kwang Ho; Jo, Soyeon; Park, Sujin; Park, Jihyun; Park, Eun Kyeong; Hwang, Seung Yong

    2017-06-01

    Real time PCR is a standard method for identification of species. One of limitations of the qPCR is that there would be false-positive result due to mismatched hybridization between target sequence and probe depending on the annealing temperature in the PCR condition. As an alternative, fluorescence melting curve analysis (FMCA) could be applied for species identification. FMCA is based on a dual-labeled probe. Even with subtle difference of target sequence, there are visible melting temperature (Tm) shift. One of FMCA applications is distinguishing organisms distributed and consumed globally as popular food ingredients. Their prices are set by species or country of origin. However, counterfeiting or distributing them without any verification procedure are becoming social problems and threatening food safety. Besides distinguishing them in naked eye is very difficult and almost impossible in any processed form. Therefore, it is necessary to identify species in molecular level. In this research three species of squids which have 1-2 base pair differences each are selected as samples since they have the same issue. We designed a probe which perfectly matches with one species and the others mismatches 2 and 1 base pair respectively and labeled with fluorophore and quencher. In an experiment with a single probe, we successfully distinguished them by Tm shift depending on the difference of base pair. By combining FMCA and qPCR chip, smaller-scale assay with higher sensitivity and resolution could be possible, andc furthermore, enabling results analysis with smart phone would realize point-of-care testing (POCT).

  1. Capture antibody targeted fluorescence in situ hybridization (CAT-FISH): dual labeling allows for increased specificity in complex samples.

    PubMed

    Stroot, Joyce M; Leach, Kelly M; Stroot, Peter G; Lim, Daniel V

    2012-02-01

    Pathogen detection using biosensors is commonly limited due to the need for sensitivity and specificity in detecting targets within mixed populations. These issues were addressed through development of a dual labeling method that allows for both liquid-phase fluorescence in situ hybridization (FISH) and capture antibody targeted detection (CAT-FISH). CAT-FISH was developed using Escherichia coli O157:H7 and Staphylococcus aureus as representative bacteria, and processing techniques were evaluated with regard to FISH intensities and antibody recognition. The alternative fixative solution, methacarn, proved to be superior to standard solid-phase paraformaldehyde fixation procedures, allowing both FISH labeling and antibody recognition. CAT-FISH treated cells were successfully labeled with FISH probes, captured by immunomagnetic separation using fluorescent cytometric array beads, and detected using a cytometric array biosensor. CAT-FISH treated cells were detectable with LODs comparable to the standard antibody-based technique, (~10(3)cells/ml in PBS), and the technique was also successfully applied to two complex matrices. Although immunomagnetic capture and detection using cytometric arrays were demonstrated, CAT-FISH is readily applicable to any antibody-based fluorescence detection platform, and further optimization for sensitivity is possible via inclusion of fluorescently tagged antibodies. Since the confidence level needed for positive identification of a detected target is often paramount, CAT-FISH was developed to allow two separate levels of specificity, namely nucleic acid and protein signatures. With proper selection of FISH probes and capture antibodies, CAT-FISH may be used to provide rapid detection of target pathogens from within complex matrices with high levels of confidence.

  2. Dual label single photon emission tomography: A new method to assess redistribution in regional coronary blood flow after nitroglycerin

    SciTech Connect

    Liu, P.; Houle, S.; Kimball, B.; Burns, R.J.; Gilday, D.; Weisel, R.D.; Warbick-Cerone, A.; Johnston, L.; McLaughlin, P.R.

    1984-01-01

    The authors have developed a new method to quantitate changes in coronary blood flow (CBF) by single photon emission tomography (SPECT) of dual-labelled intracoronary human albumin microspheres (HAM) before and after an intervention. After initial validation in pigs, the authors studied 20 pts in the cath lab with 10 pts receiving saline to serve as controls, and 10 pts receiving nitroglycerin (NTG). Thermodilution coronary sinus flow (CSF) measurements were made at rest and after each intervention. After pacing to mild angina, serial injections of Tc-99m HAM, 40 ..mu..g of NTG or saline, and In-111 HAM were made in the left main coronary artery. After routine coronary arteriography, the pt underwent dual-peak SPECT with the image slices reconstructed along the longitudinal axis of the heart. Quantitative circumferential profiles were made for each slice by plotting the average count per pixel in each 18/sup 0/ segment of the left ventricle. After correction for absolute coronary blood flow, the difference between the pre- and post-NTG profile was obtained, and a significant change took place if it exceeded 2 S.D. from control. The segments were classified into normal, mildly, moderately or severely comprised territories according to upstream coronary anatomy. Results are presented. The authors conclude: (1) SPECT of intracoronary HAM combined with CSF measurement represents a powerful tool in assessing changes in regional CBF after an intervention; (2) By this method, NTG gave preferential redistribution of CBF to the mild and moderately ischemic zones of the heart.

  3. Formation of nonextractable soil residues: A stable isotope approach

    SciTech Connect

    Richnow, H.H.; Eschenback, A.; Mahro, B.; Kaestner, M.; Annweiler, E.; Seifert, R.; Michaelis, W.

    1999-11-01

    Stable carbon isotopic measurements were employed to characterize the transformation of a {sup 13}C-labeled polycyclic aromatic hydrocarbon (PAH), anthracene, in a closed soil bioreactor system. The {sup 13}C-label was used to calculate a carbon mass balance including mineralization and the formation of nonextractable soil-bound residues. Similar results were obtained from {sup 13}C-labeled carbon and {sup 14}C-labeled carbon mass balance calculations for separate batch experiments with labeled anthracene. In concentration ranges typical for real PAH-contaminated sites, the sensitivity of the {sup 13}C tracer method meets the requirements of classical radiotracer experiments. Therefore, the authors balancing method based on stable isotope-labeled chemicals may supplement or substitute radiotracer experiments under many circumstances. One major advantage of using stable isotope-labeled tracers is the possible application in transformation studies where the use of radioactive substances is of environmental concern. The transformation of {sup 13}C-labeled PAH into nonextractable residues clearly depends on the metabolic activity of the soil microflora and occurs during an early phase of biodegradation. Successive contamination of the soil by anthracene leads to a progressive adaptation of the microflora to a complete mineralization of anthracene in the soil. The extent of residue formation is controlled by the capability of the microflora to degrade the contaminant. Results of long-term experiments indicate that nonextractable residues are relatively stable over time.

  4. Holocene precipitation seasonality captured by a dual hydrogen and oxygen isotope approach at Steel Lake, Minnesota

    NASA Astrophysics Data System (ADS)

    Henderson, Anna K.; Nelson, David M.; Hu, Feng Sheng; Huang, Yongsong; Shuman, Bryan N.; Williams, John W.

    2010-12-01

    oxygen isotope approach for distinguishing changes in evaporation and precipitation seasonality in the paleolimnological record.

  5. Quantification of in Situ Biodegradation Rate Constants Using a Novel Combined Isotope Approach

    NASA Astrophysics Data System (ADS)

    Blum, P.; Sültenfuß, J.; Martus, P.

    2014-12-01

    Numerous studies have shown the enormous potential of the compound-specific isotope analysis (CSIA) for studying the biodegradation of organic compounds such as monoaromatic hydrocarbons (BTEX), polyaromatic hydrocarbons (PAH), chlorinated solvents and other organic contaminants and environmental transformation mechanisms in groundwater. In addition, two-dimensional isotope analysis such as carbon and hydrogen have been successfully studied indicating the potential to also investigate site-specific reaction mechanisms. The main objective of the current study however is to quantify real effective in situ biodegradation rate constants in a coal-tar contaminated aquifer by combining compound-specific isotope analysis (CSIA) and tracer-based (3H-3He) ground-water dating (TGD). Hence, groundwater samples are used to determine groundwater residence times, and carbon and hydrogen stable isotopes are analyzed for selected BTEX and PAH. The results of the hydrogen stable isotopes surprisingly indicate no isotope fractionation and therefore no biodegradation. In contrast, for stable carbon isotopes of selected BTEX such as o-xylene and toluene, isotope shifts are detected indicating active biodegradation under sulfate-reducing conditions. These and previous results of stable carbon isotopes show that only for o-xylene a clear evidence for biodegradation is possible for the studied site. Nevertheless, in combining these results with the groundwater residence times, which range between 1 year for the shallow wells (20 m below surface) and 41 years for the deeper wells (40 m below surface), it is feasible to effectively determine in situ biodegradation rate constants for o-xylene. Conversely, the outcome also evidently demonstrate the major limitations of the novel combined isotope approach for a successful implementation of monitored natural attenuation (MNA) at such field sites.

  6. Image segmentation for uranium isotopic analysis by SIMS: Combined adaptive thresholding and marker controlled watershed approach

    SciTech Connect

    Willingham, David G.; Naes, Benjamin E.; Heasler, Patrick G.; Zimmer, Mindy M.; Barrett, Christopher A.; Addleman, Raymond S.

    2016-05-31

    A novel approach to particle identification and particle isotope ratio determination has been developed for nuclear safeguard applications. This particle search approach combines an adaptive thresholding algorithm and marker-controlled watershed segmentation (MCWS) transform, which improves the secondary ion mass spectrometry (SIMS) isotopic analysis of uranium containing particle populations for nuclear safeguards applications. The Niblack assisted MCWS approach (a.k.a. SEEKER) developed for this work has improved the identification of isotopically unique uranium particles under conditions that have historically presented significant challenges for SIMS image data processing techniques. Particles obtained from five NIST uranium certified reference materials (CRM U129A, U015, U150, U500 and U850) were successfully identified in regions of SIMS image data 1) where a high variability in image intensity existed, 2) where particles were touching or were in close proximity to one another and/or 3) where the magnitude of ion signal for a given region was count limited. Analysis of the isotopic distributions of uranium containing particles identified by SEEKER showed four distinct, accurately identified 235U enrichment distributions, corresponding to the NIST certified 235U/238U isotope ratios for CRM U129A/U015 (not statistically differentiated), U150, U500 and U850. Additionally, comparison of the minor uranium isotope (234U, 235U and 236U) atom percent values verified that, even in the absence of high precision isotope ratio measurements, SEEKER could be used to segment isotopically unique uranium particles from SIMS image data. Although demonstrated specifically for SIMS analysis of uranium containing particles for nuclear safeguards, SEEKER has application in addressing a broad set of image processing challenges.

  7. Where does streamwater come from in low-relief forested watersheds? A dual-isotope approach

    SciTech Connect

    Klaus, J.; McDonnell, J. J.; Jackson, C. R.; Du, E.; Griffiths, N. A.

    2015-01-08

    The time and geographic sources of streamwater in low-relief watersheds are poorly understood. This is partly due to the difficult combination of low runoff coefficients and often damped streamwater isotopic signals precluding traditional hydrograph separation and convolution integral approaches. Here we present a dual-isotope approach involving 18O and 2H of water in a low-angle forested watershed to determine streamwater source components and then build a conceptual model of streamflow generation. We focus on three headwater lowland sub-catchments draining the Savannah River Site in South Carolina, USA. Our results for a 3-year sampling period show that the slopes of the meteoric water lines/evaporation water lines (MWLs/EWLs) of the catchment water sources can be used to extract information on runoff sources in ways not considered before. Our dual-isotope approach was able to identify unique hillslope, riparian and deep groundwater, and streamflow compositions. Thus, the streams showed strong evaporative enrichment compared to the local meteoric water line (δ2H = 7.15 · δ18O +9.28‰) with slopes of 2.52, 2.84, and 2.86. Based on the unique and unambiguous slopes of the EWLs of the different water cycle components and the isotopic time series of the individual components, we were able to show how the riparian zone controls baseflow in this system and how the riparian zone "resets" the stable isotope composition of the observed streams in our low-angle, forested watersheds. Although this approach is limited in terms of quantifying mixing percentages between different end-members, our dual-isotope approach enabled the extraction of hydrologically useful information in a region with little change in individual isotope time series.

  8. Where does streamwater come from in low-relief forested watersheds? A dual-isotope approach

    DOE PAGES

    Klaus, J.; McDonnell, J. J.; Jackson, C. R.; ...

    2015-01-08

    The time and geographic sources of streamwater in low-relief watersheds are poorly understood. This is partly due to the difficult combination of low runoff coefficients and often damped streamwater isotopic signals precluding traditional hydrograph separation and convolution integral approaches. Here we present a dual-isotope approach involving 18O and 2H of water in a low-angle forested watershed to determine streamwater source components and then build a conceptual model of streamflow generation. We focus on three headwater lowland sub-catchments draining the Savannah River Site in South Carolina, USA. Our results for a 3-year sampling period show that the slopes of the meteoricmore » water lines/evaporation water lines (MWLs/EWLs) of the catchment water sources can be used to extract information on runoff sources in ways not considered before. Our dual-isotope approach was able to identify unique hillslope, riparian and deep groundwater, and streamflow compositions. Thus, the streams showed strong evaporative enrichment compared to the local meteoric water line (δ2H = 7.15 · δ18O +9.28‰) with slopes of 2.52, 2.84, and 2.86. Based on the unique and unambiguous slopes of the EWLs of the different water cycle components and the isotopic time series of the individual components, we were able to show how the riparian zone controls baseflow in this system and how the riparian zone "resets" the stable isotope composition of the observed streams in our low-angle, forested watersheds. Although this approach is limited in terms of quantifying mixing percentages between different end-members, our dual-isotope approach enabled the extraction of hydrologically useful information in a region with little change in individual isotope time series.« less

  9. Coupled sulfur isotopic and chemical mass transfer modeling: Approach and application to dynamic hydrothermal processes

    SciTech Connect

    Janecky, D.R.

    1988-09-21

    A computational modeling code (EQPSreverse arrowS) has been developed to examine sulfur isotopic distribution pathways coupled with calculations of chemical mass transfer pathways. A post processor approach to EQ6 calculations was chosen so that a variety of isotopic pathways could be examined for each reaction pathway. Two types of major bounding conditions were implemented: (1) equilibrium isotopic exchange between sulfate and sulfide species or exchange only accompanying chemical reduction and oxidation events, and (2) existence or lack of isotopic exchange between solution species and precipitated minerals, parallel to the open and closed chemical system formulations of chemical mass transfer modeling codes. All of the chemical data necessary to explicitly calculate isotopic distribution pathways is generated by most mass transfer modeling codes and can be input to the EQPS code. Routines are built in to directly handle EQ6 tabular files. Chemical reaction models of seafloor hydrothermal vent processes and accompanying sulfur isotopic distribution pathways illustrate the capabilities of coupling EQPSreverse arrowS with EQ6 calculations, including the extent of differences that can exist due to the isotopic bounding condition assumptions described above. 11 refs., 2 figs.

  10. The role of cytosolic proteins in the intracellular transport of haem in rat liver. A dual-label approach.

    PubMed

    Davies, D M; Liem, H H; Johnson, E F; Muller-Eberhard, U

    1982-01-15

    After consecutive injections of delta-amino[3H]- and -[14C]-laevulinic acid, the incorporation of the two labels into haem associated with different subfractions of the liver was determined. Marked differences in the 14C/3H ratios were observed between haem associated loosely and tightly with microsomes and mitochondria and haem associated with three subfractions of the cytosol obtained by gel filtration. The effect of changing the amounts of delta-aminolaevulinic acid injected and of changing the interval between injections and killing of the animal on the ratios of labels in the haem of each subfraction was studied. The results are discussed in terms of the flow of haem from the mitochondria to other parts of the cell via putative cytosolic carrier proteins.

  11. Data-driven Approaches to Teaching Stable Isotopes in Hydrology and Environmental Geochemistry

    NASA Astrophysics Data System (ADS)

    Jefferson, A.; Merchant, W. R.; Dees, D.; Griffith, E. M.; Ortiz, J. D.

    2016-12-01

    Stable isotopes have revolutionized our understanding of watershed hydrology and other earth science processes. However, students may struggle to correctly interpret isotope ratios and few students understand how isotope measurements are made. New laser-based technologies lower the barrier to entry for giving students hands on experience with isotope measurements and data analysis. We hypothesizedthat integrating such activities into the curriculum would increase student content knowledge, perceptions, and motivation to learn. This project assessed the impact that different pedagogical approaches have on student learning of stable isotope concepts in upper-division geoscience courses. An isotope hydrograph separation module was developed and taught for a Watershed Hydrology course, and a Rayleigh distillation activity was developed and deployed for Environmental Geochemistry and Sedimentology/Stratigraphy classes. Groups of students were exposed to this content via (1) a lecture-only format; (2) a paper-based data analysis activity; and (3) hands-on data collection, sometimes including spectrometer analysis. Pre- and post-tests measured gains in content knowledge while approaches to learning and motivational questionnaires instruments were used to identify the effects of the classroom environment on learning approaches and motivation. Focus group interviews were also conducted to verify the quantitative data. All instructional styles appear to be equally effective at increasing student content knowledge of stable isotopes in the geosciences, but future studies need to move beyond "exam question" style assessment of learning. Our results may reflect that hands-on experiences are not new to upper-level geosciences students, because this is the way that many classes are taught in the geosciences (labs, field trips). Thus, active learning approaches may not have had the impact they would with other groups. The "messiness" of hands-on activities and authentic research

  12. CD146-targeted immunoPET and NIRF Imaging of Hepatocellular Carcinoma with a Dual-Labeled Monoclonal Antibody

    PubMed Central

    Hernandez, Reinier; Sun, Haiyan; England, Christopher G.; Valdovinos, Hector F.; Ehlerding, Emily B.; Barnhart, Todd E.; Yang, Yunan; Cai, Weibo

    2016-01-01

    Overexpression of CD146 has been correlated with aggressiveness, recurrence rate, and poor overall survival in hepatocellular carcinoma (HCC) patients. In this study, we set out to develop a CD146-targeting probe for high-contrast noninvasive in vivo positron emission tomography (PET) and near-infrared fluorescence (NIRF) imaging of HCCs. YY146, an anti-CD146 monoclonal antibody, was employed as a targeting molecule to which we conjugated the zwitterionic near-infrared fluorescence (NIRF) dye ZW800-1 and the chelator deferoxamine (Df). This enabled labeling of Df-YY146-ZW800 with 89Zr and its subsequent detection using PET and NIRF imaging, all without compromising antibody binding properties. Two HCC cell lines expressing high (HepG2) and low (Huh7) levels of CD146 were employed to generate subcutaneous (s.c.) and orthotopic xenografts in athymic nude mice. Sequential PET and NIRF imaging performed after intravenous injection of 89Zr-Df-YY146-ZW800 into tumor-bearing mice unveiled prominent and persistent uptake of the tracer in HepG2 tumors that peaked at 31.65 ± 7.15 percentage of injected dose per gram (%ID/g; n=4) 72 h post-injection. Owing to such marked accumulation, tumor delineation was successful by both PET and NIRF, which facilitated the fluorescence image-guided resection of orthotopic HepG2 tumors, despite the relatively high liver background. CD146-negative Huh7 and CD146-blocked HepG2 tumors exhibited significantly lower 89Zr-Df-YY146-ZW800 accretion (6.1 ± 0.5 and 8.1 ± 1.0 %ID/g at 72 h p.i., respectively; n=4), demonstrating the CD146-specificity of the tracer in vivo. Ex vivo biodistribution and immunofluorescent staining corroborated the accuracy of the imaging data and correlated tracer uptake with in situ CD146 expression. Overall, 89Zr-Df-YY146-ZW800 showed excellent properties as a PET/NIRF imaging agent, including high in vivo affinity and specificity for CD146-expressing HCC. CD146-targeted molecular imaging using dual-labeled YY146

  13. Prediction of Impending Type 1 Diabetes through Automated Dual-Label Measurement of Proinsulin:C-Peptide Ratio

    PubMed Central

    Balti, Eric V.; Keymeulen, Bart; Gillard, Pieter; Lapauw, Bruno; De Block, Christophe; Abrams, Pascale; Weber, Eric; Vermeulen, Ilse; De Pauw, Pieter; Pipeleers, Daniël; Weets, Ilse; Gorus, Frans K.

    2016-01-01

    Background The hyperglycemic clamp test, the gold standard of beta cell function, predicts impending type 1 diabetes in islet autoantibody-positive individuals, but the latter may benefit from less invasive function tests such as the proinsulin:C-peptide ratio (PI:C). The present study aims to optimize precision of PI:C measurements by automating a dual-label trefoil-type time-resolved fluorescence immunoassay (TT-TRFIA), and to compare its diagnostic performance for predicting type 1 diabetes with that of clamp-derived C-peptide release. Methods Between-day imprecision (n = 20) and split-sample analysis (n = 95) were used to compare TT-TRFIA (AutoDelfia, Perkin-Elmer) with separate methods for proinsulin (in-house TRFIA) and C-peptide (Elecsys, Roche). High-risk multiple autoantibody-positive first-degree relatives (n = 49; age 5–39) were tested for fasting PI:C, HOMA2-IR and hyperglycemic clamp and followed for 20–57 months (interquartile range). Results TT-TRFIA values for proinsulin, C-peptide and PI:C correlated significantly (r2 = 0.96–0.99; P<0.001) with results obtained with separate methods. TT-TRFIA achieved better between-day %CV for PI:C at three different levels (4.5–7.1 vs 6.7–9.5 for separate methods). In high-risk relatives fasting PI:C was significantly and inversely correlated (rs = -0.596; P<0.001) with first-phase C-peptide release during clamp (also with second phase release, only available for age 12–39 years; n = 31), but only after normalization for HOMA2-IR. In ROC- and Cox regression analysis, HOMA2-IR-corrected PI:C predicted 2-year progression to diabetes equally well as clamp-derived C-peptide release. Conclusions The reproducibility of PI:C benefits from the automated simultaneous determination of both hormones. HOMA2-IR-corrected PI:C may serve as a minimally invasive alternative to the more tedious hyperglycemic clamp test. PMID:27907006

  14. Investigation of a dual-isotope approach to trace nitrate sources in groundwater systems

    NASA Astrophysics Data System (ADS)

    Fukada, T.; Hiscock, K. M.; Dennis, P. F.

    2002-12-01

    Nitrate contamination in groundwater has long been an issue in Europe, with reported high nitrate concentrations in drinking water of greater than 10 mg/L NO3-N, as defined by the World Health Organisation, posing various health risks. Identifying the sources and fate of nitrate in groundwater is part of the solution to nitrate contamination. Several methods have been reported for identifying nitrogen sources, such as the single isotope method using the nitrogen isotopes of nitrate, but the methods present difficulties, such as ambiguity of interpretation. In this study, and by adopting a dual-isotope approach, with measurements of oxygen as well as nitrogen isotopes of nitrate, we have been able to identify the sources and fate of nitrate in groundwater with greater confidence. To investigate the approach, we collected groundwater samples from a Pleistocene alluvial aquifer at a bank filtration site in Germany, the Cretaceous Chalk aquifer in rural eastern England, the Triassic sandstone aquifer in the urban English Midlands and also from controlled laboratory columns treated with pig manure. The values of nitrogen isotopes in groundwater nitrate sources were in the range of -0.13 to +5.64 % for inorganic fertiliser, +9.26 to +11.44 % for urban sewerage and +8.99 to +13.61 % for pig manure. Values of the oxygen isotopes in groundwater nitrate sources were in the range of +3.46 to +16.00 % for inorganic fertiliser, +8.21to +10.77 % for sewerage and +10.73 to +12.07 % for pig manure. We also observed that those sites experiencing denitrification produced a linear relationship indicating an enrichment of the heavier nitrogen isotope relative to the heavier oxygen isotope by a factor of 1.3 and 1.9.

  15. Isotope exchange reactions involving HCO+ with CO: A theoretical approach

    NASA Astrophysics Data System (ADS)

    Mladenović, M.; Roueff, E.

    2017-09-01

    Aims: We aim to investigate fractionation reactions involved in the 12C/13C, 16O/18O, and 17O balance. Methods: Full-dimensional rovibrational calculations were used to compute numerically exact rovibrational energies and thermal equilibrium conditions to derive the reaction rate coefficients. A nonlinear least-squares method was employed to represent the rate coefficients by analytic functions. Results: New exothermicities are derived for 30 isotopic exchange reactions of HCO+ with CO. For each of the reactions, we provide the analytic three-parameter Arrhenius-Kooij formula for both the forward reaction and backward reaction rate coefficients, that can further be used in astrochemical kinetic models. Rotational constants derived here for the 17O containing forms of HCO+ may assist detection of these cations in outer space.

  16. Re-introduction of a novel approach to the use of stable isotopes in pharmacokinetic studies.

    PubMed

    Parr, Alan; Gupta, Manish; Montague, Timothy H; Hoke, Frank

    2012-09-01

    The purpose of this investigation is to evaluate the scientific benefits of a novel approach in using stable isotopes to reduce the number of subjects needed to perform relative bioavailability and bioequivalence pharmacokinetic studies for formulations that are qualitatively and quantitatively the same and quality by design (QbD) pharmacokinetic studies. The stable isotope approach was investigated using simulations to determine the impact this approach would have on the estimation of variability and, subsequently, the sample size for a bioequivalence study. A biostudy was conducted in dogs in a two period crossover to explore the viability of the stable isotope approach. For a drug product with within-subject variability (CV(w)) of 50% and assuming a correlation of 0.95 between the enriched and non-enriched pharmacokinetics (PK), simulations showed that the variability can be reduced by 70% and the required sample size can be reduced by 90% while maintaining 90% power to demonstrate bioequivalence. The dog study showed a strong correlation (R(2), > 0.99) between the enriched and non-enriched area under the curve and maximum observed concentration, and a significant reduction in the variability (reduction in % coefficient of variation from 79.9% to 6.3%). Utilization of a stable isotope approach can markedly improve the efficiency and accuracy of bioavailability and bioequivalence studies particularly for highly variable drugs in formulations that are qualitatively and quantitatively the same and for studies designed for QbD investigations.

  17. A dual-isotope approach to allow conclusive partitioning between three sources

    PubMed Central

    Whitman, Thea; Lehmann, Johannes

    2015-01-01

    Stable isotopes have proved to be a transformative tool; their application to distinguish between two sources in a mixture has been a cornerstone of biogeochemical research. However, quantitatively partitioning systems using two stable isotopes (for example, 13C and 12C) has been largely limited to only two sources, and systems of interest often have more than two components, with interactive effects. Here we introduce a dual-isotope approach to allow conclusive partitioning between three sources, using only two stable isotopes. We demonstrate this approach by partitioning soil CO2 emissions derived from microbial mineralization of soil organic carbon (SOC), added pyrogenic organic matter (PyOM) and root respiration. We find that SOC mineralization in the presence of roots is 23% higher (P<0.05) when PyOM is also present. Being able to discern three sources with two isotopes will be of great value not only in biogeochemical research, but may also expand hitherto untapped methodologies in diverse fields. PMID:26530521

  18. Fluorescence melting curve analysis using self-quenching dual-labeled peptide nucleic acid probes for simultaneously identifying multiple DNA sequences.

    PubMed

    Ahn, Jeong Jin; Kim, Youngjoo; Lee, Seung Yong; Hong, Ji Young; Kim, Gi Won; Hwang, Seung Yong

    2015-09-01

    Previous fluorescence melting curve analysis (FMCA) used intercalating dyes, and this method has restricted application. Therefore, FMCA methods such as probe-based FMCA and molecular beacons were studied. However, the usual dual-labeled probes do not possess adequate fluorescence quenching ability and sufficient specificity, and molecular beacons with the necessary stem structures are hard to design. Therefore, we have developed a peptide nucleic acid (PNA)-based FMCA method. PNA oligonucleotide can have a much higher melting temperature (Tm) value than DNA. Therefore, short PNA probes can have adequate Tm values for FMCA, and short probes can have higher specificity and accuracy in FMCA. Moreover, dual-labeled PNA probes have self-quenching ability via single-strand base stacking, which makes PNA more favorable. In addition, this method can facilitate simultaneous identification of multiple DNA templates. In conventional real-time polymerase chain reaction (PCR), one fluorescence channel can identify only one DNA template. However, this method uses two fluorescence channels to detect three types of DNA. Experiments were performed with one to three different DNA sequences mixed in a single tube. This method can be used to identify multiple DNA sequences in a single tube with high specificity and high clarity. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Integrated Stable Isotope - Reactive Transport Model Approach for Assessment of Chlorinated Solvent Degradation

    DTIC Science & Technology

    2016-06-16

    FINAL REPORT Integrated Stable Isotope – Reactive Transport Model Approach for Assessment of Chlorinated Solvent Degradation ESTCP Project ER-201029...W912HQ-10-C-0060 Modeling for Assessing Chlorinated Solvent Degradation 5b. GRANT NUMBER ER-201029 Final Report 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR...Approach for Assessment of Chlorinated Solvent Degradation. The objective of this guidance is to help site managers apply a Reactive Transport

  20. Iron isotope fractionation between aqueous Fe(II) and goethite revisited: New insights based on a multi-direction approach to equilibrium and isotopic exchange rate modification

    NASA Astrophysics Data System (ADS)

    Frierdich, Andrew J.; Beard, Brian L.; Reddy, Thiruchelvi R.; Scherer, Michelle M.; Johnson, Clark M.

    2014-08-01

    The Fe isotope compositions of naturally occurring Fe oxide minerals provide insights into biogeochemical processes that occur in modern and ancient environments. Key to understanding isotopic variations in such minerals is knowledge of the equilibrium Fe isotope fractionation factors between common minerals and aqueous Fe species. Because experimental measurements of isotopic fractionation may reflect a combination of kinetic and equilibrium fractionations during rapid dissolution and precipitation, even in experiments that employ the three-isotope method, assessment of the attainment of equilibrium is often difficult. Here, we re-examine Fe isotope exchange, via a 57Fe tracer, and natural mass-dependent fractionation, through changes in initial 56Fe/54Fe ratios, between aqueous Fe(II) (Fe(II)aq) and goethite. This approach uses the three-isotope method, but is distinct in its evaluation of kinetic isotope fractionation and the attainment of equilibrium by: (i) employing a multi-direction approach to equilibrium at 22 °C via reaction of three Fe(II)aq solutions that had different initial 56Fe/54Fe ratios, (ii) conducting isotopic exchange experiments at elevated temperature (50 °C), and (iii) modifying the rate of isotopic exchange through a combination of trace-element substitutions and particle coarsening to evaluate corresponding temporal changes in fractionation trajectories that may reflect changing instantaneous fractionation factors. We find that rapid isotopic exchange produces kinetic isotope effects between Fe(II)aq and goethite, which shifts the 56Fe/54Fe ratios of Fe(II)aq early in reactions toward that of goethite, indicating that the instantaneous Fe(II)aq-goethite fractionation factor under kinetic conditions is small. Importantly, however, this kinetic fractionation is “erased” with continued reaction, and this is evident by the congruence for multiple-exchange trajectories of distinct initial Fe(II)aq solutions toward the same final value

  1. A Triple-Isotope Approach to Predict the Breeding Origins of European Bats

    PubMed Central

    Popa-Lisseanu, Ana G.; Sörgel, Karin; Luckner, Anja; Wassenaar, Leonard I.; Ibáñez, Carlos; Kramer-Schadt, Stephanie; Ciechanowski, Mateusz; Görföl, Tamás; Niermann, Ivo; Beuneux, Grégory; Mysłajek, Robert W.; Juste, Javier; Fonderflick, Jocelyn; Kelm, Detlev H.; Voigt, Christian C.

    2012-01-01

    Despite a commitment by the European Union to protect its migratory bat populations, conservation efforts are hindered by a poor understanding of bat migratory strategies and connectivity between breeding and wintering grounds. Traditional methods like mark-recapture are ineffective to study broad-scale bat migratory patterns. Stable hydrogen isotopes (δD) have been proven useful in establishing spatial migratory connectivity of animal populations. Before applying this tool, the method was calibrated using bat samples of known origin. Here we established the potential of δD as a robust geographical tracer of breeding origins of European bats by measuring δD in hair of five sedentary bat species from 45 locations throughout Europe. The δD of bat hair strongly correlated with well-established spatial isotopic patterns in mean annual precipitation in Europe, and therefore was highly correlated with latitude. We calculated a linear mixed-effects model, with species as random effect, linking δD of bat hair to precipitation δD of the areas of hair growth. This model can be used to predict breeding origins of European migrating bats. We used δ13C and δ15N to discriminate among potential origins of bats, and found that these isotopes can be used as variables to further refine origin predictions. A triple-isotope approach could thereby pinpoint populations or subpopulations that have distinct origins. Our results further corroborated stable isotope analysis as a powerful method to delineate animal migrations in Europe. PMID:22291947

  2. Soluble salt sources in medieval porous limestone sculptures: a multi-isotope (N, O, S) approach.

    PubMed

    Kloppmann, W; Rolland, O; Proust, E; Montech, A T

    2014-02-01

    The sources and mechanisms of soluble salt uptake by porous limestone and the associated degradation patterns were investigated for the life-sized 15th century "entombment of Christ" sculpture group located in Pont-à-Mousson, France, using a multi-isotope approach on sulphates (δ(34)S and δ(18)O) and nitrates (δ(15)N and δ(18)O). The sculpture group, near the border of the Moselle River, is within the potential reach of capillary rise from the alluvial aquifer. Chemical analyses show a vertical zonation of soluble salts with a predominance of sulphates in the lower parts of the statues where crumbling and blistering prevail, and higher concentrations of nitrates and chloride in the high parts affected by powdering and efflorescence. Isotope fingerprints of sulphates suggest a triple origin: (1) the lower parts are dominated by capillary rise of dissolved sulphate from the Moselle water with characteristic Keuper evaporite signatures that progressively decreases with height; (2) in the higher parts affected by powdering the impact of atmospheric sulphur becomes detectable; and (3) locally, plaster reparations impact the neighbouring limestone through dissolution and re-precipitation of gypsum. Nitrogen and oxygen isotopes suggest an organic origin of nitrates in all samples. N isotope signatures are compatible with those measured in the alluvial aquifer of the Moselle River further downstream. This indicates contamination by sewage or organic fertilisers. Significant isotopic contrasts are observed between the different degradation features depending on the height and suggest historical changes of nitrate sources. © 2013.

  3. A new approach to quantifying internal diffusion resistances and CO2 isotope exchange in leaves

    NASA Astrophysics Data System (ADS)

    West, Jason; Ogée, Jérôme; Burlett, Régis; Gimeno, Teresa; Genty, Bernard; Jones, Samuel; Wohl, Steven; Bosc, Alexandre; Wingate, Lisa

    2016-04-01

    The oxygen isotopic composition (δ18O) of atmospheric CO2 can constrain the global CO2 budget at a range of scales, offering the potential to partition net CO2 exchanges into their component gross fluxes and provide insights to linkages between C and water cycles. However, there are significant limitations to utilizing the δ18O of CO2 to constrain C budgets because of uncertainties associated with the isotopic exchange of CO2 with terrestrial water pools. Leaf water in particular represents a critical pool with ongoing debates about its enrichment in heavy isotopes during transpiration and the hydration of CO2 and its oxygen isotope exchange with this pool. Isotopic heterogeneity of the leaf water, the spatial distribution and activity of carbonic anhydrase (CA) within leaves, and resistance to diffusion of CO2 from the substomatal cavity to chloroplasts are all key components with important uncertainties. Better constraints on these would significantly improve our ability to understand and model the global C budget as well as yield insights to fundamental aspects of leaf physiology. We report results using a new measurement system that permits the simultaneous measurement of the 13C and 18O composition of CO2 and the 18O isotopic composition of leaf transpiration. As this new approach permits rapid alteration of the isotopic composition of gases interacting with the leaf, key model parameters can be derived directly and simultaneously. Hence, our approach dos not rely on separate measurements shifted in time from the gas exchange measurements or that may not quantify the relevant scale of heterogeneity (e.g., CA enzyme assays or bulk leaf water extraction and analysis). In particular, this new method explicitly distinguishes the leaf mesophyll resistance to CO2 transport relevant for photosynthesis from the resistance required for interpreting the δ18O of CO2 and allows us to derive other relevant parameters directly. This new measurement system and modeling

  4. Fingerprints of environmental stressors in three selected Slovenian gravel-bed rivers: geochemical and isotopic approach

    NASA Astrophysics Data System (ADS)

    Kanduč, Tjaša; Kocman, David; Debeljak, Barbara; Mori, Nataša

    2016-04-01

    Rivers are severely impacted by a range of simultaneous processes including water pollution, flow and channel alteration, over-fishing, invasive species and climate change. Systematic studies of river water geochemistry provide important information on chemical weathering of bedrock/soil and natural anthropogenic processes that may control the dissolved chemical loads, while the isotopic studies of biological components of river systems (macrophytes, periphyton, heterotrophic biofilm, invertebrates, fish) contribute to the understanding how the system response to human impacts by means of functional response. In this contribution, insights in the fingerprints of various environmental stressors in three gravel-bed rivers (River Kamni\\vska Bistrica, River Idrijca and River Sava) in Slovenia, using geochemical and stable isotope approach are discussed. Gravel bed of all three rivers investigated is composed of carbonates and clastic rocks. The Sava and Kamni\\vska Bistrica Rivers have alpine high mountain snow-rain regime. The Idrijca River is a boundary river between the Adriatic and Black Sea catchments and has rain-snow discharge regime with torrential character. Geochemical methods (ICP-OES, IC, total alkalinity after Gran) and isotope mass - spectrometric methods (isotopic composition of dissolved inorganic carbon, particulate organic carbon and isotopic composition of carbon in carbonates) were used to evaluate biogeochemical processes in rivers. Isotopic composition of carbon and nitrogen of the moss Fontinalis antipyretica (the whole vegetative shoot) and isotopic composition of carbon of heterotrophic biofilm was also analyzed in order to better understand the fluxes and fractionation of carbon and nitrogen across trophic levels. Geochemical composition of all investigated rivers is HCO3--Ca2+-Mg2+ with different Mg2+/Ca2+ ratios as follows: around 0.33 for Kamni\\vska Bistrica and River Sava in Slovenia and above 0.75 for River Idrijca. In the Kamni

  5. Use of a multi-isotope and multi-tracer approach including organic matter isotopes for quantifying nutrient contributions from agricultural vs wastewater sources

    NASA Astrophysics Data System (ADS)

    Kendall, C.; Silva, S. R.; Young, M. B.

    2013-12-01

    While nutrient isotopes are a well-established tool for quantifying nutrients inputs from agricultural vs wastewater treatment plant (WWTP) sources, we have found that combining nutrient isotopes with the C, N, and S isotopic compositions of dissolved and particulate organic matter, as part of a comprehensive multi-isotope and multi-tracer approach, is a much more diagnostic approach. The main reasons why organic matter C-N-S isotopes are a useful adjunct to studies of nutrient sources and biogeochemical processes are that the dissolved and particulate organic matter associated with (1) different kinds of animals (e.g., humans vs cows) often have distinctive isotopic compositions reflecting the different diets of the animals, and (2) the different processes associated with the different land uses (e.g., in the WWTP or associated with different crop types) often result in significant differences in the isotopic compositions of the organics. The analysis of the δ34S of particulate organic matter (POM) and dissolved organic matter (DOM) has been found to be especially useful for distinguishing and quantifying water, nutrient, and organic contributions from different land uses in aquatic systems where much of the organic matter is aquatic in origin. In such environments, the bacteria and algae incorporate S from sulfate and sulfide that is isotopically labeled by the different processes associated with different land uses. We have found that there is ~35 permil range in δ34S of POM along the river-estuary continuum in the San Joaquin/Sacramento River basin, with low values associated with sulfate reduction in the upstream wetlands and high values associated with tidal inputs of marine water into the estuary. Furthermore, rice agriculture results in relatively low δ34S values whereas WWTP effluent in the Sacramento River produces distinctly higher values than upstream of the WWTP, presumably because SO2 is used to treat chlorinated effluent. The fish living

  6. Vibrationally averaged post Born-Oppenheimer isotopic dipole moment calculations approaching spectroscopic accuracy.

    PubMed

    Arapiraca, A F C; Jonsson, Dan; Mohallem, J R

    2011-12-28

    We report an upgrade of the Dalton code to include post Born-Oppenheimer nuclear mass corrections in the calculations of (ro-)vibrational averages of molecular properties. These corrections are necessary to achieve an accuracy of 10(-4) debye in the calculations of isotopic dipole moments. Calculations on the self-consistent field level present this accuracy, while numerical instabilities compromise correlated calculations. Applications to HD, ethane, and ethylene isotopologues are implemented, all of them approaching the experimental values.

  7. FRIGA, A New Approach To Identify Isotopes and Hypernuclei In N-Body Transport Models

    NASA Astrophysics Data System (ADS)

    Le Févre, A.; Leifels, Y.; Aichelin, J.; Hartnack, Ch; Kireyev, V.; Bratkovskaya, E.

    2016-01-01

    We present a new algorithm to identify fragments in computer simulations of relativistic heavy ion collisions. It is based on the simulated annealing technique and can be applied to n-body transport models like the Quantum Molecular Dynamics. This new approach is able to predict isotope yields as well as hyper-nucleus production. In order to illustrate its predicting power, we confront this new method to experimental data, and show the sensitivity on the parameters which govern the cluster formation.

  8. A triple-isotope approach for discriminating the geographic origin of Asian sesame oils.

    PubMed

    Jeon, Hyeonjin; Lee, Sang-Cheol; Cho, Yoon-Jae; Oh, Jae-Ho; Kwon, Kisung; Kim, Byung Hee

    2015-01-15

    The aim of this study was to investigate the effects of the geographic location and climatic characteristics of the sesame-producing sites on the carbon, hydrogen, and oxygen stable isotope ratios of Korean sesame oil. In addition, the study aimed to differentiate Korean sesame oil from Chinese and Indian sesame oils using isotopic data in combination with canonical discriminant analysis. The isotopic data were obtained from 84 roasted oil samples that were prepared from 51 Korean, 19 Chinese, and 14 Indian sesame seeds harvested during 2010-2011 and distributed in Korea during the same period. The δ(13)C, δD, and δ(18)O values of Korean sesame oil were negatively correlated with latitude, distance from the sea, and precipitation (May-September), respectively. By applying two canonical discriminant functions, 89.3% of the sesame oil samples were correctly classified by their geographic origin, indicating that the triple-isotope approach is a useful tool for the traceability of the oils.

  9. Nitrogen sources and cycling in the San Francisco Bay estuary: A nitrate dual isotopic composition approach

    USGS Publications Warehouse

    Wankel, Scott D.; Kendall, C.; Francis, C.A.; Paytan, A.

    2006-01-01

    We used the dual isotopic composition of nitrate (??15N and ??18O) within the estuarine system of San Francisco (SF) Bay, California, to explore the utility of this approach for tracing sources and cycling of nitrate (NO3-). Surface water samples from 49 sites within the estuary were sampled during July-August 2004. Spatial variability in the isotopic composition suggests that there are multiple sources of nitrate to the bay ecosystem including seawater, several rivers and creeks, and sewage effluent. The spatial distribution of nitrate from these sources is heavily modulated by the hydrodynamics of the estuary. Mixing along the estuarine salinity gradient is the main control on the spatial variations in isotopic composition of nitrate within the northern arm of SF Bay. However, the nitrate isotopic composition in the southern arm of SF Bay exhibited a combination of source mixing and phytoplankton drawdown due mostly to the long residence time during the summer study period. Very low ?? 18ONO3 values (as low as -5.0???) at the Sacramento-San Joaquin River delta region give rise to a wide range of ??18ONO3 values in the SF Bay system. The range in ??18ONO3 values is more than twice that of (??15NNO3, suggesting that ??18O NO3 is an even more sensitive tool for tracing nitrate sources and cycling than ??15NNO3. ?? 2006, by the American Society of Limnology and Oceanography, Inc.

  10. Efficient packing Fourier-transform approach for ultrahigh resolution isotopic distribution calculations.

    PubMed

    Fernandez-de-Cossio, Jorge

    2010-03-01

    Fine isotopic structure patterns resolvable by ultrahigh-resolution mass spectrometers are diagnostic of the elemental composition of moderately large compounds. Despite the proven performance of Fourier transforms algorithms to calculate accurate high resolution isotopic distribution, its application to finer ultrahigh resolving power exhibits limited performance. Fast Fourier transforms algorithm requires sampling the relevant range at equally spaced mass values, but ultrahigh resolution mass spectrum displays highly localized complex patterns (peaks) separated in between by relatively large unstructured intervals. Computational efforts consumed on those uninformative intervals are a waste of resources. A fast and memory efficient procedure is introduced in this paper to calculate the isotopic distribution of a single relatively high-mass molecule at ultrahigh resolution by Fourier transforms approaches. The whole isotopic distribution is packed closer to the monoisotopic peak without distorting the actual scale of the peak fine structure. This packing procedure reduced 8 to 32 times the computation resources in comparison to the same calculation performed without packing. The procedure can be readily implemented in existing software.

  11. An analytical approach to Sr isotope ratio determination in Lambrusco wines for geographical traceability purposes.

    PubMed

    Durante, Caterina; Baschieri, Carlo; Bertacchini, Lucia; Bertelli, Davide; Cocchi, Marina; Marchetti, Andrea; Manzini, Daniela; Papotti, Giulia; Sighinolfi, Simona

    2015-04-15

    Geographical origin and authenticity of food are topics of interest for both consumers and producers. Among the different indicators used for traceability studies, (87)Sr/(86)Sr isotopic ratio has provided excellent results. In this study, two analytical approaches for wine sample pre-treatment, microwave and low temperature mineralisation, were investigated to develop accurate and precise analytical method for (87)Sr/(86)Sr determination. The two procedures led to comparable results (paired t-test, with tisotopic values were compared with isotopic data coming from (i) soils of their territory of origin and (ii) wines obtained by same grape varieties cultivated in different districts. The obtained results have shown no significant variability among the different vintages of wines and a perfect agreement between the isotopic range of the soils and wines has been observed. Nevertheless, the investigated indicator was not enough powerful to discriminate between similar products. To this regard, it is worth to note that more soil samples as well as wines coming from different districts will be considered to obtain more trustworthy results. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Dual labeling with 5-bromo-2'-deoxyuridine and 5-ethynyl-2'-deoxyuridine for estimation of cell migration rate in the small intestinal epithelium.

    PubMed

    Asano, Mami; Yamamoto, Tatsuro; Tsuruta, Takeshi; Nishimura, Naomichi; Sonoyama, Kei

    2015-01-01

    Small intestinal epithelium is a self-renewing system in which the entire sequence of cell proliferation, differentiation, and removal is coupled to cell migration along the crypt-villus axis. We examined whether dual labeling with different thymidine analogues, 5-bromo-2'-deoxyuridine (BrdU) and 5-ethynyl-2'-deoxyuridine (EdU), can be used to estimate cell migration rates on the villi of small intestines in rats. Rats received a single intraperitoneal injection of BrdU and EdU within a time interval, and signals in tissue sections were examined by immunohistochemistry and the "click" reaction, respectively. We successfully observed BrdU- and EdU-positive cells on the epithelium with no cross-reaction. In addition, we observed an almost complete overlapping of BrdU- and EdU-positive cells in rats administered simultaneously with BrdU and EdU. By calculating the cell migration rate by dividing the distance between the median cell positions of the distribution of BrdU- and EdU-positive cells by the time between the injection of BrdU and EdU, we estimated approximately 9 and 5 μm/h for the cell migration rates on the villi in the jejunum and ileum, respectively. We propose that dual labeling with BrdU and EdU within a time interval, followed by detecting with immunohistochemistry and the click reaction, respectively, is useful to estimate accurately the cell migration rate in the intestinal epithelium in a single animal.

  13. Progress in quantifying rates and product ratios of microbial denitrification using stable isotope approaches

    NASA Astrophysics Data System (ADS)

    Well, Reinhard; Buchen, Caroline; Giesemann, Anette; Lewicka-Szczebak, Dominika; Rohe, Lena; Flessa, Heinz

    2015-04-01

    Although it is known since long that microbial denitrification plays a central role in N cycling in soils due to loss of nutrient N, emissions of N2O and lowering of N leaching, few data at the field scale are available due to the difficulty in measurement. In recent years, stable isotope signatures of N2O such as δ18O, average δ15N (δ15Nbulk) and 15N site preference (SP = difference in δ15N between the central and peripheral N positions of the asymmetric N2O molecule) have been used to constrain the atmospheric N2O budget and to characterize N2O turnover processes including N2O production and reduction by microbial denitrification. However, the use of this approach to study N2O dynamics in soils requires knowledge of isotope fractionation factors for the various partial processes involved, e.g. N2O production by nitrification or fungal/bacterial denitrification, and N2O reduction by bacterial denitrification. Here we present recent progress on the principles of isotope fractionation modeling to estimate N2O reduction and on the role of microbial groups and their specific impact on isotope values. Moreover, we report and discuss approaches to determine isotope values of produced N2O prior to its reduction as well as enrichment factors of N2O reduction. Finally, a variety of results from lab and field studies will be shown were N2O reduction estimates by isotope fractionation modeling are validated by independent measurements using 15N tracing or He/O2 incubations. Methodical improvements to increase sensitivity of the 15N tracing approach will be briefly addressed. We conclude that up to now SP of soil-emitted N2O proved to be suitable to constrain the product ratio of denitrification if N2O fluxes are dominated by bacterial denitrification. Although this approach is not yet precise enough for robust quantification of N2 fluxes, improved precision can be obtained in future, if further progress in understanding the control of fractionation factors of production

  14. A simplified methodology to approach the complexity of foraminiferal calcite oxygen-isotope data - model comparison

    NASA Astrophysics Data System (ADS)

    Roche, Didier; Waelbroeck, Claire

    2016-04-01

    Since the pioneering work of Epstein (Epstein et al., 1953), numerous calcite isotopic records from the ocean have been used to attempt reconstructing paleoclimatic information. Additional to the well known complexity brought by the fact that foraminiferal calcite records both temperature and isotopic composition of the surrounding oceanic waters, an additional effect for surface - dwelling foraminifers is the fact that two different species do not have the same habitat and may thus record different signals. This is obvious when comparing paleoclimatic records where different species have been measured for the isotopic composition of the calcite. The difference in habitat produces a three dimensional spatial complexity (a foraminifera living in preferred climatic conditions at a specific location, but also at a specific depth, sometimes far from the surface) but also a temporal uncertainty (foraminifers generally live for only a few weeks and their growth season may be evolving through time with climate change). While the different species habitats potentially contain a wealth of information that could be used to better understand the sequences of climate change, this has seldom been used in modeling studies, most models deriving calcite isotopic signal from surface and annual mean conditions (e.g. Roche et al., 2014). In the present work, we propose a reduced complexity approach to compute the calcite for several planktonic foraminifers from climate model simulations under pre-industrial conditions. We base our approach on simple functions describing the temperature dependence of the different species growth rates (Lombard et al., 2009) and on probability of presence based on the physical variables computed in the climate model. We present a comparison to available sediment traps and core tops data as a validation of the methodology, focusing on the possibility for future applicability towards inversion of the signal measured in oceanic sediment cores. References

  15. Investigating human geographic origins using dual-isotope (87Sr/86Sr, δ18O) assignment approaches

    PubMed Central

    Sonnemann, Till F.; Shafie, Termeh; Hofman, Corinne L.; Brandes, Ulrik; Davies, Gareth R.

    2017-01-01

    Substantial progress in the application of multiple isotope analyses has greatly improved the ability to identify nonlocal individuals amongst archaeological populations over the past decades. More recently the development of large scale models of spatial isotopic variation (isoscapes) has contributed to improved geographic assignments of human and animal origins. Persistent challenges remain, however, in the accurate identification of individual geographic origins from skeletal isotope data in studies of human (and animal) migration and provenance. In an attempt to develop and test more standardized and quantitative approaches to geographic assignment of individual origins using isotopic data two methods, combining 87Sr/86Sr and δ18O isoscapes, are examined for the Circum-Caribbean region: 1) an Interval approach using a defined range of fixed isotopic variation per location; and 2) a Likelihood assignment approach using univariate and bivariate probability density functions. These two methods are tested with enamel isotope data from a modern sample of known origin from Caracas, Venezuela and further explored with two archaeological samples of unknown origin recovered from Cuba and Trinidad. The results emphasize both the potential and limitation of the different approaches. Validation tests on the known origin sample exclude most areas of the Circum-Caribbean region and correctly highlight Caracas as a possible place of origin with both approaches. The positive validation results clearly demonstrate the overall efficacy of a dual-isotope approach to geoprovenance. The accuracy and precision of geographic assignments may be further improved by better understanding of the relationships between environmental and biological isotope variation; continued development and refinement of relevant isoscapes; and the eventual incorporation of a broader array of isotope proxy data. PMID:28222163

  16. Investigating human geographic origins using dual-isotope (87Sr/86Sr, δ18O) assignment approaches.

    PubMed

    Laffoon, Jason E; Sonnemann, Till F; Shafie, Termeh; Hofman, Corinne L; Brandes, Ulrik; Davies, Gareth R

    2017-01-01

    Substantial progress in the application of multiple isotope analyses has greatly improved the ability to identify nonlocal individuals amongst archaeological populations over the past decades. More recently the development of large scale models of spatial isotopic variation (isoscapes) has contributed to improved geographic assignments of human and animal origins. Persistent challenges remain, however, in the accurate identification of individual geographic origins from skeletal isotope data in studies of human (and animal) migration and provenance. In an attempt to develop and test more standardized and quantitative approaches to geographic assignment of individual origins using isotopic data two methods, combining 87Sr/86Sr and δ18O isoscapes, are examined for the Circum-Caribbean region: 1) an Interval approach using a defined range of fixed isotopic variation per location; and 2) a Likelihood assignment approach using univariate and bivariate probability density functions. These two methods are tested with enamel isotope data from a modern sample of known origin from Caracas, Venezuela and further explored with two archaeological samples of unknown origin recovered from Cuba and Trinidad. The results emphasize both the potential and limitation of the different approaches. Validation tests on the known origin sample exclude most areas of the Circum-Caribbean region and correctly highlight Caracas as a possible place of origin with both approaches. The positive validation results clearly demonstrate the overall efficacy of a dual-isotope approach to geoprovenance. The accuracy and precision of geographic assignments may be further improved by better understanding of the relationships between environmental and biological isotope variation; continued development and refinement of relevant isoscapes; and the eventual incorporation of a broader array of isotope proxy data.

  17. A Multiproxy Approach to Calibrating Speleothem Paleoclimate Reconstructions using Modern Isotopic and Remotely Sensed Data

    NASA Astrophysics Data System (ADS)

    Polk, J.; Hall, V.; Ouellette, G., Jr.; Durkee, J.; Fan, X.

    2014-12-01

    Tropical island nations, such as Barbados, are particularly vulnerable to extreme event impacts as changes in interannual storm frequency and intensity could influence groundwater supplies and their climatic resilience. Creating high resolution paleoclimate records for these areas aids in determining the intensity and cyclicity of possible future climate extremes. This study presents a high-resolution, isotopic hydroclimatological analysis of Barbados' rainfall and groundwater in relation to atmospheric influences during storms. Through this calibration of interannual precipitation variability under a modern climatic regime, we can better understand the climatic influences driving our interpretation of paleoclimate reconstructions from speleothems. Weekly samples of dripwater, rainfall, groundwater, and 10-minute precipitation amounts were collected from July, 2012 to October, 2013 at Harrison's Cave in Barbados. These samples underwent isotopic analysis for oxygen and deuterium isotopes. Weekly to monthly rainfall totals were compiled from Harrison's Cave and several island wide stations. In addition, Tropical Rainfall Measuring Mission (TRMM) satellite data were used to compare against oxygen isotope values to provide a multiproxy approach at reconstructing rainfall variability used in the calibration model. At a weekly resolution, the amount effect is not represented at the study site; however, using weather station and remotely sensed data, at an island wide scale the amount effect signal is strongest at monthly timescales. TRMM data accurately reflect the influence of the amount effect at this resolution, thus providing the possibility of a new proxy for rainfall amount when calibrating speleothem paleoclimate records. The amount-weighted precipitation and groundwater values indicate homogenization of the aquifer indicate speleothem record changes in interannual variability. When compared to data from previous studies, the average annual dripwater oxygen

  18. A tungsten isotope approach to search for meteoritic components in terrestrial impact rocks

    NASA Astrophysics Data System (ADS)

    Moynier, Frederic; Koeberl, Christian; Quitté, Ghylaine; Telouk, Philippe

    2009-08-01

    The identification of meteorite impact structures on Earth is based on two main criteria: the presence of shock-metamorphic effects in the crater rock ejecta and/or the confirmation of an extraterrestrial (meteoritic) component in breccias or melt rocks. For the latter, both high elemental abundances of siderophile elements (especially the platinum group elements) with corresponding meteoritic inter-element ratios and the osmium (Os) and chromium (Cr) isotopic signatures characteristic of meteorites have been used successfully. Inspired by earlier suggestions of a meteoritic component in Archean rocks based on tungsten (W) isotope anomalies, here we explore the possible use of 182W, which has been produced by the decay of now extinct 182Hf ( T1/2 = 8.9 Ma), as a tracer of meteoritic component in terrestrial material. Each group of meteorites has W isotopic compositions that are distinct from each other and from the terrestrial crust. 182W has already been used to try to identify the impactor at the K/T boundary by analyzing the sediments and Ni-rich spinel. In the present study, we broaden the field of investigation by choosing a different approach, namely analyzing a variety of known impact rocks. We measured the W isotope composition in four samples from different impact structures (Gardnos, Norway; Morokweng, South Africa; Vredefort, South Africa; Ries, Germany) as well as in two samples from a distal ejecta layer (K-T boundary samples from Gams, Austria, and Berwind Canyon, USA). All these samples are unambiguously impact-produced and in several of those materials a meteoritic component has unequivocally been identified by other geochemical proxies. In all these samples, the isotopic composition of W is identical with analytical error to that of the Earth's continental crust, and no 182W anomalies are present, even in the samples containing a significant (percent level) meteoritic component. Therefore, we conclude that, in contrast to the Cr or Os isotopes, W

  19. Linking in-situ Hf isotopes in zircon with in-situ Pb isotopes in plagioclase: a microanalytical approach to characterize Archean anorthosite petrogenesis

    NASA Astrophysics Data System (ADS)

    Souders, K.; Sylvester, P.; Myers, J.

    2011-12-01

    Multiple isotope systems are often used to distinguish petrogenetic processes and determine the age and source of magmatic systems. Advances in laser ablation multi-collector ICPMS instrumentation have allowed Earth scientists to determine accurate and precise isotope ratios of minerals in-situ. Most studies have focused on measuring isotopes that are abundant within a mineral (e.g. Hf in zircon) but the integration of multiple ion counters into the collector configuration of MC-ICPMS instruments has provided the ability to measure isotope ratios of minor elements (e.g. Pb in plagioclase) in-situ. These abilities allow for an alternative approach to igneous petrogenesis. Instead of isotopic analysis of bulk samples, in-situ methods can be utilized to target specific domains preserved in individual minerals. Analysis of co-magmatic minerals in igneous rocks using multiple isotopic systems can be linked to solve a range of petrologic problems. As an example, we present in-situ analyses by LA-MC-ICPMS for Pb isotope compositions of preserved igneous plagioclase megacrysts and Hf isotope compositions of zircon grains from the 2936 Ma Fiskenæsset and 2914 Ma Nunataarsuk anorthosite complexes, southwestern Greenland, two of the best-preserved Archean anorthosites in the world. For both Fiskenæsset and Nunataarsuk, the initial Pb isotope compositions of plagioclase megacrysts and the initial ɛHf compositions of zircon grains extend beyond analytical uncertainty suggesting multiple sources contributed to the parent magma for both anorthosite complexes. Initial ɛHf of zircon grains from both anorthosite complexes fall between depleted mantle and a less radiogenic crustal source with a total range up to 5 ɛHf units. Plagioclase Pb isotope compositions from both anorthosite complexes share a depleted mantle end member yet diverge from this point: Fiskenæsset toward a high-μ, more radiogenic Pb crustal composition and Nunataarsuk toward a low-μ, less radiogenic Pb

  20. RABA (Reductive Alkylation By Acetone): A novel stable isotope labeling approach for quantitative proteomics

    PubMed Central

    Zhai, Jianjun; Liu, Xiaoyan; Huang, Zhenyu; Zhu, Haining

    2009-01-01

    Quantitative proteomics is challenging and various stable isotope based approaches have been developed to meet the challenge.. Hereby we describe a simple, efficient, reliable and inexpensive method named RABA (reductive alkylation by acetone) to introduce stable isotopes to peptides for quantitative analysis. The RABA method leads to alkylation of N-terminal and lysine amino groups with isopropyl moiety. Using unlabeled (d0) and deuterium labeled (d6) acetone, a 6 Da mass split is introduced to each isopropyl modification between the light and heavy isotope labeled peptides, which is ideally suited for quantitative analysis. The reaction specificity, stoichoimetry, labeling efficiency and linear range of the RABA method has been thoroughly evaluated in this study using standard peptides, tryptic digest of proteins as well as human cell lysate. Reliable quantitative results have been consistently obtained in all experiments. We also applied the RABA method to quantitative analysis of proteins in spinal cords of transgenic mouse models of amyotrophic lateral sclerosis. Highly homologous proteins (transgenic human SOD1 and endogenous mouse SOD1) were distinguished and quantified using the method developed in this study. In addition, the quantitative results using the RABA approach were independently validated by Western blot. PMID:19419886

  1. The suitability of the dual isotope approach (δ13C and δ18O) in tree ring studies

    NASA Astrophysics Data System (ADS)

    Siegwolf, Rolf; Saurer, Matthias

    2016-04-01

    The use of stable isotopes, complementary to tree ring width data in tree ring research has proven to be a powerful tool in studying the impact of environmental parameters on tree physiology and growth. These three proxies are thus instrumental for climate reconstruction and improve the understanding of underlying causes of growth changes. In various cases, however, their use suggests non-plausible interpretations. Often the use of one isotope alone does not allow the detection of such "erroneous isotope responses". A careful analysis of these deviating results shows that either the validity of the carbon isotope discrimination concept is no longer true (Farquhar et al. 1982) or the assumptions for the leaf water enrichment model (Cernusak et al., 2003) are violated and thus both fractionation models are not applicable. In this presentation we discuss such cases when the known fractionation concepts fail and do not allow a correct interpretation of the isotope data. With the help of the dual isotope approach (Scheidegger et al.; 2000) it is demonstrated, how to detect and uncover the causes for such anomalous isotope data. The fractionation concepts and their combinations before the background of CO2 and H2O gas exchange are briefly explained and the specific use of the dual isotope approach for tree ring data analyses and interpretations are demonstrated. References: Cernusak, L. A., Arthur, D. J., Pate, J. S. and Farquhar, G. D.: Water relations link carbon and oxygen isotope discrimination to phloem sap sugar concentration in Eucalyptus globules, Plant Physiol., 131, 1544-1554, 2003. Farquhar, G. D., O'Leary, M. H. and Berry, J. A.: On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves, Aust. J. Plant Physiol., 9, 121-137, 1982. Scheidegger, Y., Saurer, M., Bahn, M. and Siegwolf, R.: Linking stable oxygen and carbon isotopes with stomatal conductance and photosynthetic capacity: A conceptual model

  2. The jackknife as an approach for uncertainty assessment in gamma spectrometric measurements of uranium isotope ratios

    NASA Astrophysics Data System (ADS)

    Ramebäck, H.; Vesterlund, A.; Tovedal, A.; Nygren, U.; Wallberg, L.; Holm, E.; Ekberg, C.; Skarnemark, G.

    2010-08-01

    The jackknife as an approach for uncertainty estimation in gamma spectrometric uranium isotope ratio measurements was evaluated. Five different materials ranging from depleted uranium (DU) to high enriched uranium (HEU) were measured using gamma spectrometry. High resolution inductively coupled plasma mass spectrometry (ICP-SFMS) was used as a reference method for comparing the results obtained with the gamma spectrometric method. The relative combined uncertainty in the gamma spectrometric measurements of the 238U/ 235U isotope ratio using the jackknife was about 10-20% ( k = 2), which proved to be fit-for-purpose in order to distinguish between different uranium categories. Moreover, the enrichment of 235U in HEU could be measured with an uncertainty of 1-2%.

  3. Stable isotope approaches for tracking C cycling and function in microbial communities

    NASA Astrophysics Data System (ADS)

    Pett-Ridge, J.

    2008-12-01

    Identifying the microorganisms responsible for specific processes in C cycling remains a major challenge in environmental microbiology, one that requires integration of multiple techniques. Stable isotope probing, or SIP, has come to represent a variety of powerful approaches that allow simultaneous identification of identity and function in microbial communities. Bulk methods such as DNA/RNA-SIP and PLFA-SIP are well developed and allow tracking of a multitude of C substrates (acetate, cellulose, CH4, CO2, and plant litter) into specific microbial consumers. However, to understand the spatio-temporal context of may key C transformations and microbial interactions, new imaging technologies are needed to analyze processes and properties of macromolecule complexes, microbes, plant root cells, soil (micro)aggregates, phytoplankton and marine snow as they undergoes formation and decomposition. New and sensitive in situ approaches include NanoSIMS single cell analysis, isotope arrays, and combinations of immuno- or FISH labeling with high resolution isotope imaging. Recent work illustrates how these powerful new techniques use targeted stable isotope probing to measure biological, physical and chemical processes and can be used in soil systems to study microbial mats or rhizosphere interactions. In both terrestrial and aquatic systems, they allow us to directly link C and other nutrient metabolism at the organismal level. Lastly, these new aproaches may be of great use in the study of trophic cascades and metabolic networks. While cross-feeding is often thought of as a confounding effect in SIP-type studies, with fine scale temporal sampling and FISH-SIMS analysis, we have the opportunity trace C flows through microbial foodwebs and to their eventual fate in stabilized organic-mineral complexes.

  4. Isotopic tracing of clear water sources in an urban sewer: A combined water and dissolved sulfate stable isotope approach.

    PubMed

    Houhou, J; Lartiges, B S; France-Lanord, C; Guilmette, C; Poix, S; Mustin, C

    2010-01-01

    This paper investigates the potential of stable isotopes of both water (deltaD and deltaOH(2)O18) and dissolved sulfate (delta(34)S and deltaOSO(4)18) for determining the origin and the amount of clear waters entering an urban sewer. The dynamics of various hydrological processes that commonly occur within the sewer system such as groundwater infiltration, rainwater percolation, or stormwater release from retention basins, can be readily described using water isotope ratios. In particular, stable water isotopes indicate that the relative volumes of infiltrated groundwater and sewage remain approximately constant and independent of wastewater flow rate during the day, thus demonstrating that the usual quantification of parasitic discharge from minimal nocturnal flow measurements can lead to completely erroneous results. The isotopic signature of dissolved sulfate can also provide valuable information about the nature of water inputs to the sewage flow, but could not be used in our case to quantify the infiltrating water. Indeed, even though the microbial activity had a limited effect on the isotopic composition of dissolved sulfate at the sampling sites investigated, the dissolved sulfate concentration in sewage was regulated by the formation of barite and calcium-phosphate mineral species. Sulfate originating from urine was also detected as a source using the oxygen isotopic composition of sulfate, which suggests that deltaOSO(4)18 might find use as a urine tracer.

  5. Multi-isotopic approach to assess the role of soil weathering processes on rivers draining a basaltic catchment

    NASA Astrophysics Data System (ADS)

    Opfergelt, S.; Georg, R. B.; Burton, K.; Gislason, S. R.; Sigfusson, B.; Halliday, A. N.

    2009-12-01

    Continental weathering not only plays a pivotal role for the long-term climate and CO2 regulation, it also sustains the biosphere by providing nutrients. During weathering, stable isotopes of Si, Mg and Li are fractionated, directly impacting river signatures. In a monolithological catchment, isotopic variations in rivers would rather be related to pedogenic processes such as mineral dissolution, sequestration in secondary minerals via neoformation or adsorption, and plant uptake. However, separating inorganic from biologically driven isotopic fractionation remains complex, owing the tight coupling of biology and weathering. Applying stable isotope techniques, such as Mg, can potentially provide information about those processes that control the Mg budget during weathering reactions. Existing Mg-isotope data obtained from different soils point to a contrasting picture however. Soils derived from gneissic bedrock (India) were shown to display heavier isotopic signatures relative to the bedrock, and associated fluids were enriched in light Mg isotopes, suggesting that weathering discriminates against light Mg isotopes (Tipper et al 2006). By contrast, Icelandic rivers were found to display a large range of Mg isotopic variations both lighter and heavier relative to the parental basalt, and few measured soils were shown to be isotopically lighter than basalt (Pogge von Strandmann et al 2008), suggesting isotope fractionation pattern similar to those found for other light stable isotope systems of Li and Si (e.g. Huh et al 2004; Ziegler et al 2005). This present study aims at a detailed approach to investigate the Mg isotope fractionation in Icelandic soils (Borgarfjordur catchment), in order to elucidate the potential impact of soil weathering on riverine Mg isotopic compositions. On the long run, Mg data will be complemented by Si and Li isotope measurements in order to provide a better constraint on the influence of inorganic versus biological fractionation in a

  6. Hydrogen Isotope Fractionation during the Biodegradation of 1,2-Dichloroethane: Potential for Pathway Identification Using a Multi-element (C, Cl, and H) Isotope Approach.

    PubMed

    Palau, Jordi; Shouakar-Stash, Orfan; Hatijah Mortan, Siti; Yu, Rong; Rosell, Monica; Marco-Urrea, Ernest; Freedman, David L; Aravena, Ramon; Soler, Albert; Hunkeler, Daniel

    2017-09-19

    Even though multi-element isotope fractionation patterns provide crucial information with which to identify contaminant degradation pathways in the field, those involving hydrogen are still lacking for many halogenated groundwater contaminants and degradation pathways. This study investigates for the first time hydrogen isotope fractionation during both aerobic and anaerobic biodegradation of 1,2-dichloroethane (1,2-DCA) using five microbial cultures. Transformation-associated isotope fractionation values (εbulk(H)) were -115 ± 18‰ (aerobic C-H bond oxidation), -34 ± 4‰ and -38 ± 4‰ (aerobic C-Cl bond cleavage via hydrolytic dehalogenation), and -57 ± 3‰ and -77 ± 9‰ (anaerobic C-Cl bond cleavage via reductive dihaloelimination). The dual-element C-H isotope approach (ΛC-H = Δδ(2)H/Δδ(13)C ≈ εbulk(H)/εbulk(C), where Δδ(2)H and Δδ(13)C are changes in isotope ratios during degradation) resulted in clearly different ΛC-H values: 28 ± 4 (oxidation), 0.7 ± 0.1 and 0.9 ± 0.1 (hydrolytic dehalogenation), and 1.76 ± 0.05 and 3.5 ± 0.1 (dihaloelimination). This result highlights the potential of this approach to identify 1,2-DCA degradation pathways in the field. In addition, distinct trends were also observed in a multi- (i.e., Δδ(2)H versus Δδ(37)Cl versus Δδ(13)C) isotope plot, which opens further possibilities for pathway identification in future field studies. This is crucial information to understand the mechanisms controlling natural attenuation of 1,2-DCA and to design appropriate strategies to enhance biodegradation.

  7. Dietary Plasticity of Generalist and Specialist Ungulates in the Namibian Desert: A Stable Isotopes Approach

    PubMed Central

    Lehmann, David; Mfune, John Kazgeba Elijah; Gewers, Erick; Cloete, Johann; Brain, Conrad; Voigt, Christian Claus

    2013-01-01

    Desert ungulates live in adverse ecosystems that are particularly sensitive to degradation and global climate change. Here, we asked how two ungulate species with contrasting feeding habits, grazing gemsbok (Oryx g. gazella) and browsing springbok (Antidorcas marsupialis), respond to an increase in food availability during a pronounced rain period. We used a stable isotope approach to delineate the feeding habits of these two ungulates in the arid Kunene Region of Namibia. Our nineteen months field investigation included two time periods of drought when food availability for ungulates was lowest and an intermediate period with extreme, unusual rainfalls. We documented thirteen isotopically distinct food sources in the isotopic space of the study area. Our results indicated a relatively high dietary plasticity of gemsbok, which fed on a mixture of plants, including more than 30% of C3 plants during drought periods, but almost exclusively on C4 and CAM plant types when food was plentiful. During drought periods, the inferred gemsbok diets also consisted of up to 25% of Euphorbia damarana; an endemic CAM plant that is rich in toxic secondary plant compounds. In contrast, springbok were generalists, feeding on a higher proportion of C3 than C4/CAM plants, irrespective of environmental conditions. Our results illustrate two dietary strategies in gemsbok and springbok which enable them to survive and coexist in the hostile Kunene arid ecosystem. PMID:23977249

  8. Reviews and syntheses: Isotopic approaches to quantify root water uptake: a review and comparison of methods

    NASA Astrophysics Data System (ADS)

    Rothfuss, Youri; Javaux, Mathieu

    2017-05-01

    Plant root water uptake (RWU) has been documented for the past five decades from water stable isotopic analysis. By comparing the (hydrogen or oxygen) stable isotopic compositions of plant xylem water to those of potential contributive water sources (e.g., water from different soil layers, groundwater, water from recent precipitation or from a nearby stream), studies were able to determine the relative contributions of these water sources to RWU. In this paper, the different methods used for locating/quantifying relative contributions of water sources to RWU (i.e., graphical inference, statistical (e.g., Bayesian) multi-source linear mixing models) are reviewed with emphasis on their respective advantages and drawbacks. The graphical and statistical methods are tested against a physically based analytical RWU model during a series of virtual experiments differing in the depth of the groundwater table, the soil surface water status, and the plant transpiration rate value. The benchmarking of these methods illustrates the limitations of the graphical and statistical methods while it underlines the performance of one Bayesian mixing model. The simplest two-end-member mixing model is also successfully tested when all possible sources in the soil can be identified to define the two end-members and compute their isotopic compositions. Finally, the authors call for a development of approaches coupling physically based RWU models with controlled condition experimental setups.

  9. Plutonium isotopes offer an alternative approach to establishing chronological profiles in coarse sediments

    NASA Astrophysics Data System (ADS)

    Pondell, C.; Kuehl, S. A.; Canuel, E. A.

    2016-12-01

    There are several methodologies used to determine chronologies for sediments deposited within the past 100 years, including 210Pb and 137Cs radioisotopes and organic and inorganic contaminants. These techniques are quite effective in fine sediments, which generally have a high affinity for metals and organic compounds. However, the application of these chronological tools becomes limited in systems where coarse sediments accumulate. Englebright Lake is an impoundment in northern California where sediment accumulation is characterized by a combination of fine and coarse sediments. This combination of sediment grain size complicated chronological analysis using the more traditional 137Cs chronological approach. This study established a chronology of these sediments using 239+240Pu isotopes. While most of the 249+240Pu activity was measured in the fine grain size fraction (<63 microns), up to 25% of the plutonium activity was detected in the coarse size fractions of sediments from Englebright Lake. Profiles of 239+240Pu were similar to available 137Cs profiles, verifying the application of plutonium isotopes for determining sediment chronologies and expanding the established geochronology for Englebright Lake sediments. This study of sediment accumulation in Englebright Lake demonstrates the application of plutonium isotopes in establishing chronologies in coarse sediments and highlights the potential for plutonium to offer new insights into patterns of coarse sediment accumulation.

  10. Projectile fragmentation of {sup 40,48}Ca and isotopic scaling in a transport approach

    SciTech Connect

    Mikhailova, T. I. Erdemchimeg, B.; Artukh, A. G.; Toro, M. Di; Wolter, H. H.

    2016-07-15

    We investigate theoretically projectile fragmentation in reactions of {sup 40,48}Ca on {sup 9}Be and {sup 181}Ta targets using a Boltzmann-type transport approach, which is supplemented by a statistical decay code to describe the de-excitation of the hot primary fragments. We determine the thermodynamical properties of the primary fragments and calculate the isotope distributions of the cold final fragments. These describe the data reasonably well. For the pairs of projectiles with different isotopic content we analyze the isotopic scaling (or isoscaling) of the final fragment distributions, which has been used to extract the symmetry energy of the primary source. The calculation exhibits isoscaling behavior for the total yields as do the experiments. We also perform an impact-parameter-dependent isoscaling analysis in view of the fact that the primary systems at different impact parameters have very different properties. Then the isoscaling behavior is less stringent, which we can attribute to specific structure effects of the {sup 40,48}Ca pair. The symmetry energy determined in this way depends on these structure effects.

  11. Mechanisms of ammonium assimilation by Chlorella vulgaris F1068: Isotope fractionation and proteomic approaches.

    PubMed

    Liu, Na; Li, Feng; Ge, Fei; Tao, Nengguo; Zhou, Qiongzhi; Wong, Minghung

    2015-08-01

    Removal of ammonium (NH4(+)-N) by microalgae has evoked interest in wastewater treatment, however, the detailed mechanisms of ammonium assimilation remain mysterious. This study investigated the effects of NH4(+)-N concentration on the removal and biotransformation efficiency by Chlorella vulgaris F1068, and explored the mechanisms by (15)N isotope fractionation and proteome approaches. The results showed NH4(+)-N was efficiently removed (84.8%) by F1068 at 10mgL(-1) of NH4(+)-N. The isotope enrichment factor (ε=-2.37±0.08‰) of (15)N isotope fractionation revealed 47.6% biotransformation at above condition, while 7.0% biotransformation at 4mgL(-1) of NH4(+)-N (ε=-1.63±0.06‰). This was due to the different expression of glutamine synthetase, a key enzyme in ammonium assimilation, which was up-regulated 6.4-fold at proteome level and 18.0-fold at transcription level. The results will provide a better mechanistic understanding of ammonium assimilation by microalgae and this green technology is expected to reduce the burden of NH4(+)-N removal for municipal sewage treatment plants.

  12. Dietary plasticity of generalist and specialist ungulates in the Namibian Desert: a stable isotopes approach.

    PubMed

    Lehmann, David; Mfune, John Kazgeba Elijah; Gewers, Erick; Cloete, Johann; Brain, Conrad; Voigt, Christian Claus

    2013-01-01

    Desert ungulates live in adverse ecosystems that are particularly sensitive to degradation and global climate change. Here, we asked how two ungulate species with contrasting feeding habits, grazing gemsbok (Oryx g. gazella) and browsing springbok (Antidorcas marsupialis), respond to an increase in food availability during a pronounced rain period. We used a stable isotope approach to delineate the feeding habits of these two ungulates in the arid Kunene Region of Namibia. Our nineteen months field investigation included two time periods of drought when food availability for ungulates was lowest and an intermediate period with extreme, unusual rainfalls. We documented thirteen isotopically distinct food sources in the isotopic space of the study area. Our results indicated a relatively high dietary plasticity of gemsbok, which fed on a mixture of plants, including more than 30% of C3 plants during drought periods, but almost exclusively on C4 and CAM plant types when food was plentiful. During drought periods, the inferred gemsbok diets also consisted of up to 25% of Euphorbia damarana; an endemic CAM plant that is rich in toxic secondary plant compounds. In contrast, springbok were generalists, feeding on a higher proportion of C3 than C4/CAM plants, irrespective of environmental conditions. Our results illustrate two dietary strategies in gemsbok and springbok which enable them to survive and coexist in the hostile Kunene arid ecosystem.

  13. A Multi-isotope Tracer Approach Linking Land Use With Carbon and Nitrogen Cycling in the San Joaquin River System

    NASA Astrophysics Data System (ADS)

    Young, M. B.; Kendall, C.; Silva, S. R.; Dahlgren, R. A.; Stringfellow, W. T.

    2008-12-01

    The San Joaquin River (SJR) is a large hypereutrophic river located in the Central Valley, California, a major agricultural region. Nutrient subsidies, algae, and other organic material from the San Joaquin River contribute to periods of low dissolved oxygen in the Stockton Deep Water Ship Channel, inhibiting salmon migration. We used a multi-isotope approach to link nitrate and particulate organic matter (POM) to different sources and related land uses. The isotope data was also used to better understand the physical and biological processes controlling the distribution of nitrate and POM throughout the river system. Samples collected from the mainstem SJR and tributaries twice-monthly to monthly between March 2005 and December 2007 were analyzed for nitrate, POM, and water isotopes. There are many land uses surrounding the SJR and its tributaries, including multiple types of agriculture, dairies, wetlands, and urban areas. Samples from SJR tributaries containing both major and minor contributions of wetland discharge generally had distinct nitrate and POM isotope signatures compared to other tributaries. Unique nitrate and POM isotope signatures associated with wetland discharges may reflect anaerobic biological processes occurring in flooded soils. For the mainstem SJR, we applied an isotope mass balance approach using nitrate and water isotopes to calculate the expected downstream isotope values based upon measured inputs from known water sources such as drains and tributaries. Differences between the calculated downstream isotope values and the measured values indicate locations and time periods when either biological processes such as algal uptake, or physical process such as the input of unidentified water sources, significantly altered the isotope signatures of water, POM, or nitrate within the SJR. This research will provide a better understanding of how different land uses affect the delivery of carbon and nitrogen to the SJR, and will provide a better

  14. Figuring out the process of denitrification by stable isotope approaches - Prospects and limitations -

    NASA Astrophysics Data System (ADS)

    Stange, C. F.; Spott, O.

    2009-04-01

    Improvement in the analysis of stable isotopes, higher measurement capacity and faster and more complex analysis methods allow a more detailed insight into the complexity of N cycling in soils or sediments, in particular in the formation and emission of N2 gas. The knowledge about the site-specific N2 to N2O ratio of denitrification and perhaps other processes is important to develop sustainable land use strategies for reduction of GHG emissions. Adapted stable isotope approaches are an irreplaceable tool for process identification, process quantification and processes separation. In the last years a few of new processes were found (e.g. anammox, codenitrification) and new stable isotope approaches for quantification and processes separation were published (Wrage et al.). Source partitioning of N gas production in soils is inherently challenging, but is vital to better understand controls on the different processes, with a view to develope appropriate management practices for mitigation of harmful N gases (e.g.N2O) (Baggs, 2008). Recently dual-isotope labelling approaches (Wrage et al., 2005) and triplet 15N tracer experiments (TTE) with 15N labelling of different pools (e.g. Müller et al., 2006, Russow et al 2009) have been developed to differentiate between more than two processes. The high number of simultaneously occurring processes during soil N cycling (Hayatsu et al. 2008) limits an easy applicability of isotope approaches (Spott and Stange 2007 ;Wrage et al. 2005; Phillips and Gregg, 2003), and therefore partitioning and process quantification is often afflicted with high uncertainties (Ambus et al., 2006). Especially the heterogeneity of environmental conditions in soils caused by the soil structure is difficult to handle (e.g. homogeneously labelling a soil). Hence, spatially separated processes in combination with high turnover rates (gross production and consumption) can produce different pools of one substrate in the soil (Russow et al. 2009) and

  15. Occurrence and origin of methane in groundwater in Alberta (Canada): Gas geochemical and isotopic approaches.

    PubMed

    Humez, P; Mayer, B; Ing, J; Nightingale, M; Becker, V; Kingston, A; Akbilgic, O; Taylor, S

    2016-01-15

    To assess potential future impacts on shallow aquifers by leakage of natural gas from unconventional energy resource development it is essential to establish a reliable baseline. Occurrence of methane in shallow groundwater in Alberta between 2006 and 2014 was assessed and was ubiquitous in 186 sampled monitoring wells. Free and dissolved gas sampling and measurement approaches yielded comparable results with low methane concentrations in shallow groundwater, but in 28 samples from 21 wells methane exceeded 10mg/L in dissolved gas and 300,000 ppmv in free gas. Methane concentrations in free and dissolved gas samples were found to increase with well depth and were especially elevated in groundwater obtained from aquifers containing coal seams and shale units. Carbon isotope ratios of methane averaged -69.7 ± 11.1‰ (n=63) in free gas and -65.6 ± 8.9‰ (n=26) in dissolved gas. δ(13)C values were not found to vary with well depth or lithology indicating that methane in Alberta groundwater was derived from a similar source. The low δ(13)C values in concert with average δ(2)HCH4 values of -289 ± 44‰ (n=45) suggest that most methane was of biogenic origin predominantly generated via CO2 reduction. This interpretation is confirmed by dryness parameters typically >500 due to only small amounts of ethane and a lack of propane in most samples. Comparison with mud gas profile carbon isotope data revealed that methane in the investigated shallow groundwater in Alberta is isotopically similar to hydrocarbon gases found in 100-250 meter depths in the WCSB and is currently not sourced from thermogenic hydrocarbon occurrences in deeper portions of the basin. The chemical and isotopic data for methane gas samples obtained from Alberta groundwater provide an excellent baseline against which potential future impact of deeper stray gases on shallow aquifers can be assessed.

  16. Quantitative approaches to the analysis of stable isotope food web data.

    PubMed

    Schmidt, Stephanie N; Olden, Julian D; Solomon, Christopher T; Vander Zanden, M Jake

    2007-11-01

    Ecologists use stable isotopes (delta13C, delta15N) to better understand food webs and explore trophic interactions in ecosystems. Traditionally, delta13C vs. delta15N bi-plots have been used to describe food web structure for a single time period or ecosystem. Comparisons of food webs across time and space are increasing, but development of statistical approaches for testing hypotheses regarding food web change has lagged behind. Here we present statistical methodologies for quantitatively comparing stable isotope food web data. We demonstrate the utility of circular statistics and hypothesis tests for quantifying directional food web differences using two case studies: an arthropod salt marsh community across a habitat gradient and a freshwater fish community from Lake Tahoe, USA, over a 120-year time period. We calculated magnitude and mean angle of change (theta) for each species in food web space using mean delta13C and delta15N of each species as the x, y coordinates. In the coastal salt marsh, arthropod consumers exhibited a significant shift toward dependence on Spartina, progressing from a habitat invaded by Phragmites to a restored Spartina habitat. In Lake Tahoe, we found that all species from the freshwater fish community shifted in the same direction in food web space toward more pelagic-based production with the introduction of nonnative Mysis relicta and onset of cultural eutrophication. Using circular statistics to quantitatively analyze stable isotope food web data, we were able to gain significant insight into patterns and changes in food web structure that were not evident from qualitative comparisons. As more ecologists incorporate a food web perspective into ecosystem analysis, these statistical tools can provide a basis for quantifying directional food web differences from standard isotope data.

  17. Flow-through SIP - A novel stable isotope probing approach limiting cross-feeding

    NASA Astrophysics Data System (ADS)

    Mooshammer, Maria; Kitzinger, Katharina; Schintlmeister, Arno; Kjedal, Henrik; Nielsen, Jeppe Lund; Nielsen, Per; Wagner, Michael

    2017-04-01

    Stable isotope probing (SIP) is a widely applied tool to link specific microbial populations to metabolic processes in the environment without the prerequisite of cultivation, which has greatly advanced our understanding of the role of microorganisms in biogeochemical cycling. SIP relies on tracing specific isotopically labeled substrates (e.g., 13C, 15N, 18O) into cellular biomarkers, such as DNA, RNA or phospholipid fatty acids, and is considered to be a robust technique to identify microbial populations that assimilate the labeled substrate. However, cross-feeding can occur when labeled metabolites are released from a primary consumer and then used by other microorganisms. This leads to erroneous identification of organisms that are not directly responsible for the process of interest, but are rather connected to primary consumers via a microbial food web. Here, we introduce a new approach that has the potential to eliminate the effect of cross-feeding in SIP studies and can thus also be used to distinguish primary consumers from other members of microbial food webs. In this approach, a monolayer of microbial cells are placed on a filter membrane, and labeled substrates are supplied by a continuous flow. By means of flow-through, labeled metabolites and degradation products are constantly removed, preventing secondary consumption of the substrate. We present results from a proof-of-concept experiment using nitrifiers from activated sludge as model system, in which we used fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes for identification of nitrifiers in combination with nanoscale secondary ion mass spectrometry (NanoSIMS) for visualization of isotope incorporation at the single-cell level. Our results show that flow-through SIP is a promising approach to significantly reduce cross-feeding and secondary substrate consumption in SIP experiments.

  18. Quantifying spatial groundwater dependence in peatlands through a distributed isotope mass balance approach

    NASA Astrophysics Data System (ADS)

    Isokangas, Elina; Rossi, Pekka M.; Ronkanen, Anna-Kaisa; Marttila, Hannu; Rozanski, Kazimierz; Kløve, Bjørn

    2017-03-01

    The unique biodiversity and plant composition of peatlands rely on a mix of different water sources: precipitation, runoff, and groundwater (GW). Methods used to delineate areas of ecosystem groundwater dependence, such as vegetation mapping and solute tracer studies, are indirect and lack the potential to assess temporal changes in hydrology, information needed in GW management. This paper outlines a new methodology for mapping groundwater-dependent areas (GDAs) in peatlands using a 2H and 18O isotope mass balance method. The approach reconstructs the initial isotopic composition of the peat pore water in the uppermost peat layer before its modification by evaporation. It was assumed that pore water in this layer subject to evaporation is a two-component mixture consisting of GW and precipitation input from the month preceding the sampling period. A Bayesian Monte Carlo isotope mixing model was applied to calculate the proportions of GW and rainwater in the sampled pore water and to assess uncertainties. The approach revealed large spatial variability in the contribution of GW to the pore water present in the top layer of peatland, covering the range from approximately 0 to 100%. Results show that the current GW protection zones determined by Finnish legislation do not cover the GDAs in peatlands and highlight a need for better classification of groundwater-dependent ecosystems and conceptualization of aquifer-ecosystem interactions. Our approach offers an efficient tool for mapping GDAs and quantifying the contribution of GW to peatland pore water. However, more studies are needed to test the method for different peatland types.

  19. Alpine Holocene Tree Ring Isotope Records - A Synthesis of a Multi-Proxy Approach in Dendroclimatology

    NASA Astrophysics Data System (ADS)

    Ziehmer, Malin Michelle; Nicolussi, Kurt; Schlüchter, Christian; Leuenberger, Markus

    2017-04-01

    High-resolution climate reconstructions based on tree-ring proxies are often limited by the individual segment length of living trees selected at the defined sampling sites, which mostly results in relatively short multi-centennial proxy series. A potential extension of living wood records comprise the addition of subfossil and archeological wood remains resulting in chronologies and associated climate reconstructions which are able to cover a few millennia in central Europe (e.g. Büntgen et al., 2011). However, existing multi-millennial tree-ring width chronologies in central Europe rank among the longest continuous chronologies world-wide and span the entire Holocene (Becker et al., 1993; Nicolussi et al. 2009). So far, these chronologies have mainly been used for dating subfossil wood samples, floating chronologies and archeological artifacts, but only in parts for reconstructing climate. Finds of Holocene wood remains in glacier forefields, peat bogs and small lakes allow us not only to establish such long-term tree-ring width records; further they offer the possibility to establish multi-millennial proxy records for the entire Holocene by using a multi-proxy approach which includes both tree-ring width and triple stable isotope ratios. As temperature limits tree growth at the Alpine upper tree line, the existing tree-ring width records are currently limited to reconstruct a single environmental variable. In the framework of the project Alpine Holocene Tree Ring Isotope Records, we combine tree-ring width, cellulose content as well as carbon, oxygen and hydrogen isotope series in a multi-proxy approach which allows the reconstruction of past environments by combining both Holocene wood remains and recent tree samples from two Alpine tree-line species. For this purpose, α-cellulose is prepared from 5-year tree ring blocks following the procedure after Boettger et al. (2007) and subsequently crushed by ultrasonic homogenization (Laumer et al., 2009). The

  20. Two-Pronged Approach to Overcome Spectroscopically Interfering Organic Compounds with Isotopic Water Analysis

    NASA Astrophysics Data System (ADS)

    Saad, Nabil; Hsiao, Gregor; Chapellet-Volpini, London; Vu, Danthu

    2013-04-01

    The ability to measure the stable isotopes of hydrogen (dD) and oxygen (d18O) has become much more accessible with the advent of Cavity Ring-Down Spectroscopy (CRDS) laser optical devices. These small and inexpensive analyzers have led to a significant increase in the acquisition of data from a variety of studies in the fields of groundwater, watershed, and other water source applications. However for some samples, such as those linked to fracking, mining, and other activities where higher than normal concentrations of organic materials are to be found, optical spectroscopy may require an adaptation from current methodologies in order to ensure data confidence. That is because CRDS is able to measure all the components within a spectral region - which will include the spectral characteristics of the isotopologues of water as well as the available features from interfering organic molecules. Although, at the first level, the information from the organic material provides spectral overlaps that can perturb the isotopic ratios, a more thorough review shows that these features are a source of information that will be inherently useful. This presentation will examine the approaches developed within the past year to allow for more accurate analyses of such samples by optical methods. The first approach uses an advanced spectroscopic model to flag the presence of organic material in the sample. Signals from known interfering compounds (i.e., alcohols, ketones, aldehydes, short-chain hydrocarbons, etc.) are incorporated into the overall fit of the measured spectra used to calculate the concentration of the individual isotopes. The second approach uses physical treatment of the sample to break down the organic molecules into non-interfering species. The vaporized liquid or solid sample travels through a cartridge packed with an oxidation catalyst. The interfering organic molecules will undergo high temperature oxidation using O2 present in the air carrier gas stream prior

  1. Does Miscanthus cultivation on organic soils compensate for carbon loss from peat oxidation? A dual label study

    NASA Astrophysics Data System (ADS)

    Bader, Cédric; Leifeld, Jens; Müller, Moritz; Schulin, Rainer

    2016-04-01

    Agricultural use of organic soils requires drainage and thereby changes conditions in these soils from anoxic to oxic. As a consequence, organic carbon that had been accumulated over millennia is rapidly mineralized, so that these soils are converted from a CO2 sink to a source. The peat mineralization rate depends mainly on drainage depth, but also on crop type. Various studies show that Miscanthus, a C4 bioenergy plant, shows potential for carbon sequestration in mineral soils because of its high productivity, its dense root system, absence of tillage and high preharvest litterfall. If Miscanthus cropping would have a similar effect in organic soils, peat consumption and thus CO2 emissions might be reduced. For our study we compared two adjacent fields, on which organic soil is cultivated with Miscanthus (since 20 years) and perennial grass (since 6 years). Both sites are located in the Bernese Seeland, the largest former peatland area of Switzerland. To determine wether Miscanthus-derived carbon accumulated in the organic soil, we compared the stable carbon isotopic signatures of the experimental soil with those of an organic soil without any C4-plant cultivation history. To analyze the effect of C4-C accumulation on peat degradability we compared the CO2 emissions by incubating 90 soil samples of the two fields for more than one year. Additionally, we analysed the isotopic CO2 composition (13C, 14C) during the first 25 days of incubation after trapping the emitted CO2 in NaOH and precipitating it as BaCO3. The ∂13C values of the soil imply, that the highest share of C4-C of around 30% is situated at a depth of 10-20 cm. Corn that used to be cultivated on the grassland field before 2009 still accounts for 8% of SOC. O/C and H/C ratios of the peat samples indicate a stronger microbial imprint of organic matter under Miscanthus cultivation. The amount of CO2 emitted was not affected by the cultivation type. On average 57% of the CO2 was C4 derived in the

  2. The cesium:potassium index of food web structure -- A complementary approach to stable isotope indicators

    SciTech Connect

    Young, D.

    1995-12-31

    Stable isotope shifts with trophic or average feeding level are an important tool in characterizing sampled food webs for biomagnification and other studies. However, spatial and temporal variations in isotope ratios in the environment can introduce uncertainties in interpreting such data. An elemental index, the Cs/K ratio, has proved to be a useful tool in assessing the reliability of the trophic level approach to characterizing marine and estuarine food webs. A major advantage is the constant value of this elemental ratio in seawater. Studies conducted over the last three decades in a variety of aquatic ecosystems generally have yielded consistent results using the Cs/K Index. The mean Trophic Transfer Factor obtained from twelve food web surveys was 2.0 +/- 0.1 (SE), indicating substantial structure for most of the food webs sampled. An empirical technique, termed the Exponential Biomagnification Model, was developed to simplify the observed variation of Cs/K with Trophic Level Assignment. This approach has proved useful in assessing sampled food webs with non-integer Trophic Level Assignments, and obtaining average Trophic Transfer Factors for the Cs/K ratio and corresponding tissue concentrations of environmental contaminants.

  3. Dual labeling for simultaneous determination of nitric oxide, glutathione and cysteine in macrophage RAW264.7 cells by microchip electrophoresis with fluorescence detection.

    PubMed

    Tu, Feng-Qin; Zhang, Li-Yun; Guo, Xiao-Feng; Zhang, Zi-Xing; Wang, Hong; Zhang, Hua-Shan

    2014-09-12

    A simple, rapid and efficient method based on microchip electrophoresis coupled with fluorescence detection (MCE-FLD) was developed for simultaneous determination of nitric oxide (NO), glutathione (GSH) and cysteine (Cys) using dual labeling strategy. Two highly reactive fluorogenic probes, 1,3,5,7-tetramethyl-8-(3',4'-diaminophenyl)-difluoroboradiaza-s-indacene (DAMBO) and 1,3,5,7-tetramethyl-8-phenyl-(2-maleimide)-difluoroboradiaza-s-indacene (TMPAB-o-M), were used for labeling NO and thiols, respectively, under physiological conditions. The rapid separation and sensitive detection of the derivatives were achieved on a glass microchip within 70s in a running buffer of 20mM H3Cit-Na2HPO4 solution (pH 7.4) containing 15% (v/v) acetonitrile at a separation voltage of 2400V. The limits of detection (S/N=3) for NO, GSH and Cys were 7.0, 3.0 and 2.0nM, respectively. The proposed method was validated by measuring intracellular levels of NO and biothiols in macrophage RAW264.7 cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Synthesis and application of a N-1' fluorescent biotinyl derivative inducing the specific carboxy-terminal dual labeling of a novel RhoB-selective scFv.

    PubMed

    Chaisemartin, L; Chinestra, P; Favre, G; Blonski, C; Faye, J C

    2009-05-20

    The fluorescent site-specific labeling of protein would provide a new, easy-to-use alternative to biochemical and immunochemical methods. We used an intein-mediated strategy for covalent labeling of the carboxy-terminal amino acid of a RhoB-selective scFv previously isolated from a phage display library (a human synthetic V(H) + V(L) scFv phage library). The scFv fused to the Mxe intein was produced in E. coli and purified and was then labeled with a newly synthesized fluorescent biotinyl cysteine derivative capable of inducing scFv-Mxe intein splicing. In this study, we investigated the splicing and labeling properties of various amino acids in the hinge domain between scFv and Mxe under thiol activation. In this dual labeling system, the fluorescein is used for antibody detection and biotin is used for purification, resulting in a high specific activity for fluorescence. We then checked that the purified biotinylated fluorescent scFv retained its selectivity for RhoB without modification of its affinity.

  5. A novel sequence-specific RNA quantification method using nicking endonuclease, dual-labeled fluorescent DNA probe, and conformation-interchangeable oligo-DNA

    PubMed Central

    Hosoda, Kazufumi; Matsuura, Tomoaki; Kita, Hiroshi; Ichihashi, Norikazu; Tsukada, Koji; Urabe, Itaru; Yomo, Tetsuya

    2008-01-01

    We have developed a novel, single-step, isothermal, signal-amplified, and sequence-specific RNA quantification method (L-assay). The L-assay consists of nicking endonuclease, a dual-labeled fluorescent DNA probe (DL-probe), and conformation-interchangeable oligo-DNA (L-DNA). This signal-amplified assay can quantify target RNA concentration in a sequence-specific manner with a coefficient of variation (Cv) of 5% and a lower limit of detection of 0.1 nM. Moreover, this assay allows quantification of target RNA even in the presence of a several thousandfold excess by weight of cellular RNA. In addition, this assay can be used to measure the changes in RNA concentration in real-time and to quantify short RNAs (<30 nucleotides). The L-assay requires only incubation under isothermal conditions, is inexpensive, and is expected to be useful for basic research requiring high-accuracy, easy-to-use RNA quantification, and real-time quantification. PMID:18230763

  6. Comprehensive analysis of collagen metabolism in vitro using (4(/sup 3/H))/(/sup 14/C)proline dual-labeling and polyacrylamide gel electrophoresis

    SciTech Connect

    Bateman, J.F.; Harley, V.; Chan, D.; Cole, W.G.

    1988-01-01

    A method to simultaneously quantify the production, secretion, and prolyl hydroxylation of individual types of collagen in cell culture samples has been developed. Collagens were biosynthetically labeled with a mixture of (/sup 14/C)proline and (4-/sup 3/H)proline. The labeled collagens were isolated and their component alpha-chains were resolved by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. Migration of the collagen alpha-chains was determined by fluorography, and radioactivity in excised bands was quantified by scintillation counting. (/sup 14/C)Proline labeling of collagen chains was used to determine the production and secretion of the different types of collagen. The ratios of the component alpha 1(I) and alpha 2(I) chains of type I collagen were also determined in this way. Prolyl hydroxylation of collagen alpha-chains was readily determined by measurement of their /sup 3/H:/sup 14/C ratios. Following 4-hydroxylation, /sup 3/H was lost from the (4-3H)proline with alteration of this ratio. This dual-labeling method is suitable for the comprehensive analysis of collagen metabolism in multiple samples.

  7. Evaluation of the kinetic isotope effect in methylamine dehydrogenase using the wave function propagation approach

    NASA Astrophysics Data System (ADS)

    Pierdominici-Sottile, Gustavo; Palma, Juliana

    2009-09-01

    We have evaluated the kinetic isotope effect (KIE) in the proton transfer step that determines the oxidation rate of methylamine, catalyzed by the enzyme methylamine dehydrogenase. Calculations were performed with the wave function propagation (WFP) approach, recently implemented to estimate the KIE in soybean lipoxygenase-1. Two different versions of the method were applied. Both of them produced results which are close to the experimental value of 16.8 ± 0.5. The calculation required the development of a valence-bond parameterization. In the article, we describe the procedure followed to obtain these parameters, present the results of several tests employed to assess their performance and give details of the two versions of the WFP approach used to evaluate the KIE.

  8. A Learner-Centered Spiral Knowledge Approach to Teaching Isotope Geology

    NASA Astrophysics Data System (ADS)

    Reid, M. R.

    2006-12-01

    Aided by the insights I gained by participation in the Arizona Board of Regents Tri-University Collaboration on Learner-Centered Practice, I made major changes to a graduate course in isotope geology (GLG617), including: 1) implementation of a spiral knowledge approach (e.g., Bruner, 1990; Dyar et al., 2004); 2) incorporation of more learner-centered in-class activities; and 3) more explicit emphasis on skills that I regarded as important for success in geochemistry. In the geosciences, the field of isotope geology is now an essential area of inquiry with implications for geologic timescales, climate information, tracing geochemical processes, and biological evolution, to name a few. The traditional approach to teaching isotope geology suffers from the fact that learning tends to be compartmentalized by technique/approach and one subfield (e.g., stable or radiogenic isotopes) is usually favored by appearing earlier in semester. To make learning more integrated, I employed a simplified spiral learning approach so that common principles could be revisited several times over the course of the semester and, in so doing, students' grasp of the fundamental principles could be scaffolded into greater understanding. Other learner-centered changes to the course included more explicit emphasis on helping students become comfortable with interpreting data displayed graphically and explicit emphasis on helping students give and evaluate oral presentations that rely on isotope data. I also developed a detailed grading rubric for the final paper and allowed students to have a draft of their final papers evaluated and graded (guided by Huba and Freed, 2000) A number of cooperative learning activities developed specifically for this course (19 in all) enabled me to gain a better appreciation for students' learning. Activities included pair share, round-robin, small group explorations of techniques and case studies (sometimes as introduction to, sometimes as review of material

  9. Estimating ground-water inflow to lakes in central Florida using the isotope mass-balance approach

    USGS Publications Warehouse

    Sacks, Laura A.

    2002-01-01

    The isotope mass-balance approach was used to estimate ground-water inflow to 81 lakes in the central highlands and coastal lowlands of central Florida. The study area is characterized by a subtropical climate and numerous lakes in a mantled karst terrain. Ground-water inflow was computed using both steady-state and transient formulations of the isotope mass-balance equation. More detailed data were collected from two study lakes, including climatic, hydrologic, and isotopic (hydrogen and oxygen isotope ratio) data. For one of these lakes (Lake Starr), ground-water inflow was independently computed from a water-budget study. Climatic and isotopic data collected from the two lakes were similar even though they were in different physiographic settings about 60 miles apart. Isotopic data from all of the study lakes plotted on an evaporation trend line, which had a very similar slope to the theoretical slope computed for Lake Starr. These similarities suggest that data collected from the detailed study lakes can be extrapolated to the rest of the study area. Ground-water inflow computed using the isotope mass-balance approach ranged from 0 to more than 260 inches per year (or 0 to more than 80 percent of total inflows). Steady-state and transient estimates of ground-water inflow were very similar. Computed ground-water inflow was most sensitive to uncertainty in variables used to calculate the isotopic composition of lake evaporate (isotopic compositions of lake water and atmospheric moisture and climatic variables). Transient results were particularly sensitive to changes in the isotopic composition of lake water. Uncertainty in ground-water inflow results is considerably less for lakes with higher ground-water inflow than for lakes with lower ground-water inflow. Because of these uncertainties, the isotope mass-balance approach is better used to distinguish whether ground-water inflow quantities fall within certain ranges of values, rather than for precise

  10. Stable Isotope Probing Approaches to Study Anaerobic Hydrocarbon Degradation and Degraders.

    PubMed

    Vogt, Carsten; Lueders, Tillmann; Richnow, Hans H; Krüger, Martin; von Bergen, Martin; Seifert, Jana

    2016-01-01

    Stable isotope probing (SIP) techniques have become state-of-the-art in microbial ecology over the last 10 years, allowing for the targeted detection and identification of organisms, metabolic pathways and elemental fluxes active in specific processes within complex microbial communities. For studying anaerobic hydrocarbon-degrading microbial communities, four stable isotope techniques have been used so far: DNA/RNA-SIP, PLFA (phospholipid-derived fatty acids)-SIP, protein-SIP, and single-cell-SIP by nanoSIMS (nanoscale secondary ion mass spectrometry) or confocal Raman microscopy. DNA/RNA-SIP techniques are most frequently applied due to their most meaningful phylogenetic resolution. Especially using 13C-labeled benzene and toluene as model substrates, many new hydrocarbon degraders have been identified by SIP under various electron acceptor conditions. This has extended the current perspective of the true diversity of anaerobic hydrocarbon degraders relevant in the environment. Syntrophic hydrocarbon degradation was found to be a common mechanism for various electron acceptors. Fundamental concepts and recent advances in SIP are reflected here. A discussion is presented concerning how these techniques generate direct insights into intrinsic hydrocarbon degrader populations in environmental systems and how useful they are for more integrated approaches in the monitoring of contaminated sites and for bioremediation.

  11. Trophic Interactions in Louisiana Salt Marshes: Combining Stomach Content, Stable Isotope, and Fatty Acid Approaches

    NASA Astrophysics Data System (ADS)

    Lopez-Duarte, P. C.; Able, K.; Fodrie, J.; McCann, M. J.; Melara, S.; Noji, C.; Olin, J.; Pincin, J.; Plank, K.; Polito, M. J.; Jensen, O.

    2016-02-01

    Multiple studies conducted over five years since the 2010 Macondo oil spill in the Gulf of Mexico indicate that oil impacts vary widely among taxonomic groups. For instance, fishes inhabiting the marsh surface show no clear differences in either community composition or population characteristics between oiled and unoiled sites, despite clear evidence of physiological impacts on individual fish. In contrast, marsh insects and spiders are sensitive to the effects of hydrocarbons. Both insects and spiders are components of the marsh food web and represent an important trophic link between marsh plants and higher trophic levels. Because differences in oil impacts throughout the marsh food web have the potential to significantly alter food webs and energy flow pathways and reduce food web resilience, our goal is to quantify differences in marsh food webs between oiled and unoiled sites to test the hypothesis that oiling has resulted in simpler and less resilient food webs. Diets and food web connections were quantified through a combination of stomach content, stable isotope, and fatty acid analysis. The combination of these three techniques provides a more robust approach to quantifying trophic relationships than any of these methods alone. Stomach content analysis provides a detailed snapshot of diets, while fatty acid and stable isotopes reflect diets averaged over weeks to months. Initial results focus on samples collected in May 2015 from a range of terrestrial and aquatic consumer species, including insects, mollusks, crustaceans, and piscivorous fishes.

  12. Elucidation of nitrate reduction pathways in anaerobic bioreactors using a stable isotope approach.

    PubMed

    Mazéas, Laurent; Vigneron, Vassilia; Le-Ménach, Karyn; Budzinski, Hélène; Audic, Jean-Marc; Bernet, Nicolas; Bouchez, Théodore

    2008-06-01

    Leachate recirculation allows an increase of moisture content and the enhancement of the anaerobic digestion of wastes in landfill. Since there is no ammonia elimination process in landfill when leachate is recirculated, NH(4) (+) may accumulate. One strategy for NH(4) (+) removal is to treat aerobically the leachate outside the landfill to convert NH(4) (+) into NO(3) (-). When nitrified leachate is recirculated, denitrification should occur in the waste. We have previously shown that wastes have a large capacity to convert nitrate into N(2). Nevertheless, in some cases we observed nitrate reduction without gaseous nitrogen production. Using a stepwise multiple regression models, H(2)S concentration was the unique parameter found to have a negative effect on N(2) production. We then suspected that dissimilatory nitrate reduction to ammonium (DNRA) occurred in the presence of H(2)S. In order to verify this hypothesis, (15)N nitrate injections were performed into microcosms containing different H(2)S concentrations. The ammonium (15)N enrichment was measured using an elemental analyser coupled to an isotope ratio mass spectrometer. In the two microcosms containing the highest H(2)S concentrations, the ammonium was (15)N enriched and at the end of the experiment all the added nitrate was converted into ammonium. For the two microcosms containing the lowest H(2)S concentrations, no (15)N enrichment of ammonium was observed. This isotopic approach has allowed us to demonstrate that, in the presence of significant concentrations of H(2)S, denitrification is replaced by DNRA.

  13. A quantitative approach to combine sources in stable isotope mixing models

    EPA Science Inventory

    Stable isotope mixing models, used to estimate source contributions to a mixture, typically yield highly uncertain estimates when there are many sources and relatively few isotope elements. Previously, ecologists have either accepted the uncertain contribution estimates for indiv...

  14. Chapter 18 – Tracing of Weathering Reactions and Water Flowpaths: A Multi-isotope Approach

    USGS Publications Warehouse

    Bullen, Tomas D.; Kendall, Carol

    1998-01-01

    This chapter discusses the importance of using isotopes in a complementary manner, primarily to constrain and enrich models developed from hydrologic and chemical data. Isotopes are viewed as tools for testing rather than developing hypotheses, particularly in studies operating under tight budgetary constraints. Water isotopes are very useful tools for determining water sources in catchments. Chemical tracers are very useful for understanding the reactions along flowpaths. The potential application of Fe isotopes to catchment studies lies in the assumption that Fe mobilized inorganically from minerals under either reducing or low-pH conditions will have a different isotopic composition than microbially-reduced Fe. To the extent that certain zones or flowpaths in the catchment can be characterized by microbial cycling of labile Fe, the Fe isotopes may provide an effective tracer of contributions from these pathways. The solute isotopes, for example, strontium, carbon, and lead are as yet under-utilized in catchment research compared to the water isotopes.

  15. A quantitative approach to combine sources in stable isotope mixing models

    EPA Science Inventory

    Stable isotope mixing models, used to estimate source contributions to a mixture, typically yield highly uncertain estimates when there are many sources and relatively few isotope elements. Previously, ecologists have either accepted the uncertain contribution estimates for indiv...

  16. The oxygen-18 isotope approach for measuring aquatic metabolism in high-productivity waters

    USGS Publications Warehouse

    Tobias, C.R.; Böhlke, J.K.; Harvey, J.W.

    2007-01-01

    We examined the utility of ??18O2 measurements in estimating gross primary production (P), community respiration (R), and net metabolism (P:R) through diel cycles in a productive agricultural stream located in the midwestern U.S.A. Large diel swings in O2 (??200 ??mol L-1) were accompanied by large diel variation in ??18O2 (??10???). Simultaneous gas transfer measurements and laboratory-derived isotopic fractionation factors for O2 during respiration (??r) were used in conjunction with the diel monitoring of O2 and ??18O2 to calculate P, R, and P:R using three independent isotope-based methods. These estimates were compared to each other and against the traditional "open-channel diel O2-change" technique that lacked ??18O2. A principal advantage of the ??18O2 measurements was quantification of diel variation in R, which increased by up to 30% during the day, and the diel pattern in R was variable and not necessarily predictable from assumed temperature effects on R. The P, R, and P:R estimates calculated using the isotope-based approaches showed high sensitivity to the assumed system fractionation factor (??r). The optimum modeled ??r values (0.986-0.989) were roughly consistent with the laboratory-derived values, but larger (i.e., less fractionation) than ??r values typically reported for enzyme-limited respiration in open water environments. Because of large diel variation in O2, P:R could not be estimated by directly applying the typical steady-state solution to the O2 and 18O-O2 mass balance equations in the absence of gas transfer data. Instead, our results indicate that a modified steady-state solution (the daily mean value approach) could be used with time-averaged O2 and ??18O2 measurements to calculate P:R independent of gas transfer. This approach was applicable under specifically defined, net heterotrophic conditions. The diel cycle of increasing daytime R and decreasing nighttime R was only partially explained by temperature variation, but could be

  17. Estimating phreatic evaporation in irrigated areas using a stable isotope approach

    NASA Astrophysics Data System (ADS)

    Barthold, F. K.; Umirzakov, G.; Schneider, K.; Stulina, G.; Frede, H.; Breuer, L.

    2011-12-01

    Central Asia is characterized by continental arid climate conditions. Mean annual precipitation is 170 mm with a potential evapotranspiration rate of 1200 mm/a. In addition, many regions are affected by a non-sustainable use of the water resources. 90% of the water resources are used for irrigation purposes to grow e.g. cotton and wheat, especially in Uzbekistan. Large amounts of water are needed for cotton growth. Not only does the plant itself require large amounts of water but a substantial part of the water use is ascribed to the inefficient irrigation system and management. The irrigation infrastructure is old and not maintained well and irrigation management is inadequate. Groundwater level rise has been observed in irrigated areas as a result of the inefficient irrigation practices. Capillary raised groundwater is particularly prone to evaporation as it gets closer to the soil surface. The general objective of this study is to quantify the amount of groundwater (or phreatic) evaporation that is due to groundwater table rise on irrigated fields. In this study, we present an approach where we are using stable isotopes of water to estimate phreatic evaporation on irrigated fields. Our specific objective is to estimate phreatic evaporation (Ep) in relation to the groundwater level and varying soil types (sandy, loamy and clay loamy). We chose a stable water isotopes approach to estimate Ep. For this purpose, soil samples along a depth profile were sampled on sites with different groundwater levels and soil types. Samples were taken in 10 cm increments down to the groundwater level. Soil water was extracted using a cryogenic vacuum distillation and the extracted soil water was analyzed for its composition of stable water isotopes, δD and δ18O, using a Liquid Water Isotope Analyzer (Los Gatos Research, Inc.). Ep was calculated by fitting an exponential function to the experimental isotope soil profile. Our results show that in sandy and loamy soils, enrichment

  18. A Combined Stable Isotope And Machine Learning Approach To Quantify And Classify Of Nitrate Pollution Sources

    NASA Astrophysics Data System (ADS)

    Boeckx, P. F.; Xue, D.; De Baets, B.

    2011-12-01

    Stable isotope analyses of NO3- (δ15N and δ18O) are widely used to determine the sources of nitrate pollution in water. The objective of our study was (1) to quantify NO3- sources in surface water and to classify surface waters in NO3- pollution classes via a combined stable isotope and machine learning approach; and (2) to assess a decision tree model with physicochemical data for retrieving the latter classification. A logical approach has been followed: (1) 2-year monthly sampling of 30 sampling points from different river basins in Belgium, which were classified into 5 different NO3- pollution classes using experts knowledge (Agriculture (A), Agriculture with groundwater compensation (AGC), Combination of agriculture and horticulture (AH), Greenhouses in an agricultural area (G) and Households (H)); (2) estimating proportional NO3- source contribution per NO3- pollution class by applying a Bayesian isotopic mixing model (SIAR) for measured isotopic data of NO3-; (3) re-classifying the 30 sampling points into NO3- pollution classes via a k-means clustering of the SIAR outputs; and (4) building a decision tree model using physicochemical data to retrieve expert knowledge and k-means clustering classification. SIAR successfully estimated proportional contribution ranges of five potential NO3- sources: NO3- in precipitation, NO3- in fertilizer, NH4+ in fertilizer and precipitation, manure and sewage and soil N. For classes A, AGC, AH and H in winter manure and sewage were major (40 - 60%), NO3- in precipitation minor (< 10%), and the other three sources intermediate (10 - 30%) sources. For class G in winter manure and sewage was a dominant source (50%) and the other four sources contributed in an equal range (10 - 20%). The proportional source contributions shifted in summer. Manure and sewage was the dominant source (30 - 40%) for classes A and AH. For class G the source contributions of manure and sewage and NO3- in precipitation were dominant (30% each) and

  19. Ground-state properties of even and odd Magnesium isotopes in a symmetry-conserving approach

    NASA Astrophysics Data System (ADS)

    Borrajo, Marta; Egido, J. Luis

    2017-01-01

    We present a self-consistent theory for odd nuclei with exact blocking and particle number and angular momentum projection. The demanding treatment of the pairing correlations in a variation-after-projection approach as well as the explicit consideration of the triaxial deformation parameters in a projection after variation method, together with the use of the finite-range density-dependent Gogny force, provides an excellent tool for the description of odd-even and even-even nuclei. We apply the theory to the Magnesium isotopic chain and obtain an outstanding description of the ground-state properties, in particular binding energies, odd-even mass differences, mass radii and electromagnetic moments among others.

  20. Nitrogen loads to estuaries from waste water plumes: Modeling and isotopic approaches

    USGS Publications Warehouse

    Kroeger, K.D.; Cole, Marci L.; York, J.K.; Valiela, I.

    2006-01-01

    We developed, and applied in two sites, novel methods to measure ground water-borne nitrogen loads to receiving estuaries from plumes resulting from land disposal of waste water treatment plant (WWTP) effluent. In addition, we quantified nitrogen losses from WWTP effluent during transport through watersheds. WWTP load to receiving water was estimated as the difference between total measured ground water-transported nitrogen load and modeled load from major nitrogen sources other than the WWTP. To test estimated WWTP loads, we applied two additional methods. First, we quantified total annual waste water nitrogen load from watersheds based on nitrogen stable isotopic signatures of primary producers in receiving water. Second, we used published data on ground water nitrogen concentrations in an array of wells to estimate dimensions of the plume and quantify the annual mass of nitrogen transported within the plume. Loss of nitrogen during transport through the watershed was estimated as the difference between the annual mass of nitrogen applied to watersheds as treatment plant effluent and the estimated nitrogen load reaching receiving water. In one plume, we corroborated our estimated nitrogen loss in watersheds using data from multiple-level sampling wells to calculate the loss of nitrogen relative to a conservative tracer. The results suggest that nitrogen from the plumes is discharging to the estuaries but that substantial nitrogen loss occurs during transport through the watersheds. The measured vs. modeled and stable isotopic approaches, in comparison to the plume mapping approach, may more reliably quantify ground water-transported WWTP loads to estuaries. Copyright ?? 2005 National Ground Water Association.

  1. Conformational effect of dicyclo-hexano-18-crown-6 on isotopic fractionation of zinc: DFT approach

    SciTech Connect

    Boda, A.; Singha Deb, A. K.; Ali, Sk. M.; Shenoy, K. T.; Ghosh, S. K.

    2014-04-24

    Generalized gradient approximated BP86 density functional employing triple zeta valence plus polarization (TZVP) basis set has been used to compute the reduced partition function ratio and isotopic separation factor for zinc isotopes. The isotopic separation factor was found to be in good agreement with the experimental results. The isotopic separation factor was found to depend on the conformation of the crown ether ligand. The trans-trans conformation shows the highest fractionation compared to cis-cis conformer. The present theoretical results can thus be used to plan the isotope separation experiments.

  2. Dual-labeling with 5-aminolevulinic acid and fluorescein for fluorescence-guided resection of high-grade gliomas: technical note.

    PubMed

    Suero Molina, Eric; Wölfer, Johannes; Ewelt, Christian; Ehrhardt, André; Brokinkel, Benjamin; Stummer, Walter

    2017-03-24

    OBJECTIVE Fluorescence guidance with 5-aminolevulinic acid (5-ALA) helps improve resections of malignant gliomas. However, one limitation is the low intensity of blue light for background illumination. Fluorescein has recently been reintroduced into neurosurgery, and novel microscope systems are available for visualizing this fluorochrome, which highlights all perfused tissues but has limited selectivity for tumor detection. Here, the authors investigate a combination of both fluorochromes: 5-ALA for distinguishing tumor and fluorescein for providing tissue fluorescence of adjacent brain tissue. METHODS The authors evaluated 6 patients who harbored cerebral lesions suggestive of high-grade glioma. Patients received 5-ALA (20 mg/kg) orally 4 hours before induction of anesthesia. Low-dose fluorescein (3 mg/kg intravenous) was injected immediately after anesthesia induction. Pentero microscopes (equipped either with Yellow 560 or Blue 400 filters) were used to visualize fluorescence. To simultaneously visualize both fluorochromes, the Yellow 560 module was combined with external blue light illumination (D-light C System). RESULTS Fluorescein-induced fluorescence created a useful background for protoporphyrin IX (PPIX) fluorescence, which appeared orange to red, surrounded by greenly fluorescent normal brain and edematous tissue. Green brain-tissue fluorescence was helpful in augmenting background. Levels of blue illumination that were too strong obscured PPIX fluorescence. Unspecific extravasation of fluorescein was noted at resection margins, which did not interfere with PPIX fluorescence detection. CONCLUSIONS Dual labeling with both PPIX and fluorescein fluorescence is feasible and gives superior background information during fluorescence-guided resections. The authors believe that this technique carries potential as a next step in fluorescence-guided resections if it is completely integrated into the surgical microscope.

  3. A pore scale modeling approach to isotopic fractionation during reactive transport through porous media

    NASA Astrophysics Data System (ADS)

    Huber, C.; Druhan, J. L.; Parmigiani, A.; Shafei, B.; Maher, K.

    2013-12-01

    The stable isotope compositions of reactant and product species are commonly utilized in the analysis of biogeochemical cycling, contaminant remediation and paleo-proxy records. While novel analytical models for isotopic exchange during steady state mineral growth are poised to offer new insights into these fields, commonly encountered transient conditions such as variable saturation state, flow rate and porosity/permeability present a formidable challenge. The problem arises from the precipitation of new mineral that is isotopically variant normal to the plane of growth, reflecting the temporal evolution of the adjacent, supersaturated fluid (e.g. Pearce et al., 2012; Druhan et al., 2013). Reactive transport models intended to describe isotopic exchange between the fluid and mineral surface then incur error through the use of a bulk mineral isotopic ratio rather than tracking a spatially variable isotopic composition within the solid. Here we present a novel multi-species, pore-scale reactive transport code based on the lattice Boltzmann method (LBM) capable of simulating the individual isotopes of calcium during fractionating, kinetically controlled precipitation of calcite from a supersaturated, flowing fluid. The isotopic composition of the mineral surface in contact with the advecting fluid is tracked through time by computing the averaged isotopic composition of the solid fraction over small solid volume fraction bins. This method allows us to model isotopic composition zoning at a scale smaller than that of the computational grid, thus effectively distinguishing the isotopic ratio of the mineral surface in contact with the fluid from the remainder of the solid phase. Druhan, J.L.; Steefel, C.I.; Williams, K.H.; DePaolo, D.J. (2013) Calcium isotope fractionation in groundwater: Molecular scale processes influencing field scale behavior. Geochim. Cosmochim. Acta., in press. Pearce, C.R.; Saldi, G.D.; Schott, J.; Oelkers, E.H. (2012) Isotopic fractionation

  4. Ecophysiological responses of trees to long- term N deposition: a multi isotopes approach

    NASA Astrophysics Data System (ADS)

    Battipaglia, G.; Lubritto, C.; Altieri, S.; Marzaioli, F.; Cherubini, P.; Cotrufo, M. F.

    2009-04-01

    Anthropogenic emissions of nitrogen compounds, principally derived from the burning of fossil fuels, have lead to regional changes in atmospheric and precipitation chemistry. The fate and environmental consequences of these changes on ecosystems functions and on forest growth has attracted considerable research. The d15N measurements have been used successfully for detecting changes in N deposition and incorporation of atmospheric N into leaves (Siegwolf et al,2001) and tree rings (Poulson et al.,1995; Saurer et al.,2004, Guerrieri et al.2009). We show main results arising from a study of mature Pinus pinea individuals exposed to large amount of traffic exhaust for 20 years. Specifically, we examined the time-related trend in the growth residuals through dendrochronological analysis and C and N isotopes. A consistent decrease in the ring width starting from 1980 with a slight increase in δ13C value has been found as a consequence of environmental stress event. More over the effect of the fossil source 14C dilution on the atmospheric bomb enriched background has been detected in tree rings over the last decades, as a consequence of the increase in uptaking of traffic exhaust. The great variability in δ15N values of tree rings with time underlines the difficulties we encountered in using N as an environmental tool and open new questions and research avenues. Guerrieri M.R., Siegwolf R.T.W., Saurer M., Jäggi M., Cherubini., Ripullone F., Borghetti M., (2009)"Impact of different nitrogen emission sources on tree physiology as assessed by a triple stable isotope approach" Atmospheric Environment 43:410-418 Pearson J., Wellis D.M., Seller K.J., Bennet A., Soares A., Woodall J., Ingroulle M.J. (2000). Traffic exposure increases natural 15N and heavy metal concentrations in mosses. New Phytologist 147: 317-326. Siegwolf R.T.W., Matyssek R., Saurer M., Maurer S., Günthardt-Georg M.S., Schmutz P. and Bucher J.B. "Stable isotope analysis reveals differential effects of

  5. Identifying diffused nitrate sources in a stream in an agricultural field using a dual isotopic approach.

    PubMed

    Ding, Jingtao; Xi, Beidou; Gao, Rutai; He, Liansheng; Liu, Hongliang; Dai, Xuanli; Yu, Yijun

    2014-06-15

    Nitrate (NO3(-)) pollution is a severe problem in aquatic systems in Taihu Lake Basin in China. A dual isotope approach (δ(15)NNO3(-) and δ(18)ONO3(-)) was applied to identify diffused NO3(-) inputs in a stream in an agricultural field at the basin in 2013. The site-specific isotopic characteristics of five NO3(-) sources (atmospheric deposition, AD; NO3(-) derived from soil organic matter nitrification, NS; NO3(-) derived from chemical fertilizer nitrification, NF; groundwater, GW; and manure and sewage, M&S) were identified. NO3(-) concentrations in the stream during the rainy season [mean±standard deviation (SD)=2.5±0.4mg/L] were lower than those during the dry season (mean±SD=4.0±0.5mg/L), whereas the δ(18)ONO3(-) values during the rainy season (mean±SD=+12.3±3.6‰) were higher than those during the dry season (mean±SD=+0.9±1.9‰). Both chemical and isotopic characteristics indicated that mixing with atmospheric NO3(-) resulted in the high δ(18)O values during the rainy season, whereas NS and M&S were the dominant NO3(-) sources during the dry season. A Bayesian model was used to determine the contribution of each NO3(-) source to total stream NO3(-). Results showed that reduced N nitrification in soil zones (including soil organic matter and fertilizer) was the main NO3(-) source throughout the year. M&S contributed more NO3(-) during the dry season (22.4%) than during the rainy season (17.8%). AD generated substantial amounts of NO3(-) in May (18.4%), June (29.8%), and July (24.5%). With the assessment of temporal variation of diffused NO3(-) sources in agricultural field, improved agricultural management practices can be implemented to protect the water resource and avoid further water quality deterioration in Taihu Lake Basin.

  6. Phosphoprotein Isotope-Coded Solid-Phase Tag Approach for Enrichment and Quantitative Analysis of Phosphopeptides from Complex Mixtures

    SciTech Connect

    Qian, Weijun ); Goshe, Michael B.; Camp, David G. ); Yu, Li-Rong ); Tang, Keqi ); Smith, Richard D. )

    2003-10-15

    Many cellular processes are regulated by reversible protein phosphorylation and the ability to identify and quantify phosphoproteins from proteomes is essential for gaining a better understanding of these dynamic cellular processes. However, a sensitive, efficient and global method capable of addressing the phosphoproteome has yet to be developed. Here we describe an improved stable-isotope labeling method using a Phosphoprotein Isotope-coded Solid-phase Tag (PhIST) for isolating and measuring the relative abundance of phosphorylated peptides from complex peptide mixtures resulting from the enzymatic digestion of extracted proteins. The PhIST approach is an extension of the previously reported Phosphoprotein Isotope-coded Affinity Tag (PhIAT)approach developed by our laboratory1-2, where the O-phosphate moiety on phosphoseryl or phosphothreonyl residues were derivatized by hydroxide ion-medated B-elimination followed by the addition of 1,2-ethanedithiol (EDT). Instead of using the biotin affinity tag, peptides containing the EDT moiety were captured and labeled in one step using isotope-coded solid-phase reagents containing either light (12C6, 14N) or heavy (13C6, 15N) stable isotopes. The captured peptides labeled with the isotope-coded tags were released from the solid-phase support by UV photocleavage and analyzed by capillary LC-MS/MS. The efficiency and sensitivity of the PhIST labeling approach for identification of phosphopeptides from mixtures was demonstrated using casein phosphoproteins. Its utility for proteomic applications is demonstrated by the labeling of soluble proteins from human breast cancer cell line.

  7. Novel Approach for High-Throughput Metabolic Screening of Whole Plants by Stable Isotopes

    PubMed Central

    Beckers, Veronique; Kiep, Katina; Becker, Horst; Bläsing, Oliver Ernst; Fuchs, Regine

    2016-01-01

    Here, we demonstrate whole-plant metabolic profiling by stable isotope labeling and combustion isotope-ratio mass spectrometry for precise quantification of assimilation, translocation, and molecular reallocation of 13CO2 and 15NH4NO3. The technology was applied to rice (Oryza sativa) plants at different growth stages. For adult plants, 13CO2 labeling revealed enhanced carbon assimilation of the flag leaf from flowering to late grain-filling stage, linked to efficient translocation into the panicle. Simultaneous 13CO2 and 15NH4NO3 labeling with hydroponically grown seedlings was used to quantify the relative distribution of carbon and nitrogen. Two hours after labeling, assimilated carbon was mainly retained in the shoot (69%), whereas 7% entered the root and 24% was respired. Nitrogen, taken up via the root, was largely translocated into the shoot (85%). Salt-stressed seedlings showed decreased uptake and translocation of nitrogen (69%), whereas carbon metabolism was unaffected. Coupled to a gas chromatograph, labeling analysis provided enrichment of proteinogenic amino acids. This revealed significant protein synthesis in the panicle of adult plants, whereas protein biosynthesis in adult leaves was 8-fold lower than that in seedling shoots. Generally, amino acid enrichment was similar among biosynthetic families and allowed us to infer labeling dynamics of their precursors. On this basis, early and strong 13C enrichment of Embden-Meyerhof-Parnas pathway and pentose phosphate pathway intermediates indicated high activity of these routes. Applied to mode-of-action analysis of herbicides, the approach showed severe disturbance in the synthesis of branched-chain amino acids upon treatment with imazapyr. The established technology displays a breakthrough for quantitative high-throughput plant metabolic phenotyping. PMID:26966172

  8. Novel Approach for High-Throughput Metabolic Screening of Whole Plants by Stable Isotopes.

    PubMed

    Dersch, Lisa Maria; Beckers, Veronique; Rasch, Detlev; Melzer, Guido; Bolten, Christoph; Kiep, Katina; Becker, Horst; Bläsing, Oliver Ernst; Fuchs, Regine; Ehrhardt, Thomas; Wittmann, Christoph

    2016-05-01

    Here, we demonstrate whole-plant metabolic profiling by stable isotope labeling and combustion isotope-ratio mass spectrometry for precise quantification of assimilation, translocation, and molecular reallocation of (13)CO2 and (15)NH4NO3 The technology was applied to rice (Oryza sativa) plants at different growth stages. For adult plants, (13)CO2 labeling revealed enhanced carbon assimilation of the flag leaf from flowering to late grain-filling stage, linked to efficient translocation into the panicle. Simultaneous (13)CO2 and (15)NH4NO3 labeling with hydroponically grown seedlings was used to quantify the relative distribution of carbon and nitrogen. Two hours after labeling, assimilated carbon was mainly retained in the shoot (69%), whereas 7% entered the root and 24% was respired. Nitrogen, taken up via the root, was largely translocated into the shoot (85%). Salt-stressed seedlings showed decreased uptake and translocation of nitrogen (69%), whereas carbon metabolism was unaffected. Coupled to a gas chromatograph, labeling analysis provided enrichment of proteinogenic amino acids. This revealed significant protein synthesis in the panicle of adult plants, whereas protein biosynthesis in adult leaves was 8-fold lower than that in seedling shoots. Generally, amino acid enrichment was similar among biosynthetic families and allowed us to infer labeling dynamics of their precursors. On this basis, early and strong (13)C enrichment of Embden-Meyerhof-Parnas pathway and pentose phosphate pathway intermediates indicated high activity of these routes. Applied to mode-of-action analysis of herbicides, the approach showed severe disturbance in the synthesis of branched-chain amino acids upon treatment with imazapyr. The established technology displays a breakthrough for quantitative high-throughput plant metabolic phenotyping. © 2016 American Society of Plant Biologists. All Rights Reserved.

  9. A stable isotope approach and its application for identifying nitrate source and transformation process in water.

    PubMed

    Xu, Shiguo; Kang, Pingping; Sun, Ya

    2016-01-01

    Nitrate contamination of water is a worldwide environmental problem. Recent studies have demonstrated that the nitrogen (N) and oxygen (O) isotopes of nitrate (NO3(-)) can be used to trace nitrogen dynamics including identifying nitrate sources and nitrogen transformation processes. This paper analyzes the current state of identifying nitrate sources and nitrogen transformation processes using N and O isotopes of nitrate. With regard to nitrate sources, δ(15)N-NO3(-) and δ(18)O-NO3(-) values typically vary between sources, allowing the sources to be isotopically fingerprinted. δ(15)N-NO3(-) is often effective at tracing NO(-)3 sources from areas with different land use. δ(18)O-NO3(-) is more useful to identify NO3(-) from atmospheric sources. Isotopic data can be combined with statistical mixing models to quantify the relative contributions of NO3(-) from multiple delineated sources. With regard to N transformation processes, N and O isotopes of nitrate can be used to decipher the degree of nitrogen transformation by such processes as nitrification, assimilation, and denitrification. In some cases, however, isotopic fractionation may alter the isotopic fingerprint associated with the delineated NO3(-) source(s). This problem may be addressed by combining the N and O isotopic data with other types of, including the concentration of selected conservative elements, e.g., chloride (Cl(-)), boron isotope (δ(11)B), and sulfur isotope (δ(35)S) data. Future studies should focus on improving stable isotope mixing models and furthering our understanding of isotopic fractionation by conducting laboratory and field experiments in different environments.

  10. Value Assignment of Isotopic Reference Materials - Approaches, Pitfalls and Workarounds based on Experiences from the Avogadro Project

    NASA Astrophysics Data System (ADS)

    Vocke, R.; Rabb, S.; Mann, J.

    2012-04-01

    Isotope ratio measurements and their application to the natural world have undergone profound changes in the past decade. These changes have arisen due to improvements in measurement precision by modern multi-collector instrumentation and also the maturation of powerful ionization sources, specifically those employing inductively coupled plasma (ICP) torches. The latter development has made the entire periodic table a fertile hunting ground for small but significant natural isotopic variations produced by new and novel processes as well as the older and well studied mechanisms. Unfortunately, Isotopic Reference Material (IRM) production by National Metrology Institutes (NMI) has not kept up this these advances. This has necessitated the production and value assignment of working IRMs by the researchers pioneering these advances. This sort of distribution and characterization system leads to problems with long-term availability to the research community as the pioneers move onto other elements and isotopic systems, losing interest in the "old" when tempted by "new" and therefore fundable research opportunities. Furthermore, most value assignments of such IRMs are based on "best measurements" by the original groups and thus represent mass discrimination dependent models of the materials' isotopic signature, a situation that often leads to a proliferation of different values depending on research group or philosophy, a highly confusing and potentially non-constructive situation! We have been working closely with other NMIs (PTB, NRC and NIM) to produce accurate molar mass determinations of the highly pure 28Si being used in the Avogadro Project (an international effort to replace the original kilogram artifact with a procedure and measurement protocol that any technologically advanced nation can use to realize this fundamental SI unit). The basis for the approach was conceived and developed at the PTB (e.g. [1]). Its applicability to accurate and non

  11. A proteomic approach for quantitation of phosphorylation using stable isotope labeling in cell culture.

    PubMed

    Ibarrola, Nieves; Kalume, Dario E; Gronborg, Mads; Iwahori, Akiko; Pandey, Akhilesh

    2003-11-15

    Posttranslational modifications are major mechanisms of regulating protein activity and function in vertebrate cells. It is essential to obtain qualitative information about posttranslational modification patterns of proteins to understand signal transduction mechanisms in greater detail. However, it is equally important to measure the dynamics of posttranslational modifications such as phosphorylation to approach signaling networks from a systems biology perspective. Despite a number of advances, methods to quantitate posttranslational modifications remain difficult to implement due to a number of factors including lack of a generic method, elaborate chemical steps, and requirement for large amounts of sample. We have previously shown that stable isotope-containing amino acids in cell culture (SILAC) can be used to differentially label growing cell populations for quantitation of protein levels. In this report, we extend the use of SILAC as a novel proteomic approach for the relative quantitation of posttranslational modifications such as phosphorylation. We have used SILAC to quantitate the extent of known phosphorylation sites as well as to identify and quantitate novel phosphorylation sites.

  12. Equilibrium Tin Isotope Fractionation during Metal-Sulfide-Silicate Differentiation: A Nuclear Resonant Inelastic X-ray Scattering Approach

    NASA Astrophysics Data System (ADS)

    Roskosz, M.; Amet, Q.; Fitoussi, C.; Laporte, D.; Hu, M. Y.; Alp, E. E.

    2016-12-01

    Metal-silicate differentiation was recently addressed through the insight of the isotopic composition of siderophile elements (mainly Fe, Si and Cr isotopes) of planetary and extraterrestrial bodies. A key limitation of this approach is however the knowledge of equilibrium fractionation factors between coexisting phases (metal alloys, silicates and sulfides) used to interpret data on natural samples. These properties are difficult to determine experimentally. In this context, tin is generally classified as a chalcophile element but it is also siderophile and volatile. We applied a synchrotron-based method to circumvent difficulties related to determination of equilibrium isotope fractionation. The nuclear resonant inelastic x-ray scattering (NRIXS) was used to measure the phonon excitation spectrum and then to derive the force constant and finally the fractionation factors of Sn-bearing geomaterials. Spectroscopic measurements were carried out at room pressure at Sector 30-ID (APS, USA). A range of Fe-Ni alloys, rhyolitic and basaltic glasses and iron sulfides containing isotopically enriched 119Sn were synthesized. The tin content and the redox conditions prevailing during the synthesis were varied. The data evaluation was carried out using PHOENIX and SciPhon programs. A strong effect of both the redox state and the tin content was measured. In addition, the composition of the silicate glasses was found to be another important factor determining the tin isotope metal-silicate-sulfide fractionation factors. Our results are consistent with trends previously observed in the case of iron isotopes [1,2]. We will discuss the implications of our experimental results in terms of tin isotope planetary signatures. References: [1] Dauphas et al. (2014), EPSL, 398, 127-140; [2] Roskosz et al. (2015), GCA, 169, 184-199.

  13. Determination of the origin of groundwater nitrate at an air weapons range using the dual isotope approach.

    PubMed

    Bordeleau, Geneviève; Savard, Martine M; Martel, Richard; Ampleman, Guy; Thiboutot, Sonia

    2008-06-06

    Nitrate is one of the most common contaminants in shallow groundwater, and many sources may contribute to the nitrate load within an aquifer. Groundwater nitrate plumes have been detected at several ammunition production sites. However, the presence of multiple potential sources and the lack of existing isotopic data concerning explosive degradation-induced nitrate constitute a limitation when it comes to linking both types of contaminants. On military training ranges, high nitrate concentrations in groundwater were reported for the first time as part of the hydrogeological characterization of the Cold Lake Air Weapons Range (CLAWR), Alberta, Canada. Explosives degradation is thought to be the main source of nitrate contamination at CLAWR, as no other major source is present. Isotopic analyses of N and O in nitrate were performed on groundwater samples from the unconfined and confined aquifers; the dual isotopic analysis approach was used in order to increase the chances of identifying the source of nitrate. The isotopic ratios for the groundwater samples with low nitrate concentration suggested a natural origin with a strong contribution of anthropogenic atmospheric NOx. For the samples with nitrate concentration above the expected background level the isotopic ratios did not correspond to any source documented in the literature. Dissolved RDX samples were degraded in the laboratory and results showed that all reproduced degradation processes released nitrate with a strong fractionation. Laboratory isotopic values for RDX-derived NO(3)(-) produced a trend of high delta(18)O-low delta(15)N to low delta(18)O-high delta(15)N, and groundwater samples with nitrate concentrations above the expected background level appeared along this trend. Our results thus point toward a characteristic field of isotopic ratios for nitrate being derived from the degradation of RDX.

  14. Quantifying groundwater dependence of a sub-polar lake cluster in Finland using an isotope mass balance approach

    NASA Astrophysics Data System (ADS)

    Isokangas, E.; Rozanski, K.; Rossi, P. M.; Ronkanen, A.-K.; Kløve, B.

    2015-03-01

    A stable isotope study of 67 kettle lakes and ponds situated on an esker aquifer (90 km2) in northern Finland was carried out to determine the role and extent of groundwater inflow in groundwater-dependent lakes. Distinct seasonal fluctuations in the δ18O and δ2H values of lakes are the result of seasonal ice cover prohibiting evaporation during the winter. An iterative isotope mass balance approach was used to calculate the inflow-to-evaporation ratios (ITOT/E) of all 67 lakes during the summer of 2013 when the isotopic compositions of the lakes were approaching a steady-state. The balance calculations were carried out independently for 2H and 18O data. Since evaporation rates were derived independently of any mass balance considerations, it was possible to determine the total inflow (ITOT) and mean turnover time (MTT) of the lakes. Furthermore, the groundwater seepage rates to all studied lakes were calculated. A quantitative measure was introduced for the dependence of a lake on groundwater (G index) that is defined as the percentage contribution of groundwater inflow to the total inflow of water to the given lake. The G index values of the lakes studied ranged from ca. 39 to 98%, revealing generally large groundwater dependency among the studied lakes. This study shows the effectiveness of applying an isotope mass balance approach to quantify the groundwater reliance of lakes situated in a relatively small area with similar climatic conditions.

  15. The origin of the band at around 730 cm(-1) in the SERS spectra of bacteria: a stable isotope approach.

    PubMed

    Kubryk, Patrick; Niessner, Reinhard; Ivleva, Natalia P

    2016-05-10

    Raman microspectroscopy is an emerging tool to analyze the molecular and isotopic composition of single microbial cells. It can be used to achieve an in situ understanding of metabolic processes. Due to the low sensitivity of the Raman effect, surface-enhanced Raman scattering (SERS) is utilized to enhance the Raman signal. The SERS spectra of bacteria are usually characterized by a pronounced band at around 730 cm(-1), which is assigned to glycosidic ring vibrations or to adenine or even to CH2 deformation in different studies. In order to clarify the origin of this band, we employed a stable isotope approach and performed a SERS analysis of Escherichia coli bacteria using in situ prepared Ag nanoparticles. The cells were grown on unlabeled ((12)C, (14)N) and labeled ((13)C, (15)N) carbon and nitrogen sources in different combinations. The SERS band of the stable isotope labeled microorganisms showed a characteristic red-shift in the SERS spectra, which solely depends on the isotopic composition. It was therefore possible to confidently assign this band to adenine-related compounds. Furthermore, by utilizing the fingerprint area of single-cell SERS spectra as the input for the principal component analysis, one can clearly differentiate between E. coli bacteria incorporating different stable isotopes.

  16. Nitrate source apportionment using a combined dual isotope, chemical and bacterial property, and Bayesian model approach in river systems

    NASA Astrophysics Data System (ADS)

    Xia, Yongqiu; Li, Yuefei; Zhang, Xinyu; Yan, Xiaoyuan

    2017-01-01

    Nitrate (NO3-) pollution is a serious problem worldwide, particularly in countries with intensive agricultural and population activities. Previous studies have used δ15N-NO3- and δ18O-NO3- to determine the NO3- sources in rivers. However, this approach is subject to substantial uncertainties and limitations because of the numerous NO3- sources, the wide isotopic ranges, and the existing isotopic fractionations. In this study, we outline a combined procedure for improving the determination of NO3- sources in a paddy agriculture-urban gradient watershed in eastern China. First, the main sources of NO3- in the Qinhuai River were examined by the dual-isotope biplot approach, in which we narrowed the isotope ranges using site-specific isotopic results. Next, the bacterial groups and chemical properties of the river water were analyzed to verify these sources. Finally, we introduced a Bayesian model to apportion the spatiotemporal variations of the NO3- sources. Denitrification was first incorporated into the Bayesian model because denitrification plays an important role in the nitrogen pathway. The results showed that fertilizer contributed large amounts of NO3- to the surface water in traditional agricultural regions, whereas manure effluents were the dominant NO3- source in intensified agricultural regions, especially during the wet seasons. Sewage effluents were important in all three land uses and exhibited great differences between the dry season and the wet season. This combined analysis quantitatively delineates the proportion of NO3- sources from paddy agriculture to urban river water for both dry and wet seasons and incorporates isotopic fractionation and uncertainties in the source compositions.

  17. Quantifying groundwater dependence of a sub-polar lake cluster in Finland using an isotope mass balance approach

    NASA Astrophysics Data System (ADS)

    Isokangas, E.; Rozanski, K.; Rossi, P. M.; Ronkanen, A.-K.; Kløve, B.

    2014-08-01

    A stable isotope study of 67 kettle lakes and ponds situated on an esker aquifer (90 km2) in northern Finland was carried out in the summer of 2013 to determine the role of groundwater inflow in groundwater-dependent lakes. Distinct seasonal fluctuations in the δ18O and δ2H values of lakes are the result of seasonal ice cover prohibiting evaporation during the winter. An isotope mass balance approach was used to calculate the inflow-to-evaporation ratios (ITOT/E) of all 67 lakes during the summer of 2013 when the isotopic compositions of the lakes were approaching a steady-state. The normalised relative humidity needed in this approach came from assuming a terminal lake situation for one of the lakes showing the highest isotope enrichment. Since evaporation rates were derived independently of any mass balance considerations, it was possible to determine the total inflow (ITOT) and mean turnover time (MTT) of the lakes. Furthermore, the groundwater seepage rates of those lakes revealing no visible surface inflow were calculated. Here, a quantitative measure was introduced for the dependence of a lake on groundwater (G index) that is defined as the percentage contribution of groundwater inflow to the total inflow of water to the given lake. The G index values of the lakes studied ranged from 27.8-95.0%, revealing large differences in groundwater dependency among the lakes. This study shows the effectiveness of applying an isotope mass balance approach to quantify the groundwater reliance of lakes situated in a relatively small area with similar climatic conditions.

  18. High precision Lu and Hf isotope analyses of both spiked and unspiked samples: A new approach

    NASA Astrophysics Data System (ADS)

    Lapen, Thomas J.; Mahlen, Nancy J.; Johnson, Clark M.; Beard, Brian L.

    2004-01-01

    The functional form of instrumentally produced mass fractionation associated with MC-ICP-MS analysis is not accurately known and therefore cannot be fully corrected by traditional approaches of internal normalization using power, linear, or exponential mass-bias laws. We present a method for robust correction of instrumentally produced mass-fractionation of both spiked and unspiked samples that can be applied to mass analysis of Hf as well as Nd, Sr, Os, etc. Correction of 176Hf/177Hf for unspiked samples follows a traditional approach of internal normalization using an exponential law, followed by normalization to a standard of known composition, such as JMC-475. For spiked samples, standards are used to characterize a linear instrumental mass-bias coefficient; the mass-bias coefficient is defined by the slope of a tie-line between measured and true values of a standard. This approximation results in identical precision and accuracy of measurements for spiked and unspiked samples (±0.005% 2σ, external reproducibility). The effects of the spike on the 176Hf/177Hf ratio and calculation of the molar spike-sample ratio is determined by a closed-form solution modified from the double-spike approach used for Fe isotope analysis by TIMS [Johnson and Beard, 1999]. The measured 176Lu/175Lu ratios are corrected by doping the sample with Er and using the 167Er/166Er ratio to externally normalize the 176Lu/175Lu ratio using an exponential law. Finally, spike-sample equilibration is confirmed for our sample dissolution protocol through analysis of varying physical mixtures of 1 Ga garnet and hornblende, where all the data lie on a mixing-line, within error, on a 176Lu/177Hf-176Hf/177Hf diagram. Precision of 176Lu/177Hf ratios is determined to be ±0.2% (2σ) for standards and for physical mixtures of garnet and hornblende.

  19. Nekton migration and feeding location in a coastal area - A stable isotope approach

    NASA Astrophysics Data System (ADS)

    Vinagre, C.; Máguas, C.; Cabral, H. N.; Costa, M. J.

    2011-03-01

    Stable isotope analysis was used to investigate nekton movements and feeding location in a coastal area adjacent to a major European river, the Tagus, Portugal. Particulate organic matter isotopic signatures presented a gradient from the river towards the sea. Phytoplankton, zooplankton, polychaetes and the crab, Polybius henslowii, provided evidence of the incorporation of terrestrial organic matter into the lower levels of the food web, reflecting local isotopic signatures. Two fish species reflected the coastal isotopic gradient in δ13C, Diplodus vulgaris and Arnoglossus imperialis and the latter also presented isotopic differerences among the sites for δ15N. Alloteuthis subulata, Trisopterus luscus and Callionymus lyra were isotopicaly distinct among sites for δ15N. An increase of δ15N with length was detected for T. luscus and C. lyra, possibly showing ontogenic trophic level changes. Since A. subulata did not present differences in length and still showed isotopic distinction for δ15N, among areas, it was concluded that local biogeochemical factors may also have an influence. Diplodus bellottii and Dicologlossa cuneata did not reflect any isotopic signature reflecting their wide migration and feeding across the coastal area. Central isotopic ranges, defined as the site mean values for δ13C and δ15N ± 1‰ were determined for each species and site and those deviating from these were considered transient individuals. Central isotopic ranges accounted for 87% of A. imperialis, 80% of A. subulata, 77% of T. luscus, 67% of C. lyra and 50% of D. vulgaris. The number of individuals within each central isotopic range was surprisingly high for an open coastal area and comparable to those of more structured environments.

  20. Palaeoclimate signal recorded by stable isotopes in cave ice: a modeling approach

    NASA Astrophysics Data System (ADS)

    Perşoiu, A.; Bojar, A.-V.

    2012-04-01

    Ice accumulations in caves preserve a large variety of geochemical information as candidate proxies for both past climate and environmental changes, one of the most significant being the stable isotopic composition of the ice. A series of recent studies have targeted oxygen and hydrogen stable isotopes in cave ice as proxies for past air temperatures, but the results are far from being as straightforward as they are in high latitude and altitude glaciers and ice caps. The main problems emerging from these studies are related to the mechanisms of cave ice formation (i.e., freezing of water) and post-formation processes (melting and refreezing), which both alter the original isotopic signal in water. Different methods have been put forward to solve these issues and a fair understanding of the present-day link between stable isotopes in precipitation and cave ice exists now. However, the main issues still lays unsolved: 1) is it possible to extend this link to older ice and thus reconstruct past changes in air temperature?; 2) to what extent are ice dynamics processes modifying the original climatic signal and 3) what is the best method to be used in extracting a climatic signal from stable isotopes in cave ice? To respond to these questions, we have conducted a modeling experiment, in which a theoretical cave ice stable isotope record was constructed using present-day observations on stable isotope behavior in cave ice and ice dynamics, and different methods (presently used for both polar and cave glaciers), were used to reconstruct the original, known, isotopic values. Our results show that it is possible to remove the effects of ice melting and refreezing on stable isotope composition of cave ice, and thus reconstruct the original isotopic signal, and further the climatic one.

  1. An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses-Isotopic Composition Predictions

    SciTech Connect

    Radulescu, Georgeta; Gauld, Ian C; Ilas, Germina; Wagner, John C

    2011-01-01

    The expanded use of burnup credit in the United States (U.S.) for storage and transport casks, particularly in the acceptance of credit for fission products, has been constrained by the availability of experimental fission product data to support code validation. The U.S. Nuclear Regulatory Commission (NRC) staff has noted that the rationale for restricting the Interim Staff Guidance on burnup credit for storage and transportation casks (ISG-8) to actinide-only is based largely on the lack of clear, definitive experiments that can be used to estimate the bias and uncertainty for computational analyses associated with using burnup credit. To address the issues of burnup credit criticality validation, the NRC initiated a project with the Oak Ridge National Laboratory to (1) develop and establish a technically sound validation approach for commercial spent nuclear fuel (SNF) criticality safety evaluations based on best-available data and methods and (2) apply the approach for representative SNF storage and transport configurations/conditions to demonstrate its usage and applicability, as well as to provide reference bias results. The purpose of this paper is to describe the isotopic composition (depletion) validation approach and resulting observations and recommendations. Validation of the criticality calculations is addressed in a companion paper at this conference. For isotopic composition validation, the approach is to determine burnup-dependent bias and uncertainty in the effective neutron multiplication factor (keff) due to bias and uncertainty in isotopic predictions, via comparisons of isotopic composition predictions (calculated) and measured isotopic compositions from destructive radiochemical assay utilizing as much assay data as is available, and a best-estimate Monte Carlo based method. This paper (1) provides a detailed description of the burnup credit isotopic validation approach and its technical bases, (2) describes the application of the approach for

  2. Carbon isotope discrimination during branch photosynthesis of Fagus sylvatica: a Bayesian modelling approach.

    PubMed

    Gentsch, Lydia; Hammerle, Albin; Sturm, Patrick; Ogée, Jérôme; Wingate, Lisa; Siegwolf, Rolf; Plüss, Peter; Baur, Thomas; Buchmann, Nina; Knohl, Alexander

    2014-07-01

    Field measurements of photosynthetic carbon isotope discrimination ((13)Δ) of Fagus sylvatica, conducted with branch bags and laser spectrometry, revealed a high variability of (13)Δ, both on diurnal and day-to-day timescales. We tested the prediction capability of three versions of a commonly used model for (13)Δ [called here comprehensive ((13)(Δcomp)), simplified ((13) Δsimple) and revised ((13)(Δrevised)) versions]. A Bayesian approach was used to calibrate major model parameters. Constrained estimates were found for the fractionation during CO(2) fixation in (13)(Δcomp), but not in (13)(Δsimple), and partially for the mesophyll conductance for CO(2)(gi). No constrained estimates were found for fractionations during mitochondrial and photorespiration, and for a diurnally variable apparent fractionation between current assimilates and mitochondrial respiration, specific to (13)(Δrevised). A quantification of parameter estimation uncertainties and interdependencies further helped explore model structure and behaviour. We found that (13)(Δcomp) usually outperformed (13)(Δsimple) because of the explicit consideration of gi and the photorespiratory fractionation in (13)(Δcomp) that enabled a better description of the large observed diurnal variation (≈9‰) of (13)Δ. Flux-weighted daily means of (13)Δ were also better predicted with (13)(Δcomp) than with (13)(Δsimple).

  3. An isotopic dilution approach for 1,3-butadiene tailpipe emissions and ambient air monitoring.

    PubMed

    Riservato, Manuela; Rolla, Antonio; Davoli, Enrico

    2004-01-01

    An isotopic dilution approach for 1,3-butadiene analysis in gaseous samples is presented. The methodology is based on active sampling on sorbent tubes and subsequent analysis by thermal desorption into a gas chromatography/mass spectrometry system. By adding a perdeuterated internal standard onto the sorbent tubes before sampling, and using mass spectrometric detection, the methodology gives high accuracy for this unstable analyte. The method has been used to monitor 1,3-butadiene ambient air concentrations in a residential area in proximity to a heavy-traffic roadway over a one-week period, for comparison with other traffic-related pollutants analysed by standard procedures. It has also been used to determine tailpipe emissions of two vehicles by standard emission testing procedures in a dynamometer. These vehicles were chosen as examples of low- and high-end emission rate vehicles, i.e., an old no-catalytic converter Otto engine and a new direct-injection diesel engine with catalytic converter. Exhaust gas emissions were 0.052 and 35.85 mg/km, reflecting differences in fuel, engine design, age, and presence (or not) of a catalytic abatement system. The ambient air results showed a weekly average concentration of 1,3-butadiene of 0.53 microg/m(3).

  4. Source apportionment of methane using a triple isotope approach - Method development and application in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Steinbach, Julia; Holmstrand, Henry; Semiletov, Igor; Shakhova, Natalia; Shcherbakova, Kseniia; Kosmach, Denis; Sapart, Célia J.; Gustafsson, Örjan

    2015-04-01

    We present a method for measurements of the stable and radiocarbon isotope systems of methane in seawater and sediments. The triple isotope characterization of methane is useful in distinguishing different sources and for improving our understanding of biogeochemical processes affecting methane in the water column. D14C-CH4 is an especially powerful addition to stable isotope analyses in distinguishing between thermogenic and biogenic origins of the methane. Such measurements require large sample sizes, due to low natural abundance of the radiocarbon in CH4. Our system for sample collection, methane extraction and purification builds on the approach by Kessler and Reeburgh (Limn. & Ocean. Meth., 2005). An in-field system extracts methane from 30 -120 l water or 1-2 l sediment (depending on the in-situ methane concentration) by purging the samples with Helium to transfer the dissolved methane to the headspace and circulating it through cryogenically cooled absorbent traps where methane is collected. The in-field preparation eliminates the risks of storage and transport of large seawater quantities and subsequent leakage of sample gas as well as ongoing microbial processes and chemical reactions that may alter the sample composition. In the subsequent shore-based treatment, a laboratory system is used to purify and combust the collected CH4 to AMS-amenable CO2. Subsamples from the methane traps are analyzed for stable isotopes and compared to stable isotope measurements directly measured from small water samples taken in parallel, to correct for any potential fractionation occurring during this process. The system has been successfully tested and used on several shorter shipboard expeditions in the Baltic Sea and on a long summer expedition across the Arctic Ocean. Here we present the details of the method and testing, as well as first triple isotope field data from two cruises to the Landsort Deep area in the Central Baltic Sea.

  5. Development of a combined isotopic and mass-balance approach to determine dissolved organic carbon sources in eutrophic reservoirs.

    PubMed

    Pierson-Wickmann, Anne-Catherine; Gruau, Gérard; Jardé, Emilie; Gaury, Nicolas; Brient, Luc; Lengronne, Marion; Crocq, André; Helle, Daniel; Lambert, Thibault

    2011-04-01

    A combined mass-balance and stable isotope approach was set up to identify and quantify dissolved organic carbon (DOC) sources in a DOC-rich (9mgL(-1)) eutrophic reservoir located in Western France and used for drinking water supply (so-called Rophemel reservoir). The mass-balance approach consisted in measuring the flux of allochthonous DOC on a daily basis, and in comparing it with the effective (measured) DOC concentration of the reservoir. The isotopic approach consisted, for its part, in measuring the carbon isotope ratios (δ(13)C values) of both allochthonous and autochthonous DOC sources, and comparing these values with the δ(13)C values of the reservoir DOC. Results from both approaches were consistent pointing out for a DOC of 100% allochthonous origin. In particular, the δ(13)C values of the DOC recovered in the reservoir (-28.5±0.2‰; n=22) during the algal bloom season (May-September) showed no trace of an autochthonous contribution (δ(13)C in algae=-30.1±0.3‰; n=2) being indistinguishable from the δ(13)C values of allochthonous DOC from inflowing rivers (-28.6±0.1‰; n=8). These results demonstrate that eutrophication is not responsible for the high DOC concentrations observed in the Rophemel reservoir and that limiting eutrophication of this reservoir will not reduce the potential formation of disinfection by-products during water treatment. The methodology developed in this study based on a complementary isotopic and mass-balance approach provides a powerful tool, suitable to identify and quantify DOC sources in eutrophic, DOC-contaminated reservoirs.

  6. Multi-isotope approach: a tool to better constrain both sources and processes affecting NO3 pollution in watersheds

    NASA Astrophysics Data System (ADS)

    Widory, D.

    2006-12-01

    Nitrate is one of the major pollutants of drinking water resources worldwide. Recent European directives reduced inputs from intensive agriculture, but in most places NO3 levels are approaching the potable limit of 50 mg.l-1 in groundwater. Determining the source(s) of contamination in groundwater is an important first step for improving its quality by emission control. It is with this aim that we review here the benefit of using a multi- isotope approach (d15N, d180, d11B and 87Sr/86Sr), in addition to conventional hydrogeological analysis, to both constrain the watersheds hydrology and trace the origin of their NO3 pollution. Watersheds presented here include both fractured bedrock and alluvial (subsurface and deep) hydrogeological contexts. The strontium budget in watersheds is mainly controlled by the water-rock interactions (human inputs usually represents negligible fluxes). With the example of the Allier river (Central France), we show that, even on a very small watershed, the main water flows can usually be determined by the use of the 87Sr/86Sr ratios, thus helping understanding the hydrology controlling pollution processes. The characterisation of the different usual nitrate sources of pollution in groundwater (mineral fertilisers, wastewater and animals manure) shows that they can clearly be discriminated using isotopes. The isotopic composition of the dissolved nitrogen species has been used extensively to better constrain the sources and fate of nitrate in groundwater. The possibility of quantifying both origin and secondary processes affecting N concentrations by means of a single tracer appears more limited however. Nitrogen cannot be considered conservative because it is biologically modified through nitrification and denitrification reactions, both during infiltration of the water and in the groundwater body, causing isotopic fractionation that modifies the d15N-n signatures of the dissolved N species. Discriminating multiple NO3 sources by their N

  7. Estimating ungauged catchment flows from Lake Tana floodplains, Ethiopia: an isotope hydrological approach.

    PubMed

    Kebede, Seifu; Admasu, Girum; Travi, Yves

    2011-03-01

    The isotope balance approach, which used (18)O content of waters, has been used as an independent tool to estimate inflow to Lake Tana of surface water flows from ungauged catchment of Lake Tana (50% of the total area) and evaporative water loss in the vast plains adjoining the lake. Sensitivity analysis has been conducted to investigate the effects of changes in the input parameters on the estimated flux. Surface water inflow from ungauged catchment is determined to be in the order of 1.698×10(9) m(3)a(-1). Unaccounted water loss from the lake has been estimated at 454×10(6) m(3)a(-1) (equivalent to 5% of the total via surface water). Since the lake is water tight to groundwater outflow, the major error introduced into the water balance computation is related to evaporative water loss in water from the flood plains. If drained, the water which is lost to evaporation can be used as an additional water resource for socio-economic development in the region (tourism, agriculture, hydropower, and navigation). Hydrological processes taking place in the vast flood plains of Lake Tana (origin of salinity, groundwater surface water interaction, origin of flood plain waters) have been investigated using isotopes of water and geochemistry as tracers. The salinity of shallow groundwaters in the flood plains is related to dissolution of salts accumulated in sediments covering former evaporation pools and migration of trace salt during recharge. The waters in the flood plains originate from local rainfall and river overflows and the effect of backwater flow from the lake is excluded. Minimum linkage exists between the surface waters in the flood plains and shallow groundwaters in alluvio lacustrine sediments suggesting the disappearance of flood waters following the rainy season, which is related to complete evaporation or drainage than seepage to the subsurface. There is no groundwater outflow from the lake. Inflow of groundwater cannot be ruled out. Discharge of groundwater

  8. Historical and contemporary stable isotope tracer approaches to studying mammalian protein metabolism.

    PubMed

    Wilkinson, Daniel James

    2016-05-16

    Over a century ago, Frederick Soddy provided the first evidence for the existence of isotopes; elements that occupy the same position in the periodic table are essentially chemically identical but differ in mass due to a different number of neutrons within the atomic nucleus. Allied to the discovery of isotopes was the development of some of the first forms of mass spectrometers, driven forward by the Nobel laureates JJ Thomson and FW Aston, enabling the accurate separation, identification, and quantification of the relative abundance of these isotopes. As a result, within a few years, the number of known isotopes both stable and radioactive had greatly increased and there are now over 300 stable or radioisotopes presently known. Unknown at the time, however, was the potential utility of these isotopes within biological disciplines, it was soon discovered that these stable isotopes, particularly those of carbon ((13) C), nitrogen ((15) N), oxygen ((18) O), and hydrogen ((2) H) could be chemically introduced into organic compounds, such as fatty acids, amino acids, and sugars, and used to "trace" the metabolic fate of these compounds within biological systems. From this important breakthrough, the age of the isotope tracer was born. Over the following 80 yrs, stable isotopes would become a vital tool in not only the biological sciences, but also areas as diverse as forensics, geology, and art. This progress has been almost exclusively driven through the development of new and innovative mass spectrometry equipment from IRMS to GC-MS to LC-MS, which has allowed for the accurate quantitation of isotopic abundance within samples of complex matrices. This historical review details the development of stable isotope tracers as metabolic tools, with particular reference to their use in monitoring protein metabolism, highlighting the unique array of tools that are now available for the investigation of protein metabolism in vivo at a whole body down to a single protein

  9. Theoretical and Experimental Approaches to Understanding the Anomalous Distribution of Oxygen Isotopes in the Solar System

    NASA Astrophysics Data System (ADS)

    Dominguez, Gerardo; Christensen, Elizabeth; Boyer, Charisa; Park, Manesseh; Benitez, Ezra; Nunn, Morgan; Thiemens, Mark H.; Jackson, Terri

    2016-06-01

    Decades of careful laboratory analysis of primitive meteorites have revealed an intriguing and unexplained pattern in the distribution of oxygen isotopes in the solar system. With the recent analysis of solar wind oxygen by NASA’s Genesis mission, it appears that the Sun has a distinct oxygen isotopic composition from the terrestrial planets, asteroids, and comets. These differences cannot be explained by mass-dependent diffusion and require a physical-chemical mechanism or mechanisms that separate oxygen isotopes in a non-mass dependent manner.Several hypothesis have been proposed to explain the anomalous distribution. Photochemical self-shielding of CO may explain the anomalous distribution, however, this mechanism has key weaknesses including the requirement of a very fine tuned timescale to explain the isotopic differences between the Sun and bulk of the terrestrial planets. Recently, attention has been directed at understanding specific chemical reactions that occur on interstellar dust grains due to their similarities with non-equilibrium photochemical reactions believed to be responsible for the mass-independent isotopic fractionation patterns observed in Earth’s atmosphere. A specific focus has been directed towards understanding the formation of H2O because some of its precursor (HO2, and O3) are well-known to acquire mass-independent isotopic signatures when formed in the gas-phase.In this presentation, I describe a series of laboratory astrophysical experiments whose goal is to understand the distribution of oxygen isotopes in the solar system and perhaps, by extension, the distribution in other planetary systems. Preliminary results for the isotopic composition of O3 formed at 5K will be presented as well as the first, to our knowledge, measurements of the isotopic composition of H2O (18O/16O, 17O/16O, D/H) formed at 32K. We find that H2O formed in the astrophysical conditions we simulated acquired an anomalous isotopic composition with a triple

  10. Estimating pothole wetland connectivity to Pipestem Creek, North Dakota: an isotopic approach

    EPA Science Inventory

    Understanding hydrologic connectivity between wetlands and perennial streams is critical to understanding how reliant stream flow is on wetlands within their watershed. We used the isotopic evaporation signal in water to examine hydrologic connectivity within Pipestem Creek, Nort...

  11. Estimating pothole wetland connectivity to Pipestem Creek, North Dakota: an isotopic approach

    EPA Science Inventory

    Understanding hydrologic connectivity between wetlands and perennial streams is critical to understanding how reliant stream flow is on wetlands within their watershed. We used the isotopic evaporation signal in water to examine hydrologic connectivity within Pipestem Creek, Nort...

  12. Estimating pothole wetland connectivity to Pipestem Creek, North Dakota: an isotopic approach.

    EPA Science Inventory

    Understanding hydrologic connectivity between wetlands and perennial streams is critical to understanding how reliant stream flow is on wetlands within their watershed. We used the isotopic evaporation signal in water to examine wetland-stream hydrologic connectivity within the P...

  13. Anomalous fluoride concentration in groundwater - is it natural or pollution? A stable isotope approach.

    PubMed

    Marimon, Maria Paula Casagrande; Knöller, Kay; Roisenberg, Ari

    2007-06-01

    Fluoride anomalies (up to 11 mg/l) have been detected in groundwater of the central region of Rio Grande do Sul State, Southern Brazil, in an area where fluorosis is endemic. Two hypotheses are investigated concerning the fluoride origin: lithochemical affiliation from regional rock or contamination by fertilisers application. These hypotheses are discussed based on the stable isotope data of water, nitrate, and sulphate, which indicates that the local precipitation is the main groundwater recharge source. The isotopic composition of groundwater sulphate is similar to that of fertiliser sulphate. However, a conclusive assignment of groundwater sulphate to fertiliser origin is not indicated because further possible sulphate sources fall into the same isotopic range. In contrast, the isotopic composition of dissolved nitrate suggests that there is no direct relationship to the use of NPK fertilisers. Hence, an origin of the high fluoride content in groundwater related to long-term rock-water interactions seems likely.

  14. A Multi-proxy Approach to Using Cave Sediment Carbon Isotopes for Late Holocene Paleoenvironmental Reconstruction in Florida

    NASA Astrophysics Data System (ADS)

    Polk, J. S.; van Beynen, P.

    2007-12-01

    Carbon isotopes from cave sediments collected from Jennings Cave in Marion County, Florida were analyzed using a multi-proxy approach. Fulvic acids (FAs), humic acids (HAs), black carbon, phytoliths, and bulk organic matter were extracted from the sediments for carbon isotope analysis to determine periods of vegetation change caused by climatic influences during the Late Holocene (~\\ 2,800 years BP). The carbon isotope record ranges from -35‰ to -14‰, exhibiting variability of ~\\ -21‰, within the different proxies, which indicates changes between C3 and C4 vegetation. This likely indicates changes between a sub-tropical forested environment and more arid, grassy plains conditions. These changes in plant assemblages were in response to changes in available water resources, with increased temperatures and evapotranspiration leading to arid conditions and a shift toward less C3 vegetation (increased C4 vegetation) during the MWP. The cave sediment fulvic acid cabon isotopes record agrees well with ä13C values from a speleothem collected nearby that covers the same time period. Prolonged migration of the NAO and ITCZ affects precipitation in Florida and likely caused vegetation changes during these climatic shifts.

  15. Dew water effects on leaf water using a stable isotope approach

    NASA Astrophysics Data System (ADS)

    Kim, K.; Lee, X.

    2009-12-01

    The presence of dew is a common meteorological phenomenon in field conditions and takes into account for significant portion of hydrologic processes in terrestrial ecosystems. The isotope composition of leaf water plays an important role in the isotopic water and carbon fluxes between terrestrial plants and the atmosphere. However, the consequence of dew formation in the plant-atmosphere relations has been ignored in many studies. The objective of this study is to improve our understanding of environmental and biological controls on the leaf water in equilibrium with dew water through laboratory experiments. Five species of plants (soybean, corn, sorghum, wheat, cotton) were grown hydroponically with water of a known isotopic content in a greenhouse. On the day of the experiment, they were first moved to ambient environment in full sunlight for at least 6 hr and then into a dark container inside the lab for up to 48 hr in which water vapor isotope ratios, temperature, and humidity were controlled. This arrangement created a step change in the forcing on the plant isotopic exchange. Leaves were sampled prior to the transfer to the dark container and 6 more times every 4 - 12 hr over the experiment. Humidity inside the container was saturated to mimic dew events in field conditions. Water from the leaf samples was extracted by a vacuum line and was analyzed for both δD and δ18O. The dataset will allow us to evaluate leaf water isotopic theories by exploring the transitions of the isotopic ratio of leaf water in response to the step change. Specifically, we are interested in whether the stomatal opening is an effective pathway for gaseous exchange in total darkness and how the transitional behaviors of the isotopic ratio of leaf water differ between the C3 and C4 photosynthesis pathways.

  16. Insights on the marine microbial nitrogen cycle from isotopic approaches to nitrification

    PubMed Central

    Casciotti, Karen L.; Buchwald, Carolyn

    2012-01-01

    The microbial nitrogen (N) cycle involves a variety of redox processes that control the availability and speciation of N in the environment and that are involved with the production of nitrous oxide (N2O), a climatically important greenhouse gas. Isotopic measurements of ammonium (NH+4), nitrite (NO−2), nitrate (NO−3), and N2O can now be used to track the cycling of these compounds and to infer their sources and sinks, which has lead to new and exciting discoveries. For example, dual isotope measurements of NO−3 and NO−2 have shown that there is NO−3 regeneration in the ocean's euphotic zone, as well as in and around oxygen deficient zones (ODZs), indicating that nitrification may play more roles in the ocean's N cycle than generally thought. Likewise, the inverse isotope effect associated with NO−2 oxidation yields unique information about the role of this process in NO−2 cycling in the primary and secondary NO−2 maxima. Finally, isotopic measurements of N2O in the ocean are indicative of an important role for nitrification in its production. These interpretations rely on knowledge of the isotope effects for the underlying microbial processes, in particular ammonia oxidation and nitrite oxidation. Here we review the isotope effects involved with the nitrification process and the insights provided by this information, then provide a prospectus for future work in this area. PMID:23091468

  17. Insights on the marine microbial nitrogen cycle from isotopic approaches to nitrification.

    PubMed

    Casciotti, Karen L; Buchwald, Carolyn

    2012-01-01

    The microbial nitrogen (N) cycle involves a variety of redox processes that control the availability and speciation of N in the environment and that are involved with the production of nitrous oxide (N(2)O), a climatically important greenhouse gas. Isotopic measurements of ammonium (NH(+) (4)), nitrite (NO(-) (2)), nitrate (NO(-) (3)), and N(2)O can now be used to track the cycling of these compounds and to infer their sources and sinks, which has lead to new and exciting discoveries. For example, dual isotope measurements of NO(-) (3) and NO(-) (2) have shown that there is NO(-) (3) regeneration in the ocean's euphotic zone, as well as in and around oxygen deficient zones (ODZs), indicating that nitrification may play more roles in the ocean's N cycle than generally thought. Likewise, the inverse isotope effect associated with NO(-) (2) oxidation yields unique information about the role of this process in NO(-) (2) cycling in the primary and secondary NO(-) (2) maxima. Finally, isotopic measurements of N(2)O in the ocean are indicative of an important role for nitrification in its production. These interpretations rely on knowledge of the isotope effects for the underlying microbial processes, in particular ammonia oxidation and nitrite oxidation. Here we review the isotope effects involved with the nitrification process and the insights provided by this information, then provide a prospectus for future work in this area.

  18. Proper Interpretation of Dissolved Nitrous Oxide Isotopes, Production Pathways, and Emissions Requires a Modelling Approach

    PubMed Central

    Thuss, Simon J.; Venkiteswaran, Jason J.; Schiff, Sherry L.

    2014-01-01

    Stable isotopes (15N and 18O) of the greenhouse gas N2O provide information about the sources and processes leading to N2O production and emission from aquatic ecosystems to the atmosphere. In turn, this describes the fate of nitrogen in the aquatic environment since N2O is an obligate intermediate of denitrification and can be a by-product of nitrification. However, due to exchange with the atmosphere, the values at typical concentrations in aquatic ecosystems differ significantly from both the source of N2O and the N2O emitted to the atmosphere. A dynamic model, SIDNO, was developed to explore the relationship between the isotopic ratios of N2O, N2O source, and the emitted N2O. If the N2O production rate or isotopic ratios vary, then the N2O concentration and isotopic ratios may vary or be constant, not necessarily concomitantly, depending on the synchronicity of production rate and source isotopic ratios. Thus prima facie interpretation of patterns in dissolved N2O concentrations and isotopic ratios is difficult. The dynamic model may be used to correctly interpret diel field data and allows for the estimation of the gas exchange coefficient, N2O production rate, and the production-weighted values of the N2O source in aquatic ecosystems. Combining field data with these modelling efforts allows this critical piece of nitrogen cycling and N2O flux to the atmosphere to be assessed. PMID:24608915

  19. Origins and processes of groundwater salinization in the urban coastal aquifers of Recife (Pernambuco, Brazil): A multi-isotope approach.

    PubMed

    Cary, Lise; Petelet-Giraud, Emmanuelle; Bertrand, Guillaume; Kloppmann, Wolfram; Aquilina, Luc; Martins, Veridiana; Hirata, Ricardo; Montenegro, Suzana; Pauwels, Hélène; Chatton, Eliot; Franzen, Melissa; Aurouet, Axel

    2015-10-15

    In the coastal multilayer aquifer system of a highly urbanized southern city (Recife, Brazil), where groundwaters are affected by salinization, a multi-isotope approach (Sr, B, O, H) was used to investigate the sources and processes of salinization. The high diversity of the geological bodies, built since the Atlantic opening during the Cretaceous, highly constrains the heterogeneity of the groundwater chemistry, e.g. Sr isotope ratios, and needs to be integrated to explain the salinization processes and groundwater pathways. A paleoseawater intrusion, most probably the 120 kyB.P. Pleistocene marine transgression, and cationic exchange are clearly evidenced in the most salinized parts of the Cabo and Beberibe aquifers. All (87)Sr/(86)Sr values are above the past and present-day seawater signatures, meaning that the Sr isotopic signature is altered due to additional Sr inputs from dilution with different freshwaters, and water-rock interactions. Only the Cabo aquifer presents a well-delimitated area of Na-HCO3 water typical of a freshening process. The two deep aquifers also display a broad range of B concentrations and B isotope ratios with values among the highest known to date (63-68.5‰). This suggests multiple sources and processes affecting B behavior, among which mixing with saline water, B sorption on clays and mixing with wastewater. The highly fractionated B isotopic values were explained by infiltration of relatively salty water with B interacting with clays, pointing out the major role played by (palaeo)-channels for the deep Beberibe aquifer recharge. Based on an increase of salinity at the end of the dry season, a present-day seawater intrusion is identified in the surficial Boa Viagem aquifer. Our conceptual model presents a comprehensive understanding of the major groundwater salinization pathways and processes, and should be of benefit for other southern Atlantic coastal aquifers to better address groundwater management issues. Copyright © 2015

  20. Feedbacks Among Arctic Sea Ice, Evaporation, and Precipitation - An Isotopic Approach

    NASA Astrophysics Data System (ADS)

    Posmentier, E. S.; Faiia, A.; Everhart, K. K.; Whiteman, D.; Feng, X.

    2011-12-01

    Interactions among Arctic sea ice, evaporation, terrestrial snowfall, and sea level have long been understood as a linchpin of Pleistocene ice age dynamics, but how does this feedback cycle influence decadal scale climate dynamics? The paucity of reliable Arctic hydrologic data has made it difficult to answer this question directly. However, new isotopic tools allow its quantitative examination. As a preliminary experiment, the iiSPACS (Isotopic Investigation of Sea-ice and Precipitation in the Arctic Climate System) program collected precipitation from 106 storm events in Barrow and Atqasuk, AK, and determined the precipitation isotopic ratios of D/H (deuterium to hydrogen) and 18O/16O. Theoretical values of these isotopic ratios were calculated by using HYSPLIT back trajectories based on NCEP/NCAR reanalysis wind data to find both the low-latitude and Arctic source regions of cloud vapor in each storm, and Rayleigh fractionation of the heavy isotopes in vapor advected moist adiabatically along a forward trajectory from the source to the precipitation-producing clouds. Statistical analysis of the theoretical and empirical data demonstrate that (1) isotopic ratios correlate significantly with sea ice in the Arctic source region; (2) the imputed amount of precipitation in Barrow and Atqasuk is significantly affected by sea ice in the Arctic source region; and (3) theoretical assumptions lead to a positive bias of about 57 per mil in deuterium; i.e., an underestimate of isotopic depletion of the vapor relative to observations. Several inferences may be made from the results. First, it appears that a diminution of sea ice area does, indeed, lead to an increase in terrestrial Arctic precipitation, at least at the two sites studies. This implies a possible negative climate feedback, because warming that initiates a sea ice retreat would lead to more terrestrial snow and a higher albedo, especially around the time of the summer solstice, when albedo is highly leveraged

  1. High-resolution analysis of Quaternary calcretes: a coupled stable isotope and micromorphological approach

    NASA Astrophysics Data System (ADS)

    Adamson, Kathryn; Candy, Ian; Whitfield, Liz

    2015-04-01

    Pedogenic calcretes are abundant in arid and semi-arid regions, and they are widely used as proxy records of palaeoclimatic change. Calcrete oxygen (δ18O) and carbon (δ13C) isotopic signatures are indicative of temperature, aridity, or vegetation at the time of calcrete formation. Their microfabrics also reflect carbonate formation mechanisms in response to the prevailing environmental conditions. Many studies have explored calcrete micromorphology or stable isotope composition, but these techniques have not yet been applied simultaneously. This co-analysis is important as it allows us to establish whether calcrete morphology directly reflects environmental change. This study tests the potential of combining these analyses to examine the relationships between calcrete microfabrics, their isotopic signals, and Quaternary climate change. Calcretes from four river terraces of the Rio Alias in southeast Spain have been analysed in detail. On the basis of morphostratigraphic correlation (Maher et al., 2007) and Uranium-series ages (Candy et al., 2005), these span the period from 304 ± 26 ka (MIS 9) to the Holocene. The oldest profiles have therefore been exposed to multiple glacial-interglacial cycles. A total of 37 micromorphological profiles have been used to extract stable oxygen and carbon isotopic indicators from 77 microfacies. The morphological and isotopic complexity of the calcrete profiles increases with progressive age. The oldest samples display multiple calcretisation phases, and their microfabrics have a larger isotopic range than the younger samples. Alpha (non-biogenic) fabrics have higher δ13C and δ18O values than beta (biogenic) fabrics. Strong positive covariance between δ13C and δ18O within all profiles suggests that both isotopes are responding to the same environmental parameter. We suggest that this is relative aridity. The study demonstrates that the detailed co-analysis of calcrete micromorphology and stable isotope signatures allows

  2. Comparison of deterministic and stochastic approaches for isotopic concentration and decay heat uncertainty quantification on elementary fission pulse

    NASA Astrophysics Data System (ADS)

    Lahaye, S.; Huynh, T. D.; Tsilanizara, A.

    2016-03-01

    Uncertainty quantification of interest outputs in nuclear fuel cycle is an important issue for nuclear safety, from nuclear facilities to long term deposits. Most of those outputs are functions of the isotopic vector density which is estimated by fuel cycle codes, such as DARWIN/PEPIN2, MENDEL, ORIGEN or FISPACT. CEA code systems DARWIN/PEPIN2 and MENDEL propagate by two different methods the uncertainty from nuclear data inputs to isotopic concentrations and decay heat. This paper shows comparisons between those two codes on a Uranium-235 thermal fission pulse. Effects of nuclear data evaluation's choice (ENDF/B-VII.1, JEFF-3.1.1 and JENDL-2011) is inspected in this paper. All results show good agreement between both codes and methods, ensuring the reliability of both approaches for a given evaluation.

  3. Dissolved Organic Carbon Cycling in Forested Watersheds: A Carbon Isotope Approach

    NASA Astrophysics Data System (ADS)

    Schiff, S. L.; Aravena, R.; Trumbore, S. E.; Dillon, P. J.

    1990-12-01

    Dissolved organic carbon (DOC) is important in the acid-base chemistry of acid-sensitive freshwater systems; in the complexation, mobility, persistence, and toxicity of metals and other pollutants; and in lake carbon metabolism. Carbon isotopes (13C and 14C) are used to study the origin, transport, and fate of DOC in a softwater catchment in central Ontario. Precipitation, soil percolates, groundwaters, stream, beaver pond, and lake waters, and lake sediment pore water were characterized chemically and isotopically. In addition to total DOC, isotopic measurements were made on the humic and fulvic DOC fractions. The lake is a net sink for DOC. Δ14C results indicate that the turnover time of most of the DOC in streams, lakes, and wetlands is fast, less than 40 years, and on the same time scale as changes in acidic deposition. DOC in groundwaters is composed of older carbon than surface waters, indicating extensive cycling of DOC in the upper soil zone or aquifer.

  4. Multiple taxon multiple locality approach to providing oxygen isotope evidence for warm-blooded theropod dinosaurs

    NASA Astrophysics Data System (ADS)

    Fricke, Henry C.; Rogers, Raymond R.

    2000-09-01

    Oxygen isotope ratios of fossil remains of coexisting taxa from several different localities can be used to help investigate dinosaur thermoregulation. Focusing on the Late Cretaceous, oxygen isotope ratios of crocodile tooth enamel from four separate localities exhibit less of a decrease with latitude than do ratios of tooth enamel from coexisting theropod dinosaurs. A shallower latitudinal gradient for crocodiles is consistent with how oxygen isotope ratios should vary for heterothermic animals having body temperatures coupled with their environments (“cold blooded”), while a steeper gradient for theropods is consistent with how these ratios should vary for homeothermic animals having constant body temperatures independent of their environments (“warm blooded”). This inferred homoethermy in theropods is likely due to higher rates of metabolic heat production relative to crocodiles and is not an artifact of body size.

  5. Dual isotopic approach for determining groundwater origin and water-rock interactions in over exploited watershed in India

    NASA Astrophysics Data System (ADS)

    Negrel, Philippe; Pauwels, Hélène; Millot, Romain; Roy, Stéphane; Guerrot, Catherine

    2010-05-01

    isotopes in the return flow. In addition, such evaporation is further affected by land use, rice paddies having the strongest evapotranspiration. Lead concentrations span over one or two orders of magnitude up to approximately 20 ?g. L-1. Pb-isotopes, measured in water by MC-ICPMS using an improved new procedure, fluctuate largely as exemplified by the 206Pb/204Pb ratio, reaching values up to 25. Most of the lead in the groundwaters is of geogenic origin, and through the lead isotopic signature in groundwater we have traced and fingerprinted the processes of water-rock interactions considering the granite matrix. Combining a weathering model and field observations, we have defined a two step weathering process that includes a control on the Pb-isotopes ratios by accessory phases and by the main mineral from the granite in a second step of weathering. For future studies, multi-isotope approach will be necessary for the identification of possible flowpaths, in conjunction with the larger exploitation of the groundwater resources. This is also challenging for generalising the use of isotope tools (such as Nd, Sr, Pb and newly developed isotope systematics like Ca, Si...) in many other catchments that may face structural problems of groundwater overdraft.

  6. Record of seasonal body fluid composition in Black Clam (Bivalve) using clumped isotope thermometric approach

    NASA Astrophysics Data System (ADS)

    Rahman, H.; Naidu, P. K.; Ghosh, P.

    2012-12-01

    Application of clumped isotope thermometry (Ghosh et al., 2006) is highly debated while resolving the issue of kinetic effect during biogenic carbonate precipitation. Mollusks are particularly attractive target to study the kinetic effect (Eiler, 2011) in the biological system owing to its incremental growth ring patterns. This allows understanding the role of environmental parameters other than temperature driving the distribution of heavier isotopologues. Guo et al., (2010) indicated role of pH in driving the distribution of heavier isotopolgues in the carbonates. We investigated here clumped isotopic composition of Black Calm (bivalve shell) caught live from a location in Southern Indian Estuary. The region experiences large change in seasonal condition. The physical environmental parameters at that location were monitored for last 3 years at monthly interval. The salinity, temperature, pH information are available for all the months when mollusc growth bands are deposited. The bottom water of estuary, where bivalve thrives experience maximum temperature of 32°C during November and December, while temperature during Monsoon months (July, August) drops lows to 26°C. Initial results on clumped isotope thermometry on the growth bands precipitated suggests that during the time in a year when pH level is alkaline i.e. 8.0±0.2 there is large consistency between actual temperature and estimated temperature using clumped isotope based thermometry. While the pH drops towards acidic i.e. 6.8±0.1 lower temperature estimates compared to actual was recorded. The effect of metabolic rate and body temperature variability is not been investigated as suggested in case of land snails based clumped isotope thermometry (Zaarur et al., 2011). Mollusc shell can be used to trace the composition of environmental water while pH variation is minimal. In this presentation analyses of more shell specimen and explore the role of pH and osmo-regulation in mollusc determining the clumped

  7. Isotopic ecology of coyotes from scat and road kill carcasses: A complementary approach to feeding experiments.

    PubMed

    Reid, Rachel E B; Koch, Paul L

    2017-01-01

    Scat is frequently used to study animal diets because it is easy to find and collect, but one concern is that gross fecal analysis (GFA) techniques exaggerate the importance of small-bodied prey to mammalian mesopredator diets. To capitalize on the benefits of scat, we suggest the analysis of scat carbon and nitrogen isotope values (δ13C and δ15N). This technique offers researchers a non-invasive method to gather short-term dietary information. We conducted three interrelated studies to validate the use of isotopic values from coyote scat: 1) we determined tissue-to-tissue apparent C and N isotope enrichment factors (ε13* and ε15*) for coyotes from road kill animals (n = 4); 2) we derived diet-to-scat isotope discrimination factors for coyotes; and 3) we used field collected coyote scats (n = 12) to compare estimates of coyote dietary proportions from stable isotope mixing models with estimates from two GFA techniques. Scat consistently had the lowest δ13C and δ15N values among the tissues sampled. We derived a diet-to-scat Δ13C value of -1.5‰ ± 1.6‰ and Δ15N value of 2.3‰ ± 1.3‰ for coyotes. Coyote scat δ13C and δ15N values adjusted for discrimination consistently plot within the isotopic mixing space created by known dietary items. In comparison with GFA results, we found that mixing model estimates of coyote dietary proportions de-emphasize the importance of small-bodied prey. Coyote scat δ13C and δ15N values therefore offer a relatively quick and non-invasive way to gain accurate dietary information.

  8. Isotopic ecology of coyotes from scat and road kill carcasses: A complementary approach to feeding experiments

    PubMed Central

    Koch, Paul L.

    2017-01-01

    Scat is frequently used to study animal diets because it is easy to find and collect, but one concern is that gross fecal analysis (GFA) techniques exaggerate the importance of small-bodied prey to mammalian mesopredator diets. To capitalize on the benefits of scat, we suggest the analysis of scat carbon and nitrogen isotope values (δ13C and δ15N). This technique offers researchers a non-invasive method to gather short-term dietary information. We conducted three interrelated studies to validate the use of isotopic values from coyote scat: 1) we determined tissue-to-tissue apparent C and N isotope enrichment factors (ε13* and ε15*) for coyotes from road kill animals (n = 4); 2) we derived diet-to-scat isotope discrimination factors for coyotes; and 3) we used field collected coyote scats (n = 12) to compare estimates of coyote dietary proportions from stable isotope mixing models with estimates from two GFA techniques. Scat consistently had the lowest δ13C and δ15N values among the tissues sampled. We derived a diet-to-scat Δ13C value of -1.5‰ ± 1.6‰ and Δ15N value of 2.3‰ ± 1.3‰ for coyotes. Coyote scat δ13C and δ15N values adjusted for discrimination consistently plot within the isotopic mixing space created by known dietary items. In comparison with GFA results, we found that mixing model estimates of coyote dietary proportions de-emphasize the importance of small-bodied prey. Coyote scat δ13C and δ15N values therefore offer a relatively quick and non-invasive way to gain accurate dietary information. PMID:28369133

  9. Positional Enrichment by Proton Analysis (PEPA): A One‐Dimensional 1H‐NMR Approach for 13C Stable Isotope Tracer Studies in Metabolomics

    PubMed Central

    Rodríguez, Miguel A.; Aivio, Suvi; Capellades, Jordi; Gómez, Josep; Canyellas, Nicolau; Stracker, Travis H.

    2017-01-01

    Abstract A novel metabolomics approach for NMR‐based stable isotope tracer studies called PEPA is presented, and its performance validated using human cancer cells. PEPA detects the position of carbon label in isotopically enriched metabolites and quantifies fractional enrichment by indirect determination of 13C‐satellite peaks using 1D‐1H‐NMR spectra. In comparison with 13C‐NMR, TOCSY and HSQC, PEPA improves sensitivity, accelerates the elucidation of 13C positions in labeled metabolites and the quantification of the percentage of stable isotope enrichment. Altogether, PEPA provides a novel framework for extending the high‐throughput of 1H‐NMR metabolic profiling to stable isotope tracing in metabolomics, facilitating and complementing the information derived from 2D‐NMR experiments and expanding the range of isotopically enriched metabolites detected in cellular extracts. PMID:28220994

  10. Positional Enrichment by Proton Analysis (PEPA): A One-Dimensional (1) H-NMR Approach for (13) C Stable Isotope Tracer Studies in Metabolomics.

    PubMed

    Vinaixa, Maria; Rodríguez, Miguel A; Aivio, Suvi; Capellades, Jordi; Gómez, Josep; Canyellas, Nicolau; Stracker, Travis H; Yanes, Oscar

    2017-03-20

    A novel metabolomics approach for NMR-based stable isotope tracer studies called PEPA is presented, and its performance validated using human cancer cells. PEPA detects the position of carbon label in isotopically enriched metabolites and quantifies fractional enrichment by indirect determination of (13) C-satellite peaks using 1D-(1) H-NMR spectra. In comparison with (13) C-NMR, TOCSY and HSQC, PEPA improves sensitivity, accelerates the elucidation of (13) C positions in labeled metabolites and the quantification of the percentage of stable isotope enrichment. Altogether, PEPA provides a novel framework for extending the high-throughput of (1) H-NMR metabolic profiling to stable isotope tracing in metabolomics, facilitating and complementing the information derived from 2D-NMR experiments and expanding the range of isotopically enriched metabolites detected in cellular extracts.

  11. MONITORING FOOD WEB CHANGES IN TIDE-RESTORED SALT MARSHES: A CARBON STABLE ISOTOPE APPROACH

    EPA Science Inventory

    Primary producer (angiosperms, macroalgae, submerged aquatic vegetation), suspended particulate matter, and Fundulus heteroclitus isotope values (d13C , d15N, d34S) were examined to assess their use as an indicator for changes in food web support functions in tidally-restored sal...

  12. Water use patterns of three species in subalpine forest, Southwest China: the deuterium isotope approach

    Treesearch

    Qing Xu; Harbin Li; Jiquan Chen; Jiquan Cheng; Xiaoli Cheng; Shirong Liu; Shuqing An

    2011-01-01

    Determination of water sources of plant species in a community is critical for understanding the hydrological processes and their importance in ecosystem functions. Such partitioning of plant xylem water into specific sources (i.e. precipitation, groundwater) can be achieved by analyzing deuterium isotopic composition (δD) values for source waters. A subalpine dark...

  13. MONITORING FOOD WEB CHANGES IN TIDE-RESTORED SALT MARSHES: A CARBON STABLE ISOTOPE APPROACH

    EPA Science Inventory

    Primary producer (angiosperms, macroalgae, submerged aquatic vegetation), suspended particulate matter, and Fundulus heteroclitus isotope values (d13C , d15N, d34S) were examined to assess their use as an indicator for changes in food web support functions in tidally-restored sal...

  14. Dynamical approach to isotopic-distribution of fission fragments from actinide nuclei

    NASA Astrophysics Data System (ADS)

    Ishizuka, Chikako; Chiba, Satoshi; Karpov, Alexander V.; Aritomo, Yoshihiro

    2016-06-01

    Measurements of the isotope distribution of fission fragments, often denoted as the primary fission yield (pre-neutron yield) or independent fission yield (post-neutron yield) are still challenging at low excitation energies, so that it is important to investigate it within a theory. Such quantities are vital for applications as well. In this study, fragment distributions from the fission of U isotopes at low excitation energies are studied using a dynamical model. The potential energy surface is derived from the two center shell model including the shell and pairing corrections. In order to calculate the charge distribution of fission fragments, we introduce a new parameter ηZ as the charge asymmetry, in addition to three parameters describing a nuclear shape, z as the distance between two centers of mass, δ as fragment deformation, and ηA as the mass asymmetry. Using this model, we calculated the isotopic distribution of 236U for the n-induced process 235U + n → 236U at low excitation energies. As a result, we found that the current model can well reproduce isotopic fission-fragment distribution which can be compared favorably with major libraries.

  15. The Cenozoic paleoelevation and paleogeographic history of the southwwestern US Cordillera: A combined sedimentologic and isotopic approach

    NASA Astrophysics Data System (ADS)

    Lechler, Alex R.

    The Cenozoic paleoelevation history of the Western US Cordillera has far-reaching implications for resolving the tectonic and geodynamic evolution of the region. The observed systematic relationship between elevation and the stable isotopic composition (delta-180 and delta-D) of surface meteoric waters provides an opportunity to construct quantitative paleoelevation histories using authigenic mineral proxies for the isotopic composition of paleo-meteoric waters, but uncertainties and complications inherent to this approach require further study. Part I of this dissertation critically evaluates the stable isotope paleoaltimetry technique through investigation of the dominant environmental controls on modern precipitation and surface water delta-180 distributions. This modem analysis reveals that isotope-elevation relationships vary systematically as a function of physiographic and climatic environment, with reduced delta-180-elevation gradients characterizing continental interior and orogenic plateau regions. This finding has important implications for future interpretations of paleometeoric water proxy records as the physiographic and climatic setting in which proxies formed must be taken into account in order for accurate paleoelevation determinations to be made. Part II of this dissertation builds on the findings and implications of Part I to provide new paleoelevation and paleogeographic constraints on the early Cenozoic western US Cordillera. Standard stable isotope paleoaltimetry techniques in conjunction with zircon U-Pb provenance study of early Cenozoic sedimentary basin systems in the southern Sierra Nevada region provides definitive evidence for near sea level paleoelevations in the southernmost Sierra Nevada ˜ 60 million years ago. This paleoelevation requires 1.5 -- 2 km of surface uplift since Eocene time, providing additional support for models proposing major Late Cenozoic uplift of the central and southern Sierra Nevada due to loss of dense, mantle

  16. Tracing the source of cooking oils with an integrated approach of using stable carbon isotope and fatty acid abundance.

    PubMed

    Liu, Weiguo; Yang, Hong; Wang, Zheng; Liu, Jinzhao

    2012-08-15

    We report a new approach to identify swill-cooked oils that are recycled from tainted food and livestock waste from commercial vegetable and animal oils by means of carbon isotope values and relative abundance of fatty acids. We test this method using 40 cooking oil samples of different types with known sources. We found significant differences in both total organic carbon isotope as well as compound-specific isotope values and fatty acid C(14)/C(18) ratios between commercial vegetable oils refined from C(3) plants (from -35.7 to -27.0‰ and from 0 to 0.15) and animal oils (from -28.3 to -14.3‰ and from 0.1 to 0.6). Tested swill-cooked oils, which were generally refined by mixing with animal waste illegally, fall into a narrow δ(13)C/fatty acid ratio distribution: from -25.9 to -24.1‰ and from 0.1 to 0.2. Our data demonstrate that the index of a cross-plotting between fatty acid δ(13)C values and C(14)/C(18) ratios can be used to distinguish clean commercial cooking oils from illegal swill-cooked oils.

  17. Sulfur Cycling-Related Biogeochemical Processes of Arsenic Mobilization in the Western Hetao Basin, China: Evidence from Multiple Isotope Approaches.

    PubMed

    Guo, Huaming; Zhou, Yinzhu; Jia, Yongfeng; Tang, Xiaohui; Li, Xiaofeng; Shen, Mengmeng; Lu, Hai; Han, Shuangbao; Wei, Chao; Norra, Stefan; Zhang, Fucun

    2016-12-06

    The role of sulfur cycling in arsenic behavior under reducing conditions is not well-understood in previous investigations. This study provides observations of sulfur and oxygen isotope fractionation in sulfate and evaluation of sulfur cycling-related biogeochemical processes controlling dissolved arsenic groundwater concentrations using multiple isotope approaches. As a typical basin hosting high arsenic groundwater, the western Hetao basin was selected as the study area. Results showed that, along the groundwater flow paths, groundwater δ(34)SSO4, δ(18)OSO4, and δ(13)CDOC increased with increases in arsenic, dissolved iron, hydrogen sulfide and ammonium concentrations, while δ(13)CDIC decreased with decreasing Eh and sulfate/chloride. Bacterial sulfate reduction (BSR) was responsible for many of these observed changes. The δ(34)SSO4 indicated that dissolved sulfate was mainly sourced from oxidative weathering of sulfides in upgradient alluvial fans. The high oxygen-sulfur isotope fractionation ratio (0.60) may result from both slow sulfate reduction rates and bacterial disproportionation of sulfur intermediates (BDSI). Data indicate that both the sulfide produced by BSR and the overall BDSI reduce arsenic-bearing iron(III) oxyhydroxides, leading to the release of arsenic into groundwater. These results suggest that sulfur-related biogeochemical processes are important in mobilizing arsenic in aquifer systems.

  18. Mapping the Elephants of the 19th Century East African Ivory Trade with a Multi-Isotope Approach.

    PubMed

    Coutu, Ashley N; Lee-Thorp, Julia; Collins, Matthew J; Lane, Paul J

    2016-01-01

    East African elephants have been hunted for their ivory for millennia but the nineteenth century witnessed strongly escalating demand from Europe and North America. It has been suggested that one consequence was that by the 1880s elephant herds along the coast had become scarce, and to meet demand, trade caravans trekked farther into interior regions of East Africa, extending the extraction frontier. The steady decimation of elephant populations coupled with the extension of trade networks have also been claimed to have triggered significant ecological and socio-economic changes that left lasting legacies across the region. To explore the feasibility of using an isotopic approach to uncover a 'moving frontier' of elephant extraction, we constructed a baseline isotope data set (δ13C, δ15N, δ18O and 87Sr/86Sr) for historic East African elephants known to have come from three distinct regions (coastal, Rift Valley, and inland Lakes). Using the isotope results with other climate data and geographical mapping tools, it was possible to characterise elephants from different habitats across the region. This baseline data set was then used to provenance elephant ivory of unknown geographical provenance that was exported from East Africa during the late nineteenth and early twentieth centuries to determine its likely origin. This produced a better understanding of historic elephant geography in the region, and the data have the potential to be used to provenance older archaeological ivories, and to inform contemporary elephant conservation strategies.

  19. Mapping the Elephants of the 19th Century East African Ivory Trade with a Multi-Isotope Approach

    PubMed Central

    Lee-Thorp, Julia; Collins, Matthew J.; Lane, Paul J.

    2016-01-01

    East African elephants have been hunted for their ivory for millennia but the nineteenth century witnessed strongly escalating demand from Europe and North America. It has been suggested that one consequence was that by the 1880s elephant herds along the coast had become scarce, and to meet demand, trade caravans trekked farther into interior regions of East Africa, extending the extraction frontier. The steady decimation of elephant populations coupled with the extension of trade networks have also been claimed to have triggered significant ecological and socio-economic changes that left lasting legacies across the region. To explore the feasibility of using an isotopic approach to uncover a ‘moving frontier’ of elephant extraction, we constructed a baseline isotope data set (δ13C, δ15N, δ18O and 87Sr/86Sr) for historic East African elephants known to have come from three distinct regions (coastal, Rift Valley, and inland Lakes). Using the isotope results with other climate data and geographical mapping tools, it was possible to characterise elephants from different habitats across the region. This baseline data set was then used to provenance elephant ivory of unknown geographical provenance that was exported from East Africa during the late nineteenth and early twentieth centuries to determine its likely origin. This produced a better understanding of historic elephant geography in the region, and the data have the potential to be used to provenance older archaeological ivories, and to inform contemporary elephant conservation strategies. PMID:27760152

  20. A spatially explicit multi-isotope approach to map influence regions of plant-plant interactions after exotic plant invasion

    NASA Astrophysics Data System (ADS)

    Hellmann, Christine; Oldeland, Jens; Werner, Christiane

    2015-04-01

    Exotic plant invasions impose profound alterations to native ecosystems, including changes of water, carbon and nutrient cycles. However, explicitly quantifying these impacts remains a challenge. Stable isotopes, by providing natural tracers of biogeochemical processes, can help to identify and measure such alterations in space and time. Recently, δ15N isoscapes, i.e. spatially continuous representations of isotopic values, derived from native plant foliage, enabled to accurately trace nitrogen introduced by the N2-fixing invasive Acacia longifolia into a native Portuguese dune system. It could be shown that the area of the system which was altered by the invasive species exceeded the area which was covered by the invader by far. But still, definition of clear regions of influence is to some extent ambiguous. Here, we present an approach using multiple isoscapes derived from measured foliar δ13C and δ15N values of a native, non-fixing species, Corema album. By clustering isotopic information, we obtained an objective classification of the study area. Properties and spatial position of clusters could be interpreted to distinguish areas that were or were not influenced by A. longifolia. Spatial clusters at locations where A. longifolia was present had δ15N values that were enriched, i.e. close to the atmospheric signal of 0 o compared to the depleted values of the uninvaded system (ca. -11 o). Furthermore, C. album individuals in these clusters were characterized by higher foliar N content and enriched δ13C. These results indicate that the N2-fixing A. longifolia added nitrogen to the system which originated from the atmosphere and was used by the native C. album, inducing functional changes, i.e. an increase in WUE. Additionally, clusters were identified that were presumably determined by inherent properties of the native system. Thus, combining isotope ecology with geostatistical methods is a promising approach for mapping regions of influence in multi-isotope

  1. Sr Isotopes and human skeletal remains, improving a methodological approach in migration studies

    NASA Astrophysics Data System (ADS)

    Solis Pichardo, G.; Schaaf, P. E.; Hernandez, T.; Horn, P.; Manzanilla, L. R.

    2013-12-01

    Asserting mobility of ancient humans is a major issue for anthropologists. Sr isotopes are widely used in anthropological sciences to trace human migration histories from ancient burials. Sr in bone approximately reflects the isotopic composition of the geological region where the person lived before death; whereas the Sr isotopic system in tooth enamel is thought to remain as a closed system and thus conserves the isotope ratio acquired during childhood. A comparison of the 87Sr/86Sr ratios found in tooth enamel and in bone is performed to determine if the human skeletal remains belonged to a local or a migrant. Until now, tooth enamel was considered to be less sensitive to secondary Sr contamination due to its higher crystallinity and larger sizes of the biogenic apatites in comparison to that in bone and dentine. In the past, enamel as well as bone material was powdered, dissolved and analyzed by thermal ionization mass spectrometry (TIMS). In this contribution we show, however, that simple dissolution of enamel frequently yields erroneous results. Tooth enamel is often affected by secondary strontium contamination processes such as caries or diagenetic and environmental input, which can change the original isotopic composition. To avoid these problems we introduced a pre-treatment and three-step leaching procedure in enamel samples. Leaching is carried out with acetic acid of different concentrations, yielding two leachates and one residue of each sample. Frequently the 87Sr/86Sr results of the three leachates display different values confirming that secondary contamination did occur. Several examples from Teotihuacan, central Mexico demonstrate that enamel 87Sr/86Sr without leaching can show correct biogenic values, but there is also a considerable probability for these values to represent a mixture of original and secondary Sr without significance for migration reconstructions. Only the residue value is interpreted by us as the representative ratio for

  2. Dynamics of Zn in an urban wetland soil-plant system: Coupling isotopic and EXAFS approaches

    NASA Astrophysics Data System (ADS)

    Aucour, Anne-Marie; Bedell, Jean-Philippe; Queyron, Marine; Magnin, Valérie; Testemale, Denis; Sarret, Géraldine

    2015-07-01

    Plants play a key role in the stabilization of metals in contaminated environments. Studies have been performed on Zn uptake and storage mechanisms, mainly for Zn hyperaccumulating plants, though less is known about Zn stabilization in the rhizosphere of non-accumulating plants. This study was focused on the dynamics of Zn in a whole soil-litter-plant system and the processes controlling Zn mobilization and stabilization. The site studied was an infiltration basin receiving urban stormwater, in which Phalaris arundinacea (reed canary grass) developed spontaneously. A combination of chemical extractions (CaCl2, DTPA), EXAFS spectroscopy and Zn stable isotope measurements was applied for the water inlet, soil, plant organs and decaying biomass. Zn speciation changed from the water inlet to the soil. In the soil, Zn was present as Zn-layered double hydroxide (Zn-LDH), tetrahedral and octahedral sorbed Zn species. The formation of Zn-LDH participates in Zn stabilization. Tetrahedral Zn species, which were partly DTPA exchangeable, were enriched in heavy isotopes, whereas octahedral Zn (Zn-LDH and sorbed species) were enriched in light isotopes. Based on a linear model between δ66Zn and Zn speciation, δ66Zn for pure tetrahedral and octahedral end-members were estimated at ca. 0.33‰ and 0.04‰, respectively. In the plant, a mixture of octahedral Zn (attributed to aqueous Zn-organic acid complexes present in the symplasm), and tetrahedral Zn (attributed to apoplasmic Zn-cell wall complexes) was observed in all organs. Large enrichment in light isotopes from the soil to the plant Δ66Zn (of ca. -0.6‰) was observed. The stem was enriched in light isotopes versus roots and, to a lesser extent, versus leaves. The results suggest that Zn was taken up via a low-affinity transport system and that Zn was sequestrated in the stem symplasm after transit through leaves. Finally, intense Zn exchanges were observed between the decaying biomass and the soil, with the sorption of

  3. A Metal Stable Isotope Approach to Understanding Uranium Mobility Across Roll Front Redox Boundaries

    NASA Astrophysics Data System (ADS)

    Brown, S. T.; Basu, A.; Christensen, J. N.; DePaolo, D. J.; Heikoop, J. M.; Reimus, P. W.; Maher, K.; Weaver, K. L.

    2015-12-01

    Sedimentary roll-front uranium (U) ore deposits are the principal source of U for nuclear fuel in the USA and an important part of the current all-of-the-above energy strategy. Mining of roll-front U ore in the USA is primarily by in situ alkaline oxidative dissolution of U minerals. There are significant environmental benefits to in situ mining including no mine tailings or radioactive dust, however, the long-term immobilization of U in the aquifer after the completion of mining remains uncertain. We have utilized the metal stable isotopes U, Se and Mo in groundwater from roll-front mines in Texas and Wyoming to quantify the aquifer redox conditions and predict the onset of U reduction after post mining aquifer restoration. Supporting information from the geochemistry of groundwater and aquifer sediments are used to understand the transport of U prior to and after in situ mining. Groundwater was collected across 4 mining units at the Rosita mine in the Texas coastal plain and 2 mining units at the Smith Ranch mine in the Powder River Basin, Wyoming. In general, the sampled waters are moderately reducing and ore zone wells contain the highest aqueous U concentrations. The lowest U concentrations occur in monitoring wells downgradient of the ore zone. 238U/235U is lowest in downgradient wells and is correlated with aqueous U concentrations. Rayleigh distillation models of the 238U/235U are consistent with U isotope fractionation factors of 1.0004-1.001, similar to lab-based studies. Based on these results we conclude that redox reactions continue to affect U distribution in the ore zone and downgradient regions. We also measured aqueous selenium isotope (δ82Se) and molybdenum isotope (δ98Mo) compositions in the Rosita groundwater. Se(VI) primarily occurs in the upgradient wells and is absent in most ore zone and downgradient wells. Rayleigh distillation models suggest reduction of Se(VI) along the groundwater flow path and when superimposed on the U isotope data

  4. The first investigation of Wilms' tumour atomic structure-nitrogen and carbon isotopic composition as a novel biomarker for the most individual approach in cancer disease

    PubMed Central

    Taran, Katarzyna; Frączek, Tomasz; Sikora-Szubert, Anita; Sitkiewicz, Anna; Młynarski, Wojciech; Kobos, Józef; Paneth, Piotr

    2016-01-01

    The paper describes a novel approach to investigating Wilms' tumour (nephroblastoma) biology at the atomic level. Isotope Ratio Mass Spectrometry (IRMS) was used to directly assess the isotope ratios of nitrogen and carbon in 84 Wilms' tumour tissue samples from 28 cases representing the histological spectrum of nephroblastoma. Marked differences in nitrogen and carbon isotope ratios were found between nephroblastoma histological types and along the course of cancer disease, with a breakout in isotope ratio of the examined elements in tumour tissue found between stages 2 and 3. Different isotopic compositions with regard to nitrogen and carbon content were observed in blastemal Wilms' tumour, with and without focal anaplasia, and in poorly- and well-differentiated epithelial nephroblastoma. This first assessment of nitrogen and carbon isotope ratio reveals the previously unknown part of Wilms' tumour biology and represents a potential novel biomarker, allowing for a highly individual approach to treating cancer. Furthermore, this method of estimating isotopic composition appears to be the most sensitive tool yet for cancer tissue evaluation, and a valuable complement to established cancer study methods with prospective clinical impact. PMID:27732932

  5. The first investigation of Wilms' tumour atomic structure-nitrogen and carbon isotopic composition as a novel biomarker for the most individual approach in cancer disease.

    PubMed

    Taran, Katarzyna; Frączek, Tomasz; Sikora-Szubert, Anita; Sitkiewicz, Anna; Młynarski, Wojciech; Kobos, Józef; Paneth, Piotr

    2016-11-22

    The paper describes a novel approach to investigating Wilms' tumour (nephroblastoma) biology at the atomic level. Isotope Ratio Mass Spectrometry (IRMS) was used to directly assess the isotope ratios of nitrogen and carbon in 84 Wilms' tumour tissue samples from 28 cases representing the histological spectrum of nephroblastoma. Marked differences in nitrogen and carbon isotope ratios were found between nephroblastoma histological types and along the course of cancer disease, with a breakout in isotope ratio of the examined elements in tumour tissue found between stages 2 and 3. Different isotopic compositions with regard to nitrogen and carbon content were observed in blastemal Wilms' tumour, with and without focal anaplasia, and in poorly- and well-differentiated epithelial nephroblastoma. This first assessment of nitrogen and carbon isotope ratio reveals the previously unknown part of Wilms' tumour biology and represents a potential novel biomarker, allowing for a highly individual approach to treating cancer. Furthermore, this method of estimating isotopic composition appears to be the most sensitive tool yet for cancer tissue evaluation, and a valuable complement to established cancer study methods with prospective clinical impact.

  6. Does exercise stimulate protein breakdown in humans. Isotopic approaches to the problem

    SciTech Connect

    Wolfe, R.R.

    1987-10-01

    Protein metabolism in exercise has been investigated for 100 yr, yet it is still unclear if exercise induces an increased rate of protein breakdown. We have recently addressed this general question in a series of experiments in human subjects using stable isotopic tracers. In this paper, the results of those studies are reviewed. We have found that in light exercise the de-carboxylation of leucine is increased. However, urea production is not increased correspondingly, nor is the rate of incorporation into urea of nitrogen from either leucine or lysine. Further complicating the picture is the fact that lysine de-carboxylation is not markedly elevated in exercise. From these studies, we must conclude that isotopic techniques which have achieved general acceptance in other circumstances cannot reliably be used to answer the question of whether exercise stimulates protein breakdown in humans. However, these methods do provide results which enable a better understanding of the metabolism of the individual amino acids in exercise.

  7. Estimating pothole wetland connectivity to Pipestem Creek, North Dakota: an isotopic approach

    NASA Astrophysics Data System (ADS)

    Brooks, J. R.; Mushet, D. M.; Alexander, L. C.; Christensen, J.; Leibowitz, S. G.; Neff, B. P.; Rosenberry, D. O.; Rugh, W.; Vanderhoof, M.

    2016-12-01

    Understanding hydrologic connectivity between wetlands and perennial streams is critical to understanding how reliant stream flow is on wetlands within their watershed. We used the isotopic evaporation signal in water to examine wetland-stream hydrologic connectivity within Pipestem Creek watershed, North Dakota, which is dominated by prairie potholes. During a wetter-than-normal decade, Pipestem Creek exhibited an evaporated water signal that had approximately half the isotopic enrichment signal found in most evaporatively-enriched pothole wetlands. If evaporation was mainly occurring within the stream, we expected the evaporation signal to increase from upstream towards downstream. However, the signal either remained similar or decreased downstream over the two years of sampling. Groundwater measured at the water table adjacent to Pipestem Creek had isotopic values that indicated recharge from winter precipitation and had no significant evaporative enrichment. Using isotopic theory and discharge data, we estimated the surface area of open water necessary to generate the evaporation signal found within Pipestem Creek over time. The range of evaporating surface-area estimates was highly dynamic, spanning from 43 to 2653 ha of open water contributing to streamflow over time, and varied primarily with the amount of discharge. The average value (just over 600 ha) was well above the surface area of Pipestem Creek network (245 ha). This indicated that prairie pothole wetlands were important sources of stream flow in Pipestem Creek throughout the summer, as well as during snowmelt. This also demonstrated that at the lowest flows, the stream itself became disconnected from headwater stream reaches. We believe that this dynamic connectivity between pothole wetlands and Pipestem Creek occurred primarily when evaporatively-enriched water stored in pothole wetlands spilled to the stream during precipitation events.

  8. Integrated Stable Isotope - Reactive Transport Model Approach for Assessment of Chlorinated Solvent Degradation

    DTIC Science & Technology

    2016-05-01

    Reference herein to any specific commercial product, process , or service by trade name, trademark, manufacturer , or otherwise, does not necessarily...of non-degradative processes tend to have no or little selectivity in respect to the isotope composition of the contaminant . The benefit of the CSIA...controlled and monitored demonstration of contaminant attenuation from natural subsurface processes (USEPA, 1998). MNA remedies have several advantages

  9. Migration dynamics of clupeoids in the Schelde estuary: A stable isotope approach

    NASA Astrophysics Data System (ADS)

    Guelinckx, Jef; Maes, Joachim; De Brabandere, Loreto; Dehairs, Frank; Ollevier, Frans

    2006-02-01

    Large numbers of young of the year herring ( Clupea harengus L.) and sprat ( Sprattus sprattus (L.)) typically enter and remain within North Sea estuaries during the winter months. The main purpose of this study was to examine their migration dynamics between the North Sea and the Schelde estuary using C and N stable isotopes. Prior to this, stomach contents were used to verify the isotopic differences between the food sources at the sampling stations. From May 2000 to April 2001 fish were collected monthly in the upper and lower estuary. Muscle tissue and stomach contents were analyzed for δ13C and δ15N using an EA-IRMS. Based on the stomach contents, it was demonstrated that δ15N could not be used as a tracer for fish migration because the longitudinal estuarine δ15N gradient had reversed completely during autumn. The δ13C gradient, however, was found to be reliable for studying fish movement in the Schelde estuary. Seasonal movements of clupeoids in the Schelde estuary were analyzed by separating the temporal abundance patterns into migration groups based on their muscle isotopic composition. Immigration and emigration seem to occur continuously throughout the year. Most exchange occurred in November. During winter, immigration remained high but gradually decreased. Although the herring and sprat abundance further declined in the estuary during February and March, large seaward emigration was not fully demonstrated. As temporal overlap between immigration and emigration is concluded the results support the hypothesis that migration to estuarine nurseries is individually based.

  10. A Simple Approach to Simulate the Complexity of Planktonic Foraminifer Oxygen Isotope Time Series

    NASA Astrophysics Data System (ADS)

    Waelbroeck, C.; Roche, D. M.; Caley, T.; Kucera, M.; Jonkers, L.; Vazquez Riveiros, N.

    2016-12-01

    Oxygen isotopic curves measured on different planktonic foraminifer species at the same site often exhibit a variable offset. This means that the habitats of the involved species may change through time, which affects the interpretation of the paleoclimatic records. Here we propose to investigate the effect of habitat change by comparing measured and mechanistically computed calcite oxygen isotopic ratios (δ18O) for N. pachyderma left and right coiling, G. bulloides, and G. ruber. To this end we developed the module "Foraminifers as Modeled Entities" (FAME) using species and temperature-dependent growth rates to predict the vertical and seasonal habitat of each species. FAME is forced by hydrography and water δ18O taken from observations or models, and predicts sedimentary average δ18O for each planktonic foraminifer species. FAME yields excellent agreement with MARGO Late Holocene and core top planktonic δ18O data when forced with WOA13 temperature and GISS water δ18O data, in contrast to the calculation of calcite equilibrium δ18O without correction for foraminifer habitat. We explore the applicability of the module to the past by forcing it with vertical temperature and water δ18O profiles computed by the isotope-enabled Earth System Model of Intermediate Complexity iLOVECLIM and compare δ18O simulations with fossil data for the LGM time slice and for the last deglaciation.

  11. Assessing the authenticity of commercial deep-sea drinking water by chemical and isotopic approaches.

    PubMed

    Peng, Tsung-Ren; Liang, Wen-Jui; Liu, Tsang-Sen; Lin, Yu-Wen; Zhan, Wen-Jun

    2015-01-01

    This study combines stable isotopes and chemical elements with statistical principal component analysis (PCA) to assess the authenticity of bottled commercial drinking water desalinized from deep seawater in the Taiwan market. Isotopic results indicate that true bottled deep-sea drinking water (DSDW) exhibits about 0 ‰ for both δ(2)H and δ(18)O values, which are values similar to those of open seawater. By comparison, suspected counterfeit DSDW products display δ(2)H and δ(18)O values of around -51 ‰ and -8 ‰, respectively. These values are representative of terrestrial freshwater. In addition, suspected counterfeit DSDWs have δ and electrical conductivity values similar to a mixed water (MW) product that was manufactured by purifying terrestrial freshwater and adulterating this with small amounts of brine. Furthermore, PCA results indicate the chemical constitution of suspected DSDW products to be similar to the MW product which falls between purified terrestrial freshwater and desalinized open seawater. These similarities imply that suspected counterfeit DSDW products are manufactured in a similar manner to the declared MW product. This study demonstrates how combining knowledge of stable water isotopes and PCA can be used in assessing the authenticity of commercial DSDW products. The method should be of great interest to similar investigations elsewhere.

  12. An economic approach to isotopic enrichment of glycoproteins expressed from Sf9 insect cells.

    PubMed

    Walton, Wendy J; Kasprzak, Agnieszka J; Hare, Joan T; Logan, Timothy M

    2006-12-01

    It is estimated that over half of all proteins are glycosylated, yet only a small number of the structures in the protein data bank are of intact glycoproteins. One of the reasons for the lack of structural information on glycoproteins is the high cost of isotopically labeling proteins expressed from eukaryotic cells such as in insect and mammalian cells. In this paper we describe modifications to commercial insect cell growth medium that reduce the cost for isotopically labeling recombinant proteins expressed from Sf9 cells. A key aspect of this work was to reduce the amount of glutamine in the cell culture medium while maintaining sufficient energy yielding metabolites for vigorous growth by supplementing with glucose and algae-derived amino acids. We present an analysis of cell growth and protein production in Sf9 insect cells expressing secreted Thy1-GFP fusion construct. We also demonstrate isotopic enrichment of the Thy-1 protein backbone with 15N and carbohydrates with 13C by NMR spectroscopy.

  13. Potential of calcium isotopes to identify fractionations in vegetation: experimental approach

    NASA Astrophysics Data System (ADS)

    Cobert, F.; Schmitt, A.; Bourgade, P.; Stille, P.; Chabaux, F. J.; Badot, P.; Jaegler, T.

    2010-12-01

    This study aims to better understand the role of vegetation on the Ca cycle at the level of the critical zone of the Earth, in order to specify the mechanisms controlling the Ca absorption by plants at the rock/plant interface. To do this, we performed experiments using hydroponic plant cultures in a way that we could control the cooccuring geochemical and biological processes and determine the impact of the nutritive solution on the Ca cycle within plants. A dicotyledon and calcicole plant with rapid growth, the French bean (Phaseolus vulgaris L.), has been chosen to have access to one complete growth cycle. Several experiments have been conducted with two Ca concentrations, 5 (L) and 60 (H) ppm and two pH values (4 and 6) in the nutritive solution, for which the Ca concentration was maintained constant, so its Ca content is considered to be infinite. We determined Ca concentrations and isotopic ratios in the nutritive solution and in different organs (main roots, secondary roots, old and young stems, old and young leaves and fruits) at two different growth stages (10 days and 6 weeks). Our results show, in accord with previously published field studies, that the bean organs are all enriched in the light 40Ca isotope compared to the nutritive solution (e.g. Wigand et al., 2005; Page et al., 2008; Cenki-Tok et al., 2009; Holmden and Bélanger, 2010). We identify two fractionation levels. The first occurs during the uptake of the nutrient elements by the lateral roots. This implies that the main mechanisms of light isotope enrichments in the plant are due to electrochemical gradient transport processes taking place at this interface. The second fractionation can be observed within the plant itself and is due to the nature of the considered organ itself. Indeed structural reservoirs (primary roots, stem, reproductive organs) incorporate more the light 40Ca isotope compared to the transfer reservoirs (lateral roots, xylem sap, leaves). This could be linked to ion

  14. Apportioning sources of organic matter in streambed sediments: an integrated molecular and compound-specific stable isotope approach.

    PubMed

    Cooper, Richard J; Pedentchouk, Nikolai; Hiscock, Kevin M; Disdle, Paul; Krueger, Tobias; Rawlins, Barry G

    2015-07-01

    clearly demonstrate the effectiveness of an integrated molecular and stable isotope analysis for quantitatively apportioning, with uncertainty, plant-specific organic matter contributions to streambed sediments via a Bayesian mixing model approach.

  15. Food sources of wintering piscivorous waterbirds in coastal waters: A triple stable isotope approach for the southeastern Baltic Sea

    NASA Astrophysics Data System (ADS)

    Morkūnė, Rasa; Lesutienė, Jūratė; Barisevičiūtė, Rūta; Morkūnas, Julius; Gasiūnaitė, Zita R.

    2016-03-01

    This study uses a triple isotope approach (δ13C, δ15N, and δ34S) to quantify the main food sources for wintering piscivorous waterbirds in the coastal zone of the southeastern Baltic Sea. Significant differences of δ15N and δ34S values among pelagic fishes, benthic fishes, and benthopelagic European smelt (Osmerus eperlanus) were detected, while δ13C was similar among these sources. Using different combinations of δ13C, δ15N, and δ34S values in mixing models, we found that common guillemot (Uria aalge) and red-throated diver (Gavia stellata) mostly foraged on pelagic prey (50-70% and 51-56%, respectively), whereas great crested grebe (Podiceps cristatus) consumed benthic prey (48-53%). European smelt comprised a substantial proportion of the diet of studied birds (19-36%). A stable isotope approach can be recommended as a non-lethal method to study avian diets in the coastal waters of the Baltic Sea.

  16. Water and light improvement after thinning at a xeric site: Which weights the most? A dual isotope approach

    NASA Astrophysics Data System (ADS)

    Giuggiola, Arnaud; Ogée, Jérôme; Gessler, Arthur; Rigling, Andreas; Bugmann, Harald; Treydte, Kerstin

    2015-04-01

    Reductions in stand density foster individual tree growth due to increases of resources such as water, light and nutrients. Detailed knowledge of the short- to long-term physiological response underlying the growth response to thinning is crucial for the management of forests already suffering from recurrent drought-induced dieback. We applied a dual isotope approach together with mechanistic isotope models such as MuSICA to study the physiological processes underlying growth enhancement in a long-term thinning experiment in a xeric Pinus sylvestris forest in Switzerland. This approach allowed for identifying and disentangling changes in stomatal conductance and assimilation rate. Our results indicate that an increase in stomatal conductance outweighs an increase in assimilation, meaning that the observed growth releases in heavy thinned trees at our xeric site are primarily driven by enhanced water availability rather than by the increase in light availability. We conclude that in areas with isohydric species (drought avoiders) that tend to grow close to their physiological limits, thinning is highly recommended to maintain a less negative water balance and thus foster tree growth, and ultimately the survival rate of individual trees and forests.

  17. Improvement of water and light availability after thinning at a xeric site: which matters more? A dual isotope approach.

    PubMed

    Giuggiola, Arnaud; Ogée, Jérôme; Rigling, Andreas; Gessler, Arthur; Bugmann, Harald; Treydte, Kerstin

    2016-04-01

    Thinning fosters individual tree growth by increasing the availability of water, light and nutrients. At sites where water rather than light is limiting, thinning also enhances soil evaporation and might not be beneficial. Detailed knowledge of the short- to long-term physiological response underlying the growth responses to thinning is crucial for the management of forests already suffering from recurrent drought-induced dieback. We applied a dual isotope approach together with mechanistic isotope models to study the physiological processes underlying long-term growth enhancement of heavily thinned Pinus sylvestris in a xeric forest in Switzerland. This approach allowed us to identify and disentangle thinning-induced changes in stomatal conductance and assimilation rate. At our xeric study site, the increase in stomatal conductance far outweighed the increase in assimilation, implying that growth release in heavily thinned trees is primarily driven by enhanced water availability rather than increased light availability. We conclude that in forests with relatively isohydric species (drought avoiders) that are growing close to their physiological limits, thinning is recommended to maintain a less negative water balance and thus foster tree growth, and ultimately the survival of forest trees under drought. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  18. Towards a quantitative SERS approach--online monitoring of analytes in a microfluidic system with isotope-edited internal standards.

    PubMed

    März, Anne; Ackermann, Katrin R; Malsch, Daniéll; Bocklitz, Thomas; Henkel, Thomas; Popp, Jürgen

    2009-04-01

    In this contribution a new approach for quantitative measurements using surface-enhanced Raman spectroscopy (SERS) is presented. Combining the application of isotope-edited internal standard with the advantages of the liquid-liquid segmented-flow-based approach for flow-through SERS detection seems to be a promising means for quantitative SERS analysis. For the investigations discussed here a newly designed flow cell, tested for ideal mixing efficiency on the basis of grayscale-value measurements, is implemented. Measurements with the heteroaromatics nicotine and pyridine using their respective deuterated isotopomers as internal standards show that the integration of an isotopically labeled internal standard in the used liquid-liquid two-phase segmented flow leads to reproducible and comparable SERS spectra independent from the used colloid. With the implementation of an internal standard into the microfluidic device the influence of the properties of the colloid on the SERS activity can be compensated. Thus, the problem of a poor batch-to-batch reproducibility of the needed nanoparticle solutions is solved. To the best of our knowledge these are the first measurements combining the above mentioned concepts in order to correct for differences in the enhancement behaviour of the respective colloid. (c) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Isotopic Approaches to Allying Productivity and Sulfur Metabolism in Three Symbiotic Hydrothermal Vent Molluscs

    NASA Astrophysics Data System (ADS)

    Beinart, R.; Gartman, A.; Sanders, J. G.; Luther, G. W.; Girguis, P. R.

    2012-12-01

    Symbioses between animals and chemosynthetic bacteria predominate at hydrothermal vents. In these associations, the endosymbiotic bacteria utilize chemical reductants for the energy to support autotrophy, providing primary nutrition for the host. Despite their ubiquity at vents worldwide, little is known about the rates of productivity of these symbioses under different physico-chemical regimes or how their metabolism effects the local geochemical environment. To address this matter, we used high-pressure flow through incubations and stable isotopic tracers to maintain three genera of symbiotic mollusc - the gastropods Alviniconcha and Ifremeria, and the mussel Bathymodiolus - at vent-like conditions. Via the incorporation of isotopically labeled compounds, we assessed their productivity when using different reduced sulfur species as reductants. Using cyclic voltammetry, mass spectrometry and discrete geochemical analyses, we concurrently measured their effect on sulfur flux from the vessels. We found that the symbionts of all three genera can support autotrophy with hydrogen sulfide and thiosulfate, though at different rates. Additionally, by examining the rate of isotopic incorporation into biomass, we revealed intra-generic variability in productivity among the individuals in our experimental assemblages that are likely related to differences in the geochemical regime along the length of reactor. These geochemical gradients are due to the activity of other individuals within the vessel, since those organisms closest to the influent of the vent-like water had the highest measured carbon incorporation. Finally, we measured the uptake and excretion of sulfur species, which illustrate the degree to which these symbioses might impact local sulfur chemistry in situ. These experiments show that A) access to particular sulfur species differentially affects the productivity of vent symbioses, suggesting that competition for these substrates, both within and between host

  20. Isotopic Approach to Soil Carbonate Dynamics and Implications for Paleoclimatic Interpretations

    USGS Publications Warehouse

    Pendall, E.G.; Harden, J.W.; Trumbore, S.E.; Chadwick, O.A.

    1994-01-01

    The radiocarbon content and stable isotope composition of soil carbonate are best described by a dynamic system in which isotopic reequilibration occurs as a result of recurrent dissolution and reprecipitation. Depth of water penetration into the soil profile, as well as soil age, determines the degree of carbonate isotope reequilibration. We measured ??13C, ??18O and radiocarbon content of gravel rinds and fine (<2 mm) carbonate in soils of 3 .different ages (1000, 3800, and 6300 14 C yr B.P.) to assess the degree to which they record and preserve a climatic signal. In soils developing in deposits independently dated at 3800 and 6300 radiocarbon yr B.P., carbonate radiocarbon content above 40 cm depth suggests continual dissolution and reprecipitation, presumably due to frequent wetting events. Between 40 and 90 cm depth, fine carbonate is dissolved and precipitated as rinds that are not redissolved subsequently. Below 90 cm depth in these soils, radiocarbon content indicates that inherited, fine carbonate undergoes little dissolution and reprecipitation. In the 3800- and 6300-yr-old soils, ??13C in rind and fine carbonate follows a decreasing trend with depth, apparently in equilibrium with modern soil gas, as predicted by a diffusive model for soil CO2. ??18O also decreases with depth due to greater evaporative enrichment above 50 cm depth. In contrast, carbonate isotopes in a 1000-yr-old deposit do not reflect modern conditions even in surficial horizons; this soil has not undergone significant pedogenesis. There appears to be a lag of at least 1000 but less than 3800 yr before carbonate inherited with parent material is modified by ambient climatic conditions. Although small amounts of carbonate are inherited with the parent material, the rate of pedogenic carbonate accumulation indicates that Ca is derived primarily from eolian and rainfall sources. A model describing carbonate input and radiocarbon decay suggests that fine carbonate below 90 cm is mostly

  1. A Nd Isotopic Composition Modeling Approach of the Oceanic Thermohaline Circulation Change During LGM

    NASA Astrophysics Data System (ADS)

    Arsouze, T.; Dutay, J.; Lacan, F.; Jeandel, C.; Alkama, R.; Kageyama, M.; Piotrowski, A.

    2006-12-01

    The role of thermohaline circulation in climate change has been a matter of debate for a long time. Proxies of past ocean circulation such as δ13C or 231Pa/230Th suggest a relationship between North Atlantic Deep Water (NADW) strength and rapid climate change. Neodymium isotopic composition (Nd IC) is a quasi conservative geochemical tracer of water masses in the ocean interior and thus can be used as a proxy for NADW. Seawater Nd IC being recorded in marine sediments, this proxy is used to infer paleo-circulations on various time scales. Recent studies of Nd IC records, in the ferromanganese oxide components of a South Atlantic core, confirm the close relation between thermohaline circulation and North Atlantic climate changes through the last deglaciation (Piotrowski et al., 2004). Our purpose here is to model the Nd IC during the LGM and the Holocene with the Ocean Global Circulation Model NEMO, in the ORCA2 (2°) configuration. The explicit simulation of this proxy in the model allows to investigate and quantify the circulation change that corresponds to the Nd isotopic composition variation recorded in the sediments. We consider that the main source of Nd into the ocean is the interaction between water masses and continental margins (Boundary Exchange process; (Lacan and Jeandel, 2005). Boundary exchange is parameterized using a relaxing term (Arsouze et al., 2006). Simulated Nd IC distributions are evaluated by comparison with available records for the LGM and Holocene. References: Arsouze, T., Dutay, J.-C., Lacan, F. and Jeandel, C., 2006. Modeling the neodymium isotopic composition with a global ocean circulation model Chemical Geology, in press. Lacan, F. and Jeandel, C., 2005. Neodymium isotopes as a new tool for quantifying exchange fluxes at the continent - ocean interface. Earth and Planetary Science Letters, 232(3-4): 245-257. Piotrowski, A.M., Goldstein, S.L., Hemming, S.R. and Fairbanks, R.G., 2004. Intensification and variability of ocean

  2. Quantification of isotope-labeled and unlabeled folates and folate catabolites in urine samples by stable isotope dilution assay.

    PubMed

    Büttner, Barbara E; Ohrvik, Veronica E; Köhler, Peter; Witthöft, Cornelia M; Rychlik, Michael

    2013-01-01

    Dual-label stable isotope dilution assays for the simultaneous quantification of isotopologic folates in clinical samples offer the perspective for differentiating between unlabeled folates from endogenous body pools and administered [13C5]-labeled folates from a test dose when performing bioavailability trials. In contrast to intact folates, this methodology could hitherto not be applied to the quantification of the folate catabolites, p-aminobenzoyl glutamate and p-acetamidobenzoyl glutamate. In this study, [2H4]-p-aminobenzoyl glutamate, [2H4]-p-acetamidobenzoyl glutamate, and unlabeled p-acetamidobenzoyl glutamate were synthesized. The synthesis of the [2H4]-labeled compounds started at unlabeled p-aminobenzoic acid. For the formation of p-acetamidobenzoyl glutamate, p-aminobenzoyl glutamate was acetylated. The new substances were applied successfully in stable isotope dilution assays for the simultaneous quantification of the [13C5]-labeled and unlabeled folate catabolites, p-aminobenzoyl glutamate and p-acetamidobenzoyl glutamate, along with the predominant folate vitamers in urine. The assays were based on clean-up by strong anion exchange followed by liquid chromatography-tandem mass spectrometry detection. Assay sensitivity was sufficient to detect the folate catabolites in physiologic concentrations. The limit of detection was below 0.4 and 0.3 nmol/100 g for p-aminobenzoyl glutamate isotopologues and p-acetamidobenzoyl glutamate isotopologues in urine, respectively. The successful synthesis of [2H4]-p-aminobenzoyl glutamate, [2H4]-p-acetamidobenzoyl glutamate, and unlabeled p-acetamidobenzoyl glutamate and the implementation of these substances in stable isotope dilution assays allows dual-label designs that provide a more detailed insight into human folate metabolism.

  3. Tracing wastewater effluents in surface and groundwaters: a couple approach with organic/inorganic tracers and isotopes

    NASA Astrophysics Data System (ADS)

    Petelet-Giraud, Emmanuelle; Baran, Nicole; Soulier, Coralie

    2017-04-01

    In the context of land use change, the origins of contamination of water resources are often multiple, including for a single chemical element or molecule. For instance, excess of nitrates in both surface and groundwater can originate from agricultural practices and wastewater effluents. The discrimination of the origins and vectors of contamination in the environment is both an environmental and societal issue in order to define an integrated water resources management at the catchment or water body scale by implementing appropriate measures to effectively struggle against pollution. The objective of this study is to define a methodology for the identification of a "domestic wastewater" contamination within surface waters and groundwater. An ideal tracer should be conservative, persistent in the different water compartments, present in quantity above the detection limit and originate from a single type of pollution source. There is, however, no ideal tracer in the strict sense. Indeed, even chloride which is present in quantity in wastewater, and which behaves conservatively in the environment, is not an univocal tracer of wastewater, as it may come from atmospheric inputs, from the dissolution of evaporitic rocks, from the salting of roads or from fertilizers. To overcome this limitation, in this study, we propose a multi-tracer approach (chemical and isotopic) to identify and validate the relevance of foreseen tracers. Among the relevant tracers of wastewater, the following may be used for their intrinsic or combined discriminant power: 1) organic effluent tracers: nitrogen contents and isotopic ratios of nitrogen and oxygen of nitrates; 2) tracer of detergents: boron contents and boron isotopes; 3) pharmaceuticals tracers: e.g. carbamazepine, ibuprofen, paracetamol, gadolinium anomaly; 4) life-style tracers: e.g. caffeine. The originality of the study relies on small capacities wastewater treatment plants without tertiary treatment process. Results on a

  4. Contribution of recycled moisture to precipitation in oases of arid central Asia: A stable isotope approach

    NASA Astrophysics Data System (ADS)

    Wang, Shengjie; Zhang, Mingjun; Che, Yanjun; Chen, Fenli; Qiang, Fang

    2016-04-01

    Terrestrial moisture contributed by surface evaporation and transpiration, also known as recycled moisture, plays an important role in hydrological processes especially across arid central Asia. The stable hydrogen and oxygen isotopes can be used for water budget analysis to calculate the contribution of recycled moisture to precipitation between two locations along the moisture flow. Based on a three-component isotopic mixing model, the moisture recycling in oasis stations of arid central Asia during summer months is assessed. At large oases of Urumqi, the proportional contribution of recycled moisture to local precipitation is approximately 16.2%, and the mean proportions of surface evaporation and transpiration are 5.9% ± 1.5% and 10.3% ± 2.2%, respectively. At small oases like Shihezi and Caijiahu the contribution of recycled moisture is less than 5%, and the proportion of surface evaporation is much less than that of transpiration. The vegetative cover in arid central Asia is generally sparse, but the evapotranspiration contribution to precipitation cannot be ignored at the widely distributed oases. The oasis effect shows great variability depending on locations and water availability for evapotranspiration.

  5. Characterization of surface water and groundwater in the Damascus Ghotta basin: hydrochemical and environmental isotopes approaches

    NASA Astrophysics Data System (ADS)

    Kattan, Zuhair

    2006-11-01

    The hydrochemistry of major ions and environmental isotope compositions (18O, 2H and tritium) of water samples have been used to investigate the characteristics of rainfalls, surface water and groundwater in the Damascus Ghotta basin. The groundwater salinity in the Damascus Ghotta basin gradually increases, as the groundwater moves from western to south-eastern and north-eastern parts of the basin. A strong relationship exists between the Barada river and the surrounded groundwaters, mainly in terms of recharge by infiltration of surface waters. The groundwater quality in the Adra region has clearly become less saline as a result of establishment of the sewage-water-treatment station in this area since 1997. The uncommon depleted stable isotope concentrations in the vicinity of Al-Ateibeh Lake and Adra valley could be interpreted as a result of sub-flow recharge from the Cenomanian-Turonian aquifer, mostly prolonged along the Damascus Fault, which forms direct contact between this complex and the Quaternary alluvium aquifers. The extensive exploitation of water from the Cenomanian-Turonian aquifer for drinking water supply would shortly be reflected by a gradual decline of the groundwater table in the Damascus Ghotta basin. Amelioration of water quality in the Damascus basin still requires further management strategies and efforts to be taken within the forthcoming years.

  6. Characterization of Surface Water and Groundwater Quality in the Lower Tano River Basin Using Statistical and Isotopic Approach.

    NASA Astrophysics Data System (ADS)

    Edjah, Adwoba; Stenni, Barbara; Cozzi, Giulio; Turetta, Clara; Dreossi, Giuliano; Tetteh Akiti, Thomas; Yidana, Sandow

    2017-04-01

    Adwoba Kua- Manza Edjaha, Barbara Stennib,c,Giuliano Dreossib, Giulio Cozzic, Clara Turetta c,T.T Akitid ,Sandow Yidanae a,eDepartment of Earth Science, University of Ghana Legon, Ghana West Africa bDepartment of Enviromental Sciences, Informatics and Statistics, Ca Foscari University of Venice, Italy cInstitute for the Dynamics of Environmental Processes, CNR, Venice, Italy dDepartment of Nuclear Application and Techniques, Graduate School of Nuclear and Allied Sciences University of Ghana Legon This research is part of a PhD research work "Hydrogeological Assessment of the Lower Tano river basin for sustainable economic usage, Ghana, West - Africa". In this study, the researcher investigated surface water and groundwater quality in the Lower Tano river basin. This assessment was based on some selected sampling sites associated with mining activities, and the development of oil and gas. Statistical approach was applied to characterize the quality of surface water and groundwater. Also, water stable isotopes, which is a natural tracer of the hydrological cycle was used to investigate the origin of groundwater recharge in the basin. The study revealed that Pb and Ni values of the surface water and groundwater samples exceeded the WHO standards for drinking water. In addition, water quality index (WQI), based on physicochemical parameters(EC, TDS, pH) and major ions(Ca2+, Na+, Mg2+, HCO3-,NO3-, CL-, SO42-, K+) exhibited good quality water for 60% of the sampled surface water and groundwater. Other statistical techniques, such as Heavy metal pollution index (HPI), degree of contamination (Cd), and heavy metal evaluation index (HEI), based on trace element parameters in the water samples, reveal that 90% of the surface water and groundwater samples belong to high level of pollution. Principal component analysis (PCA) also suggests that the water quality in the basin is likely affected by rock - water interaction and anthropogenic activities (sea water intrusion). This

  7. Stable-isotope and solute-chemistry approaches to flow characterization in a forested tropical watershed, Luquillo Mountains, Puerto Rico

    USGS Publications Warehouse

    Scholl, Martha A.; Shanley, James B.; Murphy, Sheila F.; Willenbring, Jane K; Occhi, Marcie; González, Grizelle

    2015-01-01

    subsurface watershed flowpaths, and better understanding of shallow hillslope and deeper groundwater processes in the watershed will require sub-weekly data and detailed transit time modeling. A combined isotopic and solute chemistry approach can guide further studies to a more comprehensive model of the hydrology, and inform decisions for managing water supply with future changes in climate and land use.

  8. Towards a quantitative approach to the utilization of magnetic effects as a means of isotopic enrichment

    SciTech Connect

    Turro, N.J.

    1992-05-01

    The photolysis of methyldesoxybenzoin in sodium dodecyl sulfate micellar solutions, produces benzaldehyde and styrene as disproportionation products of the triplet geminate radical pair. We have found that both the benzaldehyde and the recovered methyldeoxybenzoin are enriched in 13-C. These results provide the first direct evidence that both recombination and disproportionation are identically selective to the magnetic isotope effect, an important point anticipated by theory, but previously untested. An investigation of the photostereoisomerization of the diasteromers of 2,4-diphenylpentane-3-one in micellar solutions has allowed a quantitative analysis of the probabilities of recombination of the micellized primary geminate radical pair toward formation of different combination products. The results show that within the confidence provided by highly accurate data, the primary geminate radical pairs recombine to regenerate the precursor substrate structure or diastereomer with equal probability.

  9. A stable isotope approach to assessing water loss in fruits and vegetables during storage.

    PubMed

    Greule, Markus; Rossmann, Andreas; Schmidt, Hanns-Ludwig; Mosandl, Armin; Keppler, Frank

    2015-02-25

    Plant tissue water is the source of oxygen and hydrogen in organic biomatter. Recently, we demonstrated that the stable hydrogen isotope value (δ(2)H) of plant methoxyl groups is a very reliable and easily available archive for the δ(2)H value of this tissue water. Here we show in a model experiment that the δ(2)H values of methoxyl groups remain unchanged after water loss during storage of fruits and vegetables under controlled conditions, while δ(2)H and δ(18)O values of tissue water increase. This enhancement is plant-dependent, and the correlation differs from the meteoric water line. The δ(18)O value is better correlated to the weight decrease of the samples. Therefore, we postulate that the δ(2)H value of methoxyl groups and the δ(18)O value of tissue water are suitable parameters for checking postharvest alterations of tissue water, either addition or loss.

  10. Isotope tracer approaches for characterizing artificial recharge and demonstrating regulatory compliance

    SciTech Connect

    Davisson, M.L.; Hudson, G.B.; Moran, J.E.; Neimeyer, S.; Herndon, R., LLNL

    1998-05-01

    Potable reuse of groundwater from wastewater origins requires new methods to quantify proposed regulatory criteria such as subsurface residence times, dilution, and water quality transitions. Isotope tracers oxygen-18 ({sup 18}O), tritium ({sup 3}H), dissolved noble gases, and radiocarbon ({sup 14}C) have been used together in Orange County to age-date groundwater, quantify mixing, and characterize changes in total organic carbon (TOC). Simultaneous measurements of {sup 3}H and helium-3 ({sup 3}He) are used to determine groundwater ages between 1 and 40 years with uncertainties of plus/minus one year. These ages map preferred groundwater flowpaths and identify groundwater ages of less than or equal to 1 year. Wells recharged from the Anaheim Lake spreading basin were used to monitor arrival times and dilution of 6000 acre-ft of {sup 18}O-distinct Colorado River (COR) water introduced during a controlled recharge experiment. In addition, isotopically enriched Xe was introduced into the basin to quantify COR dilution of greater than 90%. The COR arrived at 7 wells between 30 and 200 days after recharge commenced. The COR was diluted up to 90% at distances and depths less than 1000 feet from the lake. Results suggest that dilution of 50% is obtained within 6 months from time or recharge. {sup 14}C measured in TOC of Anaheim Lake bottom water was 3 pmc higher than the DOC. The same water collected one month later in a nearby monitoring well, as confirmed by {sup 18}O, showed a 50% reduction in TOC concentration, and a 7 pmc decrease in {sup 14}C relative to the surface water. This result suggests that older carbon components increase in TOC after recharge.

  11. Tracing carbon uptake from a natural CO2 spring into tree rings: an isotope approach.

    PubMed

    Saurer, Matthias; Cherubini, Paolo; Bonani, Georges; Siegwolf, Rolf

    2003-10-01

    We analyzed 14C, 13C and 18O isotope variations over a 50-year period in tree rings of Quercus ilex L. trees growing at a natural CO2 spring in a Mediterranean ecosystem. We compared trees from two sites, one with high and one with low exposure to CO2 from the spring. The spring CO2 is free of 14C. Thus, this carbon can be traced in the wood, and the amount originating from the spring calculated. The amount decreased over time, from about 40% in 1950 to 15% at present for the site near the spring, indicating a potential difficulty in the use of natural CO2 springs for elevated CO2 research. The reason for the decrease may be decreasing emission from the spring or changes in stand structure, e.g., growth of the canopy into regions with lower concentrations. We used the 14C-calculated CO2 concentration in the canopy to determine the 13C discrimination of the plants growing under elevated CO2 by calculating the effective canopy air 13C/12C isotopic composition. The trees near the spring showed a 2.5 per thousand larger 13C discrimination than the more distant trees at the beginning of the investigated period, i.e., for the young trees, but this difference gradually disappeared. Higher discrimination under elevated CO2 indicated reduced photosynthetic capacity or increased stomatal conductance. The latter assumption is unlikely as inferred from the 18O data, which were insensitive to CO2 concentration. In conclusion, we found evidence for a downward adjustment of photosynthesis under elevated CO2 in Q. ilex in this dry, nutrient-poor environment.

  12. Tracing carbon flow through coral reef food webs using a compound-specific stable isotope approach.

    PubMed

    McMahon, Kelton W; Thorrold, Simon R; Houghton, Leah A; Berumen, Michael L

    2016-03-01

    Coral reefs support spectacularly productive and diverse communities in tropical and sub-tropical waters throughout the world's oceans. Debate continues, however, on the degree to which reef biomass is supported by new water column production, benthic primary production, and recycled detrital carbon (C). We coupled compound-specific stable C isotope ratio (δ(13)C) analyses with Bayesian mixing models to quantify C flow from primary producers to coral reef fishes across multiple feeding guilds and trophic positions in the Red Sea. Analyses of reef fishes with putative diets composed primarily of zooplankton (Amblyglyphidodon indicus), benthic macroalgae (Stegastes nigricans), reef-associated detritus (Ctenochaetus striatus), and coral tissue (Chaetodon trifascialis) confirmed that δ(13)C values of essential amino acids from all baseline C sources were both isotopically diagnostic and accurately recorded in consumer tissues. While all four source end-members contributed to the production of coral reef fishes in our study, a single-source end-member often dominated dietary C assimilation of a given species, even for highly mobile, generalist top predators. Microbially reworked detritus was an important secondary C source for most species. Seascape configuration played an important role in structuring resource utilization patterns. For instance, Lutjanus ehrenbergii showed a significant shift from a benthic macroalgal food web on shelf reefs (71 ± 13 % of dietary C) to a phytoplankton-based food web (72 ± 11 %) on oceanic reefs. Our work provides insights into the roles that diverse C sources play in the structure and function of coral reef ecosystems and illustrates a powerful fingerprinting method to develop and test nutritional frameworks for understanding resource utilization.

  13. Investigation of the Mg isotopes using the shell-model-like approach in relativistic mean field theory

    NASA Astrophysics Data System (ADS)

    Bai, Hong-Bo; Zhang, Zhen-Hua; Li, Xiao-Wei

    2016-11-01

    Ground state properties for Mg isotopes, including binding energies, one- and two-neutron separation energies, pairing energies, nuclear matter radii and quadrupole deformation parameters, are obtained from the self-consistent relativistic mean field (RMF) model with the pairing correlations treated by a shell-mode-like approach (SLAP), in which the particle-number is conserved and the blocking effects are treated exactly. The experimental data, including the binding energies and the one- and two-neutron separation energies, which are sensitive to the treatment of pairing correlations and block effects, are well reproduced by the RMF+SLAP calculations. Supported by NSFC (11465001,11275098, 11275248, 11505058,11165001) and Natural Science Foundation of Inner Mongolia of China (2016BS0102)

  14. Approaching the Final Frontier in Lateral Resolution for Isotopic and Chemical Analysis with CHILI

    NASA Astrophysics Data System (ADS)

    Davis, A. M.; Stephan, T.; Pellin, M.; Savina, M.; Yokochi, R.; Trappitsch, R.; Liu, N.; King, A.

    2011-12-01

    The small sizes of samples returned by recent (Stardust, Hayabusa) and future (OSIRIS-REx) sample return missions to comets and asteroids, as well as the small sizes of presolar grains in and interplanetary dust particles (IDPs) are driving improvements in lateral resolution and sensitivity beyond what is available with current state-of-the-art secondary ion mass spectrometry (SIMS) instruments. SIMS lateral resolution has reached ~50 nm and useful yields are at most a few percent. We are completing construction of CHILI (the CHicago Instrument for Laser Ionization), a resonant ionization mass spectrometry (RIMS) nanobeam instrument designed for isotopic and chemical analysis at the few-nm scale with a useful yield of ≥35% [1]. CHILI is equipped with a COBRA-FIB high resolution liquid metal ion gun (LMIG) and an e-CLIPSE Plus field emission electron gun from Orsay Physics, each of which can be focused to <4 nm. The electron gun will be used for secondary electron imaging, as the built-in optical microscope is diffraction-limited to ~0.5 μm. A piezoelectric stage capable of reproducible nm-scale motions and equipped with a sample holder that will accept a wide variety of sample mounts is operational. The flight tube for the time-of-flight mass spectrometer mounted vertically above the sample chamber; this assembly is mounted in the center of an H-shaped laser table equipped with active vibration cancellation devices. The table has been demonstrated to have a vertical vibrational amplitude of less than 0.2 nm. Resonant ionization will be done with six Ti:sapphire tunable solid state lasers pumped with three 40W Nd:YLF lasers, which will allow two to three elements to be analyzed simultaneously. Ion detection in existing RIMS instruments [2,3] is done with a microchannel plate with a single anode. Isotope ratio precision is limited by counting statistics, as no more than one ion of the most abundant isotope of an element can be counted for each pulse. CHILI will

  15. A Noninvasive Isotopic Approach to Estimate the Bone Lead Contribution to Blood in Children: Implications for Assessing the Efficacy of Lead Abatement

    PubMed Central

    Gwiazda, Roberto; Campbell, Carla; Smith, Donald

    2005-01-01

    Lead hazard control measures to reduce children’s exposure to household lead sources often result in only limited reductions in blood lead levels. This may be due to incomplete remediation of lead sources and/or to the remobilization of lead stores from bone, which may act as an endogenous lead source that buffers reductions in blood lead levels. Here we present a noninvasive isotopic approach to estimate the magnitude of the bone lead contribution to blood in children following household lead remediation. In this approach, lead isotopic ratios of a child’s blood and 5-day fecal samples are determined before and after a household intervention aimed at reducing the child’s lead intake. The bone lead contribution to blood is estimated from a system of mass balance equations of lead concentrations and isotopic compositions in blood at the different times of sample collection. The utility of this method is illustrated with three cases of children with blood lead levels in the range of 18–29 μg/dL. In all three cases, the release of lead from bone supported a substantial fraction of the measured blood lead level postintervention, up to 96% in one case. In general, the lead isotopic compositions of feces matched or were within the range of the lead isotopic compositions of the household dusts with lead loadings exceeding U.S. Environmental Protection Agency action levels. This isotopic agreement underscores the utility of lead isotopic measurements of feces to identify household sources of lead exposure. Results from this limited number of cases support the hypothesis that the release of bone lead into blood may substantially buffer the decrease in blood lead levels expected from the reduction in lead intake. PMID:15626656

  16. The Relative Importance of Terrestrial Versus Marine Sediment Sources to the Nueces- Corpus Christi Estuary, Texas: An Isotopic Approach

    NASA Astrophysics Data System (ADS)

    Yeager, K. M.; Santschi, P. H.; Schindler, K. J.; Andres, M. J.; Weaver, E. A.

    2006-05-01

    Determining principle sources of sediment to coastal systems is an important and complex problem that figures prominently in a myriad of geological, geomorphological, geochemical and biological processes. Lithogenic (226Ra, 228Ra, 228Th, 230Th, 232Th) and fallout (137Cs, 210Pb) isotopes were used in conjunction with sedimentological methods to determine rates of sedimentation in the Nueces Delta and Nueces-Corpus Christi Estuary and to assess the relative importance of marine versus terrestrial sediment sources to the estuary. Sampling focused primarily on the lower Nueces River, Nueces Delta, Nueces Bay, Corpus Christi Bay, Gulf Intracoastal Waterway (GIW) and Gulf of Mexico (GOM). Gain size data show GIW and GOM sediments to be dominantly sands, Corpus Christi Bay sediments to be dominantly clays and sediments from all other sampled areas to be more homogenized in grain size, suggesting that near shore oceanic sediments are sands derived predominantly from long shore transport in the littoral zone. Bed load and suspended sediments sourced from the Nueces River provide sand and fines to the Nueces Delta and Bay, where the coarser size fractions are effectively retained. Similarity of lithogenic isotope ratios in surface sediment types throughout the system precluded a numeric approach to discerning the importance of each of the two large scale sediment source areas (terrestrial and marine). A stepwise, graphical examination of discrete lithogenic isotope activity concentrations shows more promise. Terrestrial, marine and bay sediment means for 226Ra v. 232Th, 226Ra v. 230Th and 228Ra v. 232Th show that terrestrial and marine sediment sources have different signatures, despite having a similar grain size distribution (sands), and that sediment deposited in Nueces and Corpus Christi Bays are indistinguishable from the terrestrial component. Supporting evidence is provided by thorium isotopes, 230Th v. 232Th, 228Th v. 232Th and 228Th v. 230Th. Nueces Delta

  17. Investigation of the Water Quality of Six Major Rivers in South Korea: Statistical and Isotopic Approaches

    NASA Astrophysics Data System (ADS)

    Shin, W.; Ryu, J.; Lee, K.; Park, Y.; Chung, G.

    2008-12-01

    Seasonal and spatial variation in water quality and contaminant sources were investigated in six major rivers in South Korea that vary widely in drainage area and length. The contents of dissolved loads in the rivers varied seasonally, and some dissolved ions such as Cl- and NO3- showed large spatial differences in all of the rivers. The water type changed from Ca-HCO3 in the upper reaches to Na-HCO3-SO4 in the lower reaches, probably because of anthropogenic contamination. Compared with the Sumjin and Mankyung rivers, which flow mainly through forested areas with limited agricultural activity, the other four rivers, which flow through agricultural and urban areas, registered much higher Cl- and NO3- concentrations. Statistical analyses showed that this seasonal and spatial variation occurs in all of the rivers and that Cl- and NO3- originate from different sources. The nitrogen and oxygen isotopes of dissolved nitrate indicated that the rivers are significantly affected by manure, sewage, or both.

  18. Approaching the N=82 shell closure with mass measurements of Ag and Cd isotopes

    SciTech Connect

    Breitenfeldt, M.; Baruah, S.; Rosenbusch, M.; Schweikhard, L.; Borgmann, Ch.; Boehm, Ch.; George, S.; Audi, G.; Lunney, D.; Minaya-Ramirez, E.; Naimi, S.; Beck, D.; Dworschak, M.; Herfurth, F.; Savreux, R.; Yazidjian, C.; Blaum, K.; Cakirli, R. B.; Casten, R. F.; Delahaye, P.

    2010-03-15

    Mass measurements of neutron-rich Cd and Ag isotopes were performed with the Penning trap mass spectrometer ISOLTRAP. The masses of {sup 112,114-124}Ag and {sup 114,120,122-124,126,128}Cd, determined with relative uncertainties between 2x10{sup -8} and 2x10{sup -7}, resulted in significant corrections and improvements of the mass surface. In particular, the mass of {sup 124}Ag was previously unknown. In addition, other masses that had to be inferred from Q values of nuclear decays and reactions have now been measured directly. The analysis includes various mass differences, namely the two-neutron separation energies, the applicability of the Garvey-Kelson relations, double differences of masses deltaV{sub pn}, which give empirical proton-neutron interaction strengths, as well as a comparison with recent microscopic calculations. The deltaV{sub pn} results reveal that for even-even nuclides around {sup 132}Sn the trends are similar to those in the {sup 208}Pb region.

  19. The effect of nitrogen loading on a brackish estuarine faunal community: A stable isotope approach

    USGS Publications Warehouse

    Keats, R.A.; Osher, L.J.; Neckles, H.A.

    2004-01-01

    Coastal ecosystems worldwide face increased nutrient enrichment from shoreline and watershed development and atmospheric pollution. We investigated the response of the faunal community of a small microtidal estuary dominated by Ruppia maritima (widgeon grass) in Maine, United States, to increased nitrogen loading using an in situ mesocosm enrichment experiment. Community response was characterized by assessing quantitative shifts in macroin-vertebrate community composition and identifying changes in food web structure using stable carbon and nitrogen isotope ratios of producers and consumers. The community was dominated by brackish water invertebrates including midge larvae, oligochaetes, damselfly larvae, amphipods, and ostracods. Experimental nutrient additions resulted in significantly lower densities of herbivorous chironomids and predatory damselflies and greater densities of deposit feeding oligochaetes. Grazing midge larvae (Chironomidae: Dicrotendipes, Cricotopus) consumed epiphytic algae under both natural and enriched conditions. Deposit feeding Chironomus was dependent on allochthonous sources of detritus under natural conditions and exhibited a shift to autochthonous sources of detritus under enriched conditions. Predatory Enallagma primarily consumed grazing chironomids under all but the highest loading conditions. Experimental nutrient loading resulted in an increase in generalist deposit feeders dependent on autochthonous sources of detritus.

  20. Microbial Utilization of Estuarine Dissolved Organic Carbon: a Stable Isotope Tracer Approach Tested by Mass Balance

    PubMed Central

    Hullar, M.; Fry, B.; Peterson, B. J.; Wright, R. T.

    1996-01-01

    The natural stable isotope values of different plants have been used to trace the fate of organic carbon that enters estuarine ecosystems. Experiments were designed to determine the magnitude of (delta) (sup13)C changes of dissolved organic carbon (DOC) derived from tidal marsh vegetation that occurred during bacterial decomposition. Bacteria were grown on DOC leached from estuarine Spartina alterniflora and Typhus angustifolia plants. In four experiments, 25 to 80% of the initial carbon (2.6 to 9.1 mM organic C) was converted to bacterial biomass and CO(inf2). Mass balance calculations showed good recovery of total C and (sup13)C at the end of these experiments (100% (plusmn) 14% total C; (plusmn) 1(permil) (delta) (sup13)C). The (delta) (sup13)C values of DOC, bacterial biomass, and respired CO(inf2) changed only slightly in the four experiments by average values of -0.6, +1.4, and +0.5(permil), respectively. These changes are small relative to the range of (delta) (sup13)C values represented by different organic carbon sources to estuaries. Thus, microbial (delta) (sup13)C values determined in the field helped to identify the source of the carbon assimilated by bacteria. PMID:16535358

  1. Relative bioavailability of metaproterenol in humans utilizing a single dose, stable isotope approach

    SciTech Connect

    Hatch, F.; McKellop, K.; Hansen, G.; MacGregor, T.

    1986-09-01

    The relative bioavailability of metaproterenol (3,5-dihydroxy-alpha-((isopropylamino)methyl)benzyl alcohol) following a single dose (10-mg metaproterenol sulfate tablet) was studied in six normal male volunteers using coadministration of a solution of a deuterated analogue (metaproterenol-d7 sulfate). The bioavailability of the tablet formulation relative to that of the oral solution was 92 +/- 9%, with excellent power at the 5% significance level. Comparison of the coadministration of the labeled and unlabeled metaproterenol sulfate solutions in two subjects after a one-week washout demonstrated the absence of an isotope effect on either absorption or elimination. A GC-MS assay for metaproterenol was developed to measure plasma concentrations resulting from oral administration. The assay was linear over the range of 0.5-8 ng/mL, corresponding to typical plasma metaproterenol concentrations obtained after a single 10-mg oral dose. Accuracy and precision data were obtained at metaproterenol concentrations of 1.0 and 2.0 ng/mL plasma to demonstrate the applicability of the assay for bioavailability studies. Following oral administration, metaproterenol showed peak plasma concentrations of 2.2 to 13 ng/mL at 0.75 to 3.0 h, with a terminal harmonic mean half-life of 2.1 h over the plasma concentration range studied. The renal clearance of 133-158 mL/min for metaproterenol slightly exceeds the glomerular filtration rate in humans.

  2. Trace metals dynamics under contrasted land uses: contribution of statistical, isotopic, and EXAFS approaches.

    PubMed

    Bonnot, Caroline A; Gélabert, Alexandre; Louvat, Pascale; Morin, Guillaume; Proux, Olivier; Benedetti, Marc F

    2016-05-24

    Three sub-basins of the Seine River (France) under contrasted land uses (i.e., forested, agricultural, and urban) have been investigated in order to assess the origin and seasonal variation of trace metals, and evaluate their geochemical background and dynamics. Our results highlight a high anthropogenic impact on all elements for both the dissolved and particulate fractions. The main source for each element in the dissolved phase was determined and shows that transition and post-transition metals mainly originate from forested areas, while alkali and alkaline earth elements, metalloids, and halogens rather originate from agricultural land use. Conversely, for the particulate phase, most of the elements cannot be associated with a specific land use. Seasonal variation of elements was assessed according to the forested and agricultural land uses, and geochemical backgrounds were determined using average export rates, highlighting that the geochemical background for the forested land use is higher than the agricultural one for most of the elements. Finally, to confirm those results, Zn dynamics in the three characteristic sub-basins and between the different land uses was investigated using a combination of Zn speciation, Zn isotopic ratio, and Zn export rates.

  3. An isotope hydrochemical approach to understand fluoride release into groundwaters of the Datong Basin, Northern China.

    PubMed

    Su, Chunli; Wang, Yanxin; Xie, Xianjun; Zhu, Yapeng

    2015-04-01

    The hydrogeochemical and isotopic investigations of high fluoride (up to 8.26 mg L(-1)) groundwater in the Datong Basin, Northern China were carried out in order to evaluate the geochemical controls on fluoride enrichment. The groundwater fluoride concentration tends to increase along with the regional groundwater flow path away from the basin margins, towards the central parts of the basin. Groundwater with high F concentrations has a distinctive major ion chemistry, being generally HCO3(-)-rich, Na-rich, Ca-poor, and having weak alkaline pH values (7.2 to 8.2) and Na-HCO3 waters. These data indicate that variations in the groundwater major ion chemistry and possibly pH, which are controlled by water-rock interaction processes in the aquifer, are important in mobilizing F. Positive correlations between fluoride with lithogenic sodium (LNa) and HCO3(-) in groundwater show that the high fluoride content and alkaline sodic characteristics of groundwater result from dissolution of fluorine-bearing minerals. The occurrence and behavior of fluorine in groundwater are mainly controlled by fluorite precipitation as a function of Ca(2+) concentration. A positive correlation between fluoride and δ(18)O, low F(-)/Cl(-) ratios, and the low tritium level in the fluoride-rich groundwater indicate the effects of long-term water-rock interactions and intensive evapotranspiration.

  4. Dual-Labeled Near-Infrared/(99m)Tc Imaging Probes Using PAMAM-Coated Silica Nanoparticles for the Imaging of HER2-Expressing Cancer Cells.

    PubMed

    Yamaguchi, Haruka; Tsuchimochi, Makoto; Hayama, Kazuhide; Kawase, Tomoyuki; Tsubokawa, Norio

    2016-07-07

    We sought to develop dual-modality imaging probes using functionalized silica nanoparticles to target human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancer cells and achieve efficient target imaging of HER2-expressing tumors. Polyamidoamine-based functionalized silica nanoparticles (PCSNs) for multimodal imaging were synthesized with near-infrared (NIR) fluorescence (indocyanine green (ICG)) and technetium-99m ((99m)Tc) radioactivity. Anti-HER2 antibodies were bound to the labeled PCSNs. These dual-imaging probes were tested to image HER2-overexpressing breast carcinoma cells. In vivo imaging was also examined in breast tumor xenograft models in mice. SK-BR3 (HER2 positive) cells were imaged with stronger NIR fluorescent signals than that in MDA-MB231 (HER2 negative) cells. The increased radioactivity of the SK-BR3 cells was also confirmed by phosphor imaging. NIR images showed strong fluorescent signals in the SK-BR3 tumor model compared to muscle tissues and the MDA-MB231 tumor model. Automatic well counting results showed increased radioactivity in the SK-BR3 xenograft tumors. We developed functionalized silica nanoparticles loaded with (99m)Tc and ICG for the targeting and imaging of HER2-expressing cells. The dual-imaging probes efficiently imaged HER2-overexpressing cells. Although further studies are needed to produce efficient isotope labeling, the results suggest that the multifunctional silica nanoparticles are a promising vehicle for imaging specific components of the cell membrane in a dual-modality manner.

  5. Dual-Labeled Near-Infrared/99mTc Imaging Probes Using PAMAM-Coated Silica Nanoparticles for the Imaging of HER2-Expressing Cancer Cells

    PubMed Central

    Yamaguchi, Haruka; Tsuchimochi, Makoto; Hayama, Kazuhide; Kawase, Tomoyuki; Tsubokawa, Norio

    2016-01-01

    We sought to develop dual-modality imaging probes using functionalized silica nanoparticles to target human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancer cells and achieve efficient target imaging of HER2-expressing tumors. Polyamidoamine-based functionalized silica nanoparticles (PCSNs) for multimodal imaging were synthesized with near-infrared (NIR) fluorescence (indocyanine green (ICG)) and technetium-99m (99mTc) radioactivity. Anti-HER2 antibodies were bound to the labeled PCSNs. These dual-imaging probes were tested to image HER2-overexpressing breast carcinoma cells. In vivo imaging was also examined in breast tumor xenograft models in mice. SK-BR3 (HER2 positive) cells were imaged with stronger NIR fluorescent signals than that in MDA-MB231 (HER2 negative) cells. The increased radioactivity of the SK-BR3 cells was also confirmed by phosphor imaging. NIR images showed strong fluorescent signals in the SK-BR3 tumor model compared to muscle tissues and the MDA-MB231 tumor model. Automatic well counting results showed increased radioactivity in the SK-BR3 xenograft tumors. We developed functionalized silica nanoparticles loaded with 99mTc and ICG for the targeting and imaging of HER2-expressing cells. The dual-imaging probes efficiently imaged HER2-overexpressing cells. Although further studies are needed to produce efficient isotope labeling, the results suggest that the multifunctional silica nanoparticles are a promising vehicle for imaging specific components of the cell membrane in a dual-modality manner. PMID:27399687

  6. Examining the linkages between forest water use, hydrology, and climate using dual-isotope approaches: insights and challenges in headwater catchments (Invited)

    NASA Astrophysics Data System (ADS)

    Barnard, H. R.; Brooks, J. R.; Pypker, T. G.; McDonnell, J. J.; Bond, B. J.; Williams, D. G.

    2010-12-01

    The amount of biologically available water is arguably the central driver in plant processes. While many studies have examined the hydrological components of biologically available water, the role that vegetation water use plays within the forested ecosystem water balance is poorly understood. Fundamental questions of forests' effect on the hydrologic cycle remain unanswered. Stable isotope observations play an important role in studies that explore the interface between plant physiological function and watershed flowpaths, flow sources, and residence times. We use multiple approaches, including stable isotopes to mechanistically assess the inter-relationships between vegetation water use, hydrology, and climate. We measured deuterium and 18O of xylem water and soil water to track changes in the depth of transpiration source water throughout the summers in a headwater catchment in western Oregon. Additionally, we measured transpiration, soil moisture, and foliar pre-dawn water potential. Forest transpiration and soil evaporation are often not separately measured, and yet respond to environmental drivers in fundamentally different ways. A promising approach for partitioning the evapotranspiration into its component fluxes involves measurement of the stable isotope composition (2H and 18O) of water vapor exchanged between vegetation and atmosphere. We present some preliminary data examining changes in ET partitioning in response to bark beetles outbreaks in the Rocky Mountains. Last, to examine the linkages between vegetation function and micro-climate, we applied a dual isotope (13C and 18O) approach to infer physiological response of trees to changing environmental conditions. We found that stable isotopes of oxygen were directly related to stomatal conductance and inversely related to relative humidity; however, the relationship with relative humidity was more apparent. The correlation of stable isotopes in tree rings with environmental variables can be

  7. Fate of terrestrial DOC within stream biofilm communities: a stable isotope approach (Invited)

    NASA Astrophysics Data System (ADS)

    Wiegner, T. N.; Kaplan, L.; Ziegler, S. E.; Findlay, R. H.

    2010-12-01

    Heterotrophic members of the biofilm community play a critical ecological role in lotic ecosystems. They take up, degrade, and mineralize organic carbon, often dominate community respiration, and are a critical link to higher trophic levels through the microbial loop. The goal of our study was to identify who within the stream biofilm community actively metabolizes stream dissolved organic carbon (DOC) and ultimately controls stream ecosystem metabolism. This goal was accomplished by labeling heterotrophic members of the stream biofilm community in dark biofilm reactors through trace-additions of 13C-labeled tree tissue leachate (13C-DOC) in stream water for one month. Biofilm reactors receiving no 13C-DOC additions served as controls. Metabolic response of the biofilm community to the 13C-DOC additions was quantified through measures of DOC bioavailability, oxygen uptake, and bacterial production and abundance. Bioreactor community composition was assessed using phospholipid fatty acid (PLFA) biomarkers, and the metabolically active members of the community were identified through 13C isotopic analysis of the PLFAs. 13C-DOC additions increased DOC concentrations in stream water by 6% (±9) and changed the δ13C-DOC signature from -28‰ (±2) to +1021‰ (±763). 13C-DOC additions increased the bioavailable DOC in the stream water from 28% (±2) to 39% (±6), oxygen consumption from 20% (±5) to 33% (±9), bacterial cell abundance by a factor of 1.3, and total microbial biomass by a factor of 1.6, but did not significantly affect bacterial production. Bacteria comprised ~80% of the microbial community in the control and 13C-labeled reactors; the remainder of the microbial community was heterotrophic microeukaryotes. δ13C of PLFAs in the 13C-labeled biofilm reactors ranged from +246‰ to +1090‰ and were more depleted in 13C than the original 13C-DOC used to label them, suggesting preferential uptake of specific molecules within the 13C-DOC pool and

  8. Greenhouse Gas Production From a Young Boreal Hydroelectric Reservoir (Eastern Canada): A Carbon Isotope Approach

    NASA Astrophysics Data System (ADS)

    Lalonde, A.; Helie, J.

    2007-12-01

    It is now accepted that boreal hydroelectric reservoirs and lakes produce greenhouse gases (GHG) mainly in the form of CO2. Much of the research has so far focused on old (> 20 year) reservoirs. However, the problems associated with a newly flooded reservoir are different because after flooding, salts and nutrients from the flooded soils are released into the water column (i.e. the reservoir's effect). It is anticipated that the CO2 fluxes should be higher in young reservoirs than in older ones, but little is known about their magnitude and their sources. The Eastmain-1 hydroelectric reservoir is a small reservoir of 603 km2 with a mean depth of 11.5m. Flooding began in November 2005 and ended in May 2006. The flooded area was covered with approximately 65% boreal forests, 21% rivers and lakes and 14% peatlands. Here, we make use stable carbon isotopes to constrain carbon sources and cycling in this disturbed environment. Ultimately, the study aims at estimating annual CO2 fluxes at the water-air interface of the reservoir. Sampling was performed four times (June 2006, August 2006, October 2006 and June 2007) to account for seasonality of the carbon cycle. Twelve sites were visited on the reservoir as well as a natural lake near the reservoir. Three sites were also sampled along a depth gradient. At each sampling site, in situ measurements included water and air temperatures, pH, alkalinity, wind speed, conductivity and dissolved oxygen content. Samples were collected for the analysis of dissolved organic and inorganic carbon (respectively DOC and DIC) and particulate organic carbon (POC) concentrations, for the analysis of the carbon isotopic compositions of DOC, DIC, POC and air CO2 at the water-air interface and finally for the C:N of DOM and POM. DOC concentrations are highest averaging 6.86±1.40 mg*l-1, DIC concentrations average 1.51±0.76 mg*l-1 and POC concentrations are up to 2 orders of magnitude lower averaging 0.036±0.018 mg*l-1. δ13C values of DOC

  9. New Approaches to Assessing and Predicting the Hydrologic Impacts of Urban Disturbance Using Isotopes and Transit Time Analysis

    NASA Astrophysics Data System (ADS)

    Soulsby, C.; Geris, J.; Birkel, C.; Tetzlaff, D.

    2015-12-01

    Urbanization is an abrupt hydrological disturbance that affects large parts of the world. For ameliorative management, an understanding of how flow partitioning and storage dynamics are affected is crucial, yet this remains limited. This reflects the lack of integrated monitoring and modelling frameworks for characterizing these hydrological response dynamics to incremental urban development. Here we use a coupled flow-isotope model to assess the impacts of urbanisation (~20%) on stream water age distributions in an 8 km2 catchment. A conceptual runoff model was used with flux tracking to estimate the time-varying age of stream water at the outlet and both urban and non-urban sub-catchments over a 3 year period. Combined objective functions of both flow and isotope metric constrained model structures, improved calibration and aided model evaluation. Specifically, we explored (1) the age distribution of stream water draining urban and non-urban areas, (2) the integrated effect of these different land uses at larger catchment scales, and (3) how the modelling can predict the impacts on the stream water age of future urbanization proposals. The results showed that stream water draining the most urbanized tributary was youngest with a mean transit time (MTT) of < 6 months compared with ~18 months in the non-urban tributary. For the catchment outlet, the MTT was around 9 months. Here, the response of urban areas dominated smaller and moderate events, but rural contributions dominated during the wettest periods, giving a bi-modal distribution of water ages. Predictions for planned developments in the area indicated that just a 5% increase in urban area would give dramatic reductions in MTTs that can propagate to the larger catchment scale. This novel approach offers a framework for understanding the cumulative impacts of disturbances on streams. It can also contribute to the design of more sustainable urban water design in terms of targeted restriction of rapid water

  10. Experimental investigations of water fluxes within the soil-vegetation-atmosphere system: Stable isotope mass-balance approach to partition evaporation and transpiration

    NASA Astrophysics Data System (ADS)

    Wenninger, Jochen; Beza, Desta Tadesse; Uhlenbrook, Stefan

    Irrigated agriculture is the largest user of freshwater worldwide and the scale of irrigated agriculture can be so large that it can have dramatic effects on the water cycle and even alter regional climates. Therefore, it is vital to improve the water use efficiency of irrigated lands in order to address the sustainable use of water resources, the growing need for agricultural products, and the health of ecosystems. Environmental isotopes have unique attributes that make them particularly suitable for tracing hydrological pathways and quantifying hydrological fluxes within the soil-vegetation-atmosphere system. The stable isotopic composition of soil water is mainly controlled by precipitation or irrigation inputs and evaporative losses. Because transpiration does not fractionate soil water isotopes, it is possible to estimate the relative proportions of evaporation and transpiration using isotopic mass balance calculations. In this study experimental investigations, combining classical hydrometric measurements, tracer hydrological methods and a soil water model were applied to laboratory lysimeters to study the transpiration processes of Teff ( Eragrostis tea (Zucc.) Trotter). Teff is an annual bunch cereal and an important aliment in Ethiopia and Eritrea and it is also gaining popularity in other countries. To determine the soil water contents, sensors using a capacitance/frequency domain technology were installed at different depths and soil water samples for the isotope analysis were taken using pore water samplers. Water contents in different depths and water fluxes, such as percolation and evaporation were modeled using the HYDRUS-1D software package. By using an isotope mass balance model the total evaporation and the fractions between soil evaporation and transpiration could be determined. The water losses which were estimated using the isotope mass-balance approach are in good agreement with the measured values using classical hydrometric measurements. The

  11. Impact of different nitrogen emission sources on tree physiology as assessed by a triple stable isotope approach

    NASA Astrophysics Data System (ADS)

    Guerrieri, M. R.; Siegwolf, R. T. W.; Saurer, M.; Jäggi, M.; Cherubini, P.; Ripullone, F.; Borghetti, M.

    The importance that nitrogen (N) deposition has in driving the carbon (C) sequestration of forests has recently been investigated using both experimental and modeling approaches. Whether increased N deposition has positive or negative effects on such ecosystems depends on the status of the N and the duration of the deposition. By combining δ13C, δ18O, δ15N and dendrochronological approaches, we analyzed the impact of two different sources of NO x emissions on two tree species, namely: a broadleaved species ( Quercus cerris) that was located close to an oil refinery in Southern Italy, and a coniferous species ( Picea abies) located close to a freeway in Switzerland. Variations in the ci/ ca ratio and the distinction between stomatal and photosynthetic responses to NO x emissions in trees were assessed using a conceptual model, which combines δ13C and δ18O. δ15N in leaves, needles and tree rings was found to be a bioindicator of N input from anthropogenic emissions, especially at the oil refinery site. We observed that N fertilization had a stimulatory effect on tree growth near the oil refinery, while the opposite effect was found for trees at the freeway site. Changes in the ci/ ca ratio were mostly related to variations in δ13C at the freeway site and, thus, were driven by photosynthesis. At the oil refinery site they were mainly related to stomatal conductance, as assessed using δ18O. This study demonstrates that a single method approach does not always provide a complete picture of which physiological traits are more affected by N emissions. The triple isotope approach combined with dendrochronological analyses proved to be a very promising tool for monitoring the ecophysiological responses of trees to long-term N deposition.

  12. Effects of elevated CO2 on soil organic matter turnover and plant nitrogen uptake: First results from a dual labeling mesocosm experiment

    NASA Astrophysics Data System (ADS)

    Eder, Lucia Muriel; Weber, Enrico; Schrumpf, Marion; Zaehle, Sönke

    2017-04-01

    The response of plant growth to elevated concentrations of CO2 (eCO2) is often constrained by plant nitrogen (N) uptake. To overcome potential N limitation, plants may invest photosynthetically fixed carbon (C) into N acquiring strategies, including fine root biomass, root exudation, or C allocation to mycorrhizal fungi. In turn, these strategies may affect the decomposition of soil organic matter, leading to uncertainties in net effects of eCO2 on C storage. To gain more insight into these plant-soil C-N-interactions, we combined C and N stable isotope labeling in a mesocosm experiment. Saplings of Fagus sylvatica L. were exposed to a 13CO2 enriched atmosphere at near ambient (380 ppm) or elevated (550 ppm) CO2 concentrations for four months of the vegetation period in 2016. Aboveground and belowground net CO2 fluxes were measured separately and the 13C label enabled partitioning of total soil CO2 efflux into old, soil derived and new, plant-derived C. We used ingrowth cores to assess effects of eCO2on belowground C allocation and plant N uptake in more detail and in particular we evaluated the relative importance of ectomycorrhizal associations. In the soil of each sapling, ingrowth cores with different mesh sizes allowed fine roots or only mycorrhizal hyphae to penetrate. In one type of ingrowth core each, we incorporated fine root litter that was enriched in 15N. Additionally, total N uptake was estimated by using 15N enriched saplings and unlabeled control plants. We found that eCO2 increased aboveground net CO2 exchange rates by 19% and total soil respiration by 11%. The eCO2 effect for GPP and also for NPP was positive (+23% and +11%, respectively). By combining gaseous C fluxes with data on new and old C stocks in bulk soil and plants through destructive harvesting in late autumn 2016, we will be able to infer net effects of eCO2 on the fate of C in these mesocosms. Biomass allocation patterns can reveal physiological responses to high C availability under

  13. Characterizing sources and natural attenuation of nitrate contamination in the Baix Ter aquifer system (NE Spain) using a multi-isotope approach.

    PubMed

    Puig, Roger; Soler, Albert; Widory, David; Mas-Pla, Josep; Domènech, Cristina; Otero, Neus

    2017-02-15

    Nitrate pollution is a widespread issue affecting global water resources with significant economic and health effects. Knowledge of both the corresponding pollution sources and of processes naturally attenuating them is thus of crucial importance in assessing water management policies and the impact of anthropogenic activities. In this study, an approach combining hydrodynamic, hydrochemical and multi-isotope systematics (8 isotopes) is used to characterize the sources of nitrate pollution and potential natural attenuation processes in a polluted basin of NE Spain. δ(2)H and δ(18)O isotopes were used to further characterize the sources of recharge of the aquifers. Results show that NO3(-) is not homogeneously distributed and presents a large range of concentrations, from no NO3(-) to up to 480mgL(-1). δ(15)N and δ(18)O of dissolved NO3(-) identified manure as the main source of nitrate, although sewage and mineral fertilizers can also be isotopically detected using boron isotopes (δ(11)B) and δ(34)S and δ(18)O of dissolved sulphate, respectively. The multi-isotope approach proved that natural denitrification is occurring, especially in near-river environments or in areas hydrologically related to fault zones. δ(34)S and δ(18)O indicated that denitrification is not driven by pyrite oxidation but rather by the oxidation of organic matter. This could not be confirmed by the study of δ(13)CHCO3 that was buffered by the entanglement of other processes and sources. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. A combined hydrochemical - isotopic approach for assessing the regional pollution of an alluvial aquifer in a urbanized environment

    NASA Astrophysics Data System (ADS)

    Gesels, Julie; Orban, Philippe; Popescu, Cristina; Knöller, Kay; Brouyère, Serge

    2014-05-01

    The alluvial aquifer of the Meuse River is contaminated at regional scale in the urbanized and industrialized area of Liège in Belgium with different types of contaminants, in particular inorganics such as sulfate, nitrate and ammonium. The sources of those contaminants are numerous: brownfields, urban waste water, subsurface acid mine drainage from former coal mines, atmospheric deposits related to pollutants emissions in the atmosphere... Sulfate, nitrate and ammonium are both typical pollutants of the aquifer and tracers of the possible pollution sources. According to the European legislation on water, groundwater resources should reach a good quality status before 2015. However, an exemption can be obtained if it may be unfeasible or unreasonably expensive to achieve good status. In this case, groundwater quality objectives and management plans can be adapted to these specific conditions. To obtain such an exemption for the Meuse alluvial aquifer, it is required to demonstrate that the poor qualitative status is caused by acid mine drainage, or by widespread historical atmospheric deposition from industries, and not by recent anthropogenic contamination from the urban and industrial context. In this context, a detailed hydrogeochemical characterization of groundwater has been performed, with the aim of determining the origin of the inorganic contaminations and the main processes contributing to poor groundwater quality. A large hydrochemical sampling campaign was performed, based on 71 selected representative sampling locations, to better characterize the different vectors (end-members) of contamination of the alluvial aquifer and their respective contribution to groundwater contamination in the area. Groundwater samples were collected and analyzed for major and minor compounds and metallic trace elements. The analyses also include stable isotopes in water, sulfate, nitrate, ammonium, boron and strontium. Different hydrogeochemical approaches are combined to

  15. Isotope Beta-Battery Approaches for Long-Lived Sensors: Technology Review

    DTIC Science & Technology

    2014-08-01

    multiple surgeries. Previously, pacemakers were powered by mercury-zinc batteries (12). Several companies in the U.S. (Medtronic, Cordis) (9) developed ...indirect energy-conversion has been developed in order to maximize the power output of the device. The concept is illustrated in figure 4. Mixing...conversion of the light to electrical current, a small (100 µW) power source can be developed . The device would be inexpensive compared to other approaches

  16. Stable Carbon Isotopes (δ 13C) in Coral Skeletons: Experimental Approach and Applications for Paleoceanography

    NASA Astrophysics Data System (ADS)

    Grottoli, A. G.

    2004-12-01

    natural field conditions corals feed on zooplankton below this `nutrient threshold' and that increases in heterotrophy should result in decreases skeletal δ 13C values. Overall, changes in photosynthesis and heterotrophy have significant effects on coral skeletal δ 13C. In shallower corals, photosynthesis drives the bulk of the variation in δ 13C. In addition, boron isotope data indicate that pH levels do not vary with changes in photosynthesis or heterotrophy suggesting that metabolically driven δ 13C fractionation during skeletogenesis is not pH driven. Thus the skeletal δ 13C records from shallow corals in non-upwelling regions where zooplankton concentrations are relatively constant should represent a reliable proxy of light variability. Due to the complexity associated with nutrients and heterotrophy, δ 13C records from upwelling regions or deep corals are still difficult to resolve.

  17. Assessing sources of nitrate contamination in the Shiraz urban aquifer (Iran) using the δ(15)N and δ(18)O dual-isotope approach.

    PubMed

    Amiri, Haleh; Zare, Mohammad; Widory, David

    2015-01-01

    Nitrate ([Formula: see text]) is one of the major threats to the quality of the drinking water taken from the Shiraz aquifer. This aquifer undergoes high anthropogenic pressures from multiple local urban (including uncontrolled sewage systems), agricultural and industrial activities, resulting in [Formula: see text] concentrations as high as 149 mg L(-1), well above the 50 mg L(-1) guideline defined by the World Health Organisation. We coupled here classical chemical and dual isotope (δ(15)N and δ(18)O of [Formula: see text]) approaches trying to characterize sources and potential processes controlling the budget of this pollutant. Chemical data indicate that nitrate in this aquifer is explained by distinct end-members: while mineral fertilizers isotopically show to have no impact, our isotope approach identifies natural soil nitrification and organic [Formula: see text] (manure and/or septic waste) as the two main contributors. Isotope data suggest that natural denitrification may occur within the aquifer, but this conclusion is not supported by the study of other chemical parameters.

  18. Combined approach of isotope mass balance and hydrological water balance methods to constrain the sources of lake water as exemplified on the small dimictic lake Silbersee, northern Germany.

    PubMed

    Elmarami, Hatem; Meyer, Hanno; Massmann, Gudrun

    2017-05-01

    Stable isotopes of hydrogen and oxygen are often used for water balance calculations of lakes. We present an approach combining the lake water balance with an isotope mass balance to constrain the sources and sinks of the water of a small dimictic lake subjected to eutrophication. Meteorological and hydraulic data in combination with measured isotope signatures of the different water compartments enabled to assess the degree of surface water/groundwater interaction and the amount of overland flow into the lake. Groundwater could be excluded as a lake water source, as its water level was always below the lake water level. In the absence of a channelled inflow, precipitation and overland flow were the remaining options, whereby the latter was only active during periods of exceptionally high rainfall. While the groundwater signatures adjacent to the lake showed an influence of lake water, the lake water balance itself indicated that the associated volumetric water loss to groundwater is rather negligible. In the present case, only a combined assessment of hydrological and isotopic data allowed for an accurate characterization of the studied lake and a quantification of its water sources and sinks, highlighting the importance of using more than one methodological approach for such a purpose.

  19. Evidence of chronic anthropogenic nutrient within coastal lagoon reefs adjacent to urban and tourism centers, Kenya: A stable isotope approach.

    PubMed

    Mwaura, Jelvas; Umezawa, Yu; Nakamura, Takashi; Kamau, Joseph

    2017-06-30

    The source of anthropogenic nutrient and its spatial extent in three fringing reefs with differing human population gradients in Kenya were investigated using stable isotope approaches. Nutrient concentrations and nitrate-δ(15)N in seepage water indicated that population density and tourism contributed greatly to the extent of nutrient loading to adjacent reefs. Although water-column nutrient analyses did not show any significant difference among the reefs, higher δ(15)N and N contents in macrophytes showed terrestrial nutrients affected primary producers in onshore areas in Nyali and Bamburi reefs, but were mitigated by offshore water intrusion especially at Nyali. On the offshore reef flat, where the same species of macroalgae were not available, complementary use of δ(15)N in sedimentary organic matter suggested inputs of nutrients originated from the urban city of Mombasa. If population increases in the future, nutrient conditions in the shallower reef, Vipingo, may be dramatically degraded due to lower water exchange ratio. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. UV-laser microdissection system - A novel approach for the preparation of high-resolution stable isotope records (δ13C/δ18O) from tree rings

    NASA Astrophysics Data System (ADS)

    Schollaen, Karina; Helle, Gerhard

    2013-04-01

    Intra-annual stable isotope (δ13C and δ18O) studies of tree rings at various incremental resolutions have been attempting to extract valuable seasonal climatic and environmental information or assessing plant ecophysiological processes. For preparing high-resolution isotope samples normally wood segments or cores are mechanically divided in radial direction or cut in tangential direction. After mechanical dissection, wood samples are ground to a fine powder and either cellulose is extracted or bulk wood samples are analyzed. Here, we present a novel approach for the preparation of high-resolution stable isotope records from tree rings using an UV-laser microdissection system. Firstly, tree-ring cellulose is directly extracted from wholewood cross-sections largely leaving the wood anatomical structure intact and saving time as compared to the classical procedure. Secondly, micro-samples from cellulose cross-sections are dissected with an UV-Laser dissection microscope. Tissues of interest from cellulose cross-sections are identified and marked precisely with a screen-pen and dissected via an UV-laser beam. Dissected cellulose segments were automatically collected in capsules and are prepared for stable isotope (δ13C and δ18O) analysis. The new techniques facilitate inter- and intra-annual isotope analysis on tree-ring and open various possibilities for comparisons with wood anatomy in plant eco-physiological studies. We describe the design and the handling of this novel methodology and discuss advantages and constraints given by the example of intra-annual oxygen isotope analysis on tropical trees.

  1. Isotopic analysis of Cu in blood serum by multi-collector ICP-mass spectrometry: a new approach for the diagnosis and prognosis of liver cirrhosis?

    PubMed

    Costas-Rodríguez, Marta; Anoshkina, Yulia; Lauwens, Sara; Van Vlierberghe, Hans; Delanghe, Joris; Vanhaecke, Frank

    2015-03-01

    The isotopic composition of blood serum Cu has been investigated as a potential parameter for the diagnosis and prognosis of liver cirrhosis. Serum samples from supposedly healthy women (reference population) and from a group of female patients suffering from liver cirrhosis of different etiologies were analysed. The procedure for isolation of serum Cu and the measurement protocol for its isotopic analysis by multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS) were evaluated. Significant differences in the isotopic composition of Cu were observed between the reference population and the patients. A wide spread in δ(65)Cu was observed within the cirrhosis population and δ(65)Cu seems to be linked to the severity of the disease. Patients with end-stage liver disease showed a significantly lighter serum Cu isotopic composition. Many clinical parameters used for the diagnosis and monitoring of liver diseases, i.e. the levels of aspartate aminotransferase, De Ritis ratio, prothrombin and international normalized ratio, albumin, bilirubin, Na and C-reactive protein, correlate well with the δ(65)Cu values, as did the ceruloplasmin level and the ceruloplasmin/Cu concentration ratio. The isotopic composition of serum Cu appears to reveal the synthetic and hepatocellular function of the liver synergistically with inflammation and fluid retention in the cohort studied. A relevant relationship was also observed between δ(65)Cu and scores of mortality risk, such as the Model for End-stage Liver Disease (MELD) and MELD-Na. Thus, the isotopic composition of serum Cu shows potential as a new approach for the prognosis of liver disease, and although further investigation is required, for evaluation of the mortality risk in end-stage liver disease and prioritization of liver transplants.

  2. Determining Carbonate Concretion Formation Temperatures and Pore Water δ18O Values Using the Clumped Isotope Approach

    NASA Astrophysics Data System (ADS)

    Loyd, S. J.; Corsetti, F. A.; Tripati, A. K.

    2010-12-01

    The porosity/permeability of siliciclastic strata is affected by post-depositional cementation, but determining at what depth and under what conditions cementation occurs is difficult with standard techniques. The oxygen isotopic composition of solid phase carbonate cements (δ18Ocarb) can be related to temperature (and by extension depth) of formation, and thus has been widely used in diagenetic studies. However, δ18Ocarb paleothermometry requires the prediction or assumption of pore water δ18O (δ18Opw), a parameter that is poorly constrained in past diagenetic environments (for convenience δ18Opw is usually assumed to be 0‰ VSMOW). Here, we use clumped isotope thermometry (CIT)—a fluid δ18O-independent temperature proxy—to avoid the often ambiguous yet necessary δ18Opw assumption applied to δ18Ocarb paleothermometery and reevaluate the temperature of carbonate concretion formation in the Miocene Monterey Formation (dolomite) and the Cretaceous Holz Shale (calcite) of southern California. CIT analysis of Monterey Formation concretions produced slightly increased temperatures of formation versus traditional δ18Ocarb paleothermometry, whereas the Holz Shale concretions produced significantly decreased temperatures. Inputting the CIT-derived temperature into the associated δ18Ocarb-temperature equation allows the calculation of the ancient δ18Opw. Calculated δ18Opw values range from ~ -8 to +2‰ VSMOW, significantly different from coeval seawater. δ18Opw less than 0‰ can be generated by a number of processes including the influx of non-marine fluids and/or hydrate formation, whereas δ18Opw greater than 0‰ can be produced by silicate diagenesis, influx of evaporative brines, or hydrate dissolution. These data demonstrate that pore water modifying diagenetic processes were operating in past environments and emphasize that the formation temperatures of diagenetic carbonates should be calculated using a fluid δ18O-independent approach, such as

  3. Ecological and Biogeochemical Impacts of Internal Waves on Mesophotic Coral Ecosystems: Testing Eddy Covariance and Isotope Approaches, Iriomote, Japan

    NASA Astrophysics Data System (ADS)

    Wyatt, A. S. J.; Miyajima, T.; Leichter, J.; Naruse, T.; Kuwae, T.; Yamamoto, S.; Satoh, N.; Nagata, T.

    2016-02-01

    Mesophotic coral ecosystems (MCE) occur in the `twilight zone' of decreasing light between 30 - 150 m water depth where they may be protected or damped from disturbances impacting shallower reefs. However insufficient information is available on the environmental conditions that support MCE to allow us to understand and conserve these `deep water refugia'. For instance, nutrient inputs and recycling have rarely been quantified over MCE, but deeper reefs may differ fundamentally to that of shallow counterparts due to the reduction in light and increasing use of oceanic nutrients at the base of the food web, leading to increased reliance on heterotrophy over autotrophy at species and ecosystem levels and stronger links to oceanic processes. For instance, due to their depth relative to typical water column density stratification, MCE are particularly likely to experience internal wave forcing, the significance of which should vary spatially depending on aspect and exposure. In this study we are focusing on MCE occurring along a continuum of oceanic-exposure along Funauki Bay on the west coast of Iriomote, Japan. Here our preliminary observations indicate that ocean-exposed MCE are subject to semi-diurnal temperature oscillations of up to 4 C during summer (range 23 - 29 deg C), while inner bay MCE occur at shallower depths in more turbid but stable environments. This continuum of oceanic exposure is ideal for testing a range of approaches for quantifying the relative ecological and biogeochemical influence of internal waves. Stable isotope analyses (SIA) are a particularly useful tool for understanding functional links between oceanic processes, local-scale nutrient cycling, and trophic ecology, with results from shallow reefs showing they likely function along a continuum of reliance on external inputs versus internal recycling depending on the degree of oceanic exposure. Although challenging to implement in deep water habitats, the combination of SIA with compound

  4. Photoacoustic lifetime contrast between methylene blue monomers and self-quenched dimers as a model for dual-labeled activatable probes

    PubMed Central

    Shao, Qi; Hackel, Benjamin J.; Thomas, David D.; Ashkenazi, Shai

    2013-01-01

    Abstract. Activatable photoacoustic probes efficiently combine the high spatial resolution and penetration depth of ultrasound with the high optical contrast and versatility of molecular imaging agents. Our approach is based on photoacoustic probing of the excited-state lifetime of methylene blue (MB), a fluorophore widely used in clinical therapeutic and diagnostic applications. Upon aggregation, static quenching between the bound molecules dramatically shortens their lifetime by three orders of magnitude. We present preliminary results demonstrating the ability of photoacoustic imaging to probe the lifetime contrast between monomers and dimers with high sensitivity in cylindrical phantoms. Gradual dimerization enhancement, driven by the addition of increasing concentrations of sodium sulfate to a MB solution, showed that lifetime-based photoacoustic probing decreases linearly with monomer concentration. Similarly, the addition of 4 mM sodium dodecyl sulfate, a concentration that amplifies MB aggregation and reduces the monomer concentration by more than 20-fold, led to a signal decrease of more than 20 dB compared to a solution free of surfactant. These results suggest that photoacoustic imaging can be used to selectively detect the presence of monomers. We conclude by discussing the implementation of the monomer–dimer contrast mechanism for the development of an enzyme-specific activatable probe. PMID:23640075

  5. The suitability of a simplified isotope-balance approach to quantify transient groundwater-lake interactions over a decade with climatic extremes

    USGS Publications Warehouse

    Sacks, Laura A.; Lee, Terrie M.; Swancar, Amy

    2013-01-01

    Groundwater inflow to a subtropical seepage lake was estimated using a transient isotope-balance approach for a decade (2001–2011) with wet and dry climatic extremes. Lake water δ18O ranged from +0.80 to +3.48 ‰, reflecting the 4 m range in stage. The transient δ18O analysis discerned large differences in semiannual groundwater inflow, and the overall patterns of low and high groundwater inflow were consistent with an independent water budget. Despite simplifying assumptions that the isotopic composition of precipitation (δP), groundwater inflow, and atmospheric moisture (δA) were constant, groundwater inflow was within the water-budget error for 12 of the 19 semiannual calculation periods. The magnitude of inflow was over or under predicted during periods of climatic extreme. During periods of high net precipitation from tropical cyclones and El Niño conditions, δP values were considerably more depleted in 18O than assumed. During an extreme dry period, δA values were likely more enriched in 18O than assumed due to the influence of local lake evaporate. Isotope balance results were most sensitive to uncertainties in relative humidity, evaporation, and δ18O of lake water, which can limit precise quantification of groundwater inflow. Nonetheless, the consistency between isotope-balance and water-budget results indicates that this is a viable approach for lakes in similar settings, allowing the magnitude of groundwater inflow to be estimated over less-than-annual time periods. Because lake-water δ18O is a good indicator of climatic conditions, these data could be useful in ground-truthing paleoclimatic reconstructions using isotopic data from lake cores in similar settings.

  6. Predicting equilibrium vapour pressure isotope effects by using artificial neural networks or multi-linear regression - A quantitative structure property relationship approach.

    PubMed

    Parinet, Julien; Julien, Maxime; Nun, Pierrick; Robins, Richard J; Remaud, Gerald; Höhener, Patrick

    2015-09-01

    We aim at predicting the effect of structure and isotopic substitutions on the equilibrium vapour pressure isotope effect of various organic compounds (alcohols, acids, alkanes, alkenes and aromatics) at intermediate temperatures. We attempt to explore quantitative structure property relationships by using artificial neural networks (ANN); the multi-layer perceptron (MLP) and compare the performances of it with multi-linear regression (MLR). These approaches are based on the relationship between the molecular structure (organic chain, polar functions, type of functions, type of isotope involved) of the organic compounds, and their equilibrium vapour pressure. A data set of 130 equilibrium vapour pressure isotope effects was used: 112 were used in the training set and the remaining 18 were used for the test/validation dataset. Two sets of descriptors were tested, a set with all the descriptors: number of(12)C, (13)C, (16)O, (18)O, (1)H, (2)H, OH functions, OD functions, CO functions, Connolly Solvent Accessible Surface Area (CSA) and temperature and a reduced set of descriptors. The dependent variable (the output) is the natural logarithm of the ratios of vapour pressures (ln R), expressed as light/heavy as in classical literature. Since the database is rather small, the leave-one-out procedure was used to validate both models. Considering higher determination coefficients and lower error values, it is concluded that the multi-layer perceptron provided better results compared to multi-linear regression. The stepwise regression procedure is a useful tool to reduce the number of descriptors. To our knowledge, a Quantitative Structure Property Relationship (QSPR) approach for isotopic studies is novel.

  7. Direct and indirect indicators to identify potential leakage of contaminants associated with unconventional oil and gas development based on conceptual geochemical and isotopic monitoring approaches

    NASA Astrophysics Data System (ADS)

    Humez, P.; Mayer, B.; Negrel, P. J.; Lions, J.; Lagneau, V.; Kloppmann, W.; Ing, J.; Becker, V.; Nightingale, M.

    2014-12-01

    The extraction of tightly bound natural gas and oil raises environmental concerns regarding shallow drinking water resources. These concerns include impacts of migration of contaminants through induced and natural fractures, drilling imperfections, wastewater discharge and accidental spills. Improved understanding of the fate and transport of contaminants through long-term monitoring, and sharing of data between industry, regulators and researchers will help to effectively manage risks for shallow water resources associated with the unconventional gas and oil industry. Based on the North-American experiences related to unconventional oil and gas resources and monitoring approaches developed in the Carbon Capture and Storage (CCS) context, we suggest conceptual models for monitoring the potential contamination of shallow aquifers overlying production zones. The strength of sensitive geochemical tracers is demonstrated based on conceptual approaches (e.g. diffusion model) and field and tracer studies (e.g. geochemical and isotopic monitoring) with three objectives: 1) characterize subsurface derived contaminants as direct geochemical and isotopic indicators; 2) assess geochemical processes enhanced by the fluid intrusion; 3) understand parameters and processes which could impact or alter the geochemical and isotopic signatures of the contaminants (e.g. microbial oxidation, migration or transport processes etc.) to determine indirect indicators of potential contaminant leakage. This comprehensive geochemical and isotope approach using direct and indirect indicators with the analyses of major and minor ions, trace elements, and δ11B, δ7Li, δ34SSO4, δ18OSO4, 87Sr/86Sr, δ18OH2O, and δ2HH2O values in the CO2FIELDLAB project (Humez et al., 2014) allowed discriminating reactive mechanisms from non-reactive mixing processes associated with gas leakage within a shallow aquifer. These and other results indicate that this conceptual approach is promising for monitoring

  8. A retro-biosynthetic approach to the prediction of biosynthetic pathways from position-specific isotope analysis as shown for tramadol.

    PubMed

    Romek, Katarzyna M; Nun, Pierrick; Remaud, Gérald S; Silvestre, Virginie; Taïwe, Germain Sotoing; Lecerf-Schmidt, Florine; Boumendjel, Ahcène; De Waard, Michel; Robins, Richard J

    2015-07-07

    Tramadol, previously only known as a synthetic analgesic, has now been found in the bark and wood of roots of the African medicinal tree Nauclea latifolia. At present, no direct evidence is available as to the biosynthetic pathway of its unusual skeleton. To provide guidance as to possible biosynthetic precursors, we have adopted a novel approach of retro-biosynthesis based on the position-specific distribution of isotopes in the extracted compound. Relatively recent developments in isotope ratio monitoring by (13)C NMR spectrometry make possible the measurement of the nonstatistical position-specific natural abundance distribution of (13)C (δ(13)Ci) within the molecule with better than 1‰ precision. Very substantial variation in the (13)C positional distribution is found: between δ(13)Ci = -11 and -53‰. Distribution is not random and it is argued that the pattern observed can substantially be interpreted in relation to known causes of isotope fractionation in natural products. Thus, a plausible biosynthetic scheme based on sound biosynthetic principals of precursor-substrate relationships can be proposed. In addition, data obtained from the (18)O/(16)O ratios in the oxygen atoms of the compound add support to the deductions made from the carbon isotope analysis. This paper shows how the use of (13)C NMR at natural abundance can help with proposing a biosynthetic route to compounds newly found in nature or those difficult to tackle by conventional means.

  9. A retro-biosynthetic approach to the prediction of biosynthetic pathways from position-specific isotope analysis as shown for tramadol

    PubMed Central

    Romek, Katarzyna M.; Nun, Pierrick; Remaud, Gérald S.; Silvestre, Virginie; Taïwe, Germain Sotoing; Lecerf-Schmidt, Florine; Boumendjel, Ahcène; De Waard, Michel; Robins, Richard J.

    2015-01-01

    Tramadol, previously only known as a synthetic analgesic, has now been found in the bark and wood of roots of the African medicinal tree Nauclea latifolia. At present, no direct evidence is available as to the biosynthetic pathway of its unusual skeleton. To provide guidance as to possible biosynthetic precursors, we have adopted a novel approach of retro-biosynthesis based on the position-specific distribution of isotopes in the extracted compound. Relatively recent developments in isotope ratio monitoring by 13C NMR spectrometry make possible the measurement of the nonstatistical position-specific natural abundance distribution of 13C (δ13Ci) within the molecule with better than 1‰ precision. Very substantial variation in the 13C positional distribution is found: between δ13Ci = −11 and −53‰. Distribution is not random and it is argued that the pattern observed can substantially be interpreted in relation to known causes of isotope fractionation in natural products. Thus, a plausible biosynthetic scheme based on sound biosynthetic principals of precursor–substrate relationships can be proposed. In addition, data obtained from the 18O/16O ratios in the oxygen atoms of the compound add support to the deductions made from the carbon isotope analysis. This paper shows how the use of 13C NMR at natural abundance can help with proposing a biosynthetic route to compounds newly found in nature or those difficult to tackle by conventional means. PMID:26106160

  10. Isotopic Biogeochemistry

    NASA Technical Reports Server (NTRS)

    Hayes, J. M.

    1985-01-01

    An overview is provided of the biogeochemical research. The funding, productivity, personnel and facilities are reviewed. Some of the technical areas covered are: carbon isotopic records; isotopic studies of banded iron formations; isotope effects in microbial systems; studies of organic compounds in ancient sediments; and development in isotopic geochemistry and analysis.

  11. Isotopic separation

    SciTech Connect

    Chen, C.

    1981-03-10

    Method and apparatus for separating isotopes in an isotopic mixture of atoms or molecules by increasing the mass differential among isotopic species. The mixture containing a particular isotope is selectively irradiated so as to selectively excite the isotope. This preferentially excited species is then reacted rapidly with an additional preselected radiation, an electron or another chemical species so as to form a product containing the specific isotope, but having a mass different than the original species initially containing the particular isotope. The product and the remaining balance of the mixture is then caused to flow through a device which separates the product from the mixture based upon the increased mass differential.

  12. The 13C-excess: a new dual-element stable isotopic approach for detrending the effects of evaporation on lake carbonates

    NASA Astrophysics Data System (ADS)

    Horton, T. W.; Oze, C.

    2012-12-01

    Stable isotope-based proxy methods enhance our ability to interpret paleohydrology, paleoelevation, climate change, and biogeochemical cycles. In ancient carbonate lakes, these methods often require that the unmodified isotopic composition of meteoric water, or local carbon reservoirs, or both, are recorded by authigenic minerals. Surprisingly, these critical assumptions have not been tested across wide-ranging environmental contexts. Here, we show that globally distributed Quaternary lake carbonate oxygen isotope compositions are not strongly, nor significantly, correlated with local meteoric-derived water compositions due to the modification of in-flow waters following entry into the lake environment. These modifications are largely caused by surface water evaporation, and can result in dubious reconstructions of ancient hydrological conditions and water source effects such as the strength of prevailing air-mass trajectory, >3km errors in paleoelevation estimates, unrealistic shifts in lake water temperature, and misleading interpretations of local carbon cycle conditions if not accounted for. However, our analysis suggests that positive shifts in surface water δ18O are accompanied by similar magnitude shifts in δ13C-DIC during lake residence. This positive co-variation in δ18O and δ13C may be used to detrend lake carbonate compositions for the effects of surface water evaporation using a parameter we define here as the '13C-excess'. This approach uses the isotopic covariant trend between in-flow waters and lake waters, rather than lacustrine covariation alone, to better constrain ancient meteoric-derived water compositions. To demonstrate the potential strength of the 13C-excess approach over single element methods, we compare the paleoelevation estimates derived from lake carbonate compositions using both approaches. When Tibetan lakes are excluded from the dataset, 13C-excess values are significantly correlated with mean up-slope hypsometric altitude with

  13. A dual stable-isotope approach to analyse the linkages between tree water fluxes and soil water pools in a Mediterranean mountain catchment

    NASA Astrophysics Data System (ADS)

    Llorens, Pilar; Cayuela, Carles; Sánchez-Costa, Elisenda; Gallart, Francesc; Latron, Jérôme

    2017-04-01

    This work uses a dual isotope-based approach (18O, 2H) to examine the mixing of water in the soil and the linkages between tree water fluxes and soil water pools in a Mediterranean mountain catchment (Vallcebre Research Catchments, NE Spain, 42° 12'N, 1° 49'E). Since May 2015, water-isotopes have been monitored in rainfall, throughfall and stemflow below a Scots pine stand and in stream water at the Can Vila (0.56 km2) catchment outlet. Moreover, fortnightly (From May to December 2015) soil samples (10, 20, 30, 50 and 100 cm), xylem samples (3 Scots pines) and mobile soil water samples in low-suction lysimeters (20, 50 and 100 cm) and in a piezometer (150-300 cm deep) were collected at the same stand. Water from soil and xylem samples was extracted by cryogenic vacuum distillation and isotope analyses were obtained by infrared spectroscopy. All this information has been combined with continuous measurement of meteorological, soil moisture and water potential, piezometric levels and hydrological variables at the stand and catchment scales. Stable isotopes ratios of bound soil water fell below the local meteoric water line (LMWL), with more evaporative enrichment in the shallow horizons. On the contrary, mobile soil water (low suction lysimeters) and groundwater fell along the LMWL, well mixed with stream water. The differences observed between these two water pools remained similar during the whole study period. Stable isotopes ratios indicate that Scots pine trees use shallow bound soil water during the whole study period. No marked changes in depth of water uptake were observed, presumably due to the availability of water in the shallow horizons, even during the summer months.

  14. Isotope geochemistry. Biological signatures in clumped isotopes of O₂.

    PubMed

    Yeung, Laurence Y; Ash, Jeanine L; Young, Edward D

    2015-04-24

    The abundances of molecules containing more than one rare isotope have been applied broadly to determine formation temperatures of natural materials. These applications of "clumped" isotopes rely on the assumption that isotope-exchange equilibrium is reached, or at least approached, during the formation of those materials. In a closed-system terrarium experiment, we demonstrate that biological oxygen (O2) cycling drives the clumped-isotope composition of O2 away from isotopic equilibrium. Our model of the system suggests that unique biological signatures are present in clumped isotopes of O2—and not formation temperatures. Photosynthetic O2 is depleted in (18)O(18)O and (17)O(18)O relative to a stochastic distribution of isotopes, unlike at equilibrium, where heavy-isotope pairs are enriched. Similar signatures may be widespread in nature, offering new tracers of biological and geochemical cycling.

  15. Identification and characterisation of potential sources of nitrate pollution in the Marano Lagoon (Italy) applying a multi-isotope approach

    NASA Astrophysics Data System (ADS)

    Saccon, P.; Leis, A.; Marca, A.; Kaiser, J.; Campisi, L.; Böttcher, M. E.; Savarino, J.; Escher, P.; Eisenhauer, A.; Erbland, J.

    2012-04-01

    The isotopic composition of nitrate (δ15N, δ18O and Δ17O), boron (δ11B) and water (δ2H and δ18O) were used to identify and characterize of multiple nitrate pollution sources in the Marano Lagoon (Italy) and part of its catchment area. The stable isotopes in nitrate measured by the denitrifier method have been adopted to differentiate among nitrate coming from agriculture (synthetic and natural fertilizers), airborne nitrate and nitrate from nitrification processes in soils. Boron isotopes have been used to identify the impact of domestic wastewaters to the aquatic system using the LA-MC-ICP-MS method. The combined use of NO3 and B isotopes has proved to be an effective means in identifying multiple nitrate pollution sources because these isotopes co-migrate in many environmental settings, their isotopes are fractionated by different environmental processes, and because wastewater and fertilizers may have distinct isotopic signatures for N and B. The stable isotopes of water have been used to calculate mixing ratios between sea and fresh water as well as to estimate the mean altitude of the recharge area of surface waters. Additionally, the stable isotopes of sulphate (δ34S and δ18O) have been adopted to trace natural and anthropogenic sources of sulphur in agricultural watersheds as well as in coastal systems. In order to characterize the chemical composition of the different water types the concentration of Ca2+, Mg2+, Na+, K+, NH4+, NO3-, NO2-, Cl-, Br-, SO42-, HCO3-, PO43-, total phosphorus and total boron have been analyzed. Moreover, the physicochemical parameters such as pH, electrical conductivity, dissolved oxygen, salinity and temperature have been measured. To identify the origins and fate of nitrate a water monitoring program was implemented in the Marano lagoon and part of its catchment area. The water monitoring program involved the collection of water samples from the lagoon, its tributary rivers, the groundwater up-welling line, groundwater

  16. Possible food sources of macrozoobenthos in the manko mangrove ecosystem, okinawa (Japan): a stable isotope analysis approach.

    PubMed

    Wardiatno, Yusli; Mardiansyah; Prartono, Tri; Tsuchiya, Makoto

    2015-04-01

    Identifying potential food sources in mangrove ecosystems is complex because of the multifarious inputs from both land and sea. This study, which was conducted in the Manko mangrove ecosystem of Okinawa, Japan, determined the composition of the stable isotopes δ(13)C and δ(15)N in primary producers and macrozoobenthos to estimate the potential food sources assimilated and to elucidate the target trophic levels of the macrozoobenthos. We measured the two stable isotope signatures of three gastropods (Cerithidea sp., Cassidula mustelina, Peronia verruculata), two crabs (Grapsidae sp., Uca sp.), mangrove tree (Kandelia candel) leaves, and sediment from the mangrove ecosystem. The respective carbon and nitrogen isotope signature results were as follows: -22.4‰ and 8.6‰ for Cerithidea sp., -25.06‰ and 8‰ for C. mustelina, -22.58‰ and 8‰ for P. verruculata, -24.3‰ and 10.6‰ for unidentified Grapsidae, -21.87 ‰ and 11.5 ‰ for Uca sp., -29.81‰ and 11‰ for K. candel, and -24.23‰ and 7.2‰ for the sediment. The stable isotope assimilation signatures of the macrozoobenthos indicated sediment as their food source. Considering the trophic levels, the stable isotope values may also indicate that the five macrozoobenthos species were secondary or higher consumers.

  17. Possible Food Sources of Macrozoobenthos in the Manko Mangrove Ecosystem, Okinawa (Japan): A Stable Isotope Analysis Approach

    PubMed Central

    Wardiatno, Yusli; Mardiansyah; Prartono, Tri; Tsuchiya, Makoto

    2015-01-01

    Identifying potential food sources in mangrove ecosystems is complex because of the multifarious inputs from both land and sea. This study, which was conducted in the Manko mangrove ecosystem of Okinawa, Japan, determined the composition of the stable isotopes δ13C and δ15N in primary producers and macrozoobenthos to estimate the potential food sources assimilated and to elucidate the target trophic levels of the macrozoobenthos. We measured the two stable isotope signatures of three gastropods (Cerithidea sp., Cassidula mustelina, Peronia verruculata), two crabs (Grapsidae sp., Uca sp.), mangrove tree (Kandelia candel) leaves, and sediment from the mangrove ecosystem. The respective carbon and nitrogen isotope signature results were as follows: −22.4‰ and 8.6‰ for Cerithidea sp., −25.06‰ and 8‰ for C. mustelina, −22.58‰ and 8‰ for P. verruculata, −24.3‰ and 10.6‰ for unidentified Grapsidae, −21.87 ‰ and 11.5 ‰ for Uca sp., −29.81‰ and 11‰ for K. candel, and −24.23‰ and 7.2‰ for the sediment. The stable isotope assimilation signatures of the macrozoobenthos indicated sediment as their food source. Considering the trophic levels, the stable isotope values may also indicate that the five macrozoobenthos species were secondary or higher consumers. PMID:26019747

  18. Identifying nitrogen sources to thermal tide pools in Kapoho, Hawai'i, U.S.A, using a multi-stable isotope approach.

    PubMed

    Wiegner, Tracy N; Mokiao-Lee, Ambyr U; Johnson, Erik E

    2016-02-15

    Nitrogen (N) enrichment often results in coastal eutrophication, even in remote areas like Hawai'i. Therefore, determining N sources to coastal waters is important for their management. This study identified N sources to tide pools in Kapoho, Hawai'i, and determined their relative importance using three stable isotopes (δ(15)N, δ(18)O, δ(11)B). Surface waters and macroalgal tissues were collected along 100-m onshore-offshore transects in areas of high groundwater input for three months at low tide. Water samples from possible N sources were also collected. Mixing model output, along with macroalgal δ(15)N values, indicated that agriculture soil (34%) was the largest anthropogenic N source followed by sewage (27%). These findings suggest that more effective fertilizer application techniques and upgrading sewage treatment systems can minimize N leaching into groundwater. Overall, our multi-stable isotope approach for identifying N sources was successful and may be useful in other coastal waters.

  19. Isotopic half-life and enrichment factor in two species of European freshwater fish larvae: an experimental approach.

    PubMed

    Latli, Adrien; Sturaro, Nicolas; Desjardin, Nelson; Michel, Loïc N; Otjacques, William; Lepoint, Gilles; Kestemont, Patrick

    2017-04-30

    Stable isotope ratios of carbon and nitrogen are valuable tools for field ecologists to use to analyse animal diets. However, the application of these tools requires knowledge of the tissue enrichment factor (TEF) and half-life (HL). We experimentally compared TEF and HL in two freshwater fish larvae. We hypothesised that chub had a better growth/tissue replacement ratio than roach, due to the use of a food closer to their natural diet. We determined the isotopic HL, the TEF and the contribution of growth or metabolic tissue replacement to dynamic isotopic incorporation. After yolk sac resorption, larvae were fed for 5 weeks with prey similar to their natural diet (Artemia nauplii) up to the isotopic equilibrium followed by Chironomid larvae. Stable isotope measurements were carried out using a continuous flow isotope ratio mass spectrometer coupled to an elemental analyser. Changes in isotopic composition strongly followed the predictions of exponential growth and time-dependent models. The isotopic HL varied between 8.2 and 12.6 days and the TEF of nitrogen and carbon ranged from 1.7 to 3.1 ‰ and from -0.9 to 1.2 ‰, respectively. The incorporation of dietary (13) C was due more to the production of new tissue (between 56 and 79%) than to the metabolic process. Chub allocated more energy to growth than roach and the Chironomidae diet contributed more to the consumers' growth than the Artemia diet. Metabolic rates seemed lower for chub than for roach, especially when they were fed with Chironomidae. A Chironomidae-based diet would be more profitable to chub, and the high associated growth rate could increase the development of the fish larvae. The HL and TEF were in the range of those reported in the literature. These results will be helpful for field-based studies, because they can help to increase the accuracy of models. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  20. An in situ approach to detect tree root ecology: linking ground-penetrating radar imaging to isotope-derived water acquisition zones

    PubMed Central

    Isaac, Marney E; Anglaaere, Luke C N

    2013-01-01

    Tree root distribution and activity are determinants of belowground competition. However, studying root response to environmental and management conditions remains logistically challenging. Methodologically, nondestructive in situ tree root ecology analysis has lagged. In this study, we tested a nondestructive approach to determine tree coarse root architecture and function of a perennial tree crop, Theobroma cacao L., at two edaphically contrasting sites (sandstone and phyllite–granite derived soils) in Ghana, West Africa. We detected coarse root vertical distribution using ground-penetrating radar and root activity via soil water acquisition using isotopic matching of δ18O plant and soil signatures. Coarse roots were detected to a depth of 50 cm, however, intraspecifc coarse root vertical distribution was modified by edaphic conditions. Soil δ18O isotopic signature declined with depth, providing conditions for plant–soil δ18O isotopic matching. This pattern held only under sandstone conditions where water acquisition zones were identifiably narrow in the 10–20 cm depth but broader under phyllite–granite conditions, presumably due to resource patchiness. Detected coarse root count by depth and measured fine root density were strongly correlated as were detected coarse root count and identified water acquisition zones, thus validating root detection capability of ground-penetrating radar, but exclusively on sandstone soils. This approach was able to characterize trends between intraspecific root architecture and edaphic-dependent resource availability, however, limited by site conditions. This study successfully demonstrates a new approach for in situ root studies that moves beyond invasive point sampling to nondestructive detection of root architecture and function. We discuss the transfer of such an approach to answer root ecology questions in various tree-based landscapes. PMID:23762519

  1. An in situ approach to detect tree root ecology: linking ground-penetrating radar imaging to isotope-derived water acquisition zones.

    PubMed

    Isaac, Marney E; Anglaaere, Luke C N

    2013-05-01

    Tree root distribution and activity are determinants of belowground competition. However, studying root response to environmental and management conditions remains logistically challenging. Methodologically, nondestructive in situ tree root ecology analysis has lagged. In this study, we tested a nondestructive approach to determine tree coarse root architecture and function of a perennial tree crop, Theobroma cacao L., at two edaphically contrasting sites (sandstone and phyllite-granite derived soils) in Ghana, West Africa. We detected coarse root vertical distribution using ground-penetrating radar and root activity via soil water acquisition using isotopic matching of δ(18)O plant and soil signatures. Coarse roots were detected to a depth of 50 cm, however, intraspecifc coarse root vertical distribution was modified by edaphic conditions. Soil δ(18)O isotopic signature declined with depth, providing conditions for plant-soil δ(18)O isotopic matching. This pattern held only under sandstone conditions where water acquisition zones were identifiably narrow in the 10-20 cm depth but broader under phyllite-granite conditions, presumably due to resource patchiness. Detected coarse root count by depth and measured fine root density were strongly correlated as were detected coarse root count and identified water acquisition zones, thus validating root detection capability of ground-penetrating radar, but exclusively on sandstone soils. This approach was able to characterize trends between intraspecific root architecture and edaphic-dependent resource availability, however, limited by site conditions. This study successfully demonstrates a new approach for in situ root studies that moves beyond invasive point sampling to nondestructive detection of root architecture and function. We discuss the transfer of such an approach to answer root ecology questions in various tree-based landscapes.

  2. Reconstructing lake evaporation history and the isotopic composition of precipitation by a coupled δ18O-δ2H biomarker approach

    NASA Astrophysics Data System (ADS)

    Hepp, Johannes; Tuthorn, Mario; Zech, Roland; Mügler, Ines; Schlütz, Frank; Zech, Wolfgang; Zech, Michael

    2015-10-01

    Over the past decades, δ18O and δ2H analyses of lacustrine sediments became an invaluable tool in paleohydrology and paleolimnology for reconstructing the isotopic composition of past lake water and precipitation. However, based on δ18O or δ2H records alone, it can be challenging to distinguish between changes of the precipitation signal and changes caused by evaporation. Here we propose a coupled δ18O-δ2H biomarker approach that provides the possibility to disentangle between these two factors. The isotopic composition of long chain n-alkanes (n-C25, n-C27, n-C29, n-C31) were analyzed in order to establish a 16 ka Late Glacial and Holocene δ2H record for the sediment archive of Lake Panch Pokhari in High Himalaya, Nepal. The δ2Hn-alkane record generally corroborates a previously established δ18Osugar record reporting on high values characterizing the deglaciation and the Older and the Younger Dryas, and low values characterizing the Bølling and the Allerød periods. Since the investigated n-alkane and sugar biomarkers are considered to be primarily of aquatic origin, they were used to reconstruct the isotopic composition of lake water. The reconstructed deuterium excess of lake water ranges from +57‰ to -85‰ and is shown to serve as proxy for the evaporation history of Lake Panch Pokhari. Lake desiccation during the deglaciation, the Older Dryas and the Younger Dryas is affirmed by a multi-proxy approach using the Hydrogen Index (HI) and the carbon to nitrogen ratio (C/N) as additional proxies for lake sediment organic matter mineralization. Furthermore, the coupled δ18O and δ2H approach allows disentangling the lake water isotopic enrichment from variations of the isotopic composition of precipitation. The reconstructed 16 ka δ18Oprecipitation record of Lake Panch Pokhari is well in agreement with the δ18O records of Chinese speleothems and presumably reflects the Indian Summer Monsoon variability.

  3. Evaluating sulfur dynamics during storm events for three watersheds in the northeastern USA: a combined hydrological, chemical and isotopic approach

    Treesearch

    Myron J. Mitchell; Scott W. Bailey; James B. Shanley; Bernhard. Mayer

    2008-01-01

    Concerns related to climate change have resulted in an increasing interest in the importance of hydrological events such as droughts in affecting biogeochemical responses of watersheds. The effects of an unusually dry summer in 2002 had a marked impact on the biogeochemistry of three watersheds in the north-eastern USA. Chemical, isotopic and hydrological responses...

  4. REFINING THE DUAL ISOTOPE APPROACH TO DETERMINE FIELD ESTIMATES OF LITTER, ROOT, AND SOM COMPONENTS OF SOIL CO2 EFFLUX

    EPA Science Inventory

    Stable isotopes have become an important tool for determining the relative importance of CO2 sources and sinks contributing to the global carbon budget. Of particular importance is the determination of the terrestrial CO2 flux which is difficult to decipher without determining t...

  5. REFINING THE DUAL ISOTOPE APPROACH TO DETERMINE FIELD ESTIMATES OF LITTER, ROOT, AND SOM COMPONENTS OF SOIL CO2 EFFLUX

    EPA Science Inventory

    Stable isotopes have become an important tool for determining the relative importance of CO2 sources and sinks contributing to the global carbon budget. Of particular importance is the determination of the terrestrial CO2 flux which is difficult to decipher without determining t...

  6. A stable isotope approach for source apportionment of chlorinated ethene plumes at a complex multi-contamination events urban site.

    PubMed

    Nijenhuis, Ivonne; Schmidt, Marie; Pellegatti, Eleonora; Paramatti, Enrico; Richnow, Hans Hermann; Gargini, Alessandro

    2013-10-01

    The stable carbon isotope composition of chlorinated aliphatic compounds such as chlorinated methanes, ethanes and ethenes was examined as an intrinsic fingerprint for apportionment of sources. A complex field site located in Ferrara (Italy), with more than 50years history of use of chlorinated aliphatic compounds, was investigated in order to assess contamination sources. Several contamination plumes were found in a complex alluvial sandy multi-aquifer system close to the river Po; sources are represented by uncontained former industrial and municipal dump sites as well as by spills at industrial areas. The carbon stable isotope signature allowed distinguishing 2 major sources of contaminants. One source of chlorinated aliphatic contaminants was strongly depleted in ¹³C (<-60‰) suggesting production lines which have used depleted methane for synthesis. The other source had typical carbon isotope compositions of >-40‰ which is commonly observed in recent production of chlorinated solvents. The degradation processes in the plumes could be traced interpreting the isotope enrichment and depletion of parent and daughter compounds, respectively. We demonstrate that, under specific production conditions, namely when highly chlorinated ethenes are produced as by-product during chloromethanes production, ¹³C depleted fingerprinting of contaminants can be obtained and this can be used to track sources and address the responsible party of the pollution in urban areas.

  7. Continuity or conquest? A multi-isotope approach to investigating identity in the Early Iron Age of the Southern Levant.

    PubMed

    Gregoricka, Lesley A; Sheridan, Susan Guise

    2017-01-01

    Across the Mediterranean and Near East, the transition from the Late Bronze Age (ca. 1550-1200 BC) to the Early Iron Age (ca. 1200-900 BC) was accompanied by profound cultural change. While this transformation was initially attributed to invasion or conquest, more recent, nuanced interpretations of archaeological and biological data now emphasize the decline of palatial economies, a shift away from centralized political authority, and internal social restructuring amidst rapid climate change in lieu of "collapse." Correspondingly, the hypothesis that Early Iron Age populations in Palestine represent the same ethnic group whose culture nevertheless underwent considerable change by actively adapting to internal and external forces was tested using biogeochemical data from individuals interred within an Early Iron Age tomb at the site of Tell Dothan. Human dental enamel from molars (n = 43) recovered from Tomb I at Tell Dothan was analyzed for radiogenic strontium isotope ratios and stable oxygen and carbon (VPDB) isotope values. Strontium (mean = 0.70816 ± 0.00005, 1σ) isotope ratios, as well as oxygen (mean = -2.3 ± 0.7‰, 1σ) and carbon (mean = -11.9 ± 0.5‰, 1σ) isotope values, all display little variability. The absence of non-locals at Tell Dothan indicates that population replacement does not adequately explain the sociopolitical changes observed in the archaeological record. Further, homogeneity among isotope values is indicative of a community that was not highly mobile, suggesting that decentralization and a corresponding transition to a more mobile lifestyle may not accurately reflect the adaptive strategies of all human groups during this period as a mechanism to cope with social and environmental change. © 2016 Wiley Periodicals, Inc.

  8. A multi-isotope approach to characterize acid mine drainage in a hardrock alpine mine, Chaffe Co,Colorado.

    NASA Astrophysics Data System (ADS)

    Cordalis, D.; Williams, M. W.; Wireman, M.; Michel, R. L.; Manning, A.

    2004-12-01

    Here we present information from an innovative suite of stable, radiogenic, and cosmogenic isotopes to better understand groundwater flowpaths and groundwater-surface water interactions in an applied acid mine drainage system. Stable water isotopes, tritium, helium-tritium, sulfur-35, and uranium 234/238 ratios were analyzed from precipitation, groundwater wells, interior mine drainages, and surface waters at the Mary Murphy Mine in Colorado to determine hydrologic transport mechanisms responsible for contaminated zinc releases. Hydrometric measurements suggested a snowmelt-driven pulse of elevated zinc in adit outflow. However, mixing models using stable water isotopes showed a regional groundwater signal in the adit outflow. Tritium values of 11 to 13 TU showed a slight enrichment of bomb spike water compared to snow values of about 9 TU, suggesting an older water source as well. Helium/tritium ratios on a subset of groundwater wells suggested that average residence times of alluvial wells ranged from 2.5 to 8 years. The combination of stable water isotopes and sulfur-35 (half-life of 87 days), showed that zinc-rich waters within the mine derived from infiltrating snowmelt more than a year old. However, measurement of sulfur-35 using low-level scintillation counts was compromised at times by the presence of uranium. We were able to remove the uranium through wet chemistry procedures, improving the accuracy of S-35 measurements. The U234/U238 ratio shows promise in discriminating between acid mine drainage and acid rock drainage. Acid rock drainage shows an unaltered ratio of 1:1, while acid mine drainage is enriched relative to the 1:1 equilibrium ratio. The combination of cosmogenic and stable isotopes within and near the Mary Murphy Mine may provide a useful tool for studying interactions between groundwater and surfacewater in a fractured rock setting. Remediation techniques can be directed more appropriately, and cost effectively, by the characterization of

  9. Specific pathways for the incorporation of dissolved barium and molybdenum into the bivalve shell: an isotopic tracer approach in the juvenile Great Scallop (Pecten maximus).

    PubMed

    Tabouret, Hélène; Pomerleau, Sébastien; Jolivet, Aurélie; Pécheyran, Christophe; Riso, Ricardo; Thébault, Julien; Chauvaud, Laurent; Amouroux, David

    2012-07-01

    Dissolved barium and molybdenum incorporation in the calcite shell was investigated in the Great Scallop Pecten maximus. Sixty six individuals were exposed for 16 days to two successive dissolved Ba and Mo concentrations accurately differentiated by two different isotopic enrichments (⁹⁷Mo, ⁹⁵Mo; ¹³⁵Ba, ¹³⁷Ba). Soft tissue and shell isotopic composition were determined respectively by quantitative ICP-MS (Inductively Coupled Plasma Mass Spectrometer) and laser ablation--ICP-MS. Results from Ba enrichment indicate the direct incorporation of dissolved Ba into the shell in proportion to the levels in the water in which they grew with a 6-8 day delay. The low spike contributions and the low partition coefficient (D(Mo) = 0.0049 ± 0.0013), show that neither the soft tissue nor the shell were significantly sensitive to Mo enrichment. These results eliminate direct Mo shell enrichment by the dissolved phase, and favour a trophic uptake that will be investigated using the successive isotopic enrichment approach developed in this study. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Hydrogeochemistry and quality of surface water and groundwater in the vicinity of Lake Monoun, West Cameroon: approach from multivariate statistical analysis and stable isotopic characterization.

    PubMed

    Kamtchueng, Brice T; Fantong, Wilson Y; Wirmvem, Mengnjo J; Tiodjio, Rosine E; Takounjou, Alain F; Ndam Ngoupayou, Jules R; Kusakabe, Minoru; Zhang, Jing; Ohba, Takeshi; Tanyileke, Gregory; Hell, Joseph V; Ueda, Akira

    2016-09-01

    With the use of conventional hydrogeochemical techniques, multivariate statistical analysis, and stable isotope approaches, this paper investigates for the first time surface water and groundwater from the surrounding areas of Lake Monoun (LM), West Cameroon. The results reveal that waters are generally slightly acidic to neutral. The relative abundance of major dissolved species are Ca(2+) > Mg(2+) > Na(+) > K(+) for cations and HCO3 (-) ≫ NO3 (-) > Cl(-) > SO4 (2-) for anions. The main water type is Ca-Mg-HCO3. Observed salinity is related to water-rock interaction, ion exchange process, and anthropogenic activities. Nitrate and chloride have been identified as the most common pollutants. These pollutants are attributed to the chlorination of wells and leaching from pit latrines and refuse dumps. The stable isotopic compositions in the investigated water sources suggest evidence of evaporation before recharge. Four major groups of waters were identified by salinity and NO3 concentrations using the Q-mode hierarchical cluster analysis (HCA). Consistent with the isotopic results, group 1 represents fresh unpolluted water occurring near the recharge zone in the general flow regime; groups 2 and 3 are mixed water whose composition is controlled by both weathering of rock-forming minerals and anthropogenic activities; group 4 represents water under high vulnerability of anthropogenic pollution. Moreover, the isotopic results and the HCA showed that the CO2-rich bottom water of LM belongs to an isolated hydrological system within the Foumbot plain. Except for some springs, groundwater water in the area is inappropriate for drinking and domestic purposes but good to excellent for irrigation.

  11. Identifying source and formation altitudes of nitrates in drinking water from Réunion Island, France, using a multi-isotopic approach.

    PubMed

    Rogers, Karyne M; Nicolini, Eric; Gauthier, Virginie

    2012-09-01

    Nitrate concentrations, water isotopes (δ(2)H and δ(18)O(water)) and associated nitrate isotopes (δ(15)N(nitrate) and δ(18)O(nitrate)) from 10 drinking water wells, 5 fresh water springs and the discharge from 3 wastewater treatment stations in Réunion Island, located in the Indian Ocean, were analysed. We used a multi isotopic approach to investigate the extent of nitrate contamination, nitrate formation altitude and source of nitrates in Réunion Island's principal aquifer. Water from these study sites contained between 0.1 and 85.3 mg/L nitrate. δ(15)N(nitrate) values between +6 and +14‰ suggested the main sources of contamination were animal and/or human waste, rather than inorganic (synthetic) fertilisers, infiltrating through the subsurface into the saturated zone, due to rainfall leaching of the unsaturated zone at various altitudes of precipitation. Based on δ(15)N(nitrate) values alone, it was not possible to distinguish between animal and human activities responsible for the contamination of each specific catchment. However, using a multi isotope approach (δ(18)O(water) and δ(15)N(nitrate)), it was possible to relate the average altitude of rainfall infiltration (δ(18)O(water)) associated with the nitrate contamination (δ(18)O(nitrate)). This relationship between land use, rainfall recharge altitude and isotopic composition (δ(15)N(nitrate) and δ(18)O(water)) discriminated between the influences of human waste at lower (below 600 m elevation) or animal derived contamination (at elevations between 600 and 1300 m). By further comparing the theoretical altitude of nitrate formation calculated by the δ(18)O(nitrate), it was possible to determine that only 5 out of 15 fresh water wells and springs followed the conservative nitrate formation mechanism of 2/3δ(18)O(water)+1/3δ(18)O(air), to give nitrate formation altitudes which corresponded to land use activities.

  12. Application of a Stable Isotope Approach to Evaluate Impact of Changes in Manufacturing Parameters for an Immediate-Release Tablet.

    PubMed

    Parr, Alan; Badman, Geoff; Bowen, Chester L; Coffin, Mark; Gupta, Manish; Jones, Lori; Kurtinecz, Milena; Naderer, Odin; Travis, Eric; Zhu, John; Patel, Parul

    2016-07-01

    There is continued emphasis from the various worldwide regulatory agencies to ensure that the pharmaceutical industry fully understands the products they are developing. This emphasis is seen via development of quality-by-design (QbD) publications and guidelines generated by the International Committee on Harmonization. The challenge to meet these expectations is primarily associated with the generation of in vivo data (eg, pharmacokinetic data) that is resource intensive. A technique reducing the resources needed to generate this in vivo data permits a more extensive application of QbD principles. This paper presents the application of stable isotopes in pharmacokinetic studies. The data show that the use of stable isotopes can significantly reduce the number of subjects required for a study. This reduction in subjects thus translates into a significant reduction in resources and time needed to generate the required in vivo data to support QbD.

  13. Sources of organic matter for intertidal consumers on Ascophyllum-shores (SW Iceland): a multi-stable isotope approach

    NASA Astrophysics Data System (ADS)

    Sarà, G.; de Pirro, M.; Romano, C.; Rumolo, P.; Sprovieri, M.; Mazzola, A.

    2007-12-01

    Stable isotopes were used to examine the origin of organic matter in Icelandic Ascophyllum-based habitats, the role of different organic matters in filling intertidal food webs and the food preferences of the most abundant suspension feeders, grazers and predators. We selected three intertidal sites on the SW coast of Iceland where we sampled in early September 2004, organic matter sources (POM, SOM and most abundant primary producers, A. nodosum and F. vesciculosus) and the most abundant macrofauna species (barnacles, mussels, gastropods, sponge and crabs). Even though the primary production ( Ascophyllum-based) was the same at the three study sites, the isotopic composition of common-among-sites organisms varied due to local differences in the origin of available POM and SOM and in food web structures.

  14. Isotope Coded Protein Labeling Coupled Immunoprecipitation (ICPL-IP): A Novel Approach for Quantitative Protein Complex Analysis From Native Tissue*

    PubMed Central

    Vogt, Andreas; Fuerholzner, Bettina; Kinkl, Norbert; Boldt, Karsten; Ueffing, Marius

    2013-01-01

    High confidence definition of protein interactions is an important objective toward the understanding of biological systems. Isotope labeling in combination with affinity-based isolation of protein complexes has increased in accuracy and reproducibility, yet, larger organisms—including humans—are hardly accessible to metabolic labeling and thus, a major limitation has been its restriction to small animals, cell lines, and yeast. As composition as well as the stoichiometry of protein complexes can significantly differ in primary tissues, there is a great demand for methods capable to combine the selectivity of affinity-based isolation as well as the accuracy and reproducibility of isotope-based labeling with its application toward analysis of protein interactions from intact tissue. Toward this goal, we combined isotope coded protein labeling (ICPL)1 with immunoprecipitation (IP) and quantitative mass spectrometry (MS). ICPL-IP allows sensitive and accurate analysis of protein interactions from primary tissue. We applied ICPL-IP to immuno-isolate protein complexes from bovine retinal tissue. Protein complexes of immunoprecipitated β-tubulin, a highly abundant protein with known interactors as well as the lowly expressed small GTPase RhoA were analyzed. The results of both analyses demonstrate sensitive and selective identification of known as well as new protein interactions by our method. PMID:23268931

  15. Assessing of distribution, mobility and bioavailability of exogenous Pb in agricultural soils using isotopic labeling method coupled with BCR approach.

    PubMed

    Huang, Zhi-Yong; Xie, Hong; Cao, Ying-Lan; Cai, Chao; Zhang, Zhi

    2014-02-15

    The contamination of Pb in agricultural soils is one of the most important ecological problems, which potentially results in serious health risk on human health through food chain. Hence, the fate of exogenous Pb contaminated in agricultural soils is needed to be deeply explored. By spiking soils with the stable enriched isotopes of (206)Pb, the contamination of exogenous Pb(2+) ions in three agricultural soils sampled from the estuary areas of Jiulong River, China was simulated in the present study, and the distribution, mobility and bioavailability of exogenous Pb in the soils were investigated using the isotopic labeling method coupled with a four-stage BCR (European Community Bureau of Reference) sequential extraction procedure. Results showed that about 60-85% of exogenous Pb was found to distribute in reducible fractions, while the exogenous Pb in acid-extractable fractions was less than 1.0%. After planting, the amounts of exogenous Pb presenting in acid-extractable, reducible and oxidizable fractions in rhizospheric soils decreased by 60-66%, in which partial exogenous Pb was assimilated by plants while most of the metal might transfer downward due to daily watering and applying fertilizer. The results show that the isotopic labeling technique coupled with sequential extraction procedures enables us to explore the distribution, mobility and bioavailability of exogenous Pb contaminated in soils, which may be useful for the further soil remediation. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Isotope coded protein labeling coupled immunoprecipitation (ICPL-IP): a novel approach for quantitative protein complex analysis from native tissue.

    PubMed

    Vogt, Andreas; Fuerholzner, Bettina; Kinkl, Norbert; Boldt, Karsten; Ueffing, Marius

    2013-05-01

    High confidence definition of protein interactions is an important objective toward the understanding of biological systems. Isotope labeling in combination with affinity-based isolation of protein complexes has increased in accuracy and reproducibility, yet, larger organisms--including humans--are hardly accessible to metabolic labeling and thus, a major limitation has been its restriction to small animals, cell lines, and yeast. As composition as well as the stoichiometry of protein complexes can significantly differ in primary tissues, there is a great demand for methods capable to combine the selectivity of affinity-based isolation as well as the accuracy and reproducibility of isotope-based labeling with its application toward analysis of protein interactions from intact tissue. Toward this goal, we combined isotope coded protein labeling (ICPL)(1) with immunoprecipitation (IP) and quantitative mass spectrometry (MS). ICPL-IP allows sensitive and accurate analysis of protein interactions from primary tissue. We applied ICPL-IP to immuno-isolate protein complexes from bovine retinal tissue. Protein complexes of immunoprecipitated β-tubulin, a highly abundant protein with known interactors as well as the lowly expressed small GTPase RhoA were analyzed. The results of both analyses demonstrate sensitive and selective identification of known as well as new protein interactions by our method.

  17. Natural and anthropogenic lead in soils and vegetables around Guiyang city, southwest China: a Pb isotopic approach.

    PubMed

    Li, Fei-Li; Liu, Cong-Qiang; Yang, Yuan-Gen; Bi, Xiang-Yang; Liu, Tao-Ze; Zhao, Zhi-Qi

    2012-08-01

    Soils, vegetables and rainwaters from three vegetable production bases in the Guiyang area, southwest China, were analyzed for Pb concentrations and isotope compositions to trace its sources in the vegetables and soils. Lead isotopic compositions were not distinguishable between yellow soils and calcareous soils, but distinguishable among sampling sites. The highest (207)Pb/(206)Pb and (208)Pb/(206)Pb ratios were found for rainwaters (0.8547-0.8593 and 2.098-2.109, respectively), and the lowest for soils (0.7173-0.8246 and 1.766-2.048, respectively). The (207)Pb/(206)Pb and (208)Pb/(206)Pb ratios increased in vegetables in the order of rootsisotope technique is useful for tracing the sources of Pb contamination in vegetables. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Food sources for Ruditapes philippinarum in a coastal lagoon determined by mass balance and stable isotope approaches.

    PubMed

    Komorita, Tomohiro; Kajihara, Rumiko; Tsutsumi, Hiroaki; Shibanuma, Seiichiro; Yamada, Toshiro; Montani, Shigeru

    2014-01-01

    The relationship between the food demand of a clam population (Ruditapes philippinarum (Adams & Reeve 1850)) and the isotopic contributions of potential food sources (phytoplankton, benthic diatoms, and organic matter derived from the sediment surface, seagrass, and seaweeds) to the clam diet were investigated. In particular, we investigated the manner in which dense patches of clams with high secondary productivity are sustained in a coastal lagoon ecosystem (Hichirippu Lagoon) in Hokkaido, Japan. Clam feeding behavior should affect material circulation in this lagoon owing to their high secondary productivity (ca. 130 g C m(-2) yr(-1)). Phytoplankton were initially found to constitute 14-77% of the clam diet, although phytoplankton nitrogen content (1.79-4.48 kmol N) and the food demand of the clam (16.2 kmol N d(-1)) suggest that phytoplankton can constitute only up to 28% of clam dietary demands. However, use of isotopic signatures alone may be misleading. For example, the contribution of microphytobenthos (MPB) were estimated to be 0-68% on the basis of isotopic signatures but was subsequently shown to be 35 ± 13% (mean ± S.D.) and 64 ± 4% (mean ± S.D.) on the basis of phytoplankton biomass and clam food demand respectively, suggesting that MPB are the primary food source for clams. Thus, in the present study, the abundant MPB in the subtidal area appear to be a key food source for clams, suggesting that these MPB may sustain the high secondary production of the clam.

  19. Water isotopes in desiccating lichens

    PubMed Central

    Cuntz, Matthias; Máguas, Cristina; Lakatos, Michael

    2009-01-01

    The stable isotopic composition of water is routinely used as a tracer to study water exchange processes in vascular plants and ecosystems. To date, no study has focussed on isotope processes in non-vascular, poikilohydric organisms such as lichens and bryophytes. To understand basic isotope exchange processes of non-vascular plants, thallus water isotopic composition was studied in various green-algal lichens exposed to desiccation. The study indicates that lichens equilibrate with the isotopic composition of surrounding water vapour. A model was developed as a proof of concept that accounts for the specific water relations of these poikilohydric organisms. The approach incorporates first their variable thallus water potential and second a compartmentation of the thallus water into two isotopically distinct but connected water pools. Moreover, the results represent first steps towards the development of poikilohydric organisms as a recorder of ambient vapour isotopic composition. PMID:19888598

  20. The 13C-excess: a new dual element stable isotopic approach for de-trending the effects of evaporation on lake carbonates

    NASA Astrophysics Data System (ADS)

    Horton, T. W.; Oze, C.

    2013-12-01

    Stable isotope based proxy methods enhance our ability to interpret paleohydrology, paleoelevation, climate change, and biogeochemical cycles. In ancient carbonate lakes, these methods often require that the unmodified isotopic composition of meteoric water or local carbon reservoirs, or both, are recorded by authigenic minerals. Surprisingly, these critical assumptions have not been tested across wide-ranging environmental contexts. A review of globally distributed Quaternary records reveals that lake carbonate oxygen isotope compositions are not strongly, nor significantly, correlated with local meteoric-derived water compositions due to the modification of in-flow waters following entry into the lake environment. These modifications are largely caused by surface water evaporation, and can result in dubious reconstructions of ancient environmental conditions if not accounted for. However, our analysis suggests that positive shifts in surface water δ18O are accompanied by similar magnitude shifts in δ13C-DIC during lake residence. This positive co-variation in δ18O and δ13C may be used to de-trend lake carbonate compositions for the effects of surface water evaporation using a parameter we define as the ';13C-excess'. This approach uses the isotopic covariant trend between in-flow waters and lake waters, rather than lacustrine covariation alone, to better constrain ancient meteoric-derived water compositions. In Quaternary lake systems, 13C-excess values are significantly correlated with modern mean up-slope hypsometric altitude with an error of ×500m. Application of the 13C-excess approach to Cenozoic lake carbonate records from the western U.S. Cordillera both challenges and reinforces previous paleoelevational interpretations based on δ18O alone, while application of the 13C-excess approach to Middle Miocene laminated lacustrine carbonates from California and New Zealand provides important insights into the paleohydrologies of these two highly debated

  1. Novel isotopic N, N-dimethyl leucine (iDiLeu) reagents enable absolute quantification of peptides and proteins using a standard curve approach

    PubMed Central

    Greer, Tyler; Lietz, Christopher B.; Xiang, Feng; Li, Lingjun

    2014-01-01

    Absolute quantification of protein targets using liquid chromatography-mass spectrometry (LC-MS) is a key component of candidate biomarker validation. One popular method combines multiple reaction monitoring (MRM) using a triple quadrupole instrument with stable isotope-labeled standards (SIS) for absolute quantification (AQUA). LC-MRM AQUA assays are sensitive and specific, but they are also expensive due to the cost of synthesizing stable isotope peptide standards. While the chemical modification approach using Mass Differential Tags for Relative and Absolute Quantification (mTRAQ) represents a more economical approach when quantifying large numbers of peptides, these reagents are costly and still suffer from lower throughput because only two concentration values per peptide can be obtained in a single LC-MS run. Here, we have developed and applied a set of five novel mass difference reagents, isotopic N,N-dimethyl leucine (iDiLeu). These labels contain an amine reactive group, triazine ester, are cost effective due to their synthetic simplicity, and have increased throughput compared to previous LC-MS quantification methods by allowing construction of a four-point standard curve in one run. iDiLeu-labeled peptides show remarkably similar retention time shifts, slightly lower energy thresholds for higher-energy collisional dissociation (HCD) fragmentation, and high quantification accuracy for trypsin-digested protein samples (median errors <15%). By spiking in an iDiLeu-labeled neuropeptide, allatostatin, into mouse urine matrix, two quantification methods are validated. The first uses one labeled peptide as an internal standard to normalize labeled peptide peak areas across runs (<19% error) while the second enables standard curve creation and analyte quantification in one run (<8% error). PMID:25377360

  2. Novel isotopic N, N-Dimethyl Leucine (iDiLeu) Reagents Enable Absolute Quantification of Peptides and Proteins Using a Standard Curve Approach

    NASA Astrophysics Data System (ADS)

    Greer, Tyler; Lietz, Christopher B.; Xiang, Feng; Li, Lingjun

    2015-01-01

    Absolute quantification of protein targets using liquid chromatography-mass spectrometry (LC-MS) is a key component of candidate biomarker validation. One popular method combines multiple reaction monitoring (MRM) using a triple quadrupole instrument with stable isotope-labeled standards (SIS) for absolute quantification (AQUA). LC-MRM AQUA assays are sensitive and specific, but they are also expensive because of the cost of synthesizing stable isotope peptide standards. While the chemical modification approach using mass differential tags for relative and absolute quantification (mTRAQ) represents a more economical approach when quantifying large numbers of peptides, these reagents are costly and still suffer from lower throughput because only two concentration values per peptide can be obtained in a single LC-MS run. Here, we have developed and applied a set of five novel mass difference reagents, isotopic N, N-dimethyl leucine (iDiLeu). These labels contain an amine reactive group, triazine ester, are cost effective because of their synthetic simplicity, and have increased throughput compared with previous LC-MS quantification methods by allowing construction of a four-point standard curve in one run. iDiLeu-labeled peptides show remarkably similar retention time shifts, slightly lower energy thresholds for higher-energy collisional dissociation (HCD) fragmentation, and high quantification accuracy for trypsin-digested protein samples (median errors <15%). By spiking in an iDiLeu-labeled neuropeptide, allatostatin, into mouse urine matrix, two quantification methods are validated. The first uses one labeled peptide as an internal standard to normalize labeled peptide peak areas across runs (<19% error), whereas the second enables standard curve creation and analyte quantification in one run (<8% error).

  3. Disentangling the complexity of nitrous oxide cycling in coastal sediments: Results from a novel multi-isotope approach

    NASA Astrophysics Data System (ADS)

    Wankel, S. D.; Buchwald, C.; Charoenpong, C.; Ziebis, W.

    2014-12-01

    Although marine environments contribute approximately 30% of the global atmospheric nitrous oxide (N2O) flux, coastal systems appear to comprise a disproportionately large majority of the ocean-atmosphere flux. However, there exists a wide range of estimates and future projections of N2O production and emission are confounded by spatial and temporal variability of biological sources and sinks. As N2O is produced as an intermediate in both oxidative and reductive microbial processes and can also be consumed as an electron acceptor, a mechanistic understanding of the regulation of these pathways remains poorly understood. To improve our understanding of N2O dynamics in coastal sediments, we conducted a series of intact flow-through sediment core incubations (Sylt, Germany), while manipulating both the O2 and NO3- concentrations in the overlying water. Steady-state natural abundance isotope fluxes (δ15N and δ18O) of nitrate, nitrite, ammonium and nitrous oxide were monitored throughout the experiments. We also measured both the isotopomer composition (site preference (SP) of the 15N in N2O) as well as the Δ17O composition in experiments conducted with the addition of NO3- with an elevated Δ17O composition (19.5‰), which provide complementary information about the processes producing and consuming N2O. Results indicate positive N2O fluxes (to the water column) across all conditions and sediment types. Decreasing dissolved O2 to 30% saturation resulted in reduced N2O fluxes (5.9 ± 6.5 μmol m2 d-1) compared to controls (17.8 ± 6.5 μmol m-2 d-1), while the addition of 100 μM NO3- yielded higher N2O fluxes (49.0 ± 18.5 μmol m-2 d-1). In all NO3- addition experiments, the Δ17O signal from the NO3- was clearly observed in the N2O efflux implicating denitrification as a large source of N2O. However, Δ17O values were always lower (1.9 to 8.6‰) than the starting NO3- indicating an important role for nitrification-based N2O production and/or O isotope exchange

  4. Feeding strategies of four dominant copepod species in Prydz Bay, Antarctica: Insights from a combined fatty acid biomarker and stable isotopic approach

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Li, Chaolun; Guilini, Katja; Peng, Quancai; Wang, Yanqing; Zhang, Ye; Zhang, Yongshan

    2016-08-01

    this combined fatty acid and stable isotopic approach suggest that the dominant copepod species in Prydz Bay, Antarctica, have flexible feeding strategies that vary by food source during the late austral summer.

  5. Using Novel Approaches in Process-Based Modeling for Interpreting Inter-Annual Variability in Tree Ring Widths, Wood Density Profiles, and Cellulose Isotopic Ratios

    NASA Astrophysics Data System (ADS)

    Friend, A. D.; Babst, F.; Belmecheri, S.; Frank, D. C.; Hacket Pain, A. J.; Hayat, A.; Poulter, B.; Rademacher, T. T.; Trouet, V.

    2015-12-01

    Time series annual of tree ring width, density variation, and oxygen and carbon isotopic compositions have the potential to substantially increase our knowledge of forest responses to environmental variation. However, their interpretation is not straightforward due to the simultaneous influences of a number of confounding factors, including carry-over effects from previous years, variable resource allocation with size, age, and canopy position, species-specific physiologies, and complex interactions between forcings such as temperature, soil moisture, and atmospheric CO2. Here we attempt to tease these factors apart and so substantially improve the interpretability of tree ring archives through the construction and application of novel approaches within a process-based model of individual tree growth. The model incorporates descriptions of xylem cell division, expansion, and secondary wall thickening, apical and lateral meristem activities with internal controls from internal signals, internal carbon storage, and the dynamics of canopy photosynthesis, stomatal movements, evapotranspiration, canopy temperatures, and soil moisture. Alternative treatments of isotopic fractionation and growth controls are evaluated using measured datasets. We demonstrate how this new model approach can be used to assess the information contained in tree rings concerning the influence of increasing atmospheric CO2 over the past century on growth and water use efficiency at a range of sites.

  6. Overcoming interference with the detection of a stable isotopically labeled microtracer in the evaluation of beclabuvir absolute bioavailability using a concomitant microtracer approach.

    PubMed

    Jiang, Hao; Titsch, Craig; Zeng, Jianing; Jones, Barry; Joyce, Philip; Gandhi, Yash; Turley, Wesley; Burrell, Richard; Aubry, Anne F; Arnold, Mark E

    2017-09-05

    The oral absolute bioavailability of beclabuvir in healthy subjects was determined using a microdose (100μg) of the stable isotopically labeled tracer via intravenous (IV) infusion started after oral dosing of beclabuvir (150mg). To simultaneously analyze the concentrations of the IV microtracer ([(13)C6]beclabuvir) and beclabuvir in plasma samples, a liquid chromatography-triple quadrupole mass spectrometry (LC-MS/MS) method was initially developed. Surprisingly beclabuvir significantly interfered with the IV microtracer detection when using the selected reaction monitoring (SRM) in the assay. An interfering component from the drug substance was observed using a high resolution mass spectrometer (HRMS). The mass-to-charge (m/z) of the interfering component was -32ppm different from the nominal value for the IV microtracer and thus could not be differentiated in the SRM assay by the unit mass resolution. To overcome this interference, we evaluated two approaches by either monitoring an alternative product ion using the SRM assay or isolating the interfering component using the parallel reaction monitoring (PRM) assay on the HRMS. This case study has demonstrated two practical approaches for overcoming interferences with the detection of stable isotopically labeled IV microtracers in the evaluation of absolute bioavailability, which provides users the flexibility in using either LC-MS/MS or HRMS to mitigate unpredicted interferences in the assay to support microtracer absolute bioavailability studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Fertilizer nitrogen isotope signatures.

    PubMed

    Bateman, Alison S; Kelly, Simon D

    2007-09-01

    There has been considerable recent interest in the potential application of nitrogen isotope analysis in discriminating between organically and conventionally grown crops. A prerequisite of this approach is that there is a difference in the nitrogen isotope compositions of the fertilizers used in organic and conventional agriculture. We report new measurements of delta15N values for synthetic nitrogen fertilizers and present a compilation of the new data with existing literature nitrogen isotope data. Nitrogen isotope values for fertilizers that may be permitted in organic cultivation systems are also reported (manures, composts, bloodmeal, bonemeal, hoof and horn, fishmeal and seaweed based fertilizers). The delta15N values of the synthetic fertilizers in the compiled dataset fall within a narrow range close to 0 per thousand with 80% of samples lying between-2 and 2 per thousand and 98.5% of the data having delta15N values of less than 4 per thousand (mean=0.2 per thousand n=153). The fertilizers that may be permitted in organic systems have a higher mean delta15N value of 8.5 per thousand and exhibit a broader range in delta15N values from 0.6 to 36.7 per thousand (n=83). The possible application of the nitrogen isotope approach in discriminating between organically and conventionally grown crops is discussed in light of the fertilizer data presented here and with regard to other factors that are also important in determining crop nitrogen isotope values.

  8. Magicity of the Ca52 and Ca54 isotopes and tensor contribution within a mean-field approach

    NASA Astrophysics Data System (ADS)

    Grasso, Marcella

    2014-03-01

    I investigate the magicity of the isotopes Ca52 and Ca54, which was recently confirmed by two experimental measurements, and relate it to like-particle and neutron-proton tensor effects within a mean-field description. By analyzing Ca isotopes, it is shown that the like-particle tensor contribution induces shell effects that render these nuclei more magic than would be predicted by neglecting it. In particular, such induced shell effects are stronger in the Ca52 nucleus, and the single-particle gaps are increased in both isotopes due to the tensor force. By studying N =32 and N =34 isotones, neutron-proton tensor effects may be isolated and their role analyzed. It is shown that neutron-proton tensor effects lead to increasing N =32 and N =34 gaps, when going along isotonic chains, from Fe58 to Ca52 and from Fe60 to Ca54, respectively. Mean-field calculations are perfomed by employing one Skyrme parameter set, which was introduced in a previous work by fitting the tensor parameters together with the spin-orbit strength. The signs and values of the tensor strengths are thus checked within this specific application. The obtained results indicate that the employed parameter set, even if generated with a partial adjustment of the parameters of the force, leads to the correct shell behavior and provides, in particular, a description of the magicity of Ca52 and Ca54 within a pure mean-field picture with the effective two-body Skyrme interaction.

  9. Food Sources for Ruditapes philippinarum in a Coastal Lagoon Determined by Mass Balance and Stable Isotope Approaches

    PubMed Central

    Komorita, Tomohiro; Kajihara, Rumiko; Tsutsumi, Hiroaki; Shibanuma, Seiichiro; Yamada, Toshiro; Montani, Shigeru

    2014-01-01

    The relationship between the food demand of a clam population (Ruditapes philippinarum (Adams & Reeve 1850)) and the isotopic contributions of potential food sources (phytoplankton, benthic diatoms, and organic matter derived from the sediment surface, seagrass, and seaweeds) to the clam diet were investigated. In particular, we investigated the manner in which dense patches of clams with high secondary productivity are sustained in a coastal lagoon ecosystem (Hichirippu Lagoon) in Hokkaido, Japan. Clam feeding behavior should affect material circulation in this lagoon owing to their high secondary productivity (ca. 130 g C m−2 yr−1). Phytoplankton were initially found to constitute 14–77% of the clam diet, although phytoplankton nitrogen content (1.79–4.48 kmol N) and the food demand of the clam (16.2 kmol N d–1) suggest that phytoplankton can constitute only up to 28% of clam dietary demands. However, use of isotopic signatures alone may be misleading. For example, the contribution of microphytobenthos (MPB) were estimated to be 0–68% on the basis of isotopic signatures but was subsequently shown to be 35±13% (mean ± S.D.) and 64±4% (mean ± S.D.) on the basis of phytoplankton biomass and clam food demand respectively, suggesting that MPB are the primary food source for clams. Thus, in the present study, the abundant MPB in the subtidal area appear to be a key food source for clams, suggesting that these MPB may sustain the high secondary production of the clam. PMID:24489779

  10. A Spatially Explicit Dual-Isotope Approach to Map Regions of Plant-Plant Interaction after Exotic Plant Invasion

    PubMed Central

    Hellmann, Christine; Werner, Christiane; Oldeland, Jens

    2016-01-01

    Understanding interactions between native and invasive plant species in field settings and quantifying the impact of invaders in heterogeneous native ecosystems requires resolving the spatial scale on which these processes take place. Therefore, functional tracers are needed that enable resolving the alterations induced by exotic plant invasion in contrast to natural variation in a spatially explicit way. 15N isoscapes, i.e., spatially referenced representations of stable nitrogen isotopic signatures, have recently provided such a tracer. However, different processes, e.g. water, nitrogen or carbon cycles, may be affected at different spatial scales. Thus multi-isotope studies, by using different functional tracers, can potentially return a more integrated picture of invader impact. This is particularly true when isoscapes are submitted to statistical methods suitable to find homogeneous subgroups in multivariate data such as cluster analysis. Here, we used model-based clustering of spatially explicit foliar δ15N and δ13C isoscapes together with N concentration of a native indicator species, Corema album, to map regions of influence in a Portuguese dune ecosystem invaded by the N2-fixing Acacia longifolia. Cluster analysis identified regions with pronounced alterations in N budget and water use efficiency in the native species, with a more than twofold increase in foliar N, and δ13C and δ15N enrichment of up to 2‰ and 8‰ closer to the invader, respectively. Furthermore, clusters of multiple functional tracers indicated a spatial shift from facilitation through N addition in the proximity of the invader to competition for resources other than N in close contact. Finding homogeneous subgroups in multi-isotope data by means of model-based cluster analysis provided an effective tool for detecting spatial structure in processes affecting plant physiology and performance. The proposed method can give an objective measure of the spatial extent of influence of

  11. High site fidelity and low site connectivity in temperate salt marsh fish populations: a stable isotope approach.

    PubMed

    Green, Benjamin C; Smith, David J; Grey, Jonathan; Underwood, Graham J C

    2012-01-01

    Adult and juvenile fish utilise salt marshes for food and shelter at high tide, moving into adjacent sublittoral regions during low tide. Understanding whether there are high levels of site fidelity for different species of coastal fish has important implications for habitat conservation and the design of marine protected areas. We hypothesised that common salt marsh fish species would demonstrate a high site fidelity, resulting in minimal inter-marsh connectivity. Carbon ((13)C) and nitrogen ((15)N) stable isotope ratios of larvae and juveniles of five common salt marsh fish (Atherina presbyter, Chelon labrosus, Clupea harengus, Dicentrarchus labrax, Pomatoschistus microps), seven types of primary producer and seven secondary consumer food sources were sampled in five salt marshes within two estuary complexes along the coast of south-east England. Significant differences in (13)C and (15)N signatures between salt marshes indicated distinct sub-populations utilising the area of estuary around each salt marsh, and limited connectivity, even within the same estuary complex. (15)N ratios were responsible for the majority of inter-marsh differences for each species and showed similar site-specific patterns in ratios in primary producers, secondary consumers and fish. Fish diets (derived from isotope mixing models) varied between species but were mostly consistent between marsh sites, indicating that dietary shifts were not the source of variability of the inter-marsh isotopic signatures within species. These results demonstrate that for some common coastal fish species, high levels of site fidelity result in individual salt marshes operating as discrete habitats for fish assemblages.

  12. Spatial and temporal patterns of water storage in hydropedological units in northern headwaters: integrating isotopic and hydrometric approaches

    NASA Astrophysics Data System (ADS)

    Geris, J.; Tetzlaff, D.; McDonnell, J. J.; Soulsby, C.

    2013-12-01

    Soil water storage and release are controlled by the complex interaction of soil properties and vegetation. Here, we present new insights into water storage dynamics in six hydropedological units - encompassing the main ecohydrological assemblages in headwater catchments in the Scottish Highlands - investigated under contrasting hydro-climatological conditions. Soil moisture changes and stable isotope dynamics from multiple depths within soil profiles were examined to determine the relative influence of soil hydraulic properties and vegetation characteristics on storage dynamics. The study was based in the 3.6 km2 Bruntland catchment which is characterised by high annual precipitation (~1000 mm) which is relatively evenly distributed throughout the year and greatly exceeds evapotranspiration (~400 mm). Soils investigated encompassed both freely draining (podsols) and water-logged responsive (histosols and gleysols) soils. For each soil forest and non-forest vegetation were compared. In contrast to the permanently saturated histosols and gleysols, the freely draining podsols exhibited pronounced wetting and drying cycles. These were particularly accentuated at the forested site. Variability of soil water stable isotope signatures reflected variability in precipitation inputs for the podzolic soils, consistent with their freely draining nature and relatively low storage capacity, especially for the upper horizons. In contrast, the signals of soil water in the wet histosols were strongly damped, indicating significant mixing of precipitation inputs with the much greater storage. Evaporative fractionation showed little variation between the different vegetation communities suggesting that greater forest water use largely reflected interception losses. Thus at this site, intrinsic soil hydraulic properties exert a much stronger influence on water storage and transmission than vegetation. This is consistent with the overall energy-limited climate in conjunction with the

  13. Comparing soil functions for a wide range of agriculture soils focusing on production for bioenergy using a combined isotope-based observation and modelling approach

    NASA Astrophysics Data System (ADS)

    Leistert, Hannes; Herbstritt, Barbara; Weiler, Markus

    2017-04-01

    Increase crop production for bioenergy will result in changes in land use and the resulting soil functions and may generate new chances and risks. However, detailed data and information are still missing how soil function may be altered under changing crop productions for bioenergy, in particular for a wide range of agricultural soils since most data are currently derived from individual experimental sites studying different bioenergy crops at one location. We developed a new, rapid measurement approach to investigate the influence of bioenergy plants on the water cycle and different soil functions (filter and buffer of water and N-cycling). For this approach, we drilled 89 soil cores (1-3 m deep) in spring and fall at 11 sites with different soil properties and climatic conditions comparing different crops (grass, corn, willow, poplar, and other less common bioenergy crops) and analyzing 1150 soil samples for water content, nitrate concentration and stable water isotopes. We benchmarked a soil hydrological model (1-D numerical Richards equation, ADE, water isotope fractionation including liquid and vapor composition of isotopes) using longer-term climate variables and water isotopes in precipitation to derive crop specific parameterization and to specifically validate the differences in water transport and water partitioning into evaporation, transpiration and groundwater recharge among the sites and crops using the water isotopes in particular. The model simulation were in good agreement with the observed isotope profiles and allowed us to differentiate among the different crops. We defined different indicators for the soil functions considered in this study. These indicators included the proportion of groundwater recharge, transit time of water (different percentiles) though the upper 2m and nutrient leaching potential (e.g. nitrate) during the dormant season from the rooting zone. The parameterized model was first used to calculate the indicators for the

  14. Isotope separation

    DOEpatents

    Bartlett, Rodney J.; Morrey, John R.

    1978-01-01

    A method and apparatus is described for separating gas molecules containing one isotope of an element from gas molecules containing other isotopes of the same element in which all of the molecules of the gas are at the same electronic state in their ground state. Gas molecules in a gas stream containing one of the isotopes are selectively excited to a different electronic state while leaving the other gas molecules in their original ground state. Gas molecules containing one of the isotopes are then deflected from the other gas molecules in the stream and thus physically separated.

  15. Why Methane Increasing in the Atmosphere is Pushing us Towards New Analytical Approaches for Stable Isotope Ratios

    NASA Astrophysics Data System (ADS)

    White, J. W. C.; Michel, S. E.; Vaughn, B. H.; Miller, J. B.; Masarie, K. A.; Dlugokencky, E. J.; Sherwood, O.; Tans, P. P.

    2015-12-01

    Methane is increasing again in the atmosphere after nearly a decade of stable concentrations. As methane has risen by 2.5 times since the beginning of the industrial era, such a rise in concentrations is not surprising. Carbon isotopes, however, make it clear that the recent rise is not simply a resumption of the dramatic rise in the 1900s, but that other causes are at play, and that multiple fluxes may be interacting to yield the observed rise. At the same time, cautious attention is focused on the Arctic, where vast stores of carbon are poised for release as frozen soils melt, and some of that carbon will be released as methane. These realities make it imperative that we improve our monitoring of methane and methane isotopes in the atmosphere. This talk will address the issues that we face in meeting this challenge in the NOAA Global Greenhouse Gas Reference Network, including targets for precision and accuracy needed to calculate regional and global fluxes, technological advances in analytical equipment, maintaining standards, ensuring adequate monitoring sites and meeting all of these needs in an era of funding cuts and uncertainty for environmental monitoring.

  16. Estimation of snow and glacier melt contribution to Liddar stream in a mountainous catchment, western Himalaya: an isotopic approach.

    PubMed

    Jeelani, Gh; Shah, Rouf A; Jacob, Noble; Deshpande, Rajendrakumar D

    2017-03-01

    Snow- and glacier-dominated catchments in the Himalayas are important sources of fresh water to more than one billion people. However, the contribution of snowmelt and glacier melt to stream flow remains largely unquantified in most parts of the Himalayas. We used environmental isotopes and geochemical tracers to determine the source water and flow paths of stream flow draining the snow- and glacier-dominated mountainous catchment of the western Himalaya. The study suggested that the stream flow in the spring season is dominated by the snowmelt released from low altitudes and becomes isotopically depleted as the melt season progressed. The tracer-based mixing models suggested that snowmelt contributed a significant proportion (5-66 %) to stream flow throughout the year with the maximum contribution in spring and summer seasons (from March to July). In 2013 a large and persistent snowpack contributed significantly (∼51 %) to stream flow in autumn (September and October) as well. The average annual contribution of glacier melt to stream flow is little (5 %). However, the monthly contribution of glacier melt to stream flow reaches up to 19 % in September during years of less persistent snow pack.

  17. A new approach to understand methylmercury (CH3Hg) sources and transformation pathways: Compound-specific carbon stable isotope analysis by GC-C-IRMS

    NASA Astrophysics Data System (ADS)

    Baya, P. A.; Point, D.; Amouroux, D. P.; Lebreton, B.; Guillou, G.

    2015-12-01

    Methylmercury (CH3Hg) is a potent neurotoxin which is readily assimilated by organisms and bio-accumulates in aquatic food webs. In humans, consumption of CH3Hg contaminated marine fish is the major route of mercury exposure. However, our understanding of CH3Hg transformation pathways is still incomplete. To close this knowledge gap, we propose to explore the stable carbon isotopic composition (δ13C) of the methyl group of CH3Hg for a better understanding of its sources and transformation mechanisms. The method developed for the determination of the δ13C value of CH3Hg in biological samples involves (i) CH3Hg selective extraction, (ii) derivatization, and (iii) separation by gas chromatography (GC) prior to analysis by combustion isotope ratio mass spectrometry (C-IRMS). We present the figures of merit of this novel method and the first δ13C signatures for certified materials (ERM-CE464, BCR414) and biological samples at different marine trophic levels (i.e., tuna fish, zooplankton). The implications of this new approach to trace the pathways associated with Hg methylation and the mechanisms involved will be discussed.

  18. Exploring mass extinction events and their association with global warming events from muliproxy biomarker and isotopic approaches

    NASA Astrophysics Data System (ADS)

    Grice, K.; Nabbefeld, B.; Maslen, E.; Jaraula, C.; Holman, A.; Melendez, I.; Tulipani, S.; Twitchett, R.; Hays, L. E.; Summons, R. E.; Mella, L.; Williford, K. H.; McElwain, J.; Böttcher, M.

    2011-12-01

    The Late Permian mass extinction event was the most profound extinctions of the entire Phanerozoic. Biomarker evidence for photic zone euxinic (PZE) conditions within Permian/Triassic (P/Tr) setions, where concentrations of sulfide, are sufficient to support anoxygenic photosynthesis, come from components derived from pigments of Chlorobi. Evidence for such conditions occurred at 6 global localities from shallow marine settings. Perturbations in the redox-state of the ancient seas are also reflected in d34S of pyrite (e.g. from China, Italy, Iran, Western Australia, East Greenland, Western Canada and Spitsbergen) supporting widespread euxinic conditions in both Palaeotethys and Panthalassa oceans. The aromatic biomarkers, dibenzothiophene, dibenzofuran and biphenyl have been detected in high abundances in samples just before the onset of the marine ecosystem collapse in East Greenland, Spitsbergen, South China and Western Canada . We have proposed that lignin derived from land plants, present during the Late Permian is their likely source. We provide sedimentological data, biomarker abundances and compound specific isotopic data (δ13C and δD) along with bulk isotopes (δ34Spyrite, δ13Ccarbonate, δ13Corg) for several sections. At two localities sedimentological and geochemical data supports a marine transgression and collapse of the marine ecosystem occurring in the Late Permian. δ13C data of algal and land-plant derived biomarkers, δ13C carbonate and organic matter support synchronous changes in δ13C of marine and atmospheric CO2, attributed to a 13C-depleted source (13C depleted methane and/or CO2 derived from degradation of organic matter due to the marine ecosystem collapse). Evidence for waxing and waning of PZE throughout the Late Permian is provided by Chlorobi derived biomarkers and δ34S pyrite implying multiple phases of H2S outgassing and potentially several prolonged pulses of extinction at several global localities. We suggest that high levels of

  19. Shape evolution in proton-rich and neutron-rich Kr isotopes within the beyond-mean-field approach

    NASA Astrophysics Data System (ADS)

    Petrovici, A.

    2017-06-01

    Shape coexistence effects on the structure and dynamics of the Z = N + 2 70Kr and N = 58 94Kr isotopes are explored in the framework of the complex excited Vampir beyond-mean-field model based on the effective interaction derived from a G-matrix starting from the charge-dependent Bonn CD potential and rather large model spaces. Results are presented on the evolution of shape-mixing and electromagnetic properties in the lowest two bands of both nuclei. Shape coexistence effects on the beta-decay properties of low-lying states in 70Kr are illustrated. The influence of shape mixing on the structure of parent and daughter states is realistically taken into account through independent chains of variational calculations.

  20. Quantitative identification of nitrate pollution sources and uncertainty analysis based on dual isotope approach in an agricultural watershed.

    PubMed

    Ji, Xiaoliang; Xie, Runting; Hao, Yun; Lu, Jun

    2017-10-01

    Quantitative identification of nitrate (NO3(-)-N) sources is critical to the control of nonpoint source nitrogen pollution in an agricultural watershed. Combined with water quality monitoring, we adopted the environmental isotope (δD-H2O, δ(18)O-H2O, δ(15)N-NO3(-), and δ(18)O-NO3(-)) analysis and the Markov Chain Monte Carlo (MCMC) mixing model to determine the proportions of riverine NO3(-)-N inputs from four potential NO3(-)-N sources, namely, atmospheric deposition (AD), chemical nitrogen fertilizer (NF), soil nitrogen (SN), and manure and sewage (M&S), in the ChangLe River watershed of eastern China. Results showed that NO3(-)-N was the main form of nitrogen in this watershed, accounting for approximately 74% of the total nitrogen concentration. A strong hydraulic interaction existed between the surface and groundwater for NO3(-)-N pollution. The variations of the isotopic composition in NO3(-)-N suggested that microbial nitrification was the dominant nitrogen transformation process in surface water, whereas significant denitrification was observed in groundwater. MCMC mixing model outputs revealed that M&S was the predominant contributor to riverine NO3(-)-N pollution (contributing 41.8% on average), followed by SN (34.0%), NF (21.9%), and AD (2.3%) sources. Finally, we constructed an uncertainty index, UI90, to quantitatively characterize the uncertainties inherent in NO3(-)-N source apportionment and discussed the reasons behind the uncertainties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Ground-water, large-lake interactions in Saginaw Bay, Lake Huron: A geochemical and isotopic approach

    USGS Publications Warehouse

    Kolak, J.J.; Long, D.T.; Matty, J.M.; Larson, G.J.; Sibley, D.F.; Councell, T.B.

    1999-01-01

    Delineating the nature and extent of ground-water inputs is necessary to understand the hydrochemistry of large lakes. Characterizing the interaction between ground water and large lakes (e.g., the Great Lakes) is facilitated by the use of geochemical and isotopic data. In this study, pore waters were extracted from sediment cores collected from Saginaw Bay and the surrounding Saginaw lowland area; the geochemistry and stable isotope signature of these pore waters were used to identify sources for the water and solutes. Cores from Saginaw Bay and the Saginaw lowland area yielded strong vertical gradients in chloride concentrations, suggesting that a high-chloride source is present at depth. The spatial distribution of cores with elevated chloride concentrations corresponds to the regional distribution of chloride in ground water. Most of the Saginaw lowland area cores contain water with significantly lower ??18O values than modern meteoric water, suggesting that the water had been recharged during a much cooler climate. The ??18O values measured in pore waters (from Saginaw Bay cores) containing high chloride concentrations are similar to modern meteoric water; however, values lighter than modern meteoric water are encountered at depth. Chloride:bromide ratios, used to distinguish between different chloride sources, identify formation brine as the likely source for chloride. Transport models indicate that a combination of advection and diffusion is responsible for the observed Saginaw lowland area pore-water profiles. Pore-water profiles in Saginaw Bay sediments are produced primarily by diffusion and require significantly less time to evolve. An upward flux of solutes derived from formation brine could occur elsewhere within the Great Lakes region and significantly affect the geochemical cycling of chloride and other contaminants (e.g., trace metals).

  2. A novel methodological approach for δ(18)O analysis of sugars using gas chromatography-pyrolysis-isotope ratio mass spectrometry.

    PubMed

    Zech, Michael; Saurer, Matthias; Tuthorn, Mario; Rinne, Katja; Werner, Roland A; Siegwolf, Rolf; Glaser, Bruno; Juchelka, Dieter

    2013-01-01

    Although the instrumental coupling of gas chromatography-pyrolysis-isotope ratio mass spectrometry (GC-Py-IRMS) for compound-specific δ(18)O analysis has been commercially available for more than a decade, this method has been hardly applied so far. Here we present the first GC-Py-IRMS δ(18)O results for trimethylsilyl-derivatives of plant sap-relevant sugars and a polyalcohol (glucose, fructose, sucrose, raffinose and pinitol). Particularly, we focus on sucrose, which is assimilated in leaves and which is the most important transport sugar in plants and hence of utmost relevance in plant physiology and paleoclimate studies. Replication measurements of sucrose standards and concentration series indicate that the GC-Py-IRMS δ(18)O measurements are not stable over time and that they are amount (area) dependent. We, therefore, suggest running sample batch replication measurements in alternation with standard concentration series of reference material. This allows for carrying out (i) a drift correction, (ii) a calibration against reference material and (iii) an amount (area) correction. Tests with (18)O-enriched water do not provide any evidence for oxygen isotope exchange reactions affecting sucrose and raffinose. We present the first application of GC-Py-IRMS δ(18)O analysis for sucrose from needle extract (soluble carbohydrate) samples. The obtained δ(18)Osucrose/ Vienna Standard Mean Ocean Water (VSMOW) values are more positive and vary in a wider range (32.1-40.1 ‰) than the δ(18)Obulk/ VSMOW values (24.6-27.2 ‰). Furthermore, they are shown to depend on the climate parameters maximum day temperature, relative air humidity and cloud cover. These findings suggest that δ(18)Osucrose of the investigated needles very sensitively reflects the climatically controlled evaporative (18)O enrichment of leaf water and thus highlights the great potential of GC-Py-IRMS δ(18)Osucrose analysis for plant physiology and paleoclimate studies.

  3. A stable-isotope dilution GC-MS approach for the analysis of DFRC (derivatization followed by reductive cleavage) monomers from low-lignin plant materials.

    PubMed

    Schäfer, Judith; Urbat, Felix; Rund, Katharina; Bunzel, Mirko

    2015-03-18

    The derivatization followed by reductive cleavage (DFRC) method is a well-established tool to characterize the lignin composition of plant materials. However, the application of the original procedure, especially the chromatographic determination of the DFRC monomers, is problematic for low-lignin foods. To overcome these problems a modified sample cleanup and a stable-isotope dilution approach were developed and validated. To quantitate the diacetylated DFRC monomers, their corresponding hexadeuterated analogs were synthesized and used as internal standards. By using the selected-ion monitoring mode, matrix-associated interferences can be minimized resulting in higher selectivity and sensitivity. The modified method was applied to four low-lignin samples. Lignin from carrot fibers was classified as guaiacyl-rich whereas the lignins from radish, pear, and asparagus fibers where classified as balanced lignins (guaiacyl/syringyl ratio=1-2).

  4. Isotope Cancer Treatment Research at LANL

    ScienceCinema

    Weidner, John; Nortier, Meiring

    2016-07-12

    Los Alamos National Laboratory has produced medical isotopes for diagnostic and imaging purposes for more than 30 years. Now LANL researchers have branched out into isotope cancer treatment studies. New results show that an accelerator-based approach can produce clinical trial quantities of actinium-225, an isotope that has promise as a way to kill tumors without damaging surrounding healthy cells.

  5. Isotope Cancer Treatment Research at LANL

    SciTech Connect

    Weidner, John; Nortier, Meiring

    2012-04-11

    Los Alamos National Laboratory has produced medical isotopes for diagnostic and imaging purposes for more than 30 years. Now LANL researchers have branched out into isotope cancer treatment studies. New results show that an accelerator-based approach can produce clinical trial quantities of actinium-225, an isotope that has promise as a way to kill tumors without damaging surrounding healthy cells.

  6. Sulfate and sulfide sulfur isotopes (δ34S and δ33S) measured by solution and laser ablation MC-ICP-MS: An enhanced approach using external correction

    USGS Publications Warehouse

    Pribil, Michael; Ridley, William I.; Emsbo, Poul

    2015-01-01

    Isotope ratio measurements using a multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS) commonly use standard-sample bracketing with a single isotope standard for mass bias correction for elements with narrow-range isotope systems measured by MC-ICP-MS, e.g. Cu, Fe, Zn, and Hg. However, sulfur (S) isotopic composition (δ34S) in nature can range from at least − 40 to + 40‰, potentially exceeding the ability of standard-sample bracketing using a single sulfur isotope standard to accurately correct for mass bias. Isotopic fractionation via solution and laser ablation introduction was determined during sulfate sulfur (Ssulfate) isotope measurements. An external isotope calibration curve was constructed using in-house and National Institute of Standards and Technology (NIST) Ssulfate isotope reference materials (RM) in an attempt to correct for the difference. The ability of external isotope correction for Ssulfate isotope measurements was evaluated by analyzing NIST and United States Geological Survey (USGS) Ssulfate isotope reference materials as unknowns. Differences in δ34Ssulfate between standard-sample bracketing and standard-sample bracketing with external isotope correction for sulfate samples ranged from 0.72‰ to 2.35‰ over a δ34S range of 1.40‰ to 21.17‰. No isotopic differences were observed when analyzing Ssulfide reference materials over a δ34Ssulfide range of − 32.1‰ to 17.3‰ and a δ33S range of − 16.5‰ to 8.9‰ via laser ablation (LA)-MC-ICP-MS. Here, we identify a possible plasma induced fractionation for Ssulfate and describe a new method using external isotope calibration corrections using solution and LA-MC-ICP-MS.

  7. A new approach for deciphering between single and multiple accumulation events using intra-tooth isotopic variations: Application to the Middle Pleistocene bone bed of Schöningen 13 II-4.

    PubMed

    Julien, Marie-Anne; Rivals, Florent; Serangeli, Jordi; Bocherens, Hervé; Conard, Nicholas J

    2015-12-01

    It is often difficult to differentiate between archaeological bonebeds formed by one event such as a mass kill of a single herd, and those formed by multiple events that occurred over a longer period of time. The application of high temporal resolution studies such as intra-tooth isotopic profiles on archaeological mammal cohorts offers new possibilities for exploring this issue, allowing investigators to decipher between single and multiple accumulation events. We examined (18)O and (13)C isotopic variations from the enamel carbonate of 23 horse third molars from the Middle Pleistocene archaeological site of Schöningen. We employed a new approach to investigate processes of fossil accumulation that uses both bulk and intra-tooth isotopic variations and takes into account animal behavior, age at death and dental development to test the degree of isotopic affinity of animals from the same fossil assemblage. Oxygen and carbon isotope bulk values indicate that the horses from Schöningen 13 II-4 experienced relatively similar climatic and dietary regimes. Inter-individual differences of the bulk values of the horses sampled in the current study present nevertheless inter-individual variability similar to individuals from multi-layered localities. In addition, the intra-tooth isotopic variation of specimens of the same age at death seems to indicate that the studied cohort corresponds to a mix of individuals that recorded both similar and different isotopic histories. Finally, the conditions recorded in the isotopic signal shortly before death (i.e., for teeth not fully mineralized) varied between sampled individuals, suggesting possible differences in the seasonality of death. Considering those results, we discuss the possibility that the horses from Schöningen 13 II-4 correspond to an accumulation of different death events.

  8. Influences of the substrate feeding regime on methanogenic activity in biogas reactors approached by molecular and stable isotope methods.

    PubMed

    Lv, Z; Leite, A F; Harms, H; Richnow, H H; Liebetrau, J; Nikolausz, M

    2014-10-01

    In order to better understand the effects of the substrate feeding regime on methanogenesis during anaerobic digestion in biogas reactors, four continuous stirred tank reactors operated under mesophilic conditions were investigated. In addition to standard physicochemical parameters, the stable isotopic signatures of CH4 and CO2 before and after daily feeding were analyzed. The activity of the methanogens was assessed by methyl coenzyme M reductase alpha-subunit (mcrA/mrtA) gene transcript analysis. Two different feeding regimes i.e. single vs. double consecutive feeding of the otherwise same daily maize silage load were investigated. During the first phase, a single feeding of the whole daily dose increased the biogas production within 70-80 min from around 0.5 to 2.0 L/h. This increase was associated with a transient increase of the acetic acid concentration and a corresponding decrease of the pH. Only moderate increase in biogas yield and VFA concentration (mainly acetate) was observed when the daily substrate was apportioned into two feedings. However, the overall daily gas production was similar in both cases. Regardless of the feeding regime, significantly depleted δ(13)CH4 and minor changes in the CO2 content of biogas were observed after feeding, which were followed by enrichment of δ(13)CH4. This period was associated with detectable changes in activity of methanogenic communities monitored by terminal restriction fragment length polymorphism analysis based on the transcripts of mcrA/mrtA genes. Methanoculleus and Methanobacterium spp. were the predominant methanogens in all reactors, while Methanosarcina spp. activity was only significant in two reactors. The activity of Methanoculleus and Methanosarcina spp. increased after the feeding in these reactors, which was followed by a depletion of δ(13)C in the produced gas. In both reactors, the less depleted isotopic values were detected before the second feeding, when Methanobacterium was the most

  9. A common parentage for Deccan Continental Flood Basalt and Central Indian Ocean Ridge Basalt? A geochemical and isotopic approach

    NASA Astrophysics Data System (ADS)

    Ray, D.; Misra, S.; Widdowson, M.; Langmuir, C. H.

    2014-04-01

    A comparison of geochemical and Sr-Nd-Pb isotopic compositions for Deccan Continental Flood Basalts (CFBs) and Central Indian Ridge (CIR) Basalts is presented: these data permit assessment of possible parental linkages between the two regions, and comparison of their respective magmatic evolutionary trends in relation to rift-related tectonic events during Gondwana break-up. The present study reveals that Mid-Ocean Ridge Basalt (MORB) from the northern CIR and basalts of Deccan CFB are geochemically dissimilar because of: (1) the Deccan CFB basalts typically show a greater iron-enrichment as compared to the northern CIR MORB, (2) a multi-element spiderdiagram reveals that the Deccan CFBs reveal a more fractionated slope (Ba/YbN > 1), as compared to relatively flat northern CIR MORB (Ba/YbN < 1), (3) there is greater REE fractionation for Deccan CFB than for the northern CIR MORB (i.e., La/YbN ˜ 2.3 and 1 respectively) and (4) substantial variation of compatible-incompatible trace elements and their ratios among the two basalt groups suggests that partial melting is a dominant process for northern CIR MORB, while fractional crystallization was a more important control to the geochemical variation for Deccan CFB. Further, incompatible trace element ratios (Nb/U and Nb/Pb) and radiogenic isotopic data (Sr-Pb-Nd) indicate that the northern CIR MORBs are similar to depleted mantle [and/or normal (N)-MORB], and often lie on a mixing line between depleted mantle and upper continental crust. By contrast, Deccan CFB compositions lie between the lower continental crust and Ocean island basalt. Accordingly, we conclude that the basaltic suites of the northern CIR MORB and Deccan CFB do not share common parentage, and are therefore genetically unrelated to each other. Instead, we infer that the northern CIR MORB were derived from a depleted mantle source contaminated by upper continental crust, probably during the break up of Gondwanaland; the Deccan CFB are more similar to

  10. Estimation of groundwater residence times in watersheds using the runoff recession hydrograph: Application and comparison with the isotopic approach in two headwater watersheds

    NASA Astrophysics Data System (ADS)

    Vitvar, T.; Burns, D. A.; McDonnell, J. J.

    2001-05-01

    A need exists for a method to estimate groundwater residence time in watersheds that uses readily available data. Current methods require intensive and expensive collection of isotope or other tracer data. We have developed a method for estimation of mean baseflow residence time in watersheds based on runoff recession characteristics in the Winnisook watershed, Catskill Mts, New York, USA, and in the Maimai watershed, New Zealand. We first derived mean transmissivity and storativity of the dynamic subsurface water storage based on calculated runoff recession characteristics, and then we used these to estimate mean baseflow residence time. The two selected watersheds represent two different geomorphic, climatic and hydrological regimes: the Winnisook is an upland forested catchment with 20\\deg mean slope angles, thin soils (<1.0 m) developed in glacial till, 1570 mm annual rainfall and is underlain by permeable layered sedimentary bedrock. The Maimai watershed is a steep humid catchment with 35\\deg mean slope angles, thin soils (<0.5 m), 2700 mm annual rainfall and is underlain by impermeable bedrock. To test the new approach, mean baseflow residence times were calculated using the convolution integral approach relating rainfall to sampled streamflow 18O values. Mean baseflow residence time for the 2 km&^{2}$ Winnisook watershed was about 9 months using both the convolution integral approach and the recession hydrograph approach. The mean baseflow residence time for the 0.3 ha Maimai watershed was 3 months based on the convolution integral approach. The recession hydrograph method yields a slightly different result dependent on the variable shape of the recession hydrograph in this wet climatic regime. This new baseflow recession method may be an alternative to the convolution integral approach, and can delineate dynamic and static reservoirs for solving mixing problems at the watershed scale.

  11. Natural and anthropogenic variations in the Po river waters (northern Italy): insights from a multi-isotope approach.

    PubMed

    Marchina, Chiara; Bianchini, Gianluca; Knoeller, Kay; Natali, Claudio; Pennisi, Maddalena; Colombani, Nicolò

    2016-12-01

    Po is the main Italian river and the δ(18)O and δ(2)H of its water reveal a similarity between the current meteoric fingerprint and that of the past represented by groundwater. As concerns the hydrochemisty, the Ca-HCO3 facies remained constant over the last 50 year, and only nitrate significantly increased from less than 1 mg/L to more than 10 mg/L in the 1980s, and then attenuated to a value of 9 mg/L. Coherently, δ(13)CDIC and δ(34)SSO4 are compatible with the weathering of the lithologies outcropping in the basin, while extremely variable δ(15)NNO3 indicates contribution from pollutants released by urban, agricultural and zootechnical activities. This suggests that although the origin of the main constituents of the Po river water is geogenic, anthropogenic contributions are locally significant. Noteworthy, the associated aquifers have the same nitrogen isotopic signature of the Po river, but are characterized by significantly higher NO(-) 3 concentration. This implies that aquifers' pollution is not ascribed to inflow of current river water, and that the attenuation of the nitrogen load recorded in the river is not occurring in the aquifers, due to their longer water residence time and delayed recovery from anthropogenic contamination.

  12. Speciation and transport of newly deposited mercury in a boreal forest wetland: A stable mercury isotope approach

    USGS Publications Warehouse

    Branfireun, B.A.; Krabbenhoft, D.P.; Hintelmann, H.; Hunt, R.J.; Hurley, J.P.; Rudd, J.W.M.

    2005-01-01

    As part of the Mercury Experiment to Assess Atmospheric Loadings in Canada and the United States (METAALICUS) the fate and transport of contemporary mercury (Hg) deposition in a boreal wetland was investigated using an experimentally applied stable mercury isotope. We applied high purity (99.2% ?? 0.1) 202Hg(II) to a wetland plot to determine if (1) the 202Hg was detectable above the pool of native Hg, (2) the 202Hg migrated vertically and/or horizontally in peat and pore waters, and (3) the 202Hg was converted to methylmercury (MeHg) in situ. The 202Hg was easily detected by ICP/MS in both solid peat and pore waters. Over 3 months, the 202Hg migrated vertically downward in excess of 15 cm below the water table and traveled several meters horizontally beyond the experimental plot to the lake margin along the dominant vector of groundwater flow. Importantly, at one location, 6% of aqueous 202Hg was detected as Me202Hg after only 1 day. These results indicate that new inorganic Hg in atmospheric deposition can be readily methylated and transported lakeward by shallow groundwater flow, confirming the important role of wetlands as contributors of Hg to aquatic ecosystems. Copyright 2005 by the American Geophysical Union.

  13. Denitrification and anammox in tropical aquaculture settlement ponds: an isotope tracer approach for evaluating N2 production.

    PubMed

    Castine, Sarah A; Erler, Dirk V; Trott, Lindsay A; Paul, Nicholas A; de Nys, Rocky; Eyre, Bradley D

    2012-01-01

    Settlement ponds are used to treat aquaculture discharge water by removing nutrients through physical (settling) and biological (microbial transformation) processes. Nutrient removal through settling has been quantified, however, the occurrence of, and potential for microbial nitrogen (N) removal is largely unknown in these systems. Therefore, isotope tracer techniques were used to measure potential rates of denitrification and anaerobic ammonium oxidation (anammox) in the sediment of settlement ponds in tropical aquaculture systems. Dinitrogen gas (N(2)) was produced in all ponds, although potential rates were low (0-7.07 nmol N cm(-3) h(-1)) relative to other aquatic systems. Denitrification was the main driver of N(2) production, with anammox only detected in two of the four ponds. No correlations were detected between the measured sediment variables (total organic carbon, total nitrogen, iron, manganese, sulphur and phosphorous) and denitrification or anammox. Furthermore, denitrification was not carbon limited as the addition of particulate organic matter (paired t-Test; P = 0.350, n = 3) or methanol (paired t-Test; P = 0.744, n = 3) did not stimulate production of N(2). A simple mass balance model showed that only 2.5% of added fixed N was removed in the studied settlement ponds through the denitrification and anammox processes. It is recommended that settlement ponds be used in conjunction with additional technologies (i.e. constructed wetlands or biological reactors) to enhance N(2) production and N removal from aquaculture wastewater.

  14. An Empirical Approach to Obtaining Accurate Molecular Rotational Constants for Isotopically-Substituted Species from AB Initio Calculations

    NASA Astrophysics Data System (ADS)

    McGuire, Brett A.; Carroll, P. Brandon; Blake, Geoffrey A.

    2013-06-01

    Recent advances in microwave spectroscopy, namely the development of broadband, chirped-pulse Fourier-transform microwave spectrometers, allow the acquisition of rotational spectra of isotopically-substituted species in natural abundance. The characterization and assignment of these spectra is of particular interest as it applies to astrochemical observations of such species in the interstellar medium. Here, we demonstrate an empirical method for determining rotational constants to aid in the initial assignment of such spectra using a combination of laboratory data and ab initio calculations. The result is an increase in the accuracy of these constants by as much as two orders of magnitude versus those resulting from simple structure optimizations. We have applied this method to a variety of species including diatomic molecules (e.g. HCl), large molecules with internal motion (e.g. CH_3COOH), ions (e.g. HCO^+), clusters (e.g. H_2O\\cdotH_2O), and long carbon chain molecules (e.g. HC_7N). We present the results of these analyses and comment on the applicability of this method to other systems.

  15. Trophic linkage of a temperate intertidal macrobenthic food web under opportunistic macroalgal blooms: A stable isotope approach.

    PubMed

    Park, Hyun Je; Han, Eunah; Lee, Young-Jae; Kang, Chang-Keun

    2016-10-15

    The effects of blooms of opportunistic green macroalgae, Ulva prolifera, on the trophic structure of the macrobenthic food web in a temperate intertidal zone on the western coast of Korea were evaluated using carbon and nitrogen stable isotopes. Biomasses of Ulva and microphytobenthos (MPB) increased significantly at the macroalgae-bloom and the non-bloom sites, respectively, from March to September 2011. The δ(13)C values of most the consumers were arrayed between those of MPB and Ulva at both sites, and differed according to feeding strategies at the macroalgae-bloom site. Seasonally increasing magnitudes in δ(13)C and δ(15)N values of consumers were much steeper at the macroalgae-bloom site than at the non-bloom site. Our findings provide evidence that blooming green macroalgae play a significant role as a basal resource supporting the intertidal macrobenthic food web and their significance varies with feeding strategies of consumers as well as the resource availability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Technical Report: Investigation of Carbon Cycle Processes within a Managed Landscape: An Ecosystem Manipulation and Isotope Tracer Approach

    SciTech Connect

    Griffis, Timothy J; Baker, John M; Billmark, Kaycie

    2009-06-01

    The goal of this research is to provide a better scientific understanding of carbon cycle processes within an agricultural landscape characteristic of the Upper Midwest. This project recognizes the need to study processes at multiple spatial and temporal scales to reduce uncertainty in ecosystem and landscape-scale carbon budgets to provide a sound basis for shaping future policy related to carbon management. Specifically, this project has attempted to answer the following questions: 1. Would the use of cover crops result in a shift from carbon neutral to significant carbon gain in corn-soybean rotation ecosystems of the Upper Midwest? 2. Can stable carbon isotope analyses be used to partition ecosystem respiration into its autotrophic and heterotrophic components? 3. Can this partitioning be used to better understand the fate of crop residues to project changes in the soil carbon reservoir? 4. Are agricultural ecosystems of the Upper Midwest carbon neutral, sinks, or sources? Can the proposed measurement and modeling framework help address landscape-scale carbon budget uncertainties and help guide future carbon management policy?

  17. Denitrification and Anammox in Tropical Aquaculture Settlement Ponds: An Isotope Tracer Approach for Evaluating N2 Production

    PubMed Central

    Castine, Sarah A.; Erler, Dirk V.; Trott, Lindsay A.; Paul, Nicholas A.; de Nys, Rocky; Eyre, Bradley D.

    2012-01-01

    Settlement ponds are used to treat aquaculture discharge water by removing nutrients through physical (settling) and biological (microbial transformation) processes. Nutrient removal through settling has been quantified, however, the occurrence of, and potential for microbial nitrogen (N) removal is largely unknown in these systems. Therefore, isotope tracer techniques were used to measure potential rates of denitrification and anaerobic ammonium oxidation (anammox) in the sediment of settlement ponds in tropical aquaculture systems. Dinitrogen gas (N2) was produced in all ponds, although potential rates were low (0–7.07 nmol N cm−3 h−1) relative to other aquatic systems. Denitrification was the main driver of N2 production, with anammox only detected in two of the four ponds. No correlations were detected between the measured sediment variables (total organic carbon, total nitrogen, iron, manganese, sulphur and phosphorous) and denitrification or anammox. Furthermore, denitrification was not carbon limited as the addition of particulate organic matter (paired t-Test; P = 0.350, n = 3) or methanol (paired t-Test; P = 0.744, n = 3) did not stimulate production of N2. A simple mass balance model showed that only 2.5% of added fixed N was removed in the studied settlement ponds through the denitrification and anammox processes. It is recommended that settlement ponds be used in conjunction with additional technologies (i.e. constructed wetlands or biological reactors) to enhance N2 production and N removal from aquaculture wastewater. PMID:22962581

  18. Calcium Isotope Analysis by Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Boulyga, S.; Richter, S.

    2010-12-01

    The variations in the isotopic composition of calcium caused by fractionation in heterogeneous systems and by nuclear reactions can provide insight into numerous biological, geological, and cosmic processes, and therefore isotopic analysis finds a wide spectrum of applications in cosmo- and geochemistry, paleoclimatic, nutritional, and biomedical studies. The measurement of calcium isotopic abundances in natural samples has challenged the analysts for more than three decades. Practically all Ca isotopes suffer from significant isobaric interferences, whereas low-abundant isotopes can be particularly affected by neighboring major isotopes. The extent of natural variations of stable isotopes appears to be relatively limited, and highly precise techniques are required to resolve isotopic effects. Isotope fractionation during sample preparation and measurements and instrumental mass bias can significantly exceed small isotope abundance variations in samples, which have to be investigated. Not surprisingly, a TIMS procedure developed by Russell et al. (Russell et al., 1978. Geochim Cosmochim Acta 42: 1075-1090) for Ca isotope measurements was considered as revolutionary for isotopic measurements in general, and that approach is used nowadays (with small modifications) for practically all isotopic systems and with different mass spectrometric techniques. Nevertheless, despite several decades of calcium research and corresponding development of mass spectrometers, the available precision and accuracy is still not always sufficient to achieve the challenging goals. This presentation discusses figures of merits of presently used analytical methods and instrumentation, and attempts to critically assess their limitations. Additionally, the availability of Ca isotope reference materials will be discussed.

  19. Transuranium isotopes

    SciTech Connect

    Hoffman, D.C.

    1985-12-01

    The needs of the research community for the production of transuranium isotopes, the quantities required, the continuity of production desired, and what a new steady state neutron source would have to provide to satisfy these needs are discussed. Examples of past frontier research which need these isotopes as well as an outline of the proposed Large Einsteinium Activation Program, LEAP, which requires roughly ten times the current production of /sup 254/Es are given. 15 refs., 5 figs., 4 tabs.

  20. Isotopic Paleoclimatology

    NASA Astrophysics Data System (ADS)

    Bowen, R.

    Paleotemperature scales were calculated by H. C. Urey and others in the 1950s to assess past temperatures, and later work using the stable isotopes of oxygen, hydrogen, and carbon employed standards such as Peedee belemnite (PDB) and Standard Mean Ocean Water (SMOW). Subsequently, subjects as diverse as ice volume and paleotemperatures, oceanic ice and sediment cores, Pleistocene/Holocene climatic changes, and isotope chronostratigraphy extending back to the Precambrian were investigated.

  1. Isotopic chirality

    SciTech Connect

    Floss, H.G.

    1994-12-01

    This paper deals with compounds that are chiral-at least in part, due to isotope substitution-and their use in tracing the steric course of enzyme reaction in vitro and in vivo. There are other applications of isotopically chiral compounds (for example, in analyzing the steric course of nonenzymatic reactions and in probing the conformation of biomolecules) that are important but they will not be discussed in this context.

  2. Compound-specific stable isotope analysis of pesticides: a combined monitoring and modeling approach to assess pesticide fate and degradation at catchment scale

    NASA Astrophysics Data System (ADS)

    van Breukelen, B. M.; Lutz, S.; Van der Velde, Y.; Elsayed, O. F.; LeFrancq, M.; Payraudeau, S.; Imfeld, G.

    2014-12-01

    Compound-specific stable isotope analysis (CSIA) has proven useful in asessing the fate of groundwater contamination. However, although evidence of diffuse pesticide degradation is crucial, and CSIA methods have been developed for several pesticides, there is a clear lack of field CSIA data of pesticides. This study now presents the first analysis of field CSIA data from a 47-ha agricultural headwater catchment (Alteckendorf, Alsace, France) in the period March to August 2012. Measured stream concentrations of the two investigated chloroacetanilide herbicides (S-metolachlor and acetochlor) were highest (65 μg/L) following an intense rainfall event in the first month after herbicide application. Carbon isotope ratios increased with more than 2 ‰ in 3 months, which indicates the occurrence of herbicide degradation during transport to the stream. Previously, field CSIA data have also been simulated with reactive transport models to evaluate degradation of groundwater contaminants. This study now presents such a model-assisted interpretation of CSIA data for the first time at catchment scale, which aims at exploring the added value of CSIA in monitoring and modelling of pesticide pollution. The conceptual mathematical model succeeded in reproducing the general trend in concentrations and carbon isotope ratios of metolachlor. It also allowed for the quantification of metolachlor degradation (above 70 % during the study period), and yielded a mass export of 1.8 % of the applied pesticide, which is in agreement with the measured pesticide export. The field concentration and CSIA data informed the model building by indicating the importance of overland flow, and slow pesticide degradation in groundwater compared to the upper soil zone. Moreover, incorporation of the field CSIA data into model calibration slightly reduced model uncertainty in the quantification of pesticide degradation. We suggest that a finer temporal CSIA resolution than possible in this study

  3. A new combined nanoSIMS and continuous-flow IRMS approach to measure hydrogen isotopes from water in hydrated rhyolitic glass

    NASA Astrophysics Data System (ADS)

    Gatti, E.; Kitchen, N.; Newman, S.; Guan, Y.; Westgate, J.; Pearce, N. J. G.; Nikolic, D.; Eiler, J. M.

    2016-12-01

    The hydrogen-isotope value of water of hydration (or secondary water) preserved in rhyolitic glasses may provide significant insights regarding the climate at the time of their deposition and the impact of super-eruptions upon the environment. However, the ability of the glass to retain the environmental D/H isotopic signal after hydration needs to be tested, since modifications to the D/H systematics may result from the continuous exchange of D/H with the atmosphere or condensed water after initial glass hydration. Ideal geological archives to test whether the glass retains its original hydrogen signal are sediments in natural waters and ice cores, which preserve tephra in constrained horizons that can be independently isotopically characterised. However, tephra in marine and fresh water sediments and ice cores are often present in concentrations of the order of 1000 grains/cm3 (<5 mg of collectible material). Traditional IRMS methods require much more material ( 100-500 mg) and therefore cannot be applied. We present here a new integrated nanoSIMS and continuous flow IRMS approach to understand how water is distributed within single glass grains (diffusion profiles), quantify the time of hydration of young (Holocene) and old (Miocene) already well-characterised rhyolitic glasses, and measure the D/H ratio of the hydration water on single grains and bulk material consisting of only approximately 0.1-1 mg. The IRMS method measures the absolute abundance of hydrogen released from the sample by continuous-flow mass spectrometry. Current data indicates that the method can accurately measure a hydrogen signal from a rock sample containing at least 400 nanomoles of H2, corresponding to 70 µg of water, which translates to 1 mg of hydrous glass (>3 wt%) or 15 mg of dry ( 0.5 wt%) obsidian chips. The method can be improved by reducing the blank to <1 nmol/min and reducing capillary empty space. The bulk results obtained with the continuous-flow IRMS method will be

  4. Teasing Foggy Memories out of Pines on the California Channel Islands Using Tree-Ring Width and Stable Isotope Approaches

    NASA Astrophysics Data System (ADS)

    Williams, A. P.; Still, C. J.; Fischer, D. T.; Leavitt, S. W.

    2006-12-01

    The coast of California is home to many rare, endemic conifers and other plants that are not well adapted to the Mediterranean climate that prevails across most of the state. It has long been suggested that coastal pines survived the early-Pleistocene transition to a warmer and drier environment because they benefit from frequent fog and low stratus clouds that provide much needed water inputs and shading during the rainless summer. Here, we report evidence for the importance of this summer cloudiness to Torrey pines (Pinus torreyana) growing on Santa Rosa Island in Channel Islands National Park. We developed a tree-ring width chronology and quantified the relative importance of winter/spring precipitation and summer fog by comparing ring widths to nearby rainfall records and airport cloud-ceiling height data. While winter/spring precipitation explains most of the variation in annual tree-ring width (R2 = 0.592), the frequency of summertime fog correlated significantly and positively with annual ring width for 52 years of available fog data when the effect of winter/spring precipitation was removed (R2 = 0.118). The correlation between fog frequency and ring width decreased sharply when the range of possible cloud-ceiling heights deviated from the habitat range of the Torrey pine stand, emphasizing the importance of direct cloud immersion to these pines. In addition, the relationship between fog frequency and ring width was strongest in the 26 years that had enough winter/spring rainfall to maintain above-average soil moisture throughout the dry summer months (R2 = 0.312). This suggests that Torrey pines have an adaptive growing season length and that summer fog-water inputs are supplemental but not substantial enough to sustain tree growth independently. It may also be suggested that when summer growth does occur, the frequency of summer fog and stratus may govern growing season length. This made a "fog signal" difficult to detect in the stable isotope (carbon and

  5. Dietary inulin intake and age can significantly affect intestinal absorption of calcium and magnesium in rats: a stable isotope approach

    PubMed Central

    Coudray, Charles; Rambeau, Mathieu; Feillet-Coudray, Christine; Tressol, Jean Claude; Demigne, Christian; Gueux, Elyett; Mazur, Andrzej; Rayssiguier, Yves

    2005-01-01

    Background previous studies have shown that non-digestible inulin-type fructan intake can increase intestinal mineral absorption in both humans and animals. However, this stimulatory effect on intestinal absorption may depend on experimental conditions such as duration of fermentable fiber intake, mineral diet levels and animals' physiological status, in particular their age. Objectives the aim of this study was to determine the effect of inulin intake on Ca and Mg absorption in rats at different age stages. Methods eighty male Wistar rats of four different ages (2, 5, 10 and 20 months) were randomized into either a control group or a group receiving 3.75% inulin in their diet for 4 days and then 7.5% inulin for three weeks. The animals were fed fresh food and water ad libitum for the duration of the experiment. Intestinal absorption of Ca and Mg was determined by fecal monitoring using stable isotopic tracers. Ca and Mg status was also assessed. Results absorption of Ca and Mg was significantly lower in the aged rats (10 and 20 mo) than in the young and adult rat groups. As expected, inulin intake increased Ca and Mg absorption in all four rat groups. However, inulin had a numerically greater effect on Ca absorption in aged rats than in younger rats whereas its effect on Mg absorption remained similar across all four rat age groups. Conclusion the extent of the stimulatory effect of inulin on absorption of Ca may differ according to animal ages. Further studies are required to explore this effect over longer inulin intake periods, and to confirm these results in humans. PMID:16253138

  6. (Bio)degradation of glyphosate in water-sediment microcosms - A stable isotope co-labeling approach.

    PubMed

    Wang, Shizong; Seiwert, Bettina; Kästner, Matthias; Miltner, Anja; Schäffer, Andreas; Reemtsma, Thorsten; Yang, Qi; Nowak, Karolina M

    2016-08-01

    Glyphosate and its metabolite aminomethylphosphonic acid (AMPA) are frequently detected in water and sediments. Up to date, there are no comprehensive studies on the fate of glyphosate in water-sediment microcosms according to OECD 308 guideline. Stable isotope co-labeled (13)C3(15)N-glyphosate was used to determine the turnover mass balance, formation of metabolites, and formation of residues over a period of 80 days. In the water-sediment system, 56% of the initial (13)C3-glyphosate equivalents was ultimately mineralized, whereas the mineralization in the water system (without sediment) was low, reaching only 2% of (13)C-glyphosate equivalents. This finding demonstrates the key role of sediments in its degradation. Glyphosate was detected below detection limit in the water compartment on day 40, but could still be detected in the sediments, ultimately reaching 5% of (13)C3(15)N-glyphosate equivalents. A rapid increase in (13)C(15)N-AMPA was noted after 10 days, and these transformation products ultimately constituted 26% of the (13)C3-glyphosate equivalents and 79% of the (15)N-glyphosate equivalents. In total, 10% of the (13)C label and 12% of the (15)N label were incorporated into amino acids, indicating no risk bearing biogenic residue formation from (13)C3(15)N-glyphosate. Initially, glyphosate was biodegraded via the sarcosine pathway related to microbial growth, as shown by co-labeled (13)C(15)N-glycine and biogenic residue formation. Later, degradation via AMPA dominated under starvation conditions, as shown by the contents of (13)C-glycine. The presented data provide the first evidence of the speciation of the non-extractable residues as well as the utilization of glyphosate as a carbon and nitrogen source in the water-sediment system. This study also highlights the contribution of both the sarcosine and the AMPA degradation pathways under these conditions.

  7. Social Complexification and Pig (Sus scrofa) Husbandry in Ancient China: A Combined Geometric Morphometric and Isotopic Approach.

    PubMed

    Cucchi, Thomas; Dai, Lingling; Balasse, Marie; Zhao, Chunqing; Gao, Jiangtao; Hu, Yaowu; Yuan, Jing; Vigne, Jean-Denis

    2016-01-01

    Pigs have played a major role in the economic, social and symbolic systems of China since the Early Neolithic more than 8,000 years ago. However, the interaction between the history of pig domestication and transformations in Chinese society since then, have not been fully explored. In this paper, we investigated the co-evolution from the earliest farming communities through to the new political and economic models of state-like societies, up to the Chinese Empire, using 5,000 years of archaeological records from the Xiawanggang (XWG) and Xinzhai (XZ) sites (Henan Province). To trace the changes of pig populations against husbandry practices, we combined the geometric morphometric analysis of dental traits with a study of the stable carbon and nitrogen isotope ratios from bone collagen. The domestication process intensified during the Neolithic Yangshao, prompted by greater selective pressure and/or better herd control against wild introgression. After that, pig farming, in XWG, relied on local livestock and a gradual change of husbandry practices overtime. This was characterized by a gentle increase in millet foddering and animal protein intake, until a complete change over to household management during the Han dynasty. The only rupture in this steady trend of husbandry occurred during the Longshan period, with the appearance of small sized and idiosyncratic pigs with specific feeding practices (relying on millet and household scraps). From three exploratory hypothesis, we explored the possibility of anti-elite pig production in XWG during the Longshan period, as a means to resist incorporation into a new economic model promoting intensified domestic production. This exploratory hypothesis is the most suitable to our dataset; however, numerous areas need to be explored further in order to adequately document the role of pigs in the rise of China's complex societies.

  8. Social Complexification and Pig (Sus scrofa) Husbandry in Ancient China: A Combined Geometric Morphometric and Isotopic Approach

    PubMed Central

    Balasse, Marie; Zhao, Chunqing; Gao, Jiangtao; Hu, Yaowu; Yuan, Jing; Vigne, Jean-Denis

    2016-01-01

    Pigs have played a major role in the economic, social and symbolic systems of China since the Early Neolithic more than 8,000 years ago. However, the interaction between the history of pig domestication and transformations in Chinese society since then, have not been fully explored. In this paper, we investigated the co-evolution from the earliest farming communities through to the new political and economic models of state-like societies, up to the Chinese Empire, using 5,000 years of archaeological records from the Xiawanggang (XWG) and Xinzhai (XZ) sites (Henan Province). To trace the changes of pig populations against husbandry practices, we combined the geometric morphometric analysis of dental traits with a study of the stable carbon and nitrogen isotope ratios from bone collagen. The domestication process intensified during the Neolithic Yangshao, prompted by greater selective pressure and/or better herd control against wild introgression. After that, pig farming, in XWG, relied on local livestock and a gradual change of husbandry practices overtime. This was characterized by a gentle increase in millet foddering and animal protein intake, until a complete change over to household management during the Han dynasty. The only rupture in this steady trend of husbandry occurred during the Longshan period, with the appearance of small sized and idiosyncratic pigs with specific feeding practices (relying on millet and household scraps). From three exploratory hypothesis, we explored the possibility of anti-elite pig production in XWG during the Longshan period, as a means to resist incorporation into a new economic model promoting intensified domestic production. This exploratory hypothesis is the most suitable to our dataset; however, numerous areas need to be explored further in order to adequately document the role of pigs in the rise of China’s complex societies. PMID:27384523

  9. Kinetics of Hg(II) exchange between organic ligands, goethite, and natural organic matter studied with an enriched stable isotope approach.

    PubMed

    Jiskra, Martin; Saile, Damian; Wiederhold, Jan G; Bourdon, Bernard; Björn, Erik; Kretzschmar, Ruben

    2014-11-18

    The mobility and bioavailability of toxic Hg(II) in the environment strongly depends on its interactions with natural organic matter (NOM) and mineral surfaces. Using an enriched stable isotope approach, we investigated the exchange of Hg(II) between dissolved species (inorganically complexed or cysteine-, EDTA-, or NOM-bound) and solid-bound Hg(II) (carboxyl-/thiol-resin or goethite) over 30 days under constant conditions (pH, Hg and ligand concentrations). The Hg(II)-exchange was initially fast, followed by a slower phase, and depended on the properties of the dissolved ligands and sorbents. The results were described by a kinetic model allowing the simultaneous determination of adsorption and desorption rate coefficients. The time scales required to reach equilibrium with the carboxyl-resin varied greatly from 1.2 days for Hg(OH)2 to 16 days for Hg(II)-cysteine complexes and approximately 250 days for EDTA-bound Hg(II). Other experiments could not be described by an equilibrium model, suggesting that a significant fraction of total-bound Hg was present in a non-exchangeable form (thiol-resin and NOM: 53-58%; goethite: 22-29%). Based on the slow and incomplete exchange of Hg(II) described in this study, we suggest that kinetic effects must be considered to a greater extent in the assessment of the fate of Hg in the environment and the design of experimental studies, for example, for stability constant determination or metal isotope fractionation during sorption.

  10. Decision-tree-model identification of nitrate pollution activities in groundwater: A combination of a dual isotope approach and chemical ions.

    PubMed

    Xue, Dongmei; Pang, Fengmei; Meng, Fanqiao; Wang, Zhongliang; Wu, Wenliang

    2015-09-01

    To develop management practices for agricultural crops to protect against NO3(-) contamination in groundwater, dominant pollution activities require reliable classification. In this study, we (1) classified potential NO3(-) pollution activities via an unsupervised learning algorithm based on δ(15)N- and δ(18)O-NO3(-) and physico-chemical properties of groundwater at 55 sampling locations; and (2) determined which water quality parameters could be used to identify the sources of NO3(-) contamination via a decision tree model. When a combination of δ(15)N-, δ(18)O-NO3(-) and physico-chemical properties of groundwater was used as an input for the k-means clustering algorithm, it allowed for a reliable clustering of the 55 sampling locations into 4 corresponding agricultural activities: well irrigated agriculture (28 sampling locations), sewage irrigated agriculture (16 sampling locations), a combination of sewage irrigated agriculture, farm and industry (5 sampling locations) and a combination of well irrigated agriculture and farm (6 sampling locations). A decision tree model with 97.5% classification success was developed based on SO4(2-) and Cl(-) variables. The NO3(-) and the δ(15)N- and δ(18)O-NO3(-) variables demonstrated limitation in developing a decision tree model as multiple N sources and fractionation processes both resulted in difficulties of discriminating NO3(-) concentrations and isotopic values. Although only the SO4(2-) and Cl(-) were selected as important discriminating variables, concentration data alone could not identify the specific NO3(-) sources responsible for groundwater contamination. This is a result of comprehensive analysis. To further reduce NO3(-) contamination, an integrated approach should be set-up by combining N and O isotopes of NO3(-) with land-uses and physico-chemical properties, especially in areas with complex agricultural activities. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Synthesizing the Use of Carbon Isotope (14C and 13C) Approaches to Understand Rates and Pathways for Permafrost C Mobilization and Mineralization

    NASA Astrophysics Data System (ADS)

    Estop-Aragones, C.; Olefeldt, D.; Schuur, E.

    2015-12-01

    To better understand the permafrost carbon (C) feedback it is important to synthesize our current knowledge, and knowledge gaps, of how permafrost thaw can cause in situ mineralization or downstream mobilization of aged soil organic carbon (SOC) and the rate of this release. This potential loss of old SOC may occur via gaseous flux of CO2 and CH4 exchanged between soil and the atmosphere and via waterborne flux as DOC, POC (and their subsequent decomposition and release to the atmosphere). Carbon isotope (14C and 13C) approaches have been used to estimate both rates and pathways for permafrost C mobilization and mineralization. Radiocarbon (14C) has been used to estimate the contribution of aged C to overall respiration or waterborne C export. We aim to contrast results from radiocarbon studies, in order to assess differences between ecosystems (contrasting wet and dry ecosystems), thaw histories (active layer deepening or thermokarst landforms), greenhouse gas considered (CO2 and CH4) and seasons. We propose to also contrast methodologies used for assessing the contribution of aged C to overall C balance, and include studies using 13C data. Biological fractionation of 13C during both uptake and decomposition has been taken advantage of both in order to aid the interpretation of 14C data and on its own to assess sources and mineralization pathways. For example, 13C data has been used to differentiate between CH4 production pathways, and the relative contribution of anaerobic CO2 production to overall respiration. Overall, carbon isotope research is proving highly valuable for our understanding of permafrost C dynamics following thaw, and there is a current need to synthesize the available literature.

  12. Assessing the potential of stable carbon isotopes to better constrain the residence time of soil organic carbon using a depth-explicit modelling approach

    NASA Astrophysics Data System (ADS)

    Van de Broek, Marijn; Wang, Zhengang; Minella, Jean; Govers, Gerard

    2017-04-01

    The residence time of soil organic carbon (SOC) varies considerably between different ecosystems and is difficult to measure using only field experiments. Therefore, models are often used to assess the residence time of SOC, but the range of optimal model parameters is often poorly constrained. This has important consequences for the reliability with which SOC dynamics are simulated by earth system models, leading to large uncertainties about the contribution of SOC to atmospheric CO2 concentrations. In order to improve the reliability of simulated SOC dynamics, and hence to assess more accurately the residence time of organic carbon (OC) in soils, we constructed a depth-explicit model that simultaneously simulates SOC dynamics and kinetic fractionation of stable carbon isotopes (δ13C). Using stable carbon isotopes as an additional constraint considerably increases our ability to interpret the observed SOC dynamics. For example, it allowed us to accurately assess the fraction of SOC lost after a forest ecosystem (C3 vegetation) was converted to cropland (corn - C4 vegetation). Through the evaluation the modelled depth profiles of δ13C against measured data, we are able to reduce the number of possible model parameters which result in an optimal simulation of SOC depth profiles. Therefore, the reliability of the simulated residence time of SOC increases significantly. We used our model to simulate the residence time of SOC at colluvial landscape positions in a small sub-tropical catchment in southern Brazil. Comparison with colluvial landscape positions in temperate ecosystems shows that the residence time of SOC is much shorter in our sub-tropical ecosystems. In addition, this approach allows us to assess the fate of organic carbon from different sources (e.g. locally produced versus carbon deposited together with sediments), which significantly increases our understanding of SOC dynamics in these environments.

  13. A Bayesian Deconvolution Approach to Partitioning Soil Respiration: Coupling Carbon Flux and Isotope Data with Process-based Flux and Mixing Models

    NASA Astrophysics Data System (ADS)

    Ogle, K.; Cable, J. M.; Huxman, T. E.

    2006-12-01

    repeated measurements of soil CO2 efflux, stable isotopes of carbon (δ13C) in the emitted CO2, δ13C of potential sources, relative activity or concentration of different sources, and soil properties (e.g., bulk density, temperature, water availability). The process-based models include flux equations that describe respiration rates of different sources within the soil profile and flux-based, mechanistic isotope-mixing models. We demonstrate the deconvolution approach using simulated data for a "model ecosystem," and we apply it to the real problem of partitioning soil respiration in a desert ecosystem characterized by episodic precipitation and highly variable carbon flux dynamics. The Bayesian deconvolution approach is fairly straightforward to implement and provides a mechanistic interpretation of the processes affecting belowground carbon dynamics.

  14. Automated LC-HRMS(/MS) approach for the annotation of fragment ions derived from stable isotope labeling-assisted untargeted metabolomics.

    PubMed

    Neumann, Nora K N; Lehner, Sylvia M; Kluger, Bernhard; Bueschl, Christoph; Sedelmaier, Karoline; Lemmens, Marc; Krska, Rudolf; Schuhmacher, Rainer

    2014-08-05

    Structure elucidation of biological compounds is still a major bottleneck of untargeted LC-HRMS approaches in metabolomics research. The aim of the present study was to combine stable isotope labeling and tandem mass spectrometry for the automated interpretation of the elemental composition of fragment ions and thereby facilitate the structural characterization of metabolites. The software tool FragExtract was developed and evaluated with LC-HRMS/MS spectra of both native (12)C- and uniformly (13)C (U-(13)C)-labeled analytical standards of 10 fungal substances in pure solvent and spiked into fungal culture filtrate of Fusarium graminearum respectively. Furthermore, the developed approach is exemplified with nine unknown biochemical compounds contained in F. graminearum samples derived from an untargeted metabolomics experiment. The mass difference between the corresponding fragment ions present in the MS/MS spectra of the native and U-(13)C-labeled compound enabled the assignment of the number of carbon atoms to each fragment signal and allowed the generation of meaningful putative molecular formulas for each fragment ion, which in turn also helped determine the elemental composition of the precursor ion. Compared to laborious manual analysis of the MS/MS spectra, the presented algorithm marks an important step toward efficient fragment signal elucidation and structure annotation of metabolites in future untargeted metabolomics studies. Moreover, as demonstrated for a fungal culture sample, FragExtract also assists the characterization of unknown metabolites, which are not contained in databases, and thus exhibits a significant contribution to untargeted metabolomics research.

  15. First assessment of water and carbon cycles in two tropical coastal rivers of south-west India: an isotopic approach.

    PubMed

    Tripti, M; Lambs, L; Otto, T; Gurumurthy, G P; Teisserenc, R; Moussa, I; Balakrishna, K; Probst, J L

    2013-08-15

    The contribution of tropical coastal rivers to the global carbon budget remains unmeasured, despite their high water dynamics, i.e. higher run-off with their basin characteristic of warm temperature. Two rivers draining the western part of the Western Ghats, the Swarna (length 80 km) and Nethravati (147 km) Rivers, were studied for water and carbon cycles. The stable isotope ratios of oxygen (δ(18) O values), hydrogen (δ(2) H values) and carbon (δ(13) C values) were used to understand the water circulation, the weathering processes and the carbon biogeochemical cycle. The river water samples were collected during the dry post-monsoonal season (November 2011). The δ(18) O and δ(2) H values of river water suggested that the monsoonal vapour source and its high recycling have a dominant role because of the orographical and tropical conditions. The absence of calcareous rocks has led to dissolved inorganic carbon (DIC) mainly originating from atmospheric/soil CO2 , via rock-weathering processes, and the low soil organic matter combined with high run-off intensity has led to low riverine dissolved organic carbon (DOC) contents. The δ(13) C values increase from upstream to downstream and decrease with increasing pCO2 . There is a positive relationship between the δ(13) CDIC values and the DOC concentrations in these two rivers that is contrary to that in most of the studied rivers of the world. The higher evapotranspiration supported by tropical conditions suggests that there are higher vapour recycling process in the Swarna and Nethravati basins as studied from the water δ(18) O and δ(2) H values. The basin characteristics of higher rainfall/run-off accompanied by warm temperature suggest that the δ(13) C value of riverine DIC is mainly controlled by the weathering of source rocks (silicates) with variation along the river course by CO2 degassing from the river water to the atmosphere and is less dominated by the oxidation of DOC. Copyright © 2013 John Wiley

  16. Evaluation of risks of groundwater quality alteration in Recife urban area (Pernambuco, Brazil) using a multi-isotopic approach.

    NASA Astrophysics Data System (ADS)

    Bertrand, Guillaume; Hirata, Ricardo; Martins, Veridiana; Batista, Jonathan; Bertolo, Reginaldo; Santos, Jeane-Glaucia; Montenegro, Suzanna; Cary, Lise; Petelet-Giraud, Emmanuelle; Pauwels, Hélène; Picot, Géraldine; Braibant, Gilles; Chatton, Eliot; Aquilina, Luc; Labasque, Thierry; Hochreutener, Rebecca; Aurouet, Axel; Franzen, Melissa

    2015-04-01

    The Recife Metropolitan Region (RMR) is a heavily urbanized area located in a estuary zone and over a multi-layered sedimentary system on the Brazilian Atlantic coast. In a context of increasing land use pressures, involving aquifer overexploitation and surface water contamination, and repeated droughts, the identification of groundwater quality risks in RMR is a necessary management requirement. In this perspective, this work focused on the two shallow aquifer systems, named Boa Viagem and Barreiras aquifers, located at the interface between the city (the consumers) and the deeper semi-confined Cretaceous Cabo and Beberibe aquifers. The Holocenic Boa Viagem and Tertiary Barreiras formations conform unconfined sedimentary aquifers, with no more than 80 m of thickness. Cabo is the most important groundwater body for Recife private complementary water supply and it has experienced an intense exploitation in the last three decades. In contrast, Boa Viagem and Barreiras aquifers are more restrictively used, but it is important to understand their water quality degradation,because of hydraulic connections with deeper aquifers, mainly in the littoral part of Recife, where hydraulic potentiometric head of the Cabo aquifer is 60 m below sea water level in some places, with conditions for recharge from shallower aquifers. Through a multi-isotopic characterization (87Sr/86Sr, δ11B, δ18O-SO4, δ34S-SO4) of sampling of 19 wells and 3 surface waters, carried out during two field campaigns with additional geochemical parameters (major ions, noble and major gases, CFC' s and SF6), the spatio-temporal variability of groundwater quality was investigated. The detection of CFC' s, implying a modern recharge component, highlighted the vulnerability of Boa Viagem and Barreiras to surface contaminations. The increasing mineralization and decreasing 87Sr/86Sr from the inland sector wells to the wells located close to the coast or estuary, with higher well and population densities, were

  17. Complementing approaches to demonstrate chlorinated solvent biodegradation in a complex pollution plume: Mass balance, PCR and compound-specific stable isotope analysis

    NASA Astrophysics Data System (ADS)

    Courbet, Christelle; Rivière, Agnès; Jeannottat, Simon; Rinaldi, Sandro; Hunkeler, Daniel; Bendjoudi, Hocine; de Marsily, Ghislain

    2011-11-01

    , although TCE biodegradation seems to occur only in the upgradient part of the studied zone, DCE and VC dechlorination (originating from the initial TCE dechlorination) occurs along the entire flowpath. TCE reductase was not detected among the Dehalococcoides bacteria identified by quantitative PCR (qPCR), while DCE and VC reductases were present in the majority of the population. Reverse transcriptase PCR assays (rt-PCR) also indicated that bacteria and their DCE and VC reductases were active. Mass balance calculations showed moreover that 1,1-DCE was the predominant DCE isomer produced by TCE dechlorination in the upgradient part of the site. Consequently, coupling rt-PCR assays with isotope measurements removes the uncertainties inherent in a simple mass balance approach, so that when the three methods are used jointly, they allow the identification and quantification of natural biodegradation, even under apparently complex geochemical and hydraulic conditions.

  18. New Approaches for removing the Si-OH Layer of Biogenic Silica before Analysing Oxygen Isotopes - Helium Flow Dehydration (HFD) and Vacuum Bead Melting (VBM) Technique

    NASA Astrophysics Data System (ADS)

    Chapligin, B.; Meyer, H.; Hubberten, H. W.

    2009-12-01

    The analysis of oxygen isotopes from diatom silica (δ18OSi) in sediment cores has obtained importance for palaeoclimate reconstruction especially where carbonate proxies are either rare or not available. Compared to the widely accepted relation of oxygen isotopes of carbonate origin to climate-relevant parameters, challenges still occur using biogenic silica. These questions arise at sample preparation as well as for the analysis itself, but are especially related to the removal of loosely bound oxygen of the hydrous layer. It is the common view that diatoms consist of an isotopically homogenous inner Si-O-Si layer and a less dense, hydrous layer forming Si-OH bonds, which has to be removed from the sample prior to analysis. Three methods have been accepted so far to perform this step: Controlled Isotopic Exchange (CIE) followed by fluorination, Stepwise Fluorination (SWF) and inductive High-Temperature carbon reduction (iHTR). The former method of vacuum dehydration (VD) proved to be unable to remove all exchangeable oxygen. Here, a new, remotely-operated laser-fluorination based mass spectrometry unit is used for the analysis. The silica is reacted with a CO2 laser in a BrF5 atmosphere and oxygen is then transferred to and analysed in a mass spectrometer (PDZ Europa 20-20). As CIE is both time-consuming and work-intense and SWF is impractical for this setup mainly due to the high pressure increase during dehydration, a new, efficient and fast method should be developed to remove the hydrous layer using the laser-fluorination process. Two approaches were tested to remove the Si-OH layer and the impact on δ18OSi was assessed by performing tests on internal standard materials of marine and lacustrine biogenic silica and of quartz. For VBM, a minimum of 1.5 mg of pure sample is melted to a bead with a defocused laser to eliminate the hydrous outer layer and to reduce the surface. After the bead has formed it is transferred into the reaction chamber completely

  19. Correlated optical and isotopic nanoscopy

    PubMed Central

    Saka, Sinem K.; Vogts, Angela; Kröhnert, Katharina; Hillion, François; Rizzoli, Silvio O; Wessels, Johannes T.

    2014-01-01

    The isotopic composition of different materials can be imaged by secondary ion mass spectrometry. In biology, this method is mainly used to study cellular metabolism and turnover, by pulsing the cells with marker molecules such as amino acids labelled with stable isotopes (15N, 13C). The incorporation of the markers is then imaged with a lateral resolution that can surpass 100 nm. However, secondary ion mass spectrometry cannot identify specific subcellular structures like organelles, and needs to be correlated with a second technique, such as fluorescence imaging. Here, we present a method based on stimulated emission depletion microscopy that provides correlated optical and isotopic nanoscopy (COIN) images. We use this approach to study the protein turnover in different organelles from cultured hippocampal neurons. Correlated optical and isotopic nanoscopy can be applied to a variety of biological samples, and should therefore enable the investigation of the isotopic composition of many organelles and subcellular structures. PMID:24718107

  20. Lipid biomarker and compound-specific isotope analysis of cave sediments: a new approach to investigating past vegetation change

    NASA Astrophysics Data System (ADS)

    Blyth, A.; Griffiths, T.; Robson, S.

    2009-12-01

    Caves are vital archives for records of terrestrial palaeoenvironmental change, as they form sheltered sediment traps capable of preserving long environmental sequences. Due to their unique role in the landscape, they are also intimately connected to the archaeology and palaeoecology of the parent region. Chemical proxy records preserved in speleothems (chemically precipitated cave deposits) have long been used as a tool in palaeoclimatic research, but clastic sediments deposited by air, water, and breakdown of the surrounding rock also have much to contribute. However, although well researched in a sedimentary context, the geochemical records contained in these deposits, especially organic parameters, have been less well-studied. Here we present the first in-depth study of the organic geochemistry of cave sediment sequences, using samples from two south-east Asian caves, and focusing on plant-derived lipid biomarkers and their associated compound-specific carbon isotope records. The work aimed to establish: whether routine extraction and analysis of compounds was feasible in this context at acceptable sample sizes; whether there was a significant vegetation-derived contribution to the record; whether the depositional mode of the sediment (colluvium, midden, channel fill etc) affects the organic composition; and whether the records show coherent and interpretable variation through time. Two sites were studied: Niah Cave in Borneo, where the sediments recovered are a mixture of colluvium and channel fill and date back to >40 ka; and Hang Boi in Vietnam, where the principal deposit is a Holocene occupation midden dominated by land-snail shells. To recover the lipid fraction 7 g aliquots of freeze-dried sediment were extracted by sonication in 95:5 dichloromethane:methanol. Excess solvent was then removed via rotary evaporation and the extracts derivatised with BF3-Methanol and BSTFA prior to analysis by GC-MS. The lipid extracts contain a range of compounds including

  1. ISOTOPE SEPARATORS

    DOEpatents

    Bacon, C.G.

    1958-08-26

    An improvement is presented in the structure of an isotope separation apparatus and, in particular, is concerned with a magnetically operated shutter associated with a window which is provided for the purpose of enabling the operator to view the processes going on within the interior of the apparatus. The shutier is mounted to close under the force of gravity in the absence of any other force. By closing an electrical circuit to a coil mouated on the shutter the magnetic field of the isotope separating apparatus coacts with the magnetic field of the coil to force the shutter to the open position.

  2. Chloroformate derivatization for tracing the fate of Amino acids in cells and tissues by multiple stable isotope resolved metabolomics (mSIRM).

    PubMed

    Yang, Ye; Fan, Teresa W-M; Lane, Andrew N; Higashi, Richard M

    2017-07-11

    Amino acids have crucial roles in central metabolism, both anabolic and catabolic. To elucidate these roles, steady-state concentrations of amino acids alone are insufficient, as each amino acid participates in multiple pathways and functions in a complex network, which can also be compartmentalized. Stable Isotope-Resolved Metabolomics (SIRM) is an approach that uses atom-resolved tracking of metabolites through biochemical transformations in cells, tissues, or whole organisms. Using different elemental stable isotopes to label multiple metabolite precursors makes it possible to resolve simultaneously the utilization of these precursors in a single experiment. Conversely, a single precursor labeled with two (or more) different elemental isotopes can trace the allocation of e.g. C and N atoms through the network. Such dual-label experiments however challenge the resolution of conventional mass spectrometers, which must distinguish the neutron mass differences among different elemental isotopes. This requires ultrahigh resolution Fourier transform mass spectrometry (UHR-FTMS). When combined with direct infusion nano-electrospray ion source (nano-ESI), UHR-FTMS can provide rapid, global, and quantitative analysis of all possible mass isotopologues of metabolites. Unfortunately, very low mass polar metabolites such as amino acids can be difficult to analyze by current models of UHR-FTMS, plus the high salt content present in typical cell or tissue polar extracts may cause unacceptable ion suppression for sources such as nano-ESI. Here we describe a modified method of ethyl chloroformate (ECF) derivatization of amino acids to enable rapid quantitative analysis of stable isotope labeled amino acids using nano-ESI UHR-FTMS. This method showed excellent linearity with quantifiable limits in the low nanomolar range represented in microgram quantities of biological specimens, which results in extracts with total analyte abundances in the low to sub-femtomole range. We have

  3. A study of the characteristics of karst groundwater circulation based on multi-isotope approach in the Liulin spring area, North China.

    PubMed

    Zang, Hongfei; Zheng, Xiuqing; Qin, Zuodong; Jia, Zhenxing

    2015-01-01

    Due to the significance of karst groundwater for water supply in arid and semi-arid regions, the characteristics of the karst groundwater flow system in the Liulin spring area, North China, are analysed through isotopic tracing (δ(2)H, δ(18)O, δ(13)C and (3)H) and dating approaches ((14)C). The results show that the primary recharge source of karst groundwater is precipitation. Evaporation during dropping and infiltration of rainfall results in a certain offset in the values of δ(2)H and δ(18)O in groundwater samples from the global meteoric water line (GMWL) and the local meteoric water line (LMWL). The altitudes of the recharge region calculated by δ(18)O range from 1280 to 2020 m above sea level, which is consistent with the altitudes of the recharge area. The Liulin spring groups could be regarded as the mixing of groundwater with long and short flow paths at a ratio of 4:1. In the upgradient of the Liulin spring, the groundwater represents modern groundwater features and its [Formula: see text] is mainly derived from dissolution of soil CO(2), while in the downgradient of the Liulin spring, the (14)C age of dissolved inorganic carbon (DIC) in groundwater shows an apparent increase and [Formula: see text] is mainly derived from the dissolution of carbonate rocks. The mean flow rate calculated by (14)C ages of DIC between IS10 and IS12 is 1.23 m/year.

  4. A retrospective, dual-isotope approach reveals individual predispositions to winter-drought induced tree dieback in the southernmost distribution limit of Scots pine.

    PubMed

    Voltas, Jordi; Camarero, Jesús Julio; Carulla, David; Aguilera, Mònica; Ortiz, Araceli; Ferrio, Juan Pedro

    2013-08-01

    Winter-drought induced forest diebacks in the low-latitude margins of species' distribution ranges can provide new insights into the mechanisms (carbon starvation, hydraulic failure) underlying contrasting tree reactions. We analysed a winter-drought induced dieback at the Scots pine's southern edge through a dual-isotope approach (Δ(13) C and δ(18) O in tree-ring cellulose). We hypothesized that a differential long-term performance, mediated by the interaction between CO(2) and climate, determined the fates of individuals during dieback. Declining trees showed a stronger coupling between climate, growth and intrinsic water-use efficiency (WUEi) than non-declining individuals that was noticeable for 25 years prior to dieback. The rising stomatal control of water losses with time in declining trees, indicated by negative Δ(13) C-δ(18) O relationships, was likely associated with their native aptitude to grow more and take up more water (suggested by larger tracheid lumen widths) than non-declining trees and, therefore, to exhibit a greater cavitation risk. Freeze-thaw episodes occurring in winter 2001 unveiled such physiological differences by triggering dieback in those trees more vulnerable to hydraulic failure. Thus, WUEi tightly modulated growth responses to long-term warming in declining trees, indicating that co-occurring individuals were differentially predisposed to winter-drought mortality. These different performances were unconnected to the depletion of stored carbohydrates.

  5. Variability in sea ice extent and primary productivity at IODP Site U1339 (Umnak Plateau, Bering Sea) during Marine Isotope Stage 11: a multi-proxy approach

    NASA Astrophysics Data System (ADS)

    Thompson, N. S.; Caissie, B.

    2016-12-01

    The recent rapid decline in Arctic sea ice extent has prompted concerns about the fate of sea ice in the future, and the stability of sea ice dependent ecosystems. By studying the natural variability of sea ice cover and primary productivity during past warm intervals, we can better understand the long-term response of sea ice to a warming climate. Proxy records from the Umnak Plateau (IODP Site U1339) in the Bering Sea afford the chance to examine changes in sea ice and primary productivity during a long-lived interglacial known as Marine Isotope Stage (MIS) 11 (424-374 ka), which is often considered a good analogue for future change. This work uses a multi-proxy approach (sediment grain size, diatom assemblages and stable isotopic analyses) to describe variability in sea ice extent and primary productivity at the Umnak Plateau during MIS 11. The occurrence of coarse (>150μm) sediment grains, interpreted as ice-rafted material, suggests that ice was consistently present in some parts of the Bering Sea during MIS 11. The presence of sea ice diatoms throughout the core is further evidence that sea ice persisted in the Umnak Plateau region throughout MIS 11. Specifically, the relative percent abundance of sea ice associated diatoms shows a steady increase following deglaciation, reaching a maximum during the peak interglacial warmth of Late MIS 11. Sea ice and open water diatom species co-occur in the sediments, indicating that the sea ice cover was likely seasonal. Laminated sediments at the boundary between MIS 12 and 11 point toward an interval of enhanced seasonal productivity during deglaciation. High productivity during deglaciation is also characterized by an increase in organic and inorganic carbon, and by a significant increase in Chaetoceros resting spores (RS), a diatom species associated with high productivity environments. In addition, the onset of MIS 11 is marked by an increase in the relative abundance of Neodenticula seminae, a diatom associated

  6. Importance of bacterivory and preferential selection toward diatoms in larvae of Crepidula fornicata (L.) assessed by a dual stable isotope (13C, 15N) labeling approach

    NASA Astrophysics Data System (ADS)

    Leroy, Fanny; Riera, Pascal; Jeanthon, Christian; Edmond, Frédérique; Leroux, Cédric; Comtet, Thierry

    2012-05-01

    In Europe, the gastropod Crepidula fornicata is an invasive species characterized by a long reproductive period (from February to November). Thus, its larvae are exposed to variations in available food sources (in terms of quantity and quality). We aimed to investigate if bacteria could contribute to larval food both in presence or absence of phytoplankton, and to compare these results to seasonal variations of bacteria and phytoplankton abundances at a coastal site in the English Channel. First, ingestion of fluorescent beads of 0.5 to 2 μm diameter, showed that larvae were able to ingest particles of typical bacterial size. Then we used a dual stable isotope labeling approach which consisted in labeling a bacterial pelagic community with 15N and a diatom (Chaetoceros gracilis) culture with 13C, and supplying larvae with 15N-labeled bacteria, 13C-labeled diatoms, and both labeled sources. This technique has, to our knowledge, never been applied to invertebrate larvae. After 24 h of experiment, larvae were significantly enriched in all treatments: + 21.5‰ (∆δ13C) when supplied with diatoms, + 1364‰ (∆δ15N) when supplied with bacteria, and + 24‰ (∆δ13C) and + 135‰ (∆δ15N) when supplied with the two mixed sources. These results indicated that bacteria can contribute to the larval nutrition in C. fornicata, even in the presence of phytoplankton. Our results however suggested that larvae of C. fornicata preferentially used diatoms and showed that the supply of free bacteria did not alter the uptake of diatoms. Considering the seasonal variations of bacteria and phytoplankton abundances at the study site, these results suggested that bacteria may constitute a complementary resource for the larvae of C. fornicata when phytoplankton is abundant and may become a substitute resource when phytoplankton is less available. This approach offers promising perspectives to trace food sources and assess nitrogen and carbon fluxes between planktotrophic larvae

  7. Automated LC-HRMS(/MS) Approach for the Annotation of Fragment Ions Derived from Stable Isotope Labeling-Assisted Untargeted Metabolomics

    PubMed Central

    2014-01-01

    Structure elucidation of biological compounds is still a major bottleneck of untargeted LC-HRMS approaches in metabolomics research. The aim of the present study was to combine stable isotope labeling and tandem mass spectrometry for the automated interpretation of the elemental composition of fragment ions and thereby facilitate the structural characterization of metabolites. The software tool FragExtract was developed and evaluated with LC-HRMS/MS spectra of both native 12C- and uniformly 13C (U-13C)-labeled analytical standards of 10 fungal substances in pure solvent and spiked into fungal culture filtrate of Fusarium graminearum respectively. Furthermore, the developed approach is exemplified with nine unknown biochemical compounds contained in F. graminearum samples derived from an untargeted metabolomics experiment. The mass difference between the corresponding fragment ions present in the MS/MS spectra of the native and U-13C-labeled compound enabled the assignment of the number of carbon atoms to each fragment signal and allowed the generation of meaningful putative molecular formulas for each fragment ion, which in turn also helped determine the elemental composition of the precursor ion. Compared to laborious manual analysis of the MS/MS spectra, the presented algorithm marks an important step toward efficient fragment signal elucidation and structure annotation of metabolites in future untargeted metabolomics studies. Moreover, as demonstrated for a fungal culture sample, FragExtract also assists the characterization of unknown metabolites, which are not contained in databases, and thus exhibits a significant contribution to untargeted metabolomics research. PMID:24965664

  8. Pathways of coupled arsenic and iron cycling in high arsenic groundwater of the Hetao basin, Inner Mongolia, China: an iron isotope approach

    USGS Publications Warehouse

    Guo, Huaming; Liu, Chen; Lu, Hai; Wanty, Richard B.; Wang, Jun; Zhou, Yinzhu

    2013-01-01

    High As groundwater is widely distributed all over the world, which has posed a significant health impact on millions of people. Iron isotopes have recently been used to characterize Fe cycling in aqueous environments, but there is no information on Fe isotope characteristics in the groundwater. Since groundwater As behavior is closely associated with Fe cycling in the aquifers, Fe isotope signatures may help to characterize geochemical processes controlling As concentrations of shallow groundwaters. This study provides the first observation of Fe isotope fractionation in high As groundwater and evaluation of Fe cycling and As behaviors in shallow aquifers in terms of Fe isotope signatures. Thirty groundwater samples were taken for chemical and isotopic analysis in the Hetao basin, Inner Mongolia. Thirty-two sediments were sampled as well from shallow aquifers for Fe isotope analysis. Results showed that groundwater was normally enriched in isotopically light Fe with δ56Fe values between −3.40‰ and 0.58‰ and median of −1.14‰, while heavier δ56Fe values were observed in the sediments (between −1.10‰ and 0.75‰, median +0.36‰). In reducing conditions, groundwaters generally had higher δ56Fe values, in comparison with oxic conditions. High As groundwaters, generally occurring in reducing conditions, had high δ56Fe values, while low As groundwaters normally had low δ56Fe values. Although sediment δ56Fe values were generally independent of lithological conditions, a large variation in sediment δ56Fe values was observed in the oxidation–reduction transition zone. Three pathways were identified for Fe cycling in shallow groundwater, including dissimilatory reduction of Fe(III) oxides, re-adsorption of Fe(II), and precipitation of pyrite and siderite. Dissimilatory reduction of Fe(III) oxides resulted in light δ56Fe values (around −1.0‰) and high As concentration (>50 μg/L) in groundwater in anoxic conditions. Re-adsorption of isotopically

  9. Ca, Sr, O and D isotope approach to defining the chemical evolution of hydrothermal fluids: example from Long Valley, CA, USA

    USGS Publications Warehouse

    Brown, Shaun T.; Kennedy, B. Mack; DePaolo, Donald J.; Hurwitz, Shaul; Evans, William C.

    2013-01-01

    We present chemical and isotopic data for fluids, minerals and rocks from the Long Valley meteoric-hydrothermal system. The samples encompass the presumed hydrothermal upwelling zone in the west moat of the caldera, the Casa Diablo geothermal field, and a series of wells defining a nearly linear, ∼16 km long, west-to-east trend along the likely fluid flow path. Fluid samples were analyzed for the isotopes of water, Sr, and Ca, the concentrations of major cations and anions, alkalinity, and total CO2. Water isotope data conform to trends documented in earlier studies, interpreted as indicating a single hydrothermal fluid mixing with local groundwater. Sr isotopes show subtle changes along the flow path, which requires rapid fluid flow and minimal reaction between the channelized fluids and the wallrocks. Sr and O isotopes are used to calculate fracture spacing using a dual porosity model. Calculated fracture spacing and temperature data for hydrothermal fluids indicate the system is (approximately) at steady-state. Correlated variations among total CO2, and the concentration and isotopic composition of Ca suggest progressive fluid degassing (loss of CO2), which drives calcite precipitation as the fluid flows west-to-east and cools. The shifts in Ca isotopes require that calcite precipitated at temperatures of 150–180 °C is fractionated by ca. −0.3‰ to −0.5‰ relative to aqueous species. Our data are the first evidence that Ca isotopes undergo kinetic fractionation at high temperatures (>100 °C) and can be used to trace calcite precipitation along hydrothermal fluid flow paths.

  10. Quantification of nitrous oxide (N2O) uptake in boreal forest soils by combining isotopic and microbial approaches

    NASA Astrophysics Data System (ADS)

    Welti, Nina; Siljanen, Henri; Biasi, Christina; Martikainen, Pertti

    2015-04-01

    The amount of nitrous oxide (N2O) produced during denitrification is highly regulated by the function of the last reductase enzyme (nitrous oxide reductase; nosZ) which is known to be inhibited by oxygen, low pH and low temperature, which are typical characteristics of boreal peatlands and some forest soils. Denitrification can be a sink for N2O, if the last step of the process is very efficient. Generally, the N2O sink potential of soils is poorly constrained; while uptake rates were often observed in field studies, the data was rejected as analytical errors or artifacts. This led to the question: when and by which mechanisms does N2O uptake occur in natural boreal forests? In order to answer this question, we established a 15N2O tracer experiment where the production of 15N2 and consumption of 15N2O were quantified in aerobic and anaerobic conditions followed by abundance analyses of genes and transcripts. The laboratory incubations were complemented with molecular approaches which linked the N2O dynamics with individual microbial species and transcriptomics. The abundance of denitrifying functional genes and gene transcripts reducing nitrous oxide (nosZ) were quantified throughout the experiment with sacrificial sampling in order to solve the role of typical and atypical denitrifying populations on N2O consumption. For this study, a Finnish boreal spruce forest and peatland were selected where previous field measurements have revealed negative N2O fluxes (i.e. N2O uptake). Soil horizons were selected in both the organic layer and uppermost mineral soil layer and in the peat layers 0-10 cm and 10-20 cm, where oxygen is limited and N2O uptake occurs at the field scale. 15N-N2O (99 AT %) was added to an initial N2O concentration of 1.7 ppm. All soils were flushed with 100% helium prior to the N2O addition to ensure that the NO3 stocks were reduced, leaving the added N2O as the sole activator of N2O uptake and primary N source. Aerobic N2O uptake was quantified in

  11. Calcium isotope analysis by mass spectrometry.

    PubMed

    Boulyga, Sergei F

    2010-01-01

    The variations in the isotopic composition of calcium caused by fractionation in heterogeneous systems and by nuclear reactions can provide insight into numerous biological, geological, and cosmic processes, and therefore isotopic analysis finds a wide spectrum of applications in cosmo- and geochemistry, paleoclimatic, nutritional, and biomedical studies. The measurement of calcium isotopic abundances in natural samples has challenged the analysts for more than three decades. Practically all Ca isotopes suffer from significant isobaric interferences, whereas low-abundant isotopes can be particularly affected by neighboring major isotopes. The extent of natural variations of stable isotopes appears to be relatively limited, and highly precise techniques are required to resolve isotopic effects. Isotope fractionation during sample preparation and measurements and instrumental mass bias can significantly exceed small isotope abundance variations in samples, which have to be investigated. Not surprisingly, a TIMS procedure developed by Russell et al. (Russell et al., 1978. Geochim Cosmochim Acta 42: 1075-1090) for Ca isotope measurements was considered as revolutionary for isotopic measurements in general, and that approach is used nowadays (with small modifications) for practically all isotopic systems and with different mass spectrometric techniques. Nevertheless, despite several decades of calcium research and corresponding development of mass spectrometers, the available precision and accuracy is still not always sufficient to achieve the challenging goals. The present article discusses figures of merits of presently used analytical methods and instrumentation, and attempts to critically assess their limitations. In Sections 2 and 3, mass spectrometric methods applied to precise stable isotope analysis and to the determination of (41)Ca are described. Section 4 contains a short summary of selected applications, and includes tracer experiments and the potential use

  12. Isotope fractionation

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    A rash of new controversy has emerged around the subject of mass-independent isotope fractionation effects, particularly in the case of the oxygen isotopes. To be sure, the controversy has been around for awhile, but it has been given new impetus by the results of a recent study by Mark H. Thiemens and John E. Heidenreich III of the University of California, San Diego (Science, March 4, 1983).Gustav Arrhenius has been trying to convince the planetary science community that chemical effects in isotope fractionation processes could explain observations in meteorites that appear to be outside of the traditionally understood mass-dependent fractionations (G. Arrhenius, J . L. McCrumb, and N. F. Friedman, Astrophys. Space Sci, 65, 297, 1974). Robert Clayton had made the basic observations of oxygen in carbonaceous chondrites that the slope of the δ17 versus δ18 line was 1 instead of the slope of ½ characteristic of terrestrial rocks and lunar samples (Ann. Rev. Nucl. Part. Sci., 28, 501, 1978). The mass-independent effects were ascribed to the apparent contribution of an ancient presolar system component of O16.

  13. Biological impacts of local vs. regional land use on a small tributary of the Seine River (France): insights from a food web approach based on stable isotopes.

    PubMed

    Hette-Tronquart, Nicolas; Oberdorff, Thierry; Tales, Evelyne; Zahm, Amandine; Belliard, Jérôme

    2017-03-23

    As part of the landscape, streams are influenced by land use. Here, we contributed to the understanding of the biological impacts of land use on streams, investigating how landscape effects vary with spatial scales (local vs. regional). We adopted a food web approach integrating both biological structure and functioning, to focus on the overall effect of land use on stream biocœnosis. We selected 17 sites of a small tributary of the Seine River (France) for their contrasted land use, and conducted a natural experiment by sampling three organic matter sources, three macroinvertebrate taxa, and most of the fish community. Using stable isotope analysis, we calculated three food web metrics evaluating two major dimensions of the trophic diversity displayed by the fish community: (i) the diversity of exploited resources and (ii) the trophic level richness. The idea was to examine whether (1) land-use effects varied according to spatial scales, (2) land use affected food webs through an effect on community structure and (3) land use affected food webs through an effect on available resources. Beside an increase in trophic diversity from upstream to downstream, our empirical data showed that food webs were influenced by land use in the riparian corridors (local scale). The effect was complex, and depended on site's position along the upstream-downstream gradient. By contrast, land use in the catchment (regional scale) did not influence stream biocœnosis. At the local scale, community structure was weakly influenced by land use, and thus played a minor role in explaining food web modifications. Our results suggested that the amount of available resources at the base of the food web was partly responsible for food web modifications. In addition, changes in biological functioning (i.e. feeding interactions) can also explain another part of the land-use effect. These results highlight the role played by the riparian corridors as a buffer zone, and advocate that riparian

  14. The oxygen isotopes

    NASA Astrophysics Data System (ADS)

    Brown, B. Alex

    The properties of the oxygen isotopes provide diverse examples of progress made in experiments and theory. This chain of isotopes has been studied from beyond the proton drip line in 12O to beyond the neutron drip line in 25,26O. This short survey starts with the microscopic G matrix approach for 18O of Kuo and Brown in the 1960’s and shows how theory has evolved. The nuclear structure around the doubly-magic nucleus 24O is particularly simple in terms of the nuclear shell model. The nuclear structure around the doubly-magic nucleus 16O exhibits the coexistence of single-particle and collective structure.

  15. Compound-specific stable isotope analysis of herbicides in stream water: a combined monitoring and modeling approach to assess pollutant degradation at catchment scale

    NASA Astrophysics Data System (ADS)

    Lutz, Stefanie; Van der Velde, Ype; Elsayed, Omniea; Imfeld, Gwenael; Lefrancq, Marie; Payraudeau, Sylvain; Van Breukelen, Boris

    2014-05-01

    Compound-specific stable isotope analysis (CSIA) measures the isotopic composition of a compound, i.e. the relative abundance of light and heavy stable isotopes of an element contained in the compound (e.g. 12C and 13C). As degradation processes may induce a change in isotopic composition (i.e. isotope fractionation), CSIA allows distinguishing degradation from non-destructive processes such as dilution or sorption. CSIA can be combined with model-assisted interpretation to evaluate degradation of contaminants in the environment. Although CSIA methods have also been developed for diffuse pollutants such as pesticides and nitrate, they have not yet been continuously applied in monitoring of diffuse pollution in surface water. Results of a virtual experiment of isotope fractionation at hillslope scale have suggested that CSIA qualifies as a feasible and useful complement to concentration measurements of diffuse pollutants (Lutz et al., 2013). We now present the first continuously measured concentration and carbon CSIA data of herbicides from a 49-ha agricultural catchment (Alsace, France). Stream concentrations of two chloroacetanilide herbicides, i.e. S-metolachlor and acetochlor, were highest (65 μg/L) following an extreme rainfall event in the first month after herbicide application, and subsequently decreased to background concentration level (0.1 μg/L). This decrease was accompanied by an increase of more than 2 ‰ in carbon isotope ratios, which was also observed in surface runoff samples from a plot experiment in the study catchment. The increase of carbon isotope ratios over time indicates the occurrence of herbicide degradation during transport to the stream, and thus demonstrates the advantage of CSIA over pesticide concentration measurements only. Despite providing evidence of herbicide degradation, the field CSIA data do not allow for a comprehensive characterization of herbicide sources, fate and transport in the study catchment. Therefore, we

  16. Position-specific and clumped stable isotope studies: comparison of the Urey and path-integral approaches for carbon dioxide, nitrous oxide, methane, and propane.

    PubMed

    Webb, Michael A; Miller, Thomas F

    2014-01-16

    We combine path-integral Monte Carlo methods with high-quality potential energy surfaces to compute equilibrium isotope effects in a variety of systems relevant to 'clumped' isotope analysis and isotope geochemistry, including CO2, N2O, methane, and propane. Through a systematic study of heavy-atom isotope-exchange reactions, we quantify and analyze errors that arise in the widely used Urey model for predicting equilibrium constants of isotope-exchange reactions using reduced partition function ratios. These results illustrate that the Urey model relies on a nontrivial cancellation of errors that can shift the apparent equilibrium temperature by as much as 35 K for a given distribution of isotopologues. The calculations reported here provide the same level of precision as the best existing analytical instrumentation, resolving the relative enrichment of certain isotopologues to as little as 0.01‰. These findings demonstrate path-integral methods to be a rigorous and viable alternative to more approximate methods for heavy-atom geochemical applications.

  17. Identifying the African Wintering Grounds of Hybrid Flycatchers Using a Multi–Isotope (δ2H, δ13C, δ15N) Assignment Approach

    PubMed Central

    Van Wilgenburg, Steven L.; Hobson, Keith A.; Folmer, Eelke; Font, Laura; Klaassen, Marcel

    2014-01-01

    Migratory routes and wintering grounds can have important fitness consequences, which can lead to divergent selection on populations or taxa differing in their migratory itinerary. Collared (Ficedula albicollis) and pied (F. hypoleuca) flycatchers breeding in Europe and wintering in different sub-Saharan regions have distinct migratory routes on the eastern and western sides of the Sahara desert, respectively. In an earlier paper, we showed that hybrids of the two species did not incur reduced winter survival, which would be expected if their migration strategy had been a mix of the parent species' strategies potentially resulting in an intermediate route crossing the Sahara desert to different wintering grounds. Previously, we compared isotope ratios and found no significant difference in stable-nitrogen isotope ratios (δ15N) in winter-grown feathers between the parental species and hybrids, but stable-carbon isotope ratios (δ13C) in hybrids significantly clustered only with those of pied flycatchers. We followed up on these findings and additionally analyzed the same feathers for stable-hydrogen isotope ratios (δ2H) and conducted spatially explicit multi-isotope assignment analyses. The assignment results overlapped with presumed wintering ranges of the two species, highlighting the efficacy of the method. In contrast to earlier findings, hybrids clustered with both parental species, though most strongly with pied flycatcher. PMID:24847717

  18. Identifying the African wintering grounds of hybrid flycatchers using a multi-isotope (δ2H, δ13C, δ15N) assignment approach.

    PubMed

    Veen, Thor; Hjernquist, Mårten B; Van Wilgenburg, Steven L; Hobson, Keith A; Folmer, Eelke; Font, Laura; Klaassen, Marcel

    2014-01-01

    Migratory routes and wintering grounds can have important fitness consequences, which can lead to divergent selection on populations or taxa differing in their migratory itinerary. Collared (Ficedula albicollis) and pied (F. hypoleuca) flycatchers breeding in Europe and wintering in different sub-Saharan regions have distinct migratory routes on the eastern and western sides of the Sahara desert, respectively. In an earlier paper, we showed that hybrids of the two species did not incur reduced winter survival, which would be expected if their migration strategy had been a mix of the parent species' strategies potentially resulting in an intermediate route crossing the Sahara desert to different wintering grounds. Previously, we compared isotope ratios and found no significant difference in stable-nitrogen isotope ratios (δ15N) in winter-grown feathers between the parental species and hybrids, but stable-carbon isotope ratios (δ13C) in hybrids significantly clustered only with those of pied flycatchers. We followed up on these findings and additionally analyzed the same feathers for stable-hydrogen isotope ratios (δ2H) and conducted spatially explicit multi-isotope assignment analyses. The assignment results overlapped with presumed wintering ranges of the two species, highlighting the efficacy of the method. In contrast to earlier findings, hybrids clustered with both parental species, though most strongly with pied flycatcher.

  19. Stable isotopes in tree rings

    NASA Astrophysics Data System (ADS)

    McCarroll, Danny; Loader, Neil J.

    2004-04-01

    Stable isotopes in tree rings could provide palaeoclimate reconstructions with perfect annual resolution and statistically defined confidence limits. Recent advances make the approach viable for non-specialist laboratories. The relevant literature is, however, spread across several disciplines, with common problems approached in different ways. Here we provide the first overview of isotope dendroclimatology, explaining the underlying theory and describing the steps taken in building and interpreting isotope chronologies. Stable carbon isotopes record the balance between stomatal conductance and photosynthetic rate, dominated at dry sites by relative humidity and soil water status and at moist sites by summer irradiance and temperature. Stable oxygen and hydrogen isotopic ratios record source water, which contains a temperature signal, and leaf transpiration, controlled dominantly by vapour pressure deficit. Variable exchange with xylem (source) water during wood synthesis determines the relative strength of the source water and leaf enrichment signals. Producing long Holocene chronologies will require a change in emphasis towards processing very large numbers of samples efficiently, whilst retaining analytical precision. A variety of sample preparation and data treatment protocols have been used, some of which have a deleterious effect on the palaeoclimate signal. These are reviewed and suggestions made for a more standardised approach.

  20. Nursery fidelity, food web interactions and primary sources of nutrition of the juveniles of Solea solea and S. senegalensis in the Tagus estuary (Portugal): A stable isotope approach

    NASA Astrophysics Data System (ADS)

    Vinagre, C.; Salgado, J.; Costa, M. J.; Cabral, H. N.

    2008-01-01

    Stable carbon and nitrogen isotopes were used to assess site fidelity of Solea solea and Solea senegalensis juveniles, to investigate food web interactions and to determine the dominant nutrient pathways in two nursery areas in the Tagus estuary, Portugal. Samples of water from the main sources and from the nursery areas and respective saltmarsh creeks were collected for isotope analysis, as well as sediment, benthic microalgae, saltmarsh halophytes, S. solea, S. senegalensis and its main prey, Nereis diversicolor, Scrobicularia plana and Corophium spp. While site fidelity was high in 0-group juveniles, it was lower for 1-group juveniles, possibly due to an increase in mobility and energy demands with increasing size. Analysis of the food web revealed a complex net of relations. Particulate organic matter from the freshwater sources, from each nursery's waters and saltmarsh creeks presented similar isotopic composition. Sediment isotopic composition and saltmarsh halophytes also did not differentiate the two areas. All components of the food web from the benthic microalgae upwards were isotopically different between the nursery areas. These components were always more enriched in δ13C and δ15N at the lower nursery area than at the nursery located upstream, appearing as if there were two parallel trophic chains with little trophic interaction between each other. A mixture of carbon and nitrogen sources is probably being incorporated into the food web. The lower nursery area is more dependent upon an isotopically enriched energy pathway, composed of marine particulate organic matter, marine benthic microalgae and detritus of the C 4 saltmarsh halophyte Spartina maritima. The two nursery areas present a different level of dependence upon the freshwater and marine energy pathways, due to hydrological features, which should be taken into account for S. solea and S. senegalensis fisheries and habitat management.

  1. Isotope Program Report June FY2016

    SciTech Connect

    Lewis, Jr, Benjamin E.; Egle, Brian

    2016-09-01

    Isotope Program Monthly Highlights are briefly described. These include data on isotopes shipped, updates on equipment fabrication and testing, a potential new approach for nondestructive measurement of the amount of Cf-252 deposited on a surface, and efforts to recover and purify uranium-234 obtained from old PuBe sources.

  2. Amino acid isotopic analysis in agricultural systems

    USDA-ARS?s Scientific Manuscript database

    A relatively new approach to stable isotopic analysis—referred to as compound-specific isotopic analysis (CSIA)—has emerged, centering on the measurement of 15N:14N ratios in amino acids (glutamic acid and phenylalanine). CSIA has recently been used to generate trophic position estimates among anima...

  3. Ca isotope fractionation and Sr/Ca partitioning associated with anhydrite formation at mid-ocean ridge hydrothermal systems: An experimental approach

    NASA Astrophysics Data System (ADS)

    Syverson, D. D.; Scheuermann, P.; Pester, N. J.; Higgins, J. A.; Seyfried, W. E., Jr.

    2016-12-01

    The elemental and isotopic mass balance of Ca and Sr between seawater and basalt at mid-ocean ridge (MOR) hydrothermal systems is an integrated reflection of the various physiochemical processes, which induce chemical exchange, in the subseafloor. Specifically, the processes of anhydrite precipitation and recrystallization are recognized to be important controls on governing the Ca and Sr elemental and isotope compositions of high temperature vent fluids, however, few experimental data exist to constrain these geochemical effects. Thus, to better understand the associated Sr/Ca partitioning and Ca isotope fractionation and rate of exchange between anhydrite and dissolved constituents, anhydrite precipitation and recrystallization experiments were performed at 175, 250, and 350°C and 500 bar at chemical conditions indicative of active MOR hydrothermal systems. The experimental data suggest that upon entrainment of seawater into MOR hydrothermal systems, anhydrite will precipitate rapidly and discriminate against the heavy isotopes of Ca (Δ44/40Ca(Anh-Fluid) = -0.68 - -0.25 ‰), whereas Sr/Ca partitioning depends on the saturation state of the evolving hydrothermal fluid with respect to anhydrite at each PTX (KD(Anh-Fluid) = 1.24 - 0.55). Coupling experimental constraints with the temperature gradient inferred for high temperature MOR hydrothermal systems in the oceanic crust, data suggest that the Ca isotope and Sr elemental composition of anhydrite formed near the seafloor will be influenced by disequilibrium effects, while, at higher temperatures further into the oceanic crust, anhydrite will be representative of equilibrium Sr/Ca partitioning and Ca isotope fractionation conditions. These experimental observations are consistent with analyzed Sr/Ca and Ca isotope compositions of anhydrites and vent fluids sampled from modern MOR hydrothermal systems1,2 and can be used to further constrain the geochemical effects of hydrothermal circulation in the oceanic crust

  4. Measuring In Vivo Ureagenesis With Stable Isotopes

    PubMed Central

    Yudkoff, Marc; Mew, Nicholas Ah; Daikhin, Yevgeny; Horyn, Oksana; Nissim, Ilana; Nissim, Itzhak; Payan, Irma; Tuchman, Mendel

    2010-01-01

    Stable isotopes have been an invaluable adjunct to biomedical research for more than 70 years. Indeed, the isotopic approach has revolutionized our understanding of metabolism, revealing it to be an intensely dynamic process characterized by an unending cycle of synthesis and degradation. Isotopic studies have taught us that the urea cycle is intrinsic to such dynamism, since it affords a capacious mechanism by which to eliminate waste nitrogen when rates of protein degradation (or dietary protein intake) are especially high. Isotopes have enabled an appreciation of the degree to which ureagenesis is compromised in patients with urea cycle defects. Indeed, isotopic studies of urea cycle flux correlate well with the severity of cognitive impairment in these patients. Finally, the use of isotopes affords an ideal tool with which to gauge the efficacy of therapeutic interventions to augment residual flux through the cycle. PMID:20338795

  5. Validating soil denitrification models based on laboratory N_{2} and N_{2}O fluxes and underlying processes derived by stable isotope approaches

    NASA Astrophysics Data System (ADS)

    Well, Reinhard; Böttcher, Jürgen; Butterbach-Bahl, Klaus; Dannenmann, Michael; Deppe, Marianna; Dittert, Klaus; Dörsch, Peter; Horn, Marcus; Ippisch, Olaf; Mikutta, Robert; Müller, Carsten; Müller, Christoph; Senbayram, Mehmet; Vogel, Hans-Jörg; Wrage-Mönnig, Nicole

    2016-04-01

    Robust denitrification data suitable to validate soil N2 fluxes in denitrification models are scarce due to methodical limitations and the extreme spatio-temporal heterogeneity of denitrification in soils. Numerical models have become essential tools to predict denitrification at different scales. Model performance could either be tested for total gaseous flux (NO + N2O + N2), individual denitrification products (e.g. N2O and/or NO) or for the effect of denitrification factors (e.g. C-availability, respiration, diffusivity, anaerobic volume, etc.). While there are numerous examples for validating N2O fluxes, there are neither robust field data of N2 fluxes nor sufficiently resolved measurements of control factors used as state variables in the models. To the best of our knowledge there has been only one published validation of modelled soil N2 flux by now, using a laboratory data set to validate an ecosystem model. Hence there is a need for validation data at both, the mesocosm and the field scale including validation of individual denitrification controls. Here we present the concept for collecting model validation data which is be part of the DFG-research unit "Denitrification in Agricultural Soils: Integrated Control and Modelling at Various Scales (DASIM)" starting this year. We will use novel approaches including analysis of stable isotopes, microbial communities, pores structure and organic matter fractions to provide denitrification data sets comprising as much detail on activity and regulation as possible as a basis to validate existing and calibrate new denitrification models that are applied and/or developed by DASIM subprojects. The basic idea is to simulate "field-like" conditions as far as possible in an automated mesocosm system without plants in order to mimic processes in the soil parts not significantly influenced by the rhizosphere (rhizosphere soils are studied by other DASIM projects). Hence, to allow model testing in a wide range of conditions

  6. Non-steady-state exhumation of the Higher Himalaya, N.W. India: insights from a combined isotopic and sedimentological approach.

    NASA Astrophysics Data System (ADS)

    Najman, Y.; Pringle, M.; Bickle, M.; Garzanti, E.; Burbank, D.; Ando, S.; Brozovic, N.

    2003-04-01

    Quantitative constraints to the exhumation of an orogen can be gained from the sediment record of the mountain belt's erosion. Our approach uses the determination of lag times, defined as the difference between a detrital mineral's isotopic age, which it starts to acquire at depth in the source region, and its host sediment depositional age. We use Ar-Ar ages of High-Himalayan derived detrital micas from a 20--5 Ma magnetostratigraphically dated section in the foreland basin of NW India to constrain exhumation of the Higher Himalaya. This work includes our previously published dataset and interpretations for the 20--13 Ma part of the sediment section (White et al., EPSL 2002), and new data for the 12--5 Ma sediment record. The data show zero lag times, indicative of rapid exhumation of the High Himalaya, between 20--17 Ma. After this time the lag times increase and there is no further evidence of rapid exhumation. Continued denudation to higher metamorphic levels is indicated by progressive appearance of index minerals in the sediment succession; first garnet (Najman &Garzanti 2000), followed by staurolite at 20 Ma, kyanite by 12 Ma and sillimanite at ca. 8 Ma. Calculation of exhumation rates from lag times can be determined using a thermal model which allows for advective modification of the geotherm. An exhumation rate of up to 5 mm/yr is calculated from the rapidly exhuming micas, slowing to <1mm/yr for the more slowly exhuming micas. This transition at 17 Ma corresponds to the first time that thrusting propagates into the footwall of the MCT, indicating the onset of a period of frontal accretion in the orogen. Exhumational steady state in an orogen, as defined by Willett &Brandon (Geology 2002), can be recognised in the sediment record as periods when lag times remain constant through time (Bernet et al., Geology 2001). Our data show that lag times do not remain constant upsection. Therefore, there is no evidence that the High Himalaya was in exhumational

  7. A coupled stable isotope-size spectrum approach to understanding pelagic food-web dynamics: A case study from the southwest sub-tropical Pacific

    NASA Astrophysics Data System (ADS)

    Hunt, B. P. V.; Allain, V.; Menkes, C.; Lorrain, A.; Graham, B.; Rodier, M.; Pagano, M.; Carlotti, F.

    2015-03-01

    This study investigated the food web structure of the oligotrophic picophytoplankton-dominated pelagic ecosystem in the vicinity of New Caledonia, within the Archipelagic Deep Basin (ARCH) province of the southwest sub-tropical Pacific. Nitrogen stable isotope (δ15N) data were collected for mesozooplankton (0.2-2 mm), macrozooplankton (2-20 mm), micronekton (20-200 mm) and nekton (>200 mm) during 2002-2004 and 2011. Using a coupled δ15N size-spectrum approach, we estimated (1) organism trophic level (TL); (2) food chain length (FCL); (3) predator prey mass ratio (PPMR); and (4) transfer efficiency (TE). The role of phytoplankton size structure in determining these parameters was investigated. Applying a trophic enrichment factor (TEF) of 3.4, maximum TL was calculated at ~5. The number of TLs spanned by each length class was 1.97 for mesozooplankton, 2.07 for macrozooplankton, 2.75 for micronekton, and 2.21 for nekton. Estimated PPMR was 10,099:1 for mesozooplankton, 3683:1 for macrozooplankton/micronekton, and 2.44×105:1 for nekton, corresponding to TEs of 6.3%, 8.5% and 2.4%, respectively. PPMR and TE were strongly influenced by the TEF used, and TEF 3.4 likely over and underestimated PPMR and TE, respectively, for mesozooplankton and macrozooplankton/micronekton. Comparatively low PPMR for mesozooplankton and macrozooplankton/micronekton indicated longer food chains and higher connectivity within these groups than for the nekton. Conversely, the high PPMR yet high trophic niche width for the nekton indicated that they prey primarily on macrozooplankton/micronekton, with a relatively high degree of dietary specialisation. Our results are discussed in the context of other marine food webs. The ARCH food chain was found to be 1-1.5 trophic levels longer than the eutrophic micro-/nanophytoplankton-dominated Californian upwelling system, providing empirical support for the role of phytoplankton size in determining FCL. Group specific PPMR estimates demonstrated

  8. Baleen as a biomonitor of mercury content and dietary history of North Atlantic minke whales (Balaenopetra acutorostrata): combining elemental and stable isotope approaches.

    PubMed

    Hobson, K A; Riget, F F; Outridge, P M; Dietz, R; Born, E

    2004-09-20

    Baleen is an incrementally-growing tissue of balaenopteran whales which preserves relatively well over time in museums and some archeological sites, and, therefore might be useful for studies examining long-term changes of metal levels in whales. This study examined Hg and stable C and N isotopic composition of baleen plates of the North Atlantic minke whale (Balaenoptera acutorostrata), which continues to be a food source for people in Greenland and elsewhere. We compared the Hg levels and stable isotopes of major tissues (kidney, liver and muscle) with those of baleen plates to see whether baleen could be used as a biomonitor of variations of Hg intake and diet both between individuals and within individuals over time. Mercury was significantly correlated with concentrations in all tissues (kidney, liver and muscle). Stable C and N isotopes in baleen were generally similar to those of muscle, which reflects the recent (approximately one month) feeding of the whale, but in some individuals there were significant differences between baleen and muscle. Sectioning of baleen into 1 cm longitudinal increments showed that these differences were due to marked dietary shifts by some individuals over time that had been recorded in the baleen but were lost from the muscle record. Whole baleen C and N isotopes were better correlated with tissue Hg levels, suggesting that baleen may provide a more reliable indicator of long-term average diet, which in turn may be better related to Hg accumulation in tissues than the shorter-term diet record contained in muscle.

  9. Tracing the history of submarine hydrothermal inputs and the significance of hydrothermal hafnium for the seawater budget - A combined Pb-Hf-Nd isotope approach

    USGS Publications Warehouse

    van de Flierdt, T.; Frank, M.; Halliday, A.N.; Hein, J.R.; Hattendorf, B.; Gunther, D.; Kubik, P.W.

    2004-01-01

    Secular variations in the Pb isotopic composition of a mixed hydrogenous-hydrothermal ferromanganese crust from the Bauer Basin in the eastern Equatorial Pacific provide clear evidence for changes in hydrothermal contributions during the past 7 Myr. The nearby Galapagos Rise spreading center provided a strong hydrothermal flux prior to 6.5 Ma. After 6.5 Ma, the Pb became stepwise more radiogenic and more similar to Equatorial Pacific seawater, reflecting the westward shift of spreading to the presently active East Pacific Rise (EPR). A second, previously unrecognized enhanced hydrothermal period occurred between 4.4 and 2.9 Ma, which reflects either off-axis hydrothermal activity in the Bauer Basin or a late-stage pulse of hydrothermal Pb from the then active, but waning Galapagos Rise spreading center. Hafnium isotope time-series of the same mixed hydrogenous-hydrothermal crust show invariant values over the past 7 Myr. Hafnium isotope ratios, as well as Nd isotope ratios obtained for this crust, are identical to that of hydrogenous Equatorial Pacific deep water crusts and clearly indicate that hydrothermal Hf, similar to Nd, does not travel far from submarine vents. Therefore, we suggest that hydrothermal Hf fluxes do not contribute significantly to the global marine Hf budget. ?? 2004 Elsevier B.V. All rights reserved.

  10. Identifying calcium sources at an acid deposition-impacted spruce forest: a strontium isotope, alkaline earth element multi-tracer approach

    Treesearch

    Thomas D. Bullen; Scott W. Bailey

    2005-01-01

    Depletion of calcium from forest soils has important implications for forest productivity and health. Ca is available to fine feeder roots from a number of soil organic and mineral sources. but identifying the primary source or changes of sources in response to environmental change is problematic. We used strontium isotope and alkaline earth element concentration...

  11. Spatial distribution of electrical conductivity and stable isotopes in groundwater in large catchments: a geostatistical approach in the Quequén Grande River catchment, Argentina.

    PubMed

    Quiroz Londoño, Orlando Mauricio; Martínez, Daniel Emilio; Massone, Hector Enrique; Londoño Ciro, Libardo Antonio; Dapeña, Cristina

    2015-01-01

    Stable isotopes and electrical conductivity in groundwater were used as natural tracers to adjust the hydrogeological conceptual model in one of the largest catchments within the inter-mountainous Pampa plain, Argentina. Geostatistical tools were used to define the model that best fitted the spatial distribution of each tracer, and information was obtained in areas where there was a lack of data. The conventional isotopic analysis allowed the identification of three groundwater groups with different isotopic fingerprints. One group containing 56% of the total groundwater samples suggested a well-mixed system and soil infiltration precipitation as the main recharge source to the aquifer. The other two groups included samples with depleted (25.5%) and enriched (18.5%) isotopic compositions, respectively. The combination of δ(18)O, δ(2)H and electrical conductivities maps suggested ascending regional flows and water transfer from the Quequén Grande River catchment to the Moro creek. The spatial interpretation of these tracers modified the conceptual hydrogeological model of the Quequén Grande River.

  12. Trophic ecology of the supralittoral rocky shore (Roscoff, France): A dual stable isotope (δ 13C, δ 15N) and experimental approach

    NASA Astrophysics Data System (ADS)

    Laurand, Sandrine; Riera, Pascal

    2006-07-01

    The present study investigates the trophic transfers on the upper littoral rocky shore (i.e. the supralittoral zone together with the upper midlittoral and adlittoral) of northern Brittany. The population mainly consists of four invertebrate species: the littorinids Littorina saxatilis and Melarhaphe neritoides, the isopod Ligia oceanica and the insect Petrobius maritimus. The utilisation of food sources available to these grazers was examined in a laboratory microcosm feeding experiment and a field study using stable isotopes (δ 13C, δ 15N). The results indicated that although Ligia oceanica preferentially occurs in the supralittoral zone, its trophic subsidies originate mostly from the adlittoral and lower intertidal zones. The stable isotope data also suggested that adlittoral terrestrial organic material may be the major food source of Petrobius maritimus. δ 15N of Littorina saxatilis indicated a highly variable diet consisting of supralittoral lichens, midlittoral macroalgae and other food sources (e.g. microalgae). Both feeding experiments and stable isotope data show that only Melarhaphe neritoides has a clearly identifiable diet based on a mixture of lichens, mostly Verrucaria maura and Caloplaca marina, as estimated by an isotopic mixing model. Hence, the food web of this intertidal zone appears largely based on trophic subsidies from other habitats (i.e. upper and lower intertidal zones).

  13. A novel methodology to investigate isotopic biosignatures

    NASA Astrophysics Data System (ADS)

    Horner, T. J.; Lee, R. B. Y.; Henderson, G. M.; Rickaby, R. E. M.

    2012-04-01

    An enduring goal of trace metal isotopic studies of Earth History is to find isotopic 'fingerprints' of life or of life's individual physiochemical processes. Generally, such signatures are sought by relating an isotopic effect observed in controlled laboratory conditions or a well-characterized environment to a more complex system or the geological record. However, such an approach is ultimately limited because life exerts numerous isotopic fractionations on any one element so it is hard to dissect the resultant net fractionation into its individual components. Further, different organisms, often with the same apparent cellular function, can express different isotopic fractionation factors. We have used a novel method to investigate the isotopic fractionation associated with a single physiological process-enzyme specific isotopic fractionation. We selected Cd isotopes since only one biological use of Cd is known, CdCA (a Cd/Zn carbonic anhydrase from the coastal diatom T. Weissflogii). Thus, our investigation can also inform the long standing mystery as to why this generally toxic element appears to have a nutrient-like dissolved isotopic and concentration profile in the oceans. We used the pET-15b plasmid to insert the CdCA gene into the E. coli genome. There is no known biochemical function for Cd in E. coli, making it an ideal vector for studying distinct physiological processes within a single organism. The uptake of Cd and associated isotopic fractionation was determined for both normal cells and those expressing CdCA. It was found that whole cells always exhibited a preference for the light isotopes of Cd, regardless of the expression of CdCA; adsorption of Cd to cell surfaces was not seen to cause isotopic fractionation. However, the cleaning procedure employed exerted a strong control on the observed isotopic composition of cells. Using existing protein purification techniques, we measured the Cd isotopic composition of different subcellular fractions of E

  14. Combining Solvent Isotope Effects with Substrate Isotope Effects in Mechanistic Studies of Alcohol and Amine Oxidation by Enzymes*

    PubMed Central

    Fitzpatrick, Paul F.

    2014-01-01

    Oxidation of alcohols and amines is catalyzed by multiple families of flavin-and pyridine nucleotide-dependent enzymes. Measurement of solvent isotope effects provides a unique mechanistic probe of the timing of the cleavage of the OH and NH bonds, necessary information for a complete description of the catalytic mechanism. The inherent ambiguities in interpretation of solvent isotope effects can be significantly decreased if isotope effects arising from isotopically labeled substrates are measured in combination with solvent isotope effects. The application of combined solvent and substrate (mainly deuterium) isotope effects to multiple enzymes is described here to illustrate the range of mechanistic insights that such an approach can provide. PMID:25448013

  15. Isotopic reconstruction of the weaning process in the archaeological population of Canímar Abajo, Cuba: A Bayesian probability mixing model approach.

    PubMed

    Chinique de Armas, Yadira; Roksandic, Mirjana; Nikitović, Dejana; Rodríguez Suárez, Roberto; Smith, David; Kanik, Nadine; García Jordá, Dailys; Buhay, William M

    2017-01-01

    The general lack of well-preserved juvenile skeletal remains from Caribbean archaeological sites has, in the past, prevented evaluations of juvenile dietary changes. Canímar Abajo (Cuba), with a large number of well-preserved juvenile and adult skeletal remains, provided a unique opportunity to fully assess juvenile paleodiets from an ancient Caribbean population. Ages for the start and the end of weaning and possible food sources used for weaning were inferred by combining the results of two Bayesian probability models that help to reduce some of the uncertainties inherent to bone collagen isotope based paleodiet reconstructions. Bone collagen (31 juveniles, 18 adult females) was used for carbon and nitrogen isotope analyses. The isotope results were assessed using two Bayesian probability models: Weaning Ages Reconstruction with Nitrogen isotopes and Stable Isotope Analyses in R. Breast milk seems to have been the most important protein source until two years of age with some supplementary food such as tropical fruits and root cultigens likely introduced earlier. After two, juvenile diets were likely continuously supplemented by starch rich foods such as root cultigens and legumes. By the age of three, the model results suggest that the weaning process was completed. Additional indications suggest that animal marine/riverine protein and maize, while part of the Canímar Abajo female diets, were likely not used to supplement juvenile diets. The combined use of both models here provided a more complete assessment of the weaning process for an ancient Caribbean population, indicating not only the start and end ages of weaning but also the relative importance of different food sources for different age juveniles.

  16. Origin of halides (Cl- and Br-) and of their stable isotopes (d37Cl and d81Br) at the Tournemire URL (France) - Experimental and numerical approach

    NASA Astrophysics Data System (ADS)

    Bachir-Bey, Nassim; Matray, Jean-Michel

    2014-05-01

    This work is part of research conducted by the Institute of Radiological and Nuclear Safety (IRSN) on the geological disposal of High-Level and Intermediate-Level Long-Lived (HL-ILLL) radioactive waste in deep clayrocks. In France, the choice of the potential host rock for the geological storage is focused on the Callovian-Oxfordian (COx) of Meuse/Haute-Marne from its low permeability, capacity for self- sealing, high sorption and ability to radionuclide (RN) transport by diffusion. IRSN, which plays an expert role for ASN has its own underground research laboratory in a clayrock which has strong analogies to the COx. This is the Toarcian/Domerian clayrock located at Tournemire in southern Aveyron in France. The purpose of this study was to assess the transfer of RN in the Tournemire clayrock through the study of halides contents and of their stable isotopes (Cl-, Br-, Cl-/Br-, d37Cl, d81Br). The approach used was multiple and consisted for halides to: 1) Assess their stock in different fractions of the rock by applying several techniques including i) alkaline fusion for their total stock, ii) leaching to access their stock in porewater and to mineral phases sensitive to dissolution iii) cubic diffusion for their stock in porewater, 2) Get their diffusive transport parameters of a selection of samples from the upper Toarcian by cubic diffusion experiments modelled using the Hytec transport code developed by Mines ParisTech and 3) Model their transport after palaeohydrogeological known changes of the Tournemire massif. The experimental approach, conducted at the LAME lab, did not lead to an operational protocol for the alkaline fusion due to an incomplete rock dissolution. Leaching was used to characterize the concentrations of halides in the fractions of pore water and of minerals sensitive to dissolution. The results show levels of halides much higher than those of pore water with very low Cl/Br ratios likely resulting from the dissolution of mineral species. The

  17. Enhanced Fluorescence ELISA Based on HAT Triggering Fluorescence "Turn-on" with Enzyme-Antibody Dual Labeled AuNP Probes for Ultrasensitive Detection of AFP and HBsAg.

    PubMed

    Wu, Yudong; Guo, Weisheng; Peng, Weipan; Zhao, Qian; Piao, Jiafang; Zhang, Bo; Wu, Xiaoli; Wang, Hanjie; Gong, Xiaoqun; Chang, Jin

    2017-03-22

    At present, enzyme-linked immunosorbent assay (ELISA) is considered to be the most appropriate approach in clinical biomarker detection, with good specificity, low cost, and straightforward readout. However, unsatisfactory sensitivity severely hampers its wide application in clinical diagnosis. Herein, we designed a new kind of enhanced fluorescence enzyme-linked immunosorbent assay (FELISA) based on the human alpha-thrombin (HAT) triggering fluorescence "turn-on" signals. In this system, detection antibodies (Ab2) and HAT were labeled on the gold nanoparticles (AuNPs) to form the detection probes, and a bisamide derivative of Rhodamine110 with fluorescence quenched served as the substrate of HAT. After the sandwich immunoreaction, HAT on the sandwich structure could catalyze the cleavage of the fluorescence-quenched substrate, leading to a strong fluorescence signal for sensing ultralow levels of alpha fetoprotein (AFP) and hepatitis B virus surface antigen (HBsAg). Under the optimized reaction conditions, AFP and HBsAg were detected at the ultralow concentrations of 10(-8) ng mL(-1) and 5 × 10(-4) IU mL(-1), respectively, which were at least 10(4) times lower than those of the conventional fluorescence assay and 10(6) times lower than those of the conventional ELISA. In addition, we further discussed the efficiency of the sensitive FELISA in clinical serum samples, showing great potential in practical applications.

  18. Method for separating isotopes

    DOEpatents

    Jepson, B.E.

    1975-10-21

    Isotopes are separated by contacting a feed solution containing the isotopes with a cyclic polyether wherein a complex of one isotope is formed with the cyclic polyether, the cyclic polyether complex is extracted from the feed solution, and the isotope is thereafter separated from the cyclic polyether.

  19. N zooming into the Mediterranean outflow fossil moat during the 1.2-1.8 million years period (Early-Pleistocene) - An approach by radiogenic and stable isotopes

    NASA Astrophysics Data System (ADS)

    Lebreiro, Susana M.; Antón, Laura; Reguera, M. Isabel; Fernández, Marta; Conde, Estefanía; Barrado, Ana I.; Yllera, Abel

    2015-12-01

    The fossil Alvarez Cabral erosive Moat contains hemipelagite, contourite and turbidite facies where oceanography changes in the Mediterranean outflow are archived over the 1.2-1.8 Myr time period. Here we used Pb and Sr radiogenic isotopes to trace water masses and sediment source changes, for the first time in twenty glacial-interglacial (G-I) cycles of the Early-Pleistocene interval, and the last Glacial Maximum through Holocene cycle (including the Younger Dryas and Heinrich Stadial-1). A mixing line of Pb isotopes gives reliable low radiogenic 208Pb/204Pb, 206Pb/204Pb, and 206Pb/207Pb typical of Mediterranean Outflow Water (MOW) in one end-member and the signature of high radiogenic isotopes of Atlantic Waters (AW) towards the second end-member. The 87Sr/86Sr isotopes also display two end-members of the mixing line between eolian transport/dust source (0.71) and fluvial transport/weathering source (0.73) previously proposed in the Gulf of Cadiz. Combination of Pb and Sr radiogenic isotopes with O and C stable isotopes of planktonic and benthic foraminifera, and the response of foraminifera benthos over the Early-Pleistocene interval, reveals a direct link between water masses circulation and shifts in G-I. We found a persistent cyclic pattern of MOW circulation and fluvial deposition during glaciations and AW and aeolian influence during interglaciations. On site U1386B/C, the upper-MOW was less ventilated but productive and with high flux of organic flux matter during glacials, while Atlantic Waters were better ventilated, enriched in O, but less productive during interglacials. We infer that shifts in ocean and atmospheric processes in the Gulf of Cadiz were strongly controlled by Earth's obliquity (41 kyr-cycle) and 35°NH insolation during the Early-Pleistocene. We propose a correlation in changes in phase-relationship between precession and obliquity. In general terms, physical properties of fine sediments (glacials) show lower NGR, low reflectance and

  20. Unravelling spatiotemporal tree-ring signals in Mediterranean oaks: a variance-covariance modelling approach of carbon and oxygen isotope ratios.

    PubMed

    Shestakova, Tatiana A; Aguilera, Mònica; Ferrio, Juan Pedro; Gutiérrez, Emilia; Voltas, Jordi

    2014-08-01

    Identifying how physiological responses are structured across environmental gradients is critical to understanding in what manner ecological factors determine tree performance. Here, we investigated the spatiotemporal patterns of signal strength of carbon isotope discrimination (Δ(13)C) and oxygen isotope composition (δ(18)O) for three deciduous oaks (Quercus faginea (Lam.), Q. humilis Mill. and Q. petraea (Matt.) Liebl.) and one evergreen oak (Q. ilex L.) co-occurring in Mediterranean forests along an aridity gradient. We hypothesized that contrasting strategies in response to drought would lead to differential climate sensitivities between functional groups. Such differential sensitivities could result in a contrasting imprint on stable isotopes, depending on whether the spatial or temporal organization of tree-ring signals was analysed. To test these hypotheses, we proposed a mixed modelling framework to group isotopic records into potentially homogeneous subsets according to taxonomic or geographical criteria. To this end, carbon and oxygen isotopes were modelled through different variance-covariance structures for the variability among years (at the temporal level) or sites (at the spatial level). Signal-strength parameters were estimated from the outcome of selected models. We found striking differences between deciduous and evergreen oaks in the organization of their temporal and spatial signals. Therefore, the relationships with climate were examined independently for each functional group. While Q. ilex exhibited a large spatial dependence of isotopic signals on the temperature regime, deciduous oaks showed a greater dependence on precipitation, confirming their higher susceptibility to drought. Such contrasting responses to drought among oak types were also observed at the temporal level (interannual variability), with stronger associations with growing-season water availability in deciduous oaks. Thus, our results indicate that Mediterranean deciduous

  1. Isotope separation by photochromatography

    DOEpatents

    Suslick, K.S.

    1975-10-03

    A photochromatographic method for isotope separation is described. An isotopically mixed molecular species is adsorbed on an adsorptive surface, and the adsorbed molecules are irradiated with radiation of a predetermined wavelength which will selectively excite desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thus separate them from the undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes. (BLM)

  2. Isotope separation by photochromatography

    DOEpatents

    Suslick, Kenneth S.

    1977-01-01

    An isotope separation method which comprises physically adsorbing an isotopically mixed molecular species on an adsorptive surface and irradiating the adsorbed molecules with radiation of a predetermined wavelength which will selectively excite a desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thereby separate them from the unexcited undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes.

  3. Isotope Fractionation During Microbial Metal Assimilation

    NASA Astrophysics Data System (ADS)

    Anbar, A.; Wasylenki, L.; Liermann, L.; Mathur, R.; Brantley, S.

    2006-12-01

    The possibility that metal stable isotopes record the influence of microbes on metal geochemical cycling has motivated much recent research on "non-traditional" stable isotopes, particularly Fe. The initial wave of research on biogenic metal isotope effects focused on Fe isotope fractionation during microbially-mediated dissimilatory reduction or oxidation of Fe. Although isotope variations arising from biogenic effects have been reported in laboratory systems it is difficult to ascribe comparable variations in nature to biology because of pervasive and significant abiotic fractionation. As an alternative approach, we are investigating isotope fractionation during microbial assimilation of transition metals. Assimilation occurs because a large number of metals are essential intracellular constituents. Although assimilatory isotope fractionation is not likely to be unique in direction or magnitude compared to other processes, the large number of elements potentially involved greatly broadens the number of elements that can be examined for biogenic isotope effects in materials of interest. This raises the possibility of multi- element isotope "fingerprints" of biological metal processing. In experiments with Azotobacter vinelandii, a nitrogen-fixing soil bacterium that does not use Fe or other metals in dissimilatory respiration, fractionation of both Fe and Mo isotopes are observed. The two systems exhibit opposite sense fractionation: preferential assimilation of heavy isotopes is observed for Fe, while Mo assimilation favors uptake of light isotopes. Rayleigh-type behavior is seen in both cases; α = 1.0011 and 0.9997, respectively. The Fe isotope results are most readily interpreted in terms of an equilibrium fractionation between inorganic Fe complexes and strongly bound Fe-siderophore complexes that are taken into the cell. In contrast, the Mo isotope results may reflect a kinetic isotope effect. However, it is alternatively possible that Mo isotope

  4. Tracing and quantifying lake water and groundwater fluxes in the area under mining dewatering pressure using coupled O and H stable isotope approach.

    PubMed

    Lewicka-Szczebak, Dominika; Jędrysek, Mariusz-Orion

    2013-01-01

    Oxygen and hydrogen stable isotopic compositions of precipitation, lake water and groundwater were used to quantitatively asses the water budget related to water inflow and water loss in natural lakes, and mixing between lake water and aquifer groundwater in a mining area of the Lignite Mine Konin, central Poland. While the isotopic composition of precipitation showed large seasonal variations (δ(2)H from-140 to+13 ‰ and δ(18)O from-19.3 to+7.6 ‰), the lake waters were variously affected by evaporation (δ(2)H from-44 to-21 ‰ and δ(18)O from-5.2 to-1.7 ‰) and the groundwater showed varying contribution from mixing with surface water (δ(2)H from-75 to-39 ‰ and δ(18)O from-10.4 to-4.8 ‰). The lake water budget was estimated using a Craig-Gordon model and isotopic mass balance constraint, which enabled us to identify various water sources and to quantify inflow and outflow for each lake. Moreover, we documented that a variable recharge of lake water into the Tertiary aquifer was dependent on mining drainage intensity. A comparison of coupled δ(2)H-δ(18)O data with hydrogeological results indicated better precision of the δ(2)H-based calculations.

  5. Stable isotope analysis at the molecular level: A new approach for determining the origins of amino acids in the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Engel, M. H.; Macko, S. A.; Qian, Y.; Silfer, J. A.

    1995-01-01

    A combined gas chromatography/isotope ratio mass spectrometry (GC/IRMS) method has been developed that permits the direct stable carbon isotope analysis of N(O)-trifluoroacetyl-isopropyl esters of individual amino acids and their respective enantiomers at nanomole abundances. Calculation of the original delta C-13 values of the amino acids is accomplished via a correction for the carbon introduced during the derivatization process. Previous GC/IRMS analyses of individual amino acids in the non-hydrolyzed water extract of an interior sample of a Murchison meteorite stone revealed an enrichment in C-13 relative to terrestrial organic matter, in agreement with previous findings for bulk extracts. The range of amino acid delta C-13 values (+5 to +30 per mill, PDB) suggests possible kinetic effects during synthesis. In this study, an apparent kinetic isotope effect was also observed for the amino acid products of a spark discharge experiment. These preliminary resutls are supportive of a similar mechanism for the abiotic synthesis of amino acids in the Murchison meteorite.

  6. A novel multi-isotope tracer approach to test ZnO nanoparticle and soluble Zn bioavailability in joint soil exposures.

    PubMed

    Laycock, Adam John; Romero-Freire, Ana; Najorka, Jens; Svendsen, Claus; van Gestel, Cornelis A M; Rehkaemper, Mark

    2017-10-10

    Here we use two enriched stable isotopes, (68)Znen and (64)Znen (>99%), to prepare (68)ZnO nanoparticles (NPs) and soluble (64)ZnCl2. The standard LUFA 2.2 test soil was dosed with (68)ZnO NPs and soluble (64)ZnCl2 to 5 mg kg(-1) each, plus between 0 and 95 mg kg(-1) of soluble ZnCl2 with a natural isotope composition. After 0, 1, 3, 6 and 12 months of soil incubation, earthworms (Eisenia andrei) were introduced for 72-hour exposures. Analyses of soils, pore waters and earthworm tissues using multiple collector ICP-MS allowed the simultaneous measurement of the diagnostic (68)Zn/(66)Zn, (64)Zn/(66)Zn and (68)Zn/(64)Zn ratios, from which the three different isotopic forms of Zn were quantified. Eisenia andrei was able to regulate Zn body concentrations with no difference observed between the different total dosing concentrations. The accumulation of labelled Zn by the earthworms showed a direct relationship with the proportion of labelled to total Zn in the pore water, which increased with longer soil incubation times and decreasing soil pH. The (68)Znen/(64)Znen ratios determined for earthworms (1.09 ± 0.04), soils (1.09 ± 0.02) and pore waters (1.08 ± 0.02) indicate indistinguishable environmental distribution and uptake of the Zn forms, most likely due to rapid dissolution of the ZnO NPs.

  7. Stable isotope analysis at the molecular level: A new approach for determining the origins of amino acids in the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Engel, M. H.; Macko, S. A.; Qian, Y.; Silfer, J. A.

    1995-01-01

    A combined gas chromatography/isotope ratio mass spectrometry (GC/IRMS) method has been developed that permits the direct stable carbon isotope analysis of N(O)-trifluoroacetyl-isopropyl esters of individual amino acids and their respective enantiomers at nanomole abundances. Calculation of the original delta C-13 values of the amino acids is accomplished via a correction for the carbon introduced during the derivatization process. Previous GC/IRMS analyses of individual amino acids in the non-hydrolyzed water extract of an interior sample of a Murchison meteorite stone revealed an enrichment in C-13 relative to terrestrial organic matter, in agreement with previous findings for bulk extracts. The range of amino acid delta C-13 values (+5 to +30 per mill, PDB) suggests possible kinetic effects during synthesis. In this study, an apparent kinetic isotope effect was also observed for the amino acid products of a spark discharge experiment. These preliminary resutls are supportive of a similar mechanism for the abiotic synthesis of amino acids in the Murchison meteorite.

  8. Evaluating the Roles of Topography and Aerosols in Atmospheric River Rainout Using a Paired Stable Isotope and Ice Nucleating Particle Time Series Approach

    NASA Astrophysics Data System (ADS)

    Reilly, S.; Ahmed, A.; Fogarty, M.; Beall, C.; Creamean, J.; Martin, A.; Mix, H.

    2016-12-01

    Accurate modeling and forecasting of atmospheric rivers depends on disentangling the complex interactions between aerosols, event meteorological structure and local topography that drive precipitation. Here, we seek to address three questions: 1) What are the relationships between aerosols and precipitation amount, efficiency and phase? 2) What are the stable isotope signatures of extreme precipitation events and which macro- and micro-scale dynamics are responsible for producing them? and 3) What are the moisture and aerosol sources during extreme precipitation events and how do these change within storms? We produced simultaneous hourly time series of precipitation ice nucleating particle (INP) concentrations and isotopic composition at five sites throughout Northern California between February 1 and March 14, 2016. Additionally, we used Lagrangian backtrajectory analyses to evaluate variations in air mass trajectories and aerosol loadings at our sites. Our sampling network consisted of two pairs of coastal and inland/upslope sites (Bodega Bay-Cazadero, Santa Cruz-Santa Clara) and one interior site (Shasta Lake). We constrained the influence of post-condensation exchange and evaporation through real-time measurements of water vapor isotopes at Bodega Bay. Our results quantify the rainout between coastal and interior sites and the corresponding changes in INP concentration in order to evaluate the role of INPs and topography in precipitation. These results can improve forecasting through enhanced understanding of the processes that enhance or suppress the rainout of atmospheric moisture.

  9. Quantitative Microbial Ecology through Stable Isotope Probing

    PubMed Central

    Mau, Rebecca L.; Schwartz, Egbert; Caporaso, J. Gregory; Dijkstra, Paul; van Gestel, Natasja; Koch, Benjamin J.; Liu, Cindy M.; McHugh, Theresa A.; Marks, Jane C.; Morrissey, Ember M.; Price, Lance B.

    2015-01-01

    Bacteria grow and transform elements at different rates, and as yet, quantifying this variation in the environment is difficult. Determining isotope enrichment with fine taxonomic resolution after exposure to isotope tracers could help, but there are few suitable techniques. We propose a modification to stable isotope probing (SIP) that enables the isotopic composition of DNA from individual bacterial taxa after exposure to isotope tracers to be determined. In our modification, after isopycnic centrifugation, DNA is collected in multiple density fractions, and each fraction is sequenced separately. Taxon-specific density curves are produced for labeled and nonlabeled treatments, from which the shift in density for each individual taxon in response to isotope labeling is calculated. Expressing each taxon's density shift relative to that taxon's density measured without isotope enrichment accounts for the influence of nucleic acid composition on density and isolates the influence of isotope tracer assimilation. The shift in density translates quantitatively to isotopic enrichment. Because this revision to SIP allows quantitative measurements of isotope enrichment, we propose to call it quantitative stable isotope probing (qSIP). We demonstrated qSIP using soil incubations, in which soil bacteria exhibited strong taxonomic variations in 18O and 13C composition after exposure to [18O]water or [13C]glucose. The addition of glucose increased the assimilation of 18O into DNA from [18O]water. However, the increase in 18O assimilation was greater than expected based on utilization of glucose-derived carbon alone, because the addition of glucose indirectly stimulated bacteria to utilize other substrates for growth. This example illustrates the benefit of a quantitative approach to stable isotope probing. PMID:26296731

  10. New insights into the Middle Pleistocene paleoecology and paleoenvironment of the Northern Iberian Peninsula (Punta Lucero Quarry site, Biscay): A combined approach using mammalian stable isotope analysis and trophic resource availability modeling

    NASA Astrophysics Data System (ADS)

    Domingo, Laura; Rodríguez-Gómez, Guillermo; Libano, Iñaki; Gómez-Olivencia, Asier

    2017-08-01

    The northern coastal area of the Iberian Peninsula shows an excellent archaeo-paleontological record with a unique representation of Pleistocene mammalian fossils. While the Late Pleistocene is better recorded, the Middle Pleistocene record remains more fragmentary. The Punta Lucero site (Biscay) has yielded the most important fossil assemblage of the middle Middle Pleistocene for the northern Iberian Peninsula in both, number of identified specimens and taxonomic diversity. Punta Lucero constitutes a unique opportunity to evaluate Middle Pleistocene mammalian resource and habitat use, and trophic dynamics employing a combined approach: biogeochemical analysis and mathematical modeling. Stable isotope analysis points to resource partitioning between Punta Lucero cervids and bovids. Stable isotope analysis and trophic modeling evidence resource overlap and interspecific competition among predators, especially between the scimitar-toothed cat Homotherium latidens and the European jaguar Panthera gombaszoegensis. The trophic resource availability modeling assumes that Canis mosbachensis consumed a 20% of preys of more than 10 kg, mainly as carrion. Thus, while there would be a taxonomic overlap with those preys consumed by the large felids, the different strategy would have facilitated the coexistence of these canids with larger carnivores. Trophic modeling indicates a high competition among the predator guild. The potential presence of hominins in the area would have reached to an unsustainable situation. However, the potential presence of other prey species, such as Equus sp., would have made the ecosystem more sustainable. The methodology followed in this study highlights the potential of multidisciplinary approaches in the assessment of Pleistocene faunal dynamics.

  11. Measurement of isotope abundance variations in nature by gravimetric spiking isotope dilution analysis (GS-IDA).

    PubMed

    Chew, Gina; Walczyk, Thomas

    2013-04-02

    Subtle variations in the isotopic composition of elements carry unique information about physical and chemical processes in nature and are now exploited widely in diverse areas of research. Reliable measurement of natural isotope abundance variations is among the biggest challenges in inorganic mass spectrometry as they are highly sensitive to methodological bias. For decades, double spiking of the sample with a mix of two stable isotopes has been considered the reference technique for measuring such variations both by multicollector-inductively coupled plasma mass spectrometry (MC-ICPMS) and multicollector-thermal ionization mass spectrometry (MC-TIMS). However, this technique can only be applied to elements having at least four stable isotopes. Here we present a novel approach that requires measurement of three isotope signals only and which is more robust than the conventional double spiking technique. This became possible by gravimetric mixing of the sample with an isotopic spike in different proportions and by applying principles of isotope dilution for data analysis (GS-IDA). The potential and principle use of the technique is demonstrated for Mg in human urine using MC-TIMS for isotopic analysis. Mg is an element inaccessible to double spiking methods as it consists of three stable isotopes only and shows great potential for metabolically induced isotope effects waiting to be explored.

  12. Tracing Anthropogenic Salinity Inputs to the Semi-arid Rio Grande River: A Multi-isotope Tracer (U, S, B and Sr) Approach

    NASA Astrophysics Data System (ADS)

    Garcia, S.; Nyachoti, S. K.; Ma, L.; Szynkiewicz, A.; McIntosh, J. C.

    2015-12-01

    High salinity in the Rio Grande has led to severe reductions in crop productivity and accumulation of salts in soils. These pressing issues exist for other arid rivers worldwide. Salinity contributions to the Rio Grande have not been adequately quantified, especially from agriculture, urban activities, and geological sources. Here, we use major element concentrations and U, S, B, Sr isotopic signatures to fingerprint the salinity sources. Our study area focuses on a 200 km long stretch of the Rio Grande from Elephant Butte Reservoir, NM to El Paso, TX. River samples were collected monthly from 2014 to 2015. Irrigation drains, groundwater wells, city drains and wastewater effluents were sampled as possible anthropogenic salinity end-members. Major element chemistry, U, S and Sr isotope ratios in the Rio Grande waters suggest multiple salinity inputs from geological, agricultural, and urban sources. Natural upwelling of groundwater is significant for the Rio Grande near Elephant Butte, as suggested by high TDS values and high (234U/238U), 87Sr/86Sr, δ34S ratios. Agricultural activities (e.g. flood irrigation, groundwater pumping, fertilizer use) are extensive in the Mesilla Valley. Rio Grande waters from this region have characteristic lower (234U/238U), 87Sr/86Sr, and δ34S ratios, with possible agricultural sources from use of fertilizers and gypsum. Agricultural practices during flood irrigation also intensify evaporation of Rio Grande surface water and considerably increase water salinity. Shallow groundwater signatures were also identified at several river locations, possibly due to the artificial pumping of local groundwater for irrigation. Impacts of urban activities to river chemistry (high NO3 and B concentrations) were evident for locations downstream to Las Cruces and El Paso wastewater treatment plants, supporting the use of the B isotope as an urban salinity tracer. This study improves our understanding of human impacts on water quality and elemental

  13. Sequential and parallel dual labeling of nanoparticles using click chemistry.

    PubMed

    Zong, Hong; Goonewardena, Sascha N; Chang, Huai-Ning; Otis, James B; Baker, James R

    2014-11-01

    Bioorthogonal 'click' reactions have recently emerged as promising tools for chemistry and biological applications. By using a combination of two different 'click' reactions, 'double-click' strategies have been developed to attach multiple labels onto biomacromolecules. These strategies require multi-step modifications of the biomacromolecules that can lead to heterogeneity in the final conjugates. Herein, we report the synthesis and characterization of a set of three trifunctional linkers. The linkers having alkyne and cyclooctyne moieties that are capable of participating in sequential copper(I)-catalyzed and copper-free cycloaddition reactions with azides. We have also prepared a linker comprised of an alkyne and a 1,2,4,5-terazine moiety that allows for simultaneous cycloaddition reactions with azides and trans-cyclooctenes, respectively. These linkers can be attached to synthetic or biological macromolecules to create a platform capable of sequential or parallel 'double-click' labeling in biological systems. We show this potential using a generation 5 (G5) polyamidoamine (PAMAM) dendrimer in combination with the clickable linkers. The dendrimers were successfully modified with these linkers and we demonstrate both sequential and parallel 'double-click' labeling with fluorescent reporters. We anticipate that these linkers will have a variety of application including molecular imaging and monitoring of macromolecule interactions in biological systems.

  14. Assessing how seasonal hydrological balance has changed during the warming 20th century in the montane forests of Southeast Asian monsoon region using a stable isotope dendroclimatology approach

    NASA Astrophysics Data System (ADS)

    Zhu, M.; Stott, L. D.

    2010-12-01

    Tropical montane forests act as water catchment and host of biodiversity in the Southeast Asian monsoon region, and understanding how their hydrological conditions change with global warming is vitally important. Global climate model simulations project enhanced moisture cycle in the tropics, which would cause stronger summer monsoon precipitations, but on the other hand the adiabatic lapse rate would be shifted towards a moister condition (amplification of warming at high elevation), inhibiting dry season orographic lifting cloud/fog formation (lifting cloud base hypothesis), enhancing evapo-transpiration, and leading to a net moisture loss during winter dry season. In this study, we have attempted to investigate how the seasonal moisture balance in Southeast Asia has evolved in response to these influences through the 20th century using the oxygen isotopic composition (δ18O) of subannual tree cellulose samples extracted from the annual rings of pine trees that grow in Doi Chiang Dao, a limestone mountain in northern Thailand. At this location the δ18O of cellulose exhibits distinctive annual cycles of up to 12‰, which is primarily a reflection of both the so-called ‘isotope amount effect’ that is associated with the strong monsoon precipitation during summer wet season and the moisture availability from different sources during winter dry season. We have demonstrated that tree cellulose δ18O could be used as a proxy for regional monsoon strength by showing that the annual mean cellulose δ18O correlate significantly with All India Rainfall, Webster-Yang monsoon index, as well as with both local and regional monsoon precipitation. ENSO is the dominant influence on interannual rainfall variability and this is well expressed in the interannual cellulose δ18O record. Using a 21-year moving window correlation analysis we find a weakening of ENSO influence after 1980, coinciding with the most rapid atmospheric warming. We expect to analyze older trees to

  15. Statistical clumped isotope signatures

    NASA Astrophysics Data System (ADS)

    Röckmann, Thomas; Popa, Maria Elena; Krol, Maarten; Hofmann, Magdalena

    2016-04-01

    High precision measurements of molecules containing more than one heavy isotope in environmental samples are becoming available with new instrumentation and may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk isotopic composition of the molecule, which for rare heavy isotopes is approximated by the arithmetic average of the isotope ratios of single substituted atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies when the indistinguishable atoms are from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule and these anomalies have to be taken into account in data interpretation. The size of the signal is closely related to the relative standard deviation of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules.

  16. High Precision Isotopic Reference Material Program

    NASA Astrophysics Data System (ADS)

    Mann, J. L.; Vocke, R. D.

    2007-12-01

    Recent developments in thermal ionization and inductively coupled plasma multicollector mass spectrometers have lead to "high precision" isotope ratio measurements with uncertainties approaching a few parts in 106. These new measurement capabilities have revolutionized the study of isotopic variations in nature by increasing the number of elements showing natural variations by almost a factor of two, and new research areas are actively opening up in climate change, health, ecology, geology and forensic studies. Because the isotopic applications are impacting very diverse fields, there is at present little effective coordination between research laboratories over reference materials and the values to apply to those materials. NIST had originally developed the techniques for producing accurate isotopic characterizations, culminating in the NIST Isotopic SRM series. The values on existing materials however are insufficiently precise and, in some cases, may be isotopically heterogeneous. A new generation of isotopic standards is urgently needed and will directly affect the quality and scope of emergent applications and ensure that the results being derived from these diverse fields are comparable. A series of new isotopic reference materials similar to the NIST 3100 single element solution series is being designed for this purpose and twelve elements have been selected as having the most pressing need. In conjunction with other expert users and National Metrology Institutes, an isotopic characterization of the respective 12 selected ampoules from the NIST single element solution series is currently underway. In this presentation the preliminary results of this screening will be discussed as well as the suitability of these materials in terms of homogeneity and purity, long term stability and availability, and isotopic relevance. Approaches to value assignment will also be discussed.

  17. Tracing Carbon Flow Through Food Webs on Isolated Coral Reefs in the Central Pacific Ocean Using a Compound-Specific Stable Isotope Approach

    NASA Astrophysics Data System (ADS)

    Thorrold, S.; McMahon, K.; Braun, C.; Berumen, M. L.; Houghton, L. A.

    2016-02-01

    Coral reefs support spectacularly productive and diverse communities in tropical and sub-tropical waters throughout the world's oceans. Debate continues, however, on the degree to which reef biomass is supported by new water column or benthic primary production and recycled detrital carbon. We coupled analyses of stable carbon isotopes in essential amino acids with Bayesian mixing models to quantify carbon flow from pelagic primary producers, benthic macroalgae and autotrophic symbionts in corals, along with detrital carbon, to coral reef fishes across several feeding guilds and trophic positions, including apex predators (gray reef and black tip reef sharks), on reefs in the Phoenix Islands Protected Area. Excellent separation in multivariate isotope space among end-members at the base of the food web allowed us to quantify the relative proportion of carbon produced by each of the end-members that is assimilated by focal reef fish species. Low local human impacts on the study reefs provided the opportunity to examine carbon fluxs in fully functioning reef food webs, thereby providing an important baseline for examingn human impacts in food webs on stressed reefs in more populated regions in the tropics. Moreover the study reefs are located along a significant gradient in dissolved N concentrations, allowing us to test if end-member proportions vary as a function of pelagic primary productivity levels. Our work provides insights into the roles that diverse carbon sources may play in the structure, function and resilience of coral reef ecosystems.

  18. Effective Boson Number- A New Approach for Predicting Separation Energies with the IBM1, Applied to Zr, Kr, Sr isotopes near A = 100

    NASA Astrophysics Data System (ADS)

    Paul, Nancy; van Isacker, Pieter; García Ramos, José Enrique; Aprahamian, Ani

    2011-10-01

    This work uses effective boson numbers in the Interacting Boson Model (IBM1) to predict two neutron separation energies for neutron-rich zirconium, strontium, and krypton isotopes., We determine the functional forms of binding energy and excitation energies as a function of boson number for a given choice of IBM parameters that give a good overall description of the experimental spectra of the isotopic chain. The energy of the first excited 2+ level is then used to extract an effective boson number for a given nucleus, that is in turn used to calculate the separation energies. This method accounts for complex interactions among valence nucleons around magic and semi- magic nuclei and successfully predicts the phase transitional signature in separation energies around A=100 for 92-108Zr, 90-104Sr, and 86-96Kr Supported by the NSF under contract PHY0758100, the Joint Institute for Nuclear Astrophysics grant PHY0822648, University of Notre Dame Nanovic Institute, Glynn Family Honors Program, Center for Undergraduate Scholarly Engagement.

  19. Origin of native copper in the Paraná volcanic province, Brazil, integrating Cu stable isotopes in a multi-analytical approach

    NASA Astrophysics Data System (ADS)

    Baggio, Sérgio Benjamin; Hartmann, Léo Afraneo; Lazarov, Marina; Massonne, Hans-Joachim; Opitz, Joachim; Theye, Thomas; Viefhaus, Tillmann

    2017-06-01

    Different hypotheses exist on the origin of native copper mineralization in the Paraná volcanic province that invoke magmatic, late magmatic, or hydrothermal events. The average copper content in the host basalts is 200 ppm. Native copper occurs as dendrites in cooling joints, fractures, and cavities within amygdaloidal crusts. Cuprite, tenorite, chrysocolla, malachite, and azurite occur in breccias at the top of the lava flows. Chemical analyses, X-ray diffraction, Raman spectrometry, electron microprobe analyses, LA-ICP-MS, and Cu isotope analyses were used to evaluate the origin of native copper in the volcanic province. Copper contents in magnetite of the host basalt are close to 1 wt.%, whereas clinopyroxene contains up to 0.04 wt.% Cu. Cretaceous hydrothermal alteration of magnetite and clinopyroxene released copper to generate hydrothermal copper mineralization. The isotopic composition of the native copper in the Paraná volcanic province varies from -0.9‰ in the southeastern portion (Rio Grande do Sul state) to 1.9‰ in the central portion (Paraná state) of the province. This study supports a hydrothermal origin followed by supergene enrichment for native copper in the Paraná volcanic province.

  20. Mobility of Po and U-isotopes under acid mine drainage conditions: an experimental approach with samples from Río Tinto area (SW Spain).

    PubMed

    Barbero, L; Gázquez, M J; Bolívar, J P; Casas-Ruiz, M; Hierro, A; Baskaran, M; Ketterer, M E

    2014-12-01

    Under acid mine drainage (AMD) conditions, the solubilities and mobilities of many elements are vastly different from conditions prevailing in most natural waters. Studies are underway in the Río Tinto area (Iberian Pyrite Belt), in order to understand the behavior and mobility of long-lived U-series radionuclides under AMD conditions. A set of leaching experiments utilizing typical country rocks from the Tinto River basin, waste rock pile composite materials, iron-rich riverbed sediments and gossan (weathered naturally rock) were performed towards this purpose. Initial leaching experiments using distilled water kept in contact with solid material for 300, 100, 50 and 1 h resulted in very low concentrations of U with (234)U/(238)U activity ratios close to equilibrium and activity concentrations of (210)Po < 0.03 mBq/g. Leaching experiments performed with sulfuric acid media (0.1 and 0.01 M), and contact times between the solid and solution for 24 h were conducted to quantify the amount of U-isotopes and (210)Po leached, and the radioactive disequilibria generated between the radionuclides in the leachate. These experiments show that Po mobility in acidic conditions (pH around 1-2) is very low, with (210)Po activity in the leachate to be 6% in average for the solid sample. By contrast, mobility of U-isotopes is higher than that of Po, around 1.2%.

  1. N-cycling and balancing of the N-deficit generated in the oxygen minimum zone over the Namibian shelf—An isotope-based approach

    NASA Astrophysics Data System (ADS)

    Nagel, Birgit; Emeis, Kay-Christian; Flohr, Anita; Rixen, Tim; Schlarbaum, Tim; Mohrholz, Volker; van der Plas, Anja

    2013-03-01

    northern Benguela upwelling system is a nutrient-replete region with high plankton biomass production and a seasonally changing oxygen minimum zone. Nitrate:phosphate ratios in fresh upwelling water are low due to denitrification in the near-seafloor oxygen minimum zone and phosphate efflux from sediments. This makes the region a candidate for substantial dinitrogen fixation, for which evidence is scarce. Nutrient and oxygen data, N isotope data of nitrate, nitrogen isotope ratios of particulate matter, particulate organic carbon content, and suspended matter concentrations on a transect across the shelf and upper slope at 23°S illustrate N-cycling processes and are the basis for estimating the contribution of N-sources and N-sinks to the reactive nitrogen pool. It appears that N-removal due to denitrification exceeds N gain by N2 fixation and physical mixing processes by a factor of >6, although inorganic N:P ratios again increase as surface water is advected offshore. Nitrate and ammonium regeneration, nutrient assimilation with N:P < 16, shelf break mixing, atmospheric input, and N2 fixation all contribute to the restoration of inorganic N:P ratios back to Redfield conditions, but in seasonally changing proportions. The Benguela upwelling system thus is a nutrient source for the oceanic-mixed layer where N-sources and N-sinks are not in balance and Redfield conditions can only re-adjust by advection and mixing processes integrated over time.

  2. Oxygen isotopic compositions of chondrules in Allende and ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Clayton, R. N.; Mayeda, T. K.; Hutcheon, I. D.; Molini-Velsko, C.; Onuma, N.; Ikeda, Y.; Olsen, E. J.

    1983-01-01

    The ferromagnesian chondrules in Allende follow a trend in the oxygen three-isotope plot that diverges significantly from the 16-O mixing line defined by light and dark inclusions and the matrix of the meteorite. The trend probably results from isotopic exchange with an external gaseous reservoir during the process of chondrule formation sometime after the establishment of the isotopic compositions of the inclusions and matrix. The Allende chondrules approach, but do not reach, the isotopic compositions of chondrules in unequilibrated ordinary chondrites, implying exchange with a similar ambient gas, but isotopically different solid precursors for the two types of meteorite.

  3. A Novel Approach to Investigate Soil Organic Matter Development Using Isotopes and Thermal Analysis: C Sourcing from Various Plant Materials and Mineral Influence on Stability

    NASA Astrophysics Data System (ADS)

    Bower, J.; Horwath, W. R.

    2012-12-01

    Biomolecular input quality and mineral constituents are important factors that regulate turnover and stabilization of natural organic matter. The complexity and variability of natural soil systems might shadow basic mechanisms occurring between organic and mineral components. Utilizing an in vitro model decomposition system allows for control over inputs and turnover time. We created a model soil system with composted plant litter that was enriched with 13-C in order to investigate C use during the formation of stabilized SOM. The litter was subjected to microbially-mediated, aerobic decomposition before pure clays were added and allowed to incubate further. Isotopically labeled organic inputs allowed us to focus on C derived from known plant sources as a qualitative assessment of SOM formation. Thermogravimetry-Differential Scanning Calorimetry (TG-DSC) has been used successfully to quantify thermochemical properties of SOM reactivity/stability in three regions of exothermic activity corresponding generally to carbohydrates and lipids (Exo 1; 150-350 C), aromatic and condensed polymers (Exo 2; 400-460 C) and refractory/mineral associated C (Exo 3; 500-550 C). Thermal separation of the organics allows for in-line evolved gas analysis via Isotope Ratio Mass Spectrometry (IRMS) to measure 13-C isotopic values of those thermally separated organic compound classes. This coupled analysis is ideal in that it is fast, reproducible, and requires no sample pretreatment other than drying/grinding and it provides stability, mass loss, and isotopic data from a single sample. DSC results show the development of a higher temperature, energetically recalcitrant C pool over the course of decomposition in mineral-free litters and its absence in clay-litter mixtures, implicating the influence of mineral surfaces on soil organic matter energetic stability. Preliminary IRMS results indicate that mineral presence influences C sourcing from particular plant materials in some SOM

  4. Spatial and temporal variations in nitrogen sources and cycling in north San Francisco Bay: Combining multi-isotope and hydrologic modeling approaches

    NASA Astrophysics Data System (ADS)

    Young, M. B.; Kendall, C.; Silva, S. R.; Guerin, M.; Kraus, T. E.

    2010-12-01

    In order to better understand the factors controlling nitrogen sources and cycling within Suisun Bay and the Sacramento-San Joaquin River confluence, stable isotope measurements of nitrate (NO3), water, and particulate organic matter (POM) were combined with estimates of volumetric water source contributions calculated using the DSM2-HYDRO hydrodynamic model. The San Joaquin River (SJR) typically carries high concentrations of NO3, while the Sacramento River downstream of the Sacramento Regional Waste Water Treatment Plant (SRWWTP) has high concentrations of ammonium (NH4). Samples were collected at established USGS stations from the lower Sacramento River and north San Francisco Bay on 16 occasions between August 2006 and May 2008, and along transects of the SJR between March 2005 and December 2007. The average δ15N of NO3 discharging from the SJR was consistently higher (13.0 ± 2.1 ‰, upstream of pumping diversion) in comparison to the Sacramento River (5.3 ± 0.9 ‰, sampled at Rio Vista), indicating that δ15N-NO3 can be useful for tracking NO3 from the two watersheds as it mixes in the confluence region. Results from the DSM2-HYDRO model show that during the study period the SJR contributed very little water (less than 1.5 %) to sites located at the Sacramento/SJR confluence and downstream in Suisun Bay. The distribution of δ15N-NO3 values in the confluence area and north Bay was consistent with this result, showing a fairly narrow range of lower values (3.5 to 9.5 ‰), indicating that little to no NO3 from the SJR watershed was reaching the confluence area and the north Bay during the sampling times. In the SJR, the C:N ratio of POM was usually between 6 and 10 except during periods of high winter flows, indicating that the POM was primarily algae most of the year. The δ15N of POM within the SJR was generally between 2 and 4 per mil lower than the δ15N of the NO3 and followed a similar pattern to the NO3, reflecting algal uptake of the NO3. In

  5. Tracing oxygen variations and its biogeochemical expression during the late hauterivian Faraoni Event: A multi tracers approach using paired carbon, nitrogen, sulfur isotopes and trace metallic elements

    NASA Astrophysics Data System (ADS)

    Thomazo, Christophe; Riquier, Laurent; Martinez, Mathieu; Mathieu, Olivier

    2013-04-01

    During the Cretaceous, several occurrences of Oceanic Anoxic Event (OAE) are described in the sedimentary record. Among them, the late Hauterivian Faraoni Event has been extensively studied in several locations including Italy, Switzerland, France and Spain and interpreted as a short-lived OAE from palaeontological, sedimentological and geochemical observations. However, the biogeochemical response to water column oxygen depletion is poorly documented and mostly stands on carbon carbonates isotopes during the Faraoni event. In order to bring further insights into the biogeochemical cycles modifications during O2 variations across the Faraoni Event, we performed an integrated geochemical study including C, N and S isotopes together with paleo-redox tracers (i.e. trace metallic elements and iron speciation) on about 25 samples from the Río Argos section (S.E. Spain). δ13Ccarb increases from 1.23‰ to 1.61‰ at the base of the studied section before the Faraoni event. Maximum values, ranging between 1.21‰ and 1.73‰, are observed within this event and are followed by a rapid decrease in δ13Ccarb values down to 0.50‰ toward the top of the section. δ13Corg and TOC values show a narrow range of variations around -26.3±0.3‰ and 0.15±0.3 wt.%, respectively. Only one sample records a higher TOC content up to 1.53 wt.% at the very base of the Faraoni Event while no sensible variations can be deduced form organic carbon isotopes. Bulk sediments nitrogen isotopes have a mean value of 2.3±0.2‰ and nitrogen contents vary between 320 and 790 ppm. A noticeable δ15N excursion (i.e. 0.86‰) is observed at the very base of the Faraoni Event and is associated with the highest TOC value. Sulfur contents vary between 100 and 2480 ppm, the highest content being recorded just bellow the base of the Faraoni Event. δ34S show a wide range of variations from -44.8 to -10.1‰ on a short scale without easily recognizable stratigraphic trend. Finally, slight increases of

  6. METHOD OF ISOTOPE CONCENTRATION

    DOEpatents

    Spevack, J.S.

    1957-04-01

    An isotope concentration process is described which consists of exchanging, at two or more different temperature stages, two isotopes of an element between substances that are physically separate from each other and each of which is capable of containing either of the isotopes, and withdrawing from a point between at least two of the temperatare stages one of the substances containing an increased concentration of the desired isotope.

  7. Statistical clumped isotope signatures

    PubMed Central

    Röckmann, T.; Popa, M. E.; Krol, M. C.; Hofmann, M. E. G.

    2016-01-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168

  8. Statistical clumped isotope signatures

    NASA Astrophysics Data System (ADS)

    Röckmann, T.; Popa, M. E.; Krol, M. C.; Hofmann, M. E. G.

    2016-08-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules.

  9. Cosmic ray isotopes

    NASA Technical Reports Server (NTRS)

    Stone, E. C.

    1973-01-01

    The isotopic composition of cosmic rays is studied in order to develop the relationship between cosmic rays and stellar processes. Cross section and model calculations are reported on isotopes of H, He, Be, Al and Fe. Satellite instrument measuring techniques separate only the isotopes of the lighter elements.

  10. Isotope reference materials

    USGS Publications Warehouse

    Coplen, Tyler B.

    2010-01-01

    Measurement of the same isotopically homogeneous sample by any laboratory worldwide should yield the same isotopic composition within analytical uncertainty. International distribution of light element isotopic reference materials by the International Atomic Energy Agency and the U.S. National Institute of Standards and Technology enable laboratories to achieve this goal.

  11. Multivariate statistical and lead isotopic analyses approach to identify heavy metal sources in topsoil from the industrial zone of Beijing Capital Iron and Steel Factory.

    PubMed

    Zhu, Guangxu; Guo, Qingjun; Xiao, Huayun; Chen, Tongbin; Yang, Jun

    2017-06-01

    Heavy metals are considered toxic to humans and ecosystems. In the present study, heavy metal concentration in soil was investigated using the single pollution index (PIi), the integrated Nemerow pollution index (PIN), and the geoaccumulation index (Igeo) to determine metal accumulation and its pollution status at the abandoned site of the Capital Iron and Steel Factory in Beijing and its surrounding area. Multivariate statistical (principal component analysis and correlation analysis), geostatistical analysis (ArcGIS tool), combined with stable Pb isotopic ratios, were applied to explore the characteristics of heavy metal pollution and the possible sources of pollutants. The results indicated that heavy metal elements show different degrees of accumulation in the study area, the observed trend of the enrichment factors, and the geoaccumulation index was Hg > Cd > Zn > Cr > Pb > Cu ≈ As > Ni. Hg, Cd, Zn, and Cr were the dominant elements that influenced soil quality in the study area. The Nemerow index method indicated that all of the heavy metals caused serious pollution except Ni. Multivariate statistical analysis indicated that Cd, Zn, Cu, and Pb show obvious correlation and have higher loads on the same principal component, suggesting that they had the same sources, which are related to industrial activities and vehicle emissions. The spatial distribution maps based on ordinary kriging showed that high concentrations of heavy metals were located in the local factory area and in the southeast-northwest part of the study region, corresponding with the predominant wind directions. Analyses of lead isotopes confirmed that Pb in the study soils is predominantly derived from three Pb sources: dust generated during steel production, coal combustion, and the natural background. Moreover, the ternary mixture model based on lead isotope analysis indicates that lead in the study soils originates mainly from anthropogenic sources, which contribute much more

  12. Subduction-related High- to Ultrahigh-Potassic Rocks of the Ankara-Erzincan Suture Belt of Turkey: a geochemical and isotopic approach to source and petrogenesis

    NASA Astrophysics Data System (ADS)

    Genc, S. Can; Gulmez, Fatma; Karacik, Zekiye; Tuysuz, Okan; Prelevic, Dejan; Roden, Michael F.; Hames, Willis E.; Zeki Billor, M.

    2014-05-01

    A Late Cretaceous Volcano-sedimantary Succession (LCVS) trends parallel to Neo-Tethyan Suture in North Central Anatolia. Volcanic members of the LCVS consist mainy of coeval leucite phonolite/tephrites, trachytes, lamprophyres and andesitic rocks. Obtained Ar-Ar ages reveal that the volcanic activity occurred between 73.6±0.18 and 76.78±0.19 Ma, contemporaneous with the subduction of the Neo-Tethyan ocean beneath the Pontides. The volcanic rocks of LCVS are classified as alkaline, High- to ultrahigh-K, and silica-saturated and silica-unsaturated, geochemically. Rare calc-alkaline andesitic lavas are also occur within the volcanic sucession. Except the calc-alkaline samples, magmatic members of LCVS have similar major and trace element concentrations similar to the plagioleucitites or ultrapotassic rocks of the active orogenic zones (i.e. the Roman Province ultrapotassic series, Peccerillo, 2005). The multi element patterns on N-MORB- and Chondrite-normalized spider diagrams are characterized by significant LILE and LREE enrichments relative to HFSE and HREE, and display apparent Nb and Ta depletions, implying the subduction-related magmas. 87Sr/86Sr(i) (0.704493-0.706090) and 143Nd/144Nd(i) (0.512523-0.512680) isotope ratios are close to the mantle array, and are also in between the Aeolian Islands CA-Potassic rocks (Peccerillo, 2005), BSE and the circum-Mediterranean anorogenic Cenozoic igneous province (CiMACI, Lustrino&Wilson, 2007). Variable Mg# (33-60) evidences that these rocks are the products of evolved melts. The lead isotope values display a trend between EMI and DM, suggesting that the crustal involvement is more effective process during the generation of some lamprophyres relative to the other ultrapotassic rocks of LCVS. The results of clinopyroxene thermobarometry calculations reveal significant differences in depth of crystallization for the rock suites. Some trace element abundances and inter elemental ratios together with their co-variations show

  13. High-precision measurement of phenylalanine δ15N values for environmental samples: a new approach coupling high-pressure liquid chromatography purification and elemental analyzer isotope ratio mass spectrometry.

    PubMed

    Broek, Taylor A B; Walker, Brett D; Andreasen, Dyke H; McCarthy, Matthew D

    2013-11-15

    Compound-specific isotope analysis of individual amino acids (CSI-AA) is a powerful new tool for tracing nitrogen (N) source and transformation in biogeochemical cycles. Specifically, the δ(15)N value of phenylalanine (δ(15)N(Phe)) represents an increasingly used proxy for source δ(15)N signatures, with particular promise for paleoceanographic applications. However, current derivatization/gas chromatography methods require expensive and relatively uncommon instrumentation, and have relatively low precision, making many potential applications impractical. A new offline approach has been developed for high-precision δ(15)N measurements of amino acids (δ(15)N(AA)), optimized for δ(15)N(Phe) values. Amino acids (AAs) are first purified via high-pressure liquid chromatography (HPLC), using a mixed-phase column and automated fraction collection. The δ(15)N values are determined via offline elemental analyzer-isotope ratio mass spectrometry (EA-IRMS). The combined HPLC/EA-IRMS method separated most protein AAs with sufficient resolution to obtain accurate δ(15)N values, despite significant intra-peak isotopic fractionation. For δ(15)N(Phe) values, the precision was ±0.16‰ for standards, 4× better than gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS; ±0.64‰). We also compared a δ(15)N(Phe) paleo-record from a deep-sea bamboo coral from Monterey Bay, CA, USA, using our method versus GC/C/IRMS. The two methods produced equivalent δ(15)N(Phe) values within error; however, the δ(15)N(Phe) values from HPLC/EA-IRMS had approximately twice the precision of GC/C/IRMS (average stdev of 0.27‰ ± 0.14‰ vs 0.60‰ ± 0.20‰, respectively). These results demonstrate that offline HPLC represents a viable alternative to traditional GC/C/IMRS for δ(15)N(AA) measurement. HPLC/EA-IRMS is more precise and widely available, and therefore useful in applications requiring increased precision for data interpretation (e.g. δ(15)N paleoproxies

  14. Solute sources in stream water during consecutive fall storms in a northern hardwood forest watershed: A combined hydrological, chemical and isotopic approach

    USGS Publications Warehouse

    Mitchell, M.J.; Piatek, K.B.; Christopher, S.; Mayer, B.; Kendall, C.; McHale, P.

    2006-01-01

    Understanding the effects of climate change including precipitation patterns has important implications for evaluating the biogeochemical responses of watersheds. We focused on four storms in late summer and early fall that occurred after an exceptionally dry period in 2002. We analyzed not only the influence of these storms on episodic chemistry and the role of different water sources in affecting surface water chemistry, but also the relative contributions of these storms to annual biogeochemical mass balances. The study site was a well studied 135-ha watershed in the Adirondack Park of New York State (USA). Our analyses integrated measurements on hydrology, solute chemistry and the isotopic composition of NO 3- (??15N and ??18O) and SO 42- (??34S and ??18O) to evaluate how these storms affected surface water chemistry. Precipitation amounts varied among the storms (Storm 1: Sept. 14-18, 18.5 mm; Storm 2: Sept. 21-24, 33 mm; Storm 3: Sept. 27-29, 42.9 mm; Storm 4: Oct. 16-21, 67.6 mm). Among the four storms, there was an increase in water yields from 2 to 14%. These water yields were much less than in studies of storms in previous years at this same watershed when antecedent moisture conditions were higher. In the current study, early storms resulted in relatively small changes in water chemistry. With progressive storms the changes in water chemistry became more marked with particularly major changes in Cb (sum of base cations), Si, NO 3- , and SO 42- , DOC and pH. Analyses of the relationships between Si, DOC, discharge and water table height clearly indicated that there was a decrease in ground water contributions (i.e., lower Si concentrations and higher DOC concentrations) as the watershed wetness increased with storm succession. The marked changes in chemistry were also reflected in changes in the isotopic composition of SO 42- and NO 3- . There was a strong inverse relationship between SO 42- concentrations and ??34S values suggesting the importance of S

  15. Towards a quantitative approach to the utilization of magnetic effects as a means of isotopic enrichment. [Progress report, January 1, 1989--April 1, 1992

    SciTech Connect

    Turro, N.J.

    1992-05-01

    The photolysis of methyldesoxybenzoin in sodium dodecyl sulfate micellar solutions, produces benzaldehyde and styrene as disproportionation products of the triplet geminate radical pair. We have found that both the benzaldehyde and the recovered methyldeoxybenzoin are enriched in 13-C. These results provide the first direct evidence that both recombination and disproportionation are identically selective to the magnetic isotope effect, an important point anticipated by theory, but previously untested. An investigation of the photostereoisomerization of the diasteromers of 2,4-diphenylpentane-3-one in micellar solutions has allowed a quantitative analysis of the probabilities of recombination of the micellized primary geminate radical pair toward formation of different combination products. The results show that within the confidence provided by highly accurate data, the primary geminate radical pairs recombine to regenerate the precursor substrate structure or diastereomer with equal probability.

  16. Tracking fluvial response to climate change in the Pacific Northwest: a combined provenance approach using Ar and Nd isotopic systems on fine-grained sediments

    NASA Astrophysics Data System (ADS)

    VanLaningham, Sam; Duncan, Robert A.; Pisias, Nicklas G.; Graham, David W.

    2008-03-01

    Traditional provenance techniques (Nd isotopes and clay mineralogy) are combined with recently developed bulk sediment 40Ar- 39Ar radiometric methods to determine how the terrestrial sources of sediment to the Oregon continental margin have changed over the last 25,000 years. Both Pacific Northwest river-borne detritus, and sediment from piston coring site EW9504-17PC (2671 m water depth) offshore southern Oregon have been analyzed. Nd isotopic analyses of river silts show a range of 10 units in ɛNd. North of the core site, the Columbia River has ɛNd=-7.6, while the Coos River has a value of ɛNd=-10.8. Rivers proximal to the core site have more radiogenic values from north to south, of ɛNd=-5.0 (Umpqua River), ɛNd=-1.3 (Rogue River), ɛNd=-0.6 (Klamath River) and ɛNd=-3.0 (Eel River). Measured ɛNd in core sediments show subtle downcore changes, between ɛNd=-0.9 and -2.5. The bulk sediment 40Ar- 39Ar plateau ages show more notable downcore variation between 25 and 14 ka, ranging from 113.5 to 124.0 Ma, but are still within the range of bulk ages previously measured on river mouth sediments. The Nd isotopic analyses are combined with bulk sediment 40Ar- 39Ar plateau ages into a ternary mixing model to quantitatively assess the sources of terrigenous material. Mixtures are best described by three sources proximal to the core site (the Umpqua, Rogue+Klamath and Eel Rivers) from ˜14 ka to Present. Sediment deposited in the interval from 22 to 25 ka is not adequately described by the present-day rivers and requires an additional source. This additional source is best explained by an enhanced contribution from the interior Cascade volcanic arc, probably due to glaciation in the Cascade Range and the presence of pluvial Lake Modoc in the Upper Klamath Basin at this time. From 22 to 14 ka, the influence of Cascade Range sediment at the core site was overprinted by contemporaneous glaciation and sediment production in the Klamath Mountains, and possibly addition of

  17. A Sequential Leach Method and Pb Isotope Approach to Studying Apatite Weathering in Granitoid Soils at Hubbard Brook Experimental Forest, NH, USA

    NASA Astrophysics Data System (ADS)

    Nezat, C. A.; Blum, J. D.

    2005-12-01

    Easily dissolved minerals such as calcite and apatite can be important in controlling stream and ground water chemistry even though these minerals are only present in trace amounts in granitoid rocks. Because of its solubility, apatite, a calcium phosphate mineral, may be a significant source of essential nutrients (especially phosphorous) for vegetation, and has been shown to strongly influence stream and soil water composition (e.g, calcium, strontium and rare earth elements). There are additional sources of Ca (e.g., feldspars, hornblende) and P (e.g., organic matter or bound to Fe and Al oxides) in granitoid soils. In order to distinguish the chemical constituents of apatite from other pools in the bulk soil, we selectively dissolved apatite with a dilute acid leach, and measured Pb isotopic ratios of apatite, feldspar, and leachates. We tested the leaching procedure on mineral separates and verified that a dilute nitric solution primarily dissolves apatite. Silicates were dissolved in subsequent steps by successively stronger acids. We then applied this method to bulk soils collected from several soil pits across a small watershed at the Hubbard Brook Experimental Forest (HBEF), New Hampshire, USA, to determine the spatial distribution of Ca and P pools, and determine the depth of apatite depletion in the soil. We also measured Pb isotope ratios in the soil leachates to distinguish among the various sources of Pb (e.g., apatite, feldspars and anthropogenic sources). We found that Pb in the dilute nitric leach of the HBEF organic soils is dominated by anthropogenic sources and that Pb from apatite becomes increasingly important with depth.

  18. Tracing environmental aetiological factors of chronic kidney diseases in the dry zone of Sri Lanka-A hydrogeochemical and isotope approach.

    PubMed

    Wickramarathna, Sudeera; Balasooriya, Shyamalie; Diyabalanage, Saranga; Chandrajith, Rohana

    2017-12-01

    Chronic kidney disease of unknown aetiologies (CKDu) is increasingly recognized in tropical regions and is now considered a global health problem. A detailed hydrogeochemical investigation has been performed in three CKDu hotspots in Sri Lanka to assess the geo-environmental aetiological factors influencing this disease. A total of 71 ground- and 26 surface water samples were collected from Girandurukotte, Wilgamuwa and Nikawewa regions and analysed for major constituents and trace elements. The affected regions are dominated by Ca-Mg-HCO3 facies groundwater that is mainly controlled by silicate weathering. Higher levels of fluoride associated with higher hardness is the main feature of groundwater from CKDu regions compared to non-CKDu regions. Results showed that 65% of the wells in the affected regions exceeded the fluoride concentration of 0.5mg/L. Environmental isotopes of groundwater in the CKDu regions are represented by the regression line of δ(2)H=5.42δ(18)O-3.59 (r(2)=0.916) with a clear isotopic differentiation between local precipitation and groundwater. None of the trace elements exceeded the recommended scales and in most cases levels are negligible in both surface and groundwater in study areas. Therefore, the involvement of trace elements such as Cd, As and Pb can be ignored as causative factors for CKDu. This study highlights the synergistic influence of fluoride and hardness that could enhance the disease, and thereby refute earlier theories that attribute trace elements as causative factors for CKDu. Higher hardness in drinking water also restricts sufficient water uptake, particularly by farmers and which affects the physiological, biochemical and nutritional requirements. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. Tracing the Origins and Processes of Groundwater Salinization in Coastal Aquifers with a Multi-isotopes Approach. Example of Recife, Northeast of Brazil

    NASA Astrophysics Data System (ADS)

    Cary, L.; Petelet-Giraud, E.; Bertrand, G.; Kloppmann, W.; Aquilina, L.; Pauwels, H.; Martins, V.; Hirata, R.; Montenegro, S.

    2015-12-01

    The Recife Metropolitan Region (PE, Brazil) is a typical "hot spot" illustrating the problems of southern countries on water issues inducing high pressures on water resources both on quantity and quality in the context of global social and environmental changes. By focusing on the groundwater geochemistry in a costal multilayer aquifer, this work aims at investigating the sources and processes of salinization. Two different Precambrian blocks separated by a large lineament area constitute the site basement. The sedimentary fillings of the two basins present different origins that were distinguished by the Sr isotope composition. The northern deep Beberibe aquifer displays very high 87Sr/86Sr with a large range of values (0.7102-0.7233) illustrating the main continental origin of sediments whereas the southern deep Cabo aquifer showed lower values (0.7097-0.7141) indicating the contribution of the marine sedimentation. Although sulfate isotopes, Electrical Conductivity and Cl contents indicate a mixing with seawater for some samples of the deep Cabo and Beberibe aquifers, all 87Sr/86Sr values are above the present-day seawater composition. This can be related to the complex local history of transgression/regression phases that induced alternatively salinisation and freshening with gains and losses of cations and Sr, together with water-rock interactions. δ18O-δ2H clearly evidence the local present day recharge in the surficial aquifer, some samples being affected by in situ evaporation processes and/or recharge with evaporated water from dams used for water supply. The deep aquifers display a high range of B (20-600µg/L) and δ11B (6.7-68.5‰) with some of the highest values known to date. Multiple sources and processes affect the B behavior, among which mixing with saline water, B sorption on clays/organic matter and mixing with wastewater. The surficial aquifers are locally salinized possibly due to present seawater intrusion, and highly contaminated with

  20. Generation of Radixenon Isotopes

    SciTech Connect

    McIntyre, Justin I.; Bowyer, Ted W.; Hayes, James C.; Heimbigner, Tom R.; Morris, Scott J.; Panisko, Mark E.; Pitts, W. K.; Pratt, Sharon L.; Reeder, Paul L.; Thomas, Charles W.

    2003-06-30

    Pacific Northwest National Laboratory has developed an automated system for separating Xe from air and can detect the following radioxenon isotopes, 131mXe, 133mXe, 133Xe, and 135Xe. This report details the techniques used to generate the various radioxenon isotopes that are used for the calibration of the detector as well as other isotopes that have the potential to interfere with the fission produced radioxenon isotopes. Fission production is covered first using highly enriched uranium followed by a description and results from an experiment to produce radioxenon isotopes from neutron activation of ambient xenon.

  1. ISOTOPE CONVERSION DEVICE

    DOEpatents

    Wigner, E.P.; Young, G.J.; Ohlinger, L.A.

    1957-12-01

    This patent relates to nuclear reactors of tbe type utilizing a liquid fuel and designed to convert a non-thermally fissionable isotope to a thermally fissionable isotope by neutron absorption. A tank containing a reactive composition of a thermally fissionable isotope dispersed in a liquid moderator is disposed within an outer tank containing a slurry of a non-thermally fissionable isotope convertible to a thermally fissionable isotope by neutron absorption. A control rod is used to control the chain reaction in the reactive composition and means are provided for circulating and cooling the reactive composition and slurry in separate circuits.

  2. Stable isotope composition of Earth's large lakes

    NASA Astrophysics Data System (ADS)

    Jasechko, S.; Gibson, J. J.; YI, Y.; Birks, S. J.; Sharp, Z. D.

    2011-12-01

    Lakes cover about three percent of Earth's continental area. Large lakes can significantly influence lake shore and regional climates by increasing specific humidity during evaporation and by moderating air temperatures. Stable isotopes of oxygen and hydrogen can be used to quantify lake evaporation, providing a supplementary and often cost-advantageous alternative to conventional hydrologic approaches that require over lake monitoring. Further, stable isotopes in lake sediments are an established tool in paleolimnology; however, interpreting changes to a lake's past isotope composition requires a comprehensive understanding of contemporary controls. Here, δ18O and δ2H values of water in modern lakes exceeding roughly five hundred square kilometres are compiled (n > 35). Voluminous and seasonally mixed lakes - such as the North American Great Lakes - have the most homogenous stable isotope compositions, while perennially-stratified and shallow lakes show greater variability. A rudimentary stable isotope mass balance is used to assess evaporation fluxes from large lakes on Earth. The approach taken simultaneously constrains evaporation outputs for both oxygen and hydrogen stable isotopes by accounting for lake effects on the overlying atmosphere. Model development highlights important considerations such as isotopic stratification (Tanganyika), disequilibrium isotopic mass balances (Baikal), and non-steady hydrologic balances. Further, the isotope composition of Earth's continental surface water reservoir is calculated. This value - weighted to volume - is δ18O = -7.5±1.7 per mille relative to standard mean ocean water. The compiled data may be a useful tracer of continental evaporate in global atmospheric water cycle studies and could be coupled to climate models capable of incorporating oxygen-18 and deuterium tracers to improve or validate calculations of lake effects on regional water cycling.

  3. Shape coexistence in the neutron-deficient Pt isotopes in the configuration-mixed IBM

    SciTech Connect

    Vargas, Carlos E.; Campuzano, Cuauhtemoc; Morales, Irving O.; Frank, Alejandro; Van Isacker, Piet

    2008-05-12

    The matrix-coherent state approach in the IBM with configuration mixing is used to describe the geometry of neutron-deficient Pt isotopes. Employing a parameter set for all isotopes determined previously, it is found that the lowest minimum goes from spherical to oblate and finally acquires a prolate shape when approaching the mid-shell Pt isotopes.

  4. Progress in tropical isotope dendroclimatology

    NASA Astrophysics Data System (ADS)

    Evans, M. N.; Schrag, D. P.; Poussart, P. F.; Anchukaitis, K. J.

    2005-12-01

    The terrestrial tropics remain an important gap in the growing high resolution proxy network used to characterize the mean state and variability of the hydrological cycle. Here we review early efforts to develop a new class of proxy paleorainfall/humidity indicators using intraseasonal to interannual-resolution stable isotope data from tropical trees. The approach invokes a recently published model of oxygen isotopic composition of alpha-cellulose, rapid methods for cellulose extraction from raw wood, and continuous flow isotope ratio mass spectrometry to develop proxy chronological, rainfall and growth rate estimates from tropical trees, even those lacking annual rings. Isotopically-derived age models may be confirmed for modern intervals using trees of known age, radiocarbon measurements, direct measurements of tree diameter, and time series replication. Studies are now underway at a number of laboratories on samples from Costa Rica, northwestern coastal Peru, Indonesia, Thailand, New Guinea, Paraguay, Brazil, India, and the South American Altiplano. Improved sample extraction chemistry and online pyrolysis techniques should increase sample throughput, precision, and time series replication. Statistical calibration together with simple forward modeling based on the well-observed modern period can provide for objective interpretation of the data. Ultimately, replicated data series with well-defined uncertainties can be entered into multiproxy efforts to define aspects of tropical hydrological variability associated with ENSO, the meridional overturning circulation, and the monsoon systems.

  5. A counter-intuitive approach to calculating non-exchangeable 2H isotopic composition of hair: treating the molar exchange fraction fE as a process-related rather than compound-specific variable

    USGS Publications Warehouse

    Landwehr, J.M.; Meier-Augenstein, W.; Kemp, H.F.

    2011-01-01

    Hair is a keratinous tissue that incorporates hydrogen from material that an animal consumes but it is metabolically inert following synthesis. The stable hydrogen isotope composition of hair has been used in ecological studies to track migrations of mammals as well as for forensic and archaeological purposes to determine the provenance of human remains or the recent geographic life trajectory of living people. Measurement of the total hydrogen isotopic composition of a hair sample yields a composite value comprised of both metabolically informative, non-exchangeable hydrogen and exchangeable hydrogen, with the latter reflecting ambient or sample preparation conditions. Neither of these attributes is directly measurable, and the non-exchangeable hydrogen composition is obtained by estimation using a commonly applied mathematical expression incorporating sample measurements obtained from two distinct equilibration procedures. This commonly used approach treats the fraction of exchangeable hydrogen as a mixing ratio, with a minimal procedural fractionation factor assumed to be close or equal to 1. Instead, we propose to use full molar ratios to derive an expression for the non-exchangeable hydrogen composition explicitly as a function of both the procedural fractionation factor α and the molar hydrogen exchange fraction fE. We apply these derivations in a longitudinal study of a hair sample and demonstrate that the molar hydrogen exchange fraction fE should, like the procedural fractionation factor α, be treated as a process-dependent parameter, i.e. a reaction-specific constant. This is a counter-intuitive notion given that maximum theoretical values for the molar hydrogen exchange fraction fE can be calculated that are arguably protein-type specific and, as such, fE could be regarded as a compound-specific constant. We also make some additional suggestions for future approaches to determine the non-exchangeable hydrogen composition of hair and the use of

  6. Retention and release of hydrogen isotopes in tungsten plasma-facing components: the role of grain boundaries and the native oxide layer from a joint experiment-simulation integrated approach

    NASA Astrophysics Data System (ADS)

    Hodille, E. A.; Ghiorghiu, F.; Addab, Y.; Založnik, A.; Minissale, M.; Piazza, Z.; Martin, C.; Angot, T.; Gallais, L.; Barthe, M.-F.; Becquart, C. S.; Markelj, S.; Mougenot, J.; Grisolia, C.; Bisson, R.

    2017-07-01

    Fusion fuel retention (trapping) and release (desorption) from plasma-facing components are critical issues for ITER and for any future industrial demonstration reactors such as DEMO. Therefore, understanding the fundamental mechanisms behind the retention of hydrogen isotopes in first wall and divertor materials is necessary. We developed an approach that couples dedicated experimental studies with modelling at all relevant scales, from microscopic elementary steps to macroscopic observables, in order to build a reliable and predictive fusion reactor wall model. This integrated approach is applied to the ITER divertor material (tungsten), and advances in the development of the wall model are presented. An experimental dataset, including focused ion beam scanning electron microscopy, isothermal desorption, temperature programmed desorption, nuclear reaction analysis and Auger electron spectroscopy, is exploited to initialize a macroscopic rate equation wall model. This model includes all elementary steps of modelled experiments: implantation of fusion fuel, fuel diffusion in the bulk or towards the surface, fuel trapping on defects and release of trapped fuel during a thermal excursion of materials. We were able to show that a single-trap-type single-detrapping-energy model is not able to reproduce an extended parameter space study of a polycrystalline sample exhibiting a single desorption peak. It is therefore justified to use density functional theory to guide the initialization of a more complex model. This new model still contains a single type of trap, but includes the density functional theory findings that the detrapping energy varies as a function of the number of hydrogen isotopes bound to the trap. A better agreement of the model with experimental results is obtained when grain boundary defects are included, as is consistent with the polycrystalline nature of the studied sample. Refinement of this grain boundary model is discussed as well as the inclusion