Science.gov

Sample records for isotope dual-labelling approach

  1. Dual Label Stable Isotope Incubations Followed By Single Cell Nanosims Analyses To Investigate Microscale Phototroph-Heterotroph Interactions

    NASA Astrophysics Data System (ADS)

    Mayali, X.; Samo, T. J.; Nilson, D.; Arandia Gorostidi, N.; alonso Saez, L.; Moran, X. A.; Weber, P. K.

    2015-12-01

    In natural ecosystems such as lakes and oceans as well as human-engineered systems for sunlight-regulated biomass production (such as algal biofuel ponds), the interaction between autotrophic and heterotrophic processes are critical to determine whether such systems are net autotrophic or heterotrophic. Traditional methods to quantify autotrophy and heterotrophy include primary productivity and bacterial production measurements using radiolabeled substrates that quantify these processes on the bulk scale. To examine the microscale interactions between individual autotrophic and heterotrophic cells, we incubate mixed microbial assemblages with 13C-bicarbonate and 15N-leucine to label individual autotrophs and heterotrophs, respectively. We use nano imaging secondary ion mass spectrometry (with a Cameca NanoSIMS 50) to quantify the incorporation of the rare isotopes by single cells. We will present results from experiments examining the impact of warming on the exchange of C and N between algal and bacterial cells from the coastal Atlantic Ocean, which suggest that increased temperature may strengthen physical interactions and exchange. We will also present data from experiments examining the influence of attached bacteria on the cell-specific inorganic carbon fixation rates of biofuel-producing algal cultures which suggest that certain algal-attached bacterial groups grow faster than when free-living and influence algal growth. We conclude that the examination of individual cells uncover interactions that would be difficult, if not impossible, to investigate with bulk methods.

  2. Use of an oral/intravenous dual-label stable-isotope protocol to determine folic acid bioavailability from fortified cereal grain foods in women.

    PubMed

    Finglas, Paul M; Witthöft, Cornelia M; Vahteristo, Liisa; Wright, Anthony J A; Southon, Susan; Mellon, Fred A; Ridge, Brian; Maunder, Peter

    2002-05-01

    Folic acid fortification, mandatory in the United States, is currently being considered by the UK. The hypothesis that the matrix of some cereal-product vehicles may result in low fortificant bioavailability was tested using a dual oral/intravenous (i.v.) isotopic-label approach, which was evaluated concurrently. Fifteen women received 225 microg oral folate (capsules, fortified white bread and fortified branflakes), mainly as folic acid labeled with (13)C on 6 carbons of the benzoyl ring ((13)C(6)-PteGlu), followed by i.v. injection of 100 microg folic acid labeled with (2)H on 4 hydrogens of the glutamic acid group ((2)H(4)-PteGlu). The urinary excretion ratio (UER) in intact folate of the percentage of labeled oral dose excreted divided by the percentage of i.v. dose excreted was used as the primary index of absorption. The geometric mean (95% confidence interval) UER for folic acid capsules was 3.68 (1.90, 7.14) at 24 h and 2.18 (1.24, 3.83) at 48 h. Because these were significantly in excess of 1.0, indicative of 100% absorption of the oral dose, it was concluded that oral and i.v. labeled folic acid are handled differently by the body and that "absolute" absorption cannot be calculated. Compared with the 48-h UER for folic acid capsules, the "relative" 48-h UER for white bread and branflakes was 0.71 and 0.37, respectively, indicating that some cereal-based vehicles may inhibit absorption of fortificant. However, even the validity of this "relative" approach is questioned.

  3. Terminal dual-labeling of a transcribed RNA.

    PubMed

    Li, Shibo; Ma, Dejun; Yi, Long; Mei, Shiyue; Ouyang, Di; Xi, Zhen

    2013-12-01

    We report here a site-specific terminal dual-labeling strategy for a transcribed RNA. The combination of 5'-thiophosphoryl and 3'-amino functionalities enables efficient RNA dual labeling with different fluorophores at both 5'- and 3'-terminal positions specifically. This dual-labeling strategy is applied to pre-miRNA for construction of molecular beacons. The RNA beacons in their native hairpin formation bring the fluorophore and quencher groups into close proximity, leading to fluorescence quenching by FRET effect. Ribonuclease (dicer enzyme or micrococcal nuclease) can efficiently cleave RNA beacons leading to concentration- and time-dependent fluorescence increase. The dual-labeling strategy for transcribed RNAs involves only commercially available reagents, enzymes and native RNA, making it more accessible for general applications.

  4. A dual labelling method for measuring uptake of low molecular weight compounds into the pathogenic yeast Candida albicans.

    PubMed

    Ziegelbauer, K

    1998-10-01

    In contrast to other eukaryotic cells the pathogenic yeast Candida albicans is resistant to many structurally unrelated metabolic inhibitors. Reduced permeability due to the cell wall and/or altered plasma membrane composition is thought to be at least partly responsible for this phenomenon. To study the uptake of low molecular weight compounds into C. albicans we developed a dual labelling method. Intact cells, metabolically inactivated cells, spheroplasts or membrane fragments of C. albicans were incubated with various [14C]-labelled compound in the presence of [3H]-labelled water. After separation of cells and supernatant isotope ratios [3H]/[14C] were determined. Quotients of the isotope ratios from cells and supernatant, called enrichment coefficients, were calculated under all four conditions. The enrichment coefficients indicated whether a compound can enter C. albicans cells, is trapped within the cell wall, is enriched in the lipophilic membrane compartment, is actively accumulated or actively exported by multidrug resistance carriers. We used six structurally unrelated compounds to test our method. We found no evidence for a general impermeability of C. albicans.

  5. Sourcing explosives: a multi-isotope approach.

    PubMed

    Widory, David; Minet, Jean-Jacques; Barbe-Leborgne, Martine

    2009-06-01

    Although explosives are easily identified with current instrumental techniques, it is generally impossible to distinguish between sources of the same substance. To alleviate this difficulty, we present a multi-stable isotope (delta13C, delta15N, delta18O, deltaD) approach for appraising the possibility of discriminating explosives. The results from 30 distinct PETN, TNT and ANFO samples show that the different families of explosives are clearly differentiated by both their specific isotope signatures and their combination with corresponding element concentrations. Coupling two or more of the studied isotope systematics yields an even more precise differentiation on the basis of their raw-material origin and/or manufacturing process.

  6. A novel approach to the site-selective dual labelling of a protein via chemoselective cysteine modification† †Electronic supplementary information (ESI) available: LC-MS, ES-MS, deconvoluted spectra and fluorescence emission spectra for all reactions with proteins described herein. Fluorescence emission spectra of superfolder GFP, all the cysteine mutants and their derivatives are given. See DOI: 10.1039/c3sc51333e Click here for additional data file.

    PubMed Central

    Nathani, Ramiz I.; Moody, Paul; Chudasama, Vijay; Smith, Mark E. B.; Fitzmaurice, Richard J.

    2013-01-01

    Local protein microenvironment is used to control the outcome of reaction between cysteine residues and 2,5-dibromohexanediamide. The differential reactivity is exploited to introduce two orthogonal reactive handles onto the surface of a double cysteine mutant of superfolder green fluorescent protein in a regioselective manner. Subsequent elaboration with commonly used thiol and alkyne containing reagents affects site-selective protein dual labelling. PMID:24741436

  7. Dual-Label Radioisotope Method for Simultaneously Measuring Bacterial Production and Metabolism in Natural Waters †

    PubMed Central

    Jonas, Robert B.; Tuttle, Jon H.; Stoner, Daphne L.; Ducklow, Hugh W.

    1988-01-01

    Bacterial production and amino acid metabolism in aquatic systems can be estimated by simultaneous incubation of water samples with both tritiated methyl-thymidine and 14C-labeled amino acids. This dual-label method not only saves time, labor, and materials, but also allows determination of these two parameters in the same microbial subcommunity. Both organic carbon incorporation and respiration can be estimated. The results obtained with the dual-label technique are not significantly different from single-radiolabel methods over a wide range of bacterial activity. The method is particularly suitable for large-scale field programs and has been used successfully with eutrophic estuarine samples as well as with oligotrophic oceanic water. In the mesohaline portion of Chesapeake Bay, thymidine incorporation ranged seasonally from 2 to 635 pmol liter−1 h−1 and amino acid turnover rates ranged from 0.01 to 28.4% h−1. Comparison of thymidine incorporation with amino acid turnover measurements made at a deep, midbay station in 1985 suggested a close coupling between bacterial production and amino acid metabolism during most of the year. However, production-specific amino acid turnover rates increased dramatically in deep bay waters during the spring phytoplankton bloom, indicating transient decoupling of bacterial production from metabolism. Ecological features such as this are readily detectable with the dual-label method. PMID:16347587

  8. Clinical usefulness of dual-label Schilling test for pancreatic exocrine function

    SciTech Connect

    Chen, W.L.; Morishita, R.; Eguchi, T.; Kawai, T.; Sakai, M.; Tateishi, H.; Uchino, H.

    1989-05-01

    The usefulness of the pancreatic dual-label Schilling test as an indirect test of pancreatic exocrine function was evaluated. This dual-label Schilling test was based on the difference of absorption for (58Co)cobalamin bound to hog R protein and (57Co)cobalamin bound to intrinsic factor. In this study, the test was performed in 7 normal subjects, 5 patients with pancreatectomy, 12 patients with chronic pancreatitis, 10 patients with suspicion of chronic pancreatitis, and 13 patients without chronic pancreatitis. The normal lower limit (mean -2 SD) of excretion ratio for (58Co)/(57Co) in 24-h urine was 0.68. Of the 26 patients on whom endoscopic retrograde pancreatography was performed, none of the 9 patients with normal pancreatogram, 4 of the 9 patients with mild to moderate pancreatitic changes in pancreatogram, and 7 of the 8 patients with advanced pancreatitic changes in pancreatogram showed a positive value lower than the ratio of 0.68 in this test. In 28 patients examined with the direct test of pancreatic secretory capacity, 2 of the 13 patients with normal function, 6 of the 9 patients with mild dysfunction, and 5 of the 6 patients with definite dysfunction were positive in this test. The results of the pancreatic dual-label Schilling test significantly correlated with those of a direct test of pancreatic secretory capacity and the findings of pancreatitic changes in pancreatogram (p less than 0.01, chi 2 test). The ratio for (58Co)/(57Co) correlated (r = 0.73) with the maximal bicarbonate concentration in duodenal juice of the direct test of pancreatic secretory capacity. The impairment of bicarbonate output by the pancreas may adversely affect the transfer of cobalamin from R protein to intrinsic factor.

  9. Radioassay of dual-labeled samples with a Cherenkov counting technique

    NASA Astrophysics Data System (ADS)

    Fujii, Haruo; Takiue, Makoto

    1998-03-01

    A new Cherenkov counting technique which allows radioactivities of a dual-labeled sample to be determined simultaneously by using a wavelength shifter has been proposed, and tested for the pairs 32P-36Cl and 86Rb-36Cl. The minimum requirements for this method are a single channel liquid scintillation counter, a wavelength shifter and a reference sample for determining the Cherenkov counting efficiency. The simple procedure for sample preparation and measurement makes the technique very useful for routine radioassay with the help of a desk-top computer.

  10. Radioassay of dual-labeled samples with a Cherenkov counting technique

    NASA Astrophysics Data System (ADS)

    Fujii, Haruo; Takiue, Makoto

    1988-03-01

    A new Cherenkov counting technique which allows radioactivities of a dual-labeled sample to be determined simultaneously by using a wavelength shifter has been proposed, and tested for the pairs 32P 36Cl and 86Rb 36Cl. The minimum requirements for this method are a single channel liquid scintillation counter, a wavelength shifter and a reference sample for determining the Cherenkov counting efficiency. The simple procedure for sample preparation and measurement makes the technique very useful for routine radioassay with the help of a desk-top computer.

  11. Simultaneous detection of imidacloprid and parathion by the dual-labeled time-resolved fluoroimmunoassay.

    PubMed

    Shi, Haiyan; Sheng, Enze; Feng, Lu; Zhou, Liangliang; Hua, Xiude; Wang, Minghua

    2015-10-01

    A highly sensitive direct dual-labeled time-resolved fluoroimmunoassay (TRFIA) to detect parathion and imidacloprid simultaneously in food and environmental matrices was developed. Europium (Eu(3+)) and samarium (Sm(3+)) were used as fluorescent labels by coupling separately with L1-Ab and A1P1-Ab. Under optimal assay conditions, the half-maximal inhibition concentration (IC50) and limit of detection (LOD, IC10) were 10.87 and 0.025 μg/L for parathion and 7.08 and 0.028 μg/L for imidacloprid, respectively. The cross-reactivities (CR) were negligible except for methyl-parathion (42.4 %) and imidaclothiz (103.4 %). The average recoveries of imidacloprid ranged from 78.9 to 104.2 % in water, soil, rice, tomato, and Chinese cabbage with a relative standard deviation (RSD) of 2.4 to 11.6 %, and those of parathion were from 81.5 to 110.9 % with the RSD of 3.2 to 10.5 %. The results of TRFIA for the authentic samples were validated by comparison with gas chromatography (GC) analyses, and satisfactory correlations (parathion: R (2) = 0.9918; imidacloprid: R (2) = 0.9908) were obtained. The results indicate that the dual-labeled TRFIA is convenient and reliable to detect parathion and imidacloprid simultaneously in food and environmental matrices. PMID:25994268

  12. Dual-label radioisotope method for simultaneously measuring bacterial production and metabolism in natural waters

    SciTech Connect

    Jonas, B.J.; Tuttle, J.H.; Stoner, D.L.; Ducklow, H.W.

    1988-03-01

    Bacterial production and amino acid metabolism in aquatic systems can be estimated by simultaneous incubation of water samples with both tritiated methyl-thymidine and /sup 14/C-labeled amino acids. This dual-label method not only saves time, labor, and materials, but also allows determination of these two parameters in the same microbial subcommunity. Both organic carbon incorporation and respiration can be estimated. The method is particularly suitable for large-scale field programs and has been used successfully with eutrophic estuarine samples as well as with oligotrophic oceanic water. In the mesohaline portion of Chesapeake Bay, thymidine incorporation ranged seasonally from 2 to 635 pmol liter/sup -1/ h/sup -1/ and amino acid turnover rates ranged from 0.01 to 28.4% h/sup -1/. Comparison of thymidine incorporation with amino acid turnover measurements made at a deep, midbay station in 1985 suggested a close coupling between bacterial production and amino acid metabolism during most of the year. However, production-specific amino acid turnover rates increased dramatically in deep bay waters during the spring phytoplankton bloom, indicating transient decoupling of bacterial production from metabolism. Ecological features such as this are readily detectable with the dual-label method.

  13. Enzyme-antibody dual labeled gold nanoparticles probe for ultrasensitive detection of κ-casein in bovine milk samples.

    PubMed

    Li, Y S; Zhou, Y; Meng, X Y; Zhang, Y Y; Liu, J Q; Zhang, Y; Wang, N N; Hu, P; Lu, S Y; Ren, H L; Liu, Z S

    2014-11-15

    A dual labeled probe was synthesized by coating gold nanoparticles (AuNPs) with anti-κ-CN monoclonal antibody (McAb) and horseradish peroxidase (HRP) enzyme on their surface. The McAb was used as detector and HRP was used as label for signal amplification catalytically oxidize the substrate. AuNPs were used as bridges between the McAb and HRP. Based on the probe, an immunoassay was developed for ultrasensitive detection of κ-CN in bovine milk samples. The assay has a linear response range within 4.2-560 ng mL(-1). The limit of detection (LOD) was 4.2 ng mL(-1) which was 10 times lower than that of traditional McAb-HRP based ELISA. The recoveries of κ-CN from three brand bovine milk samples were from 95.8% to 111.0% that had a good correlation (R(2)=0.998) with those obtained by official standard Kjeldahl method. For higher sensitivity and as simple as the traditional ELISA, the developed immunoassay could provide an alternative approach for ultrasensitive detection of κ-CN in bovine milk sample. PMID:24892786

  14. New approaches to the Moon's isotopic crisis.

    PubMed

    Melosh, H J

    2014-09-13

    Recent comparisons of the isotopic compositions of the Earth and the Moon show that, unlike nearly every other body known in the Solar System, our satellite's isotopic ratios are nearly identical to the Earth's for nearly every isotopic system. The Moon's chemical make-up, however, differs from the Earth's in its low volatile content and perhaps in the elevated abundance of oxidized iron. This surprising situation is not readily explained by current impact models of the Moon's origin and offers a major clue to the Moon's formation, if we only could understand it properly. Current ideas to explain this similarity range from assuming an impactor with the same isotopic composition as the Earth to postulating a pure ice impactor that completely vaporized upon impact. Several recent proposals follow from the suggestion that the Earth-Moon system may have lost a great deal of angular momentum during early resonant interactions. The isotopic constraint may be the most stringent test yet for theories of the Moon's origin.

  15. New approaches to the Moon's isotopic crisis

    PubMed Central

    Melosh, H. J.

    2014-01-01

    Recent comparisons of the isotopic compositions of the Earth and the Moon show that, unlike nearly every other body known in the Solar System, our satellite's isotopic ratios are nearly identical to the Earth's for nearly every isotopic system. The Moon's chemical make-up, however, differs from the Earth's in its low volatile content and perhaps in the elevated abundance of oxidized iron. This surprising situation is not readily explained by current impact models of the Moon's origin and offers a major clue to the Moon's formation, if we only could understand it properly. Current ideas to explain this similarity range from assuming an impactor with the same isotopic composition as the Earth to postulating a pure ice impactor that completely vaporized upon impact. Several recent proposals follow from the suggestion that the Earth–Moon system may have lost a great deal of angular momentum during early resonant interactions. The isotopic constraint may be the most stringent test yet for theories of the Moon's origin. PMID:25114301

  16. New approaches to the Moon's isotopic crisis.

    PubMed

    Melosh, H J

    2014-09-13

    Recent comparisons of the isotopic compositions of the Earth and the Moon show that, unlike nearly every other body known in the Solar System, our satellite's isotopic ratios are nearly identical to the Earth's for nearly every isotopic system. The Moon's chemical make-up, however, differs from the Earth's in its low volatile content and perhaps in the elevated abundance of oxidized iron. This surprising situation is not readily explained by current impact models of the Moon's origin and offers a major clue to the Moon's formation, if we only could understand it properly. Current ideas to explain this similarity range from assuming an impactor with the same isotopic composition as the Earth to postulating a pure ice impactor that completely vaporized upon impact. Several recent proposals follow from the suggestion that the Earth-Moon system may have lost a great deal of angular momentum during early resonant interactions. The isotopic constraint may be the most stringent test yet for theories of the Moon's origin. PMID:25114301

  17. Dual Labeling Biotin Switch Assay to Reduce Bias Derived from Different Cysteine Subpopulations: A Method to Maximize S-Nitrosylation Detection

    PubMed Central

    Chung, Heaseung Sophia; Murray, Christopher I.; Venkatraman, Vidya; Crowgey, Erin L.; Rainer, Peter P.; Cole, Robert N.; Bomgarden, Ryan D.; Rogers, John C.; Balkan, Wayne; Hare, Joshua M.; Kass, David A.; Van Eyk, Jennifer E.

    2016-01-01

    Rationale S-nitrosylation (SNO), an oxidative post-translational modification of cysteine residues, responds to changes in the cardiac redox-environment. Classic biotin switch assay and its derivatives are the most common methods used for detecting SNO. In this approach, the labile SNO group is selectively replaced with a single stable tag. To date, a variety of thiol-reactive tags have been introduced. However, these methods have not produced a consistent dataset which suggests an incomplete capture by a single tag and potentially the presence of different cysteine subpopulations. Objective To investigate potential labeling bias in the existing methods with a single tag to detect SNO, explore if there are distinct cysteine subpopulations, and then, develop a strategy to maximize the coverage of SNO proteome. Methods and Results We obtained SNO-modified cysteine datasets for wild-type and S-nitrosoglutathione reductase (GSNOR) knock-out mouse hearts (GSNOR is a negative regulator of GSNO production) and NO-induced human embryonic kidney cell using two labeling reagents; the cysteine-reactive pyridyldithiol and iodoacetyl based tandem mass tags. Comparison revealed that <30% of the SNO-modified residues were detected by both tags, while the remaining SNO sites were only labeled by one reagent. Characterization of the two distinct subpopulations of SNO residues indicated that pyridyldithiol reagent preferentially labels cysteine residues that are more basic and hydrophobic. Based on this observation, we proposed a parallel dual labeling strategy followed by an optimized proteomics workflow. This enabled the profiling of 493 SNO-sites in GSNOR knock-out hearts. Conclusions Using a protocol comprising two tags for dual labeling maximizes overall detection of SNO by reducing the previously unrecognized labeling bias derived from different cysteine subpopulations. PMID:26338901

  18. Simultaneous detection of sulfamethazine and sulfaquinoxaline using a dual-label time-resolved fluorescence immunoassay.

    PubMed

    Le, Tao; Yan, Peifeng; Liu, Jin; Wei, Shu

    2013-01-01

    A dual-label time-resolved fluoroimmunoassay (TRFIA) was introduced for the simultaneous quantification of sulfamethazine (SM2) and sulfaquinoxaline (SQX). Lanthanide (Eu(3+) and Sm(3+))-labelled antibodies were used because lanthanides have higher stabilities and narrower emission spectra than most fluorescent dyes. The sensitivity of the TRFIA for SM2 was 0.02 ng ml(-1), and the average recoveries and the intra- and inter-assay CVs were 77.2-107.6%, 5.4-10.5%, and 6.0-11.2%, respectively. The sensitivity of the TRFIA for SQX was 0.04 ng ml(-1); and the average recoveries and the intra- and inter-assay CVs were 74.1-102.8%, 4.6-10.9%, and 8.7-11.2%, respectively. The method was used to analyse chicken tissue and egg samples, and the results agreed well with the results of HPLC and enzyme-linked immunosorbent assay (ELISA) analyses, with correlation coefficients (R(2)) of 0.9415-0.9724. The TRFIA developed is a simple, fast and sensitive method for the high-throughput simultaneous screening of SM2 and SQX in edible animal tissues. PMID:23782396

  19. Dual-labeling method for electron microscopy to characterize synaptic connectivity using genetically encoded fluorescent reporters in Drosophila.

    PubMed

    Tanaka, Nobuaki K; Dye, Louis; Stopfer, Mark

    2011-01-15

    Light and electron microscopy (LM and EM) both offer important advantages for characterizing neuronal circuitry in intact brains: LM can reveal the general patterns neurons trace between brain areas, and EM can confirm synaptic connections between identified neurons within a small area. In a few species, genetic labeling with fluorescent proteins has been used with LM to visualize many kinds of neurons and to analyze their morphologies and projection patterns. However, combining these large-scale patterns with the fine detail available in EM analysis has been a technical challenge. To analyze the synaptic connectivity of neurons expressing fluorescent markers with EM, we developed a dual-labeling method for use with pre-embedded brains. In Drosophila expressing genetic labels and also injected with markers we visualized synaptic connections among two populations of neurons in the AL, one of which has been shown to mediate a specific function, odor evoked neural oscillation.

  20. Dual-labeling method for electron microscopy to characterize synaptic connectivity using genetically encoded fluorescent reporters in Drosophila

    PubMed Central

    Tanaka, Nobuaki K.; Dye, Louis; Stopfer, Mark

    2010-01-01

    Light and electron microscopy (LM and EM) both offer important advantages for characterizing neuronal circuitry in intact brains: LM can reveal the general patterns neurons trace between brain areas, and EM can confirm synaptic connections between identified neurons within a small area. In a few species, genetic labeling with fluorescent proteins has been used with LM to visualize many kinds of neurons and to analyze their morphologies and projection patterns. However, combining these large-scale patterns with the fine detail available in EM analysis has been a technical challenge. To analyze the synaptic connectivity of neurons expressing fluorescent markers with EM, we developed a dual-labeling method for use with pre-embedded brains. In Drosophila expressing genetic labels and also injected with markers we visualized synaptic connections among two populations of neurons in the AL, one of which has been shown to mediate a specific function, odor evoked neural oscillation. PMID:21074556

  1. Nitrate in groundwater: an isotopic multi-tracer approach.

    PubMed

    Widory, David; Kloppmann, Wolfram; Chery, Laurence; Bonnin, Jacky; Rochdi, Houda; Guinamant, Jean-Luc

    2004-08-01

    In spite of increasing efforts to reduce nitrogen inputs into groundwater from intensive agriculture, nitrate (NO3) remains one of the major pollutants of drinking-water resources worldwide. Determining the source(s) of NO3 contamination in groundwater is an important first step for improving groundwater quality by emission control, and it is with this aim that we investigated the viability of an isotopic multi-tracer approach (delta15N, delta11B, 87Sr/86Sr), in addition to conventional hydrogeologic analysis, in two small catchments of the Arguenon watershed (Brittany, France). The main anthropogenic sources (fertilizer, sewage effluent, and hog, cattle and poultry manure) were first characterized by their specific B, N and Sr isotope signatures, and compared to those observed in the ground- and surface waters. Chemical and isotopic evidence shows that both denitrification and mixing within the watershed have the effect of buffering NO3 contamination in the groundwater. Coupled delta11B, delta15N and 87Sr/86Sr results indicate that a large part of the NO3 contamination in the Arguenon watershed originates from the spreading of animal manure, with hog manure being a major contributor. Point sources, such as sewage effluents, contribute to the NO3 budget of the two watersheds.

  2. Influence of chelator and near-infrared dye labeling on biocharacteristics of dual-labeled trastuzumab-based imaging agents

    PubMed Central

    Aldrich, Melissa B; Yang, Zhi; Zhou, Nina; Xie, Qing; Liu, Chen; Sevick-Muraca, Eva

    2016-01-01

    Objective To investigate the effect of fluorescent dye labeling on the targeting capabilities of 111In- (DTPA)n-trastuzumab-(IRDye 800)m. Methods Trastuzumab-based conjugates were synthesized and conjugated with diethylenetriaminepentaacetic acid (DTPA) at molar ratios of 1, 2, 3 and 5 and with a fluorescent dye (IRDye 800CW) at molar ratios of 1, 3 and 5. Immunoreactivity and internalization were assessed on SKBR-3 cells, overexpressing human epidermal growth factor receptor 2. The stability in human serum and phosphate-buffered saline (PBS) was evaluated. The biodistribution of dual-labeled conjugates was compared with that of 111In-(DTPA)2-trastuzumab in a SKBR-3 xenograft model to evaluate the effect of dye-to-protein ratio. Results All trastuzumab-based conjugates exhibited a high level of chemical and optical purity. Flow cytometry results showed that increasing dye-to-protein ratios were associated with decreased immunoreactivity. Stability studies revealed that the conjugate was stable in PBS, while in human serum, increased degradation and protein precipitation were observed with increasing dye-to-protein ratios. At 4 h, the percentages of internalization of dual-labeled conjugates normalized by dye-to-protein ratio (m) were 24.88%±2.10%, 19.99%±0.59%, and 17.47%±1.26% for "m" equal to 1, 3, and 5, respectively. A biodistribution study revealed a progressive decrease in tumor uptake with an increase in the dye-to-protein ratios. The liver, spleen and kidney showed a marked uptake with increased dye-to-protein ratios, particularly in the latter. Conclusions With non-specific-site conjugation of the fluorescent dye with a protein based on imaging agent, the increase in dye-to-protein ratios negatively impacted the immunoreactivity and stability, indicating a reduced tumor uptake. PMID:27478322

  3. Comparative Evaluation of Sloppy Molecular Beacon and Dual-Labeled Probe Melting Temperature Assays to Identify Mutations in Mycobacterium tuberculosis Resulting in Rifampin, Fluoroquinolone and Aminoglycoside Resistance

    PubMed Central

    Lee, Jong Seok; Via, Laura E.; Barry, Clifton E.; Alland, David; Chakravorty, Soumitesh

    2015-01-01

    Several molecular assays to detect resistance to Rifampin, the Fluoroquinolones, and Aminoglycosides in Mycobacterium tuberculosis (M. tuberculosis) have been recently described. A systematic approach for comparing these assays in the laboratory is needed in order to determine the relative advantage of each assay and to decide which ones should be advanced to evaluation. We performed an analytic comparison of a Sloppy Molecular Beacon (SMB) melting temperature (Tm) assay and a Dual labeled probe (DLP) Tm assay. Both assays targeted the M. tuberculosis rpoB, gyrA, rrs genes and the eis promoter region. The sensitivity and specificity to detect mutations, analytic limit of detection (LOD) and the detection of heteroresistance were tested using a panel of 56 clinical DNA samples from drug resistant M. tuberculosis strains. Both SMB and DLP assays detected 29/29 (100%) samples with rpoB RRDR mutations and 3/3 (100%) samples with eis promoter mutations correctly. The SMB assay detected all 17/17 gyrA mutants and 22/22 rrs mutants, while the DLP assay detected 16/17 (94%) gyrA mutants and 12/22 (55%) rrs mutants. Both assays showed comparable LODs for detecting rpoB and eis mutations; however, the SMB assay LODs were at least two logs better for detecting wild type and mutants in gyrA and rrs targets. The SMB assay was also moderately better at detecting heteroresistance. In summary, both assays appeared to be promising methods to detect drug resistance associated mutations in M. tuberculosis; however, the relative advantage of each assay varied under each test condition. PMID:25938476

  4. Comparative Evaluation of Sloppy Molecular Beacon and Dual-Labeled Probe Melting Temperature Assays to Identify Mutations in Mycobacterium tuberculosis Resulting in Rifampin, Fluoroquinolone and Aminoglycoside Resistance.

    PubMed

    Roh, Sandy S; Smith, Laura E; Lee, Jong Seok; Via, Laura E; Barry, Clifton E; Alland, David; Chakravorty, Soumitesh

    2015-01-01

    Several molecular assays to detect resistance to Rifampin, the Fluoroquinolones, and Aminoglycosides in Mycobacterium tuberculosis (M. tuberculosis) have been recently described. A systematic approach for comparing these assays in the laboratory is needed in order to determine the relative advantage of each assay and to decide which ones should be advanced to evaluation. We performed an analytic comparison of a Sloppy Molecular Beacon (SMB) melting temperature (Tm) assay and a Dual labeled probe (DLP) Tm assay. Both assays targeted the M. tuberculosis rpoB, gyrA, rrs genes and the eis promoter region. The sensitivity and specificity to detect mutations, analytic limit of detection (LOD) and the detection of heteroresistance were tested using a panel of 56 clinical DNA samples from drug resistant M. tuberculosis strains. Both SMB and DLP assays detected 29/29 (100%) samples with rpoB RRDR mutations and 3/3 (100%) samples with eis promoter mutations correctly. The SMB assay detected all 17/17 gyrA mutants and 22/22 rrs mutants, while the DLP assay detected 16/17 (94%) gyrA mutants and 12/22 (55%) rrs mutants. Both assays showed comparable LODs for detecting rpoB and eis mutations; however, the SMB assay LODs were at least two logs better for detecting wild type and mutants in gyrA and rrs targets. The SMB assay was also moderately better at detecting heteroresistance. In summary, both assays appeared to be promising methods to detect drug resistance associated mutations in M. tuberculosis; however, the relative advantage of each assay varied under each test condition.

  5. An isotopic approach to measuring nitrogen balance in caribou

    USGS Publications Warehouse

    Gustine, D.D.; Barboza, P.S.; Adams, L.G.; Farnell, R.G.; Parker, K.L.

    2011-01-01

    Nutritional restrictions in winter may reduce the availability of protein for reproduction and survival in northern ungulates. We refined a technique that uses recently voided excreta on snow to assess protein status in wild caribou (Rangifer tarandus) in late winter. Our study was the first application of this non-invasive, isotopic approach to assess protein status of wild caribou by determining dietary and endogenous contributions of nitrogen (N) to urinary urea. We used isotopic ratios of N (??15N) in urine and fecal samples to estimate the proportion of urea N derived from body N (p-UN) in pregnant, adult females of the Chisana Herd, a small population that ranged across the Alaska-Yukon border. We took advantage of a predator-exclosure project to examine N status of penned caribou in April 2006. Lichens were the primary forage (>40%) consumed by caribou in the pen and ?? 15N of fiber tracked the major forages in their diets. The ??15N of urinary urea for females in the pen was depleted relative (-1.3 ?? 1.0 parts per thousand [??], x?? ?? SD) to the ??15N of body N (2.7 ?? 0.7??). A similar proportion of animals in the exclosure lost core body mass (excluding estimates of fetal and uterine tissues; 55%) and body protein (estimated by isotope ratios; 54%). This non-invasive technique could be applied at various spatial and temporal scales to assess trends in protein status of free-ranging populations of northern ungulates. Intra- and inter-annual estimates of protein status could help managers monitor effects of foraging conditions on nutritional constraints in ungulates, increase the efficiency and efficacy of management actions, and help prepare stakeholders for potential changes in population trends. ?? 2010 The Wildlife Society.

  6. Mechanistic approach to multi-element isotope modeling of organic contaminant degradation.

    PubMed

    Jin, Biao; Rolle, Massimo

    2014-01-01

    We propose a multi-element isotope modeling approach to simultaneously predict the evolution of different isotopes during the transformation of organic contaminants. The isotopic trends of different elements are explicitly simulated by tracking position-specific isotopologues that contain the isotopes located at fractionating positions. Our approach is self-consistent and provides a mechanistic description of different degradation pathways that accounts for the influence of both primary and secondary isotope effects during contaminant degradation. The method is particularly suited to quantitatively describe the isotopic evolution of relatively large organic contaminant molecules. For such compounds, an integrated approach, simultaneously considering all possible isotopologues, would be impractical due to the large number of isotopologues. We apply the proposed modeling approach to the degradation of toluene, methyl tert-butyl ether (MTBE) and nitrobenzene observed in previous experimental studies. Our model successfully predicts the multi-element isotope data (both 2D and 3D), and accurately captures the distinct trends observed for different reaction pathways. The proposed approach provides an improved and mechanistic methodology to interpret multi-element isotope data and to predict the extent of multi-element isotope fractionation that goes beyond commonly applied modeling descriptions and simplified methods based on the ratio between bulk enrichment factors or on linear regression in dual-isotope plots.

  7. Biomarker and molecular isotope approaches to deconvolve the terrestrial carbon isotope record: modern and Eocene calibrations

    NASA Astrophysics Data System (ADS)

    Diefendorf, A. F.; Freeman, K. H.; Wing, S.; Currano, E. D.

    2010-12-01

    Climate, biome, and plant community are important predictors of carbon isotope patterns recorded in leaves and leaf waxes. However, signatures recorded by terrestrial organic carbon and lipids that have mixed floral sources (e.g., n-alkanes) potentially reflect both plant community changes and climate. More taxonomically specific proxies for plants (i.e., di- and tri-terpenoids for conifers and angiosperms, respectively), can help to resolve the relative influences of changing community and climate, provided differences in biomarker production and lipid biosynthetic fractionation among plants can be better constrained. We present biomarker abundance and carbon isotope values for lipids from leaves, branches and bark of 44 tree species, representing 21 families including deciduous and evergreen conifers and angiosperms. n-alkane production differs greatly between conifer and angiosperm leaves. Both deciduous and evergreen angiosperms make significantly more n-alkanes than conifers, with n-alkanes not detected in over half of the conifers in our study. Terpenoid abundances scale strongly with leaf habit: evergreen species have significantly higher abundances. We combine these relative differences in lipid production with published estimates of fluxes for leaf litter from conifer and angiosperm trees to develop a new proxy approach for estimating paleo plant community inputs to ancient soils and sediments. To test our modern calibration results, we have evaluated n-alkanes and terpenoids from laterally extensive (~18 km) carbonaceous shales and mudstones in Eocene sediments (52.6 Ma) at Fifteenmile Creek in the Bighorn Basin (WY, USA). Our terpenoid-based proxy predicts on average a 40% conifer community, which is remarkably close in agreement with a fossil-based estimate of 36%. n-alkane carbon isotope fractionation (leaf-lipid) differs among plant types, with conifer n-alkanes about 2-3‰ 13C enriched relative to those in angiosperms. Since conifer leaves are

  8. Isotope approach to assess hydrologic connections during Marcellus Shale drilling.

    PubMed

    Sharma, Shikha; Mulder, Michon L; Sack, Andrea; Schroeder, Karl; Hammack, Richard

    2014-01-01

    Water and gas samples were collected from (1) nine shallow groundwater aquifers overlying Marcellus Shale in north-central West Virginia before active shale gas drilling, (2) wells producing gas from Upper Devonian sands and Middle Devonian Marcellus Shale in southwestern Pennsylvania, (3) coal-mine water discharges in southwestern Pennsylvania, and (4) streams in southwestern Pennsylvania and north-central West Virginia. Our preliminary results demonstrate that the oxygen and hydrogen isotope composition of water, carbon isotope composition of dissolved inorganic carbon, and carbon and hydrogen isotope compositions of methane in Upper Devonian sands and Marcellus Shale are very different compared with shallow groundwater aquifers, coal-mine waters, and stream waters of the region. Therefore, spatiotemporal stable isotope monitoring of the different sources of water before, during, and after hydraulic fracturing can be used to identify migrations of fluids and gas from deep formations that are coincident with shale gas drilling. PMID:23772970

  9. Nitrogen isotopes in Tree-Rings - An approach combining soil biogeochemistry and isotopic long series with statistical modeling

    NASA Astrophysics Data System (ADS)

    Savard, Martine M.; Bégin, Christian; Paré, David; Marion, Joëlle; Laganière, Jérôme; Séguin, Armand; Stefani, Franck; Smirnoff, Anna

    2016-04-01

    Monitoring atmospheric emissions from industrial centers in North America generally started less than 25 years ago. To compensate for the lack of monitoring, previous investigations have interpreted tree-ring N changes using the known chronology of human activities, without facing the challenge of separating climatic effects from potential anthropogenic impacts. Here we document such an attempt conducted in the oil sands (OS) mining region of Northeastern Alberta, Canada. The reactive nitrogen (Nr)-emitting oil extraction operations began in 1967, but air quality measurements were only initiated in 1997. To investigate if the beginning and intensification of OS operations induced changes in the forest N-cycle, we sampled white spruce (Picea glauca (Moench) Voss) stands located at various distances from the main mining area, and receiving low, but different N deposition. Our approach combines soil biogeochemical and metagenomic characterization with long, well dated, tree-ring isotopic series. To objectively delineate the natural N isotopic behaviour in trees, we have characterized tree-ring N isotope (15N/14N) ratios between 1880 and 2009, used statistical analyses of the isotopic values and local climatic parameters of the pre-mining period to calibrate response functions and project the isotopic responses to climate during the extraction period. During that period, the measured series depart negatively from the projected natural trends. In addition, these long-term negative isotopic trends are better reproduced by multiple-regression models combining climatic parameters with the proxy for regional mining Nr emissions. These negative isotopic trends point towards changes in the forest soil biogeochemical N cycle. The biogeochemical data and ultimate soil mechanisms responsible for such changes will be discussed during the presentation.

  10. Heavy element stable isotope ratios: analytical approaches and applications.

    PubMed

    Tanimizu, Masaharu; Sohrin, Yoshiki; Hirata, Takafumi

    2013-03-01

    Continuous developments in inorganic mass spectrometry techniques, including a combination of an inductively coupled plasma ion source and a magnetic sector-based mass spectrometer equipped with a multiple-collector array, have revolutionized the precision of isotope ratio measurements, and applications of inorganic mass spectrometry for biochemistry, geochemistry, and marine chemistry are beginning to appear on the horizon. Series of pioneering studies have revealed that natural stable isotope fractionations of many elements heavier than S (e.g., Fe, Cu, Zn, Sr, Ce, Nd, Mo, Cd, W, Tl, and U) are common on Earth, and it had been widely recognized that most physicochemical reactions or biochemical processes induce mass-dependent isotope fractionation. The variations in isotope ratios of the heavy elements can provide new insights into past and present biochemical and geochemical processes. To achieve this, the analytical community is actively solving problems such as spectral interference, mass discrimination drift, chemical separation and purification, and reduction of the contamination of analytes. This article describes data calibration and standardization protocols to allow interlaboratory comparisons or to maintain traceability of data, and basic principles of isotope fractionation in nature, together with high-selectivity and high-yield chemical separation and purification techniques for stable isotope studies.

  11. Heavy element stable isotope ratios: analytical approaches and applications.

    PubMed

    Tanimizu, Masaharu; Sohrin, Yoshiki; Hirata, Takafumi

    2013-03-01

    Continuous developments in inorganic mass spectrometry techniques, including a combination of an inductively coupled plasma ion source and a magnetic sector-based mass spectrometer equipped with a multiple-collector array, have revolutionized the precision of isotope ratio measurements, and applications of inorganic mass spectrometry for biochemistry, geochemistry, and marine chemistry are beginning to appear on the horizon. Series of pioneering studies have revealed that natural stable isotope fractionations of many elements heavier than S (e.g., Fe, Cu, Zn, Sr, Ce, Nd, Mo, Cd, W, Tl, and U) are common on Earth, and it had been widely recognized that most physicochemical reactions or biochemical processes induce mass-dependent isotope fractionation. The variations in isotope ratios of the heavy elements can provide new insights into past and present biochemical and geochemical processes. To achieve this, the analytical community is actively solving problems such as spectral interference, mass discrimination drift, chemical separation and purification, and reduction of the contamination of analytes. This article describes data calibration and standardization protocols to allow interlaboratory comparisons or to maintain traceability of data, and basic principles of isotope fractionation in nature, together with high-selectivity and high-yield chemical separation and purification techniques for stable isotope studies. PMID:23397089

  12. CD146-targeted immunoPET and NIRF Imaging of Hepatocellular Carcinoma with a Dual-Labeled Monoclonal Antibody

    PubMed Central

    Hernandez, Reinier; Sun, Haiyan; England, Christopher G.; Valdovinos, Hector F.; Ehlerding, Emily B.; Barnhart, Todd E.; Yang, Yunan; Cai, Weibo

    2016-01-01

    Overexpression of CD146 has been correlated with aggressiveness, recurrence rate, and poor overall survival in hepatocellular carcinoma (HCC) patients. In this study, we set out to develop a CD146-targeting probe for high-contrast noninvasive in vivo positron emission tomography (PET) and near-infrared fluorescence (NIRF) imaging of HCCs. YY146, an anti-CD146 monoclonal antibody, was employed as a targeting molecule to which we conjugated the zwitterionic near-infrared fluorescence (NIRF) dye ZW800-1 and the chelator deferoxamine (Df). This enabled labeling of Df-YY146-ZW800 with 89Zr and its subsequent detection using PET and NIRF imaging, all without compromising antibody binding properties. Two HCC cell lines expressing high (HepG2) and low (Huh7) levels of CD146 were employed to generate subcutaneous (s.c.) and orthotopic xenografts in athymic nude mice. Sequential PET and NIRF imaging performed after intravenous injection of 89Zr-Df-YY146-ZW800 into tumor-bearing mice unveiled prominent and persistent uptake of the tracer in HepG2 tumors that peaked at 31.65 ± 7.15 percentage of injected dose per gram (%ID/g; n=4) 72 h post-injection. Owing to such marked accumulation, tumor delineation was successful by both PET and NIRF, which facilitated the fluorescence image-guided resection of orthotopic HepG2 tumors, despite the relatively high liver background. CD146-negative Huh7 and CD146-blocked HepG2 tumors exhibited significantly lower 89Zr-Df-YY146-ZW800 accretion (6.1 ± 0.5 and 8.1 ± 1.0 %ID/g at 72 h p.i., respectively; n=4), demonstrating the CD146-specificity of the tracer in vivo. Ex vivo biodistribution and immunofluorescent staining corroborated the accuracy of the imaging data and correlated tracer uptake with in situ CD146 expression. Overall, 89Zr-Df-YY146-ZW800 showed excellent properties as a PET/NIRF imaging agent, including high in vivo affinity and specificity for CD146-expressing HCC. CD146-targeted molecular imaging using dual-labeled YY146

  13. CD146-targeted immunoPET and NIRF Imaging of Hepatocellular Carcinoma with a Dual-Labeled Monoclonal Antibody.

    PubMed

    Hernandez, Reinier; Sun, Haiyan; England, Christopher G; Valdovinos, Hector F; Ehlerding, Emily B; Barnhart, Todd E; Yang, Yunan; Cai, Weibo

    2016-01-01

    Overexpression of CD146 has been correlated with aggressiveness, recurrence rate, and poor overall survival in hepatocellular carcinoma (HCC) patients. In this study, we set out to develop a CD146-targeting probe for high-contrast noninvasive in vivo positron emission tomography (PET) and near-infrared fluorescence (NIRF) imaging of HCCs. YY146, an anti-CD146 monoclonal antibody, was employed as a targeting molecule to which we conjugated the zwitterionic near-infrared fluorescence (NIRF) dye ZW800-1 and the chelator deferoxamine (Df). This enabled labeling of Df-YY146-ZW800 with (89)Zr and its subsequent detection using PET and NIRF imaging, all without compromising antibody binding properties. Two HCC cell lines expressing high (HepG2) and low (Huh7) levels of CD146 were employed to generate subcutaneous (s.c.) and orthotopic xenografts in athymic nude mice. Sequential PET and NIRF imaging performed after intravenous injection of (89)Zr-Df-YY146-ZW800 into tumor-bearing mice unveiled prominent and persistent uptake of the tracer in HepG2 tumors that peaked at 31.65 ± 7.15 percentage of injected dose per gram (%ID/g; n=4) 72 h post-injection. Owing to such marked accumulation, tumor delineation was successful by both PET and NIRF, which facilitated the fluorescence image-guided resection of orthotopic HepG2 tumors, despite the relatively high liver background. CD146-negative Huh7 and CD146-blocked HepG2 tumors exhibited significantly lower (89)Zr-Df-YY146-ZW800 accretion (6.1 ± 0.5 and 8.1 ± 1.0 %ID/g at 72 h p.i., respectively; n=4), demonstrating the CD146-specificity of the tracer in vivo. Ex vivo biodistribution and immunofluorescent staining corroborated the accuracy of the imaging data and correlated tracer uptake with in situ CD146 expression. Overall, (89)Zr-Df-YY146-ZW800 showed excellent properties as a PET/NIRF imaging agent, including high in vivo affinity and specificity for CD146-expressing HCC. CD146-targeted molecular imaging using dual-labeled

  14. Ultrasensitive and rapid screening of mercury(II) ions by dual labeling colorimetric method in aqueous samples and applications in mercury-poisoned animal tissues.

    PubMed

    Deng, Yi; Wang, Xin; Xue, Feng; Zheng, Lei; Liu, Jian; Yan, Feng; Xia, Fan; Chen, Wei

    2015-04-01

    Rapid and ultrasensitive detection of trace heavy metal mercury(II) ions (Hg(2+)) are of significant importance due to the induced serious risks for environment and human health. This presented article reports the gold nanoparticle-based dual labeling colorimetric method (Dual-COLO) for ultrasensitive and rapid detection of Hg(2+) using the specific thymine-Hg(2+)-thymine (T-Hg(2+)-T) as recognition system and the dual labeling strategy for signal amplification. Both qualitative and quantitative detections of Hg(2+) are achieved successfully in aqueous samples. More importantly, the achieved detection limit of 0.005 ng mL(-1) (0.025 nM) without any instruments is very competitive to other rapid detection methods even ICP-MS based methods. This Dual-COLO method is also applied directly for real water sample monitoring and, more importantly, applied in analysis of mercury poisoned animal tissues and body fluidic samples, indicating a potentially powerful and promising tool for environmental monitoring and food safety control.

  15. A gas chromatograph/mass spectrometry method for determining isotopic distributions in organic compounds used in the chemical approach to stable isotope separation

    SciTech Connect

    Martinez, A.M.; Spall, W.D.; Smith, B.F.

    1990-01-01

    A variety of gas chromatograph/mass spectrometry (GC/MS) methods have been developed to resolve benzene, benzophenone, anthracene, fluorenone, and their respective stable isotope analogs from other components by gas chromatography. The ratio of stable isotope-labeled material to natural isotopic abundance compounds is determined from the mass spectra averaged across the chromatographic peak. Both total ion and selective ion chromatographic approaches were used for relative data and comparison. 9 refs., 11 tabs.

  16. Holocene precipitation seasonality captured by a dual hydrogen and oxygen isotope approach at Steel Lake, Minnesota

    NASA Astrophysics Data System (ADS)

    Henderson, Anna K.; Nelson, David M.; Hu, Feng Sheng; Huang, Yongsong; Shuman, Bryan N.; Williams, John W.

    2010-12-01

    oxygen isotope approach for distinguishing changes in evaporation and precipitation seasonality in the paleolimnological record.

  17. Where does streamwater come from in low-relief forested watersheds? A dual-isotope approach

    SciTech Connect

    Klaus, J.; McDonnell, J. J.; Jackson, C. R.; Du, E.; Griffiths, N. A.

    2015-01-08

    The time and geographic sources of streamwater in low-relief watersheds are poorly understood. This is partly due to the difficult combination of low runoff coefficients and often damped streamwater isotopic signals precluding traditional hydrograph separation and convolution integral approaches. Here we present a dual-isotope approach involving 18O and 2H of water in a low-angle forested watershed to determine streamwater source components and then build a conceptual model of streamflow generation. We focus on three headwater lowland sub-catchments draining the Savannah River Site in South Carolina, USA. Our results for a 3-year sampling period show that the slopes of the meteoric water lines/evaporation water lines (MWLs/EWLs) of the catchment water sources can be used to extract information on runoff sources in ways not considered before. Our dual-isotope approach was able to identify unique hillslope, riparian and deep groundwater, and streamflow compositions. Thus, the streams showed strong evaporative enrichment compared to the local meteoric water line (δ2H = 7.15 · δ18O +9.28‰) with slopes of 2.52, 2.84, and 2.86. Based on the unique and unambiguous slopes of the EWLs of the different water cycle components and the isotopic time series of the individual components, we were able to show how the riparian zone controls baseflow in this system and how the riparian zone "resets" the stable isotope composition of the observed streams in our low-angle, forested watersheds. Although this approach is limited in terms of quantifying mixing percentages between different end-members, our dual-isotope approach enabled the extraction of hydrologically useful information in a region with little change in individual isotope time series.

  18. Where does streamwater come from in low-relief forested watersheds? A dual-isotope approach

    DOE PAGES

    Klaus, J.; McDonnell, J. J.; Jackson, C. R.; Du, E.; Griffiths, N. A.

    2015-01-08

    The time and geographic sources of streamwater in low-relief watersheds are poorly understood. This is partly due to the difficult combination of low runoff coefficients and often damped streamwater isotopic signals precluding traditional hydrograph separation and convolution integral approaches. Here we present a dual-isotope approach involving 18O and 2H of water in a low-angle forested watershed to determine streamwater source components and then build a conceptual model of streamflow generation. We focus on three headwater lowland sub-catchments draining the Savannah River Site in South Carolina, USA. Our results for a 3-year sampling period show that the slopes of the meteoricmore » water lines/evaporation water lines (MWLs/EWLs) of the catchment water sources can be used to extract information on runoff sources in ways not considered before. Our dual-isotope approach was able to identify unique hillslope, riparian and deep groundwater, and streamflow compositions. Thus, the streams showed strong evaporative enrichment compared to the local meteoric water line (δ2H = 7.15 · δ18O +9.28‰) with slopes of 2.52, 2.84, and 2.86. Based on the unique and unambiguous slopes of the EWLs of the different water cycle components and the isotopic time series of the individual components, we were able to show how the riparian zone controls baseflow in this system and how the riparian zone "resets" the stable isotope composition of the observed streams in our low-angle, forested watersheds. Although this approach is limited in terms of quantifying mixing percentages between different end-members, our dual-isotope approach enabled the extraction of hydrologically useful information in a region with little change in individual isotope time series.« less

  19. Where does streamwater come from in low relief forested watersheds? A dual isotope approach

    NASA Astrophysics Data System (ADS)

    Klaus, J.; McDonnell, J. J.; Jackson, C. R.; Du, E.; Griffiths, N. A.

    2014-03-01

    The time- and geographic sources of streamwater in low relief watersheds are poorly understood. This is partly due to the difficult combination of low runoff coefficients and often damped streamwater isotopic signals precluding traditional hydrograph separation and convolution integral approaches. Here we present a dual isotope approach involving 18O and 2H of water in a low angle forested watershed to determine streamwater source components and then build a conceptual model of streamflow generation. We focus on three headwater lowland sub-catchments draining the Savannah River Site in South Carolina, USA. Our results for a 3 year sampling period show that the slopes of the meteoric water lines/evaporation water lines (MWL/EWL) of the catchment water sources can be used to extract information on runoff source in ways not considered before. Our dual isotope approach was able to identify unique hillslope, riparian and deep groundwater, and streamflow compositions. The streams showed strong evaporative enrichment compared to the local meteoric water line (δ2H = 6.45 × δ18O + 6.26‰) with slopes of 2.52, 2.84, and 2.86. Based on the unique and unambiguous slopes of the EWLs of the different water cycle components and the isotopic time series of the individual components, we were able to show how the riparian zone controls baseflow in this system and how the riparian zone "resets" the stable isotope composition of the observed streams in our low angle, forested watersheds. Although this approach is limited in terms of quantifying mixing percentages between different end-members, our dual isotope approach enable extraction of hydrologically useful information in a region with little change in individual isotope time series.

  20. Where does streamwater come from in low-relief forested watersheds? A dual-isotope approach

    NASA Astrophysics Data System (ADS)

    Klaus, J.; McDonnell, J. J.; Jackson, C. R.; Du, E.; Griffiths, N. A.

    2015-01-01

    The time and geographic sources of streamwater in low-relief watersheds are poorly understood. This is partly due to the difficult combination of low runoff coefficients and often damped streamwater isotopic signals precluding traditional hydrograph separation and convolution integral approaches. Here we present a dual-isotope approach involving 18O and 2H of water in a low-angle forested watershed to determine streamwater source components and then build a conceptual model of streamflow generation. We focus on three headwater lowland sub-catchments draining the Savannah River Site in South Carolina, USA. Our results for a 3-year sampling period show that the slopes of the meteoric water lines/evaporation water lines (MWLs/EWLs) of the catchment water sources can be used to extract information on runoff sources in ways not considered before. Our dual-isotope approach was able to identify unique hillslope, riparian and deep groundwater, and streamflow compositions. The streams showed strong evaporative enrichment compared to the local meteoric water line (δ2H = 7.15 · δ18O +9.28‰) with slopes of 2.52, 2.84, and 2.86. Based on the unique and unambiguous slopes of the EWLs of the different water cycle components and the isotopic time series of the individual components, we were able to show how the riparian zone controls baseflow in this system and how the riparian zone "resets" the stable isotope composition of the observed streams in our low-angle, forested watersheds. Although this approach is limited in terms of quantifying mixing percentages between different end-members, our dual-isotope approach enabled the extraction of hydrologically useful information in a region with little change in individual isotope time series.

  1. Re-introduction of a novel approach to the use of stable isotopes in pharmacokinetic studies.

    PubMed

    Parr, Alan; Gupta, Manish; Montague, Timothy H; Hoke, Frank

    2012-09-01

    The purpose of this investigation is to evaluate the scientific benefits of a novel approach in using stable isotopes to reduce the number of subjects needed to perform relative bioavailability and bioequivalence pharmacokinetic studies for formulations that are qualitatively and quantitatively the same and quality by design (QbD) pharmacokinetic studies. The stable isotope approach was investigated using simulations to determine the impact this approach would have on the estimation of variability and, subsequently, the sample size for a bioequivalence study. A biostudy was conducted in dogs in a two period crossover to explore the viability of the stable isotope approach. For a drug product with within-subject variability (CV(w)) of 50% and assuming a correlation of 0.95 between the enriched and non-enriched pharmacokinetics (PK), simulations showed that the variability can be reduced by 70% and the required sample size can be reduced by 90% while maintaining 90% power to demonstrate bioequivalence. The dog study showed a strong correlation (R(2), > 0.99) between the enriched and non-enriched area under the curve and maximum observed concentration, and a significant reduction in the variability (reduction in % coefficient of variation from 79.9% to 6.3%). Utilization of a stable isotope approach can markedly improve the efficiency and accuracy of bioavailability and bioequivalence studies particularly for highly variable drugs in formulations that are qualitatively and quantitatively the same and for studies designed for QbD investigations.

  2. A new approach to simulating stream isotope dynamics using Markov switching autoregressive models

    NASA Astrophysics Data System (ADS)

    Birkel, Christian; Paroli, Roberta; Spezia, Luigi; Dunn, Sarah M.; Tetzlaff, Doerthe; Soulsby, Chris

    2012-09-01

    In this study we applied Markov switching autoregressive models (MSARMs) as a proof-of-concept to analyze the temporal dynamics and statistical characteristics of the time series of two conservative water isotopes, deuterium (δ2H) and oxygen-18 (δ18O), in daily stream water samples over two years in a small catchment in eastern Scotland. MSARMs enabled us to explicitly account for the identified non-linear, non-Normal and non-stationary isotope dynamics of both time series. The hidden states of the Markov chain could also be associated with meteorological and hydrological drivers identifying the short (event) and longer-term (inter-event) transport mechanisms for both isotopes. Inference was based on the Bayesian approach performed through Markov Chain Monte Carlo algorithms, which also allowed us to deal with a high rate of missing values (17%). Although it is usually assumed that both isotopes are conservative and exhibit similar dynamics, δ18O showed somewhat different time series characteristics. Both isotopes were best modelled with two hidden states, but δ18O demanded autoregressions of the first order, whereas δ2H of the second. Moreover, both the dynamics of observations and the hidden states of the two isotopes were explained by two different sets of covariates. Consequently use of the two tracers for transit time modelling and hydrograph separation may result in different interpretations on the functioning of a catchment system.

  3. Dual labeling with 5-bromo-2'-deoxyuridine and 5-ethynyl-2'-deoxyuridine for estimation of cell migration rate in the small intestinal epithelium.

    PubMed

    Asano, Mami; Yamamoto, Tatsuro; Tsuruta, Takeshi; Nishimura, Naomichi; Sonoyama, Kei

    2015-01-01

    Small intestinal epithelium is a self-renewing system in which the entire sequence of cell proliferation, differentiation, and removal is coupled to cell migration along the crypt-villus axis. We examined whether dual labeling with different thymidine analogues, 5-bromo-2'-deoxyuridine (BrdU) and 5-ethynyl-2'-deoxyuridine (EdU), can be used to estimate cell migration rates on the villi of small intestines in rats. Rats received a single intraperitoneal injection of BrdU and EdU within a time interval, and signals in tissue sections were examined by immunohistochemistry and the "click" reaction, respectively. We successfully observed BrdU- and EdU-positive cells on the epithelium with no cross-reaction. In addition, we observed an almost complete overlapping of BrdU- and EdU-positive cells in rats administered simultaneously with BrdU and EdU. By calculating the cell migration rate by dividing the distance between the median cell positions of the distribution of BrdU- and EdU-positive cells by the time between the injection of BrdU and EdU, we estimated approximately 9 and 5 μm/h for the cell migration rates on the villi in the jejunum and ileum, respectively. We propose that dual labeling with BrdU and EdU within a time interval, followed by detecting with immunohistochemistry and the click reaction, respectively, is useful to estimate accurately the cell migration rate in the intestinal epithelium in a single animal.

  4. A dual-isotope approach to allow conclusive partitioning between three sources.

    PubMed

    Whitman, Thea; Lehmann, Johannes

    2015-01-01

    Stable isotopes have proved to be a transformative tool; their application to distinguish between two sources in a mixture has been a cornerstone of biogeochemical research. However, quantitatively partitioning systems using two stable isotopes (for example, (13)C and (12)C) has been largely limited to only two sources, and systems of interest often have more than two components, with interactive effects. Here we introduce a dual-isotope approach to allow conclusive partitioning between three sources, using only two stable isotopes. We demonstrate this approach by partitioning soil CO2 emissions derived from microbial mineralization of soil organic carbon (SOC), added pyrogenic organic matter (PyOM) and root respiration. We find that SOC mineralization in the presence of roots is 23% higher (P<0.05) when PyOM is also present. Being able to discern three sources with two isotopes will be of great value not only in biogeochemical research, but may also expand hitherto untapped methodologies in diverse fields. PMID:26530521

  5. A dual-isotope approach to allow conclusive partitioning between three sources

    PubMed Central

    Whitman, Thea; Lehmann, Johannes

    2015-01-01

    Stable isotopes have proved to be a transformative tool; their application to distinguish between two sources in a mixture has been a cornerstone of biogeochemical research. However, quantitatively partitioning systems using two stable isotopes (for example, 13C and 12C) has been largely limited to only two sources, and systems of interest often have more than two components, with interactive effects. Here we introduce a dual-isotope approach to allow conclusive partitioning between three sources, using only two stable isotopes. We demonstrate this approach by partitioning soil CO2 emissions derived from microbial mineralization of soil organic carbon (SOC), added pyrogenic organic matter (PyOM) and root respiration. We find that SOC mineralization in the presence of roots is 23% higher (P<0.05) when PyOM is also present. Being able to discern three sources with two isotopes will be of great value not only in biogeochemical research, but may also expand hitherto untapped methodologies in diverse fields. PMID:26530521

  6. New approach to global barium cycle understanding: barium isotopic composition of marine carbonates and seawater.

    NASA Astrophysics Data System (ADS)

    Pretet, Chloé; Nägler, Thomas F.; Reynaud, Stéphanie; de Lange, Gert J.; Turpin, Mélanie; Immenhauser, Adrian; Böttcher, Michael E.; Samankassou, Elias

    2013-04-01

    In this communication we present the Ba isotope fractionation (delta137/134Ba) study on marine carbonates and seawater, initiated to gain a first order view of the marine Ba isotope cycle. A special focus is the question whether the nutrient type distribution of Ba in the water column, as well as different Ba sources, are reflected in Ba isotope ratios of carbonate archives. The approach ultimately aims to provide an improved Ba based paleonutrient proxy. The data set is composed of carbonates (micrites and limestone standard), coral skeleton and seawater (IAPSO standard and Mediterranean seawater). Part of the corals were cultured in monitored environments (CSM, Monaco) others originate from natural environments (shallow and warm water corals from the Bahamas/Florida and cold water corals from the Norwegian shelf). The analytical procedure includes the application of a 130Ba/135Ba double spike, a cation exchange column followed by isotope measurements on a Nu Instruments Multicollector ICP-MS. The Ba fractionation of the samples is compared to a Ba nitrate standard solution and a standard natural limestone BSC-CRM 393 (0.05 ± 0.04 ‰, 2SEM). No isotopic fractionation has been observed in the limestone standard and micrites (N=8) (-0.01 ± 0.04 ‰, 2SEM) compared to the Ba nitrate standard. On the contrary, coral skeletons show a significant positive fractionation (mean = 0.4 ± 0.05 ‰, 2 SEM). No significant difference was found between different cultured coral species. Thus no species-specific fractionation is identified within the same environmental conditions. Diagenetic influence on Ba isotopic composition was further tested on 5 natural samples with varying calcite to aragonite ratios (0 to 0.3). No significant effect was observed. Moreover, the Ba isotope composition seems independant from the Ba concentration in the studied coral skeleton, within our measurement resolution. Seawater isotopic composition (-0.05 ± 0.07 ‰, 2SD) is lighter than coral

  7. A new approach to quantifying internal diffusion resistances and CO2 isotope exchange in leaves

    NASA Astrophysics Data System (ADS)

    West, Jason; Ogée, Jérôme; Burlett, Régis; Gimeno, Teresa; Genty, Bernard; Jones, Samuel; Wohl, Steven; Bosc, Alexandre; Wingate, Lisa

    2016-04-01

    The oxygen isotopic composition (δ18O) of atmospheric CO2 can constrain the global CO2 budget at a range of scales, offering the potential to partition net CO2 exchanges into their component gross fluxes and provide insights to linkages between C and water cycles. However, there are significant limitations to utilizing the δ18O of CO2 to constrain C budgets because of uncertainties associated with the isotopic exchange of CO2 with terrestrial water pools. Leaf water in particular represents a critical pool with ongoing debates about its enrichment in heavy isotopes during transpiration and the hydration of CO2 and its oxygen isotope exchange with this pool. Isotopic heterogeneity of the leaf water, the spatial distribution and activity of carbonic anhydrase (CA) within leaves, and resistance to diffusion of CO2 from the substomatal cavity to chloroplasts are all key components with important uncertainties. Better constraints on these would significantly improve our ability to understand and model the global C budget as well as yield insights to fundamental aspects of leaf physiology. We report results using a new measurement system that permits the simultaneous measurement of the 13C and 18O composition of CO2 and the 18O isotopic composition of leaf transpiration. As this new approach permits rapid alteration of the isotopic composition of gases interacting with the leaf, key model parameters can be derived directly and simultaneously. Hence, our approach dos not rely on separate measurements shifted in time from the gas exchange measurements or that may not quantify the relevant scale of heterogeneity (e.g., CA enzyme assays or bulk leaf water extraction and analysis). In particular, this new method explicitly distinguishes the leaf mesophyll resistance to CO2 transport relevant for photosynthesis from the resistance required for interpreting the δ18O of CO2 and allows us to derive other relevant parameters directly. This new measurement system and modeling

  8. A Triple-Isotope Approach to Predict the Breeding Origins of European Bats

    PubMed Central

    Popa-Lisseanu, Ana G.; Sörgel, Karin; Luckner, Anja; Wassenaar, Leonard I.; Ibáñez, Carlos; Kramer-Schadt, Stephanie; Ciechanowski, Mateusz; Görföl, Tamás; Niermann, Ivo; Beuneux, Grégory; Mysłajek, Robert W.; Juste, Javier; Fonderflick, Jocelyn; Kelm, Detlev H.; Voigt, Christian C.

    2012-01-01

    Despite a commitment by the European Union to protect its migratory bat populations, conservation efforts are hindered by a poor understanding of bat migratory strategies and connectivity between breeding and wintering grounds. Traditional methods like mark-recapture are ineffective to study broad-scale bat migratory patterns. Stable hydrogen isotopes (δD) have been proven useful in establishing spatial migratory connectivity of animal populations. Before applying this tool, the method was calibrated using bat samples of known origin. Here we established the potential of δD as a robust geographical tracer of breeding origins of European bats by measuring δD in hair of five sedentary bat species from 45 locations throughout Europe. The δD of bat hair strongly correlated with well-established spatial isotopic patterns in mean annual precipitation in Europe, and therefore was highly correlated with latitude. We calculated a linear mixed-effects model, with species as random effect, linking δD of bat hair to precipitation δD of the areas of hair growth. This model can be used to predict breeding origins of European migrating bats. We used δ13C and δ15N to discriminate among potential origins of bats, and found that these isotopes can be used as variables to further refine origin predictions. A triple-isotope approach could thereby pinpoint populations or subpopulations that have distinct origins. Our results further corroborated stable isotope analysis as a powerful method to delineate animal migrations in Europe. PMID:22291947

  9. Fingerprints of environmental stressors in three selected Slovenian gravel-bed rivers: geochemical and isotopic approach

    NASA Astrophysics Data System (ADS)

    Kanduč, Tjaša; Kocman, David; Debeljak, Barbara; Mori, Nataša

    2016-04-01

    Rivers are severely impacted by a range of simultaneous processes including water pollution, flow and channel alteration, over-fishing, invasive species and climate change. Systematic studies of river water geochemistry provide important information on chemical weathering of bedrock/soil and natural anthropogenic processes that may control the dissolved chemical loads, while the isotopic studies of biological components of river systems (macrophytes, periphyton, heterotrophic biofilm, invertebrates, fish) contribute to the understanding how the system response to human impacts by means of functional response. In this contribution, insights in the fingerprints of various environmental stressors in three gravel-bed rivers (River Kamni\\vska Bistrica, River Idrijca and River Sava) in Slovenia, using geochemical and stable isotope approach are discussed. Gravel bed of all three rivers investigated is composed of carbonates and clastic rocks. The Sava and Kamni\\vska Bistrica Rivers have alpine high mountain snow-rain regime. The Idrijca River is a boundary river between the Adriatic and Black Sea catchments and has rain-snow discharge regime with torrential character. Geochemical methods (ICP-OES, IC, total alkalinity after Gran) and isotope mass - spectrometric methods (isotopic composition of dissolved inorganic carbon, particulate organic carbon and isotopic composition of carbon in carbonates) were used to evaluate biogeochemical processes in rivers. Isotopic composition of carbon and nitrogen of the moss Fontinalis antipyretica (the whole vegetative shoot) and isotopic composition of carbon of heterotrophic biofilm was also analyzed in order to better understand the fluxes and fractionation of carbon and nitrogen across trophic levels. Geochemical composition of all investigated rivers is HCO3--Ca2+-Mg2+ with different Mg2+/Ca2+ ratios as follows: around 0.33 for Kamni\\vska Bistrica and River Sava in Slovenia and above 0.75 for River Idrijca. In the Kamni

  10. Fingerprints of environmental stressors in three selected Slovenian gravel-bed rivers: geochemical and isotopic approach

    NASA Astrophysics Data System (ADS)

    Kanduč, Tjaša; Kocman, David; Debeljak, Barbara; Mori, Nataša

    2016-04-01

    Rivers are severely impacted by a range of simultaneous processes including water pollution, flow and channel alteration, over-fishing, invasive species and climate change. Systematic studies of river water geochemistry provide important information on chemical weathering of bedrock/soil and natural anthropogenic processes that may control the dissolved chemical loads, while the isotopic studies of biological components of river systems (macrophytes, periphyton, heterotrophic biofilm, invertebrates, fish) contribute to the understanding how the system response to human impacts by means of functional response. In this contribution, insights in the fingerprints of various environmental stressors in three gravel-bed rivers (River Kamni\\vska Bistrica, River Idrijca and River Sava) in Slovenia, using geochemical and stable isotope approach are discussed. Gravel bed of all three rivers investigated is composed of carbonates and clastic rocks. The Sava and Kamni\\vska Bistrica Rivers have alpine high mountain snow-rain regime. The Idrijca River is a boundary river between the Adriatic and Black Sea catchments and has rain-snow discharge regime with torrential character. Geochemical methods (ICP-OES, IC, total alkalinity after Gran) and isotope mass - spectrometric methods (isotopic composition of dissolved inorganic carbon, particulate organic carbon and isotopic composition of carbon in carbonates) were used to evaluate biogeochemical processes in rivers. Isotopic composition of carbon and nitrogen of the moss Fontinalis antipyretica (the whole vegetative shoot) and isotopic composition of carbon of heterotrophic biofilm was also analyzed in order to better understand the fluxes and fractionation of carbon and nitrogen across trophic levels. Geochemical composition of all investigated rivers is HCO3‑-Ca2+-Mg2+ with different Mg2+/Ca2+ ratios as follows: around 0.33 for Kamni\\vska Bistrica and River Sava in Slovenia and above 0.75 for River Idrijca. In the Kamni

  11. Iron isotope fractionation between aqueous Fe(II) and goethite revisited: New insights based on a multi-direction approach to equilibrium and isotopic exchange rate modification

    NASA Astrophysics Data System (ADS)

    Frierdich, Andrew J.; Beard, Brian L.; Reddy, Thiruchelvi R.; Scherer, Michelle M.; Johnson, Clark M.

    2014-08-01

    The Fe isotope compositions of naturally occurring Fe oxide minerals provide insights into biogeochemical processes that occur in modern and ancient environments. Key to understanding isotopic variations in such minerals is knowledge of the equilibrium Fe isotope fractionation factors between common minerals and aqueous Fe species. Because experimental measurements of isotopic fractionation may reflect a combination of kinetic and equilibrium fractionations during rapid dissolution and precipitation, even in experiments that employ the three-isotope method, assessment of the attainment of equilibrium is often difficult. Here, we re-examine Fe isotope exchange, via a 57Fe tracer, and natural mass-dependent fractionation, through changes in initial 56Fe/54Fe ratios, between aqueous Fe(II) (Fe(II)aq) and goethite. This approach uses the three-isotope method, but is distinct in its evaluation of kinetic isotope fractionation and the attainment of equilibrium by: (i) employing a multi-direction approach to equilibrium at 22 °C via reaction of three Fe(II)aq solutions that had different initial 56Fe/54Fe ratios, (ii) conducting isotopic exchange experiments at elevated temperature (50 °C), and (iii) modifying the rate of isotopic exchange through a combination of trace-element substitutions and particle coarsening to evaluate corresponding temporal changes in fractionation trajectories that may reflect changing instantaneous fractionation factors. We find that rapid isotopic exchange produces kinetic isotope effects between Fe(II)aq and goethite, which shifts the 56Fe/54Fe ratios of Fe(II)aq early in reactions toward that of goethite, indicating that the instantaneous Fe(II)aq-goethite fractionation factor under kinetic conditions is small. Importantly, however, this kinetic fractionation is “erased” with continued reaction, and this is evident by the congruence for multiple-exchange trajectories of distinct initial Fe(II)aq solutions toward the same final value

  12. New monitoring approach for metabolic dynamics in microbial ecosystems using stable-isotope-labeling technologies.

    PubMed

    Date, Yasuhiro; Nakanishi, Yumiko; Fukuda, Shinji; Kato, Tamotsu; Tsuneda, Satoshi; Ohno, Hiroshi; Kikuchi, Jun

    2010-07-01

    We have developed a new approach for monitoring the metabolic dynamics in microbial ecosystems using a combination of DNA fingerprinting and metabolome analysis based on stable-isotope-labeling technologies. Stable-isotope probing of DNA (DNA-SIP) has been used previously for the evaluation of cross-feeding in microbial communities. For the development and validation of our monitoring approach, fecal microbiota were analyzed with stable-isotope-labeled glucose used as the sole carbon source. In order to link the metabolic information and the microbial variability, we performed metabolic-microbial correlation analysis based on nuclear magnetic resonance (NMR) profiles and denaturing gradient gel electrophoresis (DGGE) fingerprints, which successfully identified the glucose-utilizing bacteria and their related extracellular metabolites. Moreover, our approach revealed information regarding the carbon flux, in that the "first" wave of extracellular metabolites secreted by the glucose-utilizing bacteria were incorporated into the "secondary" group of substrate-utilizing bacteria, and that this "secondary" group further produced their own secondary metabolized substrates. Thus, this approach is a powerful tool for monitoring the metabolic dynamics in microbial ecosystems and allows for the tracking of the carbon flux within a microbial community.

  13. Circulation kinetics and biodistribution of dual-labeled polymersomes with modulated surface charge in tumor-bearing mice: comparison with stealth liposomes.

    PubMed

    Lee, Jung Seok; Ankone, Marc; Pieters, Ebel; Schiffelers, Raymond M; Hennink, Wim E; Feijen, Jan

    2011-10-30

    Polymersomes (Ps) based on poly(ethylene glycol)-b-poly(D,L-lactide) (PEG-PDLLA), with similar sizes (90-100 nm), but different zeta potentials (-7.6 to -38.7 mV) were prepared to investigate the effect of surface charge on blood circulation time and tissue distribution in tumor-bearing mice. For the in vivo studies dual labeled Ps were applied, which were obtained by encapsulating (3)H-dextran 70k in the aqueous core of Ps and by post-coupling of (14)C-thioglycolic acid onto acrylated PEG chains of the Ps. Stealth liposomes (103 nm, -6 mV) were used as a control. A substantial longer half lifetime (τ(1/2)) (47.3h) and a reduced liver uptake (27.9% of injected dose (% ID)) of Ps with a zeta potential of -7.6 mV were observed as compared to those of stealth liposomes (10.6h, 39.8% ID) most probably due to the presence of a relatively thicker and denser PEG brush of the Ps as compared to the liposomes. As a result of their longer circulation times a high tumor accumulation of 18.6% ID was obtained for these Ps after 3d circulation in mice while only 11.2% ID of stealth liposomes accumulated in the tumors as a result of their relatively short τ(1/2) in blood. By increasing the zeta potential on Ps, more rapid clearance of Ps from the blood circulation was found due to an enhanced uptake by the liver. Importantly, co-localization of the two labels of Ps was observed during circulation indicating that dual labeled Ps were colloidally stable in blood without leakage of (3)H-dextran. In conclusion, the results show that Ps with a slightly negative surface charge (zeta potential -7.6 mV) are stable in the circulation and have longer circulation times and a higher tumor accumulation in mice than Ps with more negative zeta potentials or the stealth liposomes used as a control. PMID:21820023

  14. Circulation kinetics and biodistribution of dual-labeled polymersomes with modulated surface charge in tumor-bearing mice: comparison with stealth liposomes.

    PubMed

    Lee, Jung Seok; Ankone, Marc; Pieters, Ebel; Schiffelers, Raymond M; Hennink, Wim E; Feijen, Jan

    2011-10-30

    Polymersomes (Ps) based on poly(ethylene glycol)-b-poly(D,L-lactide) (PEG-PDLLA), with similar sizes (90-100 nm), but different zeta potentials (-7.6 to -38.7 mV) were prepared to investigate the effect of surface charge on blood circulation time and tissue distribution in tumor-bearing mice. For the in vivo studies dual labeled Ps were applied, which were obtained by encapsulating (3)H-dextran 70k in the aqueous core of Ps and by post-coupling of (14)C-thioglycolic acid onto acrylated PEG chains of the Ps. Stealth liposomes (103 nm, -6 mV) were used as a control. A substantial longer half lifetime (τ(1/2)) (47.3h) and a reduced liver uptake (27.9% of injected dose (% ID)) of Ps with a zeta potential of -7.6 mV were observed as compared to those of stealth liposomes (10.6h, 39.8% ID) most probably due to the presence of a relatively thicker and denser PEG brush of the Ps as compared to the liposomes. As a result of their longer circulation times a high tumor accumulation of 18.6% ID was obtained for these Ps after 3d circulation in mice while only 11.2% ID of stealth liposomes accumulated in the tumors as a result of their relatively short τ(1/2) in blood. By increasing the zeta potential on Ps, more rapid clearance of Ps from the blood circulation was found due to an enhanced uptake by the liver. Importantly, co-localization of the two labels of Ps was observed during circulation indicating that dual labeled Ps were colloidally stable in blood without leakage of (3)H-dextran. In conclusion, the results show that Ps with a slightly negative surface charge (zeta potential -7.6 mV) are stable in the circulation and have longer circulation times and a higher tumor accumulation in mice than Ps with more negative zeta potentials or the stealth liposomes used as a control.

  15. Does Miscanthus cultivation on organic soils compensate for carbon loss from peat oxidation? A dual label study

    NASA Astrophysics Data System (ADS)

    Bader, Cédric; Leifeld, Jens; Müller, Moritz; Schulin, Rainer

    2016-04-01

    Agricultural use of organic soils requires drainage and thereby changes conditions in these soils from anoxic to oxic. As a consequence, organic carbon that had been accumulated over millennia is rapidly mineralized, so that these soils are converted from a CO2 sink to a source. The peat mineralization rate depends mainly on drainage depth, but also on crop type. Various studies show that Miscanthus, a C4 bioenergy plant, shows potential for carbon sequestration in mineral soils because of its high productivity, its dense root system, absence of tillage and high preharvest litterfall. If Miscanthus cropping would have a similar effect in organic soils, peat consumption and thus CO2 emissions might be reduced. For our study we compared two adjacent fields, on which organic soil is cultivated with Miscanthus (since 20 years) and perennial grass (since 6 years). Both sites are located in the Bernese Seeland, the largest former peatland area of Switzerland. To determine wether Miscanthus-derived carbon accumulated in the organic soil, we compared the stable carbon isotopic signatures of the experimental soil with those of an organic soil without any C4-plant cultivation history. To analyze the effect of C4-C accumulation on peat degradability we compared the CO2 emissions by incubating 90 soil samples of the two fields for more than one year. Additionally, we analysed the isotopic CO2 composition (13C, 14C) during the first 25 days of incubation after trapping the emitted CO2 in NaOH and precipitating it as BaCO3. The ∂13C values of the soil imply, that the highest share of C4-C of around 30% is situated at a depth of 10-20 cm. Corn that used to be cultivated on the grassland field before 2009 still accounts for 8% of SOC. O/C and H/C ratios of the peat samples indicate a stronger microbial imprint of organic matter under Miscanthus cultivation. The amount of CO2 emitted was not affected by the cultivation type. On average 57% of the CO2 was C4 derived in the

  16. Vibrationally averaged post Born-Oppenheimer isotopic dipole moment calculations approaching spectroscopic accuracy.

    PubMed

    Arapiraca, A F C; Jonsson, Dan; Mohallem, J R

    2011-12-28

    We report an upgrade of the Dalton code to include post Born-Oppenheimer nuclear mass corrections in the calculations of (ro-)vibrational averages of molecular properties. These corrections are necessary to achieve an accuracy of 10(-4) debye in the calculations of isotopic dipole moments. Calculations on the self-consistent field level present this accuracy, while numerical instabilities compromise correlated calculations. Applications to HD, ethane, and ethylene isotopologues are implemented, all of them approaching the experimental values. PMID:22225162

  17. Vibrationally averaged post Born-Oppenheimer isotopic dipole moment calculations approaching spectroscopic accuracy

    NASA Astrophysics Data System (ADS)

    Arapiraca, A. F. C.; Jonsson, Dan; Mohallem, J. R.

    2011-12-01

    We report an upgrade of the Dalton code to include post Born-Oppenheimer nuclear mass corrections in the calculations of (ro-)vibrational averages of molecular properties. These corrections are necessary to achieve an accuracy of 10-4 debye in the calculations of isotopic dipole moments. Calculations on the self-consistent field level present this accuracy, while numerical instabilities compromise correlated calculations. Applications to HD, ethane, and ethylene isotopologues are implemented, all of them approaching the experimental values.

  18. A triple-isotope approach for discriminating the geographic origin of Asian sesame oils.

    PubMed

    Jeon, Hyeonjin; Lee, Sang-Cheol; Cho, Yoon-Jae; Oh, Jae-Ho; Kwon, Kisung; Kim, Byung Hee

    2015-01-15

    The aim of this study was to investigate the effects of the geographic location and climatic characteristics of the sesame-producing sites on the carbon, hydrogen, and oxygen stable isotope ratios of Korean sesame oil. In addition, the study aimed to differentiate Korean sesame oil from Chinese and Indian sesame oils using isotopic data in combination with canonical discriminant analysis. The isotopic data were obtained from 84 roasted oil samples that were prepared from 51 Korean, 19 Chinese, and 14 Indian sesame seeds harvested during 2010-2011 and distributed in Korea during the same period. The δ(13)C, δD, and δ(18)O values of Korean sesame oil were negatively correlated with latitude, distance from the sea, and precipitation (May-September), respectively. By applying two canonical discriminant functions, 89.3% of the sesame oil samples were correctly classified by their geographic origin, indicating that the triple-isotope approach is a useful tool for the traceability of the oils.

  19. An analytical approach to Sr isotope ratio determination in Lambrusco wines for geographical traceability purposes.

    PubMed

    Durante, Caterina; Baschieri, Carlo; Bertacchini, Lucia; Bertelli, Davide; Cocchi, Marina; Marchetti, Andrea; Manzini, Daniela; Papotti, Giulia; Sighinolfi, Simona

    2015-04-15

    Geographical origin and authenticity of food are topics of interest for both consumers and producers. Among the different indicators used for traceability studies, (87)Sr/(86)Sr isotopic ratio has provided excellent results. In this study, two analytical approaches for wine sample pre-treatment, microwave and low temperature mineralisation, were investigated to develop accurate and precise analytical method for (87)Sr/(86)Sr determination. The two procedures led to comparable results (paired t-test, with tisotopic values were compared with isotopic data coming from (i) soils of their territory of origin and (ii) wines obtained by same grape varieties cultivated in different districts. The obtained results have shown no significant variability among the different vintages of wines and a perfect agreement between the isotopic range of the soils and wines has been observed. Nevertheless, the investigated indicator was not enough powerful to discriminate between similar products. To this regard, it is worth to note that more soil samples as well as wines coming from different districts will be considered to obtain more trustworthy results. PMID:25466059

  20. Nitrogen sources and cycling in the San Francisco Bay estuary: A nitrate dual isotopic composition approach

    USGS Publications Warehouse

    Wankel, Scott D.; Kendall, C.; Francis, C.A.; Paytan, A.

    2006-01-01

    We used the dual isotopic composition of nitrate (??15N and ??18O) within the estuarine system of San Francisco (SF) Bay, California, to explore the utility of this approach for tracing sources and cycling of nitrate (NO3-). Surface water samples from 49 sites within the estuary were sampled during July-August 2004. Spatial variability in the isotopic composition suggests that there are multiple sources of nitrate to the bay ecosystem including seawater, several rivers and creeks, and sewage effluent. The spatial distribution of nitrate from these sources is heavily modulated by the hydrodynamics of the estuary. Mixing along the estuarine salinity gradient is the main control on the spatial variations in isotopic composition of nitrate within the northern arm of SF Bay. However, the nitrate isotopic composition in the southern arm of SF Bay exhibited a combination of source mixing and phytoplankton drawdown due mostly to the long residence time during the summer study period. Very low ?? 18ONO3 values (as low as -5.0???) at the Sacramento-San Joaquin River delta region give rise to a wide range of ??18ONO3 values in the SF Bay system. The range in ??18ONO3 values is more than twice that of (??15NNO3, suggesting that ??18O NO3 is an even more sensitive tool for tracing nitrate sources and cycling than ??15NNO3. ?? 2006, by the American Society of Limnology and Oceanography, Inc.

  1. An analytical approach to Sr isotope ratio determination in Lambrusco wines for geographical traceability purposes.

    PubMed

    Durante, Caterina; Baschieri, Carlo; Bertacchini, Lucia; Bertelli, Davide; Cocchi, Marina; Marchetti, Andrea; Manzini, Daniela; Papotti, Giulia; Sighinolfi, Simona

    2015-04-15

    Geographical origin and authenticity of food are topics of interest for both consumers and producers. Among the different indicators used for traceability studies, (87)Sr/(86)Sr isotopic ratio has provided excellent results. In this study, two analytical approaches for wine sample pre-treatment, microwave and low temperature mineralisation, were investigated to develop accurate and precise analytical method for (87)Sr/(86)Sr determination. The two procedures led to comparable results (paired t-test, with tisotopic values were compared with isotopic data coming from (i) soils of their territory of origin and (ii) wines obtained by same grape varieties cultivated in different districts. The obtained results have shown no significant variability among the different vintages of wines and a perfect agreement between the isotopic range of the soils and wines has been observed. Nevertheless, the investigated indicator was not enough powerful to discriminate between similar products. To this regard, it is worth to note that more soil samples as well as wines coming from different districts will be considered to obtain more trustworthy results.

  2. Progress in quantifying rates and product ratios of microbial denitrification using stable isotope approaches

    NASA Astrophysics Data System (ADS)

    Well, Reinhard; Buchen, Caroline; Giesemann, Anette; Lewicka-Szczebak, Dominika; Rohe, Lena; Flessa, Heinz

    2015-04-01

    Although it is known since long that microbial denitrification plays a central role in N cycling in soils due to loss of nutrient N, emissions of N2O and lowering of N leaching, few data at the field scale are available due to the difficulty in measurement. In recent years, stable isotope signatures of N2O such as δ18O, average δ15N (δ15Nbulk) and 15N site preference (SP = difference in δ15N between the central and peripheral N positions of the asymmetric N2O molecule) have been used to constrain the atmospheric N2O budget and to characterize N2O turnover processes including N2O production and reduction by microbial denitrification. However, the use of this approach to study N2O dynamics in soils requires knowledge of isotope fractionation factors for the various partial processes involved, e.g. N2O production by nitrification or fungal/bacterial denitrification, and N2O reduction by bacterial denitrification. Here we present recent progress on the principles of isotope fractionation modeling to estimate N2O reduction and on the role of microbial groups and their specific impact on isotope values. Moreover, we report and discuss approaches to determine isotope values of produced N2O prior to its reduction as well as enrichment factors of N2O reduction. Finally, a variety of results from lab and field studies will be shown were N2O reduction estimates by isotope fractionation modeling are validated by independent measurements using 15N tracing or He/O2 incubations. Methodical improvements to increase sensitivity of the 15N tracing approach will be briefly addressed. We conclude that up to now SP of soil-emitted N2O proved to be suitable to constrain the product ratio of denitrification if N2O fluxes are dominated by bacterial denitrification. Although this approach is not yet precise enough for robust quantification of N2 fluxes, improved precision can be obtained in future, if further progress in understanding the control of fractionation factors of production

  3. A novel multiplex RT-qPCR method based on dual-labelled probes suitable for typing all known genotypes of viral haemorrhagic septicaemia virus.

    PubMed

    Vázquez, D; López-Vázquez, C; Skall, H F; Mikkelsen, S S; Olesen, N J; Dopazo, C P

    2016-04-01

    Viral haemorrhagic septicaemia (VHS) is a notifiable fish disease, whose causative agent is a rhabdovirus isolated from a wide range of fish species, not only in fresh but also in marine and brackish waters. Phylogenetic studies have identified four major genotypes, with a strong geographical relationship. In this study, we have designed and validated a new procedure--named binary multiplex RT-qPCR (bmRT-qPCR)--for simultaneous detection and typing of all four genotypes of VHSV by real-time RT-PCR based on dual-labelled probes and composed by two multiplex systems designed for European and American/Asiatic isolates, respectively, using a combination of three different fluorophores. The specificity of the procedure was assessed by including a panel of 81 VHSV isolates covering all known genotypes and subtypes of the virus, and tissue material from experimentally infected rainbow trout, resulting in a correct detection and typing of all strains. The analytical sensitivity was evaluated in a comparative assay with titration in cell culture, observing that both methods provided similar limits of detection. The proposed method can be a powerful tool for epidemiological analysis of VHSV by genotyping unknown samples within a few hours.

  4. Simultaneous Detection of Forbidden Chemical Residues in Milk Using Dual-Label Time-Resolved Reverse Competitive Chemiluminescent Immunoassay Based on Amine Group Functionalized Surface

    PubMed Central

    Jiang, Haiyang; Wen, Kai; Shen, Jianzhong; Cao, Xingyuan

    2014-01-01

    In this study, a sensitive dual-label time-resolved reverse competitive chemiluminescent immunoassay was developed for simultaneous detection of chloramphenicol (CAP) and clenbuterol (CLE) in milk. The strategy was performed based on the distinction of the kinetic characteristics of horseradish peroxidase (HRP) and alkaline phosphatase (ALP) in chemiluminesecence (CL) systems and different orders of magnitude in HRP CL value for CAP and ALP CL value for CLE in the chemiluminescent immunoassay. Capture antibodies were covalently bound to the amine group functionalized chemiluminescent microtiter plate (MTP) for efficient binding of detection antibodies for the enzymes labeled CAP (HRP-CAP) and CLE (ALP-CLE). The CL signals were recorded at different time points by the automatic luminometers with significant distinction in the dynamic curves. When we considered the ALP CL value (about 105) of CLE as background for HRP CL signal value (about 107) of CAP, there was no interaction from ALP CL background of CLE and the differentiation of CAP and CLE can be easily achieved. The 50% inhibition concentration (IC50) values of CAP and CLE in milk samples were 0.00501 µg L−1 and 0.0128 µg L−1, with the ranges from 0.0003 µg L−1 to 0.0912 µg L−1 and from 0.00385 µg L−1 to 0.125 µg L−1, respectively. The developed method is more sensitive and of less duration than the commercial ELISA kits, suitable for simultaneous screening of CAP and CLE. PMID:25313517

  5. Comprehensive analysis of collagen metabolism in vitro using (4(/sup 3/H))/(/sup 14/C)proline dual-labeling and polyacrylamide gel electrophoresis

    SciTech Connect

    Bateman, J.F.; Harley, V.; Chan, D.; Cole, W.G.

    1988-01-01

    A method to simultaneously quantify the production, secretion, and prolyl hydroxylation of individual types of collagen in cell culture samples has been developed. Collagens were biosynthetically labeled with a mixture of (/sup 14/C)proline and (4-/sup 3/H)proline. The labeled collagens were isolated and their component alpha-chains were resolved by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. Migration of the collagen alpha-chains was determined by fluorography, and radioactivity in excised bands was quantified by scintillation counting. (/sup 14/C)Proline labeling of collagen chains was used to determine the production and secretion of the different types of collagen. The ratios of the component alpha 1(I) and alpha 2(I) chains of type I collagen were also determined in this way. Prolyl hydroxylation of collagen alpha-chains was readily determined by measurement of their /sup 3/H:/sup 14/C ratios. Following 4-hydroxylation, /sup 3/H was lost from the (4-3H)proline with alteration of this ratio. This dual-labeling method is suitable for the comprehensive analysis of collagen metabolism in multiple samples.

  6. Use of a multi-isotope and multi-tracer approach including organic matter isotopes for quantifying nutrient contributions from agricultural vs wastewater sources

    NASA Astrophysics Data System (ADS)

    Kendall, C.; Silva, S. R.; Young, M. B.

    2013-12-01

    While nutrient isotopes are a well-established tool for quantifying nutrients inputs from agricultural vs wastewater treatment plant (WWTP) sources, we have found that combining nutrient isotopes with the C, N, and S isotopic compositions of dissolved and particulate organic matter, as part of a comprehensive multi-isotope and multi-tracer approach, is a much more diagnostic approach. The main reasons why organic matter C-N-S isotopes are a useful adjunct to studies of nutrient sources and biogeochemical processes are that the dissolved and particulate organic matter associated with (1) different kinds of animals (e.g., humans vs cows) often have distinctive isotopic compositions reflecting the different diets of the animals, and (2) the different processes associated with the different land uses (e.g., in the WWTP or associated with different crop types) often result in significant differences in the isotopic compositions of the organics. The analysis of the δ34S of particulate organic matter (POM) and dissolved organic matter (DOM) has been found to be especially useful for distinguishing and quantifying water, nutrient, and organic contributions from different land uses in aquatic systems where much of the organic matter is aquatic in origin. In such environments, the bacteria and algae incorporate S from sulfate and sulfide that is isotopically labeled by the different processes associated with different land uses. We have found that there is ~35 permil range in δ34S of POM along the river-estuary continuum in the San Joaquin/Sacramento River basin, with low values associated with sulfate reduction in the upstream wetlands and high values associated with tidal inputs of marine water into the estuary. Furthermore, rice agriculture results in relatively low δ34S values whereas WWTP effluent in the Sacramento River produces distinctly higher values than upstream of the WWTP, presumably because SO2 is used to treat chlorinated effluent. The fish living

  7. A simplified methodology to approach the complexity of foraminiferal calcite oxygen-isotope data - model comparison

    NASA Astrophysics Data System (ADS)

    Roche, Didier; Waelbroeck, Claire

    2016-04-01

    Since the pioneering work of Epstein (Epstein et al., 1953), numerous calcite isotopic records from the ocean have been used to attempt reconstructing paleoclimatic information. Additional to the well known complexity brought by the fact that foraminiferal calcite records both temperature and isotopic composition of the surrounding oceanic waters, an additional effect for surface - dwelling foraminifers is the fact that two different species do not have the same habitat and may thus record different signals. This is obvious when comparing paleoclimatic records where different species have been measured for the isotopic composition of the calcite. The difference in habitat produces a three dimensional spatial complexity (a foraminifera living in preferred climatic conditions at a specific location, but also at a specific depth, sometimes far from the surface) but also a temporal uncertainty (foraminifers generally live for only a few weeks and their growth season may be evolving through time with climate change). While the different species habitats potentially contain a wealth of information that could be used to better understand the sequences of climate change, this has seldom been used in modeling studies, most models deriving calcite isotopic signal from surface and annual mean conditions (e.g. Roche et al., 2014). In the present work, we propose a reduced complexity approach to compute the calcite for several planktonic foraminifers from climate model simulations under pre-industrial conditions. We base our approach on simple functions describing the temperature dependence of the different species growth rates (Lombard et al., 2009) and on probability of presence based on the physical variables computed in the climate model. We present a comparison to available sediment traps and core tops data as a validation of the methodology, focusing on the possibility for future applicability towards inversion of the signal measured in oceanic sediment cores. References

  8. A Multiproxy Approach to Calibrating Speleothem Paleoclimate Reconstructions using Modern Isotopic and Remotely Sensed Data

    NASA Astrophysics Data System (ADS)

    Polk, J.; Hall, V.; Ouellette, G., Jr.; Durkee, J.; Fan, X.

    2014-12-01

    Tropical island nations, such as Barbados, are particularly vulnerable to extreme event impacts as changes in interannual storm frequency and intensity could influence groundwater supplies and their climatic resilience. Creating high resolution paleoclimate records for these areas aids in determining the intensity and cyclicity of possible future climate extremes. This study presents a high-resolution, isotopic hydroclimatological analysis of Barbados' rainfall and groundwater in relation to atmospheric influences during storms. Through this calibration of interannual precipitation variability under a modern climatic regime, we can better understand the climatic influences driving our interpretation of paleoclimate reconstructions from speleothems. Weekly samples of dripwater, rainfall, groundwater, and 10-minute precipitation amounts were collected from July, 2012 to October, 2013 at Harrison's Cave in Barbados. These samples underwent isotopic analysis for oxygen and deuterium isotopes. Weekly to monthly rainfall totals were compiled from Harrison's Cave and several island wide stations. In addition, Tropical Rainfall Measuring Mission (TRMM) satellite data were used to compare against oxygen isotope values to provide a multiproxy approach at reconstructing rainfall variability used in the calibration model. At a weekly resolution, the amount effect is not represented at the study site; however, using weather station and remotely sensed data, at an island wide scale the amount effect signal is strongest at monthly timescales. TRMM data accurately reflect the influence of the amount effect at this resolution, thus providing the possibility of a new proxy for rainfall amount when calibrating speleothem paleoclimate records. The amount-weighted precipitation and groundwater values indicate homogenization of the aquifer indicate speleothem record changes in interannual variability. When compared to data from previous studies, the average annual dripwater oxygen

  9. A controlled test of the dual-isotope approach for the interpretation of stable carbon and oxygen isotope ratio variation in tree rings.

    PubMed

    Roden, John S; Farquhar, Graham D

    2012-04-01

    Seedlings of a conifer (Pinus radiata D. Don) and a broad leaf angiosperm (Eucalyptus globulus Labill.) were grown for 100 days in two growth cabinets at 45 or 65% relative humidity. The seedlings were exposed to treatments designed to modify carbon assimilation rates and capacities, stomatal conductance and transpiration to test conceptual models that attempt to clarify the interpretation of carbon isotope discrimination (Δ(13)C) by using oxygen isotope enrichment (Δ(18)O). Differences in relative humidity and within-cabinet treatments (including lower irradiance, lower nitrogen inputs, higher leaf temperature and lower moisture status than control seedlings) produced significant differences in assimilation rates, photosynthetic capacities, stomatal conductance, leaf transpiration rates and leaf evaporative enrichment. The dual-isotope approach accurately interpreted the cause of variation in wood cellulose Δ(13)C for some of the treatments, but not for others. We also tested whether we could use Δ(13)C variation to constrain the interpretation of δ(18)O variation. Carbon isotope discrimination appears to be influenced by transpiration (providing information on leaf evaporative enrichment), but the results did not provide a clear way to interpret such variation. The dual-isotope approach appears to be valid conceptually, but more work is needed to make it operational under different scenarios. PMID:22440882

  10. Stable isotope approaches for tracking C cycling and function in microbial communities

    NASA Astrophysics Data System (ADS)

    Pett-Ridge, J.

    2008-12-01

    Identifying the microorganisms responsible for specific processes in C cycling remains a major challenge in environmental microbiology, one that requires integration of multiple techniques. Stable isotope probing, or SIP, has come to represent a variety of powerful approaches that allow simultaneous identification of identity and function in microbial communities. Bulk methods such as DNA/RNA-SIP and PLFA-SIP are well developed and allow tracking of a multitude of C substrates (acetate, cellulose, CH4, CO2, and plant litter) into specific microbial consumers. However, to understand the spatio-temporal context of may key C transformations and microbial interactions, new imaging technologies are needed to analyze processes and properties of macromolecule complexes, microbes, plant root cells, soil (micro)aggregates, phytoplankton and marine snow as they undergoes formation and decomposition. New and sensitive in situ approaches include NanoSIMS single cell analysis, isotope arrays, and combinations of immuno- or FISH labeling with high resolution isotope imaging. Recent work illustrates how these powerful new techniques use targeted stable isotope probing to measure biological, physical and chemical processes and can be used in soil systems to study microbial mats or rhizosphere interactions. In both terrestrial and aquatic systems, they allow us to directly link C and other nutrient metabolism at the organismal level. Lastly, these new aproaches may be of great use in the study of trophic cascades and metabolic networks. While cross-feeding is often thought of as a confounding effect in SIP-type studies, with fine scale temporal sampling and FISH-SIMS analysis, we have the opportunity trace C flows through microbial foodwebs and to their eventual fate in stabilized organic-mineral complexes.

  11. A porewater-based stable isotope approach for the investigation of subsurface hydrological processes

    NASA Astrophysics Data System (ADS)

    Garvelmann, J.; Külls, C.; Weiler, M.

    2012-02-01

    Predicting and understanding subsurface flowpaths is still a crucial issue in hydrological research. We present an experimental approach to reveal present and past subsurface flowpaths of water in the unsaturated and saturated zone. Two hillslopes in a humid mountainous catchment have been investigated. The H2O(liquid) - H2O(vapor) equilibration laser spectroscopy method was used to obtain high resolution δ2H vertical depth profiles of pore water at various points along two fall lines of a pasture hillslope in the southern Black Forest, Germany. The Porewater-based Stable Isotope Profile (PSIP) approach was developed to use the integrated information of several vertical depth profiles of deuterium along transects at the hillslope. Different shapes of depth profiles were observed in relation to hillslope position. The statistical variability (inter-quartile range and standard deviation) of each profile was used to characterize different types of depth profiles. The profiles upslope or with a weak affinity for saturation as indicated by a low topographic wetness index preserve the isotopic input signal by precipitation with a distinct seasonal variability. These observations indicate mainly vertical movement of soil water in the upper part of the hillslope before sampling. The profiles downslope or at locations with a strong affinity for saturation do not show a similar seasonal isotopic signal. The input signal is erased in the foothills and a large proportion of pore water samples are close to the isotopic values of δ2H in streamwater during base flow conditions indicating the importance of the groundwater component in the catchment. Near the stream indications for efficient mixing of water from lateral subsurface flow paths with vertical percolation are found.

  12. A porewater - based stable isotope approach for the investigation of subsurface hydrological processes

    NASA Astrophysics Data System (ADS)

    Garvelmann, J.; Külls, C.; Weiler, M.

    2011-10-01

    Predicting and understanding subsurface flowpaths is still a crucial issue in hydrological research. We present an experimental approach to reveal present and past subsurface flowpaths of water in the unsaturated and saturated zone. Two hillslopes in a humid moutainous catchment have been investigated. The H2O(liquid) - H2O(vapor) equilibration laser spectroscopy method was used to obtain high resolution δ2H vertical depth profiles of porewater at various points along a fall line of a pasture hillslope in the southern Black Forest, Germany. The Porewater Stable Isotope Profile (PSIP) approach was developed to use the integrated information of several vertical depth profiles of deuterium along two transects at the hillslopes. Different shapes of depth profiles were observed in relation to hillslope position. The statistical variability (inter-quartile range and standard deviation) of each profile was used to characterize different types of depth profiles. The profiles upslope or with a weak affinity for saturation as indicated by a low topographic wetness index preserve the isotopic input signal by precipitation with a distinct seasonal variability. These observations indicate mainly vertical movement of soil water in the upper part of the hillslope before sampling. The profiles downslope or at locations with a strong affinity for saturation do not show a similar seasonal isotopic signal. The input signal is erased in the foothills and a large proportion of pore water samples are close to the isotopic values of δ2H in stream water during base flow. Near the stream indications for efficient mixing of water from lateral subsurface flow paths with vertical percolation are found.

  13. The suitability of the dual isotope approach (δ13C and δ18O) in tree ring studies

    NASA Astrophysics Data System (ADS)

    Siegwolf, Rolf; Saurer, Matthias

    2016-04-01

    The use of stable isotopes, complementary to tree ring width data in tree ring research has proven to be a powerful tool in studying the impact of environmental parameters on tree physiology and growth. These three proxies are thus instrumental for climate reconstruction and improve the understanding of underlying causes of growth changes. In various cases, however, their use suggests non-plausible interpretations. Often the use of one isotope alone does not allow the detection of such "erroneous isotope responses". A careful analysis of these deviating results shows that either the validity of the carbon isotope discrimination concept is no longer true (Farquhar et al. 1982) or the assumptions for the leaf water enrichment model (Cernusak et al., 2003) are violated and thus both fractionation models are not applicable. In this presentation we discuss such cases when the known fractionation concepts fail and do not allow a correct interpretation of the isotope data. With the help of the dual isotope approach (Scheidegger et al.; 2000) it is demonstrated, how to detect and uncover the causes for such anomalous isotope data. The fractionation concepts and their combinations before the background of CO2 and H2O gas exchange are briefly explained and the specific use of the dual isotope approach for tree ring data analyses and interpretations are demonstrated. References: Cernusak, L. A., Arthur, D. J., Pate, J. S. and Farquhar, G. D.: Water relations link carbon and oxygen isotope discrimination to phloem sap sugar concentration in Eucalyptus globules, Plant Physiol., 131, 1544-1554, 2003. Farquhar, G. D., O'Leary, M. H. and Berry, J. A.: On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves, Aust. J. Plant Physiol., 9, 121-137, 1982. Scheidegger, Y., Saurer, M., Bahn, M. and Siegwolf, R.: Linking stable oxygen and carbon isotopes with stomatal conductance and photosynthetic capacity: A conceptual model

  14. Dietary Plasticity of Generalist and Specialist Ungulates in the Namibian Desert: A Stable Isotopes Approach

    PubMed Central

    Lehmann, David; Mfune, John Kazgeba Elijah; Gewers, Erick; Cloete, Johann; Brain, Conrad; Voigt, Christian Claus

    2013-01-01

    Desert ungulates live in adverse ecosystems that are particularly sensitive to degradation and global climate change. Here, we asked how two ungulate species with contrasting feeding habits, grazing gemsbok (Oryx g. gazella) and browsing springbok (Antidorcas marsupialis), respond to an increase in food availability during a pronounced rain period. We used a stable isotope approach to delineate the feeding habits of these two ungulates in the arid Kunene Region of Namibia. Our nineteen months field investigation included two time periods of drought when food availability for ungulates was lowest and an intermediate period with extreme, unusual rainfalls. We documented thirteen isotopically distinct food sources in the isotopic space of the study area. Our results indicated a relatively high dietary plasticity of gemsbok, which fed on a mixture of plants, including more than 30% of C3 plants during drought periods, but almost exclusively on C4 and CAM plant types when food was plentiful. During drought periods, the inferred gemsbok diets also consisted of up to 25% of Euphorbia damarana; an endemic CAM plant that is rich in toxic secondary plant compounds. In contrast, springbok were generalists, feeding on a higher proportion of C3 than C4/CAM plants, irrespective of environmental conditions. Our results illustrate two dietary strategies in gemsbok and springbok which enable them to survive and coexist in the hostile Kunene arid ecosystem. PMID:23977249

  15. Alternative approach to post column online isotope dilution ICP-MS.

    PubMed

    Swart, Claudia; Rienitz, Olaf; Schiel, Detlef

    2011-02-15

    An alternative post column online double isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS) method was developed. The resulting equation allows a straightforward calculation of the mass concentration of the analyte in the sample from the measured isotope ratio chromatogram. The use of a balance to determine and monitor the mass flow of the spike and a solution of the species under investigation as the reference are the two core components of this new method. Changes in the viscosity of the system eluent-analyte-spike will not affect the results due to the direct determination of the mass flow rate. The use of the species under investigation as the reference makes the method independent of the injected volume. To simplify matters, the integration of the isotope ratio chromatogram was done with Excel using Simpson's rule instead of sophisticated programs for transformation and integration. The advantages of the new approach were demonstrated with the help of the determination of selenomethionine in the selenized yeast reference material SELM-1 with liquid chromatography coupled to ICP-MS (HPLC ID-ICP-MS) applying the new online double IDMS method.

  16. Projectile fragmentation of 40,48Ca and isotopic scaling in a transport approach

    NASA Astrophysics Data System (ADS)

    Mikhailova, T. I.; Erdemchimeg, B.; Artukh, A. G.; Di Toro, M.; Wolter, H. H.

    2016-07-01

    We investigate theoretically projectile fragmentation in reactions of 40,48Ca on 9Be and 181Ta targets using a Boltzmann-type transport approach, which is supplemented by a statistical decay code to describe the de-excitation of the hot primary fragments. We determine the thermodynamical properties of the primary fragments and calculate the isotope distributions of the cold final fragments. These describe the data reasonably well. For the pairs of projectiles with different isotopic content we analyze the isotopic scaling (or isoscaling) of the final fragment distributions, which has been used to extract the symmetry energy of the primary source. The calculation exhibits isoscaling behavior for the total yields as do the experiments. We also perform an impact-parameter-dependent isoscaling analysis in view of the fact that the primary systems at different impact parameters have very different properties. Then the isoscaling behavior is less stringent, which we can attribute to specific structure effects of the 40,48Ca pair. The symmetry energy determined in this way depends on these structure effects.

  17. Carbon Biogeochemistry: A Stable Isotope Approach to Trophic Dynamics in an Indian Coastal Ecosystem

    NASA Astrophysics Data System (ADS)

    Mathukumalli, B.; Alagappan, R.

    2005-12-01

    Stable isotope(δ13C & δ15N) approach was applied to understand carbon biogeochemistry and trophic dynamics in an Indian coastal mangrove wetland. The δ13C and δ15N values of potential nutrient sources (mangrove plant leaves, lichen, sediment and suspended material) and in seven species of consumers (invertebrates) were measured. The value of δ13C and δ15N isotopes of different potential nutrient sources and the consumers determine the sources of nutrients for the invertebrate consumer community of the mangrove. There is a significant variation in the stable carbon in the nutrient sources; however, δ15N signatures were not significantly different among the different potential nutrient sources. Organic matter in the sediments under the mangrove vegetation was characterized by relatively negatively fractionated and moderately high C:N ratios, indicating that mangrove derived organic matter was the principal diet source for the invertebrate consumer communities in the mangrove ecosystem. Invertebrates in the mangrove showed a wide range of δ13C signatures and are enriched relative to the mangrove leaf stable isotope values. Micro-environmental differences certainly drive the variability in the nutrient sources and consumable nature among the different regions of the ecosystem. Therefore, further research is needed to determine whether carbon assimilation is different from one zone to another.

  18. Dietary plasticity of generalist and specialist ungulates in the Namibian Desert: a stable isotopes approach.

    PubMed

    Lehmann, David; Mfune, John Kazgeba Elijah; Gewers, Erick; Cloete, Johann; Brain, Conrad; Voigt, Christian Claus

    2013-01-01

    Desert ungulates live in adverse ecosystems that are particularly sensitive to degradation and global climate change. Here, we asked how two ungulate species with contrasting feeding habits, grazing gemsbok (Oryx g. gazella) and browsing springbok (Antidorcas marsupialis), respond to an increase in food availability during a pronounced rain period. We used a stable isotope approach to delineate the feeding habits of these two ungulates in the arid Kunene Region of Namibia. Our nineteen months field investigation included two time periods of drought when food availability for ungulates was lowest and an intermediate period with extreme, unusual rainfalls. We documented thirteen isotopically distinct food sources in the isotopic space of the study area. Our results indicated a relatively high dietary plasticity of gemsbok, which fed on a mixture of plants, including more than 30% of C3 plants during drought periods, but almost exclusively on C4 and CAM plant types when food was plentiful. During drought periods, the inferred gemsbok diets also consisted of up to 25% of Euphorbia damarana; an endemic CAM plant that is rich in toxic secondary plant compounds. In contrast, springbok were generalists, feeding on a higher proportion of C3 than C4/CAM plants, irrespective of environmental conditions. Our results illustrate two dietary strategies in gemsbok and springbok which enable them to survive and coexist in the hostile Kunene arid ecosystem. PMID:23977249

  19. Simultaneous detection of forbidden chemical residues in milk using dual-label time-resolved reverse competitive chemiluminescent immunoassay based on amine group functionalized surface.

    PubMed

    Zhang, Dongdong; Tao, Xiaoqi; Jiang, Haiyang; Wen, Kai; Shen, Jianzhong; Cao, Xingyuan

    2014-01-01

    In this study, a sensitive dual-label time-resolved reverse competitive chemiluminescent immunoassay was developed for simultaneous detection of chloramphenicol (CAP) and clenbuterol (CLE) in milk. The strategy was performed based on the distinction of the kinetic characteristics of horseradish peroxidase (HRP) and alkaline phosphatase (ALP) in chemiluminesecence (CL) systems and different orders of magnitude in HRP CL value for CAP and ALP CL value for CLE in the chemiluminescent immunoassay. Capture antibodies were covalently bound to the amine group functionalized chemiluminescent microtiter plate (MTP) for efficient binding of detection antibodies for the enzymes labeled CAP (HRP-CAP) and CLE (ALP-CLE). The CL signals were recorded at different time points by the automatic luminometers with significant distinction in the dynamic curves. When we considered the ALP CL value (about 10(5)) of CLE as background for HRP CL signal value (about 10(7)) of CAP, there was no interaction from ALP CL background of CLE and the differentiation of CAP and CLE can be easily achieved. The 50% inhibition concentration (IC50) values of CAP and CLE in milk samples were 0.00501 µg L(-1) and 0.0128 µg L(-1), with the ranges from 0.0003 µg L(-1) to 0.0912 µg L(-1) and from 0.00385 µg L(-1) to 0.125 µg L(-1), respectively. The developed method is more sensitive and of less duration than the commercial ELISA kits, suitable for simultaneous screening of CAP and CLE.

  20. Occurrence and origin of methane in groundwater in Alberta (Canada): Gas geochemical and isotopic approaches.

    PubMed

    Humez, P; Mayer, B; Ing, J; Nightingale, M; Becker, V; Kingston, A; Akbilgic, O; Taylor, S

    2016-01-15

    To assess potential future impacts on shallow aquifers by leakage of natural gas from unconventional energy resource development it is essential to establish a reliable baseline. Occurrence of methane in shallow groundwater in Alberta between 2006 and 2014 was assessed and was ubiquitous in 186 sampled monitoring wells. Free and dissolved gas sampling and measurement approaches yielded comparable results with low methane concentrations in shallow groundwater, but in 28 samples from 21 wells methane exceeded 10mg/L in dissolved gas and 300,000 ppmv in free gas. Methane concentrations in free and dissolved gas samples were found to increase with well depth and were especially elevated in groundwater obtained from aquifers containing coal seams and shale units. Carbon isotope ratios of methane averaged -69.7 ± 11.1‰ (n=63) in free gas and -65.6 ± 8.9‰ (n=26) in dissolved gas. δ(13)C values were not found to vary with well depth or lithology indicating that methane in Alberta groundwater was derived from a similar source. The low δ(13)C values in concert with average δ(2)HCH4 values of -289 ± 44‰ (n=45) suggest that most methane was of biogenic origin predominantly generated via CO2 reduction. This interpretation is confirmed by dryness parameters typically >500 due to only small amounts of ethane and a lack of propane in most samples. Comparison with mud gas profile carbon isotope data revealed that methane in the investigated shallow groundwater in Alberta is isotopically similar to hydrocarbon gases found in 100-250 meter depths in the WCSB and is currently not sourced from thermogenic hydrocarbon occurrences in deeper portions of the basin. The chemical and isotopic data for methane gas samples obtained from Alberta groundwater provide an excellent baseline against which potential future impact of deeper stray gases on shallow aquifers can be assessed. PMID:26476065

  1. Occurrence and origin of methane in groundwater in Alberta (Canada): Gas geochemical and isotopic approaches.

    PubMed

    Humez, P; Mayer, B; Ing, J; Nightingale, M; Becker, V; Kingston, A; Akbilgic, O; Taylor, S

    2016-01-15

    To assess potential future impacts on shallow aquifers by leakage of natural gas from unconventional energy resource development it is essential to establish a reliable baseline. Occurrence of methane in shallow groundwater in Alberta between 2006 and 2014 was assessed and was ubiquitous in 186 sampled monitoring wells. Free and dissolved gas sampling and measurement approaches yielded comparable results with low methane concentrations in shallow groundwater, but in 28 samples from 21 wells methane exceeded 10mg/L in dissolved gas and 300,000 ppmv in free gas. Methane concentrations in free and dissolved gas samples were found to increase with well depth and were especially elevated in groundwater obtained from aquifers containing coal seams and shale units. Carbon isotope ratios of methane averaged -69.7 ± 11.1‰ (n=63) in free gas and -65.6 ± 8.9‰ (n=26) in dissolved gas. δ(13)C values were not found to vary with well depth or lithology indicating that methane in Alberta groundwater was derived from a similar source. The low δ(13)C values in concert with average δ(2)HCH4 values of -289 ± 44‰ (n=45) suggest that most methane was of biogenic origin predominantly generated via CO2 reduction. This interpretation is confirmed by dryness parameters typically >500 due to only small amounts of ethane and a lack of propane in most samples. Comparison with mud gas profile carbon isotope data revealed that methane in the investigated shallow groundwater in Alberta is isotopically similar to hydrocarbon gases found in 100-250 meter depths in the WCSB and is currently not sourced from thermogenic hydrocarbon occurrences in deeper portions of the basin. The chemical and isotopic data for methane gas samples obtained from Alberta groundwater provide an excellent baseline against which potential future impact of deeper stray gases on shallow aquifers can be assessed.

  2. A Multi-isotope Tracer Approach Linking Land Use With Carbon and Nitrogen Cycling in the San Joaquin River System

    NASA Astrophysics Data System (ADS)

    Young, M. B.; Kendall, C.; Silva, S. R.; Dahlgren, R. A.; Stringfellow, W. T.

    2008-12-01

    The San Joaquin River (SJR) is a large hypereutrophic river located in the Central Valley, California, a major agricultural region. Nutrient subsidies, algae, and other organic material from the San Joaquin River contribute to periods of low dissolved oxygen in the Stockton Deep Water Ship Channel, inhibiting salmon migration. We used a multi-isotope approach to link nitrate and particulate organic matter (POM) to different sources and related land uses. The isotope data was also used to better understand the physical and biological processes controlling the distribution of nitrate and POM throughout the river system. Samples collected from the mainstem SJR and tributaries twice-monthly to monthly between March 2005 and December 2007 were analyzed for nitrate, POM, and water isotopes. There are many land uses surrounding the SJR and its tributaries, including multiple types of agriculture, dairies, wetlands, and urban areas. Samples from SJR tributaries containing both major and minor contributions of wetland discharge generally had distinct nitrate and POM isotope signatures compared to other tributaries. Unique nitrate and POM isotope signatures associated with wetland discharges may reflect anaerobic biological processes occurring in flooded soils. For the mainstem SJR, we applied an isotope mass balance approach using nitrate and water isotopes to calculate the expected downstream isotope values based upon measured inputs from known water sources such as drains and tributaries. Differences between the calculated downstream isotope values and the measured values indicate locations and time periods when either biological processes such as algal uptake, or physical process such as the input of unidentified water sources, significantly altered the isotope signatures of water, POM, or nitrate within the SJR. This research will provide a better understanding of how different land uses affect the delivery of carbon and nitrogen to the SJR, and will provide a better

  3. Determination of the Fe(II)aq-magnetite equilibrium iron isotope fractionation factor using the three-isotope method and a multi-direction approach to equilibrium

    NASA Astrophysics Data System (ADS)

    Frierdich, Andrew J.; Beard, Brian L.; Scherer, Michelle M.; Johnson, Clark M.

    2014-04-01

    Magnetite is ubiquitous in the Earth's crust and its presence in modern marine sediments has been taken as an indicator of biogeochemical Fe cycling. Magnetite is also the most abundant Fe oxide in banded iron formations (BIFs) that have not been subjected to ore-forming alteration. Magnetite is therefore an important target of stable Fe isotope studies, and yet interpretations are currently difficult because of large uncertainties in the equilibrium stable Fe isotope fractionation factors for magnetite relative to fluids and other minerals. In this study, we utilized the three-isotope method (57Fe-56Fe-54Fe) to explore isotopic exchange via an enriched-57Fe tracer, and natural mass-dependent fractionation using 56Fe/54Fe variations, during reaction of aqueous Fe(II) (Fe(II)aq) with magnetite. Importantly, we employed a multi-direction approach to equilibrium by reacting four 57Fe-enriched Fe(II) solutions that had distinct 56Fe/54Fe ratios, which identifies changes in the instantaneous Fe isotope fractionation factor and hence identifies kinetic isotope effects. We find that isotopic exchange can be described by two 56Fe/54Fe fractionations, where an initial rapid exchange (∼66% isotopic mixing within 1 day) involved a relatively small Fe(II)aq-magnetite 56Fe/54Fe fractionation, followed by slower exchange (∼25% isotopic mixing over 50 days) that was associated with a larger Fe(II)aq-magnetite 56Fe/54Fe fractionation; this later fractionation is interpreted to approach isotopic equilibrium between Fe(II)aq and the total magnetite. All four Fe(II) solutions extrapolate to the same final equilibrium 56Fe/54Fe fractionation for Fe(II)aq-magnetite of -1.56±0.20‰ (2σ) at 22 °C. Additional experiments that synthesized magnetite via conversion of ferrihydrite by reaction with aqueous Fe(II) yield final 56Fe/54Fe fractionations that are identical to those of the exchange experiments. Our experimental results agree well with calculated fractionation factors using

  4. The cesium:potassium index of food web structure -- A complementary approach to stable isotope indicators

    SciTech Connect

    Young, D.

    1995-12-31

    Stable isotope shifts with trophic or average feeding level are an important tool in characterizing sampled food webs for biomagnification and other studies. However, spatial and temporal variations in isotope ratios in the environment can introduce uncertainties in interpreting such data. An elemental index, the Cs/K ratio, has proved to be a useful tool in assessing the reliability of the trophic level approach to characterizing marine and estuarine food webs. A major advantage is the constant value of this elemental ratio in seawater. Studies conducted over the last three decades in a variety of aquatic ecosystems generally have yielded consistent results using the Cs/K Index. The mean Trophic Transfer Factor obtained from twelve food web surveys was 2.0 +/- 0.1 (SE), indicating substantial structure for most of the food webs sampled. An empirical technique, termed the Exponential Biomagnification Model, was developed to simplify the observed variation of Cs/K with Trophic Level Assignment. This approach has proved useful in assessing sampled food webs with non-integer Trophic Level Assignments, and obtaining average Trophic Transfer Factors for the Cs/K ratio and corresponding tissue concentrations of environmental contaminants.

  5. Identification of the nitrate contamination sources of the Brusselian sands groundwater body (Belgium) using a dual-isotope approach

    NASA Astrophysics Data System (ADS)

    Mattern, Samuel; Vanclooster, Marnik

    2010-05-01

    Knowledge of the groundwater pollution source is of primary importance to define appropriate remediation strategies. Yet, the identification of the contamination sources remains a complicated task. A dual isotope approach has been used to provide information for tracing sources of nitrate in water. In this study, we used the naturally occurring stable isotopic composition of groundwater nitrate (1) to evaluate the origin of nitrate in the Brussels sands aquifer (Belgium) and (2) to study the temporal dynamics of the isotope signature of groundwater nitrate in this region. Potential N sources sampled in the region, including e.g. ammonium and nitrate mineral fertilizers, sewage and rain, had isotopic signatures that fell within the corresponding typical ranges found in literature. Some of them however deviated from the isotopic ranges corresponding to typical N sources, illustrating the impact of processes affecting the isotopic signature of the nitrate sources. During a pluri-annual sampling campaign, groundwater samples were collected at 10 moments between June 2007 and February of 2009 over 9 monitoring stations located in the western part of the study area. The isotopic data time series suggest that, most of the time, N applied on the soil has been cycled in the soil by micro-organisms before leaching to the groundwater, while the isotopic data and the high nitrate concentrations strongly suggests that nitrate of the groundwater sampled in January 2008 principally originates from mineral fertilizers. The isotopic data measured at some of the 114 monitoring stations across the study area strongly suggests that the sources of nitrate are mineral fertilizers used in agriculture and golf courses, manure leaching from unprotected stockpiles in farms, domestic gardening practices, cesspools and probably cemeteries. Isotopic data are particularly helpful when associated with other information like historical data about monitoring stations, land use, chemical parameters

  6. Xyloglucan undergoes interpolymeric transglycosylation during binding to the plant cell wall in vivo: evidence from 13C/3H dual labelling and isopycnic centrifugation in caesium trifluoroacetate.

    PubMed Central

    Thompson, J E; Smith, R C; Fry, S C

    1997-01-01

    Xyloglucan from the walls of Rosa cells that had been cultured on [12C]- or [13C]-glucose formed bands in caesium trifluoroacetate with mean buoyant densities of 1.575 or 1.616 g/ml respectively. Incubation of a mixture of [13C,3H]xyloglucan and [12C,1H]xyloglucan in the presence of xyloglucan endotransglycosylase (XET) activity caused the mean buoyant density of the radioactive material to decrease, indicating that interpolymeric transglycosylation could be detected in vitro. We used two 13C/3H-dual-labelling protocols to look for interpolymeric transglycosylation in vivo. In protocol A, [13C]glucose-grown Rosa cells were transferred into [12C]glucose medium 6 h after a approximately 2 h pulse of l-[1-3H]arabinose (which radiolabels the xylose residues of xyloglucan). The mean buoyant density of the wall-bound [3H]xyloglucan decreased during the following 7 days in culture. This indicates that, during or after the wall-binding of newly synthesized [12C,1H]xyloglucan, it became covalently attached to previously wall-bound [13C, 3H]xyloglucan. In protocol B, [12C]glycerol- or [12C]glucose-grown Rosa cells were transferred into [13C]glucose medium, 20 or 60 min before a approximately 2 h pulse of [3H]arabinose. The buoyant density of the earliest wall-bound [3H]xyloglucan showed that it had a 12C/13C ratio of approximately 1:1. This indicates that, during (or, implausibly, before) wall-binding, the newly synthesized [13C, 3H]xyloglucan became covalently attached to previously synthesized [12C]xyloglucan. During the following 7 days in culture, the mean buoyant density of the [3H]xyloglucan increased, showing that later-synthesized [13C,1H]xyloglucan can be covalently attached to previously wall-bound [12C,13C,3H]xyloglucan. The only known mechanism by which segments of xyloglucans could become covalently attached to each other in the cell wall is by interpolymeric transglycosylation catalysed by XET. We conclude that XET-catalysed interpolymeric transglycosylation

  7. Using micro-isotopic approaches to evaluate the origin and emplacement mechanism of the Basement Sill, Dry Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    Davidson, J. P.; Jerram, D.; Petford, N.; Marsh, B.

    2005-12-01

    Isotopic fingerprinting of mineral phases in volcanic rocks has been successfully employed recently to track magma evolution and to identify populations from different sources. Integration of this approach with textural characterisation allows chemical evolution to be integrated with physical changes (growth, nucleation, mixing). In plutonic rocks this approach has been shown to be valid, despite the potential for isotopic re-equilibration during more protracted cooling than volcanic rocks. In fact, the degree of isotopic reequilibration can be used to constrain the cooling rate of the rock, which, in turn, relates to the emplacement history. At the Rum layered mafic intrusion, NW Scotland, isotopically distinct plagioclase cores and rims suggest relatively rapid cooling (at the scale of an individual layer) of the order 0.1°C per year, consistent with sill-like emplacement. The origin of isotopic variation is consistent with growth from a progressively contaminated magma prior to transport and deposition. The Basement Sill of the Dry Valleys Complex, Antarctica, contains an opx-rich tongue claimed to be emplaced as a crystal mush into a crystal-poor magmatic envelope. Given the broadly similar dimensions and compositions of the Rum Intrusion and Basement Sill we expect to be able to use micro-isotopic analyses of cumulus plagioclase crystals in the opx tongue to a) determine whether the magmatic source is the same as the rest of the sill, b) constrain the effects of contamination during crystal growth and emplacement and c) constrain cooling pathways

  8. The oxygen-18 isotope approach for measuring aquatic metabolism in high-productivity waters

    USGS Publications Warehouse

    Tobias, C.R.; Böhlke, J.K.; Harvey, J.W.

    2007-01-01

    We examined the utility of ??18O2 measurements in estimating gross primary production (P), community respiration (R), and net metabolism (P:R) through diel cycles in a productive agricultural stream located in the midwestern U.S.A. Large diel swings in O2 (??200 ??mol L-1) were accompanied by large diel variation in ??18O2 (??10???). Simultaneous gas transfer measurements and laboratory-derived isotopic fractionation factors for O2 during respiration (??r) were used in conjunction with the diel monitoring of O2 and ??18O2 to calculate P, R, and P:R using three independent isotope-based methods. These estimates were compared to each other and against the traditional "open-channel diel O2-change" technique that lacked ??18O2. A principal advantage of the ??18O2 measurements was quantification of diel variation in R, which increased by up to 30% during the day, and the diel pattern in R was variable and not necessarily predictable from assumed temperature effects on R. The P, R, and P:R estimates calculated using the isotope-based approaches showed high sensitivity to the assumed system fractionation factor (??r). The optimum modeled ??r values (0.986-0.989) were roughly consistent with the laboratory-derived values, but larger (i.e., less fractionation) than ??r values typically reported for enzyme-limited respiration in open water environments. Because of large diel variation in O2, P:R could not be estimated by directly applying the typical steady-state solution to the O2 and 18O-O2 mass balance equations in the absence of gas transfer data. Instead, our results indicate that a modified steady-state solution (the daily mean value approach) could be used with time-averaged O2 and ??18O2 measurements to calculate P:R independent of gas transfer. This approach was applicable under specifically defined, net heterotrophic conditions. The diel cycle of increasing daytime R and decreasing nighttime R was only partially explained by temperature variation, but could be

  9. Estimating ground-water inflow to lakes in central Florida using the isotope mass-balance approach

    USGS Publications Warehouse

    Sacks, Laura A.

    2002-01-01

    The isotope mass-balance approach was used to estimate ground-water inflow to 81 lakes in the central highlands and coastal lowlands of central Florida. The study area is characterized by a subtropical climate and numerous lakes in a mantled karst terrain. Ground-water inflow was computed using both steady-state and transient formulations of the isotope mass-balance equation. More detailed data were collected from two study lakes, including climatic, hydrologic, and isotopic (hydrogen and oxygen isotope ratio) data. For one of these lakes (Lake Starr), ground-water inflow was independently computed from a water-budget study. Climatic and isotopic data collected from the two lakes were similar even though they were in different physiographic settings about 60 miles apart. Isotopic data from all of the study lakes plotted on an evaporation trend line, which had a very similar slope to the theoretical slope computed for Lake Starr. These similarities suggest that data collected from the detailed study lakes can be extrapolated to the rest of the study area. Ground-water inflow computed using the isotope mass-balance approach ranged from 0 to more than 260 inches per year (or 0 to more than 80 percent of total inflows). Steady-state and transient estimates of ground-water inflow were very similar. Computed ground-water inflow was most sensitive to uncertainty in variables used to calculate the isotopic composition of lake evaporate (isotopic compositions of lake water and atmospheric moisture and climatic variables). Transient results were particularly sensitive to changes in the isotopic composition of lake water. Uncertainty in ground-water inflow results is considerably less for lakes with higher ground-water inflow than for lakes with lower ground-water inflow. Because of these uncertainties, the isotope mass-balance approach is better used to distinguish whether ground-water inflow quantities fall within certain ranges of values, rather than for precise

  10. A quantitative approach to combine sources in stable isotope mixing models

    EPA Science Inventory

    Stable isotope mixing models, used to estimate source contributions to a mixture, typically yield highly uncertain estimates when there are many sources and relatively few isotope elements. Previously, ecologists have either accepted the uncertain contribution estimates for indiv...

  11. A Combined Stable Isotope And Machine Learning Approach To Quantify And Classify Of Nitrate Pollution Sources

    NASA Astrophysics Data System (ADS)

    Boeckx, P. F.; Xue, D.; De Baets, B.

    2011-12-01

    Stable isotope analyses of NO3- (δ15N and δ18O) are widely used to determine the sources of nitrate pollution in water. The objective of our study was (1) to quantify NO3- sources in surface water and to classify surface waters in NO3- pollution classes via a combined stable isotope and machine learning approach; and (2) to assess a decision tree model with physicochemical data for retrieving the latter classification. A logical approach has been followed: (1) 2-year monthly sampling of 30 sampling points from different river basins in Belgium, which were classified into 5 different NO3- pollution classes using experts knowledge (Agriculture (A), Agriculture with groundwater compensation (AGC), Combination of agriculture and horticulture (AH), Greenhouses in an agricultural area (G) and Households (H)); (2) estimating proportional NO3- source contribution per NO3- pollution class by applying a Bayesian isotopic mixing model (SIAR) for measured isotopic data of NO3-; (3) re-classifying the 30 sampling points into NO3- pollution classes via a k-means clustering of the SIAR outputs; and (4) building a decision tree model using physicochemical data to retrieve expert knowledge and k-means clustering classification. SIAR successfully estimated proportional contribution ranges of five potential NO3- sources: NO3- in precipitation, NO3- in fertilizer, NH4+ in fertilizer and precipitation, manure and sewage and soil N. For classes A, AGC, AH and H in winter manure and sewage were major (40 - 60%), NO3- in precipitation minor (< 10%), and the other three sources intermediate (10 - 30%) sources. For class G in winter manure and sewage was a dominant source (50%) and the other four sources contributed in an equal range (10 - 20%). The proportional source contributions shifted in summer. Manure and sewage was the dominant source (30 - 40%) for classes A and AH. For class G the source contributions of manure and sewage and NO3- in precipitation were dominant (30% each) and

  12. Estimating phreatic evaporation in irrigated areas using a stable isotope approach

    NASA Astrophysics Data System (ADS)

    Barthold, F. K.; Umirzakov, G.; Schneider, K.; Stulina, G.; Frede, H.; Breuer, L.

    2011-12-01

    Central Asia is characterized by continental arid climate conditions. Mean annual precipitation is 170 mm with a potential evapotranspiration rate of 1200 mm/a. In addition, many regions are affected by a non-sustainable use of the water resources. 90% of the water resources are used for irrigation purposes to grow e.g. cotton and wheat, especially in Uzbekistan. Large amounts of water are needed for cotton growth. Not only does the plant itself require large amounts of water but a substantial part of the water use is ascribed to the inefficient irrigation system and management. The irrigation infrastructure is old and not maintained well and irrigation management is inadequate. Groundwater level rise has been observed in irrigated areas as a result of the inefficient irrigation practices. Capillary raised groundwater is particularly prone to evaporation as it gets closer to the soil surface. The general objective of this study is to quantify the amount of groundwater (or phreatic) evaporation that is due to groundwater table rise on irrigated fields. In this study, we present an approach where we are using stable isotopes of water to estimate phreatic evaporation on irrigated fields. Our specific objective is to estimate phreatic evaporation (Ep) in relation to the groundwater level and varying soil types (sandy, loamy and clay loamy). We chose a stable water isotopes approach to estimate Ep. For this purpose, soil samples along a depth profile were sampled on sites with different groundwater levels and soil types. Samples were taken in 10 cm increments down to the groundwater level. Soil water was extracted using a cryogenic vacuum distillation and the extracted soil water was analyzed for its composition of stable water isotopes, δD and δ18O, using a Liquid Water Isotope Analyzer (Los Gatos Research, Inc.). Ep was calculated by fitting an exponential function to the experimental isotope soil profile. Our results show that in sandy and loamy soils, enrichment

  13. Nitrogen loads to estuaries from waste water plumes: Modeling and isotopic approaches

    USGS Publications Warehouse

    Kroeger, K.D.; Cole, Marci L.; York, J.K.; Valiela, I.

    2006-01-01

    We developed, and applied in two sites, novel methods to measure ground water-borne nitrogen loads to receiving estuaries from plumes resulting from land disposal of waste water treatment plant (WWTP) effluent. In addition, we quantified nitrogen losses from WWTP effluent during transport through watersheds. WWTP load to receiving water was estimated as the difference between total measured ground water-transported nitrogen load and modeled load from major nitrogen sources other than the WWTP. To test estimated WWTP loads, we applied two additional methods. First, we quantified total annual waste water nitrogen load from watersheds based on nitrogen stable isotopic signatures of primary producers in receiving water. Second, we used published data on ground water nitrogen concentrations in an array of wells to estimate dimensions of the plume and quantify the annual mass of nitrogen transported within the plume. Loss of nitrogen during transport through the watershed was estimated as the difference between the annual mass of nitrogen applied to watersheds as treatment plant effluent and the estimated nitrogen load reaching receiving water. In one plume, we corroborated our estimated nitrogen loss in watersheds using data from multiple-level sampling wells to calculate the loss of nitrogen relative to a conservative tracer. The results suggest that nitrogen from the plumes is discharging to the estuaries but that substantial nitrogen loss occurs during transport through the watersheds. The measured vs. modeled and stable isotopic approaches, in comparison to the plume mapping approach, may more reliably quantify ground water-transported WWTP loads to estuaries. Copyright ?? 2005 National Ground Water Association.

  14. Conformational effect of dicyclo-hexano-18-crown-6 on isotopic fractionation of zinc: DFT approach

    SciTech Connect

    Boda, A.; Singha Deb, A. K.; Ali, Sk. M.; Shenoy, K. T.; Ghosh, S. K.

    2014-04-24

    Generalized gradient approximated BP86 density functional employing triple zeta valence plus polarization (TZVP) basis set has been used to compute the reduced partition function ratio and isotopic separation factor for zinc isotopes. The isotopic separation factor was found to be in good agreement with the experimental results. The isotopic separation factor was found to depend on the conformation of the crown ether ligand. The trans-trans conformation shows the highest fractionation compared to cis-cis conformer. The present theoretical results can thus be used to plan the isotope separation experiments.

  15. Identifying diffused nitrate sources in a stream in an agricultural field using a dual isotopic approach.

    PubMed

    Ding, Jingtao; Xi, Beidou; Gao, Rutai; He, Liansheng; Liu, Hongliang; Dai, Xuanli; Yu, Yijun

    2014-06-15

    Nitrate (NO3(-)) pollution is a severe problem in aquatic systems in Taihu Lake Basin in China. A dual isotope approach (δ(15)NNO3(-) and δ(18)ONO3(-)) was applied to identify diffused NO3(-) inputs in a stream in an agricultural field at the basin in 2013. The site-specific isotopic characteristics of five NO3(-) sources (atmospheric deposition, AD; NO3(-) derived from soil organic matter nitrification, NS; NO3(-) derived from chemical fertilizer nitrification, NF; groundwater, GW; and manure and sewage, M&S) were identified. NO3(-) concentrations in the stream during the rainy season [mean±standard deviation (SD)=2.5±0.4mg/L] were lower than those during the dry season (mean±SD=4.0±0.5mg/L), whereas the δ(18)ONO3(-) values during the rainy season (mean±SD=+12.3±3.6‰) were higher than those during the dry season (mean±SD=+0.9±1.9‰). Both chemical and isotopic characteristics indicated that mixing with atmospheric NO3(-) resulted in the high δ(18)O values during the rainy season, whereas NS and M&S were the dominant NO3(-) sources during the dry season. A Bayesian model was used to determine the contribution of each NO3(-) source to total stream NO3(-). Results showed that reduced N nitrification in soil zones (including soil organic matter and fertilizer) was the main NO3(-) source throughout the year. M&S contributed more NO3(-) during the dry season (22.4%) than during the rainy season (17.8%). AD generated substantial amounts of NO3(-) in May (18.4%), June (29.8%), and July (24.5%). With the assessment of temporal variation of diffused NO3(-) sources in agricultural field, improved agricultural management practices can be implemented to protect the water resource and avoid further water quality deterioration in Taihu Lake Basin. PMID:24686140

  16. Novel Approach for High-Throughput Metabolic Screening of Whole Plants by Stable Isotopes.

    PubMed

    Dersch, Lisa Maria; Beckers, Veronique; Rasch, Detlev; Melzer, Guido; Bolten, Christoph; Kiep, Katina; Becker, Horst; Bläsing, Oliver Ernst; Fuchs, Regine; Ehrhardt, Thomas; Wittmann, Christoph

    2016-05-01

    Here, we demonstrate whole-plant metabolic profiling by stable isotope labeling and combustion isotope-ratio mass spectrometry for precise quantification of assimilation, translocation, and molecular reallocation of (13)CO2 and (15)NH4NO3 The technology was applied to rice (Oryza sativa) plants at different growth stages. For adult plants, (13)CO2 labeling revealed enhanced carbon assimilation of the flag leaf from flowering to late grain-filling stage, linked to efficient translocation into the panicle. Simultaneous (13)CO2 and (15)NH4NO3 labeling with hydroponically grown seedlings was used to quantify the relative distribution of carbon and nitrogen. Two hours after labeling, assimilated carbon was mainly retained in the shoot (69%), whereas 7% entered the root and 24% was respired. Nitrogen, taken up via the root, was largely translocated into the shoot (85%). Salt-stressed seedlings showed decreased uptake and translocation of nitrogen (69%), whereas carbon metabolism was unaffected. Coupled to a gas chromatograph, labeling analysis provided enrichment of proteinogenic amino acids. This revealed significant protein synthesis in the panicle of adult plants, whereas protein biosynthesis in adult leaves was 8-fold lower than that in seedling shoots. Generally, amino acid enrichment was similar among biosynthetic families and allowed us to infer labeling dynamics of their precursors. On this basis, early and strong (13)C enrichment of Embden-Meyerhof-Parnas pathway and pentose phosphate pathway intermediates indicated high activity of these routes. Applied to mode-of-action analysis of herbicides, the approach showed severe disturbance in the synthesis of branched-chain amino acids upon treatment with imazapyr. The established technology displays a breakthrough for quantitative high-throughput plant metabolic phenotyping.

  17. Kinetic oxygen isotope effects during dissimilatory sulfate reduction: A combined theoretical and experimental approach

    NASA Astrophysics Data System (ADS)

    Turchyn, Alexandra V.; Brüchert, Volker; Lyons, Timothy W.; Engel, Gregory S.; Balci, Nurgul; Schrag, Daniel P.; Brunner, Benjamin

    2010-04-01

    Kinetic isotope effects related to the breaking of chemical bonds drive sulfur isotope fractionation during dissimilatory sulfate reduction (DSR), whereas oxygen isotope fractionation during DSR is dominated by exchange between intercellular sulfur intermediates and water. We use a simplified biochemical model for DSR to explore how a kinetic oxygen isotope effect may be expressed. We then explore these relationships in light of evolving sulfur and oxygen isotope compositions (δ 34S SO4 and δ 18O SO4) during batch culture growth of twelve strains of sulfate-reducing bacteria. Cultured under conditions to optimize growth and with identical δ 18O H2O and initial δ 18O SO4, all strains show 34S enrichment, whereas only six strains show significant 18O enrichment. The remaining six show no (or minimal) change in δ 18O SO4 over the growth of the bacteria. We use these experimental and theoretical results to address three questions: (i) which sulfur intermediates exchange oxygen isotopes with water, (ii) what is the kinetic oxygen isotope effect related to the reduction of adenosine phosphosulfate (APS) to sulfite (SO 32-), (iii) does a kinetic oxygen isotope effect impact the apparent oxygen isotope equilibrium values? We conclude that oxygen isotope exchange between water and a sulfur intermediate likely occurs downstream of APS and that our data constrain the kinetic oxygen isotope fractionation for the reduction of APS to sulfite to be smaller than 4‰. This small oxygen isotope effect impacts the apparent oxygen isotope equilibrium as controlled by the extent to which APS reduction is rate-limiting.

  18. Phosphoprotein Isotope-Coded Solid-Phase Tag Approach for Enrichment and Quantitative Analysis of Phosphopeptides from Complex Mixtures

    SciTech Connect

    Qian, Weijun ); Goshe, Michael B.; Camp, David G. ); Yu, Li-Rong ); Tang, Keqi ); Smith, Richard D. )

    2003-10-15

    Many cellular processes are regulated by reversible protein phosphorylation and the ability to identify and quantify phosphoproteins from proteomes is essential for gaining a better understanding of these dynamic cellular processes. However, a sensitive, efficient and global method capable of addressing the phosphoproteome has yet to be developed. Here we describe an improved stable-isotope labeling method using a Phosphoprotein Isotope-coded Solid-phase Tag (PhIST) for isolating and measuring the relative abundance of phosphorylated peptides from complex peptide mixtures resulting from the enzymatic digestion of extracted proteins. The PhIST approach is an extension of the previously reported Phosphoprotein Isotope-coded Affinity Tag (PhIAT)approach developed by our laboratory1-2, where the O-phosphate moiety on phosphoseryl or phosphothreonyl residues were derivatized by hydroxide ion-medated B-elimination followed by the addition of 1,2-ethanedithiol (EDT). Instead of using the biotin affinity tag, peptides containing the EDT moiety were captured and labeled in one step using isotope-coded solid-phase reagents containing either light (12C6, 14N) or heavy (13C6, 15N) stable isotopes. The captured peptides labeled with the isotope-coded tags were released from the solid-phase support by UV photocleavage and analyzed by capillary LC-MS/MS. The efficiency and sensitivity of the PhIST labeling approach for identification of phosphopeptides from mixtures was demonstrated using casein phosphoproteins. Its utility for proteomic applications is demonstrated by the labeling of soluble proteins from human breast cancer cell line.

  19. A stable isotope approach and its application for identifying nitrate source and transformation process in water.

    PubMed

    Xu, Shiguo; Kang, Pingping; Sun, Ya

    2016-01-01

    Nitrate contamination of water is a worldwide environmental problem. Recent studies have demonstrated that the nitrogen (N) and oxygen (O) isotopes of nitrate (NO3(-)) can be used to trace nitrogen dynamics including identifying nitrate sources and nitrogen transformation processes. This paper analyzes the current state of identifying nitrate sources and nitrogen transformation processes using N and O isotopes of nitrate. With regard to nitrate sources, δ(15)N-NO3(-) and δ(18)O-NO3(-) values typically vary between sources, allowing the sources to be isotopically fingerprinted. δ(15)N-NO3(-) is often effective at tracing NO(-)3 sources from areas with different land use. δ(18)O-NO3(-) is more useful to identify NO3(-) from atmospheric sources. Isotopic data can be combined with statistical mixing models to quantify the relative contributions of NO3(-) from multiple delineated sources. With regard to N transformation processes, N and O isotopes of nitrate can be used to decipher the degree of nitrogen transformation by such processes as nitrification, assimilation, and denitrification. In some cases, however, isotopic fractionation may alter the isotopic fingerprint associated with the delineated NO3(-) source(s). This problem may be addressed by combining the N and O isotopic data with other types of, including the concentration of selected conservative elements, e.g., chloride (Cl(-)), boron isotope (δ(11)B), and sulfur isotope (δ(35)S) data. Future studies should focus on improving stable isotope mixing models and furthering our understanding of isotopic fractionation by conducting laboratory and field experiments in different environments.

  20. A stable isotope approach and its application for identifying nitrate source and transformation process in water.

    PubMed

    Xu, Shiguo; Kang, Pingping; Sun, Ya

    2016-01-01

    Nitrate contamination of water is a worldwide environmental problem. Recent studies have demonstrated that the nitrogen (N) and oxygen (O) isotopes of nitrate (NO3(-)) can be used to trace nitrogen dynamics including identifying nitrate sources and nitrogen transformation processes. This paper analyzes the current state of identifying nitrate sources and nitrogen transformation processes using N and O isotopes of nitrate. With regard to nitrate sources, δ(15)N-NO3(-) and δ(18)O-NO3(-) values typically vary between sources, allowing the sources to be isotopically fingerprinted. δ(15)N-NO3(-) is often effective at tracing NO(-)3 sources from areas with different land use. δ(18)O-NO3(-) is more useful to identify NO3(-) from atmospheric sources. Isotopic data can be combined with statistical mixing models to quantify the relative contributions of NO3(-) from multiple delineated sources. With regard to N transformation processes, N and O isotopes of nitrate can be used to decipher the degree of nitrogen transformation by such processes as nitrification, assimilation, and denitrification. In some cases, however, isotopic fractionation may alter the isotopic fingerprint associated with the delineated NO3(-) source(s). This problem may be addressed by combining the N and O isotopic data with other types of, including the concentration of selected conservative elements, e.g., chloride (Cl(-)), boron isotope (δ(11)B), and sulfur isotope (δ(35)S) data. Future studies should focus on improving stable isotope mixing models and furthering our understanding of isotopic fractionation by conducting laboratory and field experiments in different environments. PMID:26541149

  1. Quantifying groundwater dependence of a sub-polar lake cluster in Finland using an isotope mass balance approach

    NASA Astrophysics Data System (ADS)

    Isokangas, E.; Rozanski, K.; Rossi, P. M.; Ronkanen, A.-K.; Kløve, B.

    2015-03-01

    A stable isotope study of 67 kettle lakes and ponds situated on an esker aquifer (90 km2) in northern Finland was carried out to determine the role and extent of groundwater inflow in groundwater-dependent lakes. Distinct seasonal fluctuations in the δ18O and δ2H values of lakes are the result of seasonal ice cover prohibiting evaporation during the winter. An iterative isotope mass balance approach was used to calculate the inflow-to-evaporation ratios (ITOT/E) of all 67 lakes during the summer of 2013 when the isotopic compositions of the lakes were approaching a steady-state. The balance calculations were carried out independently for 2H and 18O data. Since evaporation rates were derived independently of any mass balance considerations, it was possible to determine the total inflow (ITOT) and mean turnover time (MTT) of the lakes. Furthermore, the groundwater seepage rates to all studied lakes were calculated. A quantitative measure was introduced for the dependence of a lake on groundwater (G index) that is defined as the percentage contribution of groundwater inflow to the total inflow of water to the given lake. The G index values of the lakes studied ranged from ca. 39 to 98%, revealing generally large groundwater dependency among the studied lakes. This study shows the effectiveness of applying an isotope mass balance approach to quantify the groundwater reliance of lakes situated in a relatively small area with similar climatic conditions.

  2. Value Assignment of Isotopic Reference Materials - Approaches, Pitfalls and Workarounds based on Experiences from the Avogadro Project

    NASA Astrophysics Data System (ADS)

    Vocke, R.; Rabb, S.; Mann, J.

    2012-04-01

    Isotope ratio measurements and their application to the natural world have undergone profound changes in the past decade. These changes have arisen due to improvements in measurement precision by modern multi-collector instrumentation and also the maturation of powerful ionization sources, specifically those employing inductively coupled plasma (ICP) torches. The latter development has made the entire periodic table a fertile hunting ground for small but significant natural isotopic variations produced by new and novel processes as well as the older and well studied mechanisms. Unfortunately, Isotopic Reference Material (IRM) production by National Metrology Institutes (NMI) has not kept up this these advances. This has necessitated the production and value assignment of working IRMs by the researchers pioneering these advances. This sort of distribution and characterization system leads to problems with long-term availability to the research community as the pioneers move onto other elements and isotopic systems, losing interest in the "old" when tempted by "new" and therefore fundable research opportunities. Furthermore, most value assignments of such IRMs are based on "best measurements" by the original groups and thus represent mass discrimination dependent models of the materials' isotopic signature, a situation that often leads to a proliferation of different values depending on research group or philosophy, a highly confusing and potentially non-constructive situation! We have been working closely with other NMIs (PTB, NRC and NIM) to produce accurate molar mass determinations of the highly pure 28Si being used in the Avogadro Project (an international effort to replace the original kilogram artifact with a procedure and measurement protocol that any technologically advanced nation can use to realize this fundamental SI unit). The basis for the approach was conceived and developed at the PTB (e.g. [1]). Its applicability to accurate and non

  3. Determination of the origin of groundwater nitrate at an air weapons range using the dual isotope approach.

    PubMed

    Bordeleau, Geneviève; Savard, Martine M; Martel, Richard; Ampleman, Guy; Thiboutot, Sonia

    2008-06-01

    Nitrate is one of the most common contaminants in shallow groundwater, and many sources may contribute to the nitrate load within an aquifer. Groundwater nitrate plumes have been detected at several ammunition production sites. However, the presence of multiple potential sources and the lack of existing isotopic data concerning explosive degradation-induced nitrate constitute a limitation when it comes to linking both types of contaminants. On military training ranges, high nitrate concentrations in groundwater were reported for the first time as part of the hydrogeological characterization of the Cold Lake Air Weapons Range (CLAWR), Alberta, Canada. Explosives degradation is thought to be the main source of nitrate contamination at CLAWR, as no other major source is present. Isotopic analyses of N and O in nitrate were performed on groundwater samples from the unconfined and confined aquifers; the dual isotopic analysis approach was used in order to increase the chances of identifying the source of nitrate. The isotopic ratios for the groundwater samples with low nitrate concentration suggested a natural origin with a strong contribution of anthropogenic atmospheric NOx. For the samples with nitrate concentration above the expected background level the isotopic ratios did not correspond to any source documented in the literature. Dissolved RDX samples were degraded in the laboratory and results showed that all reproduced degradation processes released nitrate with a strong fractionation. Laboratory isotopic values for RDX-derived NO(3)(-) produced a trend of high delta(18)O-low delta(15)N to low delta(18)O-high delta(15)N, and groundwater samples with nitrate concentrations above the expected background level appeared along this trend. Our results thus point toward a characteristic field of isotopic ratios for nitrate being derived from the degradation of RDX.

  4. Quantifying groundwater dependence of a sub-polar lake cluster in Finland using an isotope mass balance approach

    NASA Astrophysics Data System (ADS)

    Isokangas, E.; Rozanski, K.; Rossi, P. M.; Ronkanen, A.-K.; Kløve, B.

    2014-08-01

    A stable isotope study of 67 kettle lakes and ponds situated on an esker aquifer (90 km2) in northern Finland was carried out in the summer of 2013 to determine the role of groundwater inflow in groundwater-dependent lakes. Distinct seasonal fluctuations in the δ18O and δ2H values of lakes are the result of seasonal ice cover prohibiting evaporation during the winter. An isotope mass balance approach was used to calculate the inflow-to-evaporation ratios (ITOT/E) of all 67 lakes during the summer of 2013 when the isotopic compositions of the lakes were approaching a steady-state. The normalised relative humidity needed in this approach came from assuming a terminal lake situation for one of the lakes showing the highest isotope enrichment. Since evaporation rates were derived independently of any mass balance considerations, it was possible to determine the total inflow (ITOT) and mean turnover time (MTT) of the lakes. Furthermore, the groundwater seepage rates of those lakes revealing no visible surface inflow were calculated. Here, a quantitative measure was introduced for the dependence of a lake on groundwater (G index) that is defined as the percentage contribution of groundwater inflow to the total inflow of water to the given lake. The G index values of the lakes studied ranged from 27.8-95.0%, revealing large differences in groundwater dependency among the lakes. This study shows the effectiveness of applying an isotope mass balance approach to quantify the groundwater reliance of lakes situated in a relatively small area with similar climatic conditions.

  5. High precision Lu and Hf isotope analyses of both spiked and unspiked samples: A new approach

    NASA Astrophysics Data System (ADS)

    Lapen, Thomas J.; Mahlen, Nancy J.; Johnson, Clark M.; Beard, Brian L.

    2004-01-01

    The functional form of instrumentally produced mass fractionation associated with MC-ICP-MS analysis is not accurately known and therefore cannot be fully corrected by traditional approaches of internal normalization using power, linear, or exponential mass-bias laws. We present a method for robust correction of instrumentally produced mass-fractionation of both spiked and unspiked samples that can be applied to mass analysis of Hf as well as Nd, Sr, Os, etc. Correction of 176Hf/177Hf for unspiked samples follows a traditional approach of internal normalization using an exponential law, followed by normalization to a standard of known composition, such as JMC-475. For spiked samples, standards are used to characterize a linear instrumental mass-bias coefficient; the mass-bias coefficient is defined by the slope of a tie-line between measured and true values of a standard. This approximation results in identical precision and accuracy of measurements for spiked and unspiked samples (±0.005% 2σ, external reproducibility). The effects of the spike on the 176Hf/177Hf ratio and calculation of the molar spike-sample ratio is determined by a closed-form solution modified from the double-spike approach used for Fe isotope analysis by TIMS [Johnson and Beard, 1999]. The measured 176Lu/175Lu ratios are corrected by doping the sample with Er and using the 167Er/166Er ratio to externally normalize the 176Lu/175Lu ratio using an exponential law. Finally, spike-sample equilibration is confirmed for our sample dissolution protocol through analysis of varying physical mixtures of 1 Ga garnet and hornblende, where all the data lie on a mixing-line, within error, on a 176Lu/177Hf-176Hf/177Hf diagram. Precision of 176Lu/177Hf ratios is determined to be ±0.2% (2σ) for standards and for physical mixtures of garnet and hornblende.

  6. Hydrogeochemical, multiple isotopic approaches to investigate seawater mixing of groundwater in volcanic Jeju Island, Korea

    NASA Astrophysics Data System (ADS)

    Koh, E. H.; Kaown, D.; Lee, S. H.; Lee, K. K.

    2014-12-01

    Groundwater is a sole resource for water supply in Jeju Island which is composed of various formations of porous volcanic rocks. Therefore, preservation of the groundwater resource is an essential issue. Due to its geological features of the island, seawater has been intruded landward, mainly in the eastern region, which restricts groundwater use in the area. In the western region, severe nitrate contaminations of groundwater have been occurred by heavily performed agricultural activities, and moreover deterioration of groundwater quality by seawater intrusion has been observed in recent years. In this study, to delineate the mixing process related to seawater intrusion into groundwater from Gosan (western region) and Pyoseon (eastern region) of Jeju Island, hydrogeochemical and multiple isotopic approaches were applied. Also, fractionation ratios of each factors (fresh groundwater, nitrate contaminated groundwater, and seawater) which affect the groundwater quality from the study areas were estimated by using the MIX_PROGRAM. The effect of seawater was observed at the groundwater wells located inland up to 1.5 km from the coast and showed to be enlarged landward during a dry season. The fractionation ratios of seawater had the minor range (0.1~1.2%) for the Pyoseon area and 0.4~3.7% of seawater was mixed with fresh groundwater in the Gosan area. Differences in hydrogeological properties between Gosan and Pyoseon areas made dissimilar occurrences of seawater mixing into groundwater in the island.

  7. An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses-Isotopic Composition Predictions

    SciTech Connect

    Radulescu, Georgeta; Gauld, Ian C; Ilas, Germina; Wagner, John C

    2011-01-01

    The expanded use of burnup credit in the United States (U.S.) for storage and transport casks, particularly in the acceptance of credit for fission products, has been constrained by the availability of experimental fission product data to support code validation. The U.S. Nuclear Regulatory Commission (NRC) staff has noted that the rationale for restricting the Interim Staff Guidance on burnup credit for storage and transportation casks (ISG-8) to actinide-only is based largely on the lack of clear, definitive experiments that can be used to estimate the bias and uncertainty for computational analyses associated with using burnup credit. To address the issues of burnup credit criticality validation, the NRC initiated a project with the Oak Ridge National Laboratory to (1) develop and establish a technically sound validation approach for commercial spent nuclear fuel (SNF) criticality safety evaluations based on best-available data and methods and (2) apply the approach for representative SNF storage and transport configurations/conditions to demonstrate its usage and applicability, as well as to provide reference bias results. The purpose of this paper is to describe the isotopic composition (depletion) validation approach and resulting observations and recommendations. Validation of the criticality calculations is addressed in a companion paper at this conference. For isotopic composition validation, the approach is to determine burnup-dependent bias and uncertainty in the effective neutron multiplication factor (keff) due to bias and uncertainty in isotopic predictions, via comparisons of isotopic composition predictions (calculated) and measured isotopic compositions from destructive radiochemical assay utilizing as much assay data as is available, and a best-estimate Monte Carlo based method. This paper (1) provides a detailed description of the burnup credit isotopic validation approach and its technical bases, (2) describes the application of the approach for

  8. Nekton migration and feeding location in a coastal area - A stable isotope approach

    NASA Astrophysics Data System (ADS)

    Vinagre, C.; Máguas, C.; Cabral, H. N.; Costa, M. J.

    2011-03-01

    Stable isotope analysis was used to investigate nekton movements and feeding location in a coastal area adjacent to a major European river, the Tagus, Portugal. Particulate organic matter isotopic signatures presented a gradient from the river towards the sea. Phytoplankton, zooplankton, polychaetes and the crab, Polybius henslowii, provided evidence of the incorporation of terrestrial organic matter into the lower levels of the food web, reflecting local isotopic signatures. Two fish species reflected the coastal isotopic gradient in δ13C, Diplodus vulgaris and Arnoglossus imperialis and the latter also presented isotopic differerences among the sites for δ15N. Alloteuthis subulata, Trisopterus luscus and Callionymus lyra were isotopicaly distinct among sites for δ15N. An increase of δ15N with length was detected for T. luscus and C. lyra, possibly showing ontogenic trophic level changes. Since A. subulata did not present differences in length and still showed isotopic distinction for δ15N, among areas, it was concluded that local biogeochemical factors may also have an influence. Diplodus bellottii and Dicologlossa cuneata did not reflect any isotopic signature reflecting their wide migration and feeding across the coastal area. Central isotopic ranges, defined as the site mean values for δ13C and δ15N ± 1‰ were determined for each species and site and those deviating from these were considered transient individuals. Central isotopic ranges accounted for 87% of A. imperialis, 80% of A. subulata, 77% of T. luscus, 67% of C. lyra and 50% of D. vulgaris. The number of individuals within each central isotopic range was surprisingly high for an open coastal area and comparable to those of more structured environments.

  9. Palaeoclimate signal recorded by stable isotopes in cave ice: a modeling approach

    NASA Astrophysics Data System (ADS)

    Perşoiu, A.; Bojar, A.-V.

    2012-04-01

    Ice accumulations in caves preserve a large variety of geochemical information as candidate proxies for both past climate and environmental changes, one of the most significant being the stable isotopic composition of the ice. A series of recent studies have targeted oxygen and hydrogen stable isotopes in cave ice as proxies for past air temperatures, but the results are far from being as straightforward as they are in high latitude and altitude glaciers and ice caps. The main problems emerging from these studies are related to the mechanisms of cave ice formation (i.e., freezing of water) and post-formation processes (melting and refreezing), which both alter the original isotopic signal in water. Different methods have been put forward to solve these issues and a fair understanding of the present-day link between stable isotopes in precipitation and cave ice exists now. However, the main issues still lays unsolved: 1) is it possible to extend this link to older ice and thus reconstruct past changes in air temperature?; 2) to what extent are ice dynamics processes modifying the original climatic signal and 3) what is the best method to be used in extracting a climatic signal from stable isotopes in cave ice? To respond to these questions, we have conducted a modeling experiment, in which a theoretical cave ice stable isotope record was constructed using present-day observations on stable isotope behavior in cave ice and ice dynamics, and different methods (presently used for both polar and cave glaciers), were used to reconstruct the original, known, isotopic values. Our results show that it is possible to remove the effects of ice melting and refreezing on stable isotope composition of cave ice, and thus reconstruct the original isotopic signal, and further the climatic one.

  10. Temperature, pressure, and isotope effects on the structure and properties of liquid water: a lattice approach.

    PubMed

    Hakem, Ilhem F; Boussaid, Abdelhak; Benchouk-Taleb, Hafida; Bockstaller, Michael R

    2007-12-14

    We present a lattice model to describe the effect of isotopic replacement, temperature, and pressure changes on the formation of hydrogen bonds in liquid water. The approach builds upon a previously established generalized lattice theory for hydrogen bonded liquids [B. A. Veytsman, J. Phys. Chem. 94, 8499 (1990)], accounts for the binding order of 1/2 in water-water association complexes, and introduces the pressure dependence of the degree of hydrogen bonding (that arises due to differences between the molar volumes of bonded and free water) by considering the number of effective binding sites to be a function of pressure. The predictions are validated using experimental data on the temperature and pressure dependence of the static dielectric constant of liquid water. The model is found to correctly reproduce the experimentally observed decrease of the dielectric constant with increasing temperature without any adjustable parameters and by assuming values for the enthalpy and entropy of hydrogen bond formation as they are determined from the respective experiments. The pressure dependence of the dielectric constant of water is quantitatively predicted up to pressures of 2 kbars and exhibits qualitative agreement at higher pressures. Furthermore, the model suggests a--temperature dependent--decrease of hydrogen bond formation at high pressures. The sensitive dependence of the structure of water on temperature and pressure that is described by the model rationalizes the different solubilization characteristics that have been observed in aqueous systems upon change of temperature and pressure conditions. The simplicity of the presented lattice model might render the approach attractive for designing optimized processing conditions in water-based solutions or the simulation of more complex multicomponent systems.

  11. Estimating ungauged catchment flows from Lake Tana floodplains, Ethiopia: an isotope hydrological approach.

    PubMed

    Kebede, Seifu; Admasu, Girum; Travi, Yves

    2011-03-01

    The isotope balance approach, which used (18)O content of waters, has been used as an independent tool to estimate inflow to Lake Tana of surface water flows from ungauged catchment of Lake Tana (50% of the total area) and evaporative water loss in the vast plains adjoining the lake. Sensitivity analysis has been conducted to investigate the effects of changes in the input parameters on the estimated flux. Surface water inflow from ungauged catchment is determined to be in the order of 1.698×10(9) m(3)a(-1). Unaccounted water loss from the lake has been estimated at 454×10(6) m(3)a(-1) (equivalent to 5% of the total via surface water). Since the lake is water tight to groundwater outflow, the major error introduced into the water balance computation is related to evaporative water loss in water from the flood plains. If drained, the water which is lost to evaporation can be used as an additional water resource for socio-economic development in the region (tourism, agriculture, hydropower, and navigation). Hydrological processes taking place in the vast flood plains of Lake Tana (origin of salinity, groundwater surface water interaction, origin of flood plain waters) have been investigated using isotopes of water and geochemistry as tracers. The salinity of shallow groundwaters in the flood plains is related to dissolution of salts accumulated in sediments covering former evaporation pools and migration of trace salt during recharge. The waters in the flood plains originate from local rainfall and river overflows and the effect of backwater flow from the lake is excluded. Minimum linkage exists between the surface waters in the flood plains and shallow groundwaters in alluvio lacustrine sediments suggesting the disappearance of flood waters following the rainy season, which is related to complete evaporation or drainage than seepage to the subsurface. There is no groundwater outflow from the lake. Inflow of groundwater cannot be ruled out. Discharge of groundwater

  12. Multi-isotope approach: a tool to better constrain both sources and processes affecting NO3 pollution in watersheds

    NASA Astrophysics Data System (ADS)

    Widory, D.

    2006-12-01

    Nitrate is one of the major pollutants of drinking water resources worldwide. Recent European directives reduced inputs from intensive agriculture, but in most places NO3 levels are approaching the potable limit of 50 mg.l-1 in groundwater. Determining the source(s) of contamination in groundwater is an important first step for improving its quality by emission control. It is with this aim that we review here the benefit of using a multi- isotope approach (d15N, d180, d11B and 87Sr/86Sr), in addition to conventional hydrogeological analysis, to both constrain the watersheds hydrology and trace the origin of their NO3 pollution. Watersheds presented here include both fractured bedrock and alluvial (subsurface and deep) hydrogeological contexts. The strontium budget in watersheds is mainly controlled by the water-rock interactions (human inputs usually represents negligible fluxes). With the example of the Allier river (Central France), we show that, even on a very small watershed, the main water flows can usually be determined by the use of the 87Sr/86Sr ratios, thus helping understanding the hydrology controlling pollution processes. The characterisation of the different usual nitrate sources of pollution in groundwater (mineral fertilisers, wastewater and animals manure) shows that they can clearly be discriminated using isotopes. The isotopic composition of the dissolved nitrogen species has been used extensively to better constrain the sources and fate of nitrate in groundwater. The possibility of quantifying both origin and secondary processes affecting N concentrations by means of a single tracer appears more limited however. Nitrogen cannot be considered conservative because it is biologically modified through nitrification and denitrification reactions, both during infiltration of the water and in the groundwater body, causing isotopic fractionation that modifies the d15N-n signatures of the dissolved N species. Discriminating multiple NO3 sources by their N

  13. Source apportionment of methane using a triple isotope approach - Method development and application in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Steinbach, Julia; Holmstrand, Henry; Semiletov, Igor; Shakhova, Natalia; Shcherbakova, Kseniia; Kosmach, Denis; Sapart, Célia J.; Gustafsson, Örjan

    2015-04-01

    We present a method for measurements of the stable and radiocarbon isotope systems of methane in seawater and sediments. The triple isotope characterization of methane is useful in distinguishing different sources and for improving our understanding of biogeochemical processes affecting methane in the water column. D14C-CH4 is an especially powerful addition to stable isotope analyses in distinguishing between thermogenic and biogenic origins of the methane. Such measurements require large sample sizes, due to low natural abundance of the radiocarbon in CH4. Our system for sample collection, methane extraction and purification builds on the approach by Kessler and Reeburgh (Limn. & Ocean. Meth., 2005). An in-field system extracts methane from 30 -120 l water or 1-2 l sediment (depending on the in-situ methane concentration) by purging the samples with Helium to transfer the dissolved methane to the headspace and circulating it through cryogenically cooled absorbent traps where methane is collected. The in-field preparation eliminates the risks of storage and transport of large seawater quantities and subsequent leakage of sample gas as well as ongoing microbial processes and chemical reactions that may alter the sample composition. In the subsequent shore-based treatment, a laboratory system is used to purify and combust the collected CH4 to AMS-amenable CO2. Subsamples from the methane traps are analyzed for stable isotopes and compared to stable isotope measurements directly measured from small water samples taken in parallel, to correct for any potential fractionation occurring during this process. The system has been successfully tested and used on several shorter shipboard expeditions in the Baltic Sea and on a long summer expedition across the Arctic Ocean. Here we present the details of the method and testing, as well as first triple isotope field data from two cruises to the Landsort Deep area in the Central Baltic Sea.

  14. Theoretical and Experimental Approaches to Understanding the Anomalous Distribution of Oxygen Isotopes in the Solar System

    NASA Astrophysics Data System (ADS)

    Dominguez, Gerardo; Christensen, Elizabeth; Boyer, Charisa; Park, Manesseh; Benitez, Ezra; Nunn, Morgan; Thiemens, Mark H.; Jackson, Terri

    2016-06-01

    Decades of careful laboratory analysis of primitive meteorites have revealed an intriguing and unexplained pattern in the distribution of oxygen isotopes in the solar system. With the recent analysis of solar wind oxygen by NASA’s Genesis mission, it appears that the Sun has a distinct oxygen isotopic composition from the terrestrial planets, asteroids, and comets. These differences cannot be explained by mass-dependent diffusion and require a physical-chemical mechanism or mechanisms that separate oxygen isotopes in a non-mass dependent manner.Several hypothesis have been proposed to explain the anomalous distribution. Photochemical self-shielding of CO may explain the anomalous distribution, however, this mechanism has key weaknesses including the requirement of a very fine tuned timescale to explain the isotopic differences between the Sun and bulk of the terrestrial planets. Recently, attention has been directed at understanding specific chemical reactions that occur on interstellar dust grains due to their similarities with non-equilibrium photochemical reactions believed to be responsible for the mass-independent isotopic fractionation patterns observed in Earth’s atmosphere. A specific focus has been directed towards understanding the formation of H2O because some of its precursor (HO2, and O3) are well-known to acquire mass-independent isotopic signatures when formed in the gas-phase.In this presentation, I describe a series of laboratory astrophysical experiments whose goal is to understand the distribution of oxygen isotopes in the solar system and perhaps, by extension, the distribution in other planetary systems. Preliminary results for the isotopic composition of O3 formed at 5K will be presented as well as the first, to our knowledge, measurements of the isotopic composition of H2O (18O/16O, 17O/16O, D/H) formed at 32K. We find that H2O formed in the astrophysical conditions we simulated acquired an anomalous isotopic composition with a triple

  15. Tracing the source of Beijing soil organic carbon: a carbon isotope approach.

    PubMed

    Guo, Qingjun; Strauss, Harald; Chen, Tong-Bin; Zhu, Guangxu; Yang, Jun; Yang, Junxing; Lei, Mei; Zhou, Xiaoyong; Peters, Marc; Xie, Yunfeng; Zhang, Hanzhi; Wei, Rongfei; Wang, Chunyu

    2013-05-01

    Bulk soil organic carbon concentration and isotopic composition characterize its sources and fate, identify the anthropogenic input of organic carbon into the soil, and trace soil carbon turnover. Coal and/or coal combustion products represent the prime anthropogenic input of organic carbon into three soil profiles located in the vicinity of a steel company. Three profiles positioned away from any direct industrial contribution display vertical pattern in soil organic carbon concentration and isotopic composition that resemble more commonly observed downward gradients in soil carbon chemistry and indicate microbial soil carbon turnover. Two additional profiles located outside of the immediate industrial area display vertical carbon isotope profiles between typical of those from industrial and non-industrial areas. Eight soil profiles and their vertical distribution of bulk organic carbon isotopic composition and concentration collected in the Beijing area reveal and distinguish both anthropogenic and natural contributions of carbon to these soils.

  16. Anomalous fluoride concentration in groundwater - is it natural or pollution? A stable isotope approach.

    PubMed

    Marimon, Maria Paula Casagrande; Knöller, Kay; Roisenberg, Ari

    2007-06-01

    Fluoride anomalies (up to 11 mg/l) have been detected in groundwater of the central region of Rio Grande do Sul State, Southern Brazil, in an area where fluorosis is endemic. Two hypotheses are investigated concerning the fluoride origin: lithochemical affiliation from regional rock or contamination by fertilisers application. These hypotheses are discussed based on the stable isotope data of water, nitrate, and sulphate, which indicates that the local precipitation is the main groundwater recharge source. The isotopic composition of groundwater sulphate is similar to that of fertiliser sulphate. However, a conclusive assignment of groundwater sulphate to fertiliser origin is not indicated because further possible sulphate sources fall into the same isotopic range. In contrast, the isotopic composition of dissolved nitrate suggests that there is no direct relationship to the use of NPK fertilisers. Hence, an origin of the high fluoride content in groundwater related to long-term rock-water interactions seems likely.

  17. Dew water effects on leaf water using a stable isotope approach

    NASA Astrophysics Data System (ADS)

    Kim, K.; Lee, X.

    2009-12-01

    The presence of dew is a common meteorological phenomenon in field conditions and takes into account for significant portion of hydrologic processes in terrestrial ecosystems. The isotope composition of leaf water plays an important role in the isotopic water and carbon fluxes between terrestrial plants and the atmosphere. However, the consequence of dew formation in the plant-atmosphere relations has been ignored in many studies. The objective of this study is to improve our understanding of environmental and biological controls on the leaf water in equilibrium with dew water through laboratory experiments. Five species of plants (soybean, corn, sorghum, wheat, cotton) were grown hydroponically with water of a known isotopic content in a greenhouse. On the day of the experiment, they were first moved to ambient environment in full sunlight for at least 6 hr and then into a dark container inside the lab for up to 48 hr in which water vapor isotope ratios, temperature, and humidity were controlled. This arrangement created a step change in the forcing on the plant isotopic exchange. Leaves were sampled prior to the transfer to the dark container and 6 more times every 4 - 12 hr over the experiment. Humidity inside the container was saturated to mimic dew events in field conditions. Water from the leaf samples was extracted by a vacuum line and was analyzed for both δD and δ18O. The dataset will allow us to evaluate leaf water isotopic theories by exploring the transitions of the isotopic ratio of leaf water in response to the step change. Specifically, we are interested in whether the stomatal opening is an effective pathway for gaseous exchange in total darkness and how the transitional behaviors of the isotopic ratio of leaf water differ between the C3 and C4 photosynthesis pathways.

  18. Insights on the marine microbial nitrogen cycle from isotopic approaches to nitrification

    PubMed Central

    Casciotti, Karen L.; Buchwald, Carolyn

    2012-01-01

    The microbial nitrogen (N) cycle involves a variety of redox processes that control the availability and speciation of N in the environment and that are involved with the production of nitrous oxide (N2O), a climatically important greenhouse gas. Isotopic measurements of ammonium (NH+4), nitrite (NO−2), nitrate (NO−3), and N2O can now be used to track the cycling of these compounds and to infer their sources and sinks, which has lead to new and exciting discoveries. For example, dual isotope measurements of NO−3 and NO−2 have shown that there is NO−3 regeneration in the ocean's euphotic zone, as well as in and around oxygen deficient zones (ODZs), indicating that nitrification may play more roles in the ocean's N cycle than generally thought. Likewise, the inverse isotope effect associated with NO−2 oxidation yields unique information about the role of this process in NO−2 cycling in the primary and secondary NO−2 maxima. Finally, isotopic measurements of N2O in the ocean are indicative of an important role for nitrification in its production. These interpretations rely on knowledge of the isotope effects for the underlying microbial processes, in particular ammonia oxidation and nitrite oxidation. Here we review the isotope effects involved with the nitrification process and the insights provided by this information, then provide a prospectus for future work in this area. PMID:23091468

  19. Proper Interpretation of Dissolved Nitrous Oxide Isotopes, Production Pathways, and Emissions Requires a Modelling Approach

    PubMed Central

    Thuss, Simon J.; Venkiteswaran, Jason J.; Schiff, Sherry L.

    2014-01-01

    Stable isotopes (15N and 18O) of the greenhouse gas N2O provide information about the sources and processes leading to N2O production and emission from aquatic ecosystems to the atmosphere. In turn, this describes the fate of nitrogen in the aquatic environment since N2O is an obligate intermediate of denitrification and can be a by-product of nitrification. However, due to exchange with the atmosphere, the values at typical concentrations in aquatic ecosystems differ significantly from both the source of N2O and the N2O emitted to the atmosphere. A dynamic model, SIDNO, was developed to explore the relationship between the isotopic ratios of N2O, N2O source, and the emitted N2O. If the N2O production rate or isotopic ratios vary, then the N2O concentration and isotopic ratios may vary or be constant, not necessarily concomitantly, depending on the synchronicity of production rate and source isotopic ratios. Thus prima facie interpretation of patterns in dissolved N2O concentrations and isotopic ratios is difficult. The dynamic model may be used to correctly interpret diel field data and allows for the estimation of the gas exchange coefficient, N2O production rate, and the production-weighted values of the N2O source in aquatic ecosystems. Combining field data with these modelling efforts allows this critical piece of nitrogen cycling and N2O flux to the atmosphere to be assessed. PMID:24608915

  20. Sediment residence times constrained by uranium-series isotopes: A critical appraisal of the comminution approach

    NASA Astrophysics Data System (ADS)

    Handley, Heather K.; Turner, Simon; Afonso, Juan C.; Dosseto, Anthony; Cohen, Tim

    2013-02-01

    Quantifying the rates of landscape evolution in response to climate change is inhibited by the difficulty of dating the formation of continental detrital sediments. We present uranium isotope data for Cooper Creek palaeochannel sediments from the Lake Eyre Basin in semi-arid South Australia in order to attempt to determine the formation ages and hence residence times of the sediments. To calculate the amount of recoil loss of 234U, a key input parameter used in the comminution approach, we use two suggested methods (weighted geometric and surface area measurement with an incorporated fractal correction) and typical assumed input parameter values found in the literature. The calculated recoil loss factors and comminution ages are highly dependent on the method of recoil loss factor determination used and the chosen assumptions. To appraise the ramifications of the assumptions inherent in the comminution age approach and determine individual and combined comminution age uncertainties associated to each variable, Monte Carlo simulations were conducted for a synthetic sediment sample. Using a reasonable associated uncertainty for each input factor and including variations in the source rock and measured (234U/238U) ratios, the total combined uncertainty on comminution age in our simulation (for both methods of recoil loss factor estimation) can amount to ±220-280 ka. The modelling shows that small changes in assumed input values translate into large effects on absolute comminution age. To improve the accuracy of the technique and provide meaningful absolute comminution ages, much tighter constraints are required on the assumptions for input factors such as the fraction of α-recoil lost 234Th and the initial (234U/238U) ratio of the source material. In order to be able to directly compare calculated comminution ages produced by different research groups, the standardisation of pre-treatment procedures, recoil loss factor estimation and assumed input parameter values

  1. Origins and processes of groundwater salinization in the urban coastal aquifers of Recife (Pernambuco, Brazil): A multi-isotope approach.

    PubMed

    Cary, Lise; Petelet-Giraud, Emmanuelle; Bertrand, Guillaume; Kloppmann, Wolfram; Aquilina, Luc; Martins, Veridiana; Hirata, Ricardo; Montenegro, Suzana; Pauwels, Hélène; Chatton, Eliot; Franzen, Melissa; Aurouet, Axel

    2015-10-15

    In the coastal multilayer aquifer system of a highly urbanized southern city (Recife, Brazil), where groundwaters are affected by salinization, a multi-isotope approach (Sr, B, O, H) was used to investigate the sources and processes of salinization. The high diversity of the geological bodies, built since the Atlantic opening during the Cretaceous, highly constrains the heterogeneity of the groundwater chemistry, e.g. Sr isotope ratios, and needs to be integrated to explain the salinization processes and groundwater pathways. A paleoseawater intrusion, most probably the 120 kyB.P. Pleistocene marine transgression, and cationic exchange are clearly evidenced in the most salinized parts of the Cabo and Beberibe aquifers. All (87)Sr/(86)Sr values are above the past and present-day seawater signatures, meaning that the Sr isotopic signature is altered due to additional Sr inputs from dilution with different freshwaters, and water-rock interactions. Only the Cabo aquifer presents a well-delimitated area of Na-HCO3 water typical of a freshening process. The two deep aquifers also display a broad range of B concentrations and B isotope ratios with values among the highest known to date (63-68.5‰). This suggests multiple sources and processes affecting B behavior, among which mixing with saline water, B sorption on clays and mixing with wastewater. The highly fractionated B isotopic values were explained by infiltration of relatively salty water with B interacting with clays, pointing out the major role played by (palaeo)-channels for the deep Beberibe aquifer recharge. Based on an increase of salinity at the end of the dry season, a present-day seawater intrusion is identified in the surficial Boa Viagem aquifer. Our conceptual model presents a comprehensive understanding of the major groundwater salinization pathways and processes, and should be of benefit for other southern Atlantic coastal aquifers to better address groundwater management issues.

  2. High-resolution analysis of Quaternary calcretes: a coupled stable isotope and micromorphological approach

    NASA Astrophysics Data System (ADS)

    Adamson, Kathryn; Candy, Ian; Whitfield, Liz

    2015-04-01

    Pedogenic calcretes are abundant in arid and semi-arid regions, and they are widely used as proxy records of palaeoclimatic change. Calcrete oxygen (δ18O) and carbon (δ13C) isotopic signatures are indicative of temperature, aridity, or vegetation at the time of calcrete formation. Their microfabrics also reflect carbonate formation mechanisms in response to the prevailing environmental conditions. Many studies have explored calcrete micromorphology or stable isotope composition, but these techniques have not yet been applied simultaneously. This co-analysis is important as it allows us to establish whether calcrete morphology directly reflects environmental change. This study tests the potential of combining these analyses to examine the relationships between calcrete microfabrics, their isotopic signals, and Quaternary climate change. Calcretes from four river terraces of the Rio Alias in southeast Spain have been analysed in detail. On the basis of morphostratigraphic correlation (Maher et al., 2007) and Uranium-series ages (Candy et al., 2005), these span the period from 304 ± 26 ka (MIS 9) to the Holocene. The oldest profiles have therefore been exposed to multiple glacial-interglacial cycles. A total of 37 micromorphological profiles have been used to extract stable oxygen and carbon isotopic indicators from 77 microfacies. The morphological and isotopic complexity of the calcrete profiles increases with progressive age. The oldest samples display multiple calcretisation phases, and their microfabrics have a larger isotopic range than the younger samples. Alpha (non-biogenic) fabrics have higher δ13C and δ18O values than beta (biogenic) fabrics. Strong positive covariance between δ13C and δ18O within all profiles suggests that both isotopes are responding to the same environmental parameter. We suggest that this is relative aridity. The study demonstrates that the detailed co-analysis of calcrete micromorphology and stable isotope signatures allows

  3. Comparison of deterministic and stochastic approaches for isotopic concentration and decay heat uncertainty quantification on elementary fission pulse

    NASA Astrophysics Data System (ADS)

    Lahaye, S.; Huynh, T. D.; Tsilanizara, A.

    2016-03-01

    Uncertainty quantification of interest outputs in nuclear fuel cycle is an important issue for nuclear safety, from nuclear facilities to long term deposits. Most of those outputs are functions of the isotopic vector density which is estimated by fuel cycle codes, such as DARWIN/PEPIN2, MENDEL, ORIGEN or FISPACT. CEA code systems DARWIN/PEPIN2 and MENDEL propagate by two different methods the uncertainty from nuclear data inputs to isotopic concentrations and decay heat. This paper shows comparisons between those two codes on a Uranium-235 thermal fission pulse. Effects of nuclear data evaluation's choice (ENDF/B-VII.1, JEFF-3.1.1 and JENDL-2011) is inspected in this paper. All results show good agreement between both codes and methods, ensuring the reliability of both approaches for a given evaluation.

  4. Multiple taxon multiple locality approach to providing oxygen isotope evidence for warm-blooded theropod dinosaurs

    NASA Astrophysics Data System (ADS)

    Fricke, Henry C.; Rogers, Raymond R.

    2000-09-01

    Oxygen isotope ratios of fossil remains of coexisting taxa from several different localities can be used to help investigate dinosaur thermoregulation. Focusing on the Late Cretaceous, oxygen isotope ratios of crocodile tooth enamel from four separate localities exhibit less of a decrease with latitude than do ratios of tooth enamel from coexisting theropod dinosaurs. A shallower latitudinal gradient for crocodiles is consistent with how oxygen isotope ratios should vary for heterothermic animals having body temperatures coupled with their environments (“cold blooded”), while a steeper gradient for theropods is consistent with how these ratios should vary for homeothermic animals having constant body temperatures independent of their environments (“warm blooded”). This inferred homoethermy in theropods is likely due to higher rates of metabolic heat production relative to crocodiles and is not an artifact of body size.

  5. Record of seasonal body fluid composition in Black Clam (Bivalve) using clumped isotope thermometric approach

    NASA Astrophysics Data System (ADS)

    Rahman, H.; Naidu, P. K.; Ghosh, P.

    2012-12-01

    Application of clumped isotope thermometry (Ghosh et al., 2006) is highly debated while resolving the issue of kinetic effect during biogenic carbonate precipitation. Mollusks are particularly attractive target to study the kinetic effect (Eiler, 2011) in the biological system owing to its incremental growth ring patterns. This allows understanding the role of environmental parameters other than temperature driving the distribution of heavier isotopologues. Guo et al., (2010) indicated role of pH in driving the distribution of heavier isotopolgues in the carbonates. We investigated here clumped isotopic composition of Black Calm (bivalve shell) caught live from a location in Southern Indian Estuary. The region experiences large change in seasonal condition. The physical environmental parameters at that location were monitored for last 3 years at monthly interval. The salinity, temperature, pH information are available for all the months when mollusc growth bands are deposited. The bottom water of estuary, where bivalve thrives experience maximum temperature of 32°C during November and December, while temperature during Monsoon months (July, August) drops lows to 26°C. Initial results on clumped isotope thermometry on the growth bands precipitated suggests that during the time in a year when pH level is alkaline i.e. 8.0±0.2 there is large consistency between actual temperature and estimated temperature using clumped isotope based thermometry. While the pH drops towards acidic i.e. 6.8±0.1 lower temperature estimates compared to actual was recorded. The effect of metabolic rate and body temperature variability is not been investigated as suggested in case of land snails based clumped isotope thermometry (Zaarur et al., 2011). Mollusc shell can be used to trace the composition of environmental water while pH variation is minimal. In this presentation analyses of more shell specimen and explore the role of pH and osmo-regulation in mollusc determining the clumped

  6. Selenium isotope geochemistry: A new approach to characterizing the environmental chemistry of selenium. Final report

    SciTech Connect

    Volpe, A.M.; Esser, B.K.

    1997-02-05

    High levels of selenium in the environment will be a prominent water quality issue in the western United States for many years. Selenium accumulation is linked to increased rates of death and deformity in migratory birds, blind staggers in livestock, and selenosis in humans. In California, agricultural drain waters and oil refinery effluent contribute to high selenium content in the San Joaquin Valley and the San Francisco Bay. The importance of these industries to California`s economy precludes simple abatement, while the complexity of selenium cycling precludes simple remediation. The purpose of this project is to measure variations in the isotopic composition of selenium in water and soil samples caused by natural processes and to show, for the first time, the value of isotopic measurements in characterizing selenium pollution. The research seeks to identify sources of selenium pollution, determine processes in the selenium cycle, and support selenium remediation studies. The project required the successful integration of three components: (1) appropriate sampling a field setting showing Se enrichment and possibly isotopic fractionation, (2) analytical chemical methods for isolating and purifying the various species of Se in waters and sediment, and (3) mass spectroscopic instrumentation for high precision isotope abundance measurements.

  7. MONITORING FOOD WEB CHANGES IN TIDE-RESTORED SALT MARSHES: A CARBON STABLE ISOTOPE APPROACH

    EPA Science Inventory

    Primary producer (angiosperms, macroalgae, submerged aquatic vegetation), suspended particulate matter, and Fundulus heteroclitus isotope values (d13C , d15N, d34S) were examined to assess their use as an indicator for changes in food web support functions in tidally-restored sal...

  8. Dynamical approach to isotopic-distribution of fission fragments from actinide nuclei

    NASA Astrophysics Data System (ADS)

    Ishizuka, Chikako; Chiba, Satoshi; Karpov, Alexander V.; Aritomo, Yoshihiro

    2016-06-01

    Measurements of the isotope distribution of fission fragments, often denoted as the primary fission yield (pre-neutron yield) or independent fission yield (post-neutron yield) are still challenging at low excitation energies, so that it is important to investigate it within a theory. Such quantities are vital for applications as well. In this study, fragment distributions from the fission of U isotopes at low excitation energies are studied using a dynamical model. The potential energy surface is derived from the two center shell model including the shell and pairing corrections. In order to calculate the charge distribution of fission fragments, we introduce a new parameter ηZ as the charge asymmetry, in addition to three parameters describing a nuclear shape, z as the distance between two centers of mass, δ as fragment deformation, and ηA as the mass asymmetry. Using this model, we calculated the isotopic distribution of 236U for the n-induced process 235U + n → 236U at low excitation energies. As a result, we found that the current model can well reproduce isotopic fission-fragment distribution which can be compared favorably with major libraries.

  9. Holocene precipitation seasonality captured by a dual isotope approach at Steel Lake, Minnesota

    NASA Astrophysics Data System (ADS)

    Nelson, D. M.; Henderson, A.; Hu, F.; Huang, Y.; Shuman, B. N.; Williams, J. W.

    2009-12-01

    Hydrogen and oxygen isotopic values preserved in sedimentary archives record past climatic conditions because they track evaporation rates, temperature, atmospheric circulation, and the seasonal distribution of meteoric precipitation. However, distinguishing the importance of each variable remains a major challenge limiting the interpretation of isotopic records. Here, we combine oxygen isotopes from endogenic calcite and hydrogen isotopes from palmitic acid, as well as other independent lines of evidence, to tease apart the influences of evaporation and precipitation. We focus on the Holocene at Steel Lake, Minnesota, where extensive existing paleoenvironmental data document millennial-scale drought during the middle Holocene and a subsequent increase in moisture availability over the last 5,000 years. Our new results indicate that increased temperature and evaporation and low summer precipitation occurred during the middle Holocene. These results are consistent with climate model simulations that suggest summer drought during the middle Holocene was related to a northward migration of the Inter Tropical Convergence Zone, whereas they disagree with some interpretations of fossil pollen data and hydrologic model simulations. Changes precipitation seasonality likely played a role in controlling Holocene vegetation variations in the North American midcontinent. For example, declining relative proportions of winter precipitation from 10.0 to ~8.0 ka may have reduced the recharge of deep soil-moisture and enabled shallow-rooted grasses and forbs to outcompete deep-rooted coniferous trees, and relatively low summer precipitation may have been the cause of low regional C4-grass abundance during the early middle-Holocene.

  10. Mapping the Elephants of the 19th Century East African Ivory Trade with a Multi-Isotope Approach

    PubMed Central

    Lee-Thorp, Julia; Collins, Matthew J.; Lane, Paul J.

    2016-01-01

    East African elephants have been hunted for their ivory for millennia but the nineteenth century witnessed strongly escalating demand from Europe and North America. It has been suggested that one consequence was that by the 1880s elephant herds along the coast had become scarce, and to meet demand, trade caravans trekked farther into interior regions of East Africa, extending the extraction frontier. The steady decimation of elephant populations coupled with the extension of trade networks have also been claimed to have triggered significant ecological and socio-economic changes that left lasting legacies across the region. To explore the feasibility of using an isotopic approach to uncover a ‘moving frontier’ of elephant extraction, we constructed a baseline isotope data set (δ13C, δ15N, δ18O and 87Sr/86Sr) for historic East African elephants known to have come from three distinct regions (coastal, Rift Valley, and inland Lakes). Using the isotope results with other climate data and geographical mapping tools, it was possible to characterise elephants from different habitats across the region. This baseline data set was then used to provenance elephant ivory of unknown geographical provenance that was exported from East Africa during the late nineteenth and early twentieth centuries to determine its likely origin. This produced a better understanding of historic elephant geography in the region, and the data have the potential to be used to provenance older archaeological ivories, and to inform contemporary elephant conservation strategies. PMID:27760152

  11. A spatially explicit multi-isotope approach to map influence regions of plant-plant interactions after exotic plant invasion

    NASA Astrophysics Data System (ADS)

    Hellmann, Christine; Oldeland, Jens; Werner, Christiane

    2015-04-01

    Exotic plant invasions impose profound alterations to native ecosystems, including changes of water, carbon and nutrient cycles. However, explicitly quantifying these impacts remains a challenge. Stable isotopes, by providing natural tracers of biogeochemical processes, can help to identify and measure such alterations in space and time. Recently, δ15N isoscapes, i.e. spatially continuous representations of isotopic values, derived from native plant foliage, enabled to accurately trace nitrogen introduced by the N2-fixing invasive Acacia longifolia into a native Portuguese dune system. It could be shown that the area of the system which was altered by the invasive species exceeded the area which was covered by the invader by far. But still, definition of clear regions of influence is to some extent ambiguous. Here, we present an approach using multiple isoscapes derived from measured foliar δ13C and δ15N values of a native, non-fixing species, Corema album. By clustering isotopic information, we obtained an objective classification of the study area. Properties and spatial position of clusters could be interpreted to distinguish areas that were or were not influenced by A. longifolia. Spatial clusters at locations where A. longifolia was present had δ15N values that were enriched, i.e. close to the atmospheric signal of 0 o compared to the depleted values of the uninvaded system (ca. -11 o). Furthermore, C. album individuals in these clusters were characterized by higher foliar N content and enriched δ13C. These results indicate that the N2-fixing A. longifolia added nitrogen to the system which originated from the atmosphere and was used by the native C. album, inducing functional changes, i.e. an increase in WUE. Additionally, clusters were identified that were presumably determined by inherent properties of the native system. Thus, combining isotope ecology with geostatistical methods is a promising approach for mapping regions of influence in multi-isotope

  12. Sr Isotopes and human skeletal remains, improving a methodological approach in migration studies

    NASA Astrophysics Data System (ADS)

    Solis Pichardo, G.; Schaaf, P. E.; Hernandez, T.; Horn, P.; Manzanilla, L. R.

    2013-12-01

    Asserting mobility of ancient humans is a major issue for anthropologists. Sr isotopes are widely used in anthropological sciences to trace human migration histories from ancient burials. Sr in bone approximately reflects the isotopic composition of the geological region where the person lived before death; whereas the Sr isotopic system in tooth enamel is thought to remain as a closed system and thus conserves the isotope ratio acquired during childhood. A comparison of the 87Sr/86Sr ratios found in tooth enamel and in bone is performed to determine if the human skeletal remains belonged to a local or a migrant. Until now, tooth enamel was considered to be less sensitive to secondary Sr contamination due to its higher crystallinity and larger sizes of the biogenic apatites in comparison to that in bone and dentine. In the past, enamel as well as bone material was powdered, dissolved and analyzed by thermal ionization mass spectrometry (TIMS). In this contribution we show, however, that simple dissolution of enamel frequently yields erroneous results. Tooth enamel is often affected by secondary strontium contamination processes such as caries or diagenetic and environmental input, which can change the original isotopic composition. To avoid these problems we introduced a pre-treatment and three-step leaching procedure in enamel samples. Leaching is carried out with acetic acid of different concentrations, yielding two leachates and one residue of each sample. Frequently the 87Sr/86Sr results of the three leachates display different values confirming that secondary contamination did occur. Several examples from Teotihuacan, central Mexico demonstrate that enamel 87Sr/86Sr without leaching can show correct biogenic values, but there is also a considerable probability for these values to represent a mixture of original and secondary Sr without significance for migration reconstructions. Only the residue value is interpreted by us as the representative ratio for

  13. A Metal Stable Isotope Approach to Understanding Uranium Mobility Across Roll Front Redox Boundaries

    NASA Astrophysics Data System (ADS)

    Brown, S. T.; Basu, A.; Christensen, J. N.; DePaolo, D. J.; Heikoop, J. M.; Reimus, P. W.; Maher, K.; Weaver, K. L.

    2015-12-01

    Sedimentary roll-front uranium (U) ore deposits are the principal source of U for nuclear fuel in the USA and an important part of the current all-of-the-above energy strategy. Mining of roll-front U ore in the USA is primarily by in situ alkaline oxidative dissolution of U minerals. There are significant environmental benefits to in situ mining including no mine tailings or radioactive dust, however, the long-term immobilization of U in the aquifer after the completion of mining remains uncertain. We have utilized the metal stable isotopes U, Se and Mo in groundwater from roll-front mines in Texas and Wyoming to quantify the aquifer redox conditions and predict the onset of U reduction after post mining aquifer restoration. Supporting information from the geochemistry of groundwater and aquifer sediments are used to understand the transport of U prior to and after in situ mining. Groundwater was collected across 4 mining units at the Rosita mine in the Texas coastal plain and 2 mining units at the Smith Ranch mine in the Powder River Basin, Wyoming. In general, the sampled waters are moderately reducing and ore zone wells contain the highest aqueous U concentrations. The lowest U concentrations occur in monitoring wells downgradient of the ore zone. 238U/235U is lowest in downgradient wells and is correlated with aqueous U concentrations. Rayleigh distillation models of the 238U/235U are consistent with U isotope fractionation factors of 1.0004-1.001, similar to lab-based studies. Based on these results we conclude that redox reactions continue to affect U distribution in the ore zone and downgradient regions. We also measured aqueous selenium isotope (δ82Se) and molybdenum isotope (δ98Mo) compositions in the Rosita groundwater. Se(VI) primarily occurs in the upgradient wells and is absent in most ore zone and downgradient wells. Rayleigh distillation models suggest reduction of Se(VI) along the groundwater flow path and when superimposed on the U isotope data

  14. Dynamics of Zn in an urban wetland soil-plant system: Coupling isotopic and EXAFS approaches

    NASA Astrophysics Data System (ADS)

    Aucour, Anne-Marie; Bedell, Jean-Philippe; Queyron, Marine; Magnin, Valérie; Testemale, Denis; Sarret, Géraldine

    2015-07-01

    Plants play a key role in the stabilization of metals in contaminated environments. Studies have been performed on Zn uptake and storage mechanisms, mainly for Zn hyperaccumulating plants, though less is known about Zn stabilization in the rhizosphere of non-accumulating plants. This study was focused on the dynamics of Zn in a whole soil-litter-plant system and the processes controlling Zn mobilization and stabilization. The site studied was an infiltration basin receiving urban stormwater, in which Phalaris arundinacea (reed canary grass) developed spontaneously. A combination of chemical extractions (CaCl2, DTPA), EXAFS spectroscopy and Zn stable isotope measurements was applied for the water inlet, soil, plant organs and decaying biomass. Zn speciation changed from the water inlet to the soil. In the soil, Zn was present as Zn-layered double hydroxide (Zn-LDH), tetrahedral and octahedral sorbed Zn species. The formation of Zn-LDH participates in Zn stabilization. Tetrahedral Zn species, which were partly DTPA exchangeable, were enriched in heavy isotopes, whereas octahedral Zn (Zn-LDH and sorbed species) were enriched in light isotopes. Based on a linear model between δ66Zn and Zn speciation, δ66Zn for pure tetrahedral and octahedral end-members were estimated at ca. 0.33‰ and 0.04‰, respectively. In the plant, a mixture of octahedral Zn (attributed to aqueous Zn-organic acid complexes present in the symplasm), and tetrahedral Zn (attributed to apoplasmic Zn-cell wall complexes) was observed in all organs. Large enrichment in light isotopes from the soil to the plant Δ66Zn (of ca. -0.6‰) was observed. The stem was enriched in light isotopes versus roots and, to a lesser extent, versus leaves. The results suggest that Zn was taken up via a low-affinity transport system and that Zn was sequestrated in the stem symplasm after transit through leaves. Finally, intense Zn exchanges were observed between the decaying biomass and the soil, with the sorption of

  15. Does exercise stimulate protein breakdown in humans. Isotopic approaches to the problem

    SciTech Connect

    Wolfe, R.R.

    1987-10-01

    Protein metabolism in exercise has been investigated for 100 yr, yet it is still unclear if exercise induces an increased rate of protein breakdown. We have recently addressed this general question in a series of experiments in human subjects using stable isotopic tracers. In this paper, the results of those studies are reviewed. We have found that in light exercise the de-carboxylation of leucine is increased. However, urea production is not increased correspondingly, nor is the rate of incorporation into urea of nitrogen from either leucine or lysine. Further complicating the picture is the fact that lysine de-carboxylation is not markedly elevated in exercise. From these studies, we must conclude that isotopic techniques which have achieved general acceptance in other circumstances cannot reliably be used to answer the question of whether exercise stimulates protein breakdown in humans. However, these methods do provide results which enable a better understanding of the metabolism of the individual amino acids in exercise.

  16. Water movement monitoring in a boreal patterned fen peatland using an isotopic approach

    NASA Astrophysics Data System (ADS)

    Carrer, G.; Rousseau, A. N.; St-Hilaire, A.; Fossey, M.; Jutras, S.

    2011-12-01

    Patterned peatlands occupy a large portion of the Northen boreal region of Quebec, Canada. An obvious characteristic of peatlands is their great capacity to retain water. Indeed, a peatland may contain more than 70% of its volume in water. However, the rapid decrease of permeability with depth in peat soils suggests that a major part of the aquifer does not substantially contribute to the overall water movement and ensuing outflow. Given the current state of knowledge about these ecosystems, three questions can be formulated: (i) How does the water flow in patterned peatlands (piston flow, surface runoff)? (ii) Is there any mixing of water in the pools that may change the isotopic signal? (iii) Can the isotopic signal help identifying the origin of the water? To answer these questions, natural tracers (2H, 18O, DOC) and physical parameters (conductivity, temperature) are monitored in a patterned fen located in the Northern boreal region of Quebec. Preliminary results show that the summer flow is superficial and corresponds to a "piston flow"; and there is very little mixing of the water in the pools. However, because the isotopic signal is not uniform, it is difficult to separate the hydrograph and, thus, determine the various origins of the water.

  17. Assessing the authenticity of commercial deep-sea drinking water by chemical and isotopic approaches.

    PubMed

    Peng, Tsung-Ren; Liang, Wen-Jui; Liu, Tsang-Sen; Lin, Yu-Wen; Zhan, Wen-Jun

    2015-01-01

    This study combines stable isotopes and chemical elements with statistical principal component analysis (PCA) to assess the authenticity of bottled commercial drinking water desalinized from deep seawater in the Taiwan market. Isotopic results indicate that true bottled deep-sea drinking water (DSDW) exhibits about 0 ‰ for both δ(2)H and δ(18)O values, which are values similar to those of open seawater. By comparison, suspected counterfeit DSDW products display δ(2)H and δ(18)O values of around -51 ‰ and -8 ‰, respectively. These values are representative of terrestrial freshwater. In addition, suspected counterfeit DSDWs have δ and electrical conductivity values similar to a mixed water (MW) product that was manufactured by purifying terrestrial freshwater and adulterating this with small amounts of brine. Furthermore, PCA results indicate the chemical constitution of suspected DSDW products to be similar to the MW product which falls between purified terrestrial freshwater and desalinized open seawater. These similarities imply that suspected counterfeit DSDW products are manufactured in a similar manner to the declared MW product. This study demonstrates how combining knowledge of stable water isotopes and PCA can be used in assessing the authenticity of commercial DSDW products. The method should be of great interest to similar investigations elsewhere.

  18. Migration dynamics of clupeoids in the Schelde estuary: A stable isotope approach

    NASA Astrophysics Data System (ADS)

    Guelinckx, Jef; Maes, Joachim; De Brabandere, Loreto; Dehairs, Frank; Ollevier, Frans

    2006-02-01

    Large numbers of young of the year herring ( Clupea harengus L.) and sprat ( Sprattus sprattus (L.)) typically enter and remain within North Sea estuaries during the winter months. The main purpose of this study was to examine their migration dynamics between the North Sea and the Schelde estuary using C and N stable isotopes. Prior to this, stomach contents were used to verify the isotopic differences between the food sources at the sampling stations. From May 2000 to April 2001 fish were collected monthly in the upper and lower estuary. Muscle tissue and stomach contents were analyzed for δ13C and δ15N using an EA-IRMS. Based on the stomach contents, it was demonstrated that δ15N could not be used as a tracer for fish migration because the longitudinal estuarine δ15N gradient had reversed completely during autumn. The δ13C gradient, however, was found to be reliable for studying fish movement in the Schelde estuary. Seasonal movements of clupeoids in the Schelde estuary were analyzed by separating the temporal abundance patterns into migration groups based on their muscle isotopic composition. Immigration and emigration seem to occur continuously throughout the year. Most exchange occurred in November. During winter, immigration remained high but gradually decreased. Although the herring and sprat abundance further declined in the estuary during February and March, large seaward emigration was not fully demonstrated. As temporal overlap between immigration and emigration is concluded the results support the hypothesis that migration to estuarine nurseries is individually based.

  19. Catchment-scale quantification of hyporheic denitrification using an isotopic and solute flux approach.

    PubMed

    Wexler, Sarah K; Hiscock, Kevin M; Dennis, Paul F

    2011-05-01

    A dual-isotope and solute flux mass-balance was used to elucidate the processes that lead to attenuation of nitrogen contamination in an agriculturally impacted river. The River Wensum drains a lowland catchment with an area of 570 km² in East Anglia, eastern England. Analysis of nitrate concentration, δ¹⁵N(NO₃) and δ¹⁸O(NO₃) of samples from the River Wensum collected from upstream locations to the catchment outlet through all seasons and flow conditions showed a consistent pattern of increasing isotope values with decreasing nitrate concentrations downstream. δ¹⁵N(NO₃) and δ¹⁸O(NO₃) of catchment surface water and groundwater samples revealed a dominant influence from microbially cycled and nitrified source-nitrogen, which results in high nitrate concentrations in Chalk groundwater and upstream in the River Wensum. Denitrification of Chalk groundwater-baseflow in the hyporheic zone results in the downstream trend observed in the river. Hyporheic denitrification is estimated to remove 931 kg/day of nitrate-nitrogen by the catchment outlet, representing 31% of the potential riverine nitrate load. The use of dual-isotope and solute flux modeling at the catchment scale is a novel application to quantify denitrification within the river valley, demonstrating the importance of hyporheic zone processes in attenuating the impacts of anthropogenic contamination of hydrologic systems.

  20. Potential of calcium isotopes to identify fractionations in vegetation: experimental approach

    NASA Astrophysics Data System (ADS)

    Cobert, F.; Schmitt, A.; Bourgade, P.; Stille, P.; Chabaux, F. J.; Badot, P.; Jaegler, T.

    2010-12-01

    This study aims to better understand the role of vegetation on the Ca cycle at the level of the critical zone of the Earth, in order to specify the mechanisms controlling the Ca absorption by plants at the rock/plant interface. To do this, we performed experiments using hydroponic plant cultures in a way that we could control the cooccuring geochemical and biological processes and determine the impact of the nutritive solution on the Ca cycle within plants. A dicotyledon and calcicole plant with rapid growth, the French bean (Phaseolus vulgaris L.), has been chosen to have access to one complete growth cycle. Several experiments have been conducted with two Ca concentrations, 5 (L) and 60 (H) ppm and two pH values (4 and 6) in the nutritive solution, for which the Ca concentration was maintained constant, so its Ca content is considered to be infinite. We determined Ca concentrations and isotopic ratios in the nutritive solution and in different organs (main roots, secondary roots, old and young stems, old and young leaves and fruits) at two different growth stages (10 days and 6 weeks). Our results show, in accord with previously published field studies, that the bean organs are all enriched in the light 40Ca isotope compared to the nutritive solution (e.g. Wigand et al., 2005; Page et al., 2008; Cenki-Tok et al., 2009; Holmden and Bélanger, 2010). We identify two fractionation levels. The first occurs during the uptake of the nutrient elements by the lateral roots. This implies that the main mechanisms of light isotope enrichments in the plant are due to electrochemical gradient transport processes taking place at this interface. The second fractionation can be observed within the plant itself and is due to the nature of the considered organ itself. Indeed structural reservoirs (primary roots, stem, reproductive organs) incorporate more the light 40Ca isotope compared to the transfer reservoirs (lateral roots, xylem sap, leaves). This could be linked to ion

  1. Apportioning sources of organic matter in streambed sediments: an integrated molecular and compound-specific stable isotope approach.

    PubMed

    Cooper, Richard J; Pedentchouk, Nikolai; Hiscock, Kevin M; Disdle, Paul; Krueger, Tobias; Rawlins, Barry G

    2015-07-01

    clearly demonstrate the effectiveness of an integrated molecular and stable isotope analysis for quantitatively apportioning, with uncertainty, plant-specific organic matter contributions to streambed sediments via a Bayesian mixing model approach. PMID:25817221

  2. Improvement of water and light availability after thinning at a xeric site: which matters more? A dual isotope approach.

    PubMed

    Giuggiola, Arnaud; Ogée, Jérôme; Rigling, Andreas; Gessler, Arthur; Bugmann, Harald; Treydte, Kerstin

    2016-04-01

    Thinning fosters individual tree growth by increasing the availability of water, light and nutrients. At sites where water rather than light is limiting, thinning also enhances soil evaporation and might not be beneficial. Detailed knowledge of the short- to long-term physiological response underlying the growth responses to thinning is crucial for the management of forests already suffering from recurrent drought-induced dieback. We applied a dual isotope approach together with mechanistic isotope models to study the physiological processes underlying long-term growth enhancement of heavily thinned Pinus sylvestris in a xeric forest in Switzerland. This approach allowed us to identify and disentangle thinning-induced changes in stomatal conductance and assimilation rate. At our xeric study site, the increase in stomatal conductance far outweighed the increase in assimilation, implying that growth release in heavily thinned trees is primarily driven by enhanced water availability rather than increased light availability. We conclude that in forests with relatively isohydric species (drought avoiders) that are growing close to their physiological limits, thinning is recommended to maintain a less negative water balance and thus foster tree growth, and ultimately the survival of forest trees under drought.

  3. Water and light improvement after thinning at a xeric site: Which weights the most? A dual isotope approach

    NASA Astrophysics Data System (ADS)

    Giuggiola, Arnaud; Ogée, Jérôme; Gessler, Arthur; Rigling, Andreas; Bugmann, Harald; Treydte, Kerstin

    2015-04-01

    Reductions in stand density foster individual tree growth due to increases of resources such as water, light and nutrients. Detailed knowledge of the short- to long-term physiological response underlying the growth response to thinning is crucial for the management of forests already suffering from recurrent drought-induced dieback. We applied a dual isotope approach together with mechanistic isotope models such as MuSICA to study the physiological processes underlying growth enhancement in a long-term thinning experiment in a xeric Pinus sylvestris forest in Switzerland. This approach allowed for identifying and disentangling changes in stomatal conductance and assimilation rate. Our results indicate that an increase in stomatal conductance outweighs an increase in assimilation, meaning that the observed growth releases in heavy thinned trees at our xeric site are primarily driven by enhanced water availability rather than by the increase in light availability. We conclude that in areas with isohydric species (drought avoiders) that tend to grow close to their physiological limits, thinning is highly recommended to maintain a less negative water balance and thus foster tree growth, and ultimately the survival rate of individual trees and forests.

  4. Food sources of wintering piscivorous waterbirds in coastal waters: A triple stable isotope approach for the southeastern Baltic Sea

    NASA Astrophysics Data System (ADS)

    Morkūnė, Rasa; Lesutienė, Jūratė; Barisevičiūtė, Rūta; Morkūnas, Julius; Gasiūnaitė, Zita R.

    2016-03-01

    This study uses a triple isotope approach (δ13C, δ15N, and δ34S) to quantify the main food sources for wintering piscivorous waterbirds in the coastal zone of the southeastern Baltic Sea. Significant differences of δ15N and δ34S values among pelagic fishes, benthic fishes, and benthopelagic European smelt (Osmerus eperlanus) were detected, while δ13C was similar among these sources. Using different combinations of δ13C, δ15N, and δ34S values in mixing models, we found that common guillemot (Uria aalge) and red-throated diver (Gavia stellata) mostly foraged on pelagic prey (50-70% and 51-56%, respectively), whereas great crested grebe (Podiceps cristatus) consumed benthic prey (48-53%). European smelt comprised a substantial proportion of the diet of studied birds (19-36%). A stable isotope approach can be recommended as a non-lethal method to study avian diets in the coastal waters of the Baltic Sea.

  5. Improvement of water and light availability after thinning at a xeric site: which matters more? A dual isotope approach.

    PubMed

    Giuggiola, Arnaud; Ogée, Jérôme; Rigling, Andreas; Gessler, Arthur; Bugmann, Harald; Treydte, Kerstin

    2016-04-01

    Thinning fosters individual tree growth by increasing the availability of water, light and nutrients. At sites where water rather than light is limiting, thinning also enhances soil evaporation and might not be beneficial. Detailed knowledge of the short- to long-term physiological response underlying the growth responses to thinning is crucial for the management of forests already suffering from recurrent drought-induced dieback. We applied a dual isotope approach together with mechanistic isotope models to study the physiological processes underlying long-term growth enhancement of heavily thinned Pinus sylvestris in a xeric forest in Switzerland. This approach allowed us to identify and disentangle thinning-induced changes in stomatal conductance and assimilation rate. At our xeric study site, the increase in stomatal conductance far outweighed the increase in assimilation, implying that growth release in heavily thinned trees is primarily driven by enhanced water availability rather than increased light availability. We conclude that in forests with relatively isohydric species (drought avoiders) that are growing close to their physiological limits, thinning is recommended to maintain a less negative water balance and thus foster tree growth, and ultimately the survival of forest trees under drought. PMID:26639082

  6. Isotopic Approaches to Allying Productivity and Sulfur Metabolism in Three Symbiotic Hydrothermal Vent Molluscs

    NASA Astrophysics Data System (ADS)

    Beinart, R.; Gartman, A.; Sanders, J. G.; Luther, G. W.; Girguis, P. R.

    2012-12-01

    Symbioses between animals and chemosynthetic bacteria predominate at hydrothermal vents. In these associations, the endosymbiotic bacteria utilize chemical reductants for the energy to support autotrophy, providing primary nutrition for the host. Despite their ubiquity at vents worldwide, little is known about the rates of productivity of these symbioses under different physico-chemical regimes or how their metabolism effects the local geochemical environment. To address this matter, we used high-pressure flow through incubations and stable isotopic tracers to maintain three genera of symbiotic mollusc - the gastropods Alviniconcha and Ifremeria, and the mussel Bathymodiolus - at vent-like conditions. Via the incorporation of isotopically labeled compounds, we assessed their productivity when using different reduced sulfur species as reductants. Using cyclic voltammetry, mass spectrometry and discrete geochemical analyses, we concurrently measured their effect on sulfur flux from the vessels. We found that the symbionts of all three genera can support autotrophy with hydrogen sulfide and thiosulfate, though at different rates. Additionally, by examining the rate of isotopic incorporation into biomass, we revealed intra-generic variability in productivity among the individuals in our experimental assemblages that are likely related to differences in the geochemical regime along the length of reactor. These geochemical gradients are due to the activity of other individuals within the vessel, since those organisms closest to the influent of the vent-like water had the highest measured carbon incorporation. Finally, we measured the uptake and excretion of sulfur species, which illustrate the degree to which these symbioses might impact local sulfur chemistry in situ. These experiments show that A) access to particular sulfur species differentially affects the productivity of vent symbioses, suggesting that competition for these substrates, both within and between host

  7. A Nd Isotopic Composition Modeling Approach of the Oceanic Thermohaline Circulation Change During LGM

    NASA Astrophysics Data System (ADS)

    Arsouze, T.; Dutay, J.; Lacan, F.; Jeandel, C.; Alkama, R.; Kageyama, M.; Piotrowski, A.

    2006-12-01

    The role of thermohaline circulation in climate change has been a matter of debate for a long time. Proxies of past ocean circulation such as δ13C or 231Pa/230Th suggest a relationship between North Atlantic Deep Water (NADW) strength and rapid climate change. Neodymium isotopic composition (Nd IC) is a quasi conservative geochemical tracer of water masses in the ocean interior and thus can be used as a proxy for NADW. Seawater Nd IC being recorded in marine sediments, this proxy is used to infer paleo-circulations on various time scales. Recent studies of Nd IC records, in the ferromanganese oxide components of a South Atlantic core, confirm the close relation between thermohaline circulation and North Atlantic climate changes through the last deglaciation (Piotrowski et al., 2004). Our purpose here is to model the Nd IC during the LGM and the Holocene with the Ocean Global Circulation Model NEMO, in the ORCA2 (2°) configuration. The explicit simulation of this proxy in the model allows to investigate and quantify the circulation change that corresponds to the Nd isotopic composition variation recorded in the sediments. We consider that the main source of Nd into the ocean is the interaction between water masses and continental margins (Boundary Exchange process; (Lacan and Jeandel, 2005). Boundary exchange is parameterized using a relaxing term (Arsouze et al., 2006). Simulated Nd IC distributions are evaluated by comparison with available records for the LGM and Holocene. References: Arsouze, T., Dutay, J.-C., Lacan, F. and Jeandel, C., 2006. Modeling the neodymium isotopic composition with a global ocean circulation model Chemical Geology, in press. Lacan, F. and Jeandel, C., 2005. Neodymium isotopes as a new tool for quantifying exchange fluxes at the continent - ocean interface. Earth and Planetary Science Letters, 232(3-4): 245-257. Piotrowski, A.M., Goldstein, S.L., Hemming, S.R. and Fairbanks, R.G., 2004. Intensification and variability of ocean

  8. Isotopic Approach to Soil Carbonate Dynamics and Implications for Paleoclimatic Interpretations

    USGS Publications Warehouse

    Pendall, E.G.; Harden, J.W.; Trumbore, S.E.; Chadwick, O.A.

    1994-01-01

    The radiocarbon content and stable isotope composition of soil carbonate are best described by a dynamic system in which isotopic reequilibration occurs as a result of recurrent dissolution and reprecipitation. Depth of water penetration into the soil profile, as well as soil age, determines the degree of carbonate isotope reequilibration. We measured ??13C, ??18O and radiocarbon content of gravel rinds and fine (<2 mm) carbonate in soils of 3 .different ages (1000, 3800, and 6300 14 C yr B.P.) to assess the degree to which they record and preserve a climatic signal. In soils developing in deposits independently dated at 3800 and 6300 radiocarbon yr B.P., carbonate radiocarbon content above 40 cm depth suggests continual dissolution and reprecipitation, presumably due to frequent wetting events. Between 40 and 90 cm depth, fine carbonate is dissolved and precipitated as rinds that are not redissolved subsequently. Below 90 cm depth in these soils, radiocarbon content indicates that inherited, fine carbonate undergoes little dissolution and reprecipitation. In the 3800- and 6300-yr-old soils, ??13C in rind and fine carbonate follows a decreasing trend with depth, apparently in equilibrium with modern soil gas, as predicted by a diffusive model for soil CO2. ??18O also decreases with depth due to greater evaporative enrichment above 50 cm depth. In contrast, carbonate isotopes in a 1000-yr-old deposit do not reflect modern conditions even in surficial horizons; this soil has not undergone significant pedogenesis. There appears to be a lag of at least 1000 but less than 3800 yr before carbonate inherited with parent material is modified by ambient climatic conditions. Although small amounts of carbonate are inherited with the parent material, the rate of pedogenic carbonate accumulation indicates that Ca is derived primarily from eolian and rainfall sources. A model describing carbonate input and radiocarbon decay suggests that fine carbonate below 90 cm is mostly

  9. Dual-Labeled Near-Infrared/(99m)Tc Imaging Probes Using PAMAM-Coated Silica Nanoparticles for the Imaging of HER2-Expressing Cancer Cells.

    PubMed

    Yamaguchi, Haruka; Tsuchimochi, Makoto; Hayama, Kazuhide; Kawase, Tomoyuki; Tsubokawa, Norio

    2016-01-01

    We sought to develop dual-modality imaging probes using functionalized silica nanoparticles to target human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancer cells and achieve efficient target imaging of HER2-expressing tumors. Polyamidoamine-based functionalized silica nanoparticles (PCSNs) for multimodal imaging were synthesized with near-infrared (NIR) fluorescence (indocyanine green (ICG)) and technetium-99m ((99m)Tc) radioactivity. Anti-HER2 antibodies were bound to the labeled PCSNs. These dual-imaging probes were tested to image HER2-overexpressing breast carcinoma cells. In vivo imaging was also examined in breast tumor xenograft models in mice. SK-BR3 (HER2 positive) cells were imaged with stronger NIR fluorescent signals than that in MDA-MB231 (HER2 negative) cells. The increased radioactivity of the SK-BR3 cells was also confirmed by phosphor imaging. NIR images showed strong fluorescent signals in the SK-BR3 tumor model compared to muscle tissues and the MDA-MB231 tumor model. Automatic well counting results showed increased radioactivity in the SK-BR3 xenograft tumors. We developed functionalized silica nanoparticles loaded with (99m)Tc and ICG for the targeting and imaging of HER2-expressing cells. The dual-imaging probes efficiently imaged HER2-overexpressing cells. Although further studies are needed to produce efficient isotope labeling, the results suggest that the multifunctional silica nanoparticles are a promising vehicle for imaging specific components of the cell membrane in a dual-modality manner. PMID:27399687

  10. Dual-Labeled Near-Infrared/99mTc Imaging Probes Using PAMAM-Coated Silica Nanoparticles for the Imaging of HER2-Expressing Cancer Cells

    PubMed Central

    Yamaguchi, Haruka; Tsuchimochi, Makoto; Hayama, Kazuhide; Kawase, Tomoyuki; Tsubokawa, Norio

    2016-01-01

    We sought to develop dual-modality imaging probes using functionalized silica nanoparticles to target human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancer cells and achieve efficient target imaging of HER2-expressing tumors. Polyamidoamine-based functionalized silica nanoparticles (PCSNs) for multimodal imaging were synthesized with near-infrared (NIR) fluorescence (indocyanine green (ICG)) and technetium-99m (99mTc) radioactivity. Anti-HER2 antibodies were bound to the labeled PCSNs. These dual-imaging probes were tested to image HER2-overexpressing breast carcinoma cells. In vivo imaging was also examined in breast tumor xenograft models in mice. SK-BR3 (HER2 positive) cells were imaged with stronger NIR fluorescent signals than that in MDA-MB231 (HER2 negative) cells. The increased radioactivity of the SK-BR3 cells was also confirmed by phosphor imaging. NIR images showed strong fluorescent signals in the SK-BR3 tumor model compared to muscle tissues and the MDA-MB231 tumor model. Automatic well counting results showed increased radioactivity in the SK-BR3 xenograft tumors. We developed functionalized silica nanoparticles loaded with 99mTc and ICG for the targeting and imaging of HER2-expressing cells. The dual-imaging probes efficiently imaged HER2-overexpressing cells. Although further studies are needed to produce efficient isotope labeling, the results suggest that the multifunctional silica nanoparticles are a promising vehicle for imaging specific components of the cell membrane in a dual-modality manner. PMID:27399687

  11. Pathways of CH3Hg and Hg Ingestion in Benthic Organisms: An Enriched Isotope Approach

    PubMed Central

    2015-01-01

    Mercury is a widespread contaminant in marine food webs, and identifying uptake pathways of mercury species, CH3Hg+ and Hg2+, into low trophic level organisms is important to understanding its entry into marine food webs. Enriched stable isotope tracers were used to study benthic vs. pelagic pathways of CH3Hg+ and Hg2+ uptake via food to the infaunal estuarine amphipod, Leptocheirus plumulosus. Algal cells differentially labeled with isotopically enriched CH3Hg+ or Hg2+ were added simultaneously to the sediment and water column of microcosms, and Hg species were monitored in amphipods and in sediment and water compartments. Methylation of Hg2+ occurred during the course of the experiment, enhancing the uptake of Hg2+ spikes. Trophic transfer of Hg from algae added to the water column was determined to be the major uptake route for amphipods, suggesting inputs of contaminated organic matter from the pelagic zone are important to mercury bioaccumulation even in organisms living in sediments. PMID:24678910

  12. Contribution of recycled moisture to precipitation in oases of arid central Asia: A stable isotope approach

    NASA Astrophysics Data System (ADS)

    Wang, Shengjie; Zhang, Mingjun; Che, Yanjun; Chen, Fenli; Qiang, Fang

    2016-04-01

    Terrestrial moisture contributed by surface evaporation and transpiration, also known as recycled moisture, plays an important role in hydrological processes especially across arid central Asia. The stable hydrogen and oxygen isotopes can be used for water budget analysis to calculate the contribution of recycled moisture to precipitation between two locations along the moisture flow. Based on a three-component isotopic mixing model, the moisture recycling in oasis stations of arid central Asia during summer months is assessed. At large oases of Urumqi, the proportional contribution of recycled moisture to local precipitation is approximately 16.2%, and the mean proportions of surface evaporation and transpiration are 5.9% ± 1.5% and 10.3% ± 2.2%, respectively. At small oases like Shihezi and Caijiahu the contribution of recycled moisture is less than 5%, and the proportion of surface evaporation is much less than that of transpiration. The vegetative cover in arid central Asia is generally sparse, but the evapotranspiration contribution to precipitation cannot be ignored at the widely distributed oases. The oasis effect shows great variability depending on locations and water availability for evapotranspiration.

  13. A new approach for the interpretation of stable isotope signals in speleothems using noble gas temperatures

    NASA Astrophysics Data System (ADS)

    Kluge, T.; Marx, T.; Scholz, D.; Spötl, C.; Niggemann, S.; Schröder-Ritzrau, A.; Mangini, A.; Aeschbach-Hertig, W.

    2009-04-01

    The development of a measurement and extraction system for noble gases contained in speleothem fluid inclusions enables the determination of equilibration temperatures. This so-called noble gas temperature (NGT) can be used in addition to other proxies, such as stable oxygen and carbon isotopes or trace elements, to constrain paleoclimate changes. Typical sample sizes are about 1 g calcite. With this quantity, and a low contribution of air-filled inclusions to the total signal, an uncertainty of about 1℃ is achievable. Using stalagmites from the Bunker Cave in northern Germany a NGT record was established. This record covers different periods of the last 130 ka and offers the possibility to compare temperature changes reconstructed from NGTs with variations in the stable isotope and trace element data of the same stalagmite. Most noticeable is the evolution of the ^18O signal, which shows a strong depletion during periods of increased NGTs. The comparison of the NGTs with other climate records shows the detected temperature changes to be consistent with variations reconstructed e.g. from pollen, ice cores and corals.

  14. Lead isotope ratios for bullets, a descriptive approach for investigative purposes and a new method for sampling of bullet lead.

    PubMed

    Sjåstad, Knut-Endre; Simonsen, Siri Lene; Andersen, Tom H

    2014-11-01

    To establish a link between a bullet fired from a suspected firearm, investigation of striation marks are one of the corner stones in the forensic laboratory. Nevertheless, on some occasions, the bullet may be deformed to such extent that traditional investigation of striation marks will be impossible. Fragments of lead can be investigated by lead isotope ratio determination in order to distinguish between bullets with different origin. This approach initially seems reasonable, since the abundance of lead isotopes varies significantly in nature. To make a method valid for forensic purposes, it is important to have a fundamental understanding of the variation within a box of lead bullets and the expected variation between boxes. Studies of variability within and between boxes of ammunition are imperative to perform any type of forensic interpretation, both in an investigative and evaluative context. This work presents an extensive study of variability within and between boxes of ammunition by use of multicollector inductive coupled mass spectrometry. As a first approximation to classify bullets to any given source, a simple and robust graphical method is presented. In addition, an easy-to-use sampling procedure of lead is presented.

  15. Nutritional relations of deep-sea hydrothermal fields at the Mid-Atlantic Ridge: a stable isotope approach

    NASA Astrophysics Data System (ADS)

    Colaço, A.; Dehairs, F.; Desbruyères, D.

    2002-02-01

    Nutritional relations among invertebrates from the hydrothermal vent fields at the Mid Atlantic Ridge (MAR) were studied via the carbon and nitrogen stable isotope approach. A large number of specimens of different vent species from different MAR vent fields were analysed, providing a general picture of the community structure. The isotopic composition at each vent field presents the same general trend. There is an obvious dichotomy of the trophic structure, with the mussels being significantly depleted in 13C and shrimps being significantly enriched in 13C. MAR and Pacific vent fields present the same picture, despite a different species composition. Primary consumers are divided into main groups according to their δ13C signature: >-15 (shrimps) and <-20‰ (mussels). Vent predators are tightly linked to one or the other group, but a mixed diet cannot be excluded. Bathyal species are top predators, making incursions into the vent fields to profit from the large biomass. Taking into account the above associations, a descriptive trophic model was elaborated. At the base of the food chain the chemolithotrophic bacteria predominate. Four trophic levels were then distinguished: primary consumers, feeding only on bacteria; mixotrophs feeding on bacteria and small invertebrates; vent predators feeding only on small invertebrates; and finally top predators that are mainly constituted by deep-sea fauna.

  16. Anthropogenic impact on diffuse trace metal accumulation in river sediments from agricultural reclamation areas with geochemical and isotopic approaches.

    PubMed

    Jiao, Wei; Ouyang, Wei; Hao, Fanghua; Lin, Chunye

    2015-12-01

    A better understanding of anthropogenic impact can help assess the diffuse trace metal accumulation in the agricultural environment. In this study, both river sediments and background soils were collected from a case study area in Northeast China and analyzed for total concentrations of six trace metals, four major elements and three lead isotopes. Results showed that Pb, Cd, Cu, Zn, Cr and Ni have accumulated in the river sediments after about 40 years of agricultural development, with average concentrations 1.23-1.71 times higher than local soil background values. Among them Ni, Cr and Cu were of special concern and they may pose adverse biological effects. By calculating enrichment factor (EF), it was found that the trace metal accumulation was still mainly ascribed to natural weathering processes, but anthropogenic contribution could represent up to 40.09% of total sediment content. For Pb, geochemical and isotopic approaches gave very similar anthropogenic contributions. Principal component analysis (PCA) further suggested that the anthropogenic Pb, Cu, Cr and Ni inputs were mostly related to the regional atmospheric deposition of industrial emissions and gasoline combustion, which had a strong affinity for iron oxides in the sediments. Concerning Cd, however, it mainly originated from local fertilizer applications and was controlled by sediment carbonates.

  17. Origin and evolution of groundwater collected by a desalination plant (Tordera, Spain): A multi-isotopic approach

    NASA Astrophysics Data System (ADS)

    Otero, N.; Soler, A.; Corp, R. M.; Mas-Pla, J.; Garcia-Solsona, E.; Masqué, P.

    2011-01-01

    SummaryThe Tordera Desalination Plant located in Blanes (NE Spain) has seawater intake through 10 beach wells located a few meters inland on the shoreline at the Tordera River Delta. Between October 2002 and October 2003, the extracted groundwater showed a decrease in conductivity, especially in the wells located in the northern area, prompting the present study. A multi-isotopic approach (δD, δ 18OO, 3H, δ 34S, 87Sr/ 86Sr and 228Ra/ 226Ra) coupled with chemical data was applied in order to assess the origin of the water collected for the desalination plant and to quantify the extent of freshwater collection from the Tordera aquifer, when applicable. Three multi-piezometers located in the Tordera aquifer were also sampled in order to characterize the freshwater end-member. A seasonal survey was performed in order to assess the evolution of mixed freshwater-seawater intake. Tritium isotopes showed values ranging from 0.6 to 2.5 TU indicating recent origin of the collected waters. This was further confirmed using radium isotopes ( 226Ra and 228Ra), as the 228Ra/ 226Ra activity ratio (AR) indicated a continuous input of seawater on a yearly time scale. The water extracted from the beach wells was at least 95% seawater, except for wells 8-10. The latter two were extracting up to 15% of freshwater from the Tordera aquifer system. From a methodological point of view, while δ 34S of dissolved sulphate and the ratio 87Sr/ 86Sr are good tracers of seawater mixing with freshwaters, the isotopic composition of water (δD and δ 18OO) and the Cl -/Br - ratio are conservative tracers that allow for quantifying the contribution of freshwater to the extracted water. Although slight variations linked to seasonality were observed in all wells during the 3-year study period (November 2003 to December 2006), wells 1 and 7 showed an increase in freshwater contribution from 4% to 11% and well 10 a decrease from 15% to 10% over this period.

  18. Groundwater origin and flow dynamics in active rift systems - A multi-isotope approach in the Main Ethiopian Rift

    NASA Astrophysics Data System (ADS)

    Bretzler, Anja; Osenbrück, Karsten; Gloaguen, Richard; Ruprecht, Janina S.; Kebede, Seifu; Stadler, Susanne

    2011-05-01

    SummaryThis study aims to investigate groundwater recharge and flow patterns in tectonically active rift systems, exemplified by a case study in the Main Ethiopian Rift. The chosen approach includes the investigation of hydrochemical parameters and environmental isotopes ( 3H, δ 2H, δ 18O, δ 13C-DIC, 14C-DIC, 87Sr/ 86Sr). Apparent groundwater ages were determined by radiocarbon dating after correction of 14C-DIC using a modified δ 13C-mixing model and further validation using geochemical modelling with NETPATH. Hydrochemical and isotopic data indicate an evolutionary trend existing from the escarpments towards the Rift floor. Groundwater evolves from tritium-containing and hence recently recharged Ca-HCO 3-type water on the escarpments to tritium-free Na-HCO 3 groundwater dominating deep Rift floor aquifers. Correspondingly, rising pH and HCO3- values coupled with increasingly enriched δ 13C signatures point to hydrochemical evolution of DIC and beginning dilution of the carbon isotope signature by other carbon sources, related to a diffuse influx of mantle CO 2 into the groundwater system. Especially thermal groundwater sampled near the most recent fault zones in the Fantale/Beseka region displays clear influence of mantle CO 2 and increased water-rock interaction, indicated by a shift in δ 13C and 87Sr/ 86Sr signatures. The calculation of apparent groundwater ages revealed an age increase of deep groundwater from the escarpments to the Rift floor, complying with hydrochemical evolution. Within the Rift, samples show a relatively uniform distribution of apparent 14C ages of ˜1800 to ˜2800 years, with the expected down-gradient aging trend lacking, contradicting the predominant intra-rift groundwater flow described in existing transect-based models of groundwater flow. By combining hydrochemical and new isotopic data with knowledge of the structural geology of the Rift, we improve the existing groundwater flow model and propose a new conceptual model by

  19. A stable isotope approach to assessing water loss in fruits and vegetables during storage.

    PubMed

    Greule, Markus; Rossmann, Andreas; Schmidt, Hanns-Ludwig; Mosandl, Armin; Keppler, Frank

    2015-02-25

    Plant tissue water is the source of oxygen and hydrogen in organic biomatter. Recently, we demonstrated that the stable hydrogen isotope value (δ(2)H) of plant methoxyl groups is a very reliable and easily available archive for the δ(2)H value of this tissue water. Here we show in a model experiment that the δ(2)H values of methoxyl groups remain unchanged after water loss during storage of fruits and vegetables under controlled conditions, while δ(2)H and δ(18)O values of tissue water increase. This enhancement is plant-dependent, and the correlation differs from the meteoric water line. The δ(18)O value is better correlated to the weight decrease of the samples. Therefore, we postulate that the δ(2)H value of methoxyl groups and the δ(18)O value of tissue water are suitable parameters for checking postharvest alterations of tissue water, either addition or loss.

  20. Tracing carbon flow through coral reef food webs using a compound-specific stable isotope approach.

    PubMed

    McMahon, Kelton W; Thorrold, Simon R; Houghton, Leah A; Berumen, Michael L

    2016-03-01

    Coral reefs support spectacularly productive and diverse communities in tropical and sub-tropical waters throughout the world's oceans. Debate continues, however, on the degree to which reef biomass is supported by new water column production, benthic primary production, and recycled detrital carbon (C). We coupled compound-specific stable C isotope ratio (δ(13)C) analyses with Bayesian mixing models to quantify C flow from primary producers to coral reef fishes across multiple feeding guilds and trophic positions in the Red Sea. Analyses of reef fishes with putative diets composed primarily of zooplankton (Amblyglyphidodon indicus), benthic macroalgae (Stegastes nigricans), reef-associated detritus (Ctenochaetus striatus), and coral tissue (Chaetodon trifascialis) confirmed that δ(13)C values of essential amino acids from all baseline C sources were both isotopically diagnostic and accurately recorded in consumer tissues. While all four source end-members contributed to the production of coral reef fishes in our study, a single-source end-member often dominated dietary C assimilation of a given species, even for highly mobile, generalist top predators. Microbially reworked detritus was an important secondary C source for most species. Seascape configuration played an important role in structuring resource utilization patterns. For instance, Lutjanus ehrenbergii showed a significant shift from a benthic macroalgal food web on shelf reefs (71 ± 13 % of dietary C) to a phytoplankton-based food web (72 ± 11 %) on oceanic reefs. Our work provides insights into the roles that diverse C sources play in the structure and function of coral reef ecosystems and illustrates a powerful fingerprinting method to develop and test nutritional frameworks for understanding resource utilization.

  1. Tracing carbon flow through coral reef food webs using a compound-specific stable isotope approach.

    PubMed

    McMahon, Kelton W; Thorrold, Simon R; Houghton, Leah A; Berumen, Michael L

    2016-03-01

    Coral reefs support spectacularly productive and diverse communities in tropical and sub-tropical waters throughout the world's oceans. Debate continues, however, on the degree to which reef biomass is supported by new water column production, benthic primary production, and recycled detrital carbon (C). We coupled compound-specific stable C isotope ratio (δ(13)C) analyses with Bayesian mixing models to quantify C flow from primary producers to coral reef fishes across multiple feeding guilds and trophic positions in the Red Sea. Analyses of reef fishes with putative diets composed primarily of zooplankton (Amblyglyphidodon indicus), benthic macroalgae (Stegastes nigricans), reef-associated detritus (Ctenochaetus striatus), and coral tissue (Chaetodon trifascialis) confirmed that δ(13)C values of essential amino acids from all baseline C sources were both isotopically diagnostic and accurately recorded in consumer tissues. While all four source end-members contributed to the production of coral reef fishes in our study, a single-source end-member often dominated dietary C assimilation of a given species, even for highly mobile, generalist top predators. Microbially reworked detritus was an important secondary C source for most species. Seascape configuration played an important role in structuring resource utilization patterns. For instance, Lutjanus ehrenbergii showed a significant shift from a benthic macroalgal food web on shelf reefs (71 ± 13 % of dietary C) to a phytoplankton-based food web (72 ± 11 %) on oceanic reefs. Our work provides insights into the roles that diverse C sources play in the structure and function of coral reef ecosystems and illustrates a powerful fingerprinting method to develop and test nutritional frameworks for understanding resource utilization. PMID:26590916

  2. Approaching the Final Frontier in Lateral Resolution for Isotopic and Chemical Analysis with CHILI

    NASA Astrophysics Data System (ADS)

    Davis, A. M.; Stephan, T.; Pellin, M.; Savina, M.; Yokochi, R.; Trappitsch, R.; Liu, N.; King, A.

    2011-12-01

    The small sizes of samples returned by recent (Stardust, Hayabusa) and future (OSIRIS-REx) sample return missions to comets and asteroids, as well as the small sizes of presolar grains in and interplanetary dust particles (IDPs) are driving improvements in lateral resolution and sensitivity beyond what is available with current state-of-the-art secondary ion mass spectrometry (SIMS) instruments. SIMS lateral resolution has reached ~50 nm and useful yields are at most a few percent. We are completing construction of CHILI (the CHicago Instrument for Laser Ionization), a resonant ionization mass spectrometry (RIMS) nanobeam instrument designed for isotopic and chemical analysis at the few-nm scale with a useful yield of ≥35% [1]. CHILI is equipped with a COBRA-FIB high resolution liquid metal ion gun (LMIG) and an e-CLIPSE Plus field emission electron gun from Orsay Physics, each of which can be focused to <4 nm. The electron gun will be used for secondary electron imaging, as the built-in optical microscope is diffraction-limited to ~0.5 μm. A piezoelectric stage capable of reproducible nm-scale motions and equipped with a sample holder that will accept a wide variety of sample mounts is operational. The flight tube for the time-of-flight mass spectrometer mounted vertically above the sample chamber; this assembly is mounted in the center of an H-shaped laser table equipped with active vibration cancellation devices. The table has been demonstrated to have a vertical vibrational amplitude of less than 0.2 nm. Resonant ionization will be done with six Ti:sapphire tunable solid state lasers pumped with three 40W Nd:YLF lasers, which will allow two to three elements to be analyzed simultaneously. Ion detection in existing RIMS instruments [2,3] is done with a microchannel plate with a single anode. Isotope ratio precision is limited by counting statistics, as no more than one ion of the most abundant isotope of an element can be counted for each pulse. CHILI will

  3. Contribution to chlorine cycle: a Cl stable isotope approach on Mantle-Ocean exchanges

    NASA Astrophysics Data System (ADS)

    Bonifacie, M.; Jendrzejewski, N.; Pineau, F.; Agrinier, P.

    2003-04-01

    The stable isotope composition of chlorine (37Cl/35Cl) can be used to trace its geochemical cycle and is a powerfull tool to constrain the origin of high chlorine contents found for some fresh MORB glasses. Despite the fact that chlorine is a volatile element of primary importance, its cycle and isotopic fractionation factors during exchange processes between Earth's reservoirs or phases are poorly known. Furthermore, the scarcity of data for solid samples (rocks or minerals) reflects the analytical difficulty to extract chlorine from silicate structure. The classical methods of pyrohydrolysis followed by isotope-ratio mass spectrometric measurements on CH_3Cl gas have been optimised. Our technique represents the most quantitative and precise method of chlorine extraction for δ37Cl determination on solids published to date. Mean extraction yields are 100 ± 3%, δ37Cl values on duplicate extractions show reproducibility better than 0.2 ppm and the blanks represent less than 5% of the sample size. To characterise chlorine behaviour during the oceanic crust alteration, we have analysed fresh MORB glasses (from SWIR and EPR), altered basalts from leg 504B site (EPR), serpentinized peridotites (from SWIR and MAR) and an altered gabbro from the Hess Deep site (EPR). All samples (n=9) are depleted in 37Cl (δ37Cl from -1.4 to 0 ppm) relative to seawater (δ37Cl =0 ppm); Cl concentrations are between 200 and 2200 ppm. Our results on fresh MORBs: δ37Cl = -1.4 ppm and -0.6 ppm are in the lower range already published (-3 to +11 ppm, e.g. Magenheim et al., 95; Stewart, 2000). However, our δ37Cl range of altered samples: δ37Cl = -1.3 to -0.2 ppm (basalts, serpentinised peridotites and gabbro) is outside the range observed by Magenheim et al., 95 (+0.4 to +7.5 ppm in amphibole-rich rocks and smectite veins) despite the fact that in both study amphibole-rich rocks from the same site (i.e. leg 504B) have been analysed. On this site, our δ37Cl results are very homogeneous

  4. A dual isotope approach to isolate carbon pools of different turnover times

    NASA Astrophysics Data System (ADS)

    Torn, M. S.; Kleber, M.; Zavaleta, E. S.; Zhu, B.; Field, C. B.; Trumbore, S. E.

    2013-06-01

    Soils are globally significant sources and sinks of atmospheric CO2. Increasing the resolution of soil carbon turnover estimates is important for predicting the response of soil carbon cycling to environmental change. We show that soil carbon turnover times can be more finely resolved using a dual isotope label like the one provided by elevated CO2 experiments that use fossil CO2. We modeled each physical soil fraction as two pools with different turnover times, using the atmospheric 14C bomb spike in combination with the label in 14C and 13C provided by an elevated CO2 experiment in a California annual grassland. In sandstone and serpentine soils, the light-fraction carbon was 20-40% fast cycling with 2-10 yr turnover and 60-80% slow cycling with turnover slower than 100 yr. This validates model treatment of the light fraction as active and intermediate cycling carbon. The dense, mineral-associated fraction also had a very dynamic component, consisting of 5-10% fast cycling carbon and 90-95% very slow cycling carbon. Similarly, half the microbial biomass carbon in the sandstone soil was more than five years old, and 40% of the carbon respired by microbes had been fixed more than five years ago. Resolving each density fraction into two pools revealed that only a small component of total soil carbon is responsible for most CO2 efflux from these soils. In the sandstone soil, 8-11% of soil carbon contributes more than 85% of the annual CO2 efflux. The fact that soil physical fractions, designed to isolate organic material of roughly homogeneous physico-chemical state, contain material of dramatically different turnover times is consistent with recent observations of rapid isotope incorporation into seemingly stable fractions, and with emerging evidence for hot spots of decomposition within the soil matrix. Predictions of soil response using a turnover time estimated with the assumption of a single pool per fraction would greatly overestimate near-term response to

  5. A dual isotope approach to isolate soil carbon pools of different turnover times

    NASA Astrophysics Data System (ADS)

    Torn, M. S.; Kleber, M.; Zavaleta, E. S.; Zhu, B.; Field, C. B.; Trumbore, S. E.

    2013-12-01

    Soils are globally significant sources and sinks of atmospheric CO2. Increasing the resolution of soil carbon turnover estimates is important for predicting the response of soil carbon cycling to environmental change. We show that soil carbon turnover times can be more finely resolved using a dual isotope label like the one provided by elevated CO2 experiments that use fossil CO2. We modeled each soil physical fraction as two pools with different turnover times using the atmospheric 14C bomb spike in combination with the label in 14C and 13C provided by an elevated CO2 experiment in a California annual grassland. In sandstone and serpentine soils, the light fraction carbon was 21-54% fast cycling with 2-9 yr turnover, and 36-79% slow cycling with turnover slower than 100 yr. This validates model treatment of the light fraction as active and intermediate cycling carbon. The dense, mineral-associated fraction also had a very dynamic component, consisting of ∼7% fast-cycling carbon and ∼93% very slow cycling carbon. Similarly, half the microbial biomass carbon in the sandstone soil was more than 5 yr old, and 40% of the carbon respired by microbes had been fixed more than 5 yr ago. Resolving each density fraction into two pools revealed that only a small component of total soil carbon is responsible for most CO2 efflux from these soils. In the sandstone soil, 11% of soil carbon contributes more than 90% of the annual CO2 efflux. The fact that soil physical fractions, designed to isolate organic material of roughly homogeneous physico-chemical state, contain material of dramatically different turnover times is consistent with recent observations of rapid isotope incorporation into seemingly stable fractions and with emerging evidence for hot spots or micro-site variation of decomposition within the soil matrix. Predictions of soil carbon storage using a turnover time estimated with the assumption of a single pool per density fraction would greatly overestimate

  6. Approaching the N=82 shell closure with mass measurements of Ag and Cd isotopes

    SciTech Connect

    Breitenfeldt, M.; Baruah, S.; Rosenbusch, M.; Schweikhard, L.; Borgmann, Ch.; Boehm, Ch.; George, S.; Audi, G.; Lunney, D.; Minaya-Ramirez, E.; Naimi, S.; Beck, D.; Dworschak, M.; Herfurth, F.; Savreux, R.; Yazidjian, C.; Blaum, K.; Cakirli, R. B.; Casten, R. F.; Delahaye, P.

    2010-03-15

    Mass measurements of neutron-rich Cd and Ag isotopes were performed with the Penning trap mass spectrometer ISOLTRAP. The masses of {sup 112,114-124}Ag and {sup 114,120,122-124,126,128}Cd, determined with relative uncertainties between 2x10{sup -8} and 2x10{sup -7}, resulted in significant corrections and improvements of the mass surface. In particular, the mass of {sup 124}Ag was previously unknown. In addition, other masses that had to be inferred from Q values of nuclear decays and reactions have now been measured directly. The analysis includes various mass differences, namely the two-neutron separation energies, the applicability of the Garvey-Kelson relations, double differences of masses deltaV{sub pn}, which give empirical proton-neutron interaction strengths, as well as a comparison with recent microscopic calculations. The deltaV{sub pn} results reveal that for even-even nuclides around {sup 132}Sn the trends are similar to those in the {sup 208}Pb region.

  7. The effect of nitrogen loading on a brackish estuarine faunal community: A stable isotope approach

    USGS Publications Warehouse

    Keats, R.A.; Osher, L.J.; Neckles, H.A.

    2004-01-01

    Coastal ecosystems worldwide face increased nutrient enrichment from shoreline and watershed development and atmospheric pollution. We investigated the response of the faunal community of a small microtidal estuary dominated by Ruppia maritima (widgeon grass) in Maine, United States, to increased nitrogen loading using an in situ mesocosm enrichment experiment. Community response was characterized by assessing quantitative shifts in macroin-vertebrate community composition and identifying changes in food web structure using stable carbon and nitrogen isotope ratios of producers and consumers. The community was dominated by brackish water invertebrates including midge larvae, oligochaetes, damselfly larvae, amphipods, and ostracods. Experimental nutrient additions resulted in significantly lower densities of herbivorous chironomids and predatory damselflies and greater densities of deposit feeding oligochaetes. Grazing midge larvae (Chironomidae: Dicrotendipes, Cricotopus) consumed epiphytic algae under both natural and enriched conditions. Deposit feeding Chironomus was dependent on allochthonous sources of detritus under natural conditions and exhibited a shift to autochthonous sources of detritus under enriched conditions. Predatory Enallagma primarily consumed grazing chironomids under all but the highest loading conditions. Experimental nutrient loading resulted in an increase in generalist deposit feeders dependent on autochthonous sources of detritus.

  8. Improved approach for analyzing bromophenols in seafood using stable isotope dilution analysis in combination with SPME.

    PubMed

    Fuller, Steve C; Frank, Damian C; Fitzhenry, Matthew J; Smyth, Heather E; Poole, Sue E

    2008-09-24

    An analytical method for the measurement of five naturally occurring bromophenols of sensory relevance in seafood (barramundi and prawns) is presented. The method combines simultaneous distillation-extraction followed by alkaline back extraction of a hexane extract and subsequent acetylation of the bromophenols. Analysis of the bromophenol acetates was accomplished by headspace solid phase microextraction and gas chromatography-mass spectrometry using selected ion monitoring. The addition of (13)C 6 bromophenol stable isotope internal standards for each of the five congeners studied permitted the accurate quantitation of 2-bromophenol, 4-bromophenol, 2,6-dibromophenol, 2,4-dibromophenol, and 2,4,6-tribromophenol down to a limit of quantification of 0.05 ng/g of fish flesh. The method indicated acceptable precision and repeatability and excellent linearity over the typical concentration range of these compounds in seafood (0.5-50 ng/g). The analytical method was applied to determine the concentration of bromophenols in a range of farmed and wild barramundi and prawns and was also used to monitor bromophenol uptake in a pilot feeding trial. PMID:18754626

  9. Greenhouse Gas Production From a Young Boreal Hydroelectric Reservoir (Eastern Canada): A Carbon Isotope Approach

    NASA Astrophysics Data System (ADS)

    Lalonde, A.; Helie, J.

    2007-12-01

    It is now accepted that boreal hydroelectric reservoirs and lakes produce greenhouse gases (GHG) mainly in the form of CO2. Much of the research has so far focused on old (> 20 year) reservoirs. However, the problems associated with a newly flooded reservoir are different because after flooding, salts and nutrients from the flooded soils are released into the water column (i.e. the reservoir's effect). It is anticipated that the CO2 fluxes should be higher in young reservoirs than in older ones, but little is known about their magnitude and their sources. The Eastmain-1 hydroelectric reservoir is a small reservoir of 603 km2 with a mean depth of 11.5m. Flooding began in November 2005 and ended in May 2006. The flooded area was covered with approximately 65% boreal forests, 21% rivers and lakes and 14% peatlands. Here, we make use stable carbon isotopes to constrain carbon sources and cycling in this disturbed environment. Ultimately, the study aims at estimating annual CO2 fluxes at the water-air interface of the reservoir. Sampling was performed four times (June 2006, August 2006, October 2006 and June 2007) to account for seasonality of the carbon cycle. Twelve sites were visited on the reservoir as well as a natural lake near the reservoir. Three sites were also sampled along a depth gradient. At each sampling site, in situ measurements included water and air temperatures, pH, alkalinity, wind speed, conductivity and dissolved oxygen content. Samples were collected for the analysis of dissolved organic and inorganic carbon (respectively DOC and DIC) and particulate organic carbon (POC) concentrations, for the analysis of the carbon isotopic compositions of DOC, DIC, POC and air CO2 at the water-air interface and finally for the C:N of DOM and POM. DOC concentrations are highest averaging 6.86±1.40 mg*l-1, DIC concentrations average 1.51±0.76 mg*l-1 and POC concentrations are up to 2 orders of magnitude lower averaging 0.036±0.018 mg*l-1. δ13C values of DOC

  10. Fate of terrestrial DOC within stream biofilm communities: a stable isotope approach (Invited)

    NASA Astrophysics Data System (ADS)

    Wiegner, T. N.; Kaplan, L.; Ziegler, S. E.; Findlay, R. H.

    2010-12-01

    Heterotrophic members of the biofilm community play a critical ecological role in lotic ecosystems. They take up, degrade, and mineralize organic carbon, often dominate community respiration, and are a critical link to higher trophic levels through the microbial loop. The goal of our study was to identify who within the stream biofilm community actively metabolizes stream dissolved organic carbon (DOC) and ultimately controls stream ecosystem metabolism. This goal was accomplished by labeling heterotrophic members of the stream biofilm community in dark biofilm reactors through trace-additions of 13C-labeled tree tissue leachate (13C-DOC) in stream water for one month. Biofilm reactors receiving no 13C-DOC additions served as controls. Metabolic response of the biofilm community to the 13C-DOC additions was quantified through measures of DOC bioavailability, oxygen uptake, and bacterial production and abundance. Bioreactor community composition was assessed using phospholipid fatty acid (PLFA) biomarkers, and the metabolically active members of the community were identified through 13C isotopic analysis of the PLFAs. 13C-DOC additions increased DOC concentrations in stream water by 6% (±9) and changed the δ13C-DOC signature from -28‰ (±2) to +1021‰ (±763). 13C-DOC additions increased the bioavailable DOC in the stream water from 28% (±2) to 39% (±6), oxygen consumption from 20% (±5) to 33% (±9), bacterial cell abundance by a factor of 1.3, and total microbial biomass by a factor of 1.6, but did not significantly affect bacterial production. Bacteria comprised ~80% of the microbial community in the control and 13C-labeled reactors; the remainder of the microbial community was heterotrophic microeukaryotes. δ13C of PLFAs in the 13C-labeled biofilm reactors ranged from +246‰ to +1090‰ and were more depleted in 13C than the original 13C-DOC used to label them, suggesting preferential uptake of specific molecules within the 13C-DOC pool and

  11. Paleoproductivity during the middle Miocene carbon isotope events: A data-model approach

    NASA Astrophysics Data System (ADS)

    Diester-Haass, Liselotte; Billups, Katharina; Jacquemin, Ingrid; Emeis, Kay C.; Lefebvre, Vincent; FrançOis, Louis

    2013-06-01

    To what extent are individual middle Miocene eccentricity-scale benthic foraminiferal carbon isotope maxima (the so-called CM events) related to changes in marine export productivity? Here we use benthic foraminiferal accumulation rates from three sites in the Pacific and Southern Oceans and a geochemical box model to assess relationships between benthic foraminiferal δ13C records, export productivity, and the global carbon cycle. Results from Deep Sea Drilling Project Hole 588 and Ocean Drilling Program Site 747 show a distinct productivity maximum during CM 6 at 13.8 Ma, the time of major expansion of ice on Antarctica. Productivity maxima during other CM events are only recorded at high-latitude Site 747. A set of numerical experiments tests whether changes in foraminiferal δ13C records (CM events) and export productivity can be simulated solely by sea level fluctuations and the associated changes in global weathering-deposition cycles, by sea level fluctuations plus global climatic cooling, and by sea level fluctuations plus invigorated ocean circulation. Consistent with data, the periodic forcing of sea level and albedo (and associated weathering cycles) produces δ13C variations of the correct temporal spacing, albeit with a reduced amplitude. A productivity response of the correct magnitude is achieved by enhancing ocean circulation during cold periods. We suggest that the pacing of middle Miocene δ13C fluctuations is associated with cyclical sea level variations. The amplitude, however, is muted perhaps due to the competing effects of a time-lagged response to sea level lowstands but an immediate response to invigorated ocean circulation during cold phases.

  12. A new approach on measuring calcium isotopic compositions using 42Ca-43Ca double spike on Triton-TIMS

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Zhu, H.; Liu, Y.; Zhu, J.; Kang, J.; Tan, D.; Liu, F.; Wang, G.

    2013-12-01

    Geochemical investigations on non-traditional stable calcium isotopic compositions of natural samples would greatly provide useful information on understanding the details in all kinds of geological processes, such as to trace the geological reservoirs, to reconstruct the calcium isotopic compositions of paleo sea water and to discover paleoclimate changes, etc. With the development of modern instruments and new chemical separation procedures, it is possible to accurately measure δ44Ca using double spike technique on TIMS/MC-ICP-MS nowadays; however, robust methods are quite few in China. Here we gave an evaluation on selecting the double spike pairs, the best mixture ratio of the two single spikes and made our own 42Ca-43Ca double spike; we also developed and improved new chemical procedures for separating Ca from different kinds of natural sample matrixes, and set up a method for running Ca on the Triton TIMS. Our results confirmed that the calcium fractionation during TIMS runs follows the exponential law. The best sample/spike mixture ratio range was also carefully calculated based on the double spike information and samples were spiked strictly to make it fall in this range. Based on our new approach, a set of standards including 915a, seawater and a couple of USGS standards were measured in our laboratory in China. Recent results show that δ44Ca of 915a, seawater, BHVO-1, BIR-1 and Nod-P-1 yield an average value -0.04×0.13 (2 std. dev.) (n=19), 1.88×0.10 (n=10), 0.82×0.06 (n=10), 0.81×0.13 (n=10) and 0.77×0.10 (n=10) respectively with a whole procedure blank usually ranges from 50-150ng. The data are similar to those in literatures. In addition, our chemical procedures could also be highly employed for separating Mg, Sr and Ba simultaneously from sample matrixes.

  13. New Approaches to Assessing and Predicting the Hydrologic Impacts of Urban Disturbance Using Isotopes and Transit Time Analysis

    NASA Astrophysics Data System (ADS)

    Soulsby, C.; Geris, J.; Birkel, C.; Tetzlaff, D.

    2015-12-01

    Urbanization is an abrupt hydrological disturbance that affects large parts of the world. For ameliorative management, an understanding of how flow partitioning and storage dynamics are affected is crucial, yet this remains limited. This reflects the lack of integrated monitoring and modelling frameworks for characterizing these hydrological response dynamics to incremental urban development. Here we use a coupled flow-isotope model to assess the impacts of urbanisation (~20%) on stream water age distributions in an 8 km2 catchment. A conceptual runoff model was used with flux tracking to estimate the time-varying age of stream water at the outlet and both urban and non-urban sub-catchments over a 3 year period. Combined objective functions of both flow and isotope metric constrained model structures, improved calibration and aided model evaluation. Specifically, we explored (1) the age distribution of stream water draining urban and non-urban areas, (2) the integrated effect of these different land uses at larger catchment scales, and (3) how the modelling can predict the impacts on the stream water age of future urbanization proposals. The results showed that stream water draining the most urbanized tributary was youngest with a mean transit time (MTT) of < 6 months compared with ~18 months in the non-urban tributary. For the catchment outlet, the MTT was around 9 months. Here, the response of urban areas dominated smaller and moderate events, but rural contributions dominated during the wettest periods, giving a bi-modal distribution of water ages. Predictions for planned developments in the area indicated that just a 5% increase in urban area would give dramatic reductions in MTTs that can propagate to the larger catchment scale. This novel approach offers a framework for understanding the cumulative impacts of disturbances on streams. It can also contribute to the design of more sustainable urban water design in terms of targeted restriction of rapid water

  14. Examining the linkages between forest water use, hydrology, and climate using dual-isotope approaches: insights and challenges in headwater catchments (Invited)

    NASA Astrophysics Data System (ADS)

    Barnard, H. R.; Brooks, J. R.; Pypker, T. G.; McDonnell, J. J.; Bond, B. J.; Williams, D. G.

    2010-12-01

    The amount of biologically available water is arguably the central driver in plant processes. While many studies have examined the hydrological components of biologically available water, the role that vegetation water use plays within the forested ecosystem water balance is poorly understood. Fundamental questions of forests' effect on the hydrologic cycle remain unanswered. Stable isotope observations play an important role in studies that explore the interface between plant physiological function and watershed flowpaths, flow sources, and residence times. We use multiple approaches, including stable isotopes to mechanistically assess the inter-relationships between vegetation water use, hydrology, and climate. We measured deuterium and 18O of xylem water and soil water to track changes in the depth of transpiration source water throughout the summers in a headwater catchment in western Oregon. Additionally, we measured transpiration, soil moisture, and foliar pre-dawn water potential. Forest transpiration and soil evaporation are often not separately measured, and yet respond to environmental drivers in fundamentally different ways. A promising approach for partitioning the evapotranspiration into its component fluxes involves measurement of the stable isotope composition (2H and 18O) of water vapor exchanged between vegetation and atmosphere. We present some preliminary data examining changes in ET partitioning in response to bark beetles outbreaks in the Rocky Mountains. Last, to examine the linkages between vegetation function and micro-climate, we applied a dual isotope (13C and 18O) approach to infer physiological response of trees to changing environmental conditions. We found that stable isotopes of oxygen were directly related to stomatal conductance and inversely related to relative humidity; however, the relationship with relative humidity was more apparent. The correlation of stable isotopes in tree rings with environmental variables can be

  15. Tracing organic matter sources in a tropical mangrove ecosystem (Pichavaram, India) - a stable isotopic approach

    NASA Astrophysics Data System (ADS)

    Mohan Sappal, Swati; Jennerjahn, Tim; Ramanathan, Alagappan

    2014-05-01

    Mangroves are among the most productive ecosystems on earth and thus highly efficient carbon sinks with most of the carbon stored in the sediments. These are the sites for accumulation and preservation of both autochthonous and allochthonous organic matter (OM) due to their strategic location at the interface between land and sea and prevailing reducing environment. Recent studies suggest that vegetated coastal habitats are more important quantitative carbon sinks than previously thought. However, for global carbon budgets it is important to know whether the carbon buried is freshly fixed from atmospheric CO2 or relocated, and possibly very old, carbon from another reservoir. Therefore, the identification of OM sources is a critical issue for constructing the carbon budget in mangrove ecosystems so as to differentiate between the recent autochthonous or relocated allochthonous carbon that gets accumulated in the sediments. In this context the Pichavaram mangrove complex (comprising of a core mangrove area and the Vellar and Coleroon rivers) in the South of India was sampled along the estuarine gradient and in its different environmental settings, as these influence the carbon dynamics through differences in tidal flushing and relative importance of allochthonous versus autochthonous inputs. A total of 11 sediment cores, 18 surface sediments, 18 suspended sediment samples, 13 true mangrove plant species, 2 mangrove associate plants, 4 marsh shrub samples and 4 algae samples were collected from the Pichavaram mangrove complex in January 2012 and January 2013. The samples were analysed for carbon (C), nitrogen (N), stable carbon (δ13Corg) and stable nitrogen (δ15N) isotope composition. Our results highlight the relative abundance of terrestrial and mangrove derived organic matter over the marine dominated organic matter in the mangrove sediments. The sites with dense mangrove vegetation showed higher sediment carbon content as compared to the sites with degraded

  16. Isotopically controlled semiconductors

    SciTech Connect

    Haller, Eugene E.

    2001-12-21

    Semiconductor bulk crystals and multilayer structures with controlled isotopic composition have attracted much scientific and technical interest in the past few years. Isotopic composition affects a large number of physical properties, including phonon energies and lifetimes, bandgaps, the thermal conductivity and expansion coefficient and spin-related effects. Isotope superlattices are ideal media for self-diffusion studies. In combination with neutron transmutation doping, isotope control offers a novel approach to metal-insulator transition studies. Spintronics, quantum computing and nanoparticle science are emerging fields using isotope control.

  17. Experimental investigations of water fluxes within the soil-vegetation-atmosphere system: Stable isotope mass-balance approach to partition evaporation and transpiration

    NASA Astrophysics Data System (ADS)

    Wenninger, Jochen; Beza, Desta Tadesse; Uhlenbrook, Stefan

    Irrigated agriculture is the largest user of freshwater worldwide and the scale of irrigated agriculture can be so large that it can have dramatic effects on the water cycle and even alter regional climates. Therefore, it is vital to improve the water use efficiency of irrigated lands in order to address the sustainable use of water resources, the growing need for agricultural products, and the health of ecosystems. Environmental isotopes have unique attributes that make them particularly suitable for tracing hydrological pathways and quantifying hydrological fluxes within the soil-vegetation-atmosphere system. The stable isotopic composition of soil water is mainly controlled by precipitation or irrigation inputs and evaporative losses. Because transpiration does not fractionate soil water isotopes, it is possible to estimate the relative proportions of evaporation and transpiration using isotopic mass balance calculations. In this study experimental investigations, combining classical hydrometric measurements, tracer hydrological methods and a soil water model were applied to laboratory lysimeters to study the transpiration processes of Teff ( Eragrostis tea (Zucc.) Trotter). Teff is an annual bunch cereal and an important aliment in Ethiopia and Eritrea and it is also gaining popularity in other countries. To determine the soil water contents, sensors using a capacitance/frequency domain technology were installed at different depths and soil water samples for the isotope analysis were taken using pore water samplers. Water contents in different depths and water fluxes, such as percolation and evaporation were modeled using the HYDRUS-1D software package. By using an isotope mass balance model the total evaporation and the fractions between soil evaporation and transpiration could be determined. The water losses which were estimated using the isotope mass-balance approach are in good agreement with the measured values using classical hydrometric measurements. The

  18. Stable Carbon Isotopes (δ 13C) in Coral Skeletons: Experimental Approach and Applications for Paleoceanography

    NASA Astrophysics Data System (ADS)

    Grottoli, A. G.

    2004-12-01

    natural field conditions corals feed on zooplankton below this `nutrient threshold' and that increases in heterotrophy should result in decreases skeletal δ 13C values. Overall, changes in photosynthesis and heterotrophy have significant effects on coral skeletal δ 13C. In shallower corals, photosynthesis drives the bulk of the variation in δ 13C. In addition, boron isotope data indicate that pH levels do not vary with changes in photosynthesis or heterotrophy suggesting that metabolically driven δ 13C fractionation during skeletogenesis is not pH driven. Thus the skeletal δ 13C records from shallow corals in non-upwelling regions where zooplankton concentrations are relatively constant should represent a reliable proxy of light variability. Due to the complexity associated with nutrients and heterotrophy, δ 13C records from upwelling regions or deep corals are still difficult to resolve.

  19. A combined hydrochemical - isotopic approach for assessing the regional pollution of an alluvial aquifer in a urbanized environment

    NASA Astrophysics Data System (ADS)

    Gesels, Julie; Orban, Philippe; Popescu, Cristina; Knöller, Kay; Brouyère, Serge

    2014-05-01

    The alluvial aquifer of the Meuse River is contaminated at regional scale in the urbanized and industrialized area of Liège in Belgium with different types of contaminants, in particular inorganics such as sulfate, nitrate and ammonium. The sources of those contaminants are numerous: brownfields, urban waste water, subsurface acid mine drainage from former coal mines, atmospheric deposits related to pollutants emissions in the atmosphere... Sulfate, nitrate and ammonium are both typical pollutants of the aquifer and tracers of the possible pollution sources. According to the European legislation on water, groundwater resources should reach a good quality status before 2015. However, an exemption can be obtained if it may be unfeasible or unreasonably expensive to achieve good status. In this case, groundwater quality objectives and management plans can be adapted to these specific conditions. To obtain such an exemption for the Meuse alluvial aquifer, it is required to demonstrate that the poor qualitative status is caused by acid mine drainage, or by widespread historical atmospheric deposition from industries, and not by recent anthropogenic contamination from the urban and industrial context. In this context, a detailed hydrogeochemical characterization of groundwater has been performed, with the aim of determining the origin of the inorganic contaminations and the main processes contributing to poor groundwater quality. A large hydrochemical sampling campaign was performed, based on 71 selected representative sampling locations, to better characterize the different vectors (end-members) of contamination of the alluvial aquifer and their respective contribution to groundwater contamination in the area. Groundwater samples were collected and analyzed for major and minor compounds and metallic trace elements. The analyses also include stable isotopes in water, sulfate, nitrate, ammonium, boron and strontium. Different hydrogeochemical approaches are combined to

  20. Assessing sources of nitrate contamination in the Shiraz urban aquifer (Iran) using the δ(15)N and δ(18)O dual-isotope approach.

    PubMed

    Amiri, Haleh; Zare, Mohammad; Widory, David

    2015-01-01

    Nitrate ([Formula: see text]) is one of the major threats to the quality of the drinking water taken from the Shiraz aquifer. This aquifer undergoes high anthropogenic pressures from multiple local urban (including uncontrolled sewage systems), agricultural and industrial activities, resulting in [Formula: see text] concentrations as high as 149 mg L(-1), well above the 50 mg L(-1) guideline defined by the World Health Organisation. We coupled here classical chemical and dual isotope (δ(15)N and δ(18)O of [Formula: see text]) approaches trying to characterize sources and potential processes controlling the budget of this pollutant. Chemical data indicate that nitrate in this aquifer is explained by distinct end-members: while mineral fertilizers isotopically show to have no impact, our isotope approach identifies natural soil nitrification and organic [Formula: see text] (manure and/or septic waste) as the two main contributors. Isotope data suggest that natural denitrification may occur within the aquifer, but this conclusion is not supported by the study of other chemical parameters.

  1. Assessing sources of nitrate contamination in the Shiraz urban aquifer (Iran) using the δ(15)N and δ(18)O dual-isotope approach.

    PubMed

    Amiri, Haleh; Zare, Mohammad; Widory, David

    2015-01-01

    Nitrate ([Formula: see text]) is one of the major threats to the quality of the drinking water taken from the Shiraz aquifer. This aquifer undergoes high anthropogenic pressures from multiple local urban (including uncontrolled sewage systems), agricultural and industrial activities, resulting in [Formula: see text] concentrations as high as 149 mg L(-1), well above the 50 mg L(-1) guideline defined by the World Health Organisation. We coupled here classical chemical and dual isotope (δ(15)N and δ(18)O of [Formula: see text]) approaches trying to characterize sources and potential processes controlling the budget of this pollutant. Chemical data indicate that nitrate in this aquifer is explained by distinct end-members: while mineral fertilizers isotopically show to have no impact, our isotope approach identifies natural soil nitrification and organic [Formula: see text] (manure and/or septic waste) as the two main contributors. Isotope data suggest that natural denitrification may occur within the aquifer, but this conclusion is not supported by the study of other chemical parameters. PMID:25941866

  2. Drought Impact on Water - Carbon Interaction in Soil: A Stable Isotopic Approach

    NASA Astrophysics Data System (ADS)

    Joseph, J.; Weiler, M.; Gessler, A.

    2014-12-01

    Extreme climatic conditions like drought introduce drastic changes in carbon and water dynamics in the plant - soil continuum, starting from carbon assimilation till carbon allocation in the soil, root water uptake till transpiration via leaves. Our objective was to study the drought impact on the dynamics of Carbon, and water cycles, as well as the interaction between them under extreme climatic conditions in the plant soil continuum. The first phase of the experiment involved 13CO2 pulse labeling of drought exposed and well-water beech microcosms, during which we monitored the 13C allocation to roots, and in the soil by measuring the CO2 concentration, ∂13C, and ∂18O of root derived CO2. We found that drought had a significant impact on, a) carbon assimilation, allocation, and translocation rate in the plant - soil system. The drought stressed plants not only assimilated fewer amounts of CO2, but also translocation of those assimilates belowground was extremely slow, and root respiration was low in comparison the well watered control plants. The second phase involved rewetting of the drought chambers (and the application of similar amounts of water to the controls) using D218O enriched water followed by an additional 13CO2 pulse labeling approach so as to study the effects of drought on the infiltration patterns of a precipitation event as well as the recovery of the carbon relations of previously drought stressed beech saplings.

  3. Determining Carbonate Concretion Formation Temperatures and Pore Water δ18O Values Using the Clumped Isotope Approach

    NASA Astrophysics Data System (ADS)

    Loyd, S. J.; Corsetti, F. A.; Tripati, A. K.

    2010-12-01

    The porosity/permeability of siliciclastic strata is affected by post-depositional cementation, but determining at what depth and under what conditions cementation occurs is difficult with standard techniques. The oxygen isotopic composition of solid phase carbonate cements (δ18Ocarb) can be related to temperature (and by extension depth) of formation, and thus has been widely used in diagenetic studies. However, δ18Ocarb paleothermometry requires the prediction or assumption of pore water δ18O (δ18Opw), a parameter that is poorly constrained in past diagenetic environments (for convenience δ18Opw is usually assumed to be 0‰ VSMOW). Here, we use clumped isotope thermometry (CIT)—a fluid δ18O-independent temperature proxy—to avoid the often ambiguous yet necessary δ18Opw assumption applied to δ18Ocarb paleothermometery and reevaluate the temperature of carbonate concretion formation in the Miocene Monterey Formation (dolomite) and the Cretaceous Holz Shale (calcite) of southern California. CIT analysis of Monterey Formation concretions produced slightly increased temperatures of formation versus traditional δ18Ocarb paleothermometry, whereas the Holz Shale concretions produced significantly decreased temperatures. Inputting the CIT-derived temperature into the associated δ18Ocarb-temperature equation allows the calculation of the ancient δ18Opw. Calculated δ18Opw values range from ~ -8 to +2‰ VSMOW, significantly different from coeval seawater. δ18Opw less than 0‰ can be generated by a number of processes including the influx of non-marine fluids and/or hydrate formation, whereas δ18Opw greater than 0‰ can be produced by silicate diagenesis, influx of evaporative brines, or hydrate dissolution. These data demonstrate that pore water modifying diagenetic processes were operating in past environments and emphasize that the formation temperatures of diagenetic carbonates should be calculated using a fluid δ18O-independent approach, such as

  4. Isotopic analysis of Cu in blood serum by multi-collector ICP-mass spectrometry: a new approach for the diagnosis and prognosis of liver cirrhosis?

    PubMed

    Costas-Rodríguez, Marta; Anoshkina, Yulia; Lauwens, Sara; Van Vlierberghe, Hans; Delanghe, Joris; Vanhaecke, Frank

    2015-03-01

    The isotopic composition of blood serum Cu has been investigated as a potential parameter for the diagnosis and prognosis of liver cirrhosis. Serum samples from supposedly healthy women (reference population) and from a group of female patients suffering from liver cirrhosis of different etiologies were analysed. The procedure for isolation of serum Cu and the measurement protocol for its isotopic analysis by multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS) were evaluated. Significant differences in the isotopic composition of Cu were observed between the reference population and the patients. A wide spread in δ(65)Cu was observed within the cirrhosis population and δ(65)Cu seems to be linked to the severity of the disease. Patients with end-stage liver disease showed a significantly lighter serum Cu isotopic composition. Many clinical parameters used for the diagnosis and monitoring of liver diseases, i.e. the levels of aspartate aminotransferase, De Ritis ratio, prothrombin and international normalized ratio, albumin, bilirubin, Na and C-reactive protein, correlate well with the δ(65)Cu values, as did the ceruloplasmin level and the ceruloplasmin/Cu concentration ratio. The isotopic composition of serum Cu appears to reveal the synthetic and hepatocellular function of the liver synergistically with inflammation and fluid retention in the cohort studied. A relevant relationship was also observed between δ(65)Cu and scores of mortality risk, such as the Model for End-stage Liver Disease (MELD) and MELD-Na. Thus, the isotopic composition of serum Cu shows potential as a new approach for the prognosis of liver disease, and although further investigation is required, for evaluation of the mortality risk in end-stage liver disease and prioritization of liver transplants.

  5. UV-laser microdissection system - A novel approach for the preparation of high-resolution stable isotope records (δ13C/δ18O) from tree rings

    NASA Astrophysics Data System (ADS)

    Schollaen, Karina; Helle, Gerhard

    2013-04-01

    Intra-annual stable isotope (δ13C and δ18O) studies of tree rings at various incremental resolutions have been attempting to extract valuable seasonal climatic and environmental information or assessing plant ecophysiological processes. For preparing high-resolution isotope samples normally wood segments or cores are mechanically divided in radial direction or cut in tangential direction. After mechanical dissection, wood samples are ground to a fine powder and either cellulose is extracted or bulk wood samples are analyzed. Here, we present a novel approach for the preparation of high-resolution stable isotope records from tree rings using an UV-laser microdissection system. Firstly, tree-ring cellulose is directly extracted from wholewood cross-sections largely leaving the wood anatomical structure intact and saving time as compared to the classical procedure. Secondly, micro-samples from cellulose cross-sections are dissected with an UV-Laser dissection microscope. Tissues of interest from cellulose cross-sections are identified and marked precisely with a screen-pen and dissected via an UV-laser beam. Dissected cellulose segments were automatically collected in capsules and are prepared for stable isotope (δ13C and δ18O) analysis. The new techniques facilitate inter- and intra-annual isotope analysis on tree-ring and open various possibilities for comparisons with wood anatomy in plant eco-physiological studies. We describe the design and the handling of this novel methodology and discuss advantages and constraints given by the example of intra-annual oxygen isotope analysis on tropical trees.

  6. Isotopic Approaches to Evaluate the Fate of Injected CO2 in Two Geological Storage Projects in Mature Oilfields in Canada

    NASA Astrophysics Data System (ADS)

    Mayer, B.; Johnson, G.; Nightingale, M.; Maurice, S.; Raistrick, M.; Taylor, S.; Hutcheon, I.; Perkins, E.

    2008-12-01

    Monitoring and verification of CO2 storage is an essential component of geological storage projects. We present evidence from two enhanced oil recovery projects in Canada that geochemical and isotopic techniques can be successfully used to trace the fate of injected CO2. Geochemical and isotopic data for fluids and gases obtained from multiple wells at the International Energy Agency Greenhouse Gas Weyburn CO2 Monitoring and Storage Project (Saskatchewan, Canada) and from the Penn West Pembina Cardium CO2-Enhanced Oil Recovery Monitoring Pilot (Alberta, Canada) were collected before and throughout the CO2 injection phase. Carbon isotope ratios of injected CO2 in the Weyburn project were significantly lower than those of background CO2 in the reservoir. In contrast, carbon isotope ratios of injected CO2 at Penn West's Pembina Cardium CO2-Enhanced Oil Recovery Monitoring Pilot were markedly higher than those of background CO2. After commencement of CO2 injection, the concentrations and carbon isotope values of CO2 and HCO3- in fluids and gases repeatedly obtained from monitoring wells were determined. Increasing CO2 and HCO3- concentrations in concert with carbon isotope values trending towards those of the injected CO2 revealed effective solubility and ionic trapping of injected CO2 at several monitoring wells at both study sites. In addition, changes in the oxygen isotope values of reservoir fluids provided independent evidence for dissolution of injected CO2 in the produced waters. We conclude that geochemical and isotopic monitoring techniques can play an essential role in verification of CO2 storage provided that the isotopic composition of the injected CO2 is distinct.

  7. Predicting equilibrium vapour pressure isotope effects by using artificial neural networks or multi-linear regression - A quantitative structure property relationship approach.

    PubMed

    Parinet, Julien; Julien, Maxime; Nun, Pierrick; Robins, Richard J; Remaud, Gerald; Höhener, Patrick

    2015-09-01

    We aim at predicting the effect of structure and isotopic substitutions on the equilibrium vapour pressure isotope effect of various organic compounds (alcohols, acids, alkanes, alkenes and aromatics) at intermediate temperatures. We attempt to explore quantitative structure property relationships by using artificial neural networks (ANN); the multi-layer perceptron (MLP) and compare the performances of it with multi-linear regression (MLR). These approaches are based on the relationship between the molecular structure (organic chain, polar functions, type of functions, type of isotope involved) of the organic compounds, and their equilibrium vapour pressure. A data set of 130 equilibrium vapour pressure isotope effects was used: 112 were used in the training set and the remaining 18 were used for the test/validation dataset. Two sets of descriptors were tested, a set with all the descriptors: number of(12)C, (13)C, (16)O, (18)O, (1)H, (2)H, OH functions, OD functions, CO functions, Connolly Solvent Accessible Surface Area (CSA) and temperature and a reduced set of descriptors. The dependent variable (the output) is the natural logarithm of the ratios of vapour pressures (ln R), expressed as light/heavy as in classical literature. Since the database is rather small, the leave-one-out procedure was used to validate both models. Considering higher determination coefficients and lower error values, it is concluded that the multi-layer perceptron provided better results compared to multi-linear regression. The stepwise regression procedure is a useful tool to reduce the number of descriptors. To our knowledge, a Quantitative Structure Property Relationship (QSPR) approach for isotopic studies is novel.

  8. Identifying source and formation altitudes of nitrates in drinking water from Réunion Island, France, using a multi-isotopic approach

    NASA Astrophysics Data System (ADS)

    Rogers, Karyne M.; Nicolini, Eric; Gauthier, Virginie

    2012-09-01

    Nitrate concentrations, water isotopes (δ2H and δ18Owater) and associated nitrate isotopes (δ15Nnitrate and δ18Onitrate) from 10 drinking water wells, 5 fresh water springs and the discharge from 3 wastewater treatment stations in Réunion Island, located in the Indian Ocean, were analysed. We used a multi isotopic approach to investigate the extent of nitrate contamination, nitrate formation altitude and source of nitrates in Réunion Island's principal aquifer. Water from these study sites contained between 0.1 and 85.3 mg/L nitrate. δ15Nnitrate values between + 6 and + 14‰ suggested the main sources of contamination were animal and/or human waste, rather than inorganic (synthetic) fertilisers, infiltrating through the subsurface into the saturated zone, due to rainfall leaching of the unsaturated zone at various altitudes of precipitation. Based on δ15Nnitrate values alone, it was not possible to distinguish between animal and human activities responsible for the contamination of each specific catchment. However, using a multi isotope approach (δ18Owater and δ15Nnitrate), it was possible to relate the average altitude of rainfall infiltration (δ18Owater) associated with the nitrate contamination (δ18Onitrate). This relationship between land use, rainfall recharge altitude and isotopic composition (δ15Nnitrate and δ18Owater) discriminated between the influences of human waste at lower (below 600 m elevation) or animal derived contamination (at elevations between 600 and 1300 m). By further comparing the theoretical altitude of nitrate formation calculated by the δ18Onitrate, it was possible to determine that only 5 out of 15 fresh water wells and springs followed the conservative nitrate formation mechanism of 2/3δ18Owater + 1/3δ18Oair, to give nitrate formation altitudes which corresponded to land use activities.

  9. Predicting equilibrium vapour pressure isotope effects by using artificial neural networks or multi-linear regression - A quantitative structure property relationship approach.

    PubMed

    Parinet, Julien; Julien, Maxime; Nun, Pierrick; Robins, Richard J; Remaud, Gerald; Höhener, Patrick

    2015-09-01

    We aim at predicting the effect of structure and isotopic substitutions on the equilibrium vapour pressure isotope effect of various organic compounds (alcohols, acids, alkanes, alkenes and aromatics) at intermediate temperatures. We attempt to explore quantitative structure property relationships by using artificial neural networks (ANN); the multi-layer perceptron (MLP) and compare the performances of it with multi-linear regression (MLR). These approaches are based on the relationship between the molecular structure (organic chain, polar functions, type of functions, type of isotope involved) of the organic compounds, and their equilibrium vapour pressure. A data set of 130 equilibrium vapour pressure isotope effects was used: 112 were used in the training set and the remaining 18 were used for the test/validation dataset. Two sets of descriptors were tested, a set with all the descriptors: number of(12)C, (13)C, (16)O, (18)O, (1)H, (2)H, OH functions, OD functions, CO functions, Connolly Solvent Accessible Surface Area (CSA) and temperature and a reduced set of descriptors. The dependent variable (the output) is the natural logarithm of the ratios of vapour pressures (ln R), expressed as light/heavy as in classical literature. Since the database is rather small, the leave-one-out procedure was used to validate both models. Considering higher determination coefficients and lower error values, it is concluded that the multi-layer perceptron provided better results compared to multi-linear regression. The stepwise regression procedure is a useful tool to reduce the number of descriptors. To our knowledge, a Quantitative Structure Property Relationship (QSPR) approach for isotopic studies is novel. PMID:25559176

  10. The suitability of a simplified isotope-balance approach to quantify transient groundwater-lake interactions over a decade with climatic extremes

    USGS Publications Warehouse

    Sacks, Laura A.; Lee, Terrie M.; Swancar, Amy

    2013-01-01

    Groundwater inflow to a subtropical seepage lake was estimated using a transient isotope-balance approach for a decade (2001–2011) with wet and dry climatic extremes. Lake water δ18O ranged from +0.80 to +3.48 ‰, reflecting the 4 m range in stage. The transient δ18O analysis discerned large differences in semiannual groundwater inflow, and the overall patterns of low and high groundwater inflow were consistent with an independent water budget. Despite simplifying assumptions that the isotopic composition of precipitation (δP), groundwater inflow, and atmospheric moisture (δA) were constant, groundwater inflow was within the water-budget error for 12 of the 19 semiannual calculation periods. The magnitude of inflow was over or under predicted during periods of climatic extreme. During periods of high net precipitation from tropical cyclones and El Niño conditions, δP values were considerably more depleted in 18O than assumed. During an extreme dry period, δA values were likely more enriched in 18O than assumed due to the influence of local lake evaporate. Isotope balance results were most sensitive to uncertainties in relative humidity, evaporation, and δ18O of lake water, which can limit precise quantification of groundwater inflow. Nonetheless, the consistency between isotope-balance and water-budget results indicates that this is a viable approach for lakes in similar settings, allowing the magnitude of groundwater inflow to be estimated over less-than-annual time periods. Because lake-water δ18O is a good indicator of climatic conditions, these data could be useful in ground-truthing paleoclimatic reconstructions using isotopic data from lake cores in similar settings.

  11. Direct and indirect indicators to identify potential leakage of contaminants associated with unconventional oil and gas development based on conceptual geochemical and isotopic monitoring approaches

    NASA Astrophysics Data System (ADS)

    Humez, P.; Mayer, B.; Negrel, P. J.; Lions, J.; Lagneau, V.; Kloppmann, W.; Ing, J.; Becker, V.; Nightingale, M.

    2014-12-01

    The extraction of tightly bound natural gas and oil raises environmental concerns regarding shallow drinking water resources. These concerns include impacts of migration of contaminants through induced and natural fractures, drilling imperfections, wastewater discharge and accidental spills. Improved understanding of the fate and transport of contaminants through long-term monitoring, and sharing of data between industry, regulators and researchers will help to effectively manage risks for shallow water resources associated with the unconventional gas and oil industry. Based on the North-American experiences related to unconventional oil and gas resources and monitoring approaches developed in the Carbon Capture and Storage (CCS) context, we suggest conceptual models for monitoring the potential contamination of shallow aquifers overlying production zones. The strength of sensitive geochemical tracers is demonstrated based on conceptual approaches (e.g. diffusion model) and field and tracer studies (e.g. geochemical and isotopic monitoring) with three objectives: 1) characterize subsurface derived contaminants as direct geochemical and isotopic indicators; 2) assess geochemical processes enhanced by the fluid intrusion; 3) understand parameters and processes which could impact or alter the geochemical and isotopic signatures of the contaminants (e.g. microbial oxidation, migration or transport processes etc.) to determine indirect indicators of potential contaminant leakage. This comprehensive geochemical and isotope approach using direct and indirect indicators with the analyses of major and minor ions, trace elements, and δ11B, δ7Li, δ34SSO4, δ18OSO4, 87Sr/86Sr, δ18OH2O, and δ2HH2O values in the CO2FIELDLAB project (Humez et al., 2014) allowed discriminating reactive mechanisms from non-reactive mixing processes associated with gas leakage within a shallow aquifer. These and other results indicate that this conceptual approach is promising for monitoring

  12. An approach for assessing total instrumental uncertainty in compound-specific carbon isotope analysis: implications for environmental remediation studies.

    PubMed

    Lollar, Barbara Sherwood; Hirschorn, Sarah K; Chartrand, Michelle M G; Lacrampe-Couloume, Georges

    2007-05-01

    Determination of compound-specific carbon isotope values by continuous flow isotope ratio mass spectrometry is impacted by variation in several routine operating parameters of which one of the most important is signal size, or linearity. Experiments were carried out to evaluate the implications of these operating parameters on both reproducibility and accuracy of delta13C measurements. A new method is described for assessing total instrumental uncertainty of routine compound-specific delta13C analysis, incorporating both accuracy and reproducibility. These findings have important implications for application of compound-specific isotope analysis in environmental geochemistry and in particular for the rapidly developing field of isotopic investigation of biodegradation and remediation of organic chemicals in contaminant hydrogeology. PMID:17391005

  13. An approach for assessing total instrumental uncertainty in compound-specific carbon isotope analysis: implications for environmental remediation studies.

    PubMed

    Lollar, Barbara Sherwood; Hirschorn, Sarah K; Chartrand, Michelle M G; Lacrampe-Couloume, Georges

    2007-05-01

    Determination of compound-specific carbon isotope values by continuous flow isotope ratio mass spectrometry is impacted by variation in several routine operating parameters of which one of the most important is signal size, or linearity. Experiments were carried out to evaluate the implications of these operating parameters on both reproducibility and accuracy of delta13C measurements. A new method is described for assessing total instrumental uncertainty of routine compound-specific delta13C analysis, incorporating both accuracy and reproducibility. These findings have important implications for application of compound-specific isotope analysis in environmental geochemistry and in particular for the rapidly developing field of isotopic investigation of biodegradation and remediation of organic chemicals in contaminant hydrogeology.

  14. A new approach to the solution of the linear mixing model for a single isotope: application to the case of an opportunistic predator.

    PubMed

    Hall-Aspland, S A; Hall, A P; Rogers, T L

    2005-03-01

    Mixing models are used to determine diets where the number of prey items are greater than one, however, the limitation of the linear mixing method is the lack of a unique solution when the number of potential sources is greater than the number (n) of isotopic signatures +1. Using the IsoSource program all possible combinations of each source contribution (0-100%) in preselected small increments can be examined and a range of values produced for each sample analysed. We propose the use of a Moore Penrose (M-P) pseudoinverse, which involves the inverse of a 2x2 matrix. This is easily generalized to the case of a single isotope with (p) prey sources and produces a specific solution. The Antarctic leopard seal (Hydrurga leptonyx) was used as a model species to test this method. This seal is an opportunistic predator, which preys on a wide range of species including seals, penguins, fish and krill. The M-P method was used to determine the contribution to diet from each of the four prey types based on blood and fur samples collected over three consecutive austral summers. The advantage of the M-P method was the production of a vector of fractions f for each predator isotopic value, allowing us to identify the relative variation in dietary proportions. Comparison of the calculated fractions from this method with 'means' from IsoSource allowed confidence in the new approach for the case of a single isotope, N.

  15. A retro-biosynthetic approach to the prediction of biosynthetic pathways from position-specific isotope analysis as shown for tramadol.

    PubMed

    Romek, Katarzyna M; Nun, Pierrick; Remaud, Gérald S; Silvestre, Virginie; Taïwe, Germain Sotoing; Lecerf-Schmidt, Florine; Boumendjel, Ahcène; De Waard, Michel; Robins, Richard J

    2015-07-01

    Tramadol, previously only known as a synthetic analgesic, has now been found in the bark and wood of roots of the African medicinal tree Nauclea latifolia. At present, no direct evidence is available as to the biosynthetic pathway of its unusual skeleton. To provide guidance as to possible biosynthetic precursors, we have adopted a novel approach of retro-biosynthesis based on the position-specific distribution of isotopes in the extracted compound. Relatively recent developments in isotope ratio monitoring by (13)C NMR spectrometry make possible the measurement of the nonstatistical position-specific natural abundance distribution of (13)C (δ(13)Ci) within the molecule with better than 1‰ precision. Very substantial variation in the (13)C positional distribution is found: between δ(13)Ci = -11 and -53‰. Distribution is not random and it is argued that the pattern observed can substantially be interpreted in relation to known causes of isotope fractionation in natural products. Thus, a plausible biosynthetic scheme based on sound biosynthetic principals of precursor-substrate relationships can be proposed. In addition, data obtained from the (18)O/(16)O ratios in the oxygen atoms of the compound add support to the deductions made from the carbon isotope analysis. This paper shows how the use of (13)C NMR at natural abundance can help with proposing a biosynthetic route to compounds newly found in nature or those difficult to tackle by conventional means.

  16. A retro-biosynthetic approach to the prediction of biosynthetic pathways from position-specific isotope analysis as shown for tramadol

    PubMed Central

    Romek, Katarzyna M.; Nun, Pierrick; Remaud, Gérald S.; Silvestre, Virginie; Taïwe, Germain Sotoing; Lecerf-Schmidt, Florine; Boumendjel, Ahcène; De Waard, Michel; Robins, Richard J.

    2015-01-01

    Tramadol, previously only known as a synthetic analgesic, has now been found in the bark and wood of roots of the African medicinal tree Nauclea latifolia. At present, no direct evidence is available as to the biosynthetic pathway of its unusual skeleton. To provide guidance as to possible biosynthetic precursors, we have adopted a novel approach of retro-biosynthesis based on the position-specific distribution of isotopes in the extracted compound. Relatively recent developments in isotope ratio monitoring by 13C NMR spectrometry make possible the measurement of the nonstatistical position-specific natural abundance distribution of 13C (δ13Ci) within the molecule with better than 1‰ precision. Very substantial variation in the 13C positional distribution is found: between δ13Ci = −11 and −53‰. Distribution is not random and it is argued that the pattern observed can substantially be interpreted in relation to known causes of isotope fractionation in natural products. Thus, a plausible biosynthetic scheme based on sound biosynthetic principals of precursor–substrate relationships can be proposed. In addition, data obtained from the 18O/16O ratios in the oxygen atoms of the compound add support to the deductions made from the carbon isotope analysis. This paper shows how the use of 13C NMR at natural abundance can help with proposing a biosynthetic route to compounds newly found in nature or those difficult to tackle by conventional means. PMID:26106160

  17. Identification of the nitrate contamination sources of the Brusselian sands groundwater body (Belgium) using a dual-isotope approach.

    PubMed

    Mattern, Samuel; Sebilo, Mathieu; Vanclooster, Marnik

    2011-09-01

    Isotopic fingerprinting is an advanced technique allowing the classification of the nitrate source pollution of groundwater, but needs further development and validation. In this study, we performed measurements of natural stable isotopic composition of nitrate ((15)N and (18)O) in the groundwater body of the Brussels sands (Belgium) and studied the spatial and temporal dynamics of the isotope signature of this aquifer. Potential nitrogen sources sampled in the region had isotopic signatures that fell within the corresponding typical ranges found in the literature. For a few monitoring stations, the isotopic data strongly suggest that the sources of nitrate are from mineral fertiliser origin, as used in agriculture and golf courses. Other stations suggest that manure leaching from unprotected stockpiles in farms, domestic gardening practices, septic tanks and probably cemeteries contribute to the nitrate pollution of this groundwater body. For most monitoring stations, nitrate originates from a mixing of several nitrogen sources. The isotopic signature of the groundwater body was poorly structured in space, but exhibited a clear temporal structure. This temporal structure could be explained by groundwater recharge dynamics and cycling process of nitrogen in the soil-nitrogen pool.

  18. Detecting isotopic ratio outliers

    SciTech Connect

    Bayne, C.K.; Smith, D.H.

    1985-01-01

    An alternative method is proposed for improving isotopic ratio estimates. This method mathematically models pulse-count data and uses iterative reweighted Poisson regression to estimate model parameters to calculate the isotopic ratios. This computer-oriented approach provides theoretically better methods than conventional techniques to establish error limits and to identify outliers. 6 refs., 3 figs., 3 tabs.

  19. HPLC-ICPMS and stable isotope-labeled approaches to assess quantitatively Ti(IV) uptake by transferrin in human blood serum.

    PubMed

    Sarmiento-González, Alejandro; Ruiz Encinar, Jorge; Cantarero-Roldán, Alicia M; Marchante-Gayón, Juan M; Sanz-Medel, Alfredo

    2008-11-15

    Little is known about the effects of titanium found in patients wearing prostheses or about the biochemical pathways of this metal when used as an anticancer drug (e.g., titanocene dichloride). In this work, transferrin has been confirmed as the only carrier protein binding Ti in human blood serum samples by making use of different HPLC protein separations followed by element-specific Ti detection by ICPMS. Besides, isotope dilution analysis has been applied to the quantitative speciation of Ti-Tf in standards and human blood serum samples. Species-unspecific and species-specific isotope dilution modes have been explored. In the first case, very low Ti-Tf results were obtained even using two different chromatographic mechanisms, anion exchange (20-24%) and size exclusion (33-36%). Surprisingly, no major Ti species except Ti-Tf were observed in the chromatograms, suggesting that Ti(IV) hydrolysis and precipitation as inactive titanium oxide species could take place inside the chromatographic columns. These results demonstrate that chemical degradation of metalloproteins during analytical separations could ruin the sought speciation quantitative results. The isotope dilution species-specific mode, much more accurate in such cases, has been instrumental in demonstrating the possibility of gross errors in final metalloprotein quantification. For this purpose, an isotopically enriched standard of (49)Ti-Tf was synthesized and applied to the quantitative speciation of Ti-Tf again. Using this species-specific spike, Ti-Tf dissociation inside the chromatographic columns used could be corrected, and thus, quantitative Ti-Tf binding in serum (92-102%) was observed. In other words, the usefulness and potential of a species-specific isotope dilution analysis approach to investigate quantitatively metal-protein associations, which can be dissociated at certain experimental conditions, is demonstrated here for the first time.

  20. Identification and characterisation of potential sources of nitrate pollution in the Marano Lagoon (Italy) applying a multi-isotope approach

    NASA Astrophysics Data System (ADS)

    Saccon, P.; Leis, A.; Marca, A.; Kaiser, J.; Campisi, L.; Böttcher, M. E.; Savarino, J.; Escher, P.; Eisenhauer, A.; Erbland, J.

    2012-04-01

    The isotopic composition of nitrate (δ15N, δ18O and Δ17O), boron (δ11B) and water (δ2H and δ18O) were used to identify and characterize of multiple nitrate pollution sources in the Marano Lagoon (Italy) and part of its catchment area. The stable isotopes in nitrate measured by the denitrifier method have been adopted to differentiate among nitrate coming from agriculture (synthetic and natural fertilizers), airborne nitrate and nitrate from nitrification processes in soils. Boron isotopes have been used to identify the impact of domestic wastewaters to the aquatic system using the LA-MC-ICP-MS method. The combined use of NO3 and B isotopes has proved to be an effective means in identifying multiple nitrate pollution sources because these isotopes co-migrate in many environmental settings, their isotopes are fractionated by different environmental processes, and because wastewater and fertilizers may have distinct isotopic signatures for N and B. The stable isotopes of water have been used to calculate mixing ratios between sea and fresh water as well as to estimate the mean altitude of the recharge area of surface waters. Additionally, the stable isotopes of sulphate (δ34S and δ18O) have been adopted to trace natural and anthropogenic sources of sulphur in agricultural watersheds as well as in coastal systems. In order to characterize the chemical composition of the different water types the concentration of Ca2+, Mg2+, Na+, K+, NH4+, NO3-, NO2-, Cl-, Br-, SO42-, HCO3-, PO43-, total phosphorus and total boron have been analyzed. Moreover, the physicochemical parameters such as pH, electrical conductivity, dissolved oxygen, salinity and temperature have been measured. To identify the origins and fate of nitrate a water monitoring program was implemented in the Marano lagoon and part of its catchment area. The water monitoring program involved the collection of water samples from the lagoon, its tributary rivers, the groundwater up-welling line, groundwater

  1. Possible food sources of macrozoobenthos in the manko mangrove ecosystem, okinawa (Japan): a stable isotope analysis approach.

    PubMed

    Wardiatno, Yusli; Mardiansyah; Prartono, Tri; Tsuchiya, Makoto

    2015-04-01

    Identifying potential food sources in mangrove ecosystems is complex because of the multifarious inputs from both land and sea. This study, which was conducted in the Manko mangrove ecosystem of Okinawa, Japan, determined the composition of the stable isotopes δ(13)C and δ(15)N in primary producers and macrozoobenthos to estimate the potential food sources assimilated and to elucidate the target trophic levels of the macrozoobenthos. We measured the two stable isotope signatures of three gastropods (Cerithidea sp., Cassidula mustelina, Peronia verruculata), two crabs (Grapsidae sp., Uca sp.), mangrove tree (Kandelia candel) leaves, and sediment from the mangrove ecosystem. The respective carbon and nitrogen isotope signature results were as follows: -22.4‰ and 8.6‰ for Cerithidea sp., -25.06‰ and 8‰ for C. mustelina, -22.58‰ and 8‰ for P. verruculata, -24.3‰ and 10.6‰ for unidentified Grapsidae, -21.87 ‰ and 11.5 ‰ for Uca sp., -29.81‰ and 11‰ for K. candel, and -24.23‰ and 7.2‰ for the sediment. The stable isotope assimilation signatures of the macrozoobenthos indicated sediment as their food source. Considering the trophic levels, the stable isotope values may also indicate that the five macrozoobenthos species were secondary or higher consumers.

  2. Possible Food Sources of Macrozoobenthos in the Manko Mangrove Ecosystem, Okinawa (Japan): A Stable Isotope Analysis Approach

    PubMed Central

    Wardiatno, Yusli; Mardiansyah; Prartono, Tri; Tsuchiya, Makoto

    2015-01-01

    Identifying potential food sources in mangrove ecosystems is complex because of the multifarious inputs from both land and sea. This study, which was conducted in the Manko mangrove ecosystem of Okinawa, Japan, determined the composition of the stable isotopes δ13C and δ15N in primary producers and macrozoobenthos to estimate the potential food sources assimilated and to elucidate the target trophic levels of the macrozoobenthos. We measured the two stable isotope signatures of three gastropods (Cerithidea sp., Cassidula mustelina, Peronia verruculata), two crabs (Grapsidae sp., Uca sp.), mangrove tree (Kandelia candel) leaves, and sediment from the mangrove ecosystem. The respective carbon and nitrogen isotope signature results were as follows: −22.4‰ and 8.6‰ for Cerithidea sp., −25.06‰ and 8‰ for C. mustelina, −22.58‰ and 8‰ for P. verruculata, −24.3‰ and 10.6‰ for unidentified Grapsidae, −21.87 ‰ and 11.5 ‰ for Uca sp., −29.81‰ and 11‰ for K. candel, and −24.23‰ and 7.2‰ for the sediment. The stable isotope assimilation signatures of the macrozoobenthos indicated sediment as their food source. Considering the trophic levels, the stable isotope values may also indicate that the five macrozoobenthos species were secondary or higher consumers. PMID:26019747

  3. Identifying nitrogen sources to thermal tide pools in Kapoho, Hawai'i, U.S.A, using a multi-stable isotope approach.

    PubMed

    Wiegner, Tracy N; Mokiao-Lee, Ambyr U; Johnson, Erik E

    2016-02-15

    Nitrogen (N) enrichment often results in coastal eutrophication, even in remote areas like Hawai'i. Therefore, determining N sources to coastal waters is important for their management. This study identified N sources to tide pools in Kapoho, Hawai'i, and determined their relative importance using three stable isotopes (δ(15)N, δ(18)O, δ(11)B). Surface waters and macroalgal tissues were collected along 100-m onshore-offshore transects in areas of high groundwater input for three months at low tide. Water samples from possible N sources were also collected. Mixing model output, along with macroalgal δ(15)N values, indicated that agriculture soil (34%) was the largest anthropogenic N source followed by sewage (27%). These findings suggest that more effective fertilizer application techniques and upgrading sewage treatment systems can minimize N leaching into groundwater. Overall, our multi-stable isotope approach for identifying N sources was successful and may be useful in other coastal waters.

  4. Identifying nitrogen sources to thermal tide pools in Kapoho, Hawai'i, U.S.A, using a multi-stable isotope approach.

    PubMed

    Wiegner, Tracy N; Mokiao-Lee, Ambyr U; Johnson, Erik E

    2016-02-15

    Nitrogen (N) enrichment often results in coastal eutrophication, even in remote areas like Hawai'i. Therefore, determining N sources to coastal waters is important for their management. This study identified N sources to tide pools in Kapoho, Hawai'i, and determined their relative importance using three stable isotopes (δ(15)N, δ(18)O, δ(11)B). Surface waters and macroalgal tissues were collected along 100-m onshore-offshore transects in areas of high groundwater input for three months at low tide. Water samples from possible N sources were also collected. Mixing model output, along with macroalgal δ(15)N values, indicated that agriculture soil (34%) was the largest anthropogenic N source followed by sewage (27%). These findings suggest that more effective fertilizer application techniques and upgrading sewage treatment systems can minimize N leaching into groundwater. Overall, our multi-stable isotope approach for identifying N sources was successful and may be useful in other coastal waters. PMID:26769108

  5. An in situ approach to detect tree root ecology: linking ground-penetrating radar imaging to isotope-derived water acquisition zones.

    PubMed

    Isaac, Marney E; Anglaaere, Luke C N

    2013-05-01

    Tree root distribution and activity are determinants of belowground competition. However, studying root response to environmental and management conditions remains logistically challenging. Methodologically, nondestructive in situ tree root ecology analysis has lagged. In this study, we tested a nondestructive approach to determine tree coarse root architecture and function of a perennial tree crop, Theobroma cacao L., at two edaphically contrasting sites (sandstone and phyllite-granite derived soils) in Ghana, West Africa. We detected coarse root vertical distribution using ground-penetrating radar and root activity via soil water acquisition using isotopic matching of δ(18)O plant and soil signatures. Coarse roots were detected to a depth of 50 cm, however, intraspecifc coarse root vertical distribution was modified by edaphic conditions. Soil δ(18)O isotopic signature declined with depth, providing conditions for plant-soil δ(18)O isotopic matching. This pattern held only under sandstone conditions where water acquisition zones were identifiably narrow in the 10-20 cm depth but broader under phyllite-granite conditions, presumably due to resource patchiness. Detected coarse root count by depth and measured fine root density were strongly correlated as were detected coarse root count and identified water acquisition zones, thus validating root detection capability of ground-penetrating radar, but exclusively on sandstone soils. This approach was able to characterize trends between intraspecific root architecture and edaphic-dependent resource availability, however, limited by site conditions. This study successfully demonstrates a new approach for in situ root studies that moves beyond invasive point sampling to nondestructive detection of root architecture and function. We discuss the transfer of such an approach to answer root ecology questions in various tree-based landscapes. PMID:23762519

  6. An in situ approach to detect tree root ecology: linking ground-penetrating radar imaging to isotope-derived water acquisition zones.

    PubMed

    Isaac, Marney E; Anglaaere, Luke C N

    2013-05-01

    Tree root distribution and activity are determinants of belowground competition. However, studying root response to environmental and management conditions remains logistically challenging. Methodologically, nondestructive in situ tree root ecology analysis has lagged. In this study, we tested a nondestructive approach to determine tree coarse root architecture and function of a perennial tree crop, Theobroma cacao L., at two edaphically contrasting sites (sandstone and phyllite-granite derived soils) in Ghana, West Africa. We detected coarse root vertical distribution using ground-penetrating radar and root activity via soil water acquisition using isotopic matching of δ(18)O plant and soil signatures. Coarse roots were detected to a depth of 50 cm, however, intraspecifc coarse root vertical distribution was modified by edaphic conditions. Soil δ(18)O isotopic signature declined with depth, providing conditions for plant-soil δ(18)O isotopic matching. This pattern held only under sandstone conditions where water acquisition zones were identifiably narrow in the 10-20 cm depth but broader under phyllite-granite conditions, presumably due to resource patchiness. Detected coarse root count by depth and measured fine root density were strongly correlated as were detected coarse root count and identified water acquisition zones, thus validating root detection capability of ground-penetrating radar, but exclusively on sandstone soils. This approach was able to characterize trends between intraspecific root architecture and edaphic-dependent resource availability, however, limited by site conditions. This study successfully demonstrates a new approach for in situ root studies that moves beyond invasive point sampling to nondestructive detection of root architecture and function. We discuss the transfer of such an approach to answer root ecology questions in various tree-based landscapes.

  7. Reconstructing lake evaporation history and the isotopic composition of precipitation by a coupled δ18O-δ2H biomarker approach

    NASA Astrophysics Data System (ADS)

    Hepp, Johannes; Tuthorn, Mario; Zech, Roland; Mügler, Ines; Schlütz, Frank; Zech, Wolfgang; Zech, Michael

    2015-10-01

    Over the past decades, δ18O and δ2H analyses of lacustrine sediments became an invaluable tool in paleohydrology and paleolimnology for reconstructing the isotopic composition of past lake water and precipitation. However, based on δ18O or δ2H records alone, it can be challenging to distinguish between changes of the precipitation signal and changes caused by evaporation. Here we propose a coupled δ18O-δ2H biomarker approach that provides the possibility to disentangle between these two factors. The isotopic composition of long chain n-alkanes (n-C25, n-C27, n-C29, n-C31) were analyzed in order to establish a 16 ka Late Glacial and Holocene δ2H record for the sediment archive of Lake Panch Pokhari in High Himalaya, Nepal. The δ2Hn-alkane record generally corroborates a previously established δ18Osugar record reporting on high values characterizing the deglaciation and the Older and the Younger Dryas, and low values characterizing the Bølling and the Allerød periods. Since the investigated n-alkane and sugar biomarkers are considered to be primarily of aquatic origin, they were used to reconstruct the isotopic composition of lake water. The reconstructed deuterium excess of lake water ranges from +57‰ to -85‰ and is shown to serve as proxy for the evaporation history of Lake Panch Pokhari. Lake desiccation during the deglaciation, the Older Dryas and the Younger Dryas is affirmed by a multi-proxy approach using the Hydrogen Index (HI) and the carbon to nitrogen ratio (C/N) as additional proxies for lake sediment organic matter mineralization. Furthermore, the coupled δ18O and δ2H approach allows disentangling the lake water isotopic enrichment from variations of the isotopic composition of precipitation. The reconstructed 16 ka δ18Oprecipitation record of Lake Panch Pokhari is well in agreement with the δ18O records of Chinese speleothems and presumably reflects the Indian Summer Monsoon variability.

  8. REFINING THE DUAL ISOTOPE APPROACH TO DETERMINE FIELD ESTIMATES OF LITTER, ROOT, AND SOM COMPONENTS OF SOIL CO2 EFFLUX

    EPA Science Inventory

    Stable isotopes have become an important tool for determining the relative importance of CO2 sources and sinks contributing to the global carbon budget. Of particular importance is the determination of the terrestrial CO2 flux which is difficult to decipher without determining t...

  9. Isotopic and hydrochemical approach to the functioning of an aquifer system in the region of Marrakech (Morocco).

    PubMed

    Ait Lemkademe, Anasse; Michelot, Jean-Luc; Benkaddour, Abdelfattah; Hanich, Laoucine; Maliki, Ahmed

    2011-10-15

    A geochemical and isotopic (water and dissolved sulphate) study was performed on groundwater in the region of Marrakech, Morocco, with the aim of better understanding the regional hydrogeological system in order to improve water resources management. Significant differences in stable isotope contents and chemical compositions were observed between groundwater collected in the northern part of the region (Jbilets massif), where the basement schists outcrop, and that sampled in the southern part (Haouz basin), where the basement schists are overlaid by Plio-Quaternary deposits. The stable isotope composition of the groundwater showed that in the southern part the aquifer is mainly recharged from high-altitude precipitation over the High-Atlas Mountains, which may reach 600 mm per year or more, whereas, in the northern part, it is only recharged by lower-altitude local precipitation, which does not exceed 240 mm per year. Because of this limited supply, the groundwater flux in the northern compartment is much lower than in the southern compartment. This affects the water-rock interaction and the modalities of groundwater mineralization: the schist alteration is more developed in the southern compartment than in the northern one, leading to different behaviours of the conservative elements dissolved in groundwater. The observed geochemical and isotopic zonation of the studied area corresponds to a hydrogeological compartmentalisation, where the wells located in the north of the area generally produce less water than those located in the south of the area.

  10. A stable isotope approach for source apportionment of chlorinated ethene plumes at a complex multi-contamination events urban site.

    PubMed

    Nijenhuis, Ivonne; Schmidt, Marie; Pellegatti, Eleonora; Paramatti, Enrico; Richnow, Hans Hermann; Gargini, Alessandro

    2013-10-01

    The stable carbon isotope composition of chlorinated aliphatic compounds such as chlorinated methanes, ethanes and ethenes was examined as an intrinsic fingerprint for apportionment of sources. A complex field site located in Ferrara (Italy), with more than 50years history of use of chlorinated aliphatic compounds, was investigated in order to assess contamination sources. Several contamination plumes were found in a complex alluvial sandy multi-aquifer system close to the river Po; sources are represented by uncontained former industrial and municipal dump sites as well as by spills at industrial areas. The carbon stable isotope signature allowed distinguishing 2 major sources of contaminants. One source of chlorinated aliphatic contaminants was strongly depleted in ¹³C (<-60‰) suggesting production lines which have used depleted methane for synthesis. The other source had typical carbon isotope compositions of >-40‰ which is commonly observed in recent production of chlorinated solvents. The degradation processes in the plumes could be traced interpreting the isotope enrichment and depletion of parent and daughter compounds, respectively. We demonstrate that, under specific production conditions, namely when highly chlorinated ethenes are produced as by-product during chloromethanes production, ¹³C depleted fingerprinting of contaminants can be obtained and this can be used to track sources and address the responsible party of the pollution in urban areas.

  11. Isotopic Biogeochemistry

    NASA Technical Reports Server (NTRS)

    Hayes, J. M.

    1985-01-01

    An overview is provided of the biogeochemical research. The funding, productivity, personnel and facilities are reviewed. Some of the technical areas covered are: carbon isotopic records; isotopic studies of banded iron formations; isotope effects in microbial systems; studies of organic compounds in ancient sediments; and development in isotopic geochemistry and analysis.

  12. Origin of graphite, and temperature of metamorphism in Precambrian Eastern Ghats Mobile Belt, Orissa, India: A carbon isotope approach

    NASA Astrophysics Data System (ADS)

    Sanyal, Prasanta; Acharya, B. C.; Bhattacharya, S. K.; Sarkar, A.; Agrawal, S.; Bera, M. K.

    2009-09-01

    The carbon isotope composition of graphite and carbon and oxygen isotope composition of associated calcite from different locations of the Eastern Ghats Mobile Belt (EGMB) of Orissa have been measured in order to understand the origin of graphite. The δ 13C values of graphite range from -2.4‰ to -26.6‰. Forty-four of sixty-one samples have δ 13C values less than -20‰. Most of these low δ 13C values graphite corresponds to schists and disseminations in khondalite and calc-silicate granulites, thus indicating graphitization of organic matter. The remaining light-carbon-graphite occurs as veins which is the result of graphitization of transported organic matter. The graphite with intermediate δ 13C value (-13‰ to -19‰) indicates carbon contributions from both organic and carbonates sources and/or mantle sources. The higher δ 13C values graphite (-2.4‰ to -8.8‰) represent mantle carbon and/or carbonate sources without significant contribution from organic carbon. The temperatures of metamorphism have been estimated using carbon isotope ratios of graphite and associated calcite of calc-silicate granulites, where typical cation exchange thermometer assemblages are lacking and significant mineral reaction textures used to calculate pressure-temperature of metamorphic events are absent. Metamorphic temperatures obtained 945 °C are close to the ultrahigh-temperature reported from the EGMB. The minimum temperature estimated using the graphite-carbonate carbon isotope ratio is 90 °C. The lower estimates of temperatures probably indicate changes in the carbon isotope ratio of calcite by decarbonation reaction or armoring of carbonaceous matter in silicates during metamorphism preventing continuous exchange with calcite.

  13. Hydrogeochemistry and quality of surface water and groundwater in the vicinity of Lake Monoun, West Cameroon: approach from multivariate statistical analysis and stable isotopic characterization.

    PubMed

    Kamtchueng, Brice T; Fantong, Wilson Y; Wirmvem, Mengnjo J; Tiodjio, Rosine E; Takounjou, Alain F; Ndam Ngoupayou, Jules R; Kusakabe, Minoru; Zhang, Jing; Ohba, Takeshi; Tanyileke, Gregory; Hell, Joseph V; Ueda, Akira

    2016-09-01

    With the use of conventional hydrogeochemical techniques, multivariate statistical analysis, and stable isotope approaches, this paper investigates for the first time surface water and groundwater from the surrounding areas of Lake Monoun (LM), West Cameroon. The results reveal that waters are generally slightly acidic to neutral. The relative abundance of major dissolved species are Ca(2+) > Mg(2+) > Na(+) > K(+) for cations and HCO3 (-) ≫ NO3 (-) > Cl(-) > SO4 (2-) for anions. The main water type is Ca-Mg-HCO3. Observed salinity is related to water-rock interaction, ion exchange process, and anthropogenic activities. Nitrate and chloride have been identified as the most common pollutants. These pollutants are attributed to the chlorination of wells and leaching from pit latrines and refuse dumps. The stable isotopic compositions in the investigated water sources suggest evidence of evaporation before recharge. Four major groups of waters were identified by salinity and NO3 concentrations using the Q-mode hierarchical cluster analysis (HCA). Consistent with the isotopic results, group 1 represents fresh unpolluted water occurring near the recharge zone in the general flow regime; groups 2 and 3 are mixed water whose composition is controlled by both weathering of rock-forming minerals and anthropogenic activities; group 4 represents water under high vulnerability of anthropogenic pollution. Moreover, the isotopic results and the HCA showed that the CO2-rich bottom water of LM belongs to an isolated hydrological system within the Foumbot plain. Except for some springs, groundwater water in the area is inappropriate for drinking and domestic purposes but good to excellent for irrigation. PMID:27535404

  14. Hydrogeochemistry and quality of surface water and groundwater in the vicinity of Lake Monoun, West Cameroon: approach from multivariate statistical analysis and stable isotopic characterization.

    PubMed

    Kamtchueng, Brice T; Fantong, Wilson Y; Wirmvem, Mengnjo J; Tiodjio, Rosine E; Takounjou, Alain F; Ndam Ngoupayou, Jules R; Kusakabe, Minoru; Zhang, Jing; Ohba, Takeshi; Tanyileke, Gregory; Hell, Joseph V; Ueda, Akira

    2016-09-01

    With the use of conventional hydrogeochemical techniques, multivariate statistical analysis, and stable isotope approaches, this paper investigates for the first time surface water and groundwater from the surrounding areas of Lake Monoun (LM), West Cameroon. The results reveal that waters are generally slightly acidic to neutral. The relative abundance of major dissolved species are Ca(2+) > Mg(2+) > Na(+) > K(+) for cations and HCO3 (-) ≫ NO3 (-) > Cl(-) > SO4 (2-) for anions. The main water type is Ca-Mg-HCO3. Observed salinity is related to water-rock interaction, ion exchange process, and anthropogenic activities. Nitrate and chloride have been identified as the most common pollutants. These pollutants are attributed to the chlorination of wells and leaching from pit latrines and refuse dumps. The stable isotopic compositions in the investigated water sources suggest evidence of evaporation before recharge. Four major groups of waters were identified by salinity and NO3 concentrations using the Q-mode hierarchical cluster analysis (HCA). Consistent with the isotopic results, group 1 represents fresh unpolluted water occurring near the recharge zone in the general flow regime; groups 2 and 3 are mixed water whose composition is controlled by both weathering of rock-forming minerals and anthropogenic activities; group 4 represents water under high vulnerability of anthropogenic pollution. Moreover, the isotopic results and the HCA showed that the CO2-rich bottom water of LM belongs to an isolated hydrological system within the Foumbot plain. Except for some springs, groundwater water in the area is inappropriate for drinking and domestic purposes but good to excellent for irrigation.

  15. Identifying source and formation altitudes of nitrates in drinking water from Réunion Island, France, using a multi-isotopic approach.

    PubMed

    Rogers, Karyne M; Nicolini, Eric; Gauthier, Virginie

    2012-09-01

    Nitrate concentrations, water isotopes (δ(2)H and δ(18)O(water)) and associated nitrate isotopes (δ(15)N(nitrate) and δ(18)O(nitrate)) from 10 drinking water wells, 5 fresh water springs and the discharge from 3 wastewater treatment stations in Réunion Island, located in the Indian Ocean, were analysed. We used a multi isotopic approach to investigate the extent of nitrate contamination, nitrate formation altitude and source of nitrates in Réunion Island's principal aquifer. Water from these study sites contained between 0.1 and 85.3 mg/L nitrate. δ(15)N(nitrate) values between +6 and +14‰ suggested the main sources of contamination were animal and/or human waste, rather than inorganic (synthetic) fertilisers, infiltrating through the subsurface into the saturated zone, due to rainfall leaching of the unsaturated zone at various altitudes of precipitation. Based on δ(15)N(nitrate) values alone, it was not possible to distinguish between animal and human activities responsible for the contamination of each specific catchment. However, using a multi isotope approach (δ(18)O(water) and δ(15)N(nitrate)), it was possible to relate the average altitude of rainfall infiltration (δ(18)O(water)) associated with the nitrate contamination (δ(18)O(nitrate)). This relationship between land use, rainfall recharge altitude and isotopic composition (δ(15)N(nitrate) and δ(18)O(water)) discriminated between the influences of human waste at lower (below 600 m elevation) or animal derived contamination (at elevations between 600 and 1300 m). By further comparing the theoretical altitude of nitrate formation calculated by the δ(18)O(nitrate), it was possible to determine that only 5 out of 15 fresh water wells and springs followed the conservative nitrate formation mechanism of 2/3δ(18)O(water)+1/3δ(18)O(air), to give nitrate formation altitudes which corresponded to land use activities.

  16. Isotope geochemistry. Biological signatures in clumped isotopes of O₂.

    PubMed

    Yeung, Laurence Y; Ash, Jeanine L; Young, Edward D

    2015-04-24

    The abundances of molecules containing more than one rare isotope have been applied broadly to determine formation temperatures of natural materials. These applications of "clumped" isotopes rely on the assumption that isotope-exchange equilibrium is reached, or at least approached, during the formation of those materials. In a closed-system terrarium experiment, we demonstrate that biological oxygen (O2) cycling drives the clumped-isotope composition of O2 away from isotopic equilibrium. Our model of the system suggests that unique biological signatures are present in clumped isotopes of O2—and not formation temperatures. Photosynthetic O2 is depleted in (18)O(18)O and (17)O(18)O relative to a stochastic distribution of isotopes, unlike at equilibrium, where heavy-isotope pairs are enriched. Similar signatures may be widespread in nature, offering new tracers of biological and geochemical cycling.

  17. Isotope geochemistry. Biological signatures in clumped isotopes of O₂.

    PubMed

    Yeung, Laurence Y; Ash, Jeanine L; Young, Edward D

    2015-04-24

    The abundances of molecules containing more than one rare isotope have been applied broadly to determine formation temperatures of natural materials. These applications of "clumped" isotopes rely on the assumption that isotope-exchange equilibrium is reached, or at least approached, during the formation of those materials. In a closed-system terrarium experiment, we demonstrate that biological oxygen (O2) cycling drives the clumped-isotope composition of O2 away from isotopic equilibrium. Our model of the system suggests that unique biological signatures are present in clumped isotopes of O2—and not formation temperatures. Photosynthetic O2 is depleted in (18)O(18)O and (17)O(18)O relative to a stochastic distribution of isotopes, unlike at equilibrium, where heavy-isotope pairs are enriched. Similar signatures may be widespread in nature, offering new tracers of biological and geochemical cycling. PMID:25908819

  18. Comparing three methods of NEE-flux partitioning from the same grassland ecosystem: the 13C, 18O isotope approach and using simulated Ecosystem respiration

    NASA Astrophysics Data System (ADS)

    Siegwolf, R.; Bantelmann, E.; Saurer, M.; Eugster, W.; Buchmann, N.

    2007-12-01

    As a change in the global climate occurs with increasing temperatures, the Carbon exchange processes of terrestrial ecosystems will change as well. However, it is difficult to quantify the degree to what ecosystem respiration will change relative to the CO2 uptake by photosynthesis. To estimate the carbon sequestration potential of terrestrial vegetation cover it is essential to know both fluxes: ecosystem respiration and the carbon uptake by the vegetation cover. Therefore the net ecosystem exchange of CO2 (NEE) was measured with the eddy covariance method and separated into assimilation and respiration flux. We applied three different approaches, 1) the conventional method, applying the nighttime relationship between soil temperature and NEE for calculating the respiration flux during the day, 2) the use of stable carbon and 3) oxygen isotopes. We compared the results of the three partitioning exercises for a temperate grassland ecosystem in the pre-Alps of Switzerland for four days in June 2004. The assimilation flux derived with the conventional NEE partitioning approach, was best represented at low PAR and low temperatures, in the morning between 5 and 9 am. With increasing temperature and PAR the assimilation for the whole canopy was underestimated. For partitioning NEE via 18O approach, correlations of temperature and radiation with assimilation and respiration flux were significantly higher for the partitioning approach with 18O than for the 13C NEE partitioning. A sensitivity analysis showed the importance of an accurate determination of the equilibrium term θ between CO2 and leaf water δ18O for the NEE partitioning with 18O. For using 13C to partition NEE, the correct magnitude of the 13C fractionation and for the respiration term is essential. The analysis of the data showed that for low light and low morning temperatures the conventional method delivers reasonably good results. When the temperatures exceeded 21°C the isotope approach provided the

  19. Application of a Stable Isotope Approach to Evaluate Impact of Changes in Manufacturing Parameters for an Immediate-Release Tablet.

    PubMed

    Parr, Alan; Badman, Geoff; Bowen, Chester L; Coffin, Mark; Gupta, Manish; Jones, Lori; Kurtinecz, Milena; Naderer, Odin; Travis, Eric; Zhu, John; Patel, Parul

    2016-07-01

    There is continued emphasis from the various worldwide regulatory agencies to ensure that the pharmaceutical industry fully understands the products they are developing. This emphasis is seen via development of quality-by-design (QbD) publications and guidelines generated by the International Committee on Harmonization. The challenge to meet these expectations is primarily associated with the generation of in vivo data (eg, pharmacokinetic data) that is resource intensive. A technique reducing the resources needed to generate this in vivo data permits a more extensive application of QbD principles. This paper presents the application of stable isotopes in pharmacokinetic studies. The data show that the use of stable isotopes can significantly reduce the number of subjects required for a study. This reduction in subjects thus translates into a significant reduction in resources and time needed to generate the required in vivo data to support QbD. PMID:26479497

  20. Sources of organic matter for intertidal consumers on Ascophyllum-shores (SW Iceland): a multi-stable isotope approach

    NASA Astrophysics Data System (ADS)

    Sarà, G.; de Pirro, M.; Romano, C.; Rumolo, P.; Sprovieri, M.; Mazzola, A.

    2007-12-01

    Stable isotopes were used to examine the origin of organic matter in Icelandic Ascophyllum-based habitats, the role of different organic matters in filling intertidal food webs and the food preferences of the most abundant suspension feeders, grazers and predators. We selected three intertidal sites on the SW coast of Iceland where we sampled in early September 2004, organic matter sources (POM, SOM and most abundant primary producers, A. nodosum and F. vesciculosus) and the most abundant macrofauna species (barnacles, mussels, gastropods, sponge and crabs). Even though the primary production ( Ascophyllum-based) was the same at the three study sites, the isotopic composition of common-among-sites organisms varied due to local differences in the origin of available POM and SOM and in food web structures.

  1. Isotope coded protein labeling coupled immunoprecipitation (ICPL-IP): a novel approach for quantitative protein complex analysis from native tissue.

    PubMed

    Vogt, Andreas; Fuerholzner, Bettina; Kinkl, Norbert; Boldt, Karsten; Ueffing, Marius

    2013-05-01

    High confidence definition of protein interactions is an important objective toward the understanding of biological systems. Isotope labeling in combination with affinity-based isolation of protein complexes has increased in accuracy and reproducibility, yet, larger organisms--including humans--are hardly accessible to metabolic labeling and thus, a major limitation has been its restriction to small animals, cell lines, and yeast. As composition as well as the stoichiometry of protein complexes can significantly differ in primary tissues, there is a great demand for methods capable to combine the selectivity of affinity-based isolation as well as the accuracy and reproducibility of isotope-based labeling with its application toward analysis of protein interactions from intact tissue. Toward this goal, we combined isotope coded protein labeling (ICPL)(1) with immunoprecipitation (IP) and quantitative mass spectrometry (MS). ICPL-IP allows sensitive and accurate analysis of protein interactions from primary tissue. We applied ICPL-IP to immuno-isolate protein complexes from bovine retinal tissue. Protein complexes of immunoprecipitated β-tubulin, a highly abundant protein with known interactors as well as the lowly expressed small GTPase RhoA were analyzed. The results of both analyses demonstrate sensitive and selective identification of known as well as new protein interactions by our method.

  2. Algebraic approach to the structure of the low-lying states in A ≈100 Ru isotopes

    NASA Astrophysics Data System (ADS)

    Kisyov, S.; Bucurescu, D.; Jolie, J.; Lalkovski, S.

    2016-04-01

    The structure of the low-lying states in the odd- and even-mass A ≈100 Ru isotopes is studied in the framework of two algebraic models. The even-mass Ru nuclei are first described within the interacting boson model 1 (IBM-1). The output of these calculations was then used to calculate the odd-A isotopes within the interacting boson-fermion model 1 (IBFM-1), where a coupling of the odd neutron to the even-even core is considered. The level energies and transition probabilities calculated in the present work are tested against the experimental data. One-nucleon transfer spectroscopic factors as well as electromagnetic moments were also calculated for the odd-A Ru and compared to the experimental values. The transitional character of the isotopes is studied. Most of the low-lying positive-parity states in the odd-A Ru nuclei below 2 MeV are interpreted on the basis of ν d5 /2 and ν g7 /2 configurations. The role of the ν s1 /2 orbital in the nuclear structure of the odd-mass Ru nuclei at low energies is also studied. The negative-parity states are interpreted as ν h11 /2 excitations coupled to the core. The evolution of the IBM-1 and IBFM-1 parameters is discussed.

  3. Novel isotopic N, N-dimethyl leucine (iDiLeu) reagents enable absolute quantification of peptides and proteins using a standard curve approach

    PubMed Central

    Greer, Tyler; Lietz, Christopher B.; Xiang, Feng; Li, Lingjun

    2014-01-01

    Absolute quantification of protein targets using liquid chromatography-mass spectrometry (LC-MS) is a key component of candidate biomarker validation. One popular method combines multiple reaction monitoring (MRM) using a triple quadrupole instrument with stable isotope-labeled standards (SIS) for absolute quantification (AQUA). LC-MRM AQUA assays are sensitive and specific, but they are also expensive due to the cost of synthesizing stable isotope peptide standards. While the chemical modification approach using Mass Differential Tags for Relative and Absolute Quantification (mTRAQ) represents a more economical approach when quantifying large numbers of peptides, these reagents are costly and still suffer from lower throughput because only two concentration values per peptide can be obtained in a single LC-MS run. Here, we have developed and applied a set of five novel mass difference reagents, isotopic N,N-dimethyl leucine (iDiLeu). These labels contain an amine reactive group, triazine ester, are cost effective due to their synthetic simplicity, and have increased throughput compared to previous LC-MS quantification methods by allowing construction of a four-point standard curve in one run. iDiLeu-labeled peptides show remarkably similar retention time shifts, slightly lower energy thresholds for higher-energy collisional dissociation (HCD) fragmentation, and high quantification accuracy for trypsin-digested protein samples (median errors <15%). By spiking in an iDiLeu-labeled neuropeptide, allatostatin, into mouse urine matrix, two quantification methods are validated. The first uses one labeled peptide as an internal standard to normalize labeled peptide peak areas across runs (<19% error) while the second enables standard curve creation and analyte quantification in one run (<8% error). PMID:25377360

  4. Feeding strategies of four dominant copepod species in Prydz Bay, Antarctica: Insights from a combined fatty acid biomarker and stable isotopic approach

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Li, Chaolun; Guilini, Katja; Peng, Quancai; Wang, Yanqing; Zhang, Ye; Zhang, Yongshan

    2016-08-01

    this combined fatty acid and stable isotopic approach suggest that the dominant copepod species in Prydz Bay, Antarctica, have flexible feeding strategies that vary by food source during the late austral summer.

  5. Using Novel Approaches in Process-Based Modeling for Interpreting Inter-Annual Variability in Tree Ring Widths, Wood Density Profiles, and Cellulose Isotopic Ratios

    NASA Astrophysics Data System (ADS)

    Friend, A. D.; Babst, F.; Belmecheri, S.; Frank, D. C.; Hacket Pain, A. J.; Hayat, A.; Poulter, B.; Rademacher, T. T.; Trouet, V.

    2015-12-01

    Time series annual of tree ring width, density variation, and oxygen and carbon isotopic compositions have the potential to substantially increase our knowledge of forest responses to environmental variation. However, their interpretation is not straightforward due to the simultaneous influences of a number of confounding factors, including carry-over effects from previous years, variable resource allocation with size, age, and canopy position, species-specific physiologies, and complex interactions between forcings such as temperature, soil moisture, and atmospheric CO2. Here we attempt to tease these factors apart and so substantially improve the interpretability of tree ring archives through the construction and application of novel approaches within a process-based model of individual tree growth. The model incorporates descriptions of xylem cell division, expansion, and secondary wall thickening, apical and lateral meristem activities with internal controls from internal signals, internal carbon storage, and the dynamics of canopy photosynthesis, stomatal movements, evapotranspiration, canopy temperatures, and soil moisture. Alternative treatments of isotopic fractionation and growth controls are evaluated using measured datasets. We demonstrate how this new model approach can be used to assess the information contained in tree rings concerning the influence of increasing atmospheric CO2 over the past century on growth and water use efficiency at a range of sites.

  6. A Spatially Explicit Dual-Isotope Approach to Map Regions of Plant-Plant Interaction after Exotic Plant Invasion

    PubMed Central

    Hellmann, Christine; Werner, Christiane; Oldeland, Jens

    2016-01-01

    Understanding interactions between native and invasive plant species in field settings and quantifying the impact of invaders in heterogeneous native ecosystems requires resolving the spatial scale on which these processes take place. Therefore, functional tracers are needed that enable resolving the alterations induced by exotic plant invasion in contrast to natural variation in a spatially explicit way. 15N isoscapes, i.e., spatially referenced representations of stable nitrogen isotopic signatures, have recently provided such a tracer. However, different processes, e.g. water, nitrogen or carbon cycles, may be affected at different spatial scales. Thus multi-isotope studies, by using different functional tracers, can potentially return a more integrated picture of invader impact. This is particularly true when isoscapes are submitted to statistical methods suitable to find homogeneous subgroups in multivariate data such as cluster analysis. Here, we used model-based clustering of spatially explicit foliar δ15N and δ13C isoscapes together with N concentration of a native indicator species, Corema album, to map regions of influence in a Portuguese dune ecosystem invaded by the N2-fixing Acacia longifolia. Cluster analysis identified regions with pronounced alterations in N budget and water use efficiency in the native species, with a more than twofold increase in foliar N, and δ13C and δ15N enrichment of up to 2‰ and 8‰ closer to the invader, respectively. Furthermore, clusters of multiple functional tracers indicated a spatial shift from facilitation through N addition in the proximity of the invader to competition for resources other than N in close contact. Finding homogeneous subgroups in multi-isotope data by means of model-based cluster analysis provided an effective tool for detecting spatial structure in processes affecting plant physiology and performance. The proposed method can give an objective measure of the spatial extent of influence of

  7. Assessment of the sources and transformations of nitrogen in a plain river network region using a stable isotope approach.

    PubMed

    Ding, Jingtao; Xi, Beidou; Xu, Qigong; Su, Jing; Huo, Shouliang; Liu, Hongliang; Yu, Yijun; Zhang, Yanbo

    2015-04-01

    The great spatial and temporal variability in hydrological conditions and nitrogen (N) processing introduces large uncertainties to the identification of N sources and quantifying N cycles in plain river network regions. By combining isotopic data with chemical and hydrologic measurements, we determined the relative importance of N sources and biogeochemical N processes in the Taige River in the East Plain Region of China. The river was polluted more seriously by anthropogenic inputs in winter than in summer. Manure and urban sewage effluent were the main nitrate (NO3-) sources, with the nitrification of N-containing organic materials serving as another important source of NO3-. In the downstream, with minor variations in hydrological conditions, nitrification played a more important role than assimilation for the decreasing ammonium (NH4+-N) concentrations. The N isotopic enrichment factors (ε) during NH4+ utilization ranged from -13.88‰ in March to -29.00‰ in July. The ratio of the increase in δ18O and δ15N of river NO3- in the downstream was 1.04 in January and 0.92 in March. This ratio indicated that NO3- assimilation by phytoplankton was responsible for the increasing δ15N and δ18O values of NO3- in winter. The relationships between δ15N of particulate organic nitrogen and isotopic compositions of dissolved inorganic nitrogen indicated that the phytoplankton in the Taige River probably utilized NH4+ preferentially and mainly in summer, while in winter, NO3- assimilation by phytoplankton was dominant.

  8. A Spatially Explicit Dual-Isotope Approach to Map Regions of Plant-Plant Interaction after Exotic Plant Invasion.

    PubMed

    Hellmann, Christine; Werner, Christiane; Oldeland, Jens

    2016-01-01

    Understanding interactions between native and invasive plant species in field settings and quantifying the impact of invaders in heterogeneous native ecosystems requires resolving the spatial scale on which these processes take place. Therefore, functional tracers are needed that enable resolving the alterations induced by exotic plant invasion in contrast to natural variation in a spatially explicit way. 15N isoscapes, i.e., spatially referenced representations of stable nitrogen isotopic signatures, have recently provided such a tracer. However, different processes, e.g. water, nitrogen or carbon cycles, may be affected at different spatial scales. Thus multi-isotope studies, by using different functional tracers, can potentially return a more integrated picture of invader impact. This is particularly true when isoscapes are submitted to statistical methods suitable to find homogeneous subgroups in multivariate data such as cluster analysis. Here, we used model-based clustering of spatially explicit foliar δ15N and δ13C isoscapes together with N concentration of a native indicator species, Corema album, to map regions of influence in a Portuguese dune ecosystem invaded by the N2-fixing Acacia longifolia. Cluster analysis identified regions with pronounced alterations in N budget and water use efficiency in the native species, with a more than twofold increase in foliar N, and δ13C and δ15N enrichment of up to 2‰ and 8‰ closer to the invader, respectively. Furthermore, clusters of multiple functional tracers indicated a spatial shift from facilitation through N addition in the proximity of the invader to competition for resources other than N in close contact. Finding homogeneous subgroups in multi-isotope data by means of model-based cluster analysis provided an effective tool for detecting spatial structure in processes affecting plant physiology and performance. The proposed method can give an objective measure of the spatial extent of influence of

  9. Effect of Error Propagation in Stable Isotope Tracer Studies: An Approach for Estimating Impact on Apparent Biochemical Flux.

    PubMed

    Previs, Stephen F; Herath, Kithsiri; Castro-Perez, Jose; Mahsut, Ablatt; Zhou, Haihong; McLaren, David G; Shah, Vinit; Rohm, Rory J; Stout, Steven J; Zhong, Wendy; Wang, Sheng-Ping; Johns, Douglas G; Hubbard, Brian K; Cleary, Michele A; Roddy, Thomas P

    2015-01-01

    Stable isotope tracers are widely used to quantify metabolic rates, and yet a limited number of studies have considered the impact of analytical error on estimates of flux. For example, when estimating the contribution of de novo lipogenesis, one typically measures a minimum of four isotope ratios, i.e., the precursor and product labeling pre- and posttracer administration. This seemingly simple problem has 1 correct solution and 80 erroneous outcomes. In this report, we outline a methodology for evaluating the effect of error propagation on apparent physiological endpoints. We demonstrate examples of how to evaluate the influence of analytical error in case studies concerning lipid and protein synthesis; we have focused on (2)H2O as a tracer and contrast different mass spectrometry platforms including GC-quadrupole-MS, GC-pyrolysis-IRMS, LC-quadrupole-MS, and high-resolution FT-ICR-MS. The method outlined herein can be used to determine how to minimize variations in the apparent biology by altering the dose and/or the type of tracer. Likewise, one can facilitate biological studies by estimating the reduction in the noise of an outcome that is expected for a given increase in the number of replicate injections. PMID:26358910

  10. Exploring mass extinction events and their association with global warming events from muliproxy biomarker and isotopic approaches

    NASA Astrophysics Data System (ADS)

    Grice, K.; Nabbefeld, B.; Maslen, E.; Jaraula, C.; Holman, A.; Melendez, I.; Tulipani, S.; Twitchett, R.; Hays, L. E.; Summons, R. E.; Mella, L.; Williford, K. H.; McElwain, J.; Böttcher, M.

    2011-12-01

    The Late Permian mass extinction event was the most profound extinctions of the entire Phanerozoic. Biomarker evidence for photic zone euxinic (PZE) conditions within Permian/Triassic (P/Tr) setions, where concentrations of sulfide, are sufficient to support anoxygenic photosynthesis, come from components derived from pigments of Chlorobi. Evidence for such conditions occurred at 6 global localities from shallow marine settings. Perturbations in the redox-state of the ancient seas are also reflected in d34S of pyrite (e.g. from China, Italy, Iran, Western Australia, East Greenland, Western Canada and Spitsbergen) supporting widespread euxinic conditions in both Palaeotethys and Panthalassa oceans. The aromatic biomarkers, dibenzothiophene, dibenzofuran and biphenyl have been detected in high abundances in samples just before the onset of the marine ecosystem collapse in East Greenland, Spitsbergen, South China and Western Canada . We have proposed that lignin derived from land plants, present during the Late Permian is their likely source. We provide sedimentological data, biomarker abundances and compound specific isotopic data (δ13C and δD) along with bulk isotopes (δ34Spyrite, δ13Ccarbonate, δ13Corg) for several sections. At two localities sedimentological and geochemical data supports a marine transgression and collapse of the marine ecosystem occurring in the Late Permian. δ13C data of algal and land-plant derived biomarkers, δ13C carbonate and organic matter support synchronous changes in δ13C of marine and atmospheric CO2, attributed to a 13C-depleted source (13C depleted methane and/or CO2 derived from degradation of organic matter due to the marine ecosystem collapse). Evidence for waxing and waning of PZE throughout the Late Permian is provided by Chlorobi derived biomarkers and δ34S pyrite implying multiple phases of H2S outgassing and potentially several prolonged pulses of extinction at several global localities. We suggest that high levels of

  11. Water isotopes in desiccating lichens.

    PubMed

    Hartard, Britta; Cuntz, Matthias; Máguas, Cristina; Lakatos, Michael

    2009-12-01

    The stable isotopic composition of water is routinely used as a tracer to study water exchange processes in vascular plants and ecosystems. To date, no study has focussed on isotope processes in non-vascular, poikilohydric organisms such as lichens and bryophytes. To understand basic isotope exchange processes of non-vascular plants, thallus water isotopic composition was studied in various green-algal lichens exposed to desiccation. The study indicates that lichens equilibrate with the isotopic composition of surrounding water vapour. A model was developed as a proof of concept that accounts for the specific water relations of these poikilohydric organisms. The approach incorporates first their variable thallus water potential and second a compartmentation of the thallus water into two isotopically distinct but connected water pools. Moreover, the results represent first steps towards the development of poikilohydric organisms as a recorder of ambient vapour isotopic composition.

  12. Water isotopes in desiccating lichens

    PubMed Central

    Cuntz, Matthias; Máguas, Cristina; Lakatos, Michael

    2009-01-01

    The stable isotopic composition of water is routinely used as a tracer to study water exchange processes in vascular plants and ecosystems. To date, no study has focussed on isotope processes in non-vascular, poikilohydric organisms such as lichens and bryophytes. To understand basic isotope exchange processes of non-vascular plants, thallus water isotopic composition was studied in various green-algal lichens exposed to desiccation. The study indicates that lichens equilibrate with the isotopic composition of surrounding water vapour. A model was developed as a proof of concept that accounts for the specific water relations of these poikilohydric organisms. The approach incorporates first their variable thallus water potential and second a compartmentation of the thallus water into two isotopically distinct but connected water pools. Moreover, the results represent first steps towards the development of poikilohydric organisms as a recorder of ambient vapour isotopic composition. PMID:19888598

  13. A new approach to understand methylmercury (CH3Hg) sources and transformation pathways: Compound-specific carbon stable isotope analysis by GC-C-IRMS

    NASA Astrophysics Data System (ADS)

    Baya, P. A.; Point, D.; Amouroux, D. P.; Lebreton, B.; Guillou, G.

    2015-12-01

    Methylmercury (CH3Hg) is a potent neurotoxin which is readily assimilated by organisms and bio-accumulates in aquatic food webs. In humans, consumption of CH3Hg contaminated marine fish is the major route of mercury exposure. However, our understanding of CH3Hg transformation pathways is still incomplete. To close this knowledge gap, we propose to explore the stable carbon isotopic composition (δ13C) of the methyl group of CH3Hg for a better understanding of its sources and transformation mechanisms. The method developed for the determination of the δ13C value of CH3Hg in biological samples involves (i) CH3Hg selective extraction, (ii) derivatization, and (iii) separation by gas chromatography (GC) prior to analysis by combustion isotope ratio mass spectrometry (C-IRMS). We present the figures of merit of this novel method and the first δ13C signatures for certified materials (ERM-CE464, BCR414) and biological samples at different marine trophic levels (i.e., tuna fish, zooplankton). The implications of this new approach to trace the pathways associated with Hg methylation and the mechanisms involved will be discussed.

  14. Trophic linkage of a temperate intertidal macrobenthic food web under opportunistic macroalgal blooms: A stable isotope approach.

    PubMed

    Park, Hyun Je; Han, Eunah; Lee, Young-Jae; Kang, Chang-Keun

    2016-10-15

    The effects of blooms of opportunistic green macroalgae, Ulva prolifera, on the trophic structure of the macrobenthic food web in a temperate intertidal zone on the western coast of Korea were evaluated using carbon and nitrogen stable isotopes. Biomasses of Ulva and microphytobenthos (MPB) increased significantly at the macroalgae-bloom and the non-bloom sites, respectively, from March to September 2011. The δ(13)C values of most the consumers were arrayed between those of MPB and Ulva at both sites, and differed according to feeding strategies at the macroalgae-bloom site. Seasonally increasing magnitudes in δ(13)C and δ(15)N values of consumers were much steeper at the macroalgae-bloom site than at the non-bloom site. Our findings provide evidence that blooming green macroalgae play a significant role as a basal resource supporting the intertidal macrobenthic food web and their significance varies with feeding strategies of consumers as well as the resource availability.

  15. Ground-water, large-lake interactions in Saginaw Bay, Lake Huron: A geochemical and isotopic approach

    USGS Publications Warehouse

    Kolak, J.J.; Long, D.T.; Matty, J.M.; Larson, G.J.; Sibley, D.F.; Councell, T.B.

    1999-01-01

    Delineating the nature and extent of ground-water inputs is necessary to understand the hydrochemistry of large lakes. Characterizing the interaction between ground water and large lakes (e.g., the Great Lakes) is facilitated by the use of geochemical and isotopic data. In this study, pore waters were extracted from sediment cores collected from Saginaw Bay and the surrounding Saginaw lowland area; the geochemistry and stable isotope signature of these pore waters were used to identify sources for the water and solutes. Cores from Saginaw Bay and the Saginaw lowland area yielded strong vertical gradients in chloride concentrations, suggesting that a high-chloride source is present at depth. The spatial distribution of cores with elevated chloride concentrations corresponds to the regional distribution of chloride in ground water. Most of the Saginaw lowland area cores contain water with significantly lower ??18O values than modern meteoric water, suggesting that the water had been recharged during a much cooler climate. The ??18O values measured in pore waters (from Saginaw Bay cores) containing high chloride concentrations are similar to modern meteoric water; however, values lighter than modern meteoric water are encountered at depth. Chloride:bromide ratios, used to distinguish between different chloride sources, identify formation brine as the likely source for chloride. Transport models indicate that a combination of advection and diffusion is responsible for the observed Saginaw lowland area pore-water profiles. Pore-water profiles in Saginaw Bay sediments are produced primarily by diffusion and require significantly less time to evolve. An upward flux of solutes derived from formation brine could occur elsewhere within the Great Lakes region and significantly affect the geochemical cycling of chloride and other contaminants (e.g., trace metals).

  16. A novel methodological approach for δ(18)O analysis of sugars using gas chromatography-pyrolysis-isotope ratio mass spectrometry.

    PubMed

    Zech, Michael; Saurer, Matthias; Tuthorn, Mario; Rinne, Katja; Werner, Roland A; Siegwolf, Rolf; Glaser, Bruno; Juchelka, Dieter

    2013-01-01

    Although the instrumental coupling of gas chromatography-pyrolysis-isotope ratio mass spectrometry (GC-Py-IRMS) for compound-specific δ(18)O analysis has been commercially available for more than a decade, this method has been hardly applied so far. Here we present the first GC-Py-IRMS δ(18)O results for trimethylsilyl-derivatives of plant sap-relevant sugars and a polyalcohol (glucose, fructose, sucrose, raffinose and pinitol). Particularly, we focus on sucrose, which is assimilated in leaves and which is the most important transport sugar in plants and hence of utmost relevance in plant physiology and paleoclimate studies. Replication measurements of sucrose standards and concentration series indicate that the GC-Py-IRMS δ(18)O measurements are not stable over time and that they are amount (area) dependent. We, therefore, suggest running sample batch replication measurements in alternation with standard concentration series of reference material. This allows for carrying out (i) a drift correction, (ii) a calibration against reference material and (iii) an amount (area) correction. Tests with (18)O-enriched water do not provide any evidence for oxygen isotope exchange reactions affecting sucrose and raffinose. We present the first application of GC-Py-IRMS δ(18)O analysis for sucrose from needle extract (soluble carbohydrate) samples. The obtained δ(18)Osucrose/ Vienna Standard Mean Ocean Water (VSMOW) values are more positive and vary in a wider range (32.1-40.1 ‰) than the δ(18)Obulk/ VSMOW values (24.6-27.2 ‰). Furthermore, they are shown to depend on the climate parameters maximum day temperature, relative air humidity and cloud cover. These findings suggest that δ(18)Osucrose of the investigated needles very sensitively reflects the climatically controlled evaporative (18)O enrichment of leaf water and thus highlights the great potential of GC-Py-IRMS δ(18)Osucrose analysis for plant physiology and paleoclimate studies. PMID:24313371

  17. A stable-isotope dilution GC-MS approach for the analysis of DFRC (derivatization followed by reductive cleavage) monomers from low-lignin plant materials.

    PubMed

    Schäfer, Judith; Urbat, Felix; Rund, Katharina; Bunzel, Mirko

    2015-03-18

    The derivatization followed by reductive cleavage (DFRC) method is a well-established tool to characterize the lignin composition of plant materials. However, the application of the original procedure, especially the chromatographic determination of the DFRC monomers, is problematic for low-lignin foods. To overcome these problems a modified sample cleanup and a stable-isotope dilution approach were developed and validated. To quantitate the diacetylated DFRC monomers, their corresponding hexadeuterated analogs were synthesized and used as internal standards. By using the selected-ion monitoring mode, matrix-associated interferences can be minimized resulting in higher selectivity and sensitivity. The modified method was applied to four low-lignin samples. Lignin from carrot fibers was classified as guaiacyl-rich whereas the lignins from radish, pear, and asparagus fibers where classified as balanced lignins (guaiacyl/syringyl ratio=1-2). PMID:25727138

  18. Estimation of groundwater residence times in watersheds using the runoff recession hydrograph: Application and comparison with the isotopic approach in two headwater watersheds

    NASA Astrophysics Data System (ADS)

    Vitvar, T.; Burns, D. A.; McDonnell, J. J.

    2001-05-01

    A need exists for a method to estimate groundwater residence time in watersheds that uses readily available data. Current methods require intensive and expensive collection of isotope or other tracer data. We have developed a method for estimation of mean baseflow residence time in watersheds based on runoff recession characteristics in the Winnisook watershed, Catskill Mts, New York, USA, and in the Maimai watershed, New Zealand. We first derived mean transmissivity and storativity of the dynamic subsurface water storage based on calculated runoff recession characteristics, and then we used these to estimate mean baseflow residence time. The two selected watersheds represent two different geomorphic, climatic and hydrological regimes: the Winnisook is an upland forested catchment with 20\\deg mean slope angles, thin soils (<1.0 m) developed in glacial till, 1570 mm annual rainfall and is underlain by permeable layered sedimentary bedrock. The Maimai watershed is a steep humid catchment with 35\\deg mean slope angles, thin soils (<0.5 m), 2700 mm annual rainfall and is underlain by impermeable bedrock. To test the new approach, mean baseflow residence times were calculated using the convolution integral approach relating rainfall to sampled streamflow 18O values. Mean baseflow residence time for the 2 km&^{2}$ Winnisook watershed was about 9 months using both the convolution integral approach and the recession hydrograph approach. The mean baseflow residence time for the 0.3 ha Maimai watershed was 3 months based on the convolution integral approach. The recession hydrograph method yields a slightly different result dependent on the variable shape of the recession hydrograph in this wet climatic regime. This new baseflow recession method may be an alternative to the convolution integral approach, and can delineate dynamic and static reservoirs for solving mixing problems at the watershed scale.

  19. Influences of the substrate feeding regime on methanogenic activity in biogas reactors approached by molecular and stable isotope methods.

    PubMed

    Lv, Z; Leite, A F; Harms, H; Richnow, H H; Liebetrau, J; Nikolausz, M

    2014-10-01

    In order to better understand the effects of the substrate feeding regime on methanogenesis during anaerobic digestion in biogas reactors, four continuous stirred tank reactors operated under mesophilic conditions were investigated. In addition to standard physicochemical parameters, the stable isotopic signatures of CH4 and CO2 before and after daily feeding were analyzed. The activity of the methanogens was assessed by methyl coenzyme M reductase alpha-subunit (mcrA/mrtA) gene transcript analysis. Two different feeding regimes i.e. single vs. double consecutive feeding of the otherwise same daily maize silage load were investigated. During the first phase, a single feeding of the whole daily dose increased the biogas production within 70-80 min from around 0.5 to 2.0 L/h. This increase was associated with a transient increase of the acetic acid concentration and a corresponding decrease of the pH. Only moderate increase in biogas yield and VFA concentration (mainly acetate) was observed when the daily substrate was apportioned into two feedings. However, the overall daily gas production was similar in both cases. Regardless of the feeding regime, significantly depleted δ(13)CH4 and minor changes in the CO2 content of biogas were observed after feeding, which were followed by enrichment of δ(13)CH4. This period was associated with detectable changes in activity of methanogenic communities monitored by terminal restriction fragment length polymorphism analysis based on the transcripts of mcrA/mrtA genes. Methanoculleus and Methanobacterium spp. were the predominant methanogens in all reactors, while Methanosarcina spp. activity was only significant in two reactors. The activity of Methanoculleus and Methanosarcina spp. increased after the feeding in these reactors, which was followed by a depletion of δ(13)C in the produced gas. In both reactors, the less depleted isotopic values were detected before the second feeding, when Methanobacterium was the most

  20. Natural and anthropogenic variations in the Po river waters (northern Italy): insights from a multi-isotope approach.

    PubMed

    Marchina, Chiara; Bianchini, Gianluca; Knoeller, Kay; Natali, Claudio; Pennisi, Maddalena; Colombani, Nicolò

    2016-12-01

    Po is the main Italian river and the δ(18)O and δ(2)H of its water reveal a similarity between the current meteoric fingerprint and that of the past represented by groundwater. As concerns the hydrochemisty, the Ca-HCO3 facies remained constant over the last 50 year, and only nitrate significantly increased from less than 1 mg/L to more than 10 mg/L in the 1980s, and then attenuated to a value of 9 mg/L. Coherently, δ(13)CDIC and δ(34)SSO4 are compatible with the weathering of the lithologies outcropping in the basin, while extremely variable δ(15)NNO3 indicates contribution from pollutants released by urban, agricultural and zootechnical activities. This suggests that although the origin of the main constituents of the Po river water is geogenic, anthropogenic contributions are locally significant. Noteworthy, the associated aquifers have the same nitrogen isotopic signature of the Po river, but are characterized by significantly higher NO(-) 3 concentration. This implies that aquifers' pollution is not ascribed to inflow of current river water, and that the attenuation of the nitrogen load recorded in the river is not occurring in the aquifers, due to their longer water residence time and delayed recovery from anthropogenic contamination. PMID:26982695

  1. Denitrification and Anammox in Tropical Aquaculture Settlement Ponds: An Isotope Tracer Approach for Evaluating N2 Production

    PubMed Central

    Castine, Sarah A.; Erler, Dirk V.; Trott, Lindsay A.; Paul, Nicholas A.; de Nys, Rocky; Eyre, Bradley D.

    2012-01-01

    Settlement ponds are used to treat aquaculture discharge water by removing nutrients through physical (settling) and biological (microbial transformation) processes. Nutrient removal through settling has been quantified, however, the occurrence of, and potential for microbial nitrogen (N) removal is largely unknown in these systems. Therefore, isotope tracer techniques were used to measure potential rates of denitrification and anaerobic ammonium oxidation (anammox) in the sediment of settlement ponds in tropical aquaculture systems. Dinitrogen gas (N2) was produced in all ponds, although potential rates were low (0–7.07 nmol N cm−3 h−1) relative to other aquatic systems. Denitrification was the main driver of N2 production, with anammox only detected in two of the four ponds. No correlations were detected between the measured sediment variables (total organic carbon, total nitrogen, iron, manganese, sulphur and phosphorous) and denitrification or anammox. Furthermore, denitrification was not carbon limited as the addition of particulate organic matter (paired t-Test; P = 0.350, n = 3) or methanol (paired t-Test; P = 0.744, n = 3) did not stimulate production of N2. A simple mass balance model showed that only 2.5% of added fixed N was removed in the studied settlement ponds through the denitrification and anammox processes. It is recommended that settlement ponds be used in conjunction with additional technologies (i.e. constructed wetlands or biological reactors) to enhance N2 production and N removal from aquaculture wastewater. PMID:22962581

  2. Natural and anthropogenic variations in the Po river waters (northern Italy): insights from a multi-isotope approach.

    PubMed

    Marchina, Chiara; Bianchini, Gianluca; Knoeller, Kay; Natali, Claudio; Pennisi, Maddalena; Colombani, Nicolò

    2016-12-01

    Po is the main Italian river and the δ(18)O and δ(2)H of its water reveal a similarity between the current meteoric fingerprint and that of the past represented by groundwater. As concerns the hydrochemisty, the Ca-HCO3 facies remained constant over the last 50 year, and only nitrate significantly increased from less than 1 mg/L to more than 10 mg/L in the 1980s, and then attenuated to a value of 9 mg/L. Coherently, δ(13)CDIC and δ(34)SSO4 are compatible with the weathering of the lithologies outcropping in the basin, while extremely variable δ(15)NNO3 indicates contribution from pollutants released by urban, agricultural and zootechnical activities. This suggests that although the origin of the main constituents of the Po river water is geogenic, anthropogenic contributions are locally significant. Noteworthy, the associated aquifers have the same nitrogen isotopic signature of the Po river, but are characterized by significantly higher NO(-) 3 concentration. This implies that aquifers' pollution is not ascribed to inflow of current river water, and that the attenuation of the nitrogen load recorded in the river is not occurring in the aquifers, due to their longer water residence time and delayed recovery from anthropogenic contamination.

  3. Technical Report: Investigation of Carbon Cycle Processes within a Managed Landscape: An Ecosystem Manipulation and Isotope Tracer Approach

    SciTech Connect

    Griffis, Timothy J; Baker, John M; Billmark, Kaycie

    2009-06-01

    The goal of this research is to provide a better scientific understanding of carbon cycle processes within an agricultural landscape characteristic of the Upper Midwest. This project recognizes the need to study processes at multiple spatial and temporal scales to reduce uncertainty in ecosystem and landscape-scale carbon budgets to provide a sound basis for shaping future policy related to carbon management. Specifically, this project has attempted to answer the following questions: 1. Would the use of cover crops result in a shift from carbon neutral to significant carbon gain in corn-soybean rotation ecosystems of the Upper Midwest? 2. Can stable carbon isotope analyses be used to partition ecosystem respiration into its autotrophic and heterotrophic components? 3. Can this partitioning be used to better understand the fate of crop residues to project changes in the soil carbon reservoir? 4. Are agricultural ecosystems of the Upper Midwest carbon neutral, sinks, or sources? Can the proposed measurement and modeling framework help address landscape-scale carbon budget uncertainties and help guide future carbon management policy?

  4. Isotope separation

    DOEpatents

    Bartlett, Rodney J.; Morrey, John R.

    1978-01-01

    A method and apparatus is described for separating gas molecules containing one isotope of an element from gas molecules containing other isotopes of the same element in which all of the molecules of the gas are at the same electronic state in their ground state. Gas molecules in a gas stream containing one of the isotopes are selectively excited to a different electronic state while leaving the other gas molecules in their original ground state. Gas molecules containing one of the isotopes are then deflected from the other gas molecules in the stream and thus physically separated.

  5. Teasing Foggy Memories out of Pines on the California Channel Islands Using Tree-Ring Width and Stable Isotope Approaches

    NASA Astrophysics Data System (ADS)

    Williams, A. P.; Still, C. J.; Fischer, D. T.; Leavitt, S. W.

    2006-12-01

    The coast of California is home to many rare, endemic conifers and other plants that are not well adapted to the Mediterranean climate that prevails across most of the state. It has long been suggested that coastal pines survived the early-Pleistocene transition to a warmer and drier environment because they benefit from frequent fog and low stratus clouds that provide much needed water inputs and shading during the rainless summer. Here, we report evidence for the importance of this summer cloudiness to Torrey pines (Pinus torreyana) growing on Santa Rosa Island in Channel Islands National Park. We developed a tree-ring width chronology and quantified the relative importance of winter/spring precipitation and summer fog by comparing ring widths to nearby rainfall records and airport cloud-ceiling height data. While winter/spring precipitation explains most of the variation in annual tree-ring width (R2 = 0.592), the frequency of summertime fog correlated significantly and positively with annual ring width for 52 years of available fog data when the effect of winter/spring precipitation was removed (R2 = 0.118). The correlation between fog frequency and ring width decreased sharply when the range of possible cloud-ceiling heights deviated from the habitat range of the Torrey pine stand, emphasizing the importance of direct cloud immersion to these pines. In addition, the relationship between fog frequency and ring width was strongest in the 26 years that had enough winter/spring rainfall to maintain above-average soil moisture throughout the dry summer months (R2 = 0.312). This suggests that Torrey pines have an adaptive growing season length and that summer fog-water inputs are supplemental but not substantial enough to sustain tree growth independently. It may also be suggested that when summer growth does occur, the frequency of summer fog and stratus may govern growing season length. This made a "fog signal" difficult to detect in the stable isotope (carbon and

  6. Dietary inulin intake and age can significantly affect intestinal absorption of calcium and magnesium in rats: a stable isotope approach

    PubMed Central

    Coudray, Charles; Rambeau, Mathieu; Feillet-Coudray, Christine; Tressol, Jean Claude; Demigne, Christian; Gueux, Elyett; Mazur, Andrzej; Rayssiguier, Yves

    2005-01-01

    Background previous studies have shown that non-digestible inulin-type fructan intake can increase intestinal mineral absorption in both humans and animals. However, this stimulatory effect on intestinal absorption may depend on experimental conditions such as duration of fermentable fiber intake, mineral diet levels and animals' physiological status, in particular their age. Objectives the aim of this study was to determine the effect of inulin intake on Ca and Mg absorption in rats at different age stages. Methods eighty male Wistar rats of four different ages (2, 5, 10 and 20 months) were randomized into either a control group or a group receiving 3.75% inulin in their diet for 4 days and then 7.5% inulin for three weeks. The animals were fed fresh food and water ad libitum for the duration of the experiment. Intestinal absorption of Ca and Mg was determined by fecal monitoring using stable isotopic tracers. Ca and Mg status was also assessed. Results absorption of Ca and Mg was significantly lower in the aged rats (10 and 20 mo) than in the young and adult rat groups. As expected, inulin intake increased Ca and Mg absorption in all four rat groups. However, inulin had a numerically greater effect on Ca absorption in aged rats than in younger rats whereas its effect on Mg absorption remained similar across all four rat age groups. Conclusion the extent of the stimulatory effect of inulin on absorption of Ca may differ according to animal ages. Further studies are required to explore this effect over longer inulin intake periods, and to confirm these results in humans. PMID:16253138

  7. Joint Isotopic Mass Balance: A Novel Approach to Quantifying Channel Bed to Channel Margins Sediment Transfer during Storm Events

    NASA Astrophysics Data System (ADS)

    Renshaw, C. E.; Magilligan, F. J.

    2014-12-01

    The important role of floodplains in providing temporary storage for a large fraction of the annual sediment load of rivers is well established, but this understanding is largely based on observations of the long-term average behavior of the catchment. Here we combine measurements of the fallout radionuclides Be-7 and Pb-210 and the stable isotopes of water to quantify fine sediment mobilization and storage in a stream and its floodplain during individual intermediate-sized storm events. We demonstrate this method using five intermediate-sized storm events in a small (~15 square km), undeveloped, gravel-bedded tributary of the Connecticut River (USA). We find that in each storm, the mass of sediment deposited onto the margins accounts for almost 90% of the sediment mobilized from the bed, with the remainder of the mobilized bed sediment carried downstream as suspended load. The result that the bed is a net source of sediment to the stream and the margins a net sink is robust, but estimates of the mass of material eroded from the bed and deposited on the margins are less certain. The source of sediment to the bed remains unclear as, consistent with earlier studies, we observe only limited deposition of sediment to the bed during the storm events. The suspended sediment is organic rich and thus its source may be associated with organic decay between storm events. The understanding of the coupled interactions between discharge magnitude and frequency and sediment resupply at the event time scale has important implications for the successful restoration design of discharges that connect channel and floodplain, and for the development of accurate sediment budgets and predictions of sediment flux from a watershed.

  8. (Bio)degradation of glyphosate in water-sediment microcosms - A stable isotope co-labeling approach.

    PubMed

    Wang, Shizong; Seiwert, Bettina; Kästner, Matthias; Miltner, Anja; Schäffer, Andreas; Reemtsma, Thorsten; Yang, Qi; Nowak, Karolina M

    2016-08-01

    Glyphosate and its metabolite aminomethylphosphonic acid (AMPA) are frequently detected in water and sediments. Up to date, there are no comprehensive studies on the fate of glyphosate in water-sediment microcosms according to OECD 308 guideline. Stable isotope co-labeled (13)C3(15)N-glyphosate was used to determine the turnover mass balance, formation of metabolites, and formation of residues over a period of 80 days. In the water-sediment system, 56% of the initial (13)C3-glyphosate equivalents was ultimately mineralized, whereas the mineralization in the water system (without sediment) was low, reaching only 2% of (13)C-glyphosate equivalents. This finding demonstrates the key role of sediments in its degradation. Glyphosate was detected below detection limit in the water compartment on day 40, but could still be detected in the sediments, ultimately reaching 5% of (13)C3(15)N-glyphosate equivalents. A rapid increase in (13)C(15)N-AMPA was noted after 10 days, and these transformation products ultimately constituted 26% of the (13)C3-glyphosate equivalents and 79% of the (15)N-glyphosate equivalents. In total, 10% of the (13)C label and 12% of the (15)N label were incorporated into amino acids, indicating no risk bearing biogenic residue formation from (13)C3(15)N-glyphosate. Initially, glyphosate was biodegraded via the sarcosine pathway related to microbial growth, as shown by co-labeled (13)C(15)N-glycine and biogenic residue formation. Later, degradation via AMPA dominated under starvation conditions, as shown by the contents of (13)C-glycine. The presented data provide the first evidence of the speciation of the non-extractable residues as well as the utilization of glyphosate as a carbon and nitrogen source in the water-sediment system. This study also highlights the contribution of both the sarcosine and the AMPA degradation pathways under these conditions. PMID:27140906

  9. Social Complexification and Pig (Sus scrofa) Husbandry in Ancient China: A Combined Geometric Morphometric and Isotopic Approach.

    PubMed

    Cucchi, Thomas; Dai, Lingling; Balasse, Marie; Zhao, Chunqing; Gao, Jiangtao; Hu, Yaowu; Yuan, Jing; Vigne, Jean-Denis

    2016-01-01

    Pigs have played a major role in the economic, social and symbolic systems of China since the Early Neolithic more than 8,000 years ago. However, the interaction between the history of pig domestication and transformations in Chinese society since then, have not been fully explored. In this paper, we investigated the co-evolution from the earliest farming communities through to the new political and economic models of state-like societies, up to the Chinese Empire, using 5,000 years of archaeological records from the Xiawanggang (XWG) and Xinzhai (XZ) sites (Henan Province). To trace the changes of pig populations against husbandry practices, we combined the geometric morphometric analysis of dental traits with a study of the stable carbon and nitrogen isotope ratios from bone collagen. The domestication process intensified during the Neolithic Yangshao, prompted by greater selective pressure and/or better herd control against wild introgression. After that, pig farming, in XWG, relied on local livestock and a gradual change of husbandry practices overtime. This was characterized by a gentle increase in millet foddering and animal protein intake, until a complete change over to household management during the Han dynasty. The only rupture in this steady trend of husbandry occurred during the Longshan period, with the appearance of small sized and idiosyncratic pigs with specific feeding practices (relying on millet and household scraps). From three exploratory hypothesis, we explored the possibility of anti-elite pig production in XWG during the Longshan period, as a means to resist incorporation into a new economic model promoting intensified domestic production. This exploratory hypothesis is the most suitable to our dataset; however, numerous areas need to be explored further in order to adequately document the role of pigs in the rise of China's complex societies.

  10. Social Complexification and Pig (Sus scrofa) Husbandry in Ancient China: A Combined Geometric Morphometric and Isotopic Approach

    PubMed Central

    Balasse, Marie; Zhao, Chunqing; Gao, Jiangtao; Hu, Yaowu; Yuan, Jing; Vigne, Jean-Denis

    2016-01-01

    Pigs have played a major role in the economic, social and symbolic systems of China since the Early Neolithic more than 8,000 years ago. However, the interaction between the history of pig domestication and transformations in Chinese society since then, have not been fully explored. In this paper, we investigated the co-evolution from the earliest farming communities through to the new political and economic models of state-like societies, up to the Chinese Empire, using 5,000 years of archaeological records from the Xiawanggang (XWG) and Xinzhai (XZ) sites (Henan Province). To trace the changes of pig populations against husbandry practices, we combined the geometric morphometric analysis of dental traits with a study of the stable carbon and nitrogen isotope ratios from bone collagen. The domestication process intensified during the Neolithic Yangshao, prompted by greater selective pressure and/or better herd control against wild introgression. After that, pig farming, in XWG, relied on local livestock and a gradual change of husbandry practices overtime. This was characterized by a gentle increase in millet foddering and animal protein intake, until a complete change over to household management during the Han dynasty. The only rupture in this steady trend of husbandry occurred during the Longshan period, with the appearance of small sized and idiosyncratic pigs with specific feeding practices (relying on millet and household scraps). From three exploratory hypothesis, we explored the possibility of anti-elite pig production in XWG during the Longshan period, as a means to resist incorporation into a new economic model promoting intensified domestic production. This exploratory hypothesis is the most suitable to our dataset; however, numerous areas need to be explored further in order to adequately document the role of pigs in the rise of China’s complex societies. PMID:27384523

  11. Social Complexification and Pig (Sus scrofa) Husbandry in Ancient China: A Combined Geometric Morphometric and Isotopic Approach.

    PubMed

    Cucchi, Thomas; Dai, Lingling; Balasse, Marie; Zhao, Chunqing; Gao, Jiangtao; Hu, Yaowu; Yuan, Jing; Vigne, Jean-Denis

    2016-01-01

    Pigs have played a major role in the economic, social and symbolic systems of China since the Early Neolithic more than 8,000 years ago. However, the interaction between the history of pig domestication and transformations in Chinese society since then, have not been fully explored. In this paper, we investigated the co-evolution from the earliest farming communities through to the new political and economic models of state-like societies, up to the Chinese Empire, using 5,000 years of archaeological records from the Xiawanggang (XWG) and Xinzhai (XZ) sites (Henan Province). To trace the changes of pig populations against husbandry practices, we combined the geometric morphometric analysis of dental traits with a study of the stable carbon and nitrogen isotope ratios from bone collagen. The domestication process intensified during the Neolithic Yangshao, prompted by greater selective pressure and/or better herd control against wild introgression. After that, pig farming, in XWG, relied on local livestock and a gradual change of husbandry practices overtime. This was characterized by a gentle increase in millet foddering and animal protein intake, until a complete change over to household management during the Han dynasty. The only rupture in this steady trend of husbandry occurred during the Longshan period, with the appearance of small sized and idiosyncratic pigs with specific feeding practices (relying on millet and household scraps). From three exploratory hypothesis, we explored the possibility of anti-elite pig production in XWG during the Longshan period, as a means to resist incorporation into a new economic model promoting intensified domestic production. This exploratory hypothesis is the most suitable to our dataset; however, numerous areas need to be explored further in order to adequately document the role of pigs in the rise of China's complex societies. PMID:27384523

  12. (Bio)degradation of glyphosate in water-sediment microcosms - A stable isotope co-labeling approach.

    PubMed

    Wang, Shizong; Seiwert, Bettina; Kästner, Matthias; Miltner, Anja; Schäffer, Andreas; Reemtsma, Thorsten; Yang, Qi; Nowak, Karolina M

    2016-08-01

    Glyphosate and its metabolite aminomethylphosphonic acid (AMPA) are frequently detected in water and sediments. Up to date, there are no comprehensive studies on the fate of glyphosate in water-sediment microcosms according to OECD 308 guideline. Stable isotope co-labeled (13)C3(15)N-glyphosate was used to determine the turnover mass balance, formation of metabolites, and formation of residues over a period of 80 days. In the water-sediment system, 56% of the initial (13)C3-glyphosate equivalents was ultimately mineralized, whereas the mineralization in the water system (without sediment) was low, reaching only 2% of (13)C-glyphosate equivalents. This finding demonstrates the key role of sediments in its degradation. Glyphosate was detected below detection limit in the water compartment on day 40, but could still be detected in the sediments, ultimately reaching 5% of (13)C3(15)N-glyphosate equivalents. A rapid increase in (13)C(15)N-AMPA was noted after 10 days, and these transformation products ultimately constituted 26% of the (13)C3-glyphosate equivalents and 79% of the (15)N-glyphosate equivalents. In total, 10% of the (13)C label and 12% of the (15)N label were incorporated into amino acids, indicating no risk bearing biogenic residue formation from (13)C3(15)N-glyphosate. Initially, glyphosate was biodegraded via the sarcosine pathway related to microbial growth, as shown by co-labeled (13)C(15)N-glycine and biogenic residue formation. Later, degradation via AMPA dominated under starvation conditions, as shown by the contents of (13)C-glycine. The presented data provide the first evidence of the speciation of the non-extractable residues as well as the utilization of glyphosate as a carbon and nitrogen source in the water-sediment system. This study also highlights the contribution of both the sarcosine and the AMPA degradation pathways under these conditions.

  13. Compound-specific stable isotope analysis of pesticides: a combined monitoring and modeling approach to assess pesticide fate and degradation at catchment scale

    NASA Astrophysics Data System (ADS)

    van Breukelen, B. M.; Lutz, S.; Van der Velde, Y.; Elsayed, O. F.; LeFrancq, M.; Payraudeau, S.; Imfeld, G.

    2014-12-01

    Compound-specific stable isotope analysis (CSIA) has proven useful in asessing the fate of groundwater contamination. However, although evidence of diffuse pesticide degradation is crucial, and CSIA methods have been developed for several pesticides, there is a clear lack of field CSIA data of pesticides. This study now presents the first analysis of field CSIA data from a 47-ha agricultural headwater catchment (Alteckendorf, Alsace, France) in the period March to August 2012. Measured stream concentrations of the two investigated chloroacetanilide herbicides (S-metolachlor and acetochlor) were highest (65 μg/L) following an intense rainfall event in the first month after herbicide application. Carbon isotope ratios increased with more than 2 ‰ in 3 months, which indicates the occurrence of herbicide degradation during transport to the stream. Previously, field CSIA data have also been simulated with reactive transport models to evaluate degradation of groundwater contaminants. This study now presents such a model-assisted interpretation of CSIA data for the first time at catchment scale, which aims at exploring the added value of CSIA in monitoring and modelling of pesticide pollution. The conceptual mathematical model succeeded in reproducing the general trend in concentrations and carbon isotope ratios of metolachlor. It also allowed for the quantification of metolachlor degradation (above 70 % during the study period), and yielded a mass export of 1.8 % of the applied pesticide, which is in agreement with the measured pesticide export. The field concentration and CSIA data informed the model building by indicating the importance of overland flow, and slow pesticide degradation in groundwater compared to the upper soil zone. Moreover, incorporation of the field CSIA data into model calibration slightly reduced model uncertainty in the quantification of pesticide degradation. We suggest that a finer temporal CSIA resolution than possible in this study

  14. Synthesizing the Use of Carbon Isotope (14C and 13C) Approaches to Understand Rates and Pathways for Permafrost C Mobilization and Mineralization

    NASA Astrophysics Data System (ADS)

    Estop-Aragones, C.; Olefeldt, D.; Schuur, E.

    2015-12-01

    To better understand the permafrost carbon (C) feedback it is important to synthesize our current knowledge, and knowledge gaps, of how permafrost thaw can cause in situ mineralization or downstream mobilization of aged soil organic carbon (SOC) and the rate of this release. This potential loss of old SOC may occur via gaseous flux of CO2 and CH4 exchanged between soil and the atmosphere and via waterborne flux as DOC, POC (and their subsequent decomposition and release to the atmosphere). Carbon isotope (14C and 13C) approaches have been used to estimate both rates and pathways for permafrost C mobilization and mineralization. Radiocarbon (14C) has been used to estimate the contribution of aged C to overall respiration or waterborne C export. We aim to contrast results from radiocarbon studies, in order to assess differences between ecosystems (contrasting wet and dry ecosystems), thaw histories (active layer deepening or thermokarst landforms), greenhouse gas considered (CO2 and CH4) and seasons. We propose to also contrast methodologies used for assessing the contribution of aged C to overall C balance, and include studies using 13C data. Biological fractionation of 13C during both uptake and decomposition has been taken advantage of both in order to aid the interpretation of 14C data and on its own to assess sources and mineralization pathways. For example, 13C data has been used to differentiate between CH4 production pathways, and the relative contribution of anaerobic CO2 production to overall respiration. Overall, carbon isotope research is proving highly valuable for our understanding of permafrost C dynamics following thaw, and there is a current need to synthesize the available literature.

  15. Decision-tree-model identification of nitrate pollution activities in groundwater: A combination of a dual isotope approach and chemical ions.

    PubMed

    Xue, Dongmei; Pang, Fengmei; Meng, Fanqiao; Wang, Zhongliang; Wu, Wenliang

    2015-09-01

    To develop management practices for agricultural crops to protect against NO3(-) contamination in groundwater, dominant pollution activities require reliable classification. In this study, we (1) classified potential NO3(-) pollution activities via an unsupervised learning algorithm based on δ(15)N- and δ(18)O-NO3(-) and physico-chemical properties of groundwater at 55 sampling locations; and (2) determined which water quality parameters could be used to identify the sources of NO3(-) contamination via a decision tree model. When a combination of δ(15)N-, δ(18)O-NO3(-) and physico-chemical properties of groundwater was used as an input for the k-means clustering algorithm, it allowed for a reliable clustering of the 55 sampling locations into 4 corresponding agricultural activities: well irrigated agriculture (28 sampling locations), sewage irrigated agriculture (16 sampling locations), a combination of sewage irrigated agriculture, farm and industry (5 sampling locations) and a combination of well irrigated agriculture and farm (6 sampling locations). A decision tree model with 97.5% classification success was developed based on SO4(2-) and Cl(-) variables. The NO3(-) and the δ(15)N- and δ(18)O-NO3(-) variables demonstrated limitation in developing a decision tree model as multiple N sources and fractionation processes both resulted in difficulties of discriminating NO3(-) concentrations and isotopic values. Although only the SO4(2-) and Cl(-) were selected as important discriminating variables, concentration data alone could not identify the specific NO3(-) sources responsible for groundwater contamination. This is a result of comprehensive analysis. To further reduce NO3(-) contamination, an integrated approach should be set-up by combining N and O isotopes of NO3(-) with land-uses and physico-chemical properties, especially in areas with complex agricultural activities.

  16. Carbon transformation and the sources of dissolved inorganic carbonate in sediments of a temperate coastal sea, the Baltic Sea: A stable isotope and modelling approach

    NASA Astrophysics Data System (ADS)

    Lipka, Marko; Liu, Bo; Wegwerth, Antje; Dellwig, Olaf; Winde, Vera; Al-Raei, Abdul M.; Böttcher, Michael E.

    2015-04-01

    Organic matter is mineralized in brackish-marine sediments by microbial activity using predominantly and sulfate as electron acceptors. Under anoxic bottom water conditions, sulfate reduction dominates. Pore water profiles reflect net biogeochemical processes, transformation rates and fluxes of dissolved species across the sediment-water interface. Element fluxes across the sediment-water interface are controlled by different boundary conditions. We present the results of a detailed biogeochemical investigation of interstitial waters from different sediments of the Baltic Sea covering the range of sedimentological and bottom water redox conditions. It was the aim to study the biogeochemical transformation processes and associated element fluxes at the sediment-water-interface and the role of organic matter or methane as potential substrates for microbial activity. Short sediment cores were collected during several research cruises with multicoring devices. Pore waters were analyzed for nutrients, major and trace element concentrations to allow a modelling of net volumetric transformation rates and diffusive element fluxes. Gross sulfate reduction rates were measured in selected cores using incubations with radiotracer. As a tracer for the source of dissolved inorganic carbonate (DIC) the carbon isotope composition was measured. A quantitative interpretation of vertical concentration profiles in the pore waters was performed using different modelling approaches. Element fluxes across the sediment-water interface show a dependence from bottom water redox conditions, sediment compositions, and sedimentation conditions. It is shown that the carbon isotope composition of DIC is a valuable and sensitive parameter in a model-based estimate of the impact of biological and physical mixing of surface sediments. Research is supported by German BMBF within the KÜNO-SECOS project and Leibniz IOW

  17. Assessment of the intrinsic bioremediation capacity of an eutrophic river sediment polluted by discharging chlorinated aliphatic hydrocarbons: a compound-specific isotope approach.

    PubMed

    Kuhn, Thomas K; Hamonts, Kelly; Dijk, John A; Kalka, Harald; Stichler, Willibald; Springael, Dirk; Dejonghe, Winnie; Meckenstock, Rainer U

    2009-07-15

    At a field site in the industrial area of Vilvoorde, Belgium, we investigated the capacity of the indigenous microbial community of a eutrophic river sediment to biodegrade chlorinated aliphatic hydrocarbons (CAHs) originating from discharging, polluted groundwater using a compound-specific isotope approach. We specifically targeted the site's major pollutants cis-1,2-dichloroethene (cis-DCE) and vinyl chloride (VC). Analysis of Rayleigh correlation plots enabled us to assess the extent to which microbial and abiotic natural attenuation processes contributed to the mitigation of a pollution of the surface water due to discharging CAH-contaminated groundwater. Our results provide evidence for (i) the occurrence of biodegradation of cis-DCE and VC by reductive dechlorination in parts of the aquifer and at several positions in the river sediment (ii) the presence of river sediment zones exhibiting attenuation of chloroethenes by a combination of biodegradation and dilution through unpolluted water, (iii) the existence of zones in the river sediment lacking significant biodegradation, and thus (iv) a pronounced spatial heterogeneity in the occurrence and extent of biodegradation in the aquifer and river sediment. We conclude that at many investigated positions in the river sediment the indigenous microbial community failed to facilitate complete biodegradation of the groundwater-sourced chloroethenes. The overall intrinsic bioremediation capacity of the river sediment was thus not high enough to completely prevent the release of these pollutants into the surface water. These findings and conclusions are thus in agreement with those of our companion paper (1), which investigated the river sediments at the Vilvoorde study site by a combination of stable hydrogen and oxygen isotope analysis of water and the detection of chlorinated aliphatic hydrocarbons (CAHs) and their dechlorination products.

  18. Decision-tree-model identification of nitrate pollution activities in groundwater: A combination of a dual isotope approach and chemical ions.

    PubMed

    Xue, Dongmei; Pang, Fengmei; Meng, Fanqiao; Wang, Zhongliang; Wu, Wenliang

    2015-09-01

    To develop management practices for agricultural crops to protect against NO3(-) contamination in groundwater, dominant pollution activities require reliable classification. In this study, we (1) classified potential NO3(-) pollution activities via an unsupervised learning algorithm based on δ(15)N- and δ(18)O-NO3(-) and physico-chemical properties of groundwater at 55 sampling locations; and (2) determined which water quality parameters could be used to identify the sources of NO3(-) contamination via a decision tree model. When a combination of δ(15)N-, δ(18)O-NO3(-) and physico-chemical properties of groundwater was used as an input for the k-means clustering algorithm, it allowed for a reliable clustering of the 55 sampling locations into 4 corresponding agricultural activities: well irrigated agriculture (28 sampling locations), sewage irrigated agriculture (16 sampling locations), a combination of sewage irrigated agriculture, farm and industry (5 sampling locations) and a combination of well irrigated agriculture and farm (6 sampling locations). A decision tree model with 97.5% classification success was developed based on SO4(2-) and Cl(-) variables. The NO3(-) and the δ(15)N- and δ(18)O-NO3(-) variables demonstrated limitation in developing a decision tree model as multiple N sources and fractionation processes both resulted in difficulties of discriminating NO3(-) concentrations and isotopic values. Although only the SO4(2-) and Cl(-) were selected as important discriminating variables, concentration data alone could not identify the specific NO3(-) sources responsible for groundwater contamination. This is a result of comprehensive analysis. To further reduce NO3(-) contamination, an integrated approach should be set-up by combining N and O isotopes of NO3(-) with land-uses and physico-chemical properties, especially in areas with complex agricultural activities. PMID:26231989

  19. Kinetics of Hg(II) exchange between organic ligands, goethite, and natural organic matter studied with an enriched stable isotope approach.

    PubMed

    Jiskra, Martin; Saile, Damian; Wiederhold, Jan G; Bourdon, Bernard; Björn, Erik; Kretzschmar, Ruben

    2014-11-18

    The mobility and bioavailability of toxic Hg(II) in the environment strongly depends on its interactions with natural organic matter (NOM) and mineral surfaces. Using an enriched stable isotope approach, we investigated the exchange of Hg(II) between dissolved species (inorganically complexed or cysteine-, EDTA-, or NOM-bound) and solid-bound Hg(II) (carboxyl-/thiol-resin or goethite) over 30 days under constant conditions (pH, Hg and ligand concentrations). The Hg(II)-exchange was initially fast, followed by a slower phase, and depended on the properties of the dissolved ligands and sorbents. The results were described by a kinetic model allowing the simultaneous determination of adsorption and desorption rate coefficients. The time scales required to reach equilibrium with the carboxyl-resin varied greatly from 1.2 days for Hg(OH)2 to 16 days for Hg(II)-cysteine complexes and approximately 250 days for EDTA-bound Hg(II). Other experiments could not be described by an equilibrium model, suggesting that a significant fraction of total-bound Hg was present in a non-exchangeable form (thiol-resin and NOM: 53-58%; goethite: 22-29%). Based on the slow and incomplete exchange of Hg(II) described in this study, we suggest that kinetic effects must be considered to a greater extent in the assessment of the fate of Hg in the environment and the design of experimental studies, for example, for stability constant determination or metal isotope fractionation during sorption.

  20. A Bayesian Deconvolution Approach to Partitioning Soil Respiration: Coupling Carbon Flux and Isotope Data with Process-based Flux and Mixing Models

    NASA Astrophysics Data System (ADS)

    Ogle, K.; Cable, J. M.; Huxman, T. E.

    2006-12-01

    repeated measurements of soil CO2 efflux, stable isotopes of carbon (δ13C) in the emitted CO2, δ13C of potential sources, relative activity or concentration of different sources, and soil properties (e.g., bulk density, temperature, water availability). The process-based models include flux equations that describe respiration rates of different sources within the soil profile and flux-based, mechanistic isotope-mixing models. We demonstrate the deconvolution approach using simulated data for a "model ecosystem," and we apply it to the real problem of partitioning soil respiration in a desert ecosystem characterized by episodic precipitation and highly variable carbon flux dynamics. The Bayesian deconvolution approach is fairly straightforward to implement and provides a mechanistic interpretation of the processes affecting belowground carbon dynamics.

  1. Isotope Cancer Treatment Research at LANL

    SciTech Connect

    Weidner, John; Nortier, Meiring

    2012-04-11

    Los Alamos National Laboratory has produced medical isotopes for diagnostic and imaging purposes for more than 30 years. Now LANL researchers have branched out into isotope cancer treatment studies. New results show that an accelerator-based approach can produce clinical trial quantities of actinium-225, an isotope that has promise as a way to kill tumors without damaging surrounding healthy cells.

  2. Isotope Cancer Treatment Research at LANL

    ScienceCinema

    Weidner, John; Nortier, Meiring

    2016-07-12

    Los Alamos National Laboratory has produced medical isotopes for diagnostic and imaging purposes for more than 30 years. Now LANL researchers have branched out into isotope cancer treatment studies. New results show that an accelerator-based approach can produce clinical trial quantities of actinium-225, an isotope that has promise as a way to kill tumors without damaging surrounding healthy cells.

  3. Evaluation of risks of groundwater quality alteration in Recife urban area (Pernambuco, Brazil) using a multi-isotopic approach.

    NASA Astrophysics Data System (ADS)

    Bertrand, Guillaume; Hirata, Ricardo; Martins, Veridiana; Batista, Jonathan; Bertolo, Reginaldo; Santos, Jeane-Glaucia; Montenegro, Suzanna; Cary, Lise; Petelet-Giraud, Emmanuelle; Pauwels, Hélène; Picot, Géraldine; Braibant, Gilles; Chatton, Eliot; Aquilina, Luc; Labasque, Thierry; Hochreutener, Rebecca; Aurouet, Axel; Franzen, Melissa

    2015-04-01

    The Recife Metropolitan Region (RMR) is a heavily urbanized area located in a estuary zone and over a multi-layered sedimentary system on the Brazilian Atlantic coast. In a context of increasing land use pressures, involving aquifer overexploitation and surface water contamination, and repeated droughts, the identification of groundwater quality risks in RMR is a necessary management requirement. In this perspective, this work focused on the two shallow aquifer systems, named Boa Viagem and Barreiras aquifers, located at the interface between the city (the consumers) and the deeper semi-confined Cretaceous Cabo and Beberibe aquifers. The Holocenic Boa Viagem and Tertiary Barreiras formations conform unconfined sedimentary aquifers, with no more than 80 m of thickness. Cabo is the most important groundwater body for Recife private complementary water supply and it has experienced an intense exploitation in the last three decades. In contrast, Boa Viagem and Barreiras aquifers are more restrictively used, but it is important to understand their water quality degradation,because of hydraulic connections with deeper aquifers, mainly in the littoral part of Recife, where hydraulic potentiometric head of the Cabo aquifer is 60 m below sea water level in some places, with conditions for recharge from shallower aquifers. Through a multi-isotopic characterization (87Sr/86Sr, δ11B, δ18O-SO4, δ34S-SO4) of sampling of 19 wells and 3 surface waters, carried out during two field campaigns with additional geochemical parameters (major ions, noble and major gases, CFC' s and SF6), the spatio-temporal variability of groundwater quality was investigated. The detection of CFC' s, implying a modern recharge component, highlighted the vulnerability of Boa Viagem and Barreiras to surface contaminations. The increasing mineralization and decreasing 87Sr/86Sr from the inland sector wells to the wells located close to the coast or estuary, with higher well and population densities, were

  4. Stable isotope labeling method for the investigation of protein haptenation by electrophilic skin sensitizers.

    PubMed

    Parkinson, Erika; Boyd, Pete; Aleksic, Maja; Cubberley, Richard; O'Connor, David; Skipp, Paul

    2014-11-01

    The risk of contact sensitization is a major consideration in the development of new formulations for personal care products. However, developing a mechanistic approach for non-animal risk assessment requires further understanding of haptenation of skin proteins by sensitizing chemicals, which is the molecular initiating event causative of skin sensitization. The non-stoichiometric nature of protein haptenation results in relatively low levels of modification, often of low abundant proteins, presenting a major challenge for their assignment in complex biological matrices such as skin. Instrumental advances over the last few years have led to a considerable increase in sensitivity of mass spectrometry (MS) techniques. We have combined these advancements with a novel dual-labeling/LC-MS(E) approach to provide an in-depth direct comparison of human serum albumin (HSA), 2,4-dinitro-1-chlorobenzene (DNCB), 5-chloro-2-methyl-4-isothiazolin-3-one (MCI), trans-cinnamaldehyde, and 6-methyl coumarin. These data have revealed novel insights into the differences in protein haptenation between sensitizers with different reaction mechanisms and sensitizing potency; the extreme sensitizers DNCB and MCI were shown to modify a greater number of nucleophilic sites than the moderate sensitizer cinnamaldehyde; and the weak/non-sensitizer 6-methyl coumarin was restricted to only a single nucleophilic residue within HSA. The evaluation of this dual labeling/LC-MS(E) approach using HSA as a model protein has also demonstrated that this strategy could be applied to studying global haptenation in complex mixtures of skin-related proteins by different chemicals.

  5. Complementing approaches to demonstrate chlorinated solvent biodegradation in a complex pollution plume: Mass balance, PCR and compound-specific stable isotope analysis

    NASA Astrophysics Data System (ADS)

    Courbet, Christelle; Rivière, Agnès; Jeannottat, Simon; Rinaldi, Sandro; Hunkeler, Daniel; Bendjoudi, Hocine; de Marsily, Ghislain

    2011-11-01

    , although TCE biodegradation seems to occur only in the upgradient part of the studied zone, DCE and VC dechlorination (originating from the initial TCE dechlorination) occurs along the entire flowpath. TCE reductase was not detected among the Dehalococcoides bacteria identified by quantitative PCR (qPCR), while DCE and VC reductases were present in the majority of the population. Reverse transcriptase PCR assays (rt-PCR) also indicated that bacteria and their DCE and VC reductases were active. Mass balance calculations showed moreover that 1,1-DCE was the predominant DCE isomer produced by TCE dechlorination in the upgradient part of the site. Consequently, coupling rt-PCR assays with isotope measurements removes the uncertainties inherent in a simple mass balance approach, so that when the three methods are used jointly, they allow the identification and quantification of natural biodegradation, even under apparently complex geochemical and hydraulic conditions.

  6. Lipid biomarker and compound-specific isotope analysis of cave sediments: a new approach to investigating past vegetation change

    NASA Astrophysics Data System (ADS)

    Blyth, A.; Griffiths, T.; Robson, S.

    2009-12-01

    Caves are vital archives for records of terrestrial palaeoenvironmental change, as they form sheltered sediment traps capable of preserving long environmental sequences. Due to their unique role in the landscape, they are also intimately connected to the archaeology and palaeoecology of the parent region. Chemical proxy records preserved in speleothems (chemically precipitated cave deposits) have long been used as a tool in palaeoclimatic research, but clastic sediments deposited by air, water, and breakdown of the surrounding rock also have much to contribute. However, although well researched in a sedimentary context, the geochemical records contained in these deposits, especially organic parameters, have been less well-studied. Here we present the first in-depth study of the organic geochemistry of cave sediment sequences, using samples from two south-east Asian caves, and focusing on plant-derived lipid biomarkers and their associated compound-specific carbon isotope records. The work aimed to establish: whether routine extraction and analysis of compounds was feasible in this context at acceptable sample sizes; whether there was a significant vegetation-derived contribution to the record; whether the depositional mode of the sediment (colluvium, midden, channel fill etc) affects the organic composition; and whether the records show coherent and interpretable variation through time. Two sites were studied: Niah Cave in Borneo, where the sediments recovered are a mixture of colluvium and channel fill and date back to >40 ka; and Hang Boi in Vietnam, where the principal deposit is a Holocene occupation midden dominated by land-snail shells. To recover the lipid fraction 7 g aliquots of freeze-dried sediment were extracted by sonication in 95:5 dichloromethane:methanol. Excess solvent was then removed via rotary evaporation and the extracts derivatised with BF3-Methanol and BSTFA prior to analysis by GC-MS. The lipid extracts contain a range of compounds including

  7. Compound-specific isotope analysis of nitrogen in sedimentary porphyrins: A novel and powerful approach for reconstructing the nitrogen cycle of the past ocean

    NASA Astrophysics Data System (ADS)

    Kashiyama, Y.; Ogawa, N. O.; Chikaraishi, Y.; Grosjean, E.; Summons, R.; Maslen, E.; Grice, K.; Godfrey, L.; Quan, T. M.; Falkowski, P. G.; Kitazato, H.; Ohkouchi, N.

    2008-12-01

    Nitrogen isotopic composition of organic matter produced by primary photosynthetic organisms is crucial information on the state of their nitrogen metabolisms and thus can be a key to understand nitrogen cycle of the past ocean. Unlike the isotopic signal of bulk sedimentary samples, sedimentary porphyrins, the diagenetic products of chlorophylls, directly reflect isotopic compositions of photoautotrophs. We have developed methods for compound-specific nitrogen isotopic analyses of (1) sedimentary porphyrins that were isolated from extractable organic matter and (2) maleimides, chemical degradation products of porphyrins, that were oxidatively extracted from residual organic matter after organic extraction. The former includes (1) isolation and purification of various species of sedimentary porphyrins using high-performance liquid chromatography and (2) determination of nitrogen isotopic compositions of isolated porphyrins on a high- sensitivity elemental analyzer-isotope ratio mass spectrometer (IRMS) system that allows determination of isotopic composition on nanomole-scale nitrogen. The latter method analyzes isotopic composition of maleimides on gas chromatography-combustion-IRMS. Applying these methods, we determine nitrogen isotopic composition of sedimentary porphyrins from various geological samples from the Archean to the Miocene. In the black shales deposited during the Cretaceous Oceanic Anoxic Events, the nitrogen isotopic composition of porphyrins generally ranged from -7 to -4‰, which suggests that the average δ15N value for the entire photoautotrophic community at these times ranged -3 to +1‰ considering the empirical isotopic relationships that the tetrapyrrole nuclei of chlorophylls are depleted in 15N by ~5‰ relative to cell. This finding suggests that nitrogen utilized in the primary production was supplied mainly through N2-fixation by diazotrophic cyanobacteria in these oceans.

  8. Transuranium isotopes

    SciTech Connect

    Hoffman, D.C.

    1985-12-01

    The needs of the research community for the production of transuranium isotopes, the quantities required, the continuity of production desired, and what a new steady state neutron source would have to provide to satisfy these needs are discussed. Examples of past frontier research which need these isotopes as well as an outline of the proposed Large Einsteinium Activation Program, LEAP, which requires roughly ten times the current production of /sup 254/Es are given. 15 refs., 5 figs., 4 tabs.

  9. Isotopic Paleoclimatology

    NASA Astrophysics Data System (ADS)

    Bowen, R.

    Paleotemperature scales were calculated by H. C. Urey and others in the 1950s to assess past temperatures, and later work using the stable isotopes of oxygen, hydrogen, and carbon employed standards such as Peedee belemnite (PDB) and Standard Mean Ocean Water (SMOW). Subsequently, subjects as diverse as ice volume and paleotemperatures, oceanic ice and sediment cores, Pleistocene/Holocene climatic changes, and isotope chronostratigraphy extending back to the Precambrian were investigated.

  10. Isotopic chirality

    SciTech Connect

    Floss, H.G.

    1994-12-01

    This paper deals with compounds that are chiral-at least in part, due to isotope substitution-and their use in tracing the steric course of enzyme reaction in vitro and in vivo. There are other applications of isotopically chiral compounds (for example, in analyzing the steric course of nonenzymatic reactions and in probing the conformation of biomolecules) that are important but they will not be discussed in this context.

  11. An economic approach to efficient isotope labeling in insect cells using homemade 15N-, 13C- and 2H-labeled yeast extracts.

    PubMed

    Opitz, Christian; Isogai, Shin; Grzesiek, Stephan

    2015-07-01

    Heterologous expression of proteins in insect cells is frequently used for crystallographic structural studies due to the high yields even for challenging proteins requiring the eukaryotic protein processing capabilities of the host. However for NMR studies, the need for isotope labeling poses extreme challenges in eukaryotic hosts. Here, we describe a robust method to achieve uniform protein (15)N and (13)C labeling of up to 90 % in baculovirus-infected insect cells. The approach is based on the production of labeled yeast extract, which is subsequently supplemented to insect cell growth media. The method also allows deuteration at levels of >60 % without decrease in expression yield. The economic implementation of the labeling procedures into a standard structural biology laboratory environment is described in a step-by-step protocol. Applications are demonstrated for a variety of NMR experiments using the Abelson kinase domain, GFP, and the beta-1 adrenergic receptor as examples. Deuterated expression of the latter provides spectra of very high quality of a eukaryotic G-protein coupled receptor.

  12. A study of the characteristics of karst groundwater circulation based on multi-isotope approach in the Liulin spring area, North China.

    PubMed

    Zang, Hongfei; Zheng, Xiuqing; Qin, Zuodong; Jia, Zhenxing

    2015-01-01

    Due to the significance of karst groundwater for water supply in arid and semi-arid regions, the characteristics of the karst groundwater flow system in the Liulin spring area, North China, are analysed through isotopic tracing (δ(2)H, δ(18)O, δ(13)C and (3)H) and dating approaches ((14)C). The results show that the primary recharge source of karst groundwater is precipitation. Evaporation during dropping and infiltration of rainfall results in a certain offset in the values of δ(2)H and δ(18)O in groundwater samples from the global meteoric water line (GMWL) and the local meteoric water line (LMWL). The altitudes of the recharge region calculated by δ(18)O range from 1280 to 2020 m above sea level, which is consistent with the altitudes of the recharge area. The Liulin spring groups could be regarded as the mixing of groundwater with long and short flow paths at a ratio of 4:1. In the upgradient of the Liulin spring, the groundwater represents modern groundwater features and its [Formula: see text] is mainly derived from dissolution of soil CO(2), while in the downgradient of the Liulin spring, the (14)C age of dissolved inorganic carbon (DIC) in groundwater shows an apparent increase and [Formula: see text] is mainly derived from the dissolution of carbonate rocks. The mean flow rate calculated by (14)C ages of DIC between IS10 and IS12 is 1.23 m/year. PMID:25511581

  13. A study of the characteristics of karst groundwater circulation based on multi-isotope approach in the Liulin spring area, North China.

    PubMed

    Zang, Hongfei; Zheng, Xiuqing; Qin, Zuodong; Jia, Zhenxing

    2015-01-01

    Due to the significance of karst groundwater for water supply in arid and semi-arid regions, the characteristics of the karst groundwater flow system in the Liulin spring area, North China, are analysed through isotopic tracing (δ(2)H, δ(18)O, δ(13)C and (3)H) and dating approaches ((14)C). The results show that the primary recharge source of karst groundwater is precipitation. Evaporation during dropping and infiltration of rainfall results in a certain offset in the values of δ(2)H and δ(18)O in groundwater samples from the global meteoric water line (GMWL) and the local meteoric water line (LMWL). The altitudes of the recharge region calculated by δ(18)O range from 1280 to 2020 m above sea level, which is consistent with the altitudes of the recharge area. The Liulin spring groups could be regarded as the mixing of groundwater with long and short flow paths at a ratio of 4:1. In the upgradient of the Liulin spring, the groundwater represents modern groundwater features and its [Formula: see text] is mainly derived from dissolution of soil CO(2), while in the downgradient of the Liulin spring, the (14)C age of dissolved inorganic carbon (DIC) in groundwater shows an apparent increase and [Formula: see text] is mainly derived from the dissolution of carbonate rocks. The mean flow rate calculated by (14)C ages of DIC between IS10 and IS12 is 1.23 m/year.

  14. Importance of bacterivory and preferential selection toward diatoms in larvae of Crepidula fornicata (L.) assessed by a dual stable isotope (13C, 15N) labeling approach

    NASA Astrophysics Data System (ADS)

    Leroy, Fanny; Riera, Pascal; Jeanthon, Christian; Edmond, Frédérique; Leroux, Cédric; Comtet, Thierry

    2012-05-01

    In Europe, the gastropod Crepidula fornicata is an invasive species characterized by a long reproductive period (from February to November). Thus, its larvae are exposed to variations in available food sources (in terms of quantity and quality). We aimed to investigate if bacteria could contribute to larval food both in presence or absence of phytoplankton, and to compare these results to seasonal variations of bacteria and phytoplankton abundances at a coastal site in the English Channel. First, ingestion of fluorescent beads of 0.5 to 2 μm diameter, showed that larvae were able to ingest particles of typical bacterial size. Then we used a dual stable isotope labeling approach which consisted in labeling a bacterial pelagic community with 15N and a diatom (Chaetoceros gracilis) culture with 13C, and supplying larvae with 15N-labeled bacteria, 13C-labeled diatoms, and both labeled sources. This technique has, to our knowledge, never been applied to invertebrate larvae. After 24 h of experiment, larvae were significantly enriched in all treatments: + 21.5‰ (∆δ13C) when supplied with diatoms, + 1364‰ (∆δ15N) when supplied with bacteria, and + 24‰ (∆δ13C) and + 135‰ (∆δ15N) when supplied with the two mixed sources. These results indicated that bacteria can contribute to the larval nutrition in C. fornicata, even in the presence of phytoplankton. Our results however suggested that larvae of C. fornicata preferentially used diatoms and showed that the supply of free bacteria did not alter the uptake of diatoms. Considering the seasonal variations of bacteria and phytoplankton abundances at the study site, these results suggested that bacteria may constitute a complementary resource for the larvae of C. fornicata when phytoplankton is abundant and may become a substitute resource when phytoplankton is less available. This approach offers promising perspectives to trace food sources and assess nitrogen and carbon fluxes between planktotrophic larvae

  15. Correlated optical and isotopic nanoscopy

    PubMed Central

    Saka, Sinem K.; Vogts, Angela; Kröhnert, Katharina; Hillion, François; Rizzoli, Silvio O; Wessels, Johannes T.

    2014-01-01

    The isotopic composition of different materials can be imaged by secondary ion mass spectrometry. In biology, this method is mainly used to study cellular metabolism and turnover, by pulsing the cells with marker molecules such as amino acids labelled with stable isotopes (15N, 13C). The incorporation of the markers is then imaged with a lateral resolution that can surpass 100 nm. However, secondary ion mass spectrometry cannot identify specific subcellular structures like organelles, and needs to be correlated with a second technique, such as fluorescence imaging. Here, we present a method based on stimulated emission depletion microscopy that provides correlated optical and isotopic nanoscopy (COIN) images. We use this approach to study the protein turnover in different organelles from cultured hippocampal neurons. Correlated optical and isotopic nanoscopy can be applied to a variety of biological samples, and should therefore enable the investigation of the isotopic composition of many organelles and subcellular structures. PMID:24718107

  16. Quantification of nitrous oxide (N2O) uptake in boreal forest soils by combining isotopic and microbial approaches

    NASA Astrophysics Data System (ADS)

    Welti, Nina; Siljanen, Henri; Biasi, Christina; Martikainen, Pertti

    2015-04-01

    The amount of nitrous oxide (N2O) produced during denitrification is highly regulated by the function of the last reductase enzyme (nitrous oxide reductase; nosZ) which is known to be inhibited by oxygen, low pH and low temperature, which are typical characteristics of boreal peatlands and some forest soils. Denitrification can be a sink for N2O, if the last step of the process is very efficient. Generally, the N2O sink potential of soils is poorly constrained; while uptake rates were often observed in field studies, the data was rejected as analytical errors or artifacts. This led to the question: when and by which mechanisms does N2O uptake occur in natural boreal forests? In order to answer this question, we established a 15N2O tracer experiment where the production of 15N2 and consumption of 15N2O were quantified in aerobic and anaerobic conditions followed by abundance analyses of genes and transcripts. The laboratory incubations were complemented with molecular approaches which linked the N2O dynamics with individual microbial species and transcriptomics. The abundance of denitrifying functional genes and gene transcripts reducing nitrous oxide (nosZ) were quantified throughout the experiment with sacrificial sampling in order to solve the role of typical and atypical denitrifying populations on N2O consumption. For this study, a Finnish boreal spruce forest and peatland were selected where previous field measurements have revealed negative N2O fluxes (i.e. N2O uptake). Soil horizons were selected in both the organic layer and uppermost mineral soil layer and in the peat layers 0-10 cm and 10-20 cm, where oxygen is limited and N2O uptake occurs at the field scale. 15N-N2O (99 AT %) was added to an initial N2O concentration of 1.7 ppm. All soils were flushed with 100% helium prior to the N2O addition to ensure that the NO3 stocks were reduced, leaving the added N2O as the sole activator of N2O uptake and primary N source. Aerobic N2O uptake was quantified in

  17. Pathways of coupled arsenic and iron cycling in high arsenic groundwater of the Hetao basin, Inner Mongolia, China: an iron isotope approach

    USGS Publications Warehouse

    Guo, Huaming; Liu, Chen; Lu, Hai; Wanty, Richard B.; Wang, Jun; Zhou, Yinzhu

    2013-01-01

    High As groundwater is widely distributed all over the world, which has posed a significant health impact on millions of people. Iron isotopes have recently been used to characterize Fe cycling in aqueous environments, but there is no information on Fe isotope characteristics in the groundwater. Since groundwater As behavior is closely associated with Fe cycling in the aquifers, Fe isotope signatures may help to characterize geochemical processes controlling As concentrations of shallow groundwaters. This study provides the first observation of Fe isotope fractionation in high As groundwater and evaluation of Fe cycling and As behaviors in shallow aquifers in terms of Fe isotope signatures. Thirty groundwater samples were taken for chemical and isotopic analysis in the Hetao basin, Inner Mongolia. Thirty-two sediments were sampled as well from shallow aquifers for Fe isotope analysis. Results showed that groundwater was normally enriched in isotopically light Fe with δ56Fe values between −3.40‰ and 0.58‰ and median of −1.14‰, while heavier δ56Fe values were observed in the sediments (between −1.10‰ and 0.75‰, median +0.36‰). In reducing conditions, groundwaters generally had higher δ56Fe values, in comparison with oxic conditions. High As groundwaters, generally occurring in reducing conditions, had high δ56Fe values, while low As groundwaters normally had low δ56Fe values. Although sediment δ56Fe values were generally independent of lithological conditions, a large variation in sediment δ56Fe values was observed in the oxidation–reduction transition zone. Three pathways were identified for Fe cycling in shallow groundwater, including dissimilatory reduction of Fe(III) oxides, re-adsorption of Fe(II), and precipitation of pyrite and siderite. Dissimilatory reduction of Fe(III) oxides resulted in light δ56Fe values (around −1.0‰) and high As concentration (>50 μg/L) in groundwater in anoxic conditions. Re-adsorption of isotopically

  18. Ca, Sr, O and D isotope approach to defining the chemical evolution of hydrothermal fluids: example from Long Valley, CA, USA

    USGS Publications Warehouse

    Brown, Shaun T.; Kennedy, B. Mack; DePaolo, Donald J.; Hurwitz, Shaul; Evans, William C.

    2013-01-01

    We present chemical and isotopic data for fluids, minerals and rocks from the Long Valley meteoric-hydrothermal system. The samples encompass the presumed hydrothermal upwelling zone in the west moat of the caldera, the Casa Diablo geothermal field, and a series of wells defining a nearly linear, ∼16 km long, west-to-east trend along the likely fluid flow path. Fluid samples were analyzed for the isotopes of water, Sr, and Ca, the concentrations of major cations and anions, alkalinity, and total CO2. Water isotope data conform to trends documented in earlier studies, interpreted as indicating a single hydrothermal fluid mixing with local groundwater. Sr isotopes show subtle changes along the flow path, which requires rapid fluid flow and minimal reaction between the channelized fluids and the wallrocks. Sr and O isotopes are used to calculate fracture spacing using a dual porosity model. Calculated fracture spacing and temperature data for hydrothermal fluids indicate the system is (approximately) at steady-state. Correlated variations among total CO2, and the concentration and isotopic composition of Ca suggest progressive fluid degassing (loss of CO2), which drives calcite precipitation as the fluid flows west-to-east and cools. The shifts in Ca isotopes require that calcite precipitated at temperatures of 150–180 °C is fractionated by ca. −0.3‰ to −0.5‰ relative to aqueous species. Our data are the first evidence that Ca isotopes undergo kinetic fractionation at high temperatures (>100 °C) and can be used to trace calcite precipitation along hydrothermal fluid flow paths.

  19. Prediction of equilibrium Li isotope fractionation between minerals and aqueous solutions at high P and T: An efficient ab initio approach

    NASA Astrophysics Data System (ADS)

    Kowalski, Piotr M.; Jahn, Sandro

    2011-10-01

    The mass-dependent equilibrium stable isotope fractionation between different materials is an important geochemical process. Here we present an efficient method to compute the isotope fractionation between complex minerals and fluids at high pressure, P, and temperature, T, representative for the Earth's crust and mantle. The method is tested by computation of the equilibrium fractionation of lithium isotopes between aqueous fluids and various Li bearing minerals such as staurolite, spodumene and mica. We are able to correctly predict the direction of the isotope fractionation as observed in the experiments. On the quantitative level the computed fractionation factors agree within 1.0‰ with the experimental values indicating predictive power of ab initio methods. We show that with ab initio methods we are able to investigate the underlying mechanisms driving the equilibrium isotope fractionation process, such as coordination of the fractionating elements, their bond strengths to the neighboring atoms, compression of fluids and thermal expansion of solids. This gives valuable insight into the processes governing the isotope fractionation mechanisms on the atomic scale. The method is applicable to any state and does not require different treatment of crystals and fluids.

  20. ISOTOPE SEPARATORS

    DOEpatents

    Bacon, C.G.

    1958-08-26

    An improvement is presented in the structure of an isotope separation apparatus and, in particular, is concerned with a magnetically operated shutter associated with a window which is provided for the purpose of enabling the operator to view the processes going on within the interior of the apparatus. The shutier is mounted to close under the force of gravity in the absence of any other force. By closing an electrical circuit to a coil mouated on the shutter the magnetic field of the isotope separating apparatus coacts with the magnetic field of the coil to force the shutter to the open position.

  1. Compound-specific stable isotope analysis of herbicides in stream water: a combined monitoring and modeling approach to assess pollutant degradation at catchment scale

    NASA Astrophysics Data System (ADS)

    Lutz, Stefanie; Van der Velde, Ype; Elsayed, Omniea; Imfeld, Gwenael; Lefrancq, Marie; Payraudeau, Sylvain; Van Breukelen, Boris

    2014-05-01

    Compound-specific stable isotope analysis (CSIA) measures the isotopic composition of a compound, i.e. the relative abundance of light and heavy stable isotopes of an element contained in the compound (e.g. 12C and 13C). As degradation processes may induce a change in isotopic composition (i.e. isotope fractionation), CSIA allows distinguishing degradation from non-destructive processes such as dilution or sorption. CSIA can be combined with model-assisted interpretation to evaluate degradation of contaminants in the environment. Although CSIA methods have also been developed for diffuse pollutants such as pesticides and nitrate, they have not yet been continuously applied in monitoring of diffuse pollution in surface water. Results of a virtual experiment of isotope fractionation at hillslope scale have suggested that CSIA qualifies as a feasible and useful complement to concentration measurements of diffuse pollutants (Lutz et al., 2013). We now present the first continuously measured concentration and carbon CSIA data of herbicides from a 49-ha agricultural catchment (Alsace, France). Stream concentrations of two chloroacetanilide herbicides, i.e. S-metolachlor and acetochlor, were highest (65 μg/L) following an extreme rainfall event in the first month after herbicide application, and subsequently decreased to background concentration level (0.1 μg/L). This decrease was accompanied by an increase of more than 2 ‰ in carbon isotope ratios, which was also observed in surface runoff samples from a plot experiment in the study catchment. The increase of carbon isotope ratios over time indicates the occurrence of herbicide degradation during transport to the stream, and thus demonstrates the advantage of CSIA over pesticide concentration measurements only. Despite providing evidence of herbicide degradation, the field CSIA data do not allow for a comprehensive characterization of herbicide sources, fate and transport in the study catchment. Therefore, we

  2. Identifying the African Wintering Grounds of Hybrid Flycatchers Using a Multi–Isotope (δ2H, δ13C, δ15N) Assignment Approach

    PubMed Central

    Van Wilgenburg, Steven L.; Hobson, Keith A.; Folmer, Eelke; Font, Laura; Klaassen, Marcel

    2014-01-01

    Migratory routes and wintering grounds can have important fitness consequences, which can lead to divergent selection on populations or taxa differing in their migratory itinerary. Collared (Ficedula albicollis) and pied (F. hypoleuca) flycatchers breeding in Europe and wintering in different sub-Saharan regions have distinct migratory routes on the eastern and western sides of the Sahara desert, respectively. In an earlier paper, we showed that hybrids of the two species did not incur reduced winter survival, which would be expected if their migration strategy had been a mix of the parent species' strategies potentially resulting in an intermediate route crossing the Sahara desert to different wintering grounds. Previously, we compared isotope ratios and found no significant difference in stable-nitrogen isotope ratios (δ15N) in winter-grown feathers between the parental species and hybrids, but stable-carbon isotope ratios (δ13C) in hybrids significantly clustered only with those of pied flycatchers. We followed up on these findings and additionally analyzed the same feathers for stable-hydrogen isotope ratios (δ2H) and conducted spatially explicit multi-isotope assignment analyses. The assignment results overlapped with presumed wintering ranges of the two species, highlighting the efficacy of the method. In contrast to earlier findings, hybrids clustered with both parental species, though most strongly with pied flycatcher. PMID:24847717

  3. Identifying the African wintering grounds of hybrid flycatchers using a multi-isotope (δ2H, δ13C, δ15N) assignment approach.

    PubMed

    Veen, Thor; Hjernquist, Mårten B; Van Wilgenburg, Steven L; Hobson, Keith A; Folmer, Eelke; Font, Laura; Klaassen, Marcel

    2014-01-01

    Migratory routes and wintering grounds can have important fitness consequences, which can lead to divergent selection on populations or taxa differing in their migratory itinerary. Collared (Ficedula albicollis) and pied (F. hypoleuca) flycatchers breeding in Europe and wintering in different sub-Saharan regions have distinct migratory routes on the eastern and western sides of the Sahara desert, respectively. In an earlier paper, we showed that hybrids of the two species did not incur reduced winter survival, which would be expected if their migration strategy had been a mix of the parent species' strategies potentially resulting in an intermediate route crossing the Sahara desert to different wintering grounds. Previously, we compared isotope ratios and found no significant difference in stable-nitrogen isotope ratios (δ15N) in winter-grown feathers between the parental species and hybrids, but stable-carbon isotope ratios (δ13C) in hybrids significantly clustered only with those of pied flycatchers. We followed up on these findings and additionally analyzed the same feathers for stable-hydrogen isotope ratios (δ2H) and conducted spatially explicit multi-isotope assignment analyses. The assignment results overlapped with presumed wintering ranges of the two species, highlighting the efficacy of the method. In contrast to earlier findings, hybrids clustered with both parental species, though most strongly with pied flycatcher.

  4. Position-specific and clumped stable isotope studies: comparison of the Urey and path-integral approaches for carbon dioxide, nitrous oxide, methane, and propane.

    PubMed

    Webb, Michael A; Miller, Thomas F

    2014-01-16

    We combine path-integral Monte Carlo methods with high-quality potential energy surfaces to compute equilibrium isotope effects in a variety of systems relevant to 'clumped' isotope analysis and isotope geochemistry, including CO2, N2O, methane, and propane. Through a systematic study of heavy-atom isotope-exchange reactions, we quantify and analyze errors that arise in the widely used Urey model for predicting equilibrium constants of isotope-exchange reactions using reduced partition function ratios. These results illustrate that the Urey model relies on a nontrivial cancellation of errors that can shift the apparent equilibrium temperature by as much as 35 K for a given distribution of isotopologues. The calculations reported here provide the same level of precision as the best existing analytical instrumentation, resolving the relative enrichment of certain isotopologues to as little as 0.01‰. These findings demonstrate path-integral methods to be a rigorous and viable alternative to more approximate methods for heavy-atom geochemical applications.

  5. Nursery fidelity, food web interactions and primary sources of nutrition of the juveniles of Solea solea and S. senegalensis in the Tagus estuary (Portugal): A stable isotope approach

    NASA Astrophysics Data System (ADS)

    Vinagre, C.; Salgado, J.; Costa, M. J.; Cabral, H. N.

    2008-01-01

    Stable carbon and nitrogen isotopes were used to assess site fidelity of Solea solea and Solea senegalensis juveniles, to investigate food web interactions and to determine the dominant nutrient pathways in two nursery areas in the Tagus estuary, Portugal. Samples of water from the main sources and from the nursery areas and respective saltmarsh creeks were collected for isotope analysis, as well as sediment, benthic microalgae, saltmarsh halophytes, S. solea, S. senegalensis and its main prey, Nereis diversicolor, Scrobicularia plana and Corophium spp. While site fidelity was high in 0-group juveniles, it was lower for 1-group juveniles, possibly due to an increase in mobility and energy demands with increasing size. Analysis of the food web revealed a complex net of relations. Particulate organic matter from the freshwater sources, from each nursery's waters and saltmarsh creeks presented similar isotopic composition. Sediment isotopic composition and saltmarsh halophytes also did not differentiate the two areas. All components of the food web from the benthic microalgae upwards were isotopically different between the nursery areas. These components were always more enriched in δ13C and δ15N at the lower nursery area than at the nursery located upstream, appearing as if there were two parallel trophic chains with little trophic interaction between each other. A mixture of carbon and nitrogen sources is probably being incorporated into the food web. The lower nursery area is more dependent upon an isotopically enriched energy pathway, composed of marine particulate organic matter, marine benthic microalgae and detritus of the C 4 saltmarsh halophyte Spartina maritima. The two nursery areas present a different level of dependence upon the freshwater and marine energy pathways, due to hydrological features, which should be taken into account for S. solea and S. senegalensis fisheries and habitat management.

  6. Unravelling spatiotemporal tree-ring signals in Mediterranean oaks: a variance-covariance modelling approach of carbon and oxygen isotope ratios.

    PubMed

    Shestakova, Tatiana A; Aguilera, Mònica; Ferrio, Juan Pedro; Gutiérrez, Emilia; Voltas, Jordi

    2014-08-01

    Identifying how physiological responses are structured across environmental gradients is critical to understanding in what manner ecological factors determine tree performance. Here, we investigated the spatiotemporal patterns of signal strength of carbon isotope discrimination (Δ(13)C) and oxygen isotope composition (δ(18)O) for three deciduous oaks (Quercus faginea (Lam.), Q. humilis Mill. and Q. petraea (Matt.) Liebl.) and one evergreen oak (Q. ilex L.) co-occurring in Mediterranean forests along an aridity gradient. We hypothesized that contrasting strategies in response to drought would lead to differential climate sensitivities between functional groups. Such differential sensitivities could result in a contrasting imprint on stable isotopes, depending on whether the spatial or temporal organization of tree-ring signals was analysed. To test these hypotheses, we proposed a mixed modelling framework to group isotopic records into potentially homogeneous subsets according to taxonomic or geographical criteria. To this end, carbon and oxygen isotopes were modelled through different variance-covariance structures for the variability among years (at the temporal level) or sites (at the spatial level). Signal-strength parameters were estimated from the outcome of selected models. We found striking differences between deciduous and evergreen oaks in the organization of their temporal and spatial signals. Therefore, the relationships with climate were examined independently for each functional group. While Q. ilex exhibited a large spatial dependence of isotopic signals on the temperature regime, deciduous oaks showed a greater dependence on precipitation, confirming their higher susceptibility to drought. Such contrasting responses to drought among oak types were also observed at the temporal level (interannual variability), with stronger associations with growing-season water availability in deciduous oaks. Thus, our results indicate that Mediterranean deciduous

  7. Validating soil denitrification models based on laboratory N_{2} and N_{2}O fluxes and underlying processes derived by stable isotope approaches

    NASA Astrophysics Data System (ADS)

    Well, Reinhard; Böttcher, Jürgen; Butterbach-Bahl, Klaus; Dannenmann, Michael; Deppe, Marianna; Dittert, Klaus; Dörsch, Peter; Horn, Marcus; Ippisch, Olaf; Mikutta, Robert; Müller, Carsten; Müller, Christoph; Senbayram, Mehmet; Vogel, Hans-Jörg; Wrage-Mönnig, Nicole

    2016-04-01

    Robust denitrification data suitable to validate soil N2 fluxes in denitrification models are scarce due to methodical limitations and the extreme spatio-temporal heterogeneity of denitrification in soils. Numerical models have become essential tools to predict denitrification at different scales. Model performance could either be tested for total gaseous flux (NO + N2O + N2), individual denitrification products (e.g. N2O and/or NO) or for the effect of denitrification factors (e.g. C-availability, respiration, diffusivity, anaerobic volume, etc.). While there are numerous examples for validating N2O fluxes, there are neither robust field data of N2 fluxes nor sufficiently resolved measurements of control factors used as state variables in the models. To the best of our knowledge there has been only one published validation of modelled soil N2 flux by now, using a laboratory data set to validate an ecosystem model. Hence there is a need for validation data at both, the mesocosm and the field scale including validation of individual denitrification controls. Here we present the concept for collecting model validation data which is be part of the DFG-research unit "Denitrification in Agricultural Soils: Integrated Control and Modelling at Various Scales (DASIM)" starting this year. We will use novel approaches including analysis of stable isotopes, microbial communities, pores structure and organic matter fractions to provide denitrification data sets comprising as much detail on activity and regulation as possible as a basis to validate existing and calibrate new denitrification models that are applied and/or developed by DASIM subprojects. The basic idea is to simulate "field-like" conditions as far as possible in an automated mesocosm system without plants in order to mimic processes in the soil parts not significantly influenced by the rhizosphere (rhizosphere soils are studied by other DASIM projects). Hence, to allow model testing in a wide range of conditions

  8. A coupled stable isotope-size spectrum approach to understanding pelagic food-web dynamics: A case study from the southwest sub-tropical Pacific

    NASA Astrophysics Data System (ADS)

    Hunt, B. P. V.; Allain, V.; Menkes, C.; Lorrain, A.; Graham, B.; Rodier, M.; Pagano, M.; Carlotti, F.

    2015-03-01

    This study investigated the food web structure of the oligotrophic picophytoplankton-dominated pelagic ecosystem in the vicinity of New Caledonia, within the Archipelagic Deep Basin (ARCH) province of the southwest sub-tropical Pacific. Nitrogen stable isotope (δ15N) data were collected for mesozooplankton (0.2-2 mm), macrozooplankton (2-20 mm), micronekton (20-200 mm) and nekton (>200 mm) during 2002-2004 and 2011. Using a coupled δ15N size-spectrum approach, we estimated (1) organism trophic level (TL); (2) food chain length (FCL); (3) predator prey mass ratio (PPMR); and (4) transfer efficiency (TE). The role of phytoplankton size structure in determining these parameters was investigated. Applying a trophic enrichment factor (TEF) of 3.4, maximum TL was calculated at ~5. The number of TLs spanned by each length class was 1.97 for mesozooplankton, 2.07 for macrozooplankton, 2.75 for micronekton, and 2.21 for nekton. Estimated PPMR was 10,099:1 for mesozooplankton, 3683:1 for macrozooplankton/micronekton, and 2.44×105:1 for nekton, corresponding to TEs of 6.3%, 8.5% and 2.4%, respectively. PPMR and TE were strongly influenced by the TEF used, and TEF 3.4 likely over and underestimated PPMR and TE, respectively, for mesozooplankton and macrozooplankton/micronekton. Comparatively low PPMR for mesozooplankton and macrozooplankton/micronekton indicated longer food chains and higher connectivity within these groups than for the nekton. Conversely, the high PPMR yet high trophic niche width for the nekton indicated that they prey primarily on macrozooplankton/micronekton, with a relatively high degree of dietary specialisation. Our results are discussed in the context of other marine food webs. The ARCH food chain was found to be 1-1.5 trophic levels longer than the eutrophic micro-/nanophytoplankton-dominated Californian upwelling system, providing empirical support for the role of phytoplankton size in determining FCL. Group specific PPMR estimates demonstrated

  9. Calcium isotope analysis by mass spectrometry.

    PubMed

    Boulyga, Sergei F

    2010-01-01

    The variations in the isotopic composition of calcium caused by fractionation in heterogeneous systems and by nuclear reactions can provide insight into numerous biological, geological, and cosmic processes, and therefore isotopic analysis finds a wide spectrum of applications in cosmo- and geochemistry, paleoclimatic, nutritional, and biomedical studies. The measurement of calcium isotopic abundances in natural samples has challenged the analysts for more than three decades. Practically all Ca isotopes suffer from significant isobaric interferences, whereas low-abundant isotopes can be particularly affected by neighboring major isotopes. The extent of natural variations of stable isotopes appears to be relatively limited, and highly precise techniques are required to resolve isotopic effects. Isotope fractionation during sample preparation and measurements and instrumental mass bias can significantly exceed small isotope abundance variations in samples, which have to be investigated. Not surprisingly, a TIMS procedure developed by Russell et al. (Russell et al., 1978. Geochim Cosmochim Acta 42: 1075-1090) for Ca isotope measurements was considered as revolutionary for isotopic measurements in general, and that approach is used nowadays (with small modifications) for practically all isotopic systems and with different mass spectrometric techniques. Nevertheless, despite several decades of calcium research and corresponding development of mass spectrometers, the available precision and accuracy is still not always sufficient to achieve the challenging goals. The present article discusses figures of merits of presently used analytical methods and instrumentation, and attempts to critically assess their limitations. In Sections 2 and 3, mass spectrometric methods applied to precise stable isotope analysis and to the determination of (41)Ca are described. Section 4 contains a short summary of selected applications, and includes tracer experiments and the potential use

  10. A Methodology for Absolute Isotope Composition Measurement

    NASA Astrophysics Data System (ADS)

    Shen, J. J.; Lee, D.; Liang, W.

    2007-12-01

    Double spike technique was a well defined method for isotope composition measurement by TIMS of samples which have natural mass fractionation effect, but it is still a problem to define the isotope composition for double spike itself. In this study, we modified the old double spike technique and found that we could use the modified technique to solve the ¡§true¡¨ isotope composition of double spike itself. According the true isotope composition of double spike, we can measure the absolute isotope composition if the sample has natural fractionation effect. A new vector analytical method has been developed in order to obtain the true isotopic composition of a 42Ca-48Ca double spike, and this is achieved by using two different sample-spike mixtures combined with the double spike and the natural Ca data. Because the natural sample, the two mixtures, and the spike should all lie on a single mixing line, we are able to constrain the true isotopic composition of our double spike using this new approach. This method not only can be used in Ca system but also in Ti, Cr, Fe, Ni, Zn, Mo, Ba and Pb systems. The absolute double spike isotopic ratio is important, which can save a lot of time to check different reference standards. Especially for Pb, radiogenic isotope system, the decay systems embodied in three of four naturally occurring isotopes induce difficult to obtain true isotopic ratios for absolute dating.

  11. Tracing the history of submarine hydrothermal inputs and the significance of hydrothermal hafnium for the seawater budget - A combined Pb-Hf-Nd isotope approach

    USGS Publications Warehouse

    van de Flierdt, T.; Frank, M.; Halliday, A.N.; Hein, J.R.; Hattendorf, B.; Gunther, D.; Kubik, P.W.

    2004-01-01

    Secular variations in the Pb isotopic composition of a mixed hydrogenous-hydrothermal ferromanganese crust from the Bauer Basin in the eastern Equatorial Pacific provide clear evidence for changes in hydrothermal contributions during the past 7 Myr. The nearby Galapagos Rise spreading center provided a strong hydrothermal flux prior to 6.5 Ma. After 6.5 Ma, the Pb became stepwise more radiogenic and more similar to Equatorial Pacific seawater, reflecting the westward shift of spreading to the presently active East Pacific Rise (EPR). A second, previously unrecognized enhanced hydrothermal period occurred between 4.4 and 2.9 Ma, which reflects either off-axis hydrothermal activity in the Bauer Basin or a late-stage pulse of hydrothermal Pb from the then active, but waning Galapagos Rise spreading center. Hafnium isotope time-series of the same mixed hydrogenous-hydrothermal crust show invariant values over the past 7 Myr. Hafnium isotope ratios, as well as Nd isotope ratios obtained for this crust, are identical to that of hydrogenous Equatorial Pacific deep water crusts and clearly indicate that hydrothermal Hf, similar to Nd, does not travel far from submarine vents. Therefore, we suggest that hydrothermal Hf fluxes do not contribute significantly to the global marine Hf budget. ?? 2004 Elsevier B.V. All rights reserved.

  12. Trophic ecology of the supralittoral rocky shore (Roscoff, France): A dual stable isotope (δ 13C, δ 15N) and experimental approach

    NASA Astrophysics Data System (ADS)

    Laurand, Sandrine; Riera, Pascal

    2006-07-01

    The present study investigates the trophic transfers on the upper littoral rocky shore (i.e. the supralittoral zone together with the upper midlittoral and adlittoral) of northern Brittany. The population mainly consists of four invertebrate species: the littorinids Littorina saxatilis and Melarhaphe neritoides, the isopod Ligia oceanica and the insect Petrobius maritimus. The utilisation of food sources available to these grazers was examined in a laboratory microcosm feeding experiment and a field study using stable isotopes (δ 13C, δ 15N). The results indicated that although Ligia oceanica preferentially occurs in the supralittoral zone, its trophic subsidies originate mostly from the adlittoral and lower intertidal zones. The stable isotope data also suggested that adlittoral terrestrial organic material may be the major food source of Petrobius maritimus. δ 15N of Littorina saxatilis indicated a highly variable diet consisting of supralittoral lichens, midlittoral macroalgae and other food sources (e.g. microalgae). Both feeding experiments and stable isotope data show that only Melarhaphe neritoides has a clearly identifiable diet based on a mixture of lichens, mostly Verrucaria maura and Caloplaca marina, as estimated by an isotopic mixing model. Hence, the food web of this intertidal zone appears largely based on trophic subsidies from other habitats (i.e. upper and lower intertidal zones).

  13. Spatial distribution of electrical conductivity and stable isotopes in groundwater in large catchments: a geostatistical approach in the Quequén Grande River catchment, Argentina.

    PubMed

    Quiroz Londoño, Orlando Mauricio; Martínez, Daniel Emilio; Massone, Hector Enrique; Londoño Ciro, Libardo Antonio; Dapeña, Cristina

    2015-01-01

    Stable isotopes and electrical conductivity in groundwater were used as natural tracers to adjust the hydrogeological conceptual model in one of the largest catchments within the inter-mountainous Pampa plain, Argentina. Geostatistical tools were used to define the model that best fitted the spatial distribution of each tracer, and information was obtained in areas where there was a lack of data. The conventional isotopic analysis allowed the identification of three groundwater groups with different isotopic fingerprints. One group containing 56% of the total groundwater samples suggested a well-mixed system and soil infiltration precipitation as the main recharge source to the aquifer. The other two groups included samples with depleted (25.5%) and enriched (18.5%) isotopic compositions, respectively. The combination of δ(18)O, δ(2)H and electrical conductivities maps suggested ascending regional flows and water transfer from the Quequén Grande River catchment to the Moro creek. The spatial interpretation of these tracers modified the conceptual hydrogeological model of the Quequén Grande River.

  14. The origin of the mineralizing fluids in different type mineralizations associated with the Upper Cretaceous Elazig Magmatic Complex, Turkey; an isotopic approach

    NASA Astrophysics Data System (ADS)

    Akgul, Muharrem

    2016-04-01

    This study examined the origin and properties of mineralized fluids by using C, O and S isotopes in different type mineralizations associated with the Upper Cretaceous Elazig Magmatic Complex. The isotopic compositions of vein type mineralizations show that the thrust zone affects the formation of the Karakas iron mineralization by meteoric and magmatic hydrothermal solution mixtures due to the average δ18OH2O value 6.40‰. The calculated δ18OH2O composition values is 5.20‰ in biotite from the Kızıldag vein type Cu-Pb-Zn mineralizations, which is consistent with a magmatic origin of the fluids. The calculated δ18OH2O composition is 4.30‰ that indicates a medium and low temperature magmatic hydrothermal fluid effect. The skarn type mineralizations isotopic compositions indicate that the calculated δ13CCO2 values are between -12.70‰ and -36.39‰ that could be late magmatic fluids that were modified by interaction with the host meta-sedimentary rocks and with meteoric water at the Birvan and Asvan iron mineralizations. Also the δ18OH2Ovalues in quartz of the Meseli iron mineralization are between 0.70‰ and 1.30‰. The lower δ18OH2O oxygen isotope composition compared to magmatic origins must be hydrothermal solutions mixing with meteoric waters. In the massive sulfide type Kavallı and Derince pyrite samples, δ34SH2S values are between 17.73‰ and 20.63‰. These values clearly indicate the volcano-sedimentary effect on hydrothermal solutions, which form the mineralization. The first findings of this study present information that all of the measured isotopic composition was modified by mixing metamorphic, magmatic and meteoric waters in the final stages of the hydrothermal solutions circulation.

  15. Origin of halides (Cl- and Br-) and of their stable isotopes (d37Cl and d81Br) at the Tournemire URL (France) - Experimental and numerical approach

    NASA Astrophysics Data System (ADS)

    Bachir-Bey, Nassim; Matray, Jean-Michel

    2014-05-01

    This work is part of research conducted by the Institute of Radiological and Nuclear Safety (IRSN) on the geological disposal of High-Level and Intermediate-Level Long-Lived (HL-ILLL) radioactive waste in deep clayrocks. In France, the choice of the potential host rock for the geological storage is focused on the Callovian-Oxfordian (COx) of Meuse/Haute-Marne from its low permeability, capacity for self- sealing, high sorption and ability to radionuclide (RN) transport by diffusion. IRSN, which plays an expert role for ASN has its own underground research laboratory in a clayrock which has strong analogies to the COx. This is the Toarcian/Domerian clayrock located at Tournemire in southern Aveyron in France. The purpose of this study was to assess the transfer of RN in the Tournemire clayrock through the study of halides contents and of their stable isotopes (Cl-, Br-, Cl-/Br-, d37Cl, d81Br). The approach used was multiple and consisted for halides to: 1) Assess their stock in different fractions of the rock by applying several techniques including i) alkaline fusion for their total stock, ii) leaching to access their stock in porewater and to mineral phases sensitive to dissolution iii) cubic diffusion for their stock in porewater, 2) Get their diffusive transport parameters of a selection of samples from the upper Toarcian by cubic diffusion experiments modelled using the Hytec transport code developed by Mines ParisTech and 3) Model their transport after palaeohydrogeological known changes of the Tournemire massif. The experimental approach, conducted at the LAME lab, did not lead to an operational protocol for the alkaline fusion due to an incomplete rock dissolution. Leaching was used to characterize the concentrations of halides in the fractions of pore water and of minerals sensitive to dissolution. The results show levels of halides much higher than those of pore water with very low Cl/Br ratios likely resulting from the dissolution of mineral species. The

  16. N zooming into the Mediterranean outflow fossil moat during the 1.2-1.8 million years period (Early-Pleistocene) - An approach by radiogenic and stable isotopes

    NASA Astrophysics Data System (ADS)

    Lebreiro, Susana M.; Antón, Laura; Reguera, M. Isabel; Fernández, Marta; Conde, Estefanía; Barrado, Ana I.; Yllera, Abel

    2015-12-01

    The fossil Alvarez Cabral erosive Moat contains hemipelagite, contourite and turbidite facies where oceanography changes in the Mediterranean outflow are archived over the 1.2-1.8 Myr time period. Here we used Pb and Sr radiogenic isotopes to trace water masses and sediment source changes, for the first time in twenty glacial-interglacial (G-I) cycles of the Early-Pleistocene interval, and the last Glacial Maximum through Holocene cycle (including the Younger Dryas and Heinrich Stadial-1). A mixing line of Pb isotopes gives reliable low radiogenic 208Pb/204Pb, 206Pb/204Pb, and 206Pb/207Pb typical of Mediterranean Outflow Water (MOW) in one end-member and the signature of high radiogenic isotopes of Atlantic Waters (AW) towards the second end-member. The 87Sr/86Sr isotopes also display two end-members of the mixing line between eolian transport/dust source (0.71) and fluvial transport/weathering source (0.73) previously proposed in the Gulf of Cadiz. Combination of Pb and Sr radiogenic isotopes with O and C stable isotopes of planktonic and benthic foraminifera, and the response of foraminifera benthos over the Early-Pleistocene interval, reveals a direct link between water masses circulation and shifts in G-I. We found a persistent cyclic pattern of MOW circulation and fluvial deposition during glaciations and AW and aeolian influence during interglaciations. On site U1386B/C, the upper-MOW was less ventilated but productive and with high flux of organic flux matter during glacials, while Atlantic Waters were better ventilated, enriched in O, but less productive during interglacials. We infer that shifts in ocean and atmospheric processes in the Gulf of Cadiz were strongly controlled by Earth's obliquity (41 kyr-cycle) and 35°NH insolation during the Early-Pleistocene. We propose a correlation in changes in phase-relationship between precession and obliquity. In general terms, physical properties of fine sediments (glacials) show lower NGR, low reflectance and

  17. Amino acid isotopic analysis in agricultural systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A relatively new approach to stable isotopic analysis—referred to as compound-specific isotopic analysis (CSIA)—has emerged, centering on the measurement of 15N:14N ratios in amino acids (glutamic acid and phenylalanine). CSIA has recently been used to generate trophic position estimates among anima...

  18. Late Glaciation to early Holocene records of climatic and vegetation changes from Onepoto Crater, Auckland New Zealand: a biomarker and isotopic approach

    NASA Astrophysics Data System (ADS)

    Sikes, E. L.; Medeiros, P. M.; Makou, M. C.; Augustinas, P.

    2007-12-01

    A core taken from Onepoto Crater, a maar lake from the Auckland region of New Zealand, has excellent stratigraphy and robust age control based on well-dated and chemically distinguishable fallout tephra from the Taupo Volcanic Zone (TVZ). We present here a multi-proxy record including biomarkers and compound-specific isotopes on fatty acids that document ecological and climatological changes from the last glaciation to the early Holocene in northern New Zealand. All proxies indicate a drier and cooler climate in the glaciation followed by a rapid shift to warmer and wetter conditions at 17.6 ka that persisted until the early Holocene. The inferred arid conditions in the early part of the record are supported by markers such as charcoal abundances, but charcoal is absent after the climatic shift at 17.6 ka. New records of biomarkers and compound-specific isotopes on fatty acids from Onepoto Crater clarify changes in aridity associated with the glacial to interglacial climate shift documented by other proxies such as charcoal and pollen. Elevated abundances of marker lipids derived from biomass burning, such as dehydroabietic acid (a proxy for forest fires and by implication, aridity) and decreased 13C in terrestrially derived fatty acids indicate a return to somewhat dryer conditions during the Antarctic Cold Reversal (ACR) not present in other proxy records. The biomarker and isotopic data suggest drier conditions in the ACR that were not as intense as in the glaciation and remain unresolved by other proxies.

  19. A novel methodology to investigate isotopic biosignatures

    NASA Astrophysics Data System (ADS)

    Horner, T. J.; Lee, R. B. Y.; Henderson, G. M.; Rickaby, R. E. M.

    2012-04-01

    An enduring goal of trace metal isotopic studies of Earth History is to find isotopic 'fingerprints' of life or of life's individual physiochemical processes. Generally, such signatures are sought by relating an isotopic effect observed in controlled laboratory conditions or a well-characterized environment to a more complex system or the geological record. However, such an approach is ultimately limited because life exerts numerous isotopic fractionations on any one element so it is hard to dissect the resultant net fractionation into its individual components. Further, different organisms, often with the same apparent cellular function, can express different isotopic fractionation factors. We have used a novel method to investigate the isotopic fractionation associated with a single physiological process-enzyme specific isotopic fractionation. We selected Cd isotopes since only one biological use of Cd is known, CdCA (a Cd/Zn carbonic anhydrase from the coastal diatom T. Weissflogii). Thus, our investigation can also inform the long standing mystery as to why this generally toxic element appears to have a nutrient-like dissolved isotopic and concentration profile in the oceans. We used the pET-15b plasmid to insert the CdCA gene into the E. coli genome. There is no known biochemical function for Cd in E. coli, making it an ideal vector for studying distinct physiological processes within a single organism. The uptake of Cd and associated isotopic fractionation was determined for both normal cells and those expressing CdCA. It was found that whole cells always exhibited a preference for the light isotopes of Cd, regardless of the expression of CdCA; adsorption of Cd to cell surfaces was not seen to cause isotopic fractionation. However, the cleaning procedure employed exerted a strong control on the observed isotopic composition of cells. Using existing protein purification techniques, we measured the Cd isotopic composition of different subcellular fractions of E

  20. Tracing Anthropogenic Salinity Inputs to the Semi-arid Rio Grande River: A Multi-isotope Tracer (U, S, B and Sr) Approach

    NASA Astrophysics Data System (ADS)

    Garcia, S.; Nyachoti, S. K.; Ma, L.; Szynkiewicz, A.; McIntosh, J. C.

    2015-12-01

    High salinity in the Rio Grande has led to severe reductions in crop productivity and accumulation of salts in soils. These pressing issues exist for other arid rivers worldwide. Salinity contributions to the Rio Grande have not been adequately quantified, especially from agriculture, urban activities, and geological sources. Here, we use major element concentrations and U, S, B, Sr isotopic signatures to fingerprint the salinity sources. Our study area focuses on a 200 km long stretch of the Rio Grande from Elephant Butte Reservoir, NM to El Paso, TX. River samples were collected monthly from 2014 to 2015. Irrigation drains, groundwater wells, city drains and wastewater effluents were sampled as possible anthropogenic salinity end-members. Major element chemistry, U, S and Sr isotope ratios in the Rio Grande waters suggest multiple salinity inputs from geological, agricultural, and urban sources. Natural upwelling of groundwater is significant for the Rio Grande near Elephant Butte, as suggested by high TDS values and high (234U/238U), 87Sr/86Sr, δ34S ratios. Agricultural activities (e.g. flood irrigation, groundwater pumping, fertilizer use) are extensive in the Mesilla Valley. Rio Grande waters from this region have characteristic lower (234U/238U), 87Sr/86Sr, and δ34S ratios, with possible agricultural sources from use of fertilizers and gypsum. Agricultural practices during flood irrigation also intensify evaporation of Rio Grande surface water and considerably increase water salinity. Shallow groundwater signatures were also identified at several river locations, possibly due to the artificial pumping of local groundwater for irrigation. Impacts of urban activities to river chemistry (high NO3 and B concentrations) were evident for locations downstream to Las Cruces and El Paso wastewater treatment plants, supporting the use of the B isotope as an urban salinity tracer. This study improves our understanding of human impacts on water quality and elemental

  1. Method for separating isotopes

    DOEpatents

    Jepson, B.E.

    1975-10-21

    Isotopes are separated by contacting a feed solution containing the isotopes with a cyclic polyether wherein a complex of one isotope is formed with the cyclic polyether, the cyclic polyether complex is extracted from the feed solution, and the isotope is thereafter separated from the cyclic polyether.

  2. Stable isotope studies

    SciTech Connect

    Ishida, T.

    1992-01-01

    The research has been in four general areas: (1) correlation of isotope effects with molecular forces and molecular structures, (2) correlation of zero-point energy and its isotope effects with molecular structure and molecular forces, (3) vapor pressure isotope effects, and (4) fractionation of stable isotopes. 73 refs, 38 figs, 29 tabs.

  3. Mobility of Po and U-isotopes under acid mine drainage conditions: an experimental approach with samples from Río Tinto area (SW Spain).

    PubMed

    Barbero, L; Gázquez, M J; Bolívar, J P; Casas-Ruiz, M; Hierro, A; Baskaran, M; Ketterer, M E

    2014-12-01

    Under acid mine drainage (AMD) conditions, the solubilities and mobilities of many elements are vastly different from conditions prevailing in most natural waters. Studies are underway in the Río Tinto area (Iberian Pyrite Belt), in order to understand the behavior and mobility of long-lived U-series radionuclides under AMD conditions. A set of leaching experiments utilizing typical country rocks from the Tinto River basin, waste rock pile composite materials, iron-rich riverbed sediments and gossan (weathered naturally rock) were performed towards this purpose. Initial leaching experiments using distilled water kept in contact with solid material for 300, 100, 50 and 1 h resulted in very low concentrations of U with (234)U/(238)U activity ratios close to equilibrium and activity concentrations of (210)Po < 0.03 mBq/g. Leaching experiments performed with sulfuric acid media (0.1 and 0.01 M), and contact times between the solid and solution for 24 h were conducted to quantify the amount of U-isotopes and (210)Po leached, and the radioactive disequilibria generated between the radionuclides in the leachate. These experiments show that Po mobility in acidic conditions (pH around 1-2) is very low, with (210)Po activity in the leachate to be 6% in average for the solid sample. By contrast, mobility of U-isotopes is higher than that of Po, around 1.2%.

  4. Mobility of Po and U-isotopes under acid mine drainage conditions: an experimental approach with samples from Río Tinto area (SW Spain).

    PubMed

    Barbero, L; Gázquez, M J; Bolívar, J P; Casas-Ruiz, M; Hierro, A; Baskaran, M; Ketterer, M E

    2014-12-01

    Under acid mine drainage (AMD) conditions, the solubilities and mobilities of many elements are vastly different from conditions prevailing in most natural waters. Studies are underway in the Río Tinto area (Iberian Pyrite Belt), in order to understand the behavior and mobility of long-lived U-series radionuclides under AMD conditions. A set of leaching experiments utilizing typical country rocks from the Tinto River basin, waste rock pile composite materials, iron-rich riverbed sediments and gossan (weathered naturally rock) were performed towards this purpose. Initial leaching experiments using distilled water kept in contact with solid material for 300, 100, 50 and 1 h resulted in very low concentrations of U with (234)U/(238)U activity ratios close to equilibrium and activity concentrations of (210)Po < 0.03 mBq/g. Leaching experiments performed with sulfuric acid media (0.1 and 0.01 M), and contact times between the solid and solution for 24 h were conducted to quantify the amount of U-isotopes and (210)Po leached, and the radioactive disequilibria generated between the radionuclides in the leachate. These experiments show that Po mobility in acidic conditions (pH around 1-2) is very low, with (210)Po activity in the leachate to be 6% in average for the solid sample. By contrast, mobility of U-isotopes is higher than that of Po, around 1.2%. PMID:24308958

  5. A Novel Approach to Investigate Soil Organic Matter Development Using Isotopes and Thermal Analysis: C Sourcing from Various Plant Materials and Mineral Influence on Stability

    NASA Astrophysics Data System (ADS)

    Bower, J.; Horwath, W. R.

    2012-12-01

    Biomolecular input quality and mineral constituents are important factors that regulate turnover and stabilization of natural organic matter. The complexity and variability of natural soil systems might shadow basic mechanisms occurring between organic and mineral components. Utilizing an in vitro model decomposition system allows for control over inputs and turnover time. We created a model soil system with composted plant litter that was enriched with 13-C in order to investigate C use during the formation of stabilized SOM. The litter was subjected to microbially-mediated, aerobic decomposition before pure clays were added and allowed to incubate further. Isotopically labeled organic inputs allowed us to focus on C derived from known plant sources as a qualitative assessment of SOM formation. Thermogravimetry-Differential Scanning Calorimetry (TG-DSC) has been used successfully to quantify thermochemical properties of SOM reactivity/stability in three regions of exothermic activity corresponding generally to carbohydrates and lipids (Exo 1; 150-350 C), aromatic and condensed polymers (Exo 2; 400-460 C) and refractory/mineral associated C (Exo 3; 500-550 C). Thermal separation of the organics allows for in-line evolved gas analysis via Isotope Ratio Mass Spectrometry (IRMS) to measure 13-C isotopic values of those thermally separated organic compound classes. This coupled analysis is ideal in that it is fast, reproducible, and requires no sample pretreatment other than drying/grinding and it provides stability, mass loss, and isotopic data from a single sample. DSC results show the development of a higher temperature, energetically recalcitrant C pool over the course of decomposition in mineral-free litters and its absence in clay-litter mixtures, implicating the influence of mineral surfaces on soil organic matter energetic stability. Preliminary IRMS results indicate that mineral presence influences C sourcing from particular plant materials in some SOM

  6. Tracing oxygen variations and its biogeochemical expression during the late hauterivian Faraoni Event: A multi tracers approach using paired carbon, nitrogen, sulfur isotopes and trace metallic elements

    NASA Astrophysics Data System (ADS)

    Thomazo, Christophe; Riquier, Laurent; Martinez, Mathieu; Mathieu, Olivier

    2013-04-01

    During the Cretaceous, several occurrences of Oceanic Anoxic Event (OAE) are described in the sedimentary record. Among them, the late Hauterivian Faraoni Event has been extensively studied in several locations including Italy, Switzerland, France and Spain and interpreted as a short-lived OAE from palaeontological, sedimentological and geochemical observations. However, the biogeochemical response to water column oxygen depletion is poorly documented and mostly stands on carbon carbonates isotopes during the Faraoni event. In order to bring further insights into the biogeochemical cycles modifications during O2 variations across the Faraoni Event, we performed an integrated geochemical study including C, N and S isotopes together with paleo-redox tracers (i.e. trace metallic elements and iron speciation) on about 25 samples from the Río Argos section (S.E. Spain). δ13Ccarb increases from 1.23‰ to 1.61‰ at the base of the studied section before the Faraoni event. Maximum values, ranging between 1.21‰ and 1.73‰, are observed within this event and are followed by a rapid decrease in δ13Ccarb values down to 0.50‰ toward the top of the section. δ13Corg and TOC values show a narrow range of variations around -26.3±0.3‰ and 0.15±0.3 wt.%, respectively. Only one sample records a higher TOC content up to 1.53 wt.% at the very base of the Faraoni Event while no sensible variations can be deduced form organic carbon isotopes. Bulk sediments nitrogen isotopes have a mean value of 2.3±0.2‰ and nitrogen contents vary between 320 and 790 ppm. A noticeable δ15N excursion (i.e. 0.86‰) is observed at the very base of the Faraoni Event and is associated with the highest TOC value. Sulfur contents vary between 100 and 2480 ppm, the highest content being recorded just bellow the base of the Faraoni Event. δ34S show a wide range of variations from -44.8 to -10.1‰ on a short scale without easily recognizable stratigraphic trend. Finally, slight increases of

  7. Isotope separation by photochromatography

    DOEpatents

    Suslick, K.S.

    1975-10-03

    A photochromatographic method for isotope separation is described. An isotopically mixed molecular species is adsorbed on an adsorptive surface, and the adsorbed molecules are irradiated with radiation of a predetermined wavelength which will selectively excite desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thus separate them from the undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes. (BLM)

  8. Isotope separation by photochromatography

    DOEpatents

    Suslick, Kenneth S.

    1977-01-01

    An isotope separation method which comprises physically adsorbing an isotopically mixed molecular species on an adsorptive surface and irradiating the adsorbed molecules with radiation of a predetermined wavelength which will selectively excite a desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thereby separate them from the unexcited undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes.

  9. Paleoproxies: Heavy Stable Isotope Perspectives

    NASA Astrophysics Data System (ADS)

    Nagler, T. F.; Hippler, D.; Siebert, C.; Kramers, J. D.

    2002-12-01

    Recent advances in isotope ratio mass spectrometry, namely multiple collector ICP-MS and refined TIMS techniques, will significantly enhance the ability to measure heavy stable isotope fractionation, which will lead to the development of a wide array of process-identifying (bio)-geochemical tools. Thus far research in this area is not easily assessable to scientists outside the isotope field. This is due to the fact that analyzing heavy stable isotopes does not provide routine numbers which are per se true (the preciser the truer) but is still a highly experimental field. On the other hand resolving earth science problems requires specialists familiar with the environment being studied. So what is in there for paleoceanographers? In a first order approach, relating isotope variations to physical processes is straightforward. A prominent example are oxygen isotope variations with temperature. The total geological signal is of course far more complicated. At low temperatures, heavy stable isotopes variations have been reported for e.g. Ca, Cr, Fe, Cu, Zn, Mo and Tl. Fractionation mechanisms and physical parameters responsible for the observed variations are not yet resolved for most elements. Significant equilibrium isotope fractionation is expected from redox reactions of transition metals. However a difference in coordination number between two coexisting speciations of an element in the same oxidation state can also cause fractionation. Protonation of dissolved Mo is one case currently discussed. For paleoceanography studies, a principal distinction between transition metals essential for life (V to Zn plus Mo) or not will be helpful. In case of the former group, distinction between biogenic and abiogenic isotope fractionation will remain an important issue. For example, abiotic Fe redox reactions result in isotope fractionations indistinguishable in direction and magnitude from microbial effects. Only a combination of different stable isotope systems bears the

  10. Quantitative microbial ecology through stable isotope probing.

    PubMed

    Hungate, Bruce A; Mau, Rebecca L; Schwartz, Egbert; Caporaso, J Gregory; Dijkstra, Paul; van Gestel, Natasja; Koch, Benjamin J; Liu, Cindy M; McHugh, Theresa A; Marks, Jane C; Morrissey, Ember M; Price, Lance B

    2015-11-01

    Bacteria grow and transform elements at different rates, and as yet, quantifying this variation in the environment is difficult. Determining isotope enrichment with fine taxonomic resolution after exposure to isotope tracers could help, but there are few suitable techniques. We propose a modification to stable isotope probing (SIP) that enables the isotopic composition of DNA from individual bacterial taxa after exposure to isotope tracers to be determined. In our modification, after isopycnic centrifugation, DNA is collected in multiple density fractions, and each fraction is sequenced separately. Taxon-specific density curves are produced for labeled and nonlabeled treatments, from which the shift in density for each individual taxon in response to isotope labeling is calculated. Expressing each taxon's density shift relative to that taxon's density measured without isotope enrichment accounts for the influence of nucleic acid composition on density and isolates the influence of isotope tracer assimilation. The shift in density translates quantitatively to isotopic enrichment. Because this revision to SIP allows quantitative measurements of isotope enrichment, we propose to call it quantitative stable isotope probing (qSIP). We demonstrated qSIP using soil incubations, in which soil bacteria exhibited strong taxonomic variations in (18)O and (13)C composition after exposure to [(18)O]water or [(13)C]glucose. The addition of glucose increased the assimilation of (18)O into DNA from [(18)O]water. However, the increase in (18)O assimilation was greater than expected based on utilization of glucose-derived carbon alone, because the addition of glucose indirectly stimulated bacteria to utilize other substrates for growth. This example illustrates the benefit of a quantitative approach to stable isotope probing.

  11. Subduction-related High- to Ultrahigh-Potassic Rocks of the Ankara-Erzincan Suture Belt of Turkey: a geochemical and isotopic approach to source and petrogenesis

    NASA Astrophysics Data System (ADS)

    Genc, S. Can; Gulmez, Fatma; Karacik, Zekiye; Tuysuz, Okan; Prelevic, Dejan; Roden, Michael F.; Hames, Willis E.; Zeki Billor, M.

    2014-05-01

    A Late Cretaceous Volcano-sedimantary Succession (LCVS) trends parallel to Neo-Tethyan Suture in North Central Anatolia. Volcanic members of the LCVS consist mainy of coeval leucite phonolite/tephrites, trachytes, lamprophyres and andesitic rocks. Obtained Ar-Ar ages reveal that the volcanic activity occurred between 73.6±0.18 and 76.78±0.19 Ma, contemporaneous with the subduction of the Neo-Tethyan ocean beneath the Pontides. The volcanic rocks of LCVS are classified as alkaline, High- to ultrahigh-K, and silica-saturated and silica-unsaturated, geochemically. Rare calc-alkaline andesitic lavas are also occur within the volcanic sucession. Except the calc-alkaline samples, magmatic members of LCVS have similar major and trace element concentrations similar to the plagioleucitites or ultrapotassic rocks of the active orogenic zones (i.e. the Roman Province ultrapotassic series, Peccerillo, 2005). The multi element patterns on N-MORB- and Chondrite-normalized spider diagrams are characterized by significant LILE and LREE enrichments relative to HFSE and HREE, and display apparent Nb and Ta depletions, implying the subduction-related magmas. 87Sr/86Sr(i) (0.704493-0.706090) and 143Nd/144Nd(i) (0.512523-0.512680) isotope ratios are close to the mantle array, and are also in between the Aeolian Islands CA-Potassic rocks (Peccerillo, 2005), BSE and the circum-Mediterranean anorogenic Cenozoic igneous province (CiMACI, Lustrino&Wilson, 2007). Variable Mg# (33-60) evidences that these rocks are the products of evolved melts. The lead isotope values display a trend between EMI and DM, suggesting that the crustal involvement is more effective process during the generation of some lamprophyres relative to the other ultrapotassic rocks of LCVS. The results of clinopyroxene thermobarometry calculations reveal significant differences in depth of crystallization for the rock suites. Some trace element abundances and inter elemental ratios together with their co-variations show

  12. Tracking atmospheric sulphur pollution from the study of Racomitrium lanuginosum mosses in Iceland: A multi-isotope approach (δ34S, 206Pb/204Pb, δ13C and δ15N)

    NASA Astrophysics Data System (ADS)

    Proust, E.; Widory, D.; Gautason, B.; Rogers, K.; Morrison, J.

    2010-12-01

    Among terrestrial plants, the applicability of mosses as monitoring organisms of atmospheric pollutants is a world-wide accepted technique due to their special biological and morphologic characteristics as nonvascular plants. They are commonly regarded as the best bioindicators of air quality because they can accumulate sulphur (S) and other elements to a far greater level than is necessary for their physiological needs. This study aims at using different isotope systematics δ34S, 206Pb/204Pb, δ13C and δ15N) to help understand the origin of S in the atmophsere of Reykjavik and its vicinity, and especially the potential contribution of surrounding geothermal plants. The selected Icelandic woolly fringe moss (Racomitrium lanuginosum (Hedw.) Brid.) is extremely common in lava fields and gravely and stony areas. Samples were taken in four distinct sampling sites around the city of Reykjavik: Bláfjöll area (south-eastern suburb of the city), and close to three power plants: Hellisheioarvirkjun (northern suburb of the city), Svartsengi (south-western suburb of the city) and Nesjavellir (north-eastern suburb of the city). Results show that, whatever the sampling context is, S is controlled by a binary mixing, between i) a high δ34S (around 16‰) end-member, characteristic of mosses from Hellisheioarvirkjun, and ii) a low δ34S (around -2‰) end-member, characteristic of mosses from Nesjavellir. The multi-isotope approach, confirms this binary relation and helps to constrain the different end-members involved.

  13. Solute sources in stream water during consecutive fall storms in a northern hardwood forest watershed: A combined hydrological, chemical and isotopic approach

    USGS Publications Warehouse

    Mitchell, M.J.; Piatek, K.B.; Christopher, S.; Mayer, B.; Kendall, C.; McHale, P.

    2006-01-01

    Understanding the effects of climate change including precipitation patterns has important implications for evaluating the biogeochemical responses of watersheds. We focused on four storms in late summer and early fall that occurred after an exceptionally dry period in 2002. We analyzed not only the influence of these storms on episodic chemistry and the role of different water sources in affecting surface water chemistry, but also the relative contributions of these storms to annual biogeochemical mass balances. The study site was a well studied 135-ha watershed in the Adirondack Park of New York State (USA). Our analyses integrated measurements on hydrology, solute chemistry and the isotopic composition of NO 3- (??15N and ??18O) and SO 42- (??34S and ??18O) to evaluate how these storms affected surface water chemistry. Precipitation amounts varied among the storms (Storm 1: Sept. 14-18, 18.5 mm; Storm 2: Sept. 21-24, 33 mm; Storm 3: Sept. 27-29, 42.9 mm; Storm 4: Oct. 16-21, 67.6 mm). Among the four storms, there was an increase in water yields from 2 to 14%. These water yields were much less than in studies of storms in previous years at this same watershed when antecedent moisture conditions were higher. In the current study, early storms resulted in relatively small changes in water chemistry. With progressive storms the changes in water chemistry became more marked with particularly major changes in Cb (sum of base cations), Si, NO 3- , and SO 42- , DOC and pH. Analyses of the relationships between Si, DOC, discharge and water table height clearly indicated that there was a decrease in ground water contributions (i.e., lower Si concentrations and higher DOC concentrations) as the watershed wetness increased with storm succession. The marked changes in chemistry were also reflected in changes in the isotopic composition of SO 42- and NO 3- . There was a strong inverse relationship between SO 42- concentrations and ??34S values suggesting the importance of S

  14. Tracing the Origins and Processes of Groundwater Salinization in Coastal Aquifers with a Multi-isotopes Approach. Example of Recife, Northeast of Brazil

    NASA Astrophysics Data System (ADS)

    Cary, L.; Petelet-Giraud, E.; Bertrand, G.; Kloppmann, W.; Aquilina, L.; Pauwels, H.; Martins, V.; Hirata, R.; Montenegro, S.

    2015-12-01

    The Recife Metropolitan Region (PE, Brazil) is a typical "hot spot" illustrating the problems of southern countries on water issues inducing high pressures on water resources both on quantity and quality in the context of global social and environmental changes. By focusing on the groundwater geochemistry in a costal multilayer aquifer, this work aims at investigating the sources and processes of salinization. Two different Precambrian blocks separated by a large lineament area constitute the site basement. The sedimentary fillings of the two basins present different origins that were distinguished by the Sr isotope composition. The northern deep Beberibe aquifer displays very high 87Sr/86Sr with a large range of values (0.7102-0.7233) illustrating the main continental origin of sediments whereas the southern deep Cabo aquifer showed lower values (0.7097-0.7141) indicating the contribution of the marine sedimentation. Although sulfate isotopes, Electrical Conductivity and Cl contents indicate a mixing with seawater for some samples of the deep Cabo and Beberibe aquifers, all 87Sr/86Sr values are above the present-day seawater composition. This can be related to the complex local history of transgression/regression phases that induced alternatively salinisation and freshening with gains and losses of cations and Sr, together with water-rock interactions. δ18O-δ2H clearly evidence the local present day recharge in the surficial aquifer, some samples being affected by in situ evaporation processes and/or recharge with evaporated water from dams used for water supply. The deep aquifers display a high range of B (20-600µg/L) and δ11B (6.7-68.5‰) with some of the highest values known to date. Multiple sources and processes affect the B behavior, among which mixing with saline water, B sorption on clays/organic matter and mixing with wastewater. The surficial aquifers are locally salinized possibly due to present seawater intrusion, and highly contaminated with

  15. A Sequential Leach Method and Pb Isotope Approach to Studying Apatite Weathering in Granitoid Soils at Hubbard Brook Experimental Forest, NH, USA

    NASA Astrophysics Data System (ADS)

    Nezat, C. A.; Blum, J. D.

    2005-12-01

    Easily dissolved minerals such as calcite and apatite can be important in controlling stream and ground water chemistry even though these minerals are only present in trace amounts in granitoid rocks. Because of its solubility, apatite, a calcium phosphate mineral, may be a significant source of essential nutrients (especially phosphorous) for vegetation, and has been shown to strongly influence stream and soil water composition (e.g, calcium, strontium and rare earth elements). There are additional sources of Ca (e.g., feldspars, hornblende) and P (e.g., organic matter or bound to Fe and Al oxides) in granitoid soils. In order to distinguish the chemical constituents of apatite from other pools in the bulk soil, we selectively dissolved apatite with a dilute acid leach, and measured Pb isotopic ratios of apatite, feldspar, and leachates. We tested the leaching procedure on mineral separates and verified that a dilute nitric solution primarily dissolves apatite. Silicates were dissolved in subsequent steps by successively stronger acids. We then applied this method to bulk soils collected from several soil pits across a small watershed at the Hubbard Brook Experimental Forest (HBEF), New Hampshire, USA, to determine the spatial distribution of Ca and P pools, and determine the depth of apatite depletion in the soil. We also measured Pb isotope ratios in the soil leachates to distinguish among the various sources of Pb (e.g., apatite, feldspars and anthropogenic sources). We found that Pb in the dilute nitric leach of the HBEF organic soils is dominated by anthropogenic sources and that Pb from apatite becomes increasingly important with depth.

  16. Transformation of dissolved inorganic carbon (DIC) into particulate organic carbon (POC) in the lower Xijiang River, SE China: an isotopic approach

    NASA Astrophysics Data System (ADS)

    Sun, H. G.; Han, J. T.; Zhang, S. R.; Lu, X. X.

    2011-09-01

    The sources and dynamics of riverine carbon have been discussed extensively, but knowledge about the transformation from DIC into organic carbon (OC) is still poorly understood. In this study, we conducted a comprehensive investigation on the riverine carbon, stable carbon isotopic components and C/N ratios for different seasons, including an extreme flood event, in the lower Xijiang and its three tributaries. Detailed analyses are also performed for soil samples across the study region. Downstream increase in δ13CDIC and downstream decrease in both δ13CPOC and C/N have been observed for all the tributaries. Meanwhile, positive shift of δ13CDIC and negative shift of δ13CPOC are also observed from summer to winter. These observations likely indicate that the isotopic compositions of both DIC and POC are significantly affected by in-river primary production that converts DIC into organic matter through photosynthesis. It is estimated that the percentage contribution of the riverine aquatic primary production to the riverine POC in the Xijiang and three tributaries of Guijiang, Hejiang and Luoding is respectively 7.1%, 43.2%, 36.4% and 9.9% in rainy season, and 35.6%, 47.3%, 50.3% and 40.1% in dry season. Based on the stoichiometry involved in chemical weathering of the bedrocks, the transformation of the carbonate-sourced DIC to POC is further quantified to be 3.4-20.5% in rainy season, and 12.3-22.1% in dry season. This may suggest an important sink of atmospheric CO2 in river systems that was largely ignored previously.

  17. Assimilation efficiency for sediment-sorbed benzo(a)pyrene by Diporeia spp.

    USGS Publications Warehouse

    Lydy, M.J.; Landrum, P.F.

    1993-01-01

    Two methods are currently available for determining contaminant assimilation efficiencies (AE) from ingested material in benthic invertebrates. These methods were compared using the Great Lakes amphipod Diporeia spp. and [14C]benzo(a)pyrene (BaP) sorbed to Florissant sediment (< 63 µm). The first approach, the direct measurement method, uses total organic carbon as a tracer and yielded AE values ranging from 45.9~50.4%. The second approach, the dual-labeled method, uses 51Cr as a non-assimilated tracer and did not yield AE values for our data. The inability of the dual-labeled approach to estimate AEs was due, in part, to the selective feeding by Diporeia resulting in a failure of the non-assimilated tracer (51Cr) to track with the assimilated tracer ([14C]BaP). The failure of the dual-labeled approach was not a result of an uneven distribution of the labels among particle size classes, but more likely resulted from differential sorption of the two isotopically labeled materials to particles of differing composition. The [14C]BaP apparently sorbs to organic particles that are selectively ingested, while the 51Cr apparently sorbs to particles which are selectively excluded by Diporeia. The dual-labeled approach would be a viable and easier experimental approach for determining AE values if the characteristics that govern selective feeding can be determined.

  18. Measurement of isotope abundance variations in nature by gravimetric spiking isotope dilution analysis (GS-IDA).

    PubMed

    Chew, Gina; Walczyk, Thomas

    2013-04-01

    Subtle variations in the isotopic composition of elements carry unique information about physical and chemical processes in nature and are now exploited widely in diverse areas of research. Reliable measurement of natural isotope abundance variations is among the biggest challenges in inorganic mass spectrometry as they are highly sensitive to methodological bias. For decades, double spiking of the sample with a mix of two stable isotopes has been considered the reference technique for measuring such variations both by multicollector-inductively coupled plasma mass spectrometry (MC-ICPMS) and multicollector-thermal ionization mass spectrometry (MC-TIMS). However, this technique can only be applied to elements having at least four stable isotopes. Here we present a novel approach that requires measurement of three isotope signals only and which is more robust than the conventional double spiking technique. This became possible by gravimetric mixing of the sample with an isotopic spike in different proportions and by applying principles of isotope dilution for data analysis (GS-IDA). The potential and principle use of the technique is demonstrated for Mg in human urine using MC-TIMS for isotopic analysis. Mg is an element inaccessible to double spiking methods as it consists of three stable isotopes only and shows great potential for metabolically induced isotope effects waiting to be explored.

  19. Advanced isotope separation

    SciTech Connect

    Not Available

    1982-05-04

    The Study Group briefly reviewed the technical status of the three Advanced Isotope Separation (AIS) processes. It also reviewed the evaluation work that has been carried out by DOE's Process Evaluation Board (PEB) and the Union Carbide Corporation-Nuclear Division (UCCND). The Study Group briefly reviewed a recent draft assessment made for DOE staff of the nonproliferation implications of the AIS technologies. The staff also very briefly summarized the status of GCEP and Advanced Centrifuge development. The Study Group concluded that: (1) there has not been sufficient progress to provide a firm scientific, technical or economic basis on which to select one of the three competing AIS processes for full-scale engineering development at this time; and (2) however, should budgetary restraints or other factors force such a selection, we believe that the evaluation process that is being carried out by the PEB provides the best basis available for making a decision. The Study Group recommended that: (1) any decisions on AIS processes should include a comparison with gas centrifuge processes, and should not be made independently from the plutonium isotope program; (2) in evaluating the various enrichment processes, all applicable costs (including R and D and sales overhead) and an appropriate discounting approach should be included in order to make comparisons on a private industry basis; (3) if the three AIS programs continue with limited resources, the work should be reoriented to focus only on the most pressing technical problems; and (4) if a decision is made to develop the Atomic Vapor Laser Isotope Separation process, the solid collector option should be pursued in parallel to alleviate the potential program impact of liquid collector thermal control problems.

  20. A counter-intuitive approach to calculating non-exchangeable 2H isotopic composition of hair: treating the molar exchange fraction fE as a process-related rather than compound-specific variable

    USGS Publications Warehouse

    Landwehr, J.M.; Meier-Augenstein, W.; Kemp, H.F.

    2011-01-01

    Hair is a keratinous tissue that incorporates hydrogen from material that an animal consumes but it is metabolically inert following synthesis. The stable hydrogen isotope composition of hair has been used in ecological studies to track migrations of mammals as well as for forensic and archaeological purposes to determine the provenance of human remains or the recent geographic life trajectory of living people. Measurement of the total hydrogen isotopic composition of a hair sample yields a composite value comprised of both metabolically informative, non-exchangeable hydrogen and exchangeable hydrogen, with the latter reflecting ambient or sample preparation conditions. Neither of these attributes is directly measurable, and the non-exchangeable hydrogen composition is obtained by estimation using a commonly applied mathematical expression incorporating sample measurements obtained from two distinct equilibration procedures. This commonly used approach treats the fraction of exchangeable hydrogen as a mixing ratio, with a minimal procedural fractionation factor assumed to be close or equal to 1. Instead, we propose to use full molar ratios to derive an expression for the non-exchangeable hydrogen composition explicitly as a function of both the procedural fractionation factor α and the molar hydrogen exchange fraction fE. We apply these derivations in a longitudinal study of a hair sample and demonstrate that the molar hydrogen exchange fraction fE should, like the procedural fractionation factor α, be treated as a process-dependent parameter, i.e. a reaction-specific constant. This is a counter-intuitive notion given that maximum theoretical values for the molar hydrogen exchange fraction fE can be calculated that are arguably protein-type specific and, as such, fE could be regarded as a compound-specific constant. We also make some additional suggestions for future approaches to determine the non-exchangeable hydrogen composition of hair and the use of

  1. A tale of two rivers: studies in the San Joaquin and Sacramento Rivers using a multi-isotope and chemical approach to investigate linkages between hydrology, nutrients, and algae (Invited)

    NASA Astrophysics Data System (ADS)

    Kendall, C.; Young, M. B.; Silva, S. R.

    2010-12-01

    compositions, simple mixing models have been of limited use in detangling the effects of seasonally varying changes in water sources, nutrient sources, and biogeochemical processes. Hence, we have been experimenting with a variety of approaches for testing hypotheses with our huge datasets including hydrologic flow models, multi-tracer mixing models, isotope fractionation models, nitrification models, longitudinal plots, and isoscapes. This presentation will show examples of the usefulness of these different approaches for understanding these complex river ecosystems.

  2. High Precision Isotopic Reference Material Program

    NASA Astrophysics Data System (ADS)

    Mann, J. L.; Vocke, R. D.

    2007-12-01

    Recent developments in thermal ionization and inductively coupled plasma multicollector mass spectrometers have lead to "high precision" isotope ratio measurements with uncertainties approaching a few parts in 106. These new measurement capabilities have revolutionized the study of isotopic variations in nature by increasing the number of elements showing natural variations by almost a factor of two, and new research areas are actively opening up in climate change, health, ecology, geology and forensic studies. Because the isotopic applications are impacting very diverse fields, there is at present little effective coordination between research laboratories over reference materials and the values to apply to those materials. NIST had originally developed the techniques for producing accurate isotopic characterizations, culminating in the NIST Isotopic SRM series. The values on existing materials however are insufficiently precise and, in some cases, may be isotopically heterogeneous. A new generation of isotopic standards is urgently needed and will directly affect the quality and scope of emergent applications and ensure that the results being derived from these diverse fields are comparable. A series of new isotopic reference materials similar to the NIST 3100 single element solution series is being designed for this purpose and twelve elements have been selected as having the most pressing need. In conjunction with other expert users and National Metrology Institutes, an isotopic characterization of the respective 12 selected ampoules from the NIST single element solution series is currently underway. In this presentation the preliminary results of this screening will be discussed as well as the suitability of these materials in terms of homogeneity and purity, long term stability and availability, and isotopic relevance. Approaches to value assignment will also be discussed.

  3. Identification of groundwater contamination sources of nitrate and sulfate in shallow alluvial aquifers using a dual-isotope approach in an agricultural area

    NASA Astrophysics Data System (ADS)

    Kaown, D.; Koh, D.; Mayer, B.; Hyun, Y.; Bae, G.; Lee, K.

    2007-12-01

    The elevated level of nitrate in groundwater is a serious problem in Korean agricultural areas. Yupori, a small agricultural area in Chuncheon (Korea), shows a rising level of NO3-N and displays multiple NO3-N sources from non-point and point sources in shallow aquifer groundwater. Numerous vegetable fields are located in the western part of the study area and fruit orchards dominate the landscape with only few vegetable fields in the eastern part of the study area. The source identification of groundwater contamination from overburden agricultural area was undertaken by analyzing hydrochemical data and stable isotopic compositions of dissolved nitrate and sulfate (¥ä15N-NO3-, ¥ä18O-NO3-, ¥ä34S-SO42-, and ¥ä18O-SO42-). The measurements of ¥ä15N- NO3- are in the range of 7.1 to 14.4¢¶ and the values of ¥ä18O-NO3- are in the range of -1.8 to 6.5¢¶. High ¥ä15N-NO3- values shown at low concentrations of nitrate in the eastern Yupori are characteristics of manure- derived nitrate and organic soil. The values of ¥ä34S-SO4-2 ranged from 2.9 to 9.9¢¶ and ¥ä18O-SO42- ranged from 2.5 to 4.7¢¶. At high concentrations of SO42- in the western Yupori, the value of ¥ä34S-SO42- are low around 3-4¢¶. The value of ¥ä34S-SO42- increased with decreasing SO42- concentration in the eastern Yupori. Groundwater quality and stable isotopic compositions of dissolved nitrate and sulfate seem to be significantly affected by agricultural land use pattern of the study site.

  4. Isotope shifts of the three lowest 1S states of the B+ ion calculated with a finite-nuclear-mass approach and with relativistic and quantum electrodynamics corrections.

    PubMed

    Bubin, Sergiy; Komasa, Jacek; Stanke, Monika; Adamowicz, Ludwik

    2010-03-21

    We present very accurate quantum mechanical calculations of the three lowest S-states [1s(2)2s(2)((1)S(0)), 1s(2)2p(2)((1)S(0)), and 1s(2)2s3s((1)S(0))] of the two stable isotopes of the boron ion, (10)B(+) and (11)B(+). At the nonrelativistic level the calculations have been performed with the Hamiltonian that explicitly includes the finite mass of the nucleus as it was obtained by a rigorous separation of the center-of-mass motion from the laboratory frame Hamiltonian. The spatial part of the nonrelativistic wave function for each state was expanded in terms of 10,000 all-electron explicitly correlated Gaussian functions. The nonlinear parameters of the Gaussians were variationally optimized using a procedure involving the analytical energy gradient determined with respect to the nonlinear parameters. The nonrelativistic wave functions of the three states were subsequently used to calculate the leading alpha(2) relativistic corrections (alpha is the fine structure constant; alpha=1/c, where c is the speed of light) and the alpha(3) quantum electrodynamics (QED) correction. We also estimated the alpha(4) QED correction by calculating its dominant component. A comparison of the experimental transition frequencies with the frequencies obtained based on the energies calculated in this work shows an excellent agreement. The discrepancy is smaller than 0.4 cm(-1).

  5. Analytical approach for the determination of steroid profile of humans by gas chromatography isotope ratio mass spectrometry aimed at distinguishing between endogenous and exogenous steroids.

    PubMed

    Bulska, Ewa; Gorczyca, Damian; Zalewska, Izabela; Pokrywka, Andrzej; Kwiatkowska, Dorota

    2015-03-15

    The contamination of commonly used supplements by unknown steroids as well as their metabolites (parent compounds) become a challenge for the analytical laboratories. Although the determination of steroids profile is not trivial because of the complex matrix and low concentration of single compound, one of the most difficult current problem is to distinguish, during analytical procedure, endogenous androgens such as testosterone, dehydrotestosterone or dehydroepiandrosterone from their synthetic equivalents. The aim of this work was to develop and validate an analytical procedure for determination of the steroid profile in human urine by gas chromatography-combustion-isotope ratio mass spectrometry (GC/C/IRMS) toward distinguishing between endogenous and exogenous steroids. Beside the optimization of the experimental parameters for gas chromatography separation and mass spectrometry, attention was focused on urine sample preparation. Using an optimized sample preparation protocol it was possible to achieve better chromatographic resolutions and better sensitivity enabling the determination of 5 steroids, androsterone, etiocholanolone, testosterone, 5-androstandiol, 11-hydroxyandrdostane, pregnandiol, with the expanded uncertainty (k=2) below 1‰. This enable to evaluate the significant shift of the δ(13)C/(12)C [‰] values for each of examined steroids (excluding ERC). The analytical protocol described in this work was successfully used for the confirmation of positive founding urine by evaluation T/E ratio after GC/C/IRMS analysis.

  6. Analytical approach for the determination of steroid profile of humans by gas chromatography isotope ratio mass spectrometry aimed at distinguishing between endogenous and exogenous steroids.

    PubMed

    Bulska, Ewa; Gorczyca, Damian; Zalewska, Izabela; Pokrywka, Andrzej; Kwiatkowska, Dorota

    2015-03-15

    The contamination of commonly used supplements by unknown steroids as well as their metabolites (parent compounds) become a challenge for the analytical laboratories. Although the determination of steroids profile is not trivial because of the complex matrix and low concentration of single compound, one of the most difficult current problem is to distinguish, during analytical procedure, endogenous androgens such as testosterone, dehydrotestosterone or dehydroepiandrosterone from their synthetic equivalents. The aim of this work was to develop and validate an analytical procedure for determination of the steroid profile in human urine by gas chromatography-combustion-isotope ratio mass spectrometry (GC/C/IRMS) toward distinguishing between endogenous and exogenous steroids. Beside the optimization of the experimental parameters for gas chromatography separation and mass spectrometry, attention was focused on urine sample preparation. Using an optimized sample preparation protocol it was possible to achieve better chromatographic resolutions and better sensitivity enabling the determination of 5 steroids, androsterone, etiocholanolone, testosterone, 5-androstandiol, 11-hydroxyandrdostane, pregnandiol, with the expanded uncertainty (k=2) below 1‰. This enable to evaluate the significant shift of the δ(13)C/(12)C [‰] values for each of examined steroids (excluding ERC). The analytical protocol described in this work was successfully used for the confirmation of positive founding urine by evaluation T/E ratio after GC/C/IRMS analysis. PMID:25498150

  7. Isotope shifts of the three lowest 1S states of the B+ ion calculated with a finite-nuclear-mass approach and with relativistic and quantum electrodynamics corrections

    NASA Astrophysics Data System (ADS)

    Bubin, Sergiy; Komasa, Jacek; Stanke, Monika; Adamowicz, Ludwik

    2010-03-01

    We present very accurate quantum mechanical calculations of the three lowest S-states [1s22s2(S10), 1s22p2(S10), and 1s22s3s(S10)] of the two stable isotopes of the boron ion, B10+ and B11+. At the nonrelativistic level the calculations have been performed with the Hamiltonian that explicitly includes the finite mass of the nucleus as it was obtained by a rigorous separation of the center-of-mass motion from the laboratory frame Hamiltonian. The spatial part of the nonrelativistic wave function for each state was expanded in terms of 10 000 all-electron explicitly correlated Gaussian functions. The nonlinear parameters of the Gaussians were variationally optimized using a procedure involving the analytical energy gradient determined with respect to the nonlinear parameters. The nonrelativistic wave functions of the three states were subsequently used to calculate the leading α2 relativistic corrections (α is the fine structure constant; α =1/c, where c is the speed of light) and the α3 quantum electrodynamics (QED) correction. We also estimated the α4 QED correction by calculating its dominant component. A comparison of the experimental transition frequencies with the frequencies obtained based on the energies calculated in this work shows an excellent agreement. The discrepancy is smaller than 0.4 cm-1.

  8. A novel approach for high sensitive determination of sulfur mustard by derivatization and isotope-dilution LC-MS/MS analysis.

    PubMed

    Xu, Bin; Zong, Cheng; Nie, Zhiyong; Guo, Lei; Xie, Jianwei

    2015-01-01

    A new isotope-dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for determination of sulfur mustard (SM) has been developed using a direct chemical derivatization method by nucleophile potassium thioacetate (PTA) in aqueous solution. The reaction conditions for derivatization, such as reaction temperature, time, solvent and concentration of PTA, were optimized for high performance. Reversed phase liquid chromatography was suitable for analysis of such a PTA derivatized SM in complex environmental samples. Compared with other conventional gas chromatography or gas chromatography-mass spectrometry methods for direct detection on SM, better sensitivity and selectivity were achieved by this direct derivatization and LC-MS/MS method, where SM can be detected as low as 0.05 ng/mL in acetonitrile. The linear range was from 0.1 to 1000 ng/mL. The relative standard deviation (RSD) of the intra-day precision was less than 11.8%, and RSD of the inter-day precision was less than 12.3%. The whole procedure for both derivatization and analysis was quick and simple, and the total time was less than 1h. This established method has been successfully employed for determination of spiking samples both in water and soil. A detection limit of 0.1 ng/mL was achieved for river water, while the SM in soil sample could be detected at 0.1 ng/g. PMID:25476305

  9. Electrochemical isotope effect and lithium isotope separation.

    PubMed

    Black, Jay R; Umeda, Grant; Dunn, Bruce; McDonough, William F; Kavner, Abby

    2009-07-29

    A large electrochemical isotopic effect is observed upon the electrodeposition of lithium from solutions of propylene carbonate producing isotopically light metal deposits. The magnitude of fractionation is controlled by the applied overpotential and is largest close to equilibrium. Calculated partition function ratios for tetrahedrally coordinated lithium complexes and metallic lithium predict an equilibrium fractionation close to that measured experimentally.

  10. METHOD OF ISOTOPE CONCENTRATION

    DOEpatents

    Spevack, J.S.

    1957-04-01

    An isotope concentration process is described which consists of exchanging, at two or more different temperature stages, two isotopes of an element between substances that are physically separate from each other and each of which is capable of containing either of the isotopes, and withdrawing from a point between at least two of the temperatare stages one of the substances containing an increased concentration of the desired isotope.

  11. Isotope reference materials

    USGS Publications Warehouse

    Coplen, Tyler B.

    2010-01-01

    Measurement of the same isotopically homogeneous sample by any laboratory worldwide should yield the same isotopic composition within analytical uncertainty. International distribution of light element isotopic reference materials by the International Atomic Energy Agency and the U.S. National Institute of Standards and Technology enable laboratories to achieve this goal.

  12. Statistical clumped isotope signatures.

    PubMed

    Röckmann, T; Popa, M E; Krol, M C; Hofmann, M E G

    2016-08-18

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules.

  13. Statistical clumped isotope signatures

    PubMed Central

    Röckmann, T.; Popa, M. E.; Krol, M. C.; Hofmann, M. E. G.

    2016-01-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168

  14. Statistical clumped isotope signatures

    NASA Astrophysics Data System (ADS)

    Röckmann, T.; Popa, M. E.; Krol, M. C.; Hofmann, M. E. G.

    2016-08-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules.

  15. Statistical clumped isotope signatures.

    PubMed

    Röckmann, T; Popa, M E; Krol, M C; Hofmann, M E G

    2016-01-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168

  16. Cosmic ray isotopes

    NASA Technical Reports Server (NTRS)

    Stone, E. C.

    1973-01-01

    The isotopic composition of cosmic rays is studied in order to develop the relationship between cosmic rays and stellar processes. Cross section and model calculations are reported on isotopes of H, He, Be, Al and Fe. Satellite instrument measuring techniques separate only the isotopes of the lighter elements.

  17. Tracing groundwater salinization processes in coastal aquifers: a hydrogeochemical and isotopic approach in Na-Cl brackish waters of north-western Sardinia, Italy

    NASA Astrophysics Data System (ADS)

    Mongelli, G.; Monni, S.; Oggiano, G.; Paternoster, M.; Sinisi, R.

    2013-01-01

    In the Mediterranean area the demand of good quality water is often threatened by salinization, especially in coastal areas. The salinization is the result of concomitant processes due to both marine water intrusion and rock-water interaction, which in some cases are hardly distinguishable. In northwestern Sardinia, in the Nurra area, salinization due to marine water intrusion has been recently evidenced as consequence of bore hole exploitation. However, the geology of the Nurra records a long history from Paleozoic to Quaternary, resulting in relative structural complexity and in a wide variety of lithologies, including Triassic evaporites. To elucidate the origin of the saline component in the Nurra aquifer, may furnish a useful and more general model for the salinization processes in the Mediterranean area, where the occurrence of evaporitic rocks in coastal aquifers is a common feature. In addition, due to intensive human activities and recent climatic changes, the Nurra has become vulnerable to desertification and, similarly to other Mediterranean islands, surface-water resources can periodically suffer from drastic shortage. With this in mind we report new data, regarding brackish waters of Na-Cl type of the Nurra, including major ions and selected trace elements (B, Br, I and Sr) and isotopic data, including δ18O, δD in water, and δ34S and δ18O in dissolved sulphate. To better depict the origin of the salinity we also analyzed a set of Nurra Triassic evaporites for mineralogical and isotopic composition. The brackish waters have Cl contents up to 2025 mg L-1 and the ratios between dissolved ions and chlorine, with the exception of the Br/Cl ratio, are not those expected on the basis of a simple mixing between rain water and seawater. The δ18O and δD data indicate that most of the waters are within the Regional Meteoric Water Line and the Global Meteoric Water Line supporting the idea that they are meteoric in origin. A relevant consequence of the

  18. Tracing groundwater salinization processes in coastal aquifers: a hydrogeochemical and isotopic approach in the Na-Cl brackish waters of northwestern Sardinia, Italy

    NASA Astrophysics Data System (ADS)

    Mongelli, G.; Monni, S.; Oggiano, G.; Paternoster, M.; Sinisi, R.

    2013-07-01

    Throughout the Mediterranean, salinization threatens water quality, especially in coastal areas. This salinization is the result of concomitant processes related to both seawater intrusion and water-rock interaction, which in some cases are virtually indistinguishable. In the Nurra region of northwestern Sardinia, recent salinization related to marine water intrusion has been caused by aquifer exploitation. However, the geology of this region records a long history from the Palaeozoic to the Quaternary, and is structurally complex and comprises a wide variety of lithologies, including Triassic evaporites. Determining the origin of the saline component of the Jurassic and Triassic aquifers in the Nurra region may provide a useful and more general model for salinization processes in the Mediterranean area, where the occurrence of evaporitic rocks in coastal aquifers is a common feature. In addition, due to intensive human activity and recent climatic change, the Nurra has become vulnerable to desertification and, in common with other Mediterranean islands, surface water resources periodically suffer from severe shortages. With this in mind, we report new data regarding brackish and surface waters (outcrop and lake samples) of the Na-Cl type from the Nurra region, including major ions and selected trace elements (B, Br, I, and Sr), in addition to isotopic data including δ18O, δD in water, and δ34S and δ18O in dissolved SO4. To identify the origin of the salinity more precisely, we also analysed the mineralogical and isotopic composition of Triassic evaporites. The brackish waters have Cl contents of up to 2025 mg L-1 , and the ratios between dissolved ions and Cl, with the exception of the Br / Cl ratio, are not those expected on the basis of simple mixing between rainwater and seawater. The δ18O and δD data indicate that most of the waters fall between the regional meteoric water line and the global meteoric water line, supporting the conclusion that they are

  19. Soil organic carbon dynamics in wheat-maize cropping systems of north China: application of isotope approach to long-term experiments

    NASA Astrophysics Data System (ADS)

    Wang, J.; Wang, X.; Xu, M.; Zhang, W.

    2013-12-01

    Soil organic carbon (SOC) in agro-ecosystem is largely influencedby agricultural practices such as croppingand fertilization. However, quantifying the contributions of various crops has been lacking. Here, we applied isotopic approachto study SOC dynamics under wheat-maize rotation with variousfertilization treatments atthree long-term experiment sites innorth China. Three treatments were chosen: no fertilizer (control), chemical nitrogen-phosphorus-potassium (NPK) and NPK plus straw (NPKS).Soil samples were collected from0-20, 20-40, 40-60, 60-80 and 80-100cm after 13 and 20 years of treatment, and SOC and its stable 13C compositions were determined. Generally, SOC content significantly decreased with depths, from 8.2 ×1.4 g kg-1 (in 0-20 cm) to 3.3×1.0 g kg-1 (in 80-100 cm) across all treatments and sites. Soil δ13C values at all depths, treatments and sites ranged from -24.2‰ to -21.6‰, averaged -22.8‰, indicating that ~70% of SOC was derived from wheat and previous C3 plant, and ~30% from maize and previous C4 plant.Both SOC and soil δ13C were significantly affected by fertilization managements, especiallyin 0-40 cm where linear relationship occurred between SOC and estimated C input. Overall, the slop of the linear equation, i.e., conversion efficiency, was four times greater for wheat-derived C relative to that for maize residue C. Our study indicated that maize-derived C contributed less to C sequestration in wheat-maize rotation system of north China. Figure 1. Relationships between SOC stock (0-40 cm) and accumulated C input for wheat (C3), maize (C4) and total. Significance is marked with one (P < 0.05), two (P < 0.01) and three (P < 0.001) asterisks.

  20. Shape coexistence in the neutron-deficient Pt isotopes in the configuration-mixed IBM

    SciTech Connect

    Vargas, Carlos E.; Campuzano, Cuauhtemoc; Morales, Irving O.; Frank, Alejandro; Van Isacker, Piet

    2008-05-12

    The matrix-coherent state approach in the IBM with configuration mixing is used to describe the geometry of neutron-deficient Pt isotopes. Employing a parameter set for all isotopes determined previously, it is found that the lowest minimum goes from spherical to oblate and finally acquires a prolate shape when approaching the mid-shell Pt isotopes.

  1. An enriched stable-isotope approach to determine the gill-zinc binding properties of juvenile rainbow trout (Oncorhynchus mykiss) during acute zinc exposures in hard and soft waters.

    PubMed

    Todd, Andrew S; Brinkman, Stephen; Wolf, Ruth E; Lamothe, Paul J; Smith, Kathleen S; Ranville, James E

    2009-06-01

    The objective of the present study was to employ an enriched stable-isotope approach to characterize Zn uptake in the gills of rainbow trout (Oncorhynchus mykiss) during acute Zn exposures in hard water (approximately 140 mg/L as CaCO3) and soft water (approximately 30 mg/L as CaCO3). Juvenile rainbow trout were acclimated to the test hardnesses and then exposed for up to 72 h in static exposures to a range of Zn concentrations in hard water (0-1000 microg/L) and soft water (0-250 microg/L). To facilitate detection of new gill Zn from endogenous gill Zn, the exposure media was significantly enriched with 67Zn stable isotope (89.60% vs. 4.1% natural abundance). Additionally, acute Zn toxicity thresholds (96-h median lethal concentration [LC50]) were determined experimentally through traditional, flow-through toxicity tests in hard water (580 microg/L) and soft water (110 microg/L). Following short-term (< or =3 h) exposures, significant differences in gill accumulation of Zn between hard and soft water treatments were observed at the three common concentrations (75, 150, and 250 microg/L), with soft water gills accumulating more Zn than hard water gills. Short-term gill Zn accumulation at hard and soft water LCS0s (45-min median lethal accumulation) was similar (0.27 and 0.20 microg/g wet wt, respectively). Finally, comparison of experimental gill Zn accumulation, with accumulation predicted by the biotic ligand model, demonstrated that model output reflected short-term (<1 h) experimental gill Zn accumulation and predicted observed differences in accumulation between hard and soft water rainbow trout gills. Our results indicate that measurable differences exist in short-term gill Zn accumulation following acclimation and exposure in different water hardnesses and that short-term Zn accumulation appears to be predictive of Zn acute toxicity thresholds (96-h LC50s).

  2. An enriched stable-isotope approach to determine the gill-zinc binding properties of juvenile rainbow trout (Oncorhynchus mykiss) during acute zinc exposures in hard and soft waters

    USGS Publications Warehouse

    Todd, A.S.; Brinkman, S.; Wolf, R.E.; Lamothe, P.J.; Smith, K.S.; Ranville, J.F.

    2009-01-01

    The objective of the present study was to employ an enriched stable-isotope approach to characterize Zn uptake in the gills of rainbow trout (Oncorhynchus mykiss) during acute Zn exposures in hard water (???140 mg/L as CaCO 3) and soft water (???30 mg/L as CaCO3). Juvenile rainbow trout were acclimated to the test hardnesses and then exposed for up to 72 h in static exposures to a range of Zn concentrations in hard water (0-1,000 ??g/L) and soft water (0-250 ??g/L). To facilitate detection of new gill Zn from endogenous gill Zn, the exposure media was significantly enriched with 67Zn stable isotope (89.60% vs 4.1% natural abundance). Additionally, acute Zn toxicity thresholds (96-h median lethal concentration [LC50]) were determined experimentally through traditional, flow-through toxicity tests in hard water (580 ??g/L) and soft water (110 ??g/L). Following short-term (???3 h) exposures, significant differences in gill accumulation of Zn between hard and soft water treatments were observed at the three common concentrations (75, 150, and 250 ??g/L), with soft water gills accumulating more Zn than hard water gills. Short-term gill Zn accumulation at hard and soft water LC50s (45-min median lethal accumulation) was similar (0.27 and 0.20 ??g/g wet wt, respectively). Finally, comparison of experimental gill Zn accumulation, with accumulation predicted by the biotic ligand model, demonstrated that model output reflected short-term (<1 h) experimental gill Zn accumulation and predicted observed differences in accumulation between hard and soft water rainbow trout gills. Our results indicate that measurable differences exist in short-term gill Zn accumulation following acclimation and exposure in different water hardnesses and that short-term Zn accumulation appears to be predictive of Zn acute toxicity thresholds (96-h LC50s). ?? 2009 SETAC.

  3. ISOTOPE CONVERSION DEVICE

    DOEpatents

    Wigner, E.P.; Young, G.J.; Ohlinger, L.A.

    1957-12-01

    This patent relates to nuclear reactors of tbe type utilizing a liquid fuel and designed to convert a non-thermally fissionable isotope to a thermally fissionable isotope by neutron absorption. A tank containing a reactive composition of a thermally fissionable isotope dispersed in a liquid moderator is disposed within an outer tank containing a slurry of a non-thermally fissionable isotope convertible to a thermally fissionable isotope by neutron absorption. A control rod is used to control the chain reaction in the reactive composition and means are provided for circulating and cooling the reactive composition and slurry in separate circuits.

  4. Development of a Bayesian approach to assess the probability of concealed active faults using Helium isotope ratios: An example from the western Tottori area, SW Japan

    NASA Astrophysics Data System (ADS)

    Martin, A. J.; Umeda, K.; Ishimaru, T.

    2012-12-01

    In Japan, numerous research projects have been carried out to assess the long-term stability of the geological environment including in particular, the spatio-temporal distribution of volcanism and active faulting in the context siting of a geological repository for the long-term (0.1 - 1 Ma) disposal of high-level radioactive waste. Of particular concern is the existence of active faulting that shows no expression at the surface and thus not necessarily recorded in currently published active fault maps. Recent research carried out in the western Tottori area, southwest Japan, has implied the potential of using He-3/He-4 ratios as a means of providing indirect evidence of the existence of source fault(s) that caused the 6 Oct 2000 Tottori earthquake but which had no apparent surface indication [e.g. Umeda et al. 2011]. This is based on the theory that mantle helium can reach the shallow crustal depths due to faults in the crust acting as pathways [e.g. Kennedy et al. 1997]. Here we introduce a new technique based on Bayesian inference in an effort to quantify this phenomenon and present our preliminary findings. In the Bayesian paradigm, we make a priori assumptions based on the tectonic setting of the study area as a starting point. One a priori assumption could be that 'unknown' faults do not exist far from 'known' faults. Depending on the degree of conservation required in the first step, 2-D a priori probability distributions are calculated using kernel functions with varying values of standard deviation. The recently acquired helium isotope ratios are then combined to the a priori probability distributions using Bayes' rule to produce modified a posteriori probabilities that is expected to better capture the hidden faults. The potential of the methodology to incorporate other information such as GPS data will also be presented and discussed. References Kennedy, B. M., Y. K. Kharaka, W. C. Evans, A. Ellwood, D. J. DePaolo, J. Thordsen, G. Ambats, and R. H

  5. Identifying calcium sources at an acid deposition-impacted spruce forest: A strontium isotope, alkaline earth element multi-tracer approach

    USGS Publications Warehouse

    Bullen, T.D.; Bailey, S.W.

    2005-01-01

    Depletion of calcium from forest soils has important implications for forest productivity and health. Ca is available to fine feeder roots from a number of soil organic and mineral sources, but identifying the primary source or changes of sources in response to environmental change is problematic. We used strontium isotope and alkaline earth element concentration ratios of trees and soils to discern the record of Ca sources for red spruce at a base-poor, acid deposition-impacted watershed. We measured 87Sr/86Sr and chemical compositions of cross-sectional stemwood cores of red spruce, other spruce tissues and sequential extracts of co-located soil samples. 87Sr/86Sr and Sr/Ba ratios together provide a tracer of alkaline earth element sources that distinguishes the plant-available fraction of the shallow organic soils from those of deeper organic and mineral soils. Ca/Sr ratios proved less diagnostic, due to within-tree processes that fractionate these elements from each other. Over the growth period from 1870 to 1960, 87Sr/86Sr and Sr/Ba ratios of stemwood samples became progressively more variable and on average trended toward values that considered together are characteristic of the uppermost forest floor. In detail the stemwood chemistry revealed an episode of simultaneous enhanced uptake of all alkaline earth elements during the growth period from 1930 to 1960, coincident with reported local and regional increases in atmospheric inputs of inorganic acidity. We attribute the temporal trends in stemwood chemistry to progressive shallowing of the effective depth of alkaline earth element uptake by fine roots over this growth period, due to preferential concentration of fine roots in the upper forest floor coupled with reduced nutrient uptake by roots in the lower organic and upper mineral soils in response to acid-induced aluminum toxicity. Although both increased atmospheric deposition and selective weathering of Ca-rich minerals such as apatite provide possible

  6. Understanding the erosion of semi-arid landscapes subject to vegetation change: a combined approach using monitoring, isotope and 14C analysis

    NASA Astrophysics Data System (ADS)

    Brazier, R. E.; Turnbull, L.; Bol, R.; Dixon, L.; Wainwright, J.

    2009-04-01

    The degradation of grasslands is a common problem across semi-arid areas worldwide. Over the last 150 years much of the South-Western USA has experienced significant land degradation, with desert grasslands becoming dominated by shrubs and concurrent changes in runoff and erosion which are thought to propagate further the process of degradation. Field-based experiments were carried out to determine how runoff and erosion vary at stages over a transition from a black grama (Bouteloua eriopoda) grassland to creosotebush (Larrea tridentata) shrubland at the Sevilleta NWR LTER site in New Mexico. 14C and δ13C analyses were carried out to investigate the age and potential provenance of eroded sediment. Results show an overall increase in runoff and erosion over the transition from grassland to shrubland, associated with an increase in connectivity of bare, runoff-generating areas, although these increases do not appear to follow a linear trajectory. Erosion rates increased over the transition from grassland to shrubland, related in part to changes in runoff characteristics and the increased capacity of the runoff to detach, entrain and transport sediment. Over all plots fine material was preferentially eroded which has potential implications for nutrient cycling since nutrients tend to be associated with fine sediment. There are significant differences in the isotopic signatures of eroded sediment between the grass- and shrub-dominated plots. The positive correlation between event runoff and δ13C signatures of eroded sediment that is consistent over plots 1, 3 and 4 suggests that the δ13C signatures can be used to distinguish between changes in erosion dynamics over events of different magnitudes and over different vegetation types. 14C analysis of sediment revealed that sediment eroded from all plots is considerably younger than the surface soils over all plots, which is likely to indicate that eroded sediments tend to source form very near surface areas that are

  7. Isotope pattern deconvolution as rising tool for isotope tracer studies in environmental research

    NASA Astrophysics Data System (ADS)

    Irrgeher, Johanna; Zitek, Andreas; Prohaska, Thomas

    2014-05-01

    During the last decade stable isotope tracers have emerged as versatile tool in ecological research. Besides 'intrinsic' isotope tracers caused by the natural variation of isotopes, the intentional introduction of 'extrinsic' enriched stable isotope tracers into biological systems has gained significant interest. Hereby the induced change in the natural isotopic composition of an element allows amongst others for studying the fate and fluxes of metals, trace elements and species in organisms or provides an intrinsic marker or tag of particular biological samples. Due to the shoreless potential of this methodology, the number of publications dealing with applications of isotope (double) spikes as tracers to address research questions in 'real world systems' is constantly increasing. However, some isotope systems like the natural Sr isotopic system, although potentially very powerful for this type of application, are still rarely used, mainly because their adequate measurement/determination poses major analytical challenges; as e.g. Sr is available in significant amounts in natural samples. In addition, biological systems underlie complex processes such as metabolism, adsorption/desorption or oxidation/reduction. As a consequence, classic evaluation approaches such as the isotope dilution mass spectrometry equation are often not applicable because of the unknown amount of tracer finally present in the sample. Isotope pattern deconvolution (IPD), based on multiple linear regression, serves as simplified alternative data processing strategy to double spike isotope dilution calculations. The outstanding advantage of this mathematical tool lies in the possibility of deconvolving the isotope pattern in a spiked sample without knowing the quantities of enriched isotope tracer being incorporated into the natural sample matrix as well as the degree of impurities and species-interconversion (e.g. from sample preparation). Here, the potential of IPD for environmental tracer

  8. Optimizing Analysis of Stable Isotope Breath Tests to Estimate Gastric Emptying of Solids

    PubMed Central

    Odunsi, Suwebatu T.; Camilleri, Michael; Szarka, Lawrence A.; Zinsmeister, Alan R.

    2009-01-01

    Breath tests using 13C-substrates have been proposed for the measurement of gastric emptying (GE). The mathematical analysis of the breath 13CO2 excretion that most accurately predicts GE t1/2 from simultaneous scintigraphy is unresolved. Aim To compare 5 mathematical methods to estimate GE t½ by breath test (BT) with t½ from simultaneous scintigraphy. Methods Data acquired from a dual-labeled solid-liquid meal containing 99mTc sulfur colloid and 13C-Spirulina platensis from 57 healthy volunteers were used to compare 4 mathematical methods reported in the literature (Ghoos method; generalized linear regression [Viramontes]; linear regression [Szarka]; Wagner-Nelson method) and the total cumulative breath 13CO2 excretion with ≥ 12 breath samples collected over at least 4 hours. The concordance correlation coefficient (CCC) for the t½ results obtained with each method using breath test data was compared with the results obtained with scintigraphy. Results The linear regression and generalized linear regression methods used 5 samples at 45, 90, 120, 150 and 180 minutes. All methods, except for the Wagner-Nelson method, resulted in mean GE t½ that approximated t½ obtained with scintigraphy. The highest CCC was observed with the linear regression method. Simple cumulative excretion of breath 13CO2 provides a better CCC than the Ghoos method. Conclusion The linear regression and generalized linear regression methods (which also require relatively few breath samples) provide the most accurate analyses of breath 13CO2 excretion in stable isotope GEBT. PMID:19309440

  9. Incorporation of 13C labelled root-shoot residues in soil in the presence of Lumbricus terrestris: An isotopic and molecular approach

    NASA Astrophysics Data System (ADS)

    Vidal, Alix; Alexis, Marie; Nguyen Tu, Thanh Tu; Anquetil, Christelle; Vaury, Véronique; Derenne, Sylvie; Quenea, Katell

    2016-04-01

    Litter from plant biomass deposited on soil surface can either be mineralized; releasing CO2 to the atmosphere, or transferred into the soil as organic compounds. Both pathways depend on biotic factors such as litter characteristics and the of soil organism activity. During the last decades, many studies have focused on the origin of organic matter, with a particular attention to the fate of root and shoot litter. It is generally admitted that roots decompose at a slower rate than shoots, resulting in a higher carbon sequestration in soil for compounds originating from roots. Earthworms play a central role in litter decomposition and carbon cycling, ingesting both organic and mineral compounds which are mixed, complexed and dejected in the form of casts at the soil surface or along earthworm burrows. The simultaneous impact of earthworms and root-shoot on soil carbon cycling is still poorly understood. This study aimed at (1) defining the rate of incorporation of root and shoot litter with or without earthworms and (2) characterizing the molecular composition of soil organic matter upon litter decomposition, after one year of experimentation. A mesocosm experiment was set up to follow the incorporation of 13C labelled Ryegrass root and shoot litter in the soil, in the presence of anecic earthworms (Lumbricus terrestris). Soil samples were collected at 0-20 and 40-60 cm, as well as surface casts, at the beginning and after 1, 2, 4, 8, 24 and 54 weeks of experiment. Organic carbon content and δ13C values were determined for all the samples with Elemental Analysis - Isotope Ratio Mass Spectrometry. Lipid-free soil and cast samples after 54 weeks of incubation were analyzed with Pyrolysis-Gas Chromatography-Mass Spectrometry. Pyrolysis products were grouped into six classes: polysaccharides, lignin derived compounds, phenols, N-compounds, aliphatic compounds and sterols. Each pyrolysis product was quantified thanks to its peak area, relative to the total area of the

  10. System and method for high precision isotope ratio destructive analysis

    SciTech Connect

    Bushaw, Bruce A; Anheier, Norman C; Phillips, Jon R

    2013-07-02

    A system and process are disclosed that provide high accuracy and high precision destructive analysis measurements for isotope ratio determination of relative isotope abundance distributions in liquids, solids, and particulate samples. The invention utilizes a collinear probe beam to interrogate a laser ablated plume. This invention provides enhanced single-shot detection sensitivity approaching the femtogram range, and isotope ratios that can be determined at approximately 1% or better precision and accuracy (relative standard deviation).

  11. Hybrid isotope separation scheme

    DOEpatents

    Maya, Jakob

    1991-01-01

    A method of yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which a scavenger, radiating the gas with a wave length or frequency characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photochemical reaction between the scavenger, and collecting the specific isotope-containing chemical by using a recombination surface or by a scooping apparatus.

  12. Hybrid isotope separation scheme

    DOEpatents

    Maya, J.

    1991-06-18

    A method is described for yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which a scavenger, radiating the gas with a wave length or frequency characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photochemical reaction between the scavenger, and collecting the specific isotope-containing chemical by using a recombination surface or by a scooping apparatus. 2 figures.

  13. HYDROGEN ISOTOPE TARGETS

    DOEpatents

    Ashley, R.W.

    1958-08-12

    The design of targets for use in the investigation of nuclear reactions of hydrogen isotopes by bombardment with accelerated particles is described. The target con struction eomprises a backing disc of a metal selected from the group consisting of molybdenunn and tungsten, a eoating of condensed titaniunn on the dise, and a hydrogen isotope selected from the group consisting of deuterium and tritium absorbed in the coatiag. The proeess for preparing these hydrogen isotope targets is described.

  14. PRINCIPAL ISOTOPE SELECTION REPORT

    SciTech Connect

    K. D. Wright

    1998-08-28

    Utilizing nuclear fuel to produce power in commercial reactors results in the production of hundreds of fission product and transuranic isotopes in the spent nuclear fuel (SNF). When the SNF is disposed of in a repository, the criticality analyses could consider all of the isotopes, some principal isotopes affecting criticality, or none of the isotopes, other than the initial loading. The selected set of principal isotopes will be the ones used in criticality analyses of the SNF to evaluate the reactivity of the fuel/waste package composition and configuration. This technical document discusses the process used to select the principal isotopes and the possible affect that these isotopes could have on criticality in the SNF. The objective of this technical document is to discuss the process used to select the principal isotopes for disposal criticality evaluations with commercial SNF. The principal isotopes will be used as supporting information in the ''Disposal Criticality Analysis Methodology Topical Report'' which will be presented to the United States Nuclear Regulatory Commission (NRC) when approved by the United States Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM).

  15. Reactive transport modeling of Li isotope fractionation

    NASA Astrophysics Data System (ADS)

    Wanner, C.; Sonnenthal, E. L.

    2013-12-01

    The fractionation of Li isotopes has been used as a proxy for interaction processes between silicate rocks and any kind of fluids. In particular, Li isotope measurements are powerful because Li is almost exclusively found in silicate minerals. Moreover, the two stable Li isotopes, 6Li and 7Li, differ by 17% in mass introducing a large mass dependent isotope fractionation even at high temperature. Typical applications include Li isotope measurements along soil profiles and of river waters to track silicate weathering patterns and Li isotope measurements of geothermal wells and springs to assess water-rock interaction processes in geothermal systems. For this contribution we present a novel reactive transport modeling approach for the simulation of Li isotope fractionation using the code TOUGHREACT [1]. It is based on a 6Li-7Li solid solution approach similar to the one recently described for simulating Cr isotope fractionation [2]. Model applications include the simulation of granite weathering along a 1D flow path as well as the simulation of a column experiment related to an enhanced geothermal system. Results show that measured δ7Li values are mainly controlled by (i) the degree of interaction between Li bearing primary silicate mineral phases (e.g., micas, feldspars) and the corresponding fluid, (ii) the Li isotope fractionation factor during precipitation of secondary mineral phases (e.g., clays), (iii) the Li concentration in primary and secondary Li bearing mineral phases and (iv) the proportion of dissolved Li that adsorbs to negatively charged surfaces (e.g., clays, Fe/Al-hydroxides). To date, most of these parameters are not very well constrained. Reactive transport modeling thus currently has to rely on many assumptions. Nevertheless, such models are powerful because they are the only viable option if individual contributions of all potential processes on the resulting (i.e., measured) Li isotopic ratio have to be quantitatively assessed. Accordingly, we

  16. Heavy atom labeled nucleotides for measurement of kinetic isotope effects.

    PubMed

    Weissman, Benjamin P; Li, Nan-Sheng; York, Darrin; Harris, Michael; Piccirilli, Joseph A

    2015-11-01

    Experimental analysis of kinetic isotope effects represents an extremely powerful approach for gaining information about the transition state structure of complex reactions not available through other methodologies. The implementation of this approach to the study of nucleic acid chemistry requires the synthesis of nucleobases and nucleotides enriched for heavy isotopes at specific positions. In this review, we highlight current approaches to the synthesis of nucleic acids enriched site specifically for heavy oxygen and nitrogen and their application in heavy atom isotope effect studies. This article is part of a special issue titled: Enzyme Transition States from Theory and Experiment.

  17. Isotopically engineered semiconductors

    NASA Astrophysics Data System (ADS)

    Haller, E. E.

    1995-04-01

    Scientific interest, technological promise, and increased availability of highly enriched isotopes have led to a sharp rise in the number of experimental and theoretical studies with isotopically controlled semiconductor crystals. This review of mostly recent activities begins with an introduction to some past classical experiments which have been performed on isotopically controlled semiconductors. A review of the natural isotopic composition of the relevant elements follows. Some materials aspects resulting in part from the high costs of enriched isotopes are discussed next. Raman spectroscopy studies with a number of isotopically pure and deliberately mixed Ge bulk crystals show that the Brillouin-zone-center optical phonons are not localized. Their lifetime is almost independent of isotopic disorder, leading to homogeneous Raman line broadening. Studies with short period isotope superlattices consisting of alternating layers of n atomic planes of 70Ge and 74Ge reveal a host of zone-center phonons due to Brillouin-zone folding. At n≳40 one observes two phonon lines at frequencies corresponding to the bulk values of the two isotopes. In natural diamond, isotope scattering of the low-energy phonons, which are responsible for the thermal conductivity, is very strongly affected by small isotope disorder. Isotopically pure 12C diamond crystals exhibit thermal conductivities as high as 410 W cm-1 K-1 at 104 K, leading to projected values of over 2000 W cm-1 K-1 near 80 K. The changes in phonon properties with isotopic composition also weakly affect the electronic band structures and the lattice constants. The latter isotope dependence is most relevant for future standards of length based on crystal lattice constants. Capture of thermal neutrons by isotope nuclei followed by nuclear decay produces new elements, resulting in a very large number of possibilities for isotope selective doping of semiconductors. This neutron transmutation of isotope nuclei, already used

  18. Isotopic Fractionation of Selenium Oxyanions in Wetlands

    NASA Astrophysics Data System (ADS)

    Clark, S. K.; Johnson, T. M.

    2004-05-01

    As oxic surface waters pass through aquatic macrophytes and over anoxic sediments in wetlands and lakes, the dissolved Se load often decreases; and, Se isotope ratio measurements can provide information about the mechanisms involved. Previous work on microbially induced isotopic fractionation of Se oxyanions under nearly natural conditions using wetland sediments shows consistent Se isotopic shifts during reduction of Se(VI) and Se(IV) to insoluble Se(0). However, previous isotopic studies of total dissolved selenium in wetlands found little to no isotopic shift as dissolved selenium concentrations decreased. This suggests that plant/algal uptake, followed by deposition and degradation, is the primary route of Se transfer into sediments. However, it is possible that the effective isotopic fractionation between Se in the surface water and Se deposited into sediments is somehow much less than the fractionation induced by the reduction reaction, or that cycling of organically bound Se is involved. In this study, we report Se isotope data for Se(VI), Se(IV) and total dissolved Se, Se(T), in surface waters from three wetland/lake sites: Sweitzer Lake, CO; 33-Mile Reservoir, WY; and, a small pond adjacent to Benton Lake, MT. We isolated Se(IV) via hydride generation, and Se(VI) via ion exchange. Se(T), including any organic components, was also analyzed. Isotope analysis was performed on an Isoprobe MC-ICPMS, using a method modified from that of Rouxel et al. (2002). We used the 82Se + 74Se double spike approach, and spiked samples before species separation. Our results for all three locations indicate similar trends in concentration changes and isotopic shifts between the inflow and outflow waters. Se(T) concentrations decrease by 45-70%, and Se(VI) concentrations decrease by 60-90%, whereas Se(IV) concentrations increase by 60-150%. Concomitant 80Se/76Se shifts are +0.5-0.8‰ for Se(T); -0.1-0.5‰ for Se(VI); and +0.4-6.5‰ for Se(IV). These data provide greater

  19. Laser ablation molecular isotopic spectrometry of carbon isotopes

    NASA Astrophysics Data System (ADS)

    Bol‧shakov, Alexander A.; Mao, Xianglei; Jain, Jinesh; McIntyre, Dustin L.; Russo, Richard E.

    2015-11-01

    Quantitative determination of carbon isotopes using Laser Ablation Molecular Isotopic Spectrometry (LAMIS) is described. Optical emission of diatomic molecules CN and C2 is used in these measurements. Two quantification approaches are presented: empirical calibration of spectra using a set of reference standards and numerical fitting of a simulated spectrum to the experimental one. Formation mechanisms of C2 and CN in laser ablation plasma are briefly reviewed to provide insights for implementation of LAMIS measurements. A simulated spectrum of the 12C2 Swan system was synthesized using four constituents within 473.5-476.5 nm. Simulation included three branches of 12C2 (1-0), branches R(0-0) and R(1-1), and branch P(9-8) of 12C2. Spectral positions of the tail lines in R(0-0) and R(1-1) were experimentally measured, since they were not accurately known before. The Swan band (1-0) of the isotopologue 13C12C was also simulated. Fitting to the experimental spectrum yielded the ratio 13C/12C = 1.08% in a good agreement with measurements by isotope ratio mass spectrometry. LAMIS promises to be useful in coal, oil and shale exploration, carbon sequestration monitoring, and agronomy studies.

  20. Intracellular Cadmium Isotope Fractionation

    NASA Astrophysics Data System (ADS)

    Horner, T. J.; Lee, R. B.; Henderson, G. M.; Rickaby, R. E.

    2011-12-01

    Recent stable isotope studies into the biological utilization of transition metals (e.g. Cu, Fe, Zn, Cd) suggest several stepwise cellular processes can fractionate isotopes in both culture and nature. However, the determination of fractionation factors is often unsatisfactory, as significant variability can exist - even between different organisms with the same cellular functions. Thus, it has not been possible to adequately understand the source and mechanisms of metal isotopic fractionation. In order to address this problem, we investigated the biological fractionation of Cd isotopes within genetically-modified bacteria (E. coli). There is currently only one known biological use or requirement of Cd, a Cd/Zn carbonic anhydrase (CdCA, from the marine diatom T. weissfloggii), which we introduce into the E. coli genome. We have also developed a cleaning procedure that allows for the treating of bacteria so as to study the isotopic composition of different cellular components. We find that whole cells always exhibit a preference for uptake of the lighter isotopes of Cd. Notably, whole cells appear to have a similar Cd isotopic composition regardless of the expression of CdCA within the E. coli. However, isotopic fractionation can occur within the genetically modified E. coli during Cd use, such that Cd bound in CdCA can display a distinct isotopic composition compared to the cell as a whole. Thus, the externally observed fractionation is independent of the internal uses of Cd, with the largest Cd isotope fractionation occurring during cross-membrane transport. A general implication of these experiments is that trace metal isotopic fractionation most likely reflects metal transport into biological cells (either actively or passively), rather than relating to expression of specific physiological function and genetic expression of different metalloenzymes.

  1. Discovery of the krypton isotopes

    SciTech Connect

    Heim, M.; Fritsch, A.; Schuh, A.; Shore, A.; Thoennessen, M.

    2010-07-15

    Thirty-two krypton isotopes have been observed so far and the discovery of these isotopes is discussed here. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  2. Calculation of individual isotope equilibrium constants for geochemical reactions

    USGS Publications Warehouse

    Thorstenson, D.C.; Parkhurst, D.L.

    2004-01-01

    factors. The derivations can be extended to calculation of individual isotope equilibrium constants for ion pairs and equilibrium constants for isotopic species of other chemical elements. The individual isotope approach calculates the same phase isotopic compositions as existing methods, but also provides concentrations of individual species, which are needed in calculations of mass-dependent effects in transport processes. The equilibrium constants derived in this paper are used to calculate the example of gas-water equilibrium for CO2 in an acidic aqueous solution. ?? 2004 Elsevier Ltd.

  3. Quantification of isotopic turnover in agricultural systems

    NASA Astrophysics Data System (ADS)

    Braun, A.; Auerswald, K.; Schnyder, H.

    2012-04-01

    The isotopic turnover, which is a proxy for the metabolic rate, is gaining scientific importance. It is quantified for an increasing range of organisms, from microorganisms over plants to animals including agricultural livestock. Additionally, the isotopic turnover is analyzed on different scales, from organs to organisms to ecosystems and even to the biosphere. In particular, the quantification of the isotopic turnover of specific tissues within the same organism, e.g. organs like liver and muscle and products like milk and faeces, has brought new insights to improve understanding of nutrient cycles and fluxes, respectively. Thus, the knowledge of isotopic turnover is important in many areas, including physiology, e.g. milk synthesis, ecology, e.g. soil retention time of water, and medical science, e.g. cancer diagnosis. So far, the isotopic turnover is quantified by applying time, cost and expertise intensive tracer experiments. Usually, this comprises two isotopic equilibration periods. A first equilibration period with a constant isotopic input signal is followed by a second equilibration period with a distinct constant isotopic input signal. This yields a smooth signal change from the first to the second signal in the object under consideration. This approach reveals at least three major problems. (i) The input signals must be controlled isotopically, which is almost impossible in many realistic cases like free ranging animals. (ii) Both equilibration periods may be very long, especially when the turnover rate of the object under consideration is very slow, which aggravates the first problem. (iii) The detection of small or slow pools is improved by large isotopic signal changes, but large isotopic changes also involve a considerable change in the input material; e.g. animal studies are usually carried out as diet-switch experiments, where the diet is switched between C3 and C4 plants, since C3 and C4 plants differ strongly in their isotopic signal. The

  4. (Carbon isotope fractionation inplants)

    SciTech Connect

    O'Leary, M.H.

    1990-01-01

    The objectives of this research are: To develop a theoretical and experimental framework for understanding isotope fractionations in plants; and to develop methods for using this isotope fractionation for understanding the dynamics of CO{sub 2} fixation in plants. Progress is described.

  5. Stable isotope ratios of rain and vapor in 1995 hurricanes

    NASA Astrophysics Data System (ADS)

    Lawrence, James Robert; Gedzelman, Stanley David; Zhang, Xiaoping; Arnold, Robert

    1998-05-01

    Isotope ratios of rain and vapor samples collected at the surface from four tropical cyclones during the active 1995 Atlantic hurricane season were determined. A two-dimensional bulk microphysics isotope model was applied to steady symmetric tropical cyclones to explain the observed low mean values and inward decrease of isotope ratios of the rain and vapor. The low mean value is caused by the tropical cyclone's relatively large size, longevity, and deep clouds. The inward decrease is due to diffusive isotope exchange between falling rain and converging vapor in the atmospheric boundary layer. Dean, a minimal tropical storm, produced relatively high isotope ratios because of its small size and youth. Rains from the extreme outer edge of Felix, a category 3 hurricane, exhibited high isotope ratios similar to normal summer rain. Isotope ratios of rains and vapors from Hurricane Luis in Puerto Rico decreased as the storm approached. Isotope ratios of rain exhibited an abrupt jump from low values in the eastern half of Puerto Rico to high values farther west which is linked to the storm's rainbands. Isotope ratios of Hurricane Opal's rains reflected the storm's asymmetric structure, with lowest values west of the point of landfall. Record low isotope ratios from a squall line that struck eastern Texas two days before landfall are linked to low-level outflow from Opal and demonstrate that hurricanes can vent enormous quantities of vapor to the surroundings.

  6. Laser isotope separation

    DOEpatents

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Boyer, Keith; Greiner, Norman R.

    1988-01-01

    A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

  7. Photochemical isotope separation

    DOEpatents

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Greiner, Norman R.; Boyer, Keith

    1987-01-01

    A process for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium.

  8. Photochemical isotope separation

    DOEpatents

    Robinson, C.P.; Jensen, R.J.; Cotter, T.P.; Greiner, N.R.; Boyer, K.

    1987-04-28

    A process is described for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium. 8 figs.

  9. Laser isotope separation

    DOEpatents

    Robinson, C.P.; Reed, J.J.; Cotter, T.P.; Boyer, K.; Greiner, N.R.

    1975-11-26

    A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light is described. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

  10. Assessing methane oxidation under landfill covers and its contribution to the above atmospheric CO{sub 2} levels: The added value of the isotope ({delta}{sup 13}C and {delta}{sup 18}O CO{sub 2}; {delta}{sup 13}C and {delta}D CH{sub 4}) approach

    SciTech Connect

    Widory, D.; Proust, E.; Bellenfant, G.; Bour, O.

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Comparison of the isotope and mass balance approaches to evaluate the level of methane oxidation within a landfill. Black-Right-Pointing-Pointer The level of methane oxidation is not homogenous under the landfill cover and is strongly correlated to the methane flux. Black-Right-Pointing-Pointer Isotope tracking of the contribution of the methane oxidation to the CO{sub 2} concentrations in the ambient air. - Abstract: We are presenting here a multi-isotope approach ({delta}{sup 13}C and {delta}{sup 18}O of CO{sub 2}; {delta}{sup 13}C and {delta}D of CH{sub 4}) to assess (i) the level(s) of methane oxidation during waste biodegradation and its migration through a landfill cover in Sonzay (France), and (ii) its contribution to the atmospheric CO{sub 2} levels above the surface. The isotope approach is compared to the more conventional mass balance approach. Results from the two techniques are comparable and show that the CH{sub 4} oxidation under the landfill cover is heterogenous, with low oxidation percentages in samples showing high biogas fluxes, which was expected in clay covers presenting fissures, through which CH{sub 4} is rapidly transported. At shallow depth, more immobile biogas pockets show a higher level of CH{sub 4} oxidation by the methanotrophic bacteria. {delta}{sup 13}C of CO{sub 2} samples taken at different heights (from below the cover up to 8 m above the ground level) were also used to identify and assess the relative contributions of its main sources both under the landfill cover and in the surrounding atmosphere.

  11. Combining solvent isotope effects with substrate isotope effects in mechanistic studies of alcohol and amine oxidation by enzymes.

    PubMed

    Fitzpatrick, Paul F

    2015-11-01

    Oxidation of alcohols and amines is catalyzed by multiple families of flavin- and pyridine nucleotide-dependent enzymes. Measurement of solvent isotope effects provides a unique mechanistic probe of the timing of the cleavage of the OH and NH bonds, necessary information for a complete description of the catalytic mechanism. The inherent ambiguities in interpretation of solvent isotope effects can be significantly decreased if isotope effects arising from isotopically labeled substrates are measured in combination with solvent isotope effects. The application of combined solvent and substrate (mainly deuterium) isotope effects to multiple enzymes is described here to illustrate the range of mechanistic insights that such an approach can provide. This article is part of a Special Issue entitled: Enzyme Transition States from Theory and Experiment.

  12. Mg Isotopes of the Late Permian Evaporites, New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Feng, C.; Gao, C. H.; Chang, S. C.

    2015-12-01

    Mg isotope holds promise to decipher the evaporative environment of evaporites. High-precision Mg isotope compositions of the late Permian langbeinites have been measured by using MC-ICPMS. The equilibrium Mg isotope fractionation factor between langbeinite and aqueous Mg2+ solutions has been determined using quantum chemistry calculations. All computations are employed at B3LYP/6-311++G(2d,2p) level and solvation effects are treated by solvent model ("water-droplet" approach), mineral structures are constructed using volume variable cluster models (VVCM). The Mg isotope compositions of the langbeinite samples, whose total formation thickness ranges up to 100 meters, are extremely isotopically lighter than that of modern seawater and relatively homogeneous (δ26MgDSM3 is from -4.12±0.03‰ to -3.81±0.07‰ v.s. -0.83‰ of modern seawater). The computed equilibrium Mg isotope fractionation factors between langbeinite and aqueous Mg2+ solutions are -2.73‰, -2.66‰ and -2.53‰ at 25, 30 and 40 ℃, respectively. These significant equilibrium fractionation factors indicate that a huge equilibrium Mg isotope fractionation between langbeinite and its parent brine can happen during langbeinite depositions, and langbeinites are enriched in isotopically light 24Mg comparing to the brine. Using the computed fractionation factors to simulate a Rayleigh fractionation process of langbeinite Mg precipitation, we find that a significant Mg isotope difference between langbeinite and its growing brine (seawater) is indeed present but the Mg isotope composition of langbeinite merely increase monotonically in a closed system. Because of that, the homogenous Mg isotope compositions of such a thick evaporite sequence suggest a disequlibrium effect rather than an equilibrium Mg isotope fractionation behavior during its formation. Combined with its prevailing Mg-bearing character, the homogenous Mg isotope compositions reveal that this the late Permian langbeinite sequence has

  13. Diffusive Fractionation of Lithium Isotopes in Olivine

    NASA Astrophysics Data System (ADS)

    Homolova, V.; Richter, F. M.; Watson, E. B.; Chaussidon, M.

    2014-12-01

    Systematic lithium isotope variations along concentration gradients found in olivine and pyroxene grains from terrestrial, lunar and martian rocks have been attributed to diffusive isotopic fractionation [Beck et al., 2006; Tang et al., 2007]. In some cases, these isotopic excursions are so large that a single grain may display isotopic variability that spans almost the entire range of documented terrestrial values [Jeffcoate et al., 2007]. In this study, we present the results of experiments to examine diffusive isotopic fractionation of lithium in olivine. The experiments comprised crystallographically oriented slabs of San Carlos olivine juxtaposed with either spodumene powder or a lithium rich pyroxene crystal. Experiments were conducted at 1 GPa and 0.1MPa over a temperature range of 1000 to 1125⁰C. Oxygen fugacity in the 0.1MPa experiments was controlled using the wustite-magnetite and nickel-nickel oxide solid buffer assemblages. Lithium concentrations generally decrease smoothly away from the edges of the grains; however, experiments involving diffusion parallel to the a-axis consistently show peculiar wavy or segmented concentration profiles. Lithium diffusivity parallel to the c-axis is on the order of 1E-14m2/s at 1100⁰C. The diffusivity parallel to the c-axis is more than an order of magnitude faster than diffusion parallel to the b-axis and correlates positively with oxygen fugacity. The lithium isotopic composition, δ7Li = 1000‰ * ((δ7Lisample- δ7Ligrain center)/ δ7Ligrain center), shows a decrease away from the edge of the grain to a minimum value (up to 70‰ lighter) and then an abrupt increase back to the initial isotopic composition of the olivine grain. This isotopic profile is similar to those found in natural grains and an experimental study on diffusive fractionation of lithium isotopes in pyroxene [Richter et al., 2014]. Results from the present study are modeled using the approach of Dohmen et al. [2010], which assumes lithium

  14. Isotope hydrology of catchment basins: lithogenic and cosmogenic isotopic systems

    SciTech Connect

    Nimz, G. J., LLNL

    1998-06-01

    also be treated as a mostly closed system for mass balance considerations. It is the near closure of the system that permits well- constrained chemical mass balance calculations to be made. These calculations generally focus of lithogenic solutes, and therefore in our discussions of lithogenic nuclides in the paper, the concept of chemical mass balance in a nearly dosed system will play an important role. Examination of the isotopic compositions of solutes provides a better understanding of the variety of processes controlling mass balance. It is with this approach that we examined the variety of processes occurring within the catchment system, such as weathering and soil production, generation of stormflow and streamflow (hydrograph separation), movement of soil pore water, groundwater flow, and the overall processes involved with basinal water balance. In this paper, the term `nuclide` will be used when referring to a nuclear species that contains a particular number of protons and neutrons. The term is not specific to any element. The term `isotope` will be used to distinguish nuclear species of a given element (atoms with the same number of protons). That is to say, there are many nuclides in nature - for example, {sup 36}Cl, {sup 87}Sr, {sup 238}U; the element has four naturally-occurring isotopes - {sup 87}Sr, and {sup 88}Sr. This paper will first discuss the general principles that underlie the study of lithogenic and cosmogenic nuclides in hydrology, and provide references to some of the more important studies applying these principles and nuclides. We then turn in the second section to a discussion of their specific applications in catchment- scale systems. The final section of this paper discusses new directions in the application of lithogenic and cosmogenic nuclides to catchment hydrology, with some thoughts concerning possible applications that still remain unexplored.

  15. Highly sensitive isotope-dilution liquid-chromatography-electrospray ionization-tandem-mass spectrometry approach to study the drug-mediated modulation of dopamine and serotonin levels in Caenorhabditis elegans.

    PubMed

    Schumacher, Fabian; Chakraborty, Sudipta; Kleuser, Burkhard; Gulbins, Erich; Schwerdtle, Tanja; Aschner, Michael; Bornhorst, Julia

    2015-11-01

    Dopamine (DA) and serotonin (SRT) are monoamine neurotransmitters that play a key role in regulating the central and peripheral nervous system. Their impaired metabolism has been implicated in several neurological disorders, such as Parkinson's disease and depression. Consequently, it is imperative to monitor changes in levels of these low-abundant neurotransmitters and their role in mediating disease. For the first time, a rapid, specific and sensitive isotope-dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantification of DA and SRT in the nematode Caenorhabditis elegans (C. elegans). This model organism offers a unique approach for studying the effect of various drugs and environmental conditions on neurotransmitter levels, given by the conserved DA and SRT biology, including synaptic release, trafficking and formation. We introduce a novel sample preparation protocol incorporating the usage of sodium thiosulfate in perchloric acid as extraction medium that assures high recovery of the relatively unstable neurotransmitters monitored. Moreover, the use of both deuterated internal standards and the multiple reaction monitoring (MRM) technique allows for unequivocal quantification. Thereby, to the best of our knowledge, we achieve a detection sensitivity that clearly exceeds those of published DA and SRT quantification methods in various matrices. We are the first to show that exposure of C. elegans to the monoamine oxidase B (MAO-B) inhibitor selegiline or the catechol-O-methyltransferase (COMT) inhibitor tolcapone, in order to block DA and SRT degradation, resulted in accumulation of the respective neurotransmitter. Assessment of a behavioral output of the dopaminergic system (basal slowing response) corroborated the analytical LC-MS/MS data. Thus, utilization of the C. elegans model system in conjunction with our analytical method is well-suited to investigate drug-mediated modulation of the DA and

  16. Highly sensitive isotope-dilution liquid-chromatography-electrospray ionization-tandem-mass spectrometry approach to study the drug-mediated modulation of dopamine and serotonin levels in Caenorhabditis elegans.

    PubMed

    Schumacher, Fabian; Chakraborty, Sudipta; Kleuser, Burkhard; Gulbins, Erich; Schwerdtle, Tanja; Aschner, Michael; Bornhorst, Julia

    2015-11-01

    Dopamine (DA) and serotonin (SRT) are monoamine neurotransmitters that play a key role in regulating the central and peripheral nervous system. Their impaired metabolism has been implicated in several neurological disorders, such as Parkinson's disease and depression. Consequently, it is imperative to monitor changes in levels of these low-abundant neurotransmitters and their role in mediating disease. For the first time, a rapid, specific and sensitive isotope-dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantification of DA and SRT in the nematode Caenorhabditis elegans (C. elegans). This model organism offers a unique approach for studying the effect of various drugs and environmental conditions on neurotransmitter levels, given by the conserved DA and SRT biology, including synaptic release, trafficking and formation. We introduce a novel sample preparation protocol incorporating the usage of sodium thiosulfate in perchloric acid as extraction medium that assures high recovery of the relatively unstable neurotransmitters monitored. Moreover, the use of both deuterated internal standards and the multiple reaction monitoring (MRM) technique allows for unequivocal quantification. Thereby, to the best of our knowledge, we achieve a detection sensitivity that clearly exceeds those of published DA and SRT quantification methods in various matrices. We are the first to show that exposure of C. elegans to the monoamine oxidase B (MAO-B) inhibitor selegiline or the catechol-O-methyltransferase (COMT) inhibitor tolcapone, in order to block DA and SRT degradation, resulted in accumulation of the respective neurotransmitter. Assessment of a behavioral output of the dopaminergic system (basal slowing response) corroborated the analytical LC-MS/MS data. Thus, utilization of the C. elegans model system in conjunction with our analytical method is well-suited to investigate drug-mediated modulation of the DA and

  17. Meteoritic Sulfur Isotopic Analysis

    NASA Technical Reports Server (NTRS)

    Thiemens, Mark H.

    1996-01-01

    Funds were requested to continue our program in meteoritic sulfur isotopic analysis. We have recently detected a potential nucleosynthetic sulfur isotopic anomaly. We will search for potential carriers. The documentation of bulk systematics and the possible relation to nebular chemistry and oxygen isotopes will be explored. Analytical techniques for delta(sup 33), delta(sup 34)S, delta(sup 36)S isotopic analysis were improved. Analysis of sub milligram samples is now possible. A possible relation between sulfur isotopes and oxygen was detected, with similar group systematics noted, particularly in the case of aubrites, ureilites and entstatite chondrites. A possible nucleosynthetic excess S-33 has been noted in bulk ureilites and an oldhamite separate from Norton County. High energy proton (approximately 1 GeV) bombardments of iron foils were done to experimentally determine S-33, S-36 spallogenic yields for quantitation of isotopic measurements in iron meteorites. Techniques for measurement of mineral separates were perfected and an analysis program initiated. The systematic behavior of bulk sulfur isotopes will continue to be explored.

  18. Isotopically controlled semiconductors

    SciTech Connect

    Haller, Eugene E.

    2006-06-19

    The following article is an edited transcript based on the Turnbull Lecture given by Eugene E. Haller at the 2005 Materials Research Society Fall Meeting in Boston on November 29, 2005. The David Turnbull Lectureship is awarded to recognize the career of a scientist who has made outstanding contributions to understanding materials phenomena and properties through research, writing, and lecturing, as exemplified by the life work of David Turnbull. Haller was named the 2005 David Turnbull Lecturer for his 'pioneering achievements and leadership in establishing the field of isotopically engineered semiconductors; for outstanding contributions to materials growth, doping and diffusion; and for excellence in lecturing, writing, and fostering international collaborations'. The scientific interest, increased availability, and technological promise of highly enriched isotopes have led to a sharp rise in the number of experimental and theoretical studies with isotopically controlled semiconductor crystals. This article reviews results obtained with isotopically controlled semiconductor bulk and thin-film heterostructures. Isotopic composition affects several properties such as phonon energies, band structure, and lattice constant in subtle, but, for their physical understanding, significant ways. Large isotope-related effects are observed for thermal conductivity in local vibrational modes of impurities and after neutron transmutation doping. Spectacularly sharp photoluminescence lines have been observed in ultrapure, isotopically enriched silicon crystals. Isotope multilayer structures are especially well suited for simultaneous self- and dopant-diffusion studies. The absence of any chemical, mechanical, or electrical driving forces makes possible the study of an ideal random-walk problem. Isotopically controlled semiconductors may find applications in quantum computing, nanoscience, and spintronics.

  19. ISOTOPE SEPARATING APPARATUS

    DOEpatents

    Kudravetz, M.K.; Greene, H.B.

    1958-09-16

    This patent relates to control systems for a calutron and, in particular, describes an electro-mechanical system for interrupting the collection of charged particles when the ratio between the two isotopes being receivcd deviates from a predetermined value. One embodiment of the invention includes means responsive to the ratio between two isotopes being received for opening a normally closed shutter over the receiver entrance when the isotope ratio is the desired value. In another form of the invention the collection operation is interrupted by changing the beam accelerating voltage to deflect the ion beam away from the receiver.

  20. Carbon isotope techniques

    SciTech Connect

    Coleman, D.C. ); Fry, B. )

    1991-01-01

    This book is a hands-on introduction to using carbon isotope tracers in experimental biology and ecology. It is a bench-top reference with protocols for the study of plants, animals, and soils. The {sup 11}C, {sup 12}C, {sup 13}C, and {sup 14}C carbon isotopes are considered and standard techniques are described by established authors. The compilation includes the following features: specific, well-established, user-oriented techniques; carbon cycles in plants, animals, soils, air, and water; isotopes in ecological research; examples and sample calculations.

  1. Plasma isotope separation methods

    SciTech Connect

    Grossman, M.W. ); Shepp, T.A. )

    1991-12-01

    Isotope separation has many important industrial, medical, and research applications. Large-scale processes have typically utilized complex cascade systems; for example, the gas centrifuge. Alternatively, high single-stage enrichment processes (as in the case of the calutron) are very energy intensive. Plasma-based methods being developed for the past 15 to 20 years have attempted to overcome these two drawbacks. In this review, six major types of isotope separation methods which involve plasma phenomena are discussed. These methods are: plasma centrifuge, AVLIS (atomic vapor laser isotope separation), ion wave, ICR (ion-cyclotron resonance), calutron, and gas discharge. The emphasis of this paper is to describe the plasma phenomena in these major categories. An attempt was made to include enough references so that more detailed study or evaluation of a particular method could readily be pursued. A brief discussion of isotope separation using mass balance concepts is also carried out.

  2. Stable isotopes in mineralogy

    USGS Publications Warehouse

    O'Neil, J.R.

    1977-01-01

    Stable isotope fractionations between minerals are functions of the fundamental vibrational frequencies of the minerals and therefore bear on several topics of mineralogical interest. Isotopic compositions of the elements H, C, O, Si, and S can now be determined routinely in almost any mineral. A summary has been made of both published and new results of laboratory investigations, analyses of natural materials, and theoretical considerations which bear on the importance of temperature, pressure, chemical composition and crystal structure to the isotopic properties of minerals. It is shown that stable isotope studies can sometimes provide evidence for elucidating details of crystal structure and can be a powerful tool for use in tracing the reaction paths of mineralogical reactions. ?? 1977 Springer-Verlag.

  3. Isotopically controlled semiconductors

    SciTech Connect

    Haller, E.E.

    2004-11-15

    A review of recent research involving isotopically controlled semiconductors is presented. Studies with isotopically enriched semiconductor structures experienced a dramatic expansion at the end of the Cold War when significant quantities of enriched isotopes of elements forming semiconductors became available for worldwide collaborations. Isotopes of an element differ in nuclear mass, may have different nuclear spins and undergo different nuclear reactions. Among the latter, the capture of thermal neutrons which can lead to neutron transmutation doping, can be considered the most important one for semiconductors. Experimental and theoretical research exploiting the differences in all the properties has been conducted and will be illustrated with selected examples. Manuel Cardona, the longtime editor-in-chief of Solid State Communications has been and continues to be one of the major contributors to this field of solid state physics and it is a great pleasure to dedicate this review to him.

  4. Perchlorate isotope forensics.

    PubMed

    Böhlke, John Karl; Sturchio, Neil C; Gu, Baohua; Horita, Juske; Brown, Gilbert M; Jackson, W Andrew; Batista, Jacimaria; Hatzinger, Paul B

    2005-12-01

    Perchlorate has been detected recently in a variety of soils, waters, plants, and food products at levels that may be detrimental to human health. These discoveries have generated considerable interest in perchlorate source identification. In this study, comprehensive stable isotope analyses (37Cl/35Cl and 18O/17O/16O) of perchlorate from known synthetic and natural sources reveal systematic differences in isotopic characteristics that are related to the formation mechanisms. In addition, isotopic analyses of perchlorate extracted from groundwater and surface water demonstrate the feasibility of identifying perchlorate sources in contaminated environments on the basis of this technique. Both natural and synthetic sources of perchlorate have been identified in water samples from some perchlorate occurrences in the United States by the isotopic method. PMID:16316196

  5. Rare Isotope Accelerators

    NASA Astrophysics Data System (ADS)

    Savard, Guy

    2002-04-01

    The next frontier for low-energy nuclear physics involves experimentation with accelerated beams of short-lived radioactive isotopes. A new facility, the Rare Isotope Accelerator (RIA), is proposed to produce large amount of these rare isotopes and post-accelerate them to energies relevant for studies in nuclear physics, astrophysics and the study of fundamental interactions at low energy. The basic science motivation for this facility will be introduced. The general facility layout, from the 400 kW heavy-ion superconducting linac used for production of the required isotopes to the novel production and extraction schemes and the highly efficient post-accelerator, will be presented. Special emphasis will be put on a number of technical breakthroughs and recent R&D results that enable this new facility.

  6. Perchlorate isotope forensics

    USGS Publications Warehouse

    Böhlke, J.K.; Sturchio, N.C.; Gu, B.; Horita, J.; Brown, G.M.; Jackson, W.A.; Batista, J.; Hatzinger, P.B.

    2005-01-01

    Perchlorate has been detected recently in a variety of soils, waters, plants, and food products at levels that may be detrimental to human health. These discoveries have generated considerable interest in perchlorate source identification. In this study, comprehensive stable isotope analyses ( 37Cl/35Cl and 18O/17O/ 16O) of perchlorate from known synthetic and natural sources reveal systematic differences in isotopic characteristics that are related to the formation mechanisms. In addition, isotopic analyses of perchlorate extracted from groundwater and surface water demonstrate the feasibility of identifying perchlorate sources in contaminated environments on the basis of this technique. Both natural and synthetic sources of perchlorate have been identified in water samples from some perchlorate occurrences in the United States by the isotopic method. ?? 2005 American Chemical Society.

  7. Methods of isotopic geochronology

    NASA Astrophysics Data System (ADS)

    Gorokhov, I. M.; Levchenkov, O. A.

    Papers are presented on such topics as the age of the chemical elements; the age of meteorites, the moon, and the earth; isotopic ages of the most ancient terrestrial formations; and the Archean evolution of Enderby Land in the Antarctic as evidenced by isotopic dating. Consideration is also given to a uranium-lead geochronology technique for investigating Precambrian ore deposits, a Pb-Pb technique of zircon dating, and the potentials and limitations of Sm-Nd geochronology.

  8. The rare isotope accelerator (RIA) facility project

    SciTech Connect

    Christoph Leemann

    2000-08-01

    The envisioned Rare-Isotope Accelerator (RIA) facility would add substantially to research opportunities for nuclear physics and astrophysics by combining increased intensities with a greatly expanded variety of high-quality rare-isotope beams. A flexible superconducting driver linac would provide 100 kW, 400 MeV/nucleon beams of any stable isotope from hydrogen to uranium onto production targets. Combinations of projectile fragmentation, target fragmentation, fission, and spallation would produce the needed broad assortment of short-lived secondary beams. This paper describes the project's background, purpose, and status, the envisioned facility, and the key subsystem, the driver linac. RIA's scientific purposes are to advance current theoretical models, reveal new manifestations of nuclear behavior, and probe the limits of nuclear existence [3]. Figures 1 and 2 show, respectively, examples of RIA research opportunities and the yields projected for pursuing them. Figure 3 outlines a conceptual approach for delivering the needed beams.

  9. Advanced diffusion studies with isotopically controlled materials

    SciTech Connect

    Bracht, Hartmut A.; Silvestri, Hughes H.; Haller, Eugene E.

    2004-11-14

    The use of enriched stable isotopes combined with modern epitaxial deposition and depth profiling techniques enables the preparation of material heterostructures, highly appropriate for self- and foreign-atom diffusion experiments. Over the past decade we have performed diffusion studies with isotopically enriched elemental and compound semiconductors. In the present paper we highlight our recent results and demonstrate that the use of isotopically enriched materials ushered in a new era in the study of diffusion in solids which yields greater insight into the properties of native defects and their roles in diffusion. Our approach of studying atomic diffusion is not limited to semiconductors and can be applied also to other material systems. Current areas of our research concern the diffusion in the silicon-germanium alloys and glassy materials such as silicon dioxide and ion conducting silicate glasses.

  10. The isotopic distribution conundrum.

    PubMed

    Valkenborg, Dirk; Mertens, Inge; Lemière, Filip; Witters, Erwin; Burzykowski, Tomasz

    2012-01-01

    Although access to high-resolution mass spectrometry (MS), especially in the field of biomolecular MS, is becoming readily available due to recent advances in MS technology, the accompanied information on isotopic distribution in high-resolution spectra is not used at its full potential, mainly because of lack of knowledge and/or awareness. In this review, we give an insight into the practical problems related to calculating the isotopic distribution for large biomolecules, and present an overview of methods for the calculation of the isotopic distribution. We discuss the key events that triggered the development of various algorithms and explain the rationale of how and why the various isotopic-distribution calculations were performed. The review is focused around the developmental stages as briefly outlined below, starting with the first observation of an isotopic distribution. The observations of Beynon in the field of organic MS that chlorine appeared in a mass spectrum as two variants with odds 3:1 lie at the basis of the first wave of algorithms for the calculation of the isotopic distribution, based on the atomic composition of a molecule. From here on, we explain why more complex biomolecules such as peptides exhibit a highly complex isotope pattern when assayed by MS, and we discuss how combinatorial difficulties complicate the calculation of the isotopic distribution on computers. For this purpose, we highlight three methods, which were introduced in the 1980s. These are the stepwise procedure introduced by Kubinyi, the polynomial expansion from Brownawell and Fillippo, and the multinomial expansion from Yergey. The next development was instigated by Rockwood, who suggested to decompose the isotopic distribution in terms of their nucleon count instead of the exact mass. In this respect, we could claim that the term "aggregated" isotopic distribution is more appropriate. Due to the simplification of the isotopic distribution to its aggregated counterpart

  11. Stable isotope enrichment using a plasma centrifuge

    NASA Astrophysics Data System (ADS)

    Krishnan, Mahadevan; Bures, Brian; Madden, Robert

    2012-10-01

    A primary goal of the Department of Energy's Isotope Development and Production for Research and Applications Program (Isotope Program) within the Office of Nuclear Physics (NP) is to produce isotopes that are in short supply in the U.S. and of which there exists no or insufficient domestic commercial production capability. A vacuum arc plasma centrifuge is a rigid rotor column of metal plasma in which centrifugal forces re-distribute ions radially according to their mass/charge ratio. Early work demonstrated rotation at 2 million rpm and separation of various stable isotopes. The spinning plasma column had a Gaussian flux profile, peaked on the rigid rotor axis. This work adopts a more efficient approach, with the plasma created as a hollow column, wherein the flux is concentrated at larger radii where the centrifugal action is highest. By tailoring the vacuum arc discharge geometry, the rotation rate can also be increased to ˜10 million rpm. Data from Cu, Al and other metal plasmas will be presented and discussed in light of enriched stable isotopes needed for research and medicine.

  12. Zn Isotope Fractionation during Sorption onto Kaolinite.

    PubMed

    Guinoiseau, Damien; Gélabert, Alexandre; Moureau, Julien; Louvat, Pascale; Benedetti, Marc F

    2016-02-16

    In this study, we quantify zinc isotope fractionation during its sorption onto kaolinite, by performing experiments under various pH, ionic strength, and total Zn concentrations. A systematic enrichment in heavy Zn isotopes on the surface of kaolinite was measured, with Δ(66)Znadsorbed-solution ranging from 0.11‰ at low pH and low ionic strength to 0.49‰ at high pH and high ionic strength. Both the measured Zn concentration and its isotopic ratio are correctly described using a thermodynamic sorption model that considers two binding sites: external basal surfaces and edge sites. Based on this modeling approach, two distinct Zn isotopic fractionation factors were calculated: Δ(66)Znadsorbed-solution = 0.18 ± 0.06‰ for ion exchange onto basal sites, and Δ(66)Znadsorbed-solution = 0.49 ± 0.06‰ for specific complexation onto edge sites. These two distinct factors indicate that Zn isotope fractionation is dominantly controlled by the chemical composition of the solution (pH, ionic strength).

  13. Laser Isotope Separation Employing Condensation Repression

    SciTech Connect

    Eerkens, Jeff W.; Miller, William H.

    2004-09-15

    Molecular laser isotope separation (MLIS) techniques using condensation repression (CR) harvesting are reviewed and compared with atomic vapor laser isotope separation (AVLIS), gaseous diffusion (DIF), ultracentrifuges (UCF), and electromagnetic separations (EMS). Two different CR-MLIS or CRISLA (Condensation Repression Isotope Separation by Laser Activation) approaches have been under investigation at the University of Missouri (MU), one involving supersonic super-cooled free jets and dimer formation, and the other subsonic cold-wall condensation. Both employ mixtures of an isotopomer (e.g. {sup i}QF{sub 6}) and a carrier gas, operated at low temperatures and pressures. Present theories of VT relaxation, dimerization, and condensation are found to be unsatisfactory to explain/predict experimental CRISLA results. They were replaced by fundamentally new models that allow ab-initio calculation of isotope enrichments and predictions of condensation parameters for laser-excited and non-excited vapors which are in good agreement with experiment. Because of supersonic speeds, throughputs for free-jet CRISLA are a thousand times higher than cold-wall CRISLA schemes, and thus preferred for large-quantity Uranium enrichments. For small-quantity separations of (radioactive) medical isotopes, the simpler coldwall CRISLA method may be adequate.

  14. Oxygen Isotopes in Meteorites

    NASA Astrophysics Data System (ADS)

    Clayton, R. N.

    2003-12-01

    Oxygen isotope abundance variations in meteorites are very useful in elucidating chemical and physical processes that occurred during the formation of the solar system (Clayton, 1993). On Earth, the mean abundances of the three stable isotopes are 16O: 99.76%, 17O: 0.039%, and 18O: 0.202%. It is conventional to express variations in abundances of the isotopes in terms of isotopic ratios, relative to an arbitrary standard, called SMOW (for standard mean ocean water), as follows:The isotopic composition of any sample can then be represented by one point on a "three-isotope plot," a graph of δ17O versus δ18O. It will be seen that such plots are invaluable in interpreting meteoritic data. Figure 1 shows schematically the effect of various processes on an initial composition at the center of the diagram. Almost all terrestrial materials lie along a "fractionation" trend; most meteoritic materials lie near a line of "16O addition" (or subtraction). (4K)Figure 1. Schematic representation of various isotopic processes shown on an oxygen three-isotope plot. Almost all terrestrial materials plot along a line of "fractionation"; most primitive meteoritic materials plot near a line of "16O addition." The three isotopes of oxygen are produced by nucleosynthesis in stars, but by different nuclear processes in different stellar environments. The principal isotope, 16O, is a primary isotope (capable of being produced from hydrogen and helium alone), formed in massive stars (>10 solar masses), and ejected by supernova explosions. The two rare isotopes are secondary nuclei (produced in stars from nuclei formed in an earlier generation of stars), with 17O coming primarily from low- and intermediate-mass stars (<8 solar masses), and 18O coming primarily from high-mass stars (Prantzos et al., 1996). These differences in type of stellar source result in large observable variations in stellar isotopic abundances as functions of age, size, metallicity, and galactic location ( Prantzos

  15. Physicochemical isotope anomalies

    SciTech Connect

    Esat, T.M.

    1988-06-01

    Isotopic composition of refractory elements can be modified, by physical processes such as distillation and sputtering, in unexpected patterns. Distillation enriches the heavy isotopes in the residue and the light isotopes in the vapor. However, current models appear to be inadequate to describe the detailed mass dependence, in particular for large fractionations. Coarse- and fine-grained inclusions from the Allende meteorite exhibit correlated isotope effects in Mg both as mass-dependent fractionation and residual anomalies. This isotope pattern can be duplicated by high temperature distillation in the laboratory. A ubiquitous property of meteoritic inclusions for Mg as well as for most of the other elements, where measurements exist, is mass-dependent fractionation. In contrast, terrestrial materials such as microtektites, tektite buttons as well as lunar orange and green glass spheres have normal Mg isotopic composition. A subset of interplanetary dust particles labelled as chondritic aggregates exhibit excesses in {sup 26}Mg and deuterium anomalies. Sputtering is expected to be a dominant mechanism in the destruction of grains within interstellar dust clouds. An active proto-sun as well as the present solar-wind and solar-flare flux are of sufficient intensity to sputter significant amounts of material. Laboratory experiments in Mg show widespread isotope effects including residual {sup 26}Mg excesses and mass dependent fractionation. It is possible that the {sup 26}Mg excesses in interplanetary dust is related to sputtering by energetic solar-wind particles. The implication if the laboratory distillation and sputtering effects are discussed and contrasted with the anomalies in meteoritic inclusions the other extraterrestrial materials the authors have access to.

  16. Proteomic response to 5,6-dimethylxanthenone 4-acetic acid (DMXAA, vadimezan) in human non-small cell lung cancer A549 cells determined by the stable-isotope labeling by amino acids in cell culture (SILAC) approach.

    PubMed

    Pan, Shu-Ting; Zhou, Zhi-Wei; He, Zhi-Xu; Zhang, Xueji; Yang, Tianxin; Yang, Yin-Xue; Wang, Dong; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2015-01-01

    5,6-Dimethylxanthenone 4-acetic acid (DMXAA), also known as ASA404 and vadimezan, is a potent tumor blood vessel-disrupting agent and cytokine inducer used alone or in combination with other cytotoxic agents for the treatment of non-small cell lung cancer (NSCLC) and other cancers. However, the latest Phase III clinical trial has shown frustrating outcomes in the treatment of NSCLC, since the therapeutic targets and underlying mechanism for the anticancer effect of DMXAA are not yet fully understood. This study aimed to examine the proteomic response to DMXAA and unveil the global molecular targets and possible mechanisms for the anticancer effect of DMXAA in NSCLC A549 cells using a stable-isotope labeling by amino acids in cell culture (SILAC) approach. The proteomic data showed that treatment with DMXAA modulated the expression of 588 protein molecules in A549 cells, with 281 protein molecules being up regulated and 306 protein molecules being downregulated. Ingenuity pathway analysis (IPA) identified 256 signaling pathways and 184 cellular functional proteins that were regulated by DMXAA in A549 cells. These targeted molecules and signaling pathways were mostly involved in cell proliferation and survival, redox homeostasis, sugar, amino acid and nucleic acid metabolism, cell migration, and invasion and programed cell death. Subsequently, the effects of DMXAA on cell cycle distribution, apoptosis, autophagy, and reactive oxygen species (ROS) generation were experimentally verified. Flow cytometric analysis showed that DMXAA significantly induced G1 phase arrest in A549 cells. Western blotting assays demonstrated that DMXAA induced apoptosis via a mitochondria-dependent pathway and promoted autophagy, as indicated by the increased level of cytosolic cytochrome c, activation of caspase 3, and enhanced expression of beclin 1 and microtubule-associated protein 1A/1B-light chain 3 (LC3-II) in A549 cells. Moreover, DMXAA significantly promoted intracellular ROS

  17. Hydrogen and Oxygen Isotope Ratios in Body Water and Hair: Modeling Isotope Dynamics in Nonhuman Primates

    PubMed Central

    O’Grady, Shannon P.; Valenzuela, Luciano O.; Remien, Christopher H.; Enright, Lindsey E.; Jorgensen, Matthew J.; Kaplan, Jay R.; Wagner, Janice D.; Cerling, Thure E.; Ehleringer, James R.

    2012-01-01

    The stable isotopic composition of drinking water, diet, and atmospheric oxygen influence the isotopic composition of body water (2H/1H, 18O/16O expressed as δ2H and δ18O). In turn, body water influences the isotopic composition of organic matter in tissues, such as hair and teeth, which are often used to reconstruct historical dietary and movement patterns of animals and humans. Here, we used a nonhuman primate system (Macaca fascicularis) to test the robustness of two different mechanistic stable isotope models: a model to predict the δ2H and δ18O values of body water and a second model to predict the δ2H and δ18O values of hair. In contrast to previous human-based studies, use of nonhuman primates fed controlled diets allowed us to further constrain model parameter values and evaluate model predictions. Both models reliably predicted the δ2H and δ18O values of body water and of hair. Moreover, the isotope data allowed us to better quantify values for two critical variables in the models: the δ2H and δ18O values of gut water and the 18O isotope fractionation associated with a carbonyl oxygen-water interaction in the gut (αow). Our modeling efforts indicated that better predictions for body water and hair isotope values were achieved by making the isotopic composition of gut water approached that of body water. Additionally, the value of αow was 1.0164, in close agreement with the only other previously measured observation (microbial spore cell walls), suggesting robustness of this fractionation factor across different biological systems. PMID:22553163

  18. Stable isotope views on ecosystem function: challenging or challenged?

    PubMed Central

    Resco, Víctor; Querejeta, José I.; Ogle, Kiona; Voltas, Jordi; Sebastià, Maria-Teresa; Serrano-Ortiz, Penélope; Linares, Juan C.; Moreno-Gutiérrez, Cristina; Herrero, Asier; Carreira, José A.; Torres-Cañabate, Patricia; Valladares, Fernando

    2010-01-01

    Stable isotopes and their potential for detecting various and complex ecosystem processes are attracting an increasing number of scientists. Progress is challenging, particularly under global change scenarios, but some established views have been challenged. The IX meeting of the Spanish Association of Terrestrial Ecology (AAET, Úbeda, 18–22 October 2009) hosted a symposium on the ecology of stable isotopes where the linear mixing model approach of partitioning sinks and sources of carbon and water fluxes within an ecosystem was challenged, and new applications of stable isotopes for the study of plant interactions were evaluated. Discussion was also centred on the need for networks that monitor ecological processes using stable isotopes and key ideas for fostering future research with isotopes. PMID:20015858

  19. Transportation of medical isotopes

    SciTech Connect

    Nielsen, D.L.

    1997-11-19

    A Draft Technical Information Document (HNF-1855) is being prepared to evaluate proposed interim tritium and medical isotope production at the Fast Flux Test Facility (FFTF). This assessment examines the potential health and safety impacts of transportation operations associated with the production of medical isotopes. Incident-free and accidental impacts are assessed using bounding source terms for the shipment of nonradiological target materials to the Hanford Site, the shipment of irradiated targets from the FFTF to the 325 Building, and the shipment of medical isotope products from the 325 Building to medical distributors. The health and safety consequences to workers and the public from the incident-free transportation of targets and isotope products would be within acceptable levels. For transportation accidents, risks to works and the public also would be within acceptable levels. This assessment is based on best information available at this time. As the medical isotope program matures, this analysis will be revised, if necessary, to support development of a final revision to the Technical Information Document.

  20. Separation of sulfur isotopes

    DOEpatents

    DeWitt, Robert; Jepson, Bernhart E.; Schwind, Roger A.

    1976-06-22

    Sulfur isotopes are continuously separated and enriched using a closed loop reflux system wherein sulfur dioxide (SO.sub.2) is reacted with sodium hydroxide (NaOH) or the like to form sodium hydrogen sulfite (NaHSO.sub.3). Heavier sulfur isotopes are preferentially attracted to the NaHSO.sub.3, and subsequently reacted with sulfuric acid (H.sub.2 SO.sub.4) forming sodium hydrogen sulfate (NaHSO.sub.4) and SO.sub.2 gas which contains increased concentrations of the heavier sulfur isotopes. This heavy isotope enriched SO.sub.2 gas is subsequently separated and the NaHSO.sub.4 is reacted with NaOH to form sodium sulfate (Na.sub.2 SO.sub.4) which is subsequently decomposed in an electrodialysis unit to form the NaOH and H.sub.2 SO.sub.4 components which are used in the aforesaid reactions thereby effecting sulfur isotope separation and enrichment without objectionable loss of feed materials.

  1. Isotope separation apparatus

    DOEpatents

    Arnush, Donald; MacKenzie, Kenneth R.; Wuerker, Ralph F.

    1980-01-01

    Isotope separation apparatus consisting of a plurality of cells disposed adjacent to each other in an evacuated container. A common magnetic field is established extending through all of the cells. A source of energetic electrons at one end of the container generates electrons which pass through the cells along the magnetic field lines. Each cell includes an array of collector plates arranged in parallel or in tandem within a common magnetic field. Sets of collector plates are disposed adjacent to each other in each cell. Means are provided for differentially energizing ions of a desired isotope by applying energy at the cyclotron resonant frequency of the desired isotope. As a result, the energized desired ions are preferentially collected by the collector plates.

  2. Microbially Mediated Kinetic Sulfur Isotope Fractionation: Reactive Transport Modeling Benchmark

    NASA Astrophysics Data System (ADS)

    Wanner, C.; Druhan, J. L.; Cheng, Y.; Amos, R. T.; Steefel, C. I.; Ajo Franklin, J. B.

    2014-12-01

    Microbially mediated sulfate reduction is a ubiquitous process in many subsurface systems. Isotopic fractionation is characteristic of this anaerobic process, since sulfate reducing bacteria (SRB) favor the reduction of the lighter sulfate isotopologue (S32O42-) over the heavier isotopologue (S34O42-). Detection of isotopic shifts have been utilized as a proxy for the onset of sulfate reduction in subsurface systems such as oil reservoirs and aquifers undergoing uranium bioremediation. Reactive transport modeling (RTM) of kinetic sulfur isotope fractionation has been applied to field and laboratory studies. These RTM approaches employ different mathematical formulations in the representation of kinetic sulfur isotope fractionation. In order to test the various formulations, we propose a benchmark problem set for the simulation of kinetic sulfur isotope fractionation during microbially mediated sulfate reduction. The benchmark problem set is comprised of four problem levels and is based on a recent laboratory column experimental study of sulfur isotope fractionation. Pertinent processes impacting sulfur isotopic composition such as microbial sulfate reduction and dispersion are included in the problem set. To date, participating RTM codes are: CRUNCHTOPE, TOUGHREACT, MIN3P and THE GEOCHEMIST'S WORKBENCH. Preliminary results from various codes show reasonable agreement for the problem levels simulating sulfur isotope fractionation in 1D.

  3. Isotopic Effects in Nuclear Fragmentation and GCR Transport Problems

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    2002-01-01

    Improving the accuracy of the galactic cosmic ray (GCR) environment and transport models is an important goal in preparing for studies of the projected risks and the efficiency of potential mitigations methods for space exploration. In this paper we consider the effects of the isotopic composition of the primary cosmic rays and the isotopic dependence of nuclear fragmentation cross sections on GCR transport models. Measurements are used to describe the isotopic composition of the GCR including their modulation throughout the solar cycle. The quantum multiple-scattering approach to nuclear fragmentation (QMSFRG) is used as the data base generator in order to accurately describe the odd-even effect in fragment production. Using the Badhwar and O'Neill GCR model, the QMSFRG model and the HZETRN transport code, the effects of the isotopic dependence of the primary GCR composition and on fragment production for transport problems is described for a complete GCR isotopic-grid. The principle finding of this study is that large errors ( 100%) will occur in the mass-flux spectra when comparing the complete isotopic-grid (141 ions) to a reduced isotopic-grid (59 ions), however less significant errors 30%) occur in the elemental-flux spectra. Because the full isotopic-grid is readily handled on small computer work-stations, it is recommended that they be used for future GCR studies.

  4. Authigenic Molybdenum Isotopes Record Lake Baikal in the Past

    NASA Astrophysics Data System (ADS)

    Yu, E.; Liu, H.; Lee, D.

    2013-12-01

    Authigenic molybdenum isotope signatures in marine sediments reflect the mechanisms of deposits under both oxic and reducing conditions. The studies are mainly focusing on marine environment, and the application on lake record is rare. A three-meters long gravity core (GC-99; 52°05'23'N, 105°50'24'E; water depth 201m) from Lake Baikal is studied for Mo isotopes and concentration. The result is using to examine the sources of material or/and the changes in conditions of Lake Baikal with climate changes. To approach on extracting Mo isotope signal directly related to lake water, a sequential leaching technique to extract the Mo isotopes coating on the Fe-Mn oxides and a robust chromatography technique to purify molybdenum isotopes is modified and used for all lake sediment samples. Then, Mo isotope composition is measured by applying double spike method with Multi-Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS). According to the Mo concentration and its isotope composition δ98/95Mo relative to NIST-SRM-3134, the results imply Lake Baikal stayed oxic condition over the last 24 ka. Moreover, the sediment core GC-99 from Lake Baikal imply two stages fluctuations of the lake environment separated at core depth of 100cm (around 12ka); and the shifting of δ98/95Mo isotope composition shows that the lake during interglacial period was more oxic than the last glacial period due to absence of ice cover.

  5. Isotopes and Isoscapes: Tools for Testing Hydrological and Biogeochemical Models

    NASA Astrophysics Data System (ADS)

    Kendall, C.

    2014-12-01

    In the 21st century, the importance of high quality water resources cannot be overstated. New approaches are needed to pinpoint sources and ages of multiple contaminants, and to better understand critical hydrologic systems. Stable isotopic compositions of materials often show strong spatial and temporal distributions related to combinations of sources and processes. Isoscapes (spatial and/or temporal maps) of riverine and atmospheric data are increasingly being found to be effective means for assessing the effects of different land uses and biogeochemical processes on water resources. Hence, isotopes and isoscapes are a potentially powerful component of monitoring and assessment programs that are aimed at quantifying and mitigating alterations to environments from human activities (anthropogenic disturbances). Locations exhibiting unusually high rates of biogeochemical cycling or elevated pollution levels usually have distinctive isotopic compositions that are suggestive or diagnostic of specific reactions and pollution sources. Isotopes can be more effective at identifying hot spots and hot moments than concentrations alone because isotopic ratios may change even when concentrations do not. Hence, isotopes provide valuable additions to standard chemical and hydrological mass balance methods. This presentation will examine how the field of isotope hydrology has evolved over my 40+ year career as an isotope geochemist, highlight several exciting recent research thrusts, and share some thoughts on future research directions.

  6. A model of isotope fractionation in reacting geochemical systems

    SciTech Connect

    Lee, Ming-Kuo; Bethke, C.M.

    1996-11-01

    The authors present a numerical technique that predicts how the stable isotopes {sup 2}H, {sup 13}C, {sup 18}O, and {sup 34}S fractionate among solvent, aqueous species, minerals, and gases over the course of a geochemical reaction process. This model is based on mass balance techniques similar to those already presented in the literature but differs from previous techniques in that it allows minerals to be segregated form isotopic exchange instead of remaining in isotopic equilibrium. Such an approach allows us to simulate the fractionation of isotopes between rock and fluid resulting solely from mineral dissolution and precipitation. The technique was tested by modeling isotopic fractionation during several reaction processes, including (1) dolomitization of limestone by a migrating pore fluid, (2) diagenetic alteration of the Permian Lyons sandstone in the Denver basin, and (3) hydrothermal alteration of the Okanagan Batholith in southern British Columbia. The results of calculations in which minerals are segregated from isotopic exchange compare well to isotopic trends observed in nature but differ markedly from calculations that assume isotopic equilibrium. 54 refs., 4 figs., 3 tabs.

  7. Isotope geochemistry of caliche developed on basalt

    NASA Astrophysics Data System (ADS)

    Knauth, L. Paul; Brilli, Mauro; Klonowski, Stan

    2003-01-01

    Enormous variations in oxygen and carbon isotopes occur in caliche developed on < 3 Ma basalts in 3 volcanic fields in Arizona, significantly extending the range of δ 18O and δ 13C observed in terrestrial caliche. Within each volcanic field, δ 18O is broadly co-variant with δ 13C and increases as δ 13C increases. The most 18O and 13C enriched samples are for subaerial calcite developed on pinnacles, knobs, and flow lobes that protrude above tephra and soil. The most 18O and 13C depleted samples are for pedogenic carbonate developed in soil atmospheres. The pedogenic caliche has δ 18O fixed by normal precipitation in local meteoric waters at ambient temperatures and has low δ 13C characteristic of microbial soil CO 2. Subaerial caliche has formed from 18O-rich evapoconcentrated meteoric waters that dried out on surfaces after local rains. The associated 13C enrichment is due either to removal of 12C by photosynthesizers in the evaporating drops or to kinetic isotope effects associated with evaporation. Caliche on basalt lava flows thus initially forms with the isotopic signature of evaporation and is subsequently over-layered during burial by calcite carrying the isotopic signature of the soil environment. The large change in carbon isotope composition in subsequent soil calcite defines an isotopic biosignature that should have developed in martian examples if Mars had a "warm, wet" early period and photosynthesizing microbes were present in the early soils. The approach can be similarly applied to terrestrial Precambrian paleocaliche in the search for the earliest record of life on land. Large variations reported for δ 18O of carbonate in Martian meteorite ALH84001 do not necessarily require high temperatures, playa lakes, or flood runoff if the carbonate is an example of altered martian caliche.

  8. Chlorine Isotope Variation in Eucrites

    NASA Astrophysics Data System (ADS)

    Barrett, T. J.; Barnes, J. J.; Anand, M.; Franchi, I. A.; Greenwood, R. C.; Charlier, B. L. A.; Grady, M. M.

    2016-08-01

    We present Cl isotopic compositions for several eucrites with a wide range of petrological and geochemical histories. Our results include some of the heaviest chlorine isotopic compositions recorded so far in the solar system.

  9. Atomic Weights and Isotopic Compositions

    National Institute of Standards and Technology Data Gateway

    SRD 144 Atomic Weights and Isotopic Compositions (Web, free access)   The atomic weights are available for elements 1 through 111, and isotopic compositions or abundances are given when appropriate.

  10. Relationship Between Photosynthetic Light Dosage and Metabolic Isotope Effects in the Long-term Cultured Porites Coral Skeleton

    NASA Astrophysics Data System (ADS)

    Omata, T.; Suzuki, A.; Sato, T.; Murakami, A.; Kawahata, H.; Maruyama, T.

    2008-12-01

    A long-term culture experiment of Porites spp. corals were conducted at different light dosages (light intensity, 100, 300, or 500 micro mol m-2 s-1; daily light period, 10 or 12 h) at constant temperature to examine the contribution of photosynthetic activity to skeletal carbon isotope composition. As the daily dose of photosynthetically active radiation increased, the rate of annual extension also increased. Mean isotope compositions shifted; the carbon isotope compositions became heavier and the oxygen isotope compositions became lighter at higher radiation dose. Whereas chlorophyll a (Chl a) content per both unit area and cell decreased as light dosage increased, carotenoids/Chl a increased. Skeletal oxygen isotope compositions decrease coincided with increasing skeletal growth rate, indicating the influence of so-called kinetic isotope effects. The observed carbon isotope compositions increase should be subject to both kinetic and metabolic isotope effects. Using a vector approach in the carbon-oxygen isotope compositions' plane (Omata et al., 2005), we discriminated between kinetic and metabolic isotope effects on carbon isotope compositions. The metabolic carbon isotopic fractionation-light was similar to the photosynthesis-irradiance curve, indicating the direct contribution of photosynthetic activity to metabolic isotope effects. In contrast, the fractionation of carbon isotope related to kinetic isotope effects gradually increased as the growth rate increased.

  11. Shape coexistence and phase transitions in the platinum isotopes

    SciTech Connect

    Morales, Irving O.; Frank, Alejandro; Vargas, Carlos E.; Isacker, P. Van

    2008-08-15

    The matrix coherent-state approach of the interacting boson model with configuration mixing is used to study the geometry of the platinum isotopes. With a parameter set determined in previous studies, it is found that the absolute minimum of the potential for the Pt isotopes evolves from spherical to oblate and finally to prolate shapes when the neutron number decreases from N=126 (semi-magic) to N=104 (mid-shell). Shape coexistence is found in the isotopes {sup 182,184,186,188}Pt. A phase diagram is constructed that shows the coexistence region as a function of the number of bosons and the strength of the mixing parameter.

  12. Incorporating the VSMOW and VPDB isotope scale into CH4 to produce isotope reference gases for CH4 in air

    NASA Astrophysics Data System (ADS)

    Sperlich, Peter; Richter, Jürgen M.; Brand, Willi A.

    2013-04-01

    Measurement accuracy offsets between laboratories and scale contraction effects are technical pitfalls that must be identified and corrected for when isotope data of atmospheric CH4 that were measured by multiple laboratories are merged for analysis. Measurement agreement can generally be assured by referencing the measurements to certified standard material. Unfortunately, international isotope reference material for CH4 does not exist, which challenges the compatibility prerequisite between laboratories measuring isotope ratios of CH4 in atmospheric samples. We are developing two methods to incorporate the hydrogen of VSMOW and the carbon of VPDB isotope scale material into CH4, so the CH4 is then itself representing the VSMOW and VPDB isotope reference scales for δ2H-CH4 and δ13C-CH4, respectively. This isotope scale holding CH4 is then diluted with CH4-free air to be used as an atmospheric isotope reference gas. We present our approach to produce isotope reference gas for δ2H-CH4 and show our first results.

  13. Nonbiological fractionation of iron isotopes

    NASA Technical Reports Server (NTRS)

    Anbar, A. D.; Roe, J. E.; Barling, J.; Nealson, K. H.

    2000-01-01

    Laboratory experiments demonstrate that iron isotopes can be chemically fractionated in the absence of biology. Isotopic variations comparable to those seen during microbially mediated reduction of ferrihydrite are observed. Fractionation may occur in aqueous solution during equilibration between inorganic iron complexes. These findings provide insight into the mechanisms of iron isotope fractionation and suggest that nonbiological processes may contribute to iron isotope variations observed in sediments.

  14. DEEP WATER ISOTOPIC CURRENT ANALYZER

    DOEpatents

    Johnston, W.H.

    1964-04-21

    A deepwater isotopic current analyzer, which employs radioactive isotopes for measurement of ocean currents at various levels beneath the sea, is described. The apparatus, which can determine the direction and velocity of liquid currents, comprises a shaft having a plurality of radiation detectors extending equidistant radially therefrom, means for releasing radioactive isotopes from the shaft, and means for determining the time required for the isotope to reach a particular detector. (AEC)

  15. Method for separating boron isotopes

    DOEpatents

    Rockwood, Stephen D.

    1978-01-01

    A method of separating boron isotopes .sup.10 B and .sup.11 B by laser-induced selective excitation and photodissociation of BCl.sub.3 molecules containing a particular boron isotope. The photodissociation products react with an appropriate chemical scavenger and the reaction products may readily be separated from undissociated BCl.sub.3, thus effecting the desired separation of the boron isotopes.

  16. Quantifying uncertainty in stable isotope mixing models

    NASA Astrophysics Data System (ADS)

    Davis, Paul; Syme, James; Heikoop, Jeffrey; Fessenden-Rahn, Julianna; Perkins, George; Newman, Brent; Chrystal, Abbey E.; Hagerty, Shannon B.

    2015-05-01

    Mixing models are powerful tools for identifying biogeochemical sources and determining mixing fractions in a sample. However, identification of actual source contributors is often not simple, and source compositions typically vary or even overlap, significantly increasing model uncertainty in calculated mixing fractions. This study compares three probabilistic methods, Stable Isotope Analysis in R (SIAR), a pure Monte Carlo technique (PMC), and Stable Isotope Reference Source (SIRS) mixing model, a new technique that estimates mixing in systems with more than three sources and/or uncertain source compositions. In this paper, we use nitrate stable isotope examples (δ15N and δ18O) but all methods tested are applicable to other tracers. In Phase I of a three-phase blind test, we compared methods for a set of six-source nitrate problems. PMC was unable to find solutions for two of the target water samples. The Bayesian method, SIAR, experienced anchoring problems, and SIRS calculated mixing fractions that most closely approximated the known mixing fractions. For that reason, SIRS was the only approach used in the next phase of testing. In Phase II, the problem was broadened where any subset of the six sources could be a possible solution to the mixing problem. Results showed a high rate of Type I errors where solutions included sources that were not contributing to the sample. In Phase III some sources were eliminated based on assumed site knowledge and assumed nitrate concentrations, substantially reduced mixing fraction uncertainties and lowered the Type I error rate. These results demonstrate that valuable insights into stable isotope mixing problems result from probabilistic mixing model approaches like SIRS. The results also emphasize the importance of identifying a minimal set of potential sources and quantifying uncertainties in source isotopic composition as well as demonstrating the value of additional information in reducing the uncertainty in calculated

  17. Isotopic archives of sulphate in speleothems

    NASA Astrophysics Data System (ADS)

    Wynn, Peter M.; Fairchild, Ian J.; Baker, Andy; Baldini, James U. L.; McDermott, Frank

    2008-05-01

    The hemispheric impact of industrial emissions upon atmospheric sulphur loading is reflected in the sulphur depositional history recorded in cores from ice sheets. However, these do not reveal regional variations. Recently deposited speleothems are used here as archives of regional sulphur depositional history at two locations within the United Kingdom and Ireland. δ34S-SO4 and δ18O-SO4 present within speleothem carbonate are measured for the first time as part of a dual isotope approach to decode the speleothem sulphur record. The largely refractory nature of δ34S-SO4 under oxidising conditions enables source provenance of atmospheric SO2, whereas the complex cycles of isotopic exchange and fractionation during incorporation of oxygen into sulphate molecules enable δ18O-SO4 signatures to yield insights into ambient environmental conditions and biogeochemical cycling in the ecosystem above the cave. δ34S-SO4 values extracted from speleothem carbonate formed within Browns Folly Mine, UK, range from +3.5 to +5.5‰ and δ18O-SO4 +10.3 to +13.7‰. Both signatures lie within the range expected from sulphate deposition in industrial locations and reflect the transfer of sulphate into speleothem calcite with little fractionation. However, δ18O-SO4 signatures at Crag Cave, western Ireland, are isotopically heavier than expected and approach isotopic equilibrium with δ18O-H2O under reducing conditions. Dual isotope analysis of δ34S-SO4 and δ18O-SO4 optimises the correct identification of sulphur sources and biogeochemical cycling prior to incorporation into the speleothem record. At carefully selected cave sites where drip water flowpaths into the cave remain oxic, speleothems hold the potential to retain records of atmospheric sulphur loading at the local and regional scale.

  18. Forensic Stable Isotope Biogeochemistry

    NASA Astrophysics Data System (ADS)

    Cerling, Thure E.; Barnette, Janet E.; Bowen, Gabriel J.; Chesson, Lesley A.; Ehleringer, James R.; Remien, Christopher H.; Shea, Patrick; Tipple, Brett J.; West, Jason B.

    2016-06-01

    Stable isotopes are being used for forensic science studies, with applications to both natural and manufactured products. In this review we discuss how scientific evidence can be used in the legal context and where the scientific progress of hypothesis revisions can be in tension with the legal expectations of widely used methods for measurements. Although this review is written in the context of US law, many of the considerations of scientific reproducibility and acceptance of relevant scientific data span other legal systems that might apply different legal principles and therefore reach different conclusions. Stable isotopes are used in legal situations for comparing samples for authenticity or evidentiary considerations, in understanding trade patterns of illegal materials, and in understanding the origins of unknown decedents. Isotope evidence is particularly useful when considered in the broad framework of physiochemical processes and in recognizing regional to global patterns found in many materials, including foods and food products, drugs, and humans. Stable isotopes considered in the larger spatial context add an important dimension to forensic science.

  19. Sulfur isotopic data

    SciTech Connect

    Rye, R.O.

    1987-01-01

    Preliminary sulfur isotope data have been determined for samples of the Vermillion Creek coal bed and associated rocks in the Vermillion Creek basin and for samples of evaporites collected from Jurassic and Triassic formations that crop out in the nearby Uinta Mountains. The data are inconclusive, but it is likely that the sulfur in the coal was derived from the evaporites.

  20. Quantitative imaging of subcellular metabolism with stable isotopes and multi-isotope imaging mass spectrometry.

    PubMed

    Steinhauser, Matthew L; Lechene, Claude P

    2013-01-01

    Multi-isotope imaging mass spectrometry (MIMS) is the quantitative imaging of stable isotope labels in cells with a new type of secondary ion mass spectrometer (NanoSIMS). The power of the methodology is attributable to (i) the immense advantage of using non-toxic stable isotope labels, (ii) high resolution imaging that approaches the resolution of usual transmission electron microscopy and (iii) the precise quantification of label down to 1 part-per-million and spanning several orders of magnitude. Here we review the basic elements of MIMS and describe new applications of MIMS to the quantitative study of metabolic processes including protein and nucleic acid synthesis in model organisms ranging from microbes to humans.

  1. Quantitative imaging of subcellular metabolism with stable isotopes and multi-isotope imaging mass spectrometry

    PubMed Central

    Steinhauser, Matthew L.; Lechene, Claude P.

    2014-01-01

    Multi-isotope imaging mass spectrometry (MIMS) is the quantitative imaging of stable isotope labels in cells with a new type of secondary ion mass spectrometer (NanoSIMS). The power of the methodology is attributable to (i) the immense advantage of using non-toxic stable isotope labels, (ii) high resolution imaging that approaches the resolution of usual transmission electron microscopy and (iii) the precise quantification of label down to 1 part-per-million and spanning several orders of magnitude. Here we review the basic elements of MIMS and describe new applications of MIMS to the quantitative study of metabolic processes including protein and nucleic acid synthesis in model organisms ranging from microbes to humans. PMID:23660233

  2. Progress in Value Assignment for Stable Isotope Reference Materials

    NASA Astrophysics Data System (ADS)

    Gröning, M.; Taylor, P. D.; Klinedinst, D. B.

    2001-05-01

    A re-compilation of the existing certificate data for stable isotope reference materials was carried out at IAEA during the last years. Most of these isotopic ratios are expressed as per mil deviation relative to the isotopic ratio of an artificially chosen primary reference material using the commonly used conventional δ -scales. The recommended isotope values for those reference materials, produced by various researchers and institutions over the last four decades and distributed by the IAEA and NIST, have been subject to different `value assignment' approaches in the past and resulted in some inconsistencies in their recommended certified isotopic composition. During an IAEA Advisory Group meeting in September 2000 consensus was obtained on a consistent and robust a posteriori data evaluation to assign the value on the existing whole suite of stable isotope reference materials (RM) for the elements of hydrogen, carbon, nitrogen, oxygen and sulfur. Advances towards a closer calibration of carbon RMs were presented by NIST as a result of a performed calibration exercise for inorganic stable carbon RMs involving selected laboratories. For the first time sulfur stable isotope calibration data were presented by different institutions, which allow a firm and consistent value assignment of sulfur stable isotope RMs. At the same time efforts at IRMM were presented to tie up those conventional δ -scale values to SI-units by direct isotope ratio measurements using primary methods. The future challenges are twofold: 1. improving and maintaining the consistency of established stable isotope δ -scales by better characterization of existing reference materials and production of suitable successor materials (as example the primary water reference materials VSMOW and SLAP will be discussed), and 2. producing suitable reference materials for new analytical methods, especially in the field of organic compounds analyzed by means of continuous flow methods involving gas

  3. Isotope fractionation studies of molybdenum

    NASA Astrophysics Data System (ADS)

    Wieser, M. E.; de Laeter, J. R.; Varner, M. D.

    2007-08-01

    Mass spectrometric studies of the isotopic composition of molybdenum have become an active area of research in stable isotope geochemistry, biogeochemistry and cosmochemistry. The redox chemistry of Mo, together with its proclivity for covalent bonding, indicates its importance in isotope fractionation studies such as palaeoceanography. The measurement of the magnitude of isotope fractionation of Mo in natural systems is a challenging task, in that natural fractionation has to be carefully distinguished from chemical and instrumental isotope fractionation. An ion exchange chemical separation procedure has been developed with high efficiency and low blank, to ensure that the isobaric elements Zr and Ru are removed from the samples before mass spectrometric analysis. The isotope fractionation resulting from this procedure is 0.14[per mille sign] per u. The isotopic composition of Mo of a Laboratory Standard has been measured by positive and negative thermal ionization mass spectrometry (P-TIMS and N-TIMS, respectively), to give an isotope fractionation of 6.4[per mille sign] and 0.5[per mille sign] per u, respectively, with respect to the absolute isotope abundances of Mo. In both cases the lighter isotopes are enhanced with respect to the heavier isotopes. An ascorbic acid activator has enabled the sensitivity of P-TIMS to be improved as compared to traditional methods. The same experiment was repeated using a multiple collector-inductively coupled plasma-mass spectrometer (MC-ICP-MS) to give an isotope fractionation of approximately 17.0[per mille sign] per u. In this case the heavier isotopes are enhanced with respect to the lighter isotopes. The strengths and weaknesses of these three mass spectrometric techniques are evaluated. We conclude that MC-ICP-MS is the optimum mass spectrometric method for accurately measuring the isotope fractionation of Mo in natural materials, provided chemical and instrumental isotope fractionation can be resolved from naturally

  4. Radiogenic Isotopes in Weathering and Hydrology

    NASA Astrophysics Data System (ADS)

    Blum, J. D.; Erel, Y.

    2003-12-01

    cycling of calcium. The decay of 235U to 207Pb, 238U to 206Pb, and 232Th to 208Pb have half-lives of 0.704 Gyr, 4.47 Gyr, and 14.0 Gyr, respectively, and result in variations in the 207Pb/204Pb, 206Pb/204Pb, and 208Pb/204Pb ratios (e.g., Blum, 1995). Uranium-234 has a half-life of 0.25 Myr and the ratio 234U/238U approaches a constant secular equilibrium value in rocks and minerals if undisturbed for ˜1 Myr. Differences in this ratio are often observed in solutions following rock-water interaction and have been used in studies of weathering and hydrology. Uranium and thorium tend to be highly concentrated in the trace accessory minerals such as zircon, monazite, apatite, and sphene, which therefore develop high 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios. Once released into the hydrosphere, lead retains its isotopic composition without significant geochemical or biological fractionation and tends to generally follow the chemistry of iron in soils and aqueous systems (Erel and Morgan, 1992). The use of the U-Th disequilibrium series as a dating tool falls outside the scope of this chapter and is reviewed in Chapters 6.14 and 6.17 as well as Chapter 3.15. The decay of 147Sm to 143Nd, 176Lu to 176Hf, and 187Re to 187Os have half-lives of 106 Gyr, 35.7 Gyr, and 42.3 Gyr, respectively, and result in natural variability in the 144Nd/143Nd, 176Hf/177Hf, and 187Os/188Os ratios (e.g., Blum, 1995). Neodymium is a rare earth element (REE), hafnium is a transition metal with chemical similarities to zirconium, and osmium is a platinum group element. The geochemical behaviors of these elements in the hydrosphere are largely determined by these chemical affinities.

  5. Influence of isotopic re-equilibration on speleothem and fluid inclusion isotope ratios after primary calcite precipitation

    NASA Astrophysics Data System (ADS)

    Kluge, Tobias; Haderlein, Astrid; Weißbach, Therese

    2016-04-01

    Oxygen isotope ratios in speleothems (notably stalagmites) have been used since decades to successfully infer paleotemperatures and deduce paleo-environmental information. In addition, recent technical developments allow to increasingly use fluid inclusions as an archive for drip-water and together with the surrounding calcite as paleothermometer. A basic requirement for isotope data interpretation is the complete knowledge of the fractionation between calcite and fluid. Most laboratory and in-situ cave experiments focus on calcite growth and the isotope fractionation between calcite and feed solution. Potential isotope exchange and re-equilibration processes after the initial deposition have mostly been neglected. However, experiments of Oelkers et al. (2015) showed that the isotope exchange between minerals and fluid can proceed rapidly (within days), even at chemical equilibrium. In hydrous Mg carbonates a similar process of continuous isotope exchange between carbonate and fluid was observed after the carbonate precipitation was completed (Mavromatis et al., 2015). These observations suggest that the isotope ratios of speleothem calcite may be affected by this continuous exchange, likely driving the isotope composition continuously towards equilibrium at the respective cave conditions. In addition, fluid inclusions are suspected to be sensitive to an isotope exchange with the surrounding carbonate highlighting the need to precisely understand and quantify this effect. We assessed the oxygen isotope exchange between calcite and solution at chemical equilibrium conditions with theoretical estimates and laboratory experiments over an intermediate time scale (hours-weeks). A large isotope gradient (~20 ‰)) between solution and calcite was prepared in the experiment to investigate the dynamics of this re-equilibration process. We used a theoretical model based on a Rayleigh fractionation approach and the direct comparison with the experiment to determine

  6. The influence of pH on the oxygen isotope equilibrium fractionation between sulfite and water

    NASA Astrophysics Data System (ADS)

    Müller, Inigo; Brunner, Benjamin; Ferdelman, Timothy

    2010-05-01

    Currently, the value for the oxygen isotope equilibrium fractionation between water and sulfite in solution is poorly constrained. Sulfite is an important intermediate in the oxidative/reductive sulfur cycle and oxygen isotope exchange between sulfite and water is expected to leave an imprint on the isotope composition of sulfate affected by sulfur cycling. One reason for the lack of accurate information about isotope fractionation between sulfite and water are technical difficulties in extraction of sulfite from solution for oxygen isotope analysis. The pH dependent presence of multiple S(IV) species in solution, i.e. sulfur dioxide (SO2), bisulfite (HSO3-), pyrosulfite (S2O52-) and sulfite (SO32-) complicates data interpretation. For example, the oxygen isotope equilibrium fractionation between water and SO32- may be different than that between water and any of the other sulfite species in solution. We exposed sodium sulfite (Na2SO3) solutions to different pH conditions and monitored oxygen isotope exchange between sulfite and water, until isotope equilibrium was reached. The equilibrium value is determined by using two isotopically different sodium sulfite starting materials, one with a starting value lighter than the equilibrium value and one with a starting composition heavier than the equilibrium value. In this manner oxygen isotope equilibrium is approached from two directions. Sulfite from solution was precipitated as BaSO3 with a set of Ba(OH)2 solutions containing different oxygen isotope compositions. This procedure allows us to disentangle the oxygen isotope contribution from water incorporated during the precipitation from the oxygen isotope composition of sulfite in solution. We present the first results from this experimental approach and discuss the applicability of determining isotope equilibrium fractionations between water and distinct S(IV) species.

  7. Strontium isotope characterization of wines from Quebec, Canada.

    PubMed

    Vinciguerra, Victor; Stevenson, Ross; Pedneault, Karine; Poirier, André; Hélie, Jean-François; Widory, David

    2016-11-01

    The (87)Sr/(86)Sr isotope ratios were measured on grape, wine and soil samples collected in 13 commercial vineyards located in three major wine producing areas of Quebec (Canada). The soils yield Sr isotope ratios that are intimately related to the local geology and unambiguously discriminate the different producing areas. A strong relationship exists between the (87)Sr/(86)Sr isotope ratios of the wine and the grapes. This suggests that the vinification process does not alter the overall Sr budget. Although the Sr isotope ratios of the grapes do not show a strong correlation with the bulk Sr isotope composition of the soil, they do correlate strongly with the Sr isotope composition contained in the labile fraction of the soil. This indicates that the labile fraction of the soil represents the Sr reservoir available to the plant during its growth. This study demonstrates that the Sr isotope approach can be used as a viable tool in forensic science for investigating the provenance of commercial wines.

  8. Metal stable isotope signatures as tracers in environmental geochemistry.

    PubMed

    Wiederhold, Jan G

    2015-03-01

    The biogeochemical cycling of metals in natural systems is often accompanied by stable isotope fractionation which can now be measured due to recent analytical advances. In consequence, a new research field has emerged over the last two decades, complementing the traditional stable isotope systems (H, C, O, N, S) with many more elements across the periodic table (Li, B, Mg, Si, Cl, Ca, Ti, V, Cr, Fe, Ni, Cu, Zn, Ge, Se, Br, Sr, Mo, Ag, Cd, Sn, Sb, Te, Ba, W, Pt, Hg, Tl, U) which are being explored and potentially applicable as novel geochemical tracers. This review presents the application of metal stable isotopes as source and process tracers in environmental studies, in particular by using mixing and Rayleigh model approaches. The most important concepts of mass-dependent and mass-independent metal stable isotope fractionation are introduced, and the extent of natural isotopic variations for different elements is compared. A particular focus lies on a discussion of processes (redox transformations, complexation, sorption, precipitation, dissolution, evaporation, diffusion, biological cycling) which are able to induce metal stable isotope fractionation in environmental systems. Additionally, the usefulness and limitations of metal stable isotope signatures as tracers in environmental geochemistry are discussed and future perspectives presented.

  9. Metal stable isotope signatures as tracers in environmental geochemistry.

    PubMed

    Wiederhold, Jan G

    2015-03-01

    The biogeochemical cycling of metals in natural systems is often accompanied by stable isotope fractionation which can now be measured due to recent analytical advances. In consequence, a new research field has emerged over the last two decades, complementing the traditional stable isotope systems (H, C, O, N, S) with many more elements across the periodic table (Li, B, Mg, Si, Cl, Ca, Ti, V, Cr, Fe, Ni, Cu, Zn, Ge, Se, Br, Sr, Mo, Ag, Cd, Sn, Sb, Te, Ba, W, Pt, Hg, Tl, U) which are being explored and potentially applicable as novel geochemical tracers. This review presents the application of metal stable isotopes as source and process tracers in environmental studies, in particular by using mixing and Rayleigh model approaches. The most important concepts of mass-dependent and mass-independent metal stable isotope fractionation are introduced, and the extent of natural isotopic variations for different elements is compared. A particular focus lies on a discussion of processes (redox transformations, complexation, sorption, precipitation, dissolution, evaporation, diffusion, biological cycling) which are able to induce metal stable isotope fractionation in environmental systems. Additionally, the usefulness and limitations of metal stable isotope signatures as tracers in environmental geochemistry are discussed and future perspectives presented. PMID:25640608

  10. Strontium isotope characterization of wines from Quebec, Canada.

    PubMed

    Vinciguerra, Victor; Stevenson, Ross; Pedneault, Karine; Poirier, André; Hélie, Jean-François; Widory, David

    2016-11-01

    The (87)Sr/(86)Sr isotope ratios were measured on grape, wine and soil samples collected in 13 commercial vineyards located in three major wine producing areas of Quebec (Canada). The soils yield Sr isotope ratios that are intimately related to the local geology and unambiguously discriminate the different producing areas. A strong relationship exists between the (87)Sr/(86)Sr isotope ratios of the wine and the grapes. This suggests that the vinification process does not alter the overall Sr budget. Although the Sr isotope ratios of the grapes do not show a strong correlation with the bulk Sr isotope composition of the soil, they do correlate strongly with the Sr isotope composition contained in the labile fraction of the soil. This indicates that the labile fraction of the soil represents the Sr reservoir available to the plant during its growth. This study demonstrates that the Sr isotope approach can be used as a viable tool in forensic science for investigating the provenance of commercial wines. PMID:27211629

  11. Iron isotope biosignatures.

    PubMed

    Beard, B L; Johnson, C M; Cox, L; Sun, H; Nealson, K H; Aguilar, C

    1999-09-17

    The (56)Fe/(54)Fe of Fe-bearing phases precipitated in sedimentary environments varies by 2.5 per mil (delta(56)Fe values of +0.9 to -1. 6 per mil). In contrast, the (56)Fe/(54)Fe of Fe-bearing phases in igneous rocks from Earth and the moon does not vary measurably (delta(56)Fe = 0.0 +/- 0.3 per mil). Experiments with dissimilatory Fe-reducing bacteria of the genus Shewanella algae grown on a ferrihydrite substrate indicate that the delta(56)Fe of ferrous Fe in solution is isotopically lighter than the ferrihydrite substrate by 1.3 per mil. Therefore, the range in delta(56)Fe values of sedimentary rocks may reflect biogenic fractionation, and the isotopic composition of Fe may be used to trace the distribution of microorganisms in modern and ancient Earth.

  12. New Isotope 263Hs

    SciTech Connect

    Dragojevic, I.; Gregorich, K.E.; Dullmann, Ch.E.; Dvorak, J.; Ellison, P.A.; Gates, J.M.; Nelson, S.L.; Stavsetra, L.; Nitsche, H.

    2010-03-16

    A new isotope of Hs was produced in the reaction 208Pb(56Fe, n)263Hs at the 88-Inch Cyclotron of the Lawrence Berkeley National Laboratory. Six genetically correlated nuclear decay chains have been observed and assigned to the new isotope 263Hs. The measured cross section was 21+13-8.4 pb at 276.4 MeV lab-frame center-of-target beam energy. 263Hs decays with a half-life of 0.74 ms by alpha-decay and the measured alpha-particle energies are 10.57 +- 0.06, 10.72 +- 0.06, and 10.89 +- 0.06 MeV. The experimental cross section is compared to a theoretical prediction based on the Fusion by Diffusion model [W. J. Swiatecki et al., Phys. Rev. C 71, 014602 (2005)].

  13. Iron isotope biosignatures

    NASA Technical Reports Server (NTRS)

    Beard, B. L.; Johnson, C. M.; Cox, L.; Sun, H.; Nealson, K. H.; Aguilar, C.

    1999-01-01

    The (56)Fe/(54)Fe of Fe-bearing phases precipitated in sedimentary environments varies by 2.5 per mil (delta(56)Fe values of +0.9 to -1. 6 per mil). In contrast, the (56)Fe/(54)Fe of Fe-bearing phases in igneous rocks from Earth and the moon does not vary measurably (delta(56)Fe = 0.0 +/- 0.3 per mil). Experiments with dissimilatory Fe-reducing bacteria of the genus Shewanella algae grown on a ferrihydrite substrate indicate that the delta(56)Fe of ferrous Fe in solution is isotopically lighter than the ferrihydrite substrate by 1.3 per mil. Therefore, the range in delta(56)Fe values of sedimentary rocks may reflect biogenic fractionation, and the isotopic composition of Fe may be used to trace the distribution of microorganisms in modern and ancient Earth.

  14. A multi-isotope approach to understanding the evolution of Cenozoic magmatism in the northeastern Basin and Range: Results from igneous rocks in the Albion-Raft River-Grouse Creek metamorphic core complex

    NASA Astrophysics Data System (ADS)

    Konstantinou, A.; Strickland, A.; Miller, E. L.

    2012-12-01

    Deep crustal rocks exposed by extensional processes in metamorphic core complexes provide a unique opportunity to address the magmatic and isotopic evolution of the crust and assess the relative crust versus mantle contributions in Cenozoic igneous rocks exposed in the complexes. The Albion-Raft River-Grouse Creek metamorphic core complex exposes mid-crustal rocks that resided at depths of ~15-20 km before the onset of Cenozoic extension. Three major Cenozoic magmatic events are represented in the complex and have been studied using multiple isotopic systems (whole rock Sr and Nd coupled with the Oxygen isotopes in zircon). These three major events are: (1) 42-31 Ma intrusion of a composite plutonic complex of calc-alkaline composition that intrudes both upper crustal rocks (~5-10 km depth) and deeper rocks. (2) A 32-25 Ma plutonic complex, with evolved calc-alkaline composition that intruded in the middle crust (~12-15 km depth), and (3) A 10-8 Ma bimodal (basalt-rhyolite) suite of volcanic rocks that contain high-T anhydrous mineral assemblages erupted across the complex. The pre-extensional crust consisted of an upper crust composed primarily of Neoproterozoic through Triassic metasedimentary rocks (schist and quartzite at its base and limestone at its top). The middle crust consists of late Archean orthogneiss with evolved composition (metamorphosed peraluminous granite) with average 87Sr/86Sr40~0.800, ɛNd40~ -43.4 and δ18Ozirc ~5.7‰. The lower crust is inferred to have been composed of Precambrian intermediate composition igneous rocks with average 87Sr/86Sr40~0.750, ɛNd40~ -37.5 and δ18Ozirc ~5.9‰, and Precambrian mafic rocks with average 87Sr/86Sr40~0.717, ɛNd40~ -25 and δ18Ozirc ~7.0‰. Existing and new data indicate that the 42-31 Ma upper crustal plutonic complex ranges in isotopic composition from 87Sr/86Sri=0.709-0.712, ɛNdi=-15 to -25 and δ18Ozirc 4.7-6.5‰. The composition of the 32-25 Ma middle crustal plutonic complex ranges from 87Sr

  15. ISOTOPE SEPARATING APPARATUS CONTROL

    DOEpatents

    Barnes, S.W.

    1959-08-25

    An improved isotope separating apparatus of the electromagnetic type, commonly referred to as a calutron, is described. Improvements in detecting and maintaining optimum position and focus of the ion beam are given. The calutron collector is provided with an additional electrode insulated from and positioned between the collecting pockets. The ion beams are properly positioned and focused until the deionizing current which flows from ground to this additional electrode ts a minimum.

  16. Electrochemically controlled iron isotope fractionation

    NASA Astrophysics Data System (ADS)

    Black, Jay R.; Young, Edward D.; Kavner, Abby

    2010-02-01

    Variations in the stable isotope abundances of transition metals have been observed in the geologic record and trying to understand and reconstruct the physical/environmental conditions that produced these signatures is an area of active research. It is clear that changes in oxidation state lead to large fractionations of the stable isotopes of many transition metals such as iron, suggesting that transition metal stable isotope signatures could be used as a paleo-redox proxy. However, the factors contributing to these observed stable isotope variations are poorly understood. Here we investigate how the kinetics of iron redox electrochemistry generates isotope fractionation. Through a combination of electrodeposition experiments and modeling of electrochemical processes including mass-transport, we show that electron transfer reactions are the cause of a large isotope separation, while mass transport-limited supply of reactant to the electrode attenuates the observed isotopic fractionation. Furthermore, the stable isotope composition of electroplated transition metals can be tuned in the laboratory by controlling parameters such as solution chemistry, reaction overpotential, and solution convection. These methods are potentially useful for generating isotopically-marked metal surfaces for tracking and forensic purposes. In addition, our studies will help interpret stable isotope data in terms of identifying underlying electron transfer processes in laboratory and natural samples.

  17. ISOTOPE METHODS IN HOMOGENEOUS CATALYSIS.

    SciTech Connect

    BULLOCK,R.M.; BENDER,B.R.

    2000-12-01

    The use of isotope labels has had a fundamentally important role in the determination of mechanisms of homogeneously catalyzed reactions. Mechanistic data is valuable since it can assist in the design and rational improvement of homogeneous catalysts. There are several ways to use isotopes in mechanistic chemistry. Isotopes can be introduced into controlled experiments and followed where they go or don't go; in this way, Libby, Calvin, Taube and others used isotopes to elucidate mechanistic pathways for very different, yet important chemistries. Another important isotope method is the study of kinetic isotope effects (KIEs) and equilibrium isotope effect (EIEs). Here the mere observation of where a label winds up is no longer enough - what matters is how much slower (or faster) a labeled molecule reacts than the unlabeled material. The most careti studies essentially involve the measurement of isotope fractionation between a reference ground state and the transition state. Thus kinetic isotope effects provide unique data unavailable from other methods, since information about the transition state of a reaction is obtained. Because getting an experimental glimpse of transition states is really tantamount to understanding catalysis, kinetic isotope effects are very powerful.

  18. Isotope-shift measurements of stable and short-lived lithium isotopes for nuclear-charge-radii determination

    SciTech Connect

    Noertershaeuser, W.; Sanchez, R.; Ewald, G.; Dax, A.; Goette, S.; Kluge, H.-J.; Kuehl, Th.; Wojtaszek, A.; Behr, J.; Bricault, P.; Dilling, J.; Dombsky, M.; Lassen, J.; Levy, C. D. P.; Pearson, M.; Bushaw, B. A.; Drake, G. W. F.; Pachucki, K.; Puchalski, M.; Yan, Z.-C.

    2011-01-15

    Changes in the mean square nuclear charge radii along the lithium isotopic chain were determined using a combination of precise isotope shift measurements and theoretical atomic structure calculations. Nuclear charge radii of light elements are of high interest due to the appearance of the nuclear halo phenomenon in this region of the nuclear chart. During the past years we have developed a laser spectroscopic approach to determine the charge radii of lithium isotopes which combines high sensitivity, speed, and accuracy to measure the extremely small field shift of an 8-ms-lifetime isotope with production rates on the order of only 10 000 atoms/s. The method was applied to all bound isotopes of lithium including the two-neutron halo isotope {sup 11}Li at the on-line isotope separators at GSI, Darmstadt, Germany, and at TRIUMF, Vancouver, Canada. We describe the laser spectroscopic method in detail, present updated and improved values from theory and experiment, and discuss the results.

  19. Shape coexistence in the neutron-deficient Pt isotopes in a configuration mixing IBM

    SciTech Connect

    Morales, Irving O.; Vargas, Carlos E.; Frank, Alejandro

    2004-09-13

    The recently proposed matrix-coherent state approach for configuration mixing IBM is used to describe the evolving geometry of the neutron deficient Pt isotopes. It is found that the Potential Energy Surface (PES) of the Platinum isotopes evolves, when the number of neutrons decreases, from spherical to oblate and then to prolate shapes, in agreement with experimental measurements. Oblate-Prolate shape coexistence is observed in 194,192Pt isotopes.

  20. First Measurement of the Nuclear Carge Radii of Short-Lived Lithium Isotopes

    SciTech Connect

    Nortershauser, W.; Dax, A ..; Ewald, G; Gotte, S; Kirchner, Rolf; Kluge, H J.; Kuhl, T H.; Sanchez, Rodolfo; Wojtaszek, A.; Bushaw, Bruce A.; Drake, Gordon W. F.; Yan, Z C.; Zimmerman, C.

    2006-04-01

    A novel method for the determination of nuclear charge radii of lithium isotopes is presented. Precise laser spectroscopic measurements of the isotope shift in the lithium 2s? 3s transition are combined with highly accurate atomic physics calculation of the mass dependent isotope shift to extract the charge-distribution-sensitive information. This approach has been used to determine the charge radii of 6,7,8,9Li.

  1. Laser isotope separation of erbium and other isotopes

    DOEpatents

    Haynam, C.A.; Worden, E.F.

    1995-08-22

    Laser isotope separation is accomplished using at least two photoionization pathways of an isotope simultaneously, where each pathway comprises two or more transition steps. This separation method has been applied to the selective photoionization of erbium isotopes, particularly for the enrichment of {sup 167}Er. The hyperfine structure of {sup 167}Er was used to find two three-step photoionization pathways having a common upper energy level. 3 figs.

  2. Laser isotope separation of erbium and other isotopes

    DOEpatents

    Haynam, Christopher A.; Worden, Earl F.

    1995-01-01

    Laser isotope separation is accomplished using at least two photoionization pathways of an isotope simultaneously, where each pathway comprises two or more transition steps. This separation method has been applied to the selective photoionization of erbium isotopes, particularly for the enrichment of .sup.167 Er. The hyperfine structure of .sup.167 Er was used to find two three-step photoionization pathways having a common upper energy level.

  3. Oxygen isotope studies and compilation of isotopic dates from Antarctica

    SciTech Connect

    Grootes, P.M.; Stuiver, M.

    1986-01-01

    The Quaternary Isotope Laboratory, alone or in collaboration with other investigators, is currently involved in a number of oxygen-isotope studies mainly in Antarctica. Studies of a drill core from the South Pole, seasonal oxygen-18 signals preserved in the Dominion Range, isotope dating of the Ross Ice Shelf, oxygen-18 profiles of the Siple Coast, McMurdo Ice Shelf sampling, and a data compilation of radiometric dates from Antarctica are discussed.

  4. Stable Isotope Ratios as Biomarkers of Diet for Health Research.

    PubMed

    O'Brien, Diane M

    2015-01-01

    Diet is a leading modifiable risk factor for chronic disease, but it remains difficult to measure accurately due to the error and bias inherent in self-reported methods of diet assessment. Consequently, there is a pressing need for more objective biomarkers of diet for use in health research. The stable isotope ratios of light elements are a promising set of candidate biomarkers because they vary naturally and reproducibly among foods, and those variations are captured in molecules and tissues with high fidelity. Recent studies have identified valid isotopic measures of short- and long-term sugar intake, meat intake, and fish intake in specific populations. These studies provide a strong foundation for validating stable isotopic biomarkers in the general US population. Approaches to improve specificity for specific foods are needed; for example, by modeling intake using multiple stable isotope ratios or by isolating and measuring specific molecules linked to foods of interest. PMID:26048703

  5. Examining the stability of thermally fissile Th and U isotopes

    NASA Astrophysics Data System (ADS)

    Kumar, Bharat; Biswal, S. K.; Singh, S. K.; Patra, S. K.

    2015-11-01

    The properties of recently predicted thermally fissile Th and U isotopes are studied within the framework of the relativistic mean-field approach using the axially deformed basis. We calculate the ground, first intrinsic excited state for highly neutron-rich thorium and uranium isotopes. The possible modes of decay such as α decay and β decay are analyzed. We found that neutron-rich isotopes are stable against α decay, however, they are very unstable against β decay. The lifetime of these nuclei is predicted to be tens of seconds against β decay. If these nuclei are utilized before their decay time, a lot of energy can be produced with the help of multifragmentation fission. Also, these nuclei have great implications from the astrophysical point of view. In some cases, we found that the isomeric states with energy range from 2 to 3 MeV and three maxima in the potential energy surface of Th-230228 and U-234228 isotopes.

  6. Stable Isotope Ratios as Biomarkers of Diet for Health Research.

    PubMed

    O'Brien, Diane M

    2015-01-01

    Diet is a leading modifiable risk factor for chronic disease, but it remains difficult to measure accurately due to the error and bias inherent in self-reported methods of diet assessment. Consequently, there is a pressing need for more objective biomarkers of diet for use in health research. The stable isotope ratios of light elements are a promising set of candidate biomarkers because they vary naturally and reproducibly among foods, and those variations are captured in molecules and tissues with high fidelity. Recent studies have identified valid isotopic measures of short- and long-term sugar intake, meat intake, and fish intake in specific populations. These studies provide a strong foundation for validating stable isotopic biomarkers in the general US population. Approaches to improve specificity for specific foods are needed; for example, by modeling intake using multiple stable isotope ratios or by isolating and measuring specific molecules linked to foods of interest.

  7. Data mining for isotope discrimination in atom probe tomography.

    PubMed

    Broderick, Scott R; Bryden, Aaron; Suram, Santosh K; Rajan, Krishna

    2013-09-01

    Ions with similar time-of-flights (TOF) can be discriminated by mapping their kinetic energy. While current generation position-sensitive detectors have been considered insufficient for capturing the isotope kinetic energy, we demonstrate in this paper that statistical learning methodologies can be used to capture the kinetic energy from all of the parameters currently measured by mathematically transforming the signal. This approach works because the kinetic energy is sufficiently described by the descriptors on the potential, the material, and the evaporation process within atom probe tomography (APT). We discriminate the isotopes for Mg and Al by capturing the kinetic energy, and then decompose the TOF spectrum into its isotope components and identify the isotope for each individual atom measured. This work demonstrates the value of advanced data mining methods to help enhance the information resolution of the atom probe.

  8. Efficient isotope separation by single-photon atomic sorting

    SciTech Connect

    Jerkins, M.; Chavez, I.; Raizen, M. G.; Even, U.

    2010-09-15

    We propose a general and scalable approach to isotope separation. The method is based on an irreversible change of the mass-to-magnetic moment ratio of a particular isotope in an atomic beam, followed by a magnetic multipole whose gradients deflect and guide the atoms. The underlying mechanism is a reduction of the entropy of the beam by the information of a single scattered photon for each atom that is separated. We numerically simulate isotope separation for a range of examples, which demonstrate this technique's general applicability to almost the entire periodic table. The practical importance of the proposed method is that large-scale isotope separation should be possible, using ordinary inexpensive magnets and the existing technologies of supersonic beams and lasers.

  9. Stable Isotope Ratios as Biomarkers of Diet for Health Research

    PubMed Central

    O’Brien, Diane M.

    2016-01-01

    Diet is a leading modifiable risk factor for chronic disease, but it remains difficult to measure accurately due to the error and bias inherent in self-reported methods of diet assessment. Consequently there is a pressing need for more objective biomarkers of diet for use in health research. The stable isotope ratios of light elements are a promising set of candidate biomarkers because they vary naturally and reproducibly among foods, and those variations are captured in molecules and tissues with high fidelity. Recent studies have identified valid isotopic measures of short and long-term sugar intake, meat intake, and fish intake in specific populations. These studies provide a strong foundation for validating stable isotopic biomarkers in the general United States population. Approaches to improve specificity for specific foods are needed, for example, by modeling intake using multiple stable isotope ratios, or by isolating and measuring specific molecules linked to foods of interest. PMID:26048703

  10. Nickel isotopes and methanogens

    NASA Astrophysics Data System (ADS)

    Neubeck, A.; Ivarsson, M.

    2013-12-01

    Methanogens require Ni for their growth and as a consequence the microbial fractionation of Ni isotopes can be used as a biomarker for activity of methanogenic communities1. Anaerobic laboratory experiments was performed using methanogens to investigate methanogenic growth in a modified nutrient media2 with olivine Fo91 (5g/l) added as an additional mineral nutrient source and as the only H2 provider. One of the investigated methanogens showed an increased growth in the experiments with added olivine. There were also a close relationship between the mobilized Ni and the growth of the methanogen. Ni is an element that previously has been neglected in the study of fossilized microorganisms and their interaction with mineral substrates and, thus, there are no records or published data of Ni in association with microfossils. However, we have detected enrichments of Ni in fossilized microorganisms and ichno-fossils, respectively, from three separate locations. Ni is not present in the host rock in any of the samples. Thus, Ni is present in association with fossilized microorganisms from environments and more extensive analysis is required to understand the magnitude, uptake, preservation and fractionation of Ni in microfossils. In order to analyze Ni isotope fractionation from microbe-mineral interaction, we plan to use a high-resolution Laser-Ablation Time-of-Flight Mass Spectrometer (LMS)3. In situ profile ablation will provide detailed and localized data on fractionation patterns between microfossils and their host rock. Also, this technique will allow us to identify the change in Ni isotopic fractionation in rock samples caused by abiotic and biogenic processes in a faster and easier way and with less risk for contamination compared to the wet chemistry analyses of Ni isotopes. 1. Cameron, V., Vance, D., Archer, C. & House, C. H. A biomarker based on the stable isotopes of nickel. Proceedings of the National Academy of Sciences 106, 10944-10948 (2009). 2. Schn

  11. Finite mixture models for the computation of isotope ratios in mixed isotopic samples

    NASA Astrophysics Data System (ADS)

    Koffler, Daniel; Laaha, Gregor; Leisch, Friedrich; Kappel, Stefanie; Prohaska, Thomas

    2013-04-01

    Finite mixture models have been used for more than 100 years, but have seen a real boost in popularity over the last two decades due to the tremendous increase in available computing power. The areas of application of mixture models range from biology and medicine to physics, economics and marketing. These models can be applied to data where observations originate from various groups and where group affiliations are not known, as is the case for multiple isotope ratios present in mixed isotopic samples. Recently, the potential of finite mixture models for the computation of 235U/238U isotope ratios from transient signals measured in individual (sub-)µm-sized particles by laser ablation - multi-collector - inductively coupled plasma mass spectrometry (LA-MC-ICPMS) was demonstrated by Kappel et al. [1]. The particles, which were deposited on the same substrate, were certified with respect to their isotopic compositions. Here, we focus on the statistical model and its application to isotope data in ecogeochemistry. Commonly applied evaluation approaches for mixed isotopic samples are time-consuming and are dependent on the judgement of the analyst. Thus, isotopic compositions may be overlooked due to the presence of more dominant constituents. Evaluation using finite mixture models can be accomplished unsupervised and automatically. The models try to fit several linear models (regression lines) to subgroups of data taking the respective slope as estimation for the isotope ratio. The finite mixture models are parameterised by: • The number of different ratios. • Number of points belonging to each ratio-group. • The ratios (i.e. slopes) of each group. Fitting of the parameters is done by maximising the log-likelihood function using an iterative expectation-maximisation (EM) algorithm. In each iteration step, groups of size smaller than a control parameter are dropped; thereby the number of different ratios is determined. The analyst only influences some control

  12. Intrinsic and synthetic stable isotope marking of tsetse flies.

    PubMed

    Hood-Nowotny, Rebecca; Watzka, Margarete; Mayr, Leo; Mekonnen, Solomon; Kapitano, Berisha; Parker, Andrew

    2011-01-01

    The sterile insect technique has been successfully used to eliminate tsetse populations in a number of programs. Program monitoring in the field relies on the ability to accurately differentiate released sterile insects from wild insects so that estimates can be made of the ratio of sterile males to wild males. Typically, released flies are marked with a dye, which is not always reliable. The difference in isotopic signatures between wild and factory-reared populations could be a reliable and intrinsic secondary marker to complement existing marking methods. Isotopic signatures are natural differences in stable isotope composition of organisms due to discrimination against the heavier isotopes during some biological processes. As the isotopic signature of an organism is mainly dependent on what it eats; by feeding factory-reared flies isotopically different diets to those of the wild population it is possible to intrinsically mark the flies. To test this approach unlabeled samples of Glossina pallidipes (Austen) (Diptera: Glossinidae) from a mass rearing facility and wild populations were analyzed to determine whether there were any natural differences in signatures that could be used as markers. In addition experiments were conducted in which the blood diet was supplemented with isotopically enriched compounds and the persistence of the marker in the offspring determined. There were distinct natural isotopic differences between factory reared and wild tsetse populations that could be reliably used as population markers. It was also possible to rear artificially isotopically labeled flies using simple technology and these flies were clearly distinguishable from wild populations with greater than 95% certainty after 85 days of "release". These techniques could be readily adopted for use in SIT programs as complimentary marking techniques. PMID:21870965

  13. Vapor Transport Modeling of Continental Water Isotope Gradients

    NASA Astrophysics Data System (ADS)

    Ritch, A. J.; Caves, J. K.; Ibarra, D. E.; Winnick, M. J.; Chamberlain, C. P.

    2015-12-01

    Stable isotopes have been widely used to reconstruct past climatic conditions and topographic histories of mountain belts. However, many studies do not account for the influences of evapotranspiration and vapor recycling on downstream meteoric water isotopic compositions. Here we present a case study of the modern Sierra Nevada and Basin and Range to illustrate the value of using process-based models across larger spatial scales to reconstruct the conditions driving local- to regional-scale water isotopic compositions. We use a one-dimensional reactive vapor transport model, driven by the National Centers for Environmental Prediction (NCEP) high-resolution North American Regional Reanalysis (NARR) dataset, to simulate the isotopic composition of modern meteoric waters (δ18O and δD) along storm tracks across the Sierra Nevada and Basin and Range. Storm track pathways are generated using NOAA's Air Resources Laboratory's Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model. In addition, we couple the vapor transport model with a soil moisture model to simulate depth profiles of the oxygen isotopic composition of authigenic carbonate along our storm tracks. We show that, given reasonable estimates of the modern partitioning between evaporation and transpiration, our model output is in agreement with modern isotopic data both from compilations of published meteoric water samples and from newly collected soil carbonate samples along a transect across the northern Sierra Nevada and Basin and Range (~38-42° N). These results demonstrate that our modeling approach can be used to analyze the relative contributions of climate and topography to observed isotopic gradients. Future studies can apply this modeling framework to isotopes preserved in the geologic record to provide a quantitative means of understanding the paleoclimatic influences on spatial isotopic distributions.

  14. Measurement of the isotope enrichment of stable isotope-labeled proteins using high-resolution mass spectra of peptides.

    PubMed

    MacCoss, Michael J; Wu, Christine C; Matthews, Dwight E; Yates, John R

    2005-12-01

    Stable isotope-enriched molecules are used as internal standards and as tracers of in vivo substrate metabolism. The accurate conversion of measured ratios in the mass spectrometer to mole ratios is complicated because a polyatomic molecule containing enriched atoms will result in a combinatorial distribution of isotopomers depending on the enrichment and number of "labeled" atoms. This effect could potentially cause a large error in the mole ratio measurement depending on which isotope peak or peaks were used to determine the ratio. We report a computational method that predicts isotope distributions over a range of enrichments and compares the predicted distributions to experimental peptide isotope distributions obtained by Fourier transform ion cyclotron resonance mass spectrometry. Our approach is accurate with measured enrichments within 1.5% of expected isotope distributions. The method is also precise with 4.9, 2.0, and 0.8% relative standard deviations for peptides containing 59, 79, and 99 atom % excess (15)N, respectively. The approach is automated making isotope enrichment calculations possible for thousands of peptides in a single muLC-FTICR-MS experiment.

  15. Position-specific isotope modeling of organic micropollutants transformation through different reaction pathways.

    PubMed

    Jin, Biao; Rolle, Massimo

    2016-03-01

    The degradation of organic micropollutants occurs via different reaction pathways. Compound specific isotope analysis is a valuable tool to identify such degradation pathways in different environmental systems. We propose a mechanism-based modeling approach that provides a quantitative framework to simultaneously evaluate concentration as well as bulk and position-specific multi-element isotope evolution during the transformation of organic micropollutants. The model explicitly simulates position-specific isotopologues for those atoms that experience isotope effects and, thereby, provides a mechanistic description of isotope fractionation occurring at different molecular positions. To demonstrate specific features of the modeling approach, we simulated the degradation of three selected organic micropollutants: dichlorobenzamide (BAM), isoproturon (IPU) and diclofenac (DCF). The model accurately reproduces the multi-element isotope data observed in previous experimental studies. Furthermore, it precisely captures the dual element isotope trends characteristic of different reaction pathways as well as their range of variation consistent with observed bulk isotope fractionation. It was also possible to directly validate the model capability to predict the evolution of position-specific isotope ratios with available experimental data. Therefore, the approach is useful both for a mechanism-based evaluation of experimental results and as a tool to explore transformation pathways in scenarios for which position-specific isotope data are not yet available.

  16. Position-specific isotope modeling of organic micropollutants transformation through different reaction pathways.

    PubMed

    Jin, Biao; Rolle, Massimo

    2016-03-01

    The degradation of organic micropollutants occurs via different reaction pathways. Compound specific isotope analysis is a valuable tool to identify such degradation pathways in different environmental systems. We propose a mechanism-based modeling approach that provides a quantitative framework to simultaneously evaluate concentration as well as bulk and position-specific multi-element isotope evolution during the transformation of organic micropollutants. The model explicitly simulates position-specific isotopologues for those atoms that experience isotope effects and, thereby, provides a mechanistic description of isotope fractionation occurring at different molecular positions. To demonstrate specific features of the modeling approach, we simulated the degradation of three selected organic micropollutants: dichlorobenzamide (BAM), isoproturon (IPU) and diclofenac (DCF). The model accurately reproduces the multi-element isotope data observed in previous experimental studies. Furthermore, it precisely captures the dual element isotope trends characteristic of different reaction pathways as well as their range of variation consistent with observed bulk isotope fractionation. It was also possible to directly validate the model capability to predict the evolution of position-specific isotope ratios with available experimental data. Therefore, the approach is useful both for a mechanism-based evaluation of experime