NASA Astrophysics Data System (ADS)
Douglas, P. M.; Eiler, J. M.; Sessions, A. L.; Dawson, K.; Walter Anthony, K. M.; Smith, D. A.; Lloyd, M. K.; Yanay, E.
2016-12-01
Microbially produced methane is a globally important greenhouse gas, energy source, and biological substrate. Methane clumped isotope measurements have recently been developed as a new analytical tool for understanding the source of methane in different environments. When methane forms in isotopic equilibrium clumped isotope values are determined by formation temperature, but in many cases microbial methane clumped isotope values deviate strongly from expected equilibrium values. Indeed, we observe a very wide range of clumped isotope values in microbial methane, which are likely strongly influenced by kinetic isotope effects, but thus far the biological and environmental parameters controlling this variability are not understood. We will present data from both culture experiments and natural environments to explore patterns of variability in non-equilibrium clumped isotope values on temporal and spatial scales. In methanogen batch cultures sampled at different time points along a growth curve we observe significant variability in clumped isotope values, with values decreasing from early to late exponential growth. Clumped isotope values then increase during stationary growth. This result is consistent with previous work suggesting that differences in the reversibility of methanogenesis related to metabolic rates control non-equilibrium clumped isotope values. Within single lakes in Alaska and Sweden we observe substantial variability in clumped isotope values on the order of 5‰. Lower clumped isotope values are associated with larger 2H isotopic fractionation between water and methane, which is also consistent with a kinetic isotope effect determined by the reversibility of methanogenesis. Finally, we analyzed a time-series clumped isotope compositions of methane emitted from two seeps in an Alaskan lake over several months. Temporal variability in these seeps is on the order of 2‰, which is much less than the observed spatial variability within the lake. Comparing carbon isotope fractionation between CO2 and CH4 with clumped isotope data suggests the temporal variability may result from changes in methane oxidation.
Stallings, Christopher D; Nelson, James A; Rozar, Katherine L; Adams, Charles S; Wall, Kara R; Switzer, Theodore S; Winner, Brent L; Hollander, David J
2015-01-01
Research that uses stable isotope analysis often involves a delay between sample collection in the field and laboratory processing, therefore requiring preservation to prevent or reduce tissue degradation and associated isotopic compositions. Although there is a growing literature describing the effects of various preservation techniques, the results are often contextual, unpredictable and vary among taxa, suggesting the need to treat each species individually. We conducted a controlled experiment to test the effects of four preservation methods of muscle tissue from four species of upper trophic-level reef fish collected from the eastern Gulf of Mexico (Red Grouper Epinephelus morio, Gag Mycteroperca microlepis, Scamp Mycteroperca phenax, and Red Snapper Lutjanus campechanus). We used a paired design to measure the effects on isotopic values for carbon and nitrogen after storage using ice, 95% ethanol, and sodium chloride (table salt), against that in a liquid nitrogen control. Mean offsets for both δ (13)C and δ (15)N values from controls were lowest for samples preserved on ice, intermediate for those preserved with salt, and highest with ethanol. Within species, both salt and ethanol significantly enriched the δ (15)N values in nearly all comparisons. Ethanol also had strong effects on the δ (13)C values in all three groupers. Conversely, for samples preserved on ice, we did not detect a significant offset in either isotopic ratio for any of the focal species. Previous studies have addressed preservation-induced offsets in isotope values using a mass balance correction that accounts for changes in the isotope value to that in the C/N ratio. We tested the application of standard mass balance corrections for isotope values that were significantly affected by the preservation methods and found generally poor agreement between corrected and control values. The poor performance by the correction may have been due to preferential loss of lighter isotopes and corresponding low levels of mass loss with a substantial change in the isotope value of the sample. Regardless of mechanism, it was evident that accounting for offsets caused by different preservation methods was not possible using the standard correction. Caution is warranted when interpreting the results from specimens stored in either ethanol or salt, especially when using those from multiple preservation techniques. We suggest the use of ice as the preferred preservation technique for muscle tissue when conducting stable isotope analysis as it is widely available, inexpensive, easy to transport and did not impart a significant offset in measured isotopic values. Our results provide additional evidence that preservation effects on stable isotope analysis can be highly contextual, thus requiring their effects to be measured and understood for each species and isotopic ratio of interest before addressing research questions.
Using chromium stable isotope ratios to quantify Cr(VI) reduction: Lack of sorption effects
Ellis, A.S.; Johnson, T.M.; Bullen, T.D.
2004-01-01
Chromium stable isotope values can be effectively used to monitor reduction of Cr(VI) in natural waters. We investigate effects of sorption during transport of Cr(VI) which may also shift Cr isotopes values, complicating efforts to quantify reduction. This study shows that Cr stable isotope fractionation caused by sorption is negligible. Equilibrium fractionation of Cr stable isotopes between dissolved Cr-(VI) and Cr(VI) adsorbed onto ??-Al2O3 and goethite is less than 0.04???. (53Cr/52Cr) under environmentally relevant pH conditions. Batch experiments at pH 4.0 and pH 6.0 were conducted in series to sequentially magnify small isotope fractionations. A simple transport model suggests that adsorption may cause amplification of a small isotope fractionation along extreme fringes of a plume, leading to shifts in 53Cr/52Cr values. We therefore suggest that isotope values at extreme fringes of Cr plumes be critically evaluated for sorption effects. A kinetic effect was observed in experiments with goethite at pH 4 where apparently lighter isotopes diffuse into goethite clumps at a faster rate before eventually reaching equilibrium. This observed kinetic effect may be important in a natural system that has not attained equilibrium and is in need of further study. Cr isotope fractionation caused by speciation of Cr(VI) between HCrO4- and CrO42- was also examined, and we conclude that it is not measurable. In the absence of isotope fractionation caused by equilibrium speciation and sorption, most of the variation in ??53 Cr values may be attributed to reduction, and reliable estimates of Cr reduction can be made.
Ni, Y.; Ma, Q.; Ellis, G.S.; Dai, J.; Katz, B.; Zhang, S.; Tang, Y.
2011-01-01
Based on quantum chemistry calculations for normal octane homolytic cracking, a kinetic hydrogen isotope fractionation model for methane, ethane, and propane formation is proposed. The activation energy differences between D-substitute and non-substituted methane, ethane, and propane are 318.6, 281.7, and 280.2cal/mol, respectively. In order to determine the effect of the entropy contribution for hydrogen isotopic substitution, a transition state for ethane bond rupture was determined based on density function theory (DFT) calculations. The kinetic isotope effect (KIE) associated with bond rupture in D and H substituted ethane results in a frequency factor ratio of 1.07. Based on the proposed mathematical model of hydrogen isotope fractionation, one can potentially quantify natural gas thermal maturity from measured hydrogen isotope values. Calculated gas maturity values determined by the proposed mathematical model using ??D values in ethane from several basins in the world are in close agreement with similar predictions based on the ??13C composition of ethane. However, gas maturity values calculated from field data of methane and propane using both hydrogen and carbon kinetic isotopic models do not agree as closely. It is possible that ??D values in methane may be affected by microbial mixing and that propane values might be more susceptible to hydrogen exchange with water or to analytical errors. Although the model used in this study is quite preliminary, the results demonstrate that kinetic isotope fractionation effects in hydrogen may be useful in quantitative models of natural gas generation, and that ??D values in ethane might be more suitable for modeling than comparable values in methane and propane. ?? 2011 Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Managave, S. R.; Jani, R. A.; Narayana Rao, T.; Sunilkumar, K.; Satheeshkumar, S.; Ramesh, R.
2016-08-01
Evaporation of rain is known to contribute water vapor, a potent greenhouse gas, to the atmosphere. Stable oxygen and hydrogen isotopic compositions (δ18O and, δD, respectively) of precipitation, usually measured/presented as values integrated over rain events or monthly mean values, are important tools for detecting evaporation effects. The slope ~8 of the linear relationship between such time-averaged values of δD and δ18O (called the meteoric water line) is widely accepted as a proof of condensation under isotopic equilibrium and absence of evaporation of rain during atmospheric fall. Here, through a simultaneous investigation of the isotopic and drop size distributions of seventeen rain events sampled on an intra-event scale at Gadanki (13.5°N, 79.2°E), southern India, we demonstrate that the evaporation effects, not evident in the time-averaged data, are significantly manifested in the sub-samples of individual rain events. We detect this through (1) slopes significantly less than 8 for the δD-δ18O relation on intra-event scale and (2) significant positive correlations between deuterium excess ( d-excess = δD - 8*δ18O; lower values in rain indicate evaporation) and the mass-weighted mean diameter of the raindrops ( D m ). An estimated ~44 % of rain is influenced by evaporation. This study also reveals a signature of isotopic equilibration of rain with the cloud base vapor, the processes important for modeling isotopic composition of precipitation. d-excess values of rain are modified by the post-condensation processes and the present approach offers a way to identify the d-excess values least affected by such processes. Isotope-enabled global circulation models could be improved by incorporating intra-event isotopic data and raindrop size dependent isotopic effects.
NASA Astrophysics Data System (ADS)
Thaler, Caroline; Millo, Christian; Ader, Magali; Chaduteau, Carine; Guyot, François; Ménez, Bénédicte
2017-02-01
Carbon and oxygen stable isotope compositions of carbonates are widely used to retrieve paleoenvironmental information. However, bias may exist in such reconstructions as carbonate precipitation is often associated with biological activity. Several skeleton-forming eukaryotes have been shown to precipitate carbonates with significant offsets from isotopic equilibrium with water. Although poorly understood, the origin of these biologically-induced isotopic shifts in biogenic carbonates, commonly referred to as "vital effects", could be related to metabolic effects that may not be restricted to mineralizing eukaryotes. The aim of our study was to determine whether microbially-mediated carbonate precipitation can also produce offsets from equilibrium for oxygen isotopes. We present here δ18O values of calcium carbonates formed by the activity of Sporosarcina pasteurii, a carbonatogenic bacterium whose ureolytic activity produces ammonia (thus increasing pH) and dissolved inorganic carbon (DIC) that precipitates as solid carbonates in the presence of Ca2+. We show that the 1000 lnαCaCO3-H2O values for these bacterially-precipitated carbonates are up to 24.7‰ smaller than those expected for precipitation at isotopic equilibrium. A similar experiment run in the presence of carbonic anhydrase (an enzyme able to accelerate oxygen isotope equilibration between DIC and water) resulted in δ18O values of microbial carbonates in line with values expected at isotopic equilibrium with water. These results demonstrate for the first time that bacteria can induce calcium carbonate precipitation in strong oxygen isotope disequilibrium with water, similarly to what is observed for eukaryotes. This disequilibrium effect can be unambiguously ascribed to oxygen isotope disequilibrium between DIC and water inherited from the oxygen isotope composition of the ureolytically produced CO2, probably combined with a kinetic isotope effect during CO2 hydration/hydroxylation. The fact that both disequilibrium effects are triggered by the metabolic production of CO2, which is common in many microbially-mediated carbonation processes, leads us to propose that metabolically-induced offsets from isotopic equilibrium in microbial carbonates may be more common than previously considered. Therefore, precaution should be taken when using the oxygen isotope signature of microbial carbonates for diagenetic and paleoenvironmental reconstructions.
NASA Astrophysics Data System (ADS)
Douglas, P. M. J.; Stolper, D. A.; Smith, D. A.; Walter Anthony, K. M.; Paull, C. K.; Dallimore, S.; Wik, M.; Crill, P. M.; Winterdahl, M.; Eiler, J. M.; Sessions, A. L.
2016-09-01
Methane is a potent greenhouse gas, and there are concerns that its natural emissions from the Arctic could act as a substantial positive feedback to anthropogenic global warming. Determining the sources of methane emissions and the biogeochemical processes controlling them is important for understanding present and future Arctic contributions to atmospheric methane budgets. Here we apply measurements of multiply-substituted isotopologues, or clumped isotopes, of methane as a new tool to identify the origins of ebullitive fluxes in Alaska, Sweden and the Arctic Ocean. When methane forms in isotopic equilibrium, clumped isotope measurements indicate the formation temperature. In some microbial methane, however, non-equilibrium isotope effects, probably related to the kinetics of methanogenesis, lead to low clumped isotope values. We identify four categories of emissions in the studied samples: thermogenic methane, deep subsurface or marine microbial methane formed in isotopic equilibrium, freshwater microbial methane with non-equilibrium clumped isotope values, and mixtures of deep and shallow methane (i.e., combinations of the first three end members). Mixing between deep and shallow methane sources produces a non-linear variation in clumped isotope values with mixing proportion that provides new constraints for the formation environment of the mixing end-members. Analyses of microbial methane emitted from lakes, as well as a methanol-consuming methanogen pure culture, support the hypothesis that non-equilibrium clumped isotope values are controlled, in part, by kinetic isotope effects induced during enzymatic reactions involved in methanogenesis. Our results indicate that these kinetic isotope effects vary widely in microbial methane produced in Arctic lake sediments, with non-equilibrium Δ18 values spanning a range of more than 5‰.
NASA Astrophysics Data System (ADS)
Oerter, Erik; Finstad, Kari; Schaefer, Justin; Goldsmith, Gregory R.; Dawson, Todd; Amundson, Ronald
2014-07-01
In isotope-enabled hydrology, soil and vadose zone sediments have been generally considered to be isotopically inert with respect to the water they host. This is inconsistent with knowledge that clay particles possessing an electronegative surface charge and resulting cation exchange capacity (CEC) interact with a wide range of solutes which, in the absence of clays, have been shown to exhibit δ18O isotope effects that vary in relation to the ionic strength of the solutions. To investigate the isotope effects caused by high CEC clays in mineral-water systems, we created a series of monominerallic-water mixtures at gravimetric water contents ranging from 5% to 32%, consisting of pure deionized water of known isotopic composition with homoionic (Mg, Ca, Na, K) montmorillonite. Similar mixtures were also created with quartz to determine the isotope effect of non-, or very minimally-, charged mineral surfaces. The δ18O value of the water in these monominerallic soil analogs was then measured by isotope ratio mass spectrometry (IRMS) after direct headspace CO2 equilibration. Mg- and Ca-exchanged homoionic montmorillonite depleted measured δ18O values up to 1.55‰ relative to pure water at 5% water content, declining to 0.49‰ depletion at 30% water content. K-montmorillonite enriched measured δ18O values up to 0.86‰ at 5% water content, declining to 0.11‰ enrichment at 30% water. Na-montmorillonite produces no measureable isotope effect. The isotope effects observed in these experiments may be present in natural, high-clay soils and sediments. These findings have relevance to the interpretation of results of direct CO2-water equilibration approaches to the measurement of the δ18O value of soil water. The adsorbed cation isotope effect may bear consideration in studies of pedogenic carbonate, plant-soil water use and soil-atmosphere interaction. Finally, the observed isotope effects may prove useful as molecular scale probes of the nature of mineral-water interactions.
NASA Astrophysics Data System (ADS)
Rossman, S. L.; Barros, N. B.; Ostrom, P. H.; Gandhi, H.; Wells, R. S.
2010-12-01
With four decades of data on a population of bottlenose dolphins (Tursiops truncatus) resident to Sarasota Bay (SB), The Sarasota Dolphin Research Program offers an unparalleled platform for ground-truthing stable isotope data and exploring bottlenose dolphin ecology in a natural setting. We explored carbon isotope value fidelity to habitat utilization by comparing δ13C data from whole teeth and muscle to the individual dolphin's proclivity towards foraging in seagrass beds based on observational data. We then examined variation in habitat use based on temporal isotope records. Whole tooth protein isotope values do not show a significant correlation with the observed percentage of foraging in seagrass habitat. In contrast, δ13C values from muscle showed a significant positive relationship with the observational data. Differences in the degree of tissue turn over may account for this distinction between tooth and muscle. Dolphin teeth consist of annually deposited layers that are inert once formed. Thus, the isotopic composition of protein in annuli reflect foraging at the time of deposition. In addition to incorporating variation associated with differences in foraging over the lifetime of the individual, whole tooth isotope values are confounded because a disproportionate amount of tooth protein derives from the first few years of life. Given the turnover time of muscle tissue, isotope values reflect diet over the past several months. From 1991 to 2008, muscle δ13C values showed a significant decline, -13.5‰ to -15.1‰.This time period encompasses a state wide net fishing ban (1995) however other factors such as a series of red tide harmful algal blooms, a decline in predators, increases in shallow water boat traffic and an increase in string ray abundance may also contribute to the temporal isotope trend. To examine changes in dolphin foraging habitat further back in time we analyzed the tip of crown of the tooth which records the isotopic signal from the first year of life. Given the age of bottlenose dolphins from SB (ca. 60 years), our isotopic data provide a record beginning in 1944. While carbon isotope values show a striking decline over time, the data must be corrected for the Suess effect. The Suess effect results from burning of 13C depleted hydrocarbons which causes a decrease in the δ13C of atmospheric CO2 that subsequent depresses isotope values in food webs. To account for the Suess effect, δ13C values are adjusted by 0.15‰ per decade. Suess corrected δ13C values do not show a temporal linear trend however the average isotope value prior to 1960 is significantly higher than that after 1960 (-10.1 vs -11.66, p=0.038). While documented declines in seagrass abundance prior to 1980 may influence our data, the decline in δ13C of atmospheric CO2 is likely an important factor that controls the isotopic composition of dolphin tissues. Our results suggest that isotope-based estimates of foraging should account for the Suess effect, and that dolphins act as environmental sentinels whose δ13C values records perturbations in global carbon cycling.
Wolf, J Marshall; Johnson, Brett; Silver, Douglas; Pate, William; Christianson, Kyle
2016-03-15
Stable isotopes of carbon and nitrogen have become important natural tracers for studying food-web structure and function. Considerable research has demonstrated that chemical preservatives and fixatives shift the isotopic ratios of aquatic organisms. Much less is known about the effects of freezing as a preservation method although this technique is commonly used. We conducted a controlled experiment to test the effects of freezing (-10 °C) and flash freezing (–79 °C) on the carbon and nitrogen isotope ratios of zooplankton (Cladocera), Mysis diluviana and Rainbow Trout (Oncorhynchus mykiss). Subsamples (~0.5 mg) of dried material were analyzed for percentage carbon, percentage nitrogen, and the relative abundance of stable carbon and nitrogen isotopes (δ13C and δ15N values) using a Carlo Erba NC2500 elemental analyzer interfaced to a ThermoFinnigan MAT Delta Plus isotope ratio mass spectrometer. The effects of freezing were taxon-dependent. Freezing had no effect on the isotopic or elemental values of Rainbow Trout muscle. Effects on the δ13C and δ15N values of zooplankton and Mysis were statistically significant but small relative to typical values of trophic fractionation. The treatment-control offsets had larger absolute values for Mysis (δ13C: ≤0.76 ± 0.41‰, δ15N: ≤0.37 ± 0.16‰) than for zooplankton (δ13C: ≤0.12 ± 0.06‰, δ15N: ≤0.30 ± 0.27‰). The effects of freezing were more variable for the δ13C values of Mysis, and more variable for the δ15N values of zooplankton. Generally, both freezing methods reduced the carbon content of zooplankton and Mysis, but freezing had a negative effect on the %N of zooplankton and a positive effect on the %N of Mysis. The species-dependencies and variability of freezing effects on aquatic organisms suggest that more research is needed to understand the mechanisms responsible for freezing-related fractionation before standardized protocols for freezing as a preservation method can be adopted.
NASA Astrophysics Data System (ADS)
Savard, Martine M.; Cole, Amanda; Smirnoff, Anna; Vet, Robert
2017-08-01
The nitrogen isotope ratios (δ15N) of atmospheric N species are commonly suggested as indicators of N emission sources. Therefore, numerous research studies have developed analytical methodologies and characterized primary (gases) and secondary emission products (mostly precipitation and aerosols) from various emitters. These previous studies have generally collected either reduced or oxidized N forms, and sampled them separately prior to determining their δ15N values. Distinctive isotopic signals have been reported for emissions from various sources, and seasonality of the δ15N values has been frequently attributed to shifts in relative contributions from sources with different isotopic signals. However, theoretical concepts suggest that temperature effects on isotopic fractionation may also affect the δ15N values of atmospheric reaction products. Here we use a sector-based multi-stage filter system to simultaneously collect seven reduced and oxidized N species downwind from five different source types in Alberta, Canada. We report δ15N values obtained with a state-of-the-art gold-furnace pre-concentrator online with an isotope ratio mass spectrometer (IRMS) to provide representative results even for oxidized-N forms. We find that equilibrium isotope effects and their temperature dependence play significant roles in determining the δ15N values of the secondary emission products. In the end, seasonal δ15N changes here are mainly caused by temperature effects on fractionation, and the δ15N values of only two N species from one source type can be retained as potential fingerprints of emissions.
On the influence of anharmonicity on the isotope effect
NASA Astrophysics Data System (ADS)
Galbaatar, T.; Drechsler, S. L.; Plakida, N. M.; Vujicic, G. M.
1991-12-01
The effect of double-well type lattice anharmonicity on the superconducting temperature and its isotope effect is investigated beyond the two-level approximation (TLA) within the Eliashberg theory. It is shown that anharmonicity can greatly modify the isotope effect; In particular anomalously large as well as negative values of the isotope effect exponent α are obtained in the strong and weak coupling limits, respectively.
NASA Astrophysics Data System (ADS)
Salamalikis, V.; Argiriou, A. A.; Dotsika, E.
2016-03-01
In this paper the periodic patterns of the isotopic composition of precipitation (δ18O) for 22 stations located around Central Europe are investigated through sinusoidal models and wavelet analysis over a 23 years period (1980/01-2002/12). The seasonal distribution of δ18O follows the temporal variability of air temperature providing seasonal amplitudes ranging from 0.94‰ to 4.47‰; the monthly isotopic maximum is observed in July. The isotopic amplitude reflects the geographical dependencies of the isotopic composition of precipitation providing higher values when moving inland. In order to describe the dominant oscillation modes included in δ18O time series, the Morlet Continuous Wavelet Transform is evaluated. The main periodicity is represented at 12-months (annual periodicity) where the wavelet power is mainly concentrated. Stations (i.e. Cuxhaven, Trier, etc.) with limited seasonal isotopic effect provide sparse wavelet power areas at the annual periodicity mode explaining the fact that precipitation has a complex isotopic fingerprint that cannot be examined solely by the seasonality effect. Since temperature is the main contributor of the isotopic variability in mid-latitudes, the isotope-temperature effect is also investigated. The isotope-temperature slope ranges from 0.11‰/°C to 0.47‰/°C with steeper values observed at the southernmost stations of the study area. Bivariate wavelet analysis is applied in order to determine the correlation and the slope of the δ18O - temperature relationship over the time-frequency plane. High coherencies are detected at the annual periodicity mode. The time-frequency slope is calculated at the annual periodicity mode ranging from 0.45‰/°C to 0.83‰/°C with higher values at stations that show a more distinguishable seasonal isotopic behavior. Generally the slope fluctuates around a mean value but in certain cases (sites with low seasonal effect) abrupt slope changes are derived and the slope becomes strongly unstable.
Tritium effect in peroxidation of ehtanol by liver catalase.
Damgaard, S E
1977-01-01
1. Simultaneous determination of the rate of appearance of 3H in water from [(1R)-1-3H1] ethanol and the rate of acetaldehyde formation in the presence of rat or ox liver catalase under conditions of steady-state generation of H2O2 allowed calculation of the 3H isotope effect. The mean value of 2.52 obtained for rat liver catalase at 37 degrees C and pH 6.3-7.7 was independent of both ethanol concentration and the rate of H2O2 generation over a wide range. At 25 degrees C a slightly lower mean value of 2.40 was obtained with the ox liver catalase. 2. Neither the product, acetaldehyde, nor 4-methylpyrazole influenced the two rates measured in the assay. 3. Relating the value obtained for the 3H isotope effect to a known value for the 2H isotope effect strongly supports the view that both values are close to the true isotope effect with the respective substituted compounds on the rate constant in the catalytic step involving scission of the C-H bond. 4. The constancy of the isotope effect under various conditions makes it possible to use it for interpretations in vivo. 5. It was established that beta-D-galactose dehydrogenase exhibits B-specificity towards the nicotinamide ring in NAD. PMID:22327
NASA Astrophysics Data System (ADS)
John, C. M.; Davies, A.; Drury, A. J.
2016-12-01
Vital effects vary between species and affect various isotopic systems in unequal proportion. The magnitude of the response of different isotopic systems might thus be key in understanding biologically-mediated disequilibrium, especially in groups that show a tendency to be "repeat offenders" with regards to vital effects. Here we present carbon, oxygen, and clumped isotope data from echinoderm calcite and nannofossil ooze, both of which exhibit strong vital effects in bulk isotopes. Our study is the first to investigate the clumped isotope (dis)equilibrium of echinoids. Results from two echinoids, three marine gastropods and a bivalve mollusk from modern beach deposits of Bali, Indonesia, highlight a significant offset in clumped isotopes of a regular echinoid test from expected values, interpreted as evidence of a similar "vital effect" as observed in surface corals. This is in contrast to the test of an irregular "sand dollar" echinoid, with clumped isotope values within error of expected sea surface temperature. Furthermore, data on the inter-skeletal variability in the clumped isotopic composition of two regular echinoid species shows that the spines of the echinoids are in equilibrium with seawater with respect to clumped isotopes, but the test is not. For the nannofossil material, no clumped isotope vital effects are observed, consistent with previously published studies but at odds with strong vital effects in carbon and oxygen isotopes, often correlated with cell-size. In addition, we reveal that the <63 micron fraction of deep-sea ooze could constitute useful material for clumped isotope studies. An intriguing result of our study is that vital effects are mostly absent in clumped isotopes, even in phylums known for important isotopic effects. It remains to be explained why some parts of the echinoids show clear vital effects, notably enrichment in clumped isotopes of urchin tests. Mechanisms that could explain this include pH effects during calcification. Rapid precipitation of calcite is however not considered as a likely mechanism as skeletal components with the largest growth rates show no clear clumped isotope vital effects.
NASA Astrophysics Data System (ADS)
Ostrom, N. E.; Yang, H.; Gandhi, H.; Hegg, E. L.
2014-12-01
Site preference (SP), the difference in δ15N between the central (α) and outer (β) N atoms in N2O, has emerged as a conservative tracer of microbial N2O production. The key advantages of SP relative to bulk isotopes are (1) that it is independent of the isotope composition of the substrates of nitrification and denitrification and (2) has not been shown to exhibit fractionation during production. In pure microbial culture distinct SP values for N2O production from bacterial denitrification, including nitrifier-denitrification (-10 to 0 ‰), relative to hydroxylamine oxidation and fungal denitrification (33-37 ‰) provide a promising basis to resolve production pathways. In this study, we determined the δ15N, δ18O, δ15Nα, and δ15Nβ of N2O generated by purified fungal (P450nor) and bacterial nitric oxide reductases. The isotope values were used to calculate SP values, enrichment factors (e), and kinetic isotope effects (KIEs). Both O and Nα displayed normal isotope effects during enzymatic NO reduction by the P450nor with e values of -25.7‰ (KIE = 1.0264) and -12.6‰ (KIE = 1.0127), respectively. However, bulk nitrogen (average δ15N of Nα and Nβ) and Nβ exhibited inverse isotope effects with e values of 14.0‰ (KIE = 0.9862) and 36.1‰ (KIE = 0.9651), respectively. The observed inverse isotope effect in δ15Nβ is consistent with reversible binding of the first NO in the P450nor reaction mechanism. Experiments with bacterial nitric oxide reductase are ongoing, however, preliminary data indicates a inverse isotope effect in the α and β positions and a normal isotope effect in δ18O. In contrast to the constant SP observed during N2O production observed in microbial cultures, the SP measured for purified P450nor was not constant, increasing from ~15‰ to ~29‰ during the course of the reaction. Our results clearly indicate that fractionation of SP during N2O production by P450nor is not zero, and that SP values higher and lower than the proposed end member value of 37‰ can be expected during fungal denitrification. The observation in pure microbial culture of constant SP can only be reconciled if the rate of nitrite and NO reduction are the same (thereby maintaining a steady NO concentration in the cell), and, further, that the magnitude of the P450nor NO binding constant (Kd) maintains the extent of the reaction (1-f) at 65%.
Christiansen, Heather M; Hussey, Nigel E; Wintner, Sabine P; Cliff, Geremy; Dudley, Sheldon F J; Fisk, Aaron T
2014-03-15
Bulk stable isotope analysis (SIA) provides an important tool for the study of animal ecology. Elasmobranch vertebral centra can be serially sampled to obtain an isotopic history of an individual over ontogeny. The measured total δ(13)C value, however, may be misinterpreted due to the inclusion of the (13)C-rich inorganic portion. Hydrochloric acid (HCl) is commonly used to remove the inorganic portion of hydroxyapatite structures before undertaking SIA, but more recently ethylenediaminetetraacetic acid (EDTA) has been recommended for elasmobranch vertebrae. These acid treatments may introduce uncertainty on measured δ(13)C and δ(15)N values above instrument precision and the effect of small sample size remains untested for elasmobranch vertebrae. Using a non-dilution program on an isotope ratio mass spectrometer the minimum sample weight of vertebrae required to obtain accurate isotopic values was determined for three shark species: white (Carcharodon carcharias), tiger (Galeocerdo cuvier), and sand tiger (Carcharias taurus). To examine if acid treatment completely removes the inorganic component of the vertebrae or whether the technique introduces its own uncertainty on measured δ(13)C and δ(15)N values, vertebrae samples were analyzed untreated and following EDTA treatment. The minimum sample weight required for accurate stable isotope values and the percentage sample yield following EDTA treatment varied within and among species. After EDTA treatment, white shark vertebrae were all enriched in (13)C and depleted in (15) N, tiger shark vertebrae showed both enrichment and depletion of (13)C and (15)N, and sand tiger shark vertebrae were all depleted in (13)C and (15)N. EDTA treatment of elasmobranch vertebrae produces unpredictable effects (i.e. non-linear and non-correctable) among species in both the percentage sample yield and the measured δ(13)C and δ(15)N values. Prior to initiating a large-scale study, we strongly recommend investigating (i) the minimum weight of vertebral material required to obtain consistent isotopic values and (ii) the effects of EDTA treatment, specific to the study species and the isotope ratio mass spectrometer employed. Copyright © 2014 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
González-Irusta, José M.; Preciado, Izaskun; López-López, Lucia; Punzón, Antonio; Cartes, Joan E.; Serrano, Alberto
2014-08-01
Bottom trawling is one of the main sources of anthropogenic disturbance in benthic habitats with important direct and indirect effects on the ecosystem functional diversity. In this study, the effect of this impact on a structure-building species, the sea urchin Gracilechinus acutus, was studied in the Central Cantabrian Sea (southern Bay of Biscay) comparing its isotopic signature and additional population descriptors across different trawling pressures. Trawling disturbance had a significant effect on the studied descriptors. In trawling areas, this urchin showed significantly lower values of biomass and mean size and significantly higher values of fullness index. Moreover, the trawling disturbance effect was also significant in the isotopic signature of G. acutus. Urchins inhabiting untrawled areas showed significant lower values of δ15N than urchins dwelling areas under trawling pressure. The urchins' isotopic enrichment increased along the species ontogeny regardless of the trawling effort level. Stable isotope analyses are a suitable tool to detect trawling disturbance on the trophic pathways but do not suffice to explain these changes, especially if there is a lack of baseline information.
Isotope scattering and phonon thermal conductivity in light atom compounds: LiH and LiF
Lindsay, Lucas R.
2016-11-08
Engineered isotope variation is a pathway toward modulating lattice thermal conductivity (κ) of a material through changes in phonon-isotope scattering. The effects of isotope variation on intrinsic thermal resistance is little explored, as varying isotopes have relatively small differences in mass and thus do not affect bulk phonon dispersions. However, for light elements isotope mass variation can be relatively large (e.g., hydrogen and deuterium). Using a first principles Peierls-Boltzmann transport equation approach the effects of isotope variance on lattice thermal transport in ultra-low-mass compound materials LiH and LiF are characterized. The isotope mass variance modifies the intrinsic thermal resistance viamore » modulation of acoustic and optic phonon frequencies, while phonon-isotope scattering from mass disorder plays only a minor role. This leads to some unusual cases where values of isotopically pure systems ( 6LiH, 7Li 2H and 6LiF) are lower than the values from their counterparts with naturally occurring isotopes and phonon-isotope scattering. However, these differences are relatively small. The effects of temperature-driven lattice expansion on phonon dispersions and calculated κ are also discussed. This work provides insight into lattice thermal conductivity modulation with mass variation and the interplay of intrinsic phonon-phonon and phonon-isotope scattering in interesting light atom systems.« less
Tatsch, Ana Carolina C; Secchi, Eduardo R; Botta, Silvina
2016-02-15
The analysis of stable isotopes in tissues such as teeth and bones has been used to study long-term trophic ecology and habitat use in marine mammals. However, carbon isotope ratios (δ(13) C values) can be altered by the presence of (12) C-rich lipids and carbonates. Lipid extraction and acidification are common treatments used to remove these compounds. The impact of lipids and carbonates on carbon and nitrogen isotope ratios (δ(15) N values), however, varies among tissues and/or species, requiring taxon-specific protocols to be developed. The effects of lipid extraction and acidification and their interaction on carbon and nitrogen isotope values were studied for beaked whale (Ziphiidae) bone samples. δ(13) C and δ(15) N values were determined in quadruplicate samples: control, lipid-extracted, acidified and lipid-extracted followed by acidification. Samples were analyzed by means of elemental analysis isotope ratio mass spectrometry. Furthermore, the efficiency of five mathematical models developed for estimating lipid-normalized δ(13) C values from untreated δ(13) C values was tested. Significant increases in δ(13) C values were observed after lipid extraction. No significant changes in δ(13) C values were found in acidified samples. An interaction between both treatments was demonstrated for δ(13) C but not for δ(15) N values. No change was observed in δ(15) N values for lipid-extracted and/or acidified samples. Although all tested models presented good predictive power to estimate lipid-free δ(13) C values, linear models performed best. Given the observed changes in δ(13) C values after lipid extraction, we recommend a priori lipid extraction or a posteriori lipid normalization, through simple linear models, for beaked whale bones. Furthermore, acidification seems to be an unnecessary step before stable isotope analysis, at least for bone samples of ziphiids. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
'Trophic' and 'source' amino acids in trophic estimation: a likely metabolic explanation.
O'Connell, T C
2017-06-01
Amino acid nitrogen isotopic analysis is a relatively new method for estimating trophic position. It uses the isotopic difference between an individual's 'trophic' and 'source' amino acids to determine its trophic position. So far, there is no accepted explanation for the mechanism by which the isotopic signals in 'trophic' and 'source' amino acids arise. Yet without a metabolic understanding, the utility of nitrogen isotopic analyses as a method for probing trophic relations, at either bulk tissue or amino acid level, is limited. I draw on isotopic tracer studies of protein metabolism, together with a consideration of amino acid metabolic pathways, to suggest that the 'trophic'/'source' groupings have a fundamental metabolic origin, to do with the cycling of amino-nitrogen between amino acids. 'Trophic' amino acids are those whose amino-nitrogens are interchangeable, part of a metabolic amino-nitrogen pool, and 'source' amino acids are those whose amino-nitrogens are not interchangeable with the metabolic pool. Nitrogen isotopic values of 'trophic' amino acids will reflect an averaged isotopic signal of all such dietary amino acids, offset by the integrated effect of isotopic fractionation from nitrogen cycling, and modulated by metabolic and physiological effects. Isotopic values of 'source' amino acids will be more closely linked to those of equivalent dietary amino acids, but also modulated by metabolism and physiology. The complexity of nitrogen cycling suggests that a single identifiable value for 'trophic discrimination factors' is unlikely to exist. Greater consideration of physiology and metabolism should help in better understanding observed patterns in nitrogen isotopic values.
Solvent kinetic isotope effects of human placental alkaline phosphatase in reverse micelles.
Huang, T M; Hung, H C; Chang, T C; Chang, G G
1998-01-01
Human placental alkaline phosphatase was embedded in a reverse micellar system prepared by dissolving the surfactant sodium bis(2-ethylhexyl) sulphosuccinate (Aerosol-OT) in 2,2, 4-trimethylpentane. This microemulsion system provides a convenient instrumental tool to study the possible kinetic properties of the membranous enzyme in an immobilized form. The pL (pH/p2H) dependence of hydrolysis of 4-nitrophenyl phosphate has been examined over a pL range of 8.5-12.5 in both aqueous and reverse micellar systems. Profiles of log V versus pL were Ha-bell shaped in the acidic region but reached a plateau in the basic region in which two pKa values of 9.01-9.71 and 9.86-10.48, respectively, were observed in reverse micelles. However, only one pKa value of 9.78-10.27 in aqueous solution was detected. Profiles of log V/K versus pL were bell-shaped in the acidic region. However, they were wave-shaped in the basic region in which a residue of pKa 9.10-9.44 in aqueous solution and 8.07-8.78 in reverse micelles must be dehydronated for the reaction to reach an optimum. The V/K value shifted to a lower value upon dehydronation of a pKa value of 9.80-10.62 in aqueous solution and 11.23-12.17 in reverse micelles. Solvent kinetic isotope effects were measured at three pL values. At pL 9.5, the observed isotope effect was a product of equilibrium isotope effect and a kinetic isotope effect; at pL 10.4, the log V/K value was identical in water and deuterium. The deuterium kinetic isotope effect on V/K was 1.14 in an aqueous solution and 1.16 in reverse micelles. At pL 11.0 at which the log V values reached a plateau in either solvent system, the deuterium kinetic isotope effect on V was 2.08 in an aqueous solution and 0.62 in reverse micelles. Results from a proton inventory experiment suggested that a hydron transfer step is involved in the transition state of the catalytic reaction. The isotopic fractionation factor (pi) for deuterium for the transition state (piT) increased when the pH of the solution was raised. At pL 11.0, the piT was 1.07 in reverse micelles, which corresponds to the inverse-isotope effect of the reaction in this solvent system. Normal viscosity effects on kcat and kcat/Km were observed in aqueous solution, corresponding to a diffusional controlled physical step as the rate-limiting step. We propose that the rate-limiting step of the hydrolytic reaction changes from phosphate releasing in aqueous solution to a covalent phosphorylation or dephosphorylation step in reverse micelles. PMID:9461520
Solvent kinetic isotope effects of human placental alkaline phosphatase in reverse micelles.
Huang, T M; Hung, H C; Chang, T C; Chang, G G
1998-02-15
Human placental alkaline phosphatase was embedded in a reverse micellar system prepared by dissolving the surfactant sodium bis(2-ethylhexyl) sulphosuccinate (Aerosol-OT) in 2,2, 4-trimethylpentane. This microemulsion system provides a convenient instrumental tool to study the possible kinetic properties of the membranous enzyme in an immobilized form. The pL (pH/p2H) dependence of hydrolysis of 4-nitrophenyl phosphate has been examined over a pL range of 8.5-12.5 in both aqueous and reverse micellar systems. Profiles of log V versus pL were Ha-bell shaped in the acidic region but reached a plateau in the basic region in which two pKa values of 9.01-9.71 and 9.86-10.48, respectively, were observed in reverse micelles. However, only one pKa value of 9.78-10.27 in aqueous solution was detected. Profiles of log V/K versus pL were bell-shaped in the acidic region. However, they were wave-shaped in the basic region in which a residue of pKa 9.10-9.44 in aqueous solution and 8.07-8.78 in reverse micelles must be dehydronated for the reaction to reach an optimum. The V/K value shifted to a lower value upon dehydronation of a pKa value of 9.80-10.62 in aqueous solution and 11.23-12.17 in reverse micelles. Solvent kinetic isotope effects were measured at three pL values. At pL 9.5, the observed isotope effect was a product of equilibrium isotope effect and a kinetic isotope effect; at pL 10.4, the log V/K value was identical in water and deuterium. The deuterium kinetic isotope effect on V/K was 1.14 in an aqueous solution and 1.16 in reverse micelles. At pL 11.0 at which the log V values reached a plateau in either solvent system, the deuterium kinetic isotope effect on V was 2.08 in an aqueous solution and 0.62 in reverse micelles. Results from a proton inventory experiment suggested that a hydron transfer step is involved in the transition state of the catalytic reaction. The isotopic fractionation factor (pi) for deuterium for the transition state (piT) increased when the pH of the solution was raised. At pL 11.0, the piT was 1.07 in reverse micelles, which corresponds to the inverse-isotope effect of the reaction in this solvent system. Normal viscosity effects on kcat and kcat/Km were observed in aqueous solution, corresponding to a diffusional controlled physical step as the rate-limiting step. We propose that the rate-limiting step of the hydrolytic reaction changes from phosphate releasing in aqueous solution to a covalent phosphorylation or dephosphorylation step in reverse micelles.
NASA Astrophysics Data System (ADS)
Fox-Dobbs, K.; Wheatley, P. V.; Koch, P. L.
2006-12-01
Stable isotope analyses of modern and fossil biogenic tissues are routinely used to reconstruct present and past vertebrate foodwebs. Accurate isotopic dietary reconstructions require a consumer and tissue specific understanding of how isotopes are sorted, or fractionated, between trophic levels. In this project we address the need for carnivore specific isotope variables derived from populations that are ecologically well- characterized. Specifically, we investigate the trophic difference in carbon isotope values between mammalian carnivore (wolf) bone bioapatite and herbivore (prey) bone bioapatite. We also compare bone bioapatite and collagen carbon isotope values collected from the same individuals. We analyzed bone specimens from two modern North American grey wolf (Canis lupus) populations (Isle Royale National Park, Michigan and Yellowstone National Park, Wyoming), and the ungulate herbivores that are their primary prey (moose and elk, respectively). Because the diets of both wolf populations are essentially restricted to a single prey species, there were no confounding effects due to carnivore diet variability. We measured a trophic difference of approximately -1.3 permil between carnivore (lower value) and herbivore (higher value) bone bioapatite carbon isotope values, and an average inter-tissue difference of 5.1 permil between carnivore bone collagen (lower value) and bioapatite (higher value) carbon isotope values. Both of these isotopic differences differ from previous estimates derived from a suite of African carnivores; our carnivore-herbivore bone bioapatite carbon isotope spacing is smaller (-1.3 vs. -4.0 permil), and our carnivore collagen-bioapatite carbon difference is larger (5.1 vs. 3.0 permil). These discrepancies likely result from comparing values measured from a single hypercarnivore (wolf) to average values calculated from several carnivore species, some of which are insectivorous or partly omnivorous. The trophic and inter-tissue differences we measured for wolves are applicable to future isotopic studies of consumers with purely carnivorous diets. For example, we collected bone bioapatite and collagen carbon isotope data from late Pleistocene grey wolf fossils from eastern Beringia (Fairbanks, Alaska), and used the modern inter-tissue difference presented here to verify bioapatite preservation. We then compared the wolves to herbivores (horse and caribou) from the same locality, and found the difference in their bone bioapatite carbon isotope values corresponded to the modern carnivore-herbivore trophic spacing given above. We therefore were able to conclude that horse and caribou were part of Beringian wolf diet.
Non-linear mixing effects on mass-47 CO2 clumped isotope thermometry: Patterns and implications.
Defliese, William F; Lohmann, Kyger C
2015-05-15
Mass-47 CO(2) clumped isotope thermometry requires relatively large (~20 mg) samples of carbonate minerals due to detection limits and shot noise in gas source isotope ratio mass spectrometry (IRMS). However, it is unreasonable to assume that natural geologic materials are homogenous on the scale required for sampling. We show that sample heterogeneities can cause offsets from equilibrium Δ(47) values that are controlled solely by end member mixing and are independent of equilibrium temperatures. A numerical model was built to simulate and quantify the effects of end member mixing on Δ(47). The model was run in multiple possible configurations to produce a dataset of mixing effects. We verified that the model accurately simulated real phenomena by comparing two artificial laboratory mixtures measured using IRMS to model output. Mixing effects were found to be dependent on end member isotopic composition in δ(13)C and δ(18)O values, and independent of end member Δ(47) values. Both positive and negative offsets from equilibrium Δ(47) can occur, and the sign is dependent on the interaction between end member isotopic compositions. The overall magnitude of mixing offsets is controlled by the amount of variability within a sample; the larger the disparity between end member compositions, the larger the mixing offset. Samples varying by less than 2 ‰ in both δ(13)C and δ(18)O values have mixing offsets below current IRMS detection limits. We recommend the use of isotopic subsampling for δ(13)C and δ(18)O values to determine sample heterogeneity, and to evaluate any potential mixing effects in samples suspected of being heterogonous. Copyright © 2015 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, P.M.; Urbauer, J.L.; Cleland, W.W.
1991-06-11
Deuterium isotope effects and {sup 13}C isotope effects with deuterium- and protium-labeled malate have been obtained for both NAD- and NADP-malic enzymes by using a variety of alternative dinucleotide substrates. With nicotinamide-containing dinucleotides as the oxidizing substrate, the {sup 13}C effect decreases when deuterated malate is the substrate compared to the value obtained with protium-labeled malate. These data are consistent with a stepwise chemical mechanism in which hydride transfer precedes decarboxylation of the oxalacetate intermediate as previously proposed. When dinucleotide substrates such as thio-NAD, 3-nicotinamide rings are used, the {sup 13}C effect increases when deuterated malate is the substrate comparedmore » to the value obtained with protium-labeled malate. These data, at face value, are consistent with a change in mechanism from stepwise to concerted for the oxidative decarboxylation portion of the mechanism. However, the increase in the deuterium isotope effect from 1.5 to 3 with a concomitant decrease in the {sup 13}C isotope effect from 1.034 to 1.003 as the dinucleotide substrate is changed suggests that the reaction may still be stepwise with the non-nicotinamide dinucleotides. A more likely explanation is that a {beta}-secondary {sup 13}C isotope effect accompanies hydride transfer as a result of hyperconjugation of the {beta}-carboxyl of malate as the transition state for the hydride transfer step is approached.« less
In Vivo Mass-independent Fractionation of Mercury Isotopes in Fish
NASA Astrophysics Data System (ADS)
Das, R.; Odom, L. A.
2008-12-01
Recent experimental work and analyses of natural samples have revealed both mass-dependent and mass- independent isotope fractionation effects in mercury. These findings portend new avenues toward understanding the global mercury cycle. It has been shown experimentally that photo reduction of Hg+2 and methylmercury in water with concomitant release of the reduced, gaseous species Hg° results in the residual methylmercury possessing a mass-independent isotope effect. This effect is a relative enrichment of isotopes 199Hg and 201Hg over the even mass number isotopes when compared to the mercury standard NIST SRM3133. Large mass independent fractionation (MIF) effects (Δ199Hg values of a few ‰) have been found in mercury in fish and interpreted as isotope effects inherited from the water. To evaluate the possibility that MIF might be produced within the fish, we have analyzed 38 samples that include zooplankton and twelve different species of fish from a single lake collected over a 2-month time period for mercury isotopic compositions. Trophic levels of the same fish specimens had previously been determined from stomach contents and nitrogen isotopes. Zooplankton in the lake contain mercury with Δ199Hg and Δ201Hg values of +0.43 (±0.07) and +0.44 (±0.07) respectively. Among the fish species there is a striking correspondence between trophic level and Δ199Hg and Δ201Hg values for primary, secondary, and tertiary consumers. The Δ199Hg values ranges over ~1‰ from ~+0.4 in zooplankton, juvenile bluegill and several other small fishes to Δ199Hg = + 1.36 for the Florida gar that is the top predator fish in the lake. These observations indicate that the MIF effect, rather than being an artifact of the water column is produced in vivo. Partial separation of 199Hg and 201Hg from isotopes of even neutron number can be achieved by the magnetic isotope effect in reactions involving sufficiently long-lived intermediate free radicals, where nuclear - electron hyperfine coupling influence radical recombination and thus reaction kinetics. There is experimental evidence that this can occur during the inhibiting activity of methylmercury on creatine kinase. Here the enzyme provides the free radicals. Previously, reports of chemical mass- independent fractionation of isotopes in nature have involved gas phase reactions and largely explained by photolysis. It now seems that isotopic MIF can occur during metabolic processes as well.
2007 California Aerosol Study: Evaluation of δ15N as a Tracer Of NOx Sources and Chemsitry
NASA Astrophysics Data System (ADS)
Katzman, T. L.
2017-12-01
Although stable isotopes of N are commonly used as a source tracer, how this tracer is applied is a point of contention. The "source" hypothesis argues that the δ15N value of NO3- reflects the δ15N value of NOx source inputs into the environment, and any observed variation is solely the result of differences in source contributions. Conversely, the "chemistry" hypothesis argues that N isotopes are influenced by chemical reactions, atmospheric or biologic processing, and post-depositional effects. Previous studies often apply the source hypothesis, writing off the chemistry hypothesis as "minor," but others have noted the impact chemistry should has on δ15N values. Given the known complications, this work seeks to assess the use of stable isotopes as tracers, specifically, the assumption that the δ15N value is a tracer of source alone without significant influence from chemical reactions. If the "source" hypothesis is correct, source emission data, known source δ15N values, and isotope mass balance should be able to approximate measured δ15NNO3 values and determine the δ15N value associated with wildfire derived NOx, which is currently unknown. Significant deviations from observed values would support the significance of equilibrium and kinetic isotope effects associated with chemical reactions and processing in the atmosphere. Aerosols collected in during 2007, emission data, and isotopic analysis were utilized to determine the utility of δ15N as tracer of NOx sources. San Diego, California is a coastal urban area influenced by sea salt aerosols, anthropogenic combustion emissions, and seasonal wildfires. Wildfires also have a significant influence on local atmospheric chemistry and 2007 was notable for being one of the worst fire seasons in the San Diego region on record. Isotopic analysis of collected NO3- has suggested that source δ15N values are likely not conserved as NOx is oxidized into NO3-. Given known source contributions and known δ15N values of NOx sources, isotope mass balance predicts that a NOx source with highly positive δ15N value must exist for the source hypothesis to be valid. Furthermore, isotopic analysis has also suggested that wildfire emissions may produce a depleted δ15N, disagreeing with previously predicted δ15N values.
The isotopic effects of electron transfer: An explanation for Fe isotope fractionation in nature
NASA Astrophysics Data System (ADS)
Kavner, Abby; Bonet, François; Shahar, Anat; Simon, Justin; Young, Edward
2005-06-01
Isotope fractionation of electroplated Fe was measured as a function of applied electrochemical potential. As plating voltage was varied from -0.9 V to 2.0 V, the isotopic signature of the electroplated iron became depleted in heavy Fe, with δ 56Fe values (relative to IRMM-14) ranging from -0.18(±0.02) to -2.290(±0.006) ‰, and corresponding δ 57Fe values of -0.247(±0.014) and -3.354(±0.019) ‰. This study demonstrates that there is a voltage-dependent isotope fractionation associated with the reduction of iron. We show that Marcus's theory for the kinetics of electron transfer can be extended to include the isotope effects of electron transfer, and that the extended theory accounts for the voltage dependence of Fe isotope fractionation. The magnitude of the electrochemically-induced fractionation is similar to that of Fe reduction by certain bacteria, suggesting that similar electrochemical processes may be responsible for biogeochemical Fe isotope effects. Charge transfer is a fundamental physicochemical process involving Fe as well as other transition metals with multiple isotopes. Partitioning of isotopes among elements with varying redox states holds promise as a tool in a wide range of the Earth and environmental sciences, biology, and industry.
Kurle, Carolyn M; Koch, Paul L; Tershy, Bernie R; Croll, Donald A
2014-01-01
We tested the effects of sex, tissue, and diet on stable isotope discrimination factors (Δ(13)C and Δ(15)N) for six tissues from rats fed four diets with varied C and N sources, but comparable protein quality and quantity. The Δ(13)C and Δ(15)N values ranged from 1.7-4.1‰ and 0.4-4.3‰, respectively. Females had higher Δ(15)N values than males because males grew larger, whereas Δ(13)C values did not differ between sexes. Differences in Δ(13)C values among tissue types increased with increasing variability in dietary carbon sources. The Δ(15)N values increased with increasing dietary δ(15)N values for all tissues except liver and serum, which have fast stable isotope turnover times, and differences in Δ(15)N values among tissue types decreased with increasing dietary animal protein. Our results demonstrate that variability in dietary sources can affect Δ(13)C values, protein source affects Δ(15)N values even when protein quality and quantity are controlled, and the isotope turnover rate of a tissue can influence the degree to which diet affects Δ(15)N values.
Steinitz, Ronnie; Lemm, Jeffrey M; Pasachnik, Stesha A; Kurle, Carolyn M
2016-01-15
Stable isotope analysis is a powerful tool for reconstructing trophic interactions to better understand drivers of community ecology. Taxon-specific stable isotope discrimination factors contribute to the best use of this tool. We determined the first Δ(13)C and Δ(15)N values for Rock Iguanas (Cyclura spp.) to better understand isotopic fractionation and estimate wild reptile foraging ecology. The Δ(13)C and Δ(15)N values between diet and skin, blood, and scat were determined from juvenile and adult iguanas held for 1 year on a known diet. We measured relationships between iguana discrimination factors and size/age and quantified effects of lipid extraction and acid treatment on stable isotope values from iguana tissues. Isotopic and elemental compositions were determined by Dumas combustion using an elemental analyzer coupled to an isotope ratio mass spectrometer using standards of known composition. The Δ(13)C and Δ(15)N values ranged from -2.5 to +6.5‰ and +2.2 to +7.5‰, respectively, with some differences among tissues and between juveniles and adults. The Δ(13)C values from blood and skin differed among species, but not the Δ(15)N values. The Δ(13)C values from blood and skin and Δ(15)N values from blood were positively correlated with size/age. The Δ(13)C values from scat were negatively correlated with size (not age). Treatment with HCl (scat) and lipid extraction (skin) did not affect the isotope values. These results should aid in the understanding of processes driving stable carbon and nitrogen isotope discrimination factors in reptiles. We provide estimates of Δ(13)C and Δ(15)N values and linear relationships between iguana size/age and discrimination factors for the best interpretation of wild reptile foraging ecology. Copyright © 2015 John Wiley & Sons, Ltd.
Green, Christopher T.; Böhlke, John Karl; Bekins, Barbara A.; Phillips, Steven P.
2010-01-01
Gradients in contaminant concentrations and isotopic compositions commonly are used to derive reaction parameters for natural attenuation in aquifers. Differences between field‐scale (apparent) estimated reaction rates and isotopic fractionations and local‐scale (intrinsic) effects are poorly understood for complex natural systems. For a heterogeneous alluvial fan aquifer, numerical models and field observations were used to study the effects of physical heterogeneity on reaction parameter estimates. Field measurements included major ions, age tracers, stable isotopes, and dissolved gases. Parameters were estimated for the O2 reduction rate, denitrification rate, O2 threshold for denitrification, and stable N isotope fractionation during denitrification. For multiple geostatistical realizations of the aquifer, inverse modeling was used to establish reactive transport simulations that were consistent with field observations and served as a basis for numerical experiments to compare sample‐based estimates of “apparent” parameters with “true“ (intrinsic) values. For this aquifer, non‐Gaussian dispersion reduced the magnitudes of apparent reaction rates and isotope fractionations to a greater extent than Gaussian mixing alone. Apparent and true rate constants and fractionation parameters can differ by an order of magnitude or more, especially for samples subject to slow transport, long travel times, or rapid reactions. The effect of mixing on apparent N isotope fractionation potentially explains differences between previous laboratory and field estimates. Similarly, predicted effects on apparent O2threshold values for denitrification are consistent with previous reports of higher values in aquifers than in the laboratory. These results show that hydrogeological complexity substantially influences the interpretation and prediction of reactive transport.
Carbon kinetic isotope effect in the reaction of CH4 with HO
NASA Technical Reports Server (NTRS)
Davidson, J. A.; Cantrell, C. A.; Tyler, S. C.; Shetter, R. E.; Cicerone, R. J.
1987-01-01
The carbon kinetic isotope effect in the CH4 + HO reaction is measured experimentally and the use of carbon isotope ratios to diagnose atmospheric methane is examined. The chemical, photolysis, and analytical experimental conditions and procedures are described. It is determined that the CH4 + HO reaction has a carbon kinetic isotope effect of 1.010 + or 0.007 for k(12)k(13) (rate constants ratio) at 297 + or - 3 K. This value is compared with the data of Rust and Stevens (1980). Causes for the poor correlation between the data at high methane conversions are discussed. It is supposed that the difference between the k(12) and k(13) values is due to a difference in the activation energy of the two reactions.
Skarpeli-Liati, Marita; Turgeon, Aurora; Garr, Ashley N; Arnold, William A; Cramer, Christopher J; Hofstetter, Thomas B
2011-03-01
Solid-phase microextraction (SPME) coupled to gas chromatography/isotope ratio mass spectrometry (GC/IRMS) was used to elucidate the effects of N-atom protonation on the analysis of N and C isotope signatures of selected aromatic amines. Precise and accurate isotope ratios were measured using polydimethylsiloxane/divinylbenzene (PDMS/DVB) as the SPME fiber material at solution pH-values that exceeded the pK(a) of the substituted aniline's conjugate acid by two pH-units. Deviations of δ(15)N and δ(13)C-values from reference measurements by elemental analyzer IRMS were small (<0.9‰) and within the typical uncertainties of isotope ratio measurements by SPME-GC/IRMS. Under these conditions, the detection limits for accurate isotope ratio measurements were between 0.64 and 2.1 mg L(-1) for δ(15)N and between 0.13 and 0.54 mg L(-1) for δ(13)C, respectively. Substantial inverse N isotope fractionation was observed by SPME-GC/IRMS as the fraction of protonated species increased with decreasing pH leading to deviations of -20‰ while the corresponding δ(13)C-values were largely invariant. From isotope ratio analysis at different solution pHs and theoretical calculations by density functional theory, we derived equilibrium isotope effects, EIEs, pertinent to aromatic amine protonation of 0.980 and 1.001 for N and C, respectively, which were very similar for all compounds investigated. Our work shows that N-atom protonation can compromise accurate compound-specific N isotope analysis of aromatic amines.
Clumped isotope composition of cold-water corals: A role for vital effects?
NASA Astrophysics Data System (ADS)
Spooner, Peter T.; Guo, Weifu; Robinson, Laura F.; Thiagarajan, Nivedita; Hendry, Katharine R.; Rosenheim, Brad E.; Leng, Melanie J.
2016-04-01
The carbonate clumped isotope thermometer is a promising tool for determining past ocean temperatures. It is based on the temperature dependence of rare isotopes 'clumping' into the same carbonate ion group in the carbonate mineral lattice. The extent of this clumping effect is independent of the isotope composition of the water from which carbonate precipitates, providing unique advantages over many other paleotemperature proxies. Existing calibrations of this thermometer in cold-water and warm-water corals suggest clumped isotope 'vital effects' are negligible in cold-water corals but may be significant in warm-water corals. Here, we test the calibration of the carbonate clumped isotope thermometer in cold-water corals with a recently collected and well characterised sample set spanning a range of coral genera (Balanophyllia, Caryophyllia, Dasmosmilia, Desmophyllum, Enallopsammia and Javania). The clumped isotope compositions (Δ47) of these corals exhibit systematic dependences on their growth temperatures, confirming the basis of the carbonate clumped isotope thermometer. However, some cold-water coral genera show Δ47 values that are higher than the expected equilibrium values by up to 0.05‰ (equivalent to underestimating temperature by ∼9 °C) similar to previous findings for some warm-water corals. This finding suggests that the vital effects affecting corals Δ47 are common to both warm- and cold-water corals. By comparison with models of the coral calcification process we suggest that the clumped isotope offsets in these genera are related to the kinetic isotope effects associated with CO2 hydration/hydroxylation reactions in the corals' calcifying fluid. Our findings complicate the use of the carbonate clumped isotope thermometer in corals, but suggest that species- or genus-specific calibrations could be useful for the future application of this paleotemperature proxy.
NASA Astrophysics Data System (ADS)
Brault, E.; Koch, P. L.; McCarthy, M. D.; Hall, B. L.; Hoelzel, A. R.; Welch, A. J.; Nye, J. W.; Rosenfield, A. P.
2016-02-01
Substantial environmental changes occurred in the Ross Sea during the Holocene, with sea ice likely significantly increasing around 1,000 years before present (YBP). We are investigating the effects of these environmental changes on the biological community. Previous work demonstrates that the southern elephant seal (Mirounga leonina) colonies in the region began to collapse 1,000 YBP and disappeared from the area by 250 YBP. Ecosystem shifts are also evident in isotopic records. Carbon and nitrogen isotope data from Adélie penguins (Pygoscelis adeliae) differ from animals in the region today, and our isotopic values of fossil southern elephant seals are inconsistent with foraging in the current Ross Sea ecosystem. The dating of these isotopic shifts is uncertain, ranging from 1,000 to 250 YBP. We examined trends in the bulk carbon and nitrogen isotope values of Weddell (Leptonychotes weddellii) and crabeater (Lobodon carcinophagus) seals over the last 5,500 years to clarify the timing of the ecosystem shift, and further explore its effects on top predators. Crabeater seals have stable mean carbon and nitrogen isotope values through the late Holocene period, suggesting stable foraging behavior. However, isotopic data from this species are more variable before 750 YBP, indicating a more diverse foraging ecology. Weddell seals show a clear transition in isotopic values around 500 YBP, similar to that previously observed in penguins. This shift may indicate a change in Weddell seal diet (to lower trophic level prey in more recent times), a changed ecosystem (with the Ross Sea becoming less productive later in the Holocene), or both. Overall, our data shows that the ecology of top predators shifted substantially in response to changes in the Ross Sea around 1,000-500 years ago.
NASA Astrophysics Data System (ADS)
Stefánsson, Andri; Barnes, Jaime D.
2016-09-01
The chlorine isotope composition of thermal fluids from Iceland were measured in order to evaluate the source of chlorine and possible chlorine isotope fractionation in geothermal systems at divergent plate boundaries. The geothermal systems studied have a wide range of reservoir temperatures from 40 to 437 °C and in-situ pH of 6.15 to 7.15. Chlorine concentrations range from 5.2 to 171 ppm and δ37 Cl values are -0.3 to + 2.1 ‰ (n = 38). The δ37 Cl values of the thermal fluids are interpreted to reflect the source of the chlorine in the fluids. Geothermal processes such as secondary mineral formation, aqueous and vapor speciation and boiling were found to have minimal effects on the δ37 Cl values. However, further work is needed on incorporation of Cl into secondary minerals and its effect on Cl isotope fractionation. Results of isotope geochemical modeling demonstrate that the range of δ37 Cl values documented in the natural thermal fluids can be explained by leaching of the basaltic rocks by meteoric source water under geothermal conditions. Magmatic gas partitioning may also contribute to the source of Cl in some cases. The range of δ37 Cl values of the fluids result mainly from the large range of δ37 Cl values observed for Icelandic basalts, which range from -0.6 to + 1.2 ‰.
Isotopic modeling of the sub-cloud evaporation effect in precipitation.
Salamalikis, V; Argiriou, A A; Dotsika, E
2016-02-15
In dry and warm environments sub-cloud evaporation influences the falling raindrops modifying their final stable isotopic content. During their descent from the cloud base towards the ground surface, through the unsaturated atmosphere, hydrometeors are subjected to evaporation whereas the kinetic fractionation results to less depleted or enriched isotopic signatures compared to the initial isotopic composition of the raindrops at cloud base. Nowadays the development of Generalized Climate Models (GCMs) that include isotopic content calculation modules are of great interest for the isotopic tracing of the global hydrological cycle. Therefore the accurate description of the underlying processes affecting stable isotopic content can improve the performance of iso-GCMs. The aim of this study is to model the sub-cloud evaporation effect using a) mixing and b) numerical isotope evaporation models. The isotope-mixing evaporation model simulates the isotopic enrichment (difference between the ground and the cloud base isotopic composition of raindrops) in terms of raindrop size, ambient temperature and relative humidity (RH) at ground level. The isotopic enrichment (Δδ) varies linearly with the evaporated raindrops mass fraction of the raindrop resulting to higher values at drier atmospheres and for smaller raindrops. The relationship between Δδ and RH is described by a 'heat capacity' model providing high correlation coefficients for both isotopes (R(2)>80%) indicating that RH is an ideal indicator of the sub-cloud evaporation effect. Vertical distribution of stable isotopes in falling raindrops is also investigated using a numerical isotope-evaporation model. Temperature and humidity dependence of the vertical isotopic variation is clearly described by the numerical isotopic model showing an increase in the isotopic values with increasing temperature and decreasing RH. At an almost saturated atmosphere (RH=95%) sub-cloud evaporation is negligible and the isotopic composition hardly changes even at high temperatures while at drier and warm conditions the enrichment of (18)Ο reaches up to 20‰, depending on the raindrop size and the initial meteorological conditions. Copyright © 2015 Elsevier B.V. All rights reserved.
Shifts in Ross Sea food web structure as indicated by δ15N and δ13C values of fossil Antarctic seals
NASA Astrophysics Data System (ADS)
Leopold, A.; Brault, E.; McMahon, K.
2013-12-01
As climate change continues to mount, there is a growing need for understanding its effects on biological-physical interactions of marine ecosystems. Assessing the effects of anthropogenic activities on the coastal marine ecosystem involves understanding the underlying mechanisms driving these changes as well as establishing baselines of the natural system. Preliminary findings have indicated shifts in bulk carbon (C) and nitrogen (N) isotopic values of southern elephant seal (Mirounga leonina) samples, collected in the Dry Valleys of Antarctica in the Ross Sea region, over approximately the last 7,000 years. These shifts could result from 1) seals changing their foraging location and/or diet over this time, 2) climate change-induced shifts in the biogeochemistry at the base of the food web, or 3) some combination of both processes. We explored the patterns of long-term change in Ross Sea food web structure by examining the stable isotope values of three top predators in this system, Weddell seals (Leptonychotes weddellii), leopard seals (Hydrurga leptonyx), and crabeater seals (Lobodon carcinophagus). Fossil seal samples were collected in the Dry Valleys during the austral summer of 2012/13 and then analyzed for bulk C and N isotopes via an elemental analyzer/isotope-ratio mass spectrometer (EA/IRMS). Our initial findings indicate that C isotopic values of fossil seal samples from Weddell, leopard, and crabeater seals were more enriched than isotopic values of modern seals of the same species (e.g., δ13C = -22.79 × 0.92 ‰ and -26.71 × 0.50 ‰ for fossil and modern crabeater seals, respectively). Given the relatively consistent diet of crabeater seals, these findings suggest a shift in baseline food web structure occurred over the last 10,000 years, either through changes in foraging location or local shifts in biogeochemistry. For all species, N isotopic values are widely variable (e.g., 7.28 to 16.0 δ15N ‰ for the Weddell seal), which may be a result of greatly changing diets in the last ~10,000 years, or a changing baseline N value for the Ross Sea. Seal bones will be radiocarbon-dated to isolate the key shifts in C and N isotopic values. Once those major shifts are temporally constrained, compound-specific isotopic analysis of the bone samples will be used to tease apart the diet vs. baseline effects on the bulk isotopic signatures of the seals. Our results suggests that during the last ~10,000 years, there was a fundamental shift in Ross Sea food web structure likely related to long term climatic variability.
2015-01-01
We recently reported abnormal secondary deuterium kinetic isotope effects (2° KIEs) for hydride transfer reactions from alcohols to carbocations in acetonitrile (Chem. Comm. 2012, 48, 11337). Experimental 2° KIE values were found to be inflated on the 9-C position in the xanthylium cation but deflated on the β-C position in 2-propanol with respect to the values predicted by the semi-classical transition-state theory. No primary (1°) isotope effect on 2° KIEs was observed. Herein, the KIEs were replicated by the Marcus-like H-tunneling model that requires a longer donor–acceptor distance (DAD) in a lighter isotope transfer process. The 2° KIEs for a range of potential tunneling-ready-states (TRSs) of different DADs were calculated and fitted to the experiments to find the TRS structure. The observed no effect of 1° isotope on 2° KIEs is explained in terms of the less sterically hindered TRS structure so that the change in DAD due to the change in 1° isotope does not significantly affect the reorganization of the 2° isotope and hence the 2° KIE. The effect of 1° isotope on 2° KIEs may be expected to be more pronounced and thus observable in reactions occurring in restrictive environments such as the crowded and relatively rigid active site of enzymes. PMID:24498946
Orlandi, Lucia; Calizza, Edoardo; Careddu, Giulio; Carlino, Pasquale; Costantini, Maria Letizia; Rossi, Loreto
2017-02-15
Effects of two chemical forms of Nitrogen (NH 4 + and NO 3 - ) on δ 15 N in Ulva lactuca were analysed separately and in mixture at two concentrations. We assessed whether the δ 15 N values of U. lactuca discriminate between Nitrogen from synthetic fertilisers (inorganic) and from fresh cow manure (organic), and the isotopic ability of the macroalga to reflect Nitrogen concentrations. Isotopic signature and N content of the macroalga reflected different nitrogenous sources and their concentrations after 48h. The inorganic Nitrogen source (NH 4 NO 3 ) altered the isotopic values of the macroalgae more than Nitrogen from fresh cow manure (NO 3 - ). δ 15 N values observed in the mixed solution did not differ from those displayed in NH 4 NO 3 treatment alone. We conclude that stable isotope analysis of U. lactuca collected in an unpolluted site and experimentally submerged in sites suspected of being affected by disturbance is a useful tool for rapid monitoring of anthropogenic discharges of Nitrogen pollutants. Copyright © 2016 Elsevier Ltd. All rights reserved.
Integrated Fe- and S-isotope study of seafloor hydrothermal vents at East Pacific Rise 9-10°N
Rouxel, O.; Shanks, Wayne C.; Bach, W.; Edwards, K.J.
2008-01-01
In this study, we report on coupled Fe- and S-isotope systematics of hydrothermal fluids and sulfide deposits from the East Pacific Rise at 9–10°N to better constrain processes affecting Fe-isotope fractionation in hydrothermal environments. We aim to address three fundamental questions: (1) Is there significant Fe-isotope fractionation during sulfide precipitation? (2) Is there significant variability of Fe-isotope composition of the hydrothermal fluids reflecting sulfide precipitation in subsurface environments? (3) Are there any systematics between Fe- and S-isotopes in sulfide minerals? The results show that chalcopyrite, precipitating in the interior wall of a hydrothermal chimney displays a limited range of δ56Fe values and δ34S values, between − 0.11 to − 0.33‰ and 2.2 to 2.6‰ respectively. The δ56Fe values are, on average, slightly higher by 0.14‰ relative to coeval vent fluid composition while δ34S values suggest significant S-isotope fractionation (− 0.6 ± 0.2‰) during chalcopyrite precipitation. In contrast, systematically lower δ56Fe and δ34S values relative to hydrothermal fluids, by up to 0.91‰ and 2.0‰ respectively, are observed in pyrite and marcasite precipitating in the interior of active chimneys. These results suggest isotope disequilibrium in both Fe- and S-isotopes due to S-isotopic exchange between hydrothermal H2S and seawater SO42− followed by rapid formation of pyrite from FeS precursors, thus preserving the effects of a strong kinetic Fe-isotope fractionation during FeS precipitation. In contrast, δ56Fe and δ34S values of pyrite from inactive massive sulfides, which show evidence of extensive late-stage reworking, are essentially similar to the hydrothermal fluids. Multiple stages of remineralization of ancient chimney deposits at the seafloor appear to produce minimal Fe-isotope fractionation. Similar affects are indicated during subsurface sulfide precipitation as demonstrated by the lack of systematic differences between δ56Fe values in both high-temperature, Fe-rich black smokers and lower-temperature, Fe-depleted vents.
NASA Astrophysics Data System (ADS)
Grandal-D'Anglade, Aurora; Pérez-Rama, Marta; Fernández-Mosquera, Daniel
2010-05-01
Isotopic signatures (δ13C, δ15N) of bone collagen are used more and more to obtain the paleobiological data of fossil species. By means of these signatures, for example, the diet type of an extint species may be inferred. Also, the climate in which this species developed may greatly influence on the isotopic signature of its bone collagen. This influence is firstly produced in the initial material of the trophic chain but also may produce variations due to physiological changes caused by climatic changes in the species involved in this trophic chain. The cave bear (Ursus spelaeus ROSENMÜLLER) is a species of broad distribution in the European Pleistocene sites that has been studied from the isotopic point of view, trying to establish its diet type. For the moment, the results vary: though in most cases the isotopic values indicate a preferably herbivore diet type, differences exist between sites of different geographic zones and chronologies. Taking into account that climate influences on the cave bear's physiology through the physiological mechanism of hibernation, it is expected that in bears that lived in different climatic phases, the isotopic signatures will be also different. During hibernation a recycling of nitrogenised compounds is produced for protein synthesis, including bone collagen, so it is expected that the isotopic signature, at least of Nitrogen, will be altered with respect to the synthesized collagen when the bear is active and feeds normally. However, it is difficult to establish up to what extent the isotopic signatures due to hibernation or diet are overlapped. To study the physiological effect of hibernation on isotopic signatures we have selected bone remains of cave bears from populations whose chronologies correspond to different climatic moments, and in different ontogenetic stages, coming from Galician caves (NW of the Iberian Peninsula). Adult individuals show different isotopic signatures depending on their chronology. Juvenile individuals show differences originated by the effect of a greater or less contribution of maternal milk in their diets. Finally, the neonate individuals or still in foetal stage show isotopic values that directly reflect their mother's physiology in the hibernation, during which foetal development is produced. Interestingly, all the individuals of this age class present similar isotopic values in spite of belonging to populations with different values in the adults. This indicates, on one hand, that there exists a physiological effect on the isotopic signals produced by hibernation, effect that is similar in all the studied populations, and on the other, that this physiological effect of hibernation only appears in adult individuals of populations corresponding to cold moments, in which the hibernation period is longer. According to the results, we suggest the use of isotopic values of adult cave bears as climatic proxy for European Pleistocene sites. This work is part of the Ph.D. Thesis of M.P.R. and is a contribution to the research project BTE-CGL-2006-08996 of the Education and Science Ministry of Spain.
NASA Astrophysics Data System (ADS)
Tyler, S. C.; McMillan, A. M.; Bearden, K.; Chidthaisong, A.; Macalady, J.
2003-12-01
We report measurements of δ 13C of emitted CH4 and sediment CH4 and CO2 during the 1999 rice-growing season near Maxwell, CA. Two treatments, one with rice straw incorporated from the previous season and one without rice straw were studied. The δ 13C value of emitted CH4 was consistently lighter isotopically (-67‰ to -83‰ throughout the season) in both straw incorporated and straw removed (burned) plots than in fields we have studied in Texas, Kenya, and Japan. Measured isotopic values of the production zone CH4 were compared to a two-point mixing curve representative of isotopic CH4 produced from either pure methyl-group fermentation or CO2 reduction pathways to partition the production pathways and to track seasonal changes in the production processes. Our sediment CH4 and CO2 isotope data indicate that fermentation was rarely the dominant methanogenic pathway - on the contrary CO2 reduction with H2 was more prevalent than fermentation methanogenesis throughout most of the season. The relatively isotopically light CH4 emitted by the paddy fields is also a product of oxidation and stem-transport processes which have isotopic effects of their own. These effects are discussed in context with the methanogenic isotope effects to provide a complete picture of the paddy field CH4 carbon isotope system.
NASA Astrophysics Data System (ADS)
Wang, P.; Sun, C.; Ono, S.; Lin, L.
2012-12-01
Microbial dissimilatory sulfate reduction is one of the major mechanisms driving anaerobic mineralization of organic matter in global ocean. While sulfate-reducing prokaryotes are well known to fractionate sulfur isotopes during dissimilatory sulfate reduction, unraveling the isotopic compositions of sulfur-bearing minerals preserved in sedimentary records could provide invaluable constraints on the evolution of seawater chemistry and metabolic pathways. Variations in the sulfur isotope fractionations are partly due to inherent differences among species and also affected by environmental conditions. The isotope fractionations caused by microbial sulfate reduction have been interpreted to be a sequence of enzyme-catalyzed isotope fractionation steps. Therefore, the fractionation factor depends on (1) the sulfate flux into and out of the cell, and (2) the flux of sulfur transformation between the internal pools. Whether the multiple sulfur isotope effect could be quantitatively predicted using such a metabolic flux model would provide insights into the cellular machinery catalyzing with sulfate reduction. This study examined the multiple sulfur isotope fractionation patterns associated with a thermophilic Thermodesulfobacterium-related strain and a mesophilic Desulfovibrio gigas over a wide temperature range. The Thermodesulfobacterium-related strain grew between 34 and 79°C with an optimal temperature at 72°C and the highest cell-specific sulfate reduction rate at 77°C. The 34ɛ values ranged between 8.2 and 31.6‰ with a maximum at 68°C. The D. gigas grew between 10 and 45 °C with an optimal temperature at 30°C and the highest cell-specific sulfate reduction rate at 41°C. The 34ɛ values ranged between 10.3 and 29.7‰ with higher magnitude at both lower and higher temperatures. The results of multiple sulfur isotope measurements expand the previously reported range and cannot be described by a solution field of the metabolic flux model, which calculates the Δ33S and 34ɛ values assuming equilibrium fractionation among internal steps. Either larger isotope effects or kinetic fractionation has to be considered in the metabolic flux model to explain the multiple sulfur isotope effect produced by these two strains. Overall, the metabolic flux model warrants further revision and further studies regarding physiological responses to growth conditions may probably offer a linkage between multiple sulfur isotope effects and environmental factors for microbial dissimilatory sulfate reduction.
Errea, Ion; Calandra, Matteo; Mauri, Francesco
2013-10-25
Palladium hydrides display the largest isotope effect anomaly known in the literature. Replacement of hydrogen with the heavier isotopes leads to higher superconducting temperatures, a behavior inconsistent with harmonic theory. Solving the self-consistent harmonic approximation by a stochastic approach, we obtain the anharmonic free energy, the thermal expansion, and the superconducting properties fully ab initio. We find that the phonon spectra are strongly renormalized by anharmonicity far beyond the perturbative regime. Superconductivity is phonon mediated, but the harmonic approximation largely overestimates the superconducting critical temperatures. We explain the inverse isotope effect, obtaining a -0.38 value for the isotope coefficient in good agreement with experiments, hydrogen anharmonicity being mainly responsible for the isotope anomaly.
NASA Astrophysics Data System (ADS)
Wang, W.; An, C.; Duan, F.; Zhao, Y.; Cao, Z.
2017-12-01
The AMS 14C dating and corresponding carbon stable isotope datum of charred wheat grains from archaeological sites in northwest China especially Hexi Corridor and Xinjiang have been collected widely to study its potential roles in reconstructing past climate change and identifying water management strategies through comparison with integrated regional humidity index, carbon isotope data of wheat grown under modern irrigation environment from study area and Mediterranean charred wheat carbon isotope data. The results suggest (1) carbon isotope discrimination values of charred wheat both in Hexi corridor and Xinjiang could respond well to regional moisture change, and there are also good positive correlation relationship between them (2) in contrast to consistent relationship between decreased carbon isotope discrimination values of charred wheat and dry climate condition, increased carbon isotope discrimination values does not represent wetter regional climate completely and may also reveal effects of human irrigation activities. The higher carbon isotope discrimination value of charred wheat which occurred in the Hexi Corridor from 4000 to 3850 a BP, 2100 a BP and 550 a BP and in Tianshan area of Xinjiang from 3730 a BP could be likely to be related with human activities (3) the carbon isotope discrimination value of charred wheat may have a certain limit which is generally not beyond 19‰. And this upper limit could influence its availability in reflecting abrupt change of precipitation/humidity especially rapid wetter trend. We conclude that carbon isotope analysis of charred wheat grains could be a good tool for reconstructing past climate change and identifying ancient irrigation practices.
Montanari, Shaena; Amato, George
2015-06-15
In order to use stable isotope ratio values obtained from wild animal tissues, we must accurately calculate the differences in isotope ratios between diet and consumer (δtissue - δdiet). These values, called trophic discrimination factors (TDFs, denoted with ∆), are necessary for stable isotope ecology studies and are best calculated in controlled environments. Scat, hair, and diet samples were collected from captive tigers (n = 8) and snow leopards (n = 10) at the Bronx Zoo. The isotope ratios of carbon and nitrogen, the two most commonly used in ecological studies, of the samples were measured by continuous-flow isotope ratio mass spectrometry. The trophic discrimination factors were calculated for both carbon (δ(13)C values) and nitrogen (δ(15)N values). It was found that the only significant TDFs in this study were diet-hair, ∆(13)CHair, for snow leopards (5.97 ± 1.25‰) and tigers (6.45 ± 0.54‰), and diet-scat, ∆(15)NScat, in snow leopards (2.49 ± 1.30‰). The other mean isotope ratios were not significantly different from that of the premixed feline diet. The ∆(15)NHair values for both species were unusually low, potentially due to the protein content and quality of the feline diet. The discrimination factors of the stable isotopes of carbon and nitrogen calculated in this study can be applied to ecological studies of wild, non-captive terrestrial mammals. The effect of protein quality in isotope discrimination is also worthy of further investigation to better understand variation in TDFs. Carnivore scat is shown to be a valuable material for isotopic analysis. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Ostrander, C. M.; Kendall, B.; Roy, M.; Romaniello, S. J.; Nunn, S. J.; Gordon, G. W.; Olson, S. L.; Lyons, T. W.; Zheng, W.; Anbar, A. D.
2016-12-01
Molybdenum (Mo) isotope compositions of Archean shales can provide important insights into ocean and atmosphere redox dynamics prior to the Great Oxidation Event (GOE). Unfortunately, the relatively limited Mo isotope database and small number of sample sets for Archean shales do not allow for in-depth reconstructions and specifically make it difficult to differentiate global from local effects. To accurately estimate the Mo isotope composition of Archean seawater and better investigate the systematics of local and global redox, more complete sample sets are needed. We carried out a Mo isotope analysis of the euxinic 2.65 Ga Roy Hill Shale sampled in two stratigraphically correlated cores, and revisited the well-studied euxinic 2.5 Ga Mt. McRae Shale in higher resolution. Our data show contrasting Mo isotope values in the 2.65 Ga Roy Hill Shale between near- and offshore depositional environments, with systematically heavier isotope values in the near-shore environment. High-resolution analysis of the Mt. McRae Shale yields oscillating Mo concentrations and isotope values at the cm- to dm-scale during the well-characterized "whiff of O2" interval, with the heaviest isotope values measured during euxinic deposition. Variations in the measured isotope values within each section are primarily associated with redox changes in the local depositional environment and amount of detrital content. Both non-quantitative removal of Mo associated with incorporation into non-euxinic sediments and large detrital Mo contributions shift some measured isotopic compositions toward lighter values. This is readily apparent in the near-shore Roy Hill Shale section and the Mt. McRae Shale, but may not fully explain variations observed in the offshore Roy Hill Shale deposit. Here, euxinic deposition is not accompanied by Mo enrichments or isotopic compositions as heavy as the near-shore equivalent, even after detrital correction. This disparity between the near- and offshore environment could signify spatial variation in the Mo isotope composition of 2.65 Ga seawater and highlights the need for multi-site and high-resolution studies in order to best assess paleoenvironmental conditions.
Olin, Jill A; Hussey, Nigel E; Fritts, Mark; Heupel, Michelle R; Simpfendorfer, Colin A; Poulakis, Gregg R; Fisk, Aaron T
2011-04-30
Stable isotopes of neonatal vertebrates reflect those of their mother's diet and foraging location. Evaluating feeding strategies and habitat use of neonates is consequently complicated by the maternal isotopic signal and its subsequent elimination with growth. Thus, methods that measure the loss of the maternal signal, i.e. when the isotopic signal of a neonate reflects its own diet, are needed. Values of δ(13)C and δ(15)N were measured in liver and muscle tissues of <1 year old bull (Carcharhinus leucas) and Atlantic sharpnose (Rhizoprionodon terraenovae) sharks and related to age using, total length, date sampled and umbilical scar stage (USS). We observed a decline in δ(13)C and δ(15)N values with age that was different among species, similar among isotopes, and greater in liver than in muscle; highlighting that retention of the maternal signal is dependent on species-specific life history and tissue characteristics. USS was most effective for assessing the loss of the maternal isotopic signal in the faster growing Atlantic sharpnose shark, but was less effective for the slower growing bull shark. Total length and date sampled were overall less effective and may be more informative for slower growing species when coupled with USS, as variable size at birth and misclassification of animals >1 year old, which remain in nursery habitats, increase the variability of the isotopic values. Consideration of the maternal signal and measuring its loss are thus necessary when analyzing the stable isotopes of young animals, as there is potential to misinterpret feeding strategies, over-estimate trophic position and incorrectly assign carbon source. Copyright © 2011 John Wiley & Sons, Ltd.
van Geldern, Robert; Kuhlemann, Joachim; Schiebel, Ralf; Taubald, Heinrich; Barth, Johannes A C
2014-06-01
The Mediterranean is regarded as a region of intense climate change. To better understand future climate change, this area has been the target of several palaeoclimate studies which also studied stable isotope proxies that are directly linked to the stable isotope composition of water, such as tree rings, tooth enamel or speleothems. For such work, it is also essential to establish an isotope hydrology framework of the region of interest. Surface waters from streams and lakes as well as groundwater from springs on the island of Corsica were sampled between 2003 and 2009 for their oxygen and hydrogen isotope compositions. Isotope values from lake waters were enriched in heavier isotopes and define a local evaporation line (LEL). On the other hand, stream and spring waters reflect the isotope composition of local precipitation in the catchment. The intersection of the LEL and the linear fit of the spring and stream waters reflect the mean isotope composition of the annual precipitation (δP) with values of-8.6(± 0.2) ‰ for δ(18)O and-58(± 2) ‰ for δ(2)H. This value is also a good indicator of the average isotope composition of the local groundwater in the island. Surface water samples reflect the altitude isotope effect with a value of-0.17(± 0.02) ‰ per 100 m elevation for oxygen isotopes. At Vizzavona Pass in central Corsica, water samples from two catchments within a lateral distance of only a few hundred metres showed unexpected but systematic differences in their stable isotope composition. At this specific location, the direction of exposure seems to be an important factor. The differences were likely caused by isotopic enrichment during recharge in warm weather conditions in south-exposed valley flanks compared to the opposite, north-exposed valley flanks.
Stable isotopes confirm a coastal diet for critically endangered Mediterranean monk seals.
Karamanlidis, Alexandros A; Curtis, P Jeff; Hirons, Amy C; Psaradellis, Marianna; Dendrinos, Panagiotis; Hopkins, John B
2014-01-01
Understanding the ecology and behaviour of endangered species is essential for developing effective management and conservation strategies. We used stable isotope analysis to investigate the foraging behaviour of critically endangered Mediterranean monk seals (Monachus monachus) in Greece. We measured carbon and nitrogen isotope ratios (expressed as δ(13)C and δ(15)N values, respectively) derived from the hair of deceased adult and juvenile seals and the muscle of their known prey to quantify their diets. We tested the hypothesis that monk seals primarily foraged for prey that occupy coastal habitats in Greece. We compared isotope values from seal hair to their coastal and pelagic prey (after correcting all prey for isotopic discrimination) and used these isotopic data and a stable isotope mixing model to estimate the proportion of coastal and pelagic resources consumed by seals. As predicted, we found that seals had similar δ(13)C values as many coastal prey species and higher δ(13)C values than pelagic species; these results, in conjunction with mean dietary estimates (coastal=61 % vs. pelagic=39 %), suggest that seals have a diverse diet comprising prey from multiple trophic levels that primarily occupy the coast. Marine resource managers should consider using the results from this study to inform the future management of coastal habitats in Greece to protect Mediterranean monk seals.
Loyd, S. J.; Sample, J.; Tripati, R. E.; ...
2016-07-22
Here, methane cold seep systems typically exhibit extensive buildups of authigenic carbonate minerals, resulting from local increases in alkalinity driven by methane oxidation. Here, we demonstrate that modern seep authigenic carbonates exhibit anomalously low clumped isotope values (Δ47), as much as ~0.2‰ lower than expected values. In modern seeps, this range of disequilibrium translates into apparent temperatures that are always warmer than ambient temperatures, by up to 50 °C. We examine various mechanisms that may induce disequilibrium behaviour in modern seep carbonates, and suggest that the observed values result from several factors including kinetic isotopic effects during methane oxidation, mixingmore » of inorganic carbon pools, pH effects and rapid precipitation. Ancient seep carbonates studied here also exhibit potential disequilibrium signals. Ultimately, these findings indicate the predominance of disequilibrium clumped isotope behaviour in modern cold seep carbonates that must be considered when characterizing environmental conditions in both modern and ancient cold seep settings.« less
Kharaka, Yousif K.; Thordsen, James J.; White, Lloyd D.
2002-01-01
An intensive hydrogeologic investigation, mandated by U.S. Congress and centered on the Norris-Mammoth corridor was conducted by USGS and other scientists during 1988-90 to determine the effects of using thermal water from a private well located in the Corwin Springs Known Geothermal Resources Area, Montana, on the thermal springs of Yellowstone National Park (YNP), especially Mammoth Hot Springs. As part of this investigation, we carried out a detailed study of the isotopic and chemical compositions of meteoric water from cold springs and wells, of thermal water, especially from the Norris-Mammoth corridor and of snow. Additional sampling of meteoric and thermal waters from YNP and surrounding region in northwest Wyoming, southwest Montana and southeast Idaho was carried out in 1991-92 to characterize the distribution of water isotopes in this mountainous region and to determine the origin and possible recharge locations of thermal waters in and adjacent to the Park. The D and 18O values for 40 snow samples range from ?88 to ?178? and ?12.5 to ?23.9?, respectively, and define a well constrained line given by D = 8.2 18O + 14.7 (r2 = 0.99) that is nearly identical to the Global Meteoric Water Line. The D and 18O values of 173 cold water samples range from ?115 to ?153? and ?15.2 to ?20.2?, respectively, and exhibit a similar relationship although with more scatter and with some shift to heavier isotopes, most likely due to evaporation effects. The spatial distribution of cold-water isotopes shows a roughly circular pattern with isotopically lightest waters centered on the mountains and high plateau in the northwest corner of Yellowstone National Park and becoming heavier in all directions. The temperature effect due to altitude is the dominant control on stable water isotopes throughout the region; however, this effect is obscured in narrow 'canyons' and areas of high topographic relief. The effects due to distance (i.e. 'continental') and latitude on water isotopes probably are relatively minor and difficult to resolve from the major controls. The data indicate that the groundwater are derived predominantly from cold, isotopically light winter precipitation, and that the isotope values of groundwater from elevations above about 2.5-3.0 km in the Gallatin and northern Absaroka Ranges are light enough (The D ?149?) to be the presumed recharge water for the hydrothermal system in the Park. However, estimation of the present-day volume of this recharged, isotopically light water indicates that it is not adequate to supply the high (3-4 m3/s) thermal water discharges from YNP, and cooler temperatures at the time of recharge would be required. The volume of meteoric water with D values lighter than ?145? may be adequate for recharging the hydrothermal system, and this may be a more plausible value than the ?149? originally calculated from data that are subject to moderate uncertainties.
Cui, Mingchao; Zhang, Wenbing; Fang, Jun; Liang, Qianqiong; Liu, Dongxuan
2017-08-01
Compound-specific isotope analysis has been used extensively to investigate the biodegradation of various organic pollutants. To date, little isotope fractionation information is available for the biodegradation of quinolinic compounds. In this study, we report on the carbon and hydrogen isotope fractionation during quinoline and 3-methylquinoline aerobic microbial degradation by a Comamonas sp. strain Q10. Degradation of quinoline and 3-methylquinoline was accompanied by isotope fractionation. Large hydrogen and small carbon isotope fractionation was observed for quinoline while minor carbon and hydrogen isotope fractionation effects occurred for 3-methylquinoline. Bulk carbon and hydrogen enrichment factors (ε bulk ) for quinoline biodegradation were -1.2 ± 0.1 and -38 ± 1‰, respectively, while -0.7 ± 0.1 and -5 ± 1‰ for 3-methylquinoline, respectively. This reveals a potential advantage for employing quinoline as the model compound and hydrogen isotope analysis for assessing aerobic biodegradation of quinolinic compounds. The apparent kinetic isotope effects (AKIE C ) values of carbon were 1.008 ± 0.0005 for quinoline and 1.0048 ± 0.0005 for 3-methylquinoline while AKIE H values of hydrogen of 1.264 ± 0.011 for quinoline and 1.0356 ± 0.0103 for 3-methylquinoline were obtained. The combined evaluation of carbon and hydrogen isotope fractionation yields Λ values (Λ = Δδ 2 H/Δδ 13 C ≈ εH bulk /εC bulk ) of 29 ± 2 for quinoline and 8 ± 2 for 3-methylquinoline. The results indicate that the substrate specificity may have a significant influence on the isotope fractionation for the biodegradation of quinolinic compounds. The substrate-specific isotope enrichment factors would be important for assessing the behavior and fate of quinolinic compounds in the environment.
Iron isotope fractionation in marine invertebrates in near shore environments
NASA Astrophysics Data System (ADS)
Emmanuel, S.; Schuessler, J. A.; Vinther, J.; Matthews, A.; von Blanckenburg, F.
2014-04-01
Chitons (Mollusca) are marine invertebrates that produce radula (teeth or rasping tongue) containing high concentrations of biomineralized magnetite and other iron bearing minerals. As Fe isotope signatures are influenced by redox processes and biological fractionation, Fe isotopes in chiton radula might be expected to provide an effective tracer of ambient oceanic conditions and biogeochemical cycling. Here, in a pilot study to measure Fe isotopes in marine invertebrates, we examine Fe isotopes in modern marine chiton radula collected from different locations in the Atlantic and Pacific oceans to assess the range of isotopic values, and to test whether or not the isotopic signatures reflect seawater values. Furthermore, by comparing two species that have very different feeding habits but collected from the same location, we infer a possible link between diet and Fe isotopic signatures. Values of δ56Fe (relative to IRMM-014) in chiton teeth range from -1.90 to 0.00‰ (±0.05‰ (2σ) uncertainty in δ56Fe), probably reflecting a combination of geographical control and biological fractionation processes. Comparison with published local surface seawater Fe isotope data shows a consistent negative offset of chiton teeth Fe isotope compositions relative to seawater. Strikingly, two different species from the same locality in the North Pacific (Puget Sound, Washington, USA) have distinct isotopic signatures. Tonicella lineata, which feeds on red algae, has a mean δ56Fe of -0.65 ± 0.26‰ (2σ, 3 specimens), while Mopalia muscosa, which feeds primarily on green algae, shows lighter isotopic values with a mean δ56Fe of -1.47 ± 0.98‰ (2σ, 5 specimens). Although chitons are not simple recorders of the ambient seawater Fe isotopic signature, these preliminary results suggest that Fe isotopes provide information concerning Fe biogeochemical cycling in near shore environments, and might be used to probe sources of Fe in the diets of different organisms.
O-stable Isotopes Distribution In Deep-sea Corals From Sims Measurements
NASA Astrophysics Data System (ADS)
Blamart, D.; Cuif, J.-P.; Juillet-Leclerc, A.
Urey's theoretical calculations (Urey, 1947) have predicted that the O-isotope fraction- ations between calcium carbonates and water should be large enough to be used as a paleothermometer. However, stable isotopes studies on aragonitic invertebrates includ- ing corals have also demonstrated departure of several per mil from O-equilibrium. Different tentative explanations have been proposed in the literature: (1) influence of the polymorphism form and chemical composition of the calcium carbonate (2) kinetic effects related to calcification process during rapid growth rate (3) metabolic effect due to respiration and photosynthesis. All these explanations are based on the assumption that the coral skeleton represents a structural homogeneous entity. Early microscopic studies of coral skeletons have suggested that coral skeletons are built by two different structures: (1) fibres and (2) centres of calcification confirmed by recent biominerali- sation studies. SIMS O-stable isotopes measurements have been performed on lines of centres of calcification and the surrounding aragonitic fibre on deep-sea coral (Lophe- lia Pertusa). Different transects of O-isotope distribution have been carried out in the septa and in the thick wall of Lophelia pertusa. O-isotopic values of the fibres of the septa and of the wall show a very large range of variation of around 10L' from -5 to +5L' (PDB). O-measurement performed on line of the centre of calcification from the inner part of the septa to the wall show a restricted range of variation which not exceed 1L'. O-values of the centres of calcification in the septa and in the wall are similar with a mean value of -2.9s0.3L'. Temperature derived from O values of the centre of cal- ´ cification are not consistant with the measured ones in situ indicating also a constant fractionation in this microstructure. Coupled with C-isotopes measurements O-isotope distribution should better constraint the growth mechanism, calcification process and the associated isotopic fractionation
NASA Astrophysics Data System (ADS)
Horton, Travis W.; Defliese, William F.; Tripati, Aradhna K.; Oze, Christopher
2016-01-01
Growing pressure on sustainable water resource allocation in the context of global development and rapid environmental change demands rigorous knowledge of how regional water cycles change through time. One of the most attractive and widely utilized approaches for gaining this knowledge is the analysis of lake carbonate stable isotopic compositions. However, endogenic carbonate archives are sensitive to a variety of natural processes and conditions leaving isotopic datasets largely underdetermined. As a consequence, isotopic researchers are often required to assume values for multiple parameters, including temperature of carbonate formation or lake water δ18O, in order to interpret changes in hydrologic conditions. Here, we review and analyze a global compilation of 57 lacustrine dual carbon and oxygen stable isotope records with a topical focus on the effects of shifting hydrologic balance on endogenic carbonate isotopic compositions. Through integration of multiple large datasets we show that lake carbonate δ18O values and the lake waters from which they are derived are often shifted by >+10‰ relative to source waters discharging into the lake. The global pattern of δ18O and δ13C covariation observed in >70% of the records studied and in several evaporation experiments demonstrates that isotopic fractionations associated with lake water evaporation cause the heavy carbon and oxygen isotope enrichments observed in most lakes and lake carbonate records. Modeled endogenic calcite compositions in isotopic equilibrium with lake source waters further demonstrate that evaporation effects can be extreme even in lake records where δ18O and δ13C covariation is absent. Aridisol pedogenic carbonates show similar isotopic responses to evaporation, and the relevance of evaporative modification to paleoclimatic and paleotopographic research using endogenic carbonate proxies are discussed. Recent advances in stable isotope research techniques present unprecedented opportunities to overcome the underdetermined nature of stable isotopic data through integration of multiple isotopic proxies, including dual element 13C-excess values and clumped isotope temperature estimates. We demonstrate the utility of applying these multi-proxy approaches to the interpretation of paleohydroclimatic conditions in ancient lake systems. Understanding past, present, and future hydroclimatic systems is a global imperative. Significant progress should be expected as these modern research techniques become more widely applied and integrated with traditional stable isotopic proxies.
Effects of must concentration techniques on wine isotopic parameters.
Guyon, Francois; Douet, Christine; Colas, Sebastien; Salagoïty, Marie-Hélène; Medina, Bernard
2006-12-27
Despite the robustness of isotopic methods applied in the field of wine control, isotopic values can be slightly influenced by enological practices. For this reason, must concentration technique effects on wine isotopic parameters were studied. The two studied concentration techniques were reverse osmosis (RO) and high-vacuum evaporation (HVE). Samples (must and extracted water) have been collected in various French vineyards. Musts were microfermented at the laboratory, and isotope parameters were determined on the obtained wine. Deuterium and carbon-13 isotope ratios were studied on distilled ethanol by nuclear magnetic resonance (NMR) and isotope ratio mass spectrometry (IRMS), respectively. The oxygen-18 ratio was determined on extracted and wine water using IRMS apparatus. The study showed that the RO technique has a very low effect on isotopic parameters, indicating that this concentration technique does not create any isotopic fractionation, neither at sugar level nor at water level. The effect is notable for must submitted to HVE concentration: water evaporation leads to a modification of the oxygen-18 ratio of the must and, as a consequence, ethanol deuterium concentration is also modified.
Modeling experimental stable isotope results from CO2 adsorption and diffusion experiments
NASA Astrophysics Data System (ADS)
Larson, T. E.
2012-12-01
Transport of carbon dioxide through porous media can be affected by diffusion, advection and adsorption processes. Developing new tools to understand which of these processes dominates migration of CO2 or other gases in the subsurface is important to a wide range of applications including CO2 storage. Whereas advection rates are not affected by isotope substitution in CO2, adsorption and diffusion constants are. For example, differences in the binary diffusion constant calculated between C12O2-He and C13O2-He results in a carbon isotope fractionation whereby the front of the chromatographic peak is enriched in carbon-12 and the tail of the peak is enriched in carbon-13. Interestingly, adsorption is shown to have an opposite, apparent inverse affect whereby the lighter isotopologues of CO2 are preferentially retained by the chromatographic column and the heavier isotopologues are eluted first. This apparent inverse chromatographic effect has been ascribed to Van der Waals dispersion forces. Smaller molar volumes of the heavier isotopologues resulting from increased bond strength (shorter bond length) effectively decreases Van der Waals forces in heavier isotopologues compared to lighter isotopologues. Here we discuss the possible application of stable isotope values measured across chromatographic peaks to differentiate diffusion-dominated from adsorption-dominated transport processes for CO2. Separate 1-dimensional flow-through columns were packed with quartz and illite, and one remained empty. Dry helium was used as a carrier gas. Constant flow rate, temperature and column pressure were maintained. After background CO2 concentrations were minimized and constant, a sustained pulse of CO2 was injected at the head of the column and the effluent was sampled at 4 minute intervals for CO2 concentration, and carbon and oxygen isotope ratios. The quartz-sand packed and empty columns resulted in similar trends in concentration and isotope ratios whereby CO2 concentrations steadily increased and became constant after two pore volumes of CO2 flushed through the column. Carbon and oxygen isotope values of the front of the peak (first pore volume) are 2‰ and 5‰ lower than the injected CO2 values, respectively. These results are fit very well using a mass transfer model that only includes binary diffusion between CO2 and helium that account for isotope substitution in the reduced mass coefficient. In contrast to these diffusion-dominated systems, CO2 break through curves from the illite packed column show strong adsorption effects that include a +180‰ increase in the carbon isotope ratio at the front of the peak followed by a 20‰ decrease. Up to 20 pore volumes of CO2 were flushed through the column before the carbon and oxygen isotope values stabilized to their starting values. These adsorption effects cannot be modeled using mass isotope effects alone, and instead must include additional parameters such as volume effects. These results demonstrate the importance of understanding the isotopic effects of CO2 in different substrates, and potentially offers a tracer tool that can be used to quantify surface area, transport distance, and surface reactivity of CO2. Additional applications may include more affectively determining transfer rates of CO2 across low permeability zones.
NASA Astrophysics Data System (ADS)
Gövert, D.; Conrad, R.
2009-04-01
During the anaerobic degradation of organic matter in anoxic sediments and soils acetate is the most important substrate for the final step in production of CO2 and/or CH4. Sulfate-reducing bacteria (SRB) and methane-producing archaea both compete for the available acetate. Knowledge about the fractionation of 13C/12C of acetate carbon by these microbial groups is still limited. Therefore, we determined carbon isotope fractionation in different cultures of acetate-utilizing SRB (Desulfobacter postgatei, D. hydrogenophilus, Desulfobacca acetoxidans) and methanogens (Methanosarcina barkeri, M. acetivorans). Including literature values (e.g., Methanosaeta concilii), isotopic enrichment factors (epsilon) ranged between -35 and +2 permil, possibly involving equilibrium isotope effects besides kinetic isotope effects. The values of epsilon were dependent on the acetate-catabolic pathway of the particular microorganism, the methyl or carboxyl position of acetate, and the relative availability or limitation of the substrate acetate. Patterns of isotope fractionation in anoxic lake sediments and rice field soil seem to reflect the characteristics of the microorganisms actively involved in acetate catabolism. Hence, it might be possible using environmental isotopic information to determine the type of microbial metabolism converting acetate to CO2 and/or CH4.
Matley, J K; Fisk, A T; Tobin, A J; Heupel, M R; Simpfendorfer, C A
2016-01-15
Stable isotope ratios (δ(13)C and δ(15)N values) provide a unique perspective into the ecology of animals because the isotope ratio values of consumers reflect the values in food. Despite the value of stable isotopes in ecological studies, the lack of species-specific experimentally derived diet-tissue discrimination factors (DTDFs) and turnover rates limits their application at a broad scale. Furthermore, most aquatic feeding experiments use temperate, fast-growing fish species and few have considered medium- to large-sized adults with low growth rates from tropical ecosystems. A controlled-diet stable isotope feeding trial was conducted over a 196-day period for the adult predatory reef fish leopard coralgrouper (Plectropomus leopardus). This study calculated δ(13)C and δ(15)N DTDFs and turnover rates in five tissues (liver, plasma, red blood cells (RBC), fin, and muscle) using a continuous flow isotope ratio mass spectrometer equipped with an elemental analyzer. In addition, the effect of chemical lipid extraction (LE) on stable isotope values was examined for each tissue. Turnover was mainly influenced by metabolism (as opposed to growth) with LE δ(15)N half-life values lowest in fin (37 days) and plasma (66 days), and highest in RBC (88 days) and muscle (126 days). The diet-tissue discrimination factors for δ(15)N values in all tissues (Δ(15)N: -0.15 to 1.84‰) were typically lower than commonly reported literature values. Lipid extraction altered both δ(15) N and δ(13)C values compared with untreated samples; however, for the δ(15)N values, the differences were small (mean δ(15)N(LE-Bulk) <0.46‰ in all tissues). This study informs future interpretation of stable isotope data for medium- to large-sized fish and demonstrates that DTDFs developed for temperate fish species, particularly for δ(15)N values, may not apply to tropical species. Sampling of muscle and/or RBC is recommended for a relatively long-term representation of feeding habits, while plasma and/or fin should be used for a more recent indication of diet. Copyright © 2015 John Wiley & Sons, Ltd.
Fuller, Mark E.; Heraty, Linnea J.; Condee, Charles W.; Vainberg, Simon; Sturchio, Neil C.; Böhlke, John Karl; Hatzinger, Paul B.
2016-01-01
Kinetic isotopic fractionation of carbon and nitrogen during RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) biodegradation was investigated with pure bacterial cultures under aerobic and anaerobic conditions. Relatively large bulk enrichments in 15N were observed during biodegradation of RDX via anaerobic ring cleavage (ε15N = −12.7‰ ± 0.8‰) and anaerobic nitro reduction (ε15N = −9.9‰ ± 0.7‰), in comparison to smaller effects during biodegradation via aerobic denitration (ε15N = −2.4‰ ± 0.2‰). 13C enrichment was negligible during aerobic RDX biodegradation (ε13C = −0.8‰ ± 0.5‰) but larger during anaerobic degradation (ε13C = −4.0‰ ± 0.8‰), with modest variability among genera. Dual-isotope ε13C/ε15N analyses indicated that the three biodegradation pathways could be distinguished isotopically from each other and from abiotic degradation mechanisms. Compared to the initial RDX bulk δ15N value of +9‰, δ15N values of the NO2− released from RDX ranged from −7‰ to +2‰ during aerobic biodegradation and from −42‰ to −24‰ during anaerobic biodegradation. Numerical reaction models indicated that N isotope effects of NO2− production were much larger than, but systematically related to, the bulk RDX N isotope effects with different bacteria. Apparent intrinsic ε15N-NO2− values were consistent with an initial denitration pathway in the aerobic experiments and more complex processes of NO2− formation associated with anaerobic ring cleavage. These results indicate the potential for isotopic analysis of residual RDX for the differentiation of degradation pathways and indicate that further efforts to examine the isotopic composition of potential RDX degradation products (e.g., NOx) in the environment are warranted.
Melting point of high-purity germanium stable isotopes
NASA Astrophysics Data System (ADS)
Gavva, V. A.; Bulanov, A. D.; Kut'in, A. M.; Plekhovich, A. D.; Churbanov, M. F.
2018-05-01
The melting point (Tm) of germanium stable isotopes 72Ge, 73Ge, 74Ge, 76Ge was determined by differential scanning calorimetry. With the increase in atomic mass of isotope the decrease in Tm is observed. The decrease was equal to 0.15 °C per the unit of atomic mass which qualitatively agrees with the value calculated by Lindemann formula accounting for the effect of "isotopic compression" of elementary cell.
Production of platinum radioisotopes at Brookhaven Linac Isotope Producer (BLIP)
NASA Astrophysics Data System (ADS)
Smith, Suzanne V.; McCutchan, Elizabeth; Gürdal, Gülhan; Lister, Christopher; Muench, Lisa; Nino, Michael; Sonzogni, Alexandro; Herman, Michal; Nobre, Gustavo; Cullen, Chris; Chillery, Thomas; Chowdury, Partha; Harding, Robert
2017-09-01
The accelerator production of platinum isotopes was investigated at the Brookhaven Linac Isotope Producer (BLIP). In this study high purity natural platinum foils were irradiated at 53.2, 65.7, 105.2, 151.9, 162.9 and 173.3.MeV. The irradiated foils were digested in aqua regia and then converted to their hydrochloride salt with concentrated hydrochloric acid before analyzing by gamma spectrometry periodically for at least 10 days post end of bombardment. A wide range of platinum (Pt), gold (Au) and iridium (Ir) isotopes were identified. Effective cross sections at BLIP for Pt-188, Pt-189, Pt-191 and Pt-195m were compared to literature and theoretical cross sections determined using Empire-3.2. The majority of the effective cross sections (<70 MeV) confirm those reported in the literature. While the absolute values of the theoretical cross sections were up to a factor of 3 lower, Empire 3.2 modeled thresholds and maxima correlated well with experimental values. Preliminary evaluation into a rapid separation of Pt isotopes from high levels of Ir and Au isotopes proved to be a promising approach for large scale production. In conclusion, this study demonstrated that with the use of isotopically enriched target material accelerator production of selected platinum isotopes is feasible over a wide proton energy range.
Isotopic characteristics of canopies in simulated leaf assemblages
NASA Astrophysics Data System (ADS)
Graham, Heather V.; Patzkowsky, Mark E.; Wing, Scott L.; Parker, Geoffrey G.; Fogel, Marilyn L.; Freeman, Katherine H.
2014-11-01
The geologic history of closed-canopy forests is of great interest to paleoecologists and paleoclimatologists alike. Closed canopies have pronounced effects on local, continental and global rainfall and temperature patterns. Although evidence for canopy closure is difficult to reconstruct from the fossil record, the characteristic isotope gradients of the ;canopy effect; could be preserved in leaves and proxy biomarkers. To assess this, we employed new carbon isotopic data for leaves collected in diverse light environments within a deciduous, temperate forest (Maryland, USA) and for leaves from a perennially closed canopy, moist tropical forest (Bosque Protector San Lorenzo, Panamá). In the tropical forest, leaf carbon isotope values range 10‰, with higher δ13Cleaf values occurring both in upper reaches of the canopy, and with higher light exposure and lower humidity. Leaf fractionation (Δleaf) varied negatively with height and light and positively with humidity. Vertical 13C enrichment in leaves largely reflects changes in Δleaf, and does not trend with δ13C of CO2 within the canopy. At the site in Maryland, leaves express a more modest δ13C range (∼6‰), with a clear trend that follows both light and leaf height. Using a model we simulate leaf assemblage isotope patterns from canopy data binned by elevation. The re-sampling (bootstrap) model determined both the mean and range of carbon isotope values for simulated leaf assemblages ranging in size from 10 to over 1000 leaves. For the tropical forest data, the canopy's isotope range is captured with 50 or more randomly sampled leaves. Thus, with a sufficient number of fossil leaves it is possible to distinguish isotopic gradients in an ancient closed canopy forest from those in an open forest. For very large leaf assemblages, mean isotopic values approximate the δ13C of carbon contributed by leaves to soil and are similar to observed δ13Clitter values at forested sites within Panamá, including the site where leaves were sampled. The model predicts a persistent ∼1‰ difference in δ13Clitter for the two sites which is consistent with higher water availability in the tropical forests. This work provides a new framework for linking contemporary ecological observations to the geochemical record using flux-weighted isotope data and lends insights to the effect of forest architecture on organic and isotopic records of ancient terrestrial ecosystems. How many leaves from a litter assemblage are necessary to distinguish the isotopic gradient characteristics of canopy closure? Are mean δ13Cleaf values for a litter assemblage diagnostic of a forest biome? Can we predict the δ13C values of cumulative litter, soil organic matter, and organic carbon in sedimentary archives using litter flux and isotope patterns in canopies? We determined the δ13C range and mean for different sized assemblages of leaves sampled from data for each forest. We re-sampled very high numbers of leaves in order to estimate the isotopic composition of cumulative carbon delivered to soils as litter, and compared these results to available data from forest soils. Modeled leaf and soil organic carbon isotope patterns in this study offer insights to how forest structure can be derived from carbon isotope measurements of fossil leaves, as well as secondary material - such as teeth, hair, paleosol carbonates, or organic soil carbon (van der Merwe and Medina, 1989; Koch, 1998; Secord et al., 2008; Levin et al., 2011).Distinct climate and seasonal difference in the Panamá and Maryland, USA forests are reflected in their canopy isotope gradients. In the tropical forest of Panamá, leaves are produced throughout the year within a canopy that is both extensively and persistently closed (Leigh, 1975; Lowman and Wittman, 1996). In the temperate forest of Maryland leaves are produced during the spring when canopy conditions are relatively open (Korner and Basler, 2010).
NASA Astrophysics Data System (ADS)
Huang, F.; Qi, Y.; Liu, X.; He, L.
2016-12-01
Stable isotopes can be fractionated by kinetic chemical diffusion because diffusion coefficients (D) of isotopes are mass-dependent. Diffusive isotopic fractionation recorded in rocks and minerals provide unique temporal constrains on geological processes. The mass dependence of D can be described in the form of Di/Dj= (mj/mi)β, where m denotes masses of isotope i and j, and β is an emperical parameter used to quantify the diffusive transport of isotopes [1]. β values can be estimated by experimental calibration and observation of natural samples, which are still rarely reported because it is challenging to precisely quantify the boundary conditions of diffusion processes [2,3,4]. Recent advances in computation technique provide a new way to theoretically calculate β values. For instance, classical molecular dynamics with empirical potential have been used to simulate interactions between atoms and estimate β of Mg isotopes in MgSiO3 melt [3]. Here, to further consider the effect of bonding and electron properties on β values, we apply first-principles Born-Oppenheimer Molecular Dynamics and pseudo-isotope methods (assuming mj/mi = 1/24, 1/4, 2, and 5) to estimate β for MgSiO3 and Mg2SiO4 melts. Our calculation shows that β of Mg isotopes with pseudo-mass ratios are consistent, indicating the reliability of the pseudo-isotope method. For MgSiO3 melt, β is 0.18 at 4000K and 0 GPa, higher than the value calculatedusing molecular dynamics simulations (0.135) [3]. For Mg2SiO4 melt at 0 GPa, β values are: 0.23 ± 0.04 at 2300K, 0.24 ± 0.07 at 3000K, and 0.24 ± 0.01 at 4000K. Notably, β of MgSiO3 and Mg2SiO4 melts are significantly higher than the value determined by diffusion experiments (0.05) [2]. These results indicate that β values are not sensitive to temperature, but dependent on melt composition.
NASA Astrophysics Data System (ADS)
Yakir, Dan; DeNiro, Michael J.; Rundel, Philip W.
1989-10-01
Variations as large as 11%. in δ18O values and 50%. in δD values were observed among different fractions of water in leaves of ivy (Hedera helix) and sunflower (Helianthus annuus). This observation contradicts previous experimental approaches to leaf water as an isotopically uniform pool. Using ion analysis of the water fractions to identify sources within the leaf, we conclude that the isotopic composition of the water within cells, which is involved in biosynthesis and therefore recorded in the plant organic matter, differs substantially from that of total leaf water. This conclusion must be taken into account in studies in which isotope ratios of fossil plant cellulose are interpreted in paleoclimatic terms. In addition, our results have implications for attempts to explain the Dole effect and to account for the variations of 18O/16O ratios in atmospheric carbon dioxide, since the isotopic composition of cell water, not of total leaf water, influences theδ18O values of O2 and CO2 released from plants into the atmosphere.
Navarro, J; Albo-Puigserver, M; Coll, M; Saez, R; Forero, M G; Kutcha, R
2014-09-01
During the past decade, parasites have been considered important components of their ecosystems since they can modify food-web structures and functioning. One constraint to the inclusion of parasites in food-web models is the scarcity of available information on their feeding habits and host-parasite relationships. The stable isotope approach is suggested as a useful methodology to determine the trophic position and feeding habits of parasites. However, the isotopic approach is limited by the lack of information on the isotopic discrimination (ID) values of parasites, which is pivotal to avoiding the biased interpretation of isotopic results. In the present study we aimed to provide the first ID values of δ(15)N and δ(13)C between the gyrocotylidean tapeworm Gyrocotyle urna and its definitive host, the holocephalan Chimaera monstrosa. We also test the effect of host body size (body length and body mass) and sex of the host on the ID values. Finally, we illustrate how the trophic relationships of the fish host C. monstrosa and the tapeworm G. urna could vary relative to ID values. Similar to other studies with parasites, the ID values of the parasite-host system were negative for both isotopic values of N (Δδ(15)N = - 3.33 ± 0.63‰) and C (Δδ(13)C = - 1.32 ± 0.65‰), independent of the sex and size of the host. By comparing the specific ID obtained here with ID from other studies, we illustrate the importance of using specific ID in parasite-host systems to avoid potential errors in the interpretation of the results when surrogate values from similar systems or organisms are used.
NASA Astrophysics Data System (ADS)
Liang, Y.; Blake, R. E.
2002-12-01
The geochemical cycling of P in Earth surface environments is controlled largely by biota. It has been recently demonstrated that intracellular cycling of P in microbial cultures and biological turnover of P in natural waters leads to temperature-dependent O isotope equilibrium between dissolved inorganic PO4 (Pi) and ambient water, and that the δ18O of Pi can be a useful tracer of biological reactions and P cycling in aquatic systems/sediments. Oxygen isotope exchange between Pi and water during biological turnover of P is catalyzed by enzymes at low-temperature. Phosphoenzymes play a crucial role in the intracellular functions of all living organisms and also have important extracellular functions in aquatic ecosystems such as regeneration of Pi from organophosphorus compounds (e.g., phosphoesters). Laboratory experiments indicate that extracellular enzyme reactions may result in incomplete Pi turnover and non-equilibrium Pi-water O isotope exchange. Determination of the O isotope effects of phosphoenzyme-catalyzed reactions is fundamental to the understanding of mechanisms of PO4-water O isotope exchange, pathways of biogeochemical P cycling, and interpretation of PO4 δ18O values from natural systems. Here we report on the O isotope fractionation between enzymatically-released Pi and water, in cell-free abiotic systems. Alkaline phosphatase (Apase) is a non-specific phosphohydrolase commonly found in fresh and marine coastal waters that catalyzes the hydrolysis of Pi from phosphomonoesters. We examined the O isotope effects of Apase derived from both microbial and eukaryotic sources and acting on different phosphomonoester substrates (e.g., α-D-Glucose 1-Phosphate, β-Glycerophosphate, AMP) in 18O-labeled waters. Oxygen isotope ratios of Pi released by Apase indicate that only 1 of the 4 O atoms in PO4 is incorporated from water with little or no apparent O isotopic fractionation at the site of incorporation. This observation is consistent with phosphomonoester structure and the Apase active site configuration and reaction mechanism. 5'-nucleotidase is another important phosphoenzyme identified in marine ecosystems. The O isotope effects of 5'-nucleotidase- catalyzed reactions will also be presented and implications of these results for interpretation of PO4 δ18O values in natural systems will be discussed.
Geographical patterns of human diet derived from stable-isotope analysis of fingernails
Nardoto, G.B.; Silva, S.; Kendall, C.; Ehleringer, J.R.; Chesson, L.A.; Ferraz, E.S.B.; Moreira, M.Z.; Ometto, Jean P. H. B.; Martinelli, L.A.
2006-01-01
Carbon and nitrogen isotope ratios of human fingernails were measured in 490 individuals in the western US and 273 individuals in southeastern Brazil living in urban areas, and 53 individuals living in a moderately isolated area in the central Amazon region of Brazil and consuming mostly locally grown foods. In addition, we measured the carbon and nitrogen isotope ratios of common food items to assess the extent to which these isotopic signatures remain distinct for people eating both omnivorous and vegetarian diets and living in different parts of the world, and the extent to which dietary information can be interpreted from these analyses. Fingernail ??13C values (mean ?? standard deviation) were -15.4 ?? 1.0 and -18.8 ?? 0.8??? and ??15N values were 10.4 ?? 0.7 and 9.4 ?? 0.6??? for southeastern Brazil and western US populations, respectively. Despite opportunities for a "global supermarket" effect to swamp out carbon and nitrogen isotope ratios in these two urbanized regions of the world, differences in the fingernail isotope ratios between southeastern Brazil and western US populations persisted, and appeared to be more associated with regional agricultural and animal production practices. Omnivores and vegetarians from Brazil and the US were isotopically distinct, both within and between regions. In a comparison of fingernails of individuals from an urban city and isolated communities in the Amazonian region, the urban region was similar to southeastern Brazil, whereas individuals from isolated nonurban communities showed distinctive isotopic values consistent with their diets and with the isotopic values of local foods. Although there is a tendency for a "global supermarket" diet, carbon and nitrogen isotopes of human fingernails hold dietary information directly related to both food sources and dietary practices in a region. ?? 2006 Wiley-Liss, Inc.
Origin of heavy Fe isotope compositions in high-silica igneous rocks: A rhyolite perspective
NASA Astrophysics Data System (ADS)
Du, De-Hong; Wang, Xiao-Lei; Yang, Tao; Chen, Xin; Li, Jun-Yong; Li, Weiqiang
2017-12-01
The origin of heavy Fe isotope compositions in high-silica (>70 wt% SiO2) igneous rocks remains a highly controversial topic. Considering that fluid exsolution in eruptive rocks is more straight-forward to constrain than in plutonic rocks, this study addresses the problem of Fe isotope fractionation in high-silica igneous rocks by measuring Fe isotope compositions of representative rhyolitic samples from the Neoproterozoic volcanic-sedimentary basins in southern China and the Triassic Tu Le Basin in northern Vietnam. The samples show remarkably varied δ56FeIRMM014 values ranging from 0.05 ± 0.05‰ to 0.55 ± 0.05‰, which is among the highest values reported from felsic rocks. The extensional tectonic setting and short melt residence time in magma chambers for the studied rhyolites rule out Soret diffusion and thermal migration processes as causes of the high δ56Fe values. Effects of volcanic degassing and fluid exsolution on bulk rock δ56Fe values for the rhyolites are also assessed using bulk rock geochemical indicators and Rayleigh fractionation models, and these processes are found to be insufficient to produce resolvable changes in Fe isotope compositions of the residual melt. The most probable mechanism accounting for heavy Fe isotope compositions in the high-silica rhyolites is narrowed down to fractional crystallization processes in the magma before rhyolite eruption. Removal of isotopically light Fe-bearing minerals (i.e. ulvöspinel-rich titanomagnetite, ilmenite and biotite) is proposed as the main cause of Fe isotope variation in silicic melts during magmatic evolution. This study implies that crystal fractionation is the dominant mechanism that controls Fe isotope fractionation in eruptive rocks and Fe isotopes could be used to study magmatic differentiation of high-silica magmas.
Geographical patterns of human diet derived from stable-isotope analysis of fingernails.
Nardoto, Gabriela B; Silva, Steven; Kendall, Carol; Ehleringer, James R; Chesson, Lesley A; Ferraz, Epaminondas S B; Moreira, Marcelo Z; Ometto, Jean P H B; Martinelli, Luiz A
2006-09-01
Carbon and nitrogen isotope ratios of human fingernails were measured in 490 individuals in the western US and 273 individuals in southeastern Brazil living in urban areas, and 53 individuals living in a moderately isolated area in the central Amazon region of Brazil and consuming mostly locally grown foods. In addition, we measured the carbon and nitrogen isotope ratios of common food items to assess the extent to which these isotopic signatures remain distinct for people eating both omnivorous and vegetarian diets and living in different parts of the world, and the extent to which dietary information can be interpreted from these analyses. Fingernail delta13C values (mean +/- standard deviation) were -15.4 +/- 1.0 and -18.8 +/- 0.8 per thousand and delta15N values were 10.4 +/- 0.7 and 9.4 +/- 0.6 per thousand for southeastern Brazil and western US populations, respectively. Despite opportunities for a "global supermarket" effect to swamp out carbon and nitrogen isotope ratios in these two urbanized regions of the world, differences in the fingernail isotope ratios between southeastern Brazil and western US populations persisted, and appeared to be more associated with regional agricultural and animal production practices. Omnivores and vegetarians from Brazil and the US were isotopically distinct, both within and between regions. In a comparison of fingernails of individuals from an urban city and isolated communities in the Amazonian region, the urban region was similar to southeastern Brazil, whereas individuals from isolated nonurban communities showed distinctive isotopic values consistent with their diets and with the isotopic values of local foods. Although there is a tendency for a "global supermarket" diet, carbon and nitrogen isotopes of human fingernails hold dietary information directly related to both food sources and dietary practices in a region. 2006 Wiley-Liss, Inc.
The combination of compound specific stable isotopic analysis with phospholipid fatty acid (PLFAS) analysis is useful in determining the source of organic carbon used by groups of a microbial community. Determination of the effect of certain environmental parameters is important ...
Carbon and nitrogen isotope effects associated with the dioxygenation of aniline and diphenylamine.
Pati, Sarah G; Shin, Kwanghee; Skarpeli-Liati, Marita; Bolotin, Jakov; Eustis, Soren N; Spain, Jim C; Hofstetter, Thomas B
2012-11-06
Dioxygenation of aromatic rings is frequently the initial step of biodegradation of organic subsurface pollutants. This process can be tracked by compound-specific isotope analysis to assess the extent of contaminant transformation, but the corresponding isotope effects, especially for dioxygenation of N-substituted, aromatic contaminants, are not well understood. We investigated the C and N isotope fractionation associated with the biodegradation of aniline and diphenylamine using pure cultures of Burkholderia sp. strain JS667, which can biodegrade both compounds, each by a distinct dioxygenase enzyme. For diphenylamine, the C and N isotope enrichment was normal with ε(C)- and ε(N)-values of -0.6 ± 0.1‰ and -1.0 ± 0.1‰, respectively. In contrast, N isotopes of aniline were subject to substantial inverse fractionation (ε(N) of +13 ± 0.5‰), whereas the ε(C)-value was identical to that of diphenylamine. A comparison of the apparent kinetic isotope effects for aniline and diphenylamine dioxygenation with those from abiotic oxidation by manganese oxide (MnO(2)) suggest that the oxidation of a diarylamine system leads to distinct C-N bonding changes compared to aniline regardless of reaction mechanism and oxidant involved. Combined evaluation of the C and N isotope signatures of the contaminants reveals characteristic Δδ(15)N/Δδ(13)C-trends for the identification of diphenylamine and aniline oxidation in contaminated subsurfaces and for the distinction of aniline oxidation from its formation by microbial and/or abiotic reduction of nitrobenzene.
Giner Martínez-Sierra, J; Santamaria-Fernandez, R; Hearn, R; Marchante Gayón, J M; García Alonso, J I
2010-04-14
In this work, a multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS) was evaluated for the direct measurement of sulfur stable isotope ratios in beers as a first step toward a general study of the natural isotope variability of sulfur in foods and beverages. Sample preparation consisted of a simple dilution of the beers with 1% (v/v) HNO(3). It was observed that different sulfur isotope ratios were obtained for different dilutions of the same sample indicating that matrix effects affected differently the transmission of the sulfur ions at masses 32, 33, and 34 in the mass spectrometer. Correction for mass bias related matrix effects was evaluated using silicon internal standardization. For that purpose, silicon isotopes at masses 29 and 30 were included in the sulfur cup configuration and the natural silicon content in beers used for internal mass bias correction. It was observed that matrix effects on differential ion transmission could be corrected adequately using silicon internal standardization. The natural isotope variability of sulfur has been evaluated by measuring 26 different beer brands. Measured delta(34)S values ranged from -0.2 to 13.8 per thousand. Typical combined standard uncertainties of the measured delta(34)S values were < or = 2 per thousand. The method has therefore great potential to study sulfur isotope variability in foods and beverages.
NASA Astrophysics Data System (ADS)
Dauphas, Nicolas; Teng, Fang-Zhen; Arndt, Nicholas T.
2010-06-01
Komatiites from Alexo, Canada, are well preserved and represent high-degree partial mantle melts (˜50%). They are thus well suited for investigating the Mg and Fe isotopic compositions of the Archean mantle and the conditions of magmatic differentiation in komatiitic lavas. High precision Mg and Fe isotopic analyses of 22 samples taken along a 15-m depth profile in a komatiite flow are reported. The δ 25Mg and δ 26Mg values of the bulk flow are -0.138 ± 0.021‰ and -0.275 ± 0.042‰, respectively. These values are indistinguishable from those measured in mantle peridotites and chondrites, and represent the best estimate of the composition of the silicate Earth from analysis of volcanic rocks. Excluding the samples affected by secondary Fe mobilization, the δ 56Fe and δ 57Fe values of the bulk flow are +0.044 ± 0.030‰, and +0.059 ± 0.044‰, respectively. These values are consistent with a near-chondritic Fe isotopic composition of the silicate Earth and minor fractionation during komatiite magma genesis. In order to explain the early crystallization of pigeonite relative to augite in slowly cooled spinifex lavas, it was suggested that magmas trapped in the crystal mush during spinifex growth differentiated by Soret effect, which should be associated with large and coupled variations in the isotopic compositions of Mg and Fe. The lack of variations in Mg and Fe isotopic ratios either rules out the Soret effect in the komatiite flow or the effect is effaced as the solidification front migrates downward through the flow crust. Olivine separated from a cumulate sample has light δ 56Fe and slightly heavy δ 26Mg values relative to the bulk flow, which modeling shows can be explained by kinetic isotope fractionation associated with Fe-Mg inter-diffusion in olivine. Such variations can be used to identify diffusive processes involved in the formation of zoned minerals.
A carbon isotope mass balance for an anoxic marine sediment: Isotopic signatures of diagenesis
NASA Technical Reports Server (NTRS)
Boehme, Susan E.
1993-01-01
A carbon isotope mass balance was determined for the sediments of Cape Lookout Bight, NC to constrain the carbon budgets published previously. The diffusive, ebullitive and burial fluxes of sigma CO2 and CH4, as well as the carbon isotope signatures of these fluxes, were measured. The flux-weighted isotopic signature of the remineralized carbon (-18.9 plus or minus 2.7 per mil) agreed with the isotopic composition of the remineralized organic carbon determined from the particulate organic carbon (POC) delta(C-13) profiles (-19.2 plus or minus 0.2), verifying the flux and isotopic signature estimates. The measured delta(C-13) values of the sigma CO2 and CH4 diffusive fluxes were significantly different from those calculated from porewater gradients. The differences appear to be influenced by methane oxidation at the sediment-water interface, although other potential processes cannot be excluded. The isotope mass balance provides important information concerning the locations of potential diagenetic isotope effects. Specifically, the absence of downcore change in the delta(C-13) value of the POC fraction and the identical isotopic composition of the POC and the products of remineralization indicate that no isotopic fractionation is expressed during the initial breakdown of the POC, despite its isotopically heterogeneous composition.
Sulfur Isotope Effects of Dissimilatory Sulfite Reductase
Leavitt, William D.; Bradley, Alexander S.; Santos, André A.; Pereira, Inês A. C.; Johnston, David T.
2015-01-01
The precise interpretation of environmental sulfur isotope records requires a quantitative understanding of the biochemical controls on sulfur isotope fractionation by the principle isotope-fractionating process within the S cycle, microbial sulfate reduction (MSR). Here we provide the only direct observation of the major (34S/32S) and minor (33S/32S, 36S/32S) sulfur isotope fractionations imparted by a central enzyme in the energy metabolism of sulfate reducers, dissimilatory sulfite reductase (DsrAB). Results from in vitro sulfite reduction experiments allow us to calculate the in vitro DsrAB isotope effect in 34S/32S (hereafter, 34εDsrAB) to be 15.3 ± 2‰, 2σ. The accompanying minor isotope effect in 33S, described as 33λDsrAB, is calculated to be 0.5150 ± 0.0012, 2σ. These observations facilitate a rigorous evaluation of the isotopic fractionation associated with the dissimilatory MSR pathway, as well as of the environmental variables that govern the overall magnitude of fractionation by natural communities of sulfate reducers. The isotope effect induced by DsrAB upon sulfite reduction is a factor of 0.3–0.6 times prior indirect estimates, which have ranged from 25 to 53‰ in 34εDsrAB. The minor isotope fractionation observed from DsrAB is consistent with a kinetic or equilibrium effect. Our in vitro constraints on the magnitude of 34εDsrAB is similar to the median value of experimental observations compiled from all known published work, where 34εr−p = 16.1‰ (r–p indicates reactant vs. product, n = 648). This value closely matches those of MSR operating at high sulfate reduction rates in both laboratory chemostat experiments (34εSO4−H2S = 17.3 ± 1.5‰, 2σ) and in modern marine sediments (34εSO4−H2S = 17.3 ± 3.8‰). Targeting the direct isotopic consequences of a specific enzymatic processes is a fundamental step toward a biochemical foundation for reinterpreting the biogeochemical and geobiological sulfur isotope records in modern and ancient environments. PMID:26733949
NASA Astrophysics Data System (ADS)
Abbott, T.; Dodd, J. P.; Hackett, H.; Scherer, R. P.
2016-02-01
Coupled oxygen (δ18O) and silicon (δ30Si) isotope variations in diatom silica (opal-A) are increasingly used as a proxy to reconstruct paleoenvironmental conditions (water temperatures, water mass mixing, nutrient cycling) in marine environments. Diatom silica is a particularly significant paleoenvironmental proxy in high latitude environments, such as the Southern Ocean, where diatom blooms are abundant and diatom frustules are well preserved in the sediment. The Andrill-1B (AND-1B) sediment core from the Ross Sea (Antarctica) preserves several Pliocene ( 4.5 Ma) age diatomite units. Here we present preliminary δ18O and δ30Si values for a diatomite subunit in the AND-1B sediment core. Initial isotope values for the AND-1B diatoms silica record relatively high variability (range δ18O: 36.3‰ to 39.9‰) that could be interpreted as large-scale changes in the water temperature and/or freshwater mixing in the Ross Sea; however, a significant concern with marine sediment of this age is isotope fractionation during diagenesis and the potential formation of opal-CT lepispheres. The effects of clay contamination on the diatom silica δ18O values have been addressed through sample purification and quantified through chemical and physical analyses of the diatom silica. The isotopic effects of opal-CT are not as clearly understood and more difficult to physically separate from the primary diatom silica. In order to better understand the isotope variations in the AND-1B diatoms, we also evaluated silicon and oxygen isotope fractionation during the transition from opal-A to opal-CT in a controlled laboratory experiment. Opal-A from cultured marine diatoms (Thalassiosira weissflogii) was subjected to elevated temperatures (150°C) in acid digestion vessels for 4 weeks to initiate opal-CT precipitation. Quantifying the effects of opal-CT formation on δ18O and δ30Si variations in biogenic silica improves our understanding of the use of diatom silica isotope values a paleoenvironmental proxy throughout the Cenozoic.
Rodríguez-Fernández, Diana; Torrentó, Clara; Guivernau, Miriam; Viñas, Marc; Hunkeler, Daniel; Soler, Albert; Domènech, Cristina; Rosell, Mònica
2018-04-15
Field-derived anoxic microcosms were used to characterize chloroform (CF) and carbon tetrachloride (CT) natural attenuation to compare it with biostimulation scenarios in which vitamin B 12 was added (B 12 /pollutant ratio of 0.01 and 0.1) by means of by-products, carbon and chlorine compound-specific stable-isotope analysis, and the active microbial community through 16S rRNA MiSeq high-throughput sequencing. Autoclaved slurry controls discarded abiotic degradation processes. B 12 catalyzed CF and CT biodegradation without the accumulation of dichloromethane, carbon disulphide, or CF. The carbon isotopic fractionation value of CF (ƐC CF ) with B 12 was -14±4‰, and the value for chlorine (ƐCl CF ) was -2.4±0.4‰. The carbon isotopic fractionation values of CT (ƐC CT ) were -16±6 with B 12 , and -13±2‰ without B 12 ; and the chlorine isotopic fractionation values of CT (ƐCl CT ) were -6±3 and -4±2‰, respectively. Acidovorax, Ancylobacter, and Pseudomonas were the most metabolically active genera, whereas Dehalobacter and Desulfitobacterium were below 0.1% of relative abundance. The dual C-Cl element isotope slope (Λ=Δδ 13 C/Δδ 37 Cl) for CF biodegradation (only detected with B 12 , 7±1) was similar to that reported for CF reduction by Fe(0) (8±2). Several reductive pathways might be competing in the tested CT scenarios, as evidenced by the lack of CF accumulation when B 12 was added, which might be linked to a major activity of Pseudomonas stutzeri; by different chlorine apparent kinetic isotope effect values and Λ which was statistically different with and without B 12 (5±1 vs 6.1±0.5), respectively. Thus, positive B 12 effects such as CT and CF degradation catalyst were quantified for the first time in isotopic terms, and confirmed with the major activity of species potentially capable of their degradation. Moreover, the indirect benefits of B 12 on the degradation of chlorinated ethenes were proved, creating a basis for remediation strategies in multi-contaminant polluted sites. Copyright © 2017 Elsevier B.V. All rights reserved.
Jiao, Yuan Mei; Liu, Cheng Jing; Liu, Xin; Liu, Zhi Lin; Ding, Yin Ping
2017-07-18
Analysis of hydrogen and oxygen stable isotopes is an effective method to track the water cycle in watershed. Impact of landscape pattern on the isotope effects of spring water is a new interdisciplinary topic between landscape ecology and isotope hydrology. Taking the Quanfuzhuang River basin located in the core area of UNESCO World Cultural Heritage of Honghe Hani Rice Terrace as the object, collecting the monthly samples of 78 points of spring water and 39 precipitation at altitude of 1500 m (terraces), 1700 m (terraces) and 1900 m (forest) from March 2015 to March 2016, we analyzed the hydrogen and oxygen stable isotopes of water samples under the different landscape types. The results indicated that the dominated landscape types were forests and rice terraces, being 66.6% and 22.1% of the whole landscape area respectively, and they had a spatial vertical pattern of forest located at the mountain top and rice terraces at the down-slope. The correlation analysis showed that the spring water not only came from the precipitation, but also from other water sources which had a more positive δ 18 O and δD values, the spring water in up-slope forests mainly came from precipitation, while that in down-slope rice terraces came from precipitation, ri-ver water, rice terrace water and under ground water. Therefore, the mixing effects of spring water δ 18 O and δD were more significant in rice terraces. The overall altitude effect of the hydrogen and oxygen stable isotopes in spring water was obvious. The linear decreasing rates of δ 18 O and δD values were -0.125‰·(100 m) -1 and -0.688‰·(100 m) -1 , respectively. The deuterium surplus value increased with the altitude because of the impacts of landscape pattern and the local cycle of water isotopes. In summary, the dominant landscape types had a significant impact on the hydrogen and oxygen isotopes of spring water, which could be used as response indicator to reveal the impacts of landscape pattern on hydrological process.
Theoretical estimation of 13C-D clumped isotope effects in methyl of several organic compound
NASA Astrophysics Data System (ADS)
LIU, Q.; Yin, X.; Liu, Y.
2015-12-01
Recent developments in mass spectrometry and tunable infrared laser direct absorption spectroscopy make it possible to measure 13C-D clumped isotope effects of methane. These techniques can be further applied to determine 13C-D clumped isotope effects of methyl fragments, therefore need accurate equilirbium Δi values to calibrate experimental measurements. In this study, we calculate temperature depandences of 13C-D clumped isotope signatures in methyl of several organic compounds including ethane, propane, acetic acid, etc. Our calculation are performed at CCSD/6-311+G(3df,3pd) by using Gaussian 03 program with no scale treament. Our results show that the Δi values of 13C-D clumping in methyl fragments of different organic compounds yield similar signals (~5.5‰ at 25˚C, slightly lower than Δi value of 13C-D clumping in methane). For testing the calculated accuracy, theoretical treaments beyond the harmonic level by including several higher-order corrections to the Bigeleisen-Mayer equation are used. Contributions from higher-order corrections (e.g., AnZPE, AnEXC, VrZPE, VrEXC, QmCorr and CenDist) are estimated to repire the ignorings of the Bigeleisen-Mayer equation (the anharmonic effects of vibration, vibration-rotation coupling, quantum mechanics and centrifugal distortion for rotation, etc.) for the calculation of partition function ratios. The results show that the higher-order corrections contribute ~0.05‰ at 25˚C, which is similar to the contribution for calculating 13C-D clumped isotope signature of methane. By comparing our calculated frequencies to the measured ones, the uncertainty of our calculation of Δi values 13C-D clumping in methyl fragments is considered to be within ~0.05‰ at room temperature.
Microscopic model for the isotope effect in the high-Tc oxides
NASA Astrophysics Data System (ADS)
Kresin, V. Z.; Wolf, S. A.
1994-02-01
An unconventional microscopic mechanism relating Tc and the isotope substitution for the doped superconductors such as the high-Tc oxides is proposed. Strong nonadiabaticity, when it is impossible, strictly speaking, to separate fully the nuclear and electronic degrees of freedom, leads to a peculiar dependence of the carrier concentration n on the ionic mass M. This case corresponds, for example, to the isotopic substitution of the axial oxygen in YBa2Cu3O7-x. Because of the dependence of Tc on n, this leads to the dependence of Tc on M, that is to the isotope effect. The minimum value of the isotope coefficient corresponds to Tc=Tmaxc.
NASA Astrophysics Data System (ADS)
Marzouk, E. R.; Chenery, S. R.; Young, S. D.
2013-12-01
The Rookhope catchment of Weardale, England, has a diverse legacy of contaminated soils due to extensive lead mining activity over four centuries. We measured the isotopically exchangeable content of Pb, Cd and Zn (E-values) in a large representative subset of the catchment soils (n = 246) using stable isotope dilution. All three metals displayed a wide range of %E-values (c. 1-100%) but relative lability followed the sequence Cd > Pb > Zn. A refinement of the stable isotope dilution approach also enabled detection of non-reactive metal contained within suspended sub-micron (<0.22 μm) colloidal particles (SCP-metal). For most soils, the presence of non-labile SCP-metal caused only minor over-estimation of E-values (<2%) but the effect was greater for soils with particularly large humus or carbonate contents. Approximately 80%, 53% and 66% of the variability in Zn, Cd and Pb %E-values (respectively) could be explained by pH, loss on ignition and total metal content. E-values were affected by the presence of ore minerals at high metal contents leading to an inconsistent trend in the relationship between %E-value and soil metal concentration. Metal solubility, in the soil suspensions used to measure E-values, was predicted using the WHAM geochemical speciation model (versions VI and VII). The use of total and isotopically exchangeable metal as alternative input variables was compared; the latter provided significantly better predictions of solubility, especially in the case of Zn. Lead solubility was less well predicted by either version of WHAM, with over-prediction at low pH and under-prediction at high soil pH values. Quantify the isotopically exchangeable fractions of Zn, Cd and Pb (E-values), and assess their local and regional variability, using multi-element stable isotope dilution, in a diverse range of soil ecosystems within the catchment of an old Pb/Zn mining area. Assess the controlling influences of soil properties on metal lability and develop predictive algorithms for metal lability in the contaminated catchment based on simple soil properties (such as pH, organic matter (LOI), and total metal content). Examine the incidence of non-isotopically-exchangeable metal held within suspended colloidal particles (SCP-metal) in filtered soil solutions (<0.22 μm) by comparing E-values from isotopic abundance in solutions equilibrated with soil and in a resin phase equilibrated with the separated solution. Assess the ability of a geochemical speciation model, WHAM(VII), to predict metal solubility using isotopically exchangeable metal as an input variable.
Redefining the utility of the three-isotope method
NASA Astrophysics Data System (ADS)
Cao, Xiaobin; Bao, Huiming
2017-09-01
The equilibrium isotope fractionation factor αeq is a fundamental parameter in the study of stable isotope effects. Experimentally, it has been difficult to establish that a system has attained equilibrium. The three-isotope method, using the initial trajectory of changing isotope ratios (e.g. 16O, 17O, and 18O) to deduce the final equilibrium point of isotope exchange, has long been hailed as the most rigorous experimental approach. However, over the years some researchers have cautioned on the limitations of this method, but the foundation of three-isotope method has not been properly examined and the method is still widely used in calibrating αeq for both traditional and increasingly non-traditional isotope systems today. Here, using water-water and dissolved CO2-water oxygen exchange as model systems, we conduct an isotopologues-specific kinetic analysis of the exchange processes and explore the underlying assumptions and validity of the three-isotope method. We demonstrate that without knowing the detailed exchange kinetics a priori the three-isotope method cannot lead to a reliable αeq. For a two-reservoir exchanging system, α determined by this method may be αeq, kinetic isotope effect, or apparent kinetic isotope effect, which can all bear different values. When multiple reservoirs exist during exchange, the evolving trajectory can be complex and hard to predict. Instead of being a tool for αeq determination, three-isotope method should be used as a tool for studying kinetic isotope effect, apparent kinetic isotope effect, and detailed exchange kinetics in diverse systems.
Tea, Illa; Tcherkez, Guillaume
2017-01-01
The natural isotope abundance in bulk organic matter or tissues is not a sufficient base to investigate physiological properties, biosynthetic mechanisms, and nutrition sources of biological systems. In fact, isotope effects in metabolism lead to a heterogeneous distribution of 2 H, 18 O, 13 C, and 15 N isotopes in metabolites. Therefore, compound-specific isotopic analysis (CSIA) is crucial to biological and medical applications of stable isotopes. Here, we review methods to implement CSIA for 15 N and 13 C from plant, animal, and human samples and discuss technical solutions that have been used for the conversion to CO 2 and N 2 for IRMS analysis, derivatization and isotope effect measurements. It appears that despite the flexibility of instruments used for CSIA, there is no universal method simply because the chemical nature of metabolites of interest varies considerably. Also, CSIA methods are often limited by isotope effects in sample preparation or the addition of atoms from the derivatizing reagents, and this implies that corrections must be made to calculate a proper δ-value. Therefore, CSIA has an enormous potential for biomedical applications, but its utilization requires precautions for its successful application. © 2017 Elsevier Inc. All rights reserved.
Guo, Huaming; Liu, Chen; Lu, Hai; Wanty, Richard B.; Wang, Jun; Zhou, Yinzhu
2013-01-01
High As groundwater is widely distributed all over the world, which has posed a significant health impact on millions of people. Iron isotopes have recently been used to characterize Fe cycling in aqueous environments, but there is no information on Fe isotope characteristics in the groundwater. Since groundwater As behavior is closely associated with Fe cycling in the aquifers, Fe isotope signatures may help to characterize geochemical processes controlling As concentrations of shallow groundwaters. This study provides the first observation of Fe isotope fractionation in high As groundwater and evaluation of Fe cycling and As behaviors in shallow aquifers in terms of Fe isotope signatures. Thirty groundwater samples were taken for chemical and isotopic analysis in the Hetao basin, Inner Mongolia. Thirty-two sediments were sampled as well from shallow aquifers for Fe isotope analysis. Results showed that groundwater was normally enriched in isotopically light Fe with δ56Fe values between −3.40‰ and 0.58‰ and median of −1.14‰, while heavier δ56Fe values were observed in the sediments (between −1.10‰ and 0.75‰, median +0.36‰). In reducing conditions, groundwaters generally had higher δ56Fe values, in comparison with oxic conditions. High As groundwaters, generally occurring in reducing conditions, had high δ56Fe values, while low As groundwaters normally had low δ56Fe values. Although sediment δ56Fe values were generally independent of lithological conditions, a large variation in sediment δ56Fe values was observed in the oxidation–reduction transition zone. Three pathways were identified for Fe cycling in shallow groundwater, including dissimilatory reduction of Fe(III) oxides, re-adsorption of Fe(II), and precipitation of pyrite and siderite. Dissimilatory reduction of Fe(III) oxides resulted in light δ56Fe values (around −1.0‰) and high As concentration (>50 μg/L) in groundwater in anoxic conditions. Re-adsorption of isotopically heavy Fe(II) produced by microbially mediated reduction of Fe(III) oxides led to further enrichment of isotopically light Fe in groundwater (up to −3.4‰ of δ56Fe) in anoxic–suboxic conditions. Arsenic re-adsorption was expected to occur along with Fe(II) re-adsorption, decreasing groundwater As concentrations. In strongly reducing conditions, precipitation of isotopically light Fe-pyrite and/or siderite increased groundwater δ56Fe values, reaching +0.58‰ δ56Fe, with a subsequent decrease in As concentrations via co-precipitation. The mixed effect of those pathways would regulate As and Fe cycling in most groundwaters.
Yang, Yong-Gang; Hu, Jin-Fei; Xiao, Hong-Lang; Zou, Song-Bing; Yin, Zhen-Liang
2013-10-01
There are few studies on the hydrological characteristics on the landscape zone scale in alpine cold region at present. This paper aimed to identify the spatial and temporal variations in the origin and composition of the runoff, and to reveal the hydrological characteristics in each zone, based on the isotopic analysis of glacier, snow, frozen soil, groundwater, etc. The results showed that during the wet season, heavy precipitation and high temperature in the Mafengou River basin caused secondary evaporation which led to isotope fractionation effects. Therefore, the isotope values remained high. Temperature effects were significant. During the dry season, the temperature was low. Precipitation was in the solid state during the cold season and the evaporation was weak. Water vapor came from the evaporation of local water bodies. Therefore, less secondary evaporation and water vapor exchange occurred, leading to negative values of delta18O and deltaD. delta18O and deltaD values of precipitation and various water bodies exhibited strong seasonal variations. Precipitation exhibited altitude effects, delta18O = -0. 005 2H - 8. 951, deltaD = -0.018 5H - 34. 873. Other water bodies did not show altitude effects in the wet season and dry season, because the runoff was not only recharged by precipitation, but also influenced by the freezing and thawing process of the glacier, snow and frozen soil. The mutual transformation of precipitation, melt water, surface water and groundwater led to variations in isotopic composition. Therefore, homogenization and evaporation effect are the main control factors of isotope variations.
NASA Astrophysics Data System (ADS)
Lin, Ying; Horita, Juske; Abe, Osamu
2018-02-01
Soil water dynamics within a vadose (unsaturated) zone is a key component in the hydrologic cycle, especially in arid regions. In applying the Craig-Gordon evaporation model to obtain isotopic compositions of soil water and the evaporated vapor in land-surface models (LSMs), it has been assumed that the equilibrium isotope fractionation factors between soil water and water vapor, α(2H) and α(18O), are identical to those between liquid and vapor of bulk water. Isotope effects in water condensation arise from intermolecular hydrogen bonding in the condensed phase and the appearance of hindered rotation/translation. Hydrogen bonding between water molecules and pore surface hydroxyl groups influences adsorption isotope effects. To test whether equilibrium fractionation factors between soil water and water vapor are identical to those between liquid and vapor of bulk water and to evaluate the influence of pore size and chemical composition upon adsorption isotope effects, we extended our previous experiments of a mesoporous silica (15 nm) to two other mesoporous materials, a silica (6 nm) and an alumina (5.8 nm). Our results demonstrated that α(2H) and α(18O) between adsorbed water and water vapor are 1.057 and 1.0086 for silica (6 nm) and 1.041 and 1.0063 for alumina (5.8 nm), respectively, at saturation pressure (po), which are smaller than 1.075 and 1.0089, respectively, between liquid and vapor phases of free water at 30 °C and that the differences exaggerate at low water contents. However, the profiles of α values with relative pressures (p/po) for these three materials differ due to the differences in chemical compositions and pore sizes. Empirical formula relating α(2H) and α(18O) values to the proportions of filled pores (f) are developed for potential applications to natural soils. Our results from triple oxygen isotope analyses demonstrated that the isotope fractionation does not follow a canonical law. For the silica (15 nm), fractionation exponents (17θ) are 0.5361 ± 0.0018 and 0.5389 ± 0.0016 at p/po = 0.72 and 0.77, respectively. For the silica (6 nm), 17θ values are 0.5330 ± 0.0011 at p/po = 0.65 and 0.5278 ± 0.0010 at p/po = 0.81. For the alumina (5.8 nm), 17θ value is 0.5316 ± 0.0015 at p/po = 0.78. These values are greater than or equal to that of liquid-vapor equilibrium of bulk water (0.529 ± 0.001).
Stomatal Density Influences Leaf Water and Leaf Wax D/H Values in Arabidopsis
NASA Astrophysics Data System (ADS)
Lee, H.; Feakins, S. J.; Sternberg, L. O.
2014-12-01
The hydrogen isotopic composition (δD) of plant leaf wax is a powerful tool to study the hydrology of past and present environments. The δD value of leaf waxes is known to primarily reflect the δD value of source water, modified by biological fractionations commonly summarized as the 'net or apparent' fractionation. It remains a challenge, however, to quantitatively relate the isotopic composition of the end product (wax) back to that of the precursor (water) because multiple isotope effects contributing to the net fractionation are not yet well understood. Transgenic variants have heretofore unexplored potential to isolate individual isotope effects. Here we report the first hydrogen isotopic measurements from transgenic Arabidopsis thaliana plants with calculations of leaf water enrichment, net and biosynthetic fractionation values from measured δD of plant waters and leaf wax n-alkanes. We employed transgenic Arabidopsis leaves, engineered to have different stomatal density, by differential expression of the stomatal growth hormone stomagen. Comparison of variants and wild types allow us to isolate the effects of stomatal density on leaf water and the net fractionation expressed by leaf wax biomarkers. Results show that transgenic leaves with denser pores have more enriched leaf water and leaf wax δD values than wild type and even more so than transgenic leaves with sparse stomata (difference of 10 ‰). Our findings that stomatal density controls leaf water and leaf wax δD values adds insights into the cause of variations in net fractionations between species, as well as suggesting that geological variations in stomatal density may modulate the sedimentary leaf wax δD record. In nature, stomatal density varies between species and environments, and all other factors being equal, this will contribute to variations in fractionations observed. Over geological history, lower stomatal densities occur at times of elevated pCO2; our findings predict reduced leaf water isotopic enrichment and larger net fractionations during these greenhouse conditions. Future work involving transgenic plants holds considerable potential to isolate additional factors which may influence the net fractionation between source water and leaf waxes adding to our fundamental understanding of this proxy.
Jung, Hyung Hoon; Floreancig, Paul E.
2009-01-01
A series of monodeuterated benzylic and allylic ethers were subjected to oxidative carbon–hydrogen bond cleavage to determine the impact of structural variation on intramolecular kinetic isotope effects in DDQ-mediated cyclization reactions. These values are compared to the corresponding intermolecular kinetic isotope effects that were accessed through subjecting mixtures of non-deuterated and dideuterated substrates to the reaction conditions. The results indicate that carbon–hydrogen bond cleavage is rate determining and that a radical cation is most likely a key intermediate in the reaction mechanism. PMID:20640173
NASA Astrophysics Data System (ADS)
Aichner, B.; Mischke, S.; Pausata, F. S. R.; Werner, M.; Zhang, Q.; Heinecke, L.; Feakins, S. J.; Sachse, D.; Mahmoudov, Z.; Rajabov, I.
2017-12-01
Central Asia is a climate sensitive region located at the boundary of large scale atmospheric circulation systems. To examine glacial to interglacial hydrological changes in the region, we analysed the hydrogen isotopic composition (δD values) of n-alkanes in a 30-ka record from Lake Karakul, eastern Pamir (altitude: 3,915m, MAT: -3.9 °C, MAP: 82 mm). δD values of both aquatic and terrestrial compounds showed distinct trends throughout the studied time interval, with generally higher values during the glacial and lower values during the Holocene, and variability of up to 60‰. In particular shifts towards higher δD values were observed for aquatic biomarkers at ca. 30, 27, and 15 ka BP. Temperature and precipitation effects alone cannot explain the higher δD values during the glacial and the large isotopic amplitudes. To explain these observations we conducted a set of experiments using atmospheric models with embedded isotope modules (CAM3iso- and ECHAM5-wiso). We assume that terrestrial n-alkanes mainly record the isotopic signature of summer precipitation within the lower elevated parts of the Karakul Basin. Based on the model output we hypothesize that shifts between local and more distant vapour sources are the reason behind the trends within isotopic data. Data derived from aquatic biomarkers are more difficult to explain due to multiple influencing factors on δD of the lake water. Assuming that the lake water integrates an annual isotopic signal from the whole lake catchment, we suggest that a change in precipitation seasonality drives the large variability of hydrogen isotopic values. This is in agreement with the models, which suggest reduced winter (more negative δD) and slightly higher summer precipitation (more positive δD) during the glacial compared to the Holocene. Consequently, a net-increase of isotopically enriched inflow into the lake could explain the three distinct shifts towards higher δD values. Expansion of terrestrial vegetation, indicated by increasing biomarker concentrations, during these periods is another indicator for wetter summers in an arid environment. We conclude that δD values of terrestrial compounds reflect major shifts of vapour sources which are driven by insolation, while aquatic biomarkers are additionally influenced by changes of precipitation seasonality.
Lipid Extraction and the Fugacity of Stable Isotope Values
NASA Astrophysics Data System (ADS)
Padula, V.; Causey, D.; Wolf, N.; Welker, J. M.
2013-12-01
Stable isotope analysis of blood, feathers, and other tissues are often used to infer migration patterns, diet composition and trophic status of seabirds. Tissues contain variable amounts of lipids that are depleted in the heavy carbon isotope (13C) and may introduce a bias in these values. There is evidence that lipid extraction may affect other stable isotope ratios, such as δ15N. Consequently, correction factors need to be applied to appropriately interpret δ13C and δ15N values for individual species and tissue type. In this study, we collected seven species of seabirds from the Near Islands, the western most group of islands in the Aleutian Island archipelago. We sampled kidney, liver, heart and muscle samples from each bird and after freeze drying, individual tissue samples were divided into two subsamples. We left one subsample unaltered and extracted lipids from the other subsample using a 2:1 chloroform-methanol solution. We found that the change in δ13C values after lipid extraction (Δδ13C) varied widely among categories (eg., species, tissue type) from 0 - 4 ‰, while Δδ15N values ranged from 0 to 2‰. Notably, within category variation was nonsignificant and the Δδ values were linear against the covariant C:N ratio of the isotopic data, which allows us to use arithmetic corrections for categorical values. Our data strongly indicate that the effects of lipid extraction on stable isotopic values, while linear within category, vary widely by species, tissue, geographic area, year of collection, and isotope. Fugacity is usually employed as a thermodynamic quantity related to the chemical potential or activity that characterizes the escaping tendency from a phase (eg. Mackay & Paterson 1982). Here we use fugacity in the earlier, broader sense of fleeting, transitory, or instable states (eg., S. Johnson 1751), and its measure may be approximated by the higher order variance of Δδ13C and Δδ15N among data categories. Clearly, understanding the nature of variation and the physiological processes responsible for stable isotope values from biological tissues are critical for their interpretation. Change in carbon and nitrogen stable isotopes (ΔδC13, Δδ15N) after lipid extraction for Tufted Puffins (Fratercula cirrhata) collected July 2010 at Attu Island, Aleutians.
Fingerprinting two metal contaminants in streams with Cu isotopes near the Dexing Mine, China.
Song, Shiming; Mathur, Ryan; Ruiz, Joaquin; Chen, Dandan; Allin, Nicholas; Guo, Kunyi; Kang, Wenkai
2016-02-15
Transition metal isotope signatures are becoming useful for fingerprinting sources in surface waters. This study explored the use of Cu isotope values to trace dissolved metal contaminants in stream water throughout a watershed affected by mining by-products of the Dexing Mine, the largest porphyry Cu operation in Asia. Cu isotope values of stream water were compared to potential mineral sources of Cu in the mining operation, and to proximity to the known Cu sources. The first mineral source, chalcopyrite, CuFeS2 has a 'tight' cluster of Cu isotope values (-0.15‰ to +1.65‰; +0.37 ± 0.6‰, 1σ, n=10), and the second mineral source, pyrite (FeS2), has a much larger range of Cu isotope values (-4‰ to +11.9‰; 2.7 ± 4.3‰, 1σ, n=16). Dissolved Cu isotope values of stream water indicated metal derived from either chalcopyrite or pyrite. Above known Cu mineralization, stream waters are approximately +1.5‰ greater than the average chalcopyrite and are interpreted as derived from weathering of chalcopyrite. In contrast, dissolved Cu isotope values in stream water emanating from tailings piles had Cu isotope values similar to or greater than pyrite (>+6‰, a common mineral in the tailings). These values are interpreted as sourced from the tailings, even in solutions that possess significantly lower concentrations of Cu (<0.05 ppm). Elevated Cu isotope values were also found in two soil and two tailings samples (δ(65)Cu ranging between +2 to +5‰). These data point to the mineral pyrite in tailings as the mineral source for the elevated Cu isotope values. Therefore, Cu isotope values of waters emanating from a clearly contaminated drainage possess different Cu isotope values, permitting the discrimination of Cu derived from chalcopyrite and pyrite in solution. Data demonstrate the utility of Cu isotopic values in waters, minerals, and soils to fingerprint metallic contamination for environmental problems. Copyright © 2015 Elsevier B.V. All rights reserved.
Production of platinum radioisotopes at Brookhaven Linac Isotope Producer (BLIP)
Smith, Suzanne V.; Mccutchan, Elizabeth; Gurdal, Gulhan; ...
2017-09-13
The accelerator production of platinum isotopes was investigated at the Brookhaven Linac Isotope Producer (BLIP). In this paper high purity natural platinum foils were irradiated at 53.2, 65.7, 105.2, 151.9, 162.9 and 173.3 MeV. The irradiated foils were digested in aqua regia and then converted to their hydrochloride salt with concentrated hydrochloric acid before analyzing by gamma spectrometry periodically for at least 10 days post end of bombardment. A wide range of platinum (Pt), gold (Au) and iridiu m (Ir) isotopes were identified. Effective cross sections at BLIP for Pt-188, Pt-189, Pt-191 and Pt-195m were compared to literature and theoreticalmore » cross sections determined using Empire-3.2. The majority of the effective cross sections (<70 MeV) confirm those reported in the literature. While the absolute values of the theoretical cross sections were up to a factor of 3 lower, Empire 3.2 modeled thresholds and maxima correlated well with experimental values. Preliminary evaluation into a rapid separation of Pt isotopes from high levels of Ir and Au isotopes proved to be a promising approach for large scale production. In conclusion, this study demonstrated that with the use of isotopically enriched target material accelerator production of selected platinum isotopes is feasible over a wide proton energy range.« less
Coupled extremely light Ca and Fe isotopes in peridotites
NASA Astrophysics Data System (ADS)
Zhao, Xinmiao; Zhang, Zhaofeng; Huang, Shichun; Liu, Yufei; Li, Xin; Zhang, Hongfu
2017-07-01
Large metal stable isotopic variations have been observed in both extraterrestrial and terrestrial samples. For example, Ca exhibits large mass-dependent isotopic variation in terrestrial igneous rocks and mantle minerals (on the order of ∼2‰ variation in 44Ca/40Ca). A thorough assessment and understanding of such isotopic variations in peridotites provides important constraints on the evolution and compositon of the Earth's mantle. In order to better understand the Ca and Fe isotopic variations in terrestrial silicate rocks, we report Ca isotopic compositions in a set of peridotitic xenoliths from North China Craton (NCC), which have been studied for Fe isotopes. These NCC peridotites have large Ca and Fe isotopic variations, with δ44/40Ca ranging from -0.08 to 0.92 (delta value relative to SRM915a) and δ57/54Fe (delta value relative to IRMM-014) ranging from -0.61 to 0.16, and these isotopic variations are correlated with large Mg# (100 × Mg/(Mg + Fe) molar ratio) variation, ranging from 80 to 90. Importantly, NCC Fe-rich peridotites have the lowest 44Ca/40Ca and 57Fe/54Fe ratios in all terrestrial silicate rocks. In contrast, although ureilites, mantle rocks from a now broken differentiated asteroid(s), have large Mg# variation, from 70 to 92, they have very limited δ57Fe/54Fe variation (0.03-0.21, delta value relative to IRMM-014). Our model calculations show that the coupled extremely light Ca-Fe isotopic signatures in NCC Fe-rich peridotites most likely reflect kinetic isotopic fractionation during melt-peridotite reaction on a timescale of several to 104 years. In addition, our new data and compiled literature data show a possible compositional effect on the inter-mineral Ca isotopic fractionation between co-existing clinopyroxene and orthopyroxene pairs.
In Situ Carbon Isotope Analysis by Laser Ablation MC-ICP-MS.
Chen, Wei; Lu, Jue; Jiang, Shao-Yong; Zhao, Kui-Dong; Duan, Deng-Fei
2017-12-19
Carbon isotopes have been widely used in tracing a wide variety of geological and environmental processes. The carbon isotope composition of bulk rocks and minerals was conventionally analyzed by isotope ratio mass spectrometry (IRMS), and, more recently, secondary ionization mass spectrometry (SIMS) has been widely used to determine carbon isotope composition of carbon-bearing solid materials with good spatial resolution. Here, we present a new method that couples a RESOlution S155 193 nm laser ablation system with a Nu Plasma II MC-ICP-MS, with the aim of measuring carbon isotopes in situ in carbonate minerals (i.e., calcite and aragonite). Under routine operating conditions for δ 13 C analysis, instrumental bias generally drifts by 0.8‰-2.0‰ in a typical analytical session of 2-3 h. Using a magmatic calcite as the standard, the carbon isotopic composition was determined for a suite of calcite samples with δ 13 C values in the range of -6.94‰ to 1.48‰. The obtained δ 13 C data are comparable to IRMS values. The combined standard uncertainty for magmatic calcite is <0.3‰ (1s). No significant matrix effects have been identified in calcite with the amplitude of chemical composition variation (i.e., MnO, SrO, MgO, or FeO) up to 2.5 wt %. Two modern corals were investigated using magmatic calcite as the calibration standard, and the average δ 13 C values for both corals are similar to the bulk IRMS values. Moreover, coral exhibits significant heterogeneity in carbon isotope compositions, with differences up to 4.85‰ within an individual coral. This study indicates that LA-MC-ICP-MS can serve as an appropriate method to analyze carbon isotopes of carbonate minerals in situ.
Storm-Suke, Andrea; Norris, D Ryan; Wassenaar, Leonard I; Chin, Eunice; Nol, Erica
2012-01-01
Stable hydrogen isotopes (δ(2)H) are commonly used in studies of animal movement. Tissue that is metabolically inactive after growth (e.g., feathers) provides spatial or dietary information that reflects only the period of tissue growth, whereas tissues that are metabolically active (e.g., red blood cells) provide a moving window of forensic information. However, using δ(2)H for studies of animal movement relies on the assumption that tissue δ(2)H values reflect dietary δ(2)H values, plus or minus a net diet-tissue discrimination value, and that the turnover rate is known for metabolically active tissue. The metabolic rate of an animal may influence both diet-tissue discrimination values and isotopic tissue turnover rate, but this hypothesis has not been tested experimentally. To examine the metabolic hypothesis, an experimental group of 12 male and 15 female captive Japanese quail (Coturnix japonica) was housed at 8.9°C for 90 d to elevate their metabolic rates (mL CO(2) min(-1)), and a control group of 12 male and 13 female quail was housed at room temperature during the same period. For both experimental and control birds, diet-tissue discrimination values were estimated for red blood cells and feathers. To determine turnover rate, experimental and control birds were switched from a (2)H-enriched diet to a (2)H-depleted diet, with red blood cells sampled before and after diet switch. Metabolic rate did not influence red blood cell hydrogen isotope turnover rate (η(2)(p) = 0.24)) or diet-feather isotope discrimination values (η(2)(p) = 0.86). Diet-feather hydrogen isotopic discrimination had a significant sex plus treatment interaction effect; female feathers were depleted in (2)H relative to food regardless of treatment, whereas male feathers were enriched in (2)H. The effect of sex suggested that experimental studies should examine whether coeval males and females differ in blood δ(2)H levels during certain periods of the annual cycle.
Chromium isotope heterogeneity in the mantle
NASA Astrophysics Data System (ADS)
Xia, Jiuxing; Qin, Liping; Shen, Ji; Carlson, Richard W.; Ionov, Dmitri A.; Mock, Timothy D.
2017-04-01
To better constrain the Cr isotopic composition of the silicate Earth and to investigate potential Cr isotopic fractionation during high temperature geological processes, we analyzed the Cr isotopic composition of different types of mantle xenoliths from diverse geologic settings: fertile to refractory off-craton spinel and garnet peridotites, pyroxenite veins, metasomatised spinel lherzolites and associated basalts from central Mongolia, spinel lherzolites and harzburgites from North China, as well as cratonic spinel and garnet peridotites from Siberia and southern Africa. The δ53CrNIST 979 values of the peridotites range from - 0.51 ± 0.04 ‰ (2SD) to + 0.75 ± 0.05 ‰ (2SD). The results show a slight negative correlation between δ53Cr and Al2O3 and CaO contents for most mantle peridotites, which may imply Cr isotopic fractionation during partial melting of mantle peridotites. However, highly variable Cr isotopic compositions measured in Mongolian peridotites cannot be caused by partial melting alone. Instead, the wide range in Cr isotopic composition of these samples most likely reflects kinetic fractionation during melt percolation. Chemical diffusion during melt percolation resulted in light Cr isotopes preferably entering into the melt. Two spinel websterite veins from Mongolia have extremely light δ53Cr values of - 1.36 ± 0.04 ‰ and - 0.77 ± 0.06 ‰, respectively, which are the most negative Cr isotopic compositions yet reported for mantle-derived rocks. These two websterite veins may represent crystallization products from the isotopically light melt that may also metasomatize some peridotites in the area. The δ53Cr values of highly altered garnet peridotites from southern Africa vary from - 0.35 ± 0.04 ‰ (2SD) to + 0.12 ± 0.04 ‰ (2SD) and increase with increasing LOI (Loss on Ignition), reflecting a shift of δ53Cr to more positive values by secondary alteration. The Cr isotopic composition of the pristine, fertile upper mantle is estimated as δ53Cr = - 0.14 ± 0.12 ‰, after corrections for the effects of partial melting and metasomatism. This value is in line with that estimated for the BSE (- 0.12 ± 0.10 ‰) previously.
Pressure-dependent boron isotopic fractionation observed by column chromatography
NASA Astrophysics Data System (ADS)
Musashi, M.; Oi, T.; Matsuo, M.; Nomura, M.
2007-12-01
Boron isotopic fractionation factor ( S ) between boron taken up in strongly basic anion exchange resin and boron in aqueous solution was determined by breakthrough column chromatography at 5 and 17 MPa at 25°C, using 0.1 mmol/L boric acid solution as feed solution. The S values obtained were 1.018 and 1.012, respectively, which were smaller than the value reported by using the same chromatographic method at atmospheric pressure at 25°C with the boron concentration of 10 mmol/L, but were larger than the values at the same condition with much higher concentration of 100 and 501 mmol/L, indicating that borate-polymerization reducing the isotopic fractionation was negligible. However, calculations based on the theory of isotope distribution between two phases estimated that 21% (5MPa) and 47% (17MPa) of boron taken up in the resin phase was in the three-coordinated B(OH)3-form, instead of in the four-coordinated B(OH)4--form, at high pressures even with the very diluted solution. We discussed this discrepancy by introducing (1) hydration or (2) a partial molar volume difference between isotopic molecules. It was inferred that borate ions were partially dehydrated upon transfer from the solution phase to the resin phase at high pressures, which resulted in smaller S values compared with those at the atmospheric pressure. Alternatively, it was likely that the S value decreased with increasing pressure, because the difference of the partial isotopic molar volumes between 10B(OH)3 and 11B(OH)3 was larger than that between 10B(OH)4- and 11B(OH)4-. If either will be the case, the influence of a pressure upon the isotope effect may not be negligible for boron isotopic exchange equilibrium. This knowledge is crucial for the principle of the boron isotopic pH-metry reconstructing a chemical variation at the paleo-deep oceanic environment where the early life may have been evolved.
NASA Astrophysics Data System (ADS)
Faghihi, V.; Peruzzi, A.; Aerts-Bijma, A. T.; Jansen, H. G.; Spriensma, J. J.; van Geel, J.; Meijer, H. A. J.
2015-12-01
Variation in the isotopic composition of water is one of the major contributors to uncertainty in the realization of the triple point of water (TPW). Although the dependence of the TPW on the isotopic composition of the water has been known for years, there is still a lack of a detailed and accurate experimental determination of the values for the correction constants. This paper is the first of two articles (Part I and Part II) that address quantification of isotope abundance effects on the triple point temperature of water. In this paper, we describe our experimental assessment of the 2H isotope effect. We manufactured five triple point cells with prepared water mixtures with a range of 2H isotopic abundances encompassing widely the natural abundance range, while the 18O and 17O isotopic abundance were kept approximately constant and the 18O - 17O ratio was close to the Meijer-Li relationship for natural waters. The selected range of 2H isotopic abundances led to cells that realised TPW temperatures between approximately -140 μK to +2500 μK with respect to the TPW temperature as realized by VSMOW (Vienna Standard Mean Ocean Water). Our experiment led to determination of the value for the δ2H correction parameter of A2H = 673 μK / (‰ deviation of δ2H from VSMOW) with a combined uncertainty of 4 μK (k = 1, or 1σ).
Sreemany, Arpita; Bera, Melinda Kumar; Sarkar, Anindya
2017-12-30
The elaborate sampling and analytical protocol associated with conventional dual-inlet isotope ratio mass spectrometry has long hindered high-resolution climate studies from biogenic accretionary carbonates. Laser-based on-line systems, in comparison, produce rapid data, but suffer from unresolvable matrix effects. It is, therefore, necessary to resolve these matrix effects to take advantage of the automated laser-based method. Two marine bivalve shells (one aragonite and one calcite) and one fish otolith (aragonite) were first analysed using a CO 2 laser ablation system attached to a continuous flow isotope ratio mass spectrometer under different experimental conditions (different laser power, sample untreated vs vacuum roasted). The shells and the otolith were then micro-drilled and the isotopic compositions of the powders were measured in a dual-inlet isotope ratio mass spectrometer following the conventional acid digestion method. The vacuum-roasted samples (both aragonite and calcite) produced mean isotopic ratios (with a reproducibility of ±0.2 ‰ for both δ 18 O and δ 13 C values) almost identical to the values obtained using the conventional acid digestion method. As the isotopic ratio of the acid digested samples fall within the analytical precision (±0.2 ‰) of the laser ablation system, this suggests the usefulness of the method for studying the biogenic accretionary carbonate matrix. When using laser-based continuous flow isotope ratio mass spectrometry for the high-resolution isotopic measurements of biogenic carbonates, the employment of a vacuum-roasting step will reduce the matrix effect. This method will be of immense help to geologists and sclerochronologists in exploring short-term changes in climatic parameters (e.g. seasonality) in geological times. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Bergmann, Kristin D.; Finnegan, Seth; Creel, Roger; Eiler, John M.; Hughes, Nigel C.; Popov, Leonid E.; Fischer, Woodward W.
2018-03-01
The secular increase in δ18O values of both calcitic and phosphatic marine fossils through early Phanerozoic time suggests either that (1) early Paleozoic surface temperatures were high, in excess of 40 °C (tropical MAT), (2) the δ18O value of seawater has increased by 7-8‰ VSMOW through Paleozoic time, or (3) diagenesis has altered secular trends in early Paleozoic samples. Carbonate clumped isotope analysis, in combination with petrographic and elemental analysis, can deconvolve fluid composition from temperature effects and therefore determine which of these hypotheses best explain the secular δ18O increase. Clumped isotope measurements of a suite of calcitic and phosphatic marine fossils from late Cambrian- to Middle-late Ordovician-aged strata-the first paired fossil study of its kind-document tropical sea surface temperatures near modern temperatures (26-38 °C) and seawater oxygen isotope ratios similar to today's ratios.
Isotopic abundances of Hg in mercury stars inferred from the Hg II line at 3984 A
NASA Technical Reports Server (NTRS)
White, R. E.; Vaughan, A. H., Jr.; Preston, G. W.; Swings, J. P.
1976-01-01
Wavelengths of the Hg II absorption feature at 3984 A in 30 Hg stars are distributed uniformly from the value for the terrestrial mix to a value that corresponds to nearly pure Hg-204. The wavelengths are correlated loosely with effective temperatures inferred from Q(UBV). Relative isotopic abundances derived from partially resolved profiles of the 3984-A line in iota CrB, chi Lup, and HR 4072 suggest that mass-dependent fractionation has occurred in all three stars. It is supposed that such fractionation occurs in all Hg stars, and a scheme whereby isotopic compositions can be inferred from a comparison of stellar wavelengths and equivalent widths with those calculated for a family of fractionated isotopic mixes. Theoretical profiles calculated for the derived isotopic composition agree well with high-resolution interferometric profiles obtained for three of the stars.
Fractionation of carbon (13C/12C) isotopes in glycine decarboxylase reaction.
Ivlev, A A; Bykova, N V; Igamberdiev, A U
1996-05-20
Fractionation of carbon isotopes (13C/12C) by glycine decarboxylase (GDC) was investigated in mitochondrial preparations isolated from photosynthetic tissues of different plants (Pisum, Medicago, Triticum, Hordeum, Spinacia, Brassica, Wolffia). 20 mM glycine was supplied to mitochondria, and the CO2 formed was absorbed and analyzed for isotopic content. CO2 evolved by mitochondria of Pisum was enriched up to 8% in 12C compared to the carboxylic atom of glycine. CO2 evolved by mitochondria of the other plants investigated was enriched by 5-16% in 13C. Carbon isotope effects were sensitive to reaction conditions (pH and the presence of GDC cofactors). Theoretical treatment of the reaction mechanism enabled us to conclude that the value and even the sign of the carbon isotope effect in glycine decarboxylation depend on the contribution of the enzyme-substrate binding step and of the decarboxylation step itself to the overall reaction rate. Therefore, the fractionation of carbon isotopes in GDC reaction was revealed which provides essential isotopic effects in plants in addition to the well-known effect of carbon isotope fractionation by the central photosynthetic enzyme, ribulose-1,5-biphosphate carboxylase.
NASA Technical Reports Server (NTRS)
Vieira, Veronica
1997-01-01
The influences of atmospheric carbon dioxide on the fractionation of carbon isotopes and the magnesium incorporation into biogenic marine calcite were investigated using samples of the calcareous alga Amphiroa and benthic foraminifer Sorites grown in the Biosphere 2 Ocean system under variable atmospheric CO2 concentrations (approximately 500 to 1200 ppm). Carbon isotope fractionation was studied in both the organic matter and the skeletal carbonate. Magnesium analysis was to be performed on the carbonate removed during decalcification. These data have not been collected due to technical problems. Carbon isotope data from Amphiroa yields a linear relation between [CO2] and Delta(sup 13)C(sub Corg)values suggesting that the fractionation of carbon isotopes during photosynthesis is positively correlated with atmospheric [CO2]. [CO2] and Delta(sup 13)C(sub Corg) values for Sorites produce a relation that is best described by a hyperbolic function where Delta(sup 13)C(sub Corg) values increase between 300 and 700 ppm and decrease from 700 to 1200 ppm. Further investigation of this relation and Sorites physiology is needed.
Oelze, Vicky M.; Douglas, Pamela Heidi; Stephens, Colleen R.; Surbeck, Martin; Behringer, Verena; Richards, Michael P.; Fruth, Barbara; Hohmann, Gottfried
2016-01-01
Dietary ecology of extant great apes is known to respond to environmental conditions such as climate and food availability, but also to vary depending on social status and life history characteristics. Bonobos (Pan paniscus) live under comparatively steady ecological conditions in the evergreen rainforests of the Congo Basin. Bonobos are an ideal species for investigating influences of sociodemographic and physiological factors, such as female reproductive status, on diet. We investigate the long term dietary pattern in wild but fully habituated bonobos by stable isotope analysis in hair and integrating a variety of long-term sociodemographic information obtained through observations. We analyzed carbon and nitrogen stable isotopes in 432 hair sections obtained from 101 non-invasively collected hair samples. These samples represented the dietary behavior of 23 adult bonobos from 2008 through 2010. By including isotope and crude protein data from plants we could establish an isotope baseline and interpret the results of several general linear mixed models using the predictors climate, sex, social rank, reproductive state of females, adult age and age of infants. We found that low canopy foliage is a useful isotopic tracer for tropical rainforest settings, and consumption of terrestrial herbs best explains the temporal isotope patterns we found in carbon isotope values of bonobo hair. Only the diet of male bonobos was affected by social rank, with lower nitrogen isotope values in low-ranking young males. Female isotope values mainly differed between different stages of reproduction (cycling, pregnancy, lactation). These isotopic differences appear to be related to changes in dietary preference during pregnancy (high protein diet) and lactation (high energy diet), which allow to compensate for different nutritional needs during maternal investment. PMID:27626279
Heraty, Linnea; Condee, Charles W.; Vainberg, Simon; Sturchio, Neil C.; Böhlke, J. K.; Hatzinger, Paul B.
2016-01-01
ABSTRACT Kinetic isotopic fractionation of carbon and nitrogen during RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) biodegradation was investigated with pure bacterial cultures under aerobic and anaerobic conditions. Relatively large bulk enrichments in 15N were observed during biodegradation of RDX via anaerobic ring cleavage (ε15N = −12.7‰ ± 0.8‰) and anaerobic nitro reduction (ε15N = −9.9‰ ± 0.7‰), in comparison to smaller effects during biodegradation via aerobic denitration (ε15N = −2.4‰ ± 0.2‰). 13C enrichment was negligible during aerobic RDX biodegradation (ε13C = −0.8‰ ± 0.5‰) but larger during anaerobic degradation (ε13C = −4.0‰ ± 0.8‰), with modest variability among genera. Dual-isotope ε13C/ε15N analyses indicated that the three biodegradation pathways could be distinguished isotopically from each other and from abiotic degradation mechanisms. Compared to the initial RDX bulk δ15N value of +9‰, δ15N values of the NO2− released from RDX ranged from −7‰ to +2‰ during aerobic biodegradation and from −42‰ to −24‰ during anaerobic biodegradation. Numerical reaction models indicated that N isotope effects of NO2− production were much larger than, but systematically related to, the bulk RDX N isotope effects with different bacteria. Apparent intrinsic ε15N-NO2− values were consistent with an initial denitration pathway in the aerobic experiments and more complex processes of NO2− formation associated with anaerobic ring cleavage. These results indicate the potential for isotopic analysis of residual RDX for the differentiation of degradation pathways and indicate that further efforts to examine the isotopic composition of potential RDX degradation products (e.g., NOx) in the environment are warranted. IMPORTANCE This work provides the first systematic evaluation of the isotopic fractionation of carbon and nitrogen in the organic explosive RDX during degradation by different pathways. It also provides data on the isotopic effects observed in the nitrite produced during RDX biodegradation. Both of these results could lead to better understanding of the fate of RDX in the environment and help improve monitoring and remediation technologies. PMID:27016566
Converting isotope ratios to diet composition - the use of mixing models - June 2010
One application of stable isotope analysis is to reconstruct diet composition based on isotopic mass balance. The isotopic value of a consumer’s tissue reflects the isotopic values of its food sources proportional to their dietary contributions. Isotopic mixing models are used ...
NASA Astrophysics Data System (ADS)
Foster, I. S.; Zhu, M.; Lu, M.; Bristow, T.; Bonifacie, M.; Tripati, A.
2015-12-01
The Ediacaran Doushantuo Formation (635 - 551 Ma) of southern China is a phosphate-dolostone-black shale sequence following the Marinoan "Snowball Earth" episode that represents an important period in Earth history. It contains abundant phosphate-preserved microfossils, and extremely low carbon isotope values in the cap dolostone unit that have been interpreted to reflect formation in a methane seep environment [1]. Previous clumped isotope analysis of 13C-depleted carbonate veins from the basal Doushantuo samples have been interpreted to reflect hydrothermally-derived thermogenic methane oxidation [2], however recent work on modern and ancient cold seep samples suggests clumped isotope signatures in these environments are influenced by disequilibria effects [3] and are vulnerable to post-depositional diagenesis via internal reordering at temperatures exceeding ~ 100 - 120 ˚C [4]. Here we present initial data from the cap-carbonates overlying the Nantuo diamictite. Our analysis includes a variety of micro-facies from the cap-carbonate including pure calcite and micrite, with a range of carbonate carbon isotopic values. Data presented here will be used to attempt to determine if the samples exhibit disequilibria effects such as those observed in modern cold seep environments, as well as to evaluate the role of hydrothermal activity in the Doushantuo Formation. [1] Jiang, G., Kennedy, M.J., Christie-Blick, N., 2003. Stable isotope evidence for methane seeps in Neoproterozoic postglacial cap carbonates. Nature 426, 822-826. [2] Bristow, T.F., Bonifacie, M., Derkowski, A., Eiler, J.M., Grotzinger, J.P., 2011. A hydrothermal origin for isotopically anomalous cap dolostone cements from south China. Nature 474, 68-72. [3] Loyd, S., Sample, J.C., Orphan, V.J., Marlow, J., Eagle, R., Tripati, A.K., 2012. Clumped isotope analyses of cold seep carbonates: Insights into formation environment and mechanisms. Abstract B51G-0639 presented at 2012 Fall Meeting, AGU, San Francisco, Calif., 3-7 Dec. [4] Henkes, G.A., Passey, B.H., Grossman, E.L., Shenton, B.J., Pérez-Huerta, A., Yancey, E.L., 2014. Temperature limits for preservation of primary calcite clumped isotope paleotemperatures. Geochemica et Cosmochimica Acta 139, 362-382.
Busst, Georgina M A; Bašić, Tea; Britton, J Robert
2015-08-30
Dorsal white muscle is the standard tissue analysed in fish trophic studies using stable isotope analyses. As muscle is usually collected destructively, fin tissues and scales are often used as non-lethal surrogates; we examined the utility of scales and fin tissue as muscle surrogates. The muscle, fin and scale δ(15) N and δ(13) C values from 10 cyprinid fish species determined with an elemental analyser coupled with an isotope ratio mass spectrometer were compared. The fish comprised (1) samples from the wild, and (2) samples from tank aquaria, using six species held for 120 days and fed a single food resource. Relationships between muscle, fin and scale isotope ratios were examined for each species and for the entire dataset, with the efficacy of four methods of predicting muscle isotope ratios from fin and scale values being tested. The fractionation factors between the three tissues of the laboratory fishes and their food resource were then calculated and applied to Bayesian mixing models to assess their effect on fish diet predictions. The isotopic data of the three tissues per species were distinct, but were significantly related, enabling estimations of muscle values from the two surrogates. Species-specific equations provided the least erroneous corrections of scale and fin isotope ratios (errors < 0.6‰). The fractionation factors for δ(15) N values were in the range obtained for other species, but were often higher for δ(13) C values. Their application to data from two fish populations in the mixing models resulted in significant alterations in diet predictions. Scales and fin tissue are strong surrogates of dorsal muscle in food web studies as they can provide estimates of muscle values within an acceptable level of error when species-specific methods are used. Their derived fractionation factors can also be applied to models predicting fish diet composition from δ(15) N and δ(13) C values. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Tang, Yongchun; Huang, Yongsong; Ellis, Geoffrey S.; Wang, Yi; Kralert, Paul G.; Gillaizeau, Bruno; Ma, Qisheng; Hwang, Rong
2005-09-01
A quantitative kinetic model has been proposed to simulate the large D and 13C isotope enrichments observed in individual n-alkanes (C 13-C 21) during artificial thermal maturation of a North Sea crude oil under anhydrous, closed-system conditions. Under our experimental conditions, average n-alkane δ 13C values increase by ˜4‰ and δD values increase by ˜50‰ at an equivalent vitrinite reflectance value of 1.5%. While the observed 13C-enrichment shows no significant dependence on hydrocarbon chain length, thermally induced D-enrichment increases with increasing n-alkane carbon number. This differential fractionation effect is speculated to be due to the combined effect of the greater extent of thermal cracking of higher molecular weight, n-alkanes compared to lower molecular weight homologues, and the generation of isotopically lighter, lower molecular weight compounds. This carbon-number-linked hydrogen isotopic fractionation behavior could form the basis of a new maturity indicator to quantitatively assess the extent of oil cracking in petroleum reservoirs. Quantum mechanical calculations of the average change in enthalpy (ΔΔH ‡) and entropy (ΔΔS ‡) as a result of isotopic substitution in n-alkanes undergoing homolytic cleavage of C-C bonds lead to predictions of isotopic fractionation that agree quite well with our experimental results. For n-C 20 ( n-icosane), the changes in enthalpy are calculated to be ˜1340 J mol -1 (320 cal mol -1) and 230 J mol -1 (55 cal mol -1) for D-H and 13C- 12C, respectively. Because the enthalpy term associated with hydrogen isotope fractionation is approximately six times greater than that for carbon, variations in δD values for individual long-chain hydrocarbons provide a highly sensitive measure of the extent of thermal alteration experienced by the oil. Extrapolation of the kinetic model to typical geological heating conditions predicts significant enrichment in 13C and D for n-icosane at equivalent vitrinite reflectance values corresponding to the onset of thermal cracking of normal alkanes. The experimental and theoretical results of this study have significant implications for the use of compound-specific hydrogen isotope data in petroleum geochemical and paleoclimatological studies. However, there are many other geochemical processes that will significantly affect observed hydrogen isotopic compositions (e.g., biodegradation, water washing, isotopic exchange with water and minerals) that must also be taken into consideration.
Isotopologue fractionation during N(2)O production by fungal denitrification.
Sutka, Robin L; Adams, Gerard C; Ostrom, Nathaniel E; Ostrom, Peggy H
2008-12-01
Identifying the importance of fungi to nitrous oxide (N2O) production requires a non-intrusive method for differentiating between fungal and bacterial N2O production such as natural abundance stable isotopes. We compare the isotopologue composition of N2O produced during nitrite reduction by the fungal denitrifiers Fusarium oxysporum and Cylindrocarpon tonkinense with published data for N2O production during bacterial nitrification and denitrification. The fractionation factors for bulk nitrogen isotope values for fungal denitrification were in the range -74.7 to -6.6 per thousand. There was an inverse relationship between the absolute value of the fractionation factors and the reaction rate constant. We interpret this in terms of variation in the relative importance of the rate constants for diffusion and enzymatic reduction in controlling the net isotope effect for N2O production during fungal denitrification. Over the course of nitrite reduction, the delta(18)O values for N2O remained constant and did not exhibit a relationship with the concentration characteristic of an isotope effect. This probably reflects isotopic exchange with water. Similar to the delta(18)O data, the site preference (SP; the difference in delta(15)N between the central and outer N atoms in N2O) was unrelated to concentration during nitrite reduction and, therefore, has the potential to act as a conservative tracer of production from fungal denitrification. The SP values of N2O produced by F. oxysporum and C. tonkinense were 37.1 +/- 2.5 per thousand and 36.9 +/- 2.8 per thousand, respectively. These SP values are similar to those obtained in pure culture studies of bacterial nitrification but quite distinct from SP values for bacterial denitrification. The large magnitude of the bulk nitrogen isotope fractionation and the delta(18)O values associated with fungal denitrification are distinct from bacterial production pathways; thus multiple isotopologue data holds much promise for resolving bacterial and fungal production. Our work further provides insight into the role that fungal and bacterial nitric oxide reductases have in determining site preference during N2O production. Copyright 2008 John Wiley & Sons, Ltd.
C Diffusion in Fe: Isotope Effects and Other Complexities
NASA Astrophysics Data System (ADS)
Watson, E. B.; Muller, T.; Trail, D.; Van Orman, J. A.; Papineau, D.
2011-12-01
Carbon is a minor but significant component of iron meteorites, and probably also of planetary cores, including that of Earth. Given the dynamical nature of core-forming processes, C diffusion in the metal phase may play a role in C equilibration between Fe-Ni metal and silicate, carbide or oxide at some stage. Despite its relevance to steel-making, C diffusion in Fe is not well characterized over the range of conditions of interest in planetary bodies, and the likelihood of an isotope mass effect on C diffusion has not been explored. The prospect of incomplete diffusive equilibration of carbon in Fe-Ni raises the possibility that carbon isotopes might be fractionated by diffusion during core formation and evolution-perhaps to an extent that could affect the C isotope ratio of the bulk silicate Earth. Here we report results of preliminary experiments addressing the isotopic mass effect on C diffusion in Fe. Initial low-pressure experiments were conducted by placing a layer of ^{13}C-enriched graphite ( 20% ^{13}C) at the end of a high-purity, polycrystalline Fe cylinder in a silica glass container. These diffusion couples were run in a piston-cylinder apparatus at 1.5 GPa and 1000-1100^{o}C for several hours, and the resulting C-uptake profiles in the Fe cylinders were measured by EPMA and SIMS. In traverses moving away from the original C-Fe interface, total carbon decreases monotonically and becomes significantly lighter, indicating that ^{12}C diffuses faster than ^{13}C. Preliminary estimates of β in the relative isotope diffusivity relation D_{1}/D_{2} = [M_{2}/M_{1}]^{β} (where D is diffusivity and M is mass of isotopes 1 and 2) suggest values as high as 0.5, corresponding to predictions for gaseous diffusion. Isotope mass effects approaching this magnitude have been observed previously for diffusion in metals, and are expected to be highest for interstitial diffusion. Such a high β value will lead to major C isotope fractionation in some partial equilibration scenarios in planets and meteorite parent bodies. Caution is warranted at this point, however, because D_{carbon} is sensitive to carbon concentration, complicating quantification of the isotope effect.
Reliability and quality of water isotope data collected with a low-budget rain collector.
Prechsl, Ulrich E; Gilgen, Anna K; Kahmen, Ansgar; Buchmann, Nina
2014-04-30
Low-budget rain collectors for water isotope analysis, such as the 'ball-in-funnel type collector' (BiFC), are widely used in studies on stable water isotopes of rain. To date, however, an experimental quality assessment of such devices in relation to climatic factors does not exist. We used Cavity Ring-Down Spectrometry (CRDS) to quantify the effects of evaporation on the δ(18)O values of reference water under controlled conditions as a function of the elapsed time between rainfall and collection for isotope analysis, the sample volume and the relative humidity (RH: 31% and 67%; 25 °C). The climate chamber conditions were chosen to reflect the warm and dry end of field conditions that favor evaporative enrichment (EE). We also tested the performance of the BiFC in the field, and compared our δ(2)H/δ(18)O data obtained by isotope ratio mass spectrometry (IRMS) with those from the Swiss National Network for the Observation of Isotopes in the Water Cycle (ISOT). The EE increased with time, with a 1‰ increase in the δ(18)O values after 10 days (RH: 25%; 25 °C; 35 mL (corresponding to a 5 mm rain event); p <0.001). The sample volume strongly affected the EE (max. value +1.5‰ for 7 mL samples (i.e., 1 mm rain events) after 72 h at 31% and 67% RH; p <0.001), whereas the relative humidity had no significant effect. Using the BiFC in the field, we obtained very tight relationships of the δ(2)H/δ(18)O values (r(2) ≥ 0.95) for three sites along an elevational gradient, not significantly different from that of the next ISOT station. Since the chosen experimental conditions were extreme compared with the field conditions, it was concluded that the BiFC is a highly reliable and inexpensive collector of rainwater for isotope analysis. Copyright © 2014 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Li, Lin; Garzione, Carmala N.
2017-02-01
Debates persist about the interpretations of stable isotope based proxies for the surface uplift of the central-northern Tibetan Plateau. These disputes arise from the uncertain relationship between elevation and the δ18 O values of meteoric waters, based on modern patterns of isotopes in precipitation and surface waters. We present a large river water data set (1,340 samples) covering most parts of the Tibetan Plateau to characterize the spatial variability and controlling factors of their isotopic compositions. Compared with the amount-weighted mean annual oxygen isotopic values of precipitation, we conclude that river water is a good substitute for isotopic studies of precipitation in the high flat (e.g., elevation >3,300 m) interior of the Tibetan Plateau in the mean annual timescale. We construct, for the first time based on field data, contour maps of isotopic variations of meteoric waters (δ18 O, δD and d-excess) on the Tibetan Plateau. In the marginal mountainous regions of the Plateau, especially the southern through eastern margins, the δ18 O and δD values of river waters decrease with increasing mean catchment elevation, which can be modeled as a Rayleigh distillation process. However, in the interior of the Plateau, northward increasing trends in δ18 O and δD values are pronounced and present robust linear relations; d-excess values are lower than the marginal regions and exhibit distinct contrasts between the eastern (8 ‰- 12 ‰) and western (<8‰) Plateau. We suggest that these isotopic features of river waters in the interior of the Tibetan Plateau result from the combined effects of: 1) mixing of different moisture sources transported by the South Asian monsoon and Westerly winds; 2) contribution of moisture from recycled surface water; and 3) sub-cloud evaporation. We further provide a sub-cloud evaporation modified Rayleigh distillation and mixing model to simulate the isotopic variations in the western Plateau. Results of this work suggest that stable isotope-based paleoaltimetry studies are reliable in the southern through eastern Plateau margins; towards the central-northern Plateau, this method cannot be applied without additional constraints and/or large uncertainties.
Effects of growth and dissolution on the fractionation of silicon isotopes by estuarine diatoms
NASA Astrophysics Data System (ADS)
Sun, Xiaole; Olofsson, Martin; Andersson, Per S.; Fry, Brian; Legrand, Catherine; Humborg, Christoph; Mörth, Carl-Magnus
2014-04-01
Studies of silicon (Si) isotope fractionation during diatom growth in open ocean systems have documented lower Si isotopic values (δ30Si) in the biogenic silica of diatom frustules compared to dissolved silicon. Recent findings also indicate that Si isotope fractionation occurs during dissolution of diatom frustules, producing higher δ30Si values in the remaining biogenic silica. This study focuses on diatoms from high production areas in estuarine and coastal areas that represent approximately 30-50% of the global marine primary production. Two species of diatoms, Thalassiosira baltica and Skeletonema marinoi, were isolated from the brackish Baltic Sea, one of the largest estuarine systems in the world. These species were used for laboratory investigations of Si isotope fractionation during diatom growth and the subsequent dissolution of the diatom frustules. Both species of diatoms give an identical Si isotope fractionation factor during growth of -1.50 ± 0.36‰ (2σ) for 30Si, which falls in the range of -2.09‰ to -0.55‰ of published data. Our results also suggest a dissolution-induced Si isotope fractionation factor of -0.86‰ at early stage of dissolution, but this effect was observed only in DSi and no significant Si isotope change was observed for BSi. The growth and dissolution results are applied to a Baltic Sea sediment core to reconstruct DSi utilization by diatoms, and found to be in agreement with the observed DSi uptake rates in the overlying water column during diatom growth.
Frappier, Amy Benoit; Lindemann, Richard H; Frappier, Brian R
2015-04-30
Dacryoconarids are extinct marine zooplankton known from abundant, globally distributed calcite microfossils in the Devonian, but their shell stable isotope composition has not been previously explored. Devonian stable isotope stratigraphy is currently limited to less common invertebrates or bulk rock analyses of uncertain provenance. As with Cenozoic planktonic foraminifera, isotopic analysis of dacryoconarid shells could facilitate higher-resolution, geographically widespread stable isotope records of paleoenvironmental change, including marine hypoxia events, climate changes, and biocrises. We explored the use of Dacryoconarid isotope stratigraphy as a viable method in interpreting paleoenvironments. We applied an established method for determining stable isotope ratios (δ(13) C, δ(18) O values) of small carbonate microfossils to very well-preserved dacryoconarid shells. We analyzed individual calcite shells representing five common genera using a Kiel carbonate device coupled to a MAT 253 isotope ratio mass spectrometer. Calcite shell δ(13) C and δ(18) O values were compared by taxonomic group, rock unit, and locality. Single dacryoconarid calcite shells are suitable for stable isotope analysis using a Kiel-IRMS setup. The dacryoconarid shell δ(13) C values (-4.7 to 2.3‰) and δ(18) O values (-10.3 to -4.8‰) were consistent across taxa, independent of shell size or part, but varied systematically through time. Lower fossil δ(18) O values were associated with warmer water temperature and more variable δ(13) C values were associated with major bioevents. Dacryoconarid δ(13) C and δ(18) O values differed from bulk rock carbonate values. Dacryoconarid individual microfossil δ(13) C and δ(18) O values are highly sensitive to paleoenvironmental changes, thus providing a promising avenue for stable isotope chemostratigraphy to better resolve regional to global paleoceanographic changes throughout the upper Silurian to the upper Devonian. Our results warrant further exploration of dacryoconarid stable isotope proxy sensitivity, the isotopic contrast among dacryoconarids, other taxa, and bulk rock, as well as other potential dacryoconarid proxies (Mg/Ca, Sr/Ca, (87) Sr/(86) Sr, microlaser and ion microprobe isotope techniques, and clumped isotopes) for stratigraphic research. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Grossman, E. L.; Henkes, G. A.; Passey, B. H.; Shenton, B.; Yancey, T. E.; Perez-Huerta, A.
2015-12-01
Evolution of metazoan life is closely linked to the Phanerozoic evolution of ocean temperatures and chemistry. Oxygen isotopic evidence for early Phanerozoic paleotemperatures has been equivocal, with decreasing δ18O values with age being interpreted as warmer early oceans, decreasing seawater δ18O with age, or increasing diagenetic alteration in older samples. Here we compare an updated compilation of oxygen isotope data for carbonate and phosphate fossils and microfossils (Grossman, 2012, Geol. Time Scale, Elsevier, 195-220) with a compilation of new and existing clumped isotope data. Importantly, these data are curated based on sample preservation with special consideration given to screening techniques, and tectonic and burial history. Burial history is critical in the preservation of carbonate clumped isotope temperatures in particular, which can undergo reordering in the solid state. We use a model derived for reordering kinetics (Henkes et al., 2014, Geochim. Cosmochim. Acta 139:362-382) to screen clumped isotope data for the effects of solid-state burial alteration. With minor but significant exceptions (Late Cretaceous, Early Triassic), average δ18O values (4 m.y. window, 2 m.y. steps) for post-Devonian brachiopods, belemnites, and foraminifera, representing tropical-subtropical surface ocean conditions, yield average isotopic temperatures below 30°C (assuming a seawater δ18O value [ -1‰ VSMOW] of an "ice-free" world). In contrast, Ordovician to Devonian data show sustained temperatures of 35-40°C. Likewise, isotopic paleotemperatures from conodont apatite, known to be resistant to isotopic exchange, follow the same pattern. Clumped isotope data derived from Paleozoic brachiopod shells that experienced minimal burial (< 100 °C) and <1% reordering according to the taxon-specific clumped isotope reordering model yield typical temperatures of 25-30°C for the Carboniferous, and 35-40°C for the Ordovician-Silurian. Inserting clumped temperatures and δ18O values into the oxygen isotopic paleotemperature equation yields a mean seawater δ18O of -0.7 ± 1.4‰ for the Phanerozoic. Collectively, these findings argue for extremely warm early Paleozoic oceans, and constant seawater δ18O throughout the last ~450 million years.
NASA Astrophysics Data System (ADS)
Kitch, G. D.; Jacobson, A. D.; Hurtgen, M.; Sageman, B. B.; Harper, D. T.; Zachos, J. C.
2017-12-01
Ocean acidification (OA) events are transient disruptions to the carbonate chemistry of seawater that involve decreases in pH, [CO32-] and carbonate mineral saturation states (Ω). Numerical modeling studies predict that the Ca isotope (δ44/40Ca) composition of primary marine carbonate should be sensitive to OA1, and recent evidence from the rock record may support this hypothesis2. Boron isotope (δ11B) data for the planktonic foraminifera Morozovella velascoensis indicate that the Paleocene-Eocene Thermal Maximum (PETM; 55 Mya) was an interval of pronounced OA3, although the Ca isotope composition of the bulk carbonate record appears to show post-burial diagenetic effects4. To further evaluate the Ca isotope proxy, we used a high-precision (2σSD=±0.04‰), double-spike (43Ca-42Ca) TIMS method5 to measure δ44/40Ca values of well-preserved M. velascoensis tests spanning the PETM. M. velascoensis tests (250-355 µm) were picked from samples recovered during ODP Leg 198, Site 1209 on Shatsky Rise in the equatorial Pacific. Five M. velascoensis tests were combined per sample, dissolved, spiked, and analyzed using a Triton TIMS. Repeat dissolutions of ten samples gave δ44/40Ca values within ±0.04‰ of the original measurements. Method and procedural blanks were negligible. δ44/40Ca values are elevated, even before the negative carbon isotope excursion (CIE) that marks the PETM. When δ11/10B values decrease during the CIE, δ44/40Ca values remain elevated, but then decrease by 0.10‰ as δ11B values return to pre-CIE levels. The apparent inverse correlation between δ44/40Ca and δ11B values suggests that Ca isotope fractionation by M. velascoensis was sensitive to OA. A decrease in pH indicated by lower δ11B values is consistent with higher δ44/40Ca values (decreased fractionation) due to elevated [Ca2+]/[CO32-] ratios and reduced W. The Ca isotope composition of pristine foraminiferal calcite may have potential for reconstructing [CO32-]. The current, preliminary dataset may indicate changes in [CO32-] prior to the CIE. 1Nielsen et al., 2012. 2Du Vivier et al., 2015. 3Penman et al., 2014. 4Griffith et al., 2015. 5Lehn et al., 2013.
NASA Astrophysics Data System (ADS)
Thompson, Patricia M. E.; Kempton, Pamela D.; Kerr, Andrew C.
2008-08-01
Nd and Hf isotope systematics of oceanic basaltic rocks are often assumed to be largely immune to the effects of hydrothermal alteration. We have tested this assumption by comparing Nd and Hf isotope data for acid-leached Cretaceous oceanic basalts from Gorgona and DSDP Leg 15 with unleached data on the same rocks. Hf isotope values and Lu/Hf ratios are relatively unaffected by leaching, but 143Nd/ 144Nd values of leached samples are significantly higher than those of unleached fractions of the same sample in most cases. Furthermore, the Sm/Nd ratios of the majority of leached samples are 10-40% greater than those of unleached samples. X-ray diffraction studies indicate that selective removal of secondary minerals, such as smectite, during the acid leaching process is responsible for the fractionation of Sm/Nd ratios. These results have implications for interpretation of the Hf-Nd isotope systematics of ancient submarine rocks (older than ~ 50 Ma), as (1) the age-corrected 143Nd/ 144Nd ratio may not be representative of the primary magmatic signature and (2) the uncertainty of the age-corrected ɛNd value may exceed the assumed analytical precision.
NASA Astrophysics Data System (ADS)
Anderson, Rebecca S.; Iannone, Richard; Thompson, Alexandra E.; Rudolph, Jochen; Huang, Lin
2004-08-01
The carbon kinetic isotope effects (KIEs) of the room temperature reactions of benzene and several light alkyl benzenes with OH radicals were studied in a reaction chamber at ambient pressure using gas chromatography coupled with online combustion and isotope ratio mass spectrometry (GCC-IRMS). The KIEs are reported in per mil according to $\\varepsilon$ (‰) = (KIE - 1) × 1000, where KIE = k12/k13. The following average KIEs were obtained, (all in ‰): benzene 7.53 +/- 0.50; toluene 5.95 +/- 0.28; ethylbenzene 4.34 +/- 0.28; o-xylene 4.27 +/- 0.05, p-xylene 4.83 +/- 0.81; o-ethyltoluene 4.71 +/- 0.12 and 1,2,4-trimethylbenzene 3.18 +/- 0.09. Our KIE value for benzene + OH agrees with the only reported value known to us [Rudolph et al., 2000]. It is shown that measurements of the stable carbon isotope ratios of light aromatic compounds should be extremely useful to study atmospheric processing by the OH radical.
Isotope-abundance variations of selected elements (IUPAC technical report)
Coplen, T.B.; Böhlke, J.K.; De Bievre, P.; Ding, T.; Holden, N.E.; Hopple, J.A.; Krouse, H.R.; Lamberty, A.; Peiser, H.S.; Revesz, K.; Rieder, S.E.; Rosman, K.J.R.; Roth, E.; Taylor, P.D.P.; Vocke, R.D.; Xiao, Y.K.
2002-01-01
Documented variations in the isotopic compositions of some chemical elements are responsible for expanded uncertainties in the standard atomic weights published by the Commission on Atomic Weights and Isotopic Abundances of the International Union of Pure and Applied Chemistry. This report summarizes reported variations in the isotopic compositions of 20 elements that are due to physical and chemical fractionation processes (not due to radioactive decay) and their effects on the standard atomic-weight uncertainties. For 11 of those elements (hydrogen, lithium, boron, carbon, nitrogen, oxygen, silicon, sulfur, chlorine, copper, and selenium), standard atomic-weight uncertainties have been assigned values that are substantially larger than analytical uncertainties because of common isotope-abundance variations in materials of natural terrestrial origin. For 2 elements (chromium and thallium), recently reported isotope-abundance variations potentially are large enough to result in future expansion of their atomic-weight uncertainties. For 7 elements (magnesium, calcium, iron, zinc, molybdenum, palladium, and tellurium), documented isotope variations in materials of natural terrestrial origin are too small to have a significant effect on their standard atomic-weight uncertainties. This compilation indicates the extent to which the atomic weight of an element in a given material may differ from the standard atomic weight of the element. For most elements given above, data are graphically illustrated by a diagram in which the materials are specified in the ordinate and the compositional ranges are plotted along the abscissa in scales of (1) atomic weight, (2) mole fraction of a selected isotope, and (3) delta value of a selected isotope ratio.
Exotic Structure of Carbon Isotopes
NASA Astrophysics Data System (ADS)
Suzuki, Toshio; Sagawa, Hiroyuki; Hagino, Kouichi
2003-12-01
Ground state properties of C isotopes, deformation and elecromagnetic moments, as well as electric dipole transition strength are investigated. We first study the ground state properties of C isotopes using a deformed Hartree-Fock (HF) + BCS model with Skyrme interactions. Isotope dependence of the deformation properties is investigated. Shallow deformation minima are found in several neutron-rich C isotopes. It is also shown that the deformation minima appear in both the oblate and the prolate sides in 17C and 19C having almost the same binding energies. Next, we carry out shell model calculations to study electromagnetic moments and electric dipole transitions of C isotopes. We point out the clear configuration dependence of the quadrupole and magnetic moments in the odd C isotopes, which will be useful to find out the deformation and spin-parities of the ground states of these nuclei. Electric dipole states of C isotopes are studied focusing on the interplay between low energy Pigmy strength and giant dipole resonances. Low peak energies, two-peak structure and large widths of the giant resonances show deformation effects. Calculated transition strength below dipole giant resonance in heavier C isotopes than 15C is found to exhaust 12 ~ 15% of the Thomas-Reiche-Kuhn sum rule value and 50 ~ 80% of the cluster sum rule value.
Kujawinski, Dorothea M; Stephan, Manuel; Jochmann, Maik A; Krajenke, Karen; Haas, Joe; Schmidt, Torsten C
2010-01-01
In order to monitor the behaviour of contaminants in the aqueous environment effective enrichment techniques often have to be employed due to their low concentrations. In this work a robust and sensitive purge and trap-gas chromatography-isotope ratio mass spectrometry method for carbon and hydrogen isotope analysis of fuel oxygenates in water is presented. The method evaluation included the determination of method detection limits, accuracy and reproducibility of deltaD and delta(13)C values. Lowest concentrations at which reliable delta(13)C values could be determined were 5 microg L(-1) and 28 microg L(-1) for TAME and MTBE, respectively. Stable deltaD values for MTBE and TAME could be achieved for concentrations as low as 25 and 50 microg L(-1). Good long-term reproducibility of delta(13)C and deltaD values was obtained for all target compounds. But deltaD values varying more than 5 per thousand were observed using different thermal conversion tubes. Thus, a correction of deltaD values in the analysis of groundwater samples was necessary to guarantee comparability of the results. The applicability of this method was shown by the analysis of groundwater samples from a gasoline contaminated site. By two dimensional isotope analysis two locations within this site were identified at which anaerobic and aerobic degradation of methyl tert-butyl ether occurred.
Effect of thermal decarbonation on the stable isotope composition of carbonates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durakiewicz, T.; Sharp, Z. D.; Papike, J. J.
2001-01-01
The unusual texture and stable isotope variability of carbonates in AH84001 have been used as evidence for early life on Mars (Romanek et al., 1994; McKay et al., 1996). Oxygen and carbon isotope variability is most commonly attributed to low-temperature processes, including Rayleigh-like fractionation associated with biological activity. Another possible explanation for the isotopic variability in meteoritic samples is thermal decarbonation. In this report, different carbonates were heated in a He-stream until decomposition temperatures were reached. The oxygen and carbon isotope ratios ({delta}{sup 18}O and {delta}{sup 13}C values) of the resulting gas were measured on a continuous flow isotope ratiomore » mass spectrometer. The aim of this work is to evaluate the possibility that large isotopic variations can be generated on a small scale abiogenically, by the process of thermal decarbonation. Oxygen isotope fractionations of >4{per_thousand} have been measured during decarbonation of calcite at high temperatures (McCrea, 1950), and in excess of 6{per_thousand} for dolomite decarbonated between 500 and 600 C (Sharma and Clayton, 1965). Isotopic fractionations of this magnitude, coupled with Rayleigh-like distillation behavior could result in very large isotopic variations on a small scale. To test the idea, calcite, dolomite and siderite were heated in a quartz tube in a He-stream in excess of 1 atmosphere. Simultaneous determinations of {delta}{sup 13}C and {Delta}{sup 18}O values were obtained on 250 {micro}l aliquots of the CO{sub 2}-bearing He gas using an automated 6-way switching valve system (Finnigan MAT GasBench II) and a Finnigan MAT Delta Plus mass spectrometer. It was found that decarbonation of calcite in a He atmosphere begins at 720 C, but the rate significantly increases at temperatures of 820 C. After an initial light {delta}{sup 18}O value of -14.1{per_thousand} at 720 C associated with very early decarbonation, {delta}{sup 18}0 values increase to a constant -11.8{per_thousand}, close to the accepted value of -12.09{per_thousand} (PDB). After 10 minutes at 820 C, the {delta}{sup 18}O values and signal strength both begin to decrease linearly to a {delta}{sup 18}O value of -14.75 and very low amounts of CO{sub 2} (Fig. 1). In contrast, the {delta}{sup 13}C values are extremely constant (0.12 {+-} 0.25{per_thousand}) for all measurements, in very good agreement with accepted values of 0.33{per_thousand} (PDB). There is much less isotopic variability during dolomite decarbonation. CO{sub 2} is first detected at 600 C. The signal strength increases by an order of magnitude between 670 and 700 C and again at 760 C. Both {delta}{sup 13}C and {delta}{sup 18}O values are nearly constant over the entire temperature range and sample size. For oxygen, the measured {delta}{sup 18}O values averaged -20.9 {+-} 0.7{per_thousand} (n = 30). Including only samples over 700 C, the average is -21.2 {+-} 0.2{per_thousand} compared to the accepted value of -21{per_thousand}. Carbon is similarly constant. The average {delta}{sup 13}C value is -2.50{per_thousand} compared to the accepted value of -2.62{per_thousand}. Far more variability is seen during the decomposition of siderite. Two samples were analyzed. In both samples, the initial {delta}{sup 18}O values were far lower than expected.« less
NASA Astrophysics Data System (ADS)
Dodd, J. P.; Freimuth, E. J.; Olson, E. J.; Diefendorf, A. F.
2015-12-01
One of the main goals of tree ring isotope studies is to reconstruct climate-driven variations in the source water and antecedent precipitation; however, evaporation in the soil and leaves can significantly modify the isotope values of the source water. This is particularly the case in arid environments where evaporative effects are perhaps the most significant unknown variable when attempting to reconstruct regional-scale hydroclimate variations from tree ring isotope proxies. To quantify the effects of extreme aridity on α-cellulose δ18O values, we measured the oxygen isotope values of groundwater, xylem water, leaf water, and tree ring α-cellulose in an endemic species of drought-resistant trees (Prosopis tamarugo) from different microenvironments throughout the Atacama Desert of Northern Chile. Average annual precipitation is <5 mm/yr, and groundwater is the primary water source for P. tamarugo trees in the region. Groundwater δ18O values at the sample locations range from -6.7 to -9.7‰, and xylem water δ18O values record a systematic increase (ave. Δ18Ox-gw =+1.3‰; 2σ =1.0‰). Leaf waters are significantly affected by evaporative enrichment with a range of δ18O values from 7 to 23‰. This range most likely reflects a number of physiological and environmental conditions including tree size, canopy development, and sample time (i.e. morning vs. evening). However, despite the large variation in leaf water δ18O values, the average difference between the α-cellulose and groundwater is very consistent (Δ18Oc-gw = +39.7‰; 2σ =1.3‰). P. tamarugo samples were collected in austral spring, when tree growth was at its maximum; therefore, any seasonal variations in plant physiology not captured with this dataset will have a limited impact on cellulose production. These data demonstrate that despite the variable evaporative enrichment of 18O in the leaf water, the α-cellulose δ18O values provide a remarkably consistent record of variations in groundwater δ18O values in this extremely arid environment.
Intraspecific carbon and nitrogen isotopic variability in foxtail millet (Setaria italica).
Lightfoot, Emma; Przelomska, Natalia; Craven, Martha; O Connell, Tamsin C; He, Lu; Hunt, Harriet V; Jones, Martin K
2016-07-15
Isotopic palaeodietary studies generally focus on bone collagen from human and/or animal remains. While plant remains are rarely analysed, it is known that plant isotope values can vary as a result of numerous factors, including soil conditions, the environment and type of plant. The millets were important food crops in prehistoric Eurasia, yet little is known about the isotopic differences within millet species. Here we compare the stable isotope ratios within and between Setaria italica plants grown in a controlled environment chamber. Using homogenised samples, we compare carbon isotope ratios of leaves and grains, and nitrogen isotope ratios of grains, from 29 accessions of Setaria italica. We find significant isotopic variability within single leaves and panicles, and between leaves and panicles within the same plant, which must be considered when undertaking plant isotope studies. We find that the leaves and grains from the different accessions have a ca 2‰ range in δ(13) C values, while the nitrogen isotope values in the grains have a ca 6‰ range. We also find an average offset of 0.9‰ between leaves and grains in their δ(13) C values. The variation found is large enough to have archaeological implications and within- and between-plant isotope variability should be considered in isotope studies. The range in δ(15) N values is particularly significant as it is larger than the typical values quoted for a trophic level enrichment, and as such may lead to erroneous interpretations of the amount of animal protein in human or animal diets. It is therefore necessary to account for the variability in plant stable isotope values during palaeodietary reconstructions. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conroy, Jessica L; Cobb, Kim M; Noone, David
The objective of this field campaign was to investigate climatic controls on the stable isotopic composition of water vapor, precipitation, and seawater in the western tropical Pacific. Simultaneous measurements of the stable isotopic composition of vapor and precipitation from April 28 to May 8, 2013, at the Manus Tropical Western Pacific Atmospheric Radiation Measurement site, provided several key insights into the nature of the climate signal archived in precipitation and vapor isotope ratios. We observed a large shift from lower to higher isotopic values in vapor and precipitation because of the passage of a mesoscale convective system west of themore » site and a transition from a regional stormy period into a more quiescent period. During the quiescent period, the stable isotopic composition of vapor and precipitation indicated the predominance of oceanic evaporation in determining the isotopic composition of boundary-layer vapor and local precipitation. There was not a consistent relationship between intra-event precipitation amount at the site and the stable isotopic composition of precipitation, thus challenging simplified assumptions about the isotopic “amount effect” in the tropics on the time scale of individual storms. However, some storms did show an amount effect, and deuterium excess values in precipitation had a significant relationship with several meteorological variables, including precipitation, temperature, relative humidity, and cloud base height across all measured storms. The direction of these relationships points to condensation controls on precipitation deuterium excess values on intra-event time scales. The relationship between simultaneous measurements of vapor and precipitation isotope ratios during precipitation events indicates the ratio of precipitation-to-vapor isotope ratios can diagnose precipitation originating from a vapor source unique from boundary-layer vapor and rain re-evaporation.« less
Fu, Jiali; Hu, Zhaochu; Zhang, Wen; Yang, Lu; Liu, Yongsheng; Li, Ming; Zong, Keqing; Gao, Shan; Hu, Shenghong
2016-03-10
The sulfur isotope is an important geochemical tracer in diverse fields of geosciences. In this study, the effects of three different cone combinations with the addition of N2 on the performance of in situ S isotope analyses were investigated in detail. The signal intensities of S isotopes were improved by a factor of 2.3 and 3.6 using the X skimmer cone combined with the standard sample cone or the Jet sample cone, respectively, compared with the standard arrangement (H skimmer cone combined with the standard sample cone). This signal enhancement is important for the improvement of the precision and accuracy of in situ S isotope analysis at high spatial resolution. Different cone combinations have a significant effect on the mass bias and mass bias stability for S isotopes. Poor precisions of S isotope ratios were obtained using the Jet and X cones combination at their corresponding optimum makeup gas flow when using Ar plasma only. The addition of 4-8 ml min(-1) nitrogen to the central gas flow in laser ablation MC-ICP-MS was found to significantly enlarge the mass bias stability zone at their corresponding optimum makeup gas flow in these three different cone combinations. The polyatomic interferences of OO, SH, OOH were also significantly reduced, and the interference free plateaus of sulfur isotopes became broader and flatter in the nitrogen mode (N2 = 4 ml min(-1)). However, the signal intensity of S was not increased by the addition of nitrogen in this study. The laser fluence and ablation mode had significant effects on sulfur isotope fractionation during the analysis of sulfides and elemental sulfur by laser ablation MC-ICP-MS. The matrix effect among different sulfides and elemental sulfur was observed, but could be significantly reduced by line scan ablation in preference to single spot ablation under the optimized fluence. It is recommended that the d90 values of the particles in pressed powder pellets for accurate and precise S isotope analysis should be less than 10 μm. Under the selected optimized analytical conditions, excellent agreements between the determined values and the reference values were achieved for the IAEA-S series standard reference materials and a set of six well-characterized, isotopic homogeneous sulfide standards (PPP-1, MoS2, MASS-1, P-GBW07267, P-GBW07268, P-GBW07270), validating the capability of the developed method for providing high-quality in situ S isotope data in sulfides and elemental sulfur. Copyright © 2016. Published by Elsevier B.V.
VAPOR PRESSURE ISOTOPE EFFECTS IN THE MEASUREMENT OF ENVIRONMENTAL TRITIUM SAMPLES.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhne, W.
2012-12-03
Standard procedures for the measurement of tritium in water samples often require distillation of an appropriate sample aliquot. This distillation process may result in a fractionation of tritiated water and regular light water due to the vapor pressure isotope effect, introducing either a bias or an additional contribution to the total tritium measurement uncertainty. The magnitude of the vapor pressure isotope effect is characterized as functions of the amount of water distilled from the sample aliquot and the heat settings for the distillation process. The tritium concentration in the distillate is higher than the tritium concentration in the sample earlymore » in the distillation process, it then sharply decreases due to the vapor pressure isotope effect and becomes lower than the tritium concentration in the sample, until the high tritium concentration retained in the boiling flask is evaporated at the end of the process. At that time, the tritium concentration in the distillate again overestimates the sample tritium concentration. The vapor pressure isotope effect is more pronounced the slower the evaporation and distillation process is conducted; a lower heat setting during the evaporation of the sample results in a larger bias in the tritium measurement. The experimental setup used and the fact that the current study allowed for an investigation of the relative change in vapor pressure isotope effect in the course of the distillation process distinguish it from and extend previously published measurements. The separation factor as a quantitative measure of the vapor pressure isotope effect is found to assume values of 1.034 {+-} 0.033, 1.052 {+-} 0.025, and 1.066 {+-} 0.037, depending on the vigor of the boiling process during distillation of the sample. A lower heat setting in the experimental setup, and therefore a less vigorous boiling process, results in a larger value for the separation factor. For a tritium measurement in water samples, this implies that the tritium concentration could be underestimated by 3 - 6%.« less
Ryan, Conor; McHugh, Brendan; Trueman, Clive N; Harrod, Chris; Berrow, Simon D; O'Connor, Ian
2012-12-15
Stable isotope values (δ(13)C and δ(15)N) of darted skin and blubber biopsies can shed light on habitat use and diet of cetaceans, which are otherwise difficult to study. Non-dietary factors affect isotopic variability, chiefly the depletion of (13)C due to the presence of (12)C-rich lipids. The efficacy of post hoc lipid-correction models (normalization) must be tested. For tissues with high natural lipid content (e.g., whale skin and blubber), chemical lipid extraction or normalization is necessary. C:N ratios, δ(13)C values and δ(15)N values were determined for duplicate control and lipid-extracted skin and blubber of fin (Balaenoptera physalus), humpback (Megaptera novaeangliae) and minke whales (B. acutorostrata) by continuous-flow elemental analysis isotope ratio mass spectrometry (CF-EA-IRMS). Six different normalization models were tested to correct δ(13)C values for the presence of lipids. Following lipid extraction, significant increases in δ(13)C values were observed for both tissues in the three species. Significant increases were also found for δ(15)N values in minke whale skin and fin whale blubber. In fin whale skin, the δ(15)N values decreased, with no change observed in humpback whale skin. Non-linear models generally out-performed linear models and the suitability of models varied by species and tissue, indicating the need for high model specificity, even among these closely related taxa. Given the poor predictive power of the models to estimate lipid-free δ(13)C values, and the unpredictable changes in δ(15)N values due to lipid-extraction, we recommend against arithmetical normalization in accounting for lipid effects on δ(13)C values for balaenopterid skin or blubber samples. Rather, we recommend that duplicate analysis of lipid-extracted (δ(13)C values) and non-treated tissues (δ(15)N values) be used. Copyright © 2012 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Chen, S.; Gagnon, A. C.; Adkins, J. F.
2017-12-01
The stable isotope compositions of biogenic carbonates have been used for paleoceanographic and paleoclimatic reconstructions for decades, and produced some of the most iconic records in the field. However, we still lack a fully mechanistic understanding of the stable isotope proxies, especially the biological overprint on the environmental signals termed "vital effects". A ubiquitous feature of stable isotope vital effects in marine calcifying organisms is a strong correlation between δ18O and δ13C in a range of values that are depleted from equilibrium. Two mechanisms have been proposed to explain this correlation, one based on kinetic isotope effects during CO2(aq)-HCO3- inter-conversion, the other based on equilibrium isotope exchange during pH dependent speciation of the dissolved inorganic carbon pool. Neither mechanism explains all the stable isotope features observed in biogenic carbonates. Here we present a fully kinetic model of biomineralization and its isotope effects using deep sea corals as a test organism. A key component of our model is the consideration of the enzyme carbonic anhydrase in catalyzing the CO2(aq)-HCO3- inter-conversion reactions in the extracellular calcifying fluid (ECF). We find that the amount of carbonic anhydrase not only modulates the carbonate chemistry of the calcifying fluid, but also helps explain the slope of the δ18O-δ13C correlation. With this model, we are not only able to fit deep sea coral data, but also explain the stable isotope vital effects of other calcifying organisms. This fully kinetic model of stable isotope vital effects and the underlying calcification dynamics may also help us better understand mechanisms of other paleoceanographic tracers in biogenic carbonates, including boron isotopes and trace metal proxies.
Rate-dependent carbon and nitrogen kinetic isotope fractionation in hydrolysis of isoproturon.
Penning, Holger; Cramer, Christopher J; Elsner, Martin
2008-11-01
Stable isotope fractionation permits quantifying contaminant degradation in the field when the transformation reaction is associated with a consistent isotope enrichment factor epsilon. When interpreted in conjunction with dual isotope plots, isotope fractionation is also particularly useful for elucidating reaction mechanisms. To assess the consistency of epsilon and dual isotope slopes in a two-step reaction, we investigated the abiotic hydrolysis of the herbicide isoproturon (3-(4-isopropylphenyl)-1,1-dimethylurea) using a fragmentation method that allows measuring isotope ratios in different parts of the molecule. Carbon and nitrogen position-specific isotope fractionation, as well as slopes in dual isotope plots, varied linearly with rate constants k(obs) depending on the presence of buffers that mediate the initial zwitterion formation. The correlation can be explained by two consecutive reaction steps (zwitterion formation followed by dimethylamine elimination) each of which has a different kinetic isotope effect and may be rate-limiting. Intrinsic isotope effects for both steps, extracted from our kinetic data using a novel theoretical treatment, agree well with values computed from density functional calculations. Our study therefore demonstrates that more variable isotope fractionation may be observed in simple chemical reactions than commonly thought, but that consistent epsilon or dual isotope slopes may nonetheless be encountered in certain molecular fragments.
Böhlke, John Karl; Mroczkowski, Stanley J.; Sturchio, Neil C.; Heraty, Linnea J.; Richman, Kent W.; Sullivan, Donald B.; Griffith, Kris N.; Gu, Baohua; Hatzinger, Paul B.
2017-01-01
RationalePerchlorate (ClO4−) is a common trace constituent of water, soils, and plants; it has both natural and synthetic sources and is subject to biodegradation. The stable isotope ratios of Cl and O provide three independent quantities for ClO4− source attribution and natural attenuation studies: δ37Cl, δ18O, and δ17O (or Δ17O or 17Δ) values. Documented reference materials, calibration schemes, methods, and interferences will improve the reliability of such studies.MethodsThree large batches of KClO4 with contrasting isotopic compositions were synthesized and analyzed against VSMOW-SLAP, atmospheric O2, and international nitrate and chloride reference materials. Three analytical methods were tested for O isotopes: conversion of ClO4− to CO for continuous-flow IRMS (CO-CFIRMS), decomposition to O2 for dual-inlet IRMS (O2-DIIRMS), and decomposition to O2 with molecular-sieve trap (O2-DIIRMS+T). For Cl isotopes, KCl produced by thermal decomposition of KClO4 was reprecipitated as AgCl and converted into CH3Cl for DIIRMS.ResultsKClO4 isotopic reference materials (USGS37, USGS38, USGS39) represent a wide range of Cl and O isotopic compositions, including non-mass-dependent O isotopic variation. Isotopic fractionation and exchange can affect O isotope analyses of ClO4− depending on the decomposition method. Routine analyses can be adjusted for such effects by normalization, using reference materials prepared and analyzed as samples. Analytical errors caused by SO42−, NO3−, ReO42−, and C-bearing contaminants include isotope mixing and fractionation effects on CO and O2, plus direct interference from CO2 in the mass spectrometer. The results highlight the importance of effective purification of ClO4− from environmental samples.ConclusionsKClO4 reference materials are available for testing methods and calibrating isotopic data for ClO4− and other substances with widely varying Cl or O isotopic compositions. Current ClO4−extraction, purification, and analysis techniques provide relative isotope-ratio measurements with uncertainties much smaller than the range of values in environmental ClO4−, permitting isotopic evaluation of environmental ClO4− sources and natural attenuation.
Szpak, Paul; Longstaffe, Fred J; Millaire, Jean-François; White, Christine D
2012-01-01
Stable isotope analysis is being utilized with increasing regularity to examine a wide range of issues (diet, habitat use, migration) in ecology, geology, archaeology, and related disciplines. A crucial component to these studies is a thorough understanding of the range and causes of baseline isotopic variation, which is relatively poorly understood for nitrogen (δ(15)N). Animal excrement is known to impact plant δ(15)N values, but the effects of seabird guano have not been systematically studied from an agricultural or horticultural standpoint. This paper presents isotopic (δ(13)C and δ(15)N) and vital data for maize (Zea mays) fertilized with Peruvian seabird guano under controlled conditions. The level of (15)N enrichment in fertilized plants is very large, with δ(15)N values ranging between 25.5 and 44.7‰ depending on the tissue and amount of fertilizer applied; comparatively, control plant δ(15)N values ranged between -0.3 and 5.7‰. Intraplant and temporal variability in δ(15)N values were large, particularly for the guano-fertilized plants, which can be attributed to changes in the availability of guano-derived N over time, and the reliance of stored vs. absorbed N. Plant δ(13)C values were not significantly impacted by guano fertilization. High concentrations of seabird guano inhibited maize germination and maize growth. Moreover, high levels of seabird guano greatly impacted the N metabolism of the plants, resulting in significantly higher tissue N content, particularly in the stalk. The results presented in this study demonstrate the very large impact of seabird guano on maize δ(15)N values. The use of seabird guano as a fertilizer can thus be traced using stable isotope analysis in food chemistry applications (certification of organic inputs). Furthermore, the fertilization of maize with seabird guano creates an isotopic signature very similar to a high-trophic level marine resource, which must be considered when interpreting isotopic data from archaeological material.
Evidence for mass-dependent isotopic fractionation of strontium in a glaciated granitic watershed
NASA Astrophysics Data System (ADS)
de Souza, Gregory F.; Reynolds, Ben C.; Kiczka, Mirjam; Bourdon, Bernard
2010-05-01
The stable isotope composition of strontium (expressed as δ 88/86Sr) may provide important constraints on the global exogenic strontium cycle. Here, we present δ 88/86Sr values and 87Sr/ 86Sr ratios for granitoid rocks, a 150 yr soil chronosequence formed from these rocks, surface waters and plants in a small glaciated watershed in the central Swiss Alps. Incipient chemical weathering in this young system, whether of inorganic or biological origin, has no resolvable effect on the 87Sr/ 86Sr ratios and δ 88/86Sr values of bulk soils, which remain indistinguishable from bedrock in terms of Sr isotopic composition. Although due in part to the chemical heterogeneity of the forefield, the lack of a resolvable difference between soil and bedrock isotopic composition indicates that these soils have thus far witnessed minimal net loss of Sr; a low degree of chemical weathering is also implied by bulk soil chemistry. The isotopic composition of Sr in streamwater is more radiogenic than median soil, reflecting the preferential weathering of biotite in the catchment; streamwater δ 88/86Sr values, however, are indistinguishable from bulk soil δ 88/86Sr values, implying that no resolvable fractionation of Sr isotopes takes place during release to the weathering flux in the Damma forefield. Analyses of plant tissue reveal that plants ( Rhododendron and Vaccinium) preferentially assimilate the lighter isotopes of Sr such that their δ 88/86Sr values are significantly lower than those of the soils in which they grow. Additionally, δ 88/86Sr values of foliar and floral tissues are lower than those of roots, contrary to observations for Ca, for which Sr is often used as an analogue in weathering studies. We suggest that processes that discriminate against Sr in favour of Ca, due to the different nutritional requirement of plants for these two elements, are responsible for the observed contrast.
NASA Astrophysics Data System (ADS)
Keppler, Frank; Bahlmann, Enno; Greule, Markus; Schöler, Heinz Friedrich; Wittmer, Julian; Zetzsch, Cornelius
2018-05-01
Chloromethane (CH3Cl) is an important provider of chlorine to the stratosphere but detailed knowledge of its budget is missing. Stable isotope analysis is a potentially powerful tool to constrain CH3Cl flux estimates. The largest degree of isotope fractionation is expected to occur for deuterium in CH3Cl in the hydrogen abstraction reactions with its main sink reactant tropospheric OH and its minor sink reactant Cl atoms. We determined the isotope fractionation by stable hydrogen isotope analysis of the fraction of CH3Cl remaining after reaction with hydroxyl and chlorine radicals in a 3.5 m3 Teflon smog chamber at 293 ± 1 K. We measured the stable hydrogen isotope values of the unreacted CH3Cl using compound-specific thermal conversion isotope ratio mass spectrometry. The isotope fractionations of CH3Cl for the reactions with hydroxyl and chlorine radicals were found to be -264±45 and -280±11 ‰, respectively. For comparison, we performed similar experiments using methane (CH4) as the target compound with OH and obtained a fractionation constant of -205±6 ‰ which is in good agreement with values previously reported. The observed large kinetic isotope effects are helpful when employing isotopic analyses of CH3Cl in the atmosphere to improve our knowledge of its atmospheric budget.
Schaner, T.; Patterson, W.P.; Lantry, B.F.; O'Gorman, R.
2007-01-01
We investigated the potential for using carbon and oxygen isotope values of otolith carbonate as a method to distinguish naturally produced (wild) lake trout (Salvelinus namaycush) from hatchery-reared lake trout in Lake Ontario. We determined δ 13C(CaCO3) and δ 18O(CaCO3) values of otoliths from juvenile fish taken from two hatcheries, and of otoliths from wild yearlings. Clear differences in isotope values were observed between the three groups. Subsequently we examined otoliths from large marked and unmarked fish captured in the lake, determining isotope values for regions of the otolith corresponding to the first year of life. Marked (i.e., stocked) fish showed isotope ratios similar to one of the hatchery groups, whereas unmarked fish, (wild fish or stocked fish that lost the mark) showed isotope ratios similar either to one of the hatchery groups or to the wild group. We interpret these data to suggest that carbon and oxygen isotope values can be used to determine the origin of lake trout in Lake Ontario, if a catalogue of characteristic isotope values from all candidate years and hatcheries is compiled.
Isotopic exchange of hydrogen in aromatic amino acids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pshenichnikova, A.B.; Karnaukhova, E.N.; Mitsner, B.I.
The kinetics of the isotopic replacement of hydrogen in the aromatic amino acids L-tryptophan, L-tyrosine, and L-phenylalanine in solutions of deuterochloric and deuterosulfuric acids in deuterium oxide were investigated by PMR spectroscopy. The reactions were shown to be of first orders with respect both to the concentration of the substrate and to the activity of the deuterium ion. The isotopic effects of hydrogen and the values of the activation energy of H-D exchange in different positions of the aromatic ring in tryptophan and tyrosine were determined. The effect of properties of the medium on the rate of the isotopic exchangemore » of hydrogen is discussed. 17 refs., 2 figs., 2 tabs.« less
NASA Astrophysics Data System (ADS)
Pedentchouk, Nikolai; Mihailova, Alina; Abbado, Dimitri
2014-05-01
Traceability of the geographic origin of olive oils is an important issue from both commercial and health perspectives. This study evaluates the impact of environmental factors on stable C and H isotope compositions of n-alkanes in extra virgin olive oils from Croatia, France, Greece, Italy, Morocco, Portugal, Slovenia, and Spain. The data are used to investigate the applicability of stable isotope methodology for olive oil regional classification in the Mediterranean region. Analysis of stable C isotope composition of n-C29 alkane showed that extra virgin olive oils from Portugal and Spain have the most positive n-C29 alkane delta13C values. Conversely, olive oils from Slovenia, northern and central Italy are characterized by the most negative values. Overall, the n-C29 alkane delta13C values show a positive correlation with the mean air temperature during August-December and a negative correlation with the mean relative humidity during these months. Analysis of stable H isotope composition of n-C29 alkane revealed that the deltaD values are the most positive in olive oils from Greece and Morocco and the most negative in oils from northern Italy. The deltaD values of oils show significant correlation with all the analyses geographical parameters: the mean air temperature and relative humidity during August-December, the total amount of rainfall (the same months) and the annual deltaD values of precipitation. As predictor variables in the Categorical Data Analysis, the n-C29 alkane deltaD values show the most significant discriminative power, followed by the n-C29 alkane delta13C values. Overall, 93.4% of olive oil samples have been classified correctly into one of the production regions. Our findings suggest that an integrated analysis of C and H isotope compositions of n-alkanes extracted from extra virgin olive oil could become a useful tool for geographical provenancing of this highly popular food commodity.
Tian, Liyan; Guo, Qingjun; Zhu, Yongguan; He, Huijun; Lang, Yunchao; Hu, Jian; Zhang, Han; Wei, Rongfei; Han, Xiaokun; Peters, Marc; Yang, Junxing
2016-12-01
Phosphorus (P) in agricultural ecosystems is an essential and limited element for plants and microorganisms. However, environmental problems caused by P accumulation as well as by P loss have become more and more serious. Oxygen isotopes of phosphate can trace the sources, migration, and transformation of P in agricultural soils. In order to use the isotopes of phosphate oxygen, appropriate extraction and purification methods for inorganic phosphate from soils are necessary. Here, we combined two different methods to analyze the oxygen isotopic composition of inorganic phosphate (δ 18 O P ) from chemical fertilizers and different fractions (Milli-Q water, 0.5 mol L -1 NaHCO 3 (pH = 8.5), 0.1 mol L -1 NaOH and 1 mol L -1 HCl) of agricultural soils from the Beijing area. The δ 18 O P results of the water extracts and NaHCO 3 extracts in most samples were close to the calculated equilibrium value. These phenomena can be explained by rapid P cycling in soils and the influence of chemical fertilizers. The δ 18 O P value of the water extracts and NaHCO 3 extracts in some soil samples below the equilibrium value may be caused by the hydrolysis of organic P fractions mediated by extracellular enzymes. The δ 18 O P values of the NaOH extracts were above the calculated equilibrium value reflecting the balance state between microbial uptake of phosphate and the release of intracellular phosphate back to the soil. The HCl extracts with the lowest δ 18 O P values and highest phosphate concentrations indicated that the HCl fraction was affected by microbial activity. Hence, these δ 18 O p values likely reflected the oxygen isotopic values of the parent materials. The results suggested that phosphate oxygen isotope analyses could be an effective tool in order to trace phosphate sources, transformation processes, and its utilization by microorganisms in agricultural soils.
Bostic, Joshua N; Palafox, Sherilyn J; Rottmueller, Marina E; Jahren, A Hope
2015-05-30
Isotope ratio mass spectrometry (IRMS) is used extensively to reconstruct general attributes of prehistoric and modern diets in both humans and animals. In order to apply these methods to the accurate determination of specific intakes of foods/nutrients of interest, the isotopic signature of individually consumed foods must be constrained. For example, 86% of the calories consumed in the USA are derived from processed and prepared foods, but the relationship between the stable isotope composition of raw ingredients and the resulting products has not been characterized. To examine the effect of common cooking techniques on the stable isotope composition of grain-based food items, we prepared yeast buns and sugar cookies from standardized recipes and measured bulk δ(13) C and δ(15) N values of samples collected throughout a 75 min fermentation process (buns) and before and after baking at 190°C (buns and cookies). Simple isotope mixing models were used to determine if the isotopic signatures of 13 multi-ingredient foods could be estimated from the isotopic signatures of their constituent raw ingredients. No variations in δ(13) C or δ(15) N values were detected between pre- and post-baked yeast buns (pre: -24.78‰/2.61‰, post: -24.75‰/2.74‰), beet-sugar cookies (pre: -24.48‰/3.84‰, post: -24.47‰/3.57‰), and cane-sugar cookies (pre: -19.07‰/2.97‰, post: -19.02‰/3.21‰), or throughout a 75 min fermentation process in yeast buns. Using isotopic mass balance equations, the δ(13) C/δ(15) N values of multi-ingredient foods were estimated from the isotopic composition of constituent raw ingredients to within 0.14 ± 0.13‰/0.24 ± 0.17‰ for gravimetrically measured recipes and 0.40 ± 0.38‰/0.58 ± 0.53‰ for volumetrically measured recipes. Two common food preparation techniques, baking and fermentation, do not substantially affect the carbon or nitrogen isotopic signature of grain-based foods. Mass-balance equations can be used to accurately estimate the isotopic signature of multi-ingredient food items for which quantitative ingredient information is available. Copyright © 2015 John Wiley & Sons, Ltd.
Ichiyanagi, Kimpei; Tanoue, Masahiro
2016-01-01
Spatial distribution of annual mean stable isotopes in precipitation (δ(18)O, δ(2)H) was observed at 56 sites across Japan throughout 2013. Annual mean δ(18)O values showed a strong latitude effect, from -12.4 ‰ in the north to -5.1 ‰ in the south. Annual mean d-excess values ranged from 8 to 21 ‰, and values on the Sea of Japan side in Northern and Eastern Japan were relatively higher than those on the Pacific Ocean side. The local meteoric water line (LMWL) and isotope effects were based on the annual mean values from all sites across Japan as divided into distinct regions: the Sea of Japan side to the Pacific Ocean side and Northeastern to Southwestern Japan. Slopes and intercepts of LMWL ranged from 7.4 to 7.8 and 9.8 to 13.0, respectively. Slopes for latitude, altitude, and temperature effects ranged from -0.27 to -0.48 ‰/°N, -0.0034 to -0.0053 ‰/m, and 0.36 to 0.46 ‰/°C, respectively, with statistically significance at the 99 % level. However, there was no precipitation amount effect. From the result of a multiple regression analysis, the empirical formula of annual mean δ(18)O in precipitation from latitude and altitude for all sites across Japan was determined to be δ(18) O = -0.348 (LAT) - 0.00307 (ALT) + 4.29 (R(2) = 0.59). Slopes for latitude and altitude ranged from - 0.28 to - 0.51, and - 0.0019 to - 0.0045, respectively. Even though site distribution was uneven, these equations are the first trial estimation for annual mean stable isotopes in precipitation across Japan. Further research performed on the monthly basis is required to elucidate factors controlling the spatiotemporal variability of stable isotopes in precipitation across Japan.
Pavon, Jorge Alex; Fitzpatrick, Paul F.
2006-01-01
Phenylalanine hydroxylase (PheH) and tryptophan hydroxylase (TrpH) catalyze the aromatic hydroxylation of phenylalanine and tryptophan, forming tyrosine and 5-hydroxytryptophan, respectively. The reactions of PheH and TrpH have been investigated with [4-2H]-, [3,5-2H2]-, and 2H5-phenylalanine as substrates. All Dkcat values are normal with Δ117PheH, the catalytic core of rat phenylalanine hydroxylase, ranging from 1.12–1.41. In contrast, for Δ117PheH V379D, a mutant protein in which the stoichiometry between tetrahydropterin oxidation and amino acid hydroxylation is altered, the Dkcat value with [4-2H]-phenylalanine is 0.92 but is normal with [3,5-2H2]-phenylalanine. The ratio of tetrahydropterin oxidation to amino acid hydroxylation for Δ117PheH V379D shows a similar inverse isotope effect with [4-2H]-phenylalanine. Intramolecular isotope effects, determined from the deuterium contents of the tyrosine formed from [4-2H]-and [3,52H2]-phenylalanine, are identical for Δ117PheH and Δ117PheH V379D, suggesting that steps subsequent to oxygen addition are unaffected in the mutant protein. The inverse effects are consistent with the reaction of an activated ferryl-oxo species at the para position of the side chain of the amino acid to form a cationic intermediate. The normal effects on the Dkcat value for the wild-type enzyme are attributed to an isotope effect of 5.1 on the tautomerization of a dienone intermediate to tyrosine with a rate constant 6- to7-fold that for hydroxylation. In addition, there is a slight (∼34%) preference for the loss of the hydrogen originally at C4 of phenylalanine. With 2H5-indole-tryptophan as a substrate for Δ117PheH, the Dkcat value is 0.89, consistent with hydroxylation being rate-limiting in this case. When deuterated phenylalanines are used as substrates for TrpH, the Dkcat values are within error of those for Δ117PheH V379D. Overall, these results are consistent with the aromatic amino acid hydroxylases all sharing the same chemical mechanism, but with the isotope effect for hydroxylation by PheH being masked by tautomerization of an enedione intermediate to tyrosine. PMID:16953590
NASA Astrophysics Data System (ADS)
Fu, Qi; Socki, Richard A.; Niles, Paul B.
2015-04-01
Experiments were performed to better understand the role of environmental factors on reaction pathways and corresponding carbon isotope fractionations during abiotic hydrothermal synthesis of organic compounds using piston cylinder apparatus at 750 °C and 5.5 kbars. Chemical compositions of experimental products and corresponding carbon isotopic values were obtained by a Pyrolysis-GC-MS-IRMS system. Alkanes (methane and ethane), straight-chain saturated alcohols (ethanol and n-butanol) and monocarboxylic acids (formic and acetic acids) were generated with ethanol being the only organic compound with higher δ13C than CO2. CO was not detected in experimental products owing to the favorable water-gas shift reaction under high water pressure conditions. The pattern of δ13C values of CO2, carboxylic acids and alkanes are consistent with their equilibrium isotope relationships: CO2 > carboxylic acids > alkanes, but the magnitude of the fractionation among them is higher than predicted isotope equilibrium values. In particular, the isotopic fractionation between CO2 and CH4 remained constant at ∼31‰, indicating a kinetic effect during CO2 reduction processes. No "isotope reversal" of δ13C values for alkanes or carboxylic acids was observed, which indicates a different reaction pathway than what is typically observed during Fischer-Tropsch synthesis under gas phase conditions. Under constraints imposed in experiments, the anomalous 13C isotope enrichment in ethanol suggests that hydroxymethylene is the organic intermediate, and that the generation of other organic compounds enriched in 12C were facilitated by subsequent Rayleigh fractionation of hydroxymethylene reacting with H2 and/or H2O. Carbon isotope fractionation data obtained in this study are instrumental in assessing the controlling factors on abiotic formation of organic compounds in hydrothermal systems. Knowledge on how environmental conditions affect reaction pathways of abiotic synthesis of organic compounds is critical for understanding deep subsurface ecosystems and the origin of organic compounds on Mars and other planets.
NASA Astrophysics Data System (ADS)
Huyghe, Damien; Mouthereau, Frédéric; Sébilo, Mathieu; Vacherat, Arnaud; Ségalen, Loïc; Richard, Patricia; Biron, Philippe; Bariac, Thierry
2018-02-01
Understanding how orogenic topography controls the spatial distribution and isotopic composition of precipitation is critical for paleoaltitudinal reconstructions. Here, we determine the isotopic composition (δ18O and δD) of 82 small rivers and springs from small catchments in the Pyrenees. Calculation of the deuterium excess (d-excess) parameter allows the distinction of four distinct isotopic provinces with d-excess values of between 15 and 22‰ in the northwest, between 7 and 14‰ in the central northern Pyrenees and between 3 and 11‰ in the northeast. The southern Pyrenees have a homogenous d-excess signature ranging from 7 to 14‰. Our results show significant local moisture recycling and/or rain amount effect in the northwestern Pyrenees, and control by evaporation processes during rainfall events in the southern Pyrenees and for low elevated samples of the northeast of the range. Based on the distribution of d-excess values, we estimate contrasting isotope lapse rates of -2.9/-21.4‰/km (δ18O/δD) in the northwest, -2.7/-21.4‰/km (δ18O/δD) in the north central and -3.7/-31.7‰/km (δ18O/δD) in the northeastern Pyrenees. The southern Pyrenees show distinctly higher lapse rates of -9.5/-77.5‰/km (δ18O/δD), indicating that in this area the altitudinal effect in not the only parameter driving isotopic composition of rivers. Despite their relatively low topographic gradient, the Pyrenees exert a direct control on the isotopic composition of river waters, especially on their northern side. The variations in isotopic composition-elevation relationships documented along the strike of the range are interpreted to reflect an increasing continentality effect driven by wind trajectories parallel to the range, and mixing with Mediterranean air masses. Despite these effects, the measurable orographic effect on precipitation in the Pyrenees proves that the isotopic composition approach for reconstructing past topography is applicable to low-elevation orogens.
Calculations on the half-lives of Cluster decay in two-potential approach
NASA Astrophysics Data System (ADS)
Soylu, A.
The half-lives of the cluster decay (CD) from the isotopes having the known experimental values, the half-lives of the α-decay (AD) of same nuclei and also the branching ratios are obtained, within the framework of two-potential approach with cosh potential including with and without the isospin effects. Using two-potential approach and taking into account the isospin effects in the calculations decrease the rms values and they improve the results. The obtained branching ratios are in good agreement with the experimental ones for some isotopes. It is obtained that the isospin-dependent potentials have an influence on the half-lives of the cluster decays of nuclei. Present calculations would be important for predicting the experimental half-lives and branching ratios for the cluster decays of different types of isotopes.
NASA Astrophysics Data System (ADS)
Schulze, Marie; Ziegerick, Marco; Horn, Ingo; Weyer, Stefan; Vogt, Carla
2017-04-01
In comparison to isotope analysis of dissolved samples femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry (fs-LA-MC-ICP-MS) enables precise isotope ratio analyses consuming much less sample material and with a minimum effort in sample preparation. This is especially important for the investigation of valuable historical objects for which visual traces of sampling are unwanted. The present study provides a basis for tin isotope ratio measurements using LA-MC-ICP-MS technique. For this, in house isotope standards had to be defined. Investigations on interferences and matrix effects illustrate that beside Sb only high Te contents (with values above those to be expected in cassiterite) result in a significant shift of the measured tin isotope ratios. This effect can partly be corrected for using natural isotope abundances. However, a natural isotope fractionation of Te cannot be excluded. Tin beads reduced from cassiterite were analysed by laser ablation and after dissolution. It was shown that tin isotope ratios can be determined accurately by using fs-LA-MC-ICP-MS. Furthermore the homogeneity of tin isotope ratios in cassiterite was proven.
NASA Astrophysics Data System (ADS)
Faghihi, V.; Kozicki, M.; Aerts-Bijma, A. T.; Jansen, H. G.; Spriensma, J. J.; Peruzzi, A.; Meijer, H. A. J.
2015-12-01
This paper is the second of two articles on the quantification of isotope effects on the triple point temperature of water. In this second article, we address the combined effects of 18O and 17O isotopes. We manufactured five triple point cells with waters with 18O and 17O abundances exceeding widely the natural abundance range while maintaining their natural 18O/17O relationship. The 2H isotopic abundance was kept close to that of VSMOW (Vienna Standard Mean Ocean Water). These cells realized triple point temperatures ranging between -220 μK to 1420 μK with respect to the temperature realized by a triple point cell filled with VSMOW. Our experiment allowed us to determine an accurate and reliable value for the newly defined combined 18, 17O correction parameter of AO = 630 μK with a combined uncertainty of 10 μK. To apply this correction, only the 18O abundance of the TPW needs to be known (and the water needs to be of natural origin). Using the results of our two articles, we recommend a correction equation along with the coefficient values for isotopic compositions differing from that of VSMOW and compare the effect of this new equation on a number of triple point cells from the literature and from our own institute. Using our correction equation, the uncertainty in the isotope correction for triple point cell waters used around the world will be <1 μK.
Wen, Sheng; Feng, Yanli; Wang, Xinming; Sheng, Guoying; Fu, Jiamo; Bi, Xinhui
2004-01-01
A novel method has been developed for compound-specific isotope analysis for acetone via DNPH (2,4-dinitrophenylhydrazine) derivatization together with combined gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). Acetone reagents were used to assess delta13C fractionation during the DNPH derivatization process. Reduplicate delta13C analyses were designed to evaluate the reproducibility of the derivatization, with an average error (1 standard deviation) of 0.17 +/- 0.05 per thousand, and average analytical error of 0.28 +/- 0.09 per thousand. The derivatization process introduces no isotopic fractionation for acetone (the average difference between the predicted and analytical delta13C values was 0.09 +/- 0.20 per thousand, within the precision limits of the GC/C/IRMS measurements), which permits computation of the delta13C values for the original underivatized acetone through a mass balance equation. Together with further studies of the carbon isotopic effect during the atmospheric acetone-sampling procedure, it will be possible to use DNPH derivatization for carbon isotope analysis of atmospheric acetone. Copyright (c) 2004 John Wiley & Sons, Ltd.
Fate and lability of silver in soils: Effect of ageing
The fate and lability of added soluble Ag in soils over time was examined by measurement of labile metal (E-value) by isotopic dilution using the 110mAg radioactive isotope and the solid-phase speciation of Ag by X-ray absorption near edge structure (XANES) spectrosco...
NASA Astrophysics Data System (ADS)
Cronin, T. M.; Marzen, R.; O'Regan, M.; Dwyer, G. S.
2016-12-01
The stable isotope compositions of biogenic carbonates have been used for paleoceanographic and paleoclimatic reconstructions for decades, and produced some of the most iconic records in the field. However, we still lack a fully mechanistic understanding of the stable isotope proxies, especially the biological overprint on the environmental signals termed "vital effects". A ubiquitous feature of stable isotope vital effects in marine calcifying organisms is a strong correlation between δ18O and δ13C in a range of values that are depleted from equilibrium. Two mechanisms have been proposed to explain this correlation, one based on kinetic isotope effects during CO2(aq)-HCO3- inter-conversion, the other based on equilibrium isotope exchange during pH dependent speciation of the dissolved inorganic carbon pool. Neither mechanism explains all the stable isotope features observed in biogenic carbonates. Here we present a fully kinetic model of biomineralization and its isotope effects using deep sea corals as a test organism. A key component of our model is the consideration of the enzyme carbonic anhydrase in catalyzing the CO2(aq)-HCO3- inter-conversion reactions in the extracellular calcifying fluid (ECF). We find that the amount of carbonic anhydrase not only modulates the carbonate chemistry of the calcifying fluid, but also helps explain the slope of the δ18O-δ13C correlation. With this model, we are not only able to fit deep sea coral data, but also explain the stable isotope vital effects of other calcifying organisms. This fully kinetic model of stable isotope vital effects and the underlying calcification dynamics may also help us better understand mechanisms of other paleoceanographic tracers in biogenic carbonates, including boron isotopes and trace metal proxies.
Ge and Fe Isotope Fractionation in Metabasites during Subduction-Zone Metamorphism
NASA Astrophysics Data System (ADS)
Luais, B.; El Korh, A. M. T.; Boiron, M. C.; Deloule, E.; Cividini, D.
2016-12-01
Non-traditional stable isotope fractionation during subduction of oceanic crust provides a powerful but challenging tool for understanding geochemical processes in the sub-arc mantle. Iron and germanium are strongly sensitive to low-temperature (T) hydrothermal processes (< 350°C), but can also fractionate at high-T (>700°C) [1-4]. We measured Fe and Ge isotopes in high-pressure metabasites of hydrothermally altered MORB (1.7-2.3 GPa; 550-600°C [5]) from the Ile de Groix (France) to study their behaviour during subduction and fluid-rock interactions. Eclogites and blueschists have δ74GeNIST3120a values (+0.42-0.65‰) similar to those of tholeiitic basalts (+0.55-0.57‰ [2]), indicating a negligible effect of hydrothermal alteration on δ74Ge values. Weak decreases in δ74Ge values occur during dehydration from blueschist to eclogite facies, and in greenschists showing evidence of restricted fluid-rock interaction, but remain close to the HP range (+0.39-0.49‰). This near constancy is attributed to stability of garnet, the main Ge host. By contrast, albite and calcite-bearing greenschists that suffer garnet breakdown show evidence of Ge isotope fractionation (δ74Ge = +0.84-0.98‰) during intensive fluid interaction in a reduced context (Fe2+/Fetot= 0.77-0.80). The metabasites have δ56FeIRMM-014 values (+0.16-0.33‰) heavier than MORBs-OIBs (+0.07-0.18‰ [3]). Unlike Ge isotopes, Fe isotopes correlate with HFSE and mainly reflect protolith heterogeneity. The increase in δ56Fe compared to igneous basic rocks results from open-system hydrothermal alteration prior to subduction. Small correlated variations in Fe elemental (Fe2+/Fetot) and isotopic compositions between blueschists, eclogites and greenschists suggest that Fe isotope fractionation was buffered by the iron of the basic protoliths during subduction and exhumation. Thus metasomatism related to fluids derived from subducted hydrothermally altered metabasites might have little effect on mantle Ge and Fe isotope compositions under subsolidus conditions. [1] Rouxel et al 2003, Chem Geol 202, 155-182. [2] Luais 2012. Chem Geol 334, 295-311. [3] Teng et al, 2013, GCA 107, 12-26. [4] Escoube et al 2015. GCA 167, 93-112. [5] El Korh et al 2009, J Petrol 50, 1107-1148.
NASA Astrophysics Data System (ADS)
Rätzke, K.; Hüppe, P. W.; Faupel, F.
1992-04-01
The isotope effect E=(Dα/Dβ-1)/[(mβ/mα)1/2-1] of cobalt diffusion has been measured in melt-spun amorphous Co76.7Fe2Nb14.3B7 ribbon at different stages of structural relaxation. A drastic drop of the isotope effect from E>0.5 in the as-quenched glass to E=0.1 in the relaxed state wass observed. While the latter value relflects highly cooperative diffusion, the large isotope effect in the as-quenched ribbon points to the prevalence of single-atom jumps and vacancylike holes of excess volume.
Isotope Ratio Monitoring Gas Chromatography Mass Spectrometry (IRM-GCMS)
NASA Technical Reports Server (NTRS)
Freeman, K. H.; Ricci, S. A.; Studley, A.; Hayes, J. M.
1989-01-01
On Earth, the C-13 content of organic compounds is depleted by roughly 13 to 23 permil from atmospheric carbon dioxide. This difference is largely due to isotope effects associated with the fixation of inorganic carbon by photosynthetic organisms. If life once existed on Mars, then it is reasonable to expect to observe a similar fractionation. Although the strongly oxidizing conditions on the surface of Mars make preservation of ancient organic material unlikely, carbon-isotope evidence for the existence of life on Mars may still be preserved. Carbon depleted in C-13 could be preserved either in organic compounds within buried sediments, or in carbonate minerals produced by the oxidation of organic material. A technique is introduced for rapid and precise measurement of the C-13 contents of individual organic compounds. A gas chromatograph is coupled to an isotope-ratio mass spectrometer through a combustion interface, enabling on-line isotopic analysis of isolated compounds. The isotope ratios are determined by integration of ion currents over the course of each chromatographic peak. Software incorporates automatic peak determination, corrections for background, and deconvolution of overlapped peaks. Overall performance of the instrument was evaluated by the analysis of a mixture of high purity n-alkanes of know isotopic composition. Isotopic values measured via IRM-GCMS averaged withing 0.55 permil of their conventionally measured values.
NASA Astrophysics Data System (ADS)
Magdas, D. A.; Cristea, G.; Cordea, D. V.; Bot, A.; Puscas, R.; Radu, S.; Mirel, V.; Mihaiu, M.
2013-11-01
Product origin is of great importance for consumers especially because its association in consumer's perception with food quality, freedom from disease or pollution. Stable isotope ratio analysis is a powerful technique in food authenticity and traceability control which has been introduced within the European wine industry to ensure authenticity of wine provenance and to detect adulteration. Isotopic ratios measurements have also been successfully to other food commodities like: fruit juices, honey and dairy foods. The δ18O and δ2H content in milk water reflects the isotope composition of the ground water drunk by animals. Seasonal effects are also very important: in summer, milk water contains higher δ18O and δ2H values due to the fresh plants that are ate by animals. Relative carbon stable isotope abundances in total milk reflect the isotopic composition of the diet fed to the dairy cows. In this study the hydrogen, oxygen and carbon isotopic composition of 15 milk samples coming from a unit placed in the mountains of Transylvania was investigated. The distribution of the obtained isotopic values was than discussed taking into account that all the animals were feed with the same type of forage and consumed water was taken from the same source.
NASA Astrophysics Data System (ADS)
Barham, Milo; Blyth, Alison J.; Wallwork, Melinda D.; Joachimski, Michael M.; Martin, Laure; Evans, Noreen J.; Laming, Belinda; McDonald, Bradley J.
2017-11-01
Biogenic minerals such as dental apatite have become commonly analysed archives preserving geochemical indicators of past environmental conditions and palaeoecologies. However, post-mortem, biogenic minerals are modified due to the alteration/replacement of labile components, and recent moves to utilise micro-mammal tooth δ18O signatures for refined Cenozoic terrestrial palaeoclimate reconstructions has lacked consideration of the chemical effects of predator digestion. Here, the physical and chemical condition of laboratory-raised mouse (Mus musculus) teeth have been investigated in conjunction with their bulk phosphate and tissue-specific δ18O values prior, and subsequent, to ingestion and excretion by various predator species (owls, mammals and a reptile). Substantial variability (up to 2‰) in the δ18O values of both undigested teeth and those ingested by specific predators suggests significant natural heterogeneity of individual prey δ18O. Statistically distinct, lower δ18O values (∼0.7‰) are apparent in teeth ingested by barn owls compared to undigested controls as a result of the chemically and enzymatically active digestive and waste-pellet environments. Overall, dentine tissues preserve lower δ18O values than enamel, while the greatest modification of oxygen isotope signals is exhibited in the basal enamel of ingested teeth as a result of its incompletely mineralised state. However, recognition of 18O-depletion in chemically purified phosphate analyses demonstrates that modification of original δ18O values is not restricted to labile oxygen-bearing carbonate and organic phases. The style and magnitude of digestive-alteration varies with predator species and no correlation was identified between specific physical or minor/trace-element (patterns or concentrations) modification of ingested teeth and disruption of their primary oxygen isotope values. Therefore, there is a current lack of any screening tool for oxygen isotope disruption as a result of predation. These results point to the need for careful application of the micro-mammal oxygen isotope palaeoenvironmental proxy in future studies.
NASA Astrophysics Data System (ADS)
Gao, Li; Zheng, Mei; Fraser, Matthew; Huang, Yongsong
2014-02-01
Leaf wax hydrogen isotope proxies have been widely used to reconstruct past hydrological changes. However, published reconstructions have given little consideration for the potentially variable hydrogen isotopic fractionation relative to precipitation (ɛwax-p) under different climate and environmental settings. Chief among various potential factors controlling fractionation is relative humidity, which is known to strongly affect oxygen isotopic ratios of plant cellulose, but its effect on hydrogen isotopic fractionation of leaf waxes is still ambiguous. Analyses of lake surface sediments and individual modern plants have provided valuable information on the variability of ɛwax-p, but both approaches have significant limitations. Here, we present an alternative method to obtain the integrated, time-resolved ecosystem-level ɛwax-p values, by analyzing modern aerosol samples collected weekly from arid (Arizona lowlands) and humid subtropical (Atlanta, Georgia) environments during the main growth season. Because aerosol samples mainly reflect regional leaf wax resources, the extreme contrast in the hydroclimate and associated vegetation assemblages between our study sites allows us to rigorously assess the impact of relative humidity and associated vegetation assemblages on leaf wax hydrogen isotopic fractionation. We show there is only minor difference (mostly <10‰) in the mean ɛwax-p values in the two end-member environments. One possible explanation is that the positive isotopic effects of low relative humidity are offset by progressive replacement of trees with grasses that have a more negative apparent fractionation. Our results represent an important step toward quantitative interpretation of leaf wax hydrogen isotopic records.
B(E2)↑ Measurements for Radioactive Neutron-Rich Ge Isotopes: Reaching the N=50 Closed Shell
NASA Astrophysics Data System (ADS)
Padilla-Rodal, E.; Galindo-Uribarri, A.; Baktash, C.; Batchelder, J. C.; Beene, J. R.; Bijker, R.; Brown, B. A.; Castaños, O.; Fuentes, B.; del Campo, J. Gomez; Hausladen, P. A.; Larochelle, Y.; Lisetskiy, A. F.; Mueller, P. E.; Radford, D. C.; Stracener, D. W.; Urrego, J. P.; Varner, R. L.; Yu, C.-H.
2005-03-01
The B(E2;0+1→2+1) values for the radioactive neutron-rich germanium isotopes 78,80Ge and the closed neutron shell nucleus 82Ge were measured at the HRIBF using Coulomb excitation in inverse kinematics. These data allow a study of the systematic trend between the subshell closures at N=40 and 50. The B(E2) behavior approaching N=50 is similar to the trend observed for heavier isotopic chains. A comparison of the experimental results with a shell model calculation demonstrates persistence of the N=50 shell gap and a strong sensitivity of the B(E2) values to the effective interaction.
Oxygen isotope corrections for online δ34S analysis
Fry, B.; Silva, S.R.; Kendall, C.; Anderson, R.K.
2002-01-01
Elemental analyzers have been successfully coupled to stable-isotope-ratio mass spectrometers for online measurements of the δ34S isotopic composition of plants, animals and soils. We found that the online technology for automated δ34S isotopic determinations did not yield reproducible oxygen isotopic compositions in the SO2 produced, and as a result calculated δ34S values were often 1–3‰ too high versus their correct values, particularly for plant and animal samples with high C/S ratio. Here we provide empirical and analytical methods for correcting the S isotope values for oxygen isotope variations, and further detail a new SO2-SiO2 buffering method that minimizes detrimental oxygen isotope variations in SO2.
NASA Astrophysics Data System (ADS)
Crowley, B. E.; Blanco, M. B.; Arrigo-Nelson, S. J.; Irwin, M. T.
2013-10-01
The future of Madagascar’s forests and their resident lemurs is precarious. Determining how species respond to forest fragmentation is essential for management efforts. We use stable isotope biogeochemistry to investigate how disturbance affects resource partitioning between two genera of cheirogaleid lemurs ( Cheirogaleus and Microcebus) from three humid forest sites: continuous and fragmented forest at Tsinjoarivo, and selectively logged forest at Ranomafana. We test three hypotheses: (H1) cheirogaleids are unaffected by forest fragmentation, (H2) species respond individually to disturbance and may exploit novel resources in fragmented habitat, and (H3) species alter their behavior to rely on the same key resource in disturbed forest. We find significant isotopic differences among species and localities. Carbon data suggest that Microcebus feed lower in the canopy than Cheirogaleus at all three localities and that sympatric Cheirogaleus crossleyi and C. sibreei feed at different canopy heights in the fragmented forest. Microcbus have higher nitrogen isotope values than Cheirogaleus at all localities, indicating more faunivory. After accounting for baseline isotope values in plants, our results provide the most support for H3. We find similar isotopic variations among localities for both genera. Small differences in carbon among localities may reflect shifts in diet or habitat use. Elevated nitrogen values for cheirogaleid lemurs in fragments may reflect increased arthropod consumption or nutritional stress. These results suggest that cheirogaleids are affected by forest disturbance in Eastern Madagascar and stress the importance of accounting for baseline isotopic differences in plants in any work comparing localities.
Stable isotopes of captive cetaceans (killer whales and bottlenose dolphins).
Caut, Stéphane; Laran, Sophie; Garcia-Hartmann, Emmanuel; Das, Krishna
2011-02-15
There is currently a great deal of interest in using stable isotope methods to investigate diet, trophic level and migration in wild cetaceans. In order to correctly interpret the results stemming from these methods, it is crucial to understand how diet isotopic values are reflected in consumer tissues. In this study, we investigated patterns of isotopic discrimination between diet and blood constituents of two species of cetaceans (killer whale, Orcinus orca, and bottlenose dolphin, Tursiops truncatus) fed controlled diets over 308 and 312 days, respectively. Diet discrimination factors (Δ; mean ± s.d.) for plasma were estimated to Δ(13)C=2.3±0.6‰ and Δ(15)N=1.8±0.3‰, respectively, for both species and to Δ(13)C=2.7±0.3‰ and Δ(15)N=0.5±0.1‰ for red blood cells. Delipidation did not have a significant effect on carbon and nitrogen isotopic values of blood constituents, confirming that cetacean blood does not serve as a reservoir of lipids. In contrast, carbon isotopic values were higher in delipidated samples of blubber, liver and muscle from killer whales. The potential for conflict between fisheries and cetaceans has heightened the need for trophic information about these taxa. These results provide the first published stable isotope incorporation data for cetaceans, which are essential if conclusions are to be drawn on issues concerning trophic structures, carbon sources and diet reconstruction.
Stable carbon isotope fractionation by sulfate-reducing bacteria
NASA Technical Reports Server (NTRS)
Londry, Kathleen L.; Des Marais, David J.
2003-01-01
Biogeochemical transformations occurring in the anoxic zones of stratified sedimentary microbial communities can profoundly influence the isotopic and organic signatures preserved in the fossil record. Accordingly, we have determined carbon isotope discrimination that is associated with both heterotrophic and lithotrophic growth of pure cultures of sulfate-reducing bacteria (SRB). For heterotrophic-growth experiments, substrate consumption was monitored to completion. Sealed vessels containing SRB cultures were harvested at different time intervals, and delta(13)C values were determined for gaseous CO(2), organic substrates, and products such as biomass. For three of the four SRB, carbon isotope effects between the substrates, acetate or lactate and CO(2), and the cell biomass were small, ranging from 0 to 2 per thousand. However, for Desulfotomaculum acetoxidans, the carbon incorporated into biomass was isotopically heavier than the available substrates by 8 to 9 per thousand. SRB grown lithoautotrophically consumed less than 3% of the available CO(2) and exhibited substantial discrimination (calculated as isotope fractionation factors [alpha]), as follows: for Desulfobacterium autotrophicum, alpha values ranged from 1.0100 to 1.0123; for Desulfobacter hydrogenophilus, the alpha value was 0.0138, and for Desulfotomaculum acetoxidans, the alpha value was 1.0310. Mixotrophic growth of Desulfovibrio desulfuricans on acetate and CO(2) resulted in biomass with a delta(13)C composition intermediate to that of the substrates. The extent of fractionation depended on which enzymatic pathways were used, the direction in which the pathways operated, and the growth rate, but fractionation was not dependent on the growth phase. To the extent that environmental conditions affect the availability of organic substrates (e.g., acetate) and reducing power (e.g., H(2)), ecological forces can also influence carbon isotope discrimination by SRB.
Absolute Isotopic Abundance Ratios and the Accuracy of Δ47 Measurements
NASA Astrophysics Data System (ADS)
Daeron, M.; Blamart, D.; Peral, M.; Affek, H. P.
2016-12-01
Conversion from raw IRMS data to clumped isotope anomalies in CO2 (Δ47) relies on four external parameters: the (13C/12C) ratio of VPDB, the (17O/16O) and (18O/16O) ratios of VSMOW (or VPDB-CO2), and the slope of the triple oxygen isotope line (λ). Here we investigate the influence that these isotopic parameters exert on measured Δ47 values, using real-world data corresponding to 7 months of measurements; simulations based on randomly generated data; precise comparisons between water-equilibrated CO2 samples and between carbonate standards believed to share quasi-identical Δ47 values; reprocessing of two carbonate calibration data sets with different slopes of Δ47 versus T. Using different sets of isotopic parameters generally produces systematic offsets as large as 0.04 ‰ in final Δ47 values. What's more, even using a single set of isotopic parameters can produce intra- and inter-laboratory discrepancies in final Δ47 values, if some of these parameters are inaccurate. Depending on the isotopic compositions of the standards used for conversion to "absolute" values, these errors should correlate strongly with either δ13C or δ18O, or more weakly with both. Based on measurements of samples expected to display identical Δ47 values, such as 25°C water-equilibrated CO2 with different carbon and oxygen isotope compositions, or high-temperature standards ETH-1 and ETH-2, we conclude that the isotopic parameters used so far in most clumped isotope studies produces large, systematic errors controlled by the relative bulk isotopic compositions of samples and standards, which should be one of the key factors responsible for current inter-laboratory discrepancies. By contrast, the isotopic parameters of Brand et al. [2010] appear to yield accurate Δ47 values regardless of bulk isotopic composition. References:Brand, Assonov and Coplen [2010] http://dx.doi.org/10.1351/PAC-REP-09-01-05
NASA Astrophysics Data System (ADS)
Krklec, Kristina; Domínguez-Villar, David; Lojen, Sonja
2018-06-01
The stable isotope composition of precipitation records processes taking place within the hydrological cycle. Potentially, moisture sources are important controls on the stable isotope composition of precipitation, but studies focused on this topic are still scarce. We studied the moisture sources contributing to precipitation at Postojna (Slovenia) from 2009 to 2013. Back trajectory analyses were computed for the days with precipitation at Postojna. The moisture uptake locations were identified along these trajectories using standard hydrometeorological formulation. The moisture uptake locations were integrated in eight source regions to facilitate its comparison to the monthly oxygen isotope composition (δ18O values) of precipitation. Nearly half of the precipitation originated from continental sources (recycled moisture), and >40% was from central and western Mediterranean. Results show that moisture sources do not have a significant impact on the oxygen isotope composition at this site. We suggest that the large proportion of recycled moisture originated from transpiration rather than evaporation, which produced water vapour with less negative δ18O values. Thus the difference between the oceanic and local vapour source was reduced, which prevented the distinction of the moisture sources based on their oxygen isotope signature. Nevertheless, δ18O values of precipitation are partially controlled by climate parameters, which is of major importance for paleoclimate studies. We found that the main climate control on Postojna δ18O values of precipitation is the surface temperature. Amount effect was not recorded at this site, and the winter North Atlantic Oscillation (NAO) does not impact the δ18O values of precipitation. The Western Mediterranean Oscillation (WeMO) was correlated to oxygen stable isotope composition, although this atmospheric pattern was not a control. Instead we found that the link to δ18O values results from synoptic scenarios affecting WeMO index as well as temperature. Therefore, interpretation of δ18O values of precipitation in terms of climate is limited to surface temperature, although at least half of the variability observed still depends on unknown controls of the hydrological cycle.
NASA Astrophysics Data System (ADS)
Novak, Martin; Farkas, Juraj; Holmden, Chris; Hruska, Jakub; Curik, Jan; Stepanova, Marketa; Prechova, Eva; Veselovsky, Frantisek; Komarek, Arnost
2017-04-01
Recently, new isotope tools have become available to study the behavior of nutrients in stressed ecosystems. In this study, we focus on changes in the abundance ratio of calcium (Ca) isotopes accompanying biogeochemical processes in small forested catchments. We monitored del44Ca values in ecosystem pools and fluxes in four upland sites situated in the Czech Republic, Central Europe. A heavily acidified site in the Eagle Mts. (northern Czech Republic) experienced 13 times higher atmospheric Ca inputs, compared to the other three sites, which were less affected by forest decline. Industrial dust was responsible for the elevated Ca input. Del44Ca values of individual poos/fluxes were used to identify Ca sources for the bioavailable Ca soil reservoir and for runoff. The bedrock of the study sites differed (leucogranite, orthogneiss vs. serpentinite and amphibolite). Across the sites, mean del44Ca values increased in the order: spruce bark < fine roots < needles < soil < bedrock < canopy throughfall < open-area precipitation < runoff < soil water. Plant preferentially took up isotopically light Ca, while residual isotopically heavy Ca was sorbed to soil particles or exported via runoff. Even at sites with a low del44Ca values of bedrock, runoff had a high del44Ca value. At the base-poor site, most runoff came from atmospheric deposition and residual Ca following plant uptake. It appeared that bedrock weathering did not supply enough Ca to replenish the bioavailable Ca pool in the soil. Currently, we are analyzing Ca isotope composition of individual rock-forming minerals to better assess the effect of different weathering rates of minerals with low/high radiogenic 40Ca contents on runoff del44Ca.
Silicon Isotopic Fractionation of CAI-like Vacuum Evaporation Residues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knight, K; Kita, N; Mendybaev, R
2009-06-18
Calcium-, aluminum-rich inclusions (CAIs) are often enriched in the heavy isotopes of magnesium and silicon relative to bulk solar system materials. It is likely that these isotopic enrichments resulted from evaporative mass loss of magnesium and silicon from early solar system condensates while they were molten during one or more high-temperature reheating events. Quantitative interpretation of these enrichments requires laboratory determinations of the evaporation kinetics and associated isotopic fractionation effects for these elements. The experimental data for the kinetics of evaporation of magnesium and silicon and the evaporative isotopic fractionation of magnesium is reasonably complete for Type B CAI liquidsmore » (Richter et al., 2002, 2007a). However, the isotopic fractionation factor for silicon evaporating from such liquids has not been as extensively studied. Here we report new ion microprobe silicon isotopic measurements of residual glass from partial evaporation of Type B CAI liquids into vacuum. The silicon isotopic fractionation is reported as a kinetic fractionation factor, {alpha}{sub Si}, corresponding to the ratio of the silicon isotopic composition of the evaporation flux to that of the residual silicate liquid. For CAI-like melts, we find that {alpha}{sub Si} = 0.98985 {+-} 0.00044 (2{sigma}) for {sup 29}Si/{sup 28}Si with no resolvable variation with temperature over the temperature range of the experiments, 1600-1900 C. This value is different from what has been reported for evaporation of liquid Mg{sub 2}SiO{sub 4} (Davis et al., 1990) and of a melt with CI chondritic proportions of the major elements (Wang et al., 2001). There appears to be some compositional control on {alpha}{sub Si}, whereas no compositional effects have been reported for {alpha}{sub Mg}. We use the values of {alpha}Si and {alpha}Mg, to calculate the chemical compositions of the unevaporated precursors of a number of isotopically fractionated CAIs from CV chondrites whose chemical compositions and magnesium and silicon isotopic compositions have been previously measured.« less
O’Grady, Shannon P.; Valenzuela, Luciano O.; Remien, Christopher H.; Enright, Lindsey E.; Jorgensen, Matthew J.; Kaplan, Jay R.; Wagner, Janice D.; Cerling, Thure E.; Ehleringer, James R.
2012-01-01
The stable isotopic composition of drinking water, diet, and atmospheric oxygen influence the isotopic composition of body water (2H/1H, 18O/16O expressed as δ2H and δ18O). In turn, body water influences the isotopic composition of organic matter in tissues, such as hair and teeth, which are often used to reconstruct historical dietary and movement patterns of animals and humans. Here, we used a nonhuman primate system (Macaca fascicularis) to test the robustness of two different mechanistic stable isotope models: a model to predict the δ2H and δ18O values of body water and a second model to predict the δ2H and δ18O values of hair. In contrast to previous human-based studies, use of nonhuman primates fed controlled diets allowed us to further constrain model parameter values and evaluate model predictions. Both models reliably predicted the δ2H and δ18O values of body water and of hair. Moreover, the isotope data allowed us to better quantify values for two critical variables in the models: the δ2H and δ18O values of gut water and the 18O isotope fractionation associated with a carbonyl oxygen-water interaction in the gut (αow). Our modeling efforts indicated that better predictions for body water and hair isotope values were achieved by making the isotopic composition of gut water approached that of body water. Additionally, the value of αow was 1.0164, in close agreement with the only other previously measured observation (microbial spore cell walls), suggesting robustness of this fractionation factor across different biological systems. PMID:22553163
O'Grady, Shannon P; Valenzuela, Luciano O; Remien, Christopher H; Enright, Lindsey E; Jorgensen, Matthew J; Kaplan, Jay R; Wagner, Janice D; Cerling, Thure E; Ehleringer, James R
2012-07-01
The stable isotopic composition of drinking water, diet, and atmospheric oxygen influence the isotopic composition of body water ((2)H/(1)H, (18)O/(16)O expressed as δ(2) H and δ(18)O). In turn, body water influences the isotopic composition of organic matter in tissues, such as hair and teeth, which are often used to reconstruct historical dietary and movement patterns of animals and humans. Here, we used a nonhuman primate system (Macaca fascicularis) to test the robustness of two different mechanistic stable isotope models: a model to predict the δ(2)H and δ(18)O values of body water and a second model to predict the δ(2)H and δ(18)O values of hair. In contrast to previous human-based studies, use of nonhuman primates fed controlled diets allowed us to further constrain model parameter values and evaluate model predictions. Both models reliably predicted the δ(2)H and δ(18)O values of body water and of hair. Moreover, the isotope data allowed us to better quantify values for two critical variables in the models: the δ(2)H and δ(18)O values of gut water and the (18)O isotope fractionation associated with a carbonyl oxygen-water interaction in the gut (α(ow)). Our modeling efforts indicated that better predictions for body water and hair isotope values were achieved by making the isotopic composition of gut water approached that of body water. Additionally, the value of α(ow) was 1.0164, in close agreement with the only other previously measured observation (microbial spore cell walls), suggesting robustness of this fractionation factor across different biological systems. © 2012 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Rollion-Bard, Claire; Saulnier, Ségolène; Vigier, Nathalie; Schumacher, Aimryc; Chaussidon, Marc; Lécuyer, Christophe
2016-04-01
Magnesium content in the ocean is ≈ 1290 ppm and is one of the most abundant elements. It is involved in the carbon cycle via the dissolution and precipitation of carbonates, especially Mg-rich carbonates as dolomites. The Mg/Ca ratio of the ocean is believed to have changed through time. The causes of these variations, i.e. hydrothermal activity change or enhanced precipitation of dolomite, could be constrained using the magnesium isotope composition (δ26Mg) of carbonates. Brachiopods, as marine environmental proxies, have the advantage to occur worldwide in a depth range from intertidal to abyssal, and have been found in the geological record since the Cambrian. Moreover, as their shell is in low-Mg calcite, they are quite resistant to diagenetic processes. Here we report δ26Mg, δ18O, δ13C values along with trace element contents of one modern brachiopod specimen (Terebratalia transversa) and one fossil specimen (Terebratula scillae, 2.3 Ma). We combined δ26Mg values with oxygen and carbon isotope compositions and trace element contents to look for possible shell geochemical heterogeneities in order to investigate the processes that control the Mg isotope composition of brachiopod shells. We also evaluate the potential of brachiopods as a proxy of past seawater δ26Mg values. The two investigated brachiopod shells present the same range of δ26Mg variation (up to 2 ‰)). This variation cannot be ascribed to changes in environmental parameters, i.e. temperature or pH. As previously observed, the primary layer of calcite shows the largest degree of oxygen and carbon isotope disequilibrium relative to seawater. In contrast, the δ26Mg value of this layer is comparable to that of the secondary calcite layer value. In both T. scillae and T. transversa, negative trends are observable between magnesium isotopic compositions and oxygen and carbon isotopic compositions. These trends, combined to linear relationships between δ26Mg values and REE contents, are best explained by kinetic effects linked to changes in growth rate during the brachiopod life. The innermost calcite layer of T. transversa is in isotopic equilibrium for both oxygen and magnesium and could therefore be the best target for reconstructing past δ26Mg values of seawater.
Distinguishing sources of ground water recharge by using δ2H and δ18O
Blasch, Kyle W.; Bryson, Jeannie R.
2007-01-01
Stable isotope values of hydrogen and oxygen from precipitation and ground water samples were compared by using a volumetrically based mixing equation and stable isotope gradient to estimate the season and location of recharge in four basins. Stable isotopes were sampled at 11 precipitation sites of differing elevation during a 2-year period to quantify seasonal stable isotope contributions as a function of elevation. Supplemental stable isotope data collected by the International Atomic Energy Association during a 14-year period were used to reduce annual variability of the mean seasonal stable isotope data. The stable isotope elevation relationships and local precipitation elevation relationships were combined by using a digital elevation model to calculate the total volumetric contribution of water and stable isotope values as a function of elevation within the basins. The results of these precipitation calculations were compared to measured ground water stable isotope values at the major discharge points near the terminus of the basins. Volumetric precipitation contributions to recharge were adjusted to isolate contributing elevations. This procedure provides an improved representation of recharge contributions within the basins over conventional stable isotope methods. Stable isotope values from wells and springs at the terminus of each basin were used to infer the elevations of precipitation important for recharge of the regional ground water flow system. Ancillary climatic, geologic, and stable isotope values were used to further constrain the location where precipitation is entering the ground water flow system.
NASA Astrophysics Data System (ADS)
Piansawan, Tammarat; Saccon, Marina; Laumer, Werner; Gensch, Iulia; Kiendler-Scharr, Astrid
2015-04-01
Modeling of the global distribution of atmospheric ethane sources and sinks by using the 13C isotopic composition requires accurate knowledge of the carbon kinetic isotope effect (KIE) of its atmospheric removal reactions. The quantum mechanical prediction implies the necessity to elucidate the temperature dependence of KIE within atmospherically relevant temperature range by experiment. In this study, the KIE and its temperature dependence for ethane oxidation by OH radicals was investigated at ambient pressure in a temperature range of 243 K to 303 K. The chemical reactions were carried out in a 15 L PFE reaction chamber, suspended in a thermally controlled oven. The isotope ratios of the gas phase components during the course of the reactions were measured by Thermal Desorption -- Gas Chromatography -- Isotope Ratio Mass Spectrometry (TD-GC-IRMS). For each temperature, the KIE was derived from the temporal evolution of the concentration and stable carbon isotope ratio (δ13C) of ethane using a method adapted from the relative reaction rate concept. The room temperature KIE of the ethane reaction with OH radicals was found to be 6.85 ± 0.32 ‰. This value is in agreement with the previously reported value of 8.57 ± 1.95 ‰ [Anderson et al. 2004] but has a substantially lower uncertainty. The experimental results will be discussed with the KIE temperature dependence predicted by quantum mechanical calculations. Reference: Rebecca S. Anderson, Lin Huang, Richard Iannone, Alexandra E. Thompson, and Jochen Rudolph (2004), Carbon Kinetic Isotope Effects in the Gas Phase Reactions of Light Alkanes and Ethene with the OH Radical at 296 ± 4 K, J. Phys. Chem. A, 108, 11537--11544
NASA Astrophysics Data System (ADS)
Horst, A.; Lacrampe-Couloume, G.; Sherwood Lollar, B.
2015-12-01
Chlorofluorocarbons (CFCs) are ozone depleting compounds whose production was phased out by the regulations of the Montreal Protocol (1987). Accidental release and disposal also led to contamination of groundwater at many locations, however, and this legacy persists. Although very stable, CFCs may degrade via abiotic and biotic pathways. Quantification of the degree of transformation of CFCs has been challenging due to other processes such as dilution, sorption and volatilization. Compound specific stable carbon isotope analysis (CSIA) has been successfully applied for a variety of priority pollutants to distinguish degradation from other processes and to quantify transformation rates. A Purge & Trap - CSIA method developed in our lab was applied to determine the stable carbon isotopic signature of CFCs and HCFCs (hydrochlorofluorocarbons) in groundwater samples from a contaminated site. Preliminary results suggest that degradation of CFCs and HCFCs may result in enriched δ13C values, consistent with fractionation during bond breakage as has been reported for many other hydrocarbon pollutants. The effect of volatile loss during sampling on the isotopic signatures of CFCs was examined in laboratory experiments. Volatilization from pure phase CFCs showed a small inverse isotope effect during open system volatilization, opposite to the normal isotope effect generally observed during biodegradation. For volatilization of CFCs dissolved in water a much smaller isotope effect was observed. An important result from this work is that any volatile loss may introduce only a small change in CFC isotopic signatures in groundwater, and importantly, due to the opposite direction of isotope effects associated with volatilization versus degradation, any effects of volatile loss on the isotopic signatures cannot be confused with transformation of CFCs. At most, volatilization might contribute to a conservative estimate of the extent of degradation.
NASA Astrophysics Data System (ADS)
Stolper, Daniel A.; Eiler, John M.; Higgins, John A.
2018-04-01
The measurement of multiply isotopically substituted ('clumped isotope') carbonate groups provides a way to reconstruct past mineral formation temperatures. However, dissolution-reprecipitation (i.e., recrystallization) reactions, which commonly occur during sedimentary burial, can alter a sample's clumped-isotope composition such that it partially or wholly reflects deeper burial temperatures. Here we derive a quantitative model of diagenesis to explore how diagenesis alters carbonate clumped-isotope values. We apply the model to a new dataset from deep-sea sediments taken from Ocean Drilling Project site 807 in the equatorial Pacific. This dataset is used to ground truth the model. We demonstrate that the use of the model with accompanying carbonate clumped-isotope and carbonate δ18O values provides new constraints on both the diagenetic history of deep-sea settings as well as past equatorial sea-surface temperatures. Specifically, the combination of the diagenetic model and data support previous work that indicates equatorial sea-surface temperatures were warmer in the Paleogene as compared to today. We then explore whether the model is applicable to shallow-water settings commonly preserved in the rock record. Using a previously published dataset from the Bahamas, we demonstrate that the model captures the main trends of the data as a function of burial depth and thus appears applicable to a range of depositional settings.
Red deer bone and antler collagen are not isotopically equivalent in carbon and nitrogen.
Stevens, Rhiannon E; O'Connell, Tamsin C
2016-09-15
Bone and antler collagen δ(13) C and δ(15) N values are often assumed to be equivalent when measured in palaeodietary, palaeoclimate and palaeocological studies. Although compositionally similar, bone grows slowly and is remodelled whereas antler growth is rapid and remodelling does not occur. These different patterns of growth could result in isotopic difference within antler and between the two tissue types. Here we test whether red deer (Cervus elaphus) bone and antler δ(13) C and δ(15) N values are equivalent, and whether intra-antler isotopic values are uniform. Bone and antler were isotopically analysed from six stags that lived in a temperate maritime climate on the Isle of Rum, Scotland. Multiple antlers from different years were sampled per individual, together with a single bone sample per individual. Up to 12 samples were taken along the length of each antler (total of 25 antlers, 259 samples) so that a chronological record of the isotopic composition during antler growth could be obtained. Collagen was extracted and its δ(13) C and δ(15) N values were measured by continuous-flow isotope ratio mass spectrometry. Intra-antler collagen isotope signatures vary, and show that not all antlers from an individual or a growth year are equivalent in carbon and nitrogen isotopic ratios. δ(15) N values typically increase with distance along antler length, but no overall trend is observed in δ(13) C values. An isotopic offset is visible between bone and antler, with bone δ(13) C and δ(15) N values being higher in most cases. Bone and antler collagen δ(13) C and δ(15) N values are not isotopically equivalent and are therefore not directly comparable in palaeodietary, palaeoclimate and palaeocological studies. Bone and antler collagen isotopic differences probably relate to differential metabolic processes during the formation of the two tissues. Intra- and inter-antler isotopic variations probably reflect the isotopic composition of an individual's diet rather than physiological parameters, and may have the potential to provide high-resolution individual-specific information in modern and ancient cervid populations. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Prince, K.; Laya, J. C.; Betzler, C.; Eberli, G. P.; Zarikian, C.; Swart, P. K.; Blättler, C. L.; Reolid, J.; Reijmer, J.
2017-12-01
The Maldives record nearly continuous carbonate deposition from the Eocene to the Holocene, and its stable tectonic regime and lack of clastic input make it an ideal example for understanding the depositional and diagenetic dynamics of isolated carbonate platforms. The Kardiva platform ultimately drowned, but the amplitude and frequency of sea-level changes in the Miocene make it likely that subaerial exposure occurred during its evolution. Abundant moldic porosity has been interpreted as meteoric diagenesis, but stable isotope evidence to support this has not been reported. Using bulk stable isotope analyses and petrographic methods, we sought to identify evidence of meteoric diagenesis by investigating the variations in grains, cements, porosity, δ13C, and δ18O at IODP Sites U1645, U1469, and U1470. Within the platform, grain distribution is variable with algae, benthic foraminifera, and corals representing the most abundant grain types. Cement abundance generally increases while porosity decreases with depth, with some variability. δ18O and δ13C range from -7.0‰ to 3.2‰ and -7‰ to 2.5‰, respectively. Petrography and isotope values show evidence for subaerial exposure and alteration by meteoric fluids, with a cross-plot of δ13C and δ18O showing the characteristic inverted "J" trend associated with dissolution and precipitation reactions mediated by meteoric fluids, resulting in more negative values. These results are compared to isotopic values for unaltered red algae and corals to account for the possibility of vital effects, but vital effects alone do not yield such low values. This evidence for meteoric diagenesis of the Kardiva Platform indicates variation between wet and dry periods, and also potential high-amplitude sea-level fluctuations during the Miocene in the Indo-Pacific region.
NASA Technical Reports Server (NTRS)
Engel, M. H.; Macko, S. A.; Qian, Y.; Silfer, J. A.
1995-01-01
A combined gas chromatography/isotope ratio mass spectrometry (GC/IRMS) method has been developed that permits the direct stable carbon isotope analysis of N(O)-trifluoroacetyl-isopropyl esters of individual amino acids and their respective enantiomers at nanomole abundances. Calculation of the original delta C-13 values of the amino acids is accomplished via a correction for the carbon introduced during the derivatization process. Previous GC/IRMS analyses of individual amino acids in the non-hydrolyzed water extract of an interior sample of a Murchison meteorite stone revealed an enrichment in C-13 relative to terrestrial organic matter, in agreement with previous findings for bulk extracts. The range of amino acid delta C-13 values (+5 to +30 per mill, PDB) suggests possible kinetic effects during synthesis. In this study, an apparent kinetic isotope effect was also observed for the amino acid products of a spark discharge experiment. These preliminary resutls are supportive of a similar mechanism for the abiotic synthesis of amino acids in the Murchison meteorite.
NASA Technical Reports Server (NTRS)
Moriwaki, R.; Usui, T.; Simon, J. I.; Jones, J. H.; Yokoyama, T.
2015-01-01
Geochemically-depleted shergottites are basaltic rocks derived from a martian mantle source reservoir. Geochemical evolution of the martian mantle has been investigated mainly based on the Rb-Sr, Sm-Nd, and Lu-Hf isotope systematics of the shergottites [1]. Although potentially informative, U-Th- Pb isotope systematics have been limited because of difficulties in interpreting the analyses of depleted meteorite samples that are more susceptible to the effects of near-surface processes and terrestrial contamination. This study conducts a 5-step sequential acid leaching experiment of the first witnessed fall of the geochemically-depleted olivinephyric shergottite Tissint to minimize the effect of low temperature distrubence. Trace element analyses of the Tissint acid residue (mostly pyroxene) indicate that Pb isotope compositions of the residue do not contain either a martian surface or terrestrial component, but represent the Tissint magma source [2]. The residue has relatively unradiogenic initial Pb isotopic compositions (e.g., 206Pb/204Pb = 10.8136) that fall within the Pb isotope space of other geochemically-depleted shergottites. An initial µ-value (238U/204Pb = 1.5) of Tissint at the time of crystallization (472 Ma [3]) is similar to a time-integrated mu- value (1.72 at 472 Ma) of the Tissint source mantle calculated based on the two-stage mantle evolution model [1]. On the other hand, the other geochemically-depleted shergottites (e.g., QUE 94201 [4]) have initial µ-values of their parental magmas distinctly lower than those of their modeled source mantle. These results suggest that only Tissint potentially reflects the geochemical signature of the shergottite mantle source that originated from cumulates of the martian magma ocean
NASA Astrophysics Data System (ADS)
Vocke, Robert; Rabb, Savelas
2015-04-01
All isotope amount ratios (hereafter referred to as isotope ratios) produced and measured on any mass spectrometer are biased. This unfortunate situation results mainly from the physical processes in the source area where ions are produced. Because the ionized atoms in poly-isotopic elements have different masses, such processes are typically mass dependent and lead to what is commonly referred to as mass fractionation (for thermal ionization and electron impact sources) and mass bias (for inductively coupled plasma sources.) This biasing process produces a measured isotope ratio that is either larger or smaller than the "true" ratio in the sample. This has led to the development of numerous fractionation "laws" that seek to correct for these effects, many of which are not based on the physical processes giving rise to the biases. The search for tighter and reproducible precisions has led to two isotope ratio measurement systems that exist side-by-side. One still seeks to measure "absolute" isotope ratios while the other utilizes an artifact based measurement system called a delta-scale. The common element between these two measurement systems is the utilization of isotope reference materials (iRMs). These iRMs are used to validate a fractionation "law" in the former case and function as a scale anchor in the latter. Many value assignments of iRMs are based on "best measurements" by the original groups producing the reference material, a not entirely satisfactory approach. Other iRMs, with absolute isotope ratio values, have been produced by calibrated measurements following the Atomic Weight approach (AW) pioneered by NBS nearly 50 years ago. Unfortunately, the AW is not capable of calibrating the new generation of iRMs to sufficient precision. So how do we get iRMs with isotope ratios of sufficient precision and without bias? Such a focus is not to denigrate the extremely precise delta-scale measurements presently being made on non-traditional and tradition stable isotope systems. But even absolute isotope ratio measurements have an important role to play in delta-scale schemes. Highly precise and unbiased measurements of the artifact anchor for any scale facilitates the replacement of that scale's anchor once the initial supply of the iRM is exhausted. Absolute isotope ratio measurements of artifacts at the positive and negative extremes of a delta-scale will allow the appropriate assignment of delta-values to these normalizing iRMs, thereby minimizing any scale contractions or expansions to either side of the anchor artifact. And finally, absolute values for critical iRMs with also allow delta-scale results to be used in other scientific disciplines that employ other units of measure. Precise absolute isotope ratios of Si has been one of the consequences of the Avogadro Project (an international effort to replace the original kilogram artifact with a natural constant, the Planck constant.) We will present the results of applying such measurements to the principal iRMs for the Si isotope system (SRM 990, Big Batch and Diatomite) and its consequences for their delta-Si29 and delta-Si30 values.
Voronin, Victor; Ivlev, Alexander A; Oskolkov, Vladimir; Boettger, Tatjana
2012-05-30
Carbon isotope data from conifer trees play an important role in research on the boreal forest carbon reservoir in the global carbon cycle. Carbon isotopes are routinely used to study interactions between the environment and tree growth. Moreover, carbon isotopes became an essential tool for the evaluation of carbon assimilation and transport from needles into reserve pools, as well as the allocation of stored assimilates within a tree. The successful application and interpretation of carbon isotopes rely on the coherence of isotopic fractionation modeling. This study employs a new Carbon Metabolism Oscillatory Model (CMOM) to interpret the experimental data sets on metabolic seasonal dynamics of 13C/12 C and 18O/16O ratios measured in twig components of Scots pine growing in southern Siberia (Russia). The dynamics of carbon isotopic variables were studied in components of Pinus sylvestris L. in light and in dark chambers during the vegetation period from 14 June to 28 July 2006. At the beginning of this period water-soluble organic matter, mostly labile sugars (including sucrose as the main component) and newly formed bulk needle material, displayed relatively "light" δ13C values (depletion in 13 C). Then, 13 C content increased again with noticeable "depletion" events in the middle of the growth period. A gradual 13 C accumulation took place in the second half of the vegetation period. Similar effects were observed both in the light and in the dark with some temporal shifts. Environmental factors did not influence the δ13C values. A gradual 12C-depletion effect was noticed in needles of the previous year. The δ13C values of sucrose and proteins from needle biomass altered independently from each other in the light chamber. A distinct negative correlation between δ13C and δ18O values was revealed for all studied variables. The abrupt 13C depletion recorded by all tested trees for the period from June to July provides clear evidence of the transition from the dominant role of reserve carbohydrate pool (RCP) during the first half of the growth season to the preferable current year carbohydrate pool (CCP) consumption by new needles during its second half. The investigation of the isotopic signatures of Pinus sylvestris L. emphasizes the pivotal role of the intra-seasonal dynamics in carbon metabolism through the transport of assimilates from autotrophic (needles) to heterotrophic (twigs) organs of the studied trees. This provides an explanation for changes of carbon isotopic values observed within the growth season. The CMOM-based results support the hypothesis of the integration of three carbohydrate pools by photosynthesizing cells. The fluctuations of the carbon isotope ratios in different carbohydrate pools underlie various physiological processes in the tree metabolism. The possible mechanisms and pathways of formation of these carbohydrate pools are further discussed. Hence, CMOM provides a reasonable explanation for the absence of the impact of environmental conditions on the needle isotopic variables, the 12C-depletion effects and the use of RCP in needles. The model explains the negative connections between δ13C and δ18O values in all studied variables.
2012-01-01
Background Carbon isotope data from conifer trees play an important role in research on the boreal forest carbon reservoir in the global carbon cycle. Carbon isotopes are routinely used to study interactions between the environment and tree growth. Moreover, carbon isotopes became an essential tool for the evaluation of carbon assimilation and transport from needles into reserve pools, as well as the allocation of stored assimilates within a tree. The successful application and interpretation of carbon isotopes rely on the coherence of isotopic fractionation modeling. This study employs a new Carbon Metabolism Oscillatory Model (CMOM) to interpret the experimental data sets on metabolic seasonal dynamics of 13C/12 C and 18O/16O ratios measured in twig components of Scots pine growing in southern Siberia (Russia). Results The dynamics of carbon isotopic variables were studied in components of Pinus sylvestris L. in light and in dark chambers during the vegetation period from 14 June to 28 July 2006. At the beginning of this period water-soluble organic matter, mostly labile sugars (including sucrose as the main component) and newly formed bulk needle material, displayed relatively “light” δ13C values (depletion in 13 C). Then, 13 C content increased again with noticeable “depletion” events in the middle of the growth period. A gradual 13 C accumulation took place in the second half of the vegetation period. Similar effects were observed both in the light and in the dark with some temporal shifts. Environmental factors did not influence the δ13C values. A gradual 12C-depletion effect was noticed in needles of the previous year. The δ13C values of sucrose and proteins from needle biomass altered independently from each other in the light chamber. A distinct negative correlation between δ13C and δ18O values was revealed for all studied variables. Conclusions The abrupt 13C depletion recorded by all tested trees for the period from June to July provides clear evidence of the transition from the dominant role of reserve carbohydrate pool (RCP) during the first half of the growth season to the preferable current year carbohydrate pool (CCP) consumption by new needles during its second half. The investigation of the isotopic signatures of Pinus sylvestris L. emphasizes the pivotal role of the intra-seasonal dynamics in carbon metabolism through the transport of assimilates from autotrophic (needles) to heterotrophic (twigs) organs of the studied trees. This provides an explanation for changes of carbon isotopic values observed within the growth season. The CMOM-based results support the hypothesis of the integration of three carbohydrate pools by photosynthesizing cells. The fluctuations of the carbon isotope ratios in different carbohydrate pools underlie various physiological processes in the tree metabolism. The possible mechanisms and pathways of formation of these carbohydrate pools are further discussed. Hence, CMOM provides a reasonable explanation for the absence of the impact of environmental conditions on the needle isotopic variables, the 12C-depletion effects and the use of RCP in needles. The model explains the negative connections between δ13C and δ18O values in all studied variables. PMID:22646756
Srivastava, Abneesh; Michael Verkouteren, R
2018-07-01
Isotope ratio measurements have been conducted on a series of isotopically distinct pure CO 2 gas samples using the technique of dual-inlet isotope ratio mass spectrometry (DI-IRMS). The influence of instrumental parameters, data normalization schemes on the metrological traceability and uncertainty of the sample isotope composition have been characterized. Traceability to the Vienna PeeDee Belemnite(VPDB)-CO 2 scale was realized using the pure CO 2 isotope reference materials(IRMs) 8562, 8563, and 8564. The uncertainty analyses include contributions associated with the values of iRMs and the repeatability and reproducibility of our measurements. Our DI-IRMS measurement system is demonstrated to have high long-term stability, approaching a precision of 0.001 parts-per-thousand for the 45/44 and 46/44 ion signal ratios. The single- and two-point normalization bias for the iRMs were found to be within their published standard uncertainty values. The values of 13 C/ 12 C and 18 O/ 16 O isotope ratios are expressed relative to VPDB-CO 2 using the [Formula: see text] and [Formula: see text] notation, respectively, in parts-per-thousand (‰ or per mil). For the samples, value assignments between (-25 to +2) ‰ and (-33 to -1) ‰ with nominal combined standard uncertainties of (0.05, 0.3) ‰ for [Formula: see text] and [Formula: see text], respectively were obtained. These samples are used as laboratory reference to provide anchor points for value assignment of isotope ratios (with VPDB traceability) to pure CO 2 samples. Additionally, they serve as potential parent isotopic source material required for the development of gravimetric based iRMs of CO 2 in CO 2 -free dry air in high pressure gas cylinder packages at desired abundance levels and isotopic composition values. Graphical abstract CO 2 gas isotope ratio metrology.
Intra-Shell boron isotope ratios in benthic foraminifera: Implications for paleo-pH reconstructions
NASA Astrophysics Data System (ADS)
Rollion-Bard, C.; Erez, J.
2009-12-01
The boron isotope composition of marine carbonates is considered to be a seawater pH proxy. Nevertheless, the use of δ11B has some limitations: 1) the knowledge of fractionation factor (α4-3) between the two boron dissolved species (boric acid and borate ion), 2) the δ11B of seawater may have varied with time and 3) the amplitude of the "vital effects" of this proxy. Using secondary ion mass spectrometry (SIMS), we looked at the internal variability in the boron isotope ratio of the shallow water, symbionts bearing foraminiferan Amphistegina lobifera. Specimens were cultured at constant temperature (24±0.1 °C) in seawater with pH ranging between 7.90 and 8.45. We performed 6 to 8 measurements of δ11B in each foraminifera. Intra-shell boron isotopes show large variability with an upper threshold value of pH ~ 9. The ranges of the skeletal calculated pH values in different cultured foraminifera, show strong correlation with the culture pH values and may thus serve as proxy for pH in the past ocean.
Non-lethal sampling of walleye for stable isotope analysis: a comparison of three tissues
Chipps, Steven R.; VanDeHey, J.A.; Fincel, M.J.
2012-01-01
Stable isotope analysis of fishes is often performed using muscle or organ tissues that require sacrificing animals. Non-lethal sampling provides an alternative for evaluating isotopic composition for species of concern or individuals of exceptional value. Stable isotope values of white muscle (lethal) were compared with those from fins and scales (non-lethal) in walleye, Sander vitreus (Mitchill), from multiple systems, size classes and across a range of isotopic values. Isotopic variability was also compared among populations to determine the potential of non-lethal tissues for diet-variability analyses. Muscle-derived isotope values were enriched compared with fins and depleted relative to scales. A split-sample validation technique and linear regression found that isotopic composition of walleye fins and scales was significantly related to that in muscle tissue for both δ13C and δ15N (r2 = 0.79–0.93). However, isotopic variability was significantly different between tissue types in two of six populations for δ15N and three of six populations for δ13C. Although species and population specific, these findings indicate that isotopic measures obtained from non-lethal tissues are indicative of those obtained from muscle.
Emiliani, C.; Harold, Hudson J.; Shinn, E.A.; George, R.Y.
1978-01-01
Carbon and oxygen isotope analysis through a 30-year (1944 to 1974) growth of Montastrea annularis from Hen and Chickens Reef (Florida Keys) shows a strong yearly variation in the abundances of both carbon-13 and oxygen-18 and a broad inverse relationship between the two isotopes. Normal annual dense bands are formed during the summer and are characterized by heavy carbon and light oxygen. "Stress bands" are formed during particularly severe winters and are characterized by heavy carbon and heavy oxygen. The isotopic effect of Zooxanthellae metabolism dominates the temperature effect on the oxygen-18/oxygen-16 ratio. The isotopic results on the deep-sea solitary coral Bathypsammia tintinnabulum, where Zooxanthellae are nonexistent, indicates that the abundance of the heavy isotopes carbon-13 and oxygen-18 is inversely related to the growth rate, with both carbon and oxygen approaching equilibrium values with increasing skeletal age.
Oxygen isotopes in nitrite: Analysis, calibration, and equilibration
Casciotti, K.L.; Böhlke, J.K.; McIlvin, M.R.; Mroczkowski, S.J.; Hannon, J.E.
2007-01-01
Nitrite is a central intermediate in the nitrogen cycle and can persist in significant concentrations in ocean waters, sediment pore waters, and terrestrial groundwaters. To fully interpret the effect of microbial processes on nitrate (NO3-), nitrite (NO2-), and nitrous oxide (N2O) cycling in these systems, the nitrite pool must be accessible to isotopic analysis. Furthermore, because nitrite interferes with most methods of nitrate isotopic analysis, accurate isotopic analysis of nitrite is essential for correct measurement of nitrate isotopes in a sample that contains nitrite. In this study, nitrite salts with varying oxygen isotopic compositions were prepared and calibrated and then used to test the denitrifier method for nitrite oxygen isotopic analysis. The oxygen isotopic fractionation during nitrite reduction to N2O by Pseudomonas aureofaciens was lower than for nitrate conversion to N2O, while oxygen isotopic exchange between nitrite and water during the reaction was similar. These results enable the extension of the denitrifier method to oxygen isotopic analysis of nitrite (in the absence of nitrate) and correction of nitrate isotopes for the presence of nitrite in “mixed” samples. We tested storage conditions for seawater and freshwater samples that contain nitrite and provide recommendations for accurate oxygen isotopic analysis of nitrite by any method. Finally, we report preliminary results on the equilibrium isotope effect between nitrite and water, which can play an important role in determining the oxygen isotopic value of nitrite where equilibration with water is significant.
A Distinct Magnetic Isotope Effect Measured in Atmospheric Mercury in Epiphytes
NASA Astrophysics Data System (ADS)
Ghosh, S.; Odom, A. L.
2007-12-01
Due to the importance of Mercury as an environmental contaminant, mercury cycling in the atmosphere has been extensively studied. However, there still remain uncertainties in the relative amounts of natural and anthropogenic emissions, atmospheric deposition rates as well as the spatial variation of atmospheric mercury. Part of a study to determine the isotopic composition of mercury deposited from the atmosphere has involved the use of epiphytes as monitors. The greatest advantage of such natural monitors is that a widespread, high-density network is possible at low cost. One of the disadvantages at present is that these monitors likely contain different mercury species (for example both gaseous, elemental mercury trapped by adsorption and Hg (II) by wet deposition). The project began with the understanding that biochemical reactions involving metallothioneins within the epiphytes might have produced an isotopic effect. One such regional network was composed of samples of Tillandsia usenoides (common name: Spanish moss) collected along the eastern Coastal Plain of the U.S. from northern Florida to North Carolina. The isotopic composition of a sample is expressed as permil deviations from a standard. The deviations are defined as δAHg = \\left(\\frac{Rsample}{Rstd}-1 \\right)1000 ‰ , where A represents the atomic mass number. R=\\frac{AHg}{202Hg} were measured for the isotopes 198Hg, 199Hg, 200Hg, 201Hg, 202Hg and 204Hg relative to the mercury standard SRM NIST 3133, by a standard-sample bracketing technique. For all samples, the delta values of the even-N plotted against atomic mass numbers define a linear curve. For the odd-N isotopes, δ199Hg and δ201Hg deviate from this mass-dependent fractionation (MDF) relationship and indicate a mass-independent fractionation (MIF) effect and a negative anomaly, i.e. a depletion in 199Hg and 201Hg relative to the even-N isotopes. These deviations are expressed as Δ199Hg = δ199Hgtotal - δ199HgMDF. A Δ201Hg/Δ199Hg ratio of 1.11 is predicted by isotope fractionation due to the Magnetic Isotope Effect (MIE), because 1.11 is the ratio of the magnetic moments of the two odd-N isotopes. A plot of Δ199Hg versus Δ201Hg values obtained reveals a striking pattern. All samples plot well within analytical uncertainly along a straight line passing through zero and having a slope of 1.11. Based on thermodynamic principles, some have argued that nuclear spin effects are quite insignificant in producing isotopic fractionation. However the MIE is a kinetic one in which those isotopes with non-zero magnetic moments effect the rates of recombination of free radical pairs by nuclear-electron hyperfine interaction and can become enriched or depleted in either reactants or products. In the samples studied here, the nuclear spin is far more important than either nuclear mass or nuclear volume in effecting isotopic fractionation of Mercury.
NASA Astrophysics Data System (ADS)
Taft, Linda; Wiechert, Uwe; Riedel, Frank; Weynell, Marc; Zhang, Hucai
2012-02-01
Carbon and oxygen isotope ratios have been measured for nine aragonite shells of the gastropod genus Radix from the lake Bangda Co (30°29'N, 97°04'E, 4450 m a.s.l.) at the south-eastern edge and from two characteristic sites at the lake Kyaring Co (31°09'N, 88°17'E, 4650 m a.s.l.) on the central Tibetan Plateau. Radix shells were sampled for isotope ratio analysis with high spatial resolution along the ontogenetic spiral of growth providing the basis of isotope records with a sub-seasonal time-resolution. δ18O values of shells from Bangda Co are on average ˜-15.0‰ relative to PDB and the pattern exhibits a clear onset and progression of the summer monsoon precipitation indicated by a strong "amount effect". This pattern mirrors the precipitation pattern in the respective year and region as expected for a small (surface area ca 0.3 km2) and shallow (<5 m) lake or habitat with short water residence times and little evaporative 18O enrichment of the lake water. In contrast, δ18O values of Radix shells from Kyaring Co habitat A which is connected to the deep (several tens of metres) and big (surface area ca 660 km2) lake, average at ˜-13.0‰ consistent with a higher evaporation rate and longer water residence time. The latter is supported by more 18O enriched water in this habitat. The δ18O values of Radix shells from Kyaring Co habitat B are nearly as low as shells from Bangda Co due to the similar habitat characteristic but isotopic patterns of these shells exhibit a weaker "amount effect". In both lake systems δ13C values of the shells are coupled with oxygen isotopes because a large amount of isotopically light carbon is washed from mountain slopes into the lake during the rainy season. Although other processes influence the isotopic patterns, e.g. biological productivity (δ13C) or temperature (δ18O), these influences are minor compared with the monsoon signal or the effect of evaporation in the Radix shell records. The overall weaker amount effect in Radix shells from Kyaring Co habitat B compared with shells from Bangda Co are consistent with a current decreasing monsoon influence from the south-eastern edge towards the central Tibetan Plateau. Thus, fossil shells of the gastropod genus Radix are a valuable archive for reconstructing climatic and environmental changes on the Tibetan Plateau and provide information about former habitat sizes and depths.
NASA Astrophysics Data System (ADS)
Zhu, Jianjiang; Zhang, Lifei; Lü, Zeng; Bader, Thomas
2018-03-01
Subduction zones are important for understanding of the global carbon cycle from the surface to deep part of the mantle. The processes involved the metamorphism of carbonate-bearing rocks largely control the fate of carbon and contribute to local carbon isotopic heterogeneities of the mantle. In this study, we present petrological and geochemical results for marbles and carbonated eclogites in the Southwestern Tianshan UHP belt, NW China. Marbles are interlayered with coesite-bearing pelitic schists, and have Sr-Nd isotopic values (εNd (T=320Ma) = -3.7 to -8.9, 87Sr/86Sr (i) = 0.7084-0.7089), typical of marine carbonates. The marbles have dispersed low δ18OVSMOW values (ranging from 14 to 29‰) and unaffected carbon isotope (δ13CVPDB = -0.2-3.6‰), possibly due to infiltration of external H2O-rich fluids. Recycling of these marbles into mantle may play a key role in the carbon budget and contributed to the mantle carbon isotope heterogeneity. The carbonated eclogites have high Sr isotopic compositions (87Sr/86Sr (i) = 0.7077-0.7082) and positive εNd (T = 320 Ma) values (from 7.6 to 8.2), indicative of strong seafloor alteration of their protolith. The carbonates in the carbonated eclogites are mainly dolomite (Fe# = 12-43, Fe# = Fe2+/(Fe2+ + Mg)) that were added into oceanic basalts during seafloor alteration and experienced calcite - dolomite - magnesite transformation during the subduction metamorphic process. The uniformly low δ18O values (∼11.44‰) of carbonates in the carbontaed eclogites can be explained by closed-system equilibrium between carbonate and silicate minerals. The low δ13C values (from -3.3 to -7.7‰) of the carbonated eclogites most likely reflect contribution from organic carbon. Recycling of these carbonated eclogites with C isotope similar to typical mantle reservoirs into mantle may have little effect on the mantle carbon isotope heterogeneity.
The fractionation factors of stable carbon and hydrogen isotope ratios for VOCs
NASA Astrophysics Data System (ADS)
Kawashima, H.
2014-12-01
Volatile organic compounds (VOCs) are important precursors of ozone and secondary organic aerosols in the atmosphere, some of which are carcinogenic, teratogenic, or mutagenic. VOCs in ambient air originate from many sources, including vehicle exhausts, gasoline evaporation, solvent use, natural gas emissions, and industrial processes, and undergo intricate chemical reactions in the atmosphere. To develop efficient air pollution remediation strategies, it is important to clearly identify the emission sources and elucidate the reaction mechanisms in the atmosphere. Recently, stable carbon isotope ratios (δ13C) of VOCs in some sources and ambient air have been measured by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). In this study, we measured δ13C and stable hydrogen isotope ratios (δD) of atmospheric VOCs by using the gas chromatography/thermal conversion/isotope ratio mass spectrometry coupled with a thermal desorption instrument (TD-GC/TC/IRMS). The wider δD differences between sources were found in comparison with the δ13C studies. Therefore, determining δD values of VOCs in ambient air is potentially useful in identifying VOC sources and their reactive behavior in the atmosphere. However, to elucidate the sources and behavior of atmospheric VOCs more accurately, isotopic fractionation during atmospheric reaction must be considered. In this study, we determined isotopic fractionation of the δ13C and δD values for the atmospheric some VOCs under irradiation conditions. As the results, δ13C for target all VOCs and δD for most VOCs were increasing after irradiation. But, the δD values for both benzene and toluene tended to decrease as irradiation time increased. We also estimated the fractionation factors for benzene and toluene, 1.27 and 1.05, respectively, which differed from values determined in previous studies. In summary, we were able to identify an inverse isotope effect for the δD values of benzene and toluene under ultraviolet irradiation, which might provide a new approach for studying photochemical reactions of volatile organic compounds in the atmosphere.
NASA Astrophysics Data System (ADS)
Yu, Wusheng; Tian, Lide; Yao, Tandong; Xu, Baiqing; Wei, Feili; Ma, Yaoming; Zhu, Haifeng; Luo, Lun; Qu, Dongmei
2017-11-01
This project reports results of the first precipitation stable isotope (δ18 O and δD) time series produced for Qamdo in the northern Hengduan Mountains in the southeastern Tibetan Plateau. The data showed that the fluctuations of precipitation stable isotopes at Qamdo during the different seasons revealed various moisture sources. The westerlies and local recycling moisture dominated at the study area before the pre-monsoon and after the post-monsoon seasons, which resulted in similar trends of both precipitation stable isotopes and temperature. The marine moisture was transported to the northern Hengduan Mountains by the winter India-Burma Trough combined with convection. Consequently, stable isotopes in subsequent precipitation were occasionally observed to decrease suddenly. However, δ18 O and δD values of precipitation at Qamdo were lower during the monsoon period and the duration of those low values was longer because of the effects of the Indian Summer Monsoon and the strengthening convection. Our findings indicate that the effects of seasonal precipitation differences caused by various climate systems, including the winter India-Burma Trough and Indian Summer Monsoon, need to be considered when attempting to interpret tree-ring and ice core records for the Hengduan Mountains.
Enhanced collectivity along the N = Z line: Lifetime measurements in 44Ti, 48Cr, and 52Fe
NASA Astrophysics Data System (ADS)
Arnswald, K.; Braunroth, T.; Seidlitz, M.; Coraggio, L.; Reiter, P.; Birkenbach, B.; Blazhev, A.; Dewald, A.; Fransen, C.; Fu, B.; Gargano, A.; Hess, H.; Hirsch, R.; Itaco, N.; Lenzi, S. M.; Lewandowski, L.; Litzinger, J.; Müller-Gatermann, C.; Queiser, M.; Rosiak, D.; Schneiders, D.; Siebeck, B.; Steinbach, T.; Vogt, A.; Wolf, K.; Zell, K. O.
2017-09-01
Lifetimes of the 21+ states in 44Ti, 48,50Cr, and 52Fe were determined with high accuracy exploiting the recoil distance Doppler-shift method. The reduced E2 transition strengths of 44Ti and 52Fe differ considerably from previously known values. A systematic increase in collectivity is found for the N = Z nuclei compared to neighboring isotopes. The B (E2) values along the Ti, Cr, and Fe isotopic chains are compared to shell-model calculations employing established interactions for the 0 f 1 p shell, as well as a novel effective shell-model Hamiltonian starting from a realistic nucleon-nucleon potential. The theoretical approaches underestimate the B (E2) values for the lower-mass Ti isotopes. Strong indication is found for particle-hole cross-shell configurations, recently corroborated by similar results for the neighboring isotone 42Ca.
Identifying recharge from tropical cyclonic storms, Baja California Sur, Mexico.
Eastoe, Christopher J; Hess, Greg; Mahieux, Susana
2015-04-01
Groundwater in the Todos Santos watershed in southern Baja California, and throughout the peninsula south of latitude 28°N, has values of (δ18 O‰, δD‰) ranging between (-8.3, -57) and (-10.9, -78). Such negative values are uncharacteristic of the site latitude near the sea level. Altitude effects do not explain the isotope data. Tropical depressions originating along the Pacific coast of North America yield rain with isotopic depletion; rain from these weather systems in southern Arizona commonly has δ18O values<-10‰ in comparison with amount-weighted mean summer and fall rain at -6‰. Isotope data indicate hurricane rain as the predominant source of recharge in southern Baja California, where named tropical depressions bring large rains (>50 mm) at least once every 2 to 3 years, and along the Pacific coast between Jalisco and Oaxaca. © 2014, National Ground Water Association.
Hannon, Janet E.; Böhlke, John Karl; Mroczkowski, Stanley J.
2008-01-01
BaSO4 precipitated from mixed salt solutions by common techniques for SO isotopic analysis may contain quantities of H2O and NO that introduce errors in O isotope measurements. Experiments with synthetic solutions indicate that δ18O values of CO produced by decomposition of precipitated BaSO4 in a carbon reactor may be either too low or too high, depending on the relative concentrations of SO and NO and the δ18O values of the H2O, NO, and SO. Typical δ18O errors are of the order of 0.5 to 1‰ in many sample types, and can be larger in samples containing atmospheric NO, which can cause similar errors in δ17O and Δ17O. These errors can be reduced by (1) ion chromatographic separation of SO from NO, (2) increasing the salinity of the solutions before precipitating BaSO4 to minimize incorporation of H2O, (3) heating BaSO4under vacuum to remove H2O, (4) preparing isotopic reference materials as aqueous samples to mimic the conditions of the samples, and (5) adjusting measured δ18O values based on amounts and isotopic compositions of coexisting H2O and NO. These procedures are demonstrated for SO isotopic reference materials, synthetic solutions with isotopically known reagents, atmospheric deposition from Shenandoah National Park, Virginia, USA, and sulfate salt deposits from the Atacama Desert, Chile, and Mojave Desert, California, USA. These results have implications for the calibration and use of O isotope data in studies of SO sources and reaction mechanisms.
Li, Na; Lu, Dongshi; Yang, Lei; Tao, Huan; Xu, Younian; Wang, Chenchen; Fu, Lisha; Liu, Hui; Chummum, Yatisha; Zhang, Shihai
2018-04-11
Xenon is an elemental anesthetic with nine stable isotopes. Nuclear spin is a quantum property which may differ among isotopes. Xenon 131 (Xe) has nuclear spin of 3/2, xenon 129 (Xe) a nuclear spin of 1/2, and the other seven isotopes have no nuclear spin. This study was aimed to explore the effect of nuclear spin on xenon anesthetic potency. Eighty C57BL/6 male mice (7 weeks old) were randomly divided into four groups, xenon 132 (Xe), xenon 134 (Xe), Xe, and Xe groups. Due to xenon's low potency, loss of righting reflex ED50 for mice to xenon was determined with 0.50% isoflurane. Loss of righting reflex ED50 of isoflurane was also measured, and the loss of righting reflex ED50 values of the four xenon isotopes were then calculated. The exact polarizabilities of the isotopes were calculated. Combined with 0.50% isoflurane, the loss of righting reflex ED50 values were 15 ± 4%, 16 ± 5%, 22 ± 5%, and 23 ± 7% for Xe, Xe, Xe, and Xe, respectively. For xenon alone, the loss of righting reflex ED50 values of Xe, Xe, Xe, and Xe were 70 ± 4%, 72 ± 5%, 99 ± 5%, and 105 ± 7%, respectively. Four isotopes had a same exact polarizability of 3.60 Å. Xenon isotopes with nuclear spin are less potent than those without, and polarizability cannot account for the difference. The lower anesthetic potency of Xe may be the result of it participating in conscious processing and therefore partially antagonizing its own anesthetic potency. Nuclear spin is a quantum property, and our results are consistent with theories that implicate quantum mechanisms in consciousness.
A Method to Determine 18O Kinetic Isotope Effects in the Hydrolysis of Nucleotide Triphosphates
Du, Xinlin; Ferguson, Kurt; Sprang, Stephen R.
2007-01-01
A method to determine 18O kinetic isotope effects (KIE) in the hydrolysis of GTP is described that is generally applicable to reactions involving other nucleotide triphosphates. Internal competition, wherein the substrate of the reaction is a mixture of 18O-labeled and unlabeled nucleotides, is employed and the change in relative abundance of the two species in the course of the reaction is used to calculate KIE. The nucleotide labeled with 18O at sites of mechanistic interest also contains 13C at all carbon positions, while the 16O-nucleotide is depleted of 13C. The relative abundance of the labeled and unlabeled substrates or products is reflected in the carbon isotope ratio (13C/12C) in GTP or GDP, which is determined by use of a liquid chromatography-coupled isotope ratio mass spectrometer (LC-coupled IRMS). The LC is coupled to the IRMS by an Isolink™ interface (ThermoFinnigan). Carbon isotope ratios can be determined with accuracy and precision greater than 0.04%, and are consistent over an order of magnitude in sample amount. KIE values for Ras/NF1333-catalyzed hydrolysis of [β18O3,13C]GTP were determined by change in the isotope ratio of GTP or GDP or the ratio of the isotope ratio of GDP to that of GTP. KIE values computed in the three ways agree within 0.1%, although the method using the ratio of isotope ratios of GDP and GTP gives superior precision (< 0.1%). A single KIE measurement can be conducted in 25 minutes with less than 5 μg nucleotide reaction product. PMID:17963711
NASA Astrophysics Data System (ADS)
Yao, Junming; Mathur, Ryan; Sun, Weidong; Song, Weile; Chen, Huayong; Mutti, Laurence; Xiang, Xinkui; Luo, Xiaohong
2016-05-01
The study presents δ65Cu and δ97Mo isotope values from cogenetic chalcopyrite and molybdenite found in veins and breccias of the Dahutang W-Cu-Mo ore field in China. The samples span a 3-4 km range. Both isotopes show a significant degree of fractionation. Cu isotope values in the chalcopyrite range from -0.31‰ to +1.48‰, and Mo isotope values in the molybdenite range from -0.03‰ to +1.06‰. For the cogenetic sulfide veined samples, a negative slope relationship exists between δ65Cu and δ97Mo values, which suggest a similar fluid history. Rayleigh distillation models the vein samples' change in isotope values. The breccia samples do not fall on the trend, thus indicating a different source mineralization event. Measured fluid inclusion and δD and δ18O data from cogenetic quartz indicate changes in temperature, and mixing of fluids do not appear to cause the isotopic shifts measure. Related equilibrium processes associated with the partitioning of metal between the vapor-fluid in the hydrothermal system could be the probable cause for the relationship seen between the two isotope systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magdas, D. A., E-mail: gabriela.cristea@itim-cj.ro; Cristea, G., E-mail: gabriela.cristea@itim-cj.ro; Bot, A.
Product origin is of great importance for consumers especially because its association in consumer's perception with food quality, freedom from disease or pollution. Stable isotope ratio analysis is a powerful technique in food authenticity and traceability control which has been introduced within the European wine industry to ensure authenticity of wine provenance and to detect adulteration. Isotopic ratios measurements have also been successfully to other food commodities like: fruit juices, honey and dairy foods. The δ{sup 18}O and δ{sup 2}H content in milk water reflects the isotope composition of the ground water drunk by animals. Seasonal effects are also verymore » important: in summer, milk water contains higher δ{sup 18}O and δ{sup 2}H values due to the fresh plants that are ate by animals. Relative carbon stable isotope abundances in total milk reflect the isotopic composition of the diet fed to the dairy cows. In this study the hydrogen, oxygen and carbon isotopic composition of 15 milk samples coming from a unit placed in the mountains of Transylvania was investigated. The distribution of the obtained isotopic values was than discussed taking into account that all the animals were feed with the same type of forage and consumed water was taken from the same source.« less
Boulyga, Sergei F; Klötzli, Urs; Stingeder, Gerhard; Prohaska, Thomas
2007-10-15
An inductively coupled plasma mass spectrometer with dynamic reaction cell (ICP-DRC-MS) was optimized for determining (44)Ca/(40)Ca isotope ratios in aqueous solutions with respect to (i) repeatability, (ii) robustness, and (iii) stability. Ammonia as reaction gas allowed both the removal of (40)Ar+ interference on (40)Ca+ and collisional damping of ion density fluctuations of an ion beam extracted from an ICP. The effect of laboratory conditions as well as ICP-DRC-MS parameters such a nebulizer gas flow rate, rf power, lens potential, dwell time, or DRC parameters on precision and mass bias was studied. Precision (calculated using the "unbiased" or "n - 1" method) of a single isotope ratio measurement of a 60 ng g(-1) calcium solution (analysis time of 6 min) is routinely achievable in the range of 0.03-0.05%, which corresponded to the standard error of the mean value (n = 6) of 0.012-0.020%. These experimentally observed RSDs were close to theoretical precision values given by counting statistics. Accuracy of measured isotope ratios was assessed by comparative measurements of the same samples by ICP-DRC-MS and thermal ionization mass spectrometry (TIMS) by using isotope dilution with a (43)Ca-(48)Ca double spike. The analysis time in both cases was 1 h per analysis (10 blocks, each 6 min). The delta(44)Ca values measured by TIMS and ICP-DRC-MS with double-spike calibration in two samples (Ca ICP standard solution and digested NIST 1486 bone meal) coincided within the obtained precision. Although the applied isotope dilution with (43)Ca-(48)Ca double-spike compensates for time-dependent deviations of mass bias and allows achieving accurate results, this approach makes it necessary to measure an additional isotope pair, reducing the overall analysis time per isotope or increasing the total analysis time. Further development of external calibration by using a bracketing method would allow a wider use of ICP-DRC-MS for routine calcium isotopic measurements, but it still requires particular software or hardware improvements aimed at reliable control of environmental effects, which might influence signal stability in ICP-DRC-MS and serve as potential uncertainty sources in isotope ratio measurements.
IRMS to study a common cocaine cutting agent: phenacetin.
Ladroue, Virginie; Dujourdy, Laurence; Besacier, Fabrice; Jame, Patrick
2017-03-01
Phenacetin is a pharmaceutical closely related to acetaminophen that has been banned in France for a long time due to its nephritic and carcinogenic adverse effects. It frequently appears in cocaine seizures as a cutting agent. Following both sanitary and intelligence motivations, this molecule was chosen for this study, and stable isotopes seemed to be the most appropriate tool. A total of 228 seized samples were collected over a 6-year period, and 8 standards of known origin were purchased. They were submitted to gas chromatography (GC) or elemental analysis - isotope ratio mass spectrometry (EA-IRMS) measurements, depending on their complexity. Stable isotope ratios of carbon, hydrogen, and nitrogen for a part of the sample set, were acquired. The isotopic values of phenacetin standards acquired from various providers located worldwide are quite spread, which indicates that stable isotopes could be used to discriminate manufacturers. However, the measured values of most of the seized samples are concentrated in a narrow range, tending to demonstrate that phenacetin is smuggled from a single source or similar ones. Consequently, stable isotopes could only be used to exclude that several samples come from a common source. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Potential of IRMS technology for tracing gamma-butyrolactone (GBL).
Marclay, François; Pazos, Diego; Delémont, Olivier; Esseiva, Pierre; Saudan, Christophe
2010-05-20
Popularity of gamma-hydroxybutyric acid (GHB) is fairly stable among drug users, while the consumption of its chemical precursor, gamma-butyrolactone (GBL), is a growing phenomenon. Although conventional analytical methods allow to detect this substance in various matrices, linking a trace and a source is still a difficult challenge. However, as several synthesis pathways and chemical precursors exist for the production of GBL, its carbon isotopic signature may vary extensively. For that purpose, a method has been developed to determine the carbon isotopes content of GBL by means of gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). The delta(13)C-values of 19 bulk samples purchased worldwide were in the range from -23.1 to -45.8 per thousand (SD<0.3 per thousand). Furthermore, testing on the purification of GBL by distillation has not been found to be consistent with such a large range of delta(13)C-values, which are likely to result from the isotopic composition of the organic precursors used to produce GBL together with the kinetic isotope effect associated with the synthesis routes. Finally, inter- and intra-variability measurements of the delta(13)C-values demonstrated the high potential of IRMS for discriminating between seizures of GBL and for source determination.
Szpak, Paul; Longstaffe, Fred J.; Millaire, Jean-François; White, Christine D.
2012-01-01
Background Stable isotope analysis is being utilized with increasing regularity to examine a wide range of issues (diet, habitat use, migration) in ecology, geology, archaeology, and related disciplines. A crucial component to these studies is a thorough understanding of the range and causes of baseline isotopic variation, which is relatively poorly understood for nitrogen (δ15N). Animal excrement is known to impact plant δ15N values, but the effects of seabird guano have not been systematically studied from an agricultural or horticultural standpoint. Methodology/Principal Findings This paper presents isotopic (δ13C and δ15N) and vital data for maize (Zea mays) fertilized with Peruvian seabird guano under controlled conditions. The level of 15N enrichment in fertilized plants is very large, with δ15N values ranging between 25.5 and 44.7‰ depending on the tissue and amount of fertilizer applied; comparatively, control plant δ15N values ranged between −0.3 and 5.7‰. Intraplant and temporal variability in δ15N values were large, particularly for the guano-fertilized plants, which can be attributed to changes in the availability of guano-derived N over time, and the reliance of stored vs. absorbed N. Plant δ13C values were not significantly impacted by guano fertilization. High concentrations of seabird guano inhibited maize germination and maize growth. Moreover, high levels of seabird guano greatly impacted the N metabolism of the plants, resulting in significantly higher tissue N content, particularly in the stalk. Conclusions/Significance The results presented in this study demonstrate the very large impact of seabird guano on maize δ15N values. The use of seabird guano as a fertilizer can thus be traced using stable isotope analysis in food chemistry applications (certification of organic inputs). Furthermore, the fertilization of maize with seabird guano creates an isotopic signature very similar to a high-trophic level marine resource, which must be considered when interpreting isotopic data from archaeological material. PMID:22479435
Wang, Benlian; Sun, Gang; Anderson, David R.; Jia, Minghong; Previs, Stephen; Anderson, Vernon E.
2007-01-01
Protonated molecular peptide ions and their product ions generated by tandem mass spectrometry appear as isotopologue clusters due to the natural isotopic variations of carbon, hydrogen, nitrogen, oxygen and sulfur. Quantitation of the isotopic composition of peptides can be employed in experiments involving isotope effects, isotope exchange, isotopic labeling by chemical reactions, and studies of metabolism by stable isotope incorporation. Both ion trap and quadrupole-time of flight mass spectrometry are shown to be capable of determining the isotopic composition of peptide product ions obtained by tandem mass spectrometry with both precision and accuracy. Tandem mass spectra obtained in profile-mode of clusters of isotopologue ions are fit by non-linear least squares to a series of Gaussian peaks (described in the accompanying manuscript) which quantify the Mn/M0 values which define the isotopologue distribution (ID). To determine the isotopic composition of product ions from their ID, a new algorithm that predicts the Mn/M0 ratios is developed which obviates the need to determine the intensity of all of the ions of an ID. Consequently a precise and accurate determination of the isotopic composition a product ion may be obtained from only the initial values of the ID, however the entire isotopologue cluster must be isolated prior to fragmentation. Following optimization of the molecular ion isolation width, fragmentation energy and detector sensitivity, the presence of isotopic excess (2H, 13C, 15N, 18O) is readily determined within 1%. The ability to determine the isotopic composition of sequential product ions permits the isotopic composition of individual amino acid residues in the precursor ion to be determined. PMID:17559791
Effects of preservatives on stable isotope analyses of four marine species
NASA Astrophysics Data System (ADS)
Carabel, Sirka; Verísimo, Patricia; Freire, Juan
2009-04-01
The aim of the present study is to quantify the effect of formalin-ethanol preservation on the carbon and nitrogen stable isotope signatures of four taxonomical groups of marine species ( Himanthalia elongata, Anemonia sulcata, Mytilus galloprovincialis and Patella vulgata). To examine temporal changes in the effects of preservation and to determine if preservation induced predictable shifts in δ13C and δ15N signatures, repeated analyses were carried out after 6, 12 and 24 months of preservation. Data from our study showed highly variable effects of the formalin-ethanol preservation on carbon and nitrogen isotope signatures between species. The use of a general correction factor was not possible, or else it should be species-specific. Differences in nitrogen isotopic values between preserved and unpreserved samples were minor compared to the assumed enrichment between trophic levels. The combined use of data from preserved and unpreserved samples could lead to biases in the estimation of the trophic level of organisms. Changes that preservatives caused in carbon values were variable between species and not always small enough to be ignored. So the use of data from preserved samples could change the interpretation of the mixing models used to determine the importance of multiple sources of carbon. In order to elucidate the effects that preservatives have in other species, further studies will be necessary.
NASA Astrophysics Data System (ADS)
Lin, Zhiyong; Sun, Xiaoming; Strauss, Harald; Lu, Yang; Gong, Junli; Xu, Li; Lu, Hongfeng; Teichert, Barbara M. A.; Peckmann, Jörn
2017-08-01
Multiple sulfur isotope signatures and secondary ion mass spectroscopy (SIMS) sulfur isotope compositions of pyrite from two seafloor sites (DH-CL11 and HD109) in seepage areas of the South China Sea were measured in order to study isotope effects of sulfate-driven anaerobic oxidation of methane (SO4-AOM). The multiple sulfur isotopes of pyrite reveal variable ranges for both sites (δ34S: between -44.1‰ and -2.9‰ for DH-CL11 and between -43.8‰ and -1.6‰ for HD109; Δ33S: between 0.02‰ and 0.17‰ for DH-CL11 and between -0.03‰ and 0.14‰ for HD109). SIMS analysis reveals an extreme variability of δ34S values (between -50.3‰ and -2.7‰ in DH-CL11; between -50.1 and 52.4‰ in HD109) for three types of pyrite: (1) framboids, (2) zoned aggregates with radial overgrowth surrounding a framboidal core, and (3) euhedral pyrite crystals. The synchronous changes of geochemical proxies (sulfate and methane concentrations, δ34Ssulfate and δ18Osulfate, δ34Spyrite, and pyrite content) at the sulfate-methane transition zone (SMTZ) at site DH-CL11 are interpreted to be induced by SO4-AOM under steady state conditions. In contrast, pyrite content and δ34S value fluctuations throughout core HD109 suggest that the sediment at this site was affected by multiple pyritization events during diagenesis. Multiple sulfur isotope signatures of early diagenetic pyrite (i.e., with low and high δ34S values, the latter above 315 cmbsf in DH-CL11; above 70 cmbsf in HD109) in the upper sediment column suggest that organoclastic sulfate reduction (OSR) and sulfur disproportionation generated the observed isotopic signatures. In contrast to the early diagenetic 34S depleted framboids, the higher SIMS δ34S values of overgrowth and euhedral crystals suggest a late diagenetic 34S enriched pool of dissolved sulfide derived from SO4-AOM at the current and paleo-SMTZs. Interestingly, pyrite resulting from SO4-AOM in the SMTZ at site DH-CL11 reveals a distinct pattern with higher Δ33S values, different from pyrite resulting from OSR and sulfur disproportionation. Therefore, paired δ34S and Δ33S values may allow to differentiate OSR and SO4-AOM, although a full understanding of the isotope effects associated with SO4-AOM is hampered by uncertainties on the actual electron transfer mechanism in the syntrophic SO4-AOM consortium.
Spangenberg, Jorge E; Vogiatzaki, Maria; Zufferey, Vivian
2017-09-29
This paper describes a novel approach to reassess the water status in vineyards based on compound-specific isotope analysis (CSIA) of wine volatile organic compounds (δ 13 C VOC/VPDB ) and bulk carbon and nitrogen isotopes, and the C/N molar ratios of the wine solid residues (δ 13 C SR/VPDB , δ 15 N SR/Air-N2 ). These analyses link gas chromatography/combustion and elemental analysis to isotope ratio mass spectrometry (GC/C/IRMS, EA/IRMS). Field-grown cultivars of Pinot Noir grapevines were exposed during six growing seasons (2009-2014) to controlled soil water availability, while maintaining identical the other environmental variables and agricultural techniques. Wines were produced from the grapes by the same oenological protocol. This permitted for the assessment of the effects in the biochemistry of wines solely induced by the changes in the plant-soil water status. This mimicked the more recurrent and prolonged periods of soil water deficiency due to climate changes. Water stress in grapevine was assessed by the measurement of the predawn leaf water potential (Ψ pd ) and the stable carbon isotope composition of the berry sugars during harvest (must sugars). For quantitation purposes and the normalization of the measured stable carbon isotope ratios of the VOCs, the wine samples were spiked with three standard compounds with known concentration and δ 13 C VPDB values. VOCs were extracted by liquid-liquid extraction and analyzed by gas chromatography/flame ionization detection (GC/FID), gas chromatography/mass spectrometry (GC/MS), and GC/C/IRMS. δ 13 C values were obtained for eighteen VOCs. The solid residues were obtained by freeze-drying wine aliquots and were analyzed for their C and N content and isotope composition by EA/IRMS. All the isotopic ratios (δ 13 C SR , δ 15 N SR , δ 13 C VOC ) are highly correlated with the Ψ pd values, indicating that the proposed gas chromatography and isotope ratio mass spectrometry approach is a useful tool to assess the changes in the water status of grapevine cultivars in different terroirs. The combined analytical approach was used for the first time to complement the assessment of soil water availability effects on the grapevine. The δ 13 C values of the volatile compounds helped confirm (or establish) their main source(s) and biosynthetic pathway(s). Importantly, we also show for the first time that the combination of C/N and δ 15 N values of freeze-dried wines have an unexplored potential for the study of nitrogen dynamics in soil/grape/wine systems. Copyright © 2017 Elsevier B.V. All rights reserved.
Reporting of nitrogen-isotope abundances (Technical Report)
Coplen, Tyler B.; Krouse, H.R.; Böhlke, John Karl
1992-01-01
To eliminate possible confusion in the reporting of nitrogen-isotope analyses, the Commission on Atomic Weights and Isotopic Abundances recommends that the value 272 be employed for the 14N/15N value of N2 in air for calculating atom percent 15N from measured δ15N values.
Nahon, Sarah; Séité, Sarah; Kolasinski, Joanna; Aguirre, Pierre; Geurden, Inge
2017-10-30
Carbon and nitrogen stable isotope analyses of fish tissues are now commonly used in ecological studies but mostly require the sacrifice of the animal. Ethical considerations recommend the use of anesthetics for tissue sampling. This study examines how anesthetics affect stable isotope ratios of fish compared with other euthanasia methods. Rainbow trout fry and juveniles were sacrificed using ice-freezing (as this common method used to kill fish does not affect natural isotopic ratios), electronarcosis or an overdose of chemical anesthetics (2-phenoxyethanol, benzocaine and clove oil). For fry, we sampled the whole animal whereas, for juveniles, white dorsal muscle, liver, red blood cells, plasma, external tegument and pectoral fin were sampled. Isotopic ratios and the elemental compositions of carbon and nitrogen were then measured. The δ 15 N values, and the C and N contents of all considered tissues as well as δ 13 C values of muscle, liver, red blood cells and plasma, were not affected by the use of chemical anesthetics. Clove oil and to a lesser extent 2-phenoxyethanol and benzocaine decreased δ 13 C values of whole fry and juvenile external tegument and pectoral fin. The use of electronarcosis drastically affects the δ 13 C and δ 15 N values of all fish tissues. Anesthetics should be avoided for δ 13 C analysis when tissues are in contact with the water containing the anesthetic. Ice-immersion has to be preferred when approved by guidelines. If not, benzocaine and 2-phenoxyethanol should be preferred over clove oil. Electronarcosis should not be used to kill fish until further investigations are performed. Copyright © 2017 John Wiley & Sons, Ltd.
Reinnicke, Sandra; Simonsen, Allan; Sørensen, Sebastian R; Aamand, Jens; Elsner, Martin
2012-02-07
2,6-Dichlorobenzamide (BAM) is a metabolite of the herbicide 2,6-dichlorobenzonitrile (dichlobenil), and a prominent groundwater contaminant. Observable compound-specific isotope fractionation during BAM formation-through transformation of dichlobenil by Rhodococcus erythropolis DSM 9685-was small. In contrast, isotope fractionation during BAM degradation-with Aminobacter sp. MSH1 and ASI1, the only known bacterial strains capable of mineralizing BAM-was large, with pronounced carbon (ε(C) = -7.5‰ to -7.8‰) and nitrogen (ε(N) = -10.7‰ to -13.5‰) isotopic enrichment factors. BAM isotope values in natural samples are therefore expected to be dominated by the effects of its degradation rather than formation. Dual isotope slopes Δ (=Δδ(15)N/Δδ(13)C ≈ ε(N)/ε(C)) showed only small differences for MSH1 (1.75 ± 0.03) and ASI1 (1.45 ± 0.03) suggesting similar transformation mechanisms of BAM hydrolysis. Observations are in agreement with either a tetrahedral intermediate promoted by OH(-) or H(3)O(+) catalysis, or a concerted reaction mechanism. Therefore, owing to consistent carbon isotopic fractionation, isotope shifts of BAM can be linked to BAM biodegradation, and may even be used to quantify degradation of this persistent metabolite. In contrast, nitrogen isotope values may be rather indicative of different sources. Our results delineate a new approach to assessing the fate of BAM in the environment.
Pavon, Jorge Alex; Fitzpatrick, Paul F
2006-09-12
Phenylalanine hydroxylase (PheH) and tryptophan hydroxylase (TrpH) catalyze the aromatic hydroxylation of phenylalanine and tryptophan, forming tyrosine and 5-hydroxytryptophan, respectively. The reactions of PheH and TrpH have been investigated with [4-(2)H]-, [3,5-(2)H(2)]-, and (2)H(5)-phenylalanine as substrates. All (D)k(cat) values are normal with Delta117PheH, the catalytic core of rat phenylalanine hydroxylase, ranging from 1.12-1.41. In contrast, for Delta117PheH V379D, a mutant protein in which the stoichiometry between tetrahydropterin oxidation and amino acid hydroxylation is altered, the (D)k(cat) value with [4-(2)H]-phenylalanine is 0.92 but is normal with [3,5-(2)H(2)]-phenylalanine. The ratio of tetrahydropterin oxidation to amino acid hydroxylation for Delta117PheH V379D shows a similar inverse isotope effect with [4-(2)H]-phenylalanine. Intramolecular isotope effects, determined from the deuterium contents of the tyrosine formed from [4-(2)H]-and [3,5(2)H(2)]-phenylalanine, are identical for Delta117PheH and Delta117PheH V379D, suggesting that steps subsequent to oxygen addition are unaffected in the mutant protein. The inverse effects are consistent with the reaction of an activated ferryl-oxo species at the para position of the side chain of the amino acid to form a cationic intermediate. The normal effects on the (D)k(cat) value for the wild-type enzyme are attributed to an isotope effect of 5.1 on the tautomerization of a dienone intermediate to tyrosine with a rate constant 6- to7-fold that for hydroxylation. In addition, there is a slight ( approximately 34%) preference for the loss of the hydrogen originally at C4 of phenylalanine. With (2)H(5)-indole-tryptophan as a substrate for Delta117PheH, the (D)k(cat) value is 0.89, consistent with hydroxylation being rate-limiting in this case. When deuterated phenylalanines are used as substrates for TrpH, the (D)k(cat) values are within error of those for Delta117PheH V379D. Overall, these results are consistent with the aromatic amino acid hydroxylases all sharing the same chemical mechanism, but with the isotope effect for hydroxylation by PheH being masked by tautomerization of an enedione intermediate to tyrosine.
NASA Astrophysics Data System (ADS)
Olson, Robert J.; Popp, Brian N.; Graham, Brittany S.; López-Ibarra, Gladis A.; Galván-Magaña, Felipe; Lennert-Cody, Cleridy E.; Bocanegra-Castillo, Noemi; Wallsgrove, Natalie J.; Gier, Elizabeth; Alatorre-Ramírez, Vanessa; Ballance, Lisa T.; Fry, Brian
2010-07-01
Evaluating the impacts of climate and fishing on oceanic ecosystems requires an improved understanding of the trophodynamics of pelagic food webs. Our approach was to examine broad-scale spatial relationships among the stable N isotope values of copepods and yellowfin tuna ( Thunnus albacares), and to quantify yellowfin tuna trophic status in the food web based on stable-isotope and stomach-contents analyses. Using a generalized additive model fitted to abundance-weighted-average δ 15N values of several omnivorous copepod species, we examined isotopic spatial relationships among yellowfin tuna and copepods. We found a broad-scale, uniform gradient in δ 15N values of copepods increasing from south to north in a region encompassing the eastern Pacific warm pool and parts of several current systems. Over the same region, a similar trend was observed for the δ 15N values in the white muscle of yellowfin tuna caught by the purse-seine fishery, implying limited movement behavior. Assuming the omnivorous copepods represent a proxy for the δ 15N values at the base of the food web, the isotopic difference between these two taxa, “ ΔYFT-COP,” was interpreted as a trophic-position offset. Yellowfin tuna trophic-position estimates based on their bulk δ 15N values were not significantly different than independent estimates based on stomach contents, but are sensitive to errors in the trophic enrichment factor and the trophic position of copepods. An apparent inshore-offshore, east to west gradient in yellowfin tuna trophic position was corroborated using compound-specific isotope analysis of amino acids conducted on a subset of samples. The gradient was not explained by the distribution of yellowfin tuna of different sizes, by seasonal variability at the base of the food web, or by known ambit distances (i.e. movements). Yellowfin tuna stomach contents did not show a regular inshore-offshore gradient in trophic position during 2003-2005, but the trophic-position estimates based on both methods had similar scales of variability. We conclude that trophic status of yellowfin tuna increased significantly from east to west over the study area based on the spatial pattern of ΔYFT-COP values and the difference between the δ 15N values of glutamic acid and glycine, “trophic” and “source” amino acids, respectively. These results provide improved depictions of trophic links and biomass flows for food-web models, effective tools to evaluate climate and fishing effects on exploited ecosystems.
Sakai, Sanae; Konno, Uta; Nakahara, Nozomi; Takaki, Yoshihiro; Saito, Yumi; Imachi, Hiroyuki; Tasumi, Eiji; Makabe, Akiko; Koba, Keisuke; Takai, Ken
2016-01-01
ABSTRACT Ammonia oxidation regulates the balance of reduced and oxidized nitrogen pools in nature. Although ammonia-oxidizing archaea have been recently recognized to often outnumber ammonia-oxidizing bacteria in various environments, the contribution of ammonia-oxidizing archaea is still uncertain due to difficulties in the in situ quantification of ammonia oxidation activity. Nitrogen and oxygen isotope ratios of nitrite (δ15NNO2− and δ18ONO2−, respectively) are geochemical tracers for evaluating the sources and the in situ rate of nitrite turnover determined from the activities of nitrification and denitrification; however, the isotope ratios of nitrite from archaeal ammonia oxidation have been characterized only for a few marine species. We first report the isotope effects of ammonia oxidation at 70°C by thermophilic Thaumarchaeota populations composed almost entirely of “Candidatus Nitrosocaldus.” The nitrogen isotope effect of ammonia oxidation varied with ambient pH (25‰ to 32‰) and strongly suggests the oxidation of ammonia, not ammonium. The δ18O value of nitrite produced from ammonia oxidation varied with the δ18O value of water in the medium but was lower than the isotopic equilibrium value in water. Because experiments have shown that the half-life of abiotic oxygen isotope exchange between nitrite and water is longer than 33 h at 70°C and pH ≥6.6, the rate of ammonia oxidation by thermophilic Thaumarchaeota could be estimated using δ18ONO2− in geothermal environments, where the biological nitrite turnover is likely faster than 33 h. This study extended the range of application of nitrite isotopes as a geochemical clock of the ammonia oxidation activity to high-temperature environments. IMPORTANCE Because ammonia oxidation is generally the rate-limiting step in nitrification that regulates the balance of reduced and oxidized nitrogen pools in nature, it is important to understand the biological and environmental factors underlying the regulation of the rate of ammonia oxidation. The discovery of ammonia-oxidizing archaea (AOA) in marine and terrestrial environments has transformed the concept that ammonia oxidation is operated only by bacterial species, suggesting that AOA play a significant role in the global nitrogen cycle. However, the archaeal contribution to ammonia oxidation in the global biosphere is not yet completely understood. This study successfully identified key factors controlling nitrogen and oxygen isotopic ratios of nitrite produced from thermophilic Thaumarchaeota and elucidated the applicability and its limit of nitrite isotopes as a geochemical clock of ammonia oxidation rate in nature. Oxygen isotope analysis in this study also provided new biochemical information on archaeal ammonia oxidation. PMID:27208107
Nishizawa, Manabu; Sakai, Sanae; Konno, Uta; Nakahara, Nozomi; Takaki, Yoshihiro; Saito, Yumi; Imachi, Hiroyuki; Tasumi, Eiji; Makabe, Akiko; Koba, Keisuke; Takai, Ken
2016-08-01
Ammonia oxidation regulates the balance of reduced and oxidized nitrogen pools in nature. Although ammonia-oxidizing archaea have been recently recognized to often outnumber ammonia-oxidizing bacteria in various environments, the contribution of ammonia-oxidizing archaea is still uncertain due to difficulties in the in situ quantification of ammonia oxidation activity. Nitrogen and oxygen isotope ratios of nitrite (δ(15)NNO2- and δ(18)ONO2-, respectively) are geochemical tracers for evaluating the sources and the in situ rate of nitrite turnover determined from the activities of nitrification and denitrification; however, the isotope ratios of nitrite from archaeal ammonia oxidation have been characterized only for a few marine species. We first report the isotope effects of ammonia oxidation at 70°C by thermophilic Thaumarchaeota populations composed almost entirely of "Candidatus Nitrosocaldus." The nitrogen isotope effect of ammonia oxidation varied with ambient pH (25‰ to 32‰) and strongly suggests the oxidation of ammonia, not ammonium. The δ(18)O value of nitrite produced from ammonia oxidation varied with the δ(18)O value of water in the medium but was lower than the isotopic equilibrium value in water. Because experiments have shown that the half-life of abiotic oxygen isotope exchange between nitrite and water is longer than 33 h at 70°C and pH ≥6.6, the rate of ammonia oxidation by thermophilic Thaumarchaeota could be estimated using δ(18)ONO2- in geothermal environments, where the biological nitrite turnover is likely faster than 33 h. This study extended the range of application of nitrite isotopes as a geochemical clock of the ammonia oxidation activity to high-temperature environments. Because ammonia oxidation is generally the rate-limiting step in nitrification that regulates the balance of reduced and oxidized nitrogen pools in nature, it is important to understand the biological and environmental factors underlying the regulation of the rate of ammonia oxidation. The discovery of ammonia-oxidizing archaea (AOA) in marine and terrestrial environments has transformed the concept that ammonia oxidation is operated only by bacterial species, suggesting that AOA play a significant role in the global nitrogen cycle. However, the archaeal contribution to ammonia oxidation in the global biosphere is not yet completely understood. This study successfully identified key factors controlling nitrogen and oxygen isotopic ratios of nitrite produced from thermophilic Thaumarchaeota and elucidated the applicability and its limit of nitrite isotopes as a geochemical clock of ammonia oxidation rate in nature. Oxygen isotope analysis in this study also provided new biochemical information on archaeal ammonia oxidation. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Spatial variations in δ13C and δ15N values of primary consumers in a coastal lagoon
NASA Astrophysics Data System (ADS)
Como, S.; Magni, P.; Van Der Velde, G.; Blok, F. S.; Van De Steeg, M. F. M.
2012-12-01
The analysis of the contribution of a food source to a consumer's diet or the trophic position of a consumer is highly sensitive to the variability of the isotopic values used as input data. However, little is known in coastal lagoons about the spatial variations in the isotopic values of primary consumers considered 'end members' in the isotope mixing models for quantifying the diet of secondary consumers or as a baseline for estimating the trophic position of consumers higher up in the food web. We studied the spatial variations in the δ13C and δ15N values of primary consumers and sedimentary organic matter (SOM) within a selected area of the Cabras lagoon (Sardinia, Italy). Our aim was to assess how much of the spatial variation in isotopic values of primary consumers was due to the spatial variability between sites and how much was due to differences in short distances from the shore. Samples were collected at four stations (50-100 m apart) selected randomly at two sites (1.5-2 km apart) chosen randomly at two distances from the shore (i.e. in proximity of the shore -Nearshore - and about 200 m away from the shore -Offshore). The sampling was repeated in March, May and August 2006 using new sites at the two chosen distances from the shore on each date. The isotopic values of size-fractionated seston and macrophytes were also analyzed as a complementary characterization of the study area. While δ15N did not show any spatial variations, the δ13C values of deposit feeders, Alitta (=Neanthes) succinea, Lekanesphaera hookeri, Hydrobia acuta and Gammarus aequicauda, were more depleted Offshore than Nearshore. For these species, there were significant effects of distance or distance × dates in the mean δ13C values, irrespective of the intrinsic variation between sites. SOM showed similar spatial variations in δ13C values, with Nearshore-Offshore differences up to 6‰. This indicates that the spatial isotopic changes are transferred from the food sources to the deposit feeders studied. In contrast, δ13C and δ15N values of suspension feeders, Ficopomatus enigmaticus and Amphibalanus amphitrite, did not show major variations, either between sites, or between Nearshore and Offshore. These different patterns between deposit feeders and suspension feeders are probably due to a weaker trophic link of the latter with SOM. We suggest that the Nearshore-Offshore gradient might be an important source of isotopic variation that needs to be considered in future web studies in coastal lagoons.
NASA Astrophysics Data System (ADS)
Larson, T. E.; Longstaffe, F. J.
2004-12-01
In situ stable carbon and oxygen isotope compositions of biogenic apatite were obtained from longitudinally-cut sections of cortical bone from femurs of modern domesticated sheep and free-range White-Tailed deer, using an IR-laser and a GC-continuous flow interface. Ablation pits averaged 200x50 microns, making it possible to analyze individual osteons. Since cortical bone is remodelled along osteons throughout a mammal's lifetime, isotopic data at this resolution provides information about seasonal variations in diet and drinking water. The O-isotope results were calibrated using laser analyses of NBS-18 and NBS-19, which produced a value of 26.39±0.46 permil (n=27) for WS-1 calcite (accepted value, 26.25 permil). C-isotope results were calibrated using a CO2 reference gas, producing a value of 0.76±0.40permil (n=27) for WS-1, also in excellent agreement with its accepted value of 0.74 permil. Average O- and C-isotope values for a local domestic sheep (southwestern Ontario, Canada) were 12.20±0.58 and -15.70±0.35 permil (n=27), respectively. No isotopic trend occurred along or across individual osteons. This pattern is consistent with the sheep's relatively unchanging food and water sources. The free-range White-Tailed deer came from Pinery Provincial Park (PPP), southwestern Ontario. Its O- and C-isotope compositions varied systematically across individual osteons and were negatively correlated (R2=0.56). O-isotope values ranged from 13.4 to 15.5 permil; the highest values correlated with summer and the lowest values, with winter. The O-isotope compositions of the main water source (Old Ausable River Channel) varied similarly during the deer's lifetime: winter average, -10.7±0.5 permil; summer average, -8.6±0.4 permil. The C-isotope results for the deer osteons varied from -19.7 to -15.9 permil. This variation can be explained by changes in food sources. Summer diets of deer in PPP consist mainly of leafy fractions of C3 vegetation, especially sumac, cedar, oak and pine (average leaf C-isotope value, -28.4±0.8 permil). During winter, when leafy material is unavailable and deep snow inhibits access to vegetation in general, deer strip bark from vegetation (average bark C-isotope value, -25.6±0.8 permil). Certain C4 grasses (little bluestem and sandreed grass, average C-isotope value, -12.7±0.2 permil), which are abundant in unforested dune areas of PPP, commonly stand above the snow cover, and hence are also available for consumption. Deer may also range more widely in the winter, feeding on corn stalks and husks that escaped both harvest and snow cover (average C-isotope value, -11.3±0.2 permil).
Kinetic fractionation processes recorded in the stalagmites of some limestone caves in Korea
NASA Astrophysics Data System (ADS)
Woo, K. S.; Jo, K.; Edwards, L. R.; Cheng, H.; Wang, Y.; Yoon, H.
2006-12-01
Stable isotope data (oxygen and carbon) of carbonate minerals (mostly calcite, but sometimes aragonite) in stalagmites have been the most commonly and widely used proxies for paleoclimatic research. This is based upon the assumption that carbonate minerals precipitated in isotopic equilibrium with dripping waters from stalactites, thus should reflect paleoclimatic variations. The state of equilibrium, so called "Hendy Test", has been commonly used. Hendy (1971) showed that during kinetic fractionation both oxygen and carbon isotopes behaves in a similar way due to faster degassing rate of cabon dioxide, resulting in the enrichment of both isotopes. The stalagmites from three limestone caves (Gwaneum, Eden and Daeya Caves) in Korea were investigated to understand the effects of kinetic fractionation during their growth. The stalagmites are mostly composed of columnar calcites, but contains the layers of cave coral that is composed of fibrous calcite. The cave coral layers should have grown when the supply rate of dripping water decreased significantly. Stable isotope pattern in three stalagmites do not show the same pattern of disequilibrium process. The cave corals in the Eden stalagmite show the enriched carbon and oxygen isotope values (15 and 5 per mil, respectively) that has the same bimodal pattern as suggested by Hendy (1971). However, the cave corals in the Gwaneum stalagmites show the enriched carbon, but depleted oxygen isotope values (3 and 1 per mil, respectively). Also, the calcite layer precipitated in disequilibrium in the Daeya stalagmite show more enriched carbon isotope values by up to 6 per mil, but show more or less the same oxygen isotopic values, compared to the columnar calcite which was precipitated in equilibrium. Therefore, caution should be made to determine the state of equilibrium precipitation of carbonate minerals in stalagmites. The "Hendy Test" may not be the only solution because other types of speleothems can be formed in stalagmites as the supply rate of dripping water changes. Also, different texture in stalagmites can be used as another criteria to determine the degree of equilibrium.
Gehre, Matthias; Renpenning, Julian; Gilevska, Tetyana; Qi, Haiping; Coplen, Tyler B.; Meijer, Harro A.J.; Brand, Willi A.; Schimmelmann, Arndt
2015-01-01
The high temperature conversion (HTC) technique using an elemental analyzer with a glassy carbon tube and filling (temperature conversion/elemental analysis, TC/EA) is a widely used method for hydrogen isotopic analysis of water and many solid and liquid organic samples with analysis by isotope-ratio mass spectrometry (IRMS). However, the TC/EA IRMS method may produce inaccurate δ2H results, with values deviating by more than 20 mUr (milliurey = 0.001 = 1‰) from the true value for some materials. We show that a single-oven, chromium-filled elemental analyzer coupled to an IRMS substantially improves the measurement quality and reliability for hydrogen isotopic compositions of organic substances (Cr-EA method). Hot chromium maximizes the yield of molecular hydrogen in a helium carrier gas by irreversibly and quantitatively scavenging all reactive elements except hydrogen. In contrast, under TC/EA conditions, heteroelements like nitrogen or chlorine (and other halogens) can form hydrogen cyanide (HCN) or hydrogen chloride (HCl) and this can cause isotopic fractionation. The Cr-EA technique thus expands the analytical possibilities for on-line hydrogen-isotope measurements of organic samples significantly. This method yielded reproducibility values (1-sigma) for δ2H measurements on water and caffeine samples of better than 1.0 and 0.5 mUr, respectively. To overcome handling problems with water as the principal calibration anchor for hydrogen isotopic measurements, we have employed an effective and simple strategy using reference waters or other liquids sealed in silver-tube segments. These crimped silver tubes can be employed in both the Cr-EA and TC/EA techniques. They simplify considerably the normalization of hydrogen-isotope measurement data to the VSMOW-SLAP (Vienna Standard Mean Ocean Water-Standard Light Antarctic Precipitation) scale, and their use improves accuracy of the data by eliminating evaporative loss and associated isotopic fractionation while handling water as a bulk sample. The calibration of organic samples, commonly having high δ2H values, will benefit from the availability of suitably 2H-enriched reference waters, extending the VSMOW-SLAP scale above zero.
Equilibrium mass-dependent fractionation relationships for triple oxygen isotopes
NASA Astrophysics Data System (ADS)
Cao, Xiaobin; Liu, Yun
2011-12-01
With a growing interest in small 17O-anomaly, there is a pressing need for the precise ratio, ln 17α/ln 18α, for a particular mass-dependent fractionation process (MDFP) (e.g., for an equilibrium isotope exchange reaction). This ratio (also denoted as " θ") can be determined experimentally, however, such efforts suffer from the demand of well-defined process or a set of processes in addition to high precision analytical capabilities. Here, we present a theoretical approach from which high-precision ratios for MDFPs can be obtained. This approach will complement and serve as a benchmark for experimental studies. We use oxygen isotope exchanges in equilibrium processes as an example. We propose that the ratio at equilibrium, θE ≡ ln 17α/ln 18α, can be calculated through the equation below: θa-bE=κa+(κa-κb){ln18βb}/{ln18α} where 18βb is the fractionation factor between a compound "b" and the mono-atomic ideal reference material "O", 18αa-b is the fractionation factor between a and b and it equals to 18βa/ 18βb and κ is a new concept defined in this study as κ ≡ ln 17β/ln 18β. The relationship between θ and κ is similar to that between α and β. The advantages of using κ include the convenience in documenting a large number of θ values for MDFPs and in estimating any θ values using a small data set due to the fact that κ values are similar among O-bearing compounds with similar chemical groups. Frequency scaling factor, anharmonic corrections and clumped isotope effects are found insignificant to the κ value calculation. However, the employment of the rule of geometric mean (RGM) can significantly affect the κ value. There are only small differences in κ values among carbonates and the structural effect is smaller than that of chemical compositions. We provide κ values for most O-bearing compounds, and we argue that κ values for Mg-bearing and S-bearing compounds should be close to their high temperature limitation (i.e., 0.5210 for Mg and 0.5159 for S). We also provide θ values for CO 2(g)-water, quartz-water and calcite-water oxygen isotope exchange reactions at temperature from 0 to 100 °C.
NASA Astrophysics Data System (ADS)
Katz, Amandine; Bonifacie, Magali; Hermoso, Michaël; Cartigny, Pierre; Calmels, Damien
2017-07-01
The carbonate clumped isotope (or Δ47) thermometer relies on the temperature dependence of the abundance of 13C18O16O22- ion groups within the mineral lattice. This proxy shows tremendous promise to reconstruct past sea surface temperatures (SSTs), but requires calibration of the relationship between Δ47 and calcification temperatures. Specifically, it is important to determine whether biologically-driven fractionation (the so-called "vital effect") overprints Δ47 values, as reported in some biominerals such as the foraminifera and the coccoliths for the carbon and oxygen isotope systems. Despite their abundance in the pelagic environment, coccolithophores have not been comprehensively investigated to test the reliability of coccolith Δ47-inferred temperatures. In this study, we cultured three geologically-relevant coccolith species (Emiliania huxleyi, Coccolithus pelagicus, and Calcidiscus leptoporus) at controlled temperatures between 7 and 25 ± 0.2 °C. Other variables such as pCO2, pH, alkalinity, nutrient concentrations and salinity were kept constant at mean present-day oceanic conditions. Although cultured coccoliths exhibit substantial species-specific oxygen and carbon isotope vital effects, we found that their Δ47 composition follows a statistically indistinguishable relationship with 1/T2 for all three species, indicating a lack of interspecific vital effects in coccoliths. Further, the Δ47 composition of coccolith calcite is identical to inorganic calcite precipitated at the same temperature, indicating an overall absence of clumped isotope vital effect in coccolith biominerals. From a paleoceanographic perspective, this study indicates that the Δ47 values of sedimentary coccoliths - even from highly diverse/mixed assemblages - can be analyzed to reconstruct SSTs with confidence, as such temperature estimates are not biased by taxonomic content or changing interspecies vital effects through time.
NASA Astrophysics Data System (ADS)
Waite, A. J.; Swart, P. K.
2011-12-01
As aragonite is the metastable polymorph of calcium carbonate, it lends itself to monotropic inversion to the more stable polymorph, calcite. This inversion is possible through an increase in the temperature and pressure conditions to which the sample is exposed and, although first noted nearly a century ago, has been primarily discussed in the context of sample roasting prior to analyses in paleoclimatological studies. Over the last several decades, however, researchers have found evidence to suggest that the friction associated with the sampling of biogenic carbonates via milling/drilling also induces inversion. Furthermore, this inversion may be associated with a shift in measured oxygen isotopic values and ultimately have significant implications for the interpretation of paleoclimatic reconstructions. Despite this, the isotopic heterogeneity of biogenic aragonite skeletons makes the effects of inversion challenging to test and the subject remains underrepresented in the literature. Here we present a first order study into the effects of milling on both the mineralogy and isotopic compositions measured in sclerosponges, corals, and molluscs. X-Ray diffraction analysis of samples hand ground with a mortar and pestle reveal 100% aragonitic skeletons. Conversely, samples milled with a computerized micromill show measurable inversion to calcite. On average, percent inversion of aragonite to calcite for individual specimens was 15% for sclerosponges, 16% for corals, and 9% for molluscs. Isotopic data from these specimens show that the higher the percentage of aragonite inverted to calcite, the more depleted the measured oxygen isotopic values. In the largest of the datasets (sclerosponges), it is evident that the range of oxygen isotope values from milled samples (-0.02 to +0.84%) exceeds the range in values for those samples which were hand ground and showed no inversion (+0.53 to +0.90%). This, coupled with the strong correlation between the two variables, suggests that the isotopic depletion is tied to the polymorphic inversion of aragonite to calcite, and not just random chance based on natural isotopic variability in the skeleton. There appears to be no relationship between the percent inversion and carbon isotopic composition. Elemental ratios also appear to remain stable during the heating and inversion process. The findings of this and published studies present, in many cases, conflicting views of the isotopic fractionation associated with inversion of aragonite to calcite. Discrepancies such as this likely result from subtle differences in sampling protocol related to instruments, drill bits, skeletal density, and possibly even laboratory conditions like temperature and humidity, further complicating our understanding and interpretation of such observations. Preliminary investigation suggests that altering milling conditions or wet milling may reduce the extent of alteration. Unfortunately, milling/drilling remains one of the only practical methods of sampling biogenic carbonates at a high resolution for paleoclimate work and, as such, caution should be taken in the interpretation of oxygen isotopic measurements from specimens of this nature.
NASA Astrophysics Data System (ADS)
Yang, H.; Blais, B.; Perez, G.; Pagani, M.
2006-12-01
To examine climatic signals registered as carbon isotopic values in leaf tissues of C3 plants, we collected mature leaf tissues from sun and shade leaves of Metasequoia trees germinated from the 1947 batch of seeds from China and planted along a latitudinal gradient of the United States. Samples from 40 individual trees, along with fossilized material from the early Tertiary of the Canadian Arctic, were analyzed for C and concentration and isotopic values using EA-IRMS after the removal of free lipids. The generated datasets were then merged with climate data compiled from each tree site recorded as average values over the past thirty years (1971-2002, NOAA database). When the isotope data were cross plotted against each geographic and climatic indicator, Latitude, Mean Annual Temperature (MAT), Average Summer Mean Temperature (ASMT)(June-August), Mean Annual Precipitation (MAP), and Average Summer Mean Precipitation (ASMP) respectively correlation patterns were revealed. The best correlating trend was obtained between temperature parameters and C isotopic values, and this correlation is stronger in the northern leaf samples than the southern samples. We discovered a strong positive correlation between latitude and the offset of C isotopic values between shade and sun leaves. This investigation represents a comprehensive examination on climatic signals registered as C isotopic values on a single species that is marked by single genetic source. The results bear implications on paleoclimatic interpretations of C isotopic signals obtained from fossil plant tissues.
Otte, Insa; Detsch, Florian; Gutlein, Adrian; Scholl, Martha A.; Kiese, Ralf; Appelhans, Tim; Nauss, Thomas
2017-01-01
To understand the moisture regime at the southern slopes of Mt. Kilimanjaro, we analysed the isotopic variability of oxygen (δ18O) and hydrogen (δD) of rainfall, throughfall, and fog from a total of 2,140 samples collected weekly over 2 years at 9 study sites along an elevation transect ranging from 950 to 3,880 m above sea level. Precipitation in the Kilimanjaro tropical rainforests consists of a combination of rainfall, throughfall, and fog. We defined local meteoric water lines for all 3 precipitation types individually and the overall precipitation, δDprec = 7.45 (±0.05) × δ18Oprec + 13.61 (±0.20), n = 2,140, R2 = .91, p < .001. We investigated the precipitation-type-specific stable isotope composition and analysed the effects of amount, altitude, and temperature. Aggregated annual mean values revealed isotope composition of rainfall as most depleted and fog water as most enriched in heavy isotopes at the highest elevation research site. We found an altitude effect of δ18Orain = −0.11‰ × 100 m−1, which varied according to precipitation type and season. The relatively weak isotope or altitude gradient may reveal 2 different moisture sources in the research area: (a) local moisture recycling and (b) regional moisture sources. Generally, the seasonality of δ18Orain values follows the bimodal rainfall distribution under the influences of south- and north-easterly trade winds. These seasonal patterns of isotopic composition were linked to different regional moisture sources by analysing Hybrid Single Particle Lagrangian Integrated Trajectory backward trajectories. Seasonality of dexcess values revealed evidence of enhanced moisture recycling after the onset of the rainy seasons. This comprehensive dataset is essential for further research using stable isotopes as a hydrological tracer of sources of precipitation that contribute to water resources of the Kilimanjaro region.
Isotope and multiband effects in layered superconductors.
Bussmann-Holder, Annette; Keller, Hugo
2012-06-13
In this review we consider three classes of superconductors, namely cuprate superconductors, MgB(2) and the new Fe based superconductors. All of these three systems are layered materials and multiband compounds. Their pairing mechanisms are under discussion with the exception of MgB(2), which is widely accepted to be a 'conventional' electron-phonon interaction mediated superconductor, but extending the Bardeen-Cooper-Schrieffer (BCS) theory to account for multiband effects. Cuprates and Fe based superconductors have higher superconducting transition temperatures and more complex structures. Superconductivity is doping dependent in these material classes unlike in MgB(2) which, as a pure compound, has the highest values of T(c) and a rapid suppression of superconductivity with doping takes place. In all three material classes isotope effects have been observed, including exotic ones in the cuprates, and controversial ones in the Fe based materials. Before the area of high-temperature superconductivity, isotope effects on T(c) were the signature for phonon mediated superconductivity-even when deviations from the BCS value to smaller values were observed. Since the discovery of high T(c) materials this is no longer evident since competing mechanisms might exist and other mediating pairing interactions are discussed which are of purely electronic origin. In this work we will compare the three different material classes and especially discuss the experimentally observed isotope effects of all three systems and present a rather general analysis of them. Furthermore, we will concentrate on multiband signatures which are not generally accepted in cuprates even though they are manifest in various experiments, the evidence for those in MgB(2), and indications for them in the Fe based compounds. Mostly we will consider experimental data, but when possible also discuss theoretical models which are suited to explain the data.
Meyer, Matthew P; Klinman, Judith P
2011-01-26
This work describes the application of NMR to the measurement of secondary deuterium (2° (2)H) and carbon-13 ((13)C) kinetic isotope effects (KIEs) at positions 9-13 within the substrate linoleic acid (LA) of soybean lipoxygenase-1. The KIEs have been measured using LA labeled with either protium (11,11-h2-LA) or deuterium (11,11-d2-LA) at the reactive C11 position, which has been previously shown to yield a primary deuterium isotope effect of ca. 80. The conditions of measurement yield the intrinsic 2° (2)H and (13)C KIEs on k(cat)/K(m) directly for 11,11-d2-LA, whereas the values for the 2° (2)H KIEs for 11,11-h2-LA are obtained after correction for a kinetic commitment. The pattern of the resulting 2° (2)H and (13)C isotope effects reveals values that lie far above those predicted from changes in local force constants. Additionally, many of the experimental values cannot be modeled by electronic effects, torsional strain, or the simple inclusion of a tunneling correction to the rate. Although previous studies have shown the importance of extensive tunneling for cleavage of the primary hydrogen at C11 of LA, the present findings can only be interpreted by extending the conclusion of nonclassical behavior to the secondary hydrogens and carbons that flank the position undergoing C-H bond cleavage. A quantum mechanical method introduced by Buhks et al. [J. Phys. Chem. 1981, 85, 3763] to model the inner-sphere reorganization that accompanies electron transfer has been shown to be able to reproduce the scale of the 2° (2)H KIEs.
Breider, Florian; Hunkeler, Daniel
2014-01-01
Chloroperoxidase (CPO) is suspected to play an important role in the biosynthesis of natural chloroform. The aims of the present study are to evaluate the variability of the δ(37)Cl value of naturally produced chloroform and to better understand the reaction steps that control the chlorine isotope signature of chloroform. The isotope analyses have shown that the chlorination of the humic substances (HS) in the presence of high H3O(+) and Cl(-) concentrations induces a large apparent kinetic isotope effect (AKIE = 1.010-1.018) likely associated with the transfer of chlorine between two heavy atoms, whereas in the presence of low H3O(+) and Cl(-) concentrations, the formation of chloroform induces a smaller AKIE (1.005-1.006) likely associated with the formation of an HOCl-ferriprotoporphyrin IX intermediate. As the concentration of H3O(+) and Cl(-) in soils are generally at submillimolar levels, the formation of the HOCl-ferriprotoporphyrin IX intermediate is likely rate-limiting in a terrestrial environment. Given that the δ(37)Cl values of naturally occurring chloride tend to range between -1 and +1‰, the δ(37)Cl value of natural chloroform should vary between -5‰ and -8‰. As the median δ(37)Cl value of industrial chloroform is -3.0‰, the present study suggests that chlorine isotopic composition of chloroform might be used to discriminate industrial and natural sources in the environment.
Hette Tronquart, Nicolas; Mazeas, Laurent; Reuilly-Manenti, Liana; Zahm, Amandine; Belliard, Jérôme
2012-07-30
Dorsal white muscle is the standard tissue analysed in fish trophic studies using stable isotope analyses. However, sampling white muscle often implies the sacrifice of fish. Thus, we examined whether the non-lethal sampling of fin tissue can substitute muscle sampling in food web studies. Analysing muscle and fin δ(15)N and δ(13)C values of 466 European freshwater fish (14 species) with an elemental analyser coupled with an isotope ratio mass spectrometer, we compared the isotope values of the two tissues. Correlations between fin and muscle isotope ratios were examined for all fish together and specifically for 12 species. We further proposed four methods of assessing muscle from fin isotope ratios and estimated the errors made using these muscle surrogates. Despite significant differences between isotope values of the two tissues, fin and muscle isotopic signals are strongly correlated. Muscle values, estimated with raw fin isotope ratios (1st method), induce an error of ca. 1‰ for both isotopes. In comparison, specific (2nd method) or general (3rd method) correlations provide meaningful corrections of fin isotope ratios (errors <0.6‰). On the other hand, relationships, established for Australian tropical fish, only give poor muscle estimates (errors >0.8‰). There is little chance that a global model can be created. However, the 2nd and 3rd methods of estimating muscle values from fin isotope ratios should provide an acceptable level of error for the studies of European freshwater food web. We thus recommend that future studies use fin tissue as a non-lethal surrogate for muscle. Copyright © 2012 John Wiley & Sons, Ltd.
Prasanna, K; Ghosh, Prosenjit; Bhattacharya, S K; Mohan, K; Anilkumar, N
2016-02-23
Oxygen and carbon isotope ratios in planktonic foraminifera Globigerina bulloides collected from tow samples along a transect from the equatorial Indian ocean to the Southern Ocean (45°E and 80°E and 10°N to 53°S) were analysed and compared with the equilibrium δ(18)O and δ(13)C values of calcite calculated using the temperature and isotopic composition of the water column. The results agree within ~0.25‰ for the region between 10°N and 40°S and 75-200 m water depth which is considered to be the habitat of Globigerina bulloides. Further south (from 40°S to 55°S), however, the measured δ(18)O and δ(13)C values are higher than the expected values by ~2‰ and ~1‰ respectively. These enrichments can be attributed to either a 'vital effect' or a higher calcification rate. An interesting pattern of increase in the δ(13)C(DIC) value of the surface water with latitude is observed between 35°S and~ 60°S, with a peak at~ 42°S. This can be caused by increased organic matter production and associated removal. A simple model accounting for the increase in the δ(13)C(DIC) values is proposed which fits well with the observed chlorophyll abundance as a function of latitude.
Stable carbon isotope ratios in atmospheric methane and some of its sources
NASA Technical Reports Server (NTRS)
Tyler, Stanley C.
1986-01-01
Ratios of C-13/C-12 have been measured in atmospheric methane and in methane collected from sites and biota that represent potentially large sources of atmospheric methane. These include temperate marshes (about -48 percent to about -54 percent), landfills (about -51 percent to about -55 percent), and the first reported values for any species of termite (-72.8 + or - 3.1 percent for Reticulitermes tibialis and -57.3 + or - 1.6 percent for Zootermopsis angusticollis). Numbers in parentheses are delta C-13 values with respect to PDB (Peedee belemnite) carbonate. Most methane sources reported thus far are depleted in C-13 with respect to atmospheric methane (-47.0 + or - 0.3 percent). Individual sources of methane should have C-13/C-12 ratios characteristic of mechanisms of CH4 formation and consumption prior to release to the atmosphere. The mass-weighted average isotopic composition of all sources should equal the mean C-13 of atmospheric methane, corrected for a kinetic isotope effect in the OH attack of CH4. Assuming the kinetic isotope effect to be small (about -3.0 percent correction to -47.0), as in the literature, the new values given here for termite methane do not help to explain the apparent discrepancy between C-13/C-12 ratios of the known CH4 sources and that of atmospheric CH4.
NASA Astrophysics Data System (ADS)
Ahrens, Christian; Koeniger, Paul; van Geldern, Robert; Stadler, Susanne
2013-04-01
Today's standard analytical methods for high precision stable isotope analysis of fluids are gas-water equilibration and high temperature pyrolysis coupled to isotope ratio mass spectrometers (IRMS). In recent years, relatively new laser-based analytical instruments entered the market that are said to allow high isotope precision data on nearly every media. This optical technique is referred to as isotope ratio infrared spectroscopy (IRIS). The objective of this study is to evaluate the capability of this new instrument type for highly saline solutions and a comparison of the analytical results with traditional IRMS analysis. It has been shown for the equilibration method that the presence of salts influences the measured isotope values depending on the salt concentration (see Lécuyer et al, 2009; Martineau, 2012). This so-called 'isotope salt effect' depends on the salt type and salt concentration. These factors change the activity in the fluid and therefore shift the isotope ratios measured by the equilibration method. Consequently, correction factors have to be applied to these analytical data. Direct conversion techniques like pyrolysis or the new laser instruments allow the measurement of the water molecule from the sample directly and should therefore not suffer from the salt effect, i.e. no corrections of raw values are necessary. However, due to high salt concentrations this might cause technical problems with the analytical hardware and may require labor-intensive sample preparation (e.g. vacuum distillation). This study evaluates the salt isotope effect for the IRMS equilibration technique (Thermo Gasbench II coupled to Delta Plus XP) and the laser-based IRIS instruments with liquid injection (Picarro L2120-i). Synthetic salt solutions (NaCl, KCl, CaCl2, MgCl2, MgSO4, CaSO4) and natural brines collected from the Stassfurt Salt Anticline (Germany; Stadler et al., 2012) were analysed with both techniques. Salt concentrations ranged from seawater salinity up to full saturation. References Lécuyer, C. et al. (2009). Chem. Geol., 264, 122-126. [doi:10.1016/j.chemgeo.2009.02.017] Martineau, F. et al. (2012). Chem. Geol., 291, 236-240. [doi:10.1016/j.chemgeo.2011.10.017] Stadler, S. et al. (2012). Chem. Geol., 294-295, 226-242. [doi:10.1016/j.chemgeo.2011.12.006
NASA Astrophysics Data System (ADS)
Cormie, A. B.; Luz, B.; Schwarcz, H. P.
1994-08-01
The hydrogen isotopic ratio of bone collagen (δDb) and the oxygen isotopic ratio of bone phosphate (δ 18Ob) from North American white-tailed deer are each related to both the isotopic ratio of local rain and relative humidity during the growing season. The humidity corrected bone δDb and δ 18Ob are highly correlated with each other with a correlation coefficient of 0.962. The regression slope of this equation (8.0) reflects the δD vs. δ 18O slope of meteoric water when we use a model which assumes that bone oxygen derives from leaf water rather than from drinking or environmental water. Therefore, growing season rain is the likely source of bone H and O. The effects of humidity are significantly greater for δ 18Ob than for δDb. Relative humidity (RH) can be estimated with moderate accuracy (± 6%) from a combination of bone phosphate δ 18Ob and collagen δDb and δ 15Nb. This indicates some potential benefits of using fossil bone for evaluating palaeohumidity. The estimate of RH improves to ± 4% when only data from warm climate areas are considered. It appears that for cold climate areas of North America, there may be a discrepancy between the actual leaf water values and the leaf water isotopic values predicted on the basis of the leaf water models used here. It seems possible that the further study of bone isotopic values may lead to a better understanding of how the average leaf water values of an area are related to local environment.
Peters, Jacob M.; Wolf, Nathan; Stricker, Craig A.; Collier, Timothy R.; Martinez del Rio, Carlos
2012-01-01
The use of stable isotopes in ecological studies requires that we know the magnitude of discrimination factors between consumer and element sources. The causes of variation in discrimination factors for carbon and nitrogen have been relatively well studied. In contrast, the discrimination factors for hydrogen have rarely been measured. We grew cabbage looper caterpillars (Trichoplusia ni) on cabbage (Brassica oleracea) plants irrigated with four treatments of deuterium-enriched water (δD = -131, -88, -48, and -2‰, respectively), allowing some of them to reach adulthood as moths. Tissue δD values of plants, caterpillars, and moths were linearly correlated with the isotopic composition of irrigation water. However, the slope of these relationships was less than 1, and hence, discrimination factors depended on the δD value of irrigation water. We hypothesize that this dependence is an artifact of growing plants in an environment with a common atmospheric δD value. Both caterpillars and moths were significantly enriched in deuterium relative to plants by ~45‰ and 23‰ respectively, but the moths had lower tissue to plant discrimination factors than did the caterpillars. If the trophic enrichment documented here is universal, δD values must be accounted for in geographic assignment studies. The isotopic value of carbon was transferred more or less faithfully across trophic levels, but δ15N values increased from plants to insects and we observed significant non-trophic 15N enrichment in the metamorphosis from larvae to adult.
Evaporation and transport of water isotopologues from Greenland lakes: The lake size effect
NASA Astrophysics Data System (ADS)
Feng, Xiahong; Lauder, Alex M.; Posmentier, Eric S.; Kopec, Ben G.; Virginia, Ross A.
2016-01-01
Isotopic compositions of evaporative flux from a lake are used in many hydrological and paleoclimate studies that help constrain the water budget of a lake and/or to infer changes in climate conditions. The isotopic fluxes of evaporation from a water surface are typically computed using a zero dimensional (0-D) model originally conceptualized by Craig and Gordon (1965). Such models generally have laminar and turbulent layers, assume a steady state condition, and neglect horizontal variations. In particular, the effect of advection on isotopic variations is not considered. While this classical treatment can be used for some sections of large open surface water bodies, such as an ocean or a large lake, it may not apply to relatively small water bodies where limited fetch does not allow full equilibration between air from land and the water surface. Both horizontal and vertical gradients in water vapor concentration and isotopic ratios may develop over a lake. These gradients, in turn, affect the evaporative fluxes of water vapor and its isotopic ratios, which is not adequately predicted by a 0-D model. We observed, for the first time, the vertical as well as horizontal components of vapor and isotopic gradients as relatively dry and isotopically depleted air advected over the surfaces of several lakes up to a 5 km fetch under winds of 1-5 m/s in Kangerlussuaq, Greenland. We modeled the vapor and isotopic distribution in air above the lake using a steady state 2-D model, in which vertical diffusive transport balances horizontal advection. The model was verified by our observations, and then used to calculate evaporative fluxes of vapor and its isotopic ratios. In the special case of zero wind speed, the model reduces to 1-D. Results from this 1-D model are compared with those from the 2-D model to assess the discrepancy in isotopic fluxes between advection and no advection conditions. Since wind advection above a lake alters the concentrations, gradients, and evaporative fluxes of water isotopes, it alters the water balance and isotope ratios of the lake and the relationship between them. These effects are greatest for small lakes. If wind advection is neglected in the inference of water balance from lake isotopes, an error is thus introduced, the magnitude of which depends on lake size. We refer to this as the "lake size effect". For lakes less than 500 m in length along the wind direction, the average δ18O and δD of vapor flux are at least 2‰ lower than the corresponding flux values from the 1-D model. The magnitude of the resulting relative error in water balance calculations is much greater if using δ18O than δD in mass balance calculations; the former is about eight times the latter. This result argues that water balance calculated with δD is less sensitive to the difference in lake size and/or its change over time. The 1-D model result is also compared with that from a comparable 0-D model. Since vertical vapor and isotope gradients always exist (even under no advection conditions), one may not obtain correct flux values if the relative humidity and isotopic ratios in ambient air measured at an arbitrary height are used for the 0-D model calculation. Typically, the standard meteorological measurements at 2 or 10 m would result in an underestimate of the δ18O and δD values of the vapor flux. This work has provided the first quantification on the effect of advection on isotopic fluxes of evaporation. The method of mobile vapor analysis combined with 2-D modeling can be applied to other environmental settings, in which the size of advection effect on isotopic fluxes depends upon relationships among local meteorological and hydrological variables. Our results also suggest that incorporating isotopic vapor measurements can help constrain modeled evaporation rates, which is worth exploring further in future studies.
Unexpected variations in the triple oxygen isotope composition of stratospheric carbon dioxide
NASA Astrophysics Data System (ADS)
Wiegel, Aaron A.; Cole, Amanda S.; Hoag, Katherine J.; Atlas, Elliot L.; Schauffler, Sue M.; Boering, Kristie A.
2013-10-01
We report observations of stratospheric CO2 that reveal surprisingly large anomalous enrichments in 17O that vary systematically with latitude, altitude, and season. The triple isotope slopes reached 1.95 ± 0.05(1σ) in the middle stratosphere and 2.22 ± 0.07 in the Arctic vortex versus 1.71 ± 0.03 from previous observations and a remarkable factor of 4 larger than the mass-dependent value of 0.52. Kinetics modeling of laboratory measurements of photochemical ozone-CO2 isotope exchange demonstrates that non-mass-dependent isotope effects in ozone formation alone quantitatively account for the 17O anomaly in CO2 in the laboratory, resolving long-standing discrepancies between models and laboratory measurements. Model sensitivities to hypothetical mass-dependent isotope effects in reactions involving O3, O(1D), or CO2 and to an empirically derived temperature dependence of the anomalous kinetic isotope effects in ozone formation then provide a conceptual framework for understanding the differences in the isotopic composition and the triple isotope slopes between the laboratory and the stratosphere and between different regions of the stratosphere. This understanding in turn provides a firmer foundation for the diverse biogeochemical and paleoclimate applications of 17O anomalies in tropospheric CO2, O2, mineral sulfates, and fossil bones and teeth, which all derive from stratospheric CO2.
Zaia Alves, Gustavo H; Hoeinghaus, David J; Manetta, Gislaine I; Benedito, Evanilde
2017-01-01
Studies in freshwater ecosystems are seeking to improve understanding of carbon flow in food webs and stable isotopes have been influential in this work. However, variation in isotopic values of basal production sources could either be an asset or a hindrance depending on study objectives. We assessed the potential for basin geology and local limnological conditions to predict stable carbon and nitrogen isotope values of six carbon sources at multiple locations in four Neotropical floodplain ecosystems (Paraná, Pantanal, Araguaia, and Amazon). Limnological conditions exhibited greater variation within than among systems. δ15N differed among basins for most carbon sources, but δ13C did not (though high within-basin variability for periphyton, phytoplankton and particulate organic carbon was observed). Although δ13C and δ15N values exhibited significant correlations with some limnological factors within and among basins, those relationships differed among carbon sources. Regression trees for both carbon and nitrogen isotopes for all sources depicted complex and in some cases nested relationships, and only very limited similarity was observed among trees for different carbon sources. Although limnological conditions predicted variation in isotope values of carbon sources, we suggest the resulting models were too complex to enable mathematical corrections of source isotope values among sites based on these parameters. The importance of local conditions in determining variation in source isotope values suggest that isotopes may be useful for examining habitat use, dispersal and patch dynamics within heterogeneous floodplain ecosystems, but spatial variability in isotope values needs to be explicitly considered when testing ecosystem models of carbon flow in these systems.
Hoeinghaus, David J.; Manetta, Gislaine I.; Benedito, Evanilde
2017-01-01
Studies in freshwater ecosystems are seeking to improve understanding of carbon flow in food webs and stable isotopes have been influential in this work. However, variation in isotopic values of basal production sources could either be an asset or a hindrance depending on study objectives. We assessed the potential for basin geology and local limnological conditions to predict stable carbon and nitrogen isotope values of six carbon sources at multiple locations in four Neotropical floodplain ecosystems (Paraná, Pantanal, Araguaia, and Amazon). Limnological conditions exhibited greater variation within than among systems. δ15N differed among basins for most carbon sources, but δ13C did not (though high within-basin variability for periphyton, phytoplankton and particulate organic carbon was observed). Although δ13C and δ15N values exhibited significant correlations with some limnological factors within and among basins, those relationships differed among carbon sources. Regression trees for both carbon and nitrogen isotopes for all sources depicted complex and in some cases nested relationships, and only very limited similarity was observed among trees for different carbon sources. Although limnological conditions predicted variation in isotope values of carbon sources, we suggest the resulting models were too complex to enable mathematical corrections of source isotope values among sites based on these parameters. The importance of local conditions in determining variation in source isotope values suggest that isotopes may be useful for examining habitat use, dispersal and patch dynamics within heterogeneous floodplain ecosystems, but spatial variability in isotope values needs to be explicitly considered when testing ecosystem models of carbon flow in these systems. PMID:28358822
Wild, Lauren A; Chenoweth, Ellen M; Mueter, Franz J; Straley, Janice M
2018-05-18
Stable isotope analysis integrates diet information over a time period specific to the type of tissue sampled. For metabolically active skin of free-ranging cetaceans, cells are generated at the basal layer of the skin and migrate outward until they eventually slough off, suggesting potential for a dietary time series. Skin samples from cetaceans were analyzed using continuous-flow elemental analyzer isotope ratio mass spectrometery (EA-IRMS). We used ANOVAs to compare the variability of δ 13 C and δ 15 N values within and among layers and columns ("cores") of the skin of a fin, humpback, and sperm whale. We then used mixed-effects models to analyze isotopic variability among layers of 28 sperm whale skin samples, over the course of a season and among years. We found layer to be a significant predictor of δ 13 C values in the sperm whale's skin, and δ 15 N values the humpback whale's skin. There was no evidence for significant differences in δ 15 N or δ 13 C values among cores for any species. Mixed effects models selected layer and day of the year as significant predictors of δ 13 C and δ 15 N values in sperm whale skin across individuals sampled during the summer months in the Gulf of Alaska. These results suggest that skin samples from cetaceans may be subsampled to reflect diet during a narrower time period; specifically different layers of skin may contain a dietary time series. This underscores the importance of selecting an appropriate portion of skin to analyze based on the species and objectives of the study. This article is protected by copyright. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ojeda, Manuel; Li, Anwu; Nabar, Rahul P.
2010-11-25
H2/D2 isotope effects on Fischer-Tropsch synthesis (FTS) rate and selectivity are examined here by combining measured values on Fe and Co at conditions leading to high C5+ yields with theoretical estimates on model Fe(110) and Co(0001) surfaces with high coverages of chemisorbed CO (CO*). Inverse isotope effects (rH/rD < 1) are observed on Co and Fe catalysts as a result of compensating thermodynamic (H2 dissociation to H*; H* addition to CO* species to form HCO*) and kinetic (H* reaction with HCO*) isotope effects. These isotopic effects and their rigorous mechanistic interpretation confirm the prevalence of H-assisted CO dissociation routes onmore » both Fe and Co catalysts, instead of unassisted pathways that would lead to similar rates with H2 and D2 reactants. The small contributions from unassisted pathways to CO conversion rates on Fe are indeed independent of the dihydrogen isotope, as is also the case for the rates of primary reactions that form CO2 as the sole oxygen rejection route in unassisted CO dissociation paths. Isotopic effects on the selectivity to C5+ and CH4 products are small, and D2 leads to a more paraffinic product than does H2, apparently because it leads to preference for chain termination via hydrogen addition over abstraction. These results are consistent with FTS pathways limited by H-assisted CO dissociation on both Fe and Co and illustrate the importance of thermodynamic contributions to inverse isotope effects for reactions involving quasi-equilibrated H2 dissociation and the subsequent addition of H* in hydrogenation catalysis, as illustrated here by theory and experiment for the specific case of CO hydrogenation.« less
Nitrogen isotopic fractionation during abiotic synthesis of organic solid particles
NASA Astrophysics Data System (ADS)
Kuga, Maïa; Carrasco, Nathalie; Marty, Bernard; Marrocchi, Yves; Bernard, Sylvain; Rigaudier, Thomas; Fleury, Benjamin; Tissandier, Laurent
2014-05-01
The formation of organic compounds is generally assumed to result from abiotic processes in the Solar System, with the exception of biogenic organics on Earth. Nitrogen-bearing organics are of particular interest, notably for prebiotic perspectives but also for overall comprehension of organic formation in the young Solar System and in planetary atmospheres. We have investigated abiotic synthesis of organics upon plasma discharge, with special attention to N isotope fractionation. Organic aerosols were synthesized from N2-CH4 and N2-CO gaseous mixtures using low-pressure plasma discharge experiments, aimed at simulating chemistry occurring in Titan's atmosphere and in the protosolar nebula, respectively. The nitrogen content, the N speciation and the N isotopic composition were analyzed in the resulting organic aerosols. Nitrogen is efficiently incorporated into the synthesized solids, independently of the oxidation degree, of the N2 content of the starting gas mixture, and of the nitrogen speciation in the aerosols. The aerosols are depleted in 15N by 15-25‰ relative to the initial N2 gas, whatever the experimental setup is. Such an isotopic fractionation is attributed to mass-dependent kinetic effect(s). Nitrogen isotope fractionation upon electric discharge cannot account for the large N isotope variations observed among Solar System objects and reservoirs. Extreme N isotope signatures in the Solar System are more likely the result of self-shielding during N2 photodissociation, exotic effect during photodissociation of N2 and/or low temperature ion-molecule isotope exchange. Kinetic N isotope fractionation may play a significant role in the Titan's atmosphere. On the Titan's night side, 15N-depletion resulting from electron driven reactions may counterbalance photo-induced 15N enrichments occurring on the day's side. We also suggest that the low δ15N values of Archaean organic matter (Beaumont and Robert, 1999) are partly the result of abiotic synthesis of organics that occurred at that time, and that the subsequent development of the biosphere resulted in shifts of δ15N towards higher values.
Yang, Hong; Pagani, Mark; Briggs, Derek E G; Equiza, M A; Jagels, Richard; Leng, Qin; Lepage, Ben A
2009-06-01
The effect of low intensity continuous light, e.g., in the High Arctic summer, on plant carbon and hydrogen isotope fractionations is unknown. We conducted greenhouse experiments to test the impact of light quantity and duration on both carbon and hydrogen isotope compositions of three deciduous conifers whose fossil counterparts were components of Paleogene Arctic floras: Metasequoia glyptostroboides, Taxodium distichum, and Larix laricina. We found that plant leaf bulk carbon isotopic values of the examined species were 1.75-4.63 per thousand more negative under continuous light (CL) than under diurnal light (DL). Hydrogen isotope values of leaf n-alkanes under continuous light conditions revealed a D-enriched hydrogen isotope composition of up to 40 per thousand higher than in diurnal light conditions. The isotope offsets between the two light regimes is explained by a higher ratio of intercellular to atmospheric CO(2) concentration (C (i)/C (a)) and more water loss for plants under continuous light conditions during a 24-h transpiration cycle. Apparent hydrogen isotope fractionations between source water and individual lipids (epsilon(lipid-water)) range from -62 per thousand (Metasequoia C(27) and C(29)) to -87 per thousand (Larix C(29)) in leaves under continuous light. We applied these hydrogen fractionation factors to hydrogen isotope compositions of in situ n-alkanes from well-preserved Paleogene deciduous conifer fossils from the Arctic region to estimate the deltaD value in ancient precipitation. Precipitation in the summer growing season yielded a deltaD of -186 per thousand for late Paleocene, -157 per thousand for early middle Eocene, and -182 per thousand for late middle Eocene. We propose that high-latitude summer precipitation in this region was supplemented by moisture derived from regionally recycled transpiration of the polar forests that grew during the Paleogene warming.
Qi, Haiping; Coplen, Tyler B.; Gehre, Matthias; Vennemann, Torsten W.; Brand, Willi A.; Geilmann, Heike; Olack, Gerard; Bindeman, Ilya N.; Palandri, Jim; Huang, Li; Longstaffe, Fred J.
2017-01-01
The advent of continuous-flow isotope-ratio mass spectrometry (CF-IRMS) coupled with a high temperature conversion (HTC) system enabled faster, more cost effective, and more precise δ2H analysis of hydrogen-bearing solids. Accurate hydrogen isotopic analysis by on-line or off-line techniques requires appropriate isotopic reference materials (RMs). A strategy of two-point calibrations spanning δ2H range of the unknowns using two RMs is recommended. Unfortunately, the supply of the previously widely used isotopic RM, NBS 30 biotite, is exhausted. In addition, recent measurements have shown that the determination of δ2H values of NBS 30 biotite on the VSMOW-SLAP isotope-delta scale by on-line HTC systems with CF-IRMS may be unreliable because hydrogen in this biotite may not be converted quantitatively to molecular hydrogen. The δ2HVSMOW-SLAP values of NBS 30 biotite analyzed by on-line HTC systems can be as much as 21 mUr (or ‰) too positive compared to the accepted value of − 65.7 mUr, determined by only a few conventional off-line measurements. To ensure accurate and traceable on-line hydrogen isotope-ratio determinations in mineral samples, we here propose two isotopically homogeneous, hydrous mineral RMs with well-characterized isotope-ratio values, which are urgently needed. The U.S. Geological Survey (USGS) has prepared two such RMs, USGS57 biotite and USGS58 muscovite. The δ2H values were determined by both glassy carbon-based on-line conversion and chromium-based on-line conversion, and results were confirmed by off-line conversion. The quantitative conversion of hydrogen from the two RMs using the on-line HTC method was carefully evaluated in this study. The isotopic compositions of these new RMs with 1-σ uncertainties and mass fractions of hydrogen are:USGS57 (biotite)δ2HVSMOW-SLAP = − 91.5 ± 2.4 mUr (n = 24)Mass fraction hydrogen = 0.416 ± 0.002% (n = 4)Mass fraction water = 3.74 ± 0.02% (n = 4)USGS58 (muscovite)δ2HVSMOW-SLAP = − 28.4 ± 1.6 mUr (n = 24)Mass fraction hydrogen = 0.448 ± 0.002% (n = 4)Mass fraction water = 4.03 ± 0.02% (n = 4).These δ2HVSMOW-SLAP values encompass typical ranges for solid unknowns of crustal and mantle origin and are available to users for recommended two-point calibration.
NASA Astrophysics Data System (ADS)
Rouxel, O. J.; Gueguen, B.
2016-12-01
Ferromanganese (Fe-Mn) crusts are potential archive of the Fe isotope composition of deep seawater through time. Here, we report Fe isotope composition of two pairs of Fe-Mn crusts collected on two volcanic seamounts from the Northern Pacific Ocean (Apuupuu Seamount, Hawaii) and the Southern Pacific Ocean (near Rurutu Island, Austral archipelago of French Polynesia). This approach allows (a) a direct comparison of the Fe isotope record in Fe-Mn crusts from the same seamount in order to address local effects, and (b) a comparison of geochemical composition of crusts between North and South Pacific in order to address the effect of more global geochemical processes. The results show that, despite different growth rates, diagenetic history, textures and geochemical patterns, Fe-Mn crusts from both North and South Pacific Oceans have fairly homogenous Fe isotope compositions over the last 17 Ma, yielding average δ56Fe values of -0.22 ± 0.20‰ (1sd, n = 54). The results also show striking correlations between Fe and Pb isotope ratios, indicating that local mixing between water masses is the main factor controlling Fe isotope composition in FeMn crusts. Recently, Horner et al. (2015) reported a range of δ56Fe values from -1.12‰ to 1.54‰ along a 76 Ma-old FeMn crust from the central pacific. However, secular variations of Fe isotopes inferred from other FeMn crusts in the Central North Pacific and Western Pacific (Yang and Rouxel, unpublished) show different patterns over the last 40 Ma, with δ56Fe ranging from -0.07 to -0.61‰ (n=81). Hence, the application of Fe isotopes as paleoceanographic proxies to trace deeply sourced iron at the scale of oceanic basins should be used with caution, prompting for an integrative approach combining diverse yet complimentary geochemical proxies.
NASA Astrophysics Data System (ADS)
Gibbons, J. A.; Sharp, Z. D.; Atudorei, V.
2017-12-01
The calcite-water triple oxygen isotope fractionation is used to determine isotopic equilibrium and ancient ocean oxygen isotopic values and temperatures. Unlike conventional δ18O analysis where the formation water's isotopic value is assumed, paired δ17O-δ18O measurements allow for the water's isotopic composition to be calculated because there is only one unique solution for equilibrium fractionation using Δ17O-δ18O values (where Δ17O=δ17O-0.528δ18O). To a first approximation, the calcite-water equilibrium fractionation factor, θ (where θ=ln17α/ln18α), varies with temperature by 0.00001/°. The calcite-water equilibrium fractionation line was determined at two temperatures, 30° and 0°, by using modern carbonate samples that formed in ocean water with a δ18O value of 0‰. The θ values for the 30° and 0° samples are 0.52515 and 0.52486, respectively. Oxygen values were measured using complete fluorination in nickel tubes with BrF5 as the reaction reagent. We calibrated all oxygen values to the SMOW-SLAP scale by measuring SMOW, SLAP, San Carlos olivine, NBS-18, NBS-19, and PDB. The triple oxygen isotope calcite-water equilibrium fractionation line was applied to well preserved Early Triassic ammonite shells from the Western United States. Based on paired δ17O-δ18O measurements, the samples did not form in equilibrium with an ice-free ocean with an oxygen isotopic value of -1‰ or the modern ocean value of 0‰. Assuming the calcite is still primary and formed in equilibrium with the ocean water, our data indicate that the δ18O value of the ocean in the early Triassic was 3-5‰ lower than modern. Samples from the Smithian thermal maximum formed in water 10° warmer than samples from after the thermal maximum. Paired δ17O-δ18O measurements of pristine ancient carbonates may provide a better understanding of past ocean conditions during climate change events.
Deuterium values from volcanic glass: A paleoelevation proxy for Oregon's Cascade Range
NASA Astrophysics Data System (ADS)
Carlson, T. B.; Bershaw, J. T.
2016-12-01
Hydrated volcanic glass has been used as a proxy to constrain Cenozoic paleoclimate across many of the world's mountain ranges. However, there are concerns that volcanic glass may not preserve the isotopic composition of syndepositional meteoric water. The Cascades are an excellent location to study the validity of hydrated volcanic glass as a paleoenvironmental proxy for several reasons. Moisture is derived from a single oceanic source and falls as orographic precipitation in the Cascades, leading to a characteristic altitude effect, or inverse relationship between elevation and the isotopic composition of meteoric water (δD). In addition, past studies have inferred uplift of the Cascades and an increase in the rain shadow effect since the Eocene through independent methods such as changing fossil assemblages, and other isotopic proxies including carbonates and fossil teeth. In this study, δD values of two hydrated tuff samples are compared: one prior to ( 29 Ma) and one following ( 5 Ma) the onset of High Cascade volcanism. The isotopic composition of these samples are interpreted in the context of modern water across the range to understand the potential of volcanic glass as a proxy for paleoelevation in the Pacific Northwest.
Reaction paths and host phases of uranium isotopes (235U; 238U), Saanich Inlet
NASA Astrophysics Data System (ADS)
Amini, M.; Holmden, C. E.; Francois, R. H.
2009-12-01
In recent times, Uranium has become increasingly the focus of stable isotope fractionation studies. Variations in 238U/235U have been reported as a result of redox reactions [1,2] from the nuclear field shift effect [3], and a mass-dependent, microbially-mediated, kinetic isotope effect [4]. The 238U/235U variability caused by changes in environmental redox conditions leads to an increase in the 238U/235U ratios of the reduced U species sequestered into marine sediments. This points to U isotope variability as a new tool to study ancient ocean redox changes. However, the process by which reduced sediments become enriched in the heavy isotopes of U is not yet known, and hence the utility of 238U/235U as a redox tracer remains to be demonstrated. In order to further constrain sedimentary U enrichment and related isotope effect, we are investigating U isotopic compositions of water samples and fresh surface sediment grab samples over a range of redox conditions in the seasonally anoxic Saanich Inlet, on the east coast of Vancouver Island. U was sequentially extracted from sediments in order to characterize specific fractions for their isotopic composition. The measurements were carried out by MC-ICPMS using 233U/236U-double spike technique. The data are reported as δ238U relative to NBL 112a with a 238U/235U ratio of 137.88 (2sd). External precision is better than 0.10‰ (2sd). Fifteeen analyses of seawater yielded δ238U of -0.42±0.08‰ (2sd). The results for the water samples indicate a homogenous δ238U value throughout the Saanich Inlet water column that matches the global seawater signature. All of the water samples from above and below average -0.42±0.05‰ (2sd). In contrast, a plankton net sample yielded a distinctly different, (about 0.5‰ lighter) isotope value. Bacterial reduction experiments [4] have also shown isotope enrichment factors of about -0.3‰. In addition, metal isotope fractionation occurs during adsorption with the light isotope being preferentially adsorbed [5]. Whether plankton mediated chemical reduction or scavenging causes this fractionation will be further investigated by leaching experiments on sediment trap samples. By contrast, weak acidic leachates (at pH 6) of suboxic bottom sediments, tend towards higher δ238U values. For oxic sediments, U contents of this fraction were below detection limit. Stronger leaching at pH 3 removed most of the uranium from suboxic and oxic sediments. For oxic sediments, this fraction yields the seawater δ238U signature, while the U released from the suboxic sample is about 0.2‰ heavier. This matches the value for previously reported bulk analyses of suboxic sediments [1] implying that the reduced sedimentary U is released by this treatment,. Major and trace element analyses and XRD patterns will help relating this fraction to a specific mineral or reactive phase. [1] Weyer et al. (2007) GCA 72, 345-399. [2] Stirling et al. (2007) EPSL 264, 208-225. [3] Schauble (2007) GCA 71, 2170-2189. [4] Rademacher et al. (2006) Environ. Sci. Technol. 40,6943-6948. [5] Wasylenki (2009) GCA A1419.
Experimental Evidence for a Hydride Transfer Mechanism in Plant Glycolate Oxidase Catalysis*
Dellero, Younès; Mauve, Caroline; Boex-Fontvieille, Edouard; Flesch, Valérie; Jossier, Mathieu; Tcherkez, Guillaume; Hodges, Michael
2015-01-01
In plants, glycolate oxidase is involved in the photorespiratory cycle, one of the major fluxes at the global scale. To clarify both the nature of the mechanism and possible differences in glycolate oxidase enzyme chemistry from C3 and C4 plant species, we analyzed kinetic parameters of purified recombinant C3 (Arabidopsis thaliana) and C4 (Zea mays) plant enzymes and compared isotope effects using natural and deuterated glycolate in either natural or deuterated solvent. The 12C/13C isotope effect was also investigated for each plant glycolate oxidase protein by measuring the 13C natural abundance in glycolate using natural or deuterated glycolate as a substrate. Our results suggest that several elemental steps were associated with an hydrogen/deuterium isotope effect and that glycolate α-deprotonation itself was only partially rate-limiting. Calculations of commitment factors from observed kinetic isotope effect values support a hydride transfer mechanism. No significant differences were seen between C3 and C4 enzymes. PMID:25416784
Patterns in Stable Isotope Values of Nitrogen and Carbon in ...
Stable isotope measurements of nitrogen and carbon (15N, 13ddC) are often used to characterize estuarine, nearshore, and open ocean ecosystems. Reliable information about the spatial distribution of base-level stable isotope values, often represented by primary producers, is critical to interpreting values in these ecosystems. While base-level isotope data are generally readily available for estuaries, nearshore coastal waters, and the open ocean, the continental shelf is less studied. To address this, and as a first step toward developing a surrogate for base-level isotopic signature in this region, we collected surface and deep water samples from the United States’ eastern continental shelf in the Western Atlantic Ocean, from the Gulf of Maine to Cape Hatteras, periodically between 2000 and 2013. During the study, particulate matter 15dN values ranged from 0.8 to 17.4‰, and 13dC values from −26.4 to −15.6‰over the region. We used spatial autocorrelation analysis and random forest modeling to examine the spatial trends and potential environmental drivers of the stable isotope values. We observed general trends toward lower values for both nitrogen and carbon isotopes at the seaward edge of the shelf. Conversely, higher 15dN and 13dC values were observed on the landward edge of the shelf, in particular in the southern portion of the sampling area. Across all sites, the magnitude of the difference between the 15dN of subsurface and surface particulate m
NASA Astrophysics Data System (ADS)
Nelson, Bruce K.; Deniro, Michael J.; Schoeninger, Margaret J.; De Paolo, Donald J.; Hare, P. E.
1986-09-01
Paleodietary analysis based on variations in the trace element and stable isotopic composition of inorganic and organic phases in fossil bone depends on the assumption that measured values reflect in vivo values. To test for postmortem alteration, we measured 87Sr /86Sr , 13C /12C , 18O /16O and 15N /14N ratios and Sr concentrations in modern and prehistoric (610 to 5470 yr old) bones of animals with marine or terrestrial diets from Greenland. Bones from modern terrestrial feeders have substantially lower Sr concentrations and more radiogenic 87Sr /86Sr ratios than those from modern marine feeders. This contrast was not preserved in the prehistoric samples, which showed almost complete overlap for both Sr concentration and isotopic composition in bones from the two types of animals. Leaching experiments, X-ray diffraction analysis and infrared spectroscopy indicate that alteration of the Sr concentration and isotopic composition in prehistoric bone probably results from nearly complete exchange with groundwater. Oxygen isotope ratios in fossil apatite carbonate also failed to preserve the original discrimination between modern terrestrial and marine feeders. The C isotope ratio of apatite carbonate did not discriminate between animals with marine or terrestrial diets in the modern samples. Even so, the ranges of apatite δ 13C values in prehistoric bone are more scattered than in modern samples for both groups, suggesting alteration had occurred. δ 13C and δ 15N values of collagen in modern bone are distinctly different for the two feeding types, and this distinction is preserved in most of the prehistoric samples. Our results suggest that postmortem alteration of dietary tracers in the inorganic phases of bone may be a problem at all archaeological sites and must be evaluated in each case. While collagen analyzed in this study was resistant to alteration, evaluation of the possibility of diagenetic alteration of its isotopic composition in bones from other contexts is also warranted.
Coplen, T.B.; Hopple, J.A.; Böhlke, J.K.; Peiser, H.S.; Rieder, S.E.; Krouse, H.R.; Rosman, K.J.R.; Ding, T.; Vocke, R.D.; Revesz, K.M.; Lamberty, A.; Taylor, P.; De Bievre, P.
2002-01-01
Documented variations in the isotopic compositions of some chemical elements are responsible for expanded uncertainties in the standard atomic weights published by the Commission on Atomic Weights and Isotopic Abundances of the International Union of Pure and Applied Chemistry. This report summarizes reported variations in the isotopic compositions of 20 elements that are due to physical and chemical fractionation processes (not due to radioactive decay) and their effects on the standard atomic weight uncertainties. For 11 of those elements (hydrogen, lithium, boron, carbon, nitrogen, oxygen, silicon, sulfur, chlorine, copper, and selenium), standard atomic weight uncertainties have been assigned values that are substantially larger than analytical uncertainties because of common isotope abundance variations in materials of natural terrestrial origin. For 2 elements (chromium and thallium), recently reported isotope abundance variations potentially are large enough to result in future expansion of their atomic weight uncertainties. For 7 elements (magnesium, calcium, iron, zinc, molybdenum, palladium, and tellurium), documented isotope-abundance variations in materials of natural terrestrial origin are too small to have a significant effect on their standard atomic weight uncertainties. This compilation indicates the extent to which the atomic weight of an element in a given material may differ from the standard atomic weight of the element. For most elements given above, data are graphically illustrated by a diagram in which the materials are specified in the ordinate and the compositional ranges are plotted along the abscissa in scales of (1) atomic weight, (2) mole fraction of a selected isotope, and (3) delta value of a selected isotope ratio. There are no internationally distributed isotopic reference materials for the elements zinc, selenium, molybdenum, palladium, and tellurium. Preparation of such materials will help to make isotope ratio measurements among laboratories comparable. The minimum and maximum concentrations of a selected isotope in naturally occurring terrestrial materials for selected chemical elements reviewed in this report are given below: Isotope Minimum mole fraction Maximum mole fraction -------------------------------------------------------------------------------- 2H 0 .000 0255 0 .000 1838 7Li 0 .9227 0 .9278 11B 0 .7961 0 .8107 13C 0 .009 629 0 .011 466 15N 0 .003 462 0 .004 210 18O 0 .001 875 0 .002 218 26Mg 0 .1099 0 .1103 30Si 0 .030 816 0 .031 023 34S 0 .0398 0 .0473 37Cl 0 .240 77 0 .243 56 44Ca 0 .020 82 0 .020 92 53Cr 0 .095 01 0 .095 53 56Fe 0 .917 42 0 .917 60 65Cu 0 .3066 0 .3102 205Tl 0 .704 72 0 .705 06 The numerical values above have uncertainties that depend upon the uncertainties of the determinations of the absolute isotope-abundance variations of reference materials of the elements. Because reference materials used for absolute isotope-abundance measurements have not been included in relative isotope abundance investigations of zinc, selenium, molybdenum, palladium, and tellurium, ranges in isotopic composition are not listed for these elements, although such ranges may be measurable with state-of-the-art mass spectrometry. This report is available at the url: http://pubs.water.usgs.gov/wri014222.
Multiple stable isotope fronts during non-isothermal fluid flow
NASA Astrophysics Data System (ADS)
Fekete, Szandra; Weis, Philipp; Scott, Samuel; Driesner, Thomas
2018-02-01
Stable isotope signatures of oxygen, hydrogen and other elements in minerals from hydrothermal veins and metasomatized host rocks are widely used to investigate fluid sources and paths. Previous theoretical studies mostly focused on analyzing stable isotope fronts developing during single-phase, isothermal fluid flow. In this study, numerical simulations were performed to assess how temperature changes, transport phenomena, kinetic vs. equilibrium isotope exchange, and isotopic source signals determine mineral oxygen isotopic compositions during fluid-rock interaction. The simulations focus on one-dimensional scenarios, with non-isothermal single- and two-phase fluid flow, and include the effects of quartz precipitation and dissolution. If isotope exchange between fluid and mineral is fast, a previously unrecognized, significant enrichment in heavy oxygen isotopes of fluids and minerals occurs at the thermal front. The maximum enrichment depends on the initial isotopic composition of fluid and mineral, the fluid-rock ratio and the maximum change in temperature, but is independent of the isotopic composition of the incoming fluid. This thermally induced isotope front propagates faster than the signal related to the initial isotopic composition of the incoming fluid, which forms a trailing front behind the zone of transient heavy oxygen isotope enrichment. Temperature-dependent kinetic rates of isotope exchange between fluid and rock strongly influence the degree of enrichment at the thermal front. In systems where initial isotope values of fluids and rocks are far from equilibrium and isotope fractionation is controlled by kinetics, the temperature increase accelerates the approach of the fluid to equilibrium conditions with the host rock. Consequently, the increase at the thermal front can be less dominant and can even generate fluid values below the initial isotopic composition of the input fluid. As kinetics limit the degree of isotope exchange, a third front may develop in kinetically limited systems, which propagates with the advection speed of the incoming fluid and is, therefore, traveling fastest. The results show that oxygen isotope signatures at thermal fronts recorded in rocks and veins that experienced isotope exchange with fluids can easily be misinterpreted, namely if bulk analytical techniques are applied. However, stable isotope microanalysis on precipitated minerals may - if later isotope exchange is kinetically limited - provide a valuable archive of the transient thermal and hydrological evolution of a system.
NASA Astrophysics Data System (ADS)
Bowen, Gabriel J.; Kennedy, Casey D.; Liu, Zhongfang; Stalker, Jeremy
2011-12-01
The stable H and O isotope composition of river and stream water records information on runoff sources and land-atmosphere water fluxes within the catchment and is a potentially powerful tool for network-based monitoring of ecohydrological systems. Process-based hydrological models, however, have thus far shown limited power to replicate observed large-scale variation in U.S. surface water isotope ratios. Here we develop a geographic information system-based model to predict long-term annual average surface water isotope ratios across the contiguous United States. We use elevation-explicit, gridded precipitation isotope maps as model input and data from a U.S. Geological Survey monitoring program for validation. We find that models incorporating monthly variation in precipitation-evapotranspiration (P-E) amounts account for the majority (>89%) of isotopic variation and have reduced regional bias relative to models that do not consider intra-annual P-E effects on catchment water balance. Residuals from the water balance model exhibit strong spatial patterning and correlations that suggest model residuals isolate additional hydrological signal. We use interpolated model residuals to generate optimized prediction maps for U.S. surface water δ2H and δ18O values. We show that the modeled surface water values represent a relatively accurate and unbiased proxy for drinking water isotope ratios across the United States, making these data products useful in ecological and criminal forensics applications that require estimates of the local environmental water isotope variation across large geographic regions.
NASA Astrophysics Data System (ADS)
Huang, M.; Wada, R.; Chen, Z.; Keutgen, T.; Kowalski, S.; Hagel, K.; Barbui, M.; Bonasera, A.; Bottosso, C.; Materna, T.; Natowitz, J. B.; Qin, L.; Rodrigues, M. R. D.; Sahu, P. K.; Schmidt, K. J.; Wang, J.
2010-11-01
Isotope yield distributions in the multifragmentation regime were studied with high-quality isotope identification, focusing on the intermediate mass fragments (IMFs) produced in semiviolent collisions. The yields were analyzed within the framework of a modified Fisher model. Using the ratio of the mass-dependent symmetry energy coefficient relative to the temperature, asym/T, extracted in previous work and that of the pairing term, ap/T, extracted from this work, and assuming that both reflect secondary decay processes, the experimentally observed isotope yields were corrected for these effects. For a given I=N-Z value, the corrected yields of isotopes relative to the yield of C12 show a power law distribution Y(N,Z)/Y(12C)~A-τ in the mass range 1⩽A⩽30, and the distributions are almost identical for the different reactions studied. The observed power law distributions change systematically when I of the isotopes changes and the extracted τ value decreases from 3.9 to 1.0 as I increases from -1 to 3. These observations are well reproduced by a simple deexcitation model, with which the power law distribution of the primary isotopes is determined to be τprim=2.4±0.2, suggesting that the disassembling system at the time of the fragment formation is indeed at, or very near, the critical point.
NASA Astrophysics Data System (ADS)
Panda, R. N.; Sharma, Mahesh K.; Panigrahi, M.; Patra, S. K.
2018-02-01
We have examined the ground state properties of Al isotopes towards the proton rich side from A = 22 to 28 using the well known relativistic mean field (RMF) formalism with NLSH parameter set. The calculated results are compared with the predictions of finite range droplet model and experimental data. The calculation is extended to estimate the reaction cross section for ^{22-28} Al as projectiles with ^{12} C as target. The incident energy of the projectiles are taken as 950 MeV/nucleon, for both spherical and deformed RMF densities as inputs in the Glauber model approximation. Further investigation of enhanced values of total reaction cross section for ^{23} Al and ^{24} Al in comparison to rest of the isotopes indicates the proton skin structure of these isotopes. Specifically, the large value of root mean square radius and total reaction cross section of ^{23} Al could not be ruled out the formation of proton halo.
NASA Astrophysics Data System (ADS)
Panda, R. N.; Sharma, Mahesh K.; Panigrahi, M.; Patra, S. K.
2018-06-01
We have examined the ground state properties of Al isotopes towards the proton rich side from A = 22 to 28 using the well known relativistic mean field (RMF) formalism with NLSH parameter set. The calculated results are compared with the predictions of finite range droplet model and experimental data. The calculation is extended to estimate the reaction cross section for ^{22-28}Al as projectiles with ^{12}C as target. The incident energy of the projectiles are taken as 950 MeV/nucleon, for both spherical and deformed RMF densities as inputs in the Glauber model approximation. Further investigation of enhanced values of total reaction cross section for ^{23}Al and ^{24}Al in comparison to rest of the isotopes indicates the proton skin structure of these isotopes. Specifically, the large value of root mean square radius and total reaction cross section of ^{23}Al could not be ruled out the formation of proton halo.
High δ56Fe values in Samoan basalts
NASA Astrophysics Data System (ADS)
Konter, J. G.; Pietruszka, A. J.; Hanan, B. B.; Finlayson, V.
2014-12-01
Fe isotope fractionation spans ~0-0.4 permil in igneous systems, which cannot all be attributed to variable source compositions since peridotites barely overlap these compositions. Other processes may fractionate Fe isotopes such as variations in the degree of partial melting, magmatic differentiation, fluid addition related to the final stages of melt evolution, and kinetic fractionation related to diffusion. An important observation in igneous systems is the trend of increasing Fe isotope values against an index of magmatic fractionation (e.g. SiO2; [1]). The data strongly curve from δ56Fe >0.3 permil for SiO2 >70 wt% down to values around 0.09 permil from ~65 wt% down to 40 wt% SiO2 of basalts. However, ocean island basalts (OIBs) have a slightly larger δ56Fe variability than mid ocean ridge basalts (MORBs; [e.g. 2]). We present Fe isotope data on samples from the Samoan Islands (OIB) that have unusually high δ56Fe values for their SiO2 content. We rule out alteration by using fresh samples, and further test for the effects of magmatic processes on the δ56Fe values. In order to model the largest possible fractionation, unusually small degrees of melting with extreme fractionation factors are modeled with fractional crystallization of olivine alone, but such processing fails to fractionate the Fe isotopes to the observed values. Moreover, Samoan lavas likely also fractionated clinopyroxene, and its lower fractionation factor would limit the final δ56Fe value of the melt. We therefore suggest the mantle source of Samoan lavas must have had unusually high δ56Fe. However, there is no clear correlation with the highly radiogenic isotope signatures that reflect the unique source compositions of Samoa. Instead, increasing melt extraction correlates with lower δ56Fe values in peridotites assumed to be driven by the preference for the melt phase by heavy Fe3+, while high values may be related to metasomatism [3]. The latter would be in line with metasomatized xenoliths from Samoa [4]. [1] Heimann et al., 2008, doi:10.1016/j.gca.2008.06.009 [2] Teng et al., 2013, doi:10.1016/j.gca.2012.12.027 [3] Williams et al., 2004, doi: 10.1126/science.1095679 [4] Hauri et al., 1993, doi: 10.1038/365221a0
NASA Astrophysics Data System (ADS)
Huang, Enqing; Chen, Yunru; Schefuß, Enno; Steinke, Stephan; Liu, Jingjing; Tian, Jun; Martínez-Méndez, Gema; Mohtadi, Mahyar
2018-07-01
Precipitation isotope reconstructions derived from speleothems and plant waxes are important archives for understanding hydroclimate dynamics. Their climatic significance in East Asia, however, remains controversial. Here we present terrestrial plant-wax stable hydrogen isotope (δDwax) records over periods covering the last four interglacials and glacial terminations from sediment cores recovered from the northern South China Sea (SCS) as an archive of regionally-integrated precipitation isotope changes in Southeast China. Combined with previous precipitation isotope reconstructions from China, we find that the SCS δDwax and Southwest-Central China stalagmite δ18O records show relatively enriched and depleted isotopic values, respectively, during interglacial peaks; but relatively similar isotopic variations during most sub-interglacials and glacial periods over the past 430 thousand years. During interglacial peaks, strong summer insolation should have intensified the convection intensity, the isotopic fractionation along moisture trajectories and the seasonality, which are all in favor of causing isotopically-depleted rainfall over the East Asian monsoon regime. These effects in combination with a relatively high proportion of Indian Ocean- versus Pacific-sourced moisture influx should have resulted in strongly depleted precipitation isotopes (stalagmite δ18O) over most parts of China. However, Southeast China should have been affected by a relatively low ratio of Indian Ocean- versus Pacific-sourced moisture influx, which dominated over effects yielding depleted precipitation isotopes and led to enriched precipitation isotopes (δDwax). It is thus concluded that glacial boundary conditions and insolation forcing are the two most important factors for causing regional differences in precipitation isotope compositions over subtropical East Asia on orbital timescales.
[Tracing Sources of Sulfate Aerosol in Nanjing Northern Suburb Using Sulfur and Oxygen Isotopes].
Wei, Ying; Guo, Zhao-bing; Ge, Xin; Zhu, Sheng-nan; Jiang, Wen-juan; Shi, Lei; Chen, Shu
2015-04-01
Abstract: To trace the sources of sulfate contributing to atmospheric aerosol, PM2.5 samples for isotopic analysis were collected in Nanjing northern suburb during January 2014. The sulfur and oxygen isotopic compositions of sulfate from these samples were determined by EA-IRMS. Source identification and apportionment were carried out using stable isotopic and chemical evidences, combined with absolute principal component analysis (APCA) method. The Δ34S values of aerosol sulfate ranged from 2.7 per thousand to 6.4 per thousand, with an average of 5.0 per thousand ± 0.9 per thousand, while the Δ18O values ranged from 10.6 per thousand to 16.1 per thousand, with an average of 12.5 per thousand ± 1.37 per thousand. In conjunction with air mass trajectories, the results suggested that aerosol sulfates were controlled by a dominance of local anthropogenic sulfate, followed by the contributions of long-distance transported sulfate. There was a minor effect of some other low-Δ34S valued sulfates, which might be expected from biogenic sources. Absolute principal component analysis results showed that the contributions of anthropogenic sulfate and long-distance transported sulfate were 46.74% and 31.54%, respectively.
Xiao, Ke; Shen, Li-Cheng; Wang, Peng
2014-08-01
The condition of water cycles in Tibet Plateau is a complex process, and the hydrogen and oxygen isotopes contain important information of this process. Based on the analysis of isotopic composition of freshwater lake, saltwater lake and geothermal water in the southern Tibetan Plateau, this study investigated water cycling, composition and variation of hydrogen and oxygen isotopes and the influencing factors in the study area. The study found that the mean values of delta18O and deltaD in Daggyaima lake water (-17.0 per thousand for delta18O and -138. 6 per thousand for deltaD), Langcuo lake water (-6.4 per thousand for delta18O and -87.4 per thousand for deltaD) and Dagejia geothermal water (-19.2 per thousand for delta18 and -158.2 per thousand for deltaD) all showed negative delta18O and deltaD values in Tibetan Plateau by the influence of altitude effects. Lake water and geothermal water were influenced by evaporation effects in inland arid area, and the slope of evaporation line was less than 8. Deuterium excess parameters of lake water and geothermal water were all negative. The temperature of geothermal reservoirs in Dagejia geothermal field was high,and oxygen shift existed in the relationship of hydrogen and oxygen isotopes.
Gong, Yi; Li, Yunkai; Chen, Xinjun; Chen, Ling
2018-04-15
Squid is an important seafood resource for Asian and European countries. With the continuous development of processed squid products, an effective traceability system has become increasingly prominent. Here, we attempt to trace the fishery products of the main target species, jumbo squid (Dosidicus gigas), by using biochemical tracers. Carbon and nitrogen isotope ratios (δ 13 C and δ 15 N values) and fatty acid profiles were identified in squid from three harvest locations in the eastern Pacific Ocean by isotope ratio mass spectrometry and gas chromatography/mass spectrometry, respectively. Comparative analysis was used to evaluate the geographic variations in tracers and to identify the suitable discriminatory variables among origins. Significant spatial variations were found in isotopic values and fatty acid profiles in squid muscle tissues, possibly because of different food availability and/or oceanographic conditions that each group experiences at a given location. The stepwise discriminant analysis indicated that δ 15 N, C16:1n7, C17:1n7, C18:2n6, C20:1 and C20:4n6 were effective variables at differentiating origin. Combined use of stable isotope ratios and fatty acid analyses could trace geographic origins of jumbo squid. This study provides an alternative approach for improving authenticity evaluation of commercial squid products. Copyright © 2018 John Wiley & Sons, Ltd.
Lambs, Luc; Bompy, Félix; Dulormne, Maguy
2018-01-03
Studies of wetland eco-hydrology in tropical coastal area are scarce, and the use of water stable isotopes can be of great help. Key constraints for their analysis are (i) the small difference in δ 18 O values between seawater and old evaporated freshwater, and (ii) the fact that the presence of old brackish water limits the determination of the water origin and dynamic. The water of tropical storms displays distinctively depleted heavy stable isotopes, in comparison with usual tropical rainfall without strong convective thunderstorms. During tropical storms, such as Hurricane Rafael in mid-October 2012, the rainfall δ 18 O signal can be decreased by many units. This effect is called an "isotopic spike", and it could be used as a temporal marker of the water fluxes. Water samples, with δ 18 O values as low as = -8.9 ‰, were collected in the islands of Guadeloupe and Saint-Martin during Hurricane Rafael, whereas the usual range of groundwater or mean rainfall δ 18 O values is around -2.8 ± 0.5 ‰, as measured from 2009 to 2012. These water "isotopic spikes" allow us to show a surface fresh water uptake by mangrove trees in Guadeloupe, and in Saint-Martin, to calculate the water renewal of the salt ponds and pools. The "isotopic spikes" generated by tropical storms, are generally used to track back past storm events, as recorded in trees and stalagmites. Here, the propagation of isotopic spike is followed to improve the understanding of the freshwater circulation and the water dynamic within coastal ecosystems influenced by seawater. This article is protected by copyright. All rights reserved.
Molinié, Roland; Kwiecień, Renata A; Silvestre, Virginie; Robins, Richard J
2009-12-01
N-Demethylation of tropine is an important step in the degradation of this compound and related metabolites. With the purpose of understanding the reaction mechanism(s) involved, it is desirable to measure the 15N kinetic isotope effects (KIEs), which can be accessed through the 15N isotope shift (Deltadelta15N) during the reaction. To measure the isotope fractionation in 15N during tropine degradation necessitates the extraction of the residual substrate from dilute aqueous solution without introducing artefactual isotope fractionation. Three protocols have been compared for the extraction and measurement of the 15N/14N ratio of tropine from aqueous medium, involving liquid-liquid phase partitioning or silica-C18 solid-phase extraction. Quantification was by gas chromatography (GC) on the recovered organic phase and delta15N values were obtained by isotope ratio measurement mass spectrometry (irm-MS). Although all the protocols used can provide satisfactory data and both irm-EA-MS and irm-GC-MS can be used to obtain the delta15N values, the most convenient method is liquid-liquid extraction from a reduced aqueous volume combined with irm-GC-MS. The protocols are applied to the measurement of 15N isotope shifts during growth of a Pseudomonas strain that uses tropane alkaloids as sole source of carbon and nitrogen. The accuracy of the determination of the 15N/14N ratio is sufficient to be used for the determination of 15N-KIEs. Copyright 2009 John Wiley & Sons, Ltd.
The ruthenium isotopic composition of the oceanic mantle
NASA Astrophysics Data System (ADS)
Bermingham, K. R.; Walker, R. J.
2017-09-01
The approximately chondritic relative, and comparatively high absolute mantle abundances of the highly siderophile elements (HSE), suggest that their concentrations in the bulk silicate Earth were primarily established during a final ∼0.5 to 1% of ;late accretion; to the mantle, following the cessation of core segregation. Consequently, the isotopic composition of the HSE Ru in the mantle reflects an amalgamation of the isotopic compositions of late accretionary contributions to the silicate portion of the Earth. Among cosmochemical materials, Ru is characterized by considerable mass-independent isotopic variability, making it a powerful genetic tracer of Earth's late accretionary building blocks. To define the Ru isotopic composition of the oceanic mantle, the largest portion of the accessible mantle, we report Ru isotopic data for materials from one Archean and seven Phanerozoic oceanic mantle domains. A sample from a continental lithospheric mantle domain is also examined. All samples have identical Ru isotopic compositions, within analytical uncertainties, indicating that Ru isotopes are well mixed in the oceanic mantle, defining a μ100Ru value of 1.2 ± 7.2 (2SD). The only known meteorites with the same Ru isotopic composition are enstatite chondrites and, when corrected for the effects of cosmic ray exposure, members of the Main Group and sLL subgroup of the IAB iron meteorite complex which have a collective CRE corrected μ100Ru value of 0.9 ± 3.0. This suggests that materials from the region(s) of the solar nebula sampled by these meteorites likely contributed the dominant portion of late accreted materials to Earth's mantle.
Investigation of epi-thermal shape-parameter needed for precision analysis of activation
NASA Astrophysics Data System (ADS)
Elmaghraby, Elsayed K.
2017-06-01
The present work aims to expose factors that alter the isotope's effective resonance energy and its resonance integral in order to have consistency between the experimental observation of integral experiments and the prediction of the reaction rate. The investigation is based on disclosing the interference among resonances in Breit-Wigner and Reich-Moore representations to make the investigation of the statistical nature of resonances possible. The shape-parameter influence on the isotope's behavior in epi-thermal neutron field was investigated in the range from -0.1 to 0.1. Evaluated resonance data given in Evaluated Nuclear Data Files (ENDF/B VII.1) and temperature-dependent cross-sections of Point2015 are used. Only resolved resonances are considered in the present assessment. Tabulated values of resonance integrals and effective resonance energies with their moments are given for the majority of ENDF's isotopes. The reported data can be used, directly, to compute the integral parameters for any value of shape-parameter without the need to use numerical software tools. Correlations among effective resonance energy, experimental level spacing and resonance integral are discussed.
Pierson-Wickmann, Anne-Catherine; Gruau, Gérard; Jardé, Emilie; Gaury, Nicolas; Brient, Luc; Lengronne, Marion; Crocq, André; Helle, Daniel; Lambert, Thibault
2011-04-01
A combined mass-balance and stable isotope approach was set up to identify and quantify dissolved organic carbon (DOC) sources in a DOC-rich (9mgL(-1)) eutrophic reservoir located in Western France and used for drinking water supply (so-called Rophemel reservoir). The mass-balance approach consisted in measuring the flux of allochthonous DOC on a daily basis, and in comparing it with the effective (measured) DOC concentration of the reservoir. The isotopic approach consisted, for its part, in measuring the carbon isotope ratios (δ(13)C values) of both allochthonous and autochthonous DOC sources, and comparing these values with the δ(13)C values of the reservoir DOC. Results from both approaches were consistent pointing out for a DOC of 100% allochthonous origin. In particular, the δ(13)C values of the DOC recovered in the reservoir (-28.5±0.2‰; n=22) during the algal bloom season (May-September) showed no trace of an autochthonous contribution (δ(13)C in algae=-30.1±0.3‰; n=2) being indistinguishable from the δ(13)C values of allochthonous DOC from inflowing rivers (-28.6±0.1‰; n=8). These results demonstrate that eutrophication is not responsible for the high DOC concentrations observed in the Rophemel reservoir and that limiting eutrophication of this reservoir will not reduce the potential formation of disinfection by-products during water treatment. The methodology developed in this study based on a complementary isotopic and mass-balance approach provides a powerful tool, suitable to identify and quantify DOC sources in eutrophic, DOC-contaminated reservoirs. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
García, Alberto; Laiz-Carrión, Raúl; Uriarte, Amaya; Quintanilla, José M.; Morote, Elvira; Rodríguez, José M.; Alemany, Francisco
2017-06-01
The trophic ecology of bluefin tuna larvae (Thunnus thynnus) from the Balearic Sea, together with its co-existing tuna species such as albacore (T. alalunga), bullet (Auxis rochei) and little tunny (Euthynnus alletteratus) were examined by nitrogen and carbon stable isotope analyses. A total of 286 larvae were analyzed for this study, of which 72 larvae corresponded to bluefin, 57 to albacore, 81 to bullet tuna and 76 to little tunny. Tuna larvae were separated into the pre-flexion and post-flexion developmental stages. Within the size 3-9 mm standard length (SL), the stable isotope of nitrogen (δ15N) showed significant differences between species where bluefin tuna larvae ranked highest. Pre-flexion bluefin tuna and little tunny larvae showed significantly higher δ15N signatures than the post-flexion larvae. This effect is attributed to a biochemical trace of maternal δ15N signatures. However, neither albacore nor bullet tuna larvae showed this pattern in δ15N signatures, possibly owing to a compensation effect between lower maternal δ15N values transmitted to pre-flexion larvae and the early increase of δ15N values in post-flexion stages. One way ANOVA showed significant differences between species in the stable isotope ratio of carbon (δ13C) values, which suggests specific differences of carbon sources. Furthermore, a similar significant ontogenic effect between δ13C signatures of pre-flexion and post-flexion larvae is also evidenced in all four species. At pre-flexion stages, all species except bullet tuna larvae showed significant negative relationships between δ15N and larval standard length. At post-flexion stages, a significant linear relationship with larval size was only observed in albacore and bullet tuna larvae indicating a possible trophic shift towards early piscivory. With respect to δ13C values with larval size, all four species showed significant linear decreases. It may be explained by the metabolism of growth of somatic mass subject to modification of the relative carbon isotopic sources. In conclusion, the species' signatures of δ15N and δ13C indicate differentiated early life trophic niches. In addition, it is worth remarking the potential use of transgenerational isotopic transmission in future research applications.
NASA Astrophysics Data System (ADS)
Panetta, R. J.; Hsiao, G.
2011-12-01
Trace levels of organic contaminants such as short alcohols and terpenoids have been shown to cause spectral interference in water isotope analysis by spectroscopic techniques. The result is degraded precision and accuracy in both δD and δ18O for samples such as beverages, plant extracts or slightly contaminated waters. An initial approach offered by manufacturers is post-processing software that analyzes spectral features to identify and flag contaminated samples. However, it is impossible for this software to accurately reconstruct the water isotope signature, thus it is primarily a metric for data quality. Here, we describe a novel in-line pyrolysis system (Micro-Pyrolysis Technology, MPT) placed just prior to the inlet of a cavity ring-down spectroscopy (CRDS) analyzer that effectively removes interfering organic molecules without altering the isotope values of the water. Following injection of the water sample, N2 carrier gas passes the sample through a micro-pyrolysis tube heated with multiple high temperature elements in an oxygen-free environment. The temperature is maintained above the thermal decomposition threshold of most organic compounds (≤ 900 oC), but well below that of water (~2000 oC). The main products of the pyrolysis reaction are non-interfering species such as elemental carbon and H2 gas. To test the efficacy and applicability of the system, waters of known isotopic composition were spiked with varying amounts of common interfering alcohols (methanol, ethanol, propanol, hexanol, trans-2-hexenol, cis-3-hexanol up to 5 % v/v) and common soluble plant terpenoids (carveol, linalool, geraniol, prenol). Spiked samples with no treatment to remove the organics show strong interfering absorption peaks that adversely affect the δD and δ18O values. However, with the MPT in place, all interfering absorption peaks are removed and the water absorption spectrum is fully restored. As a consequence, the δD and δ18O values also return to their original values, demonstrating effective removal of interfering species with no isotopic fractionation during the pyrolysis. Tests of water spiked quantitatively show the MPT is most effective at removing interferences up to 1 % v/v. This level is typical for plant extracts and interstitial waters, i.e. the majority of natural samples that suffer from spectral interference.
An experiment to assess the effects of diatom dissolution on oxygen isotope ratios.
Smith, Andrew C; Leng, Melanie J; Swann, George E A; Barker, Philip A; Mackay, Anson W; Ryves, David B; Sloane, Hilary J; Chenery, Simon R N; Hems, Mike
2016-01-30
Current studies which use the oxygen isotope composition from diatom silica (δ(18) Odiatom ) as a palaeoclimate proxy assume that the δ(18) Odiatom value reflects the isotopic composition of the water in which the diatom formed. However, diatoms dissolve post mortem, preferentially losing less silicified structures in the water column and during/after burial into sediments. The impact of dissolution on δ(18) Odiatom values and potential misinterpretation of the palaeoclimate record are evaluated. Diatom frustules covering a range of ages (6 samples from the Miocene to the Holocene), environments and species were exposed to a weak alkaline solution for 48 days at two temperatures (20 °C and 4 °C), mimicking natural dissolution post mucilage removal. Following treatment, dissolution was assessed using scanning electron microscope images and a qualitative diatom dissolution index. The diatoms were subsequently analysed for their δ(18) O values using step-wise fluorination and isotope ratio mass spectrometry. Variable levels of diatom dissolution were observed between the six samples; in all cases higher temperatures resulted in more frustule degradation. Dissolution was most evident in younger samples, probably as a result of the more porous nature of the silica. The degree of diatom dissolution does not directly equate to changes in the isotope ratios; the δ(18) Odiatom value was, however, lower after dissolution, but in only half the samples was this reduction outside the analytical error (2σ analytical error = 0.46‰). We have shown that dissolution can have a small negative impact on δ(18) Odiatom values, causing reductions of up to 0.59‰ beyond analytical error (0.46‰) at natural environmental temperatures. These findings need to be considered in palaeoenvironmental reconstructions using δ(18) Odiatom values, especially when interpreting variations in these values of <1‰. Copyright © 2015 John Wiley & Sons, Ltd.
Climatic and environmental controls on speleothem oxygen-isotope values
NASA Astrophysics Data System (ADS)
Lachniet, Matthew S.
2009-03-01
Variations in speleothem oxygen-isotope values ( δ18O) result from a complicated interplay of environmental controls and processes in the ocean, atmosphere, soil zone, epikarst, and cave system. As such, the controls on speleothem δ18O values are extremely complex. An understanding of the processes that control equilibrium and kinetic fractionation of oxygen isotopes in water and carbonate species is essential for the proper interpretation of speleothem δ18O as paleoclimate and paleoenvironmental proxies, and is best complemented by study of site-specific cave processes such as infiltration, flow routing, drip seasonality and saturation state, and cave microclimate, among others. This review is a process-based summary of the multiple controls on δ18O in the atmosphere, soil, epikarst, and speleothem calcite, illustrated with case studies. Primary controls of δ18O in the atmosphere include temperature and relative humidity through their role in the multiple isotope "effects". Variability and modifications of water δ18O values in the soil and epikarst zones are dominated by evaporation, mixing, and infiltration of source waters. The isotopically effective recharge into a cave system consists of those waters that participate in precipitation of CaCO 3, resulting in calcite deposition rates which may be biased to time periods with optimal dripwater saturation state. Recent modeling, experimental, and observational data yield insight into the significance of kinetic fractionation between dissolved carbonate phases and solid CaCO 3, and have implications for the 'Hendy' test. To assist interpretation of speleothem δ18O time series, quantitative and semi-quantitative δ18O-climate calibrations are discussed with an emphasis on some of the difficulties inherent in using modern spatial and temporal isotope gradients to interpret speleothems as paleoclimate proxy records. Finally, several case studies of globally significant speleothem paleoclimate records are discussed that show the utility of δ18O to reconstruct past climate changes in regions that have been typically poorly represented in paleoclimate records, such as tropical and subtropical terrestrial locations. The new approach to speleothem paleoclimatology emphasizes climate teleconnections between regions and attribution of forcing mechanisms. Such investigations allow paleoclimatologists to infer regional to global-scale climate dynamics.
NASA Astrophysics Data System (ADS)
Hornibrook, Edward; Maxfield, Peter; Gauci, Vincent; Stott, Andrew
2013-04-01
Stable isotope ratios in CH4 preserve information about its origin and history, and are commonly used to constrain global CH4 budgets. Wetlands are key contributors to the atmospheric burden of CH4 and typically are assigned a stable carbon isotope composition of ~-60 permil in isotope-weighted stable isotope models despite the considerable range of δ13C(CH4) values (~ -100 to -40 permil) known to occur in these diverse ecosystems. Kinetic isotope effects (KIEs) associated with the metabolism of CH4-producing microorganisms generate much of the natural variation but highly negative and positive δ13C(CH4) values generally result from secondary processes (e.g., diffusive transport or oxidation by soil methanotrophs). Despite these complexities, consistent patterns exist in the isotope composition of wetland CH4 that can be linked conclusively to trophic status and consequently, natural succession or human perturbations that impact nutrient levels. Another challenge for accurate representation of wetlands in carbon cycle models is parameterisation of sporadic CH4 emission events. Abrupt release of large volumes of CH4-rich bubbles in short periods of time can account for a significant proportion of the annual CH4 flux from a wetland but such events are difficult to detect using conventional methods. New infrared spectroscopy techniques capable of high temporal resolution measurements of CH4 concentration and stable isotope composition can readily quantify short-lived CH4 pulses. Moreover, the isotope data can be used conclusively to determine shifts in the mode of CH4 transport and provide the potential to link initiation of abrupt emission events to forcing by internal or external factors.
Hydrogen isotope fractionation during lipid biosynthesis by Haloarcula marismortui
NASA Astrophysics Data System (ADS)
Dirghangi, Sitindra S.; Pagani, Mark
2013-10-01
We studied the controls on the fractionation of hydrogen isotopes during lipid biosynthesis by Haloarcula marismortui, a halophilic archaea, in pure culture experiments by varying organic substrate, the hydrogen isotope composition (D/H) of water, temperature, and salinity. Cultures were grown on three substrates: succinate, pyruvate and glycerol with known hydrogen isotope compositions, and in water with different hydrogen isotopic compositions. All culture series grown on a particular substrate show strong correlations between δDarchaeol and δDwater. However, correlations are distinctly different for cultures grown on different substrates. Our results indicate that the metabolic pathway of substrate exerts a fundamental influence on the δD value of lipids, likely by influencing the D/H composition of NADPH (nicotinamide adenine dinucleotide phosphate), the reducing agent that contributes hydrogen to carbon atoms during lipid biosynthesis. Temperature and salinity have smaller, but similar effects on δDlipid, primarily due to the way temperature and salinity influence growth rate, as well as temperature effects on the activity of enzymes.
Mass-independent isotope fractionation of Mo, Ru, Cd, and Te
NASA Astrophysics Data System (ADS)
Fujii, T.; Moynier, F.; Albarède, F.
2006-12-01
The variation of the mean charge distribution in the nucleus with the neutron number of different isotopes induces a tenuous shift of the nuclear field. The mass fractionation induced during phase changes is irregular, notably with 'staggering' between odd and even masses, and becomes increasingly non-linear for neutron-rich isotopes. A strong correlation is observed between the deviation of the isotopic effects from the linear dependence with mass and the corresponding nuclear charge radii. We first demonstrated on a number of elements the existence of such mass-independent isotope fractionation in laboratory experiments of solvent extraction with a macrocyclic compound. The isotope ratios were analyzed by multiple-collector inductively coupled plasma mass spectrometry with a typical precision of <100 ppm. The isotopes of odd and even atomic masses are enriched in the solvent to an extent that closely follows the variation of their nuclear charge radii. The present results fit Bigeleisen's (1996) model, which is the standard mass-dependent theory modified to include a correction term named the nuclear field shift effect. For heavy elements like uranium, the mass-independent effect is important enough to dominate the mass-dependent effect. We subsequently set out to compare the predictions of Bigeleisen's theory with the isotopic anomalies found in meteorites. Some of these anomalies are clearly inconsistent with nucleosynthetic effects (either s- or r-processes). Isotopic variations of Mo and Ru in meteorites, especially in Allende (CV3), show a clear indication of nucleosynthetic components. However, the mass-independent anomaly of Ru observed in Murchison (CM2) is a remarkable exception which cannot be explained by the nucleosynthetic model, but fits the nuclear field shift theory extremely well. The abundances of the even atomic mass Te isotopes in the leachates of carbonaceous chondrites, Allende, Murchison, and Orgueil, fit a mass-dependent law well, but the odd atomic mass isotope ^{125}Te clearly deviates from this correlation. The nuclear field shift theory shows that there is no effect on ^{130}Te but that the ^{125}Te anomaly is real. Carbonaceous chondrites do not reveal significant isotope fractionation of Cd isotopes, but a nuclear field shift effect is clearly present in type-3 (unequilibrated) ordinary chondrites. The nuclear field shift effect is temperature dependent and is probably more frequent in nature than commonly thought. It remains, together with nucleosynthetric anomalies, perfectly visible through the normalization of isotopic ratios to a reference value. In meteorites, this effect may originate both during condensation/evaporation processes in the nebular gas and during the metamorphism of the meteorite parent bodies.
Isotope and mixture effects on neoclassical transport in the pedestal
NASA Astrophysics Data System (ADS)
Pusztai, Istvan; Buller, Stefan; Omotani, John T.; Newton, Sarah L.
2017-10-01
The isotope mass scaling of the energy confinement time in tokamak plasmas differs from gyro-Bohm estimates, with implications for the extrapolation from current experiments to D-T reactors. Differences in mass scaling in L-mode and various H-mode regimes suggest that the isotope effect may originate from the pedestal. In the pedestal, sharp gradients render local diffusive estimates invalid, and global effects due to orbit-width scale profile variations have to be taken into account. We calculate neoclassical cross-field fluxes from a radially global drift-kinetic equation using the PERFECT code, to study isotope composition effects in density pedestals. The relative reduction to the peak heat flux due to global effects as a function of the density scale length is found to saturate at an isotope-dependent value that is larger for heavier ions. We also consider D-T and H-D mixtures with a focus on isotope separation. The ability to reproduce the mixture results via single-species simulations with artificial ``DT'' and ``HD'' species has been considered. These computationally convenient single ion simulations give a good estimate of the total ion heat flux in corresponding mixtures. Funding received from the International Career Grant of Vetenskapsradet (VR) (330-2014-6313) with Marie Sklodowska Curie Actions, Cofund, Project INCA 600398, and Framework Grant for Strategic Energy Research of VR (2014-5392).
Dutra, S V; Adami, L; Marcon, A R; Carnieli, G J; Roani, C A; Spinelli, F R; Leonardelli, S; Vanderlinde, R
2013-12-01
We studied Brazilian wines produced by microvinification from Cabernet Sauvignon and Merlot grapes, vintages 2007 and 2008, from the Serra Gaúcha, Campanha and Serra do Sudeste regions, in order to differentiate them according to geographical origin by using isotope and mineral element analyses. In addition, the influence of vintage production in isotope values was verified. Isotope analysis was performed by isotope ratio mass spectrometry (IRMS), and the determination of minerals was by flame atomic absorption (FAA). The best parameters to classify the wines in the 2008 vintage were Rb and Li. The results of the δ(13)C of wine ethanol, Rb and Li showed a significant difference between the varieties regardless of the region studied. The δ(18)O values of water and δ(13)C of ethanol showed significant differences, regardless of the variety. Discriminant analysis of isotope and minerals values allowed to classify approximately 80% of the wines from the three regions studied. Copyright © 2013 Elsevier Ltd. All rights reserved.
Weathering fluxes to the Gulf of Mexico from the Pliocene to Holocene based on radiogenic isotopes
NASA Astrophysics Data System (ADS)
Portier, A. M.; Martin, E. E.; Hemming, S. R.; Thierens, M. M.; Raymo, M. E.
2014-12-01
Chemical weathering of the continents plays a key role in the global carbon cycle and delivers solutes to the ocean. Past studies, documented using radiogenic isotopes of detrital and seawater samples, show the intensity of weathering varies with climate over a range of time scales.. We analyzed Pb and Nd isotopic values of seawater extracted from dispersed Fe-Mn oxides, <2μm (clay) and <63μm (silt) detrital fractions of Pliocene to Holocene sediment from Gulf of Mexico ODP Site 625B to evaluate long term variations in weathering fluxes for three time slices: the Pliocene/early Pleistocene, Mid Pleistocene Transition (MPT), and late Pleistocene/Holocene. We also examine short term glacial/interglacial variations. Little variation is seen in Nd isotopes of detrital fractions with age, suggesting little change in the average age of material delivered to the Gulf. Seawater Nd values become less radiogenic over the Pleistocene, consistent with observed changes in Caribbean seawater. Pb isotopes of silt fractions are also relatively constant through time, but clay fractions are more radiogenic at the MPT and dispersed Fe-Mn oxides trend to more radiogenic values in the late Pleistocene. Consequently, the Pb isotopes of dispersed Fe-Mn oxides tend to be less radiogenic than the detrital fractions in samples older than 2000 ka and more radiogenic than the detrital fractions, particularly clays, at the MPT. This may reflect greater incongruent silicate weathering during the MPT, a change in weathering conditions that could be consistent with the Regolith Hypothesis. Over glacial/interglacial timescales, dispersed Fe-Mn oxides Pb isotopes become more radiogenic than detrital fractions, and clay fractions become more radiogenic than silt fractions, during glacial periods. However, all fractions have similar values during interglacials. This pattern is distinct from previous studies that found enhanced incongruent silicate weathering during warm intervals, but is consistent with recent work finding a correlation with carbonate content, whereby low carbonate during glacials at Site 625 corresponds to a greater offset between leachate and detrital Pb isotopes. Biases from "heavy mineral effects" and changes in circulation during periods of lower sea level also need to be considered.
Verification of Egg Farming Systems from The Netherlands and New Zealand Using Stable Isotopes.
Rogers, Karyne M; van Ruth, Saskia; Alewijn, Martin; Philips, Andy; Rogers, Pam
2015-09-30
Stable isotopes were used to develop authentication criteria of eggs laid under cage, barn, free range, and organic farming regimens from The Netherlands and New Zealand. A training set of commercial poultry feeds and egg albumen from 49 poultry farms across The Netherlands was used to determine the isotopic variability of organic and conventional feeds and to assess trophic effects of these corresponding feeds and barn, free range, and organic farming regimens on corresponding egg albumen. A further 52 brands of New Zealand eggs were sampled from supermarket shelves in 2008 (18), 2010 (30), and 2014 (4) to characterize and monitor changes in caged, barn, free range, and organic egg farming regimens. Stable carbon (δ(13)C) and nitrogen (δ(15)N) isotopes of 49 commercial poultry feeds and their corresponding egg albumens reveals that Dutch poultry are fed exclusively on a plant-based feed and that it is possible to discriminate between conventional and organic egg farming regimens in The Netherlands. Similarly, it is possible to discriminate between New Zealand organic and conventional egg farming regimens, although in the initial screening in 2008, results showed that some organic eggs had isotope values similar to those of conventional eggs, suggesting hens were not exclusively receiving an organic diet. Dutch and New Zealand egg regimens were shown to have a low isotopic correlation between both countries, because of different poultry feed compositions. In New Zealand, both conventional and organic egg whites have higher δ(15)N values than corresponding Dutch egg whites, due to the use of fishmeal or meat and bone meal (MBM), which is banned in European countries. This study suggests that stable isotopes (specifically nitrogen) show particular promise as a screening and authentication tool for organically farmed eggs. Criteria to assess truthfulness in labeling of organic eggs were developed, and we propose that Dutch organic egg whites should have a minimum δ(15)N value of 4.8‰ to account for an organic plant derived diet. Monitoring of New Zealand egg isotopes over the past 7 years suggests that organic eggs should have a minimum δ(15)N value of 6.0‰, and eggs falling below this value should be investigated further by certification authorities.
13C 18O clumping in speleothems: Observations from natural caves and precipitation experiments
NASA Astrophysics Data System (ADS)
Daëron, M.; Guo, W.; Eiler, J.; Genty, D.; Blamart, D.; Boch, R.; Drysdale, R.; Maire, R.; Wainer, K.; Zanchetta, G.
2011-06-01
The oxygen isotope composition of speleothems is an important proxy of continental paleoenvironments, because of its sensitivity to variations in cave temperature and drip water δ 18O. Interpreting speleothem δ 18O records in terms of absolute paleotemperatures and δ 18O values of paleo-precipitation requires quantitative separation of the effects of these two parameters, and correcting for possible kinetic isotope fractionation associated with precipitation of calcite out of thermodynamic equilibrium. Carbonate clumped-isotope thermometry, based on measurements of Δ47 (a geochemical variable reflecting the statistical overabundance of 13C 18O bonds in CO 2 evolved from phosphoric acid digestion of carbonate minerals), potentially provides a method for absolute speleothem paleotemperature reconstructions independent of drip water composition. Application of this new technique to karst records is currently limited by the scarcity of published clumped-isotope studies of modern speleothems. The only modern stalagmite reported so far in the literature yielded a lower Δ47 value than expected for equilibrium precipitation, possibly due to kinetic isotope fractionation. Here we report Δ47 values measured in natural speleothems from various cave settings, in carbonate produced by cave precipitation experiments, and in synthetic stalagmite analogs precipitated in controlled laboratory conditions designed to mimic natural cave processes. All samples yield lower Δ47 and heavier δ 18O values than predicted by experimental calibrations of thermodynamic equilibrium in inorganic calcite. The amplitudes of these isotopic disequilibria vary between samples, but there is clear correlation between the amount of Δ47 disequilibrium and that of δ 18O. Even pool carbonates believed to offer excellent conditions for equilibrium precipitation of calcite display out-of-equilibrium δ 18O and Δ47 values, probably inherited from prior degassing within the cave system. In addition to these modern observations, clumped-isotope analyses of a flowstone from Villars cave (France) offer evidence that the amount of disequilibrium affecting Δ47 in a single speleothem can experience large variations at time scales of 10 kyr. Application of clumped-isotope thermometry to speleothem records calls for an improved physical understanding of DIC fractionation processes in karst waters, and for the resolution of important issues regarding equilibrium calibration of Δ47 in inorganic carbonates.
NASA Astrophysics Data System (ADS)
Nowak, Martin; van Geldern, Robert; Myrttinen, Anssi; Veith, Becker; Zimmer, Martin; Barth, Johannes
2013-04-01
With rising atmospheric greenhouse gas concentrations, CCS technologies are a feasible option to diminish consequences of uncontrolled anthropogenic CO2 emissions and related climate change. However, application of CCS technologies requires appropriate and routine monitoring tools in order to ensure a safe and effective CO2 injection. Stable isotope techniques have proven as a useful geochemical monitoring tool at several CCS pilot projects worldwide. They can provide important information about gas - water - rock interactions, mass balances and CO2 migration in the reservoir and may serve as a tool to detect CO2 leakage in the subsurface and surface. Since the beginning of injection in 2008 at the Ketzin pilot site in Germany, more than 450 samples of fluids and gases have been analysed for their carbon and oxygen isotopic composition. Analytical advancements were achieved by modifying a conventional isotope ratio mass-spectrometer with a He dilution system. This allowed analyses of a larger number of CO2 gas samples from the injection well and observation wells. With this, a high-resolution monitoring program was established over a time period of one year. Results revealed that two isotopical distinct kinds of CO2 are injected at the Ketzin pilot site. The most commonly injected CO2 is so-called 'technical' CO2 with an average carbon isotopic value of about -31 ‰. Sporadically, natural source CO2 with an average δ13C value of -3 ‰ was injected. The injection of natural source CO2 generated a distinct isotope signal at the injection well that can be used as an ideal tracer. CO2 isotope values analysed at the observation wells indicate a highly dispersive migration of the supercritical CO2 that results in mixing of the two kinds of CO2 within the reservoir. Above-reservoir monitoring includes the first overlying aquifer above the cap rock. An observation well within this zone comprises an U-tube sampling device that allows frequent sampling of unaltered brine. The fluids were analysed among others for their carbon isotopic compositions of dissolved inorganic carbon (DIC). δ13CDIC values allowed to assess impacts of the carbonate-based drilling fluid during well development and helped to monitor successive geochemical re-equilibration processes of the brine. Based on the determined δ13C baseline values of the aquifer fluid, first concepts indicate the scale of change of the δ13CDIC values that would be necessary to detect CO2 leakage from the underlying storage reservoir. Recent efforts aim at applications of new laser-based isotope sensors that allow online measurements in the field. These devices are applied for CO2 gas tracer experiments as well as for monitoring of isotope composition of soil gases in the vicinity of the pilot site. This new development will allow much better temporal and spatial resolution of measurements at a lower price. Therefore, stable isotope analyses can become a strong and promising tool for subsurface as well as surface monitoring at future CCS sites.
NASA Astrophysics Data System (ADS)
Santiago Ramos, D. P.; Higgins, J. A.
2017-12-01
Low-temperature alteration of oceanic crust plays an important role in a number of geochemical cycles, thus modulating the chemical composition of the oceans. In particular, it has been established that low-temperature (<150oC) alteration of basalt is a major sink of seawater potassium. However, little is known about the effects of this process on the potassium isotope composition of seawater, which is 0.5‰ enriched relative to bulk silicate Earth (δ41KBSE=-0.54‰). Here we measure a number of isotope systems (δ41K, δ26Mg, 87Sr/86Sr) in both host rock and vein material from the upper volcanic section of Cretaceous (Troodos Ophiolite) and Jurassic (ODP 801C) oceanic crust using a MC-ICP-MS. The goal is to estimate the K isotopic fractionation associated with basalt alteration in low-temperature conditions, and how it might affect the K isotope enrichment of seawater relative to BSE. We find that marine hydrothermal samples from Troodos and ODP site 801C are enriched in potassium relative to the unaltered glass compositions and have δ41K values both higher and lower than BSE, ranging from -0.45‰ to -0.69‰ (n = 9) and -0.32‰ to -0.71‰ (n = 5), respectively. The low measured δ41K values could represent 1) fractionation (α<1) of K isotopes during uptake from seawater (δ41KSW 0‰), or 2) remobilized mantle-sourced K (δ41KBSE=-0.54‰) from deeper within the ophiolite sequence. Measurements of δ26Mg (n=15) and 87Sr/86Sr (n=12) in these samples yield enriched values relative to bulk silicate Earth, suggesting that alteration of oceanic crust likely happened under high water-to-rock ratios in both Troodos and ODP 801C, and that the added potassium is seawater-sourced. We thus suggest that the isotopically light δ41K values measured in both sites are associated with the formation of secondary clays enriched in the 39K isotope. This light isotope enrichment could be intensified if seawater K sourcing is a diffusion-limited process, as aqueous potassium diffusion has been associated with K isotope fractionations between 0.9967 and 0.9984. Our results indicate that the uptake of potassium in altered oceanic crust could be responsible, in part, for the observed K isotope enrichment of seawater relative to bulk silicate Earth.
NASA Astrophysics Data System (ADS)
Akers, P. D.; Welker, J. M.
2015-12-01
Spatial variations in precipitation isotopes have been the focus of much recent research, but relatively less work has explored changes at various temporal scales. This is partly because most spatially-diverse and long-term isotope databases are offered at a monthly resolution, while daily or event-level records are spatially and temporally limited by cost and logistics. A subset of 25 United States Network for Isotopes in Precipitation (USNIP) sites with weekly-resolution in the east-central United States was analyzed for site-specific relationships between δ18O and δD (the local meteoric water line/LMWL), δ18O and surface temperature, and δ18O and precipitation amount. Weekly data were then aggregated into monthly and seasonal data to examine the effect of aggregation on correlation and slope values for each of the relationships. Generally, increasing aggregation improved correlations (>25% for some sites) due to a reduced effect of extreme values, but estimates on regression variable error increased (>100%) because of reduced sample sizes. Aggregation resulted in small, but significant drops (5-25%) in relationship slope values for some sites. Weekly data were also grouped by month and season to explore changes in relationships throughout the year. Significant subannual variability exists in slope values and correlations even for sites with very strong overall correlations. LMWL slopes are highest in winter and lowest in summer, while the δ18O-surface temperature relationship is strongest in spring. Despite these overall trends, a high level of month-to-month and season-to-season variability is the norm for these sites. Researchers blindly applying overall relationships drawn from monthly-resolved databases to paleoclimate or environmental research risk assuming these relationships apply at all temporal resolutions. When possible, researchers should match the temporal resolution used to calculate an isotopic relationship with the temporal resolution of their applied proxy.
Enhanced collectivity along the N = Z line: lifetime measurements in 44Ti, 48Cr, and 52Fe
NASA Astrophysics Data System (ADS)
Arnswald, K.; Reiter, P.; Coraggio, L.; Birkenbach, B.; Blazhev, A.; Braunroth, T.; Dewald, A.; Fransen, C.; Fu, B.; Gargano, A.; Hess, H.; Hirsch, R.; Itaco, N.; Lenzi, S. M.; Lewandowski, L.; Litzinger, J.; Müller-Gatermann, C.; Queiser, M.; Rosiak, D.; Schneiders, D.; Seidlitz, M.; Siebeck, B.; Steinbach, T.; Vogt, A.; Wolf, K.; Zell, K. O.
2018-02-01
Lifetimes of the {2}1+ states in 44Ti, 48,50Cr, and 52Fe were determined with high accuracy exploiting the recoil distance Doppler-shift method. The reduced E2 transition strengths of 44Ti and 52 Fe differ considerably from previously known values. A systematic increase in collectivity is found for the N = Z nuclei compared to neighboring isotopes. The B(E2) values along the Ti, Cr, and Fe isotopic chains are compared to shell-model calculations employing established interactions for the 0f 1p shell, as well as a novel effective shell-model Hamiltonian starting from a realistic nucleon-nucleon potential. The theoretical approaches underestimate the B(E2) values for the lower-mass Ti isotopes. Strong indication is found for particle-hole cross-shell configurations, recently corroborated by similar results for the neighboring isotone 42 Ca. A detailed manuscript has meanwhile been published in Physics Letters B [1].
Bridge, Eli S.; Kelly, Jeffrey F.; Xiao, Xiangming; Takekawa, John Y.; Hill, Nichola J.; Yamage, Mat; Haque, Enam Ul; Islam, Mohammad Anwarul; Mundkur, Taej; Yavuz, Kiraz Erciyas; Leader, Paul; Leung, Connie Y.H.; Smith, Bena; Spragens, Kyle A.; Vandegrift, Kurt J.; Hosseini, Parviez R.; Saif, Samia; Mohsanin, Samiul; Mikolon, Andrea; Islam, Ausrafal; George, Acty; Sivananinthaperumal, Balachandran; Daszak, Peter; Newman, Scott H.
2014-01-01
Satellite-based tracking of migratory waterfowl is an important tool for understanding the potential role of wild birds in the long-distance transmission of highly pathogenic avian influenza. However, employing this technique on a continental scale is prohibitively expensive. This study explores the utility of stable isotope ratios in feathers in examining both the distances traveled by migratory birds and variation in migration behavior. We compared the satellite-derived movement data of 22 ducks from 8 species captured at wintering areas in Bangladesh, Turkey, and Hong Kong with deuterium ratios (δD) in the feathers of these and other individuals captured at the same locations. We derived likely molting locations from the satellite tracking data and generated expected isotope ratios based on an interpolated map of δD in rainwater. Although δD was correlated with the distance between wintering and molting locations, surprisingly, measured δD values were not correlated with either expected values or latitudes of molting sites. However, population-level parameters derived from the satellite-tracking data, such as mean distance between wintering and molting locations and variation in migration distance, were reflected by means and variation of the stable isotope values. Our findings call into question the relevance of the rainfall isotope map for Asia for linking feather isotopes to molting locations, and underscore the need for extensive ground truthing in the form of feather-based isoscapes. Nevertheless, stable isotopes from feathers could inform disease models by characterizing the degree to which regional breeding populations interact at common wintering locations. Feather isotopes also could aid in surveying wintering locations to determine where high-resolution tracking techniques (e.g. satellite tracking) could most effectively be employed. Moreover, intrinsic markers such as stable isotopes offer the only means of inferring movement information from birds that have died as a result of infection. In the absence of feather based-isoscapes, we recommend a combination of isotope analysis and satellite-tracking as the best means of generating aggregate movement data for informing disease models.
Experimental Assessment of Carbon Isotopes of Light Hydrocarbons under Different Redox Conditions
NASA Astrophysics Data System (ADS)
Fu, Q.; Chen, X.
2017-12-01
Hydrocarbons can be derived from a variety of carbon sources, by different processes, and under a wide range of physicochemical conditions. Other than bacterial activities facilitating biogenic hydrocarbon formation at low temperatures, decomposition of complex organic matter in sedimentary rocks at elevated temperatures produce thermogenic hydrocarbons, whereas abiogenic hydrocarbons are mainly generated through Fischer-Tropsch type synthesis with mineral catalysts. The carbon isotope has been used extensively to distinguish hydrocarbons of different origins and their formation conditions. For each type of hydrocarbons, however, environmental conditions may change reaction pathways and corresponding isotope fractionations. To better understand the variation of carbon isotopes caused by environmental variables, mineral constraints in particular, a series of laboratory experiments are conducted. In experiments where thermogenic hydrocarbons are formed, oil shale is the source material with different gypsum contents (0, 0.3, 0.5, and 1 wt.%). The abundance of generated light straight chain hydrocarbons decreases with increasing gypsum content, but their carbon isotopes become heavier. For example, the δ13C value of methane increases from -55.1‰ to -41.4‰ with gypsum varying between 0 and 1 wt.%. In similar experiments with the presence of MnO2, carbon isotope values of light alkanes are also higher, but with limited magnitudes (e.g., 3 to 4‰ for methane). In another experiment with dissolved H2 gas of 100 mmol/kg, light alkanes become depleted in 13C than experiments without H2. For example, there is a depletion of 2.7‰ for methane. The variation of carbon isotope values of light alkanes suggests the redox condition, constrained by mineral assemblage, fluid composition, and physical environment, play an important role in isotope fractionation. The pathway of hydrocarbon generation may be different under oxidized or reducing conditions. A set of experiments, in which abiogenic hydrocarbons are formed, is currently in progress. Combined together, they would facilitate our understanding of carbon isotope fractionation under geological conditions, and effective use of carbon isotopes as a diagnostic tool for hydrocarbons that are poorly understood in terms of origin and evolution.
NASA Astrophysics Data System (ADS)
Tavakoli, Vahid; Naderi-Khujin, Mehrangiz; Seyedmehdi, Zahra
2018-04-01
Detailed sedimentological and geochemical records across the Permian-Triassic boundary (PTB) in five offshore wells of the central Persian Gulf served to interpret the end-Permian sea-level change in this region. A decrease in sea level at the PTB was established by petrographical and geochemical study of the boundary. Thin sections showed that Upper Permian strata are composed of dolomite with minor anhydrite, changing into limestone in Lower Triassic sediments. Brine dilution toward the boundary supports sea-level fall in the Permian-Triassic transition, reflected by a decrease in anhydrite content and a shallowing-upward trend from lagoonal to peritidal facies. Isotopic changes at the boundary are in favor of sea-level fall. Changes in both carbon (from about 4 to -1‰) and oxygen (from 2 to -5‰) stable isotopes show negative excursions. The shift in carbon isotope values is a global phenomenon and is interpreted as resulting from carbonate sediment interaction with 12C-rich waters at the end-Permian sea-level fall. However, the oxygen isotope shift is attributed to the effect of meteoric waters with negative oxygen isotope values. The increase in strontium isotope ratios is also consistent with the high rate of terrestrial input at the boundary. The effect of meteoric conditions during diagenesis is evident from vuggy and moldic porosities below the PTB. The following transgression at the base of the Triassic is evident from the presence of reworked fossils and intraclasts resulting from deposition from agitated water.
NASA Astrophysics Data System (ADS)
Wu, X.; Wang, Y.; Wang, X. S.; Hu, B.
2017-12-01
Stable isotope δ2H, δ18O and d-excess values of water have previously been used to study the hydraulic connection of groundwater between the surrounding areas such as Heihe River Basin, Qilian Mountain and the Badain Jaran desert (BJD), China. We choose to focus on the effects of strong evaporation on the isotopic characteristics of water in the desert to better understand the origin of water in the BJD. A series of evaporation experiments were conducted in the desert to examine how it may change during evaporation and infiltration under local environmental conditions. Evaporation from open water was monitored in two experiments using local groundwater and lake water, respectively. And evaporation of soil water was observed in three pits which were excavated to different depths below a flat ground surface to install the evaporation-infiltration systems. Water samples were also collected from lakes, a spring and local unconfined aquifer for analyses of stable hydrogen and oxygen isotope ratios, and d-excess values in the BJD. The results show that water isotope contents became progressively enriched along an evaporation line, and the d-excess values decreased with the evaporation. The strong relationship of d-excess and δ18O values was observed from both the experiments and the water samples of groundwater and lakes, which is considered to be a signature of strong evaporation. Also, all the values of groundwater and lake water samples fall along with the evaporation line established through the evaporation experiments, indicating that lakes and groundwater in the study area have evolved from meteoric precipitation under modern or similar to modern climatic conditions. Analysis of a few previously published d-excess and δ18O values of groundwater from the BJD, Lake Eyre Basin, Australia, and Jabal Hafit mountain, United Arab Emirates reveals strong relationships between the two, suggesting similar recharge processes as observed in the BJD. This study demonstrated that the characteristic water isotopic patterns resulting from evaporation could be utilized to help resolve ambiguities in the interpretation of water isotope data in terms of recharge sources, especially, in the arid regions, such as the central Australia and the deserts of United Arab Emirates.
The effects of early diagenesis on the chemical and stable carbon isotopic composition of wood
Spiker, E. C.; Hatcher, P.G.
1987-01-01
Studies of modern and ancient buried wood show that there is a linear correlation between carbohydrate content and the stable carbon isotope composition as carbohydrates are preferentially degraded during early diagenesis. As the carbohydrate content decreases, the ??13C value of the degraded wood decreases 1 to 2 per mil, approaching the value of the residual lignin. These results indicate that carbohydrate degradation products are lost and not incorporated into the aromatic structure as lignin is selectively preserved during early diagenesis of wood. These results also indicate that attempts to quantify terrestrial inputs to modern sedimentary organic matter based on ??13C values should consider the possibility of a 1 to 2 per mil decrease in the ??13C value of degraded wood. ?? 1987.
87Sr/ 86Sr Concentrations in the Appalachian Basin: A Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mordensky, Stanley P.; Lieuallen, A. Erin; Verba, Circe
This document reviews 87Sr/ 86Sr isotope data across the Appalachian Basin from existing literature to show spatial and temporal variation. Isotope geochemistry presents a means of understanding the geochemical effects hydraulic fracturing may have on shallow ground substrates. Isotope fractionation is a naturally occurring phenomenon brought about by physical, chemical, and biological processes that partition isotopes between substances; therefore, stable isotope geochemistry allows geoscientists to understand several processes that shape the natural world. Strontium isotopes can be used as a tool to answer an array of geological and environmental inquiries. In some cases, strontium isotopes are sensitive to the introductionmore » of a non-native fluid into a system. This ability allows strontium isotopes to serve as tracers in certain systems. Recently, it has been demonstrated that strontium isotopes can serve as a monitoring tool for groundwater and surface water systems that may be affected by hydraulic fracturing fluids (Chapman et al., 2013; Kolesar Kohl et al., 2014). These studies demonstrated that 87Sr/ 86Sr values have the potential to monitor subsurface fluid migration in regions where extraction of Marcellus Shale gas is occurring. This document reviews publicly available strontium isotope data from 39 sample locations in the Appalachian Basin (Hamel et al., 2010; Chapman et al., 2012; Osborn et al., 2012; Chapman et al., 2013; Capo et al., 2014; Kolesar Kohl et al., 2014). The data is divided into two sets: stratigraphic (Upper Devonian/Lower Mississippi, Middle Devonian, and Silurian) and groundwater. ArcMap™ (ESRI, Inc.) was used to complete inverse distance weighting (IDW) analyses for each dataset to create interpolated surfaces in an attempt to find regional trends or variations in strontium isotopic values across the Appalachian Basin. 87Sr/ 86Sr varies up to ~ 0.011 across the Appalachian Basin, but the current publicly available data is limited in frequency and regional extent, causing artifacts and high uncertainty when interpolating data for locations far from sampling sites. These factors highlight the need for additional strontium isotope sampling across the region. Identifying potential contamination from hydraulic fracturing fluid in Appalachian Basin groundwater using strontium isotopes would require additional sampling. For a more comprehensive strontium isotope database, samples would need to be collected during prefracturing, syn-fracturing, and post-fracturing stages. This would add a temporal component to the spatial data and make tracing of fluid migration with strontium isotopes more accurate. Future research and modeling that incorporates subsurface geology and watershed data would also serve to increase the accuracy and certainty of the interpolations of these analyses. Prospective geospatial Appalachian Basin isotope studies would also benefit from the integration of geologic mapping because surface and subsurface geology influences observed strontium isotope values.« less
Sharma, Shruti; Mora, G.; Johnston, J.W.; Thompson, T.A.
2005-01-01
Beach ridges along the coastline of Lake Superior provide a long-term and detailed record of lake level fluctuations for the past 4000 cal BP. Although climate change has been invoked to explain these fluctuations, its role is still in debate. Here, we reconstruct water balance by employing peat samples collected from swale deposits present between beach ridge sequences at two locations along the coastline of Lake Superior. Carbon isotope ratios for Sphagnum remains from these peat deposits are used as a proxy for water balance because the presence or absence of water films on Sphagnum controls the overall isotope discrimination effects. Consequently, increased average water content in Sphagnum produces elevated ??13C values. Two maxima of Sphagnum ??13C values interpreted to reflect wetter conditions prevailed from 3400 to 2400 cal BP and from about 1900 to 1400 cal BP. There are two relatively short drier periods as inferred from low Sphagnum ??13C values: one is centered at about 2300 cal BP, and one begins at 1400 cal BP. A good covariance was found between Sphagnum ??13C values and reconstructed lake-levels for Lake Michigan in which elevated carbon isotope values correlate well with higher lake levels. Based on this covariance, we conclude that climate exerts a strong influence on lake levels in Lake Superior for the past 4000 cal BP. ?? 2005 Elsevier Ltd. All rights reserved.
Wunder, Michael B.; Jehl, Joseph R.; Stricker, Craig A.
2012-01-01
1. Because stable isotope distributions in organic material vary systematically across energy gradients that exist in ecosystems, community and population structures, and in individual physiological systems, isotope values in animal tissues have helped address a broad range of questions in animal ecology. It follows that every tissue sample provides an isotopic profile that can be used to study dietary or movement histories of individual animals. Interpretations of these profiles depend on the assumption that metabolic pools are isotopically well mixed and in equilibrium with dietary resources prior to tissue synthesis, and they extend to the population level by assuming isotope profiles are identically distributed for animals using the same proximal dietary resource. As these assumptions are never fully met, studying structure in the variance of tissue isotope values from wild populations is informative. 2. We studied variation in δ13C, δ15N, δ2H and δ18O data for feathers from a population of eared grebes (Podiceps nigricollis) that migrate to Great Salt Lake each fall to moult feathers. During this time, they cannot fly and feed almost exclusively on superabundant brine shrimp (Artemia franciscana). The ecological simplicity of this situation minimized the usual spatial and trophic complexities often present in natural studies of feather isotope values. 3. Ranges and variances of isotope values for the feathers were larger than those from previously published studies that report feather isotopic variance, but they were bimodally distributed in all isotope dimensions. Isotope values for proximal dietary resources and local surface water show that some of the feathers we assumed to have been grown locally must have been grown before birds reached isotopic equilibrium with local diet or immediately prior to arrival at Great Salt Lake. 4. Our study provides novel insights about resource use strategies in eared grebes during migration. More generally, it demonstrates the utility of studying variance structures and questioning assumptions implicit in the interpretation of stable isotope data from wild animals.
Qi, Haiping; Lorenz, Jennifer M.; Coplen, Tyler B.; Tarbox, Lauren V.; Mayer, Bernhard; Taylor, Steve
2014-01-01
RESULTS: The δ2H and δ18O values of this reference water are –150.2 ± 0.5 ‰ and –19.80 ± 0.02 ‰, respectively, relative to VSMOW on scales normalized such that the δ2H and δ18O values of SLAP reference water are, respectively, –428 and –55.5 ‰. Each uncertainty is an estimated expanded uncertainty (U = 2uc) about the reference value that provides an interval that has about a 95-percent probability of encompassing the true value. CONCLUSION: This isotopic reference material, designated as USGS47, is intended as one of two isotopic reference waters for daily normalization of stable hydrogen and stable oxygen isotopic analysis of water with a mass spectrometer or a laser absorption spectrometer. "
IUPAC Periodic Table of Isotopes for the Educational Community
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holden N. E.; Holden,N.E.; Coplen,T.B.
2012-07-15
John Dalton first proposed the concept of atomic weights of the elements in the first decade of the nineteenth century. These atomic weights of the chemical elements were thought of as constants of nature, similar to the speed of light. Dmitri Mendeleev arranged the atomic weights of the elements in ascending order of value and used the systematic variation of their chemical properties to produce his Periodic Table of the Elements in 1869. Measurement of atomic weight values became an important chemical activity for a century and a half. Theodore Richards received a Noble Prize for his work in thismore » area. In 1913, Fredrick Soddy found a species of radium, which had an atomic weight value of 228, compared to the familiar radium gas value of 226. Soddy coined the term 'isotope' (Greek for 'in the same place') to account for this second atomic weight value in the radium position of the Periodic Table. Both of these isotopes of radium are radioactive. Radioactive isotopes are energetically unstable and will decay (disintegrate) over time. The time it takes for one half of a sample of a given radioactive isotope to decay is the half-life of that isotope. In addition to having different atomic weight values, radium-226 and radium-228 also have different half-life values. Around the same time as Soddy's work, J.J. Thomson (discoverer of the electron) identified two stable (non-radioactive) isotopes of the same element, neon. Over the next 40 years, the majority of the known chemical elements were found to have two or more stable (or long-lived radioactive isotopes that contribute significantly to the determination of the atomic weights of the elements).« less
Baumann, Karen; Dignac, Marie-France; Bardoux, Gérard; Rumpel, Cornelia
2012-09-15
The objective of this investigation was to test gas-chromatographic compound-specific analysis for studies on the isotopic composition of (13)C-enriched sugar molecules. The effects of (13)C enrichment and type of sugar (C5, C6) will provide valuable information on isotopic correction for future studies employing (13)C-enriched sugars. Five sugar solutions of xylose, mannose and glucose with (13)C enrichments ranging between 1.1 and 1.5 atom-% were prepared. The (13)C enrichments of the initial sugars were measured by elemental analyser/isotope ratio mass spectrometry (EA/IRMS); (13)C enrichments for derivatised sugars were obtained by gas chromatography/combustion/IRMS (GC/C/IRMS). The linear relationships between the (13)C enrichments of the initial sugars and the values for the derivatised sugars were sugar-type dependent. Corrections for GC/C/IRMS values took into account the kinetic isotope effect (KIE) of the derivatising agent associated with the coefficient (K(d)) and a newly introduced second coefficient (K(c)) associated with the KIE of the sugar. While K(d) was constant, K(c) varied with sugar type. During derivatisation acetate groups with (12)C and sugars with more (13)C reacted faster. Coefficients for the specific ranges of (13)C enrichments under study have to be assessed and the reactions of different sugar types have to be taken into account to avoid underestimation of (13)C enrichment of up to 9% (C5) or overestimation of up to 4% (C6). Copyright © 2012 John Wiley & Sons, Ltd.
Experimental investigation of nitrogen isotopic effects associated with ammonia degassing at 0-70 °C
NASA Astrophysics Data System (ADS)
Deng, Yuying; Li, Yingzhou; Li, Long
2018-04-01
Ammonia degassing is a common process in natural alkaline waters and in the atmosphere. To quantitatively assess the nitrogen cycle in these systems, the essential parameter of nitrogen isotope fractionation factors associated with ammonia degassing is required, but still not constrained yet. In this study, we carried out laboratory experiments to examine the nitrogen isotope behavior during ammonia degassing in alkaline conditions. The experiments started with ammonium sulfate solution with excess sodium hydroxide. The reaction can be described as: NH4+ + OH- (excess) → NH3·nH2O → NH3 (g)↑. Two sets of experiments, one with ammonia degassing under static conditions and the other with ammonia degassing by bubbling of N2 gas, were carried out at 2, 21, 50, and 70 °C. The results indicate that kinetic isotopic effects are dominated during efficient degassing of ammonia in the bubbling experiments, which yielded kinetic nitrogen isotope fractionation factors αNH3(g)-NH3(aq) of 0.9898 at 2 °C, 0.9918 at 21 °C, 0.9935 at 50 °C and 0.9948 at 70 °C. These values show a good relationship with temperature as 103lnαNH3(g)-NH3(aq) = 14.6 - 6.8 × 1000/T. In contrast, isotopic effects during less efficient degassing of ammonia in the static experiments are more complicated. The results do not match either kinetic isotope fractionation or equilibrium isotope fractionation but sit between these two. The most likely cause is that back dissolution of the degassed ammonia occurred in these experiments and consequently shifted kinetic isotope fractionation toward equilibrium isotope fractionation. Our experimental results highlight complicated isotopic effects may occur in natural environments, and need to be fully considered in the interpretation of field data.
Paleoenvironmental History of Long Island Sound, CT, USA
NASA Astrophysics Data System (ADS)
Varekamp, J. C.; Thomas, E.; Lugolobi, F.; Buchholtz Ten Brink, M. R.
2002-12-01
Western Long Island Sound (LIS) is an urban estuary heavily impacted by waste water effluents from CT and New York city. The estuary has suffered seasonal hypoxia since the 1970s, and in 1999 lobsters suffered > 90% mortality. We used short sediment cores that cover the last several 100 years to reconstruct the temperature/salinity history of LIS, as well as its history of hypoxic episodes. We measured oxygen and carbon isotopic compositions and Mg/Ca and Sr/Ca in calcite tests of the benthic foraminifer Elphidium excavatum, collected alive (Rose Bengal stained) in grab samples and in core samples, as proxies for bottom water temperature and salinity. The level of bottom water oxygenation is derived from the carbon isotope values in foraminiferal calcite, after correction for paleosalinity. The strong seasonal temperature fluctuation in Long Island Sound bottom waters (about 20oC) and the long livespan of the foraminifer make precise paleotemperature estimates difficult. The oxygen isotope data (in vivo effect 1.1 o/_{oo} of the foraminiferal tests were recalculated at constant mean-annual water temperature (12.5^{o}C) into paleosalinities, ranging between 18 and 33 ^{o}/oo. The oxygen and carbon isotope ratios of river water, Long Island Sound water and dissolved inorganic carbon were used to construct a mixing model for the Sound. From calculated paleosalinities and the modern mixing model we derived expected carbon isotope ratios, which were subtracted from the observed values. We argue that the residuals (excess carbon isotope values) are proportional to the amount of organic carbon that was oxidized in these waters, and as such represent a proxy for paleohypoxia. Data from nine cores show no long term trends in salinity over the last 1000 years, but show more pronounced variations over the last 100 years. Several low salinity events could be correlated with wet climate periods documented in Southern New England. The excess carbon isotope values were between 0 and -1 o/_{oo} for most of the last millennium but became much more negative in the mid 18^{th} to 19^{th} century, with strong variability in the 20^{th} century. The low salinity events of the last 100 years correlate strongly with strongly negative excess carbon isotope values, suggesting a linkage between the wet periods and oxidation of organic matter on the bottom of the Sound (algal blooms, warm periods?). This linkage between low salinity events and strongly negative excess carbon isotope values did not occur prior to 1900 AD. More detailed dating (^{210}Pb, ^{137}$Cs) will improve the time resolution and correlation between cores of the various documented events.
Barberena, Ramiro; Durán, Víctor A; Novellino, Paula; Winocur, Diego; Benítez, Anahí; Tessone, Augusto; Quiroga, María N; Marsh, Erik J; Gasco, Alejandra; Cortegoso, Valeria; Lucero, Gustavo; Llano, Carina; Knudson, Kelly J
2017-10-01
The goal of this article is to assess the scale of human paleomobility and ecological complementarity between the lowlands and highlands in the southern Andes during the last 2,300 years. By providing isotope results for human bone and teeth samples, we assess a hypothesis of "high residential mobility" suggested on the basis of oxygen isotopes from human remains. We develop an isotopic assessment of human mobility in a mountain landscape combining strontium and oxygen isotopes. We analyze bone and teeth samples as an approach to life-history changes in spatial residence. Human samples from the main geological units and periods within the last two millennia are selected. We present a framework for the analysis of bioavailable strontium based on the combination of the geological data with isotope results for rodent samples. The 87 Sr/ 86 Sr values from human samples indicate residential stability within geological regions along life history. When comparing strontium and oxygen values for the same human samples, we record a divergent pattern: while δ 18 O values for samples from distant regions overlap widely, there are important differences in 87 Sr/ 86 Sr values. Despite the large socio-economic changes recorded, 87 Sr/ 86 Sr values indicate a persisting scenario of low systematic mobility between the different geological regions. Our results suggest that strontium isotope values provide the most germane means to track patterns of human occupation of distinct regions in complex geological landscapes, offering a much higher spatial resolution than oxygen isotopes in the southern Andes. © 2017 Wiley Periodicals, Inc.
Vaiglova, Petra; Snoeck, Christophe; Nitsch, Erika; Bogaard, Amy; Lee-Thorp, Julia
2014-01-01
Rationale Stable isotope analysis of archaeological charred plants has become a useful tool for interpreting past agricultural practices and refining ancient dietary reconstruction. Charred material that lay buried in soil for millennia, however, is susceptible to various kinds of contamination, whose impact on the grain/seed isotopic composition is poorly understood. Pre-treatment protocols have been adapted in distinct forms from radiocarbon dating, but insufficient research has been carried out on evaluating their effectiveness and necessity for stable carbon and nitrogen isotope analysis. Methods The effects of previously used pre-treatment protocols on the isotopic composition of archaeological and modern sets of samples were investigated. An archaeological sample was also artificially contaminated with carbonates, nitrates and humic acid and subjected to treatment aimed at removing the introduced contamination. The presence and removal of the contamination were investigated using Fourier transform infrared spectroscopy (FTIR) and δ13C and δ15N values. Results The results show a ca 1‰ decrease in the δ15N values of archaeological charred plant material caused by harsh acid treatments and ultra-sonication. This change is interpreted as being caused by mechanical distortion of the grains/seeds rather than by the removal of contamination. Furthermore, specific infrared peaks have been identified that can be used to detect the three types of contaminants studied. We argue that it is not necessary to try to remove humic acid contamination for stable isotope analysis. The advantages and disadvantages of crushing the grains/seeds before pre-treatment are discussed. Conclusions We recommend the use of an acid-only procedure (0.5 M HCl for 30 min at 80°C followed by three rinses in distilled water) for cleaning charred plant remains. This study fills an important gap in plant stable isotope research that will enable future researchers to evaluate potential sources of isotopic change and pre-treat their samples with methods that have been demonstrated to be effective. © 2014 The Authors. Rapid Communications in Mass Spectrometry published by John Wiley & Sons Ltd. PMID:25366397
Xie, Hong; Huang, Zhi-Yong; Cao, Ying-Lan; Cai, Chao; Zeng, Xiang-Cheng; Li, Jian
2012-08-01
Pollution of Pb in the surface of agricultural soils is of increasing concern due to its serious impact on the plant growth and the human health through the food chain. However, the mobility, activity and bioavailability of Pb rely mainly on its various chemical species in soils. In the present study, E and L values, the labile pools of isotopically exchangeable Pb, were estimated using the method of isotope dilution in three vegetable-growing soils. The experiments involved adding a stable enriched isotope ((206)Pb > 96%) to a soil suspension and to soils in which plants are subsequently grown, the labile pools of Pb were then estimated by measuring the isotopic composition of Pb in soil solutions and in the plant tissues, respectively. In addition, the correlation of E values and soil pH was investigated at the ranges of pH 4.5-7.0. The amount of labile Pb in soils was also estimated using different single chemical extractants and a modified BCR approach. The results showed that after spiking the enriched isotopes of (206)Pb (>96%) for 24 hours an equilibration of isotopic exchanges in soil suspensions was achieved, and the isotope ratios of (208)Pb/(206)Pb measured at that time was used for calculating the E(24 h) values. The labile pools of Pb by %E(24 h) values, ranging from 53.2% to 61.7% with an average 57%, were found to be significantly higher (p < 0.05) than the values estimated with L values, single chemical extractants and the Σ(BCR) values obtained with the BCR approach, respectively. A strong negative correlation (R(2) = 0.984) between E(24 h) values and soil pH was found in the tested soil sample. The results indicate that the %E(24 h) value can more rapidly and easily predict the labile pools of Pb in soils compared with L values, but it might be readily overestimated because of the artificial soil acidity derived from the spiked isotopic tracer and the excess of spiked enriched isotopes. The results also suggest that the amounts of Pb extracted with EDTA and the Σ(BCR) values extracted with the modified BCR approach are helpful to detect the labile pools of Pb in soils. In addition, the negative correlation between soil pH and the labile pools of Pb in soils may be useful for further remediation to reduce the bioavailability of Pb in contaminated soils.
Potassium Isotopic Compositions of NIST Potassium Standards and 40Ar/39Ar Mineral Standards
NASA Technical Reports Server (NTRS)
Morgan, Leah; Tappa, Mike; Ellam, Rob; Mark, Darren; Higgins, John; Simon, Justin I.
2013-01-01
Knowledge of the isotopic ratios of standards, spikes, and reference materials is fundamental to the accuracy of many geochronological methods. For example, the 238U/235U ratio relevant to U-Pb geochronology was recently re-determined [1] and shown to differ significantly from the previously accepted value employed during age determinations. These underlying values are fundamental to accurate age calculations in many isotopic systems, and uncertainty in these values can represent a significant (and often unrecognized) portion of the uncertainty budget for determined ages. The potassium isotopic composition of mineral standards, or neutron flux monitors, is a critical, but often overlooked component in the calculation of K-Ar and 40Ar/39Ar ages. It is currently assumed that all terrestrial materials have abundances indistinguishable from that of NIST SRM 985 [2]; this is apparently a reasonable assumption at the 0.25per mille level (1s) [3]. The 40Ar/39Ar method further relies on the assumption that standards and samples (including primary and secondary standards) have indistinguishable 40K/39K values. We will present data establishing the potassium isotopic compositions of NIST isotopic K SRM 985, elemental K SRM 999b, and 40Ar/39Ar biotite mineral standard GA1550 (sample MD-2). Stable isotopic compositions (41K/39K) were measured by the peak shoulder method with high resolution MC-ICP-MS (Thermo Scientific NEPTUNE Plus), using the accepted value of NIST isotopic SRM 985 [2] for fractionation [4] corrections [5]. 40K abundances were measured by TIMS (Thermo Scientific TRITON), using 41K/39K values from ICP-MS measurements (or, for SRM 985, values from [2]) for internal fractionation corrections. Collectively these data represent an important step towards a metrologically traceable calibration of 40K concentrations in primary 40Ar/39Ar mineral standards and improve uncertainties by ca. an order of magnitude in the potassium isotopic compositions of standards.
Isotopic ratios D/H and 15N/14N in giant planets
NASA Astrophysics Data System (ADS)
Marboeuf, Ulysse; Thiabaud, Amaury; Alibert, Yann; Benz, Willy
2018-04-01
The determination of isotopic ratios in planets is important since it allows us to investigate the origins and initial composition of materials. The present work aims to determine the possible range of values for isotopic ratios D/H and 15N/14N in giant planets. The main objective is to provide valuable theoretical assumptions on the isotopic composition of giant planets, their internal structure, and the main reservoirs of species. We use models of ice formation and planet formation that compute the composition of ices and gas accreted in the core and the envelope of planets. Assuming a single initial value for isotopic ratios in volatile species, and disruption of planetesimals in the envelope of gaseous planets, we obtain a wide variety of D/H and 15N/14N ratios in low-mass planets (≤100 Mearth) due to the migration pathway of planets, the accretion time of gas species whose relative abundance evolves with time, and isotope exchanges among species. If giant planets with mass greater than 100 Mearth have solar isotopic ratios such as Jupiter and Saturn due to their higher envelope mass, Neptune-type planets present values ranging between one and three times the solar value. It seems therefore difficult to use isotopic ratios in the envelope of these planets to get information about their formation in the disc. For giant planets, the ratios allow us to constrain the mass fraction of volatile species in the envelope needed to reproduce the observational data by assuming initial values for isotopic ratios in volatile species.
Ellis, Geoffrey S.; Said-Ahamed, Ward; Lillis, Paul G.; Shawar, Lubna; Amrani, Alon
2017-01-01
Compound-specific sulfur isotope analysis was applied to a suite of 18 crude oils generated from the Permian Phosphoria Formation in the Bighorn Basin, western USA. These oils were generated at various levels of thermal maturity and some experienced thermochemical sulfate reduction (TSR). This is the first study to examine the effects of thermal maturation on stable sulfur isotopic compositions of individual organosulfur compounds (OSCs) in crude oil. A general trend of 34S enrichment in all of the studied compounds with increasing thermal maturity was observed, with the δ34S values of alkyl-benzothiophenes (BTs) tending to be enriched in 34S relative to those of the alkyl-dibenzothiophenes (DBTs) in lower-maturity oils. As thermal maturity increases, δ34S values of both BTs and DBTs become progressively heavier, but the difference in the average δ34S value of the BTs and DBTs (Δ34S BT-DBT) decreases. Differences in the isotopic response to thermal stress exhibited by these two compound classes are considered to be the result of relative differences in their thermal stabilities. TSR-altered Bighorn Basin oils have OSCs that are generally enriched in 34S relative to non-TSR-altered oils, with the BTs being enriched in 34S relative to the DBTs, similar to the findings of previous studies. However, several oils that were previously interpreted to have been exposed to minor TSR have Δ34S BT-DBT values that do not support this interpretation. The δ34S values of the BTs and DBTs in some of these oils suggest that they did not experience TSR, but were derived from a more thermally mature source. The heaviest δ34S values observed in the OSCs are enriched in 34S by up to 10‰ relative to that of Permian anhydrite in the Bighorn Basin, suggesting that there may be an alternate or additional source of sulfate in some parts of the basin. These results indicate that the sulfur isotopic composition of OSCs in oil provides a sensitive indicator for the extent of TSR, which cannot be determined from other bulk geochemical parameters. Moreover, when combined with additional geochemical and geologic evidence, the sulfur isotopic composition of OSCs in oils can help to identify the source of sulfate for TSR alteration in petroleum reservoirs.
Isotopic composition of low-latitude paleoprecipitation during the Early Cretaceous
Suarez, M.B.; Gonzalez, Luis A.; Ludvigson, Greg A.; Vega, F.J.; Alvarado-Ortega, J.
2009-01-01
The response of the hydrologic cycle in global greenhouse conditions is important to our understanding of future climate change and to the calibration of global climate models. Past greenhouse conditions, such as those of the Cretaceous, can be used to provide empirical data with which to evaluate climate models. Recent empirical studies have utilized pedogenic carbonates to estimate the isotopic composition of meteoric waters and calculate precipitation rates for the AptianAlbian. These studies were limited to data from mid(35??N) to high (75??N) paleolatitudes, and thus future improvements in accuracy will require more estimates of meteoric water compositions from numerous localities around the globe. This study provides data for tropical latitudes (18.5??N paleolatitude) from the Tlayua Formation, Puebla, Mexico. In addition, the study confirms a shallow nearshore depositional environment for the Tlayua Formation. Petrographic observations of fenestral fabrics, gypsum crystal molds, stromatolitic structures, and pedogenic matrix birefringence fabric support the interpretation that the strata represent deposition in a tidal flat environment. Carbonate isotopic data from limestones of the Tlayua Formation provide evidence of early meteoric diagenesis in the form of meteoric calcite lines. These trends in ??18O versus ??13C were used to calculate the mean ??18O value of meteoric water, which is estimated at -5.46 ?? 0.56??? (Vienna Standard Mean Ocean Water [VSMOW]). Positive linear covariant trends in oxygen and carbon isotopic values from some horizons were used to estimate evaporative losses of vadose groundwater from tropical exposure surfaces during the Albian, and the resulting values range from 8% to 12%. However, the presence of evaporative mineral molds indicates more extensive evaporation. The added tropical data improve latitudinal coverage of paleoprecipitation ??18O estimates. The data presented here imply that earlier isotope mass balance models most likely underestimated tropical to subtropical precipitation and evaporation fluxes. The limited latitudinal constraints for earlier isotope mass balance modeling of the Albian hydrologic cycle of the Northern Hemisphere Americas resulted in extrapolated low-latitude precipitation ??18O values that were much heavier (up to 3???) than the values observed in this study. The lighter values identified in this study indicate a more pronounced rainout effect for tropical regions and quite possibly a more vigorous evaporation effect. These and additional low-latitude data are required to better constrain changes in the hydrologic cycle during the Cretaceous greenhouse period, and to reduce the uncertainties resulting from limited geographic coverage of proxy data. ?? 2009 Geological Society of America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimball, Justine; Eagle, Robert; Dunbar, Robert
Here, deep-sea corals are a potentially valuable archive of the temperature and ocean chemistry of intermediate and deep waters. Living in near-constant temperature, salinity, and pH and having amongst the slowest calcification rates observed in carbonate-precipitating biological organisms, deep-sea corals can provide valuable constraints on processes driving mineral equilibrium and disequilibrium isotope signatures. Here we report new data to further develop “clumped” isotopes as a paleothermometer in deep-sea corals as well as to investigate mineral-specific, taxon-specific, and growth-rate-related effects. Carbonate clumped isotope thermometry is based on measurements of the abundance of the doubly substituted isotopologue 13C 18O 16O 2 inmore » carbonate minerals, analyzed in CO 2 gas liberated on phosphoric acid digestion of carbonates and reported as Δ 47 values. We analyzed Δ 47 in live-collected aragonitic scleractinian ( Enallopsammia sp.) and high-Mg calcitic gorgonian (Isididae and Coralliidae) deep-sea corals and compared results to published data for other aragonitic scleractinian taxa. Measured Δ 47 values were compared to in situ temperatures, and the relationship between Δ 47 and temperature was determined for each group to investigate taxon-specific effects. We find that aragonitic scleractinian deep-sea corals exhibit higher values than high-Mg calcitic gorgonian corals and the two groups of coral produce statistically different relationships between Δ 47–temperature calibrations. These data are significant in the interpretation of all carbonate clumped isotope calibration data as they show that distinct Δ 47–temperature calibrations can be observed in different materials recovered from the same environment and analyzed using the same instrumentation, phosphoric acid composition, digestion temperature and technique, CO 2 gas purification apparatus, and data handling. There are three possible explanations for the origin of these different calibrations. The offset between the corals of different mineralogy is in the same direction as published theoretical predictions for the offset between calcite and aragonite although the magnitude of the offset is different. One possibility is that the deep-sea coral results reflect high-Mg and aragonite crystals attaining nominal mineral equilibrium clumped isotope signatures due to conditions of extremely slow growth. In that case, a possible explanation for the attainment of disequilibrium bulk isotope signatures and equilibrium clumped isotope signatures by deep-sea corals is that extraordinarily slow growth rates can promote the occurrence of isotopic reordering in the interfacial region of growing crystals. We also cannot rule out a component of a biological “vital effect” influencing clumped isotope signatures in one or both orders of coral. Based on published experimental data and theoretical calculations, these biological vital effects could arise from kinetic isotope effects due to the source of carbon used for calcification, temperature- and pH-dependent rates of CO 2 hydration and/or hydroxylation, calcifying fluid pH, the activity of carbonic anhydrase, the residence time of dissolved inorganic carbon in the calcifying fluid, and calcification rate. A third possible explanation is the occurrence of variable acid digestion fractionation factors. Although a recent study has suggested that dolomite, calcite, and aragonite may have similar clumped isotope acid digestion fractionation factors, the influence of acid digestion kinetics on Δ 47 is a subject that warrants further investigation.« less
Kimball, Justine; Eagle, Robert; Dunbar, Robert
2016-12-12
Here, deep-sea corals are a potentially valuable archive of the temperature and ocean chemistry of intermediate and deep waters. Living in near-constant temperature, salinity, and pH and having amongst the slowest calcification rates observed in carbonate-precipitating biological organisms, deep-sea corals can provide valuable constraints on processes driving mineral equilibrium and disequilibrium isotope signatures. Here we report new data to further develop “clumped” isotopes as a paleothermometer in deep-sea corals as well as to investigate mineral-specific, taxon-specific, and growth-rate-related effects. Carbonate clumped isotope thermometry is based on measurements of the abundance of the doubly substituted isotopologue 13C 18O 16O 2 inmore » carbonate minerals, analyzed in CO 2 gas liberated on phosphoric acid digestion of carbonates and reported as Δ 47 values. We analyzed Δ 47 in live-collected aragonitic scleractinian ( Enallopsammia sp.) and high-Mg calcitic gorgonian (Isididae and Coralliidae) deep-sea corals and compared results to published data for other aragonitic scleractinian taxa. Measured Δ 47 values were compared to in situ temperatures, and the relationship between Δ 47 and temperature was determined for each group to investigate taxon-specific effects. We find that aragonitic scleractinian deep-sea corals exhibit higher values than high-Mg calcitic gorgonian corals and the two groups of coral produce statistically different relationships between Δ 47–temperature calibrations. These data are significant in the interpretation of all carbonate clumped isotope calibration data as they show that distinct Δ 47–temperature calibrations can be observed in different materials recovered from the same environment and analyzed using the same instrumentation, phosphoric acid composition, digestion temperature and technique, CO 2 gas purification apparatus, and data handling. There are three possible explanations for the origin of these different calibrations. The offset between the corals of different mineralogy is in the same direction as published theoretical predictions for the offset between calcite and aragonite although the magnitude of the offset is different. One possibility is that the deep-sea coral results reflect high-Mg and aragonite crystals attaining nominal mineral equilibrium clumped isotope signatures due to conditions of extremely slow growth. In that case, a possible explanation for the attainment of disequilibrium bulk isotope signatures and equilibrium clumped isotope signatures by deep-sea corals is that extraordinarily slow growth rates can promote the occurrence of isotopic reordering in the interfacial region of growing crystals. We also cannot rule out a component of a biological “vital effect” influencing clumped isotope signatures in one or both orders of coral. Based on published experimental data and theoretical calculations, these biological vital effects could arise from kinetic isotope effects due to the source of carbon used for calcification, temperature- and pH-dependent rates of CO 2 hydration and/or hydroxylation, calcifying fluid pH, the activity of carbonic anhydrase, the residence time of dissolved inorganic carbon in the calcifying fluid, and calcification rate. A third possible explanation is the occurrence of variable acid digestion fractionation factors. Although a recent study has suggested that dolomite, calcite, and aragonite may have similar clumped isotope acid digestion fractionation factors, the influence of acid digestion kinetics on Δ 47 is a subject that warrants further investigation.« less
What Mantle Processes Determine Isotopic
NASA Astrophysics Data System (ADS)
Tackley, P. J.; Xie, S.
2003-12-01
Isotopic measurements on Mid Ocean Ridge Basalts and Ocean Island Basalts indicate effective `ages' (from e.g., U-Pb or Sm-Nd systems) in the range 1-2 billion years- much less than the age of the Earth, even though melting should have been much more vigorous early on and skewed the mean time since melting to older values. This relatively young `age' has generally been explained in terms of stretching of heterogeneities by mantle convection, which might reduce them to dimensions too small to be individually distinguishable in short timescales of less than 1 Gyr. On the other hand, published numerical models that use tracers to track differentiated material (Christensen and Hofmann, 1994, Davies, 2002) suggest that Earth-like `ages' can be obtained without taking stretching-induced erasure of tracer signatures into account, although this might effectively happen if the lengthscale for sampling the isotope systems was large enough. In those models, the only explicit mechanism for resetting isotope systems was re-melting, but for this to explain the isotopic ages observed for basalts, the global rate of melting in the recent past would have had to be very much higher than present-day values. To investigate stretching vs. re-melting we have conducted numerical experiments of a cooling mantle with plate tectonics, differentiation and evolution of important isotopic systems. The time of last melting and the total strain is tracked on each tracer (in addition to isotopic information). The results confirm that a model matching today's crustal production rate and with a reasonable secular cooling history generates `ages' that are substantially larger than those observed, with the extent of crustal settling above the CMB making some difference but not enough. The effect of sampling lengthscale on observed `age' is also tested and found to be insufficient to explain the data. Thus, these results reaffirm the importance of stretching as a key mechanism for effectively deleting older heterogeneities. From analysis of strain vs. age and matching of the observed ages, it is estimated that erasure of heterogeneities occurs at strains of 103-104, somewhat larger than has often been assumed.
Benson, Sarah J; Lennard, Christopher J; Maynard, Philip; Hill, David M; Andrew, Anita S; Roux, Claude
2009-06-01
An evaluation was undertaken to determine if isotope ratio mass spectrometry (IRMS) could assist in the investigation of complex forensic cases by providing a level of discrimination not achievable utilising traditional forensic techniques. The focus of the research was on ammonium nitrate (AN), a common oxidiser used in improvised explosive mixtures. The potential value of IRMS to attribute Australian AN samples to the manufacturing source was demonstrated through the development of a preliminary AN classification scheme based on nitrogen isotopes. Although the discrimination utilising nitrogen isotopes alone was limited and only relevant to samples from the three Australian manufacturers during the evaluated time period, the classification scheme has potential as an investigative aid. Combining oxygen and hydrogen stable isotope values permitted the differentiation of AN prills from three different Australian manufacturers. Samples from five different overseas sources could be differentiated utilising a combination of the nitrogen, oxygen and hydrogen isotope values. Limited differentiation between Australian and overseas prills was achieved for the samples analysed. The comparison of nitrogen isotope values from intact AN prill samples with those from post-blast AN prill residues highlighted that the nitrogen isotopic composition of the prills was not maintained post-blast; hence, limiting the technique to analysis of un-reacted explosive material.
Burbank, J; Kelly, B; Nilsson, J; Power, M
2018-06-06
Otolith δ 18 O and δ 13 C values have been used extensively to reconstruct thermal and diet histories. Researchers have suggested that individual growth rate and size may have an effect on otolith isotope ratios and subsequently confound otolith based thermal and diet reconstructions. As few explicit tests of the effect of fish in freshwater environments exist, here we determine experimentally the potential for related growth rate and size effects on otolith δ 18 O and δ 13 C values. Fifty Arctic charr were raised in identical conditions for two years after which their otoliths were removed and analyzed for their δ 18 O and δ 13 C values. The potential effects of final length and the Thermal Growth Coefficient (TGC) on otolith isotope ratios were tested using correlation and regression analysis to determine if significant effects were present and to quantify effects when present. The analyses indicated that TGC and size had significant and similar positive non-linear relationships with δ 13 C values and explained 35% and 42% of the variability, respectively. Conversely, both TGC and size were found to have no significant correlation with otolith δ 18 O values. There was no significant correlation between δ 18 O and δ 13 C values. The investigation indicated the presence of linked growth rate and size effects on otolith δ 13 C values, the nature of which requires further study. Otolith δ 18 O values were unaffected by individual growth rate and size, confirming the applicability of applying these values to thermal reconstructions of fish habitat. This article is protected by copyright. All rights reserved.
NASA Astrophysics Data System (ADS)
Pekar, S. F.; Marchitto, T. M.; Lynch-Steiglitz, J.
2002-12-01
High-resolution stable isotope (4-10 k.y. resolution) and moderately low-resolution Mg/Ca ratio records were constructed for the late early Miocene (19-16.5 Ma) from ODP Leg 189 Site 1168, located on the southwest slope of Tasmania. These records evaluated paleoceanographic changes that took place during isotopic excursions Mi1b (18.2-17.8 Ma) and Mi2 (16.5 Ma), and the First Climatic Optimum (17.7-16.7 Ma), a time of increased global warmth. Evidence exists that supports the idea for the development of warm saline deep waters (WSDW) originating from the eastern end of the Tethys Sea during the early Miocene. However, questions remain regarding the extent and strength of the WSDW and the possible role it played in the warming that took place during the First Climatic Optimum. Site 1168 is ideally located on the lower slope (estimates place it in lower bathyal waters during the early Miocene) to evaluate the potential penetration of WSDW and into the Southern Ocean. Large fluctuations in the isotope and Mg/Ca ratio records from Site 1168 suggest changes in the water masses that bathed the Tasmanian slope during the early Miocene. Temperature estimates based on Mg/Ca ratios contain a surprisingly high range, from 4° to 10° C. Low temperatures (4°-6° C) are associated with high carbon isotope values (>1.4‰ ) and are interpreted represent Southern Component Waters (SCW). The high carbon isotope values also suggest a proximal source for SCW. High water temperatures (7°-10° C) indicate a warm-water mass and are interpreted to be due to the penetration of WSDW into this area, replacing SCW at various times. Large high-frequency isotopic excursions (low oxygen and carbon isotope values) occurred between 18.7 and 18.4 Ma and were originally thought to be due to either localized effects (e.g., disassociation of hydrates) or possible diagensis. However, a recently published high-resolution isotopic record from the Southern Ocean (Site 1090) also contains large isotopic excursions (e.g., >1‰ decrease in oxygen isotope values) at this time, suggesting that these events may not due to diagensis but may be transient global events. We interpret that the changes observed in the isotopic and Mg/Ca ratio records are the result of both changes in the cryosphere and water-mass changes in the vicinity of Tasmania, the latter being due to the penetration of WSDW into the Southern Ocean.
NASA Astrophysics Data System (ADS)
Hudson, Adam M.; Quade, Jay; Ali, Guleed; Boyle, Douglas; Bassett, Scott; Huntington, Katharine W.; De los Santos, Marie G.; Cohen, Andrew S.; Lin, Ke; Wang, Xiangfeng
2017-09-01
Isotopic compositions of lacustrine carbonates are commonly used for dating and paleoenvironmental reconstructions. Here we use carbonate δ13C and δ18O, clumped (Δ47), and 14C compositions to better understand the carbonate isotope system in closed-basin lakes and trace the paleohydrologic and temperature evolution in the Chewaucan closed-basin lake system, northern Great Basin, USA, over the Last Glacial/Holocene transition. We focus on shorezone tufas to establish that they form in isotopic equilibrium with lake water and DIC, they can be dated reliably using 14C, and their clumped isotope composition can be used to reconstruct past lake temperature. Calculations of the DIC budget and reservoir age for the lake indicate residence time is short, and dominated by exchange with atmospheric CO2 at all past lake levels. Modern lake DIC and shorezone tufas yield δ13C and 14C values consistent with isotopic equilibrium with recent fossil fuel and bomb-influenced atmospheric CO2, supporting these calculations. δ13C values of fossil tufas are also consistent with isotopic equilibrium with pre-industrial atmospheric CO2 at all shoreline elevations. This indicates that the 14C reservoir effect for this material is negligible. Clumped isotope (Δ47) results indicate shorezone tufas record mean annual lake temperature. Modern (average 13 ± 2 °C) and 18 ka BP-age tufas (average 6 ± 2 °C) have significantly different temperatures consistent with mean annual temperature lowering of 7 ± 3 °C (1 SE) under full glacial conditions. For shorezone tufas and other lake carbonates, including spring mounds, mollusk shells, and ostracod tests, overall δ13C and δ18O values co-vary according to the relative contribution of spring and lacustrine end member DIC and water compositions in the drainage system, but specific isotope values depend strongly upon sample context and are not well correlated with past lake depth. This contrasts with the interpretation that carbonate isotopes in closed-basin lake systems reflect changes in DIC and water budgets connected to higher or lower lake volumes. Instead, a small overlapping range of isotope compositions characterize multiple lake levels, so that none can be identified uniquely by isotope composition alone. Relative to other lake carbonates, δ13C and δ18O values for ostracods in Ana River Canyon deposits are very strongly influenced by Ana River water, suggesting low lake level and volume characterized Summer Lake for most of the past 100,000 years. Coupled with sedimentologic observations, the Ana River deposits thus suggest dry conditions like today are close to the mean climate state in the northern Great Basin. By contrast, basin-integrating highstands such as that dating to ∼14 ka BP, during the last glacial termination, are hydrologically unique and short-lived. Overall, our results indicate carbonate isotope records must account for the specific geochemical and hydrologic characteristics of lake system in order to provide robust paleoenvironmental reconstructions.
Hudson, Adam; Quade, Jay; Ali, Guleed; Boyle, Douglas P.; Bassett, Scott; Huntington, Katharine W.; De los Santos, Marie G.; Cohen, Andrew S.; Lin, Ke; Wang, Xiangfeng
2017-01-01
Isotopic compositions of lacustrine carbonates are commonly used for dating and paleoenvironmental reconstructions. Here we use carbonate δ13C and δ18O, clumped (Δ47), and 14C compositions to better understand the carbonate isotope system in closed-basin lakes and trace the paleohydrologic and temperature evolution in the Chewaucan closed-basin lake system, northern Great Basin, USA, over the Last Glacial/Holocene transition. We focus on shorezone tufas to establish that they form in isotopic equilibrium with lake water and DIC, they can be dated reliably using 14C, and their clumped isotope composition can be used to reconstruct past lake temperature. Calculations of the DIC budget and reservoir age for the lake indicate residence time is short, and dominated by exchange with atmospheric CO2 at all past lake levels. Modern lake DIC and shorezone tufas yield δ13C and 14C values consistent with isotopic equilibrium with recent fossil fuel and bomb-influenced atmospheric CO2, supporting these calculations. δ13C values of fossil tufas are also consistent with isotopic equilibrium with pre-industrial atmospheric CO2 at all shoreline elevations. This indicates that the 14C reservoir effect for this material is negligible. Clumped isotope (Δ47) results indicate shorezone tufas record mean annual lake temperature. Modern (average 13 ± 2 °C) and 18 ka BP-age tufas (average 6 ± 2 °C) have significantly different temperatures consistent with mean annual temperature lowering of 7 ± 3 °C (1 SE) under full glacial conditions. For shorezone tufas and other lake carbonates, including spring mounds, mollusk shells, and ostracod tests, overall δ13C and δ18O values co-vary according to the relative contribution of spring and lacustrine end member DIC and water compositions in the drainage system, but specific isotope values depend strongly upon sample context and are not well correlated with past lake depth. This contrasts with the interpretation that carbonate isotopes in closed-basin lake systems reflect changes in DIC and water budgets connected to higher or lower lake volumes. Instead, a small overlapping range of isotope compositions characterize multiple lake levels, so that none can be identified uniquely by isotope composition alone. Relative to other lake carbonates, δ13C and δ18O values for ostracods in Ana River Canyon deposits are very strongly influenced by Ana River water, suggesting low lake level and volume characterized Summer Lake for most of the past 100,000 years. Coupled with sedimentologic observations, the Ana River deposits thus suggest dry conditions like today are close to the mean climate state in the northern Great Basin. By contrast, basin-integrating highstands such as that dating to ∼14 ka BP, during the last glacial termination, are hydrologically unique and short-lived. Overall, our results indicate carbonate isotope records must account for the specific geochemical and hydrologic characteristics of lake system in order to provide robust paleoenvironmental reconstructions.
Jin, Biao; Haderlein, Stefan B; Rolle, Massimo
2013-02-05
We propose a self-consistent method to predict the evolution of carbon and chlorine isotope ratios during degradation of chlorinated hydrocarbons. The method treats explicitly the cleavage of isotopically different C-Cl bonds and thus considers, simultaneously, combined carbon-chlorine isotopologues. To illustrate the proposed modeling approach we focus on the reductive dehalogenation of chlorinated ethenes. We compare our method with the currently available approach, in which carbon and chlorine isotopologues are treated separately. The new approach provides an accurate description of dual-isotope effects regardless of the extent of the isotope fractionation and physical characteristics of the experimental system. We successfully applied the new approach to published experimental results on dehalogenation of chlorinated ethenes both in well-mixed systems and in situations where mass-transfer limitations control the overall rate of biodegradation. The advantages of our self-consistent dual isotope modeling approach proved to be most evident when isotope fractionation factors of carbon and chlorine differed significantly and for systems with mass-transfer limitations, where both physical and (bio)chemical transformation processes affect the observed isotopic values.
A new method for stable carbon isotope analysis of chlorofluorocarbons in contaminated groundwater
NASA Astrophysics Data System (ADS)
Horst, Axel; Lacrampe-Couloume, Georges; Sherwood Lollar, Barbara
2015-04-01
Chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) have been widely used as refrigerants, propellants, solvents, foaming agents and are important intermediates in the production of anesthetics and other fluorinated compounds. Due to their ozone depletion potential, production was banned for most uses under the Montreal Protocol (1987) and its amendments and atmospheric mixing ratios have started to decrease. In addition to the atmosphere, CFCs and HCFCs have been detected in groundwater, and emissions from various sources such as landfill sites are still ongoing. Previous studies have shown that both abiotic and biotic transformation of CFCs may occur under certain conditions. To investigate degradation that may take place in soils and groundwaters, a purge and trap method (P&T) has been developed to measure the stable carbon isotopic composition of CFCs and HCFCs extracted from waters. A set of pure phase working standards (HCFC-22, CFC-11, CFC-113) has been prepared offline and characterized by sealed tube combustion dual inlet mass spectrometry. Comparison between isotopic standards and CFCs extracted by our method demonstrates the sample P&T extraction steps do not induce significant δ13C fractionation (lt;0.5 per mill). Standards characterized by continuous flow CSIA (compound specific isotope analysis) after extraction agree with offline characterized values. Evaporation experiments were carried out to investigate any isotope effects due to volatile loss that might occur either due to sampling methods or sample handling in the lab. Monitoring δ13C values during progressive evaporation showed small isotopic fractionation associated with evaporation. Enrichment factors, obtained from Rayleigh plots, showed inverse isotope fractionation i.e depletion in 13C in the remaining compound. Notably, this effect is in the opposite direction to the fractionation (13C enrichment) that is likely to be associated with abiotic or biotic transformation effects. This bodes well for the use of CSIA to identify and monitor transformation in the field as any isotopic effects due to volatile loss would only result in a conservative estimate of transformation but not confuse the degradation signal. As a result, enrichment factors in field samples might be underestimated and lead to a more conservative estimate of degradation at contaminated sites. CFCs from several suppliers were characterized to investigate δ13C variation between sources and between different CFC compounds. Significant differences were observed between all measured compounds. However for each compound, δ13C values determined in this study were similar to ranges reported previously for other pure phase CFCs - suggesting a consistent range of source signatures may exist for each compound. As a last step of method evaluation, water samples from a contaminated industrial site were measured. This first preliminary field data will be discussed in comparison to pure phase compounds and with respect to potential degradation.
Jaeger, Audrey; Lecomte, Vincent J; Weimerskirch, Henri; Richard, Pierre; Cherel, Yves
2010-12-15
Stable isotopes are increasingly being used to trace wildlife movements. A fundamental prerequisite of animal isotopic tracking is a good knowledge of spatial isotopic variations in the environment. Few accessible reference maps of the isotopic landscape ("isoscapes") are available for marine predators. Here, we validate for the first time an isotopic gradient for higher trophic levels by using a unique combination of a large number of satellite-tracks and subsequent blood plasma isotopic signatures from a wide-ranging oceanic predator. The plasma δ(13)C and δ(15)N values of wandering albatrosses (n = 45) were highly and positively correlated to the Southern Ocean latitudes at which the satellite-tracked individuals foraged. The well-defined latitudinal baseline carbon isoscapes in the Southern Ocean is thus reflected in the tissue of consumers, but with a positive shift due to the cumulative effect of a slight (13)C-enrichment at each trophic level. The data allowed us to estimate the carbon isotopic position of the main oceanic fronts in the area, and thus to delineate robust isoscapes of the main foraging zones for top predators. The plasma δ(13)C and δ(15)N values were positively and linearly correlated, thus suggesting that latitudinal isoscapes also occur for δ(15)N at the base of the food web in oceanic waters of the Southern Ocean. The combination of device deployments with sampling of relevant tissues for isotopic analysis appears to be a powerful tool for investigating consumers' isoscapes at various spatio-temporal scales. Copyright © 2010 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Marske, Jared P.; Pietruszka, Aaron J.; Weis, Dominique; Garcia, Michael O.; Rhodes, J. Michael
2007-07-01
Recent Kilauea and Mauna Loa lavas provide a snapshot of the size, shape, and distribution of compositional heterogeneities within the Hawaiian mantle plume. Here we present a study of the Pb, Sr, and Nd isotope ratios of two suites of young prehistoric lavas from these volcanoes: (1) Kilauea summit lavas erupted from AD 900 to 1400, and (2) 14C-dated Mauna Loa flows erupted from ˜ 2580-140 yr before present (relative to AD 1950). These lavas display systematic isotopic fluctuations, and the Kilauea lavas span the Pb isotopic divide that was previously thought to exist between these two volcanoes. For a brief period from AD 250 to 1400, the 206Pb/ 204Pb and 87Sr/ 86Sr isotope ratios and ɛNd values of Kilauea and Mauna Loa lavas departed from values typical for each volcano (based on historical and other young prehistoric lavas), moved towards an intermediate composition, and subsequently returned to typical values. This is the only known period in the eruptive history of these volcanoes when such a simultaneous convergence of Pb, Sr, and Nd isotope ratios has occurred. The common isotopic composition of lavas erupted from both Kilauea and Mauna Loa during this transient magmatic event was probably caused by the rapid passage of a small-scale compositional heterogeneity through the melting regions of both volcanoes. This heterogeneity is thought to have been either a single body (˜ 35 km long based on the distance between the summits of these volcanoes) or the plume matrix itself (which would be expected to be present beneath both volcanoes). The time scale of this event (centuries) is much shorter than previously noted for variations in the isotopic composition of Hawaiian lavas due to the upwelling of heterogeneities within the plume (thousands to tens of thousands of years). Calculations based on the timing of the isotopic convergence suggest a maximum thickness for the melting region (and thus, the heterogeneity) of ˜ 5-10 km. The small size of the heterogeneity indicates that melt can be extracted from small regions within the Hawaiian plume with minimal subsequent chemical modification (beyond the effects of crystal fractionation). This would be most effective if melt transport in the mantle beneath Hawaiian shield volcanoes occurs mostly in chemically isolated channels.
Malinovsky, Dmitry; Dunn, Philip J H; Petrov, Panayot; Goenaga-Infante, Heidi
2015-01-01
Methodology for absolute Mo isotope amount ratio measurements by multicollector inductively coupled plasma-mass spectrometry (MC-ICP-MS) using calibration with synthetic isotope mixtures (SIMs) is presented. For the first time, synthetic isotope mixtures prepared from seven commercially available isotopically enriched molybdenum metal powders ((92)Mo, (94)Mo, (95)Mo, (96)Mo, (97)Mo, (98)Mo, and (100)Mo) are used to investigate whether instrumental mass discrimination of Mo isotopes in MC-ICP-MS is consistent with mass-dependent isotope distribution. The parent materials were dissolved and mixed as solutions to obtain mixtures with accurately known isotope amount ratios. The level of elemental impurities in the isotopically enriched molybdenum metal powders was quantified by ICP-MS by using both high-resolution and reaction cell instruments to completely resolve spectral interferences. The Mo isotope amount ratio values with expanded uncertainty (k = 2), determined by MC-ICP-MS for a high-purity Mo rod from Johnson Matthey, were as follows: (92)Mo/(95)Mo = 0.9235(9), (94)Mo/(95)Mo = 0.5785(8), (96)Mo/(95)Mo = 1.0503(9), (97)Mo/(95)Mo = 0.6033(6), (98)Mo/(95)Mo = 1.5291(20), and (100)Mo/(95)Mo = 0.6130(7). A full uncertainty budget for the measurements is presented which shows that the largest contribution to the uncertainty budget comes from correction for elemental impurities (∼51%), followed by the contribution from weighing operations (∼26 %). The atomic weight of molybdenum was calculated to be 95.947(2); the uncertainty in parentheses is expanded uncertainty with the coverage factor of 2. A particular advantage of the developed method is that calibration factors for all six Mo isotope amount ratios, involving the (95)Mo isotope, were experimentally determined. This allows avoiding any assumption on mass-dependent isotope fractions in MC-ICP-MS, inherent to the method of double spike previously used for Mo isotope amount ratio measurements. However, data obtained in this study show that instrumental mass discrimination in MC-ICP-MS is consistent with mass-dependent Mo isotope fractionation. This was demonstrated by a good agreement between experimentally obtained and theoretically expected values of the exponent of isotope fractionation, β, for each triad of Mo isotopes.
Behrmann-Godel, J; Yohannes, E
2015-03-01
Previous studies of dietary isotope discrimination have led to the general expectation that a consumer will exhibit enriched stable isotope levels relative to its diet. Parasite-host systems are specific consumer-diet pairs in which the consumer (parasite) feeds exclusively on one dietary source: host tissue. However, the small numbers of studies previously carried out on isotopic discrimination in parasite-host (ΔXP-HT) systems have yielded controversial results, showing some parasites to be isotopically depleted relative to their food source, while others are enriched or in equilibrium with their hosts. Although the mechanism for these deviations from expectations remains to be understood, possible influences of specific feeding niche or selection for only a few nutritional components by the parasite are discussed. ΔXP-HT for multiple isotopes (δ13C, δ15N, δ34S) were measured in the pike tapeworm Triaenophorus nodulosus and two of its life-cycle fish hosts, perch Perca fluviatilis and pike Esox lucius, within which T. nodulosus occupies different feeding locations. Variability in the value of ΔXP-HT calculated for the parasite and its different hosts indicates an influence of feeding location on isotopic discrimination. In perch liver ΔXP-HT was relatively more negative for all three stable isotopes. In pike gut ΔXP-HT was more positive for δ13C, as expected in conventional consumer-diet systems. For parasites feeding on pike gut, however, the δ15N and δ34S isotope values were comparable with those of the host. We discuss potential causes of these deviations from expectations, including the effect of specific parasite feeding niches, and conclude that ΔXP-HT should be critically evaluated for trophic interactions between parasite and host before general patterns are assumed.
Wassenaar, L I; Terzer-Wassmuth, S; Douence, C; Araguas-Araguas, L; Aggarwal, P K; Coplen, T B
2018-03-15
Water stable isotope ratios (δ 2 H and δ 18 O values) are widely used tracers in environmental studies; hence, accurate and precise assays are required for providing sound scientific information. We tested the analytical performance of 235 international laboratories conducting water isotope analyses using dual-inlet and continuous-flow isotope ratio mass spectrometers and laser spectrometers through a water isotope inter-comparison test. Eight test water samples were distributed by the IAEA to international stable isotope laboratories. These consisted of a core set of five samples spanning the common δ-range of natural waters, and three optional samples (highly depleted, enriched, and saline). The fifth core sample contained unrevealed trace methanol to assess analyst vigilance to the impact of organic contamination on water isotopic measurements made by all instrument technologies. For the core and optional samples ~73 % of laboratories gave acceptable results within 0.2 ‰ and 1.5 ‰ of the reference values for δ 18 O and δ 2 H, respectively; ~27 % produced unacceptable results. Top performance for δ 18 O values was dominated by dual-inlet IRMS laboratories; top performance for δ 2 H values was led by laser spectrometer laboratories. Continuous-flow instruments yielded comparatively intermediate results. Trace methanol contamination of water resulted in extreme outlier δ-values for laser instruments, but also affected reactor-based continuous-flow IRMS systems; however, dual-inlet IRMS δ-values were unaffected. Analysis of the laboratory results and their metadata suggested inaccurate or imprecise performance stemmed mainly from skill- and knowledge-based errors including: calculation mistakes, inappropriate or compromised laboratory calibration standards, poorly performing instrumentation, lack of vigilance to contamination, or inattention to unreasonable isotopic outcomes. To counteract common errors, we recommend that laboratories include 1-2 'known' control standards in all autoruns; laser laboratories should screen each autorun for spectral contamination; and all laboratories should evaluate whether derived d-excess values are realistic when both isotope ratios are measured. Combined, these data evaluation strategies should immediately inform the laboratory about fundamental mistakes or compromised samples. Copyright © 2018 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Nelson, D. B.; Kahmen, A.
2017-12-01
The stable isotopic composition of hydrogen and oxygen are physical properties of water molecules that can carry information on their sources or transport histories. This provides a useful tool for assessing the importance of rainfall at different times of the year for plant growth, provided that rainwater values vary over time and that waters do not partially evaporate after deposition. We tested the viability of this approach using data from samples collected at nineteen sites throughout Europe at monthly intervals over two consecutive growing seasons in 2014 and 2015. We compared isotope measurements of plant xylem water with soil water from multiple depths, and measured and modeled precipitation isotope values. Paired analyses of oxygen and hydrogen isotope values were used to screen out a limited number of water samples that were influenced by evaporation, with the majority of all water samples indicating meteoric sources. The isotopic composition of soil and xylem waters varied over the course of an individual growing season, with many trending towards more enriched values, suggesting integration of the plant-relevant water pool at a timescale shorter than the annual mean. We then quantified how soil water residence times varied at each site by calculating the interval between measured xylem water and the most recently preceding match in modeled precipitation isotope values. Results suggest a generally increasing interval between rainfall and plant uptake throughout each year, with source water corresponding to dates in the spring, likely reflecting a combination of spring rain, and mixing with winter and summer precipitation. The seasonally evolving spatial distribution of source water-precipitation lag values was then modeled as a function of location and climatology to develop continental-scale predictions. This spatial portrait of the average date for filling the plant source water pool provides insights on the seasonal importance of rainfall for plant growth. It also permits continental scale predictions of monthly plant source water isotope values, with applications to improving isotopic paleoclimate proxies from plants such as tree rings or sedimentary leaf waxes, and for using oxygen and hydrogen isotopes to track the origins of agricultural products.
Wassenaar, L. I.; Terzer-Wassmuth, S.; Douence, C.; Araguas-Araguas, L.; Aggarwal, P. K.; Coplen, Tyler B.
2018-01-01
RationaleWater stable isotope ratios (δ2H and δ18O values) are widely used tracers in environmental studies; hence, accurate and precise assays are required for providing sound scientific information. We tested the analytical performance of 235 international laboratories conducting water isotope analyses using dual-inlet and continuous-flow isotope ratio mass spectrometers and laser spectrometers through a water isotope inter-comparison test.MethodsEight test water samples were distributed by the IAEA to international stable isotope laboratories. These consisted of a core set of five samples spanning the common δ-range of natural waters, and three optional samples (highly depleted, enriched, and saline). The fifth core sample contained unrevealed trace methanol to assess analyst vigilance to the impact of organic contamination on water isotopic measurements made by all instrument technologies.ResultsFor the core and optional samples ~73 % of laboratories gave acceptable results within 0.2 ‰ and 1.5 ‰ of the reference values for δ18O and δ2H, respectively; ~27 % produced unacceptable results. Top performance for δ18O values was dominated by dual-inlet IRMS laboratories; top performance for δ2H values was led by laser spectrometer laboratories. Continuous-flow instruments yielded comparatively intermediate results. Trace methanol contamination of water resulted in extreme outlier δ-values for laser instruments, but also affected reactor-based continuous-flow IRMS systems; however, dual-inlet IRMS δ-values were unaffected.ConclusionsAnalysis of the laboratory results and their metadata suggested inaccurate or imprecise performance stemmed mainly from skill- and knowledge-based errors including: calculation mistakes, inappropriate or compromised laboratory calibration standards, poorly performing instrumentation, lack of vigilance to contamination, or inattention to unreasonable isotopic outcomes. To counteract common errors, we recommend that laboratories include 1–2 'known' control standards in all autoruns; laser laboratories should screen each autorun for spectral contamination; and all laboratories should evaluate whether derived d-excess values are realistic when both isotope ratios are measured. Combined, these data evaluation strategies should immediately inform the laboratory about fundamental mistakes or compromised samples.
Nitrogen isotopic components in the early solar system
NASA Technical Reports Server (NTRS)
Kerridge, J. F.
1994-01-01
It is quite common to take the terrestrial atmospheric value of (15)N/(14)N (0.00366) as typical of nitrogen in the early solar system, but in fact there is little reason to suppose that this value had a nebula-wide significance. Indeed, it is not clear that there was a unique solar-system-wide (15)N/(14)N ratio, of whatever value. Here we review what is known about the distribution of the nitrogen isotopes among those solar-system objects that have been sampled so far and conclude that those isotopes reveal widespread inhomogeneity in the early solar system. Whether the isotopically distinct primordial components implied by this analysis were solid or gaseous or a mixture of both is not known. The isotopic composition of N in the Earth's mantle is controversial: estimates range from a 1.1 percent depletion in (15)N to a 1.4 percent enrichment. (Isotopic compositions will be expressed throughout as percent deviations from the terrestrial atmospheric value.) The present-day Martian atmosphere is characterized by a value of plus 62 percent but this enrichment in (15)N is attributed to selective loss of (14)N from the Martian exosphere. Modelling of this fractionation leads to an estimated primordial composition similar to the terrestrial atmospheric value, through the precision of this model-dependent result is unclear.
Sulfur record of rising and falling marine oxygen and sulfate levels during the Lomagundi event.
Planavsky, Noah J; Bekker, Andrey; Hofmann, Axel; Owens, Jeremy D; Lyons, Timothy W
2012-11-06
Carbonates from approximately 2.3-2.1 billion years ago show markedly positive δ(13)C values commonly reaching and sometimes exceeding +10‰. Traditional interpretation of these positive δ(13)C values favors greatly enhanced organic carbon burial on a global scale, although other researchers have invoked widespread methanogenesis within the sediments. To resolve between these competing models and, more generally, among the mechanisms behind Earth's most dramatic carbon isotope event, we obtained coupled stable isotope data for carbonate carbon and carbonate-associated sulfate (CAS). CAS from the Lomagundi interval shows a narrow range of δ(34)S values and concentrations much like those of Phanerozoic and modern marine carbonate rocks. The δ(34)S values are a close match to those of coeval sulfate evaporites and likely reflect seawater composition. These observations are inconsistent with the idea of diagenetic carbonate formation in the methanic zone. Toward the end of the carbon isotope excursion there is an increase in the δ(34)S values of CAS. We propose that these trends in C and S isotope values track the isotopic evolution of seawater sulfate and reflect an increase in pyrite burial and a crash in the marine sulfate reservoir during ocean deoxygenation in the waning stages of the positive carbon isotope excursion.
Precise Analysis of Gallium Isotopic Composition by MC-ICP-MS.
Yuan, Wei; Chen, Jiu Bin; Birck, Jean-Louis; Yin, Zuo Ying; Yuan, Sheng Liu; Cai, Hong Ming; Wang, Zhong Wei; Huang, Qiang; Wang, Zhu Hong
2016-10-04
Though an isotope approach could be beneficial for better understanding the biogeochemical cycle of gallium (Ga), an analogue of the monoisotopic element aluminum (Al), the geochemistry of Ga isotopes has not been widely elaborated. We developed a two-step method for purifying Ga from geological (biological) samples for precise measurement of Ga isotope ratio using multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS). Ga was thoroughly separated from other matrix elements using two chromatographic columns loaded with AG 1-X4 and Ln-spec resin, respectively. The separation method was carefully calibrated using both synthetic and natural samples and validated by assessing the extraction yield (99.8 ± 0.8%, 2SD, n = 23) and the reproducibility (2SD uncertainty better than 0.05‰, n = 116) of the measured isotopic ratio (expressed as δ 71 Ga). The validation of the whole protocol, together with instrumental analysis, was confirmed by the investigation of the matrix effect, the result of a standard addition experiment, and the comparison of Ga isotope measurement on two mass spectrometers-Nu Plasma II and Neptune Plus. Although the measurements using the sample-standard bracketing (SSB) correction method on both instruments resulted in identical δ 71 Ga values for reference materials, the modified empirical external normalization (MEEN) method gave relatively better precision compared to SSB on Neptune. Our preliminary results showed large variation of δ 71 Ga (up to 1.83‰) for 10 standards, with higher values in industrially produced materials, implying potential application of Ga isotopes.
Sedimentary denitrification: Isotope fractionation and its impact on water column nitrate isotopes
NASA Astrophysics Data System (ADS)
Dähnke, K.; Thamdrup, B.
2012-04-01
The global marine nitrogen cycle is constrained by one major source and two processes that act as nitrogen sinks: nitrogen fixation on the one side and denitrification or anammox on the other. These processes with their respective isotope effecst set the marine nitrate 15N-isotope value to a relatively constant average of 5 per mil. This value can be used to better assess the magnitude of these source and sink terms, but the underlying assumption at present is that sedimentary denitrification, a process responsible for approximately one third of global nitrogen removal, has little to no isotope effect on the water column. We tested this hypothesis in sediment incubations, measuring net denitrification and nitrogen and oxygen stable isotope fractionation in surface sediments from the coastal Baltic Sea (Boknis Eck, Northern Germany). We found tremendously high denitrification rates, and regardless of current paradigms assuming little fractionation during sediment denitrification, we measured fractionation factors of 19 per mil for nitrogen and 11 per mil for oxygen in nitrate. These results potentially challenge the current view of fractionation during sedimentary denitrification and imply that nitrogen budget calculation may need to consider this variability. Furthermore, the ratio of fractionation factors for nitrogen and oxygen is distinct from the 1 : 1 ratio otherwise found in marine systems, and suggests that isotope kinetics of sedimentary denitrification might be entirely different from water column denitrification. Acknowledgements: This work was funded by the German Research Foundation (DFG) and in parts by the Danish National Research Foundation.
NASA Astrophysics Data System (ADS)
Sang, Chaofeng; Sun, Jizhong; Bonnin, Xavier; Dai, Shuyu; Hu, Wanpeng; Wang, Dezhen
2014-12-01
Effects of different possible values of physical parameters on the fuel retention in tungsten (W) materials are studied in this work since W is considered as the primary plasma-facing surface material and fuel retention is a critical issue for next-step fusion devices. The upgraded Hydrogen Isotope Inventory Processes Code is used to conduct the study. First, the inventories of hydrogen isotopes (HI) inside W with different possible values of diffusivities and recombination rate coefficients are studied; then the influences of uncertainties in diffusivity, trap concentration, and recombination rate on the effective diffusion are also analyzed. Finally, an illustration of effective diffusion on the permeation and inventory is given. The enhancements of HI permeation flux and inventory in bulk W due to the presence of a carbide WxC layer on the PFS are explained.
NASA Astrophysics Data System (ADS)
Janssen, Renée; Joordens, Josephine C. A.; Koutamanis, Dafne S.; Puspaningrum, Mika R.; de Vos, John; van der Lubbe, Jeroen H. J. L.; Reijmer, John J. G.; Hampe, Oliver; Vonhof, Hubert B.
2016-07-01
The carbon (δ13C) and oxygen (δ18O) isotope compositions of fossilized animal tissues have become important proxies of paleodiet and paleoenvironment, but such stable isotope studies have not yet been extensively applied to the fossil assemblages of Sundaland (the biogeographical region comprising most of the Indonesian Archipelago). Here, we use the isotope composition of tooth enamel to investigate the diet and habitat of bovids, cervids, and suids from several Holocene and Pleistocene sites on Java and Sumatra. Our carbon isotope results indicate that individual sites are strongly dominated by either C3-browsers or C4-grazers. Herbivores from the Padang Highlands (Sumatra) and Hoekgrot (Java) cave faunas were mainly C3-browsers, while herbivores from Homo erectus-bearing sites Trinil and Sangiran (Java) utilized an almost exclusive C4 diet. The suids from all sites show a wide range of δ13C values, corroborating their omnivorous diet. For the dataset as a whole, oxygen and carbon isotope values are positively correlated. This suggests that isotopic enrichment of rainwater and vegetation δ18O values coincides with an increase of C4-grasslands. We interpret this pattern to mainly reflect the environmental contrast between glacial (drier, more C4) and interglacial (wetter, more C3) conditions. Intermediate herbivore δ13C values indicating mixed C3/C4 feeding is relatively rare, which we believe to reflect the abruptness of the transition between glacial and interglacial precipitation regimes in Sundaland. For seven Homo erectus bone samples we were not able distinguish between diagenetic overprint and original isotope values, underlining the need to apply this isotopic approach to Homo erectus tooth enamel instead of bone. Importantly, our present results on herbivore and omnivore faunas provide the isotopic framework that will allow interpretation of such Homo erectus enamel isotope data.
Magnesium isotope systematics in Martian meteorites
NASA Astrophysics Data System (ADS)
Magna, Tomáš; Hu, Yan; Teng, Fang-Zhen; Mezger, Klaus
2017-09-01
Magnesium isotope compositions are reported for a suite of Martian meteorites that span the range of petrological and geochemical types recognized to date for Mars, including crustal breccia Northwest Africa (NWA) 7034. The δ26Mg values (per mil units relative to DSM-3 reference material) range from -0.32 to -0.11‰; basaltic shergottites and nakhlites lie to the heavier end of the Mg isotope range whereas olivine-phyric, olivine-orthopyroxene-phyric and lherzolitic shergottites, and chassignites have slightly lighter Mg isotope compositions, attesting to modest correlation of Mg isotopes and petrology of the samples. Slightly heavier Mg isotope compositions found for surface-related materials (NWA 7034, black glass fraction of the Tissint shergottite fall; δ26Mg > -0.17‰) indicate measurable Mg isotope difference between the Martian mantle and crust but the true extent of Mg isotope fractionation for Martian surface materials remains unconstrained. The range of δ26Mg values from -0.19 to -0.11‰ in nakhlites is most likely due to accumulation of clinopyroxene during petrogenesis rather than garnet fractionation in the source or assimilation of surface material modified at low temperatures. The rather restricted range in Mg isotope compositions between spatially and temporally distinct mantle-derived samples supports the idea of inefficient/absent major tectonic cycles on Mars, which would include plate tectonics and large-scale recycling of isotopically fractionated surface materials back into the Martian mantle. The cumulative δ26Mg value of Martian samples, which are not influenced by late-stage alteration processes and/or crust-mantle interactions, is - 0.271 ± 0.040 ‰ (2SD) and is considered to reflect δ26Mg value of the Bulk Silicate Mars. This value is robust taking into account the range of lithologies involved in this estimate. It also attests to the lack of the Mg isotope variability reported for the inner Solar System bodies at current analytical precision, also noted for several other major elements.
Kaufman, Michael G.; Pelz-Stelinski, Kirsten S.; Yee, Donald A.; Juliano, Steven A.; Ostrom, Peggy H.; Walker, Edward D.
2010-01-01
1. Detritus that forms the basis for mosquito production in tree hole ecosystems can vary in type and timing of input. We investigated the contributions of plant- and animal-derived detritus to the biomass of Aedes triseriatus (Say) pupae and adults by using stable isotope (15N and 13C) techniques in lab experiments and field collections. 2. Lab-reared mosquito isotope values reflected their detrital resource base, providing a clear distinction between mosquitoes reared on plant or animal detritus. 3. Isotope values from field-collected pupae were intermediate between what would be expected if a single (either plant or animal) detrital source dominated the resource base. However, mosquito isotope values clustered most closely with plant-derived values, and a mixed feeding model analysis indicated tree floral parts contributed approximately 80% of mosquito biomass. The mixed model also indicated that animal detritus contributed approximately 30% of mosquito tissue nitrogen. 4. Pupae collected later in the season generally had isotope values that were consistent with an increased contribution from animal detritus, suggesting this resource became more nutritionally important for mosquitoes as plant inputs declined over the summer. PMID:21132121
NASA Astrophysics Data System (ADS)
Skelton, Alasdair
2016-04-01
The Port Askaig Formation on Islay, western Scotland is the first discovered tillite (glacial sediment) of Neoproterozoic age. This formation is sandwiched between carbonate rocks which preserve an extreme negative carbon isotope excursion. This so called "Islay anomaly" has been correlated with other such anomalies worldwide and together with the tillites has been cited as evidence of major (worldwide) glaciation events. During subsequent mountain building, this carbonate-tillite- carbonate sequence has been folded, producing a major en-echelon anticlinal fold system. Folding was accompanied by metamorphism at greenschist facies conditions which was, in turn, accompanied by metamorphic fluid flow. Mapping of the δ18O and δ13C values of these carbonate rocks reveals that metamorphic fluids were channelled through the axial region of the anticlinal fold. The metamorphic fluid was found to have a highly negative δ13C value, which was found to be in equilibrium with metamorphosed graphitic mudstones beneath the carbonate-tillite-carbonate sequence. Devolatilisation of these mudstones is therefore a likely source of this metamorphic fluid. Removal of the effects of metamorphic fluid flow on δ13C values recorded by metamorphosed carbonate rocks on Islay allows us to re-evaluate the isotopic evidence used to reconstruct Neoproterozoic climate. We are able to show that extreme negative δ13C values can partly be attributed to metamorphic fluid flow.
NASA Astrophysics Data System (ADS)
Sun, C.; Shanahan, T. M.; Partin, J. W.
2017-12-01
The processes that control the isotopic composition of precipitation in the mid-latitudes are understudied compared to the high and low latitudes, but are critical for interpreting paleo records using isotope proxies. To better understand these processes, we investigated changes of isotopic composition of rainwater in Central Texas using 20 months of event-based rainwater collection. We find that in both the event-based data and the monthly data from the Waco GNIP station, the dominant control on the isotopic composition of precipitation is the proportion that is derived from convective systems. This finding is consistent with previously reported data largely from tropical localities (Aggarwal et al., 2016), where large organized convective systems lead to high rainfall amounts and isotopically depleted precipitation. Although there are seasonal differences in the dominant rainfall types over the South Central US, with winter precipitation almost entirely stratiform, seasonality plays very little role in the net isotopic composition of precipitation because the total contribution during winter is small compared with spring, summer and fall. We also find that changes of source have little effect on the isotopic composition of rainfall, as the majority of the moisture is derived from the Gulf of Mexico with little influence of reevaporation or mixing. The majority of the warm season precipitation in the South Central US occurs in association with mesoscale convective systems (MCSs) and the development of these systems plays a critical role in the overall isotopic signature of precipitation. MCSs are characterized by a combination of intense, organized convection at their leading edges and trailing stratiform precipitation. Larger MCSs tend to contain higher proportions of stratiform rainfall and as a result, have isotopically depleted values. Proxy records from this region displaying more negative isotope values in the past should therefore be interpreted with caution as they could reflect either increases in cool versus warm season precipitation or changes in the intensity of warm season MCSs.
Abeni, Fabio; Petrera, Francesca; Capelletti, Maurizio; Dal Prà, Aldo; Bontempo, Luana; Tonon, Agostino; Camin, Federica
2015-01-01
Environmental temperature affects water turnover and isotope fractionation by causing water evaporation from the body in mammals. This may lead to rearrangement of the water stable isotope equilibrium in body fluids. We propose an approach to detect possible variations in the isotope ratio in different body fluids on the basis of different homoeothermic adaptations in varying reproductive stages. Three different reproductive stages (pregnant heifer, primiparous lactating cow, and pluriparous lactating cow) of two dairy cattle breeds (Italian Friesian and Modenese) were studied in winter and summer. Blood plasma, urine, faecal water, and milk were sampled and the isotope ratios of H (2H/1H) and O (18O/16O) were determined. Deuterium excess and isotope-fractionation factors were calculated for each passage from plasma to faeces, urine and milk. The effects of the season, reproductive stages and breed on δ 2H and δ 18O were significant in all the fluids, with few exceptions. Deuterium excess was affected by season in all the analysed fluids. The correlations between water isotope measurements in bovine body fluids ranged between 0.6936 (urine-milk) and 0.7848 (urine-plasma) for δ 2H, and between 0.8705 (urine-milk) and 0.9602 (plasma-milk) for δ 18O. The increase in both isotopic δ values in all body fluids during summer is representative of a condition in which fractionation took place as a consequence of a different ratio between ingested and excreted water, which leads to an increased presence of the heavy isotopes. The different body water turnover between adult lactating cattle and non-lactating heifers was confirmed by the higher isotopic δ for the latter, with a shift in the isotopic equilibrium towards values more distant from those of drinking water. PMID:25996911
CO2-dependent carbon isotope fractionation in the dinoflagellate Alexandrium tamarense
NASA Astrophysics Data System (ADS)
Wilkes, Elise B.; Carter, Susan J.; Pearson, Ann
2017-09-01
The carbon isotopic composition of marine sedimentary organic matter is used to resolve long-term histories of pCO2 based on studies indicating a CO2-dependence of photosynthetic carbon isotope fractionation (εP). It recently was proposed that the δ13C values of dinoflagellates, as recorded in fossil dinocysts, might be used as a proxy for pCO2. However, significant questions remain regarding carbon isotope fractionation in dinoflagellates and how such fractionation may impact sedimentary records throughout the Phanerozoic. Here we investigate εP as a function of CO2 concentration and growth rate in the dinoflagellate Alexandrium tamarense. Experiments were conducted in nitrate-limited chemostat cultures. Values of εP were measured on cells having growth rates (μ) of 0.14-0.35 d-1 and aqueous carbon dioxide concentrations of 10.2-63 μmol kg-1 and were found to correlate linearly with μ/[CO2(aq)] (r2 = 0.94) in accord with prior, analogous chemostat investigations with eukaryotic phytoplankton. A maximum fractionation (εf) value of 27‰ was characterized from the intercept of the experiments, representing the first value of εf determined for an algal species employing Form II RubisCO-a structurally and catalytically distinct form of the carbon-fixing enzyme. This value is larger than theoretical predictions for Form II RubisCO and not significantly different from the ∼25‰ εf values observed for taxa employing Form ID RubisCO. We also measured the carbon isotope contents of dinosterol, hexadecanoic acid, and phytol from each experiment, finding that each class of biomarker exhibits different isotopic behavior. The apparent CO2-dependence of εP values in our experiments strengthens the proposal to use dinocyst δ13C values as a pCO2 proxy. Moreover, the similarity between the εf value for A. tamarense and the consensus value of ∼25‰ indicates that the CO2-sensitivity of carbon isotope fractionation saturates at similar CO2 levels across all three ecologically prominent clades of eukaryotic phytoplankton. This continuity of εf across taxa may help to explain why there is no coherent signature of phytoplankton evolutionary succession in Phanerozoic carbon isotope records.
Damgaard, S E
1981-09-29
The primary isotope effect upon V/K when ethanol stereospecifically labeled with deuterium or tritium is oxidized by liver alcohol dehydrogenase has been measured between pH 6 and 9. The deuterium isotope effect was obtained with high reproducibility by the use of two different radioactive tracers, viz. 14C and 3H, to follow the rate of acetaldehyde formation from deuterium-labeled ethanol and normal ethanol, respectively. Synthesis of the necessary labeled compounds is described in this and earlier work referred to. V/K isotope effects for both tritium and deuterium have been measured with three different coenzymes, NAD+, thio-NAD+, and acetyl-NAD+. With NAD+ at pH 7, D(V/K) was 3.0 and T(V/K) was 6.5. With increasing pH, these values decreased to 1.5 and 2.5 at pH 9. The intrinsic isotope effect evaluated by the method of Northrop [Northrop, D.B. (1977) in Isotope Effects on Enzyme-Catalyzed Reactions (Cleland, W. W., O'Leary, M, H., & Northrop, D. B., Eds.) pp 112-152, University Park Press, Baltimore] varies little with pH. It amounts to about 10 with NAD+ and about 5 with the coenzyme analogues. Commitment functions and their dependence upon pH calculated in this connection appear to be in agreement with known kinetic parameters of liver alcohol dehydrogenase. This assay method was also applied in vivo in the rat. Being a noninvasive method because only trace amounts of isotopes are needed, it may yield information about alternative routes of ethanol oxidation in vivo. In naive rats at low concentrations of ethanol, it confirms the discrete role of the non alcohol dehydrogenase systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, D.
1976-06-11
Secondary ..cap alpha..-deuterium isotope effects on the rates of NBu/sub 4/OAc and NBu/sub 4/Cl promoted bimolecular reactions (E2 and SN2) of cyclohexyl tosylate and cyclohexyl bromide have been studied. The E2 reactions, previously categorized as E2C-like, show ..cap alpha..-deuterium isotope effects in the range 1.14--1.22, while the related SN2 reactions give values in the range 1.05--1.08. The discrepancy in the magnitude of the ..cap alpha..-deuterium isotope effect for the E2 and SN2 processes is consistent with the view that E2C-like reactions use ''looser'' transition states than those used in the concurrent SN2 reactions. While the reported ..cap alpha..-d isotope effectsmore » do not provide positive evidence to support the idea that the base interacts with C/sub ..cap alpha../ in the E2 transition states of the reactions studied, neither do they substantiate claims for dismissal of the concept. A comparison of the secondary ..gamma..-deuterium and ..beta..'-deuterium isotope effects arising in the reaction of cyclohexyl tosylate with NBu/sub 4/OAc in acetone indicates the two isotope effects to be of equivalent magnitude (k/sub ..beta..'-d/k/sub ..gamma..-d/ = 0.98). This observation can only be rationalized for this reaction in terms of a transition state structure in which there is extensive double bond development. It provides compelling evidence against the involvement of any transition state structure which accommodates extensive positive charge development at C/sub ..cap alpha../.« less
NASA Astrophysics Data System (ADS)
Wiegand, B. A.; Schwendenmann, L.
2013-04-01
SummaryA comparative study of Sr and Ca isotopes was conducted to assess solute sources and effects of biogeochemical processes on surface water and groundwater in four small tropical catchments located at La Selva Biological Station, Costa Rica. Variable concentrations of dissolved Sr2+ and Ca2+ in the catchments are related to mixing of waters from different origin. Three catchments are influenced by high-solute bedrock groundwater, while another catchment is primarily supplied by local recharge. 87Sr/86Sr ratios were employed to discriminate contributions from mineral weathering and atmospheric sources. Solutes in bedrock groundwater have a predominant geogenic origin, whereas local recharge is characterized by low-solute inputs from rainwater and minor in situ weathering releases from nutrient-depleted soils. Bedrock groundwater contributes more than 60% of dissolved Sr2+ to surface discharge in the Salto, Saltito, and Arboleda catchments, whereas the Taconazo catchment receives more than 95% of dissolved Sr2+ from rainwater. δ44/40Ca values of dissolved Ca2+ vary greatly in the catchments, mainly as a result of heterogeneous Ca isotope compositions of the contributing sources. Based on differences in δ44/40Ca values, two distinct bedrock groundwaters discharging at the Salto and the Arboleda catchments are suggested. Effects of biological processes in the plant-soil system on solute generation in the catchments are indicated by variable Ca/Sr ratios. However, these effects cannot clearly be assessed by Ca isotopes due to the strong heterogeneity of δ44/40Ca values of Ca2+ sources and high Ca2+ concentrations in bedrock groundwater.
Rank, Dieter; Wyhlidal, Stefan; Schott, Katharina; Weigand, Silvia; Oblin, Armin
2018-05-01
The Austrian network of isotopes in rivers comprises about 15 sampling locations and has been operated since 1976. The Danube isotope time series goes back to 1963. The isotopic composition of river water in Central Europe is mainly governed by the isotopic composition of precipitation in the catchment area; evaporation effects play only a minor role. Short-term and long-term isotope signals in precipitation are thus transmitted through the whole catchment. The influence of climatic changes has become observable in the long-term stable isotope time series of precipitation and surface waters. Environmental 3 H values were around 8 TU in 2015, short-term 3 H pulses up to about 80 TU in the rivers Danube and March were a consequence of releases from nuclear power plants. The complete isotope data series of this network will be included in the Global Network of Isotopes in Rivers database of the International Atomic Energy Agency (IAEA) in 2017. This article comprises a review of 50 years isotope monitoring on rivers and is also intended to provide base information on the (isotope-)hydrological conditions in Central Europe specifically for the end-users of these data, e.g. for modelling hydrological processes. Furthermore, this paper includes the 2006-2015 supplement adding to the Danube isotope set published earlier.
Carbon-Isotopic Dynamics of Streams, Taylor Valley, Antarctica: Biological Effects
NASA Technical Reports Server (NTRS)
Neumann, K.; DesMarais, D. J.
1998-01-01
We have investigated the role of biological processes in the C-isotopic dynamics of the aquatic ecosystems in Taylor Valley, Antarctica. This cold desert ecosystem is characterized by the complete lack of vascular plants, and the presence of algal mats in ephemeral streams and perennially ice covered lakes. Streams having abundant algal mats and mosses have very low sigma CO2 concentrations, as well as the most depleted delta C-13 values (-4%). Previous work has shown that algal mats in these streams have delta C-13 values averaging -7.01%. These values are similar to those observed in the algal mats in shallow areas of the lakes in Taylor Valley, where CO2 is thought to be colimiting to growth. These low Sigma CO2 concentrations, and delta C(13) signatures heavier than the algal mats, suggest that CO2 may be colimiting in the streams, as well. Streams with little algal growth, especially the longer ones in Fryxell Basin, have higher Sigma CO2 concentrations and much more enriched isotopic signatures (as high as +8%). In these streams, the dissolution of isotopically enriched, cryogenic CaCO3 is probably the major source of dissolved carbonate. The delta C(13) geochemistry of Antarctic streams is radically different from the geochemistry of more temperate streams, as it is not affected by terrestrially produced, isotopically depleted Sigma CO2. These results have important implications for the understanding of "biogenic" carbonate that might have been produced from aquatic ecosystems in the past on Mars.
Mg Isotope Evolution During Water-Rock Interaction in a Carbonate Aquifer
NASA Astrophysics Data System (ADS)
Zhang, Z.; Jacobson, A. D.; Lundstrom, C. C.; Huang, F.
2008-12-01
To better understand how Mg isotopes behave during weathering and aqueous transport, we used a Nu Plasma MC-ICP-MS to measure δ26Mg values (relative to DSM-3) in water samples along a 236 km flow path in the Madison aquifer of South Dakota, a confined carbonate aquifer recharging in the igneous Black Hills. We also analyzed local granite and dolomite samples to characterize the Mg isotope composition of source rocks constituting the recharge zone and aquifer, respectively. Repeated analyses of Mg standard solutions yielded external precisions (2σ) better than 0.1 permil for δ26Mg(CAM-1, - 2.584±0.071, n=13; UIMg-1, -2.217±0.087, n=9.). The Madison aquifer provides a unique opportunity to quantify Mg isotope effects during water-rock interaction because (1) fluids and rock have chemically equilibrated over a much longer timescale (up to ~15 kyr) than can be simulated in laboratory experiments and (2) previous studies have determined the rates and mass-balances of de- dolomitization and other geochemical reactions controlling solute evolution along the flow path. Reactions important for changing the concentration and isotope composition of Mg include dolomite dissolution, Mg-for- Na ion exchange, calcite precipitation, and isotope exchange. δ26Mg values within the recharge region (0-17 km along flow path) vary between -1.08 and -1.63 permil, and then remain essentially constant at -1.408±0.010 permil(1σ, 5 samples) from 17 to 189 km. A final sample at 236 km shows an increase to -1.09 permil. Either mixing between different recharge waters or rapid isotope exchange between infiltrating waters and dolomite could control δ26Mg variability between 0 and 17 km. Likewise, reactive transport modeling suggests that preferential uptake of 24Mg during Mg-for-Na ion exchange might cause an increase in δ26Mg between 189 and 236 km. However, unchanging δ26Mg values observed throughout most of the aquifer clearly demonstrate that Mg isotopes are not fractionated during reactive transport. This suggests that Mg isotopes can conservatively trace weathering inputs and groundwater flow in dolomite-rich aquifers.
NASA Astrophysics Data System (ADS)
Bermingham, K. R.; Worsham, E. A.; Walker, R. J.
2018-04-01
When corrected for the effects of cosmic ray exposure, Mo and Ru nucleosynthetic isotope anomalies in iron meteorites from at least nine different parent bodies are strongly correlated in a manner consistent with variable depletion in s-process nucleosynthetic components. In contrast to prior studies, the new results show no significant deviations from a single correlation trend. In the refined Mo-Ru cosmic correlation, a distinction between the non-carbonaceous (NC) group and carbonaceous chondrite (CC) group is evident. Members of the NC group are characterized by isotope compositions reflective of variable s-process depletion. Members of the CC group analyzed here plot in a tight cluster and have the most s-process depleted Mo and Ru isotopic compositions, with Mo isotopes also slightly enriched in r- and possibly p-process contributions. This indicates that the nebular feeding zone of the NC group parent bodies was characterized by Mo and Ru with variable s-process contributions, but with the two elements always mixed in the same proportions. The CC parent bodies sampled here, by contrast, were derived from a nebular feeding zone that had been mixed to a uniform s-process depleted Mo-Ru isotopic composition. Six molybdenite samples, four glacial diamictites, and two ocean island basalts were analyzed to provide a preliminary constraint on the average Mo isotope composition of the bulk silicate Earth (BSE). Combined results yield an average μ97Mo value of +3 ± 6. This value, coupled with a previously reported μ100Ru value of +1 ± 7 for the BSE, indicates that the isotopic composition of the BSE falls precisely on the refined Mo-Ru cosmic correlation. The overlap of the BSE with the correlation implies that there was homogeneous accretion of siderophile elements for the final accretion of 10 to 20 wt% of Earth's mass. The only known cosmochemical materials with an isotopic match to the BSE, with regard to Mo and Ru, are some members of the IAB iron meteorite complex and enstatite chondrites.
Lucassen, Friedrich; Pritzkow, Wolfgang; Rosner, Martin; Sepúlveda, Fernando; Vásquez, Paulina; Wilke, Hans; Kasemann, Simone A
2017-01-01
Seabird excrements (guano) have been preserved in the arid climate of Northern Chile since at least the Pliocene. The deposits of marine organic material in coastal areas potentially open a window into the present and past composition of the coastal ocean and its food web. We use the stable isotope composition of nitrogen and carbon as well as element contents to compare the principal prey of the birds, the Peruvian anchovy, with the composition of modern guano. We also investigate the impact of diagenetic changes on the isotopic composition and elemental contents of the pure ornithogenic sediments, starting with modern stratified deposits and extending to fossil guano. Where possible, 14C systematics is used for age information. The nitrogen and carbon isotopic composition of the marine prey (Peruvian anchovy) of the birds is complex as it shows strong systematic variations with latitude. The detailed study of a modern profile that represents a few years of guano deposition up to present reveals systematic changes in nitrogen and carbon isotopic composition towards heavier values that increase with age, i.e. depth. Only the uppermost, youngest layers of modern guano show compositional affinity to the prey of the birds. In the profile, the simultaneous loss of nitrogen and carbon occurs by degassing, and non-volatile elements like phosphorous and calcium are passively enriched in the residual guano. Fossil guano deposits are very low in nitrogen and low in carbon contents, and show very heavy nitrogen isotopic compositions. One result of the study is that the use of guano for tracing nitrogen and carbon isotopic and elemental composition in the marine food web of the birds is restricted to fresh material. Despite systematic changes during diagenesis, there is little promise to retrieve reliable values of marine nitrogen and carbon signatures from older guano. However, the changes in isotopic composition from primary marine nitrogen isotopic signatures towards very heavy values generate a compositionally unique material. These compositions trace the presence of guano in natural ecosystems and its use as fertilizer in present and past agriculture.
Pritzkow, Wolfgang; Rosner, Martin; Sepúlveda, Fernando; Vásquez, Paulina; Wilke, Hans; Kasemann, Simone A.
2017-01-01
Seabird excrements (guano) have been preserved in the arid climate of Northern Chile since at least the Pliocene. The deposits of marine organic material in coastal areas potentially open a window into the present and past composition of the coastal ocean and its food web. We use the stable isotope composition of nitrogen and carbon as well as element contents to compare the principal prey of the birds, the Peruvian anchovy, with the composition of modern guano. We also investigate the impact of diagenetic changes on the isotopic composition and elemental contents of the pure ornithogenic sediments, starting with modern stratified deposits and extending to fossil guano. Where possible, 14C systematics is used for age information. The nitrogen and carbon isotopic composition of the marine prey (Peruvian anchovy) of the birds is complex as it shows strong systematic variations with latitude. The detailed study of a modern profile that represents a few years of guano deposition up to present reveals systematic changes in nitrogen and carbon isotopic composition towards heavier values that increase with age, i.e. depth. Only the uppermost, youngest layers of modern guano show compositional affinity to the prey of the birds. In the profile, the simultaneous loss of nitrogen and carbon occurs by degassing, and non-volatile elements like phosphorous and calcium are passively enriched in the residual guano. Fossil guano deposits are very low in nitrogen and low in carbon contents, and show very heavy nitrogen isotopic compositions. One result of the study is that the use of guano for tracing nitrogen and carbon isotopic and elemental composition in the marine food web of the birds is restricted to fresh material. Despite systematic changes during diagenesis, there is little promise to retrieve reliable values of marine nitrogen and carbon signatures from older guano. However, the changes in isotopic composition from primary marine nitrogen isotopic signatures towards very heavy values generate a compositionally unique material. These compositions trace the presence of guano in natural ecosystems and its use as fertilizer in present and past agriculture. PMID:28594902
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maggi, F.M.; Riley, W.J.
2009-11-01
We present a mathematical treatment of the kinetic equations that describe isotopologue and isotopomer speciation and fractionation during enzyme-catalyzed biochemical reactions. These equations, presented here with the name GEBIK (general equations for biochemical isotope kinetics) and GEBIF (general equations for biochemical isotope fractionation), take into account microbial biomass and enzyme dynamics, reaction stoichiometry, isotope substitution number, and isotope location within each isotopologue and isotopomer. In addition to solving the complete GEBIK and GEBIF, we also present and discuss two approximations to the full solutions under the assumption of biomass-free and enzyme steady-state, and under the quasi-steady-state assumption as applied tomore » the complexation rate. The complete and approximate approaches are applied to observations of biological denitrification in soils. Our analysis highlights that the full GEBIK and GEBIF provide a more accurate description of concentrations and isotopic compositions of substrates and products throughout the reaction than do the approximate forms. We demonstrate that the isotopic effects of a biochemical reaction depend, in the most general case, on substrate and complex concentrations and, therefore, the fractionation factor is a function of time. We also demonstrate that inverse isotopic effects can occur for values of the fractionation factor smaller than 1, and that reactions that do not discriminate isotopes do not necessarily imply a fractionation factor equal to 1.« less
Yohannes, Elizabeth; Grimm, Claudia; Rothhaupt, Karl-Otto; Behrmann-Godel, Jasminca
2017-01-01
Stable isotope analysis of commercially and ecologically important fish can improve understanding of life-history and trophic ecology. However, accurate interpretation of stable isotope values requires knowledge of tissue-specific isotopic turnover that will help to describe differences in the isotopic composition of tissues and diet. We performed a diet-switch experiment using captive-reared parasite-free Eurasian perch (Perca fluviatilis) and wild caught specimens of the same species, infected with the pike tapeworm Triaenophorus nodulosus living in host liver tissue. We hypothesize that metabolic processes related to infection status play a major role in isotopic turnover and examined the influence of parasite infection on isotopic turn-over rate of carbon (δ13C), nitrogen (δ15N) and sulphur (δ34S) in liver, blood and muscle. The δ15N and δ13C turnovers were fastest in liver tissues, followed by blood and muscle. In infected fish, liver and blood δ15N and δ13C turnover rates were similar. However, in infected fish, liver and blood δ13C turnover was faster than that of δ15N. Moreover, in infected subjects, liver δ15N and δ13C turnover rates were three to five times faster than in livers of uninfected subjects (isotopic half-life of ca.3-4 days compared to 16 and 10 days, respectively). Blood δ34S turnover rate were about twice faster in non-infected individuals implying that parasite infection could retard the turnover rate of δ34S and sulphur containing amino acids. Slower turnover rate of essential amino acid could probably decrease individual immune function. These indicate potential hidden costs of chronic and persistent infections that may have accumulated adverse effects and might eventually impair life-history fitness. For the first time, we were able to shift the isotope values of parasites encapsulated in the liver by changing the dietary source of the host. We also report variability in isotopic turnover rates between tissues, elements and between infected and parasite-free individuals. These results contribute to our understanding of data obtained from field and commercial hatcheries; and strongly improve the applicability of the stable isotope method in understanding life-history and trophic ecology of fish populations.
Yohannes, Elizabeth; Grimm, Claudia; Rothhaupt, Karl-Otto; Behrmann-Godel, Jasminca
2017-01-01
Stable isotope analysis of commercially and ecologically important fish can improve understanding of life-history and trophic ecology. However, accurate interpretation of stable isotope values requires knowledge of tissue-specific isotopic turnover that will help to describe differences in the isotopic composition of tissues and diet. We performed a diet-switch experiment using captive-reared parasite-free Eurasian perch (Perca fluviatilis) and wild caught specimens of the same species, infected with the pike tapeworm Triaenophorus nodulosus living in host liver tissue. We hypothesize that metabolic processes related to infection status play a major role in isotopic turnover and examined the influence of parasite infection on isotopic turn-over rate of carbon (δ13C), nitrogen (δ15N) and sulphur (δ34S) in liver, blood and muscle. The δ15N and δ13C turnovers were fastest in liver tissues, followed by blood and muscle. In infected fish, liver and blood δ15N and δ13C turnover rates were similar. However, in infected fish, liver and blood δ13C turnover was faster than that of δ15N. Moreover, in infected subjects, liver δ15N and δ13C turnover rates were three to five times faster than in livers of uninfected subjects (isotopic half-life of ca.3-4 days compared to 16 and 10 days, respectively). Blood δ34S turnover rate were about twice faster in non-infected individuals implying that parasite infection could retard the turnover rate of δ34S and sulphur containing amino acids. Slower turnover rate of essential amino acid could probably decrease individual immune function. These indicate potential hidden costs of chronic and persistent infections that may have accumulated adverse effects and might eventually impair life-history fitness. For the first time, we were able to shift the isotope values of parasites encapsulated in the liver by changing the dietary source of the host. We also report variability in isotopic turnover rates between tissues, elements and between infected and parasite-free individuals. These results contribute to our understanding of data obtained from field and commercial hatcheries; and strongly improve the applicability of the stable isotope method in understanding life-history and trophic ecology of fish populations. PMID:28046021
Fractionation of carbon and hydrogen isotopes by methane-oxidizing bacteria
Coleman, D.D.; Risatti, J.B.; Schoell, M.
1981-01-01
Carbon isotopic analysis of methane has become a popular technique in the exploration for oil and gas because it can be used to differentiate between thermogenic and microbial gas and can sometimes be used for gas-source rock correlations. Methane-oxidizing bacteria, however, can significantly change the carbon isotopic composition of methane; the origin of gas that has been partially oxidized by these bacteria could therefore be misinterpreted. We cultured methane-oxidizing bacteria at two different temperatures and monitored the carbon and hydrogen isotopic compositions of the residual methane. The residual methane was enriched in both 13C and D. For both isotopic species, the enrichment at equivalent levels of conversion was greater at 26??C than at 11.5??C. The change in ??D relative to the change in ??13C was independent of temperature within the range studied. One culture exhibited a change in the fractionation pattern for carbon (but not for hydrogen) midway through the experiment, suggesting that bacterial oxidation of methane may occur via more than one pathway. The change in the ??D value for the residual methane was from 8 to 14 times greater than the change in the ??13C value, indicating that combined carbon and hydrogen isotopic analysis may be an effective way of identifying methane which has been subjected to partial oxidation by bacteria. ?? 1981.
Baune, Claudia; Bottcher, Michael E
2010-12-01
The diffusion of hydrogen sulphide across the sediment-water interface and subsequent liberation to the atmosphere may occur in iron-deficient coastal marine environments with enhanced microbial activity in surface sediments and corresponding accumulation of dissolved H2S in near-surface pore waters. The involvement of analogue processes in periods of global mass extinctions during Earth's history (e.g. at the Permian-Triassic boundary) is currently in discussion [L.R. Kump, A. Pavlov, and M. Arthur,Massive Release of Hydrogen Sulfide to the Surface Ocean and Atmosphere During Intervals of Oceanic Anoxia, Geology 33, 397 (2005)]. The outgassing of H₂S is associated with a fractionation of the stable sulphur isotopes, which has so far only been investigated experimentally at selected acidic and neutral pH values, and no experiments with seawater had been carried out. In this communication, we report on sulphur isotope fractionation that takes place during the experimental degassing of H₂S from aqueous solution by an inert gas (N₂) at 21 °C. Experiments were conducted in the pH range between 2.6 and 10.8, corresponding to the dominance fields of dissolved hydrogen sulphide (H₂S(aq)), bisulphide (HS-(aq)), and mixtures of both sulphide species. Overall isotope enrichment factors between -1.6 and +3.0‰ were observed, with the residual dissolved sulphide being enriched or depleted in ³⁴S compared to the liberated H₂S at low and high pH values, respectively. The difference in the low and high pH isotope fractionation effects can be explained by isotope exchange between H₂S(aq) and HS-(aq) [B. Fry, H. Gest, and J.M. Hayes, Sulfur Isotope Effects Associated with Protonation of HS- and Volatilization of H₂S, Chem. Geol. (Isot. Geosci. Sec.) 58, 253 (1986); R. Geßler and K. von Gehlen, Investigation of Sulfur Isotope Fractionation Between H2S Gas and Aqueous Solutions, Fresenius J. Anal. Chem. 324, 130 (1986)] followed by the subsequent transfer of H₂S(aq) to the gaseous phase. The assumption of pure physical outgassing of H₂S(aq) at low pH values leads to an isotope enrichment factor of -0.9 ± 0.4‰ (n = 14) which is caused by the combined differences in dehydration and diffusion coefficients of H₂³²S(aq) and H₂³⁴S(aq). In the pH range of natural surface and shallow pore waters, ³⁴S will be equal to or enriched in the gaseous phase compared to the aqueous solution, therefore creating no or a slight enrichment of ³²S in the aqueous solution. Experiments in seawater solution showed no significant influence of increased ionic strength and changed corresponding aqueous speciation on sulphur isotope effects.
NASA Astrophysics Data System (ADS)
Williams, Branwen; Grottoli, Andréa G.
2010-09-01
Soft corals and black corals are useful proxy tools for paleoceanographic reconstructions. However, most work has focused on deep-water taxa and few studies have used these corals as proxy organisms in shallow water (<200 m). To facilitate the use of stable nitrogen and carbon isotope (δ 15N and δ 13C) records from shallow-water soft coral and black coral taxa for paleoceanographic reconstructions, quantification of the inherent variability in skeletal isotope values between sites, across depth, and among taxa is needed. Here, skeletal δ 15N and δ 13C values were measured in multiple colonies from eleven genera of soft corals and two genera of black corals from across a depth transect (5-105 m) at two sites in Palau located in the tropical western Pacific Ocean. Overall, no difference in skeletal δ 15N and δ 13C values between sites was present. Skeletal δ 15N values significantly increased and δ 13C values decreased with depth. This is consistent with changes in isotope values of suspended particulate organic matter (POM) across the photic zone, suggesting that the primary food source to these corals is suspended POM and that the stable isotopic composition of POM controls the skeletal isotopic composition of these corals. Thus, to compare the isotope records of corals collected across a depth range in the photic zone, first order depth corrections of -0.013‰ m -1 and +0.023‰ m -1 are recommended for δ 15N and δ 13C, respectively. Average depth-corrected δ 15N values were similar between black corals and soft corals, indicating that corals in these orders feed at a similar trophic level. In contrast, average depth-corrected δ 13C values of black corals were significantly lower than that of soft corals, potentially resulting from metabolic processes associated with differing skeletal compositions among the orders (i.e., gorgonin vs. chitin based). Thus, a correction of +1.0‰ is recommended for black corals when comparing their δ 13C-based proxy records to soft corals. After correcting for both the depth and order effects, variability in δ 15N values among corals within each genera was low (standard deviation (SD) of the mean <±0.5‰), with the exception of Acanthorgorgia. The calculated SD of <±0.5‰ provides a first order guideline for the amount of variability that could be expected in a δ 15N record, and suggests that these corals may be useful for δ 15N-based paleoceanographic reconstructions. Variability in δ 13C values among corals within genera was also low (standard deviation of the mean <±0.5‰) with the exception of Rhipidipathes and Villogorgia. Similar to δ 15N, records from the genera studied here with the exception of Rhipidipathes and Villogorgia may be useful for δ 13C-based paleoceanographic reconstructions. Overall, using the recommendations developed here, stable isotope records from multiple sites, depths and taxa of these corals can be more rigorously compared.
NASA Astrophysics Data System (ADS)
Tripati, Aradhna K.; Hill, Pamela S.; Eagle, Robert A.; Mosenfelder, Jed L.; Tang, Jianwu; Schauble, Edwin A.; Eiler, John M.; Zeebe, Richard E.; Uchikawa, Joji; Coplen, Tyler B.; Ries, Justin B.; Henry, Drew
2015-10-01
;Clumped-isotope; thermometry is an emerging tool to probe the temperature history of surface and subsurface environments based on measurements of the proportion of 13C and 18O isotopes bound to each other within carbonate minerals in 13C18O16O22- groups (heavy isotope ;clumps;). Although most clumped isotope geothermometry implicitly presumes carbonate crystals have attained lattice equilibrium (i.e., thermodynamic equilibrium for a mineral, which is independent of solution chemistry), several factors other than temperature, including dissolved inorganic carbon (DIC) speciation may influence mineral isotopic signatures. Therefore we used a combination of approaches to understand the potential influence of different variables on the clumped isotope (and oxygen isotope) composition of minerals. We conducted witherite precipitation experiments at a single temperature and at varied pH to empirically determine 13C-18O bond ordering (Δ47) and δ18O of CO32- and HCO3- molecules at a 25 °C equilibrium. Ab initio cluster models based on density functional theory were used to predict equilibrium 13C-18O bond abundances and δ18O of different DIC species and minerals as a function of temperature. Experiments and theory indicate Δ47 and δ18O compositions of CO32- and HCO3- ions are significantly different from each other. Experiments constrain the Δ47-δ18O slope for a pH effect (0.011 ± 0.001; 12 ⩾ pH ⩾ 7). Rapidly-growing temperate corals exhibit disequilibrium mineral isotopic signatures with a Δ47-δ18O slope of 0.011 ± 0.003, consistent with a pH effect. Our theoretical calculations for carbonate minerals indicate equilibrium lattice calcite values for Δ47 and δ18O are intermediate between HCO3- and CO32-. We analyzed synthetic calcites grown at temperatures ranging from 0.5 to 50 °C with and without the enzyme carbonic anhydrase present. This enzyme catalyzes oxygen isotopic exchange between DIC species and is present in many natural systems. The two types of experiments yielded statistically indistinguishable results, and these measurements yield a calibration that overlaps with our theoretical predictions for calcite at equilibrium. The slow-growing Devils Hole calcite exhibits Δ47 and δ18O values consistent with lattice equilibrium. Factors influencing DIC speciation (pH, salinity) and the timescale for DIC equilibration, as well as reactions at the mineral-solution interface, have the potential to influence clumped-isotope signatures and the δ18O of carbonate minerals. In fast-growing carbonate minerals, solution chemistry may be an important factor, particularly over extremes of pH and salinity. If a crystal grows too rapidly to reach an internal equilibrium (i.e., achieve the value for the temperature-dependent mineral lattice equilibrium), it may record the clumped-isotope signature of a DIC species (e.g., the temperature-dependent equilibrium of HCO3-) or a mixture of DIC species, and hence record a disequilibrium mineral composition. For extremely slow-growing crystals, and for rapidly-grown samples grown at a pH where HCO3- dominates the DIC pool at equilibrium, effects of solution chemistry are likely to be relatively small or negligible. In summary, growth environment, solution chemistry, surface equilibria, and precipitation rate may all play a role in dictating whether a crystal achieves equilibrium or disequilibrium clumped-isotope signatures.
NASA Astrophysics Data System (ADS)
Sun, Yan; Wu, Lianghuan; Li, Xiaoyan; Sun, Li; Gao, Jianfei; Ding, Tiping
2016-11-01
Understanding the variations of silicon isotopes in terrestrial higher plants can be helpful toward elucidating the global biogeochemical silicon cycle. We studied silicon isotope fractionation in rice and cucumber plants over their entire life cycles. These two different silicon-absorbing plants were grown hydroponically at different external silicon concentrations. The ranges of δ30Si values in rice were -1.89‰ to 1.69‰, -1.81‰ to 1.96‰, and -2.08‰ to 2.02‰ at 0.17 mM, 1.70 mM, and 8.50 mM silicon concentrations, respectively. The ranges of δ30Si values in cucumber were -1.38‰ to 1.21‰, -1.33‰ to 1.26‰, and -1.62‰ to 1.40‰ at 0.085 mM, 0.17 mM, and 1.70 mM external silicon concentrations, respectively. A general increasing trend in δ30Si values from lower to upper plant parts reflected the preferential incorporation of lighter silicon isotopes from transpired water to biogenic opal. Furthermore, the active uptake mechanism regulated by several transporters might have also played an important role in the preferential transport of heavy silicon isotopes into aboveground plant parts. This suggested that silicon isotope fractionation in both rice and cucumber was a Rayleigh-like process. The data on δ30Si values for the whole plants and nutrient solutions indicated that biologically mediated silicon isotope fractionation occurred during silicon uptake by roots. At lower external silicon concentrations, heavy silicon isotopes entered plants more readily than light silicon isotopes. Conversely, at higher external silicon concentrations, light silicon isotopes entered plants more readily than heavy silicon isotopes.
NASA Astrophysics Data System (ADS)
Santiago Ramos, D. P.; Higgins, J. A.
2015-12-01
Improvements in analytical precision on the latest generation multi-collector inductively coupled plasma mass spectrometers (MC-ICP-MS) have revealed a ~2‰ range in the ratios of stable potassium isotopes (41K/39K) in terrestrial materials (Morgan et al., in prep). Preliminary measurements of δ41K values indicate that seawater and silicate rocks are isotopically distinct reservoirs, with seawater having a δ41K value that is ~0.5‰ heavier than the silicate average (-0.5‰; Morgan et al., in prep). The heavy δ41K character of seawater might be related to 1) an isotopically enriched input flux (rivers and high-temperature hydrothermal reactions); or 2) a 41K-depleted sink associated with authigenic clay formation during low-temperature alteration of volcanic rocks. Here we present measurements of the δ41K values of pore-fluids from ODP site 1052 in order to constrain potassium isotope fractionation during secondary clay formation. We find that δ41K values and K concentrations both decline systematically with depth. Results from 1-D diffusion-advection-reaction modeling of potassium concentrations and isotopic compositions indicate that fractionation of K isotopes during diffusion (Bourg et al., 2010) can explain all of the change in δ41K values of the pore-fluid with depth. Although the size of the K sink at site 1052 is a trivial fraction of the global K sink in clay minerals, our results suggest that diffusive fractionation of K isotopes in shallow pore-fluids may be, in part, responsible for the elevated δ41K value of seawater.
Westley, Marian B; Popp, Brian N; Rust, Terri M
2007-01-01
Two alternative approaches for the calibration of the intramolecular nitrogen isotope distribution in nitrous oxide using isotope ratio mass spectrometry have yielded a difference in the 15N site preference (defined as the difference between the delta15N of the central and end position nitrogen in NNO) of tropospheric N2O of almost 30 per thousand. One approach is based on adding small amounts of labeled 15N2O to the N2O reference gas and tracking the subsequent changes in m/z 30, 31, 44, 45 and 46, and this yields a 15N site preference of 46.3 +/- 1.4 per thousand for tropospheric N2O. The other involves the synthesis of N2O by thermal decomposition of isotopically characterized ammonium nitrate and yields a 15N site preference of 18.7 +/- 2.2 per thousand for tropospheric N2O. Both approaches neglect to fully account for isotope effects associated with the formation of NO+ fragment ions from the different isotopic species of N2O in the ion source of a mass spectrometer. These effects vary with conditions in the ion source and make it impossible to reproduce a calibration based on the addition of isotopically enriched N2O on mass spectrometers with different ion source configurations. These effects have a much smaller impact on the comparison of a laboratory reference gas with N2O synthesized from isotopically characterized ammonium nitrate. This second approach was successfully replicated and leads us to advocate the acceptance of the site preference value 18.7 +/- 2.2 per thousand for tropospheric N2O as the provisional community standard until further independent calibrations are developed and validated. We present a technique for evaluating the isotope effects associated with fragment ion formation and revised equations for converting ion signal ratios into isotopomer ratios. Copyright 2007 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Wyhlidal, S.; Rank, D.; Kralik, M.
2017-12-01
Austria runs one of the longest-standing and most dense isotope precipitation collection networks worldwide, resulting in a unique isotope time series. Stable isotope variations in precipitation are a consequence of isotope effects accompanying each step of the water cycle. Therefore, stable isotope ratios of oxygen (18O/16O) and hydrogen (2H/1H) in precipitation provide important information about the origin and atmospheric transport of water vapour. The separation of a remote moisture source signals from local influences is thereby challenging. The amount of precipitation in Austria is highly influenced by the Alpine mountain range (400-3.000 mm/a). The amount of annual precipitation increases towards the mountain ranges. However, strong regional differences exist between the north and south of the Austrian Alps because the Alpine range functions as weather divide. The isotope time series of the stations of the Austrian precipitation network show significant but not uniform long-term trends. While the 10-year running mean of some mountain stations exhibit a highly significant increase in δ18O of about 1 ‰ since 1975, the change of δ18O at the valley stations is less pronounced. The increasing δ18O values can be correlated to an increase mean air temperature in the Alpine area and can be used as an additional indicator of climate change in this region. The differences in δ18O-values of sampling stations at similar altitudes can be explained by the origin of the air moisture. An Atlantic influence causes lower δ18O-values than sources from the Mediterranean. This can be explained by the different distances to the sea. Deuterium excess is a second-order isotopic parameter which is often interpreted as a tracer of the evaporation conditions of water vapor at the moisture source in terms of relative humidity, wind speed, and sea surface temperature, but can also be modified by local influences, such as below-cloud evaporation and equilibrium fractionation under very cold conditions. The long-term variations of d-excess in precipitation at selected stations show a significant difference in the behavior of the d-excess at mountain and valley stations. Deuterium excess and δ18O will be used to explore climate effects on precipitation signatures observed and elicit how they can be integrated in to global climate models.
Jiménez-Moreno, María; Barre, Julien P G; Perrot, Vincent; Bérail, Sylvain; Rodríguez Martín-Doimeadios, Rosa C; Amouroux, David
2016-03-01
Variations in mercury (Hg) isotopic compositions have been scarcely investigated until now in the Almadén mining district (Spain), which is one of the most impacted Hg areas worldwide. In this work, we explore and compare Hg isotopic signatures in sediments and lichens from Almadén mining district and its surroundings in order to identify and trace Hg aquatic and atmospheric contamination sources. No statistically significant mass independent fractionation was observed in sediments, while negative Δ(201)Hg values from -0.12 to -0.21‰ (2SD = 0.06‰) were found in lichens. A large range of δ(202)Hg values were reported in sediments, from -1.86 ± 0.21‰ in La Serena Reservoir sites far away from the pollution sources to δ(202)Hg values close to zero in sediments directly influenced by Almadén mining district, whereas lichens presented δ(202)Hg values from -1.95 to -0.40‰ (2SD = 0.15‰). A dilution or mixing trend in Hg isotope signatures versus the distance to the mine was found in sediments along the Valdeazogues River-La Serena Reservoir system and in lichens. This suggests that Hg isotope fingerprints in these samples are providing a direct assessment of Hg inputs and exposure from the mining district, and potential information on diffuse atmospheric contamination and/or geochemical alteration processes in less contaminated sites over the entire hydrosystem. This study confirms the applicability of Hg isotope signatures in lichens and sediments as an effective and complementary tool for tracing aquatic and atmospheric Hg contamination sources and a better constraint of the spatial and temporal fate of Hg released by recent or ancient mining activities. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Burgener, L. K.; Huntington, K. W.; Hoke, G. D.; Schauer, A. J.; Ringham, M. C.; Latorre Hidalgo, C.; Díaz, F.
2015-12-01
The application of carbonate clumped isotope thermometry to soil carbonates has the potential to shed new light on questions regarding terrestrial paleoclimate. In order to better utilize this paleoclimate tool, outstanding questions regarding seasonal biases in soil carbonate formation and the relationship between soil carbonate formation temperatures (T(Δ47)) and surface temperatures must be resolved. We address these questions by comparing C, O, and clumped isotope data from Holocene/modern soil carbonates to modern meteorological data. The data were collected along a 170 km transect with >4 km of relief in central Chile (~30°S). Previous studies have suggested that soil carbonates should record a warm season bias and form in isotopic equilibrium with soil water and soil CO2. We identify two discrete climate zones separated by the local winter snow line (~3200 m). Below this boundary, precipitation falls as rain and soil carbonate T(Δ47) values at depths >40 cm resemble summer soil temperatures; at higher elevations, precipitation falls as snow and T(Δ47) values resemble mean annual soil temperatures. Soil carbonates from the highest sample site (4700 m), which is devoid of vegetation and located near perennial snow fields, yield anomalous δ18O, δ13C, and T(Δ47) values, indicative of kinetic isotope effects that we attribute to cryogenic carbonate formation. Our results suggest that soil carbonates from depths <40 cm are affected by large, high frequency variations in temperature and precipitation, and should not be used as paleotemperature proxies. These findings (1) highlight the role of soil moisture in modulating soil carbonate formation and the resulting T(Δ47) values, (2) underscore the importance of understanding past soil moisture conditions when attempting to reconstruct paleotemperatures using carbonate clumped isotope thermometry, and (3) suggest that soil carbonates from high elevation or high latitude sites may form under non-equilibrium conditions.
Titanium stable isotope investigation of magmatic processes on the Earth and Moon
NASA Astrophysics Data System (ADS)
Millet, Marc-Alban; Dauphas, Nicolas; Greber, Nicolas D.; Burton, Kevin W.; Dale, Chris W.; Debret, Baptiste; Macpherson, Colin G.; Nowell, Geoffrey M.; Williams, Helen M.
2016-09-01
We present titanium stable isotope measurements of terrestrial magmatic samples and lunar mare basalts with the aims of constraining the composition of the lunar and terrestrial mantles and evaluating the potential of Ti stable isotopes for understanding magmatic processes. Relative to the OL-Ti isotope standard, the δ49Ti values of terrestrial samples vary from -0.05 to +0.55‰, whereas those of lunar mare basalts vary from -0.01 to +0.03‰ (the precisions of the double spike Ti isotope measurements are ca. ±0.02‰ at 95% confidence). The Ti stable isotope compositions of differentiated terrestrial magmas define a well-defined positive correlation with SiO2 content, which appears to result from the fractional crystallisation of Ti-bearing oxides with an inferred isotope fractionation factor of ΔTi49oxide-melt = - 0.23 ‰ ×106 /T2. Primitive terrestrial basalts show no resolvable Ti isotope variations and display similar values to mantle-derived samples (peridotite and serpentinites), indicating that partial melting does not fractionate Ti stable isotopes and that the Earth's mantle has a homogeneous δ49Ti composition of +0.005 ± 0.005 (95% c.i., n = 29). Eclogites also display similar Ti stable isotope compositions, suggesting that Ti is immobile during dehydration of subducted oceanic lithosphere. Lunar basalts have variable δ49Ti values; low-Ti mare basalts have δ49Ti values similar to that of the bulk silicate Earth (BSE) while high-Ti lunar basalts display small enrichment in the heavy Ti isotopes. This is best interpreted in terms of source heterogeneity resulting from Ti stable isotope fractionation associated with ilmenite-melt equilibrium during the generation of the mantle source of high-Ti lunar mare basalts. The similarity in δ49Ti between terrestrial samples and low-Ti lunar basalts provides strong evidence that the Earth and Moon have identical stable Ti isotope compositions.
Williams, Jocelyn S; White, Christine D; Longstaffe, Fred J
2005-12-01
The weaning process was investigated at two Maya sites dominated by Postclassic remains: Marco Gonzalez (100 BC-AD 1350) and San Pedro (1400-AD 1650), Belize. Bone collagen and bioapatite were analyzed from 67 individuals (n < or = 6 years = 15, n > 6 years = 52). Five isotopic measures were used to reconstruct diet and weaning: stable nitrogen- and carbon-isotope ratios in collagen, stable carbon- and oxygen-isotope ratios in bioapatite, and the difference in stable carbon-isotope values of coexisting collagen and bioapatite. Nitrogen-isotope ratios in infant collagen from both sites are distinct from adult females, indicating a trophic level effect. Collagen-to-bioapatite differences in infant bone from both sites are distinct from adult females, indicating a shift in macronutrients. Oxygen-isotope ratios in infant bioapatite from both sites are also distinct from adult females, indicating the consumption of breast milk. Among infants, carbon- and nitrogen-isotope ratios vary, indicating death during different stages in the weaning process. The ethnohistoric and paleopathological literature on the Maya indicate cessation of breast-feeding between ages 3-4 years. Isotopic data from Marco Gonzalez and San Pedro also indicate an average weaning age of 3-4 years. Based on various isotopic indicators, weaning likely began around age 12 months. This data set is not only important for understanding the weaning process during the Postclassic, but also demonstrates the use of collagen-to-bioapatite spacing as an indicator of macronutrient shifts associated with weaning. 2005 Wiley-Liss, Inc.
Lorenz, Jennifer M.; Tarbox, Lauren V.; Buck, Bryan; Qi, Haiping; Coplen, Tyler B.
2014-01-01
RATIONALE As a result of the scarcity of isotopic reference waters for daily use, a new secondary isotopic reference material for international distribution has been prepared from drinking water collected from the Biscayne aquifer in Ft. Lauderdale, Florida. METHODS This isotopic reference water was filtered, homogenized, loaded into glass ampoules, sealed with a torch, autoclaved to eliminate biological activity, and measured by dual-inlet isotope-ratio mass spectrometry. This reference material is available by the case of 144 glass ampoules containing either 4 mL or 5 mL of water in each ampoule. RESULTS The δ2H and δ18O values of this reference material are –10.3 ± 0.4 ‰ and –2.238 ± 0.011 ‰, respectively, relative to VSMOW, on scales normalized such that the δ2H and δ18O values of SLAP reference water are, respectively, –428 and –55.5 ‰. Each uncertainty is an estimated expanded uncertainty (U = 2uc) about the reference value that provides an interval that has about a 95 % probability of encompassing the true value. CONCLUSIONS This isotopic reference material, designated as USGS45, is intended as one of two isotopic reference waters for daily normalization of stable hydrogen and oxygen isotopic analysis of water with an isotope-ratio mass spectrometer or a laser absorption spectrometer.
Lorenz, Jennifer M.; Qi, Haiping; Coplen, Tyler B.
2017-01-01
As a result of the scarcity of isotopic reference waters for daily use, a new secondary isotopic reference material for international distribution has been prepared from ice-core water from the Amundsen–Scott South Pole Station. This isotopic reference material, designated as USGS49, was filtered, homogenised, loaded into glass ampoules, sealed with a torch, autoclaved to eliminate biological activity and measured by dual-inlet isotope-ratio mass spectrometry. The δ2H and δ18O values of USGS49 are −394.7 ± 0.4 and −50.55 ± 0.04 mUr (where mUr = 0.001 = ‰), respectively, relative to VSMOW, on scales normalised such that the δ2H and δ18O values of SLAP reference water are, respectively, −428 and −55.5 mUr. Each uncertainty is an estimated expanded uncertainty (U = 2uc) about the reference value that provides an interval that has about a 95% probability of encompassing the true value. This isotopic reference material is intended as one of two isotopic reference waters for daily normalisation of stable hydrogen and oxygen isotopic analysis of water with an isotope-ratio mass spectrometer or a laser absorption spectrometer. It is available by the case of 144 glass ampoules or as a set of sixteen glass ampoules containing 5 ml of water in each ampoule.
Clark, Scott K; Johnson, Thomas M
2010-01-01
We present a comprehensive set of Se concentration and isotope ratio data collected over a 3-yr period from dissolved, sediment-hosted, and organically bound Se in a Se-contaminated lake and littoral wetland. Median isotope ratios of these various pools of Se spanned a narrow isotopic range (delta80/76Se(SRM-3149)) = 1.14-2.40 per thousand). Selenium (VI) reduction in the sediments is an important process in this system, but its isotopic impact is muted by the lack of direct contact between surface waters and reduction sites within sediments. This indicates that using Se isotope data as an indicator of microbial or abiotic Se oxyanion reduction is not effective in this or other similar systems. Isotopic data suggest that most Se(IV) in the lake originates from oxidation of organically bound Se rather than directly through Se(VI) reduction. Mobilization of Se(VI) from bedrock involves only a slight isotopic shift. Temporally constant isotopic differences observed in Se(VI) from two catchment areas suggest the potential for tracing Se(VI) from different source areas. Phytoplankton isotope ratios are close to those of the water, with a small depletion in heavy isotopes (0.56 per thousand). Fish tissues nearly match the phytoplankton, being only slightly depleted in the heavier isotopes. This suggests the potential for Se isotopes as migration indicators. Volatile, presumably methylated Se was isotopically very close to median values for phytoplankton and macrophytes, indicating a lack of isotopic fractionation during methylation.
Roden, J S; Ehleringer, J R
2000-01-01
The isotopic composition of tree-ring cellulose was obtained over a two-year period from small diameter, riparian zone trees along an elevational transect in Big Cottonwood Canyon, Utah, USA to test for a possible temperature dependence of net biological fractionation during cellulose synthesis. The isotope ratios of stream water varied by only 3.6% and 0.2% in deltaD and delta18O, respectively, over an elevation change of 810m. The similarity in stream water and macroenvironment over the short (13km) transect produced nearly constant stem and leaf water deltaD and delta18O values. In addition, what few seasonal variations observed in the isotopic composition of source water and atmospheric water vapor or in leaf water evaporative enrichment were experienced equally by all sites along the elevational transect. The temperature at each site along the transect spanned a range of > or = 5 degrees C as calculated using the adiabatic lapse rate. Since the deltaD and delta18O values of stem and leaf water varied little for these trees over this elevation/temperature transect, any differences in tree-ring cellulose deltaD and delta18O values should have been associated with temperature effects on net biological fractionation. However, the slopes of the regressions of elevation versus the deltaD and delta18O values of tree-ring cellulose were not significantly different from zero indicating little or no temperature dependence of net biological fractionation. Therefore, cross-site climatic reconstruction studies using the isotope ratios of cellulose need not be concerned that temperatures during the growing season have influenced results.
Kinetic Deuterium Isotope Effects in the Combustion of Nitramine Propellants
1988-07-01
Transition state 33 7. Possible Isotope Effects in HMX -d., and RDX -d. 38 8. HMX synthesis 48 9. a- HMX 52 10. V- HMX 53 11. RDX Synthesis 55 12 Pellet...configuration of the transition state in HMX decomposition could be rade. KDIE in RDX Decomposition The KDIE values obtained for RDX decomposition -ire...0.13 HMX -d 8 60.3 35.7 8.6 0.10 RDX 61.2 36.7 11.8 0.10 RDX -de 53.7 22.8 8.3 0.11 DSC EXPERIMENTS The 13 -+ 8 phase
Sluijs, Appy; Laks, Jelmer J.; Reichart, Gert‐Jan
2016-01-01
Rationale Analyses of stable carbon isotope ratios (δ 13C values) of organic and inorganic matter remains have been instrumental for much of our understanding of present and past environmental and biological processes. Until recently, the analytical window of such analyses has been limited to samples containing at least several μg of carbon. Methods Here we present a setup combining laser ablation, nano combustion gas chromatography and isotope ratio mass spectrometry (LA/nC/GC/IRMS). A deep UV (193 nm) laser is used for optimal fragmentation of organic matter with minimum fractionation effects and an exceptionally small ablation chamber and combustion oven are used to reduce the minimum sample mass requirement compared with previous studies. Results Analyses of the international IAEA CH‐7 polyethylene standard show optimal accuracy, and precision better than 0.5‰, when measuring at least 42 ng C. Application to untreated modern Eucalyptus globulus (C3 plant) and Zea mays (C4 plant) pollen grains shows a ~ 16‰ offset between these species. Within each single Z. mays pollen grain, replicate analyses show almost identical δ 13C values. Conclusions Isotopic offsets between individual pollen grains exceed analytical uncertainties, therefore probably reflecting interspecimen variability of ~0.5–0.9‰. These promising results set the stage for investigating both δ 13C values and natural carbon isotopic variability between single specimens of a single population of all kinds of organic particles yielding tens of nanograms of carbon. © 2016 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd. PMID:27766694
[Spatial Distribution of Stable Isotope from the Lakes in Typical Temperate Glacier Region].
Shi, Xiao-yi; Pu, Tao; He, Yuan-qing; Lu, Hao; Niu, He-wen; Xia, Dun-sheng
2016-05-15
We focused mainly on the spatial variation and influencing factors of hydrogen and oxygen stable isotopes between water samples collected at the surface and different depths in the Lashi Lake in August, 2014. Hydrological supply characteristics of the lake in typical temperate glacier region were discussed. The results showed that the values of δ¹⁸O and δD in the Lashi Lake ranged from -12.98 per thousand to -8.16 per thousand with the mean of -9.75 per thousand and from -99.42 per thousand to -73.78 per thousand with the mean of -82.23 per thousand, respectively. There was a reversed spatial variation between δ¹⁸O and d. Relatively low values of δ¹⁸O with high values of d were found at the edge of the lake where the rivers drained into. Meanwhile, the values of d in the vertical profile varied little with depth, suggesting that the waters mixed sufficiently in the vertical direction. The d values increased at first and then decreased from east to west at different layers, but both increase and decrease exhibited different velocities, which were related to the river distribution, the locality of the lake and environmental conditions etc. River water and atmospheric precipitation were the main recharge sources of the Lashi Lake, and the melt-water of snow and ice might also be the supply resource. The δ¹⁸O values of lake water in glacier region decreased along the elevation (except for Lashi Lake), generally, this phenomenon was called "altitude effect". Moreover, high isotopic values of the lake water from non-glacier region were due to the evaporation effect.
NASA Astrophysics Data System (ADS)
Blamart, D.; Rollion-Bard, C.; Meibom, A.; Cuif, J.; Juillet-Leclerc, A.; Dauphin, Y.; Douarin, M.
2007-12-01
The geochemistry (stable isotopes and trace elements) of biogenic carbonates has been widely used for more than fifty years to reconstruct past climatic variability. During this time, the studies were mainly based on bulk sampling limiting sometimes the interpretations of the geochemical data as paleoclimatic proxies. Recently, high spatial resolution sampling techniques, such as micro-mill and SIMS, have been employed in the study of C, O and B isotopic compositions and trace elements (Mg, Sr) in the skeletons of a variety of (deep-sea) coral species. These studies have documented dramatic 'vital effects' and uncovered a systematic relationship between skeletal ultra-structure and stable isotopic composition. The formation of skeleton corals follows a universal two-step growth process. At the tips of the skeletal structures, the mineralizing cell layer produces centers of calcification (COC) or, equivalently, Early Mineralization Zone (EMZ). These EMZ are subsequently overgrown by fibrous aragonite(FA) consisting of cyclically added layers. The EMZ are characterized by systematically lighter C and O isotopic compositions compared with the adjacent FA. A number of geochemical models have been proposed, in which this systematic stable isotopic difference between EMZ and FA is ascribed to a biologically induced variation in the pH of a proposed Extra-cytoplasmic Calcifying Fluid (ECF) reservoir. In these models, relatively high pH conditions during the formation of EMZ result in relatively light C and O isotopic compositions compared with FA, which form under generally lower pH conditions. A direct test of such models would be possible if the Boron isotopic composition, which is pH sensitive, of EMZ and FA could be measured. We performed ion microprobe d11B measurements for EMZ and FA in Lophelia pertusa, a deep-sea coral common in the North-East Atlantic Ocean. We observe a systematic difference in B isotopic composition between the EMZ and FA skeleton. In EMZ, the measured δ11B values are consistently low. Fibrous aragonite is characterized by systematically higher d11B values, but also display B isotopic heterogeneity associated with specific growth bands in the calyx wall. The magnitude of the observed B isotopic variations cannot be explained by changes in environmental conditions and are likely caused by biological processes involved in the biomineralization of new skeleton; i.e. 'vital' effects. The observed B isotopic variations are opposite to the predictions of geochemical models for vital effects. Our data indicate that pH variations are not responsible for the observed stable isotopic fractionations. Geochemical models therefore do not provide an adequate framework within which to understand coral skeletal formation. Without a better understanding of these processes, which require experiments, the use of B isotopic composition to reconstruct paleo-pH variations in the oceans must be considered problematic - at least as far as Lophelia pertusa is concerned.
Sea surface salinity of the Eocene Arctic Azolla event using innovative isotope modeling
NASA Astrophysics Data System (ADS)
Speelman, E. N.; Sewall, J. O.; Noone, D.; Huber, M.; Sinninghe Damste, J. S.; Reichart, G. J.
2009-04-01
With the realization that the Eocene Arctic Ocean was covered with enormous quantities of the free floating freshwater fern Azolla, new questions regarding Eocene conditions facilitating these blooms arose. Our present research focuses on constraining the actual salinity of, and water sources for, the Eocene Arctic basin through the application of stable water isotope tracers. Precipitation pathways potentially strongly affect the final isotopic composition of water entering the Arctic Basin. Therefore we use the Community Atmosphere Model (CAM3), developed by NCAR, combined with a recently developed integrated isotope tracer code to reconstruct the isotopic composition of global Eocene precipitation and run-off patterns. We further addressed the sensitivity of the modeled hydrological cycle to changes in boundary conditions, such as pCO2, sea surface temperatures (SSTs) and sea ice formation. In this way it is possible to assess the effect of uncertainties in proxy estimates of these parameters. Overall, results of all runs with Eocene boundary conditions, including Eocene topography, bathymetry, vegetation patterns, TEX86 derived SSTs and pCO2 estimates, show the presence of an intensified hydrological cycle with precipitation exceeding evaporation in the Arctic region. Enriched, precipitation weighted, isotopic values of around -120‰ are reported for the Arctic region. Combining new results obtained from compound specific isotope analyses (δD) on terrestrially derived n-alkanes extracted from Eocene sediments, and model outcomes make it possible to verify climate reconstructions for the middle Eocene Arctic. Furthermore, recently, characteristic long-chain mid-chain ω20 hydroxy wax constituents of Azolla were found in ACEX sediments. δD values of these C32 - C36 diols provide insight into the isotopic composition of the Eocene Arctic surface water. As the isotopic signature of the runoff entering the Arctic is modelled, and the final isotopic composition of the surface waters can be deduced from the isotopic composition of the diols, we can calculate the degree of mixing between freshwater (isotopically light) and seawater (isotopically heavy) in the surface waters. This way we quantify Eocene Arctic surface water salinity, which in turn will shed light on the degree of (seasonal) mixing and stratification.
Sulfur isotopic analysis of carbonyl sulfide and its application for biogeochemical cycles
NASA Astrophysics Data System (ADS)
Hattori, Shohei; Kamezaki, Kazuki; Ogawa, Takahiro; Toyoda, Sakae; Katayama, Yoko; Yoshida, Naohiro
2016-04-01
Carbonyl sulfide (OCS or COS) is the most abundant gas containing sulfur in the atmosphere, with an average mixing ratio of 500 p.p.t.v. in the troposphere. OCS is suggested as a sulfur source of the stratospheric sulfate aerosols (SSA) which plays an important role in Earth's radiation budget and ozone depletion. Therefore, OCS budget should be validated for prediction of climate change, but the global OCS budget is imbalance. Recently we developed a promising new analytical method for measuring the stable sulfur isotopic compositions of OCS using nanomole level samples: the direct isotopic analytical technique of on-line gas chromatography-isotope ratio mass spectrometry (GC-IRMS) using fragmentation ions S+ (Hattori et al., 2015). The first measurement of the δ34S value for atmospheric OCS coupled with isotopic fractionation for OCS sink reactions in the stratosphere (Hattori et al., 2011; Schmidt et al., 2012; Hattori et al., 2012) explains the reported δ34S value for background stratospheric sulfate, suggesting that OCS is a potentially important source for background (nonepisodic or nonvolcanic) stratospheric sulfate aerosols. This new method measuring δ34S values of OCS can be used to investigate OCS sources and sinks in the troposphere to better understand its cycle. It is known that some microorganisms in soil can degrade OCS, but the mechanism and the contribution to the OCS in the air are still uncertain. In order to determine sulfur isotopic enrichment factor of OCS during degradation via microorganisms, incubation experiments were conducted using strains belonging to the genera Mycobacterium, Williamsia and Cupriavidus, isolated from natural soil environments (Kato et al., 2008). As a result, sulfur isotope ratios of OCS were increased during degradation of OCS, indicating that reaction for OC32S is faster than that for OC33S and OC34S. OCS degradation via microorganisms is not mass-independent fractionation (MIF) process, suggesting that this reaction does not contribute to the MIF signatures observed in sulfate aerosol samples and/or Archaean rock records. At the presentation, we report the comparison of 34ɛ values determined using some strains and the atmospheric implications for the OCS degradation in the present atmosphere are discussed. Hattori, S., Danielache, S. O., Johnson, M. S., Schmidt, J. A., Kjaergaard, H. G., Toyoda, S., Ueno, Y., Yoshida, N. Ultraviolet absorption cross sections of carbonyl sulfide isotopologues OC32S, OC33S, OC34S and O13CS: isotopic fractionation in photolysis and atmospheric implications, Atmos. Chem. Phys., 11, 10293-10303, 2011. Schmidt, J. A., Johnson, M. S., Jung, Y., Danielache, S. O., Hattori, S., Yoshida, N., Predictions of the sulfur and carbon kinetic isotope effects in the OH + OCS reaction, Chem. Phys. Lett., 531, 64-69, 2012. Hattori, S., Schmidt J. A., Mahler D., Danielache, S. O., Johnson M. S., Yoshida N. Isotope Effect in the Carbonyl Sulfide Reaction with O(3P), J. Phys. Chem. A, 116, 3521-3526, 2012. Hattori, S., Toyoda, A., Toyoda, S., Ishino S., Ueno, Y., Yoshida, N.: Determination of the Sulfur Isotope Ratio in Carbonyl Sulfide using Gas Chromatography/Isotope Ratio Mass Spectrometry on Fragment Ions 32S+, 33S+, and 34S+, Anal. Chem., 87, 477-484, 2015. Kato, H., Saito, M., Nagahata, Y., Katayama, Y.: Degradation of ambient carbonyl sulfide by Mycobacterium spp. in soil. Microbiol., 154(1), 249-255, 2008.
NASA Astrophysics Data System (ADS)
Dodd, J. P.; Sharp, Z. D.; Fawcett, P.
2008-12-01
Oxygen isotope values of biogenic silica from diatom frustules are a commonly used proxy in freshwater and marine environments, and provide a valuable archive of paleoclimatic information such as temperature and water cycle processes. Advances in analytical techniques have made oxygen isotope measurements of diatom silica more robust; however, to date, there are multiple published fractionation factors for biogenic silica, with no general consensus on which is 'correct.' Previous studies (e.g. Moschen et al, 2005) demonstrated that there is no difference in SiO2-H2O fractionation between different size fractions of diatoms and, therefore, no species-dependent effects. The SiO2-H2O fractionation factors observed in laboratory grown diatoms analyzed by Brandriss et al. (1998) and modern lacustrine diatoms (Moschen et al., 2005) are in close agreement (τ = -0.2‰/°C) and are defined by the equations 1000lnα SiO2-H2O = 15.56 (103 T-1) - 20.92 and 1000lnα SiO2-H2O = 20.5 (103 T-1) - 36.2, respectively. However, these studies are not in agreement with other published SiO2-H2O fractionation factors for biogenic silica in marine and freshwater environments. In order to effectively utilize diatom δ18O values as a climate proxy, it is necessary to understand how oxygen isotopes are fractionated during silica frustule formation and identify potential errors in δ18O values obtained through different analytic/purification processes. Here we present oxygen isotope data from modern diatom species collected from a wide variety of natural riverine and lacustrine environments in northern New Mexico, USA. Temperatures at collection sites ranged from 5.5°C to 37.8°C. Preliminary isotope data indicate a SiO2-H2O fractionation factor identical to Brandriss et al. (1998). Additional experiments were undertaken to examine the effect of differing chemical purification techniques (i.e. HNO3, H2O2, and NaOH) on modern diatoms to see if processing techniques might affect the δ18O values of modern samples. Visual inspection of diatom frustules with a scanning electron microscope before and after treatment with HNO3 indicates no physical alteration of the frustule structure. To discount the possibility of oxygen exchange between diatom SiO2 and HNO3, samples were treated with an 18O-enriched nitric acid (1000‰), and the resulting δ18O values were essentially unchanged. Organic content following treatment with HNO3 was measured with an elemental analyzer and diatoms were considered to be pure SiO2 once weight percent carbon dropped below 0.01%. When diatoms were treated with H2O2 alone, significant organic material (>5 weight percent carbon) remained. Oxygen isotope values were obtained using a laser-extraction, stepwise fluorination technique that provides an additional visual confirmation of diatom purity. When pure F2 was introduced to the laser chamber during prefluorination, any sample with greater than 0.5 weight % carbon reacted violently to produce CF4 and O2 gas, and resulted in anomalous δ18O diatom values.
Fahy, Geraldine E; Boesch, Christophe; Hublin, Jean-Jacques; Richards, Michael P
2015-11-01
Changes in diet throughout hominin evolution have been linked with important evolutionary changes. Stable carbon isotope analysis of inorganic apatite carbonate is the main isotopic method used to reconstruct fossil hominin diets; to test its effectiveness as a paleodietary indicator we present bone and enamel carbonate carbon isotope data from a well-studied population of modern wild western chimpanzees (Pan troglodytes verus) of known sex and age from Taï, Cote d'Ivoire. We found a significant effect of age class on bone carbonate values, with adult chimpanzees being more (13)C- and (18)O-depleted compared to juveniles. Further, to investigate habitat effects, we compared our data to existing apatite data on eastern chimpanzees (P. troglodytes schweinfurthii) and found that the Taï chimpanzees are significantly more depleted in enamel δ(13)Cap and δ(18)Oap compared to their eastern counterparts. Our data are the first to present a range of tissue-specific isotope data from the same group of wild western chimpanzees and, as such, add new data to the growing number of modern non-human primate comparative isotope datasets providing valuable information for the interpretation of diet throughout hominin evolution. By comparing our data to published isotope data on fossil hominins we found that our modern chimpanzee bone and enamel data support hypotheses that the trend towards increased consumption of C4 foods after 4 Ma (millions of years ago) is unique to hominins. Copyright © 2015 Elsevier Ltd. All rights reserved.
Historical variations in the stable isotope composition of mercury in Arctic lake sediments.
Jackson, Togwell A; Muir, Derek C G; Vincent, Warwick F
2004-05-15
The stable isotope composition of mercury (Hg) in a dated core from the anoxic zone of a saline, meromictic Arctic lake was found to vary as a complex function of the age and chemical composition of the sediment. Throughout the stratigraphic sequence, which spans the years 1899-1997, the ratios 198Hg/202Hg, 199Hg/202Hg, 200Hg/202Hg, 201Hg/202Hg, and 204Hg/202Hg expressed as delta-values (per mil deviations relative to a standard) reveal enrichment in 198Hg, 199Hg, 200Hg, and 201Hg, with depletion in 204Hg, the degree of enrichment varying inversely with atomic mass. A plot of delta198Hg, delta199Hg, delta200Hg, and delta201Hg against depth gave parallel profiles characterized by large, regular undulations superimposed on an overall trend toward increase with depth (i.e. age), and the delta204Hg profile is a mirror image of them. The delta198Hg, delta199Hg, delta200Hg, and delta201Hg values of the oldest (1899-1929) strata vary inversely with NH2OH.HCl/HNO3-extractable manganese concentration, but those of the youngest (1963-1997) strata give a positive correlation; intermediate (1936-1956) strata show no correlation and negligible variation in delta-values, possibly signifying a transition phase in which the two opposite trends offset each other. The delta-values show similar but weaker relationships with organic carbon. The results strongly suggest fractionation of Hg isotopes by microbial activities linked to oxidation-reduction reactions in the lake, although effects of isotopic signatures indicative of the sources of the Hg have not been ruled out. The radical change in the nature of the relationship between 6-values and sediment chemistry over time may reflect environmental and biotic changes that altered the isotope-fractionating processes. These findings imply that variations in the isotopic makeup of Hg, together with related physical, chemical, and biological data, could yield important new information about the biogeochemical cycle of Hg.
NASA Astrophysics Data System (ADS)
Yum, J.; Meyers, P. A.; Bernasconi, S. M.; Arnaboldi, M.
2005-12-01
The mid-Cretaceous (Cenomanian- Turonian) was characterized as a peak global greenhouse period with highest sea level, highest CO2 concentration in atmosphere and low thermal gradients from the poles to the equator. The depositional environment of the organic-carbon-rich black shales that typify this period remains an open question. A total of 180 Cenomanian- Turonian core samples were selected from multiple ODP and DSDP sites in the Atlantic Ocean: 530 (Cape Basin), 603 (Hatteras Rise), 641 (Galicia Bank), 1257-1261 (Demerara Rise), 1276 (Newfoundland Basin). Total organic carbon and nitrogen concentrations and isotopic compositions were measured to investigate variations in the proto-Atlantic Ocean paleoceanographic conditions that contributed to the origin of the black shales for this period. These new data were combined with existing data from Sites 367 (Senegal Rise), 530, and 603. Both the black shales and the organic-carbon-poor background sediments (less than 1 percent) have carbon isotope values between -29 to -22 permil. The C/N ratios of the background sediments are low (less than 20) compared to those of the black shales (20-40). Nitrogen isotope values range from 0 to 4 permil in the background samples. All black shales have similarly low nitrogen isotope values that range between -4 to 0 permil. These exceptionally low values are inferred to reflect the productivity of blue green algae and cyanobacteria under strongly surface stratified oceanic conditions. Although carbon isotope and C/N values of black shales show almost similar patterns at each location, there are site-specific shifts in these data that could be related to the amount of continental run off and/or the effect of latitude. Our multi-site comparison suggests that specially stratified depositional environments that could produce and accumulate the abnormally high carbon concentrations in sediments occurred throughout the proto-Atlantic ocean during the mid-Cretaceous. However, regional factors affected the amount and origin of organic matter delivered to each location.
Transport-Induced Spatial Patterns of Sulfur Isotopes (δ34S) as Biosignatures
NASA Astrophysics Data System (ADS)
Mansor, Muammar; Harouaka, Khadouja; Gonzales, Matthew S.; Macalady, Jennifer L.; Fantle, Matthew S.
2018-01-01
Cave minerals deposited in the presence of microbes may host geochemical biosignatures that can be utilized to detect subsurface life on Earth, Mars, or other habitable worlds. The sulfur isotopic composition of gypsum (CaSO4·2H2O) formed in the presence of sulfur-oxidizing microbes in the Frasassi cave system, Italy, was evaluated as a biosignature. Sulfur isotopic compositions (δ34SV-CDT) of gypsum sampled from cave rooms with sulfidic air varied from -11 to -24‰, with minor deposits of elemental sulfur having δ34S values between -17 and -19‰. Over centimeter-length scales, the δ34S values of gypsum varied by up to 8.5‰. Complementary laboratory experiments showed negligible fractionation during the oxidation of elemental sulfur to sulfate by Acidithiobacillus thiooxidans isolated from the caves. Additionally, gypsum precipitated in the presence and absence of microbes at acidic pH characteristic of the sulfidic cave walls has δ34S values that are on average 1‰ higher than sulfate. We therefore interpret the 8.5‰ variation in cave gypsum δ34S (toward more negative values) to reflect the isotopic effect of microbial sulfide oxidation directly to sulfate or via elemental sulfur intermediate. This range is similar to that expected by abiotic sulfide oxidation with oxygen, thus complicating the use of sulfur isotopes as a biosignature at centimeter-length scales. However, at the cave room (meter-length) scale, reactive transport modeling suggests that the overall ˜13‰ variability in gypsum δ34S reflects isotopic distillation of circulating H2S gas due to microbial sulfide oxidation occurring along the cave wall-atmosphere interface. Systematic variations of gypsum δ34S along gas flow paths can thus be interpreted as biogenic given that slow, abiotic oxidation cannot produce the same spatial patterns over similar length scales. The expression and preservation potential of this biosignature is dependent on gas flow parameters and diagenetic processes that modify gypsum δ34S values over geological timescales.
Comparisons of multiple isotope systems in the aragonitic shells of cultured Arctica islandica clams
NASA Astrophysics Data System (ADS)
Liu, Y. W.; Aciego, S.; Wanamaker, A. D.
2014-12-01
Previous work using oxygen and stable carbon isotopes from Arctica islandica shells has shown that this archive can provide information on past seawater temperatures, carbon cycling and ocean circulation. However, relatively less attention has been devoted to other "non-traditional" isotope systems within this proxy archive. In this study, we report the boron (δ11B) and strontium isotopic values (87Sr/86Sr and δ88/86Sr) from A. islandicashells collected and cultured from the Gulf of Maine. The long-lived ocean quahog, A. islandica was collected and cultured in the Gulf of Maine for 8 months. Our high-resolution δ11B records from the experiment show 5-7‰ of increase through the culture, with low values from January to May and higher values after May. The 87Sr/86Sr ratios from both tank water and shell samples suggest that the shell material reflects ambient ocean chemistry without interferences from terrestrial sources. Although It has been suggested that stable Sr isotopic ratios (δ88/86Sr) in biogenic carbonates are influenced by the temperature of the precipitating fluid, our nearly identical δ88/86Sr data do not support this hypothesis despite a 15 °C temperature change during the experiment. Based on the in-situ measurements of culture seawater temperature, salinity and pH, and two commonly used fractionation factors (α3-4) for corals and forams, we predicted the range in shell δ11B values for the experiment. Our boron results are at the extreme ends of the two prediction lines suggesting the potential usage of the bivalve shells as seawater pH indicator. However, the wider range in δ11B in this experiment than the predictions based on other carbonate organisms (only 2 to 3‰) suggests that a species-specific fractionation factor may be required. Recent work from an additional constant temperature experiment (10 and 15 °C) in the Gulf of Maine will allow us to further evaluate temperature influences and potential vital effects on the shell boron isotope values.
Are leaf physiological traits related to leaf water isotopic enrichment in restinga woody species?
Rosado, Bruno H P; De Mattos, Eduardo A; Sternberg, Leonel Da S L
2013-09-01
During plant-transpiration, water molecules having the lighter stable isotopes of oxygen and hydrogen evaporate and diffuse at a faster rate through the stomata than molecules having the heavier isotopes, which cause isotopic enrichment of leaf water. Although previous models have assumed that leaf water is well-mixed and isotopically uniform, non-uniform stomatal closure, promoting different enrichments between cells, and different pools of water within leaves, due to morpho-physiological traits, might lead to inaccuracies in isotopic models predicting leaf water enrichment. We evaluate the role of leaf morpho-physiological traits on leaf water isotopic enrichment in woody species occurring in a coastal vegetation of Brazil known as restinga. Hydrogen and oxygen stable isotope values of soil, plant stem and leaf water and leaf traits were measured in six species from restinga vegetation during a drought and a wet period. Leaf water isotopic enrichment relative to stem water was more homogeneous among species during the drought in contrast to the wet period suggesting convergent responses to deal to temporal heterogeneity in water availability. Average leaf water isotopic enrichment relative to stem water during the drought period was highly correlated with relative apoplastic water content. We discuss this observation in the context of current models of leaf water isotopic enrichment as a function of the Péclet effect. We suggest that future studies should include relative apoplastic water content in isotopic models.
Oxygen isotope fractionation between analcime and water - An experimental study
NASA Technical Reports Server (NTRS)
Karlsson, Haraldur R.; Clayton, Robert N.
1990-01-01
The oxygen isotope fractionation between analcime and water is studied to test the feasibility of using zeolites as low-temperature thermometers. The fractionation of oxygen isotopes between natural analcime and water is determined at 300, 350, and 400 C, and at fluid pressures ranging from 1.5 to 5.0 kbar. Also, isotope ratios for the analcime framework, the channel water, and bulk water are obtained. The results suggest that the channel water is depleted in O-18 relative to bulk water by a constant value of about 5 percent, nearly independent of temperature. The analcime-water fractionation curve is presented, showing that the exchange has little effect on grain morphology and does not involve recrystallization. The exchange is faster than any other observed for a silicate. The exchange rates suggest that zeolites in active high-temperature geothermal areas are in oxygen isotopic equilibrium with ambient fluids. It is concluded that calibrated zeolites may be excellent low-temperature oxygen isotope geothermometers.
Evaluating cleansing effects on trace elements and stable isotope values in feathers of oiled birds.
Valladares, Sonia; Moreno, Roćio; Jover, Lluis; Sanpera, Carola
2010-01-01
Feathers of seabirds are widely used as a nondestructive tissue for pollution monitoring of trace elements, as well as convenient samples for trophic ecology studies by means of stable isotope analysis (SIA). Nevertheless, feathers can be occasionally impregnated with oil from deliberate ship discharges and from massive oil spill accidents. The feather structure makes them effective traps for particles and are subject to external contamination. It is unknown to what extent the oil adhered to feathers can change trace element concentrations or stable isotope signatures. This study has two primary objectives: (1) to assess if there are differences between trace element concentrations and stable isotope signatures of oiled and clean feathers, and (2) to determine if the cleansing of oiled feathers using commonly applied techniques such as sodium hydroxide (NaOH) washes in combination with an organic solvent (hexane) is more effective than using NaOH alone. In order to do this, we analysed trace elements (Se, Hg, Pb, Cu and Zn) and stable isotopes (delta(13)C and delta(15)N) of individual feathers of yellow-legged gulls (Larus michahellis) which were affected by the 2002 Prestige oil spill in Galicia (NW Spain). Two sets of feathers were analysed, one group were oil-free (Control group) and the other had oil adhered to its surface (Oiled group). We expected to find differences between control and oiled feathers when cleaning exclusively with NaOH and no differences when using hexane. Our results did not show significant differences between Control and Oiled groups as a consequence of the cleansing method used. Unexpectedly, the additional cleansing with hexane resulted in decreasing selenium concentrations and increasing zinc and delta(15)N values in all groups of feathers.
Koch, Paul L.
2017-01-01
Scat is frequently used to study animal diets because it is easy to find and collect, but one concern is that gross fecal analysis (GFA) techniques exaggerate the importance of small-bodied prey to mammalian mesopredator diets. To capitalize on the benefits of scat, we suggest the analysis of scat carbon and nitrogen isotope values (δ13C and δ15N). This technique offers researchers a non-invasive method to gather short-term dietary information. We conducted three interrelated studies to validate the use of isotopic values from coyote scat: 1) we determined tissue-to-tissue apparent C and N isotope enrichment factors (ε13* and ε15*) for coyotes from road kill animals (n = 4); 2) we derived diet-to-scat isotope discrimination factors for coyotes; and 3) we used field collected coyote scats (n = 12) to compare estimates of coyote dietary proportions from stable isotope mixing models with estimates from two GFA techniques. Scat consistently had the lowest δ13C and δ15N values among the tissues sampled. We derived a diet-to-scat Δ13C value of -1.5‰ ± 1.6‰ and Δ15N value of 2.3‰ ± 1.3‰ for coyotes. Coyote scat δ13C and δ15N values adjusted for discrimination consistently plot within the isotopic mixing space created by known dietary items. In comparison with GFA results, we found that mixing model estimates of coyote dietary proportions de-emphasize the importance of small-bodied prey. Coyote scat δ13C and δ15N values therefore offer a relatively quick and non-invasive way to gain accurate dietary information. PMID:28369133
Reid, Rachel E B; Koch, Paul L
2017-01-01
Scat is frequently used to study animal diets because it is easy to find and collect, but one concern is that gross fecal analysis (GFA) techniques exaggerate the importance of small-bodied prey to mammalian mesopredator diets. To capitalize on the benefits of scat, we suggest the analysis of scat carbon and nitrogen isotope values (δ13C and δ15N). This technique offers researchers a non-invasive method to gather short-term dietary information. We conducted three interrelated studies to validate the use of isotopic values from coyote scat: 1) we determined tissue-to-tissue apparent C and N isotope enrichment factors (ε13* and ε15*) for coyotes from road kill animals (n = 4); 2) we derived diet-to-scat isotope discrimination factors for coyotes; and 3) we used field collected coyote scats (n = 12) to compare estimates of coyote dietary proportions from stable isotope mixing models with estimates from two GFA techniques. Scat consistently had the lowest δ13C and δ15N values among the tissues sampled. We derived a diet-to-scat Δ13C value of -1.5‰ ± 1.6‰ and Δ15N value of 2.3‰ ± 1.3‰ for coyotes. Coyote scat δ13C and δ15N values adjusted for discrimination consistently plot within the isotopic mixing space created by known dietary items. In comparison with GFA results, we found that mixing model estimates of coyote dietary proportions de-emphasize the importance of small-bodied prey. Coyote scat δ13C and δ15N values therefore offer a relatively quick and non-invasive way to gain accurate dietary information.
Bender, Richard L; Dufour, Darna L; Valenzuela, Luciano O; Cerling, Thure E; Sponheimer, Matt; Reina, Julio C; Ehleringer, James R
2015-01-01
We conducted stable isotope and dietary analyses of women from higher and lower socioeconomic status (SES) groups in Cali, Colombia. The objectives were to test between-group differences in stable isotope, dietary, and anthropometric characteristics, and to evaluate relationships between diet and stable isotope values. Hair samples from 38 women (mean age 33.4) from higher and lower SES groups were analyzed for δ(13) C, δ(15) N, and δ(34) S values. Dietary intake was assessed via 24-h recalls. Anthropometric variables measured were body mass index, five body circumferences, and six skinfold thicknesses. Mean δ(13) C and δ(15) N values of the higher SES group (-16.4 and 10.3‰) were significantly greater than those of the lower SES group (-17.2 and 9.6‰; P < 0.01), but mean δ(34) S values did not differ significantly between groups (higher SES: 4.6‰; lower SES: 5.1‰). The higher SES group consumed a greater percentage of protein than the lower SES group (14% vs. 12% of energy; P = 0.03), but the groups did not differ in other dietary characteristics or in anthropometric characteristics. δ(13) C, δ(15) N, and δ(34) S values were not correlated with intake of the dietary items predicted (sugars, animal-source protein, and marine foods, respectively). The lower SES group was more variable in all three stable isotope values (P < 0.05), mirroring a trend toward greater dietary variability in this group. Stable isotope values revealed a difference between SES groups that was not explained by the dietary data. The relationship between diet and stable isotope composition is complex. © 2014 Wiley Periodicals, Inc.
Stable isotope ratios as indicators of trophic status: Uncertainties imposed by geographic effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schell, D.M.
1995-12-31
Isotope ratios of carbon and nitrogen are often suggested as indicators to determine trophic status and carbon sources of marine organisms in explaining relative concentrations of pollutants. Whereas this technique is effective with organisms resident in ecosystems having homogeneous primary productivity regimes and uniform isotope ratios in the productivity base, it often is confounded by migratory movements by larger organisms across isotopic gradients. Tissues containing a temporal record such as baleen plates or whiskers show these effects clearly. Bowhead whales in Alaskan waters seasonally move across carbon isotope gradients of 5{per_thousand} in zooplankton and reflect these differences in the keratinmore » of baleen plates and in overall body composition. However, no significant differences in {delta}{sup 15}N are evident regionally in northern Alaskan zooplankton. In contrast, the Southern Ocean is characterized by extreme latitudinal gradients in both {delta}{sup 13}C and {delta}{sup 15}N with the most pronounced effects occurring at the subtropical convergence. Prey taken by marine mammals south of this zone are depleted in both {sup 15}N and {sup 13}C by up to 8{per_thousand}. Data on southern right whales (Eubalaena glacialis), Bryde`s whale (Balaenoptera edenl), pygmy right whales (Caperea marginate) and antarctic fur seal (Arctocephalos gazella) show the effects of migratory movements across the gradient in both carbon and nitrogen isotope ratios. Similar patterns in marine mammal tissues from Australia, South Africa and South America indicate that the observed patterns are circumpolar. Within a given region, trophic effects shift {delta}{sup 15}N values consistent with observed feeding habits.« less
NASA Astrophysics Data System (ADS)
Buhay, William Mark
Oxygen (delta^{18} O), hydrogen (delta^2H) and carbon (delta^{13}C) isotopes were measured in wood cellulose from elm, white pine and maple trees that grew in southwestern Ontario, Canada. The measured oxygen and hydrogen isotopic data were used for model-based reconstructions of delta^{18}{O}_{meteoric water}, mean annual temperature (MAT) and relative humidity for a period, AD 1610 to 1880, that precedes instrumental records of climate. The carbon isotope measurements were compared with the Cellulose Model inferred climate data to reveal additional environmental information. Modifications made to the Cellulose Model focused on the dynamics of oxygen and hydrogen isotopic fractionation in plants during evapotranspiration and photosynthetic assimilation. For instance, kinetic fractionation of ^{18}O was found to be predictable from theoretical considerations of leaf energy balance and boundary layer dynamics. Kinetic fractionation during evapotranspiration is sensitive to the nature of the boundary layer, which is controlled by leaf size and morphology. Generally, plants with small segmented leaves have a lower component of turbidity in the leaf boundary layer, which results in higher kinetic fractionation values, than do plants having large simple leaves and more turbulent boundary layers. Kinetic ^2H enrichment in plant leaf water can also be rationalized in terms of leaf size and morphology when an apparent temperature-dependent isotope effect, acting in opposition to evaporative enrichment, is taken into account. Accounting for this temperature -dependent isotope effect helps to: (1) reconcile hydrogen kinetic fractionation inconsistencies for different leaves; (2) explain a temperature effect previously attributed to variable biochemical fractionation during cellulose synthesis, and; (3) verify hydrogen biochemical effects in plants. This improved characterization of the oxygen and hydrogen isotopic effects in plants, using the modified Cellulose Model, helped to constrain the paleoclimate interpretations from three species of trees that grew in different hydrologic settings. The inferred climate data, integrated with the hydrological setting of the trees and various climate modifying factors in the Great Lakes basin, generated an independent interpretation of summer and winter conditions in southwestern Ontario for the past 380 years. The inferred evidence indicates that conditions in southwestern Ontario between 1610 and 1750 typified those of "Little Ice Age" Europe by being cooler and drier than present. This probably resulted from a southerly positioning of the Polar Front, with respect to southwestern Ontario, which allowed sub-polar airmasses to dominantly influence this region. A subsequent retreat of the Polar Front north after 1750 allowed for a predominance of sub -tropical airmasses that resulted in warm-moist conditions and an increase in winter precipitation in this area between 1750 and 1850. Another advance of the Polar Front position south, sometime after 1850, renewed cool-dry conditions and reduced winter precipitation amounts in southwestern Ontario until the early twentieth century, after which time, climate ameliorated progressively. Typical of the findings in previous studies, a significant correlation between climate parameters and delta^{13}C_ {cellulose} values is observed for a tree (maple) from a groundwater recharge setting. The correlation is best between MAT and delta^ {13}C_{cellulose} values between 1610 and 1850. The breakdown of this correlation after 1850, due to enriched delta ^{13}C_{cellulose} values, could indicate that the tree is responding to an alteration in soil chemistry occurring due to the fallout of anthropogenically produced atmospheric pollutants. This is because the effects of depleted soil nutrients and/or leached phytotoxins on delta^ {13}C_{cellulose} values in wood cellulose, are similar to ones seen in trees that regularly experience drought stress.
Hatzinger, P.B.; Böhlke, J.K.; Sturchio, N.C.; Gu, B.; Heraty, L.J.; Borden, R.C.
2009-01-01
Environmental context. Perchlorate (ClO4-) and nitrate (NO3-) are common co-contaminants in groundwater, with both natural and anthropogenic sources. Each of these compounds is biodegradable, so in situ enhanced bioremediation is one alternative for treating them in groundwater. Because bacteria typically fractionate isotopes during biodegradation, stable isotope analysis is increasingly used to distinguish this process from transport or mixing-related decreases in contaminant concentrations. However, for this technique to be useful in the field to monitor bioremediation progress, isotope fractionation must be quantified under relevant environmental conditions. In the present study, we quantify the apparent in situ fractionation effects for stable isotopes in ClO4- (Cl and O) and NO3- (N and O) resulting from biodegradation in an aquifer. Abstract. An in situ experiment was performed in a shallow alluvial aquifer in Maryland to quantify the fractionation of stable isotopes in perchlorate (Cl and O) and nitrate (N and O) during biodegradation. An emulsified soybean oil substrate that was previously injected into this aquifer provided the electron donor necessary for biological perchlorate reduction and denitrification. During the field experiment, groundwater extracted from an upgradient well was pumped into an injection well located within the in situ oil barrier, and then groundwater samples were withdrawn for the next 30 h. After correction for dilution (using Br- as a conservative tracer of the injectate), perchlorate concentrations decreased by 78% and nitrate concentrations decreased by 82% during the initial 8.6 h after the injection. The observed ratio of fractionation effects of O and Cl isotopes in perchlorate (18O/37Cl) was 2.6, which is similar to that observed in the laboratory using pure cultures (2.5). Denitrification by indigenous bacteria fractionated O and N isotopes in nitrate at a ratio of ???0.8 (18O/15N), which is within the range of values reported previously for denitrification. However, the magnitudes of the individual apparent in situ isotope fractionation effects for perchlorate and nitrate were appreciably smaller than those reported in homogeneous closed systems (0.2 to 0.6 times), even after adjustment for dilution. These results indicate that (1) isotope fractionation factor ratios (18O/37Cl, 18O/15N) derived from homogeneous laboratory systems (e.g. pure culture studies) can be used qualitatively to confirm the occurrence of in situ biodegradation of both perchlorate and nitrate, but (2) the magnitudes of the individual apparent values cannot be used quantitatively to estimate the in situ extent of biodegradation of either anion. ?? CSIRO 2009.
Sulfur record of rising and falling marine oxygen and sulfate levels during the Lomagundi event
Planavsky, Noah J.; Bekker, Andrey; Hofmann, Axel; Owens, Jeremy D.; Lyons, Timothy W.
2012-01-01
Carbonates from approximately 2.3–2.1 billion years ago show markedly positive δ13C values commonly reaching and sometimes exceeding +10‰. Traditional interpretation of these positive δ13C values favors greatly enhanced organic carbon burial on a global scale, although other researchers have invoked widespread methanogenesis within the sediments. To resolve between these competing models and, more generally, among the mechanisms behind Earth’s most dramatic carbon isotope event, we obtained coupled stable isotope data for carbonate carbon and carbonate-associated sulfate (CAS). CAS from the Lomagundi interval shows a narrow range of δ34S values and concentrations much like those of Phanerozoic and modern marine carbonate rocks. The δ34S values are a close match to those of coeval sulfate evaporites and likely reflect seawater composition. These observations are inconsistent with the idea of diagenetic carbonate formation in the methanic zone. Toward the end of the carbon isotope excursion there is an increase in the δ34S values of CAS. We propose that these trends in C and S isotope values track the isotopic evolution of seawater sulfate and reflect an increase in pyrite burial and a crash in the marine sulfate reservoir during ocean deoxygenation in the waning stages of the positive carbon isotope excursion. PMID:23090989
NASA Astrophysics Data System (ADS)
Shiel, Alyssa E.; Weis, Dominique; Orians, Kristin J.
2012-01-01
Environmental monitoring and remediation require techniques to identify the source and fate of metals emissions. The measurement of heavy metal isotopic signatures, made possible by the advent of the MC-ICP-MS, is a powerful new geochemical tool, which may be used to trace the source of these metals in the environment. In a multi-tracer study, Cd, Zn and Pb isotopic compositions (MC-ICP-MS) and elemental concentrations (HR-ICP-MS) are used to distinguish between natural and anthropogenic sources of these metals in bivalves collected from western Canada (British Columbia), Hawaii, and the USA East Coast. Variability in the δ 114/110Cd values of bivalves (-1.20‰ to -0.09‰) is attributed to differences in the relative contributions of Cd from natural and anthropogenic sources between sites. Cadmium isotopic compositions (δ 114/110Cd = -0.69‰ to -0.09‰) identify high Cd levels in B.C. oysters as primarily natural (i.e., upwelling of Cd rich intermediate waters in the North Pacific), with some variability attributed to anthropogenic sources (e.g., mining and smelting). Variability in the δ 66/64Zn values exhibited by the B.C. bivalves is relatively small (0.28-0.36‰). Despite the low Pb levels found in B.C. oysters, Pb isotopes are used to identify emissions from industrial processes and the consumption of unleaded gasoline and diesel fuel as significant metal sources. Although the Cd concentrations of the USA East Coast bivalves are primarily lower than those of B.C. oysters, their relatively light Cd isotopic compositions (δ 114/110Cd = -1.20‰ to -0.54‰) indicate the significance of anthropogenic Cd sources and are attributed to the high prevalence of industry on this coast. The δ 114/110Cd values of USA East Coast bivalves include the lightest ever reported, with the exception of values reported for extraterrestrial materials. In addition, the Pb isotopic compositions of bivalves from the USA East Coast indicate Pb emissions from the combustion of coal are an important source of Pb, consistent with the high consumption of coal for power production on this coast. This study demonstrates the effective use of Cd and Zn isotopes to trace anthropogenic sources in the environment and the benefit of combining these tools with Pb "fingerprinting" techniques.
Sulfur isotopes in Icelandic thermal fluids
NASA Astrophysics Data System (ADS)
Gunnarsson-Robin, Jóhann; Stefánsson, Andri; Ono, Shuhei; Torssander, Peter
2017-10-01
Multiple sulfur isotope compositions of thermal fluids from Iceland were measured in order to evaluate the sources and reactions of sulfur and sulfur isotope fractionation in geothermal systems at Icelandic divergent plate boundaries, characterized by MORB-like basalts. The geothermal systems studied had a wide range of reservoir temperatures of 56-296 °C and Cl concentrations of 18-21,000 ppm. Dissolved sulfide (∑ S- II) and SO4 concentrations in liquid water measured < 0.01-165 ppm and 1.3-300 ppm, respectively, and H2S(g) concentrations in the vapor 4.9-2000 ppm. The δ34S and Δ33S values for different phases and oxidation states were highly variable: δ34S∑ S- II = - 11.6 to 10.5‰ (n = 99), Δ33S∑ S- II = - 0.12 to 0.00‰ (n = 45), δ34SSO4 = - 1.0 to 24.9‰ (n = 125), Δ33SSO4 = - 0.04 to 0.02‰ (n = 50), δ34SH2S(g) = - 2.6 to 5.9‰ (n = 112) and Δ33SH2S(g) = - 0.03 to 0.00‰ (n = 56). The multiple sulfur isotope values of the thermal fluids are interpreted to reflect various sources of sulfur in the fluids, as well as isotope fractionation occurring within the geothermal systems associated with fluid-rock interaction, boiling and oxidation and reduction reactions. The results of isotope geochemical modeling demonstrate that the sources of S- II in the thermal fluid are leaching of basalt (MORB) and seawater SO4 reduction for saline systems with insignificant magma gas input, and that the observed ranges of δ34S and Δ33S for ∑ S- II and H2S(g) reflect isotope fractionation between minerals and aqueous and gaseous species upon fluid-rock interaction and boiling. The sources of SO4 are taken to be multiple, including oxidation of S- II originating from basalt, leaching of SVI from the basalts and the seawater itself in the case of saline systems. In low-temperature fluids, the δ34S and Δ33S values reflect the various sources of sulfur. For high-temperature fluids, fluid-rock interaction, ∑ S- II oxidation and SO4 reduction and sulfide and sulfate mineral formation result in a large range of δ34S and Δ33S values for ∑ S- II and SO4 in the fluids, highlighting the importance and effects of chemical reactions on the isotope systematics of reactive elements like sulfur. Such effects needed to be quantified in order to reveal the various sources of an element.
NASA Astrophysics Data System (ADS)
Vennemann, T. W.; Tutken, T.; Kocsis, L.; Mullis, J.
2005-12-01
The Tertiary circum-Alpine Molasse sediments were deposited during major periods of Alpine tectonism but also at a time of large global climatic change. They are well suited to study the effects of tectonic forcing on climate, because the sediments were deposited in marginal basins, partly to completely isolated from other major oceanic basins. Hence, a comparison of the past climatic and oceanographic evolution indicated by the sediments to those on a global scale, does allow for a qualitative evaluation of the relationship between tectonism and regional climate. Much is known about the geological-geochronological framework of alpine tectonism, including associated erosional rates and sediment volumes. Estimates of changes in paleoelevation and its direct influence on climate have, however, been less well constrained. Three independent lines of evidence indicate significant altitudes of the Alps during the Miocene: 1) H isotope compositions of clay minerals, formed as weathering products and subsequently deposited as part of the Alpine Molasse, have δD reaching values as low as -97‰. 2) O isotope compositions of retrograde metamorphic vein and fissure quartz and H isotope composition of its included fluids have δ18O values as low as -3.5‰ and δD values of -140‰, respectively. 3) ``Exotic" shark teeth from Swiss Upper Marine Molasse sediments that have δ18O values (VSMOW) around 11‰ (n=2), values unlike those from other teeth of the same locality (20.7 to 21.8‰; n=6), but for which the REE patterns support the same diagenetic history, hence supporting a freshwater formation of the low δ18O teeth (also supported by distinct Sr isotope compositions). Using these three approaches as a basis for estimating the isotopic composition of past precipitation and applying the present-day altitude effects on the compositions, it can be concluded that the Miocene Alps had mean altitudes of about 1500 to 2000 m, that is elevations similar to those of today. Paleoclimatic reconstructions from North Alpine Molasse sediments are based on oxygen isotope compositions of fossil mammalian tooth enamel for freshwater molasse deposits, and shark teeth, marine ostracoda, foraminifera, and mammalian phosphatic fossils for the Upper Marine Molasse deposits. The δ18O values (VPDB) of carbonate in phosphate from Oligocene and Miocene large mammal teeth (n=270), for example, vary over a large range from -11.9‰ to -0.5‰, but these variations parallel the composite O isotope curve of Tertiary benthic foraminifera, thus reflecting major global climatic changes such as the Late Oligocene warming, Mid-Miocene climate optimum, and Middle to Late Miocene cooling trends. The δ18O values (VSMOW) of phosphate in shark teeth (19.8 to 23.3‰; n=130) from Miocene marine molasse sediments as well as those of ostracods and foraminifera from these sediments all have variations that parallel those of composite curves for global changes. Collectively, the data support a Neogene paleogeography with a high mountain belt adjacent to marginal marine or freshwater depositional basins but with a regional climate, at least for the northern Molasse realm, that was strongly coupled to the global climate. The Alps thus appear not have influenced the local climate and/or atmospheric circulation patterns significantly.
Sr and Nd isotopes of suspended sediments from rivers of the Amazon basin
NASA Astrophysics Data System (ADS)
Hatting, Karina; Santos, Roberto V.; Sondag, Francis
2014-05-01
The Rb-Sr and Sm-Nd isotopic systems are important tools to constrain the provenance of sediment load in river systems. This study presents the isotopic composition of Sr and Nd isotopes and major and minor elements in suspended sediments from the Marañón-Solimões, Amazonas and Beni-Madeira rivers. The data were used to constrain the source region of the sediments and to better understand the main seasonal and spatial transport processes within the basin based on the variations of the chemical and isotopic signals. They also allow establishing a relationship between sediment concentrations and flow rate values. The study presents data collected during a hydrological year between 2009 and 2010. The Marañón-Solimões River presents low Sr isotopic values (0.7090-0.7186), broad EpslonNd(0) range (-15.17 to -8.09) and Nd model (TDM) ages varying from 0.99 to 1.81 Ga. Sources of sediments to the Marañón-Solimões River include recent volcanic rocks in northern Peru and Ecuador, as well as rocks with long crustal residence time and carbonates from the Marañón Basin, Peru. The Beni-Madeira River has more radiogenic Sr isotope values (0.7255-0.7403), more negative EpslonNd(0) values (-20.46 to -10.47), and older Nd isotope model ages (from 1.40 to 2.35 Ga) when compared to the Marañón-Solimões River. These isotope data were related to the erosion of Paleozoic and Cenozoic foreland basins that are filled with Precambrian sediments derived from the Amazonian Craton. These basins are located in Bolivian Subandina Zone. The Amazon River presents intermediate isotopic values when compared to those found in the Marañón-Solimões and Beni-Madeira rivers. Its Sr isotope ratios range between 0.7193 and 0.7290, and its EpslonNd(0) values varies between -11.09 and -9.51. The Nd isotope model ages of the suspended sediments vary between 1.28 and 1.77 Ga. Concentrations of soluble and insoluble elements indicate a more intense weathering activity in sediments of the Beni-Madeira River. This river has a larger difference in the Sr isotopic composition between the diluted and solid phases, which has been assigned to the high level of weathering of its sediment source area. In the Beni-Madeira River sub-basin dominates weathering of silicate rocks, while in the Marañón-Solimões River sub-basin there also weathering of carbonate and evaporitic rocks.
NASA Astrophysics Data System (ADS)
Musgrove, M.; Stern, L. A.; Banner, J. L.
2010-06-01
SummaryA two and a half year study of two adjacent watersheds at the Honey Creek State Natural Area (HCSNA) in central Texas was undertaken to evaluate spatial and temporal variations in springwater geochemistry, geochemical evolution processes, and potential effects of brush control on karst watershed hydrology. The watersheds are geologically and geomorphologically similar, and each has springs discharging into Honey Creek, a tributary to the Guadalupe River. Springwater geochemistry is considered in a regional context of aquifer components including soil water, cave dripwater, springwater, and phreatic groundwater. Isotopic and trace element variability allows us to identify both vadose and phreatic groundwater contributions to surface water in Honey Creek. Spatial and temporal geochemical data for six springs reveal systematic differences between the two watersheds. Springwater Sr isotope values lie between values for the limestone bedrock and soils at HCSNA, reflecting a balance between these two primary sources of Sr. Sr isotope values for springs within each watershed are consistent with differences between soil compositions. At some of the springs, consistent temporal variability in springwater geochemistry (Sr isotopes, Mg/Ca, and Sr/Ca values) appears to reflect changes in climatic and hydrologic parameters (rainfall/recharge) that affect watershed processes. Springwater geochemistry was unaffected by brush removal at the scale of the HCSNA study. Results of this study build on previous regional studies to provide insight into watershed hydrology and regional hydrologic processes, including connections between surface water, vadose groundwater, and phreatic groundwater.
Oxygen isotope analysis of fossil organic matter by secondary ion mass spectrometry
NASA Astrophysics Data System (ADS)
Tartèse, Romain; Chaussidon, Marc; Gurenko, Andrey; Delarue, Frédéric; Robert, François
2016-06-01
We have developed an analytical procedure for the measurement of oxygen isotope composition of fossil organic matter by secondary ion mass spectrometry (SIMS) at the sub-per mill level, with a spatial resolution of 20-30 μm. The oxygen isotope composition of coal and kerogen samples determined by SIMS are on average consistent with the bulk oxygen isotope compositions determined by temperature conversion elemental analysis - isotope ratio mass spectrometry (TC/EA-IRMS), but display large spreads of δ18O of ∼5-10‰, attributed to mixing of remnants of organic compounds with distinct δ18O signatures. Most of the δ18O values obtained on two kerogen residues extracted from the Eocene Clarno and Early Devonian Rhynie continental chert samples and on two immature coal samples range between ∼10‰ and ∼25‰. Based on the average δ18O values of these samples, and on the O isotope composition of water processed by plants that now constitute the Eocene Clarno kerogen, we estimated δ18Owater values ranging between around -11‰ and -1‰, which overall correspond well within the range of O isotope compositions for present-day continental waters. SIMS analyses of cyanobacteria-derived organic matter from the Silurian Zdanow chert sample yielded δ18O values in the range 12-20‰. Based on the O isotope composition measured on recent cyanobacteria from the hypersaline Lake Natron (Tanzania), and on the O isotope composition of the lake waters in which they lived, we propose that δ18O values of cyanobacteria remnants are enriched by about ∼18 ± 2‰ to 22 ± 2‰ relative to coeval waters. This relationship suggests that deep ocean waters in which the Zdanow cyanobacteria lived during Early Silurian times were characterised by δ18O values of around -5 ± 4‰. This study, establishing the feasibility of micro-analysis of Phanerozoic fossil organic matter samples by SIMS, opens the way for future investigations of kerogens preserved in Archean cherts and of the O isotopic composition of ocean water at that period in time.
Qi, Haiping; Coplen, Tyler B.; Tarbox, Lauren V.; Lorenz, Jennifer M.; Scholl, Martha A.
2014-01-01
A new secondary isotopic reference material has been prepared from Puerto Rico precipitation, which was filtered, homogenised, loaded into glass ampoules, sealed with a torch, autoclaved to eliminate biological activity, and calibrated by dual-inlet isotope-ratio mass spectrometry. This isotopic reference material, designated as USGS48, is intended to be one of two isotopic reference waters for daily normalisation of stable hydrogen (δ2H) and stable oxygen (δ18O) isotopic analysis of water with a mass spectrometer or a laser absorption spectrometer. The δ2H and δ18O values of this reference water are−2.0±0.4 and−2.224±0.012 ‰, respectively, relative to Vienna Standard Mean Ocean Water on scales normalised such that the δ2H and δ18O values of Standard Light Antarctic Precipitation reference water are−428 and−55.5 ‰, respectively. Each uncertainty is an estimated expanded uncertainty (U=2uc) about the reference value that provides an interval that has about a 95 % probability of encompassing the true value. This isotopic reference water is available by the case of 144 glass ampoules containing 5 mL of water in each ampoule.
Busquets-Vass, Geraldine; Newsome, Seth D.; Calambokidis, John; Serra-Valente, Gabriela; Jacobsen, Jeff K.; Aguíñiga-García, Sergio; Gendron, Diane
2017-01-01
Stable isotope analysis in mysticete skin and baleen plates has been repeatedly used to assess diet and movement patterns. Accurate interpretation of isotope data depends on understanding isotopic incorporation rates for metabolically active tissues and growth rates for metabolically inert tissues. The aim of this research was to estimate isotopic incorporation rates in blue whale skin and baleen growth rates by using natural gradients in baseline isotope values between oceanic regions. Nitrogen (δ15N) and carbon (δ13C) isotope values of blue whale skin and potential prey were analyzed from three foraging zones (Gulf of California, California Current System, and Costa Rica Dome) in the northeast Pacific from 1996–2015. We also measured δ15N and δ13C values along the lengths of baleen plates collected from six blue whales stranded in the 1980s and 2000s. Skin was separated into three strata: basale, externum, and sloughed skin. A mean (±SD) skin isotopic incorporation rate of 163±91 days was estimated by fitting a generalized additive model of the seasonal trend in δ15N values of skin strata collected in the Gulf of California and the California Current System. A mean (±SD) baleen growth rate of 15.5±2.2 cm y-1 was estimated by using seasonal oscillations in δ15N values from three whales. These oscillations also showed that individual whales have a high fidelity to distinct foraging zones in the northeast Pacific across years. The absence of oscillations in δ15N values of baleen sub-samples from three male whales suggests these individuals remained within a specific zone for several years prior to death. δ13C values of both whale tissues (skin and baleen) and potential prey were not distinct among foraging zones. Our results highlight the importance of considering tissue isotopic incorporation and growth rates when studying migratory mysticetes and provide new insights into the individual movement strategies of blue whales. PMID:28562625
Stable isotope analyses-A method to distinguish intensively farmed from wild frogs.
Dittrich, Carolin; Struck, Ulrich; Rödel, Mark-Oliver
2017-04-01
Consumption of frog legs is increasing worldwide, with potentially dramatic effects for ecosystems. More and more functioning frog farms are reported to exist. However, due to the lack of reliable methods to distinguish farmed from wild-caught individuals, the origin of frogs in the international trade is often uncertain. Here, we present a new methodological approach to this problem. We investigated the isotopic composition of legally traded frog legs from suppliers in Vietnam and Indonesia. Muscle and bone tissue samples were examined for δ 15 N, δ 13 C, and δ 18 O stable isotope compositions, to elucidate the conditions under which the frogs grew up. We used DNA barcoding (16S rRNA) to verify species identities. We identified three traded species ( Hoplobatrachus rugulosus, Fejervarya cancrivora and Limnonectes macrodon ); species identities were partly deviating from package labeling. Isotopic values of δ 15 N and δ 18 O showed significant differences between species and country of origin. Based on low δ 15 N composition and generally little variation in stable isotope values, our results imply that frogs from Vietnam were indeed farmed. In contrast, the frogs from the Indonesian supplier likely grew up under natural conditions, indicated by higher δ 15 N values and stronger variability in the stable isotope composition. Our results indicate that stable isotope analyses seem to be a useful tool to distinguish between naturally growing and intensively farmed frogs. We believe that this method can be used to improve the control in the international trade of frog legs, as well as for other biological products, thus supporting farming activities and decreasing pressure on wild populations. However, we examined different species from different countries and had no access to samples of individuals with confirmed origin and living conditions. Therefore, we suggest improving this method further with individuals of known origin and history, preferably including samples of the respective nutritive bases.
NASA Astrophysics Data System (ADS)
Michelson, C.; McMahon, K.; Emslie, S. D.; Patterson, W. P.; McCarthy, M. D.; Polito, M. J.
2017-12-01
The Southern Ocean ecosystem is undergoing rapid environmental change due to ongoing and historic anthropogenic impacts such as climate change and marine mammal harvesting. These disturbances may have cascading effects through the Antarctic food webs, resulting in profound shifts in the sources and cycling of organic matter supporting higher-trophic organisms, such as penguins. For example, bulk stable isotope analyses of modern and ancient preserved penguin tissues suggest variations in penguin feeding ecology throughout the Holocene with dramatic isotopic shifts in the last 200 years. However, it is not clear whether these isotopic shifts resulted from changes at the base of the food web, dietary shifts in penguins, or some combination of both factors. Newly developed compound-specific stable nitrogen isotope analysis of individual amino acids (CSIA-AA) may provide a powerful new tool to tease apart these confounding variables. Stable nitrogen isotope values of trophic amino acids (e.g., glutamic acid) increase substantially with each trophic transfer in the food web, while source amino acid (e.g., phenylalanine) stable nitrogen isotope values remain relatively unchanged and reflect ecosystem baselines. As such, we can use this CSIA-AA approach to decipher between baseline and dietary shifts in penguins over time from modern and ancient eggshells of Pygoscelis penguins in the Antarctic Peninsula and the Ross Sea regions of Antarctica. In order to accurately apply this CSIA-AA approach, we first characterized the trophic fractionation factors of individual amino acids between diet and penguin consumers in a long-term controlled penguin feeding experiment. We then applied these values to modern and ancient eggshells from the Antarctic Peninsula and Ross Sea to evaluate shifts in penguin trophic dynamics as a function of climate and anthropogenic interaction throughout much of the Holocene. This work develops a cutting edge new molecular geochemistry approach applied to penguins as sensitive indicators of past environmental change in Antarctica.
NASA Astrophysics Data System (ADS)
Laskar, A. H.; Rangarajan, R.; Liang, M. C.
2016-12-01
Conventional oxygen isotope (δ18O) has widely been used for paleoclimate studies. However, multiple influencing factors such as temperature, precipitation and kinetic effects during carbonate precipitation complicate the interpretation of δ18O data sometimes. Triple oxygen isotope (Δ17O) in carbonates could be sensitive to kinetic effect occur during its precipitation in water. Carbonates may also record the Δ17O signature of the parent waters, providing a basis in the natural carbonates for identifying kinetic processes such as rapid degassing at lower relative humidity inside a cave during speleothem deposition. Clumped isotopes (Δ47) in carbonates give the formation temperatures of the carbonates if precipitated under isotopic equilibrium. The first goal of the study is to explore the applicability of Δ17O for paleohydrolocial studies. The second is to reconstruct paleotemperature with suitable natural carbonates using Δ47values. This is a rare paleoclimate study utilizing two sophisticated new tools. CO2 produced from carbonates by acid digestion was used for both Δ47 and Δ17O analysis. Purified CO2 samples were directly introduced into the Mass spectrometer (MAT 253) for clumped isotope analysis [1] and CO2-O2 exchange method in presence of platinum for Δ17O analysis [2,3]. We measured Δ47 and Δ17O values in synthetic carbonates precipitated at different temperatures (10-90 oC) and Δ17O values in the water from which the carbonate precipitated. We observed consistent Δ47 values in the carbonates while Δ17O were found to vary. Probably a proper slope (between δ18O and δ17O) selection for carbonates would give consistent results. We also measured Δ47 and Δ17O in modern and well dated speleothems from Chinese and Indian caves to study the paleohydrology and paleotemperature. Δ47 and Δ17O were also measured in modern natural carbonate depositions such as corals, foraminifer and marbles to explore their potentials for paleoclimate studies. Implications of the results will be presented and discussed. [1] Laskar, A. H., et al. Terra Nova, 28, 265-270, 2016. [2] Mahata, S., et al. Analytical Chemistry, 85, 6894-6901, 2013. [3] Mahata, S. et al. Rapid. Comm. Mass Spect., 30, 119-131, 2016.
NASA Astrophysics Data System (ADS)
Amelin, Yuri V.; Ritsk, Eugeni Yu.; Neymark, Leonid A.
1997-04-01
Sm-Nd, Rb-Sr and U-Pb isotopic systems have been studied in minerals and whole rocks of harzburgites and mafic cumulates from the Chaya Massif, Baikal-Muya ophiolite belt, eastern Siberia, in order to determine the relationship between mantle ultramafic and crustal mafic sections. Geological relations in the Chaya Massif indicate that the mafic magmas were emplaced into, and interacted with older solid peridotite. Hand picked, acid-leached, primary rock-forming and accessory minerals (olivine, orthopyroxene, clinopyroxene and plagioclase) from the two harzburgite samples show coherent behavior and yield 147Sm/ 144Nd- 143Nd/ 144Nd and 238U/ 204Pb- 206Pb/ 204Pb mineral isochrons, corresponding to ages of 640 ± 58 Ma (95% confidence level) and 620 ± 71 Ma, respectively. These values are indistinguishable from the crystallization age of the Chaya mafic units of 627 ± 25 Ma (a weighted average of internal isochron Sm-Nd ages of four mafic cumulates). The Rb-Sr and Sm-Nd isotopic systems in the harzburgite whole-rock samples were disturbed by hydrothermal alteration. These alteration-related isotopic shifts mimic the trend of variations in primary isotopic compositions in the mafic sequence, thus emphasizing that isotopic data for ultramafic rocks should be interpreted with great caution. On the basis of initial Sr and Nd values, ultramafic and mafic rocks of the Chaya Massif can be divided into two groups: (1) harzburgites and the lower mafic unit gabbronorites withɛ Nd = +6.6 to +7.1 andɛ Sr = -11 to -16; and (2) websterite of the lower unit and gabbronorites of the upper mafic unit:ɛ Nd = +4.6 to +6.1 andɛ Sr = -8 to -9. Initial Pb isotopic ratios are identical in all rocks studied, with mean values of 206Pb/ 204Pb= 16.994 ± 0.023 and 207Pb/ 204Pb= 15.363 ± 0.015. The similarity of ages and initial isotopic ratios within the first group indicates that the isotopic systems in the pre-existing depleted peridotite were reset by extensive interaction with basaltic magma during formation of the mafic crustal sequence. The isotopic data agree with a hypothesized formation of the Chaya Massif in a suprasubduction-zone environment.
Amelin, Y.V.; Ritsk, E. Yu; Neymark, L.A.
1997-01-01
Sm-Nd, Rb-Sr and U-Pb isotopic systems have been studied in minerals and whole rocks of harzburgites and mafic cumulates from the Chaya Massif, Baikal-Muya ophiolite belt, eastern Siberia, in order to determine the relationship between mantle ultramafic and crustal mafic sections. Geological relations in the Chaya Massif indicate that the mafic magmas were emplaced into, and interacted with older solid peridotite. Hand picked, acid-leached, primary rock-forming and accessory minerals (olivine, orthopyroxene, clinopyroxene and plagioclase) from the two harzburgite samples show coherent behavior and yield 147Sm/144Nd- 143Nd/144Nd and 238U/204Pb-206Pb/204Pb mineral isochrons, corresponding to ages of 640 ?? 58 Ma (95% confidence level) and 620 ?? 71 Ma, respectively. These values are indistinguishable from the crystallization age of the Chaya mafic units of 627 ?? 25 Ma (a weighted average of internal isochron Sm-Nd ages of four mafic cumulates). The Rb-Sr and Sm-Nd isotopic systems in the harzburgite whole-rock samples were disturbed by hydrothermal alteration. These alteration-related isotopic shifts mimic the trend of variations in primary isotopic compositions in the mafic sequence, thus emphasizing that isotopic data for ultramafic rocks should be interpreted with great caution. On the basis of initial Sr and Nd values, ultramafic and mafic rocks of the Chaya Massif can be divided into two groups: (1) harzburgites and the lower mafic unit gabbronorites with ??Nd = +6.6 to +7.1 and ??Sr = -11 to -16; and (2) websterite of the lower unit and gabbronorites of the upper mafic unit: ??Nd = + 4.6 to + 6.1 and ??Sr = - 8 to -9. Initial Pb isotopic ratios are identical in all rocks studied, with mean values of 206Pb/204Pb = 16.994 ?? 0.023 and 207Pb/204Pb = 15.363 ?? 0.015. The similarity of ages and initial isotopic ratios within the first group indicates that the isotopic systems in the pre-existing depleted peridotite were reset by extensive interaction with basaltic magma during formation of the mafic crustal sequence. The isotopic data agree with a hypothesized formation of the Chaya Massif in a suprasubduction-zone environment.
Spence, Michael J; Bottrell, Simon H; Thornton, Steven F; Richnow, Hans H; Spence, Keith H
2005-09-01
Hydrochemical data, compound specific carbon isotope analysis and isotopic enrichment trends in dissolved hydrocarbons and residual electron acceptors have been used to deduce BTEX and MTBE degradation pathways in a fractured chalk aquifer. BTEX compounds are mineralised sequentially within specific redox environments, with changes in electron acceptor utilisation being defined by the exhaustion of specific BTEX components. A zone of oxygen and nitrate exhaustion extends approximately 100 m downstream from the plume source, with residual sulphate, toluene, ethylbenzene and xylene. Within this zone complete removal of the TEX components occurs by bacterial sulphate reduction, with sulphur and oxygen isotopic enrichment of residual sulphate (epsilon(s) = -14.4 per thousand to -16.0 per thousand). Towards the plume margins and at greater distance along the plume flow path nitrate concentrations increase with delta15N values of up to +40 per thousand indicating extensive denitrification. Benzene and MTBE persist into the denitrification zone, with carbon isotope enrichment of benzene indicating biodegradation along the flow path. A Rayleigh kinetic isotope enrichment model for 13C-enrichment of residual benzene gives an apparent epsilon value of -0.66 per thousand. MTBE shows no significant isotopic enrichment (delta13C = -29.3 per thousand to -30.7 per thousand) and is isotopically similar to a refinery sample (delta13C = -30.1 per thousand). No significant isotopic variation in dissolved MTBE implies that either the magnitude of any biodegradation-induced isotopic fractionation is small, or that relatively little degradation has taken place in the presence of BTEX hydrocarbons. It is possible, however, that MTBE degradation occurs under aerobic conditions in the absence of BTEX since no groundwater samples were taken with co-existing MTBE and oxygen. Low benzene delta13C values are correlated with high sulphate delta34S, indicating that little benzene degradation has occurred in the sulphate reduction zone. Benzene degradation may be associated with denitrification since increased benzene delta13C is associated with increased delta15N in residual nitrate. Re-supply of electron acceptors by diffusion from the matrix into fractures and dispersive mixing is an important constraint on degradation rates and natural attenuation capacity in this dual-porosity aquifer.
Large Calcium Isotopic Variation in Peridotitic Xenoliths from North China Craton
NASA Astrophysics Data System (ADS)
Huang, S.; Zhao, X.; Zhang, Z.
2016-12-01
Calcium is the fifth most abundant element in the Earth. The Ca isotopic composition of the Earth is important in many aspects, ranging from tracing the Ca cycle on the Earth to comparing the Earth to other terrestrial planets. There is large mass-dependent Ca isotopic variation, measured as δ44/40Ca relative to a standard sample, in terrestrial igneous rocks: about 2 per mil in silicate rocks, compared to 3 per mil in carbonates. Therefore, a good understanding of the Ca isotopic variation in igneous rocks is necessary. Here we report Ca isotopic data on a series of peridotitic xenoliths from North China Craton (NCC). There is about 1 per mil δ44/40Ca variation in these NCC peridotites: The highest δ44/40Ca is close to typical mantle values, and the lowest δ44/40Ca is found in an Fe-rich peridotite, -1.13 relative to normal mantle (or -0.08 on the SRM 915a scale). This represents the lowest δ44/40Ca value ever reported for igneous rocks. Combined with published Fe isotopic data on the same samples, our data show a positive linear correlation between δ44/40Ca and δ57/54Fe in NCC peridotites. This trend is inconsistent with mixing a low-δ44/40Ca and -δ57/54Fe sedimentary component with a normal mantle component. Rather, it is best explained as the result of kinetic isotopic effect caused by melt-peridotite reaction on a time scale of several hundreds of years. In detail, basaltic melt reacts with peridotite, replaces orthopyroxene with clinopyroxene, and increases the Fo number of olivine. Consistent with this interpretation, our on-going Mg isotopic study shows that low-δ44/40Ca and -δ57/54Fe NCC peridotites also have heavier Mg isotopes compared to normal mantle. Our study shows that mantle metasomatism plays an important role generating stable isotopic variations within the Earth's mantle.
NASA Astrophysics Data System (ADS)
Morrill, P.; Lacrampe-Couloume, G.; Slater, G.; Sleep, B.; Edwards, E.; McMaster, M.; Major, D.; Sherwood Lollar, B.
2002-12-01
Cis-1, 2-dichloroethene (cDCE) was the primary volatile organic compound (VOC) after biostimulation of a perchloroethene (PCE) plume in a pilot test at Kelly Air Force Base (AFB) in San Antonio Texas. A stable natural microbial consortium, KB-1, shown in laboratory experiments to reduce chlorinated ethenes to non-toxic ethene was added in a pilot test area (PTA). After the addition of KB-1 stable carbon isotope values were measured for each chlorinated ethene to verify the occurrence of reductive dechlorination and quantify the extent of cDCE degradation. After bioaugmentation with KB-1, PCE, TCE and cDCE concentrations declined, while VC concentrations increased and subsequently decreased, as ethene became the dominant transformation product measured. Shifts in carbon isotopic values up to 2.7 permil, 6.4 permil, 10.9 permil and 10.6 permil were observed for PCE, TCE, cDCE and VC respectively. These isotopic shifts are consistent with the effects of biodegradation observed during laboratory and field studies. Most notably, isotopic enrichment trends characteristic of reductive dechlorination were detectable in the parent compounds before measurable concentrations of daughter products VC and ethene were produced. These results illustrate the advantage of using the more sensitive compound specific isotope analysis to confirm degradation in addition to the traditional method of monitoring the appearance of degradation products. Fractionation factors obtained from laboratory studies were used in conjunction with isotope data measured in the field to estimate the extent of cDCE degraded. It is estimated that within a 44 day period, 37 to 48 percent of the cDCE was reductively dechlorinated. Independent biodegradation estimates using data from a bromide tracer test, a groundwater flow model, and concentration analyses were all in good agreement with the isotope degradation estimate.
Terrestrial cycling of 13CO2 by photosynthesis, respiration, and biomass burning in SiBCASA
NASA Astrophysics Data System (ADS)
van der Velde, I. R.; Miller, J. B.; Schaefer, K.; van der Werf, G. R.; Krol, M. C.; Peters, W.
2014-12-01
We present an enhanced version of the SiBCASA terrestrial biosphere model that is extended with (a) biomass burning emissions from the SiBCASA carbon pools using remotely sensed burned area from the Global Fire Emissions Database (GFED), (b) an isotopic discrimination scheme that calculates 13C signatures of photosynthesis and autotrophic respiration, and (c) a separate set of 13C pools to carry isotope ratios into heterotrophic respiration. We quantify in this study the terrestrial exchange of CO2 and 13CO2 as a function of environmental changes in humidity and biomass burning. The implementation of biomass burning yields similar fluxes as CASA-GFED both in magnitude and spatial patterns. The implementation of isotope exchange gives a global mean discrimination value of 15.2‰, ranges between 4 and 20‰ depending on the photosynthetic pathway in the plant, and compares favorably (annually and seasonally) with other published values. Similarly, the isotopic disequilibrium is similar to other studies that include a small effect of biomass burning as it shortens the turnover of carbon. In comparison to measurements, a newly modified starch/sugar storage pool propagates the isotopic discrimination anomalies to respiration much better. In addition, the amplitude of the drought response by SiBCASA is lower than suggested by the measured isotope ratios. We show that a slight increase in the stomatal closure for large vapor pressure deficit would amplify the respired isotope ratio variability. Our study highlights the importance of isotope ratio observations of 13C to assess and improve biochemical models like SiBCASA, especially with regard to the allocation and turnover of carbon and the responses to drought.
Monitoring BTEX degradation by CSIA - chances and challenges
NASA Astrophysics Data System (ADS)
Vogt, Carsten; Dorer, Conrad; Kümmel, Steffen; Bombach, Petra; Fischer, Anko; Richnow, Hans Hermann
2014-05-01
Monitoring is crucial for evaluating the success of any geobiotechnological applications. Compound- specific stable isotope analysis (CSIA) has emerged as a key method for monitoring biogeochemical transformation processes. Isotope compositions of residual reactants may change during the first rate-limiting step in (bio)chemical reactions; measurement of these changes are the basis for CSIA. Caused by differences in the activation energy, light isotopologues often react slightly faster than heavy isotopologues, resulting in enrichment of heavy isotopes at the reactive site in the substrate or of light isotopes in the product. This is termed isotope fractionation. Upon multi-dimensional CSIA (2D-CSIA, 3D-CSIA), the isotope fractionation of two or more different elements within a molecule is determined, allowing highly resolved analyses of degradation processes as masking effects typically occurring in one-dimensional CSIA are cancelled. In the last years, 2D-CSIA making use of the ratio of stable carbon to hydrogen isotopes (13C/12C, 2H/1H), turned out to be an important tool for elucidating the environmental biodegradation pattern of BTEX compounds which are global notorious contaminants. This presentation aims to summarize the current knowledge on 2D-CSIA of BTEX, to point out the prospects and to indicate future perspectives upon monitoring in the field. Degradation experiments for determining carbon and hydrogen isotope fractionation factors were carried out using several pure and mixed cultures performing different BTEX-activating reactions. Various anaerobic key reactions showed pronounced hydrogen isotope fractionation: (i) fumarate addition to the methyl moiety of toluene, xylene isomers and probably ethylbenzene catalyzed by benzylsuccinate synthases, (ii) anaerobic hydroxylation of the ethyl side chain of ethylbenzene catalyzed by ethylbenzene dehydrogenase, and (iii) anaerobic activation of benzene by yet unknown biochemical mechanisms. Due to the high hydrogen isotope fractionation, the ratios of hydrogen vs. carbon isotope fractionation in two-dimensional plots (lambda values, Λ) were generally higher than 10 (in extreme cases > 100). Upon aerobic activation reactions at the aromatic ring catalyzed by mono- or dioxygenases, usually Λ values smaller than 10 were observed due to small, absent or inverse hydrogen isotope fractionation. An exception is the aerobic monooxygenation of methyl or methylene moieties which is linked to large hydrogen and carbon isotope fractionation. Since Λ values are highly indicative for specific transformation reactions, 2D-CSIA has a great potential for evaluating biodegradation processes of BTEX in the environment. Moreover, reactions catalyzed by benzylsuccinate synthases showed partially variable Λ values, indicating slightly different reaction mechanisms of isoenzymes, probably permitting the detection of specific isoenzymes by 2D-CSIA in field applications. In contrast, ethylbenzene dehydrogenase of three tested organisms showed similar, very characteristic isotope fractionation pattern even under different redox conditions. The major goal of future investigations is to use 2D-CSIA at contaminated field sites for elucidating specific degradation pathways. Single data for benzene are promising, demonstrating e.g., anaerobic benzene degradation by 2D-CSIA at a highly contaminated site. Nevertheless, 2D-CSIA field data for BTEX are yet lacking and need to be surveyed for a proper evaluation of the 2D-CSIA concept for BTEX.
NASA Astrophysics Data System (ADS)
Kayler, Z.; Rugh, W.; Mix, A. C.; Bond, B. J.; Sulzman, E. W.
2005-12-01
Soil respiration is a significant component of ecosystem respiration and its isotopic composition is likely to lend insight into ecosystem processes. We have designed probes to determine the isotopic signature of soil-respired CO2 using a two end-member mixing model approach (i.e., Keeling plot). Each probe consists of three 35 ml PVC chambers cased in fiberglass mesh and connected to the soil surface via stainless steel tubing with a septa-lined swagelok fitting. Chambers are vertically connected such that they sample gases at depth intervals centered on 5, 15, and 30 cm. Gases are sampled via a hand vacuum pump equipped with a two-way valve, which allows vials pre-filled with N2 gas in the laboratory to be evacuated and re-filled with only a single septa puncture in the field. Data indicate samples can be stored reliably for up to three days if punctured septa are coated in silicone sealant. To test whether this field sampling method was robust, we constructed a carbon-free sand column out of PVC pipe into which we plumbed a tank of known CO2 concentration and isotopic composition. We have tested the effects of wetting and flow rate on our ability to reproduce tank values. A linear model (geometric mean regression) yielded a more negative isotopic value than the actual gas, but a simple polynomial curve fit the tank value. After laboratory testing, the probes were established in a steep drainage in the H.J. Andrews LTER site in the Cascade Mountains of western Oregon (as part of the Andrews Airshed project). We established a transect of five 10 m2 plots with four soil probes and a companion respiration collar and measured soil CO2 efflux and soil δ13CO2 values biweekly from June-Sept. Results indicate there is a clear difference in isotopic and respiration flux patterns between the north- and south-facing slopes, with the north facing slope exhibiting higher fluxes and more 13C enriched respiration. The temporal pattern of respiration correlates well with decreasing soil moisture over the summer. In addition, flux and isotopic samples collected every 4 hours over a 24 hour period suggested strong diel patterns in both measures, with more enriched δ13C respired from soils in early morning and more δ13C depleted values during the day, suggesting that photosynthetic uptake and CO2 recycling by the aboveground vegetation influence soil-respired CO2 values.
Brand, Willi A.; Coplen, T.B.
2001-01-01
An interlaboratory comparison of forty isotope-ratio mass spectrometers of different ages from several vendors has been performed to test 2H/1H performance with hydrogen gases of three different isotopic compositions. The isotope-ratio results (unsufficiently corrected for H3+ contribution to the m/z = 3 collector, uncorrected for valve leakage in the change-over valves, etc.) expressed relative to one of these three gases covered a wide range of values: -630??? to -790??? for the second gas and -368??? to -462??? for the third gas. After normalizing the isotopic abundances of these test gases (linearly adjusting the ?? values so that the gases with the lowest and highest 2H content were identical for all laboratories), the standard deviation of the 40 measurements of the intermediate gas was a remarkably low 0.85???. It is concluded that the use of scaling factors is mandatory for providing accurate internationally comparable isotope-abundance values. Linear scaling for the isotope-ratio scales of gaseous hydrogen mass spectrometers is completely adequate. ?? Springer-Verlag 2001.
Stable isotopes composition of precipitation fallen over Cluj-Napoca, Romania, between 2009-2012
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puscas, R.; Feurdean, V.; Simon, V.
2013-11-13
The paper presents the deuterium and oxygen 18 content from All precipitations events, which have occured over Cluj-Napoca, Romania from 2009 until 2012. Time series for δ{sup 2}H and δ{sup 18}O values point out both the seasonal variation that has increased amplitude reflecting the continental character of the local climate as well as dramatic variations of isotopic content of successive precipitation events, emphasizing the anomalous values. These fluctuations are the footprint of the variations and trends in climate events. Local Meteoric Water Line (LMWL), reflecting the δ{sup 2}H - δ{sup 18}O correlation, has the slop and the intercept slightly deviatedmore » from the GMWL, indicating that the dominant process affecting local precipitations are close to the equilibrium condition. LMWL has a slope smaller then that of the GMWL in the warm season due to lower humidity and a slope closest to the slop of GMWL in cold season with high humidity. The δ{sup 2}H and δ{sup 18}O values both for the precipitation events and monthly mean values are positively correlated with the temperature values with a very good correlation factor. The values of δ{sup 2}H and δ{sup 18}O are not correlated with amount of precipitation, the 'amount effect' of isotopic composition of precipitation is not observed for this site.« less
Soil tension mediates isotope fractionation during soil water evaporation
NASA Astrophysics Data System (ADS)
Gaj, Marcel; McDonnell, Jeffrey
2017-04-01
Isotope tracing of the water cycle is increasing in its use and usefulness. Many new studies are extracting soil waters and relating these to streamflow, groundwater recharge and plant transpiration. Nevertheless, unlike isotope fractionation factors from open water bodies, soil water fractionation factors are poorly understood and until now, only empirically derived. In contrast to open water evaporation where temperature, humidity and vapor pressure gradient define fractionation (as codified in the well-known Craig and Gordon model), soil water evaporation includes additionally, fractionation by matrix effects. There is yet no physical explanation of kinetic and equilibrium fraction from soil water within the soil profile. Here we present a simple laboratory experiment with four admixtures of soil grain size (from sand to silt to clay). Oven-dried samples were spiked with water of known isotopic composition at different soil water contents. Soils were then stored in sealed bags and the headspace filled with dry air and allowed to equilibrate for 24hours. Isotopic analysis of the headspace vapor was done with a Los Gatos Inc. water vapor isotope analyzer. Soil water potential of subsamples were measured with a water potential meter. We show for the first time that soil tension controls isotope fractionation in the resident soil water. Below a Pf 3.5 the δ-values of 18O and 2H of the headspace vapor is more positive and increases with increasing soil water potential. Surprisingly, we find that the relationship between soil tension and equilibrium fractionation is independent of soil type. However, δ-values of each soil type plot along a distinct evaporation line. These results indicate that equilibrium fractionation is affected by soil tension in addition to temperature. Therefore, at high soil water tension (under dry conditions) equilibrium fractionation is not consistent with current empirical formulations that ignore these effects. These findings may have implications for plant water uptake studies since plant root water uptake imparts tension to extract water from the soil matrix. Since this is the same physical force as soil water potential, root water uptake at high soil water potential might cause fractionation of soil water. Our work is ongoing to examine these knock-on effects.
NASA Astrophysics Data System (ADS)
Michalski, G. M.; Wilkens, B.; Sanchez, A. V.; Yount, J.
2017-12-01
The processes of nitrification and denitrification are key steps in the biogeochemical cycling of N and are a main control on ecosystem productivity. These processes are ephemeral and often difficult to assess across wide spatial and temporal scales. Natural abundance stable isotopes are a way of potentially assessing these two processes across multiple scales. We have conducted incubation experiments to assess the N and O isotope effects occurring during denitrification in soils typical of the Midwestern United States. Nitrification was examined by incubating soils amended with ammonium (with a known δ15N) mixed with H2O and O2 that had different δ18O values and then measured the δ15N and δ18O of the product nitrate. The fraction of nitrate oxygen arising from H2O and O2 was determined along with the N and O kinetic isotope effect (KIE). For denitrification, nitrate with a known δ15N, δ17O, and δ18O, was incubated in anaerobic soils from 12-48 hours. The residual nitrate was analyzed for isotope change and the KIE for O and N as well as exchange with H2O was determined. These data can be useful for interpreting nitrate isotopes in agricultural fields as a way off assessing nitrification and denitrification is agricultural ecosystems such as the IML-CZO.
Schimmelmann, A.; Albertino, A.; Sauer, P.E.; Qi, H.; Molinie, R.; Mesnard, F.
2009-01-01
Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the S values of these reference materials should bracket the isotopic range of samples with unknown S values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW-SLAP) and carbonates (NBS 19 and L-SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA-IRMS). At present only L-glutamic acids USGS40 and USGS41 satisfy these requirements for ??13C and ??13N, with the limitation that L-glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on-line (i.e. continuous flow) hydrogen reductive gas chromatography-isotope ratio mass-spectrometry (GC-IRMS), (ii) five nicotines for oxidative C, N gas chromatography-combustion-isotope ratio mass-spectrometry (GC-C-IRMS, or GC-IRMS), and (iii) also three acetanilide and three urea reference materials for on-line oxidative EA-IRMS for C and N. Isotopic off-line calibration against international stable isotope measurement standards at Indiana University adhered to the 'principle of identical treatment'. The new reference materials cover the following isotopic ranges: ??2Hnicotine -162 to -45%o, ??13Cnicotine -30.05 to +7.72%, ?? 15Nnicotine -6.03 to +33.62%; ??15N acetanilide +1-18 to +40.57%; ??13Curea -34.13 to +11.71%, ??15Nurea +0.26 to +40.61% (recommended ?? values refer to calibration with NBS 19, L-SVEC, IAEA-N-1, and IAEA-N-2). Nicotines fill a gap as the first organic nitrogen stable isotope reference materials for GC-IRMS that are available with different ??13N values. Comparative ??13C and ??15N on-line EA-IRMS data from 14 volunteering laboratories document the usefulness and reliability of acetanilides and ureas as EA-IRMS reference materials.
Paleoclimate Reconstruction at Lamanai, Belize Using Oxygen-Isotope Tropical Dendrochronology
NASA Astrophysics Data System (ADS)
Prentice, A.; Webb, E. A.; White, C. D.; Graham, E.
2009-05-01
Tropical dendrochronology can be complicated because many trees growing in these areas lack distinct visible annual rings. However, the oxygen-isotope composition of wood growing in tropical regions can provide a record of seasonal fluctuations in the amount of precipitation even when visible rings are absent. Variations in the oxygen-isotope compositions of cellulose as the trees grow can be related to the relative timing of wet and dry seasons and used to identify periods of drought. In this study, the oxygen-isotope composition was determined for cellulose extracted from living trees at the site of Lamanai, Belize to assess the variation in oxygen-isotope values that result from heterogeneity within individual tree rings and seasonal fluctuations in amount of precipitation. In temperate regions, the latewood rings that form during periods of reduced growth are traditionally selected for oxygen-isotope analysis of cellulose because their oxygen-isotope compositions are more directly influenced by climate and precipitation during the growing season. However, in tropical isotope dendrochronology, when visible rings are present, detailed sampling of both the light coloured earlywood and the denser latewood is required. At Lamanai, a seasonal signal was evident in the oxygen- isotope composition of the cellulose when tree rings were sectioned in very small increments (approximately every mm), sub-sampling both earlywood and latewood. However, the visible rings did not always correspond with minimum or maximum oxygen-isotope values. As a result, the amplitude of the oxygen-isotope signal obtained by considering only latewood samples is smaller than that obtained from fine-increment sampling. Hence, the oxygen-isotope values of latewood samples alone did not provide accurate data for climate reconstruction. Multiple series of latewood samples extracted from different cross-sections of the same tree did not consistently show the same trends in oxygen isotope values, which can differ by up to 2 permil around the circumference of the same ring. This indicates that even when visible rings are present in tropical trees, the rings may not be annual or continuous. However, the amplitude of variation in the oxygen-isotope values of cellulose from both early and latewood can be related to seasonal signals across the modern tree rings. These signals will be compared to the oxygen-isotope composition of tree ring cellulose extracted from a wood sample excavated from an ancient tomb at the site of Lamanai to assess the preservation of the cellulose- isotope signal in this artefact. If similar oxygen-isotope patterns are preserved in ancient cellulose they can be used as a proxy to determine past climate conditions, such as those experienced by the ancient Maya populations in Belize.
Hydrogen and oxygen stable isotope ratios of milk in the United States.
Chesson, Lesley A; Valenzuela, Luciano O; O'Grady, Shannon P; Cerling, Thure E; Ehleringer, James R
2010-02-24
Models of hydrogen and oxygen incorporation in human tissues recognize the impact of geographic location on the isotopic composition of fluid intake, but inputs can include nonlocal beverages, such as milk. Milk and cow drinking water were collected from dairies, and commercially available milk was purchased from supermarkets and fast food restaurants. It was hypothesized that milk water delta(2)H and delta(18)O values record geographic location information. Correlations between milk water isotope ratios and purchase location tap water were significant. However, the amount of variation in milk delta(2)H and delta(18)O values explained by tap water was low, suggesting a single estimation of fluid input isotope ratios may not always be adequate in studies. The delta(2)H and delta(18)O values of paired milk and cow drinking water were related, suggesting potential for geographical origin assignment using stable isotope analysis. As an application example, milk water delta(18)O values were used to predict possible regions of origin for restaurant samples.
Tripati, Aradhna K.; Hill, Pamela S.; Eagle, Robert A.; Mosenfelder, Jed L.; Tang, Jianwu; Schauble, Edwin A.; Eiler, John M.; Zeebe, Richard E.; Uchikawa, Joji; Coplen, Tyler B.; Ries, Justin B.; Henry, Drew
2015-01-01
“Clumped-isotope” thermometry is an emerging tool to probe the temperature history of surface and subsurface environments based on measurements of the proportion of 13C and 18O isotopes bound to each other within carbonate minerals in 13C18O16O22- groups (heavy isotope “clumps”). Although most clumped isotope geothermometry implicitly presumes carbonate crystals have attained lattice equilibrium (i.e., thermodynamic equilibrium for a mineral, which is independent of solution chemistry), several factors other than temperature, including dissolved inorganic carbon (DIC) speciation may influence mineral isotopic signatures. Therefore we used a combination of approaches to understand the potential influence of different variables on the clumped isotope (and oxygen isotope) composition of minerals.We conducted witherite precipitation experiments at a single temperature and at varied pH to empirically determine 13C-18O bond ordering (Δ47) and δ18O of CO32- and HCO3- molecules at a 25 °C equilibrium. Ab initio cluster models based on density functional theory were used to predict equilibrium 13C-18O bond abundances and δ18O of different DIC species and minerals as a function of temperature. Experiments and theory indicate Δ47 and δ18O compositions of CO32- and HCO3- ions are significantly different from each other. Experiments constrain the Δ47-δ18O slope for a pH effect (0.011 ± 0.001; 12 ⩾ pH ⩾ 7). Rapidly-growing temperate corals exhibit disequilibrium mineral isotopic signatures with a Δ47-δ18O slope of 0.011 ± 0.003, consistent with a pH effect.Our theoretical calculations for carbonate minerals indicate equilibrium lattice calcite values for Δ47 and δ18O are intermediate between HCO3− and CO32−. We analyzed synthetic calcites grown at temperatures ranging from 0.5 to 50 °C with and without the enzyme carbonic anhydrase present. This enzyme catalyzes oxygen isotopic exchange between DIC species and is present in many natural systems. The two types of experiments yielded statistically indistinguishable results, and these measurements yield a calibration that overlaps with our theoretical predictions for calcite at equilibrium. The slow-growing Devils Hole calcite exhibits Δ47 and δ18O values consistent with lattice equilibrium.Factors influencing DIC speciation (pH, salinity) and the timescale for DIC equilibration, as well as reactions at the mineral–solution interface, have the potential to influence clumped-isotope signatures and the δ18O of carbonate minerals. In fast-growing carbonate minerals, solution chemistry may be an important factor, particularly over extremes of pH and salinity. If a crystal grows too rapidly to reach an internal equilibrium (i.e., achieve the value for the temperature-dependent mineral lattice equilibrium), it may record the clumped-isotope signature of a DIC species (e.g., the temperature-dependent equilibrium of HCO3−) or a mixture of DIC species, and hence record a disequilibrium mineral composition. For extremely slow-growing crystals, and for rapidly-grown samples grown at a pH where HCO3- dominates the DIC pool at equilibrium, effects of solution chemistry are likely to be relatively small or negligible. In summary, growth environment, solution chemistry, surface equilibria, and precipitation rate may all play a role in dictating whether a crystal achieves equilibrium or disequilibrium clumped-isotope signatures.
Demopoulos, Amanda W. J.; Sikkel, Paul C.
2015-01-01
Parasitism, although the most common type of ecological interaction, is usually ignored in food web models and studies of trophic connectivity. Stable isotope analysis is widely used in assessing the flow of energy in ecological communities and thus is a potentially valuable tool in understanding the cryptic trophic relationships mediated by parasites. In an effort to assess the utility of stable isotope analysis in understanding the role of parasites in complex coral-reef trophic systems, we performed stable isotope analysis on three common Caribbean reef fish hosts and two kinds of ectoparasitic isopods: temporarily parasitic gnathiids (Gnathia marleyi) and permanently parasitic cymothoids (Anilocra). To further track the transfer of fish-derived carbon (energy) from parasites to parasite consumers, gnathiids from host fish were also fed to captive Pederson shrimp (Ancylomenes pedersoni) for at least 1 month. Parasitic isopods had δ13C and δ15N values similar to their host, comparable with results from the small number of other host–parasite studies that have employed stable isotopes. Adult gnathiids were enriched in 15N and depleted in13C relative to juvenile gnathiids, providing insights into the potential isotopic fractionation associated with blood-meal assimilation and subsequent metamorphosis. Gnathiid-fed Pedersen shrimp also had δ13C values consistent with their food source and enriched in 15N as predicted due to trophic fractionation. These results further indicate that stable isotopes can be an effective tool in deciphering cryptic feeding relationships involving parasites and their consumers, and the role of parasites and cleaners in carbon transfer in coral-reef ecosystems specifically.
McCoy, V E; Asael, D; Planavsky, N
2017-09-01
The most notable trend in the sedimentary iron isotope record is a shift at the end of the Archean from highly variable δ 56 Fe values with large negative excursions to less variable δ 56 Fe values with more limited negative values. The mechanistic explanation behind this trend has been extensively debated, with two main competing hypotheses: (i) a shift in marine redox conditions and the transition to quantitative iron oxidation; and (ii) a decrease in the signature of microbial iron reduction in the sedimentary record because of increased bacterial sulfate reduction (BSR). Here, we provide new insights into this debate and attempt to assess these two hypotheses by analyzing the iron isotope composition of siderite concretions from the Carboniferous Mazon Creek fossil site. These concretions precipitated in an environment with water column oxygenation, extensive sediment pile dissimilatory iron reduction (DIR) but limited bacterial sulfate reduction (BSR). Most of the concretions have slightly positive iron isotope values, with a mean of 0.15‰ and limited iron isotope variability compared to the Archean sedimentary record. This limited variability in an environment with high DIR and low BSR suggests that these conditions alone are insufficient to explain Archean iron isotope compositions. Therefore, these results support the idea that the unusually variable and negative iron isotope values in the Archean are due to dissimilatory iron reduction (DIR) coupled with extensive water column iron cycling. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Mikhail, S.; Jones, A. P.; Hunt, S. A.; Guillermier, C.; Dobson, D. P.; Tomlinson, E.; Dan, H.; Milledge, H.; Franchi, I.; Wood, I.; Beard, A.; Verchovsky, S.
2010-12-01
The largest accessible reservoir for terrestrial carbon is the mantle; however the core may yield even more. Carbon is commonly proposed as the light element (or one of) to make up the observed density deficit in the earth’s metallic core (NAKAJIMA et al., 2009). The potential isotopic effects of carbon incorporation into the core have not yet been investigated. In-situ ion probe (nanoSIMS) mapping and imaging of carbon isotope variations across rare sub-mm-scale Fe-rich carbide inclusions in mantle diamond (from Jagersfontein, South Africa) show the carbide to be significantly depleted in 13C relative to their diamond host. Distinctive textures suggest metallic liquid precipitates similar in geometry to (giant) nitrogen platelets, controlled by the octahedral symmetry of diamond, which we interpret as syngenic formation. The difference in δ13C values between the two natural phases for diamond-Fe carbide, gives an isotopic fractionation factor (ΔC) which agrees well with HPHT multi-anvil experiments (5-9 GPa and >1400°C). Our measured ΔC between Fe-carbide and diamond may only have local significance, but the measured isotopic values represent characterization of the highest PT carbide known (i.e. > minimum depth of the diamond stability field ≈ 150 km). The direction and magnitude of ΔC agrees with observations of the ΔC between cohenite-graphite in iron meteorites (DEINES and WICKMAN, 1975) and both agree with HPHT experiments, thus suggesting that carbon in the deep Earth, and particularly in the core, may be similarly fractionated (i.e. depleted in the 13C). Since metallic liquid drained from the silicate mantle to form the core during the early Earth, we can use our values as a proxy to constrain evolution of deep carbon reservoirs such as the core and bulk silicate Earth. For example, we can test the suggestion of Grady et al (2004) that the upper mantle value of δ13C ≈ -5 ‰ may not be representative of the bulk Earth, since solar system meteorites (from Mars, Vesta and the Moon) suggest a preferred value of δ13C ≈ -20 +/- 4 ‰. If we adopt this particular model, not only could we explain fractionation between a bulk silicate Earth δ13C value of -5 ‰ from an initial δ13C value of -20 ‰, but we can constrain the relative proportion of carbon in the core/mantle by using simple isotopic mass balance. Such fractionation of carbon isotopes between HPT carbides (and/or metallic iron) within the lower mantle and core would be expected immediately from the time of core formation. Therefore, isotopically light carbon reservoirs may have been present deep in the Earth throughout its history, offering an alternative explanation for light carbon (eg in diamonds) which was not formed by, and/or predated subduction of oceanic crust and organic carbon. Deines, P. and Wickman, F. E., 1975. GCA; Grady, M. M. et al. 2004. Int Journal of Astrobiology; Nakajima, Y. et al. K.-i., 2009. Physics of the Earth and Planetary Interiors.
Dunn, Philip J H; Malinovsky, Dmitry; Goenaga-Infante, Heidi
2015-04-01
We report a methodology for the determination of the stable carbon absolute isotope ratio of a glycine candidate reference material with natural carbon isotopic composition using EA-IRMS. For the first time, stable carbon absolute isotope ratios have been reported using continuous flow rather than dual inlet isotope ratio mass spectrometry. Also for the first time, a calibration strategy based on the use of synthetic mixtures gravimetrically prepared from well characterised, highly (13)C-enriched and (13)C-depleted glycines was developed for EA-IRMS calibration and generation of absolute carbon isotope ratio values traceable to the SI through calibration standards of known purity. A second calibration strategy based on converting the more typically determined delta values on the Vienna PeeDee Belemnite (VPDB) scale using literature values for the absolute carbon isotope ratio of VPDB itself was used for comparison. Both calibration approaches provided results consistent with those previously reported for the same natural glycine using MC-ICP-MS; absolute carbon ratios of 10,649 × 10(-6) with an expanded uncertainty (k = 2) of 24 × 10(-6) and 10,646 × 10(-6) with an expanded uncertainty (k = 2) of 88 × 10(-6) were obtained, respectively. The absolute carbon isotope ratio of the VPDB standard was found to be 11,115 × 10(-6) with an expanded uncertainty (k = 2) of 27 × 10(-6), which is in excellent agreement with previously published values.
NASA Astrophysics Data System (ADS)
Wang, Xueying; Amet, Quentin; Fitoussi, Caroline; Bourdon, Bernard
2018-05-01
Tin is a moderately volatile element whose isotope composition can be used to investigate Earth and planet differentiation and the early history of the Solar System. Although the Sn stable isotope composition of several geological and archaeological samples has been reported, there is currently scarce information about the effect of igneous processes on Sn isotopes. In this study, high-precision Sn isotope measurements of peridotites and basalts were obtained by MC-ICP-MS with a double-spike technique. The basalt samples display small variations in δ124/116Sn ranging from -0.01 ± 0.11 to 0.27 ± 0.11‰ (2 s.d.) relative to NIST SRM 3161a standard solution, while peridotites have more dispersed and more negative δ124Sn values ranging from -1.04 ± 0.11 to -0.07 ± 0.11‰ (2 s.d.). Overall, basalts are enriched in heavy Sn isotopes relative to peridotites. In addition, δ124Sn in peridotites become more negative with increasing degrees of melt depletion. These results can be explained by different partitioning behavior of Sn4+ and Sn2+ during partial melting. Sn4+ is overall more incompatible than Sn2+ during partial melting, resulting in Sn4+-rich silicate melt and Sn2+-rich residue. As Sn4+ has been shown experimentally to be enriched in heavy isotopes relative to Sn2+, the effect of melting is to enrich residual peridotites in relatively more compatible Sn2+, which results in isotopically lighter peridotites and isotopically heavier mantle-derived melts. This picture can be disturbed partly by the effect of refertilization. Similarly, the presence of enriched components such as recycled oceanic crust or sediments could explain part of the variations in Sn isotopes in oceanic basalts. The most primitive peridotite analyzed in this study was used for estimating the Sn isotope composition of the BSE, with δ124Sn = -0.08 ± 0.11‰ (2 s.d.) relative to the Sn NIST SRM 3161a standard solution. Altogether, this suggests that Sn isotopes may be a powerful probe of redox processes in the mantle.
NASA Astrophysics Data System (ADS)
Zhao, Y.; Nelson, D. M.; Clegg, B. F.; Berry, J.; Hu, F.
2016-12-01
δ13C analysis of specific taxa or compounds is commonly used for investigating past environmental change, including methane dynamics in lakes. However, most analytical methods require large sample sizes, prohibiting routine analysis of fossils of individual taxa found in sediment deposits. For example, 10-100 individual head capsules of fossil midges are required for δ13C analysis using an elemental analyzer (EA) interfaced with an isotope-ratio mass spectrometer (IRMS). Here we present a new method that uses a spooling-wire microcombustion (SWiM) device interfaced with an IRMS for measuring δ13C values of carbon dissolved from individual head capsules of chitinous aquatic zooplankton. We extracted chitin (a major biochemical component of insect exoskeleton) from modern midge material obtained from four commercial suppliers. We first assessed the effects of sample treatments on carbon yields and δ13C values of dissolved chitin by varying the concentration of HCl used for dissolution, the duration of reaction in HCl, and the temperature of dissolution. We then investigated potential fractionation of carbon isotopes associated with chitin dissolution, by comparing δ13C values of dissolved chitin obtained via SWiM-IRMS with those from untreated head capsules obtained via a EA-IRMS. The average δ13C values of untreated head capsules varied between -25.1 and -30.1‰. Higher acid concentrations and temperatures, as well as longer reaction times, increased dissolution of carbon from the head capsules and the precision of δ13C values. For example, carbon yields from reaction of head capsules with 6N HCl at 25°C increased from 1 to 3 Vs as reaction times increased from 1 to 24 hours. Acid concentration and reaction time had the greatest influence on carbon yields and isotopic precision. The δ13C values of dissolved chitin mirrored the δ13C values of untreated head capsules with minimal offset of absolute values, which suggests no systematic fractionation associated with dissolution. Overall, these results indicate that carbon isotopic analysis of dissolved chitin using the SWiM-IRMS system offers a reliable new method to determine taxa-specific δ13C values for chitinous aquatic zooplankton. In ongoing work, we are applying this tool to reconstruct past methane dynamics in Arctic lakes during the Holocene.
Lattice Boltzmann Simulation of Kinetic Isotope Effect During Snow Crystal Formation
NASA Astrophysics Data System (ADS)
Lu, G.; Depaolo, D. J.; Kang, Q.; Zhang, D.
2007-12-01
The isotopic composition of precipitation, especially that of snow, plays a special role in the global hydrological cycle and in reconstruction of past climates using polar ice cores. The fractionation of the major water isotope species (HHO, HDO, HHO-18) during ice crystal formation is critical to understanding the global distribution of isotopes in precipitation. Ice crystal growth in clouds is traditionally treated with a spherically-symmetric steady state diffusion model, with semi-empirical modifications added to account for ventilation and for complex crystal morphology. Although it is known that crystal growth rate, which depends largely on the degree of vapor over- saturation, determines crystal morphology, there are no quantitative models that relate morphology to the vapor saturation factor. Since kinetic (vapor phase diffusion-controlled) isotopic fractionation also depends on growth rate, there should be direct relationships between vapor saturation, crystal morphology, and crystal isotopic composition. We use a 2D lattice Boltzmann model to simulate diffusion-controlled ice crystal growth from vapor- oversaturated air. In the model, crystals grow solely according to the diffusive fluxes just above the crystal surfaces, and hence crystal morphology arises from the initial and boundary conditions in the model and does not need to be specified a priori. Crystal growth patterns can be varied between random growth and deterministic growth (along the maximum concentration gradient for example). The input parameters needed are the isotope- dependent vapor deposition rate constant (k) and the water vapor diffusivity in air (D). The values of both k and D can be computed from kinetic theory, and there are also experimentally determined values of D. The deduced values of k are uncertain to the extent that the condensation coefficient for ice is uncertain. The ratio D/k is a length (order 1 micron) that determines the minimum scale of dendritic growth features and allows us to scale the numerical calculations to atmospheric conditions. Our calculations confirm that the crystal/vapor isotopic fractionation approaches the equilibrium value, and the crystals are compact (circular in 2D) as the saturation factor approaches unity (S= 1.0). However, few natural crystals form under such conditions. At higher oversaturation (e.g. S = 1.2), dendritic crystals of millimeter size develop on timescales appropriate to cloud processes, and kinetic effects control isotopic fractionation. Fractionation factors for dendritic crystals are similar to those predicted by the spherical diffusion model, but the model also gives estimates of crystal heterogeneity. Dendritic crystals are constrained to be relatively large, with dimension much greater than about 20D/k. The most difficult aspect of the modeling is to account for the large density difference between air and ice, which requires us to use a fictitious higher density for the vapor-oversaturated air and scale the crystal growth time accordingly. An approach using a larger scale simulation and the domain decomposition method can provide a vapor flux for a nested smaller scale calculation. The results clarify the controls on crystal growth, and the relationships between saturation state, growth rate, crystal morphology and isotopic fractionation.
NASA Astrophysics Data System (ADS)
Bourbonnais, Annie; Altabet, Mark A.; Charoenpong, Chawalit N.; Larkum, Jennifer; Hu, Haibei; Bange, Hermann W.; Stramma, Lothar
2015-06-01
Mesoscale eddies in Oxygen Minimum Zones (OMZs) have been identified as important fixed nitrogen (N) loss hotspots that may significantly impact both the global rate of N-loss as well as the ocean's N isotope budget. They also represent "natural tracer experiments" with intensified biogeochemical signals that can be exploited to understand the large-scale processes that control N-loss and associated isotope effects (ɛ; the ‰ deviation from 1 in the ratio of reaction rate constants for the light versus heavy isotopologues). We observed large ranges in the concentrations and N and O isotopic compositions of nitrate (NO3-), nitrite (NO2-), and biogenic N2 associated with an anticyclonic mode-water eddy in the Peru OMZ during two cruises in November and December 2012. In the eddy's center where NO3- was nearly exhausted, we measured the highest δ15N values for both NO3- and NO2- (up to ~70‰ and 50‰) ever reported for an OMZ. Correspondingly, N deficit and biogenic N2-N concentrations were also the highest near the eddy's center (up to ~40 µmol L-1). δ15N-N2 also varied with biogenic N2 production, following kinetic isotopic fractionation during NO2- reduction to N2 and, for the first time, provided an independent assessment of N isotope fractionation during OMZ N-loss. We found apparent variable ɛ for NO3- reduction (up to ~30‰ in the presence of NO2-). However, the overall ɛ for N-loss was calculated to be only ~13-14‰ (as compared to canonical values of ~20-30‰) assuming a closed system and only slightly higher assuming an open system (16-19‰). Our results were similar whether calculated from the disappearance of DIN (NO3- + NO2-) or from the appearance of N2 and changes in isotopic composition. Further, we calculated the separate ɛ values for NO3- reduction to NO2- and NO2- reduction to N2 of ~16-21‰ and ~12‰, respectively, when the effect of NO2- oxidation could be removed. These results, together with the relationship between N and O of NO3- isotopes and the difference in δ15N between NO3- and NO2-, confirm a role for NO2- oxidation in increasing the apparent ɛ associated with NO3- reduction. The lower ɛ for N-loss calculated in this study could help reconcile the current imbalance in the global N budget if representative of global OMZ N-loss.
Ueda, Momoko; Bell, Lynne S
2017-05-01
Human geolocation is prefaced on the accuracy of the geographic precision of mapped isotopic values for drinking water. As most people live in cities, it becomes important to understand city water supplies and how the isotopic values uniquely reflect that city. This study investigated the isotopic distribution of δ 2 H and δ 18 O from sourced tap waters that were collected from across the Metro Vancouver (MV) area (n = 135). The results revealed that the isotopic values reflect their water sources with a range of 5.3‰ for δ 18 O tap and 29.3‰ for δ 2 H tap for MV. The results indicate that individual cities need higher resolution studies to determine their tap water isotopic ranges, and a good understanding of the water supply network itself for human geolocation work. With an extended high-resolution understanding of each city, human tissue may be compared with more certainty for geolocation. © 2016 American Academy of Forensic Sciences.
Petzke, Klaus J; Fuller, Benjamin T; Metges, Cornelia C
2010-09-01
We review the literature on the use of stable isotope ratios at natural abundance to reveal information about dietary habits and specific nutrient intakes in human hair protein (keratin) and amino acids. In particular, we examine whether hair isotopic compositions can be used as unbiased biomarkers to provide information about nutritional status, metabolism, and diseases. Although the majority of research on the stable isotope ratio analysis of hair has focused on bulk protein, methods have been recently employed to examine amino acid-specific isotope ratios using gas chromatography or liquid chromatography coupled to an isotope ratio mass spectrometer. The isotopic measurement of amino acids has the potential to answer research questions on amino acid nutrition, metabolism, and disease processes and can contribute to a better understanding of the variations in bulk protein isotope ratio values. First results suggest that stable isotope ratios are promising as unbiased nutritional biomarkers in epidemiological research. However, variations in stable isotope ratios of human hair are also influenced by nutrition-dependent nitrogen balance, and more controlled clinical research is needed to examine these effects in human hair. Stable isotope ratio analysis at natural abundance in human hair protein offers a noninvasive method to reveal information about long-term nutritional exposure to specific nutrients, nutritional habits, and in the diagnostics of diseases leading to nutritional stress and impaired nitrogen balance.
Edirisinghe, E A N V; Pitawala, H M T G A; Dharmagunawardhane, H A; Wijayawardane, R L
2017-12-01
Seasonal and spatial variation in δ 18 O and δ 2 H in rainwater was determined in three selected transects across Sri Lanka, the tropical island in the Indian Ocean. Local meteoric water lines (LMWLs) for three distinguished climatic zones; wet, dry and intermediate were constructed. LMWLs show slight variations in their gradients and respective d-excess values, depending on the air moisture origin, circulation and environmental conditions of each climatic zone. The elevation effect and amount effect could be identified but the continental effect is not significantly seen in the isotope composition of rain in the concerned areas. The results reasonably revealed that the distinct rainfall regimes; two monsoonal rains and two convectional (inter-monsoon) rains have characteristic isotopic signatures. Also the impact of (i) terrestrial and oceanic moisture sources, (ii) depression and cyclonic conditions of the Bay of Bengal, and (iii) topography of the country on the variation of the isotopic composition of rain in Sri Lanka could be satisfactorily identified.
Acquisition and processing of data for isotope-ratio-monitoring mass spectrometry
NASA Technical Reports Server (NTRS)
Ricci, M. P.; Merritt, D. A.; Freeman, K. H.; Hayes, J. M.
1994-01-01
Methods are described for continuous monitoring of signals required for precise analyses of 13C, 18O, and 15N in gas streams containing varying quantities of CO2 and N2. The quantitative resolution (i.e. maximum performance in the absence of random errors) of these methods is adequate for determination of isotope ratios with an uncertainty of one part in 10(5); the precision actually obtained is often better than one part in 10(4). This report describes data-processing operations including definition of beginning and ending points of chromatographic peaks and quantitation of background levels, allowance for effects of chromatographic separation of isotopically substituted species, integration of signals related to specific masses, correction for effects of mass discrimination, recognition of drifts in mass spectrometer performance, and calculation of isotopic delta values. Characteristics of a system allowing off-line revision of parameters used in data reduction are described and an algorithm for identification of background levels in complex chromatograms is outlined. Effects of imperfect chromatographic resolution are demonstrated and discussed and an approach to deconvolution of signals from coeluting substances described.
Turner Tomaszewicz, Calandra N; Seminoff, Jeffrey A; Price, Mike; Kurle, Carolyn M
2017-11-30
The ecological application of stable isotope analysis (SIA) relies on taxa- and tissue-specific stable carbon (Δ 13 C) and nitrogen (Δ 15 N) isotope discrimination factors, determined with captive animals reared on known diets for sufficient time to reflect dietary isotope ratios. However, captive studies often prohibit lethal sampling, are difficult with endangered species, and reflect conditions not experienced in the wild. We overcame these constraints and determined the Δ 13 C and Δ 15 N values for skin and cortical bone from green sea turtles (Chelonia mydas) that died in captivity and evaluated the utility of a mathematical approach to predict discrimination factors. Using stable carbon (δ 13 C values) and nitrogen (δ 15 N values) isotope ratios from captive and wild turtles, we established relationships between bone stable isotope (SI) ratios and those from skin, a non-lethally sampled tissue, to facilitate comparisons of SI ratios among studies using multiple tissues. The mean (±SD) Δ 13 C and Δ 15 N values (‰) between skin and bone from captive turtles and their diet (non-lipid-extracted) were 2.3 ± 0.3 and 4.1 ± 0.4 and 2.1 ± 0.6 and 5.1 ± 1.1, respectively. The mathematically predicted Δ 13 C and Δ 15 N values were similar (to within 1‰) to the experimentally derived values. The mean δ 15 N values from bone were higher than those from skin for captive (+1.0 ± 0.9‰) and wild (+0.8 ± 1.0‰) turtles; the mean δ 13 C values from bone were lower than those from skin for wild turtles (-0.6 ± 0.9‰), but the same as for captive turtles. We used linear regression equations to describe bone vs skin relationships and create bone-to-skin isotope conversion equations. For sea turtles, we provide the first (a) bone-diet SI discrimination factors, (b) comparison of SI ratios from individual-specific bone and skin, and (c) evaluation of the application of a mathematical approach to predict stable isotope discrimination factors. Our approach opens the door for future studies comparing different tissues, and relating SI ratios of captive to wild animals. Copyright © 2017 John Wiley & Sons, Ltd.
Stable carbon isotope ratios of intact GDGTs indicate heterogeneous sources to marine sediments
NASA Astrophysics Data System (ADS)
Pearson, Ann; Hurley, Sarah J.; Walter, Sunita R. Shah; Kusch, Stephanie; Lichtin, Samantha; Zhang, Yi Ge
2016-05-01
Thaumarchaeota, the major sources of marine glycerol dibiphytanyl glycerol tetraether lipids (GDGTs), are believed to fix the majority of their carbon directly from dissolved inorganic carbon (DIC). The δ13C values of GDGTs (δ13CGDGT) may be powerful tools for reconstructing variations in the ocean carbon cycle, including paleoproductivity and water mass circulation, if they can be related to values of δ13CDIC. To date, isotope measurements primarily are made on the C40 biphytane skeletons of GDGTs, rather than on complete tetraether structures. This approach erases information revealed by the isotopic heterogeneity of GDGTs within a sample and may impart an isotopic fractionation associated with the ether cleavage. To circumvent these issues, we present δ13C values for GDGTs from twelve recent sediments representing ten continental margin locations. Samples are purified by orthogonal dimensions of HPLC, followed by measurement of δ13C values by Spooling Wire Microcombustion (SWiM)-isotope ratio mass spectrometry (IRMS) with 1σ precision and accuracy of ±0.25‰. Using this approach, we confirm that GDGTs, generally around -19‰, are isotopically ;heavy; compared to other marine lipids. However, measured δ13CGDGT values are inconsistent with predicted values based on the 13C content of DIC in the overlying water column and the previously-published biosynthetic isotope fractionation for a pure culture of an autotrophic marine thaumarchaeon. In some sediments, the isotopic composition of individual GDGTs differs, indicating multiple source inputs. The data appear to confirm that crenarchaeol primarily is a biomarker for Thaumarchaeota, but its δ13C values still cannot be explained solely by autotrophic carbon fixation. Overall the complexity of the results suggests that both organic carbon assimilation (ca. 25% of total carbon) and multiple source(s) of exogenous GDGTs (contributing generally <30% of input to sediments) are necessary to explain the observed δ13CGDGT values. The results suggest caution when interpreting the total inputs of GDGTs to sedimentary records. Biogenic or open-slope sediments, rather than clastic basinal or shallow shelf sediments, are preferred locations for generating minimally-biased GDGT proxy records.
Lazarus, Brynne E.; Germino, Matthew; Vander Veen, Jessica L.
2016-01-01
Application of stable isotopes of water to studies of plant–soil interactions often requires a substantial preparatory step of extracting water from samples without fractionating isotopes. Online heating is an emerging approach for this need, but is relatively untested and major questions of how to best deliver standards and assess interference by organics have not been evaluated. We examined these issues in our application of measuring woody stem xylem of sagebrush using a Picarro laser spectrometer with online induction heating. We determined (1) effects of cryogenic compared to induction-heating extraction, (2) effects of delivery of standards on filter media compared to on woody stem sections, and (3) spectral interference from organic compounds for these approaches (and developed a technique to do so). Our results suggest that matching sample and standard media improves accuracy, but that isotopic values differ with the extraction method in ways that are not due to spectral interference from organics.
Stable isotope measurements of nitrogen and carbon (15N, 13ddC) are often used to characterize estuarine, nearshore, and open ocean ecosystems. Reliable information about the spatial distribution of base-level stable isotope values, often represented by primary producers, is crit...
Battaglin, William A.; Kendall, Carol; Chang, Cecily C.Y.; Silva, Steven R.; Campbell, Donald H.
2001-01-01
Nitrate (NO3) and other nutrients discharged by the Mississippi River combined with seasonal stratification of the water column are known to cause a zone of depleted dissolved oxygen (hypoxic zone) in the Gulf of Mexico each summer. About 120 water and suspended sediment samples collected in 1997 and 1998 from 24 locations in the Mississippi River Basin were analyzed for the isotope ratios δ15N and δ18O of dissolved NO3, and δ15N and δ13C of suspended particulate organic material (POM). Sampling stations include both large rivers (drainage areas more than 30,000 square kilometers) that integrate the effects of many land uses, and smaller streams (drainage areas less than 2,500 square kilometers) that have relatively uniform land use within their drainage areas. The data are used to determine sources and transformations of NO3 in the Mississippi River.Results of this study demonstrate that much of the NO3 in the Mississippi River originates in the agriculturally dominated basins of the upper midwestern United States and is transported without significant transformation or other loss to the Gulf of Mexico. Results from major tributaries that drain into the Mississippi River suggest that NO3 is not significantly altered by denitrification in its journey, ultimately, to the Gulf of Mexico. The spatial variability of isotope ratios among the smaller streams appears to be related to the dominant nitrogen source in the basins. There are some distinct isotope differences among land-use types. For example, for both NO3 and POM, the majority of δ15N isotope ratio values from basins dominated by urban and undeveloped land are less than +5 per mil, whereas the majority of values from basins dominated by row crops and row crops and/or livestock production are greater than +5 per mil. Also, the median δ18O of NO3 isotope ratio value (+14.0 per mil) from undeveloped basins is more than 6 per mil higher than the median value (+7.3 per mil) from the row crop dominated basins and 5 per mil higher than the median value (+9.0 per mil) from the row crop and/or livestock production dominated basins. The median δ18O of NO3 isotope ratio value (+21.5 per mil) from urban basins is 6.5 per mil higher than the median value (+14.0 per mil) from the undeveloped basins. The majority of NO3 concentrations are greater than 3 milligrams per liter (mg/L) in basins dominated by row crops and row crops and/or livestock production, whereas all NO3 concentrations are less than 2 mg/L in basins dominated by urban and undeveloped land.
Isotope chemistry of an extensively nitrate-contaminated urban aquifer
NASA Astrophysics Data System (ADS)
Kracht, O.; de Souza, L. C.; de Queiros, M. A.; Stegemann, C.; Hunziker, J.
2003-04-01
The supply of drinking water for the approximately 800.000 inhabitants of the city of Natal (Rio Grande do Norte, Brazil) is strongly dependent on the use of local groundwater from the Barreiras Aquifer. Over 70 % of the public production are served by a system of about 130 tubular wells, that are distributed all over the urban area. Yet, no groundwater protection zones have been declared. In addition, a comparable number of private wells also depend on the cities underground water resources. Depending on the local topography, the groundwater table is located several tens of meters below surface. Useable groundwater occurrences are bound to an up to hundred meters thick series of unconsolidated clastic sediments from the younger tertiary (Barreiras Formation), that is underlain by less permeable cretaceous carbonates. Natals topography is dominated by impressive quaternary dunes formations, that play an important role for the infiltration of rain as the only source of recharge for the local groundwater. During the last decades, an extensive and rapidly growing groundwater-contamination with up to over 100 mg/l nitrate was observed by the local authorities. Hydrochemical data indicate this deterioration to be due to a massive spill of sanitary effluents over septic pits, as only 20 % of the city is yet served by a sewer system. The isotopic composition of Natals groundwater shows only small variations, with an average δ18O value of -2,3 per mill and δ2H value of -10,5 per mill vs. SMOW. Its origin from recent local precipitation is revealed by a good correspondence with the annual weighted means for precipitation in Ceara Mirim (nearest GNIP station, situated 45 km NE of Natal). In contrast, a set of samples from different regional surface waters indicated a strong evaporation trend with systematic enrichment in the oxygen and hydrogen isotopic composition. Samples from 33 production wells with a wide variation of nitrate concentrations were investigated for their isotopic composition of nitrate. The average δ15N value of +9,3 per mill vs. AIR and δ18O value of +10,8 per mill vs. SMOW consist with the assumption of sewage being the primary source of contamination. Observed variations in the oxygen isotope values are in the range of analytical precision, whereas the nitrogen isotope values vary stronger. This effect is assumed to be due to a varying degree of ammonia volatilisation before nitrification in the unsaturated zone. On the contrary, there is no hint for an ongoing bacterial reduction of nitrate, that should have been expressed by a systematic enrichment in both its oxygen and nitrogen isotope values. Degradation of nitrate seems to be inhibited due to the absence of a suitable electron donator and comparable high oxygenated conditions in the aquifer.
NASA Astrophysics Data System (ADS)
Schulze, D. J.; Page, Z.; Harte, B.; Valley, J.; Channer, D.; Jaques, L.
2006-12-01
Using ion microprobes and secondary-ion mass spectrometry we have analyzed the carbon and oxygen isotopic composition of eclogite-suite diamonds and their coesite inclusions, respectively, from three suites of diamonds of Proterozoic age. Extremely high (for the mantle) oxygen isotope values (delta 18O of +10.2 to +16.9 per mil VSMOW) are preserved in coesites included in eclogitic diamonds from Guaniamo, Venezuela (Schulze et al., Nature, 2003), providing compelling evidence for an origin of their eclogite hosts by subduction of sea water altered ocean floor basalts. In situ SIMS analyses of their host diamonds yield carbon isotope values (delta 13C) of -12 to -18 per mil PDB. SIMS analyses of coesite inclusions from Argyle, Australia diamonds previously analyzed by combustion methods for d13C composition (Jaques et al., Proc. 4th Kimb. Conf, 1989), also yield anomalously high d18O values (+6.8 to +16.0 per mil VSMOW), that correlate with the anomalously low carbon isotope values (-10.3 to -14.1 per mil PDB). One coesite-bearing diamond from Orapa, Botswana analyzed in situ by SIMS has a d18O value of the coesite of +8.5 per mil VSMOW and a d13C value of the adjacent diamond host of -9.0 per mil PDB. A second Orapa stone has a SIMS carbon isotope compositional range of d13C = -14 to -16 per mil PDB, but the coesite is too small for ion probe analysis. At each of these localities, carbon isotope values of coesite-bearing diamonds that are lower than typical of mantle carbon are correlated with oxygen isotope compositions of included coesites that are substantially above the common mantle oxygen isotope range. Such results are not in accord with diamond genesis models involving formation of eclogitic diamonds from igneous melts undergoing fractionation in the mantle or by crystallization from primordial inhomogeneities in Earth's mantle. By analogy with the oxygen isotope compositions of altered ocean floor basalts and Alpine (subduction zone) eclogites they are, however, consistent with a subduction origin for these eclogite assemblages from altered ocean floor basaltic protoliths, and thus the simplest explanation for the source of the low carbon isotope values of these diamonds is formation from biogenic carbon accumulated on or near the ocean floor and subducted to the depths of eclogite and diamond stability with the altered basalts. Significantly these results, which were not predicted from studies of diamond-bearing eclogites, apply to the mantle beneath three different continental crustal blocks of both Proterozoic (Guaniamo and Argyle) and Archean/Proterozoic (Orapa) age.
Fe (hydro) oxide controls Mo isotope fractionation during the weathering of granite
NASA Astrophysics Data System (ADS)
Wang, Zhibing; Ma, Jinlong; Li, Jie; Wei, Gangjian; Zeng, Ti; Li, Lei; Zhang, Le; Deng, Wenfeng; Xie, Luhua; Liu, Zhifeng
2018-04-01
Understanding the fractionation mechanisms of Mo isotopes and seeking the main hosts of light δ98/95Mo during chemical weathering of continental rocks is a prerequisite for constraining heavy δ98/95Mo input into rivers. This study investigates the Mo concentrations and δ98/95Mo values of bulk samples, chemical extractions, and clay fractions of weathering products in a granite weathering profile in Guangdong province, South China, as well as in surrounding stream water. Results from bulk samples show that the τ MoTiO2 values systematically decrease from 59.1% to -77.0%, and δ98/95Mo values systematically increase from -1.46‰ to -0.17‰, upwards in the profile (from 30 to 0 m depth). Atmospheric input has a limited effect on δ98/95Mo variations in the weathering profile. Adsorption and desorption processes of Fe (hydro) oxide are the dominant factors controlling the variations in δ98/95Mo, with light Mo isotopes preferentially adsorbed by Fe (hydro) oxide, and released during desorption process, whereas the incongruent dissolution of primary minerals has little effect. Organic materials and the clay fraction are not the main hosts of light δ98/95Mo, as indicated by the results of chemical extractions, which show that a large proportion (41.5-86.2%) of total Mo with light δ98/95Mo (-1.57‰ to -0.59‰) is associated with Fe (hydro) oxide. Moreover, a significant positive correlation exists between Mo concentrations and δ98/95Mo in the Fe (hydro) oxide extractions from bulk samples. Finally, δ98/95Mo in stream water indicates the release of heavier δ98/95Mo into river water during the chemical weathering of granite rock. The results advance our understanding the mechanisms of Mo isotope fractionation during chemical weathering and its isotopic mass balance in Earth's surface system.
Does burial diagenesis reset pristine isotopic compositions in paleosol carbonates?
NASA Astrophysics Data System (ADS)
Bera, M. K.; Sarkar, A.; Tandon, S. K.; Samanta, A.; Sanyal, P.
2010-11-01
Sedimentological study of early Oligocene continental carbonates from the fluvial Dagshai Formation of the Himalayan foreland basin, India resulted in the recognition of four different types namely, soil, palustrine, pedogenically modified palustrine and groundwater carbonates. Stable oxygen and carbon isotopic ( δ18O and δ13C) analyses of fabric selective carbonate microsamples show that although the pristine isotopic compositions are largely altered during deep-burial diagenesis, complete isotopic homogenization does not occur. δ18O and δ13C analyses of ~ 200 calcrete and palustrine carbonates from different stratigraphic horizons and comparison with δ18O of more robust bioapatite (fossil vertebrate tooth) phase show that dense micrites (~ > 70% carbonate) invariably preserve the pristine δ18O value (mean) of ~ - 9.8‰, while altered carbonates show much lower δ18O value ~ - 13.8‰. Such inhomogeneity causes large intra-sample and intra-soil profile variability as high as > 5‰, suggesting that soils behave like a closed system where diagenetic overprinting occurs in local domains. A simple fluid-rock interaction model suggests active participation of clay minerals to enhance the effect of fluid-rock ratio in local domains during diagenesis. This places an upper limit of 70% micrite concentration above which the effect of diagenetic alteration is minimal. Careful sampling of dense micritic part of the soil carbonate nodules, therefore, does provide pristine isotopic composition and it is inappropriate, as proposed recently, to reject the paleoclimatic potential of all paleosol carbonates affected by burial diagenesis. Based on pristine δ13C value of - 8.8 ± 0.2‰ in soil carbonates an atmospheric CO 2 concentration between ~ 764 and ~ 306 ppmv is estimated for the early Oligocene (~ 31 Ma) Dagshai time. These data show excellent agreement between two independent proxy records (viz. soil carbonate and marine alkenone) and support early Oligocene survival of the Antarctic ice sheet.
NASA Astrophysics Data System (ADS)
Bryce, Julia G.; Depaolo, Donald J.; Lassiter, John C.
2005-09-01
Sr, Nd, and Os isotopic measurements were made on 110 Mauna Kea lava and hyaloclastite samples from the drillcore retrieved from the second phase of the Hawaii Scientific Drilling Project (HSDP-2). The samples come from depths of 255 to 3098 meters below sea level, span an age range from 200 to about 550-600 kyr, and represent an ordered record of the lava output from Mauna Kea volcano as it drifted a distance of about 40 km over the magma-producing region of the Hawaiian hot spot. The deepest (oldest) samples represent the time when Mauna Kea was closest to the center of the melting region of the Hawaiian plume. The Sr and Os isotopic ratios in HSDP-2 lavas show only subtle isotopic shifts over the ˜400 kyr history represented by the core. Neodymium isotopes (ɛNd values) increase systematically with decreasing age from an average value of nearly +6.5 to an average value of +7.5. This small change corresponds to subtle shifts in 87Sr/86Sr and 187Os/188Os isotope ratios, with small shifts of ɛHf, a large shift in 208Pb/204Pb and 208Pb/207Pb values, and with a very large shift in He isotope ratios from R/RA values of about 7-8 to values as high as 25. When Mauna Kea was closest to the plume core, the magma source did not have primitive characteristics for Nd, Sr, Pb, Hf, and Os isotopes but did have variable amounts of "primitive" helium. The systematic shifts in Nd, Hf, Pb, and He isotopes are consistent with radial isotopic zoning within the melting region of the plume. The melting region constitutes only the innermost, highest-temperature part of the thermally anomalous plume mantle. The different ranges of values observed for each isotopic system, and comparison of Mauna Kea lavas with those of Mauna Loa, suggest that the axial region of the plume, which has a radius of ˜20 km, is a mixture of recycled subducted components and primitive lower mantle materials, recently combined during the formational stages of the plume at the base of the mantle. The proportions of recycled and primitive components are not constant, and this requires there be longitudinal (vertical) heterogeneity within the core of the plume. The remainder of the plume, outside this plume "core zone," is less heterogeneous but distinct from upper mantle as represented by mid-ocean ridge basalt (MORB). The plume structure may provide a detailed view of mantle isotopic composition near the core-mantle boundary.
The isotope composition of inorganic germanium in seawater and deep sea sponges
NASA Astrophysics Data System (ADS)
Guillermic, Maxence; Lalonde, Stefan V.; Hendry, Katharine R.; Rouxel, Olivier J.
2017-09-01
Although dissolved concentrations of germanium (Ge) and silicon (Si) in modern seawater are tightly correlated, uncertainties still exist in the modern marine Ge cycle. Germanium stable isotope systematics in marine systems should provide additional constraints on marine Ge sources and sinks, however the low concentration of Ge in seawater presents an analytical challenge for isotopic measurement. Here, we present a new method of pre-concentration of inorganic Ge from seawater which was applied to measure three Ge isotope profiles in the Southern Ocean and deep seawater from the Atlantic and Pacific Oceans. Germanium isotopic measurements were performed on Ge amounts as low as 2.6 ng using a double-spike approach and a hydride generation system coupled to a MC-ICP-MS. Germanium was co-precipitated with iron hydroxide and then purified through anion-exchange chromatography. Results for the deep (i.e. >1000 m depth) Pacific Ocean off Hawaii (nearby Loihi Seamount) and the deep Atlantic off Bermuda (BATS station) showed nearly identical δ74/70Ge values at 3.19 ± 0.31‰ (2SD, n = 9) and 2.93 ± 0.10‰ (2SD, n = 2), respectively. Vertical distributions of Ge concentration and isotope composition in the deep Southern Ocean for water depth > 1300 m yielded an average δ74/70Ge = 3.13 ± 0.25‰ (2SD, n = 14) and Ge/Si = 0.80 ± 0.09 μmol/mol (2SD, n = 12). Significant variations in δ74/70Ge, from 2.62 to 3.71‰, were measured in the first 1000 m in one station of the Southern Ocean near Sars Seamount in the Drake Passage, with the heaviest values measured in surface waters. Isotope fractionation by diatoms during opal biomineralization may explain the enrichment in heavy isotopes for both Ge and Si in surface seawater. However, examination of both oceanographic parameters and δ74/70Ge values suggest also that water mass mixing and potential contribution of shelf-derived Ge also could contribute to the variations. Combining these results with new Ge isotope data for deep-sea sponges sampled nearby allowed us to determine a Ge isotope fractionation factor of -0.87 ± 0.37‰ (2SD, n = 12) during Ge uptake by sponges. Although Ge has long been considered as a geochemical twin of Si, this work underpins fundamental differences in their isotopic behaviors both during biomineralization processes and in their oceanic distributions. This suggests that combined with Si isotopes, Ge isotopes hold significant promise as a complementary proxy for delineating biological versus source effects in the evolution of the marine silicon cycle through time.
NASA Astrophysics Data System (ADS)
Choi, Hyoung Joon; Cohen, Marvin L.; Louie, Steven G.
2003-03-01
The anisotropic Eliashberg formalism, employing results from the ab initio pseudopotential density functional calculations, is applied to study the superconducting properties of MgB 2. It is shown that the relatively high transition temperature of MgB 2 originates from strong electron-phonon coupling of the hole states in the boron σ-bonds although the coupling strength averaged over the Fermi surface is moderate, and the reduction of the isotope effect arises from the large anharmonicity of the relevant phonons. The superconducting energy gap is nodeless but its value varies strongly on different pieces of the Fermi surface. The gap values Δ( k) cluster into two groups at low temperature, a small value of ∼2 meV and a large value of ∼7 meV, resulting in two thresholds in the quasiparticle density of states and an increase in the specific heat at low temperature due to quasiparticle excitations over the small gap. All of these results are in good agreement with corresponding experiments and support the view that MgB 2 is a phonon-mediated multiple-gap superconductor.
Stable isotope ratio mass spectrometry of nanogram quantities of boron and sulfur
NASA Astrophysics Data System (ADS)
Wieser, Michael Eugene
1998-09-01
Instrumentation and analytical techniques were developed to measure isotope abundances from nanograms of sulfur and boron. Sulfur isotope compositions were determined employing continuous flow isotope ratio mass spectroscopy (CF-IRMS) procedures and AsS+ thermal ionization mass spectrometry techniques (AsS+-TIMS). Boron isotope abundances were determined by BO2/sp--TIMS. CF-IRMS measurements realized δ34S values from 10 μg sulfur with precisions of ±0.3/perthous. To extend sulfur isotope measurements to much smaller samples, a TIMS procedure was developed to measure 75As32S+ and 75As34S+ at masses 108 and 109 from 200 ng S on a Finnigan MAT 262 with an ion counter. This is possibly the smallest amount of sulfur which has been successfully analyzed isotopically. The internal precision of 32S/34S ratios measured by AsS+-TIMS was better than ±0.15 percent. δ34S-values calculated relative to the measured 32S/34S value of an IAEA AG2S standard (S-1) agreed with those determined by CF-IRMS to within ±3/perthous. The increasing sensitivity of S-isotope analyses permits hiterto impossible investigations e.g. sulfur in tree rings and ice cores. Boron isotope abundances were measured as BO2/sp- from 50 ng B using an older thermal ionization mass spectrometer which had been extensively upgraded including the addition of computer control electronics, sensitive ion current amplification and fiber optic data bus. The internal precisions of the measured 11B/10B ratios were ±0.15 percent and the precisions of δ11B values calculated relative to the accepted international standard (SRM-951) were ±3/perthous. Two applications of boron isotope abundance variations were initiated (1) ground waters of Northern Alberta and (2) coffee beans in different regions of the world. In the first it was demonstrated that boron isotopes could be used to trace boron released during steam injection of oil sands into the surrounding environment. Data from the second study suggest that boron isotopes can be used to improve cultivation of coffee particularly in regions where 'organically grown' coffee had markedly different δ11B values than beans grown with boron- containing fertilizers in neighbouring regions. A regional dependence on the δ11B values of the coffee allow the sources of commercial coffee blends to be identified.
NASA Astrophysics Data System (ADS)
Chen, Y. C.; Mii, H. S.; Li, K. T.
2015-12-01
To exam whether oxygen isotope records of Crassostrea gigasoysters can be used as proxies of environment, 133 cultivated oysters and 21 water samples were collected from Chi Ku area, Tainan City, southern Taiwan in December of 2012, and from March, 2013 to July, 2014. Instrumental air and water temperatures and precipitation records were obtained from a nearest Central Weather Bureau (CWB) station roughly 16 km north of Chi Ku. The oxygen and carbon isotope values of the ligamental area of the modern oyster shells are from -6.92‰ to -0.08‰ (-3.05 ± 1.17‰, N = 2280; 1σ; VPDB) and from -5.57‰ to 0.63‰ (-1.88 ± 0.81‰), respectively. Oxygen isotope values of the water samples are mainly between -0.28‰ and 0.74‰ (0.18 ± 0.29‰, N = 20; 1σ; VSMOW). However, water oxygen isotope value of -2.75‰ was observed for the water sample collected immediately after a typhoon heavy rainfall. Seasonal temperature fluctuation pattern of estimated oxygen isotope temperatures from modern shells is similar to that of CWB instrumental records. However, the oxygen isotope temperatures are respectively about 3 °C and 10°C higher than those of instrumental records for winter and summer. Higher estimated oxygen isotope temperatures are most likely caused by underestimated fraction of freshwater. We analyzed 5 archaeological oyster shells of Siraya culture (500~250B.P.) collected from Wu Chien Tuso North (WCTN) archaeological site of Tainan branch of Southern Taiwan Science Park to infer the harvest season of mollusks. Oxygen isotope values of the ligamental area of the archaeological oyster shells are between -5.98‰ and -1.26‰ (-3.34 ± 1.37‰, N = 60; 1σ), and carbon isotope values are between -3.21‰ and 0.60‰ (-2.04‰ ± 0.55‰). The oxygen isotope records of archaeological oyster shells also showed clear seasonality. Most of the oysters were collected in autumn and winter. Oxygen isotope values of archaeological oyster shells was 1‰ greater than that of present for summer whereas was 1.2‰ less than that of present for wintwr. Assuming the temperature of 500-300 B.P. in Tainan was similar to that of present, it may indicate that the precipitation was weaker in summer but heavier in winter in southern Taiwan 500-300 B.P.
Do deposit-feeders compete? Isotopic niche analysis of an invasion in a species-poor system
Karlson, Agnes M. L.; Gorokhova, Elena; Elmgren, Ragnar
2015-01-01
Successful establishment of invasive species is often related to the existence of vacant niches. Competition occurs when invaders use the same limiting resources as members of the recipient community, which will be reflected in some overlap of their trophic niches. The concept of isotopic niche has been used to study trophic niche partitioning among species. Here, we present a two-year field study comparing isotopic niches of the deposit-feeding community in a naturally species-poor system. The isotopic niche analyses showed no overlap between a recent polychaete invader and any of the native species suggesting that it has occupied a vacant niche. Its narrow isotopic niche suggests specialized feeding, however, the high δ15N values compared to natives are most likely due to isotope fractionation effects related to nitrogen recycling and a mismatch between biological stoichiometry of the polychaete and the sediment nitrogen content. Notably, highly overlapping isotopic niches were inferred for the native species, which is surprising in a food-limited system. Therefore, our results demonstrate that invaders may broaden the community trophic diversity and enhance resource utilization, but also raise questions about the congruence between trophic and isotopic niche concepts and call for careful examination of assumptions underlying isotopic niche interpretation. PMID:25988260
Pérez Rodríguez, Nathalie; Langella, Francesca; Rodushkin, Ilia; Engström, Emma; Kothe, Erika; Alakangas, Lena; Öhlander, Björn
2014-01-01
Copper and iron isotope fractionation by plant uptake and translocation is a matter of current research. As a way to apply the use of Cu and Fe stable isotopes in the phytoremediation of contaminated sites, the effects of organic amendment and microbial addition in a mine-spoiled soil seeded with Helianthus annuus in pot experiments and field trials were studied. Results show that the addition of a microbial consortium of ten bacterial strains has an influence on Cu and Fe isotope fractionation by the uptake and translocation in pot experiments, with an increase in average of 0.99 ‰ for the δ(65)Cu values from soil to roots. In the field trial, the amendment with the addition of bacteria and mycorrhiza as single and double inoculation enriches the leaves in (65)Cu compared to the soil. As a result of the same trial, the δ(56)Fe values in the leaves are lower than those from the bulk soil, although some differences are seen according to the amendment used. Siderophores, possibly released by the bacterial consortium, can be responsible for this change in the Cu and Fe fractionation. The overall isotopic fractionation trend for Cu and Fe does not vary for pot and field experiments with or without bacteria. However, variations in specific metabolic pathways related to metal-organic complexation and weathering can modify particular isotopic signatures.
Assessment of international reference materials for isotope-ratio analysis (IUPAC Technical Report)
Brand, Willi A.; Coplen, Tyler B.; Vogl, Jochen; Rosner, Martin; Prohaska, Thomas
2014-01-01
Since the early 1950s, the number of international measurement standards for anchoring stable isotope delta scales has mushroomed from 3 to more than 30, expanding to more than 25 chemical elements. With the development of new instrumentation, along with new and improved measurement procedures for studying naturally occurring isotopic abundance variations in natural and technical samples, the number of internationally distributed, secondary isotopic reference materials with a specified delta value has blossomed in the last six decades to more than 150 materials. More than half of these isotopic reference materials were produced for isotope-delta measurements of seven elements: H, Li, B, C, N, O, and S. The number of isotopic reference materials for other, heavier elements has grown considerably over the last decade. Nevertheless, even primary international measurement standards for isotope-delta measurements are still needed for some elements, including Mg, Fe, Te, Sb, Mo, and Ge. It is recommended that authors publish the delta values of internationally distributed, secondary isotopic reference materials that were used for anchoring their measurement results to the respective primary stable isotope scale.
Poore, R.Z.; Matthews, R.K.
1984-01-01
Oxygen isotope analyses of late Eocene and Oligocene planktonic foraminifers from low and middle latitude sites in the Atlantic Basin show that different species from the same samples can yield significantly different isotopic values. The range of isotopic values observed between species is greatest at low-latitudes and declines poleward. Many planktonic foraminifers exhibit a systematic isotopic ranking with respect to each other and can therefore be grouped on the basis of their isotopic ranking. The isotopic ranking of some taxa, however, appears to vary geographically and/or through time. Isotopic and paleontologic data from DSDP Site 522 indicate that commonly used isotopic temperature scales underestimate Oligocene sea surface temperatures. We suggest these temperature scales require revision to reflect the presence of Oligocene glaciation. Comparison of isotopic and paleontologic data from Sites 522, 511 and 277 suggests cold, low-salinity surface waters were present in high southern latitudes during the early Oligocene. Lowsalinity, high latitude surface waters could be caused by Eocene/Oligocene paleogeography or by the production of warm saline bottom water. ?? 1984.
Urea and lipid extraction treatment effects on δ(15)N and δ(13)C values in pelagic sharks.
Li, Yunkai; Zhang, Yuying; Hussey, Nigel E; Dai, Xiaojie
2016-01-15
Stable isotope analysis (SIA) provides a powerful tool to investigate diverse ecological questions for marine species, but standardized values are required for comparative assessments. For elasmobranchs, their unique osmoregulatory strategy involves retention of (15)N-depleted urea in body tissues and this may bias δ(15)N values. This may be a particular problem for large predatory species, where δ(15)N discrimination between predator and consumed prey can be small. We evaluated three treatments (deionized water rinsing [DW], chloroform/methanol [LE] and combined chloroform/methanol and deionized water rinsing [LE+DW]) applied to white muscle tissue of 125 individuals from seven pelagic shark species to (i) assess urea and lipid effects on stable isotope values determined by IRMS and (ii) investigate mathematical normalization of these values. For all species examined, the δ(15)N values and C:N ratios increased significantly following all three treatments, identifying that urea removal is required prior to SIA of pelagic sharks. The more marked change in δ(15)N values following DW (1.3 ± 0.4‰) and LE+DW (1.2 ± 0.6‰) than following LE alone (0.7 ± 0.4‰) indicated that water rinsing was more effective at removing urea. The DW and LE+DW treatments lowered the %N values, resulting in an increase in C:N ratios from the unexpected low values of <2.6 in bulk samples to ~3.1 ± 0.1, the expected value of protein. The δ(13)C values of all species also increased significantly following LE and LE+DW treatments. Given the mean change in δ(15)N(1.2 ± 0.6‰) and δ(13)C values (0.7 ± 0.4‰) across pelagic shark species, it is recommended that muscle tissue samples be treated with LE+DW to efficiently extract both urea and lipids to standardize isotopic values. Mathematical normalization of urea and lipid-extracted δ(15)N(LE+DW) and δ(13)C(LE+DW) values using the lipid-extracted δ(15)N(LE) and δ(13)C(LE) data were established for all pelagic shark species. Copyright © 2015 John Wiley & Sons, Ltd.
Zinc Isotopic Signatures of the Upper Continental Crust
NASA Astrophysics Data System (ADS)
Xia, Y.; Zhang, X.; Zhang, H.; Huang, F.
2016-12-01
To examine the Zn isotope systematics within the Upper Continental Crust (UCC), and isotope fractionation during chemical weathering in large spatial and temporal scales, we analyzed Zn isotopic compositions of loess, glacial diamictites, river sediments, and igneous rocks (samples in total 77). The Zn isotopic compositions (δ66Zn relative to JMC-Lyon) of loess display a limited variation (0.17‰ to 0.29‰), which is negatively correlated with Zn content and proxies for chemical weathering (e.g. CIA values), reflect the impact of chemical weathering. Glacial diamictites have more variable δ66Zn (0.09‰ to 0.48‰), but the average δ66Zn (0.29±0.03‰, 2SD) is similar to loess. δ66Zn of glacial diamictites correlate roughly negatively with CIA values, but have no correlation with Zn content, implying source heterogeneity and effect from chemical weathering. δ66Zn of A-type (0.39‰ to 0.45‰) and S-type (0.28‰ to 0.35‰) granites are both homogeneous, but the latter have systematically lighter δ66Zn. This may reflect no Zn isotopic fractionation during magmatic processes and involvement of isotopically light meta-sedimentary into the sources of S-type granites. Furthermore, δ66Zn in riverine sediments display a small variation from 0.23‰ to 0.37‰, while δ66Zn of the the shales vary from 0.14‰ to 0.53‰, which could result from a combination of processes, such as biological cycling and chemical weathering. Overall, our data suggest that incipient chemical weathering can fractionate Zn isotopes significantly, meanwhile, during this process, heavy Zn are released preferentially. The UCC is estimated to have an average δ66Zn of 0.30 ±0.03‰ (2SD) with data collected in this study, which is similar to the estimated value of Bulk Silicate Earth (0.28±0.05‰)[1] and mean dissolved riverine flux (0.33‰)[2], but distinctly lighter than the bulk composition of dissolved Zn in the ocean (0.51‰)[2]. [1] Chen et al., Zinc isotope fractionation during magmatic differentiation and the isotopic composition of the bulk Earth. Earth and Planetary Science Letters 369, 34-42 (2013). [2] Little et al., The oceanic mass balance of copper and zinc isotopes, investigated by analysis of their inputs, and outputs to ferromanganese oxide sediments. Geochimica et Cosmochimica Acta 125, 673-693 (2014).
NASA Astrophysics Data System (ADS)
van Hardenbroek, Maarten; Rinta, Päivi; Wooller, Matthew J.; Schilder, Jos; Stötter, Tabea; Heiri, Oliver
2018-06-01
The stable isotopic composition of chitinous remains of Cladocera (water fleas) and freshwater Bryozoa (moss animals) preserved in lake sediment records can provide supporting insights into past environmental and ecosystem changes in lakes. Here we explore whether analyses of these remains isolated from lake flotsam can provide information on the driving variables affecting the isotopic composition of these remains. We collected flotsam in 53 lakes and found enough material in 33 lakes to measure the stable carbon and nitrogen isotope ratios (expressed as δ13C and δ15N values, respectively) of resting stages. These values were compared with lake characteristics, water chemistry measurements, and the isotopic composition of sedimentary organic matter (SOM) in the lakes. Mean δ13C values of cladoceran ephippia and SOM were correlated and both were also negatively correlated with deep water methane concentrations and indicators of lake stratification. This supports the findings of previous studies that methane-derived carbon can provide a significant proportion of carbon entering planktonic food webs. Mean δ15N values of bryozoan statoblasts and SOM were correlated, suggesting that both reflect the δ15N values of phytoplankton. Our results provide information on how environmental variables in lakes can influence the δ13C and δ15N values in resting stages, but flotsam samples can also potentially be used to assess seasonal stable isotope variability of resting stages. Both types of information are important to improve palaeoenvironmental interpretations of stable isotope records based on these remains in lake sediments.
NASA Astrophysics Data System (ADS)
Jackisch, D.; He, S.; Ong, M. R.; Goodkin, N.
2017-12-01
Water isotopes are important tracers of climate dynamics and their measurement can provide valuable insights into the relationship between isotopes and atmospheric parameters and overall convective activities. While most studies provide data on daily or even monthly time scales, high-temporal in-situ stable isotope measurements are scarce, especially in the tropics. In this study, we presented δ18O and δ2H values in precipitation and vapor continuously and simultaneously measured using laser spectroscopy in Singapore during the 2016/2017 Northeast (NE) Asian monsoon and 2017 Southwest (SW) Asian monsoon. We found that δ-values of precipitation and vapor exhibit quite different patterns during individual events, although there is a significant correlation between the δ-values of precipitation and of vapor. δ-values in precipitation during individual precipitation events show a distinct V-shape pattern, with the lowest isotope values observed in the middle of the event. However, isotopes in water vapor mostly show an L-shape and are characterized by a gradual decrease with the onset of rainfall. The difference in δ-values of precipitation and vapor is generally constant during the early stage of the events but gradually increases near the end. It is likely that vapor and precipitation are closer to equilibrium at the early stage of a rain event, but diverge at the later stages. This divergence can be largely attributed to the evaporation of raindrops. We notice a frequent drop in d-excess of precipitation, whereas d-excess in vapor increases. In addition, a significant correlation exists between outgoing longwave radiation (OLR) and isotopes in both precipitation and vapor, suggesting an influence of regional convective activity.
Michalski, Greg; Kolanowski, Michelle; Riha, Krystin M
2015-01-01
Nitrate is a key component of synthetic fertilizers that can be beneficial to crop production in agro-ecosystems, but can also cause damage to natural ecosystems if it is exported in large amounts. Stable isotopes, both oxygen and nitrogen, have been used to trace the sources and fate of nitrate in various ecosystems. However, the oxygen isotope composition of synthetic and organic nitrates is poorly constrained. Here, we present a study on the N and O isotope composition of nitrate-based fertilizers. The δ(15)N values of synthetic and natural nitrates were 0 ± 2 ‰ similar to the air N2 from which they are derived. The δ(18)O values of synthetic nitrates were 23 ± 3 ‰, similar to air O2, and natural nitrate fertilizer δ(18)O values (55 ± 5 ‰) were similar to those observed in atmospheric nitrate. The Δ(17)O values of synthetic fertilizer nitrate were approximately zero following a mass-dependent isotope relationship, while natural nitrate fertilizers had Δ(17)O values of 18 ± 2 ‰ similar to nitrate produced photochemically in the atmosphere. These narrow ranges of values can be used to assess the amount of nitrate arising from fertilizers in mixed systems where more than one nitrate source exists (soil, rivers, and lakes) using simple isotope mixing models.
NASA Astrophysics Data System (ADS)
Wang, S.; Teng, F.; Rudnick, R. L.; Li, S.
2013-12-01
We report Mg isotope ratios for low-grade metamorphosed mudrocks from three lower Paleozoic basins (northern Lake District, southern Lake District and Southern Uplands) in the British Caledonides, previously analyzed for Li, Sr and Nd isotopes (Qiu et al., 2009, GCA), with the aim of understanding the behavior of Mg isotopes during subgreenschist-facies metamorphism, and the processes responsible for Mg isotopic variations in mudrocks. The δ26Mg of mudrocks varies greatly from -0.754 to 0.251, and displays no correlation with metamorphic grade, which ranges from diagenesis to subgreenschist-facies. Thus, low-grade metamorphism has no apparent influence on Mg isotopes. The variations instead likely reflect their provenance and mineralogical components. Samples from the northern Lake District, previously interpreted to derive from ancient, heavily weathered crust have δ26Mg (-0.06 × 0.11 on average) significantly heavier than that of average upper continental crust (~ -0.22), which is consistent with this interpretation. By contrast, mudrocks from the southern Lake District are characterized by low δ26Mg values (from -0.754 to -0.093) that require the presences of an unusually light component. The previously inferred provenance for these rocks of upper continental crust and arc volcanic detritus cannot explain such light isotopic compositions. Rather, such values may reflect the presence of carbonate in these samples and uptake of sea water Mg. Samples from the Southern Uplands, which contain the heaviest Li isotopes and ɛNd, and contain volcanic arc detritus, display Mg isotopic compositions divergent from a 'normal' mantle value (-0.25) towards both high and low δ26Mg values (from -0.742 to -0.079). Therefore, these mudrocks must contain a minimum of three end-members: mature felsic upper continental crust, arc lavas and carbonate. Given that limited Mg isotope fractionation occurs during low-grade metamorphism, Mg isotopes could be a potential tracer of provenance as well as carbonate involvement for fine-grained terrigenous sediments.
de Rijke, E; Schoorl, J C; Cerli, C; Vonhof, H B; Verdegaal, S J A; Vivó-Truyols, G; Lopatka, M; Dekter, R; Bakker, D; Sjerps, M J; Ebskamp, M; de Koster, C G
2016-08-01
Two approaches were investigated to discriminate between bell peppers of different geographic origins. Firstly, δ(18)O fruit water and corresponding source water were analyzed and correlated to the regional GNIP (Global Network of Isotopes in Precipitation) values. The water and GNIP data showed good correlation with the pepper data, with constant isotope fractionation of about -4. Secondly, compound-specific stable hydrogen isotope data was used for classification. Using n-alkane fingerprinting data, both linear discriminant analysis (LDA) and a likelihood-based classification, using the kernel-density smoothed data, were developed to discriminate between peppers from different origins. Both methods were evaluated using the δ(2)H values and n-alkanes relative composition as variables. Misclassification rates were calculated using a Monte-Carlo 5-fold cross-validation procedure. Comparable overall classification performance was achieved, however, the two methods showed sensitivity to different samples. The combined values of δ(2)H IRMS, and complimentary information regarding the relative abundance of four main alkanes in bell pepper fruit water, has proven effective for geographic origin discrimination. Evaluation of the rarity of observing particular ranges for these characteristics could be used to make quantitative assertions regarding geographic origin of bell peppers and, therefore, have a role in verifying compliance with labeling of geographical origin. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hydrogen isotope separation using molecular sieve of synthetic zeolite 3A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotoh, K.; Kimura, K.; Nakamura, Y.
2008-07-15
It is known that hydrogen isotope molecules can be adsorbed easily onto synthetic zeolite 4A, 5A, and 13X at the liquid-nitrogen temperature of 77.4 K. We show here that hydrogen and deuterium are not adsorptive onto zeolite 3A at the same temperature. This phenomenon is explained by assuming the molecular sieve function in zeolite-3A-crystalline lattice structure. From a series of pseudo-isobaric experiments, it is also shown that the sieving phenomenon appears in a range above 77.4 K. This behavior is interpreted as resulting on the dependence of sieve's mesh size on temperature, where the sieving effect is considered to appearmore » at a certain temperature. In this interpretation, an isotopic difference between hydrogen and deuterium is suggested to exist in the sieving effect appearance temperatures. This is endorsed in the result of pseudo-isobaric experiments. This temperature deference is very significant because that indicates the possibility of an effective method of hydrogen isotope separation. This possibility is verified through an experimental series of adsorption-desorption with a mixture of H{sub 2} and D{sub 2}, where the gas samples adsorbed through the sieve operated at intentionally selected temperatures are isolated and then analyzed. The result demonstrates remarkable values of isotope separation factor. (authors)« less
Post‐mortem oxygen isotope exchange within cultured diatom silica
Sloane, Hilary J.; Rickaby, Rosalind E.M.; Cox, Eileen J.; Leng, Melanie J.
2017-01-01
Rationale Potential post‐mortem alteration to the oxygen isotope composition of biogenic silica is critical to the validity of palaeoclimate reconstructions based on oxygen isotope ratios (δ18O values) from sedimentary silica. We calculate the degree of oxygen isotope alteration within freshly cultured diatom biogenic silica in response to heating and storing in the laboratory. Methods The experiments used freshly cultured diatom silica. Silica samples were either stored in water or dried at temperatures between 20 °C and 80 °C. The mass of affected oxygen and the associated silica‐water isotope fractionation during alteration were calculated by conducting parallel experiments using endmember waters with δ18O values of −6.3 to −5.9 ‰ and −36.3 to −35.0 ‰. Dehydroxylation and subsequent oxygen liberation were achieved by stepwise fluorination with BrF5. The 18O/16O ratios were measured using a ThermoFinnigan MAT 253 isotope ratio mass spectrometer. Results Significant alterations in silica δ18O values were observed, most notably an increase in the δ18O values following drying at 40–80 °C. Storage in water for 7 days between 20 and 80 °C also led to significant alteration in δ18O values. Mass balance calculations suggest that the amount of affected oxygen is positively correlated with temperature. The estimated oxygen isotope fractionation during alteration is an inverse function of temperature, consistent with the extrapolation of models for high‐temperature silica‐water oxygen isotope fractionation. Conclusions Routinely used preparatory methods may impart significant alterations to the δ18O values of biogenic silica, particularly when dealing with modern cultured or field‐collected material. The significance of such processes within natural aquatic environments is uncertain; however, there is potential that similar processes also affect sedimentary diatoms, with implications for the interpretation of biogenic silica‐hosted δ18O palaeoclimate records. PMID:28792631
Modes of planetary-scale Fe isotope fractionation
NASA Astrophysics Data System (ADS)
Schoenberg, Ronny; von Blanckenburg, Friedhelm
2006-12-01
A comprehensive set of high-precision Fe isotope data for the principle meteorite types and silicate reservoirs of the Earth is used to investigate iron isotope fractionation at inter- and intra-planetary scales. 14 chondrite analyses yield a homogeneous Fe isotope composition with an average δ56Fe/ 54Fe value of - 0.015 ± 0.020‰ (2 SE) relative to the international iron standard IRMM-014. Eight non-cumulate and polymict eucrite meteorites that sample the silicate portion of the HED (howardite-eucrite-diogenite) parent body yield an average δ56Fe/ 54Fe value of - 0.001 ± 0.017‰, indistinguishable to the chondritic Fe isotope composition. Fe isotope ratios that are indistinguishable to the chondritic value have also been published for SNC meteorites. This inner-solar system homogeneity in Fe isotopes suggests that planetary accretion itself did not significantly fractionate iron. Nine mantle xenoliths yield a 2 σ envelope of - 0.13‰ to + 0.09‰ in δ56Fe/ 54Fe. Using this range as proxy for the bulk silicate Earth in a mass balance model places the Fe isotope composition of the outer liquid core that contains ca. 83% of Earth's total iron to within ± 0.020‰ of the chondritic δ56Fe/ 54Fe value. These calculations allow to interprete magmatic iron meteorites ( δ56Fe/ 54Fe = + 0.047 ± 0.016‰; N = 8) to be representative for the Earth's inner metallic core. Eight terrestrial basalt samples yield a homogeneous Fe isotope composition with an average δ56Fe/ 54Fe value of + 0.072 ± 0.016‰. The observation that terrestrial basalts appear to be slightly heavier than mantle xenoliths and that thus partial mantle melting preferentially transfers heavy iron into the melt [S. Weyer, A.D. Anbar, G.P. Brey, C. Munker, K. Mezger and A.B. Woodland, Iron isotope fractionation during planetary differentiation, Earth and Planetary Science Letters 240(2), 251-264, 2005.] is intriguing, but also raises some important questions: first it is questionable whether the Fe isotope composition of lithospheric mantle xenoliths are representative for an undisturbed melt source, and second, HED and SNC meteorites, representing melting products of 4Vesta and Mars silicate mantles would be expected to show a similar fractionation towards heavy isotope compositions. This is not observed. Four international granitoid standards with SiO 2 contents between 60 and 70 wt.% yield δ56Fe/ 54Fe values between 0.118‰ and 0.132‰. An investigation of the alpine Bergell igneous rock suite revealed a positive correlation between Fe isotope compositions and SiO 2 contents — from gabbros and tonalites ( δ56Fe/ 54Fe ≈ 0.03 to 0.09‰) to granodiorites and silicic dykes ( δ56Fe/ 54Fe ≈ 0.14 to 0.23‰). Although in this suite δ56Fe/ 54Fe correlates with δ18O values and radiogenic isotopes, open-system behavior to explain the heavy iron is not undisputed. This is because an obvious assimilant with the required heavy Fe isotope composition has so far not been identified. Alternatively, the relatively heavy granite compositions might be obtained by fractional crystallisation of the melt. Ultimately, further detailed studies on natural rocks and the experimental determination of mineral/melt fractionation factors at magmatic conditions are required to unravel whether or not iron isotope fractionation takes place during partial mantle melting and crystal fractionation.
NASA Astrophysics Data System (ADS)
Zhang, Tongwei; Krooss, Bernhard M.
2001-08-01
Molecular transport (diffusion) of methane in water-saturated sedimentary rocks results in carbon isotope fractionation. In order to quantify the diffusive isotope fractionation effect and its dependence on total organic carbon (TOC) content, experimental measurements have been performed on three natural shale samples with TOC values ranging from 0.3 to 5.74%. The experiments were conducted at 90°C and fluid pressures of 9 MPa (90 bar). Based on the instantaneous and cumulative composition of the diffused methane, effective diffusion coefficients of the 12CH4 and 13CH4 species, respectively, have been calculated. Compared with the carbon isotopic composition of the source methane (δ13C1 = -39.1‰), a significant depletion of the heavier carbon isotope (13C) in the diffused methane was observed for all three shales. The degree of depletion is highest during the initial non-steady state of the diffusion process. It then gradually decreases and reaches a constant difference (Δ δ = δ13Cdiff -δ13Csource) when approaching the steady-state. The degree of the isotopic fractionation of methane due to molecular diffusion increases with the TOC content of the shales. The carbon isotope fractionation of methane during molecular migration results practically exclusively from differences in molecular mobility (effective diffusion coefficients) of the 12CH4 and 13CH4 entities. No measurable solubility fractionation was observed. The experimental isotope-specific diffusion data were used in two hypothetical scenarios to illustrate the extent of isotopic fractionation to be expected as a result of molecular transport in geological systems with shales of different TOC contents. The first scenario considers the progression of a diffusion front from a constant source (gas reservoir) into a homogeneous ;semi-infinite; shale caprock over a period of 10 Ma. In the second example, gas diffusion across a 100 m caprock sequence is analyzed in terms of absolute quantities and isotope fractionation effects. The examples demonstrate that methane losses by molecular diffusion are small in comparison with the contents of commercial size gas accumulations. The degree of isotopic fractionation is related inversely to the quantity of diffused gas so that strong fractionation effects are only observed for relatively small portions of gas. The experimental data can be readily used in numerical basin analysis to examine the effects of diffusion-related isotopic fractionation on the composition of natural gas reservoirs.
Study of yrast bands and electromagnetic properties in neutron-rich 114-128Cd isotopes
NASA Astrophysics Data System (ADS)
Chaudhary, Ritu; Pandit, Rakesh K.; Devi, Rani; Khosa, S. K.
2018-02-01
The projected shell model framework has been employed to carry out a systematic study on the deformation systematics of E (21+) and E (41+) / E (21+) values, BCS subshell occupation numbers, yrast spectra, backbending phenomena and electromagnetic quantities in 114-128Cd isotopes. Present calculations reproduce the observed systematics of the E (21+), R42 and B (E 2 ;2+ →0+) values for 114-128Cd isotopic mass chain and give the evidence that deformation increases as one moves from 114Cd to 118Cd, thereafter it decreases up to 126Cd. This in turn confirms 118Cd to be the most deformed nucleus in this set of isotopic mass chain. The emergence of backbending, decrease in B (E 2) values and change in g-factors in all these isotopes are intimately related to the crossing of g-band by 2-qp bands.
Font, Laura; van der Peijl, Gerard; van Leuwen, Carina; van Wetten, Isis; Davies, Gareth R
2015-01-01
A multi-isotope investigation (Sr and Pb isotopes and δ18O, δ13C and δ15N) was applied to bone and teeth from an unidentified male found drowned in the"IJ" Ruyterkade in Amsterdam, The Netherlands in March of 1999. The individual remained unidentified until mid 2013, after the isotope study was completed. Coupled δ13C and δ15N values in bone collagen recovered from rib and femur are consistent with an omnivore living in a region where C3-type diet dominates (i.e. Europe). Integrated Sr and Pb isotopes and δ18O values in canine and third molar teeth and femur and rib bone data exclude extended residence in north-west Europe and particularly The Netherlands. Characteristic Pb isotope ratios coupled with inferred δ18O values of drinking water argue for a most probable place of origin for the unidentified individual in west and south Poland, south-east Slovakia and the region of Ukraine-Romania-Bulgaria, specifically the region associated with the Carpathian Mountains. Independent of the isotope study, the Cold Case Team made a positive identification with an individual from south-west Poland, validating the results of the multiple-isotopic approach. Copyright © 2014 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.
Kudravetz, M.K.; Greene, H.B.
1958-09-16
This patent relates to control systems for a calutron and, in particular, describes an electro-mechanical system for interrupting the collection of charged particles when the ratio between the two isotopes being receivcd deviates from a predetermined value. One embodiment of the invention includes means responsive to the ratio between two isotopes being received for opening a normally closed shutter over the receiver entrance when the isotope ratio is the desired value. In another form of the invention the collection operation is interrupted by changing the beam accelerating voltage to deflect the ion beam away from the receiver.
Oerter, Erik J.; Perelet, Alexei; Pardyjak, Eric; ...
2016-10-20
Here, the fast and accurate measurement of H and O stable isotope compositions (δ 2H and δ 18O values) of soil and sediment pore water remains an impediment to scaling-up the application of these isotopes in soil and vadose hydrology. Here we describe a method and its calibration to measuring soil and sediment pore water δ 2H and δ 18O values using a water vapor-permeable probe coupled to an isotope ratio infrared spectroscopy analyzer.
Rysava, K; McGill, R A R; Matthiopoulos, J; Hopcraft, J G C
2016-07-15
Nutritional bottlenecks often limit the abundance of animal populations and alter individual behaviours; however, establishing animal condition over extended periods of time using non-invasive techniques has been a major limitation in population ecology. We test if the sequential measurement of δ(15) N values in a continually growing tissue, such as hair, can be used as a natural bio-logger akin to tree rings or ice cores to provide insights into nutritional stress. Nitrogen stable isotope ratios were measured by continuous-flow isotope-ratio mass spectrometry (IRMS) from 20 sequential segments along the tail hairs of 15 migratory wildebeest. Generalized Linear Models were used to test for variation between concurrent segments of hair from the same individual, and to compare the δ(15) N values of starved and non-starved animals. Correlations between δ(15) N values in the hair and periods of above-average energy demand during the annual cycle were tested using Generalized Additive Mixed Models. The time series of nitrogen isotope ratios in the tail hair are comparable between strands from the same individual. The most likely explanation for the pattern of (15) N enrichment between individuals is determined by life phase, and especially the energetic demands associated with reproduction. The mean δ(15) N value of starved animals was greater than that of non-starved animals, suggesting that higher δ(15) N values correlate with periods of nutritional stress. High δ(15) N values in the tail hair of wildebeest are correlated with periods of negative energy balance, suggesting they may be used as a reliable indicator of the animal's nutritional history. This technique might be applicable to other obligate grazers. Most importantly, the sequential isotopic analysis of hair offers a continuous record of the chronic condition of wildebeest (effectively converting point data into time series) and allows researchers to establish the animal's nutritional diary. © 2016 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd.
Choy, C. Anela; Davison, Peter C.; Drazen, Jeffrey C.; Flynn, Adrian; Gier, Elizabeth J.; Hoffman, Joel C.; McClain-Counts, Jennifer P.; Miller, Todd W.; Popp, Brian N.; Ross, Steve W.; Sutton, Tracey T.
2012-01-01
The δ15N values of organisms are commonly used across diverse ecosystems to estimate trophic position and infer trophic connectivity. We undertook a novel cross-basin comparison of trophic position in two ecologically well-characterized and different groups of dominant mid-water fish consumers using amino acid nitrogen isotope compositions. We found that trophic positions estimated from the δ15N values of individual amino acids are nearly uniform within both families of these fishes across five global regions despite great variability in bulk tissue δ15N values. Regional differences in the δ15N values of phenylalanine confirmed that bulk tissue δ15N values reflect region-specific water mass biogeochemistry controlling δ15N values at the base of the food web. Trophic positions calculated from amino acid isotopic analyses (AA-TP) for lanternfishes (family Myctophidae) (AA-TP ∼2.9) largely align with expectations from stomach content studies (TP ∼3.2), while AA-TPs for dragonfishes (family Stomiidae) (AA-TP ∼3.2) were lower than TPs derived from stomach content studies (TP∼4.1). We demonstrate that amino acid nitrogen isotope analysis can overcome shortcomings of bulk tissue isotope analysis across biogeochemically distinct systems to provide globally comparative information regarding marine food web structure. PMID:23209656
Choy, C. Anela; Davison, Peter C.; Drazen, Jeffrey C.; Flynn, Adrian; Gier, Elizabeth J.; Hoffman, Joel C.; McClain-Counts, Jennifer P.; Miller, Todd W.; Popp, Brian N.; Ross, Steve W.; Sutton, Tracey T.
2012-01-01
The δ15N values of organisms are commonly used across diverse ecosystems to estimate trophic position and infer trophic connectivity. We undertook a novel cross-basin comparison of trophic position in two ecologically well-characterized and different groups of dominant mid-water fish consumers using amino acid nitrogen isotope compositions. We found that trophic positions estimated from the δ15N values of individual amino acids are nearly uniform within both families of these fishes across five global regions despite great variability in bulk tissue δ15N values. Regional differences in the δ15N values of phenylalanine confirmed that bulk tissue δ15N values reflect region-specific water mass biogeochemistry controlling δ15N values at the base of the food web. Trophic positions calculated from amino acid isotopic analyses (AA-TP) for lanternfishes (family Myctophidae) (AA-TP ~2.9) largely align with expectations from stomach content studies (TP ~3.2), while AA-TPs for dragonfishes (family Stomiidae) (AA-TP ~3.2) were lower than TPs derived from stomach content studies (TP~4.1). We demonstrate that amino acid nitrogen isotope analysis can overcome shortcomings of bulk tissue isotope analysis across biogeochemically distinct systems to provide globally comparative information regarding marine food web structure.
NASA Astrophysics Data System (ADS)
Nielson, Kristine E.; Bowen, Gabriel J.
2010-03-01
Hydrogen and oxygen isotope ratios of the common structural biopolymer chitin are a potential recorder of ecological and environmental information, but our understanding of the mechanisms of incorporation of H and O from environmental substrates into chitin is limited. We report the results of a set of experiments in which the isotopic compositions of environmental water and diet were varied independently in order to assess the contribution of these variables to the H and O isotopic composition of Artemia franciscana chitin. Hydrogen isotope ratios of chitin were strongly linearly correlated with both food and water, with approximately 26% of the hydrogen signal reflecting food and approximately 38% reflecting water. Oxygen isotopes were also strongly correlated with the isotopic composition of water and food, but whereas 69% of oxygen in chitin exchanged with environmental water, only 10% was derived from food. We propose that these observations reflect the position-specific, partial exchange of H and O atoms with brine shrimp body water during the processes of digestion and chitin biosynthesis. Comparison of culture experiments with a set of natural samples collected from the Great Salt Lake, UT in 2006 shows that, with some exceptions, oxygen isotope compositions of chitin track those of water, whereas hydrogen isotopes vary inversely with those of lake water. The different behavior of the two isotopic systems can be explained in terms of a dietary shift from allochthonous particulate matter with relatively higher δ 2H values in the early spring to autochthonous particulate matter with significantly lower δ 2H values in the late summer to autumn. These results suggest oxygen in chitin may be a valuable proxy for the oxygen isotopic composition of environmental water, whereas hydrogen isotope values from the same molecule may reveal ecological and biogeochemical changes within lakes.
Lorenz, Jennifer M; Tarbox, Lauren; Buck, Bryan; Qi, Haiping; Coplen, Tyler B
2014-10-15
As a result of the scarcity of isotopic reference waters for daily use, a new secondary isotopic reference material for international distribution has been prepared from drinking water collected from the Biscayne aquifer in Ft. Lauderdale, Florida. This isotopic reference water was filtered, homogenized, loaded into glass ampoules, sealed with a torch, autoclaved to eliminate biological activity, and measured by dual-inlet isotope-ratio mass spectrometry. This reference material is available by the case of 144 glass ampoules containing either 4 mL or 5 mL of water in each ampoule. The δ(2)H and δ(18)O values of this reference material are -10.3 ± 0.4‰ and -2.238 ± 0.011‰, respectively, relative to VSMOW, on scales normalized such that the δ(2)H and δ(18)O values of SLAP reference water are, respectively, -428 and -55.5‰. Each uncertainty is an estimated expanded uncertainty (U = 2uc ) about the reference value that provides an interval that has about a 95% probability of encompassing the true value. This isotopic reference material, designated as USGS45, is intended as one of two isotopic reference waters for daily normalization of stable hydrogen and oxygen isotopic analysis of water with an isotope-ratio mass spectrometer or a laser absorption spectrometer. Published in 2014. This article is a U.S. Government work and is in the public domain in the USA. Published in 2014. This article is a U.S. Government work and is in the public domain in the USA.
Benson, Sarah J; Lennard, Christopher J; Maynard, Philip; Hill, David M; Andrew, Anita S; Roux, Claude
2009-06-01
The application of isotopic techniques to investigations requiring the provision of evidence to a Court is limited. The objective of this research was to investigate the application of light stable isotopes and isotope ratio mass spectrometry (IRMS) to solve complex forensic cases by providing a level of discrimination not achievable utilising traditional forensic techniques. Due to the current threat of organic peroxide explosives, such as triacetone triperoxide (TATP), research was undertaken to determine the potential of IRMS to differentiate samples of TATP that had been manufactured utilising different starting materials and/or manufacturing processes. In addition, due to the prevalence of pentaerythritoltetranitrate (PETN) in detonators, detonating cord, and boosters, the potential of the IRMS technique to differentiate PETN samples from different sources was also investigated. Carbon isotope values were measured in fourteen TATP samples, with three definite groups appearing in the initial sample set based on the carbon data alone. Four additional TATP samples (in a second set of samples) were distinguishable utilising the carbon and hydrogen isotopic compositions individually, and also in combination with the oxygen isotope values. The 3D plot of the carbon, oxygen and hydrogen data demonstrated the clear discrimination of the four samples of TATP. The carbon and nitrogen isotope values measured from fifteen PETN samples, allowed samples from different sources to be readily discriminated. This paper demonstrates the successful application of IRMS to the analysis of explosives of forensic interest to assist in discriminating samples from different sources. This research represents a preliminary evaluation of the IRMS technique for the measurement of stable isotope values in TATP and PETN samples, and supports the dedication of resources for a full evaluation of this application in order to achieve Court reportable IRMS results.
Hattori, Shohei; Toyoda, Akari; Toyoda, Sakae; Ishino, Sakiko; Ueno, Yuichiro; Yoshida, Naohiro
2015-01-06
Little is known about the sulfur isotopic composition of carbonyl sulfide (OCS), the most abundant atmospheric sulfur species. We present a promising new analytical method for measuring the stable sulfur isotopic compositions (δ(33)S, δ(34)S, and Δ(33)S) of OCS using nanomole level samples. The direct isotopic analytical technique consists of two parts: a concentration line and online gas chromatography-isotope ratio mass spectrometry (GC-IRMS) using fragmentation ions (32)S(+), (33)S(+), and (34)S(+). The current levels of measurement precision for OCS samples greater than 8 nmol are 0.42‰, 0.62‰, and 0.23‰ for δ(33)S, δ(34)S, and Δ(33)S, respectively. These δ and Δ values show a slight dependence on the amount of injected OCS for volumes smaller than 8 nmol. The isotope values obtained from the GC-IRMS method were calibrated against those measured by a conventional SF6 method. We report the first measurement of the sulfur isotopic composition of OCS in air collected at Kawasaki, Kanagawa, Japan. The δ(34)S value obtained for OCS (4.9 ± 0.3‰) was lower than the previous estimate of 11‰. When the δ(34)S value for OCS from the atmospheric sample is postulated as the global signal, this finding, coupled with isotopic fractionation for OCS sink reactions in the stratosphere, explains the reported δ(34)S for background stratospheric sulfate. This suggests that OCS is a potentially important source for background (nonepisodic or nonvolcanic) stratospheric sulfate aerosols.
Hildreth, W.; Halliday, A.N.; Christiansen, R.L.
1991-01-01
Since 2.2 Ma, the Yellowstone Plateau Volcanic Field has produced ~6000 km3 of rhyolite tuffs and lavas in >60 separate eruptions, as well as ~100 km3 of tholeiitic basalt from >50 vents peripheral to the silicic focus. Intermediate eruptive products are absent. Early postcollapse rhyolites show large shifts in Nd, Sr, Pb, and O isotopic composition caused by assimilation of roof rocks and hydrothermal brines during collapse and resurgence. Younger intracaldera rhyolite lavas record partial isotopic recovery toward precaldera ratios. Thirteen extracaldera rhyolites show none of these effects and have sources independent of the subcaldera magma system. Contributions from the Archaean crust have extreme values and wide ranges of Nd-, Sr, and Pb-isotope ratios, but Yellowstone rhyolites have moderate values and limited ranges. This requires their deep-crustal sources to have been pervasively hybridized by distributed intrusion of Cenozoic basalt, most of which was probably contemporaneous with the Pliocene and Quaternary volcanism. Most Yellowstone basalts had undergone cryptic clinopyroxene fractionation in the lower crust or crust-mantle transition zone and, having also ascended through or adjacent to crustal zones of silicic-magma generation, most underwent some crustal contamination. -from Authors
Calculation of boron-isotope fractionation between B(OH) 3(aq) and B(OH)4-(aq)
NASA Astrophysics Data System (ADS)
Rustad, James R.; Bylaska, Eric J.; Jackson, Virgil E.; Dixon, David A.
2010-05-01
Density functional and correlated molecular orbital calculations (MP2) are carried out on B(OH) 3· nH 2O clusters ( n = 0, 6, 32), and B(OH)4-· nH 2O ( n = 0, 8, 11, 32) to estimate the equilibrium distribution of 10B and 11B isotopes between boric acid and borate in aqueous solution. For the large 32-water clusters, multiple conformations are generated from ab initio molecular dynamics simulations to account for the effect of solvent fluctuations on the isotopic fractionation. We provide an extrapolated value of the equilibrium constant α34 for the isotope exchange reaction 10B(OH) 3(aq) + 11B(OH)4- (aq) = 11B(OH) 3(aq) + 11B(OH)4- (aq) of 1.026-1.028 near the MP2 complete basis set limit with 32 explicit waters of solvation. With some exchange-correlation functionals we find potentially important contributions from a tetrahedral neutral B(OH) 3·H 2O Lewis acid-base complex. The extrapolations presented here suggest that DFT calculations give a value for 10 3ln α34 about 15% higher than the MP2 calculations.
Han, Xiaokun; Guo, Qingjun; Liu, Congqiang; Fu, Pingqing; Strauss, Harald; Yang, Junxing; Hu, Jian; Wei, Lianfang; Ren, Hong; Peters, Marc; Wei, Rongfei; Tian, Liyan
2016-01-01
Particulate pollution from anthropogenic and natural sources is a severe problem in China. Sulfur and oxygen isotopes of aerosol sulfate (δ34Ssulfate and δ18Osulfate) and water-soluble ions in aerosols collected from 2012 to 2014 in Beijing are being utilized to identify their sources and assess seasonal trends. The mean δ34S value of aerosol sulfate is similar to that of coal from North China, indicating that coal combustion is a significant contributor to atmospheric sulfate. The δ34Ssulfate and δ18Osulfate values are positively correlated and display an obvious seasonality (high in winter and low in summer). Although an influence of meteorological conditions to this seasonality in isotopic composition cannot be ruled out, the isotopic evidence suggests that the observed seasonality reflects temporal variations in the two main contributions to Beijing aerosol sulfate, notably biogenic sulfur emissions in the summer and the increasing coal consumption in winter. Our results clearly reveal that a reduction in the use of fossil fuels and the application of desulfurization technology will be important for effectively reducing sulfur emissions to the Beijing atmosphere. PMID:27435991
Silicon isotope fractionation in bamboo and its significance to the biogeochemical cycle of silicon
NASA Astrophysics Data System (ADS)
Ding, T. P.; Zhou, J. X.; Wan, D. F.; Chen, Z. Y.; Wang, C. Y.; Zhang, F.
2008-03-01
A systematic investigation on silica contents and silicon isotope compositions of bamboos was undertaken. Seven bamboo plants and related soils were collected from seven locations in China. The roots, stem, branch and leaves for each plant were sampled and their silica contents and silicon isotope compositions were determined. The silica contents and silicon isotope compositions of bulk and water-soluble fraction of soils were also measured. The silica contents of studied bamboo organs vary from 0.30% to 9.95%. Within bamboo plant the silica contents show an increasing trend from stem, through branch, to leaves. In bamboo roots the silica is exclusively in the endodermis cells, but in stem, branch and leaves, the silica is accumulated mainly in epidermal cells. The silicon isotope compositions of bamboos exhibit significant variation, from -2.3‰ to 1.8‰, and large and systematic silicon isotope fractionation was observed within each bamboo. The δ 30Si values decrease from roots to stem, but then increase from stem, through branch, to leaves. The ranges of δ 30Si values within each bamboo vary from 1.0‰ to 3.3‰. Considering the total range of silicon isotope composition in terrestrial samples is only 7‰, the observed silicon isotope variation in single bamboo is significant and remarkable. This kind of silicon isotope variation might be caused by isotope fractionation in a Rayleigh process when SiO 2 precipitated in stem, branches and leaves gradually from plant fluid. In this process the Si isotope fractionation factor between dissolved Si and precipitated Si in bamboo ( αpre-sol) is estimated to be 0.9981. However, other factors should be considered to explain the decrease of δ 30Si value from roots to stem, including larger ratio of dissolved H 4SiO 4 to precipitated SiO 2 in roots than in stem. There is a positive correlation between the δ 30Si values of water-soluble fractions in soils and those of bulk bamboos, indicating that the dissolved silicon in pore water and phytoliths in soil is the direct sources of silicon taken up by bamboo roots. A biochemical silicon isotope fractionation exists in process of silicon uptake by bamboo roots. Its silicon isotope fractionation factor ( αbam-wa) is estimated to be 0.9988. Considering the distribution patterns of SiO 2 contents and δ 30Si values among different bamboo organs, evapotranspiration may be the driving force for an upward flow of a silicon-bearing fluid and silica precipitation. Passive silicon uptake and transportation may be important for bamboo, although the role of active uptake of silicic acid by roots may not be neglected. The samples with relatively high δ 30Si values all grew in soils showing high content of organic materials. In contrast, the samples with relatively low δ 30Si values all grew in soil showing low content of organic materials. The silicon isotope composition of bamboo may reflect the local soil type and growth conditions. Our study suggests that bamboos may play an important role in global silicon cycle.
Silicon and Zinc Isotopes in Ocean Island Basalts
NASA Astrophysics Data System (ADS)
Pringle, E. A.; Savage, P. S.; Jackson, M. G.; Moreira, M. A.; Day, J. M.; Moynier, F.
2013-12-01
Analyses of Ocean Island Basalts (OIB) have shown that the Earth's mantle contains isotopically distinct components, but current debate about the degree and scale of compositional variability persists. Isotopic heterogeneities in OIB for both radiogenic (e.g. Sr, Nd, Pb) and stable (e.g. Li, O, Ca) isotope systems have been attributed to the presence of recycled materials in different mantle reservoirs [1]. The study of both silicon and zinc isotopes in OIB form a complimentary approach to investigate potential heterogeneities in the mantle. Both isotope systems show limited fractionation during igneous process [2,3]. However, both Si and Zn exhibit larger (>1‰) variability in low-temperature environments (e.g. as a result of chemical weathering and biological utilization). Therefore, Si and Zn isotopes may be useful as tracers for the presence of crustal material (derived from low-T surface processes) in OIB source regions. Furthermore, characterizing the isotopic composition of the mantle is of central importance to the use of these isotopic systems as a basis for interplanetary comparisons. Here we present high-precision Si and Zn isotopic data obtained by MC-ICPMS for a diverse suite of OIB representing the EM-1, EM-2, and HIMU mantle components. Samples represent locations in the Pacific, Atlantic, and Indian Oceans. Data are reported as the permil deviation (×2 sd) from NBS28 for Si (δ30Si) and JMC-Lyon for Zn (δ66Zn). Average δ30Si values for OIB from EM-1 (-0.32×0.09‰), EM-2 (-0.30×0.03‰), and HIMU (-0.34×0.12‰) are all in general agreement with previous estimates for the δ30Si value of Bulk Silicate Earth (BSE) [4]. Similarly, the δ66Zn average values for OIB from the EM-1, EM-2, and HIMU components (0.31×0.06‰, 0.31×0.04‰, 0.31×0.05‰, respectively) agree well with previously published data for the δ66Zn value of BSE [3]. At the current levels of precision, both Si and Zn isotopes exhibit little variation in OIB, confirming the large-scale homogeneity of the mantle for these isotopic systems. Furthermore, when averaged according to surface location, neither Si nor Zn shows any variation in isotopic composition according to oceanic basin. However, some small variations in the data may be present; many HIMU samples (Mangaia, Cape Verde) are enriched in the lighter isotopes of Si (δ30Si tending toward chondritic values), which might reflect preservation of isotopic heterogeneity within the mantle, an incorporation of an isotopically light component in the source of these lavas, or isotopic fractionation during magmatic differentiation. References: [1] Hofmann, RiMG 2007 [2] Savage et al., GCA 2011 [3] Chen et al., EPSL 2013 [4] Savage et al., EPSL 2010
NASA Astrophysics Data System (ADS)
Mora, Germán; Pratt, Lisa M.
2001-06-01
Documentation of paleoclimatic conditions during the last glacial stage in the tropical Andes is sparse despite the importance of understanding past climate changes in the tropics. To reconstruct paleoenvironmental conditions in the alpine neotropics, we measured the oxygen (δ18O) and hydrogen (δD) isotopic composition of authigenic kaolinite within weathering profiles of the Bogota basin (Colombia) because of the strong dependence of isotopic values on both surface temperature and rainfall. While kaolinite isotope data from Holocene soils in the basin reflect modern mean annual temperature and mean weighted rainwater isotopic composition of the basin, kaolinite isotope data from paleosols developed during the last glacial stage suggest 6 ± 2 °C cooler temperatures. Moreover, the isotope data indicate higher isotopic values of paleorainwater, interpreted to reflect drier conditions. The combination of reduced rainfall, temperature, and pCO2 significantly affected the distribution of tropical montane flora during the last glacial stage.
NASA Astrophysics Data System (ADS)
Dreybrodt, Wolfgang; Romanov, Douchko
2016-12-01
The most widely applied climate proxies in speleothems are the isotope compositions of carbon and oxygen expressed by δ13C and δ18O values. However, mechanisms, which are not related to climate changes, overlay the climate signal. One is the temporal increase of both, δ13C and δ18O values by kinetic processes during precipitation of calcite. Isotope exchange between DIC in the water and the CO2 in the surrounding cave atmosphere can also change isotope composition. Here we present a theoretical model of the temporal isotope evolution of DIC in a thin water layer during precipitation of calcite and simultaneous isotope exchange with the cave atmosphere, and simultaneous evaporation of water. The exchange of oxygen isotopes in the DIC with those in the water is also considered.
Shanley, James B.; Mayer, Bernhard; Mitchell, Myron J.; Bailey, Scott W.
2008-01-01
Stable sulfur (S) isotope ratios can be used to identify the sources of sulfate contributing to streamwater. We collected weekly and high-flow stream samples for S isotopic analysis of sulfate through the entire water year 2003 plus the snowmelt period of 2004. The study area was the 41-ha forested W-9 catchment at Sleepers River Research Watershed, Vermont, a site known to produce sulfate from weathering of sulfide minerals in the bedrock. The δ34S values of streamwater sulfate followed an annual sinusoidal pattern ranging from about 6.5‰ in early spring to about 10‰ in early fall. During high-flow events, δ34S values typically decreased by 1 to 3‰ from the prevailing seasonal value. The isotopic evidence suggests that stream sulfate concentrations are controlled by: (1) an overall dominance of bedrock-derived sulfate (δ34S ~ 6–14‰); (2) contributions of pedogenic sulfate (δ34S ~ 5–6‰) during snowmelt and storms with progressively diminishing contributions during base flow recession; and (3) minor effects of dissimilatory bacterial sulfate reduction and subsequent reoxidation of sulfides. Bedrock should not be overlooked as a source of S in catchment sulfate budgets.
Nitrogen stable isotope composition (δ15N) of vehicle-emitted NOx.
Walters, Wendell W; Goodwin, Stanford R; Michalski, Greg
2015-02-17
The nitrogen stable isotope ratio of NOx (δ(15)N-NOx) has been proposed as a regional indicator for NOx source partitioning; however, knowledge of δ(15)N values from various NOx emission sources is limited. This study presents a detailed analysis of δ(15)N-NOx emitted from vehicle exhaust, the largest source of anthropogenic NOx. To accomplish this, NOx was collected from 26 different vehicles, including gasoline and diesel-powered engines, using a modification of a NOx collection method used by the United States Environmental Protection Agency, and δ(15)N-NOx was analyzed. The vehicles sampled in this study emitted δ(15)N-NOx values ranging from -19.1 to 9.8‰ that negatively correlated with the emitted NOx concentrations (8.5 to 286 ppm) and vehicle run time because of kinetic isotope fractionation effects associated with the catalytic reduction of NOx. A model for determining the mass-weighted δ(15)N-NOx from vehicle exhaust was constructed on the basis of average commute times, and the model estimates an average value of -2.5 ± 1.5‰, with slight regional variations. As technology improvements in catalytic converters reduce cold-start emissions in the future, it is likely to increase current δ(15)N-NOx values emitted from vehicles.
Paleoenvironmental implications of taxonomic variation among δ 15 N values of chloropigments
NASA Astrophysics Data System (ADS)
Higgins, Meytal B.; Wolfe-Simon, Felisa; Robinson, Rebecca S.; Qin, Yelun; Saito, Mak A.; Pearson, Ann
2011-11-01
Natural variations in the ratios of nitrogen isotopes in biomass reflect variations in nutrient sources utilized for growth. In order to use δ 15N values of chloropigments of photosynthetic organisms to determine the corresponding δ 15N values of biomass - and by extension, surface waters - the isotopic offset between chlorophyll and biomass must be constrained. Here we examine this offset in various geologically-relevant taxa, grown using nutrient sources that may approximate ocean conditions at different times in Earth's history. Phytoplankton in this study include cyanobacteria (diazotrophic and non-diazotrophic), eukaryotic algae (red and green), and anoxygenic photosynthetic bacteria (Proteobacteria), as well as environmental samples from sulfidic lake water. Cultures were grown using N 2, NO 3-, and NH 4+ as nitrogen sources, and were examined under different light regimes and growth conditions. We find surprisingly high variability in the isotopic difference (δ 15N biomass - δ 15N chloropigment) for prokaryotes, with average values for species ranging from -12.2‰ to +11.7‰. We define this difference as ɛpor, a term that encompasses diagenetic porphyrins and chlorins, as well as chlorophyll. Negative values of ɛpor reflect chloropigments that are 15N-enriched relative to biomass. Notably, this enrichment appears to occur only in cyanobacteria. The average value of ɛpor for freshwater cyanobacterial species is -9.8 ± 1.8‰, while for marine cyanobacteria it is -0.9 ± 1.3‰. These isotopic effects group environmentally but not phylogenetically, e.g., ɛpor values for freshwater Chroococcales resemble those of freshwater Nostocales but differ from those of marine Chroococcales. Our measured values of ɛpor for eukaryotic algae (range = 4.7-8.7‰) are similar to previous reports for pure cultures. For all taxa studied, values of ɛpor do not depend on the type of nitrogen substrate used for growth. The observed environmental control of ɛpor suggests that values of ɛpor could be useful for determining the fractional burial of eukaryotic vs. cyanobacterial organic matter in the sedimentary record.
Titanium stable isotopic variations in chondrites, achondrites and lunar rocks
NASA Astrophysics Data System (ADS)
Greber, Nicolas D.; Dauphas, Nicolas; Puchtel, Igor S.; Hofmann, Beda A.; Arndt, Nicholas T.
2017-09-01
Titanium isotopes are potential tracers of processes of evaporation/condensation in the solar nebula and magmatic differentiation in planetary bodies. To gain new insights into the processes that control Ti isotopic variations in planetary materials, 25 komatiites, 15 chondrites, 11 HED-clan meteorites, 5 angrites, 6 aubrites, a martian shergottite, and a KREEP-rich impact melt breccia have been analyzed for their mass-dependent Ti isotopic compositions, presented using the δ49Ti notation (deviation in permil of the 49Ti/47Ti ratio relative to the OL-Ti standard). No significant variation in δ49Ti is found among ordinary, enstatite, and carbonaceous chondrites, and the average chondritic δ49Ti value of +0.004 ± 0.010‰ is in excellent agreement with the published estimate for the bulk silicate Earth, the Moon, Mars, and the HED and angrite parent-bodies. The average δ49Ti value of komatiites of -0.001 ± 0.019‰ is also identical to that of the bulk silicate Earth and chondrites. OL-Ti has a Ti isotopic composition that is indistinguishable from chondrites and is therefore a suitable material for reporting δ49Ti values. Previously published isotope data on another highly refractory element, Ca, show measurable variations among chondrites. The decoupling between Ca and Ti isotope systematics most likely occurred during condensation in the solar nebula. Aubrites exhibit significant variations in δ49Ti, from -0.07 to +0.24‰. This is likely due to the uniquely reducing conditions under which the aubrite parent-body differentiated, allowing chalcophile Ti3+ and lithophile Ti4+ to co-exist. Consequently, the observed negative correlation between δ49Ti values and MgO concentrations among aubrites is interpreted to be the result of isotope fractionation driven by the different oxidation states of Ti in this environment, such that isotopically heavy Ti4+ was concentrated in the residual liquid during magmatic differentiation. Finally, KREEPy impact melt breccia SaU 169 exhibits a heavy δ49Ti value of +0.330 ± 0.034‰ which is interpreted to result from Ti isotopic fractionation during ilmenite precipitation in the late stages of lunar magma ocean crystallization. A Rayleigh distillation calculation predicts that a δ49Ti value of +0.330‰ is achieved after removal of 94% of Ti in ilmenite.
NASA Astrophysics Data System (ADS)
Conrad, T. A.; Nielsen, S.; Ehrenbrink, B. P. E.; Blusztajn, J.; Hein, J. R.; Paytan, A.
2015-12-01
The Monterey Canyon off central California is the largest submarine canyon off North America and is comparable in scale to the Grand Canyon. The age and history of the Monterey Canyon are poorly constrained due to thick sediment cover and sediment disruption from turbidity currents. To address this deficit we analyzed isotopic proxies (Os, Pb, Nd) from hydrogenetic ferromanganese (Fe-Mn) crusts, which grow over millions of years on elevated rock surfaces by precipitation of metals from seawater. Fe-Mn crusts were studied from Davidson Seamount near the base of the Monterey submarine fan, the Taney Seamount Chain, and from Hoss Seamount, which serves as a regional control (Fig.). Fe-Mn crusts were dated using Os isotope ratios compared to those that define the Cenozoic Os isotope seawater curve. Four Fe-Mn crust samples from Davidson and Taney Seamounts deviate from the Os isotopic seawater curve towards radiogenic values after 4.5±1 Ma. Osmium is well mixed in the global ocean and is not subject to significant diffusive reequilibration in Fe-Mn crusts. We therefore attribute deviations from the Os isotope seawater curve to large-scale terrestrial input that ended about 4.5±1 Ma. The two Davidson samples also show more radiogenic Nd isotope values from about 4.5±1 Ma. Lead isotopes in one Davidson Seamount crust, measured by LA-ICPMS, deviate from regional values after 4.5±1 Ma for about 500 ka towards terrestrial sources. The Taney Seamount Fe-Mn crust does not deviate from regional Nd nor Pb isotope values due to its greater distance from Monterey Canyon and the shorter marine residence times of Nd and Pb. Isotope plots of our crust data and compiled data for potential source rocks indicate that the river that carved Monterey Canyon carried sediment with values closer to the Sierra Nevada than to a Colorado Plateau source, with cessation of major riverine input occurring approximately 4.5±1 Ma, an age that we interpret as the end of the Monterey Canyon incision.
The Science of Inaccurate Temperatures: Explaining How the Bahamas Did Not Form in a Jacuzzi
NASA Astrophysics Data System (ADS)
Murray, S.; Swart, P. K.; McNeill, D. F.
2016-12-01
The Bahamas archipelago is a carbonate platform that formed in the warm waters of the Gulf Stream current. Using clumped isotope paleothermometry, it has been shown that carbonates extending back through the Miocene taken from cores throughout the Bahamas have all precipitated from fluids at temperatures similar to what is found in the Bahamas in the present day (15 to 35°C). However, in a single core, (Clino), collected off the western edge of Great Bahama Bank, Δ47 values have been measured which suggest formation at significantly warmer temperatures (42 to 53°C). These values are present in spite of the fact that the sediments have never been deeply buried. In a parallel study, these same cores were measured for their carbonate associated sulfate (CAS). The only core that presented evidence of elevated CAS, indicative of bacterial sulfate reduction (BSR), was the Clino core. In this core the clumped isotope temperatures are correlated with changes in the δ34S of the CAS. This finding suggests that BSR can have a significant effect on the Δ47 value producing erroneous temperatures. This is further supported by examining a carbonate concretion with extreme negative δ13C values (-30‰) taken as evidence of BSR. The clumped isotope temperatures in this nodule are elevated relative to its burial history with an increase of 15 °C from the outer edge of the concretion to the center. The increase in temperature correlates well with the decreasing δ13C suggesting increasing fractionation associated with BSR is directly impacting the clumped isotope measurements.
Isotopic constraints on ice age fluids in active geothermal systems: Reykjanes, Iceland
NASA Astrophysics Data System (ADS)
Pope, Emily C.; Bird, Dennis K.; Arnórsson, Stefán; Fridriksson, Thráinn; Elders, Wilfred A.; Fridleifsson, Gudmundur Ó.
2009-08-01
The Reykjanes geothermal system is located on the landward extension of the Mid-Atlantic Ridge in southwest Iceland, and provides an on-land proxy to high-temperature hydrothermal systems of oceanic spreading centers. Previous studies of elemental composition and salinity have shown that Reykjanes geothermal fluids are likely hydrothermally modified seawater. However, δD values of these fluids are as low as -23‰, which is indicative of a meteoric water component. Here we constrain the origin of Reykjanes hydrothermal solutions by analysis of hydrogen and oxygen isotope compositions of hydrothermal epidote from geothermal drillholes at depths between 1 and 3 km. δDEPIDOTE values from wells RN-8, -9, -10 and -17 collectively range from -60 to -78‰, and δ18OEPIDOTE in these wells are between -3.0 and 2.3‰. The δD values of epidote generally increase along a NE trend through the geothermal field, whereas δ18O values generally decrease, suggesting a southwest to northeast migration of the geothermal upflow zone with time that is consistent with present-day temperatures and observed hydrothermal mineral zones. For comparative analysis, the meteoric-water dominated Nesjavellir and Krafla geothermal systems, which have a δDFLUID of ˜ -79‰ and -89‰, respectively, show δDEPIDOTE values of -115‰ and -125‰. In contrast, δDEPIDOTE from the mixed meteoric-seawater Svartsengi geothermal system is -68‰; comparable to δDEPIDOTE from well RN-10 at Reykjanes. Stable isotope compositions of geothermal fluids in isotopic equilibrium with the epidotes at Reykjanes are computed using published temperature dependent hydrogen and oxygen isotope fractionation curves for epidote-water, measured isotope composition of the epidotes and temperatures approximated from the boiling point curve with depth. Calculated δD and δ18O of geothermal fluids are less than 0‰, suggesting that fluids of meteoric or glacial origin are a significant component of the geothermal solutions. Additionally, δDFLUID values in equilibrium with geothermal epidote are lower than those of modern-day fluids, whereas calculated δ18OFLUID values are within range of the observed fluid isotope composition. We propose that modern δDEPIDOTE and δDFLUID values are the result of diffusional exchange between hydrous alteration minerals that precipitated from glacially-derived fluids early in the evolution of the Reykjanes system and modern seawater-derived geothermal fluids. A simplified model of isotope exchange in the Reykjanes geothermal system, in which the average starting δDROCK value is -125‰ and the water to rock mass ratio is 0.25, predicts a δDFLUID composition within 1‰ of average measured values. This model resolves the discrepancy between fluid salinity and isotope composition of Reykjanes geothermal fluids, explains the observed disequilibrium between modern fluids and hydrothermal epidote, and suggests that rock-fluid interaction is the dominant control over the evolution of fluid isotope composition in the hydrothermal system.
Bian, Xiao-Peng; Yang, Tao; Lin, An-Jun; Jiang, Shao-Yong
2015-01-01
We have developed a technique for the rapid, precise and accurate determination of sulfur isotopes (δ(34)S) by MC-ICP-MS applicable to a range of sulfur-bearing solutions of different sulfur content. The 10 ppm Alfa-S solution (ammonium sulfate solution, working standard of the lab of the authors) was used to bracket other Alfa-S solutions of different concentrations and the measured δ(34)SV-CDT values of Alfa-S solutions deviate from the reference value to varying degrees (concentration effect). The stability of concentration effect has been verified and a correction curve has been constructed based on Alfa-S solutions to correct measured δ(34)SV-CDT values. The curve has been applied to AS solutions (dissolved ammonium sulfate from the lab of the authors) and pore water samples successfully, validating the reliability of our analytical method. This method also enables us to measure the sulfur concentration simultaneously when analyzing the sulfur isotope composition. There is a strong linear correlation (R(2)>0.999) between the sulfur concentrations and the intensity ratios of samples and the standard. We have constructed a regression curve based on Alfa-S solutions and this curve has been successfully used to determine sulfur concentrations of AS solutions and pore water samples. The analytical technique presented here enable rapid, precise and accurate S isotope measurement for a wide range of sulfur-bearing solutions - in particular for pore water samples with complex matrix and varying sulfur concentrations. Also, simultaneous measurement of sulfur concentrations is available. Copyright © 2014 Elsevier B.V. All rights reserved.
Controls of precipitation δ18O on the northwestern Tibetan Plateau: A case study at Ngari station
NASA Astrophysics Data System (ADS)
Guo, Xiaoyu; Tian, Lide; Wen, Rong; Yu, Wusheng; Qu, Dongmei
2017-06-01
The shifting atmospheric circulation between the Indian monsoon and the westerlies on the northwestern Tibetan Plateau (TP) influences precipitation as well as precipitation isotopes. Isotopic records will therefore show historical fluctuations. To understand better the factors controlling present day precipitation δ18O values on the northwestern TP, we made continuous observations of precipitation isotopes at Ngari station from 2010 to 2013. The drivers of precipitation δ18O were investigated using analyses of their statistical relations with temperature, precipitation amount, relative humidity, and convective activities based on outgoing longwave radiation (OLR) data from NOAA satellites, and downward shortwave radiation (DSR) data collected at the Ngari automatic weather station. Atmospheric circulation patterns from NCAR reanalysis, and moisture transport paths of individual events derived from the HYSPLIT model using NCEP data, were also used to trace moisture sources. The results of our study include: (1) The slope and intercept of the Local Meteoric Water Line (LMWL) at Ngari (δD = 8.51 δ18O + 11.57 (R2 = 0.97, p < 0.01)) were higher than for the Global Meteoric Water Line (GMWL), indicating drier local climatic conditions; (2) Precipitation δ18O values showed a weak ;temperature effect; and a weak ;precipitation amount effect; at Ngari; and (3) Convection (or temperature patterns) integrated over several days (0-20) preceding each event were determined to be the main driver of precipitation isotopic values in monsoon (or non-monsoon) season. The longer (shorter) periods of τm days when correlation coefficients between precipitation δ18O and OLR were at their maxima (minima) indicate deep convective activities (shorter moisture transportation pathways) in August (June, July, and September).
Rossman, Sam; Barros, Nélio B.; Ostrom, Peggy H.; Stricker, Craig A.; Hohn, Aleta A.; Gandhi, Hasand; Wells, Randall S.
2013-01-01
We used stable isotope analysis to investigate the foraging ecology of coastal bottlenose dolphins (Tursiops truncatus) in relation to a series of anthropogenic disturbances. We first demonstrated that stable isotopes are a faithful indicator of habitat use by comparing muscle isotope values to behavioral foraging data from the same individuals. δ13C values increased, while δ34S and δ15N values decreased with the percentage of feeding observations in seagrass habitat. We then utilized stable isotope values of muscle to assess temporal variation in foraging habitat from 1991 to 2010 and collagen from tooth crown tips to assess the time period 1944 to 2007. From 1991 to 2010, δ13C values of muscle decreased while δ34S values increased indicating reduced utilization of seagrass habitat. From 1944 to 1989 δ13C values of the crown tip declined significantly, likely due to a reduction in the coverage of seagrass habitat and δ15N values significantly increased, a trend we attribute to nutrient loading from a rapidly increasing human population. Our results demonstrate the utility of using marine mammal foraging habits to retrospectively assess the extent to which anthropogenic disturbance impacts coastal food webs.
Preservation of Fe Isotope Proxies in the Rock Record
NASA Astrophysics Data System (ADS)
Johnson, C.; Beard, B.; Valley, J.; Valaas, E.
2005-12-01
Iron isotope variations provide powerful constraints on redox conditions and pathways involved during biogeochemical cycling of Fe in surface and near-surface environments. The relative isotopic homogeneity of igneous rocks and most bulk weathering products contrasts with the significant isotopic variations (4 per mil in 56Fe/54Fe) that accompany oxidation of Fe(II)aq, precipitation of sulfides, and reduction by bacteria. These isotopic variations often reflect intrinsic (equilibrium) Fe isotope fractionations between minerals and aqueous species whose interactions may be directly or indirectly catalyzed by bacteria. In addition, Fe isotope exchange may be limited between reactive Fe pools in low-temperature aqueous-sediment environments, fundamentally reflecting disequilibrium effects. In the absence of significant sulfide, dissimilatory Fe(III) reduction by bacteria produces relatively low 56Fe/54Fe ratios for Fe(II)aq and associated biogenic minerals such as magnetite and siderite. In contrast, Fe(II)aq that exchanges with Fe sulfides (FeS and pyrite) is relatively enriched in 56Fe/54Fe ratios. In modern and ancient environments, anoxic diagenesis tends to produce products that have low 56Fe/54Fe ratios, whereas oxidation of Fe(II)aq from hydrothermal sources tends to produce ferric Fe products that have high 56Fe/54Fe ratios. Redox cycling by bacteria tends to produce reactive ferric Fe reservoirs that have low 56Fe/54Fe ratios. Application of Fe isotopes as a proxy for redox conditions in the ancient rock record depends upon the preservation potential during metamorphism, given the fact that most Archean sedimentary sequences have been subjected to regional greenschist- to granulite-facies metamorphism. The 1.9 Ga banded iron formations (BIFs) of the Lake Superior region that are intruded by large ~1 Ga intrusions (e.g., Duluth gabbro) provide a test of the preservation potential for primary, low-temperature Fe isotope variations in sedimentary rocks. 56Fe/54Fe ratios for re-crystallized magnetite from BIFs of the Biwabik iron formation that have apparent oxygen-isotope (quartz-magnetite) temperatures between 270 and 800 oC span a significant portion of the range measured in lower-grade BIFs from South Africa and Australia. d56Fe values for Biwabik magnetite vary from -0.2 to +0.7 per mil, whereas magnetite from the Dales Gorge member of the Brockman iron formation and the Kuruman iron formation has d56Fe values that lie between -1.2 and +1.3 per mil. Iron isotope fractionations between magnetite and Fe silicates (greenalite, hedenbergite, and fayalite) in the Biwabik iron formation regularly decrease with increasing oxygen-isotope temperatures, approaching the zero fractionation expected at igneous temperatures; apparent magnetite-Fe silicate fractionations range from +0.2 per mil at 650 oC to +0.5 per mil at 300 oC, lying close to those predicted using the revised beta factors of Polyakov et al. (2005, Goldschmidt). During closed-system Fe isotope exchange during metamorphism, the overall range in d56Fe values for magnetite will remain relatively constant, although it may shift to higher d56Fe values relative to primary (low-temperature) magnetite due to the non-zero magnetite-Fe silicate fractionation factor at moderate temperature ranges. If the mineral parageneis is known, and some assumptions regarding primary mineralogy can be made, these small corrections may be made to successfully infer the original Fe isotope compositions of sedimentary minerals and rocks that have been subjected to metamorphism.
Beisner, Kimberly R.; Paretti, Nicholas V.; Tucci, Rachel S.
2016-04-25
Stable isotope delta values (δ18O and δ2H) of precipitation can vary with elevation, and quantification of the precipitation elevation gradient can be used to predict recharge elevation within a watershed. Precipitation samples were analyzed for stable isotope delta values between 2003 and 2014 from the Verde River watershed of north-central Arizona. Results indicate a significant decrease in summer isotopic values overtime at 3,100-, 4,100-, 6,100-, 7,100-, and 8,100-feet elevation. The updated local meteoric water line for the area is δ2H = 7.11 δ18O + 3.40. Equations to predict stable isotopic values based on elevation were updated from previous publications in Blasch and others (2006), Blasch and Bryson (2007), and Bryson and others (2007). New equations were separated for samples from the Camp Verde to Flagstaff transect and the Prescott to Chino Valley transect. For the Camp Verde to Flagstaff transect, the new equations for winter precipitation are δ18O = -0.0004z − 8.87 and δ2H = -0.0029z − 59.8 (where z represents elevation in feet) and the summer precipitation equations were not statistically significant. For the Prescott to Chino Valley transect, the new equations for summer precipitation are δ18O = -0.0005z − 3.22 and δ2H = -0.0022z − 27.9; the winter precipitation equations were not statistically significant and, notably, stable isotope values were similar across all elevations. Interpretation of elevation of recharge contributing to surface and groundwaters in the Verde River watershed using the updated equations for the Camp Verde to Flagstaff transect will give lower elevation values compared with interpretations presented in the previous studies. For waters in the Prescott and Chino Valley area, more information is needed to understand local controls on stable isotope values related to elevation.
NASA Astrophysics Data System (ADS)
Balascio, N.; D'Andrea, W. J.; Anderson, R. S.
2016-12-01
Leaf wax hydrogen isotopes have been used to track changes in the isotopic composition of meteoric waters in a variety of locations. However, leaf wax compounds preserved in sedimentary environments reflect a mix of plant sources that can have a large range of molecular distributions and biosynthetic fractionation factors potentially complicating paleoclimate interpretations. Here we attempt to constrain the influence of vegetation type on leaf wax hydrogen isotope values at an ombrotrophic bog in northern Norway. We present: (i) δD values of n-alkanes from modern bog vegetation to establish the influence of vegetation type on n-alkane distributions and to provide a site-specific assessment of the biosynthetic isotopic fractionation, and (ii) δD values of n-alkanes from a sediment core spanning the last 10 ka where vegetation changes have been reconstructed based on pollen analysis. We found 14 different vegetation types growing on the bog surface that have average chain lengths from 25 to 30.5 and δD values of n-C25 to n-C33 ranging from -197‰ to -116‰. These samples also have a range of δD values among n-alkane homologues, from 1‰ to 33‰. Based on isotopic measurements of modern bog water, we calculate the average apparent fractionation of n-alkanes to be -108 ± 22‰. Sedimentary δD values of n-C25 to n-C33 over the last 10 ka range from -229 to -158‰ with distinct trends among mid- and long-chain length homologues. Changes in chain lengths and δD values, at times, correspond to vegetation shifts documented by pollen data, but also show unique trends that we interpret to represent variations in local precipitation isotopes related to past hydroclimate change.
Bjerregaard, Peter; Larsen, Christina V L; Dahl-Petersen, Inger K; Buchardt, Bjørn
2017-09-10
We assessed the use of stable isotopes of carbon and nitrogen as biomarkers for traditional versus store-bought food among the Inuit. Furthermore, we compared the isotope patterns among sociocultural population groups. As a part of a country-wide health survey in Greenland during 2005-2010, we analyzed the isotope composition of toenails from 1025 adult Inuit and meat of common species hunted for food. Information on diet and sociocultural variables was collected by interviews. Weighted by sex and place of residence to the total population of Inuit in Greenland, the average δ 13 C value in toenails was -20.2‰ and the δ 15 N value was 12.0‰ which are higher than in a general Danish omnivorous population. Both isotopes were significantly associated with other biomarkers of marine food and with results of a Food Frequency Questionnaire (FFQ). The percentage of marine food in the diet was estimated at 21% from the mean δ 13 C value, 25% from the mean δ 15 N value, and 23% from the FFQ. Nail samples for analysis of stable isotopes of carbon and nitrogen were convenient to collect during a large population health survey among the Inuit. Isotope enrichment levels showed statistically significant associations with other biomarkers for consumption of marine food and with results of an FFQ and were used to estimate the percentage of marine food in the diet. Isotope levels were significantly associated with a novel score of sociocultural transition. © 2017 Wiley Periodicals, Inc.
Acosta-Pachón, Tatiana A; Ortega-García, Sofia; Graham, Brittany
2015-09-30
Billfishes, such as marlin, are top pelagic predators that play an important role in maintaining the stability of marine food webs. Notwithstanding the importance of these species, there remain gaps in our knowledge on their movements, foraging, and trophic status in the early stage of life. We measured the δ(13)C and δ(15)N values in each annual growth band deposited in the dorsal spine from striped marlin caught off Cabo San Lucas, Mexico, to produce retrospective isotopic profiles that would enable us to detect any significant isotopic changes across development. The samples were analyzed using an elemental analyzer coupled to an isotope ratio mass spectrometer. There was no relationship between the size of striped marlin and the δ(15) N values. Differences in δ(15)N mean values across different age classes were not significant and the variation in δ(15)N values through the marlins' life cycle was less than 2‰. However, the mean δ(15)N values between individuals varied by up to 6‰. The δ(13)C values increased as a function of age, and the mean δ(13)C values varied significantly between age classes. Fin spines can be used to construct retrospective isotopic histories for the investigation of trophic dynamics and migratory histories in billfishes, for which population dynamics are often poorly known. Copyright © 2015 John Wiley & Sons, Ltd.
Isotopic variability of cave bears (δ15N, δ13C) across Europe during MIS 3
NASA Astrophysics Data System (ADS)
Krajcarz, Magdalena; Pacher, Martina; Krajcarz, Maciej T.; Laughlan, Lana; Rabeder, Gernot; Sabol, Martin; Wojtal, Piotr; Bocherens, Hervé
2016-01-01
Collagen, the organic fraction of bone, records the isotopic parameters of consumed food for carbon (δ13C) and nitrogen (δ15N). This relationship of isotopic signature between diet and tissue is an important tool for the study of dietary preferences of modern and fossil animal species. Since the first information on the isotopic signature of cave bear was reported, numerous data from Europe have become available. The goal of this work is to track the geographical variation of cave bear collagen isotopic values in Europe during Marine Isotopic Stage 3 (about 60,000-25,000 yr BP). In this study the results of new δ13C and δ15N isotopic analyses of cave bear collagen from four Central-Eastern European sites are presented, as well as a review of all published isotopic data for cave bears of the same period. The main conclusion is a lack of geographical East-West pattern in the variations of δ13C and δ15N values of cave bear collagen. Moreover, no relationship was found between cave bear taxonomy and isotopic composition. The cave bears from Central-Eastern Europe exhibit δ13C and δ15N values near the average of the range of Central, Western and Southern European cave bears. Despite the fact that most cave bear sites follow an altitudinal gradient, separate groups of sites exhibit shift in absolute values of δ13C, what disturbs an altitude-related isotopic pattern. The most distinct groups are: high Alpine sites situated over 1500 m a.s.l. - in terms of δ13C; and two Romanian sites Peştera cu Oase and Urşilor - in case of δ15N. Although the cave bear isotopic signature is driven by altitude, the altitudinal adjustment of isotopic data is not enough to explain the isotopic dissimilarity of these cave bears. The unusually high δ15N signature of mentioned Romanian sites is an isolated case in Europe. Cave bears from relatively closely situated Central-Eastern European sites and other Romanian sites are more similar to Western European than to Romanian populations in terms of isotopic composition, and probably ecology.
Schimmelmann, Arndt; Albertino, Andrea; Sauer, Peter E; Qi, Haiping; Molinie, Roland; Mesnard, François
2009-11-01
Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the delta values of these reference materials should bracket the isotopic range of samples with unknown delta values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW-SLAP) and carbonates (NBS 19 and L-SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA-IRMS). At present only L-glutamic acids USGS40 and USGS41 satisfy these requirements for delta13C and delta15N, with the limitation that L-glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on-line (i.e. continuous flow) hydrogen reductive gas chromatography-isotope ratio mass-spectrometry (GC-IRMS), (ii) five nicotines for oxidative C, N gas chromatography-combustion-isotope ratio mass-spectrometry (GC-C-IRMS, or GC-IRMS), and (iii) also three acetanilide and three urea reference materials for on-line oxidative EA-IRMS for C and N. Isotopic off-line calibration against international stable isotope measurement standards at Indiana University adhered to the 'principle of identical treatment'. The new reference materials cover the following isotopic ranges: delta2H(nicotine) -162 to -45 per thousand, delta13C(nicotine) -30.05 to +7.72 per thousand, delta15N(nicotine) -6.03 to +33.62 per thousand; delta15N(acetanilide) +1.18 to +40.57 per thousand; delta13C(urea) -34.13 to +11.71 per thousand, delta15N(urea) +0.26 to +40.61 per thousand (recommended delta values refer to calibration with NBS 19, L-SVEC, IAEA-N-1, and IAEA-N-2). Nicotines fill a gap as the first organic nitrogen stable isotope reference materials for GC-IRMS that are available with different delta15N values. Comparative delta13C and delta15N on-line EA-IRMS data from 14 volunteering laboratories document the usefulness and reliability of acetanilides and ureas as EA-IRMS reference materials. Copyright 2009 John Wiley & Sons, Ltd.
The symmetry energy, neutron skin thickness and isovector dipole response of neutron-rich nuclei
NASA Astrophysics Data System (ADS)
Horvat, A.; Paar, N.
2015-04-01
The isotopic evolution of the relationship between the symmetry energy at saturation density of nuclear matter (J), neutron skin thickness (ΔR) and relevant observables related to isovector dipole excitations in neutron rich 116-136Sn isotopes has been investigated in the framework of relativistic nuclear energy density functional theory. The description employs a family of effective interactions with density dependent meson-nucleon couplings (DDME) spanning the range of values J = 30 - 38 MeV.
NASA Astrophysics Data System (ADS)
Sherwood, Owen A.; Jamieson, Robyn E.; Edinger, Evan N.; Wareham, Vonda E.
2008-10-01
With the aim of understanding of the trophic ecology of cold-water corals, this paper explores the tissue δ13C and δ15N values of 11 'coral' species (8 alcyonacean, 1 antipatharian, 1 pennatulacean, 1 scleractinian) collected along the Newfoundland and Labrador continental slope. Isotopic results delimit species along continua of trophic level and food lability. With an isotopic signature similar to macrozooplankton, Paragorgia arborea occupies the lowest trophic level and most likely feeds on fresh phytodetritus. Primnoa resedaeformis occupies a slightly higher trophic level, likely supplementing its diet with microzooplankton. Bathypathes arctica, Pennatulacea and other alcyonaceans ( Acanella arbuscula, Acanthogorgia armata, Anthomastus grandiflorus, Duva florida, Keratoisis ornata, Paramuricea sp.) had higher δ13C and δ15N values, suggesting these species feed at higher trophic levels and on a greater proportion of more degraded POM. Flabellum alabastrum had an isotopic signature similar to that of snow crab, indicating a primarily carnivorous diet. Isotopic composition did not vary significantly over a depth gradient of 50-1400 m. Coral δ13C increased slightly (<1‰) from the Hudson Strait to the southern Grand Banks, but δ15N did not. By modulating the availability and quality of suspended foods, substrate likely exerts a primary influence on the feeding habits of cold-water corals.
NASA Astrophysics Data System (ADS)
Wang, Yong; Zhou, Lian; Gao, Shan; Li, Jian-Wei; Hu, Zhi-Fang; Yang, Lu; Hu, Zhao-Chu
2016-02-01
We present Mo isotopic ratios of molybdenite from five porphyry molybdenum deposits (Chagele, Sharang, Jiru, Qulong, and Zhuonuo) and one quartz-molybdenite vein-type deposit (Jigongcun) along the Gangdese metallogenic belt in the Tibetan Plateau. These deposits represent a sequence of consecutive events of the India-Asia collision at different periods. Additional molybdenite samples from the Henderson Mo deposit (USA), the oceanic subduction-related El Teniente (Chile), and Bingham (USA) porphyry Cu-(Mo) deposits were analyzed for better understanding the controls on the Mo isotope systematics of molybdenite. The results show that molybdenite from Sharang, Jiru, Qulong, and Zhuonuo deposits have similar δ97Mo (˜0 ‰), in agreement with the values of the Henderson Mo deposit (-0.10 ‰). In contrast, samples from the Changle and Jigongcun deposit have δ97Mo of 0.85 ‰ to 0.88 ‰ and -0.48 %, respectively. Molybdenite from the El Teniente and Bingham deposits yields intermediate δ97Mo of 0.27 and 0.46 ‰, respectively. The Mo isotopes, combined with Nd isotope data of the ore-bearing porphyries, indicate that source of the ore-related magmas has fundamental effects on the Mo isotopic compositions of molybdenite. Our study indicates that molybdenite related to crustal-, and mantle-derived magmas has positive or negative δ97Mo values, respectively, whereas molybdenite from porphyries formed by crust-mantle mixing has δ97Mo close to 0 ‰. It is concluded that the Mo isotope composition in the porphyry system is a huge source signature, without relation to the tectonic setting under which the porphyry deposits formed.
Lignin methoxyl hydrogen isotope ratios in a coastal ecosystem
NASA Astrophysics Data System (ADS)
Feakins, Sarah J.; Ellsworth, Patricia V.; Sternberg, Leonel da Silveira Lobo
2013-11-01
Stable hydrogen isotope ratios of plant lignin methoxyl groups have recently been shown to record the hydrogen isotopic composition of meteoric water. Here we extend this technique towards tracing water source variations across a saltwater to freshwater gradient in a coastal, subtropical forest ecosystem. We measure the hydrogen isotopic composition of xylem water (δDxw) and methoxyl hydrogen (δDmethoxyl) to calculate fractionations for coastal mangrove, buttonwood and hammock tree species in Sugarloaf Key, as well as buttonwoods from Miami, both in Florida, USA. Prior studies of the isotopic composition of cellulose and plant leaf waxes in coastal ecosystems have yielded only a weak correlation to source waters, attributed to leaf water effects. Here we find δDmethoxyl values range from -230‰ to -130‰, across a 40‰ range in δDxw with a regression equation of δDmethoxyl ‰ = 1.8 * δDxw - 178‰ (R2 = 0.48, p < 0.0001, n = 74). This is comparable within error to the earlier published relationship for terrestrial trees which was defined across a much larger 125‰ isotopic range in precipitation. Analytical precision for measurements of δD values of pure CH3I by gas chromatography-pyrolysis-isotope ratio mass spectrometry (GC-P-IRMS) is σ = 6‰ (n = 31), which is considerably better than for CH3I liberated through cleavage with HI from lignin with σ = 18‰ (n = 26). Our results establish that δDmethoxyl can record water sources and salinity incursion in coastal ecosystems, where variations sufficiently exceed method uncertainties (i.e., applications with δD excursions >50‰). For the first time, we also report yields of propyl iodide, which may indicate lignin synthesis of propoxyl groups under salt-stress.
Nutrient Concentrations and Stable Isotopes of Runoff from a Midwest Tile-Drained Corn Field
NASA Astrophysics Data System (ADS)
Wilkins, B. P.; Woo, D.; Li, J.; Michalski, G. M.; Kumar, P.; Conroy, J. L.; Keefer, D. A.; Keefer, L. L.; Hodson, T. O.
2017-12-01
Tile drains are a common crop drainage device used in Midwest agroecosystems. While efficient at drainage, the tiles provide a quick path for nutrient runoff, reducing the time available for microbes to use nutrients (e.g., NO3- and PO43-) and reduce export to riverine systems. Thus, understanding the effects of tile drains on nutrient runoff is critical to achieve nutrient reduction goals. Here we present isotopic and concentration data collected from tile drain runoff of a corn field located near Monticello, IL. Tile flow samples were measured for anion concentrations and stable isotopes of H2O and NO3-, while precipitation was measured for dual isotopes of H2O. Results demonstrate early tile flow from rain events have a low Cl- concentration (<20ppm) with water isotopic values reflecting precipitation, indicating preferential flow (>60% contribution) in the beginning of the hydrograph. As flow continues H2O isotopic values reflect pre-event water (ground and soil water), and Cl- concentrations increase representing a greater influence by matrix flow (60-90% contribution). Nitrate concentrations change dramatically, especially during the growing season, and do not follow a similar trend as the conservative Cl-, often decreasing days before, which represents missing nitrate in the upper surface portion of the soil. Nitrate isotopic data shows significant changes in 15N (4‰) and 18O (4‰) during individual hydrological events, representing that in addition to plant uptake and leaching, considerate NO3- is lost through denitrification. It is notable, that throughout the season d15N and d18O of nitrate change significantly representing that seasonally, substantial denitrification occurs.
NASA Astrophysics Data System (ADS)
Terwilliger, Valery J.; Deniro, Michael J.
1995-12-01
Climatic reconstructions from the δD values of wood cellulose nitrate have been compromised because it is unclear whether the isotopic ratios are affected only by temperature or by temperature and humidity. To quantify the effect of humidity on the δD values of leaf and wood cellulose nitrate, we grew avocados (Persea americana Mill. cv. Mexican) from seed at high and low humidities until they set wood. The source water for seed production was isotopically the same as the source water for seedling propagation. The δD values of leaf cellulose nitrate were related to those of leaf water, which were, in turn, influenced by humidity ( P < 0.01). The δD values of wood cellulose nitrate were unrelated to those of leaf water or any other indicator of humidity, but were related to the δD values of water in wood ( P ⩽ 0.05). The δD values of wood cellulose nitrate were identical in three out of five pairs of low and high humidity treatments. These results suggest humidity cannot be reliably inferred from δD values in wood cellulose nitrate. The δD values of cellulose nitrate in both leaves and wood appear to have been influenced by the incorporation of stored metabolites into cellulose. Trees, like avocado seedlings, have considerable post-photosynthetic organic reserves that can be tapped for growth. Conditions that stimulate use of post-photosynthetic carbon reserves are varied for trees. Significant contributions from these reserves could lead to erroneous temperature inferences from δD values of wood cellulose nitrate.
[Monitoring and Analysis of Stable Isotopes of the Near Surface Water Vapor in Changsha].
Xie, Yu-long; Zhang, Xin-ping; Yao, Tian-ci; Huang, Huang
2016-02-15
Based on the monitored atmospheric water vapor stable isotopes and observed meteorological elements at Changsha during the period from November 12, 2014 to April 13, 2015, the variations of water vapor stable isotopes and the relationships between isotope ratios and temperature, absolute humidity, precipitation amount were analyzed in this paper. The results indicated that: (1) Seasonal variations of delta18O and 82H in atmospheric water vapor at Changsha were remarkable, with high values in winter. delta18O and delta2H in atmospheric water vapor were positively correlated with absolute humidity in winter. There were some fluctuations of the delta18O and delta2H in atmospheric water vapor, especially when the precipitation events occurred. Precipitation events had a significant effect on the variations of delta18O and delta2H in atmospheric water vapor, and low values were often accompanied with precipitation events; (2) Diurnal Variations of delta18O and delta2H in atmospheric water vapor had a close correlation with the atmospheric water vapor content, whereas the absolute humidity was mainly controlled by the strength of the local evapotranspiration and atmospheric turbulence. The "precipitation amount effect" was observed during the process of a single precipitation event; (3) Values of delta18O and delta2H in atmospheric water vapor were always lower than those of precipitation in Changsha, but he variation trends were completely consistent, the average difference values were 8.6% per hundred and 66.82% per hundred, respectively; (4) The meteoric vapor line (MVL) in cold months was delta2H =7.18 delta18O + 10.58, the slope and intercept of MVL were always lower than those of MWL, and the slope and intercept of MVL in spring were significantly higher than those of winter.
Thermal conductivity of high purity synthetic single crystal diamonds
NASA Astrophysics Data System (ADS)
Inyushkin, A. V.; Taldenkov, A. N.; Ralchenko, V. G.; Bolshakov, A. P.; Koliadin, A. V.; Katrusha, A. N.
2018-04-01
Thermal conductivity of three high purity synthetic single crystalline diamonds has been measured with high accuracy at temperatures from 6 to 410 K. The crystals grown by chemical vapor deposition and by high-pressure high-temperature technique demonstrate almost identical temperature dependencies κ (T ) and high values of thermal conductivity, up to 24 W cm-1K-1 at room temperature. At conductivity maximum near 63 K, the magnitude of thermal conductivity reaches 285 W cm-1K-1 , the highest value ever measured for diamonds with the natural carbon isotope composition. Experimental data were fitted with the classical Callaway model for the lattice thermal conductivity. A set of expressions for the anharmonic phonon scattering processes (normal and umklapp) has been proposed which gives an excellent fit to the experimental κ (T ) data over almost the whole temperature range explored. The model provides the strong isotope effect, nearly 45%, and the high thermal conductivity (>24 W cm-1K-1 ) for the defect-free diamond with the natural isotopic abundance at room temperature.
Bergamaschi, B.A.; Fram, M.S.; Kendall, C.; Silva, S.R.; Aiken, G.R.; Fujii, R.
1999-01-01
The ??13C values of individual trihalomethanes (THM) formed on reaction of chlorine with dissolved organic carbon (DOC) leached from maize (corn, Zea maize L) and Scirpus acutus (an aquatic bulrush), and with DOC extracted from agricultural drainage waters were determined using purge and trap introduction into a gas chromatograph-combustion-isotope ratio monitoring mass spectrometer. We observed a 1-6.8??? difference between the ??13C values of THM produced from the maize and Scirpus leachates, similar to the isotopic difference between the whole plant materials. Both maize and Scirpus formed THM 12??? lower in 13C than whole plant material. We suggest that the low value of the THM relative to the whole plant material is evidence of distinct pools of THM-forming DOC, representing different biochemical types or chemical structures, and possessing different environmental reactivity Humic extracts of waters draining an agricultural field containing Scirpus peat soils and planted with maize formed THM with isotopic values intermediate between those of maize and Scirpus leachates, indicating maize may contribute significantly to the THM-forming DOC. The difference between the ??13C values of the whole isolate and that of the THM it yielded was 3 9???, however, suggesting diagenesis plays a role in determining the ??13C value of THM-forming DOC in the drainage waters, and precluding the direct use of isotopic mixing models to quantitatively attribute sources.The ??13C values of individual trihalomethanes (THM) formed on reaction of chlorine with dissolved organic carbon (DOC) leached from maize (corn; Zea maize L.) and Scirpus acutus (an aquatic bulrush), and with DOC extracted from agricultural drainage waters were determined using purge and trap introduction into a gas chromatograph-combustion-isotope ratio monitoring mass spectrometer. We observed a 16.8qq difference between the ??13C values of THM produced from the maize and Scirpus leachates, similar to the isotopic difference between the whole plant materials. Both maize and Scirpus formed THM 12qq lower in 13C than whole plant material. We suggest that the low value of the THM relative to the whole plant material is evidence of distinct pools of THM-forming DOC, representing different biochemical types or chemical structures, and possessing different environmental reactivity. Humic extracts of waters draining an agricultural field containing Scirpus peat soils and planted with maize formed THM with isotopic values intermediate between those of maize and Scirpus leachates, indicating maize may contribute significantly to the THM-forming DOC. The difference between the ??13C values of the whole isolate and that of the THM it yielded was 3.9qq, however, suggesting diagenesis plays a role in determining the ??13C value of THM-forming DOC in the drainage waters, and precluding the direct use of isotopic mixing models to quantitatively attribute sources.
NASA Astrophysics Data System (ADS)
Fenn, C.; Martin, E. E.; Basak, C.
2011-12-01
Comparisons of seawater and detrital Pb isotopes from sites proximal to Antarctica at the Eocene/Oligocene transition (EOT) are being used to understand variations in continental weathering associated with the development of the East Antarctic Ice Sheet (EAIS). Previous work has shown that seawater and detrital archives yield similar isotopic values during Eocene warmth, which is interpreted to record congruent chemical weathering of the continent. In contrast, distinct isotopic values for the two phases at the EOT represents increased incongruent mechanical weathering during growth of the ice sheet. For this study we expanded beyond the initial glaciation at the EOT to determine whether less dramatic changes in ice volume and climate also produce variations in weathering and intensity that are recorded by seawater and detrital Pb isotopes. We collected Nd and Pb isotope data from extractions of Fe-Mn oxide coatings of bulk decarbonated marine sediments, which preserve seawater isotopic values, and from complete dissolutions of the remaining silicate fraction for Ocean Drilling Program Site 748 on Kerguelen Plateau (1300 m modern water depth). The data spans an interval of deglaciation from ~23.5-27 Ma documented by δ18O that has been equated to a ~30% decrease in ice volume on Antarctica (Pekar and Christie-Blick, 2008, Palaeogeogr., Palaeoclim., Palaeoecol.). Initial results from Site 748 include the first ɛNd values for intermediate waters in the Oligocene Southern Ocean and reveal a value of ~-8 over the entire 3.5 my interval, which is consistent with values reported for deep Indian Ocean sites at this time and similar to deeper Southern Ocean sites. Corresponding detrital ɛNd values are less radiogenic and decrease from -9 to -13 during the study interval. Detrital 206Pb/204Pb values also decrease during the warming interval, while seawater 206Pb/204Pb values increase. The decrease in detrital values indicates the composition of source materials entering the ocean changed as the ice sheet waned. Increasing seawater 206Pb/204Pb may record enhanced chemical weathering under conditions of greater water availability and warmer temperatures combined with abundant rock flour created during the preceding glacial advance. As previous studies have documented initial weathering leachates tend to be more radiogenic than the parent rock composition. Alternatively, seawater values during warming in the late Oligocene approach values recorded during initial ice sheet expansion at the EOT in Site 738, which may suggest Pb isotope variations in seawater and detrital residues are not sensitive to less dramatic intervals of climate change and ice sheet dynamics. We plan to continue this study into the Pliocene to see if we can identify the timing of the transition from a wet-based to dry-based EAIS, an event that is likely to have profound consequences for weathering on Antarctica and the offset between the two Pb isotope archives.
NASA Astrophysics Data System (ADS)
Harris, Chris; le Roux, Petrus; Cochrane, Ryan; Martin, Laure; Duncan, Andrew R.; Marsh, Julian S.; le Roex, Anton P.; Class, Cornelia
2015-07-01
Oxygen isotope compositions of Karoo and Etendeka large igneous province (LIP) picrites and picrite basalts are presented to constrain the effects of crustal contamination versus mantle source variation. Olivine and orthopyroxene phenocrysts from lavas and dykes (Mg# 64-80) from the Tuli and Mwenezi (Nuanetsi) regions of the ca 180 Ma Karoo LIP have δ18O values that range from 6.0 to 6.7 ‰. They appear to have crystallized from magmas having δ18O values about 1-1.5 ‰ higher than expected in an entirely mantle-derived magma. Olivines from picrite and picrite basalt dykes from the ca 135 Ma Etendeka LIP of Namibia and Karoo-age picrite dykes from Dronning Maud Land, Antarctica, do not have such elevated δ18O values. A range of δ18O values from 4.9 to 6.0 ‰, and good correlations between δ18O value and Sr, Nd and Pb isotope ratios for the Etendeka picrites are consistent with previously proposed models of crustal contamination. Explanations for the high δ18O values in Tuli/Mwenezi picrites are limited to (1) alteration, (2) crustal contamination, and (3) derivation from mantle with an abnormally high δ18O. Previously, a variety of models that range from crustal contamination to derivation from the `enriched' mantle lithosphere have been suggested to explain high concentrations of incompatible elements such as K, and average ɛNd and ɛSr values of -8 and +16 in Mwenezi (Nuanetsi) picrites. However, the primitive character of the magmas (Mg# 73), combined with the lack of correlation between δ18O values and radiogenic isotopic compositions, MgO content, or Mg# is inconsistent with crustal contamination. Thus, an 18O-enriched mantle source having high incompatible trace element concentration and enriched radiogenic isotope composition is indicated. High δ18O values are accompanied by negative Nb and Ta anomalies, consistent with the involvement of the mantle lithosphere, whereas the high δ18O themselves are consistent with an eclogitic source. Magma δ18O values about 1 ‰ higher than expected for mantle-derived magma are also a feature of the Bushveld mafic and ultramafic magmas, and the possibility exists that a long-lived 18O-enriched mantle source has existed beneath southern Africa. A mixed eclogite peridotite source could have developed by emplacement of oceanic lithosphere into the cratonic keel during Archaean subduction.
NASA Astrophysics Data System (ADS)
Scholl, M. A.; Shanley, J. B.; Occhi, M.; Scatena, F. N.
2012-12-01
Like many mountainous areas in the tropics, watersheds in the Luquillo Mountains of Puerto Rico (18.3° N) have abundant rainfall and stream discharge, but relatively little storage capacity. Therefore, the water supply is vulnerable to drought and water availability may be affected by projected changes in regional temperature and atmospheric dynamics due to global warming. To help determine the links between climate and water availability, precipitation patterns were analyzed, and stable-isotope signatures of precipitation from different seasonal weather systems were established to identify those that are most important in maintaining streamflow and groundwater recharge. Stable isotope data include cloud water, rainfall, throughfall, streamflow, and groundwater from the Rio Mameyes and Rio Icacos/ Rio Blanco watersheds. Precipitation inputs have a wide range of stable isotope values, from fog/cloud water with δ2H and δ18O averaging +3.2‰, -1.74‰ respectively, to tropical storm rain with values as low as -154‰, -20.4‰. Spatial and temporal patterns of water isotopic values on this Caribbean island are different than higher latitude, continental watersheds. The data exhibit a 'reverse seasonality', with higher isotopic values in winter and lower values in summer; and stable isotope values of stream water do not decrease as expected with increasing altitude, because of cloud water input. Rain isotopic values vary predictably with local and mesoscale weather patterns and correlate strongly with cloud altitude. This correlation allows us to assign isotopic signatures to different sources of precipitation, and to investigate which climate patterns contribute to streamflow and groundwater recharge. At a measurement site at 615 m in the Luquillo Mountains, the average length of time between rain events was 15 h, and 45% of the rain events were <2 mm, reflecting the frequent small rain events of the trade-wind orographic rainfall weather pattern. Long-term average streamflow isotopic composition indicates a disproportionately large contribution of this trade-wind precipitation to streamflow, highlighting the importance of this climate pattern to the hydrology of the watersheds. Isotopic composition of groundwater suggests a slightly higher proportion of convective precipitation, but still smaller than in total rainfall. Hydrograph separation experiments yielded information on stormflow characteristics, with quantification of contributing sources determined from water isotopes and solute chemistry. The evidence that intense convective rain events run off and light trade-wind showers appear to contribute much of the baseflow indicates that the area may undergo a change in water supply if the trade-wind orographic precipitation dynamics in the Caribbean are affected by future climate change.
NASA Astrophysics Data System (ADS)
Barth, Susanne; Oberli, Felix; Meier, Martin; Blattner, Peter; Bargossi, Giuseppe M.; Di Battistini, Gianfranco
1993-09-01
Geochemical and Sr-Nd-O isotopic data presented for basaltic andesitic to rhyolitic and for quartz noritic to monzogranitic rock suites from the Late Hercynian calc-alkaline Atesina volcanic complex (AVC) and the Cima d'Asta pluton (CAP), Southern Alps (northern Italy), provide information on both the primary magmatic processes and the effects of (mainly Triassic) hydrothermal overprint. Fluid infiltration led to mobilization of major and trace elements (K 2O, Na 2O, CaO, Rb, Sr, and Ba), opensystem behavior in total-rock Rb-Sr, and shift in δ18O to elevated values (total rock up to 16.6%. and volcanic matrix up to 17.8%.). Oxygen isotopic disequilibrium between quartz-feldspar pairs suggests water-rock interaction at medium/low temperatures. The δ18O values of quartz, the REE characterized by regular LREE enrichment/HREE depletion, and the Sm-Nd isotopic signatures, however, remained virtually unaffected by secondary processes. The initial ɛNd values (at 270 Ma) of the AVC and CAP magmatites are restricted to overlapping ranges of -3.6 to -6.5 and of -2.7 to -6.5, respectively, indicating significant crustal contribution; these values and associated T DM model ages of 1.1-1.6 Ga agree well with those of typical South Alpine lower crustal magmatites. The AVC and CAP rocks do not follow the "normal" trend of increasingly crustal Nd isotopic signatures with progressive degree of magma evolution expected for a single-stage AFC-type process, but instead display an inversion of this relationship. Geochemical and isotopic constraints favor a model of a large-scale MASH-type melting and mixing zone at or near the base of the continental crust. Distinct elemental enrichment/depletion and REE crossover patterns displayed by high-silica as compared to less silicic AVC rhyolites suggest subsequent magma evolution within a shallow-level compositionally zoned chamber.
Altitude effect on leaf wax carbon isotopic composition in humid tropical forests
NASA Astrophysics Data System (ADS)
Wu, Mong Sin; Feakins, Sarah J.; Martin, Roberta E.; Shenkin, Alexander; Bentley, Lisa Patrick; Blonder, Benjamin; Salinas, Norma; Asner, Gregory P.; Malhi, Yadvinder
2017-06-01
The carbon isotopic composition of plant leaf wax biomarkers is commonly used to reconstruct paleoenvironmental conditions. Adding to the limited calibration information available for modern tropical forests, we analyzed plant leaf and leaf wax carbon isotopic compositions in forest canopy trees across a highly biodiverse, 3.3 km elevation gradient on the eastern flank of the Andes Mountains. We sampled the dominant tree species and assessed their relative abundance in each tree community. In total, 405 sunlit canopy leaves were sampled across 129 species and nine forest plots along the elevation profile for bulk leaf and leaf wax n-alkane (C27-C33) concentration and carbon isotopic analyses (δ13C); a subset (76 individuals, 29 species, five forest plots) were additionally analyzed for n-alkanoic acid (C22-C32) concentrations and δ13C. δ13C values display trends of +0.87 ± 0.16‰ km-1 (95% CI, r2 = 0.96, p < 0.01) for bulk leaves and +1.45 ± 0.33‰ km-1 (95% CI, r2 = 0.94, p < 0.01) for C29n-alkane, the dominant chain length. These carbon isotopic gradients are defined in multi-species sample sets and corroborated in a widespread genus and several families, suggesting the biochemical response to environment is robust to taxonomic turnover. We calculate fractionations and compare to adiabatic gradients, environmental variables, leaf wax n-alkane concentrations, and sun/shade position to assess factors influencing foliar chemical response. For the 4 km forested elevation range of the Andes, 4-6‰ higher δ13C values are expected for upland versus lowland C3 plant bulk leaves and their n-alkyl lipids, and we expect this pattern to be a systematic feature of very wet tropical montane environments. This elevation dependency of δ13C values should inform interpretations of sedimentary archives, as 13C-enriched values may derive from C4 grasses, petrogenic inputs or upland C3 plants. Finally, we outline the potential for leaf wax carbon isotopes to trace biomarker sourcing within catchments and for paleoaltimetry.
S-33 constraints on the seawater sulfate contribution in modern seafloor hydrothermal vent sulfides
Ono, Shuhei; Shanks, Wayne C.; Rouxel, O.J.; Rumble, D.
2007-01-01
Sulfide sulfur in mid-oceanic ridge hydrothermal vents is derived from leaching of basaltic-sulfide and seawater-derived sulfate that is reduced during high temperature water rock interaction. Conventional sulfur isotope studies, however, are inconclusive about the mass-balance between the two sources because 34S/32S ratios of vent fluid H2S and chimney sulfide minerals may reflect not only the mixing ratio but also isotope exchange between sulfate and sulfide. Here, we show that high-precision analysis of S-33 can provide a unique constraint because isotope mixing and isotope exchange result in different ??33S (?????33S-0.515 ??34S) values of up to 0.04??? even if ??34S values are identical. Detection of such small ??33S differences is technically feasible by using the SF6 dual-inlet mass-spectrometry protocol that has been improved to achieve a precision as good as 0.006??? (2??). Sulfide minerals (marcasite, pyrite, chalcopyrite, and sphalerite) and vent H2S collected from four active seafloor hydrothermal vent sites, East Pacific Rise (EPR) 9-10??N, 13??N, and 21??S and Mid-Atlantic Ridge (MAR) 37??N yield ??33S values ranging from -0.002 to 0.033 and ??34S from -0.5??? to 5.3???. The combined ??34S and ??33S systematics reveal that 73 to 89% of vent sulfides are derived from leaching from basaltic sulfide and only 11 to 27% from seawater-derived sulfate. Pyrite from EPR 13??N and marcasite from MAR 37??N are in isotope disequilibrium not only in ??34S but also in ??33S with respect to associated sphalerite and chalcopyrite, suggesting non-equilibrium sulfur isotope exchange between seawater sulfate and sulfide during pyrite precipitation. Seafloor hydrothermal vent sulfides are characterized by low ??33S values compared with biogenic sulfides, suggesting little or no contribution of sulfide from microbial sulfate reduction into hydrothermal sulfides at sediment-free mid-oceanic ridge systems. We conclude that 33S is an effective new tracer for interplay among seawater, oceanic crust and microbes in subseafloor hydrothermal sulfur cycles. ?? 2006 Elsevier Inc. All rights reserved.
The reduction and oxidation of ceria: A natural abundance triple oxygen isotope perspective
NASA Astrophysics Data System (ADS)
Hayles, Justin; Bao, Huiming
2015-06-01
Ceria (CeO2) is a heavily studied material in catalytic chemistry for use as an oxygen storage medium, oxygen partial pressure regulator, fuel additive, and for the production of syngas, among other applications. Ceria powders are readily reduced and lose structural oxygen when subjected to low pO2 and/or high temperature conditions. Such dis-stoichiometric ceria can then re-oxidize under higher pO2 and/or lower temperature by incorporating new oxygen into the previously formed oxygen site vacancies. Despite extensive studies on ceria, the mechanisms for oxygen adsorption-desorption, dissociation-association, and diffusion of oxygen species on ceria surface and within the crystal structure are not well known. We predict that a large kinetic oxygen isotope effect should accompany the release and incorporation of ceria oxygen. As the first attempt to determine the existence and the degree of the isotope effect, this study focuses on a set of simple room-temperature re-oxidation experiments that are also relevant to a laboratory procedure using ceria to measure the triple oxygen isotope composition of CO2. Triple-oxygen-isotope labeled ceria powders are heated at 700 °C and cooled under vacuum prior to exposure to air. By combining results from independent experimental sets with different initial oxygen isotope labels and using a combined mass-balance and triangulation approach, we have determined the isotope fractionation factors for both high temperature reduction in vacuum (⩽10-4 mbar) and room temperature re-oxidation in air. Results indicate that there is a 1.5‰ ± 0.8‰ increase in the δ18O value of ceria after being heated in vacuum at 700 °C for 1 h. When the vacuum is broken at room temperature, the previously heated ceria incorporates 3-19% of its final structural oxygen from air, with a δ18O value of 2.1-4.1+7.7 ‰ for the incorporated oxygen. The substantial incorporation of oxygen from air supports that oxygen mobility is high in vacancy-rich ceria during re-oxidation at room temperature. The quantified oxygen isotope fractionation factors are consistent with the direct involvement of O2 in the rate limiting step for ceria reoxidation in air at room temperature. While additional parameters may reduce some of the uncertainties in our approach, this study demonstrates that isotope effects can be an encouraging tool for studying oxygen transport kinetics in ceria and other oxides. In addition, our finding warns of the special cares and limits in using ceria as an exchange medium for laboratory triple oxygen isotope analysis of CO2 or other oxygen-bearing gases.
Stein, Ross L
2002-01-22
Aryl acylamidase (EC 3.1.5.13; AAA) catalyzes the hydrolysis of p-nitroacetanilide (PNAA) via the standard three-step mechanism of serine hydrolases: binding of substrate (K(s)), acylation of active-site serine (k(acyl)), and hydrolytic deacylation (k(deacyl)). Key mechanistic findings that emerged from this study include that (1) AAA requires a deprotonated base with a pK(a) of 8.3 for expression of full activity toward PNAA. Limiting values of kinetic parameters at high pH are k(c) = 7 s(-1), K(m) = 20 microM, and k(c)/K(m) = 340 000 M(-1) s(-1). (2) At pH 10, where all the isotope effects were conducted, k(c) is equally rate-limited by k(acyl) and k(deacyl). (3) The following isotope effects were determined: (D)()2(O)(k(c)/K(m)) = 1.7 +/- 0.2, (D)()2(O)k(c) = 3.5 +/- 0.3, and (beta)(D)(k(c)/K(m)) = 0.83 +/- 0.04, (beta)(D)k(c) = 0.96 +/- 0.01. These values, together with proton inventories for k(c)/K(m) and k(c), suggest the following mechanism: (i) The initial binding of substrate to enzyme to form the Michaelis complex is accompanied by solvation changes that generate solvent deuterium isotope effects originating from hydrogen ion fractionation at multiple sites on the enzyme surface. (ii) From within the Michaelis complex, the active site serine attacks the carbonyl carbon of PNAA with general-base catalysis to form a substantially tetrahedral transition state enroute to the acyl-enzyme. (iii) Finally, deacylation occurs through a process involving a rate-limiting solvent isotope effect, generating conformational change of the acyl-enzyme that positions the carbonyl bond in a polarizing environment that is optimal for attack by water.