Science.gov

Sample records for isotope exchange reactions

  1. The Kinetics of Isotopic Exchange Reactions.

    ERIC Educational Resources Information Center

    Logan, S. R.

    1990-01-01

    Discussed are the kinetic interactions of these chemical processes and the determination of the actual order of such reactions. Included are multiple exchange, catalytic exchange with deuterium, and depletion of the original substrate. (CW)

  2. Separation of the isotopes of boron by chemical exchange reactions

    DOEpatents

    McCandless, Frank P.; Herbst, Ronald S.

    1995-01-01

    The isotopes of boron, .sup.10 B and .sup.11 B, are separated by means of a gas-liquid chemical exchange reaction involving the isotopic equilibrium between gaseous BF.sub.3 and a liquid BF.sub.3 . donor molecular addition complex formed between BF.sub.3 gas and a donor chosen from the group consisting of: nitromethane, acetone, methyl isobutyl ketone, or diisobutyl ketone.

  3. Separation of the isotopes of boron by chemical exchange reactions

    DOEpatents

    McCandless, F.P.; Herbst, R.S.

    1995-05-30

    The isotopes of boron, {sup 10}B and {sup 11}B, are separated by means of a gas-liquid chemical exchange reaction involving the isotopic equilibrium between gaseous BF{sub 3} and a liquid BF{sub 3} donor molecular addition complex formed between BF{sub 3} gas and a donor chosen from the group consisting of: nitromethane, acetone, methyl isobutyl ketone, or diisobutyl ketone. 1 Fig.

  4. Analysis of the galactosyltransferase reaction by positional isotope exchange and secondary deuterium isotope effects

    SciTech Connect

    Kim, S.C.; Singh, A.N.; Raushel, F.M.

    1988-11-15

    The mechanism of the galactosyltransferase-catalyzed reaction was probed using positional isotope exchange, alpha-secondary deuterium isotope effects, and inhibition studies with potential transition state analogs. Incubation of (beta-18O2, alpha beta-18O)UDP-galactose and alpha-lactalbumin with galactosyltransferase from bovine milk did not result in any positional isotope exchange. The addition of 4-deoxy-4-fluoroglucose as a dead-end inhibitor did not induce any detectable positional isotope exchange. alpha-Secondary deuterium isotope effects of 1.21 +/- 0.04 on Vmax and 1.05 +/- 0.04 on Vmax/KM were observed for (1-2H)-UDP-galactose. D-Glucono-1,5-lactone, D-galactono-1,4-lactone, D-galactono-1,5-lactone, nojirimycin, and deoxynojirimycin, did not inhibit the galactosyl transfer reaction at concentrations less than 1.0 mM. The magnitude of the secondary deuterium isotope effect supports a mechanism in which the anomeric carbon of the galactosyl moiety has substantial sp2 character in the transition state. Therefore, the cleavage of the bond between the galactose and UDP moieties in the transition state has proceeded to a much greater extent than the formation of the bond between the galactose and the incoming glucose. The lack of a positional isotope exchange reaction indicates that the beta-phosphoryl group of the UDP is not free to rotate in the absence of an acceptor substrate.

  5. Theoretical investigation of isotope exchange reaction in tritium-contaminated mineral oil in vacuum pump.

    PubMed

    Dong, Liang; Xie, Yun; Du, Liang; Li, Weiyi; Tan, Zhaoyi

    2015-04-28

    The mechanism of the isotope exchange reaction between molecular tritium and several typical organic molecules in vacuum pump mineral oil has been investigated by density functional theory (DFT), and the reaction rates are determined by conventional transition state theory (TST). The tritium-hydrogen isotope exchange reaction can proceed with two different mechanisms, the direct T-H exchange mechanism and the hyrogenation-dehydrogenation exchange mechanism. In the direct exchange mechanism, the titrated product is obtained through one-step via a four-membered ring hydrogen migration transition state. In the hyrogenation-dehydrogenation exchange mechanism, the T-H exchange could be accomplished by the hydrogenation of the unsaturated bond with tritium followed by the dehydrogenation of HT. Isotope exchange between hydrogen and tritium is selective, and oil containing molecules with OH and COOH groups can more easily exchange hydrogen for tritium. For aldehydes and ketones, the ability of T-H isotope exchange can be determined by the hydrogenation of T2 or the dehydrogenation of HT. The molecules containing one type of hydrogen provide a single product, while the molecules containing different types of hydrogens provide competitive products. The rate constants are presented to quantitatively estimate the selectivity of the products.

  6. Fast chemical and isotopic exchange of nitrogen during reaction with hot molybdenum

    NASA Astrophysics Data System (ADS)

    Yokochi, Reika; Marty, Bernard

    2006-07-01

    Molybdenum crucibles are commonly used to extract nitrogen from geological samples by induction heating. Because nitrogen is known to be reactive with certain metals (e.g., Ti and Fe), we have tested the reactivity of gaseous nitrogen with a Mo crucible held at 1800°C. The consumption of nitrogen, determined by monitoring the N2/40Ar ratio of the gas phase, varied between 25 and 100%, depending on the reaction duration. Nitrogen of the reacted gas was found to be systematically enriched in 15N relative to 14N by 10‰ compared to the initial isotopic composition, without any correlation with nitrogen consumption. We propose that a rapid isotopic exchange occurs between nitrogen originally trapped in the crucible and nitrogen from the gas phase, which modifies the isotopic composition of the reacted gas. This process can significantly bias the isotopic determination of nitrogen in rocks and minerals when a Mo furnace is used for gas extraction. Meanwhile, the rate of N-Mo chemical bonding may be controlled by the formation of nitride (rather than solid solution), a process slower than the isotopic exchange. The use of a Mo furnace for the extraction of trace nitrogen from rocks and minerals should therefore be avoided.

  7. Hydrogen and oxygen isotope exchange reactions between clay minerals and water

    USGS Publications Warehouse

    O'Neil, J.R.; Kharaka, Y.K.

    1976-01-01

    The extent of hydrogen and oxygen isotope exchange between clay minerals and water has been measured in the temperature range 100-350?? for bomb runs of up to almost 2 years. Hydrogen isotope exchange between water and the clays was demonstrable at 100??. Exchange rates were 3-5 times greater for montmorillonite than for kaolinite or illite and this is attributed to the presence of interlayer water in the montmorillonite structure. Negligible oxygen isotope exchange occurred at these low temperatures. The great disparity in D and O18 exchange rates observed in every experiment demonstrates that hydrogen isotope exchange occurred by a mechanism of proton exchange independent of the slower process of O18 exchange. At 350?? kaolinite reacted to form pyrophyllite and diaspore. This was accompanied by essentially complete D exchange but minor O18 exchange and implies that intact structural units in the pyrophyllite were inherited from the kaolinite precursor. ?? 1976.

  8. Magnetic isotope effect and theory of atomic orbital hybridization to predict a mechanism of chemical exchange reactions.

    PubMed

    Epov, Vladimir N

    2011-08-07

    A novel approach is suggested to investigate the mechanisms of chemical complexation reactions based on the results of Fujii with co-workers; they have experimentally observed that several metals and metalloids demonstrate mass-independent isotope fractionation during the reactions with the DC18C6 crown ether using solvent-solvent extraction. In this manuscript, the isotope fractionation caused by the magnetic isotope effect is used to understand the mechanisms of chemical exchange reactions. Due to the rule that reactions are allowed for certain electron spin states, and forbidden for others, magnetic isotopes show chemical anomalies during these reactions. Mass-independent fractionation is suggested to take place due to the hyperfine interaction of the nuclear spin with the electron spin of the intermediate product. Moreover, the sign of the mass-independent fractionation is found to be dependent on the element and its species, which is also explained by the magnetic isotope effect. For example, highly negative mass-independent isotope fractionation of magnetic isotopes was observed for reactions of DC18C6 with SnCl(2) species and with several Ru(III) chloro-species, and highly positive for reactions of this ether with TeCl(6)(2-), and with several Cd(II) and Pd(II) species. The atomic radius of an element is also a critical parameter for the reaction with crown ether, particularly the element ions with [Kr]4d(n)5s(m) electron shell fits the best with the DC18C6 crown ring. It is demonstrated that the magnetic isotope effect in combination with the theory of orbital hybridization can help to understand the mechanism of complexation reactions. The suggested approach is also applied to explain previously published mass-independent fractionation of Hg isotopes in other types of chemical exchange reactions.

  9. Oxygen isotope biogeochemistry of pore water sulfate in the deep biosphere: Dominance of isotope exchange reactions with ambient water during microbial sulfate reduction (ODP Site 1130)

    NASA Astrophysics Data System (ADS)

    Wortmann, Ulrich G.; Chernyavsky, Boris; Bernasconi, Stefano M.; Brunner, Benjamin; Böttcher, Michael E.; Swart, Peter K.

    2007-09-01

    Microbially mediated sulfate reduction affects the isotopic composition of dissolved and solid sulfur species in marine sediments. Experiments and field data show that the δ18O composition is also modified in the presence of sulfate-reducing microorganisms. This has been attributed either to a kinetic isotope effect during the reduction of sulfate to sulfite, cell-internal exchange reactions between enzymatically-activated sulfate (APS), and/or sulfite with cytoplasmic water. The isotopic fingerprint of these processes may be further modified by the cell-external reoxidation of sulfide to elemental sulfur, and the subsequent disproportionation to sulfide and sulfate or by the oxidation of sulfite to sulfate. Here we report δ18O values from interstitial water samples of ODP Leg 182 (Site 1130) and provide the mathematical framework to describe the oxygen isotope fractionation of sulfate during microbial sulfate reduction. We show that a purely kinetic model is unable to explain our δ18O data, and that the data are well explained by a model using oxygen isotope exchange reactions. We propose that the oxygen isotope exchange occurs between APS and cytoplasmic water, and/or between sulfite and adenosine monophosphate (AMP) during APS formation. Model calculations show that cell external reoxidation of reduced sulfur species would require up to 3000 mol/m 3 of an oxidant at ODP Site 1130, which is incompatible with the sediment geochemical data. In addition, we show that the volumetric fluxes required to explain the observed δ18O data are on average 14 times higher than the volumetric sulfate reduction rates (SRR) obtained from inverse modeling of the porewater data. The ratio between the gross sulfate flux into the microbes and the net sulfate flux through the microbes is depth invariant, and independent of sulfide concentrations. This suggests that both fluxes are controlled by cell density and that cell-specific sulfate reduction rates remain constant with depth.

  10. Measurements of 18O18O and 17O18O in the atmosphere and the role of isotope-exchange reactions

    NASA Astrophysics Data System (ADS)

    Yeung, Laurence Y.; Young, Edward D.; Schauble, Edwin A.

    2012-09-01

    Of the six stable isotopic variants of O2, only three are measured routinely. Observations of natural variations in 16O18O/16O16O and 16O17O/16O16O ratios have led to insights in atmospheric, oceanographic, and paleoclimate research. Complementary measurements of the exceedingly rare 18O18O and 17O18O isotopic variants might therefore broaden our understanding of oxygen cycling. Here we describe a method to measure natural variations in these multiply substituted isotopologues of O2. Its accuracy is demonstrated by measuring isotopic effects for Knudsen diffusion and O2 electrolysis in the laboratory that are consistent with theoretical predictions. We then report the first measurements of 18O18O and 17O18O proportions relative to the stochastic distribution of isotopes (i.e., Δ36 and Δ35 values, respectively) in tropospheric air. Measured enrichments in 18O18O and 17O18O yield Δ36 = 2.05 ± 0.24‰ and Δ35 = 1.4 ± 0.5‰ (2σ). Based on the results of our electrolysis experiment, we suggest that autocatalytic O(3P) + O2 isotope exchange reactions play an important role in regulating the distribution of 18O18O and 17O18O in air. We constructed a box model of the atmosphere and biosphere that includes the effects of these isotope exchange reactions, and we find that the biosphere exerts only a minor influence on atmospheric Δ36 and Δ35 values. O(3P) + O2 isotope exchange in the stratosphere and troposphere is therefore expected to govern atmospheric Δ36 and Δ35 values on decadal timescales. These results suggest that the `clumped' isotopic composition of atmospheric O2in ice core records is sensitive to past variations in atmospheric dynamics and free-radical chemistry.

  11. Evidence for o-atom exchange in the O(1D) + N2O reaction as the source of mass-independent isotopic fractionation in atmospheric N2O.

    SciTech Connect

    Miller, Charles E.; Liang, Mao-Chang; Blake, Geoffrey A.; Muller, Richard Partain; Yung, Yuk L.

    2004-07-01

    Recent experiments have shown that in the oxygen isotopic exchange reaction for O({sup 1}D) + CO{sub 2} the elastic channel is approximately 50% that of the inelastic channel [Perri et al., 2003]. We propose an analogous oxygen atom exchange reaction for the isoelectronic O({sup 1}D) + N{sub 2}O system to explain the mass-independent isotopic fractionation (MIF) in atmospheric N{sub 2}O. We apply quantum chemical methods to compute the energetics of the potential energy surfaces on which the O({sup 1}D) + N{sub 2}O reaction occurs. Preliminary modeling results indicate that oxygen isotopic exchange via O({sup 1}D) + N{sub 2}O can account for the MIF oxygen anomaly if the oxygen atom isotopic exchange rate is 30-50% that of the total rate for the reactive channels.

  12. An algorithm for the deconvolution of mass spectroscopic patterns in isotope labeling studies. Evaluation for the hydrogen-deuterium exchange reaction in ketones.

    PubMed

    Gruber, Christian C; Oberdorfer, Gustav; Voss, Constance V; Kremsner, Jennifer M; Kappe, C Oliver; Kroutil, Wolfgang

    2007-07-20

    An easy to use computerized algorithm for the determination of the amount of each labeled species differing in the number of incorporated isotope labels based on mass spectroscopic data is described and evaluated. Employing this algorithm, the microwave-assisted synthesis of various alpha-labeled deuterium ketones via hydrogen-deuterium exchange with deuterium oxide was optimized with respect to time, temperature, and degree of labeling. For thermally stable ketones the exchange of alpha-protons was achieved at 180 degrees C within 40-200 min. Compared to reflux conditions, the microwave-assisted protocol led to a reduction of the required reaction time from 75-94 h to 40-200 min. The alpha-labeled deuterium ketones were reduced by biocatalytic hydrogen transfer to the corresponding enantiopure chiral alcohols and the deconvolution algorithm validated by regression analysis of a mixture of labeled and unlabeled ketones/alcohols.

  13. Isotopic exchange of uranium. II. Exchange kinetics in solution-organic-ion exchanger systems

    SciTech Connect

    Ryzhinskii, M.V.; Bronzov, P.A.; Vitinskii, M.Yu.

    1987-07-01

    The results of a study of the sorption of uranium and the kinetics of isotopic exchange between uranium(IV) and uranium(VI) in systems consisting of a hydrochloric acid solution and the KU-2-8P and AV-17-10P ion-exchange resins have been studied. It has been shown that the sorption of uranium is limited by diffusion in the sorbent grains and that isotopic exchange is limited by the reaction between uranium(IV) and uranium(VI).

  14. Quasiclassical trajectory studies of 18O(3P) + NO2 isotope exchange and reaction to O2 + NO on D0 and D1 potentials

    NASA Astrophysics Data System (ADS)

    Fu, Bina; Zhang, Dong H.; Bowman, Joel M.

    2013-07-01

    We report quasiclassical trajectory calculations for the bimolecular reaction 18O(3P) + NO2 on the recent potential energy surfaces of the ground (D0) and first excited (D1) states of NO3 [B. Fu, J. M. Bowman, H. Xiao, S. Maeda, and K. Morokuma, J. Chem. Theory. Comput. 9, 893 (2013)], 10.1021/ct3009792. The branching ratio of isotope exchange versus O2 + NO formation, as well as the product angular distributions and energy and rovibrational state distributions are presented. The calculations are done at the collision energy of relevance to recent crossed beam experiments [K. A. Mar, A. L. Van Wyngarden, C.-W. Liang, Y. T. Lee, J. J. Lin, and K. A. Boering, J. Chem. Phys. 137, 044302 (2012)], 10.1063/1.4736567. Very good agreement is achieved between the current calculations and these experiments for the branching ratio and final translational energy and angular distributions of isotope exchange products 16O(3P) + NO2 and O2 + NO formation products. The reactant 18O atom results in 18O16O but not N18O for the O2 + NO formation product channel, consistent with the experiment. In addition, the detailed vibrational and rotational state information of diatomic molecules calculated currently for the 34O2 + NO formation channel on D0 and D1 states are in qualitative agreement with the previous experimental and theoretical results of the photodissociation of NO3 and are consistent with older thermal bimolecular kinetics measurements.

  15. Investigation of hydrogen isotope exchange reaction rate in mixed gas (H{sub 2} and D{sub 2}) at pressure up to 200 MPa using Raman spectroscopy

    SciTech Connect

    Tikhonov, V.V.; Yukhimchuk, A.A.; Musyayev, R.K.; Gurkin, A.I.

    2015-03-15

    Raman spectroscopy is a relevant method for obtaining objective data on isotopic exchange rate in a gaseous mix of hydrogen isotopes, since it allows one to determine a gaseous mix composition in real time without sampling. We have developed a high-pressure fiber-optic probe to be used for obtaining protium Raman spectra under pressures up to 400 MPa and we have recorded spectral line broadening induced by molecule collisions starting from ∼ 40 MPa. Using this fiber-optic probe we have performed experiments to study isotopic exchange kinetics in a gaseous mix of hydrogen isotopes (protium-deuterium) at pressures up to 200 MPa. Preliminary results show that the dependence of the average isotopic exchange rate related to pressure take unexpected values at the very beginning of the time evolution. More work is required to understand this inconsistency.

  16. Rate of oxygen isotope exchange between selenate and water.

    PubMed

    Kaneko, Masanori; Poulson, Simon R

    2012-04-17

    The rate of oxygen isotope exchange between selenate and water was investigated at conditions of 10 to 80 °C and pH -0.6 to 4.4. Oxygen isotope exchange proceeds as a first-order reaction, and the exchange rate is strongly affected by reaction temperature and pH, with increased rates of isotope exchange at higher temperature and lower pH. Selenate speciation (HSeO(4)(-) vs SeO(4)(2-)) also has a significant effect on the rate of isotope exchange. The half-life for isotope exchange at example natural conditions (25 °C and pH 7) is estimated to be significantly in excess of 10(6) years. The very slow rate of oxygen isotope exchange between selenate and water under most environmental conditions demonstrates that selenate-δ(18)O signatures produced by biogeochemical processes will be preserved and hence that it will be possible to use the value of selenate-δ(18)O to investigate the biogeochemical behavior of selenate, in an analogous fashion to the use of sulfate-δ(18)O to study the biogeochemical behavior of sulfate.

  17. Photonuclear reactions on titanium isotopes

    SciTech Connect

    Belyshev, S. S.; Dzhilavyan, L. Z.; Ishkhanov, B. S.; Kapitonov, I. M.; Kuznetsov, A. A. Orlin, V. N.; Stopani, K. A.

    2015-03-15

    The photodisintegration of titanium isotopes in the giant-dipole-resonance energy region is studied by the photon-activation method. Bremsstrahlung photons whose spectrum has the endpoint energy of 55 MeV is used. The yields and integrated cross sections are determined for photoproton reactions on the titanium isotopes {sup 47,48,49,50}Ti. The respective experimental results are compared with their counterparts calculated on the basis of the TALYS code and a combined photonucleon-reaction model. The TALYS code disregards the isospin structure of the giant dipole resonance and is therefore unable to describe the yield of photoproton reactions on the heavy titanium isotopes {sup 49,50}Ti.

  18. Thermal decomposition of methanol in the sonolysis of methanol-water mixtures. Spin-trapping evidence for isotope exchange reactions

    SciTech Connect

    Krishna, C.M.; Lion, Y.; Kondo, T.; Riesz, P.

    1987-11-05

    The spin trap 3,5-dibromo-4-nitrosobenzenesulfonate was used to monitor the yield of free radicals produced during sonolysis of water-methanol mixtures. Methyl radicals and CH/sub 2/OH radicals were observed as well as the isotopically mixed radicals CH/sub 2/D and CHD/sub 2/ when CH/sub 3/OD:D/sub 2/O mixtures were studied. The results clearly show that thermal decomposition of methanol to methyl radicals occurs in the gas phase. The methyl radical yield rises sharply at very low concentrations of methanol, reaches a maximum at 5 mol dm/sup -3/ in water and decreases to a smaller value in methanol. The yield of methyl radicals as a function of methanol concentration is discussed in terms of the different factors influencing the sonochemistry.

  19. Calculation of individual isotope equilibrium constants for geochemical reactions

    USGS Publications Warehouse

    Thorstenson, D.C.; Parkhurst, D.L.

    2004-01-01

    Theory is derived from the work of Urey (Urey H. C. [1947] The thermodynamic properties of isotopic substances. J. Chem. Soc. 562-581) to calculate equilibrium constants commonly used in geochemical equilibrium and reaction-transport models for reactions of individual isotopic species. Urey showed that equilibrium constants of isotope exchange reactions for molecules that contain two or more atoms of the same element in equivalent positions are related to isotope fractionation factors by ?? = (Kex)1/n, where n is the number of atoms exchanged. This relation is extended to include species containing multiple isotopes, for example 13C16O18O and 1H2H18O. The equilibrium constants of the isotope exchange reactions can be expressed as ratios of individual isotope equilibrium constants for geochemical reactions. Knowledge of the equilibrium constant for the dominant isotopic species can then be used to calculate the individual isotope equilibrium constants. Individual isotope equilibrium constants are calculated for the reaction CO2g = CO2aq for all species that can be formed from 12C, 13C, 16O, and 18O; for the reaction between 12C18 O2aq and 1H218Ol; and among the various 1H, 2H, 16O, and 18O species of H2O. This is a subset of a larger number of equilibrium constants calculated elsewhere (Thorstenson D. C. and Parkhurst D. L. [2002] Calculation of individual isotope equilibrium constants for implementation in geochemical models. Water-Resources Investigation Report 02-4172. U.S. Geological Survey). Activity coefficients, activity-concentration conventions for the isotopic variants of H2O in the solvent 1H216Ol, and salt effects on isotope fractionation have been included in the derivations. The effects of nonideality are small because of the chemical similarity of different isotopic species of the same molecule or ion. The temperature dependence of the individual isotope equilibrium constants can be calculated from the temperature dependence of the fractionation

  20. Catalytic gasification: Isotopic labeling and transient reaction

    SciTech Connect

    Saber, J.M.; Falconer, J.L.; Brown, L.F.

    1985-01-01

    Temperature-programmed reaction was used with labeled isotopes (/sup 13/C and /sup 18/O) to study interactions between carbon black and potassium carbonate in pure He and 10% CO/sub 2//90% He atmospheres. Catalytic gasification precursor complexes were observed. Carbon and oxygen-bearing carbon surface groups interacted with the carbonate above 500 K to form surface complexes. Between 500 K and 950 K, and in the presence of gaseous carbon dioxide, the complexes promoted carbon and oxygen exchange between the gas-phase CO/sub 2/ and the surface. Oxygen exchanged between the surface complexes; but carbon did not exchange between the carbonate and the carbon black. As the temperature rose, the complexes decomposed to produce carbon dioxide, and catalytic gasification then began. Elemental potassium formed, and the active catalyst appears to alternate between potassium metal and a potassium-oxygen-carbon complex.

  1. Heavy atom isotope effects on enzymatic reactions

    NASA Astrophysics Data System (ADS)

    Paneth, Piotr

    1994-05-01

    The theory of isotope effects, which has proved to be extremely useful in providing geometrical details of transition states in a variety of chemical reactions, has recently found an application in studies of enzyme-catalyzed reactions. These reactions are multistep in nature with few steps being partially rate-limiting, thus interpretation of these isotope effects is more complex. The theoretical framework of heavy-atom isotope effects on enzymatic reactions is critically analyzed on the basis of recent results of: carbon kinetic isotope effects on carbonic anhydrase and catalytic antibodies; multiple carbon, deuterium isotope effects on reactions catalyzed by formate decarboxylase; oxygen isotope effects on binding processes in reactions catalyzed by pyruvate kinase; and equilibrium oxygen isotope effect on binding an inhibitor to lactate dehydrogenase. The advantages and disadvantages of reaction complexity in learning details of formal and molecular mechanisms are discussed in the examples of reactions catalyzed by phosphoenolpyruvate carboxylase, orotidine decarboxylase and glutamine synthetase.

  2. Isotope exchange in oxide-containing catalyst

    NASA Technical Reports Server (NTRS)

    Brown, Kenneth G. (Inventor); Upchurch, Billy T. (Inventor); Hess, Robert V. (Inventor); Miller, Irvin M. (Inventor); Schryer, David R. (Inventor); Sidney, Barry D. (Inventor); Wood, George M. (Inventor); Hoyt, Ronald F. (Inventor)

    1989-01-01

    A method of exchanging rare-isotope oxygen for common-isotope oxygen in the top several layers of an oxide-containing catalyst is disclosed. A sample of an oxide-containing catalyst is exposed to a flowing stream of reducing gas in an inert carrier gas at a temperature suitable for the removal of the reactive common-isotope oxygen atoms from the surface layer or layers of the catalyst without damaging the catalyst structure. The reduction temperature must be higher than any at which the catalyst will subsequently operate. Sufficient reducing gas is used to allow removal of all the reactive common-isotope oxygen atoms in the top several layers of the catalyst. The catalyst is then reoxidized with the desired rare-isotope oxygen in sufficient quantity to replace all of the common-isotope oxygen that was removed.

  3. Highly tritiated water processing by isotopic exchange

    SciTech Connect

    Shu, W.M.; Willms, R.S.; Glugla, M.; Cristescu, I.; Michling, R.; Demange, D.

    2015-03-15

    Highly tritiated water (HTW) is produced in fusion machines and one of the promising technologies to process it is isotopic exchange. 3 kinds of Pt-catalyzed zeolite (13X-APG, CBV-100-CY and HiSiv-1000) were tested as candidates for isotopic exchange of highly tritiated water (HTW), and CBV-100-CY (Na-Y type with a SiO{sub 2}/Al{sub 2}O{sub 3} ratio of ∼ 5.0) shows the best performance. Small-scale tritium testing indicates that this method is efficient for reaching an exchange factor (EF) of 100. Full-scale non-tritium testing implies that an EF of 300 can be achieved in 24 hours of operation if a temperature gradient is applied along the column. For the isotopic exchange, deuterium recycled from the Isotope Separation System (deuterium with 1% T and/or 200 ppm T) should be employed, and the tritiated water regenerated from the Pt-catalyzed zeolite bed after isotopic exchange should be transferred to Water Detritiation System (WDS) for further processing.

  4. Modeling the isotope effect in Walden inversion reactions

    NASA Astrophysics Data System (ADS)

    Schechter, Israel

    1991-05-01

    A simple model to explain the isotope effect in the Walden exchange reaction is suggested. It is developed in the spirit of the line-of-centers models, and considers a hard-sphere collision that transfers energy from the relative translation to the desired vibrational mode, as well as geometrical properties and steric requirements. This model reproduces the recently measured cross sections for the reactions of hydrogen with isotopic silanes and older measurements of the substitution reactions of tritium atoms with isotopic methanes. Unlike previously given explanations, this model explains the effect of the attacking atom as well as of the other participating atoms. The model provides also qualitative explanation of the measured relative yields and thresholds of CH 3T and CH 2TF from the reaction T + CH 3F. Predictions for isotope effects and cross sections of some unmeasured reactions are given.

  5. Isotopic Exchange in Porous and Dense Magnesium Borohydride.

    PubMed

    Zavorotynska, Olena; Deledda, Stefano; Li, Guanqiao; Matsuo, Motoaki; Orimo, Shin-ichi; Hauback, Bjørn C

    2015-09-01

    Magnesium borohydride (Mg(BH4)2) is one of the most promising complex hydrides presently studied for energy-related applications. Many of its properties depend on the stability of the BH4(-) anion. The BH4(-) stability was investigated with respect to H→D exchange. In situ Raman measurements on high-surface-area porous Mg(BH4 )2 in 0.3 MPa D2 have shown that the isotopic exchange at appreciable rates occurs already at 373 K. This is the lowest exchange temperature observed in stable borohydrides. Gas-solid isotopic exchange follows the BH4(-) +D˙ →BH3D(-) +H˙ mechanism at least at the initial reaction steps. Ex situ deuteration of porous Mg(BH4)2 and its dense-phase polymorph indicates that the intrinsic porosity of the hydride is the key behind the high isotopic exchange rates. It implies that the solid-state H(D) diffusion is considerably slower than the gas-solid H→D exchange reaction at the surface and it is a rate-limiting steps for hydrogen desorption and absorption in Mg(BH4)2.

  6. Kinetic theory of oxygen isotopic exchange between minerals and water

    USGS Publications Warehouse

    Criss, R.E.; Gregory, R.T.; Taylor, H.P.

    1987-01-01

    Kinetic and mass conservation equations are used to describe oxygen isotopic exchange between minerals and water in "closed" and open hydrothermal systems. In cases where n coexisting mineral phases having different reaction rates are present, the exchange process is described by a system of n + 1 simultaneous differential equations consisting of n pseudo first-order rate equations and a conservation of mass equation. The simultaneous solutions to these equations generate curved exchange trajectories on ??-?? plots. Families of such trajectories generated under conditions allowing for different fluid mole fractions, different fluid isotopic compositions, or different fluid flow rates are connected by positive-sloped isochronous lines. These isochrons reproduce the effects observed in hydrothermally exchanged mineral pairs including 1) steep positive slopes, 2) common reversals in the measured fractionation factors (??), and 3) measured fractionations that are highly variable over short distances where no thermal gradient can be geologically demonstrated. ?? 1987.

  7. Carbon isotopic exchange between dissolved inorganic and organic carbon

    NASA Astrophysics Data System (ADS)

    Thomas, B.; Freeman, K. H.; House, C. H.; Arthur, M. A.

    2009-12-01

    The pools of inorganic and organic carbon are often considered to be separate and distinct. Isotopic exchange between the inorganic and organic carbon pools in natural waters is rarely considered plausible at low temperatures owing to kinetic barriers to exchange. In certain circumstances, however carboxyl carbon of dissolved organic matter (DOM) may be subject to exchange with the dissolved inorganic carbon (DIC) pool. We report results from an isotopic labeling experiment that resulted in rapid methanogen-catalyzed isotopic exchange between DIC and the carboxyl carbon of acetate. This exchange rapidly mixes the isotopic composition of the DIC pool into the dissolved organic carbon (DOC) acetate pool. This exchange is likely associated with the reversible nature of the carbon monoxide dehydrogenase enzyme. In nature, many decarboxylase enzymes are also reversible and some can be shown to facilitate similar exchange reactions. Those decarboxylase enzymes that are important in lignin decomposition and other organic carbon (OC) transformations may help to mask the isotopic composition of the precursor DOC with as much as 15% contribution from DIC. Though this dilution is unlikely to matter in soils where DOC and DIC are similar in composition, this exchange may be extremely important in systems where the stable or radioisotope composition of DOC and DIC differ significantly. As an example of the importance of this effect, we demonstrate that the stable and radiocarbon isotopic composition of fluvial DOC could be altered by mixing with marine DIC to produce a DOC composition similar to those observed in the deep marine DOC pool. We hypothesize that this exchange resolves the conundrum of apparently old (>5 kyr) marine-derived DOC. If most of the carboxyl carbon of pre-aged, terrestrial-derived DOC (15% of total carbon) is subject to exchange with marine DIC, the resulting carbon isotopic composition of deep DOC will be similar to that observed in deep marine studies

  8. Unbiased isotope equilibrium factors from partial isotope exchange experiments in 3-exchange site systems

    NASA Astrophysics Data System (ADS)

    Agrinier, Pierre; Javoy, Marc

    2016-09-01

    Two methods are available in order to evaluate the equilibrium isotope fractionation factors between exchange sites or phases from partial isotope exchange experiments. The first one developed by Northrop and Clayton (1966) is designed for isotope exchanges between two exchange sites (hereafter, the N&C method), the second one from Zheng et al. (1994) is a refinement of the first one to account for a third isotope exchanging site (hereafter, the Z method). In this paper, we use a simple model of isotope kinetic exchange for a 3-exchange site system (such as hydroxysilicates where oxygen occurs as OH and non-OH groups like in muscovite, chlorite, serpentine, or water or calcite) to explore the behavior of the N&C and Z methods. We show that these two methods lead to significant biases that cannot be detected with the usual graphical tests proposed by the authors. Our model shows that biases originate because isotopes are fractionated between all these exchanging sites. Actually, we point out that the variable mobility (or exchangeability) of isotopes in and between the exchange sites only controls the amplitude of the bias, but is not essential to the production of this bias as previously suggested. Setting a priori two of the three exchange sites at isotopic equilibrium remove the bias and thus is required for future partial exchange experiments to produce accurate and unbiased extrapolated equilibrium fractionation factors. Our modeling applied to published partial oxygen isotope exchange experiments for 3-exchange site systems (the muscovite-calcite (Chacko et al., 1996), the chlorite-water (Cole and Ripley, 1998) and the serpentine-water (Saccocia et al., 2009)) shows that the extrapolated equilibrium fractionation factors (reported as 1000 ln(α)) using either the N&C or the Z methods lead to bias that may reach several δ per mil in a few cases. These problematic cases, may be because experiments were conducted at low temperature and did not reach high

  9. Double charge exchange on Te isotopes in the generalized seniority scheme

    SciTech Connect

    Wu, H.C. |; Ginocchio, J.N.; Dieperink, A.E.; Scholten, O.

    1996-09-01

    The pion double-charge-exchange reactions on the Te isotopes are discussed in the generalized seniority scheme. The elementary process of charge exchange is described in a double scattering process within the plane wave limit. The transition rates are calculated for double-isobaric-analog state as well as for ground-state reactions. {copyright} {ital 1996 The American Physical Society.}

  10. Separation of uranium isotopes by chemical exchange

    DOEpatents

    Ogle, P.R. Jr.

    1974-02-26

    A chemical exchange method is provided for separating /sup 235/U from / sup 238/U comprising contacting a first phase containing UF/sub 6/ with a second phase containing a compound selected from the group consisting of NOUF/sub 6/, NOUF/sub 7/, and NO/sub 2/UF/sub 7/ until the U Fsub 6/ in the first phase becomes enriched in the /sup 235/U isotope. (Official Gazette)

  11. Rapid biologically mediated oxygen isotope exchange between water and phosphate

    NASA Astrophysics Data System (ADS)

    Paytan, Adina; Kolodny, Yehoshua; Neori, Amir; Luz, Boaz

    2002-03-01

    In order to better constrain the rate of oxygen isotope exchange between water and phosphate via biochemical reactions a set of controlled experiments were conducted in 1988 at the Aquaculture Plant in Elat, Israel. Different species of algae and other organisms were grown in seawater tanks under controlled conditions, and the water temperature and oxygen isotopic composition (δ18Ow) were monitored. The oxygen isotopic composition of phosphate (δ18Op) in the organisms' food source, tissues, and the δ18Op of dissolved inorganic phosphate (DIP) were measured at different stages of the experiments. Results indicate that intracellular oxygen isotope exchange between phosphorus compounds and water is very rapid and occurs at all levels of the food chain. Through these reactions the soft tissue δ18Op values become 23-26‰ higher than δ18Ow, and δ18Op values of DIP become ~20‰ higher than δ18Ow. No correlation between δ18Op values and either temperature or P concentrations in these experiments was observed. Our data imply that biogenic recycling and intracellular phosphorus turnover, which involves kinetic fractionation effects, are the major parameters controlling the δ18Op values of P compounds dissolved in aquatic systems. This information is fundamental to any application of δ18Op of dissolved organic or inorganic phosphate to quantify the dynamics of phosphorus cycling in aquatic systems.

  12. Kinetic isotope effect of the {sup 16}O + {sup 36}O{sub 2} and {sup 18}O + {sup 32}O{sub 2} isotope exchange reactions: Dominant role of reactive resonances revealed by an accurate time-dependent quantum wavepacket study

    SciTech Connect

    Sun, Zhigang Yu, Dequan; Xie, Wenbo; Hou, Jiayi; Dawes, Richard; Guo, Hua

    2015-05-07

    The O + O{sub 2} isotope exchange reactions play an important role in determining the oxygen isotopic composition of a number of trace gases in the atmosphere, and their temperature dependence and kinetic isotope effects (KIEs) provide important constraints on our understanding of the origin and mechanism of these and other unusual oxygen KIEs important in the atmosphere. This work reports a quantum dynamics study of the title reactions on the newly constructed Dawes-Lolur-Li-Jiang-Guo (DLLJG) potential energy surface (PES). The thermal reaction rate coefficients of both the {sup 18}O + {sup 32}O{sub 2} and {sup 16}O + {sup 36}O{sub 2} reactions obtained using the DLLJG PES exhibit a clear negative temperature dependence, in sharp contrast with the positive temperature dependence obtained using the earlier modified Siebert-Schinke-Bittererova (mSSB) PES. In addition, the calculated KIE shows an improved agreement with the experiment. These results strongly support the absence of the “reef” structure in the entrance/exit channels of the DLLJG PES, which is present in the mSSB PES. The quantum dynamics results on both PESs attribute the marked KIE to strong near-threshold reactive resonances, presumably stemming from the mass differences and/or zero point energy difference between the diatomic reactant and product. The accurate characterization of the reactivity for these near-thermoneutral reactions immediately above the reaction threshold is important for correct characterization of the thermal reaction rate coefficients.

  13. Oxygen isotope fractionation in phosphates: the role of dissolved complex anions in isotope exchange.

    PubMed

    Zheng, Yong-Fei

    2016-01-01

    Oxygen isotope fractionation factors for phosphates were calculated by means of the increment method. The results suggest that Ag3PO4 and BiPO4 are enriched in (18)O relative to AgPO4, and the three phosphates are consistently depleted in (18)O relative to Ba3[PO4]2; fluorapatite and chlorapatite exhibit a similar behaviour of oxygen isotope fractionation with consistent enrichment of (18)O relative to hydroxyapatite. The valence, radii and coordination of metal cations play a quantitative role in dictating the (18)O/(16)O partitioning in these phosphates of different compositions. The calculated fractionation factors for the Ag3PO4-H2O system are in agreement with experimental determinations derived from enzyme-catalysed isotope exchange between dissolved inorganic phosphate and water at the longest reaction durations at low temperatures. This demonstrates that the precipitated Ag3PO4 has completely captured the oxygen isotope fractionation in the dissolved inorganic phosphate. The calculated fractionation factors for the F/Cl-apatite-water systems are in agreement with the enzyme-catalysed experimental fractionations for the dissolved phosphate-water system at the longest reaction durations but larger than fractionations derived from bacteria-facilitated exchange and inorganic precipitation experiments as well as natural observations. For the experimental calibrations of oxygen isotope fractionation involving the precipitation of dissolved phosphate species from aqueous solutions, the fractionation between precipitate and water is primarily dictated by the isotope equilibration between the dissolved complex anions and water prior to the precipitation. Therefore, the present results provide a quantitative means to interpret the temperature dependence of oxygen isotope fractionation in inorganic and biogenic phosphates.

  14. Oxygen-isotope exchange rates for three isostructural polyoxometalate ions.

    PubMed

    Villa, Eric M; Ohlin, C André; Casey, William H

    2010-04-14

    We compare oxygen-isotope exchange rates for all structural oxygens in three polyoxoniobate ions that differ by systematic metal substitutions of Ti(IV) --> Nb(V). The [H(x)Nb(10)O(28)]((6-x)-), [H(x)TiNb(9)O(28)]((7-x)-), and [H(x)Ti(2)Nb(8)O(28)]((8-x)-) ions are all isostructural yet have different Brønsted properties. Rates for sites within a particular molecule in the series differ by at least approximately 10(4), but the relative reactivities of the oxygen sites rank in nearly the same relative order for all ions in the series. Within a single ion, most structural oxygens exhibit rates of isotopic exchange that vary similarly with pH, indicating that each structure responds as a whole to changes in pH. Across the series of molecules, however, the pH dependencies for isotope exchanges and dissociation are distinctly different, reflecting different contributions from proton- or base-enhanced pathways. The proton-enhanced pathway for isotope exchange dominates at most pH conditions for the [H(x)Ti(2)Nb(8)O(28)]((8-x)-) ion, but the base-enhanced pathways are increasingly important for the [H(x)TiNb(9)O(28)]((7-x)-) and [H(x)Nb(10)O(28)]((6-x)-) structures at higher pH. The local effect of Ti(IV) substitution could be assessed by comparing rates for structurally similar oxygens on each side of the [H(x)TiNb(9)O(28)]((7-x)-) ion and is surprisingly small. Interestingly, these nanometer-size structures seem to manifest the same general averaged amphoteric chemistry that is familiar for other reactions affecting oxides in water, including interface dissolution by proton- and hydroxyl-enhanced pathways.

  15. Isotopically exchangeable concentrations of elements having multiple oxidation states: the case of Fe(II)/Fe(III) isotope self-exchange in coastal lowland acid sulfate soils.

    PubMed

    Collins, Richard N; Waite, T David

    2009-07-15

    Isotope exchange techniques have been used to probe isotopically exchangeable concentrations of Fe (E value) that are in dynamic equilibrium between the aqueous- and solid-phase of coastal lowland acid sulfate soils. Isotope self-exchange between Fe(II) and Fe(III) was rapid and complete in <1 min (p < 0.05) indicating that this reaction was initially occurring solely in the aqueous-phase and the surface of the soil solid-phase. It is further demonstrated that accurate and valid measurements of isotopically exchangeable concentrations of Fe do not require corrections for Fe speciation. This also holds for any element existing in two or more oxidation states which are completely isotopically self-exchangeable in soils. As isotope self-exchange between Fe(II) and Fe(III) is rapid, the distribution coefficient (Kd) and E value determined via this methodology are, therefore, truly representative of Fe regardless of the relative importance of Fe(II) or Fe(III) to the isotopically exchangeable pool of Fe. In the 21 soil samples examined, isotopically exchangeable concentrations of Fe varied from 90 mg/kg to values as high as 3610 mg/kg in acidic, saturated samples collected below the groundwater table from the transition soil horizon. The combination of low Evalues and extremely high Kd values in the upper oxidized layers of these soils indicate that these soil horizons are a relatively insignificant source of transportable (labile) Fe. As such, given our knowledge on the general rates of microbial Fe(III) reduction in, and the hydraulic properties of, the coastal lowland acid sulfate soils of this region, only those soils adjacent to agricultural drains are likely to contribute to the load of Fe entering surrounding aquatic systems.

  16. Reaction Kinetics of HBr with HO2: A New Channel for Isotope Scrambling Reactions.

    PubMed

    Church, Jonathan R; Skodje, Rex T

    2016-11-03

    The gas phase reaction kinetics of HBr with the HO2 radical are investigated over the temperature range of T = 200-1500 K using a theoretical approach based on transition state theory. The parameters for the potential energy surface are computed using density functional theory with the M11 exchange functional. The rate coefficient for the HBr + HO2 → Br + H2O2 abstraction channel is found to be somewhat larger than previous estimates at low temperatures due to quantum tunneling. The present study reveals the existence of a novel exchange pathway, HBr + H'O2 → H'Br + HO2, which exhibits a much lower reaction barrier than does the abstraction route. The transition state for this process is a symmetrical planar five-membered-ring-shaped structure. At low temperatures, this concerted double hydrogen transfer reaction is several orders of magnitude faster than the abstraction channel. The exchange process may be observed using isotope scrambling reactions; such reactions may contribute to observed isotope abundances in the atmosphere. The rate coefficients for the isotopically labeled reactions are computed.

  17. Diffusional exchange of isotopes in a metal hydride sphere.

    SciTech Connect

    Wolfer, Wilhelm G.; Hamilton, John C.; James, Scott Carlton

    2011-04-01

    This report describes the Spherical Particle Exchange Model (SPEM), which simulates exchange of one hydrogen isotope by another hydrogen isotope in a spherical metal hydride particle. This is one of the fundamental physical processes during isotope exchange in a bed of spherical metal particles and is thus one of the key components in any comprehensive physics-based model of exchange. There are two important physical processes in the model. One is the entropy of mixing between the two isotopes; the entropy of mixing is increased by having both isotopes randomly placed at interstitial sites on the lattice and thus impedes the exchange process. The other physical process is the elastic interaction between isotope atoms on the lattice. The elastic interaction is the cause for {beta}-phase formation and is independent of the isotope species. In this report the coupled diffusion equations for two isotopes in the {beta}-phase hydride are solved. A key concept is that the diffusion of one isotope depends not only on its concentration gradient, but also on the concentration gradient of the other isotope. Diffusion rate constants and the chemical potentials for deuterium and hydrogen in the {beta}-phase hydride are reviewed because these quantities are essential for an accurate model of the diffusion process. Finally, a summary of some of the predictions from the SPEM model are provided.

  18. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    SciTech Connect

    Hindin, Saul G.; Roberts, George W.

    1980-08-12

    A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst.

  19. Low-temperature, non-stoichiometric oxygen isotope exchange coupled to Fe(II)-goethite interactions

    SciTech Connect

    Frierdich, Andrew J.; Beard, Brian L.; Rosso, Kevin M.; Scherer, Michelle M.; Spicuzza, Michael J.; Valley, John W.; Johnson, Clark M.

    2015-07-01

    solutions, but presents a challenge for utilizing such an approach to determine equilibrium isotope fractionation factors. Despite the uncertainty from extrapolation, there is consistency in goethite-water fractionation factors for our reversal approach to equilibrium, with final weighted average fractionation factor values of Δ¹⁸OGth-wate r = 0.2 (±0.9‰) and 3.0 (±2.5‰) at 22 °C and -1.6 (±0.8‰) and 1.9 (±1.5‰) at 50 °C for micron-sized and nano-particulate goethite, respectively (errors at 2σ level). Reaction of ferrihydrite with Fe(II)aq in two distinct waters resulted in a quantitative conversion to goethite and complete O isotope exchange in each case, and similar fractionation factors were observed for experiments using the two waters. Comparison of our results with previous studies of O isotope fractionation between goethite and water suggests that particle size may be a contributing factor to the disparity among experimental studies.

  20. Isotope effects of neodymium in different ligands exchange systems studied by ion exchange displacement chromatography.

    PubMed

    Ismail, Ibrahim; Fawzy, Ahmed S; Ahmad, Mohammad I; Aly, Hisham F; Nomura, Masao; Fujii, Yasuhiko

    2013-03-01

    The isotope effects of neodymium in Nd-glycolate ligand exchange system were studied by using ion exchange chromatography. The separation coefficients of neodymium isotopes, ε's, were calculated from the observed isotopic ratios at the front and rear boundaries of the neodymium adsorption band. The values of separation coefficients of neodymium isotopes, ε's, for the Nd-glycolate ligand exchange system were compared with those of Nd-malate and Nd-citrate, which indicated that the isotope effects of neodymium as studied by the three ligands takes the following direction Malate > Citrate > Glycolate. This order agrees with the number of available sites for complexation of each ligand. The values of the plate height, HETP of Nd in Nd-ligand exchange systems were also calculated.

  1. Isotope effects of neodymium in different ligands exchange systems studied by ion exchange displacement chromatography

    PubMed Central

    Ismail, Ibrahim; Fawzy, Ahmed S.; Ahmad, Mohammad I.; Aly, Hisham F.; Nomura, Masao; Fujii, Yasuhiko

    2012-01-01

    The isotope effects of neodymium in Nd-glycolate ligand exchange system were studied by using ion exchange chromatography. The separation coefficients of neodymium isotopes, ε’s, were calculated from the observed isotopic ratios at the front and rear boundaries of the neodymium adsorption band. The values of separation coefficients of neodymium isotopes, ε’s, for the Nd-glycolate ligand exchange system were compared with those of Nd-malate and Nd-citrate, which indicated that the isotope effects of neodymium as studied by the three ligands takes the following direction Malate > Citrate > Glycolate. This order agrees with the number of available sites for complexation of each ligand. The values of the plate height, HETP of Nd in Nd-ligand exchange systems were also calculated. PMID:25685410

  2. Crystal structure of the external aldimine of Citrobacter freundii methionine γ-lyase with glycine provides insight in mechanisms of two stages of physiological reaction and isotope exchange of α- and β-protons of competitive inhibitors.

    PubMed

    Revtovich, Svetlana V; Faleev, Nicolai G; Morozova, Elena A; Anufrieva, Natalya V; Nikulin, Alexey D; Demidkina, Tatyana V

    2014-06-01

    The three-dimensional structure of the external aldimine of Citrobacter freundii methionine γ-lyase with competitive inhibitor glycine has been determined at 2.45 Å resolution. It revealed subtle conformational changes providing effective binding of the inhibitor and facilitating labilization of Cα-protons of the external aldimine. The structure shows that 1, 3-prototropic shift of Cα-proton to C4'-atom of the cofactor may proceed with participation of active site Lys210 residue whose location is favorable for performing this transformation by a concerted mechanism. The observed stereoselectivity of isotopic exchange of enantiotopic Cα-protons of glycine may be explained on the basis of external aldimine structure. The exchange of Cα-pro-(R)-proton of the external aldimine might proceed in the course of the concerted transfer of the proton from Cα-atom of glycine to C4'-atom of the cofactor. The exchange of Cα-pro-(S)-proton may be performed with participation of Tyr113 residue which should be present in its basic form. The isotopic exchange of β-protons, which is observed for amino acids bearing longer side groups, may be effected by two catalytic groups: Lys210 in its basic form, and Tyr113 acting as a general acid.

  3. Isotopically exchangeable Al in coastal lowland acid sulfate soils.

    PubMed

    Yvanes-Giuliani, Yliane A M; Fink, D; Rose, J; Waite, T David; Collins, Richard N

    2016-01-15

    Periodic discharges of high concentrations of aluminium (Al) causing fish kills and other adverse effects occur worldwide in waterways affected by coastal lowland acid sulfate soils (CLASS). The exchangeability - a metal's ability to readily transfer between the soil solid- and solution-phases - of Al in these soils is therefore of particular importance as it has implications for metal transport, plant availability and toxicity to living organisms. In the present study, the concentrations of isotopically exchangeable Al (E values) were measured in 27 CLASS and compared with common salt extractions (i.e. KCl and CuCl2) used to estimate exchangeable soil pools of Al. E values of Al were high in the soils, ranging from 357 to 3040 mg·kg(-1). Exchangeable concentrations estimated using 1 M KCl were consistently lower than measured E values, although a reasonable correlation was obtained between the two values (E=1.68×AlKCl, r(2)=0.66, n=25). The addition of a 0.2 M CuCl2 extraction step improved the 1:1 agreement between extractable and isotopically exchangeable Al concentrations, but lead to significant mobilisation of non-isotopically exchangeable Al in surficial 'organic-rich' CLASS having E values<1000 mg·kg(-1). It was concluded that currently used (i.e. 1 M KCl) methodology severely underestimates exchangeable Al and total actual acidity values in CLASS and should be corrected by a factor similar to the one determined here.

  4. Aspartate beta-decarboxylase from Alcaligenes faecalis: carbon-13 kinetic isotope effect and deuterium exchange experiments

    SciTech Connect

    Rosenberg, R.M.; O'Leary, M.H.

    1985-03-26

    The authors have measured the /sup 13/C kinetic isotope effect at pH 4.0, 5.0, 6.0, and 6.5 and in D/sub 2/O at pH 5.0 and the rate of D-H exchange of the alpha and beta protons of aspartic acid in D/sub 2/O at pH 5.0 for the reaction catalyzed by the enzyme aspartate beta-decarboxylase from Alcaligenes faecalis. The /sup 13/C kinetic isotope effect, with a value of 1.0099 +/- 0.0002 at pH 5.0, is less than the intrinsic isotope effect for the decarboxylation step, indicating that the decarboxylation step is not entirely rate limiting. The authors have been able to estimate probable values of the relative free energies of the transition states of the enzymatic reaction up to and including the decarboxylation step from the /sup 13/C kinetic isotope effect and the rate of D-H exchange of alpha-H. The pH dependence of the kinetic isotope effect reflects the pKa of the pyridine nitrogen of the coenzyme pyridoxal 5'-phosphate but not that of the imine nitrogen. A mechanism is proposed for the exchange of aspartate beta-H that is consistent with the stereochemistry suggested earlier.

  5. Forging Colloidal Nanostructures via Cation Exchange Reactions

    PubMed Central

    2016-01-01

    Among the various postsynthesis treatments of colloidal nanocrystals that have been developed to date, transformations by cation exchange have recently emerged as an extremely versatile tool that has given access to a wide variety of materials and nanostructures. One notable example in this direction is represented by partial cation exchange, by which preformed nanocrystals can be either transformed to alloy nanocrystals or to various types of nanoheterostructures possessing core/shell, segmented, or striped architectures. In this review, we provide an up to date overview of the complex colloidal nanostructures that could be prepared so far by cation exchange. At the same time, the review gives an account of the fundamental thermodynamic and kinetic parameters governing these types of reactions, as they are currently understood, and outlines the main open issues and possible future developments in the field. PMID:26891471

  6. Nuclear Reaction Data on Titanium Isotopes

    SciTech Connect

    Oh, S. Y.; Kawano, T.; Kahler, S.; Cowell, S.; Dashdorj, D.

    2008-04-17

    We evaluated the nuclear data on titanium isotopes, {sup 46-50}Ti. We used GNASH, a Hauser-Feshbach reaction model code, for the threshold reactions and CoH for the total and capture cross sections. While we calculated the transmission coefficients using well-known optical potentials for the GNASH calculation, we adjusted the level density and the pre-equilibrium parameters by taking into account the LANSCE/GEANIE experiment on {sup 48}Ti reaction cross sections as well as other experiments available for (n,p), (n,{alpha}), etc. The direct inelastic scattering was also included by using the coupled-channel calculation and the DWBA method. The coupled-channels potential was assumed to be similar to the spherical potential of Koning and Delaroche with proper deformation parameters. Meanwhile we investigated the resolved resonance parameters in the energy region below several hundred keV. In essence, we adopted the parameters from the Mughabghab's 2006 compilation, making some adjustments to mainly reproduce the reference thermal cross sections. This new evaluation was validated with the MCNP calculations of k-eff's on seven hard-spectrum criticality experiments that involve Ti as a reflector or moderator.

  7. Kinetic isotope effects for fast deuterium and proton exchange rates.

    PubMed

    Canet, Estel; Mammoli, Daniele; Kadeřávek, Pavel; Pelupessy, Philippe; Bodenhausen, Geoffrey

    2016-04-21

    By monitoring the effect of deuterium decoupling on the decay of transverse (15)N magnetization in D-(15)N spin pairs during multiple-refocusing echo sequences, we have determined fast D-D exchange rates kD and compared them with fast H-H exchange rates kH in tryptophan to determine the kinetic isotope effect as a function of pH and temperature.

  8. Production of medical 99 m Tc isotope via photonuclear reaction

    NASA Astrophysics Data System (ADS)

    Fujiwara, M.; Nakai, K.; Takahashi, N.; Hayakawa, T.; Shizuma, T.; Miyamoto, S.; Fan, G. T.; Takemoto, A.; Yamaguchi, M.; Nishimura, M.

    2017-01-01

    99 m Tc with a 6 hour half-life is one of the most important medical isotopes used for the Single-Photon Emission Computed Tomography (SPECT) inspection in hospitals of US, Canada, Europe and Japan. 99 m Tc isotopes are extracted by the milking method from parent 99Mo isotopes with a 66 hour half-life. The supply of 99Mo isotopes now encounters a serious crisis. Hospitals may not suitably receive 99Mo medical isotopes in near future, due to difficulties in production by research nuclear reactors. Many countries are now looking for alternative ways to generate 99Mo isotopes other than those with research reactors. We discuss a sustained availability of 99 m Tc isotopes via the nat Mo(γ, n) photonuclear reaction, and discuss to solve technical problems for extracting pure 99 m Tc isotopes from other output materials of photonuclear reactions.

  9. Chromatographic separation of neodymium isotopes by using chemical exchange process.

    PubMed

    Ismail, I M; Ibrahim, M; Aly, H F; Nomura, M; Fujii, Y

    2011-05-20

    The neodymium isotope effects were investigated in Nd-malate ligand exchange system using the highly porous cation exchange resin SQS-6. The temperature of the chromatographic columns was kept constant at 50°C by temperature controlled water passed through the columns jackets. The separation coefficient of neodymium isotopes, ɛ's, was calculated from the isotopic ratios precisely measured by means of an ICP mass spectrometer equipped with nine collectors as ion detectors. The separation coefficient, ɛ×10(5), were calculated and found to be 1.4, 4.8, 5.4, 10.6, 16.8 and 20.2 for (143)Nd, (144)Nd, (145)Nd, (146)Nd, (148)Nd and (150)Nd, respectively.

  10. Equilibrium isotopic fractionation and isotopic exchange kinetics between Cr(III) and Cr(VI)

    NASA Astrophysics Data System (ADS)

    Wang, Xiangli; Johnson, Thomas M.; Ellis, Andre S.

    2015-03-01

    We determined the equilibrium isotope fractionation between Cr(III) and Cr(VI), defined as Δ53CrVI-III = δ53Cr(VI) - δ53Cr(III), and the rates of isotopic exchange between the two redox species under different conditions. In high Cr concentration, low-pH experiments we determined the Δ53CrV-III between CrO42- and Cr(H2O)63+ to be 5.2 ± 0.3‰ and 5.5 ± 0.3‰ at 60 °C and 40 °C, respectively. At 25 °C, the system only progressed 25% toward isotopic equilibrium after 684 days. By extrapolating from the 60 °C and 40 °C experiments we estimated the Δ53CrVI-III between CrO42- and Cr(H2O)63+ to be 5.8 ± 0.5‰ at 25 °C. Isotope exchange rates between dissolved Cr(III) and dissolved Cr(VI) at 25 °C, 40 °C, and 60 °C were determined to be 3.13 × 10-5 M day-1, 6.83 × 10-4 M day-1, and 8.37 × 10-3 M day-1, respectively. In low concentration, neutral-pH experiments we determined the isotopic exchange rates between dissolved Cr(VI) and solid Cr(III) oxyhydroxide at 25 °C. In these experiments, significant isotopic exchange was found on time scales of months, though the magnitude of isotopic shifts was limited by the small mass of Cr(III) available for exchange on the surfaces of Cr(III) oxyhydroxide particles. Exchange rates were relatively fast, compared to rates obtained from high concentration, low-pH experiments. This faster isotopic exchange is attributed to adsorption of Cr(VI) to Cr(III) particle surfaces, which keeps Cr(III) and Cr(VI), and potentially intermediate species Cr(V), in close proximity long enough to allow multiple electron transfers. The isotopic exchange rate at neutral-pH was found to conform to the rate law R = k·[Cr(VI)]adsorbed, in which R is the isotopic exchange rate (M day-1); k is the rate constant, determined to be 0.00047 day-1; [CrO42-]adsorbed is the concentration of Cr(VI) adsorbed to Cr(III) oxyhydroxide (M). The impact of isotopic exchange on the 53Cr/52Cr ratio of the dissolved Cr(VI) depends on the relative masses

  11. Multiphysics Model of Palladium Hydride Isotope Exchange Accounting for Higher Dimensionality

    SciTech Connect

    Gharagozloo, Patricia E.; Eliassi, Mehdi; Bon, Bradley Luis

    2015-03-01

    This report summarizes computational model developm ent and simulations results for a series of isotope exchange dynamics experiments i ncluding long and thin isothermal beds similar to the Foltz and Melius beds and a lar ger non-isothermal experiment on the NENG7 test bed. The multiphysics 2D axi-symmetr ic model simulates the temperature and pressure dependent exchange reactio n kinetics, pressure and isotope dependent stoichiometry, heat generation from the r eaction, reacting gas flow through porous media, and non-uniformities in the bed perme ability. The new model is now able to replicate the curved reaction front and asy mmetry of the exit gas mass fractions over time. The improved understanding of the exchange process and its dependence on the non-uniform bed properties and te mperatures in these larger systems is critical to the future design of such sy stems.

  12. Practically convenient and industrially-aligned methods for iridium-catalysed hydrogen isotope exchange processes.

    PubMed

    Cochrane, A R; Idziak, C; Kerr, W J; Mondal, B; Paterson, L C; Tuttle, T; Andersson, S; Nilsson, G N

    2014-06-14

    The use of alternative solvents in the iridium-catalysed hydrogen isotope exchange reaction with developing phosphine/NHC Ir(I) complexes has identified reaction media which are more widely applicable and industrially acceptable than the commonly employed chlorinated solvent, dichloromethane. Deuterium incorporation into a variety of substrates has proceeded to deliver high levels of labelling (and regioselectivity) in the presence of low catalyst loadings and over short reaction times. The preparative outputs have been complemented by DFT studies to explore ligand orientation, as well as solvent and substrate binding energies within the catalyst system.

  13. [Solid state isotope hydrogen exchange for deuterium and tritium in human gene-engineered insulin].

    PubMed

    Zolotarev, Yu A; Dadayan, A K; Kozik, V S; Gasanov, E V; Nazimov, I V; Ziganshin, R Kh; Vaskovsky, B V; Murashov, A N; Ksenofontov, A L; Haribin, O N; Nikolaev, E N; Myasoedov, N F

    2014-01-01

    The reaction of high temperature solid state catalytic isotope exchange in peptides and proteins under the action of catalyst-activated spillover hydrogen was studied. The reaction of human gene-engineered insulin with deuterium and tritium was conducted at 120-140° C to produce insulin samples containing 2-6 hydrogen isotope atoms. To determine the distribution of the isotope label over tritium-labeled insulin's amino acid residues, oxidation of the S-S bonds of insulin by performic acid was performed and polypeptide chains isolated; then their acid hydrolysis, amino acid analysis and liquid scintillation counts of tritium in the amino acids were conducted. The isotope label was shown to be incorporated in all amino acids of the protein, with the peptide fragment FVNQHLCGSHLVE of the insulin β-chain showing the largest incorporation. About 45% of the total protein isotope label was incorporated in His5 and His10 of this fragment. For the analysis of isotope label distribution in labeled insulin's peptide fragments, the recovery of the S-S bonds by mercaptoethanol, the enzymatic hydrolysis by glutamyl endopeptidase from Bacillus intermedius and HPLC division of the resulting peptides were carried out. Attribution of the peptide fragments formed due to hydrolysis at the Glu-X bond in the β-chain was accomplished by mass spectrometry. Mass spectrometry analysis data of the deuterium-labeled insulin samples' isotopomeric composition showed that the studied solid state isotope exchange reaction equally involved all the protein molecules. Biological studying of tritium-labeled insulin showed its physiological activity to be completely retained.

  14. Upper limit on the rate constant for isotope exchange between molecular oxygen and ozone at 298 K

    NASA Technical Reports Server (NTRS)

    Anderson, S. M.; Morton, J.; Mauersberger, K.

    1987-01-01

    The gas phase bimolecular isotope exchange reaction between molecular oxygen and ozone has been investigated directly for the first time. Its rate coefficient is found to be less than 2 x 10 to the -25th cu cm/sec at 298 K, over six orders of magnitude below recent estimates. Much faster exchange was observed over condensed ozone at 77 K, suggesting isotopic scrambling is catalyzed under these conditions. The low rate coefficient implies that homogeneous exchange between ground state oxygen and ozone molecules cannot play a significant role in heavy ozone chemistry.

  15. Isotope exchange kinetics in metal hydrides I : TPLUG model.

    SciTech Connect

    Larson, Rich; James, Scott Carlton; Nilson, Robert H.

    2011-05-01

    A one-dimensional isobaric reactor model is used to simulate hydrogen isotope exchange processes taking place during flow through a powdered palladium bed. This simple model is designed to serve primarily as a platform for the initial development of detailed chemical mechanisms that can then be refined with the aid of more complex reactor descriptions. The one-dimensional model is based on the Sandia in-house code TPLUG, which solves a transient set of governing equations including an overall mass balance for the gas phase, material balances for all of the gas-phase and surface species, and an ideal gas equation of state. An energy equation can also be solved if thermodynamic properties for all of the species involved are known. The code is coupled with the Chemkin package to facilitate the incorporation of arbitrary multistep reaction mechanisms into the simulations. This capability is used here to test and optimize a basic mechanism describing the surface chemistry at or near the interface between the gas phase and a palladium particle. The mechanism includes reversible dissociative adsorptions of the three gas-phase species on the particle surface as well as atomic migrations between the surface and the bulk. The migration steps are more general than those used previously in that they do not require simultaneous movement of two atoms in opposite directions; this makes possible the creation and destruction of bulk vacancies and thus allows the model to account for variations in the bulk stoichiometry with isotopic composition. The optimization code APPSPACK is used to adjust the mass-action rate constants so as to achieve the best possible fit to a given set of experimental data, subject to a set of rigorous thermodynamic constraints. When data for nearly isothermal and isobaric deuterium-to-hydrogen (D {yields} H) and hydrogen-to-deuterium (H {yields} D) exchanges are fitted simultaneously, results for the former are excellent, while those for the latter show

  16. Global simulation of the carbon isotope exchange of terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Ito, A.; Terao, Y.; Mukai, H.

    2009-12-01

    There remain large uncertainties in our quantification of global carbon cycle, which has close interactions with the climate system and is subject to human-induced global environmental change. Information on carbon isotopes is expected to reduce the uncertainty by providing additional constraints on net atmosphere-ecosystem exchange. This study attempted to simulate the dynamics of carbon isotopes at the global scale, using a process-based terrestrial ecosystem model: Vegetation Integrative SImulator for Trace gases (VISIT). The base-model of carbon cycle (Sim-CYCLE, Ito 2003) has already considered stable carbon isotope composition (13C/12C), and here radioactive carbon isotope (14C) was included. The isotope ratios characterize various aspects of terrestrial carbon cycle, which is difficult to be constrained by sole mass balance. For example, isotopic discrimination by photosynthetic assimilation is closely related with leaf stomatal conductance and composition of C3 and C4 plant in grasslands. Isotopic disequilibrium represents mean residence time of terrestrial carbon pools. In this study, global simulations (spatial resolution 0.5-deg, time-step 1-month) were conducted during the period 1901 to 2100 on the basis of observed and projected atmospheric CO2, climate, and land-use conditions. As anthropogenic CO2 accumulates in the atmosphere, heavier stable carbon isotope (13C) was diluted, while radioactive carbon isotope (14C) is strongly affected by atomic bomb experiments mainly in the 1950s and 1960s. The model simulated the decadal change in carbon isotope compositions. Leaf carbon with shorter mean residence time responded rapidly to the atmospheric change, while plant stems and soil humus showed substantial time-lag, leading to large isotopic disequilibrium. In the future, the isotopic disequilibrium was estimated to augment, due to accelerated rate of anthropogenic CO2 accumulation. Spatial distribution of stable isotope composition (12C/13C, or d13C) was

  17. A model of oxygen transport in Pt/ceria catalysts from isotope exchange

    SciTech Connect

    Holmgren, A.; Andersson, B.; Duprez, D.

    1999-03-10

    From isotope oxygen exchange reactions and simulations of these experiments, the important steps in oxygen transport in Pt/ceria were distinguished and their rates were estimated. A Pt/alumina sample was also experimentally investigated for comparison. Oxygen surface diffusion as well as oxygen spillover from Pt to ceria was found to be fast in comparison with adsorption/desorption of oxygen on the metal and oxygen bulk diffusion. The exchange rate was found to be higher on a very-low-Pt-dispersion sample than on a high-dispersion sample, which in the model was explained by the different adsorption properties of oxygen.

  18. Fractionation of strontium isotopes in cation-exchange chromatography

    SciTech Connect

    Oi, Takao; Ogino, Hideki; Kakihana, Hidetake ); Hosoe, Morikazu )

    1992-04-01

    Strontium isotope fractionation has been observed in cation-exchange chromatography of strontium salts. The heavier isotopes have been found enriched at the front parts of displacement-type chromatograms, which means that the heavier isotopes are preferentially fractionated into the solution phase. The average values of the single-stage separation factor (S) minus one per unit mass difference between isotopes have been 1.0 {times} 10{sup {minus}6} for the strontium chloride system, 2.9 {times} 10{sup {minus}6} for the strontium acetate system, and 3.1 {times} 10{sup {minus}6} for the strontium lactate system at 25C. No evidence of the odd-even anomalous isotope effects has been observed. The isotopic reduced partition function ratios (RPFRs) of the strontium species involved in the present study have been estimated; the RPFRs of the complex species have been found to be larger than that of simple hydrated strontium lactate and strontium acetate systems are larger than that of the strontium chloride system.

  19. Hydrogen isotope exchange between n-alkanes and water under hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Reeves, Eoghan P.; Seewald, Jeffrey S.; Sylva, Sean P.

    2012-01-01

    To investigate the extent of hydrogen isotope (2H and 1H) exchange between hydrocarbons and water under hydrothermal conditions, we performed experiments heating C1-C5n-alkanes in aqueous solutions of varying initial 2H/1H ratios in the presence of a pyrite-pyrrhotite-magnetite redox buffer at 323 °C and 35-36 MPa. Extensive and reversible incorporation of water-derived hydrogen into C2-C5n-alkanes was observed on timescales of months. In contrast, comparatively minor exchange was observed for CH4. Isotopic exchange is facilitated by reversible equilibration of n-alkanes and their corresponding n-alkenes with H2 derived from the disproportionation of water. Rates of δ2H variation in C3+n-alkanes decreased with time, a trend that is consistent with an asymptotic approach to steady state isotopic compositions regulated by alkane-water isotopic equilibrium. Substantially slower δ2H variation was observed for ethane relative to C3-C5n-alkanes, suggesting that the greater stability of C3+ alkenes and isomerization reactions may dramatically enhance rates of 2H/1H exchange in C3+n-alkanes. Thus, in reducing aqueous environments, reversible reaction of alkanes and their corresponding alkenes facilitates rapid 2H/1H exchange between water and alkyl-bound hydrogen on relatively short geological timescales at elevated temperatures and pressures. The proximity of some thermogenic and purported abiogenic alkane δ2H values to those predicted for equilibrium 2H/1H fractionation with ambient water suggests that this process may regulate the δ2H signatures of some naturally occurring hydrocarbons.

  20. PEP Carboxykinase Exchange Reaction in Photosynthetic Bacteria 1

    PubMed Central

    Cooper, T. G.; Benedict, C. R.

    1968-01-01

    This paper describes some new characteristics of the phosphoenolpyruvate carboxykinase CO2-oxaloacetate exchange reaction in purified preparations of Rhodospirillum rubrum. The enzymatic activity has been purified 169-fold. Nucleotide diphosphates substitute for nucleotide triphosphates in the exchange reaction. Nucleotide diphosphates will not support the synthesis of phosphoenolpyruvate from oxaloacetate. This reaction differs significantly from the CO2-oxaloacetate exchange reaction in higher plants and animals. PMID:5661493

  1. Positional isotope exchange studies on enzyme using NMR spectroscopy

    SciTech Connect

    Matsunaga, T.O.

    1987-01-01

    The isotopically enriched compounds, /sup 18/O-..beta..,..gamma..-ATP and /sup 18/O bridge-labeled pyrophosphate, synthesized previously in this laboratory, were used to investigate and measure the exchange vs. turnover of substrates and products from their central complexes in four selected enzyme systems. Using hi-field /sup 31/P NMR, we were able to differentiate between /sup 18/O labeled in the bridge vs. the non-bridge positions by virtue of the isotope shift upon the phosphorus nuclei. The bridge to non-bridge scrambling of the label was quantitated and the exchange vs. turnover ratios under a variety of conditions was determined. Using the substrate inhibitor carboxycreatinine, PIX experiments with /sup 18/O-..beta..,..gamma..-ATP and creatine kinase were conducted. It was shown that carboxycreatinine and creatine kinase promoted exchange of the /sup 18/O label as determined by NMR. We have concluded that carboxycreatinine is either a substrate that catalyzes very slow turnover or it catalyzes exchange by a dissociative (SN/sub 1//sub P/) type of mechanism

  2. Isotopic anomalies from neutron reactions during explosive carbon burning

    NASA Technical Reports Server (NTRS)

    Lee, T.; Schramm, D. N.; Wefel, J. P.; Blake, J. B.

    1979-01-01

    The heavy isotopic anomalies observed recently in the fractionation and unknown nuclear inclusions from the Allende meteorite are explained by neutron reactions during the explosive carbon burning (ECB). This model produces heavy anomalies in the same zone where Al-26 and O-16 are produced, thus reducing the number of source zones required for the isotopic anomalies. Unlike the classical r-process, the ECB n-process avoids the problem with the Sr anomaly and may resolve the problem of conflicting time scales between Al-26 and the r-process isotopes I-129 and Pu-244. Experimental studies of Zr and Ce isotopic composition are proposed to test this model.

  3. Surface Exchange and Bulk Diffusivity of LSCF as SOFC Cathode: Electrical Conductivity Relaxation and Isotope Exchange Characterizations

    SciTech Connect

    Li, Yihong; Gerdes, Kirk; Horita, Teruhisa; Liu, Xingbo

    2013-05-05

    The oxygen diffusion coefficient (D) and surface exchange coefficient (k) of a typical SOFC cathode material, La{sub 0.6}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-δ} (LSCF) were characterized by both electrical conductivity relaxation (ECR) and oxygen isotope exchange (IE) methods. Conductivity relaxation experiments were conducted at 800°C for small step changes in partial pressure of oxygen (P{sub O{sub 2}} ), both decreasing and increasing, from 0.02 atm to 0.20 atm. The results revealed P{sub O{sub 2}} dependent hysteresis with the reduction process requiring more equilibration time than oxidation. Analysis of the experimental data indicated that the surface exchange coefficient is a function of the final oxygen partial pressure in an isothermal system. In addition, both forward and backward oxygen reduction reaction constants, which are vital for the fundamental understanding of SOFC cathode reaction mechanisms, are investigated based on the relationship between surface exchange coefficient and P{sub O{sub 2}} . The direct comparisons between the results from both ECR and IE were presented and the possible experimental errors in both methods were discussed.

  4. Carbon dioxide in the atmosphere: isotopic exchange with ozone and its use as a tracer in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Yung, Y. L.; Lee, A. Y.; Irion, F. W.; DeMore, W. B.; Wen, J.

    1997-01-01

    Atmospheric heavy ozone is enriched in the isotopes 18O and 17O. The magnitude of this enhancement, of the order of 100%, is very large compared with that commonly known in atmospheric chemistry and geochemistry. The heavy oxygen atom in heavy ozone is therefore useful as a tracer of chemical species and pathways that involve ozone or its derived products. As a test of the isotopic exchange reactions, we successfully carry out a series of numerical experiments to simulate the results of the laboratory experiments performed by Wen and Thiemens [1993] on ozone and CO2. A small discrepancy between the experimental and the model values for 17O exchange is also revealed. The results are used to compute the magnitude of isotopic exchange between ozone and carbon dioxide via the excited atom O(1D) in the middle atmosphere. The model for 18O is in good agreement with the observed values.

  5. Deuterium retention in tungsten after heavy ion damage and hydrogen isotope exchange in PISCES

    NASA Astrophysics Data System (ADS)

    Barton, J. L.; Wang, Y. Q.; Dittmar, T.; Doerner, R. P.; Tynan, G. R.

    2014-08-01

    The effect of H isotope exchange and radiation damage on the retention of D in W was examined in the PISCES linear plasma device. W samples were treated with D plasma at low sample temperatures (473 K), with a fluence of 1026 ions/m2 and ion energies of 150 eV. Each sample was then exposed to varying doses of H plasma with similar sample temperature and plasma conditions to fluences ranging from 0 to 1026 ions/m2, to examine the effectiveness of isotope exchange as a means of tritium removal. The D(3He, p)4He nuclear reaction was used to measure D concentration profiles up to a depth of 7.7 μm. Thermal desorption spectroscopy (TDS) was used to determine the D retained throughout the bulk of the sample. Isotope exchange allows for a unique study of atomic migration by separately examining the diffusion of implanted atoms from those bombarding the surface. D atoms are exchanged out of traps as a result of H plasma bombardment and diffuse until either falling into another trap or reaching the surface to recombine and escape. Radiation damage at levels of 0.01, 0.1, and 1 displacements per atom (dpa) was carried out before plasma exposure on some samples with 2 MeV Cu ions as a surrogate for damage caused by fusion neutrons. The Cu ion damage was compared to damage induced by 6 MeV W ions to see if there is an effect of Cu contamination on retention. We saw little difference in Cu versus W ion damage at low dpa, but at 1 dpa, where Cu content reached 65 appm, contamination seems to be significant. Retention measurements showed that ion damage has little effectiveness on isotope removal at these sample temperatures; however, there is evidence to suggest that the trapping mechanisms in W change as damage is increased.

  6. Heterogeneous Catalysis: Deuterium Exchange Reactions of Hydrogen and Methane

    ERIC Educational Resources Information Center

    Mirich, Anne; Miller, Trisha Hoette; Klotz, Elsbeth; Mattson, Bruce

    2015-01-01

    Two gas phase deuterium/hydrogen exchange reactions are described utilizing a simple inexpensive glass catalyst tube containing 0.5% Pd on alumina through which gas mixtures can be passed and products collected for analysis. The first of these exchange reactions involves H[subscript 2] + D[subscript 2], which proceeds at temperatures as low as 77…

  7. Diffusion, trapping, and isotope exchange of plasma implanted deuterium in ion beam damaged tungsten

    NASA Astrophysics Data System (ADS)

    Barton, Joseph Lincoln

    Tritium accumulation in nuclear fusion reactor materials is a major concern for practical and safe fusion energy. This work examines hydrogen isotope exchange as a tritium removal technique, analyzes the effects of neutron damage using high energy copper ion beams, and introduces a diffusion coefficient that is a function of the concentration of trapped atoms. Tungsten samples were irradiated with high energy (0.5 - 5 MeV) copper ions for controlled levels of damage - 10-3 to 10-1 displacements per atom (dpa) - at room temperature. Samples were then exposed to deuterium plasma at constant temperature (˜ 380 K) to a high fluence of 1024 ions/m2, where retention is at is maximized (i.e. saturated). By then subsequently exposing these samples to fractions of this fluence with hydrogen plasma, isotope exchange rates were observed. The resulting deuterium still trapped in the tungsten is then measured post mortem. Nuclear reaction analysis (NRA) gives the depth resolved deuterium retention profile with the 3He(D,p) 4He reaction, and thermal desorption spectroscopy (TDS) gives the total amount of deuterium trapped in the tungsten by heating a sample in vacuum up to 1200 K and measuring the evaporated gas molecules with a residual gas analyzer. Isotope exchange data show that hydrogen atoms can displace trapped deuterium atoms efficiently only up to the first few microns, but does not affect the atoms trapped at greater depths. In ion damaged tungsten, measurements showed a significant increase in retention in the damage region proportional to dpa 0.66, which results in a significant spike in total retention, and isotope exchange in damaged samples is still ineffective at depths greater than a few microns. Thus, isotope exchange is not an affective tritium removal technique; however, these experiments have shown that trapping in material defects greatly affects diffusion. These experiments lead to a simplified diffusion model with defect densities as the only free

  8. Extracting Spectroscopic Factors of Argon Isotopes from Transfer Reactions

    NASA Astrophysics Data System (ADS)

    Manfredi, Juan; Lee, J.; Tsang, M. B.; Lynch, W. G.; Barney, J.; Estee, J.; Sweany, S.; Brown, K. W.; Cerizza, G.; Anderson, C.; Setiawan, H.; Loelius, C.; Xu, Z.; Rogers, A. M.; Pruitt, C.; Sobotka, L. G.; Elson, J. M.; Langer, C.; Chajecki, Z.; Chen, G.; Jones, K. L.; Smith, K.; Xiao, Z.; Li, Z.; Winkelbauer, J. R.

    2017-01-01

    A spectroscopic factor (SF) quantifies the single particle occupancy of a given state in a nucleus. For the argon isotopes, there is a discrepancy of the SF between studies that use transfer reactions and knockout reactions. Understanding the SFs of these isotopes, and in particular how the SF changes across the isotopic chain, is important for understanding how single particle structure changes with neutron number. The transfer reactions 34Ar(p,d) and 46Ar(p,d) were measured at the National Superconducting Cyclotron Laboratory (NSCL) using the same beam energy (70 MeV/u) as from the previous knockout measurement. Spectroscopic factors were extracted from measured angular distributions via ADWA calculations. Preliminary findings will be presented. The National Superconducting Cyclotron Laboratory is supported by the NSF (PHY 1102511), and Juan Manfredi is supported by the DOE NNSA Stewardship Science Graduate Fellowship.

  9. Extracting Spectroscopic Factors of Argon Isotopes from Transfer Reactions

    NASA Astrophysics Data System (ADS)

    Manfredi, Juan; Tsang, Betty; Lynch, Bill; Barney, Jon; Estee, Justin; Sweany, Sean; Cerizza, Giordano; Iwasaki, Hironori; Loelius, Charles; Ayyad, Yassid; Anderson, Corinne; Xiao, Zhigang; Li, Zihuang; Lee, Jenny; Xu, Zhengyu; Rogers, Andrew; Brown, Kyle; Pruitt, Cole; Sobotka, Lee; Charity, Robert; Langer, Christoph; Chajecki, Zbigniew; Jones, Kate; Smith, Karl; Winkelbauer, Jack

    2016-09-01

    There is a discrepancy of spectroscopic factors (SFs) of argon isotopes depending on the use of transfer reactions or knockout reactions. Understanding how the SFs of these isotopes change across the isotopic chain is important for understanding how single particle structure changes with neutron number. The transfer reactions 34Ar(p,d) and 46Ar(p,d) were measured at the National Superconducting Cyclotron Laboratory using the High Resolution Array (HiRA) to detect the outgoing deuterons and the S800 Spectrometer to detect the heavy recoil. SFs can be extracted from these angular distributions via DWBA calculations. Preliminary findings on the data will be presented. National Nuclear Security Administration Stewardship Science Graduate Fellowship.

  10. Recombination reactions as a possible mechanism of mass-independent fractionation of sulfur isotopes in the Archean atmosphere of Earth.

    PubMed

    Babikov, Dmitri

    2017-03-21

    A hierarchy of isotopically substituted recombination reactions is formulated for production of sulfur allotropes in the anoxic atmosphere of Archean Earth. The corresponding system of kinetics equations is solved analytically to obtain concise expressions for isotopic enrichments, with focus on mass-independent isotope effects due to symmetry, ignoring smaller mass-dependent effects. Proper inclusion of atom-exchange processes is shown to be important. This model predicts significant and equal depletions driven by reaction stoichiometry for all rare isotopes: (33)S, (34)S, and (36)S. Interestingly, the ratio of capital [Formula: see text] values obtained within this model for (33)S and (36)S is -1.16, very close to the mass-independent fractionation line of the Archean rock record. This model may finally offer a mechanistic explanation for the striking mass-independent fractionation of sulfur isotopes that took place in the Archean atmosphere of Earth.

  11. Unusual origins of isotope effects in enzyme-catalysed reactions

    PubMed Central

    Northrop, Dexter B

    2006-01-01

    High hydrostatic pressure is a neglected tool for probing the origins of isotope effects. In chemical reactions, normal primary deuterium isotope effects (DIEs) arising solely from differences in zero point energies are unaffected by pressure; but some anomalous isotope effects in which hydrogen tunnelling is suspected are partially suppressed. In some enzymatic reactions, high pressure completely suppresses the DIE. We have now measured the effects of high pressure on the parallel 13C heavy atom isotope effect of yeast alcohol dehydrogenase and found that it is also suppressed by high pressure and, similarly, suppressed in its entirety. Moreover, the volume changes associated with the suppression of both deuterium and heavy atom isotope effects are virtually identical. The equivalent decrease in activation volumes for hydride transfer, when one mass unit is added to the carbon end of a scissile C–H bond as when one mass unit is added to the hydrogen end, suggests a common origin. Given that carbon is highly unlikely to undergo tunnelling, it follows that hydrogen is not doing so either. The origin of these isotope effects must lie elsewhere. We offer protein domain motions as a possibility. PMID:16873122

  12. Preparation of radioactive acetyl-l-carnitine by an enzymatic exchange reaction

    SciTech Connect

    Emaus, R.; Bieber, L.L.

    1982-01-15

    A rapid method for the preparation of (1-/sup 14/C)acetyl-L-carnitine is described. The method involves exchange of (1-/sup 14/C)acetic acid into a pool of unlabeled acetyl-L-carnitine using the enzymes acetyl-CoA synthetase and carnitine acetyltransferase. After isotopic equilibrium is attained, radioactive acetylcarnitine is separated from the other reaction components by chromatography on Dowex 1 (C1/sup -/) anion exchange resin. One of the procedures used to verify the product (1-/sup 14/C)acetyl-L-carnitine can be used to synthesize (3S)-(5-/sup 14/C)citric acid.

  13. Analysis of Hydrogen Isotopic Exchange: Lava Creek Tuff Ash and Isotopically Labeled Water

    NASA Astrophysics Data System (ADS)

    Ross, A. M.; Seligman, A. N.; Bindeman, I. N.; Nolan, G. S.

    2015-12-01

    Nolan and Bindeman (2013) placed secondarily hydrated ash from the 7.7 ka eruption of Mt. Mazama (δD=-149‰, 2.3wt% H2Ot) in isotopically labeled water (+650 ‰ δD, +56 ‰ δ18O) and observed that the H2Ot and δ18O values remained constant, but the δD values of ash increased with the surrounding water at 20, 40 and 70 °C. We expand on this work by conducting a similar experiment with ash from the 640 ka Lava Creek Tuff (LCT, δD of -128 ‰; 2.1 wt.% H2Ot) eruption of Yellowstone to see if significantly older glass (with a hypothesized gel layer on the surface shielding the interior from alteration) produces the same results. We have experiments running at 70, 24, and 5 °C, and periodically remove ~1.5 mg of glass to measure the δD (‰) and H2Ot (wt.%) of water extracted from the glass on a TC/EA MAT 253 continuous flow system. After 600 hours, the δD of the samples left at 5 and 24 °C remains at -128 ‰, but increased 8‰ for the 70 °C run series. However, there is no measurable change in wt.% of H2Ot, indicating that hydrogen exchange is not dictated by the addition of water. We are measuring and will report further progress of isotope exchange. We also plan to analyze the water in the LCT glass for δ18O (‰) to see if, as is the case for the Mt. Mazama glass, the δ18O (‰) remains constant. We also analyzed Mt. Mazama glass from the Nolan and Bindeman (2013) experiments that have now been sitting in isotopically labeled water at room temperature for ~5 years. The water concentration is still unchanged (2.3 wt.% H2Ot), and the δD of the water in the glass is now -111 ‰, causing an increase of 38 ‰. Our preliminary results show that exchange of hydrogen isotopes of hydrated glass is not limited by the age of the glass, and that the testing of hydrogen isotopes of secondarily hydrated glass, regardless of age, may not be a reliable paleoclimate indicator.

  14. Putrescine metabolism: enzymatic formation and non-enzymatic isotope exchange of delta1-pyrroline.

    PubMed

    Callery, P S; Nayar, M S; Geelhaar, L A

    1984-03-01

    The deamination of putrescine catalysed by diamine oxidase was carried out in deuterium oxide and deuterated buffers. Enamine and alpha, beta-unsaturated intermediates were excluded, based on the observation that deuterium was not incorporated into delta 1-pyrroline during its enzymatic formation in deuterium oxide. When the reaction mixture was buffered with phosphate, isolated delta 1-pyrroline contained two deuterium atoms at C-3, indicating that a phosphate-promoted, non-enzymatic isotope exchange had occurred. Using 5,5-dimethyl-delta 1-pyrroline as a model compound, the nature of the non-enzymatic deuterium exchange was studied and a bifunctional catalysis mechanism proposed. The results suggest that the choice of buffer could alter the conclusions drawn from enzyme mechanism studies involving imine-enamine tautomerism .

  15. Samarium Ion Exchanged Montmorillonite for High Temperature Cumene Cracking Reaction

    NASA Astrophysics Data System (ADS)

    Binitha, N. N.; Silija, P. P.; Suraj, V.; Yaakob, Z.; Sugunan, S.

    2011-02-01

    Montmorillonite clay is cation exchanged with samarium and its catalytic influence in cumene cracking reaction is investigated. Effect of exchange with sodium ions on further exchange with samarium ions is also noted. Acidity measurements are done using Temperature Programmed Desorption (TPD) of ammonia. The retention of basic structure is proved from FTIR spectra and XRD patterns. Elemental analysis result shows that samarium exchange has occurred, which is responsible for the higher catalytic activity. Surface area and pore volume remains more or less unaffected upon exchange. Thermogravimetric analysis indicates the enhanced thermal stability on exchanging. Cumene cracking reaction is carried out at atmospheric pressure in a fixed bed glass reactor at 673 K. The predominance of Brønsted acidity is confirmed from high selectivity to benzene.

  16. An Exchange-Only Qubit in Isotopically Enriched 28Si

    NASA Astrophysics Data System (ADS)

    Gyure, Mark

    2015-03-01

    We demonstrate coherent manipulation and universal control of a qubit composed of a triple quantum dot implemented in an isotopically enhanced Si/SiGe heterostructure, which requires no local AC or DC magnetic fields for operation. Strong control over tunnel rates is enabled by a dopantless, accumulation-only device design, and an integrated measurement dot enables single-shot measurement. Reduction of magnetic noise is achieved via isotopic purification of the silicon quantum well. We demonstrate universal control using composite pulses and employ these pulses for spin-echo-type sequences to measure both magnetic noise and charge noise. The noise measured is sufficiently low to enable the long pulse sequences required for exchange-only quantum information processing. Sponsored by United States Department of Defense. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressly or implied, of the United States Department of Defense or the U.S. Government. Approved for public release, distribution unlimited.

  17. Water Vapor Isotopic Fractionation and Strat/trop Exchange

    NASA Astrophysics Data System (ADS)

    Jucks, K. W.; Johnson, D. G.; Traub, W. A.; Chance, K. V.

    We will present atmospheric observations of the isotopic fractionation for water vapor as observed by the Smithsonian Astrophysical Observatory far-infrared spectrometer (FIRS-2). The stratospheric observations are corrected with a photochemical model to account for methane oxidation to determine the "entry level" isotopic fractionation of water in the stratosphere. These values are then compared to a simple Rayleigh frac- tionation model that includes estimations of convection, radiative heating, and mixing to infer relative contributions to stratosphere/troposphere exchange. The observations of water vapor fractionation are most consistent with a model that mixes air uplifted from roughly 11 km with significantly more air that has been dehydrated by convec- tion to an effective temperature that is much cooler than the tropopause temperature. The water vapor mixing ratio in the stratosphere results from a combination of radia- tive heating, recirculation of stratospheric air, and deep convection that supplies the air to the upper tropical troposphere. We believe that these types of observations could be a powerful tool for constraining circulation models.

  18. Experimental studies of alunite: II. Rates of alunite-water alkali and isotope exchange

    USGS Publications Warehouse

    Stoffregen, R.E.; Rye, R.O.; Wasserman, M.D.

    1994-01-01

    Rates of alkali exchange between alunite and water have been measured in hydrothermal experiments of 1 hour to 259 days duration at 150 to 400??C. Examination of run products by scanning electron microscope indicates that the reaction takes place by dissolution-reprecipitation. This exchange is modeled with an empirical rate equation which assumes a linear decrease in mineral surface area with percent exchange (f) and a linear dependence of the rate on the square root of the affinity for the alkali exchange reaction. This equation provides a good fit of the experimental data for f = 17% to 90% and yields log rate constants which range from -6.25 moles alkali m-2s-1 at 400??C to - 11.7 moles alkali m-2s-1 at 200??C. The variation in these rates with temperature is given by the equation log k* = -8.17(1000/T(K)) + 5.54 (r2 = 0.987) which yields an activation energy of 37.4 ?? 1.5 kcal/mol. For comparison, data from O'Neil and Taylor (1967) and Merigoux (1968) modeled with a pseudo-second-order rate expression give an activation energy of 36.1 ?? 2.9 kcal/mol for alkali-feldspar water Na-K exchange. In the absence of coupled alkali exchange, oxygen isotope exchange between alunite and water also occurs by dissolution-reprecipitation but rates are one to three orders of magnitude lower than those for alkali exchange. In fine-grained alunites, significant D-H exchange occurs by hydrogen diffusion at temperatures as low as 100??C. Computed hydrogen diffusion coefficients range from -15.7 to -17.3 cm2s-1 and suggest that the activation energy for hydrogen diffusion may be as low as 6 kcal/mol. These experiments indicate that rates of alkali exchange in the relatively coarse-grained alunites typical of hydrothermal ore deposits are insignificant, and support the reliability of K-Ar age data from such samples. However, the fine-grained alunites typical of low temperature settings may be susceptible to limited alkali exchange at surficial conditions which could cause

  19. Using reactive artificial muscles to determine water exchange during reactions

    NASA Astrophysics Data System (ADS)

    Otero, T. F.; Martínez, J. G.; Zaifoglu, B.

    2013-10-01

    Artificial muscles based on films of conducting polymers translate film volume variations, driven by electrochemical reactions (Faradaic motors), into macroscopic movements with generation of mechanical energy. The reaction promotes exchange of counterions (anions here) and solvent molecules with the electrolyte. Attributing here both the film volume variation and the movement originated by these exchanges of ions and solvent, the described angles can be used to quantify the exchanged solvent. Different angles described by bending muscles consuming equal driving charges in electrolytes having the same cation and different anions were measured. The number of exchanged counterions is given by the consumed charge and the ion valence: this is a Faradaic reaction. The described angle fraction due to the exchanged anions is given by the number of anions and the crystallographic radius. Taking as reference the anion giving the shorter angle, whatever the consumed charge, the relative number of solvent molecules exchanged by the polymeric membrane during a reversible reaction was determined. Actuators and artificial muscles can be used as useful tools for, at least, an initial study of the solvent exchange during reactions in reactive gels.

  20. Iridium(I)-catalyzed regioselective C-H activation and hydrogen-isotope exchange of non-aromatic unsaturated functionality.

    PubMed

    Kerr, William J; Mudd, Richard J; Paterson, Laura C; Brown, Jack A

    2014-11-03

    Isotopic labelling is a key technology of increasing importance for the investigation of new CH activation and functionalization techniques, as well as in the construction of labelled molecules for use within both organic synthesis and drug discovery. Herein, we report for the first time selective iridium-catalyzed CH activation and hydrogen-isotope exchange at the β-position of unsaturated organic compounds. The use of our highly active [Ir(cod)(IMes)(PPh3 )][PF6 ] (cod=1,5-cyclooctadiene) catalyst, under mild reaction conditions, allows the regioselective β-activation and labelling of a range of α,β-unsaturated compounds with differing steric and electronic properties. This new process delivers high levels of isotope incorporation over short reaction times by using low levels of catalyst loading.

  1. Cu Vacancies Boost Cation Exchange Reactions in Copper Selenide Nanocrystals

    PubMed Central

    2015-01-01

    We have investigated cation exchange reactions in copper selenide nanocrystals using two different divalent ions as guest cations (Zn2+ and Cd2+) and comparing the reactivity of close to stoichiometric (that is, Cu2Se) nanocrystals with that of nonstoichiometric (Cu2–xSe) nanocrystals, to gain insights into the mechanism of cation exchange at the nanoscale. We have found that the presence of a large density of copper vacancies significantly accelerated the exchange process at room temperature and corroborated vacancy diffusion as one of the main drivers in these reactions. Partially exchanged samples exhibited Janus-like heterostructures made of immiscible domains sharing epitaxial interfaces. No alloy or core–shell structures were observed. The role of phosphines, like tri-n-octylphosphine, in these reactions, is multifaceted: besides acting as selective solvating ligands for Cu+ ions exiting the nanoparticles during exchange, they also enable anion diffusion, by extracting an appreciable amount of selenium to the solution phase, which may further promote the exchange process. In reactions run at a higher temperature (150 °C), copper vacancies were quickly eliminated from the nanocrystals and major differences in Cu stoichiometries, as well as in reactivities, between the initial Cu2Se and Cu2–xSe samples were rapidly smoothed out. These experiments indicate that cation exchange, under the specific conditions of this work, is more efficient at room temperature than at higher temperature. PMID:26140622

  2. Cu Vacancies Boost Cation Exchange Reactions in Copper Selenide Nanocrystals.

    PubMed

    Lesnyak, Vladimir; Brescia, Rosaria; Messina, Gabriele C; Manna, Liberato

    2015-07-29

    We have investigated cation exchange reactions in copper selenide nanocrystals using two different divalent ions as guest cations (Zn(2+) and Cd(2+)) and comparing the reactivity of close to stoichiometric (that is, Cu2Se) nanocrystals with that of nonstoichiometric (Cu(2-x)Se) nanocrystals, to gain insights into the mechanism of cation exchange at the nanoscale. We have found that the presence of a large density of copper vacancies significantly accelerated the exchange process at room temperature and corroborated vacancy diffusion as one of the main drivers in these reactions. Partially exchanged samples exhibited Janus-like heterostructures made of immiscible domains sharing epitaxial interfaces. No alloy or core-shell structures were observed. The role of phosphines, like tri-n-octylphosphine, in these reactions, is multifaceted: besides acting as selective solvating ligands for Cu(+) ions exiting the nanoparticles during exchange, they also enable anion diffusion, by extracting an appreciable amount of selenium to the solution phase, which may further promote the exchange process. In reactions run at a higher temperature (150 °C), copper vacancies were quickly eliminated from the nanocrystals and major differences in Cu stoichiometries, as well as in reactivities, between the initial Cu2Se and Cu(2-x)Se samples were rapidly smoothed out. These experiments indicate that cation exchange, under the specific conditions of this work, is more efficient at room temperature than at higher temperature.

  3. Continuous Consecutive Reactions with Inter‐Reaction Solvent Exchange by Membrane Separation

    PubMed Central

    Peeva, Ludmila; Da Silva Burgal, Joao; Heckenast, Zsofia; Brazy, Florine; Cazenave, Florian

    2016-01-01

    Abstract Pharmaceutical production typically involves multiple reaction steps with separations between successive reactions. Two processes which complicate the transition from batch to continuous operation in multistep synthesis are solvent exchange (especially high‐boiling‐ to low‐boiling‐point solvent), and catalyst separation. Demonstrated here is membrane separation as an enabling platform for undertaking these processes during continuous operation. Two consecutive reactions are performed in different solvents, with catalyst separation and inter‐reaction solvent exchange achieved by continuous flow membrane units. A Heck coupling reaction is performed in N,N‐dimethylformamide (DMF) in a continuous membrane reactor which retains the catalyst. The Heck reaction product undergoes solvent exchange in a counter‐current membrane system where DMF is continuously replaced by ethanol. After exchange the product dissolved in ethanol passes through a column packed with an iron catalyst, and undergoes reduction (>99 % yield). PMID:27669675

  4. Ab Initio Nuclear Structure and Reaction Calculations for Rare Isotopes

    SciTech Connect

    Draayer, Jerry P.

    2014-09-28

    We have developed a novel ab initio symmetry-adapted no-core shell model (SA-NCSM), which has opened the intermediate-mass region for ab initio investigations, thereby providing an opportunity for first-principle symmetry-guided applications to nuclear structure and reactions for nuclear isotopes from the lightest p-shell systems to intermediate-mass nuclei. This includes short-lived proton-rich nuclei on the path of X-ray burst nucleosynthesis and rare neutron-rich isotopes to be produced by the Facility for Rare Isotope Beams (FRIB). We have provided ab initio descriptions of high accuracy for low-lying (including collectivity-driven) states of isotopes of Li, He, Be, C, O, Ne, Mg, Al, and Si, and studied related strong- and weak-interaction driven reactions that are important, in astrophysics, for further understanding stellar evolution, X-ray bursts and triggering of s, p, and rp processes, and in applied physics, for electron and neutrino-nucleus scattering experiments as well as for fusion ignition at the National Ignition Facility (NIF).

  5. Computation of kinetic isotope effects for enzymatic reactions.

    PubMed

    Gao, Jiali

    2012-12-01

    We describe a computational approach, incorporating quantum mechanics into enzyme kinetics modeling with a special emphasis on computation of kinetic isotope effects. Two aspects are highlighted: (1) the potential energy surface is represented by a combined quantum mechanical and molecular mechanical (QM/MM) potential in which the bond forming and breaking processes are modeled by electronic structure theory, and (2) a free energy perturbation method in path integral simulation is used to determine both kinetic isotope effects (KIEs). In this approach, which is called the PI-FEP/UM method, a light (heavy) isotope is mutated into a heavy (light) counterpart in centroid path integral simulations. The method is illustrated in the study of primary and secondary KIEs in two enzyme systems. In the case of nitroalkane oxidase, the enzymatic reaction exhibits enhanced quantum tunneling over that of the uncatalyzed process in water. In the dopa delarboxylase reaction, there appears to be distinguishable primary carbon-13 and secondary deuterium KIEs when the internal proton tautomerism is in the N-protonated or in the O-protonated positions. These examples show that the incorporation of quantum mechanical effects in enzyme kinetics modeling offers an opportunity to accurately and reliably model the mechanisms and free energies of enzymatic reactions.

  6. Concentrating low-level tritiated water through isotope exchange

    SciTech Connect

    Jorgensen, B.S.; Dye, R.C.; Pratt, L.R.; Gomez, M.A.; Meadows, J.E.

    2000-03-01

    Trapping of tritium on polymers with specific functional groups was investigated as a means of treating waste streams containing low levels of tritium. Chemical exchange of tritium with hydrogen on the functional group was used as the mechanism for trapping. The polymers tested include Aurorez polybenzimidazole resin beads, Chelex 100 resin beads, Duolite GT-73, microcrystalline cellulose, and polyethylenimine. The tests were performed under simulated operating conditions on water obtained from the Radioactive Liquid Waste Treatment Facility at Los Alamos National Laboratory, Tritiated water from the Tritium Systems Test Assembly is discharged to this plant. Polyethylenimine is a water-soluble polymer that was tested using a stirred membrane cell with an ultrafiltration membrane. All of the polymers except polyethylenimine took up tritium from the water. Polybenzimidazole demonstrated the highest tritium uptake. The results are explained on the basis of the type of functional group, hydrogen bonding, and rigidity of the molecular structure of the polymer. The theoretical calculations indicate that significant isotope discrimination requires high-frequency modes with hydrogen bonding contribution and support the experimental findings. Modeling suggested trends that may lead to structures that are more efficient in trapping tritium.

  7. Hydrogen isotope exchange in tungsten: Discussion as removal method for tritium

    NASA Astrophysics Data System (ADS)

    Roth, J.; Schwarz-Selinger, T.; Alimov, V. Kh.; Markina, E.

    2013-01-01

    Hydrogen isotope exchange in re-crystallized polycrystalline tungsten was investigated at 320 and 450 K. In a first step the tungsten samples were loaded with deuterium to a fluence of 1024 D/m2 from a low-temperature plasma at 200 eV/D particle energy. In a second step, H was implanted at the same particle energy and similar target temperature with a mass-separated ion beam at different ion fluences ranging from 2 × 1020 to 7.5 × 1023 H/m2. The analytic methods used were nuclear reaction analysis with D(3He,p)α reaction and elastic recoil detection analysis with 4He. In order to determine the D concentration at depths of up to 7.4 μm the 3He energy was varied from 0.5 to 4.5 MeV. It was found that already at an H fluence of 2 × 1020 H/m2, i.e. at 1/5000 of the initial D fluence, about 30% of the retained D was released. Depth profiling of D without and with subsequent H implantation shows strong replacement close to the surface at 320 K, but extending to all analyzable depths at 450 K especially at high fluences, leading to higher release efficiency. The reverse sequence of hydrogen isotopes allowed the analysis of the replacing isotope and showed that the release of D is balanced by the uptake of H. It also shows that hydrogen does not diffuse through a region of filled traps into a region were unfilled traps can be encounter but transport is rather a dynamic process of trapping and de-trapping even at 320 K. Initial D retention in H loaded W is an order of magnitude higher than in pristine W, indicating that every H-containing trap is a potential trap for D. In consequence, hydrogen isotope exchange is not a viable method to significantly enhance the operation time before the tritium inventory limit is reached but should be considered an option to reduce the tritium inventory in ITER before major interventions at the end of an operation period.

  8. Lock-exchange experiments with an autocatalytic reaction front

    NASA Astrophysics Data System (ADS)

    Malham, I. Bou; Jarrige, N.; Martin, J.; Rakotomalala, N.; Talon, L.; Salin, D.

    2010-12-01

    A viscous lock-exchange gravity current corresponds to the reciprocal exchange of two fluids of different densities in a horizontal channel. The resulting front between the two fluids spreads as the square root of time, with a diffusion coefficient reflecting the buoyancy, viscosity, and geometrical configuration of the current. On the other hand, an autocatalytic reaction front between a reactant and a product may propagate as a solitary wave, namely, at a constant velocity and with a stationary concentration profile, resulting from the balance between molecular diffusion and chemical reaction. In most systems, the fluid left behind the front has a different density leading to a lock-exchange configuration. We revisit, with a chemical reaction, the classical situation of lock-exchange. We present an experimental analysis of buoyancy effects on the shape and the velocity of the iodate arsenous acid autocatalytic reaction fronts, propagating in horizontal rectangular channels and for a wide range of aspect ratios (1/3 to 20) and cylindrical tubes. We do observe stationary-shaped fronts, spanning the height of the cell and propagating along the cell axis. Our data support the contention that the front velocity and its extension are linked to each other and that their variations scale with a single variable involving the diffusion coefficient of the lock-exchange in the absence of chemical reaction. This analysis is supported by results obtained with lattice Bathnagar-Gross-Krook (BGK) simulations Jarrige et al. [Phys. Rev. E 81, 06631 (2010)], in other geometries (like in 2D simulations by Rongy et al. [J. Chem. Phys. 127, 114710 (2007)] and experiments in cylindrical tubes by Pojman et al. [J. Phys. Chem. 95, 1299 (1991)]), and for another chemical reaction Schuszter et al. [Phys. Rev. E 79, 016216 (2009)].

  9. THE EXCHANGE REACTION OF ACETYL FLUORIDE AND ACETYL HEXAFLUOROARSENATE,

    DTIC Science & Technology

    From the temperature dependence of the exchange rate of the methyl protons between acetyl fluoride and acetyl hexafluoroarsenate an Arrhenius...the reaction was found to be one-half order in acetyl hexafluoroarsenate and zero order in acetyl fluoride. (Author)

  10. Low temperature equilibrium isotope fractionation and isotope exchange kinetics between U(IV) and U(VI)

    NASA Astrophysics Data System (ADS)

    Wang, Xiangli; Johnson, Thomas M.; Lundstrom, Craig C.

    2015-06-01

    Measurements of the uranium (U) isotope ratio 238U/235U provide an emerging redox proxy in environmental and paleoredox studies, but many key parameters concerning U isotope fractionation are still poorly constrained. Here we report the equilibrium isotopic fractionation between dissolved U(IV) and dissolved U(VI), and rates of isotope exchange between solid-phase U(IV) and dissolved U(VI). We conducted one experiment at high concentration [35 mM U(IV) and 32 mM U(VI)] and low pH (0.2) in hydrochloric acid media at room temperature to determine the equilibrium isotopic fractionation between dissolved U(IV) and dissolved U(VI). Isotopic equilibrium was reached in about 19 days under such experimental conditions. The equilibrium isotope fractionation was determined to be 1.64 ± 0.16‰, with U(IV) being enriched in 238U relative to U(VI). Applicability of the determined equilibrium fractionation is discussed. We also conducted a set of experiments to determine isotopic exchange rates between dissolved U(VI) and nanouraninite U(IV) under conditions closer to those in natural system, with lower concentrations and neutral pH. The exchange rate was found to conform to the rate law R = k[U(VI)]adsorbed, in which R is the isotopic exchange rate (μM day-1); k is the rate constant determined to be 0.21 day-1; and [U(VI)]adsorbed is the concentration of U(VI) adsorbed to nanouraninite (μM). Our results, combined with consideration of the variables controlling U(VI)-U(IV) contact in natural settings, indicate that the timescale for significant isotope equilibration varies depending on environmental conditions, mostly uranium concentrations. In natural uncontaminated sediments with low uranium concentrations, equilibration is expected to occur on a timescale of hundreds to thousands of years. In contrast, in U-contaminated aquifers with high U concentrations, significant equilibration could occur on timescales of weeks to years.

  11. Geometric phase effects in ultracold hydrogen exchange reaction

    SciTech Connect

    Hazra, Jisha; Kendrick, Brian K.; Balakrishnan, Naduvalath

    2016-10-14

    The role of the geometric phase effect on chemical reaction dynamics is explored by examining the hydrogen exchange process in the fundamental H+HD reaction. Results are presented for vibrationally excited HD molecules in the v = 4 vibrational level and for collision energies ranging from 1 μK to 100 K. It is found that, for collision energies below 3 K, inclusion of the geometric phase leads to dramatic enhancement or suppression of the reaction rates depending on the final quantum state of the HD molecule. The effect was found to be the most prominent for rotationally resolved integral and differential cross sections but it persists to a lesser extent in the vibrationally resolved and total reaction rate coefficients. However, no significant GP effect is present in the reactive channel leading to the D+H2 product or in the D+H2 $(v=4,j=0)\\,\\to $ HD+H reaction. A simple interference mechanism involving inelastic (nonreactive) and exchange scattering amplitudes is invoked to account for the observed GP effects. The computed results also reveal a shape resonance in the H+HD reaction near 1 K and the GP effect is found to influence the magnitude of the resonant part of the cross section. In conclusion, experimental detection of the resonance may allow a sensitive probe of the GP effect in the H+HD reaction.

  12. Geometric phase effects in ultracold hydrogen exchange reaction

    DOE PAGES

    Hazra, Jisha; Kendrick, Brian K.; Balakrishnan, Naduvalath

    2016-10-14

    The role of the geometric phase effect on chemical reaction dynamics is explored by examining the hydrogen exchange process in the fundamental H+HD reaction. Results are presented for vibrationally excited HD molecules in the v = 4 vibrational level and for collision energies ranging from 1 μK to 100 K. It is found that, for collision energies below 3 K, inclusion of the geometric phase leads to dramatic enhancement or suppression of the reaction rates depending on the final quantum state of the HD molecule. The effect was found to be the most prominent for rotationally resolved integral and differential cross sections but it persists to a lesser extent in the vibrationally resolved and total reaction rate coefficients. However, no significant GP effect is present in the reactive channel leading to the D+H2 product or in the D+H2more » $$(v=4,j=0)\\,\\to $$ HD+H reaction. A simple interference mechanism involving inelastic (nonreactive) and exchange scattering amplitudes is invoked to account for the observed GP effects. The computed results also reveal a shape resonance in the H+HD reaction near 1 K and the GP effect is found to influence the magnitude of the resonant part of the cross section. In conclusion, experimental detection of the resonance may allow a sensitive probe of the GP effect in the H+HD reaction.« less

  13. Geometric phase effects in ultracold hydrogen exchange reaction

    NASA Astrophysics Data System (ADS)

    Hazra, Jisha; Kendrick, Brian K.; Balakrishnan, N.

    2016-10-01

    The role of the geometric phase effect on chemical reaction dynamics is explored by examining the hydrogen exchange process in the fundamental H+HD reaction. Results are presented for vibrationally excited HD molecules in the v = 4 vibrational level and for collision energies ranging from 1 μK to 100 K. It is found that, for collision energies below 3 K, inclusion of the geometric phase leads to dramatic enhancement or suppression of the reaction rates depending on the final quantum state of the HD molecule. The effect was found to be the most prominent for rotationally resolved integral and differential cross sections but it persists to a lesser extent in the vibrationally resolved and total reaction rate coefficients. However, no significant GP effect is present in the reactive channel leading to the D+H2 product or in the D+H2 (v=4,j=0) \\to HD+H reaction. A simple interference mechanism involving inelastic (nonreactive) and exchange scattering amplitudes is invoked to account for the observed GP effects. The computed results also reveal a shape resonance in the H+HD reaction near 1 K and the GP effect is found to influence the magnitude of the resonant part of the cross section. Experimental detection of the resonance may allow a sensitive probe of the GP effect in the H+HD reaction.

  14. Oxygen isotope exchange between refractory inclusion in Allende and solar nebula gas.

    PubMed

    Yurimoto, H; Ito, M; Nagasawa, H

    1998-12-04

    A calcium-aluminum-rich inclusion (CAI) from the Allende meteorite was analyzed and found to contain melilite crystals with extreme oxygen-isotope composition (approximately 5 percent oxygen-16 enrichment relative to terrestrial oxygen-16). Some of the melilite is also anomalously enriched in oxygen-16 compared with oxygen isotopes measured in other CAIs. The oxygen isotopic variation measured among the minerals (melilite, spinel, and fassaite) indicates that crystallization of the CAI started from oxygen-16-rich materials that were probably liquid droplets in the solar nebula, and oxygen isotope exchange with the surrounding oxygen-16-poor nebular gas progressed through the crystallization of the CAI. Additional oxygen isotope exchange also occurred during subsequent reheating events in the solar nebula.

  15. Oxygen isotope exchange between refractory inclusion in allende and solar nebula Gas

    PubMed

    Yurimoto; Ito; Nagasawa

    1998-12-04

    A calcium-aluminum-rich inclusion (CAI) from the Allende meteorite was analyzed and found to contain melilite crystals with extreme oxygen-isotope compositions ( approximately 5 percent oxygen-16 enrichment relative to terrestrial oxygen-16). Some of the melilite is also anomalously enriched in oxygen-16 compared with oxygen isotopes measured in other CAIs. The oxygen isotopic variation measured among the minerals (melilite, spinel, and fassaite) indicates that crystallization of the CAI started from oxygen-16-rich materials that were probably liquid droplets in the solar nebula, and oxygen isotope exchange with the surrounding oxygen-16-poor nebular gas progressed through the crystallization of the CAI. Additional oxygen isotope exchange also occurred during subsequent reheating events in the solar nebula.

  16. No oxygen isotope exchange between water and APS-sulfate at surface temperature: Evidence from quantum chemical modeling and triple-oxygen isotope experiments

    NASA Astrophysics Data System (ADS)

    Kohl, Issaku E.; Asatryan, Rubik; Bao, Huiming

    2012-10-01

    In both laboratory experiments and natural environments where microbial dissimilatory sulfate reduction (MDSR) occurs in a closed system, the δ34S ((34S/32S)sample/(34S/32S)standard - 1) for dissolved SO42- has been found to follow a typical Rayleigh-Distillation path. In contrast, the corresponding δ18O ((18O/16O)sample/(18O/16O)standard) - 1) is seen to plateau with an apparent enrichment of between 23‰ and 29‰ relative to that of ambient water under surface conditions. This apparent steady-state in the observed difference between δ18O and δ18OO can be attributed to any of these three steps: (1) the formation of adenosine-5'-phosphosulfate (APS) from ATP and SO42-, (2) oxygen exchange between sulfite (or other downstream sulfoxy-anions) and water later in the MDSR reaction chain and its back reaction to APS and sulfate, and (3) the re-oxidation of produced H2S or precursor sulfoxy-anions to sulfate in environments containing Fe(III) or O2. This study examines the first step as a potential pathway for water oxygen incorporation into sulfate. We examined the structures and process of APS formation using B3LYP/6-31G(d,p) hybrid density functional theory, implemented in the Gaussian-03 program suite, to predict the potential for oxygen exchange. We conducted a set of in vitro, enzyme-catalyzed, APS formation experiments (with no further reduction to sulfite) to determine the degree of oxygen isotope exchange between the APS-sulfate and water. Triple-oxygen-isotope labeled water was used in the reactor solutions to monitor oxygen isotope exchange between water and APS sulfate. The formation and hydrolysis of APS were identified as potential steps for oxygen exchange with water to occur. Quantum chemical modeling indicates that the combination of sulfate with ATP has effects on bond strength and symmetry of the sulfate. However, these small effects impart little influence on the integrity of the SO42- tetrahedron due to the high activation energy required for

  17. Ammonium transport and reaction in contaminated groundwater: Application of isotope tracers and isotope fractionation studies

    USGS Publications Warehouse

    Böhlke, J.K.; Smith, R.L.; Miller, D.N.

    2006-01-01

    Ammonium (NH4+) is a major constituent of many contaminated groundwaters, but its movement through aquifers is complex and poorly documented. In this study, processes affecting NH4+ movement in a treated wastewater plume were studied by a combination of techniques including large-scale monitoring of NH4+ distribution; isotopic analyses of coexisting aqueous NH4+, NO3-, N2, and sorbed NH 4+; and in situ natural gradient 15NH 4+ tracer tests with numerical simulations of 15NH4+, 15NO3-, and 15N2 breakthrough data. Combined results indicate that the main mass of NH4+ was moving downgradient at a rate about 0.25 times the groundwater velocity. Retardation factors and groundwater ages indicate that much of the NH4+ in the plume was recharged early in the history of the wastewater disposal. NO3- and excess N2 gas, which were related to each other by denitrification near the plume source, were moving downgradient more rapidly and were largely unrelated to coexisting NH 4+. The ??15N data indicate areas of the plume affected by nitrification (substantial isotope fractionation) and sorption (no isotope fractionation). There was no conclusive evidence for NH 4+-consuming reactions (nitrification or anammox) in the anoxic core of the plume. Nitrification occurred along the upper boundary of the plume but was limited by a low rate of transverse dispersive mixing of wastewater NH4+ and O2 from overlying uncontaminated groundwater. Without induced vertical mixing or displacement of plume water with oxic groundwater from upgradient sources, the main mass of NH4+ could reach a discharge area without substantial reaction long after the more mobile wastewater constituents are gone. Multiple approaches including in situ isotopic tracers and fractionation studies provided critical information about processes affecting NH4+ movement and N speciation.

  18. Comparison of [82Br]4-bromoantipyrine and [125I]4-iodoantipyrine: the kinetics of exchange reaction and biodistribution in rats.

    PubMed

    Liu, B L; Kung, H F; Billings, J; Blau, M

    1987-01-01

    Kinetics and mechanism of isotope exchange reaction between [82Br]bromide anion and 4-bromoantipyrine (BrAP), and the iodine-bromine exchange reaction between [125I]iodide anion and BrAP were studied. The preparation of [82Br]BrAP followed by exponential exchange law, the kinetics of the exchange reaction is a second-order reaction with an activation energy of 23.3 kcal/mol. The optimal exchange condition for halogen exchange between [125I]iodide and BrAP was by a hydrothermal melt method at 110 degrees C and 5 min reaction time. The partition coefficient at pH 7.0 for IAP and BrAP was 20.9 and 13.5, respectively. However, BrAP, which displayed the lower partition coefficient, showed higher brain uptake in rats than that for IAP (2.0% dose/organ vs 1.74% dose/organ), at 2 min after an i.v. injection.

  19. Cross-ligation and exchange reactions catalyzed by hairpin ribozymes.

    PubMed Central

    Komatsu, Y; Koizumi, M; Sekiguchi, A; Ohtsuka, E

    1993-01-01

    The negative strand of the satellite RNA of tobacco ringspot virus (sTobRV(-)) contains a hairpin catalytic domain that shows self-cleavage and self-ligation activities in the presence of magnesium ions. We describe here that the minimal catalytic domain can catalyze a cross-ligation reaction between two kinds of substrates in trans. The cross-ligated product increased when the reaction temperature was decreased during the reaction from 37 degrees C to 4 degrees C. A two-stranded hairpin ribozyme, divided into two fragments between G45 and U46 in a hairpin loop, showed higher ligation activity than the nondivided ribozyme. The two stranded ribozyme also catalyzed an exchange reaction of the 3'-portion of the cleavage site. Images PMID:8441626

  20. Guest exchange in an encapsulation complex: A supramolecular substitution reaction

    PubMed Central

    Santamaría, Javier; Martín, Tomás; Hilmersson, Göran; Craig, Stephen L.; Rebek, Julius

    1999-01-01

    Encapsulation complexes are reversibly formed assemblies in which small molecule guests are completely surrounded by large molecule hosts. The assemblies are held together by weak intermolecular forces and are dynamic: they form and dissipate on time scales ranging from milliseconds to days—long enough for many interactions, even reactions, to take place within them. Little information is available on the exchange process, how guests get in and out of these complexes. Here we report that these events can be slow enough for conventional kinetic studies, and reactive intermediates can be detected. Guest exchange has much in common with familiar chemical substitution reactions, but differs in some respects: no covalent bonds are made or broken, the substrate is an assembly rather than a single molecule, and at least four molecules are involved in multiple rate-determining steps. PMID:10411877

  1. EXFOR SYSTEMS MANUAL NUCLEAR REACTION DATA EXCHANGE FORMAT.

    SciTech Connect

    MCLANE,V.; NUCLEAR DATA CENTER NETWORK

    2000-05-19

    EXFOR is an exchange format designed to allow transmission of nuclear reaction data between the members of the Nuclear Data Centers Network. This document has been written for use by the members of the Network and includes matters of procedure and protocol, as well as detailed rules for the compilation of data. Users may prefer to consult EXFOR Basics' for a brief description of the format.

  2. Momentum transfer in relativistic heavy ion charge-exchange reactions

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Wilson, J. W.; Khan, F.; Khandelwal, G. S.

    1991-01-01

    Relativistic heavy ion charge-exchange reactions yield fragments (Delta-Z = + 1) whose longitudinal momentum distributions are downshifted by larger values than those associated with the remaining fragments (Delta-Z = 1, -2,...). Kinematics alone cannot account for the observed downshifts; therefore, an additional contribution from collision dynamics must be included. In this work, an optical model description of collision momentum transfer is used to estimate the additional dynamical momentum downshift. Good agreement between theoretical estimates and experimental data is obtained.

  3. Use of micrometeorological techniques to study the isotopic exchange in ecosystems

    NASA Astrophysics Data System (ADS)

    Santos, E.; Wagner-Riddle, C.; Brown, S. E.; Stropes, K.

    2015-12-01

    The combination of micrometeorological techniques with high frequency concentration measurements of stable isotopes are a powerful tool to study the temporal dynamics of isotope signatures at the ecosystem level. The objective of this study was to study the isotopic composition of the net CO2 exchange (NEE) above and with corn and tall grass canopies. Profiles of stable isotopes of CO2 (12C-CO2, 13C-CO2 and 18O-CO2) were measured using tunable diode laser trace gas analyzers and multiport sampling systems in corn (12C-CO2 and 13C-CO2, only) and tall grass canopies. These measurements were combined with the flux gradient method and Lagrangian dispersion analysis to estimate the isotopic signatures of the net CO2 flux. The use of a gradient of a concentration threshold to screen half hourly period improved the estimates of flux signatures by the isotope flux ratio approach. The Langrangian dispersion analysis and the isotope flux ratio method estimates showed good agreement above the corn canopy, indicating that the former method can be a viable alternative to study the isotopic exchange within plant canopies. The 13CO2 composition of NEE showed a downward trend near the end of the growing season, which may be related to a reduction of autotrophic respiration in the soil.

  4. Unexpected formation of 1-diethylaminobutadiene in photosensitized oxidation of triethylamine induced by 2,3-dihydro-oxoisoaporphine dyes. A 1H NMR and isotopic exchange study.

    PubMed

    De la Fuente, Julio R; Jullian, Carolina; Saitz, Claudio; Neira, Verónica; Poblete, Oscar; Sobarzo-Sánchez, Eduardo

    2005-10-28

    [reaction: see text] Photoreduction of oxoisoaporphine dyes occurs via a stepwise mechanism of electron-proton-electron transfer that leads to the N-hydrogen oxoisoaporphine anion. When triethylamine, TEA, was used as the electron donor in anaerobic conditions, 1-diethylaminobutadiene, DEAB, was one of the oxidation products of TEA, among diethylamine and acetaldehyde. DEAB was identified by (1)H NMR and GC-MS experiments by comparison with the authentic 1-diethylaminobutadiene. This is the first report of a butadienyl derivative formed in the dye-sensitized photooxidation of TEA. In addition, isotopic exchange experiments with TEA-d(15) and D(2)O show that the hydrogens at carbon-2 and carbon-4 of the butadienyl moiety are exchangeable. The observed isotopic exchange pattern could be explained by the head-to-tail coupling of an N,N-diethylvinylamine intermediate that exchanges hydrogens at the C-beta via the enammonium ion.

  5. First observation of a mass independent isotopic fractionation in a condensation reaction

    NASA Technical Reports Server (NTRS)

    Thiemens, M. H.; Nelson, R.; Dong, Q. W.; Nuth, Joseph A., III

    1994-01-01

    Thiemens and Heidenreich (1983) first demonstrated that a chemically produced mass independent isotopic fractionation process could produce an isotopic composition which is identical to that observed in Allende inclusions. This raised the possibility that the meteoritic components could be produced by chemical, rather than nuclear processes. In order to develop a mechanistic model of the early solar system, it is important that relevant reactions be studied, particularly, those which may occur in the earliest condensation reactions. The isotopic results for isotopic fractionations associated with condensation processes are reported. A large mass independent isotopic fractionation is observed in one of the experiments.

  6. Towards rotationally state-resolved differential cross sections for the hydrogen exchange reaction

    SciTech Connect

    Vrakking, M.J.J.

    1992-11-01

    The hydrogen exchange reaction H + H{sub 2} {yields} H{sub 2} + H (and its isotopic variants) plays a pivotal role in chemical reaction dynamics. It is the only chemical reaction for which fully converged quantum scattering calculations have been carried out using a potential energy surface which is considered to be chemically accurate. To improve our ability to test the theory, a `perfect experiment`, measuring differential cross sections with complete specification of the reactant and product states, is called for. In this thesis, the design of an experiment is described that aims at achieving this goal for the D + H{sub 2} reaction. A crossed molecular beam arrangement is used, in which a photolytic D atom beam is crossed by a pulsed beam of H{sub 2} molecules. DH molecules formed in the D + H{sub 2} reaction are state-specifically ionized using Doppler-free (2+1) Resonance-Enhanced Multi-Photon Ionization (REMPI) and detected using a Position-sensitive microchannel plate detector. This detection technique has an unprecedented single shot detection sensitivity of 6.8 10{sup 3} molecules/cc. This thesis does not contain experimental results for the D + H{sub 2} reaction yet, but progress that has been made towards achieving this goal is reported. In addition, results are reported for a study of the Rydberg spectroscopy of the water molecule.

  7. Towards rotationally state-resolved differential cross sections for the hydrogen exchange reaction

    SciTech Connect

    Vrakking, M.J.J.

    1992-11-01

    The hydrogen exchange reaction H + H[sub 2] [yields] H[sub 2] + H (and its isotopic variants) plays a pivotal role in chemical reaction dynamics. It is the only chemical reaction for which fully converged quantum scattering calculations have been carried out using a potential energy surface which is considered to be chemically accurate. To improve our ability to test the theory, a 'perfect experiment', measuring differential cross sections with complete specification of the reactant and product states, is called for. In this thesis, the design of an experiment is described that aims at achieving this goal for the D + H[sub 2] reaction. A crossed molecular beam arrangement is used, in which a photolytic D atom beam is crossed by a pulsed beam of H[sub 2] molecules. DH molecules formed in the D + H[sub 2] reaction are state-specifically ionized using Doppler-free (2+1) Resonance-Enhanced Multi-Photon Ionization (REMPI) and detected using a Position-sensitive microchannel plate detector. This detection technique has an unprecedented single shot detection sensitivity of 6.8 10[sup 3] molecules/cc. This thesis does not contain experimental results for the D + H[sub 2] reaction yet, but progress that has been made towards achieving this goal is reported. In addition, results are reported for a study of the Rydberg spectroscopy of the water molecule.

  8. 1H NMR studies of substrate hydrogen exchange reactions catalyzed by L-methionine gamma-lyase.

    PubMed

    Esaki, N; Nakayama, T; Sawada, S; Tanaka, H; Soda, K

    1985-07-16

    Hydrogen exchange reactions of various L-amino acids catalyzed by L-methionine gamma-lyase (EC 4.4.1.11) have been studied. The enzyme catalyzes the rapid exchange of the alpha- and beta-hydrogens of L-methionine and S-methyl-L-cysteine with deuterium from the solvent. The rate of alpha-hydrogen exchange was about 40 times faster than that of the enzymatic elimination reaction of the sulfur-containing amino acids. The enzyme also catalyzes the exchange reaction of alpha- and beta-hydrogens of the following straight-chain L-amino acids which are not susceptible to elimination: norleucine, norvaline, alpha-aminobutyrate, and alanine. The exchange rates of the alpha-hydrogen and the total beta-hydrogens of L-alanine and L-alpha-aminobutyrate with deuterium followed first-order kinetics. For L-norvaline, L-norleucine, S-methyl-L-cysteine, and L-methionine, the rate of alpha-hydrogen exchange followed first-order kinetics, but the rate of total beta-hydrogen exchange decreased due to a primary isotope effect at the alpha-position. One beta-hydrogen of S-methyl-L-cysteine was exchanged faster than the other, although both the beta-hydrogens were exchanged completely with deuterium ultimately. L-Phenylalanine and L-tryptophan slowly underwent alpha-hydrogen exchange. The pro-R hydrogen of glycine was deuterated stereospecifically. None of the following amino acids were susceptible to the enzymatic hydrogen exchange: D isomers of the above amino acids, branched chain L-amino acids, acidic L-amino acids, and basic L-amino acids.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Theoretical evaluation of isotopic fractionation factors in oxidation reactions of benzene, phenol and chlorophenols.

    PubMed

    Adamczyk, Paweł; Paneth, Piotr

    2011-09-01

    We have studied theoretically the rate determining steps of reactions of benzene with permanganate, perchlorate, ozone and dioxygen in the gas phase and aqueous solution as well as phenol and dichlorophenol in protonated and unprotonated forms in aqueous solution. Kinetic isotope effects were then calculated for all carbon atoms and based on their values isotopic fractionation factors corresponding to compound specific isotopic analysis have been evaluated. The influence of the oxidant, substituents, environment and protonation on the isotopic fractionation factors has been analyzed.

  10. Grain boundary diffusion of Si, Mg, and O in enstatite reaction rims: a SIMS study using isotopically doped reactants

    NASA Astrophysics Data System (ADS)

    Milke, R.; Wiedenbeck, M.; Heinrich, W.

    2001-07-01

    Diffusion-controlled growth rates of polycrystalline enstatite reaction rims between forsterite and quartz were determined at 1,000 °C and 1 GPa in presence of traces of water. Iron-free, pure synthetic forsterite with normal oxygen and silicon isotopic compositions and quartz extremely enriched in 18O and 29Si were used as reactants. The relative mobility of18O and 29Si in reactants and rims were determined by SIMS step scanning. The morphology of the rim shows that enstatite grows by a direct replacement of forsterite. Rim growth is modelled within a mass-conserving reference frame that implies advancement of reaction fronts from the initial forsterite-quartz interface in both directions. The isotopic compositions at the two reaction interfaces are controlled by the partial reactions Mg2SiO4=0.5 Mg2Si2O6+MgO at the forsterite-enstatite, and MgO+SiO2=0.5 Mg2Si2O6 at the enstatite-quartz interface, implying that grain boundary diffusion of MgO is rate-controlling. Isotopic profiles show no silicon exchange across the propagating reaction interfaces. This propagation, controlled by MgO diffusion, is faster than the homogenisation of Si by self-diffusion behind the advancing fronts. From this, and using DSi,EnVol at dry conditions from the literature, results a D'Si,En δ value of 3×10-24 m3 s-1 at 1,000 °C. The isotopic profiles for oxygen are more complex. They are interpreted as an interplay between the propagation of the interfaces, the homogenisation of the isotope concentrations by grain boundary self-diffusion of O within the rim, and the isotope exchange across the enstatite-quartz interface, which was open to 18O influx from quartz. Because of overlapping diffusion processes, boundary conditions are unstable and Ox,Enδ cannot be quantified. Using measured rim growth rates, the grain boundary diffusivity MgOδ of MgO in iron-free enstatite is 8×10-22 m3 s-1 at 1,000 °C and 1 GPa. Experiments with San Carlos olivine (fo92) as reactant reveal lower rates

  11. Nitrogen isotope exchange between NO and NO2 and its implications for δ15N variations in tropospheric NOx and atmospheric nitrate

    NASA Astrophysics Data System (ADS)

    Walters, Wendell W.; Simonini, Damian S.; Michalski, Greg

    2016-01-01

    The nitrogen (N) isotope exchange between nitric oxide (NO) and nitrogen dioxide (NO2) has been previously suggested to influence N stable isotope compositions (δ15N) of these molecules. However, there is disagreement in the magnitude of the N isotopic fractionation (αNO2>/NO) resulting from this exchange process between previous experimental and theoretical studies. To this end, we measured αNO2>/NO associated with this exchange reaction at various temperatures. Our results indicate αNO2>/NO to be 1.0403 ± 0.0015, 1.0356 ± 0.0015, and 1.0336 ± 0.0014 at 278 K, 297 K, and 310 K, respectively. These measured values are within experimental error of the values we calculated using a modified version of the Bigeleisen-Mayer equation corrected for accurate zero-point energies, indicating an agreement between experiment and theory. Modeling of this exchange reaction demonstrates that δ15N-NO2 may exhibit a diurnal and seasonal profile if N isotopic equilibrium is achieved.

  12. Dynamical barrier and isotope effects in the simplest substitution reaction via Walden inversion mechanism

    PubMed Central

    Zhao, Zhiqiang; Zhang, Zhaojun; Liu, Shu; Zhang, Dong H

    2017-01-01

    Reactions occurring at a carbon atom through the Walden inversion mechanism are one of the most important and useful classes of reactions in chemistry. Here we report an accurate theoretical study of the simplest reaction of that type: the H+CH4 substitution reaction and its isotope analogues. It is found that the reaction threshold versus collision energy is considerably higher than the barrier height. The reaction exhibits a strong normal secondary isotope effect on the cross-sections measured above the reaction threshold, and a small but reverse secondary kinetic isotope effect at room temperature. Detailed analysis reveals that the reaction proceeds along a path with a higher barrier height instead of the minimum-energy path because the umbrella angle of the non-reacting methyl group cannot change synchronously with the other reaction coordinates during the reaction due to insufficient energy transfer from the translational motion to the umbrella mode. PMID:28224993

  13. Dynamical barrier and isotope effects in the simplest substitution reaction via Walden inversion mechanism.

    PubMed

    Zhao, Zhiqiang; Zhang, Zhaojun; Liu, Shu; Zhang, Dong H

    2017-02-22

    Reactions occurring at a carbon atom through the Walden inversion mechanism are one of the most important and useful classes of reactions in chemistry. Here we report an accurate theoretical study of the simplest reaction of that type: the H+CH4 substitution reaction and its isotope analogues. It is found that the reaction threshold versus collision energy is considerably higher than the barrier height. The reaction exhibits a strong normal secondary isotope effect on the cross-sections measured above the reaction threshold, and a small but reverse secondary kinetic isotope effect at room temperature. Detailed analysis reveals that the reaction proceeds along a path with a higher barrier height instead of the minimum-energy path because the umbrella angle of the non-reacting methyl group cannot change synchronously with the other reaction coordinates during the reaction due to insufficient energy transfer from the translational motion to the umbrella mode.

  14. EXFOR systems manual: Nuclear reaction data exchange format

    SciTech Connect

    McLane, V.

    1996-07-01

    This document describes EXFOR, the exchange format designed to allow transmission of nuclear reaction data between the members of the Nuclear Data Centers Network. In addition to storing the data and its bibliographic information, experimental information, including source of uncertainties, is also compiled. The status and history of the data set is also included, e.g., the source of the data, any updates which have been made, and correlations to other data sets. The exchange format, as outlined, is designed to allow a large variety of numerical data tables with explanatory and bibliographic information to be transmitted in an easily machine-readable format (for checking and indicating possible errors) and a format that can be read by personnel (for passing judgment on and correcting any errors indicated by the machine).

  15. The CH + CO reaction: Rate coefficient for carbon atom exchange at 294 K

    SciTech Connect

    Anderson, S.M.; McCurdy, K.E.; Kolb, C.E. )

    1989-02-09

    A fast-flow reactor equipped with isotope-specific laser-excited fluorescence detection of CH radicals has been used to study carbon atom exchange in the reaction between CH and CO at 294 K and 2 Torr of total pressure. The rate coefficient for exchange, k{sub 3} = (2.1 {times} 0.3) {times} 10{sup {minus}12} cm{sup 3} s{sup {minus}1}, is about an order of magnitude larger than the bimolecular rate for the addition reaction, k{sub 2} = (2.7 {plus minus} 0.4) {times} 10{sup {minus}13}. High-pressure limiting bimolecular and low-pressure termolecular recombination rate coefficients of 1.1 {times} 10{sup {minus}10} cm{sup 3} s{sup {minus}1} and 4.9 {times} 10{sup {minus}30} cm{sup 6} s{sup {minus}1} are derived. The results are discussed in the context of previous work on the title reaction and on the chemistry of singlet CH{sub 2}.

  16. Dual pressure-dual temperature isotope exchange process

    DOEpatents

    Babcock, D.F.

    1974-02-12

    A liquid and a gas stream, each containing a desired isotope, flow countercurrently through two liquid-gas contacting towers maintained at different temperatures and pressures. The liquid is enriched in the isotope in one tower while the gas is enriched within the other and a portion of at least one of the enriched streams is withdrawn from the system for use or further enrichment. The tower operated at the lower temperature is also maintained at the lower pressure to prevent formation of solid solvates. Gas flow between the towers passes through an expander-compressor apparatas to recover work from the expansion of gas to the lower pressure and thereby compress the gas returning to the tower of higher pressure. (Official Gazette)

  17. Characterising the exchangeability of phenanthrene associated with naturally occurring soil colloids using an isotopic dilution technique.

    PubMed

    Tavakkoli, Ehsan; Juhasz, Albert; Donner, Erica; Lombi, Enzo

    2015-04-01

    The association of polycyclic aromatic hydrocarbons (PAHs) with inorganic and organic colloids is an important factor influencing their bioavailability, mobility and degradation in the environment. Despite this, our understanding of the exchangeability and potential bioavailability of PAHs associated with colloids is limited. The objective of this study was to use phenanthrene as a model PAH compound and develop a technique using (14)C phenanthrene to quantify the isotopically exchangeable and non-exchangeable forms of phenanthrene in filtered soil water or sodium tetraborate extracts. The study was also designed to investigate the exchangeability of colloidal phenanthrene as a function of particle size. Our findings suggest that the exchangeability of phenanthrene in sodium tetraborate is controlled by both inorganic and organic colloids, while in aqueous solutions inorganic colloids play the dominant role (even though coating of these by organic matter cannot be excluded). Filter pore size did not have a significant effect on phenanthrene exchangeability.

  18. EXPERIMENTAL RESULTS FOR THE ISOTOPIC EXCHANGE OF A 1600 LITER TITANIUM HYDRIDE STORAGE VESSEL

    SciTech Connect

    Klein, J.

    2010-12-14

    Titanium is used as a low pressure tritium storage material. The absorption/desorption rates and temperature rise during air passivation have been reported previously for a 4400 gram prototype titanium hydride storage vessel (HSV). A desorption limit of roughly 0.25 Q/M was obtained when heating to 700 C which represents a significant residual tritium process vessel inventory. To prepare an HSV for disposal, batchwise isotopic exchange has been proposed to reduce the tritium content to acceptable levels. A prototype HSV was loaded with deuterium and exchanged with protium to determine the effectiveness of a batch-wise isotopic exchange process. A total of seven exchange cycles were performed. Gas samples were taken nominally at the beginning, middle, and end of each desorption cycle. Sample analyses showed the isotopic exchange process does not follow the standard dilution model commonly reported. Samples taken at the start of the desorption process were lower in deuterium (the gas to be removed) than those taken later in the desorption cycle. The results are explained in terms of incomplete mixing of the exchange gas in the low pressure hydride.

  19. Hydrogen recycle and isotope exchange from dense carbon films

    SciTech Connect

    Clausing, R.E.; Heatherly, L.

    1987-03-01

    Dense carbon films were prepared by deposition from hydrogen plasmas to which methane was added. The initial hydrogen recycle coefficient from the films ranges from more than two to less than one. The films contain large amounts of hydrogen (up to 50 at. %). They adjust themselves to provide recycling coefficients near unity. Isotope changeover times tend to be long. The reservoir of hydrogen instantly available to the plasma to maintain or stabilize the recycle coefficient and isotopic composition of the plasma is 10/sup 15/ cm/sup -2/ or greater depending on film preparation, temperature, and prior plasma exposure conditions. Simulator observations tend to support and improve the understanding of the observations in TEXTOR and JET; however, they also point out the need for control of film deposition and operating parameters to provide desirable and reproducible properties. The films and the hydrogen isotopes they contain can be removed easily by plasma processes. Since the hydrogen in these films is relatively immobile except in the zone reached by energetic particles, or at temperatures above 400/sup 0/C, dense carbon films may be useful in managing the tritium recovery from near-term fusion experiments.

  20. Pyrogen reactions to human serum albumin during plasma exchange.

    PubMed

    Pool, M; McLeod, B C

    1995-01-01

    Reactions to human serum albumin (HSA) in therapeutic plasma exchange (TPE) are rare. Nevertheless, older literature describes possible adverse effects, including specific immune responses to albumin or other proteins, and reactions due to contaminating organisms or pyrogen. During an eight day period three patients in our unit had unusual reactions after infusion of 1.5-2 L of HSA. Patient 1 had trembling that persisted for 20 min. Patient 2 had shaking for 40 min despite calcium gluconate infusion, and fever to 100.8 degrees F. Patient 3 had severe rigors that subsided after 90 min when meperidine was finally given, and fever to 103.5 degrees F. Record reviews revealed that all three patients had received HSA from the same lot, and that only one other TPE patient had received HSA from that lot. Neither our pharmacy nor the manufacturer was aware of other reactions associated with that lot. Material from a bottle only partially infused to patient 3 was negative in culture and was negative for pyrogen when retested by the manufacturer. Nevertheless, because patients 1 and 2 had each had multiple previous uneventful TPEs and because all three patients tolerated subsequent TPEs without incident when another brand of HSA was used, we conclude that these patients had pyrogen reactions to the implicated HSA lot. This experience illustrates the value of cluster recognition in arousing suspicion of unusual reactions to HSA and the value of recorded lot numbers in pursuing such suspicions. Apheresis personnel should be aware of the potential for pyrogen reactions with HSA and should record lot numbers of all fluids infused during TPE.

  1. D/H Exchange Reactions in Salts Extracted from LEW 85320

    NASA Astrophysics Data System (ADS)

    Socki, R. A.; Romanek, C. S.; Gibson, E. K., Jr.

    1993-07-01

    ). Mass balance calculations reveal that absorption of the spiked water is stoichiometric with respect to the formation of CaSO4.2H2O, while within limits of sampling error no net change of weight was observed for the nesquehonite. Assuming that the change in deltaDnesq. is due entirely to exchange (i.e., no absorption), mass balance constraints dictate that less than 5 wt% of water exchanged. These data suggest that nesquehonite retains its original deltaD composition even under conditions of relatively high temperature and humidity. Hydrogen isotope data of water extracted from three generations of nesquehonite on LEW85320 are plotted as a function of the theoretical delta18O composition of water in equilibrium with the carbonate at 0 degrees C (where delta18Onesq. is derived by phosphoric acid digestion of the carbonate, assuming a calcite-CO2 fractionation factor of 1.01012). Our data plot very near the meteoric water line indicating formation from slightly enriched Antarctic meltwater. Water extracted from generations II (,99), salts consisting mostly of hydromagnesite (Mg5(CO3)4(OH)2.4H2O) (Gooding, 1993, personal communication), and III (,102), with mineralogy as yet unknown, is enriched in D (deltaD = -55 and -75 permil, respectively) and plot above the meteoric water line. Both generations precipitated in the Houston curatorial facility. Data suggest either that hydrogen isotopes have exchanged at least partially with local (i.e., Houston) water, or that the exchange reactions differ between structural sites within or among the various generations of efflorescent salts. Hydrogen isotopes extracted from hydrous weathering products can reveal information about the environment of crystal growth. However, hydrogen isotope exchange systematics could be complicated if water within the crystal structure of the mineral is located in multiple sites. Furthermore, these results could have profound implications for curation and long-term storage strategies in curatorial

  2. Charge-exchange reactions with a radioactive triton beam

    SciTech Connect

    Jaenecke, J.

    1998-12-21

    A high-resolution (t, {sup 3}He) test experiment has been performed recently by making use of a secondary triton beam produced by fragmentation of {alpha}-particles. The purpose of this charge-exchange experiment was to achieve good energy resolution in an (n,p)-type reaction at intermediate bombarding energies. The experiment was carried out with the K1200 cyclotron at the National Superconducting Cyclotron Laboratory using the A1200 beam-analysis system and the S800 magnetic spectrometer. The beam-analysis system was used to transport the energy-dispersed radioactive triton beam from the production target to the target position, and the magnetic spectrometer was used to focus the dispersion-matched {sup 3}He particles from the (t, {sup 3}He) reaction at 0 degree sign onto the focal plane of the spectrometer. An energy resolution of 200-250 keV was achieved.

  3. Oxygen isotope variations in granulite-grade iron formations: constraints on oxygen diffusion and retrograde isotopic exchange

    NASA Astrophysics Data System (ADS)

    Sharp, Z. D.; O'Neil, J. R.; Essene, E. J.

    1988-04-01

    The oxygen isotope ratios of various minerals were measured in a granulite-grade iron formation in the Wind River Range, Wyoming. Estimates of temperature and pressure for the terrane using well calibrated geothermometers and geobarometers are 730±50° C and 5.5±0.5 kbar. The mineral constraints on fluid compositions in the iron formation during retrogression require either very CO2-rich fluids or no fluid at all. In the iron formation, isotopic temperature estimates from quartz-magnetite fractionations are controlled by the proximity to the enclosing granitic gneiss, and range from 500° C ( Δ qz - mt=10.0‰) within 2 3 meters of the orthogneiss contact to 600° C ( Δ qz - mt=8.0‰) farther from the contact. Temperature estimates from other isotopic thermometers are in good agreement with those derived from the quartz-magnetite fractionations. During prograde metamorphism, the isotopic composition of the iron formation was lowered by the infiltration of an external fluid. Equilibrium was achieved over tens of meters. Closed-system retrograde exchange is consistent with the nearly constant whole-rock δ 18Owr value of 8.0±0.6‰. The greater Δ qz-mt values in the iron formation near the orthogneiss contact are most likely due to a lower oxygen blocking temperature related to greater exchange-ability of deformed minerals at the contact. Cooling rates required to preserve the quartz-magnetite fractionations in the central portion of the iron formation are unreasonably high (˜800° C/Ma). In order to preserve the 600° C isotopic temperature, the diffusion coefficient D (for α-quartz) should be two orders of magnitude lower than the experimentally determined value of 2.5×10-16 cm2/s at 833 K. There are no values for the activation energy ( Q) and pre-exponential diffusion coefficient ( D 0), consistent with the experimentally determined values, that will result in reasonable cooling rates for the Wind River iron formation. The discrepancy between the

  4. Oxygen isotope variations in granulite-grade iron formations: constraints on oxygen diffusion and retrograde isotopic exchange

    USGS Publications Warehouse

    Sharp, Z.D.; O'Neil, J.R.; Essene, E.J.

    1988-01-01

    The oxygen isotope ratios of various minerals were measured in a granulite-grade iron formation in the Wind River Range, Wyoming. Estimates of temperature and pressure for the terrane using well calibrated geothermometers and geobarometers are 730??50?? C and 5.5??0.5 kbar. The mineral constraints on fluid compositions in the iron formation during retrogression require either very CO2-rich fluids or no fluid at all. In the iron formation, isotopic temperature estimates from quartz-magnetite fractionations are controlled by the proximity to the enclosing granitic gneiss, and range from 500?? C (??qz - mt=10.0???) within 2-3 meters of the orthogneiss contact to 600?? C (??qz - mt=8.0???) farther from the contact. Temperature estimates from other isotopic thermometers are in good agreement with those derived from the quartz-magnetite fractionations. During prograde metamorphism, the isotopic composition of the iron formation was lowered by the infiltration of an external fluid. Equilibrium was achieved over tens of meters. Closed-system retrograde exchange is consistent with the nearly constant whole-rock ??18Owr value of 8.0??0.6???. The greater ??qz-mt values in the iron formation near the orthogneiss contact are most likely due to a lower oxygen blocking temperature related to greater exchange-ability of deformed minerals at the contact. Cooling rates required to preserve the quartz-magnetite fractionations in the central portion of the iron formation are unreasonably high (???800?? C/Ma). In order to preserve the 600?? C isotopic temperature, the diffusion coefficient D (for ??-quartz) should be two orders of magnitude lower than the experimentally determined value of 2.5??10-16 cm2/s at 833 K. There are no values for the activation energy (Q) and pre-exponential diffusion coefficient (D0), consistent with the experimentally determined values, that will result in reasonable cooling rates for the Wind River iron formation. The discrepancy between the diffusion

  5. Reactive Resonances in N+N2 Exchange Reaction

    NASA Technical Reports Server (NTRS)

    Wang, Dunyou; Huo, Winifred M.; Dateo, Christopher E.; Schwenke, David W.; Stallcop, James R.

    2003-01-01

    Rich reactive resonances are found in a 3D quantum dynamics study of the N + N2 exchange reaction using a recently developed ab initio potential energy surface. This surface is characterized by a feature in the interaction region called Lake Eyring , that is, two symmetric transition states with a shallow minimum between them. An L2 analysis of the quasibound states associated with the shallow minimum confirms that the quasibound states associated with oscillations in all three degrees of freedom in Lake Eyring are responsible for the reactive resonances in the state-to-state reaction probabilities. The quasibound states, mostly the bending motions, give rise to strong reasonance peaks, whereas other motions contribute to the bumps and shoulders in the resonance structure. The initial state reaction probability further proves that the bending motions are the dominating factors of the reaction probability and have longer life times than the stretching motions. This is the first observation of reactive resonances from a "Lake Eyring" feature in a potential energy surface.

  6. Alloyed Copper Chalcogenide Nanoplatelets via Partial Cation Exchange Reactions

    PubMed Central

    2014-01-01

    We report the synthesis of alloyed quaternary and quinary nanocrystals based on copper chalcogenides, namely, copper zinc selenide–sulfide (CZSeS), copper tin selenide–sulfide (CTSeS), and copper zinc tin selenide–sulfide (CZTSeS) nanoplatelets (NPLs) (∼20 nm wide) with tunable chemical composition. Our synthesis scheme consisted of two facile steps: i.e., the preparation of copper selenide–sulfide (Cu2–xSeyS1–y) platelet shaped nanocrystals via the colloidal route, followed by an in situ cation exchange reaction. During the latter step, the cation exchange proceeded through a partial replacement of copper ions by zinc or/and tin cations, yielding homogeneously alloyed nanocrystals with platelet shape. Overall, the chemical composition of the alloyed nanocrystals can easily be controlled by the amount of precursors that contain cations of interest (e.g., Zn, Sn) to be incorporated/alloyed. We have also optimized the reaction conditions that allow a complete preservation of the size, morphology, and crystal structure as that of the starting Cu2–xSeyS1–y NPLs. The alloyed NPLs were characterized by optical spectroscopy (UV–vis–NIR) and cyclic voltammetry (CV), which demonstrated tunability of their light absorption characteristics as well as their electrochemical band gaps. PMID:25050455

  7. Synthesis of temperature-responsive anion exchanger via click reaction.

    PubMed

    Murakami, Kenji; Yu, Xue; Kato, Takahiro; Inoue, Yukihiko; Sugawara, Katsuyasu

    2012-06-15

    The temperature-responsive anion exchanger was synthesized by immobilizing the poly(N-isopropylacrylamide) (PNIPAM), a kind of the temperature-responsive polymer, on the external surface of mesoporous silica via click reaction. The structure of this synthesized composite was characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), elemental analysis, and nitrogen adsorption experiment. The amount of PNIPAM immobilized on the external surface of mesoporous silica, which was calculated from the weight loss measured by thermogravimetry, increased from 5.3 wt.% to 12.9 wt.% (dry) depending on the amount of PNIPAM added in the click reaction. The adsorption-desorption behavior of methyl orange (MO) ions in this synthesized anion exchanger was affected by the temperature of aqueous solution: the MO ions were adsorbed and desorbed reversibly and repeatedly with changing the pH of the solution at 25 °C, while the amount of adsorbed MO ions remained nearly constant at about 0.05 mmol/g independent of the pH of the solution at 40 °C. Also, the amount of PNIPAM immobilized on the mesoporous silica influenced the adsorption rate of MO ions, suggesting that the adsorption rate in this composite is controlled by the diffusion of MO ions through the PNIPAM layer.

  8. Alloyed copper chalcogenide nanoplatelets via partial cation exchange reactions.

    PubMed

    Lesnyak, Vladimir; George, Chandramohan; Genovese, Alessandro; Prato, Mirko; Casu, Alberto; Ayyappan, S; Scarpellini, Alice; Manna, Liberato

    2014-08-26

    We report the synthesis of alloyed quaternary and quinary nanocrystals based on copper chalcogenides, namely, copper zinc selenide-sulfide (CZSeS), copper tin selenide-sulfide (CTSeS), and copper zinc tin selenide-sulfide (CZTSeS) nanoplatelets (NPLs) (∼20 nm wide) with tunable chemical composition. Our synthesis scheme consisted of two facile steps: i.e., the preparation of copper selenide-sulfide (Cu2-xSeyS1-y) platelet shaped nanocrystals via the colloidal route, followed by an in situ cation exchange reaction. During the latter step, the cation exchange proceeded through a partial replacement of copper ions by zinc or/and tin cations, yielding homogeneously alloyed nanocrystals with platelet shape. Overall, the chemical composition of the alloyed nanocrystals can easily be controlled by the amount of precursors that contain cations of interest (e.g., Zn, Sn) to be incorporated/alloyed. We have also optimized the reaction conditions that allow a complete preservation of the size, morphology, and crystal structure as that of the starting Cu2-xSeyS1-y NPLs. The alloyed NPLs were characterized by optical spectroscopy (UV-vis-NIR) and cyclic voltammetry (CV), which demonstrated tunability of their light absorption characteristics as well as their electrochemical band gaps.

  9. A new approach to quantifying internal diffusion resistances and CO2 isotope exchange in leaves

    NASA Astrophysics Data System (ADS)

    West, Jason; Ogée, Jérôme; Burlett, Régis; Gimeno, Teresa; Genty, Bernard; Jones, Samuel; Wohl, Steven; Bosc, Alexandre; Wingate, Lisa

    2016-04-01

    The oxygen isotopic composition (δ18O) of atmospheric CO2 can constrain the global CO2 budget at a range of scales, offering the potential to partition net CO2 exchanges into their component gross fluxes and provide insights to linkages between C and water cycles. However, there are significant limitations to utilizing the δ18O of CO2 to constrain C budgets because of uncertainties associated with the isotopic exchange of CO2 with terrestrial water pools. Leaf water in particular represents a critical pool with ongoing debates about its enrichment in heavy isotopes during transpiration and the hydration of CO2 and its oxygen isotope exchange with this pool. Isotopic heterogeneity of the leaf water, the spatial distribution and activity of carbonic anhydrase (CA) within leaves, and resistance to diffusion of CO2 from the substomatal cavity to chloroplasts are all key components with important uncertainties. Better constraints on these would significantly improve our ability to understand and model the global C budget as well as yield insights to fundamental aspects of leaf physiology. We report results using a new measurement system that permits the simultaneous measurement of the 13C and 18O composition of CO2 and the 18O isotopic composition of leaf transpiration. As this new approach permits rapid alteration of the isotopic composition of gases interacting with the leaf, key model parameters can be derived directly and simultaneously. Hence, our approach dos not rely on separate measurements shifted in time from the gas exchange measurements or that may not quantify the relevant scale of heterogeneity (e.g., CA enzyme assays or bulk leaf water extraction and analysis). In particular, this new method explicitly distinguishes the leaf mesophyll resistance to CO2 transport relevant for photosynthesis from the resistance required for interpreting the δ18O of CO2 and allows us to derive other relevant parameters directly. This new measurement system and modeling

  10. Installations for separation of hydrogen isotopes by the method of chemical isotopic exchange in the `water-hydrogen` system

    SciTech Connect

    Andreev, B.M.; Sakharovsky, Y.A.; Rozenkevich, M.B.; Magomedbekov, E.P.; Park, Y.S.; Uborskiy, V.V.; Trenin, V.D.; Alekseev, I.A.; Fedorchenko, O.A.; Karpov, S.P.; Konoplev, K.A.

    1995-10-01

    The paper presents the results of more than a year of running a pilot setup for separation of hydrogen isotopes using catalytic isotopic exchange between hydrogen and liquid water. The setup is 5 m high, has the inner diameter of 28 mm, and is equipped with upper and lower reflux devices. The experimental values of HETP vary from 15 cm at T=333 K to 38 cm at T=293 K. The setup is capable of upgrading diluted heavy water with 85-90% deuterium content up to [D{sub 2}O] > 99.95 at.%, yielding daily 4 kg of the product. We also report on the progress in constructing a similar setup for eliminating tritium and an industrial setup, for which the one reported is a prototype. 10 refs., 1 fig., 3 tabs.

  11. Charge-exchange reaction by Reggeon exchange and W{sup +}W{sup −}-fusion

    SciTech Connect

    Schicker, R.

    2015-04-10

    Charge-exchange reactions at high energies are examined. The existing cross section data on the Reggeon induced reaction pp → n + Δ{sup ++} taken at the ZGS and ISR accelerators are extrapolated to the energies of the RHIC and LHC colliders. The interest in the charge-exchange reaction induced by W{sup ±}-fusion is presented, and the corresponding QCD-background is examined.

  12. HYDROGEN ISOTOPE RECOVERY USING PROTON EXCHANGE MEMBRANE ELECTROLYSIS OF WATER

    SciTech Connect

    Fox, E; Scott Greenway, S; Amy Ekechukwu, A

    2007-08-27

    A critical component of tritium glovebox operations is the recovery of high value tritium from the water vapor in the glove box atmosphere. One proposed method to improve existing tritium recovery systems is to replace the disposable hot magnesium beds used to separate the hydrogen and oxygen in water with continuous use Proton Exchange Membrane Electrolyzers (PEMEs). This study examines radiation exposure to the membrane of a PEME and examines the sizing difference that would be needed if the electrolyzer were operated with a cathode water vapor feed instead of an anode liquid water feed.

  13. Determination of uranium isotopes in environmental samples by anion exchange in sulfuric and hydrochloric acid media.

    PubMed

    Popov, L

    2016-09-01

    Method for determination of uranium isotopes in various environmental samples is presented. The major advantages of the method are the low cost of the analysis, high radiochemical yields and good decontamination factors from the matrix elements, natural and man-made radionuclides. The separation and purification of uranium is attained by adsorption with strong base anion exchange resin in sulfuric and hydrochloric acid media. Uranium is electrodeposited on a stainless steel disk and measured by alpha spectrometry. The analytical method has been applied for the determination of concentrations of uranium isotopes in mineral, spring and tap waters from Bulgaria. The analytical quality was checked by analyzing reference materials.

  14. Nuclear orientation of radon isotopes by spin-exchange optical pumping

    SciTech Connect

    Kitano, M.; Calaprice, F.P.; Pitt, M.L.; Clayhold, J.; Happer, W.; Kadar-Kallen, M.; Musolf, M.; Ulm, G.; Wendt, K.; Chupp, T.

    1988-05-23

    This paper reports the first demonstration of nuclear orientation of radon atoms. The method employed was spin exchange with potassium atoms polarized by optical pumping. The radon isotopes were produced at the ISOLDE isotope separator of CERN. The nuclear alignment of /sup 209/Rn and /sup 223/Rn has been measured by observation of ..gamma..-ray anisotropies and the magnetic dipole moment for /sup 209/Rn has been measured by the nuclear-magnetic-resonance method to be chemically bond..mu..chemically bond = 0.838 81(39)..mu../sub N/.

  15. Racing carbon atoms. Atomic motion reaction coordinates and structural effects on Newtonian kinetic isotope effects.

    PubMed

    Andujar-De Sanctis, Ivonne L; Singleton, Daniel A

    2012-10-19

    Intramolecular (13)C kinetic isotope effects were determined for the dimerization of methacrolein. Trajectory studies accurately predict the isotope effects and support an origin in Newton's second law of motion, with no involvement of zero-point energy or transition state recrossing. Atomic motion reaction coordinate diagrams are introduced as a way to qualitatively understand the selectivity.

  16. The purification of ITER project technology water from tritium in catalytic isotope exchange column using hydrophobic catalyzer

    SciTech Connect

    Andreev, M.I.; Sakharovskij, Y.A.; Rozenkevich, M.B.

    1994-12-31

    The new universal technological scheme for purification of ITER project tritium containing waste water has been proposed. The purification process as a whole has two technological parts. The starting concentrate of tritium up to about 100-300 Cu/l by the method of catalytic isotope exchange between hydrogen and liquid water and the final concentrate of tritium up to practically pure tritium by the isotope exchange in the system hydrogen-palladium. This report contains the experimental data about the effectiveness of the column for the isotope exchange between hydrogen and water.

  17. A universal empirical expression for the isotope surface exchange coefficients (k*) of acceptor-doped perovskite and fluorite oxides.

    PubMed

    De Souza, R A

    2006-02-21

    The isotope surface exchange coefficient k* determined in an 18O/16O exchange experiment characterises the exchange flux of the dynamic equilibrium between oxygen in the gas phase and oxygen in a solid oxide. At present there is no atomistic expression that relates measured exchange coefficients to materials' parameters. In this study an empirical, atomistic expression is developed that describes the exchange kinetics of gaseous oxygen with diverse acceptor-doped perovskite and fluorite oxides at temperatures above T approximately 900 K. The expression is used to explain the observed correlations between surface exchange coefficients k* and oxygen tracer diffusion coefficients D* and to identify compounds that exhibit high surface exchange coefficients.

  18. Spin-Isospin responses via charge exchange reactions of RI beams at SHARAQ

    SciTech Connect

    Shimoura, Susumu

    2012-11-12

    Nuclear spectroscopy via direct reactions of RI beams is discussed focusing on characteristics of charge-exchange reactions of RI beams. Recent experiments using the SHARAQ spectrometer at the RIBF are presented, where isovector spin monopole and spin-non-flip monopole responses are studied by charge exchange reaction of RI beams. Some experimental plans and perspectives are also presented.

  19. Mechanistic investigations of the hydrolysis of amides, oxoesters and thioesters via kinetic isotope effects and positional isotope exchange.

    PubMed

    Robins, Lori I; Fogle, Emily J; Marlier, John F

    2015-11-01

    The hydrolysis of amides, oxoesters and thioesters is an important reaction in both organic chemistry and biochemistry. Kinetic isotope effects (KIEs) are one of the most important physical organic methods for determining the most likely transition state structure and rate-determining step of these reaction mechanisms. This method induces a very small change in reaction rates, which, in turn, results in a minimum disturbance of the natural mechanism. KIE studies were carried out on both the non-enzymatic and the enzyme-catalyzed reactions in an effort to compare both types of mechanisms. In these studies the amides and esters of formic acid were chosen because this molecular structure allowed development of methodology to determine heavy-atom solvent (nucleophile) KIEs. This type of isotope effect is difficult to measure, but is rich in mechanistic information. Results of these investigations point to transition states with varying degrees of tetrahedral character that fit a classical stepwise mechanism. This article is part of a special issue entitled: Enzyme Transition States from Theory and Experiment.

  20. Lead isotope exchange between dissolved and fluvial particulate matter: a laboratory study from the Johor River estuary

    NASA Astrophysics Data System (ADS)

    Chen, Mengli; Boyle, Edward A.; Lee, Jong-Mi; Nurhati, Intan; Zurbrick, Cheryl; Switzer, Adam D.; Carrasco, Gonzalo

    2016-11-01

    Atmospheric aerosols are the dominant source of Pb to the modern marine environment, and as a result, in most regions of the ocean the Pb isotopic composition of dissolved Pb in the surface ocean (and in corals) matches that of the regional aerosols. In the Singapore Strait, however, there is a large offset between seawater dissolved and coral Pb isotopes and that of the regional aerosols. We propose that this difference results from isotope exchange between dissolved Pb supplied by anthropogenic aerosol deposition and adsorbed natural crustal Pb on weathered particles delivered to the ocean by coastal rivers. To investigate this issue, Pb isotope exchange was assessed through a closed-system exchange experiment using estuarine waters collected at the Johor River mouth (which discharges to the Singapore Strait). During the experiment, a known amount of dissolved Pb with the isotopic composition of NBS-981 (206Pb/207Pb = 1.093) was spiked into the unfiltered Johor water (dissolved and particulate 206Pb/207Pb = 1.199) and the changing isotopic composition of the dissolved Pb was monitored. The mixing ratio of the estuarine and spike Pb should have produced a dissolved 206Pb/207Pb isotopic composition of 1.161, but within a week, the 206Pb/207Pb in the water increased to 1.190 and continued to increase to 1.197 during the next two months without significant changes of the dissolved Pb concentration. The kinetics of isotope exchange was assessed using a simple Kd model, which assumes multiple sub-reservoirs within the particulate matter with different exchange rate constants. The Kd model reproduced 56% of the observed Pb isotope variance. Both the closed-system experiment and field measurements imply that isotope exchange can be an important mechanism for controlling Pb and Pb isotopes in coastal waters. A similar process may occur for other trace elements. This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'.

  1. Pigment exchange of photosystem II reaction center by chlorophyll d.

    PubMed

    Tomo, Tatsuya; Hirano, Emi; Nagata, Junko; Nakazato, Katsuyoshi

    2005-06-01

    Pigment exchanges among photosystem reaction centers (RCs) are useful for the identification and functional analysis of chromophores in photosynthetic organisms. Pigment replacement within the spinach Photosystem II RC was performed with Chl d derived from the oxygenic alga Acaryochloris marina, using a protocol similar to that reported previously [Gall et al. (1998) FEBS Lett 434: 88-92] based on the incubation of reaction centers with an excess of other pigments. In this study, we analyzed Chl d-modified monomeric RC which was separated from Chl d-modified dimeric RC by size-exclusion chromatography. Based on the assumption of a constant ratio of two Pheo a molecules per RC, the number of Chl a molecules in Chl d-modified monomeric RCs was found to decrease from six to four. The absorption spectrum of the Chl d-modified monomeric RC at room temperature showed a large peak at 699.5 nm originating from Chl d and a small peak at 672.5 nm orignating from Chl a. Photoaccumulation of the Pheo a- in Chl d-modified monomeric RC, in the presence of sodium dithionate and methyl viologen, did not differ significantly from that in control RC, showing that the Chl d-modified monomeric RC retains its charge separation activity and photochemically active Pheo a.

  2. Separation of selected stable isotopes by liquid-phase thermal diffusion and by chemical exchange

    NASA Astrophysics Data System (ADS)

    Rutherford, W. M.; Jepson, B. E.; Michaels, E. D.

    Useful applications of enriched stable nuclides are unduly restricted by high cost and limited availability. Recent research on liquid phase thermal diffusion (LTD) has resulted in practical processes for separating S34, CL35, and CL37 in significant quantities (100 to 500 g/yr) at costs much lower than those associated with the electromagnetic (Calutron) process. The separation of the isotopes of bromine by LTD is now in progress and BR79 is being produced in relatively simple equivalent at a rate on the order of 0.5 g/day. The results of recent measurements show that the isotopes of Zn can be separated by LTD of zinc alkyls. The isotopes of calcium can be separated by LTD and by chemical exchange. The LTD process is based on the use of aqueous Ca(NO3)2 as a working fluid.

  3. Position-specific isotope modeling of organic micropollutants transformation through different reaction pathways.

    PubMed

    Jin, Biao; Rolle, Massimo

    2016-03-01

    The degradation of organic micropollutants occurs via different reaction pathways. Compound specific isotope analysis is a valuable tool to identify such degradation pathways in different environmental systems. We propose a mechanism-based modeling approach that provides a quantitative framework to simultaneously evaluate concentration as well as bulk and position-specific multi-element isotope evolution during the transformation of organic micropollutants. The model explicitly simulates position-specific isotopologues for those atoms that experience isotope effects and, thereby, provides a mechanistic description of isotope fractionation occurring at different molecular positions. To demonstrate specific features of the modeling approach, we simulated the degradation of three selected organic micropollutants: dichlorobenzamide (BAM), isoproturon (IPU) and diclofenac (DCF). The model accurately reproduces the multi-element isotope data observed in previous experimental studies. Furthermore, it precisely captures the dual element isotope trends characteristic of different reaction pathways as well as their range of variation consistent with observed bulk isotope fractionation. It was also possible to directly validate the model capability to predict the evolution of position-specific isotope ratios with available experimental data. Therefore, the approach is useful both for a mechanism-based evaluation of experimental results and as a tool to explore transformation pathways in scenarios for which position-specific isotope data are not yet available.

  4. Observation of new neutron-deficient isotopes with Z ≥ 92 in multinucleon transfer reactions

    NASA Astrophysics Data System (ADS)

    Devaraja, H. M.; Heinz, S.; Beliuskina, O.; Comas, V.; Hofmann, S.; Hornung, C.; Münzenberg, G.; Nishio, K.; Ackermann, D.; Gambhir, Y. K.; Gupta, M.; Henderson, R. A.; Heßberger, F. P.; Khuyagbaatar, J.; Kindler, B.; Lommel, B.; Moody, K. J.; Maurer, J.; Mann, R.; Popeko, A. G.; Shaughnessy, D. A.; Stoyer, M. A.; Yeremin, A. V.

    2015-09-01

    In deep inelastic multinucleon transfer reactions of 48Ca + 248Cm we observed about 100 residual nuclei with proton numbers between Z = 82 and Z = 100. Among them, there are five new neutron-deficient isotopes: 216U, 219Np, 223Am, 229Am and 233Bk. As separator for the transfer products we used the velocity filter SHIP of GSI while the isotope identification was performed via the α decay chains of the nuclei. These first results reveal that multinucleon transfer reactions together with here applied fast and sensitive separation and detection techniques are promising for the synthesis of new isotopes in the region of heaviest nuclei.

  5. Kinetics of hydrogen isotope exchange in β-phase Pd-H-D

    DOE PAGES

    Luo, Weifang; Cowgill, Donald F.

    2015-07-22

    Hydrogen isotope gas exchange within palladium powders is examined using a batch-type reactor coupled to a residual gas analyzer (RGA). Furthermore, the exchange rates in both directions (H2 + PdD and D2 + PdH) are measured in the temperature range 178–323 K for the samples with different particle sizes. The results show this batch-type exchange is closely approximated as a first-order kinetic process with a rate directly proportional to the surface area of the powder particles. An exchange rate constant of 1.40 ± 0.24 μmol H2/atm cm2 s is found for H2 + PdD at 298 K, 1.4 times highermore » than that for D2 + PdH, with an activation energy of 25.0 ± 3.2 kJ/mol H for both exchange directions. Finally, a comparison of exchange measurement techniques shows these coefficients, and the fundamental exchange probabilities are in good agreement with those obtained by NMR and flow techniques.« less

  6. Kinetics of hydrogen isotope exchange in β-phase Pd-H-D

    SciTech Connect

    Luo, Weifang; Cowgill, Donald F.

    2015-07-22

    Hydrogen isotope gas exchange within palladium powders is examined using a batch-type reactor coupled to a residual gas analyzer (RGA). Furthermore, the exchange rates in both directions (H2 + PdD and D2 + PdH) are measured in the temperature range 178–323 K for the samples with different particle sizes. The results show this batch-type exchange is closely approximated as a first-order kinetic process with a rate directly proportional to the surface area of the powder particles. An exchange rate constant of 1.40 ± 0.24 μmol H2/atm cm2 s is found for H2 + PdD at 298 K, 1.4 times higher than that for D2 + PdH, with an activation energy of 25.0 ± 3.2 kJ/mol H for both exchange directions. Finally, a comparison of exchange measurement techniques shows these coefficients, and the fundamental exchange probabilities are in good agreement with those obtained by NMR and flow techniques.

  7. Mass-dependent and -independent fractionation of isotopes in Ni and Pb chelate complex formation reactions

    NASA Astrophysics Data System (ADS)

    Nomura, Masao; Kudo, Takashi; Adachi, Atsuhiko; Aida, Masao; Fujii, Yasuhiko

    2013-11-01

    Mass independent fractionation (MIF) has been a very interesting topic in the field of inorganic isotope chemistry, in particular, geo- and cosmo- chemistry. In the present work, we studied the isotope fractionation of Ni(II) and Pb(II) ions in complex formation with chelating reagent EDTA. To obtain clear results on the mass dependence of the isotope fractionation, we have conducted long-distance ion exchange chromatography of Ni(II) and Pb(II), using chelate complex reagent EDTA. The results apparently show that the isotope fractionation in Ni complex formation system is governed by the mass dependent rule. On the other hand the isotope fractionation in the Pb complex system is governed by the mass independent rule or the nuclear volume effect.

  8. Mass-dependent and -independent fractionation of isotopes in Ni and Pb chelate complex formation reactions

    SciTech Connect

    Nomura, Masao; Kudo, Takashi; Adachi, Atsuhiko; Aida, Masao; Fujii, Yasuhiko

    2013-11-13

    Mass independent fractionation (MIF) has been a very interesting topic in the field of inorganic isotope chemistry, in particular, geo- and cosmo- chemistry. In the present work, we studied the isotope fractionation of Ni(II) and Pb(II) ions in complex formation with chelating reagent EDTA. To obtain clear results on the mass dependence of the isotope fractionation, we have conducted long-distance ion exchange chromatography of Ni(II) and Pb(II), using chelate complex reagent EDTA. The results apparently show that the isotope fractionation in Ni complex formation system is governed by the mass dependent rule. On the other hand the isotope fractionation in the Pb complex system is governed by the mass independent rule or the nuclear volume effect.

  9. OXYGEN ISOTOPIC COMPOSITIONS OF THE ALLENDE TYPE C CAIs: EVIDENCE FOR ISOTOPIC EXCHANGE DURING NEBULAR MELTING AND ASTEROIDAL THERMAL METAMORPHISM

    SciTech Connect

    Krot, A N; Chaussidon, M; Yurimoto, H; Sakamoto, N; Nagashima, K; Hutcheon, I D; MacPherson, G J

    2008-02-21

    that CAIs 100, 160 and CG5 experienced melting in an {sup 16}O-rich ({Delta}{sup 17}O < -20{per_thousand}) nebular gas in the CAI-forming region. The Type C and Type-B-like portions of CAI 6-1-72 experienced melting in an {sup 16}O-depleted ({Delta}{sup 17}O {ge} -13{per_thousand}) nebular gas. CAIs ABC, TS26 and 93 experienced isotopic exchange during re-melting in the presence of an {sup 16}O-poor ({Delta}{sup 17}O {ge} -10{per_thousand}) nebular gas in the chondrule-forming region(s). Subsequently, Allende Type C CAIs experienced post-crystallization isotopic exchange with an {sup 16}O-poor reservoir that affected largely melilite and anorthite. Because pseudomorphic replacement of lacy melilite by grossular, monticellite and forsterite occurred during thermal metamorphism, some oxygen isotopic exchange of melilite and anorthite must have continued after formation of these secondary minerals. We suggest that some or all oxygen isotopic exchange in melilite and anorthite occurred during fluid-assisted thermal metamorphism on the CV parent asteroid. Similar processes may have also affected melilite and anorthite of CAIs in metamorphosed CO chondrites.

  10. Tropical tropopause water isotopes in a GCM: Sensitivity to cloud processes and stratosphere-troposphere exchange

    NASA Astrophysics Data System (ADS)

    Schmidt, G. A.; Hoffmann, G.; Hu, Y.

    2004-05-01

    Water isotopes ratios (δ 18O, δ D) are very sensitive tracers of the history of the water in the atmosphere. For example, depletion of heavy isotopes in convective plumes can be extreme and thus isotope ratios can be used to discriminate between upwelled and in-situ condensation. We present results with state-of-the-art GCMs that include water isotopes in every aspect of the modelled water cycle, including the relatively sophisticated prognostic cloud water scheme. These models also have reasonable representations of the stratospheric circulation and so can be used to look at the processes involved in stratosphere-troposphere exchange. We demonstrate that the models show a similar range of variability near the tropical tropopause to that seen in recent data, and that the zonal mean values are less depleted than a simple Rayleigh distillation column would suggest. Importantly, we show that the isotopes can be sensitive to uncertain details of the cloud parameterizations and thus may help in improving and validating cloud schemes in models.

  11. Isotopic determinations of rhenium and osmium in meteorites by using fusion, distillation and ion-exchange separations

    USGS Publications Warehouse

    Morgan, J.W.; Walker, R.J.

    1989-01-01

    A stable isotope-dilution method using resonance ionization mass spectrometry is suitable for the determination of rhenium and osmium abundances and osmium isotopic composition in carbonaceous chondrites and iron meteorites. The chemical procedure involves sodium peroxide fusion, followed by distillation of osmium from sulfuric acid/hydrogen peroxide and subsequent anion-exchange separation of rhenium from the same solution. ?? 1989.

  12. Isotopic anomalies from neutron reactions during explosive carbon burning

    NASA Technical Reports Server (NTRS)

    Lee, T.; Schramm, D. N.; Wefel, J. P.; Blake, J. B.

    1978-01-01

    The possibility that the newly discovered correlated isotopic anomalies for heavy elements in the Allende meteorite were synthesized in the secondary neutron capture episode during the explosive carbon burning, the possible source of the O-16 and Al-26 anomalies, is examined. Explosive carbon burning calculations under typical conditions were first performed to generate time profiles of temperature, density, and free particle concentrations. These quantities were inputted into a general neutron capture code which calculates the resulting isotopic pattern from exposing the preexisting heavy seed nuclei to these free particles during the explosive carbon burning conditions. The interpretation avoids the problem of the Sr isotopic data and may resolve the conflict between the time scales inferred from 1-129, Pu-244, and Al-26.

  13. Experimental investigation of rates and mechanisms of isotope exchange (O, H) between volcanic ash and isotopically-labeled water

    NASA Astrophysics Data System (ADS)

    Nolan, Gary S.; Bindeman, Ilya N.

    2013-06-01

    The hydrogen and oxygen isotope ratios in hydrous minerals and volcanic glass are routinely used as paleo-proxies to infer the isotopic values of meteoric waters and thus paleo-climatic conditions. We report a series of long-term exposure experiments of distal 7700 BP Mt. Mazama ash (-149‰ δ2H, +7‰ δ18O, 3.8 wt.% H2O) with isotopically-labeled water (+650‰ δ2H, +56‰ δ18O). Experiments were done at 70, 40 and 20 °C, and ranged in duration from 1 to 14454 h (˜20 months), to evaluate the rates of deuterium and 18O exchange, and investigate the relative role of exchange and diffusion. We also investigate the effect of drying on H2Otot and δ2H in native and reacted ash that can be used in defining the protocols for natural sample preparation. We employ Thermal Conversion Elemental Analyzer (TCEA) mass spectrometry, thermogravimetric analysis and a KBr pellet technique with infrared spectroscopy to measure the evolution of δ2H, total water, and OH water peaks in the course of exposure experiments, and in varying lengths of vacuum drying. Time series experiments aided by infrared measurements demonstrate the following new results: (i) It wasobserved that from 5 to >100‰ δ2H increases with time, with faster deuterium exchange at higher temperatures. Times at 15% of theoretical "full δ2H exchange" are: 15.8 years at 20 °C, 5.2 years at 40 °C, and 0.4 years at 70 °C. (ii) Even at extended exposure durations experiments show no net increase in water weight percent nor in δ18O in ash; water released from ash rapidly by thermal decomposition is not enriched in δ18O. This observation clearly suggests that it is hydrogen exchange, and not water addition or oxygen exchange that characterizes the process. (iii) Our time series drying, Fourier transform infrared (FTIR)-KBr and Thermogravimetric Analyzer (TGA) analyses collectively suggest a simple mechanistic view that there are three kinds of "water" in ash: water (mostly H2O) that is less strongly bonded

  14. Isotopically exchangeable organic hydrogen in coal relates to thermal maturity and maceral composition

    USGS Publications Warehouse

    Mastalerz, Maria; Schimmelmann, A.

    2002-01-01

    Hydrogen isotopic exchangeability (Hex) and ??Dn values of non-exchangeable organic hydrogen were investigated in coal kerogens ranging in rank from lignite to graphite. The relative abundance of Hex is highest in lignite with about 18% of total hydrogen being exchangeable, and decreases to around 2.5% in coals with Ro of 1.7 to ca. 5.7%. At Still higher rank (Ro > 6%), Hex increases slightly, although the abundance of total hydrogen decreases. ??Dn is influenced by original biochemical D/H ratios and by thermal maturation in contact with water. Therefore, ??Dn does not show an overall consistent trend with maturity. ?? 2002 Elsevier Science Ltd. All rights reserved.

  15. Evaluation of Hydrogen Isotope Exchange Methodology on Adsorbents for Tritium Removal

    DOE PAGES

    Morgan, Gregg A.; Xiao, S. Xin

    2015-03-06

    The Savannah River National Laboratory has demonstrated a potential process that can be used to remove tritium from tritiated water using Pt-catalyzed molecular sieves. The process is an elemental isotope exchange process in which H2 (when flowed through the molecular sieves) will exchange with the adsorbed water, D2O, leaving H2O adsorbed on the molecular sieves. Various formulations of catalyzed molecular sieve material were prepared using two different techniques, Pt-implantation and Pt-ion exchange. This technology has been demonstrated for a protium (H) and deuterium (D) system, but can also be used for the removal of tritium from contaminated water (T2O, HTO,more » and DTO) using D2 (or H2)« less

  16. Evaluation of Hydrogen Isotope Exchange Methodology on Adsorbents for Tritium Removal

    SciTech Connect

    Morgan, Gregg A.; Xiao, S. Xin

    2015-03-06

    The Savannah River National Laboratory has demonstrated a potential process that can be used to remove tritium from tritiated water using Pt-catalyzed molecular sieves. The process is an elemental isotope exchange process in which H2 (when flowed through the molecular sieves) will exchange with the adsorbed water, D2O, leaving H2O adsorbed on the molecular sieves. Various formulations of catalyzed molecular sieve material were prepared using two different techniques, Pt-implantation and Pt-ion exchange. This technology has been demonstrated for a protium (H) and deuterium (D) system, but can also be used for the removal of tritium from contaminated water (T2O, HTO, and DTO) using D2 (or H2)

  17. Evaluation of hydrogen isotope exchange methodology on adsorbents for tritium removal

    SciTech Connect

    Morgan, G.A.; Xin Xiao, S.

    2015-03-15

    The Savannah River National Laboratory has demonstrated a potential process that can be used to remove tritium from tritiated water using Pt-catalyzed molecular sieves. The process is an elemental isotope exchange process in which H{sub 2} (when flowed through the molecular sieves) will exchange with the adsorbed water, D{sub 2}O, leaving H{sub 2}O adsorbed on the molecular sieves. Various formulations of catalyzed molecular sieve material were prepared using two different techniques, Pt-implantation and Pt-ion exchange. This technology has been demonstrated for a protium (H) and deuterium (D) system, but can also be used for the removal of tritium from contaminated water (T{sub 2}O, HTO, and DTO) using D{sub 2} (or H{sub 2}). (authors)

  18. The formation of Kuiper-belt binaries through exchange reactions.

    PubMed

    Funato, Yoko; Makino, Junichiro; Hut, Piet; Kokubo, Eiichiro; Kinoshita, Daisuke

    2004-02-05

    Recent observations have revealed that an unexpectedly high fraction--a few per cent--of the trans-Neptunian objects (TNOs) that inhabit the Kuiper belt are binaries. The components have roughly equal masses, with very eccentric orbits that are wider than a hundred times the radius of the primary. Standard theories of binary asteroid formation tend to produce close binaries with circular orbits, so two models have been proposed to explain the unique characteristics of the TNOs. Both models, however, require extreme assumptions regarding the size distribution of the TNOs. Here we report a mechanism that is capable of producing binary TNOs with the observed properties during the early stages of their formation and growth. The only required assumption is that the TNOs were initially formed through gravitational instabilities in the protoplanetary dust disk. The basis of the mechanism is an exchange reaction in which a binary whose primary component is much more massive than the secondary interacts with a third body, whose mass is comparable to that of the primary. The low-mass secondary component is ejected and replaced by the third body in a wide but eccentric orbit.

  19. A counter-intuitive approach to calculating non-exchangeable 2H isotopic composition of hair: treating the molar exchange fraction fE as a process-related rather than compound-specific variable

    USGS Publications Warehouse

    Landwehr, J.M.; Meier-Augenstein, W.; Kemp, H.F.

    2011-01-01

    Hair is a keratinous tissue that incorporates hydrogen from material that an animal consumes but it is metabolically inert following synthesis. The stable hydrogen isotope composition of hair has been used in ecological studies to track migrations of mammals as well as for forensic and archaeological purposes to determine the provenance of human remains or the recent geographic life trajectory of living people. Measurement of the total hydrogen isotopic composition of a hair sample yields a composite value comprised of both metabolically informative, non-exchangeable hydrogen and exchangeable hydrogen, with the latter reflecting ambient or sample preparation conditions. Neither of these attributes is directly measurable, and the non-exchangeable hydrogen composition is obtained by estimation using a commonly applied mathematical expression incorporating sample measurements obtained from two distinct equilibration procedures. This commonly used approach treats the fraction of exchangeable hydrogen as a mixing ratio, with a minimal procedural fractionation factor assumed to be close or equal to 1. Instead, we propose to use full molar ratios to derive an expression for the non-exchangeable hydrogen composition explicitly as a function of both the procedural fractionation factor α and the molar hydrogen exchange fraction fE. We apply these derivations in a longitudinal study of a hair sample and demonstrate that the molar hydrogen exchange fraction fE should, like the procedural fractionation factor α, be treated as a process-dependent parameter, i.e. a reaction-specific constant. This is a counter-intuitive notion given that maximum theoretical values for the molar hydrogen exchange fraction fE can be calculated that are arguably protein-type specific and, as such, fE could be regarded as a compound-specific constant. We also make some additional suggestions for future approaches to determine the non-exchangeable hydrogen composition of hair and the use of

  20. Theoretical calculation of nitrogen isotope equilibrium exchange fractionation factors for various NOy molecules

    NASA Astrophysics Data System (ADS)

    Walters, Wendell W.; Michalski, Greg

    2015-09-01

    The nitrogen stable isotope ratio (15N/14N) of nitrogen oxides (NOx = NO + NO2) and its oxidation products (NOy = NOx + PAN (peroxyacetyl nitrate = C2H3NO5) + HNO3 + NO3 + HONO + N2O5 + ⋯ + particulate nitrates) has been suggested as a tool for partitioning NOx sources; however, the impact of nitrogen (N) equilibrium isotopic fractionation on 15N/14N ratios during the conversion of NOx to NOy must also be considered, but few fractionation factors for these processes have been determined. To address this limitation, computational quantum chemistry calculations of harmonic frequencies, reduced partition function ratios (15β), and N equilibrium isotope exchange fractionation factors (αA/B) were performed for various gaseous and aqueous NOy molecules in the rigid rotor and harmonic oscillator approximations using the B3LYP and EDF2 density functional methods for the mono-substitution of 15N. The calculated harmonic frequencies, 15β, and αA/B are in good agreement with available experimental measurements, suggesting the potential to use computational methods to calculate αA/B values for N isotope exchange processes that are difficult to measure experimentally. Additionally, the effects of solvation (water) on 15β and αA/B were evaluated using the IEF-PCM model, and resulted in lower 15β and αA/B values likely due to the stabilization of the NOy molecules from dispersion interactions with water. Overall, our calculated 15β and αA/B values are accurate in the rigid rotor and harmonic oscillator approximations and will allow for the estimation of αA/B involving various NOy molecules. These calculated αA/B values may help to explain the trends observed in the N stable isotope ratio of NOy molecules in the atmosphere.

  1. Real-time monitoring of the overall exchange of oxygen isotopes between aqueous CO32- and H2O by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Geisler, Thorsten; Perdikouri, Christina; Kasioptas, Argyrios; Dietzel, Martin

    2012-08-01

    In this contribution we demonstrate that in situ Raman spectroscopy is a powerful tool to study the exchange kinetics of oxygen isotopes between aqueous oxo-anions and water using the CO32--H2O system as an example. In situ exchange experiments have been carried out using a 1 M Na2CO3 solution at 45, 60, 75, and 100 °C in a closed system using an in-house-made Teflon©-based fluid cell. The solution was prepared with H2O enriched with 97 at.% 18O. At the given pH from 10.92 to 9.65 at 45-100 °C, respectively, CO32- is the dominant DIC species (>99% CO32-). At the beginning of the reaction the Raman spectrum of the solution is characterised by an intense band near 1067 cm-1 that has been assigned to the ν1(CO3) symmetric stretching vibration of the CO32- molecule. With increasing reaction time three, well-separated bands successively appear near 1046, 1026, and 1006 cm-1. These bands result from mass-related (isotopic) splitting of the ν1(CO3) mode and reflect the symmetric stretching vibration of the oxygen-related isotopologues C16O3-n18On2- (n = 1, 2, and 3). The relative integrated intensities of these bands are related to the amount of 18O present in the aqueous CO32- molecule, which allowed monitoring the time-dependent distribution of the four isotopologues at each temperature. The measured distributions as a function of time were found to agree well with those modelled on the basis of the overall reactions ΣC18O+3H18O⇌ΣC18O16O+3H16O, where the sum sign represents the sum of all carbonate species in solution and n = 0, 1, and 2. Moreover, the measured equilibrium fractions of 18O agree well with those expected from mass balance and published fractionation factors. After correcting the observed exchange rates for the dependence of the exchange kinetics on OH- and CO2(aq) activities, the observed overall logarithmic oxygen isotope exchange rates describe a linear relationship with the inverse temperature along with published exchange data that were

  2. Biological Apatite Formed from Polyphosphate and Alkaline Phosphatase May Exchange Oxygen Isotopes from Water through Carbonate

    NASA Astrophysics Data System (ADS)

    Omelon, S. J.; Stanley, S. Y.; Gorelikov, I.; Matsuura, N.

    2011-12-01

    The oxygen isotopic composition in bone mineral phosphate is known to reflect the local water composition, environmental humidity, and diet1. Once ingested, biochemical processes presumably equilibrate PO43- with "body water" by the many biochemical reactions involving PO43- 2. Blake et al. demonstrated that enzymatic release of PO43- from organophosphorus compounds, and microbial metabolism of dissolved orthophosphate, significantly exchange the oxygen in precipitated apatite within environmental water3,4, which otherwise does not exchange with water at low temperatures. One of the enzymes that can cleave phosphates from organic substrates is alkaline phosphastase5, the enzyme also associated with bone mineralization. The literature often states that the mineral in bone in hydroxylapatite, however the mineral in bone is carbonated apatite that also contains some fluoride6. Deprotonation of HPO32- occurs at pH 12, which is impossibly high for biological system, and the predominate carbonate species in solution at neutral pH is HCO3-. To produce an apatite mineral without a significant hydroxyl content, it is possible that apatite biomineralization occurs through a polyphosphate pathway, where the oxygen atom required to transform polyphosphate into individual phosphate ions is from carbonate: [PO3-]n + CO32- -> [PO3-]n-1 + PO43- + CO2. Alkaline phosphatase can depolymerise polyphosphate into orthophosphate5. If alkaline phosphatase cleaves an oxygen atom from a calcium-carbonate complex, then there is no requirement for removing a hydrogen atom from the HCO3- or HPO43- ions of body water to form bioapatite. A mix of 1 mL of 1 M calcium polyphosphate hydogel, or nano-particles of calcium polyphosphate, and amorphous calcium carbonate were reacted with alkaline phosphatase, and maintained at neutral to basic pH. After two weeks, carbonated apatite and other calcium phosphate minerals were identified by powder x-ray diffraction. Orthophosphate and unreacted

  3. Carbon Isotopic Fractionation in Fischer-Tropsch Type Reactions and Relevance to Meteorite Organics

    NASA Technical Reports Server (NTRS)

    Johnson, Natasha M; Elsila, Jamie E.; Kopstein, Mickey; Nuth, Joseph A., III

    2012-01-01

    Fischer-Tropsch-Type (FTT) reactions have been hypothesized to contribute to the formation of organic compounds in the early solar system, but it has been difficult to identify a signature of such reactions in meteoritic organics. The work reported here examined whether temperature-dependent carbon isotopic fractionation of FTT reactions might provide such a signature. Analyses of bulk organic deposits resulting from FTT experiments show a slight trend towards lighter carbon isotopic ratios with increasing temperature. It is unlikely, however, that these carbon isotopic signatures could provide definitive provenance for organic compounds in solar system materials produced through FTT reactions, because of the small scale of the observed fractionations and the possibility that signatures from many different temperatures may be present in any specific grain.

  4. Oxygen exchange reaction kinetics for cerium(IV) oxide at 1000 °C

    SciTech Connect

    Whiting, Christofer E. Douglas, John M.; Cremeans, Bethany M.; Barklay, Chadwick D.; Kramer, Daniel P.

    2014-10-15

    Bulk oxygen exchange rate kinetics on CeO{sub 2} at 1000 °C were observed to have a first order dependence on the fraction of reaction remaining and to be independent of oxygen partial pressure, total pressure, particle size, and specific surface area. This suggests that the exchange reaction is dominated by an internal chemical reaction that is occurring throughout the bulk of the material, and not at the material surface. Oxygen exchange rates were limited by this internal chemical reaction for all CeO{sub 2} powders studied (15 nm to −325 mesh), and had a rate constant of 1.19×10{sup −2} s{sup −1} with a time to completion of 617 s. These results are similar to the exchange rates observed previously on PuO{sub 2}, suggesting that oxygen exchange on PuO{sub 2} may also be dominated by an internal chemical reaction under similar conditions. This work will help guide future experiments on {sup 238}PuO{sub 2} oxygen exchange reactions. - Graphical abstract: Oxygen exchange kinetics on CeO{sub 2} at 1000 °C are independent of a wide range of experimental conditions and exhibit first-order chemical reaction kinetics. - Highlights: • Stable oxygen exchange rates obtained on a variety of CeO{sub 2} powders at 1000 °C. • Exchange rates are independent of atmospheric composition and specific surface area. • Exchange rates are limited by an internal chemical reaction, not a surface reaction. • CeO{sub 2} exchange rates appear similar to the rates observed on PuO{sub 2} at 1000 °C.

  5. Neutron Capture Reactions on lu Isotopes at Dance

    NASA Astrophysics Data System (ADS)

    Roig, O.; Meot, V.; Daugas, J.-M.; Morel, P.; Jandel, M.; Vieira, D. J.; Bond, E. M.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Keksis, A. L.; Rundberg, R. S.; Ullmann, J. L.; Wouters, J. M.

    2013-03-01

    The DANCE1 (Detector for Advanced Neutron Capture Experiments) array at LANSCE spallation neutron source in Los Alamos has been used to obtain the neutron radiative capture cross sections for 175Lu and 176Lu with neutron energies from thermal up to 100 keV. Both isotopes are of current interest for the nucleosynthesis s-process.2,3 Three targets were used to perform these measurements. One was natural Lu foil of 31 mg/cm2 and the other two were isotope-enriched targets of 175Lu and 176Lu. Firstly, the cross sections were obtained by normalizing yield to a well-known cross section at the thermal neutron energy. Now, we want to obtain absolute cross sections of radiative capture through a precise neutron flux determination, an accurate target mass measurement and an efficiency determination of the DANCE array.

  6. Low-Temperature Isotopic Exchange in Obsidian: Implications for Diffusive Mechanisms

    SciTech Connect

    Anovitz, Lawrence {Larry} M; Cole, David R; Riciputi, Lee R

    2009-01-01

    While a great deal is known about the interaction between water and rhyolitic glasses and melts at temperatures above the glass transition, the nature of this interaction at lower temperatures is much more poorly understood. This paper presents the results of a series of isotopic exchange experiments aimed at further elucidating this process and determining the extent to which a point-by-point analysis of the D/H or 18O/18O isotopic composition across the hydrated rim on a geological or archaeological obsidian sample can be used as a paleoclimatic monitor. Experiments were performed by first hydrating the glass for five days in water of one isotopic composition, followed by five days in water of a second composition. Because waters of near end-member compositions were used (nearly pure 1H2 16O, 1H2 18O, and D2 16O), the relative migration of each species could be ascertained easily by depth-profiling using secondary ion mass spectrometry (SIMS). Results suggest that, during hydration, both the isotopic composition of the waters of hydration, as well as that of intrinsic water remaining from the initial formation of the glass vary dramatically, and a point-by-point analysis leading to paleoclimatic reconstruction is not feasible.

  7. Low-temperature isotopic exchange in obsidian: Implications for diffusive mechanisms.

    SciTech Connect

    Anovitz, Lawrence {Larry} M; Cole, David R; Riciputi, Lee R

    2009-01-01

    While a great deal is known about the interaction between water and rhyolitic glasses and melts at temperatures above the glass transition, the nature of this interaction at lower temperatures is much more poorly understood. This paper presents the results of a series of isotopic exchange experiments aimed at further elucidating this process and determining the extent to which a point-by-point analysis of the D/H or 18O/18O isotopic composition across the hydrated rim on a geological or archaeological obsidian sample can be used as a paleoclimatic monitor. Experiments were performed by first hydrating the glass for 5 days in water of one isotopic composition, followed by 5 days in water of a second composition. Because waters of near end-member compositions were used (nearly pure 1H2 16O, 1H2 18O, and D2 16O), the relative migration of each species could be ascertained easily by depth-profiling using secondary ion mass spectrometry (SIMS). Results suggest that, during hydration, both the isotopic composition of the waters of hydration, as well as that of intrinsic water remaining from the initial formation of the glass vary dramatically, and a point-by-point analysis leading to paleoclimatic reconstruction is not feasible.

  8. Some symmetry-induced isotope effects in the kinetics of recombination reactions.

    PubMed

    Pack, Russell T; Walker, Robert B

    2004-07-08

    Symmetry-induced isotope effects in recombination and collision-induced dissociation reactions are discussed. Progress on understanding the anomalous isotope effects in ozone is reviewed. Then, calculations are performed for the simpler reaction xNe+yNe+H<-->xNeyNe+H, where x and y label either identical or different isotopes. The atomic masses in the model are chosen so that symmetry is the only difference between the systems. Starting from a single potential energy surface, the properties of the bound, quasibound, and continuum states of the neon dimer are calculated. Then, the vibration rotation infinite order sudden approximation is used to calculate cross sections for all possible inelastic and dissociative processes. A rate constant matrix that exactly satisfies detailed balance is constructed. It allows recombination to occur both via direct three-body collisions and via tunneling into the quasibound states of the energy transfer mechanism. The eigenvalue rate coefficients are determined. Significant isotope effects are clearly found, and their behavior depends on the pressure, temperature, and mechanism of the reaction. Both spin statistics and symmetry breaking produce isotope effects. Under most conditions the breaking of symmetry enhances the rates, but a wide spectrum of effects is observed; they range from isotope effects with a normal mass dependence to huge, mass-independent isotope effects to cancellation and even to reversal of the isotope effects. This is the first calculation of symmetry-induced isotope effects in recombination rates from first principles. The relevance of the present effects to ozone recombination is discussed.

  9. Evaluating reaction pathways of hydrothermal abiotic organic synthesis at elevated temperatures and pressures using carbon isotopes

    NASA Astrophysics Data System (ADS)

    Fu, Qi; Socki, Richard A.; Niles, Paul B.

    2015-04-01

    Experiments were performed to better understand the role of environmental factors on reaction pathways and corresponding carbon isotope fractionations during abiotic hydrothermal synthesis of organic compounds using piston cylinder apparatus at 750 °C and 5.5 kbars. Chemical compositions of experimental products and corresponding carbon isotopic values were obtained by a Pyrolysis-GC-MS-IRMS system. Alkanes (methane and ethane), straight-chain saturated alcohols (ethanol and n-butanol) and monocarboxylic acids (formic and acetic acids) were generated with ethanol being the only organic compound with higher δ13C than CO2. CO was not detected in experimental products owing to the favorable water-gas shift reaction under high water pressure conditions. The pattern of δ13C values of CO2, carboxylic acids and alkanes are consistent with their equilibrium isotope relationships: CO2 > carboxylic acids > alkanes, but the magnitude of the fractionation among them is higher than predicted isotope equilibrium values. In particular, the isotopic fractionation between CO2 and CH4 remained constant at ∼31‰, indicating a kinetic effect during CO2 reduction processes. No "isotope reversal" of δ13C values for alkanes or carboxylic acids was observed, which indicates a different reaction pathway than what is typically observed during Fischer-Tropsch synthesis under gas phase conditions. Under constraints imposed in experiments, the anomalous 13C isotope enrichment in ethanol suggests that hydroxymethylene is the organic intermediate, and that the generation of other organic compounds enriched in 12C were facilitated by subsequent Rayleigh fractionation of hydroxymethylene reacting with H2 and/or H2O. Carbon isotope fractionation data obtained in this study are instrumental in assessing the controlling factors on abiotic formation of organic compounds in hydrothermal systems. Knowledge on how environmental conditions affect reaction pathways of abiotic synthesis of organic

  10. Isotopic air sampling in a tallgrass prairie to partition net ecosystem CO2 exchange

    NASA Astrophysics Data System (ADS)

    Lai, Chun-Ta; Schauer, Andrew J.; Owensby, Clenton; Ham, Jay M.; Ehleringer, James R.

    2003-09-01

    Stable isotope ratios of various ecosystem components and net ecosystem exchange (NEE) CO2 fluxes were measured in a C3-C4 mixture tallgrass prairie near Manhattan, Kansas. The July 2002 study period was chosen because of contrasting soil moisture contents, which allowed us to address the effects of drought on photosynthetic CO2 uptake and isotopic discrimination. Significantly higher NEE fluxes were observed for both daytime uptake and nighttime respiration during well-watered conditions when compared to a drought period. Given these differences, we investigated two carbon-flux partitioning questions: (1) What proportions of NEE were contributed by C3 versus C4 species? (2) What proportions of NEE fluxes resulted from canopy assimilation versus ecosystem respiration? To evaluate these questions, air samples were collected every 2 hours during daytime for 3 consecutive days at the same height as the eddy covariance system. These air samples were analyzed for both carbon isotope ratios and CO2 concentrations to establish an empirical relationship for isoflux calculations. An automated air sampling system was used to collect nighttime air samples to estimate the carbon isotope ratios of ecosystem respiration (δR) at weekly intervals for the entire growing season. Models of C3 and C4 photosynthesis were employed to estimate bulk canopy intercellular CO2 concentration in order to calculate photosynthetic discrimination against 13C. Our isotope/NEE results showed that for this grassland, C4 vegetation contributed ˜80% of the NEE fluxes during the drought period and later ˜100% of the NEE fluxes in response to an impulse of intense precipitation. For the entire growing season, the C4 contribution ranged from ˜68% early in the spring to nearly 100% in the late summer. Using an isotopic approach, the calculated partitioned respiratory fluxes were slightly greater than chamber-measured estimates during midday under well-watered conditions. In addition, time series

  11. Massive sulfide deposits and hydrothermal solutions: incremental reaction modeling of mineral precipitation and sulfur isotopic evolution

    SciTech Connect

    Janecky, D.R.

    1986-01-01

    Incremental reaction path modeling of chemical and sulfur isotopic reactions occurring in active hydrothermal vents on the seafloor, in combination with chemical and petrographic data from sulfide samples from the seafloor and massive sulfide ore deposits, allows a detailed examination of the processes involved. This paper presents theoretical models of reactions of two types: (1) adiabatic mixing between hydrothermal solution and seawater, and (2) reaction of hydrothermal solution with sulfide deposit materials. In addition, reaction of hydrothermal solution with sulfide deposit minerals and basalt in feeder zones is discussed.

  12. Synthesis of new transuranium isotopes in multinucleon transfer reactions using a velocity filter

    NASA Astrophysics Data System (ADS)

    Heinz, S.; Devaraja, H. M.; Beliuskina, O.; Comas, V.; Hofmann, S.; Hornung, C.; Münzenberg, G.; Ackermann, D.; Gupta, M.; Henderson, R. A.; Heßberger, F. P.; Kindler, B.; Lommel, B.; Mann, R.; Maurer, J.; Moody, K. J.; Nishio, K.; Popeko, A. G.; Shaughnessy, D. A.; Stoyer, M. A.; Yeremin, A. V.

    2016-09-01

    Recently, we reported the observation of several new isotopes with proton numbers Z ≥ 92 in low-energy collisions of 48Ca + 248Cm . The peculiarity is that the nuclei were produced in multinucleon transfer reactions, a method which is presently discussed as a possible new way to enter so far unknown regions in the upper part of the Chart of Nuclides. For separation of the transfer products we used a velocity filter, the Separator for Heavy Ion Reaction Products SHIP at GSI. The resulting strong background suppression allowed us to detect nuclei with cross-sections down to the sub-nanobarn scale. Beside the new isotopes we identified about 100 further target-like transfer products and determined their cross-sections. The results together with previous measurements strongly indicate that multinucleon transfer reactions are a viable pathway to the production of new transuranium isotopes.

  13. Isotopic exchange between carbon dioxide and ozone via O(1D) in the stratosphere

    NASA Technical Reports Server (NTRS)

    Yung, Yuk L.; Demore, W. B.; Pinto, Joseph P.

    1991-01-01

    A novel mechanism for isotropic exchange between CO2 and O3 via O(1D) + CO2 - CO3(asterisk) followed by CO3(asterisk) - CO2 + O(3P). A one-dimensional model calculation shows that this mechanism can account for the enrichment in O-18 in the stratospheric CO2 observed by Gamo et al. (1989), using the heavy O3 profile observed by Mauersberger (1981). The implications of this mechanism for other stratospheric species and as a source of isotopically heavy CO2 in the troposphere are briefly discussed.

  14. Dual Studies on a Hydrogen-Deuterium Exchange of Resorcinol and the Subsequent Kinetic Isotope Effect.

    PubMed

    Giles, Richard; Kim, Iris; Chao, Weyjuin Eric; Moore, Jennifer; Jung, Kyung Woon

    2014-08-12

    An efficient laboratory experiment has been developed for undergraduate students to conduct hydrogen-deuterium (H-D) exchange of resorcinol by electrophilic aromatic substitution using D2O and a catalytic amount of H2SO4. The resulting labeled product is characterized by (1)H NMR. Students also visualize a significant kinetic isotope effect (kH/kD ≈ 3 to 4) by adding iodine tincture to solutions of unlabeled resorcinol and the H-D exchange product. This method is highly adaptable to fit a target audience and has been successfully implemented in a pedagogical capacity with second-year introductory organic chemistry students as part of their laboratory curriculum. It was also adapted for students at the advanced high school level.

  15. Dual Studies on a Hydrogen–Deuterium Exchange of Resorcinol and the Subsequent Kinetic Isotope Effect

    PubMed Central

    2015-01-01

    An efficient laboratory experiment has been developed for undergraduate students to conduct hydrogen–deuterium (H–D) exchange of resorcinol by electrophilic aromatic substitution using D2O and a catalytic amount of H2SO4. The resulting labeled product is characterized by 1H NMR. Students also visualize a significant kinetic isotope effect (kH/kD ≈ 3 to 4) by adding iodine tincture to solutions of unlabeled resorcinol and the H–D exchange product. This method is highly adaptable to fit a target audience and has been successfully implemented in a pedagogical capacity with second-year introductory organic chemistry students as part of their laboratory curriculum. It was also adapted for students at the advanced high school level. PMID:25132687

  16. RADIATION STABILITY OF NAFION MEMBRANES USED FOR ISOTOPE SEPARATION BY PROTON EXCHANGE MEMBRANE ELECTROLYSIS

    SciTech Connect

    Fox, E

    2009-05-15

    Proton Exchange Membrane Electrolyzers have potential interest for use for hydrogen isotope separation from water. In order for PEME to be fully utilized, more information is needed on the stability of Nafion when exposed to radiation. This work examines Nafion 117 under varying exposure conditions, including dose rate, total dosage and atmospheric condition. Analytical tools, such as FT-IR, ion exchange capacity, DMA and TIC-TOC were used to characterize the exposed membranes. Analysis of the water from saturated membranes can provide important data on the stability of the membranes during radiation exposure. It was found that the dose rate of exposure plays an important role in membrane degradation. Potential mechanisms for membrane degradation include peroxide formation by free radicals.

  17. Use of intermediate partitioning to calculate intrinsic isotope effects for the reaction catalyzed by malic enzyme

    SciTech Connect

    Grissom, C.B.; Cleland, W.W.

    1985-02-12

    For those enzymes that proceed via a stepwise reaction mechanism with a discrete chemical intermediate and where deuterium and /sup 13/C isotope effects are on separate steps, a new method has been developed to solve for the intrinsic deuterium and /sup 13/C kinetic isotope effects that relies on directly observing the partitioning of the intermediate between the forward and reverse directions. This observed partitioning ratio, along with the values of the primary deuterium, tritium, and /sup 13/C kinetic isotope effects on V/K for the substrate with the label being followed, allows an exact solution for the intrinsic deuterium and /sup 13/C isotope effects, the forward commitment for the deuterium-sensitive step, and the partition ratio for the intermediate in the reaction. This method allows portions of the reaction coordinate diagram to be defined precisely and the relative energy levels of certain activation barriers to be assigned exactly. With chicken liver triphosphopyridine nucleotide (TPN) malic enzyme activated by Mg/sup 2 +/, the partitioning of oxalacetate to pyruvate vs. malate in the presence of TPNH, 0.47, plus previously determined isotope effects gives an intrinsic deuterium isotope effect of 5.7 on hydride transfer and a /sup 13/C isotope effect of 1.044 on decarboxylation. Reverse hydride transfer is 10 times faster than decarboxylation, and the forward commitment for hydride transfer is 3.3. The /sup 13/C isotope effect is not significantly different with reduced acetylpyridine adenine dinucleotide phosphate replacing TPNH (although the pyruvate/malate partitioning ratio for oxalactate is now 9.9), but replacement of Mg/sup 2 +/ by Mn/sup 2 +/ raises the value to 1.065 (partition ratio 0.99).

  18. Quantum Dynamics Study of the Isotopic Effect on Capture Reactions: HD, D2 + CH3

    NASA Technical Reports Server (NTRS)

    Wang, Dunyou; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Time-dependent wave-packet-propagation calculations are reported for the isotopic reactions, HD + CH3 and D2 + CH3, in six degrees of freedom and for zero total angular momentum. Initial state selected reaction probabilities for different initial rotational-vibrational states are presented in this study. This study shows that excitations of the HD(D2) enhances the reactivities; whereas the excitations of the CH3 umbrella mode have the opposite effects. This is consistent with the reaction of H2 + CH3. The comparison of these three isotopic reactions also shows the isotopic effects in the initial-state-selected reaction probabilities. The cumulative reaction probabilities (CRP) are obtained by summing over initial-state-selected reaction probabilities. The energy-shift approximation to account for the contribution of degrees of freedom missing in the six dimensionality calculation is employed to obtain approximate full-dimensional CRPs. The rate constant comparison shows H2 + CH3 reaction has the biggest reactivity, then HD + CH3, and D2 + CH3 has the smallest.

  19. Deformation effect on total reaction cross sections for neutron-rich Ne isotopes

    SciTech Connect

    Minomo, Kosho; Sumi, Takenori; Ogata, Kazuyuki; Shimizu, Yoshifumi R.; Yahiro, Masanobu; Kimura, Masaaki

    2011-09-15

    The isotope dependence of measured reaction cross sections in the scattering of {sup 28-32}Ne isotopes from a {sup 12}C target at 240 MeV/nucleon is analyzed by the double-folding model with the Melbourne g matrix. The density of the projectile is calculated by the mean-field model with the deformed Woods-Saxon potential. The deformation is evaluated by antisymmetrized molecular dynamics. The deformation of the projectile enhances calculated reaction cross sections to the measured values.

  20. Mixing effects on apparent reaction rates and isotope fractionation during denitrification in a heterogeneous aquifer

    USGS Publications Warehouse

    Green, C.T.; Böhlke, J.K.; Bekins, B.A.; Phillips, S.P.

    2010-01-01

    Gradients in contaminant concentrations and isotopic compositions commonly are used to derive reaction parameters for natural attenuation in aquifers. Differences between field-scale (apparent) estimated reaction rates and isotopic fractionations and local-scale (intrinsic) effects are poorly understood for complex natural systems. For a heterogeneous alluvial fan aquifer, numerical models and field observations were used to study the effects of physical heterogeneity on reaction parameter estimates. Field measurements included major ions, age tracers, stable isotopes, and dissolved gases. Parameters were estimated for the O2 reduction rate, denitrification rate, O 2 threshold for denitrification, and stable N isotope fractionation during denitrification. For multiple geostatistical realizations of the aquifer, inverse modeling was used to establish reactive transport simulations that were consistent with field observations and served as a basis for numerical experiments to compare sample-based estimates of "apparent" parameters with "true" (intrinsic) values. For this aquifer, non-Gaussian dispersion reduced the magnitudes of apparent reaction rates and isotope fractionations to a greater extent than Gaussian mixing alone. Apparent and true rate constants and fractionation parameters can differ by an order of magnitude or more, especially for samples subject to slow transport, long travel times, or rapid reactions. The effect of mixing on apparent N isotope fractionation potentially explains differences between previous laboratory and field estimates. Similarly, predicted effects on apparent O2 threshold values for denitrification are consistent with previous reports of higher values in aquifers than in the laboratory. These results show that hydrogeological complexity substantially influences the interpretation and prediction of reactive transport. ?? 2010 by the American Geophysical Union.

  1. Muonium Addition Reactions and Kinetic Isotope Effects in the Gas Phase: k∞ Rate Constants for Mu + C2H2.

    PubMed

    Arseneau, Donald J; Garner, David M; Reid, Ivan D; Fleming, Donald G

    2015-07-16

    The kinetics of the addition reaction of muonium (Mu) to acetylene have been studied in the gas phase at N2 moderator pressures mainly from ∼800 to 1000 Torr and over the temperature range from 168 to 446 K, but also down to 200 Torr at 168 K and over a much higher range of pressures, from 10 to 44 bar at 295 K, demonstrating pressure-independent rate constants, kMu(T). Even at 200 Torr moderator pressure, the kinetics for Mu + C2H2 addition behave as if effectively in the high-pressure limit, giving k∞ = kMu due to depolarization of the muon spin in the MuC2H2 radical formed in the addition step. The rate constants kMu(T) exhibit modest Arrhenius curvature over the range of measured temperatures. Comparisons with data and with calculations for the corresponding H(D) + C2H2 addition reactions reveal a much faster rate for the Mu reaction at the lowest temperatures, by 2 orders of magnitude, in accord with the propensity of Mu to undergo quantum tunneling. Moreover, isotopic atom exchange, which contributes in a major way to the analogous D atom reaction, forming C2HD + H, is expected to be unimportant in the case of Mu addition, a consequence of the much higher zero-point energy and hence weaker C-Mu bond that would form, meaning that the present report of the Mu + C2H2 reaction is effectively the only experimental study of kinetic isotope effects in the high-pressure limit for H-atom addition to acetylene.

  2. The exchange of acetaldehyde between plants and the atmosphere: Stable carbon isotope and flux measurements

    NASA Astrophysics Data System (ADS)

    Jardine, Kolby Jeremiah

    The exchange of acetaldehyde between plant canopies and the atmosphere may significantly influence regional atmospheric chemistry and plant metabolism. While plants are known to both produce and consume acetaldehyde, the exchange of this compound with forested ecosystems is complicated by physical, biological, and chemical processes that range from being poorly understood to completely unknown. This precludes a quantitative understanding of acetaldehyde exchange rates between the atmosphere and the biosphere. In this study, the processes controlling the exchange of acetaldehyde with plant canopies was investigated using concentration, flux, and natural abundance 13C measurements of gas phase acetaldehyde from individual plants, soils, and entire ecosystems. Although previously only considered important in anoxic tissues, it was discovered that acetaldehyde is produced and consumed in leaves through ethanolic fermentation coupled to the pyruvate dehydrogenase bypass system under normal aerobic conditions. These coupled pathways determine the acetaldehyde compensation point, a major factor controlling its exchange with the atmosphere. Carbon isotope analysis suggests a new pathway for acetaldehyde production from plants under stress involving the peroxidation of membrane fatty acids. This pathway may be a major source of acetaldehyde to the atmosphere from plants under biotic and abiotic stresses. Plant stomata were found to be the dominant pathway for the exchange of acetaldehyde with the atmosphere with stomatal conductance influencing both emission and uptake fluxes. In addition, increasing temperature and solar radiation was found to increase the compensation point by increasing the rates of acetaldehyde production relative to consumption. Under ambient conditions, bare soil was neutral to the exchange of acetaldehyde while senescing and decaying leaves were found to be strong source of acetaldehyde to the atmosphere due to increased decomposition processes and

  3. [The isotope effect in the glycine dehydrogenase reaction is the cause of the intramolecular isotope inhomogeneity of glucose carbon of starch synthesized during photorespiration].

    PubMed

    Ivlev, A A

    2005-01-01

    The isotope distribution of glucose-6-phosphate in the main pathways of its biosynthesis (in the processes of CO2 assimilation and photorespiration in the Calvin cycle and during resynthesis from the degradation products of lipids and proteins) was analyzed. For reconstructing the isotope distribution of glucoso-6-phosphate synthesized in the Calvin cycle during photorespiration, the functioning of the cycle with regard to its coupling with the glycolate chain, which together constitute the photorespiration chain, was considered. In the glycine dehydrogenase reaction of the glycolate cycle, there arises an isotope effect, which determines the distribution of isotopes in the glucose-6-phosphate and other photorespiration products. The isotope effect of the glycine dehydrogenase reaction increases at the expense of the exhaustion of glucose resources feeding the photorespiration chain. As a result, atoms C-3 and C-4 of glucose become enriched with the heavy isotope, and subsequent mixing of atoms and the specificity of interactions in the photorespiration chain lead to an isotope weighting of the other atoms and an uneven distribution of carbon isotopes in glucose-6-phosphate and other photorespiration products. A comparison of the glucose-6-phosphate isotope patterns in different pathways of the synthesis with the experimental data on the distribution of carbon isotopes in starch glucose of storing plant organs led to the conclusion that the starch resources are predominantly formed at the expense of glucose-6-phosphate of photorespiration. This is consistent with the earlier observed enhancement of photorespiration at the stage of plant maturation.

  4. Pion single- and double-charge-exchange reactions at low energies

    SciTech Connect

    Baer, H.W.

    1987-01-01

    The general features of pion charge-exchange reactions at energies of 20 to 80 MeV leading to nuclear isobaric-analog states (IAS) and double-isobaric-analog states (DIAS) are reviewed. The recent progress achieved in understanding the role of short-range N-N correlations in the double-charge-exchange reactions is presented. 36 refs., 21 figs., 2 tabs.

  5. Position-specific isotope modeling of organic micropollutants transformations through different reaction pathways

    NASA Astrophysics Data System (ADS)

    Jin, Biao; Rolle, Massimo

    2016-04-01

    Organic compounds are produced in vast quantities for industrial and agricultural use, as well as for human and animal healthcare [1]. These chemicals and their metabolites are frequently detected at trace levels in fresh water environments where they undergo degradation via different reaction pathways. Compound specific stable isotope analysis (CSIA) is a valuable tool to identify such degradation pathways in different environmental systems. Recent advances in analytical techniques have promoted the fast development and implementation of multi-element CSIA. However, quantitative frameworks to evaluate multi-element stable isotope data and incorporating mechanistic information on the degradation processes [2,3] are still lacking. In this study we propose a mechanism-based modeling approach to simultaneously evaluate concentration as well as bulk and position-specific multi-element isotope evolution during the transformation of organic micropollutants. The model explicitly simulates position-specific isotopologues for those atoms that experience isotope effects and, thereby, provides a mechanistic description of isotope fractionation occurring at different molecular positions. We validate the proposed approach with the concentration and multi-element isotope data of three selected organic micropollutants: dichlorobenzamide (BAM), isoproturon (IPU) and diclofenac (DCF). The model precisely captures the dual element isotope trends characteristic of different reaction pathways and their range of variation consistent with observed multi-element (C, N) bulk isotope fractionation. The proposed approach can also be used as a tool to explore transformation pathways in scenarios for which position-specific isotope data are not yet available. [1] Schwarzenbach, R.P., Egli, T., Hofstetter, T.B., von Gunten, U., Wehrli, B., 2010. Global Water Pollution and Human Health. Annu. Rev. Environ. Resour. doi:10.1146/annurev-environ-100809-125342. [2] Jin, B., Haderlein, S.B., Rolle, M

  6. Dithioacetal Exchange: A New Reversible Reaction for Dynamic Combinatorial Chemistry.

    PubMed

    Orrillo, A Gastón; Escalante, Andrea M; Furlan, Ricardo L E

    2016-05-10

    Reversibility of dithioacetal bond formation is reported under acidic mild conditions. Its utility for dynamic combinatorial chemistry was explored by combining it with orthogonal disulfide exchange. In such a setup, thiols are positioned at the intersection of both chemistries, constituting a connecting node between temporally separated networks.

  7. Power law behavior of the isotope yield distributions in the multifragmentation regime of heavy ion reactions

    NASA Astrophysics Data System (ADS)

    Huang, M.; Wada, R.; Chen, Z.; Keutgen, T.; Kowalski, S.; Hagel, K.; Barbui, M.; Bonasera, A.; Bottosso, C.; Materna, T.; Natowitz, J. B.; Qin, L.; Rodrigues, M. R. D.; Sahu, P. K.; Schmidt, K. J.; Wang, J.

    2010-11-01

    Isotope yield distributions in the multifragmentation regime were studied with high-quality isotope identification, focusing on the intermediate mass fragments (IMFs) produced in semiviolent collisions. The yields were analyzed within the framework of a modified Fisher model. Using the ratio of the mass-dependent symmetry energy coefficient relative to the temperature, asym/T, extracted in previous work and that of the pairing term, ap/T, extracted from this work, and assuming that both reflect secondary decay processes, the experimentally observed isotope yields were corrected for these effects. For a given I=N-Z value, the corrected yields of isotopes relative to the yield of C12 show a power law distribution Y(N,Z)/Y(12C)~A-τ in the mass range 1⩽A⩽30, and the distributions are almost identical for the different reactions studied. The observed power law distributions change systematically when I of the isotopes changes and the extracted τ value decreases from 3.9 to 1.0 as I increases from -1 to 3. These observations are well reproduced by a simple deexcitation model, with which the power law distribution of the primary isotopes is determined to be τprim=2.4±0.2, suggesting that the disassembling system at the time of the fragment formation is indeed at, or very near, the critical point.

  8. Comparisons of phosphorothioate with phosphate transfer reactions for a monoester, diester, and triester: isotope effect studies.

    PubMed

    Catrina, Irina E; Hengge, Alvan C

    2003-06-25

    Phosphorothioate esters are sometimes used as surrogates for phosphate ester substrates in studies of enzymatic phosphoryl transfer reactions. To gain better understanding of the comparative inherent chemistry of the two types of esters, we have measured equilibrium and kinetic isotope effects for several phosphorothioate esters of p-nitrophenol (pNPPT) and compared the results with data from phosphate esters. The primary (18)O isotope effect at the phenolic group ((18)k(bridge)), the secondary nitrogen-15 isotope effect ((15)k) in the nitro group, and (for the monoester and diester) the secondary oxygen-18 isotope effect ((18)k(nonbridge)) in the phosphoryl oxygens were measured. The equilibrium isotope effect (EIE) (18)k(nonbridge) for the deprotonation of the monoanion of pNPPT is 1.015 +/- 0.002, very similar to values previously reported for phosphate monoesters. The EIEs for complexation of Zn(2+) and Cd(2+) with the dianion pNPPT(2-) were both unity. The mechanism of the aqueous hydrolysis of the monoanion and dianion of pNPPT, the diester ethyl pNPPT, and the triester dimethyl pNPPT was probed using heavy atom kinetic isotope effects. The results were compared with the data reported for analogous phosphate monoester, diester, and triester reactions. The results suggest that leaving group bond fission in the transition state of reactions of the monoester pNPPT is more advanced than for its phosphate counterpart pNPP, while alkaline hydrolysis of the phosphorothioate diester and triester exhibits somewhat less advanced bond fission than that of their phosphate ester counterparts.

  9. Nitrogen isotope fractionations in the Fischer-Tropsch synthesis and in the Miller-Urey reaction

    NASA Technical Reports Server (NTRS)

    King, C.-C.; Clayton, R. N.; Hayatsu, R.; Studier, M. H.

    1979-01-01

    Nitrogen isotope fractionations have been measured in Fischer-Tropsch and Miller-Urey reactions in order to determine whether these processes can account for the large N-15/N-14 ratios found in organic matter in carbonaceous chondrites. Polymeric material formed in the Fischer-Tropsch reaction was enriched in N-15 by only 3 per mil relative to the starting material (NH3). The N-15 enrichment in polymers from the Miller-Urey reaction was 10-12 per mil. Both of these fractionations are small compared to the 80-90 per mil differences observed between enstatite chondrites and carbonaceous chondrites. These large differences are apparently due to temporal or spatial variations in the isotopic composition of nitrogen in the solar nebula, rather than to fractionation during the production of organic compounds.

  10. Active Target-Time Projection Chambers for Reactions Induced by Rare Isotope Beams: Physics and Technology

    NASA Astrophysics Data System (ADS)

    Mittig, Wolfgang

    2013-04-01

    Weakly bound nuclear systems can be considered to represent a good testing-ground of our understanding of non-perturbative quantum systems. Great progress in experimental sensitivity has been attained by increase in rare isotope beam intensities and by the development of new high efficiency detectors. It is now possible to study reactions leading to bound and unbound states in systems with very unbalanced neutron to proton ratios. Application of Active Target-Time Projection Chambers to this domain of physics will be illustrated by experiments performed with existing detectors. The NSCL is developing an Active Target-Time Projection Chamber (AT-TPC) to be used to study reactions induced by rare isotope beams at the National Superconducting Cyclotron Facility (NSCL) and at the future Facility for Rare Isotope Beams (FRIB). The AT-TPC counter gas acts as both a target and detector, allowing investigations of fusion, isobaric analog states, cluster structure of light nuclei and transfer reactions to be conducted without significant loss in resolution due to the thickness of the target. The high efficiency and low threshold of the AT-TPC will allow investigations of fission barriers and giant resonances with fast fragmentation rare isotope beams. This detector type needs typically a large number of electronic channels (order of magnitude 10,000) and a high speed DAQ. A reduced size prototype detector with prototype electronics has been realized and used in several experiments. A short description of other detectors of this type under development will be given.

  11. Carbon mass-balance modeling and carbon isotope exchange processes in the Curonian Lagoon

    NASA Astrophysics Data System (ADS)

    Barisevičiūtė, Rūta; Žilius, Mindaugas; Ertürk, Ali; Petkuvienė, Jolita

    2016-04-01

    The Curonian lagoon one of the largest coastal lagoons in Europe is located in the southeastern part of the Baltic Sea and lies along the Baltic coast of Lithuania and the Kaliningrad region of Russia. It is influenced by a discharge of the Nemunas and other smaller rivers and saline water of the Baltic Sea. The narrow (width 0.4 km, deep 8-14 m) Klaipėda Strait is the only way for fresh water run-off and brackish water intrusions. This research is focused on carbon isotope fractionations related with air - water exchange, primary production and organic carbon sedimentation, mineralization and uptake from both marine and terrestrial sources.

  12. Ion exchange separation of chromium from natural water matrix for stable isotope mass spectrometric analysis

    USGS Publications Warehouse

    Ball, J.W.; Bassett, R.L.

    2000-01-01

    A method has been developed for separating the Cr dissolved in natural water from matrix elements and determination of its stable isotope ratios using solid-source thermal-ionization mass spectrometry (TIMS). The separation method takes advantage of the existence of the oxidized form of Cr as an oxyanion to separate it from interfering cations using anion-exchange chromatography, and of the reduced form of Cr as a positively charged ion to separate it from interfering anions such as sulfate. Subsequent processing of the separated sample eliminates residual organic material for application to a solid source filament. Ratios for 53Cr/52Cr for National Institute of Standards and Technology Standard Reference Material 979 can be measured using the silica gel-boric acid technique with a filament-to-filament standard deviation in the mean 53Cr/52Cr ratio for 50 replicates of 0.00005 or less. (C) 2000 Elsevier Science B.V. All rights reserved.

  13. Anion-exchange synthesis of nanoporous FeP nanosheets as electrocatalysts for hydrogen evolution reaction.

    PubMed

    Xu, You; Wu, Rui; Zhang, Jingfang; Shi, Yanmei; Zhang, Bin

    2013-07-28

    Nanoporous FeP nanosheets are successfully synthesized via the anion-exchange reaction of inorganic-organic hybrid Fe18S25-TETAH (TETAH = protonated triethylenetetramine) nanosheets with P ions. The as-prepared nanoporous FeP nanosheets exhibit high electrochemical hydrogen evolution reaction activity in acidic medium.

  14. Process Model for Studying Regional 13C Stable Isotope Exchange between Vegetation and Atmosphere

    NASA Astrophysics Data System (ADS)

    Chen, J. M.; Chen, B.; Huang, L.; Tans, P.; Worthy, D.; Ishizawa, M.; Chan, D.

    2007-12-01

    The variation of the stable isotope 13CO2 in the air in exchange with land ecosystems results from fractionation processes in both plants and soil during photosynthesis and respiration. Its diurnal and seasonal variations therefore contain information on the carbon cycle. We developed a model (BEPS-iso) to simulate its exchange between vegetation and the atmosphere. To be useful for regional carbon cycle studies, the model has the following characteristics: (i) it considers the turbulent mixing in the vertical profile from the soil surface to the top of the planetary boundary layer (PBL); (ii) it scales individual leaf photosynthetic discrimination to the whole canopy through the separation of sunlit and shaded leaf groups; (iii) through simulating leaf-level photosynthetic processes, it has the capacity to mechanistically examine isotope discrimination resulting from meteorological forcings, such as radiation, precipitation and humidity; and (iv) through complete modeling of radiation, energy and water fluxes, it also simulates soil moisture and temperature needed for estimating ecosystem respiration and the 13C signal from the soil. After validation using flask data acquired at 20 m level on a tower near Fraserdale, Ontario, Canada, during intensive campaigns (1998-2000), the model has been used for several purposes: (i) to investigate the diurnal and seasonal variations in the disequilibrium in 13C fractionation between ecosystem respiration and photosynthesis, which is an important step in using 13C measurements to separate these carbon cycle components; (ii) to quantify the 13C rectification in the PBL, which differs significantly from CO2 rectification because of the diurnal and seasonal disequilibriums; and (iii) to model the 13C spatial and temporal variations over the global land surface for the purpose of CO2 inversion using 13C as an additional constraint.

  15. Inclusive measurement of (p,. pi. /sup -/xn) double charge exchange reactions on bismuth from threshold to 800 MeV

    SciTech Connect

    Dombsky, M.; D'Auria, J.M.; Kelson, I.; Yavin, A.I.; Ward, T.E.; Clark, J.L.; Ruth, T.; Sheffer, G.

    1985-07-01

    The energy dependence of the total angle-integrated cross section for the production of astatine isotopes from (p,..pi../sup -/xn) double charge exchange reactions on bismuth (/sup 209/Bi) was measured from 120 to 800 MeV using activation and radiochemical techniques. Chemical yields were estimated by direct radioassaying of /sup 211/At activity in thin (approx.1 mg/cm/sup 2/), irradiated bismuth targets. Calculations of the contributions of secondary (two-step) reactions to these measured astatine yields were performed, based partially upon the observed /sup 211/At activity although even at the highest energies, the contribution to products lighter than /sup 207/At was negligible. These data for products with as many as seven neutrons removed from the doubly coherent product (/sup 210/At) display nearly Gaussian shapes for the mass distributions of the astatine residues, with the maximum occurring for about /sup 204/At. The most probable momentum transfer deduced from these distributions for the initial ..pi../sup -/ production step was 335 MeV/c. The observed excitation functions display a behavior similar to that observed for the yield of /sup 210/Po from a (p,..pi../sup 0/) reaction on /sup 209/Bi, but radically different from that observed for inclusive ..pi../sup -/ reactions on a heavy nucleus. These data are discussed in terms of recent theoretical approaches to negative pion production from bismuth. In addition, a simple, schematic model is developed to treat the rapidly decreasing percentage of the total inclusive ..pi../sup -/ emission which is observed for this double charge exchange reaction. This model reflects the opacity of a nucleus to a source of internal energetic protons.

  16. Selenium and sulfur in exchange reactions: a comparative study.

    PubMed

    Steinmann, Daniel; Nauser, Thomas; Koppenol, Willem H

    2010-10-01

    Cysteamine reduces selenocystamine to form hemiselenocystamine and then cystamine. The rate constants are k(1) = 1.3 × 10(5) M(-1) s(-1); k(-1) = 2.6 × 10(7) M(-1) s(-1); k(2) = 11 M(-1) s(-1); and k(-2) = 1.4 × 10(3) M(-1) s(-1), respectively. Rate constants for reactions of cysteine/selenocystine are similar. Reaction rates of selenium as a nucleophile and as an electrophile are 2-3 and 4 orders of magnitude higher, respectively, than those of sulfur. Sulfides and selenides are comparable as leaving groups.

  17. An Experimental Investigation of the Process of Isotope Exchange that Takes Place when Heavy Water Is Exposed to the Atmosphere

    ERIC Educational Resources Information Center

    Deeney, F. A.; O'Leary, J. P.

    2009-01-01

    We have used the recently developed method for rapid measurement of maximum density temperature to determine the rate at which hydrogen and deuterium isotope exchange takes place when a sample of heavy water is exposed to the atmosphere. We also provide a simple explanation for the observed linear rate of transition. (Contains 2 figures.)

  18. Modified ion exchange separation for tungsten isotopic measurements from kimberlite samples using multi-collector inductively coupled plasma mass spectrometry.

    PubMed

    Sahoo, Yu Vin; Nakai, Shun'ichi; Ali, Arshad

    2006-03-01

    Tungsten isotope composition of a sample of deep-seated rock can record the influence of core-mantle interaction of the parent magma. Samples of kimberlite, which is known as a carrier of diamond, from the deep mantle might exhibit effects of core-mantle interaction. Although tungsten isotope anomaly was reported for kimberlites from South Africa, a subsequent investigation did not verify the anomaly. The magnesium-rich and calcium-rich chemical composition of kimberlite might engender difficulty during chemical separation of tungsten for isotope analyses. This paper presents a simple, one-step anion exchange technique for precise and accurate determination of tungsten isotopes in kimberlites using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). Large quantities of Ca and Mg in kimberlite samples were precipitated and removed with aqueous H(2)SO(4). Highly pure fractions of tungsten for isotopic measurements were obtained following an anion exchange chromatographic procedure involving mixed acids. That procedure enabled efficient removal of high field strength elements (HFSE), such as Hf, Zr and Ti, which are small ions that carry strong charges and develop intense electrostatic fields. The tungsten yields were 85%-95%. Advantages of this system include less time and less use of reagents. Precise and accurate isotopic measurements are possible using fractions of tungsten that are obtained using this method. The accuracy and precision of these measurements were confirmed using various silicate standard rock samples, JB-2, JB-3 and AGV-1.

  19. Why Seemingly Trivial Events Sometimes Evoke Strong Emotional Reactions: The Role of Social Exchange Rule Violations

    PubMed Central

    Leary, Mark R.; Diebels, Kate J.; Jongman-Sereno, Katrina P.; Fernandez, Xuan Duong

    2015-01-01

    ABSTRACT People sometimes display strong emotional reactions to events that appear disproportionate to the tangible magnitude of the event. Although previous work has addressed the role that perceived disrespect and unfairness have on such reactions, this study examined the role of perceived social exchange rule violations more broadly. Participants (N = 179) rated the effects of another person’s behavior on important personal outcomes, the degree to which the other person had violated fundamental rules of social exchange, and their reactions to the event. Results showed that perceptions of social exchange rule violations accounted for more variance in participants’ reactions than the tangible consequences of the event. The findings support the hypothesis that responses that appear disproportionate to the seriousness of the eliciting event are often fueled by perceived rule violations that may not be obvious to others. PMID:26331429

  20. Proton exchange in acid-base complexes induced by reaction coordinates with heavy atom motions

    NASA Astrophysics Data System (ADS)

    Alavi, Saman; Taghikhani, Mahdi

    2012-06-01

    We extend previous work on nitric acid-ammonia and nitric acid-alkylamine complexes to illustrate that proton exchange reaction coordinates involve the rocking motion of the base moiety in many double hydrogen-bonded gas phase strong acid-strong base complexes. The complexes studied involve the biologically and atmospherically relevant glycine, formic, acetic, propionic, and sulfuric acids with ammonia/alkylamine bases. In these complexes, the magnitude of the imaginary frequencies associated with the proton exchange transition states are <400 cm-1. This contrasts with widely studied proton exchange reactions between symmetric carboxylic acid dimers or asymmetric DNA base pair and their analogs where the reaction coordinate is localized in proton motions and the magnitude of the imaginary frequencies for the transition states are >1100 cm-1. Calculations on complexes of these acids with water are performed for comparison. Variations of normal vibration modes along the reaction coordinate in the complexes are described.

  1. The Stable Isotope Fractionation of Abiotic Reactions: A Benchmark in the Detection of Life

    NASA Technical Reports Server (NTRS)

    Summers, David P.

    2003-01-01

    One very important tool in the analysis of biogenic, and potentially biogenic, samples is the study of their stable isotope distributions. The isotope distribution of a sample depends on the process(es) that created it. One important application of the analysis of C & N stable isotope ratios has been in the determination of whether organic matter in a sample is of biological origin or was produced abiotically. For example, the delta C-13 of organic material found embedded in phosphate grains was cited as a critical part of the evidence for life in 3.8 billion year old samples. The importance of such analysis in establishing biogenicity was highlighted again by the role this issue played in the recent debate over the validity of what had been accepted as the Earth s earliest microfossils. These kinds of analysis imply a comparison with the fractionation that one would have seen if the organic material had been produced by alternative, abiotic, pathways. Could abiotic reactions account for the same level of fractionation? Additionally, since the fractionation can vary between different abiotic reactions, understanding their fractionations can be important in distinguishing what reactions may have been significant in the formation of different abiological samples (such as extraterrestrial samples). There is however, a scarcity of data on the fractionation of carbon and nitrogen by abiotic reactions. In order to interpret properly what the stable isotope ratios of samples tell us about their biotic or abiotic nature, more needs to be known about how abiotic reactions fractionate C and N. Carbon isotope fractionations have been studied for a few abiotic processes. These studies presumed the presence of a reducing atmosphere, focusing on reactions involving spark discharge, W photolysis of reducing gas mixtures, and cyanide polymerization in the presence of ammonia. They did find that the initial products showed a depletion in I3C with values in the range of a few per

  2. Laboratory determination of the carbon kinetic isotope effects (KIEs) for reactions of methyl halides with various nucleophiles in solution

    USGS Publications Warehouse

    Baesman, S.M.; Miller, L.G.

    2005-01-01

    Large carbon kinetic isotope effects (KIEs) were measured for reactions of methyl bromide (MeBr), methyl chloride (MeCl), and methyl iodide (MeI) with various nucleophiles at 287 and 306 K in aqueous solutions. Rates of reaction of MeBr and MeI with H2O (neutral hydrolysis) or Cl- (halide substitution) were consistent with previous measurements. Hydrolysis rates increased with increasing temperature or pH (base hydrolysis). KIEs for hydrolysis were 51 ?? 6??? for MeBr and 38 ?? 8??? for MeI. Rates of halide substitution increased with increasing temperature and greater reactivity of the attacking nucleophile, with the fastest reaction being that of MeI with Br-. KIEs for halide substitution were independent of temperature but varied with the reactant methyl halide and the attacking nucleophile. KIEs were similar for MeBr substitution with Cl- and MeCl substitution with Br- (57 ?? 5 and 60 ?? 9??? respectively). The KIE for halide exchange of MeI was lower overall (33 ?? 8??? and was greater for substitution with Br- (46 ?? 6???) than with Cl- (29 ?? 6???). ?? Springer Science + Business Media, Inc. 2005.

  3. Measuring the photochemical production of carbon dioxide from marine dissolved organic matter by pool isotope exchange.

    PubMed

    Wang, Wei; Johnson, Carl G; Takeda, Kazuhiko; Zafiriou, Oliver C

    2009-11-15

    CO(2) is the major known product of solar photolysis of marine dissolved organic matter (DOM). Measuring the rate of this globally significant process is hindered by low rates per unit volume, high background CO(2) in seawater, and ubiquitous contamination. Current methods utilize CO(2)-free seawater matrices, possibly introducing artifacts. Alternatively, pool isotope exchange (PIE) replaces most of the sample's DI(12)C with DI(13)C at natural pH and temperature, so that (12)CO(2) from DOM photooxidation elevates (12)CO(2)/(13)CO(2) ratios in irradiated samples compared to dark controls. (12)CO(2)/(13)CO(2) ratios are then measured using a modified GC-IRMS. The minimum detectable concentration change (three standard deviations) is 300 nmol DI(12)C/kg. Methods for minimizing contamination while exchanging, transferring, sealing, and irradiating samples, and for recovering and purifying CO(2) are presented. Results from PIE agree within uncertainties with those from CO(2)-free coastal seawater, suggesting that both methods apply to river-dominated coastal waters. However, photooxidation in the open ocean, which likely dominates the global flux despite lower rates per unit volume, involves DOM that differs from coastal DOM, so that coastal agreement cannot validate open-ocean studies. Major advantages of PIE are use of nearly unperturbed seawater matrices, potential to incubate samples in situ to obtain depth-integrated rates directly, and potential to use larger samples to measure open-ocean waters.

  4. Isotope exchange between natural and anthropogenic Pb in the coastal waters of Singapore: exchange experiment, Kd model, and implications for the interpretation of coastal 210Pb data

    NASA Astrophysics Data System (ADS)

    Boyle, E. A.; Chen, M.; Zurbrick, C.; Carrasco, G. G.

    2015-12-01

    Observations from annually-banded corals and seawater samples show that marine lead (Pb) in the coastal waters of Singapore has an isotopic composition that does not match that of the anthropogenic aerosols in this region, unlike what is seen in most parts of the open ocean. The 206Pb/207Pb composition of Singaporean marine Pb is 1.18-1.20 whereas the local aerosols are 1.14-1.16. In order to explore this discrepancy further, we collected a large volume water from the Johor River estuary (flowing from Malaysia to the northern border of Singapore), added a distinct isotope spike (NBS981, 206Pb/207Pb =1.093) to an unfiltered sample, and followed the dissolved isotope composition of the mixture during the following two months. The initial dissolved Pb concentration was 18.3 pmol/kg with 206Pb/207Pb of 1.200. "Total dissolvable" Pb released after acidification of the in the unfiltered sample was 373 pmol/kg with 206Pb/207Pb of 1.199, indicating that there is a large particulate Pb reservoir with an isotopic composition comparable to regional crustal natural Pb. The isotope spike should have brought the dissolved 206Pb/207Pb to 1.162, but less than a day after isotope spiking, the dissolved Pb had risen to 1.181 and continued a slow increase to 1.197 over the next two months. This experiment demonstrates that Johor estuary particulate matter contains a large reservoir of exchangeable Pb that will modify the isotopic composition of deposited aeolian aerosol anthropogenic Pb. We have modeled the evolution of Pb and Pb isotopes in this experiment with a single Kd -type model that assumes that there are two or three different Pb reservoirs with different exchange time constants. This observation has implications for isotope equilibrium between high Pb/210Pb continental particles and low Pb/210Pb ocean waters - what is merely isotope equilibration may appear to be 210Pb scavenging.

  5. Multiple isotope effects with alternative dinucleotide substrates as a probe of the malic enzyme reaction

    SciTech Connect

    Weiss, P.M.; Urbauer, J.L.; Cleland, W.W. ); Gavva, S.R.; Harris, B.G.; Cook, P.F. )

    1991-06-11

    Deuterium isotope effects and {sup 13}C isotope effects with deuterium- and protium-labeled malate have been obtained for both NAD- and NADP-malic enzymes by using a variety of alternative dinucleotide substrates. With nicotinamide-containing dinucleotides as the oxidizing substrate, the {sup 13}C effect decreases when deuterated malate is the substrate compared to the value obtained with protium-labeled malate. These data are consistent with a stepwise chemical mechanism in which hydride transfer precedes decarboxylation of the oxalacetate intermediate as previously proposed. When dinucleotide substrates such as thio-NAD, 3-nicotinamide rings are used, the {sup 13}C effect increases when deuterated malate is the substrate compared to the value obtained with protium-labeled malate. These data, at face value, are consistent with a change in mechanism from stepwise to concerted for the oxidative decarboxylation portion of the mechanism. However, the increase in the deuterium isotope effect from 1.5 to 3 with a concomitant decrease in the {sup 13}C isotope effect from 1.034 to 1.003 as the dinucleotide substrate is changed suggests that the reaction may still be stepwise with the non-nicotinamide dinucleotides. A more likely explanation is that a {beta}-secondary {sup 13}C isotope effect accompanies hydride transfer as a result of hyperconjugation of the {beta}-carboxyl of malate as the transition state for the hydride transfer step is approached.

  6. Stable carbon isotope fractionation during trichloroethene degradation in magnetite-catalyzed Fenton-like reaction

    NASA Astrophysics Data System (ADS)

    Liu, Yunde; Zhou, Aiguo; Gan, Yiqun; Liu, Cunfu; Yu, Tingting; Li, Xiaoqian

    2013-02-01

    Mineral-catalyzed Fenton-like oxidation of chlorinated ethylenes is an attractive technique for in situ soil and groundwater remediation. Stable carbon isotope enrichment factors associated with magnetite-catalyzed Fenton-like oxidation of trichloroethylene (TCE) have been determined, to study the possibility of applying stable carbon isotope analysis as a technique to assess the efficacy of remediation implemented by Fenton-like oxidation. The carbon enrichment factors (ɛ values) ranged from - 2.7‰ to - 3.6‰ with a mean value of - 3.3 ± 0.3‰, and only small differences were observed for different initial reactive conditions. The ɛ values were robust and reproducible, and were relatively insensitive to a number of environmental factors such as ratios of reactants and PCE co-contamination, which can reduce the uncertainty associated with application of isotope enrichment factors for quantification of in situ remediation by Fenton-like reaction. ɛ values for Fenton-like oxidation of TCE were intermediate in those previously reported for aerobic biological processes (ɛ = - 1.1 to - 20.7‰). Thus, field-derived ɛ values that are more negative than those for Fenton-like oxidation, may indicate the occurrence of aerobic biodegradation at contaminated sites undergoing in situ remediation with Fenton-like reaction. However, stable carbon isotope analysis is unable to determine whether there is the occurrence of biodegradation processes if field-derived ɛ values are less negative than those for Fenton-like oxidation.

  7. TORUS: Theory of Reactions for Unstable iSotopes - Year 1 Continuation and Progress Report

    SciTech Connect

    Arbanas, G; Elster, C; Escher, J; Mukhamedzhanov, A; Nunes, F; Thompson, I J

    2011-02-24

    The TORUS collaboration derives its name from the research it focuses on, namely the Theory of Reactions for Unstable iSotopes. It is a Topical Collaboration in Nuclear Theory, and funded by the Nuclear Theory Division of the Office of Nuclear Physics in the Office of Science of the Department of Energy. The funding started on June 1, 2010, it will have been running for nine months by the date of submission of this Annual Continuation and Progress Report on March 1, 2011. The extent of funding was reduced from the original application, and now supports one postdoctoral researcher for the years 1 through 3. The collaboration brings together as Principal Investigators a large fraction of the nuclear reaction theorists currently active within the USA. The mission of the TORUS Topical Collaboration is to develop new methods that will advance nuclear reaction theory for unstable isotopes by using three-body techniques to improve direct-reaction calculations, and, by using a new partial-fusion theory, to integrate descriptions of direct and compound-nucleus reactions. This multi-institution collaborative effort is directly relevant to three areas of interest: the properties of nuclei far from stability; microscopic studies of nuclear input parameters for astrophysics, and microscopic nuclear reaction theory.

  8. EXFOR BASICS A SHORT GUIDE TO THE NEUTRON REACTION DATA EXCHANGE FORMAT.

    SciTech Connect

    MCLANE,V.; NUCLEAR DATA CENTER NETWORK

    2000-05-19

    This manual is intended as a guide to users of nuclear reaction data compiled in the EXFOR format, and is not intended as a complete guide to the EXFOR System. EXFOR is the exchange format designed to allow transmission of nuclear reaction data between the Nuclear Reaction Data Centers. In addition to storing the data and its' bibliographic information, experimental information is also compiled. The status (e.g., the source of the data) and history (e.g., date of last update) of the data set is also included. EXFOR is designed for flexibility in order to meet the diverse needs of the nuclear reaction data centers. It was originally conceived for the exchange of neutron data and was developed through discussions among personnel from centers situated in Saclay, Vienna, Livermore and Brookhaven. It was accepted as the official exchange format of the neutron data centers at Saclay, Vienna, Brookhaven and Obninsk, at a meeting held in November 1969.3 As a result of two meetings held in 1975 and 1976 and attended by several charged-particle data centers, the format was further developed and adapted to cover all nuclear reaction data. The exchange format should not be confused with a center-to-user format. Although users may obtain data from the centers in the EXFOR format, other center-to-user formats have been developed to meet the needs of the users within each center's own sphere of responsibility. The EXFOR format, as outlined, allows a large variety of numerical data tables with explanatory and bibliographic information to be transmitted in a format: l that is machine-readable (for checking and indicating possible errors); l that can be read by personnel (for passing judgment on and correcting errors). The data presently included in the EXFOR exchange file include: a complete compilation of experimental neutron-induced reaction data, a selected compilation of charged-particle-induced reaction data, a selected compilation of photon-induced reaction data.

  9. EXFOR BASICS A SHORT GUIDE TO THE NEUTRON REACTION DATA EXCHANGE FORMAT.

    SciTech Connect

    MCLANE,V.; NUCLEAR DATA CENTER NETWORK

    2000-05-19

    This manual is intended as a guide to users of nuclear reaction data compiled in the EXFOR format, and is not intended as a complete guide to the EXFOR System. EXFOR is the exchange format designed to allow transmission of nuclear reaction data between the Nuclear Reaction Data Centers. In addition to storing the data and its' bibliographic information, experimental information is also compiled. The status (e.g., the source of the data) and history (e.g., date of last update) of the data set is also included. EXFOR is designed for flexibility in order to meet the diverse needs of the nuclear reaction data centers. It was originally conceived for the exchange of neutron data and was developed through discussions among personnel from centers situated in Saclay, Vienna, Livermore and Brookhaven. It was accepted as the official exchange format of the neutron data centers at Saclay, Vienna, Brookhaven and Obninsk, at a meeting held in November 1969. As a result of two meetings held in 1975 and 1976 and attended by several charged-particle data centers, the format was further developed and adapted to cover all nuclear reaction data. The exchange format should not be confused with a center-to-user format. Although users may obtain data from the centers in the EXFOR format, other center-to-user formats have been developed to meet the needs of the users within each center's own sphere of responsibility. The EXFOR format, as outlined, allows a large variety of numerical data tables with explanatory and bibliographic information to be transmitted in a format: that is machine-readable (for checking and indicating possible errors); that can be read by personnel (for passing judgment on and correcting errors). The data presently included in the EXFOR exchange file include: a complete compilation of experimental neutron-induced reaction data, a selected compilation of charged-particle-induced reaction data, a selected compilation of photon-induced reaction data.

  10. Isotope geochemistry reveals ontogeny of dispersal and exchange between main-river and tributary habitats in smallmouth bass Micropterus dolomieu.

    PubMed

    Humston, R; Doss, S S; Wass, C; Hollenbeck, C; Thorrold, S R; Smith, S; Bataille, C P

    2017-02-01

    Radiogenic strontium isotope ratios ((87) Sr:(86) Sr) in otoliths were compared with isotope ratios predicted from models and observed in water sampling to reconstruct the movement histories of smallmouth bass Micropterus dolomieu between main-river and adjacent tributary habitats. A mechanistic model incorporating isotope geochemistry, weathering processes and basin accumulation reasonably predicted observed river (87) Sr:(86) Sr across the study area and provided the foundations for experimental design and inferring fish provenance. Exchange between rivers occurred frequently, with nearly half (48%) of the 209 individuals displaying changes in otolith (87) Sr:(86) Sr reflecting movement between isotopically distinct rivers. The majority of between-river movements occurred in the first year and often within the first few months of life. Although more individuals were observed moving from the main river into tributaries, this pattern did not necessarily reflect asymmetry in exchange. Several individuals made multiple movements between rivers over their lifetimes; no patterns were found, however, that suggest seasonal or migratory movement. The main-river sport fishery is strongly supported by recruitment from tributary spawning, as 26% of stock size individuals in the main river were spawned in tributaries. The prevailing pattern of early juvenile dispersal documented in this study has not been observed previously for this species and suggests that the process of establishing seasonal home-range areas occurs up to 2 years earlier than originally hypothesized. Extensive exchange between rivers would have substantial implications for management of M. dolomieu populations in river-tributary networks.

  11. Stereospecificity of isotopic exchange of C-α-protons of glycine catalyzed by three PLP-dependent lyases: the unusual case of tyrosine phenol-lyase.

    PubMed

    Koulikova, Vitalia V; Zakomirdina, Lyudmila N; Gogoleva, Olga I; Tsvetikova, Marina A; Morozova, Elena A; Komissarov, Vsevolod V; Tkachev, Yaroslav V; Timofeev, Vladimir P; Demidkina, Tatyana V; Faleev, Nicolai G

    2011-11-01

    A comparative study of the kinetics and stereospecificity of isotopic exchange of the pro-2R- and pro-2S protons of glycine in (2)H(2)O under the action of tyrosine phenol-lyase (TPL), tryptophan indole-lyase (TIL) and methionine γ-lyase (MGL) was undertaken. The kinetics of exchange was monitored using both (1)H- and (13)C-NMR. In the three compared lyases the stereospecificities of the main reactions with natural substrates dictate orthogonal orientation of the pro-2R proton of glycine with respect to the cofactor pyridoxal 5'-phosphate (PLP) plane. Consequently, according to Dunathan's postulate with all the three enzymes pro-2R proton should exchange faster than does the pro-2S one. In fact the found ratios of 2R:2S reactivities are 1:20 for TPL, 108:1 for TIL, and 1,440:1 for MGL. Thus, TPL displays an unprecedented inversion of stereospecificity. A probable mechanism of the observed phenomenon is suggested, which is based on the X-ray data for the quinonoid intermediate, formed in the reaction of TPL with L-alanine. The mechanism implies different conformational changes in the active site upon binding of glycine and alanine. These changes can lead to relative stabilization of either the neutral amino group, accepting the α-proton, or the respective ammonium group, which is formed after the proton abstraction.

  12. Astrophysical S factors for fusion reactions involving C, O, Ne, and Mg isotopes

    SciTech Connect

    Beard, M.; Afanasjev, A.V.; Chamon, L.C.; Gasques, L.R.; Wiescher, M.; Yakovlev, D.G.

    2010-09-15

    Using the Sao Paulo potential and the barrier penetration formalism we have calculated the astrophysical factor S(E) for 946 fusion reactions involving stable and neutron-rich isotopes of C, O, Ne, and Mg for center-of-mass energies E varying from 2 to {approx}18-30 MeV (covering the range below and above the Coulomb barrier). We have parameterized the energy dependence, S(E), by an accurate universal 9-parameter analytic expression and present tables of fit parameters for all the reactions. We also discuss the reduced 3-parameter version of our fit which is highly accurate at energies below the Coulomb barrier, and outline the procedure for calculating the reaction rates. The results can be easily converted to thermonuclear or pycnonuclear reaction rates to simulate various nuclear burning phenomena, in particular, stellar burning at high temperatures and nucleosynthesis in high density environments.

  13. A molecular dynamics study of bond exchange reactions in covalent adaptable networks.

    PubMed

    Yang, Hua; Yu, Kai; Mu, Xiaoming; Shi, Xinghua; Wei, Yujie; Guo, Yafang; Qi, H Jerry

    2015-08-21

    Covalent adaptable networks are polymers that can alter the arrangement of network connections by bond exchange reactions where an active unit attaches to an existing bond then kicks off its pre-existing peer to form a new bond. When the polymer is stretched, bond exchange reactions lead to stress relaxation and plastic deformation, or the so-called reforming. In addition, two pieces of polymers can be rejoined together without introducing additional monomers or chemicals on the interface, enabling welding and reprocessing. Although covalent adaptable networks have been researched extensively in the past, knowledge about the macromolecular level network alternations is limited. In this study, molecular dynamics simulations are used to investigate the macromolecular details of bond exchange reactions in a recently reported epoxy system. An algorithm for bond exchange reactions is first developed and applied to study a crosslinking network formed by epoxy resin DGEBA with the crosslinking agent tricarballylic acid. The trace of the active units is tracked to show the migration of these units within the network. Network properties, such as the distance between two neighboring crosslink sites, the chain angle, and the initial modulus, are examined after each iteration of the bond exchange reactions to provide detailed information about how material behaviors and macromolecular structure evolve. Stress relaxation simulations are also conducted. It is found that even though bond exchange reactions change the macroscopic shape of the network, microscopic network characteristic features, such as the distance between two neighboring crosslink sites and the chain angle, relax back to the unstretched isotropic state. Comparison with a recent scaling theory also shows good agreement.

  14. Scaling Hydrologic Exchange Flows and Biogeochemical Reactions from Bedforms to Basins

    NASA Astrophysics Data System (ADS)

    Harvey, J. W.; Gomez-Velez, J. D.

    2015-12-01

    River water moves in and out of the main channel along pathways that are perpendicular to the channel's main axis that flow across or beneath the ground surface. These hydrologic exchange flows (HEFs) are difficult to measure, yet no less important than a river's downstream flow, or exchanges with the atmosphere and deeper groundwater (Harvey and Gooseff, 2015, WRR). There are very few comprehensive investigations of exchange fluxes to understand patterns with river size and relative importance of specific types of exchanges. We used the physically based model NEXSS to simulate multiple scales of hyporheic flow and their cumulative effects on solute reaction in large basins (on the order of Chesapeake Bay basin or larger). Our goal was to explain where and when particular types of hyporheic flow are important in enhancing key biogeochemical reactions, such as organic carbon respiration and denitrification. Results demonstrate that hyporheic flux (expressed per unit area of streambed) varies surprisingly little across the continuum of first-order streams to eighth-order rivers, and vertical exchange beneath small bedforms dominates in comparison with lateral flow beneath gravel bars and meanders. Also, the river's entire volume is exchanged many times with hyporheic flow within a basin, and the turnover length (after one entire river volume is exchanged) is strongly influenced by hydrogeomorphic differences between physiographic regions as well as by river size. The cumulative effects on biogeochemical reactions were assessed using a the reaction significance factor, RSF, which computes the cumulative potential for hyporheic reactions using a dimensionless index that balances reaction progress in a single hyporheic flow path against overall processing efficiency of river turnover through hyporheic flow paths of that type. Reaction significance appears to be strongly dominated by hydrologic factors rather than biogeochemical factors, and seems to be dominated by

  15. Reaction chemistry and ligand exchange at cadmium selenide nanocrystal surfaces

    SciTech Connect

    Owen, Jonathan; Park, Jungwon; Trudeau, Paul-Emile; Alivisatos, A. Paul

    2008-12-02

    Chemical modification of nanocrystal surfaces is fundamentally important to their assembly, their implementation in biology and medicine, and greatly impacts their electrical and optical properties. However, it remains a major challenge owing to a lack of analytical tools to directly determine nanoparticle surface structure. Early nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy (XPS) studies of CdSe nanocrystals prepared in tri-n-octylphosphine oxide (1) and tri-n-octylphosphine (2), suggested these coordinating solvents are datively bound to the particle surface. However, assigning the broad NMR resonances of surface-bound ligands is complicated by significant concentrations of phosphorus-containing impurities in commercial sources of 1, and XPS provides only limited information about the nature of the phosphorus containing molecules in the sample. More recent reports have shown the surface ligands of CdSe nanocrystals prepared in technical grade 1, and in the presence of alkylphosphonic acids, include phosphonic and phosphinic acids. These studies do not, however, distinguish whether these ligands are bound datively, as neutral, L-type ligands, or by X-type interaction of an anionic phosphonate/phosphinate moiety with a surface Cd{sup 2+} ion. Answering this question would help clarify why ligand exchange with such particles does not proceed generally as expected based on a L-type ligand model. By using reagents with reactive silicon-chalcogen and silicon-chlorine bonds to cleave the ligands from the nanocrystal surface, we show that our CdSe and CdSe/ZnS core-shell nanocrystal surfaces are likely terminated by X-type binding of alkylphosphonate ligands to a layer of Cd{sup 2+}/Zn{sup 2+} ions, rather than by dative interactions. Further, we provide spectroscopic evidence that 1 and 2 are not coordinated to our purified nanocrystals.

  16. Deuterium in astrophysical ice analogues: Isotope exchange and IR detection sensitivity for HDO

    NASA Astrophysics Data System (ADS)

    Escribano, R. M.; Galvez, O.; Mate, B.; Herrero, V. J.

    2011-12-01

    Among D-bearing molecules, water is especially interesting from an astrophysical point of view. Although the deuterium content of water in astronomical environments is relatively small as compared with other molecules, it holds most valuable information, still largely undeciphered, on the dynamics of formation and evaporation of ice grain mantels in protostellar regions [1], and is crucial for the understanding of the formation of the Solar System and the Earth [2]. In this work, we have used the OD stretching bands of HDO and D2O molecules in various ice mixtures formed by vapor deposition on a cold substrate (see ref [3] for a description of the experimental set-up) to study the sensitivity of the IR technique for the detection of HDO in ice samples, and to monitor processes of H/D isotope exchange in these solids. It is found that the detection sensitivity is strongly dependent on the ice structure. The OD band is extremely broad and tends to disappear into the absorption continuum of H2O for low temperature amorphous samples. Detectable HDO/H2O ratios with this technique may range from a few per cent for amorphous samples to a few per thousand in crystalline ice. These relatively high upper limits and the appreciable dependence of the band shape on temperature, complicating the interpretation of data from many lines of sight, may question the usefulness of this technique. Isotopic H/D exchange in mixed ices of H2O/D2O is found to start at ~ 120 K and is greatly accelerated at 150 K, as crystallization proceeds in the ice. The process is mainly driven by proton transfer assisted by orientational defect mobility. Annealed amorphous samples are more favourable for isotope exchange than samples directly formed in the crystalline phase. The annealing process seems to lead to polycrystalline ice morphology with a higher defect activity. The present data emphasize the relevance of a depletion mechanism for D atoms in hydroxylic bonds in the solid state, recently

  17. Arrhenius' law in turbulent media and an equivalent tunnel effect. [in binary exchange chemical reactions

    NASA Technical Reports Server (NTRS)

    Tsuge, S.; Sagara, K.

    1978-01-01

    The indeterminacy inherent to the formal extension of Arrhenius' law to reactions in turbulent flows is shown to be surmountable in the case of a binary exchange reaction with a sufficiently high activation energy. A preliminary calculation predicts that the turbulent reaction rate is invariant in the Arrhenius form except for an equivalently lowered activation energy. This is a reflection of turbulence-augmented molecular vigor, and causes an appreciable increase in the reaction rate. A similarity to the tunnel effect in quantum mechanics is indicated. The anomaly associated with the mild ignition of oxy-hydrogen mixtures is discussed in this light.

  18. IRiS—Exploring new frontiers in neutron-rich isotopes of the heaviest elements with a new Inelastic Reaction Isotope Separator

    NASA Astrophysics Data System (ADS)

    Dvorak, J.; Block, M.; Düllmann, Ch. E.; Heinz, S.; Herzberg, R.-D.; Schädel, M.

    2011-10-01

    A dedicated Inelastic Reaction Isotope Separator (IRiS) for multi-nucleon transfer products will be designed and installed at GSI. Research at IRiS will focus on the investigation of new neutron-rich isotopes of the heaviest elements, study of which will advance various research fields, such as nuclear chemistry, nuclear and atomic physics, as well as nuclear astrophysics. The scientific motivation for this project and the alternative design options for the separator and its main components are discussed.

  19. Rates for neutron-capture reactions on tungsten isotopes in iron meteorites. [Abstract only

    NASA Technical Reports Server (NTRS)

    Masarik, J.; Reedy, R. C.

    1994-01-01

    High-precision W isotopic analyses by Harper and Jacobsen indicate the W-182/W-183 ratio in the Toluca iron meteorite is shifted by -(3.0 +/- 0.9) x 10(exp -4) relative to a terrestrial standard. Possible causes of this shift are neutron-capture reactions on W during Toluca's approximately 600-Ma exposure to cosmic ray particles or radiogenic growth of W-182 from 9-Ma Hf-182 in the silicate portion of the Earth after removal of W to the Earth's core. Calculations for the rates of neutron-capture reactions on W isotopes were done to study the first possibility. The LAHET Code System (LCS) which consists of the Los Alamos High Energy Transport (LAHET) code and the Monte Carlo N-Particle(MCNP) transport code was used to numerically simulate the irradiation of the Toluca iron meteorite by galactic-cosmic-ray (GCR) particles and to calculate the rates of W(n, gamma) reactions. Toluca was modeled as a 3.9-m-radius sphere with the composition of a typical IA iron meteorite. The incident GCR protons and their interactions were modeled with LAHET, which also handled the interactions of neutrons with energies above 20 MeV. The rates for the capture of neutrons by W-182, W-183, and W-186 were calculated using the detailed library of (n, gamma) cross sections in MCNP. For this study of the possible effect of W(n, gamma) reactions on W isotope systematics, we consider the peak rates. The calculated maximum change in the normalized W-182/W-183 ratio due to neutron-capture reactions cannot account for more than 25% of the mass 182 deficit observed in Toluca W.

  20. Competition between abstraction and exchange channels in H + HCN reaction: Full-dimensional quantum dynamics

    SciTech Connect

    Jiang, Bin; Guo, Hua

    2013-12-14

    Dynamics of the title reaction is investigated on an ab initio based potential energy surface using a full-dimensional quantum wave packet method within the centrifugal sudden approximation. It is shown that the reaction between H and HCN leads to both the hydrogen exchange and hydrogen abstraction channels. The exchange channel has a lower threshold and larger cross section than the abstraction channel. It also has more oscillations due apparently to quantum resonances. Both channels are affected by long-lived resonances supported by potential wells. Comparison with experimental cross sections indicates underestimation of the abstraction barrier height.

  1. Possibilities of synthesis of unknown isotopes of superheavy nuclei with charge numbers Z > 108 in asymmetric actinide-based complete fusion reactions

    NASA Astrophysics Data System (ADS)

    Hong, Juhee; Adamian, G. G.; Antonenko, N. V.

    2016-10-01

    The possibilities of production of new isotopes of superheavy nuclei with charge numbers Z = 109-114 in various asymmetric hot fusion reactions are studied for the first time. The excitation functions of the formation of these isotopes in the xn evaporation channels are predicted and the optimal conditions for the synthesis are proposed. The products of the suggested reactions can fill a gap of unknown isotopes between the isotopes of the heaviest nuclei obtained in cold and hot complete fusion reactions.

  2. The gas-phase reaction between silylene and 2-butyne: kinetics, isotope studies, pressure dependence studies and quantum chemical calculations.

    PubMed

    Becerra, Rosa; Cannady, J Pat; Dormer, Guy; Walsh, Robin

    2009-07-14

    Time-resolved kinetic studies of the reactions of silylene, SiH(2), and dideutero-silylene, SiD(2), generated by laser flash photolysis of phenylsilane and phenylsilane-d(3), respectively, have been carried out to obtain rate coefficients for their bimolecular reactions with 2-butyne, CH(3)C[triple bond, length as m-dash]CCH(3). The reactions were studied in the gas phase over the pressure range 1-100 Torr in SF(6) bath gas at five temperatures in the range 294-612 K. The second-order rate coefficients, obtained by extrapolation to the high pressure limits at each temperature, fitted the Arrhenius equations where the error limits are single standard deviations: log(k(H)(Infinity)/cm(3) molecule(-1) s(-1) = (-9.67 +/- 0.04) + (1.71 +/- 0.33) kJ mol(1)/RTIn10log(k(D)(Infinity)/cm(3) molecule(-1) s(-1) = (-9.65 +/- 0.01) + (1.92 +/- 0.13) kJ mol(-1)/RTIn10. Additionally, pressure-dependent rate coefficients for the reaction of SiH(2) with 2-butyne in the presence of He (1-100 Torr) were obtained at 301, 429 and 613 K. Quantum chemical (ab initio) calculations of the SiC(4)H(8) reaction system at the G3 level support the formation of 2,3-dimethylsilirene [cyclo-SiH(2)C(CH(3))[double bond, length as m-dash]C(CH(3))-] as the sole end product. However, reversible formation of 2,3-dimethylvinylsilylene [CH(3)CH[double bond, length as m-dash]C(CH(3))SiH] is also an important process. The calculations also indicate the probable involvement of several other intermediates, and possible products. RRKM calculations are in reasonable agreement with the pressure dependences at an enthalpy value for 2,3-dimethylsilirene fairly close to that suggested by the ab initio calculations. The experimental isotope effects deviate significantly from those predicted by RRKM theory. The differences can be explained by an isotopic scrambling mechanism, involving H-D exchange between the hydrogens of the methyl groups and the D-atoms in the ring in 2,3-dimethylsilirene-1,1-d(2). A detailed

  3. State-to-state quantum dynamics of the H + HBr reaction: competition between the abstraction and exchange reactions.

    PubMed

    Xie, Changjian; Jiang, Bin; Xie, Daiqian

    2011-05-14

    Quantum state-to-state dynamics for the H + HBr(υ(i) = 0, j(i) =0) reaction was studied on an accurate ab intio potential energy surface for the electronic ground state of BrH(2). Both the H + HBr → H(2) + Br abstraction reaction and the H' + HBr → H'Br + H exchange reaction were investigated up to a collision energy of 2.0 eV. It was found that the abstraction channel is dominant at lower collision energies, while the exchange channel becomes dominant at higher collision energies. The total integral cross section of the abstraction reaction at a collision energy of 1.6 eV was found to be 1.37 Å(2), which is larger than a recent quantum mechanical result (1.06 Å(2)) and still significantly smaller than the experimental value (3 ± 1 Å(2)). Meanwhile, similar to the previous theoretical study, our calculations also predicted much hotter product rotational state distributions than those from the experimental study. This suggests that further experimental investigations are highly desirable to elucidate the dynamic properties of the title reactions.

  4. Possibility of production of neutron-rich Zn and Ge isotopes in multinucleon transfer reactions at low energies

    SciTech Connect

    Adamian, G. G.; Antonenko, N. V.; Sargsyan, V. V.; Scheid, W.

    2010-02-15

    The production cross sections of new neutron-rich {sup 84,86}Zn and {sup 90,92}Ge isotopes beyond N=50 are estimated for the first time in the multinucleon transfer reactions {sup 48}Ca + {sup 238}U and {sup 48}Ca + {sup 244}Pu. The production of new isotopes in reactions with a {sup 48}Ca beam is discussed for future experiments.

  5. Multi-Isotope Analysis as a Natural Reaction Probe of Biodegradation Mechanisms of 1,2- Dichloroethane

    NASA Astrophysics Data System (ADS)

    Hirschorn, S. K.; Dinglasan-Panlilio, M.; Edwards, E. A.; Lacrampe-Couloume, G.; Sherwood Lollar, B.

    2006-12-01

    1,2-Dichloroethane (1,2-DCA), a chlorinated aliphatic hydrocarbon, is an EPA priority pollutant and a widespread groundwater contaminant. Stable isotope fractionation during biodegradation of 1,2-DCA occurs due to differences in the reaction rates of heavy versus light atoms present at a reacting bond in the 1,2-DCA molecule. In general, light isotopic bonds react more quickly, producing a relative enrichment in the heavy isotope in the remaining contaminant pool. Compound specific isotope analysis has the potential to demonstrate the occurrence and extent of biodegradation at chlorinated solvent contaminated groundwater sites. In this study, stable carbon isotope fractionation was used as a novel reaction probe to provide information about the mechanism of 1,2-DCA biodegradation. Isotopic fractionation was measured during 1,2-DCA degradation by a microbial culture capable of degrading 1,2-DCA under O2-reducing and NO3-reducing conditions. The microbial culture produced isotopic enrichment values that are not only large and reproducible, but are the same whether O2 or NO3 was used as an electron acceptor. The mean isotopic enrichment value of -25.8 permil measured for the microbial culture during 1,2-DCA degradation under both O2 and NO3- reducing conditions can be converted into a kinetic isotope effect (KIE) value to relate the observed isotopic fractionation to the mechanism of degradation. This KIE value (1.05) is consistent with degradation via a hydrolysis (SN2) reaction under both electron-accepting conditions. Isotope analysis was able to provide a first line of evidence for the reaction mechanism of 1,2-DCA biodegradation by the microbial culture. Using a multi-isotope approach incorporating both carbon and hydrogen isotopic data, compound specific isotope analysis also has the potential to determine degradation mechanisms for 1,2-DCA under aerobic conditions where 1,2-DCA is known to be degraded by two distinct enzymatic pathways. Biodegradation of 1

  6. Retention and selectivity of teicoplanin stationary phases after copper complexation and isotopic exchange.

    PubMed

    Berthod, A; Valleix, A; Tizon, V; Leonce, E; Caussignac, C; Armstrong, D W

    2001-11-15

    Teicoplanin is a macrocyclic glycopeptide that is highly effective as a chiral selector for LC enantiomeric separations. Two possible interaction paths were investigated and related to solute retention and selectivity: (1) interactions with the only teicoplanin amine group and (2) role of hydrogen bonding interactions. Mobile phases containing 0.5 and 5 mM copper ions were used to try to block the amine group. In the presence of copper ions, it was found that the teicoplanin stationary phase has a decreased ability to separate most underivatized racemic amino acids. However, it maintained its ability to separate enantiomers that were not alpha-amino acids. It is established that there is little copper-teicoplanin complex formation. The effect of Cu2+ on the enantioseparation of some alpha-amino acids appears to be due to the fact that these solutes are good bidentate ligands and form complexes with copper ions in the mobile phase. Isotopic exchange with deuterium oxide was performed using acetonitrile-heavy water mobile phases. It was found that the retention times of all amino acids were lower with deuterated mobile phases. The retention times of polar or apolar molecules without amine groups were higher with deuterated mobiles phases. In all cases, the enantioselectivity factors were unaffected by the deuterium exchange. It is proposed that the electrostatic interactions are decreased in the deuterated mobile phases and the solute-accessible stationary-phase volume is somewhat swollen by deuterium oxide. The balance of these effects is a decrease in the amino acid retention times and an increase in the apolar solute retention time. The enantioselectivity factors of all of the molecules remain unchanged because all of the interactions are changed equally. We propose a new global quality criterion (the E factor) for comparing and evaluating enantiomeric separations.

  7. A Benchmark Study of Kinetic Isotope Effects and Barrier Heights for the Finkelstein Reaction.

    PubMed

    Żaczek, Szymon; Gelman, Faina; Dybala-Defratyka, Agnieszka

    2017-03-30

    Herein, we present a combined (experimental and computational) study of the Finkelstein reaction in condensed phase, where bromine is substituted by iodine in 2-bromoethylbenzene, in the presence of either acetone or acetonitrile as a solvent. Performance of various density functional theory and ab initio methods were tested for reaction barrier heights as well as for bromine and carbon kinetic isotope effects (KIEs). Two different implicit solvation models were examined (PCM and SMD). Theoretically predicted KIEs were compared with experimental values, while reaction barrier heights were assessed using the CCSD(T)-level and experimental energies as reference. In general, although the tested parameters (energies and KIEs) do not exhibit any substantial difference upon a change of the solvent, the different behavior of the theoretical methods was observed depending on the solvent. With respect to isotope effects, both PCM and SMD seem to perform very similarly, though results obtained with PCM are slightly closer to the experimental values. For predicting reaction barriers, utilization of either PCM or SMD solvation models yielded different results. Functionals from the ωB97 family: ωB97, ωB97X, and ωB97X-D provide the most accurate results for the studied system.

  8. Chromatographic Separation of Cd from Plants via Anion-Exchange Resin for an Isotope Determination by Multiple Collector ICP-MS.

    PubMed

    Wei, Rongfei; Guo, Qingjun; Wen, Hanjie; Peters, Marc; Yang, Junxing; Tian, Liyan; Han, Xiaokun

    2017-01-01

    In this study, key factors affecting the chromatographic separation of Cd from plants, such as the resin column, digestion and purification procedures, were experimentally investigated. A technique for separating Cd from plant samples based on single ion-exchange chromatography has been developed, which is suitable for the high-precision analysis of Cd isotopes by multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). The robustness of the technique was assessed by replicate analyses of Cd standard solutions and plant samples. The Cd yields of the whole separation process were higher than 95%, and the (114/110)Cd values of three Cd second standard solutions (Münster Cd, Spex Cd, Spex-1 Cd solutions) relative to the NIST SRM 3108 were measured accurately, which enabled the comparisons of Cd isotope results obtained in other laboratories. Hence, stable Cd isotope analyses represent a powerful tool for fingerprinting specific Cd sources and/or examining biogeochemical reactions in ecological and environmental systems.

  9. Tritium secondary kinetic isotope effect on phenylalanine ammonia-lyase-catalyzed reaction.

    PubMed

    Lewandowicz, A; Jemielity, J; Kańska, M; Zoń, J; Paneth, P

    1999-10-15

    The mechanism by which phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) catalyzes the reversible elimination of ammonia from phenylalanine yielding (E)-cinnamic acid has gained much attention in the recent years. Dehydroalanine is essential for the catalysis. It was assumed that this prostetic group acts as the electrophile, leading to a covalently bonded enzyme-intermediate complex with quarternary nitrogen of phenylalanine. Recently, an alternative mechanism has been suggested in which the enzyme-intermediate complex is formed in a Friedel-Crafts reaction between dehydroalanine and orthocarbon of the aromatic ring. Using semiempirical calculations we have shown that these two alternative mechanisms can be distinguished on the basis of the hydrogen secondary kinetic isotope effect when tritium label is placed in the orthopositions. Our calculations indicated also that the kinetic isotope effect measured using ring-labeled d(5)-phenylalanine could not be used to differentiate these alternative mechanisms. Measured secondary tritium kinetic isotope effect shows strong dependence on the reaction progress, starting at the inverse value of k(H)/k(T) = 0.85 for 5% conversion and reaching the normal value of about 1.15 as the conversion increases to 20%. This dependence has been interpreted in terms of a complex mechanism with initial formation of the Friedel-Crafts type intermediate.

  10. Amide proton exchange rates of a bound pepsin inhibitor determined by isotope-edited proton NMR experiments

    SciTech Connect

    Fesik, S.W.; Luly, J.R.; Stein, H.H.; BaMaung, N.

    1987-09-30

    From a series of isotope-edited proton NMR spectra, amide proton exchange rates were measured at 20 C, 30 C, and 40/sup 0/C for a tightly bound /sup 15/N-labeled tripeptide inhibitor of porcine pepsin (IC50 = 1.7 X 10(-) M). Markedly different NH exchange rates were observed for the three amide protons of the bound inhibitor. The P1 NH exchanged much more slowly than the P2 NH and P3 NH. These results are discussed in terms of the relative solvent accessibility in the active site and the role of the NH protons of the inhibitor for hydrogen bonding to the enzyme. In this study a useful approach is demonstrated for obtaining NH exchange rates on ligands bound to biomacromolecules, the knowledge of which could be of potential utility in the design of therapeutically useful nonpeptide enzyme inhibitors from peptide leads.

  11. Preparation of functionalized cyclic enol phosphates by halogen-magnesium exchange and directed deprotonation reactions.

    PubMed

    Piller, Fabian M; Bresser, Tomke; Fischer, Markus K R; Knochel, Paul

    2010-07-02

    Cyclic enol phosphates were magnesiated by a halogen/magnesium exchange reaction or deprotonation using TMP-derived magnesium amide bases. The resulting magnesium reagents react readily with a wide range of electrophiles like allyl bromides and acid chlorides or can be used in Pd-catalyzed cross-coupling reactions. Several optically pure enol phosphates were prepared starting from readily available d-(+)-camphor derivatives.

  12. Energy-loss cross sections for inclusive charge-exchange reactions at intermediate energies

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Townsend, Lawrence W.; Dubey, Rajendra R.

    1993-01-01

    Charge-exchange reactions for scattering to the continuum are considered in a high-energy multiple scattering model. Calculations for (p,n) and (He-3,H-3) reactions are made and compared with experimental results for C-12, O-16, and Al-27 targets. Coherent effects are shown to lead to an important role for inelastic multiple scattering terms when light projectiles are considered.

  13. Use of H/D isotope effects to gather information about hydrogen bonding and hydrogen exchange rates.

    PubMed

    Takeda, Mitsuhiro; Miyanoiri, Yohei; Terauchi, Tsutomu; Yang, Chun-Jiun; Kainosho, Masatsune

    2014-04-01

    Polar side-chains in proteins play important roles in forming and maintaining three-dimensional structures, and thus participate in various biological functions. Until recently, most protein NMR studies have focused on the non-exchangeable protons of amino acid residues. The exchangeable protons attached to polar groups, such as hydroxyl (OH), sulfhydryl (SH), and amino (NH2) groups, have mostly been ignored, because in many cases these hydrogen atoms exchange too quickly with water protons, making NMR observations impractical. However, in certain environments, such as deep within the hydrophobic interior of a protein, or in a strong hydrogen bond to other polar groups or interacting ligands, the protons attached to polar groups may exhibit slow hydrogen exchange rates and thus become NMR accessible. To explore the structural and biological implications of the interactions involving polar side-chains, we have developed versatile NMR methods to detect such cases by observing the line shapes of (13)C NMR signals near the polar groups, which are affected by deuterium-proton isotope shifts in a mixture of H2O and D2O. These methods allow the detection of polar side-chains with slow hydrogen-deuterium exchange rates, and therefore provide opportunities to retrieve information about the polar side-chains, which might otherwise be overlooked by conventional NMR experiments. Future prospects of applications using deuterium-proton isotope shifts to retrieve missing structural and dynamic information of proteins are discussed.

  14. Analysis of longitudinal momentum distribution data of 26-29P isotopes in stripping reactions

    NASA Astrophysics Data System (ADS)

    Kumar, Ravinder; Singh, Pardeep; Kumar, Rajiv

    2017-02-01

    The orbital occupancy of the stripped proton in the phosphors isotopes with mass number 26-29 have been determined through the analysis of longitudinal momentum distributions (LMDs) of 25-28Si core fragments coming from 9Be(26-28P,25-27Si)X and 12C(29P,28Si)Y stripping reactions at high energies. It has been found that the probability of occupying d-orbital by the stripped proton is 40-60%, 30-50%, 30-50% and 0-20% in 26-29P isotopes, respectively. The effects of Coulomb barrier for the possibility of halo structure in proton-rich nuclei has also been examined and found that it decreases the chance of possessing halo structure in proton-rich nuclei.

  15. Interplay between single-particle and collective excitations in argon isotopes populated by transfer reactions

    SciTech Connect

    Szilner, S.; Jelavic-Malenica, D.; Soic, N.; Corradi, L.; Fioretto, E.; Sahin, E.; Silvestri, R.; Stefanini, A. M.; Valiente-Dobon, J. J.; Haas, F.; Lebhertz, D.; Bouhelal, M.; Caurier, E.; Courtin, S.; Goasduff, A.; Nowacki, F.; Ur, C. A.; Beghini, S.; Farnea, E.

    2011-07-15

    New {gamma} transitions have been identified in argon isotopes in {sup 40}Ar + {sup 208}Pb multiple transfer reactions by exploiting, in a fragment-{gamma} measurement, the new generation of magnetic spectrometers based on trajectory reconstruction coupled to large {gamma} arrays. The coupling of single-particle degrees of freedom to nuclear vibration quanta was discussed. The interpretation of the newly observed states within a particle-phonon coupling picture was used to consistently follow, via their excitation energies, the evolution of collectivity in odd Ar isotopes. The proposed level schemes are supported by the results of sd-pf shell-model calculations, which have been also employed to evaluate the strength functions of the populated states.

  16. Deuterium isotope effect on the induction period of the cerium catalyzed Belousov-Zhabotinsky reaction

    NASA Astrophysics Data System (ADS)

    Rossi, Federico; Simoncini, Eugenio; Marchettini, Nadia; Tiezzi, Enzo

    2009-02-01

    In this work we present results about the deuterium isotopic effect on the global kinetics of a cerium catalyzed Belousov-Zhabotinsky reaction. A nonlinear dependence of the induction period upon the percentage of deuterated reactants was found in batch conditions. In order to understand this result, we investigated two reaction pathways responsible for the length of the induction period, namely: (a) the reaction between the enolic form of the malonic acid with molecular bromine and (b) the oxidation of malonic acid by the Ce(IV) ion. In both cases we obtained a linear dependence of the kinetic constants on the percentage of deuterated reactants. Nevertheless, by inserting the experimental values in the MBM (Marburg-Budapest-Missoula) model, we were able to qualitatively simulate the observed trend of the induction period.

  17. Possibilities for synthesis of new isotopes of superheavy nuclei in cold fusion reactions

    NASA Astrophysics Data System (ADS)

    Bao, X. J.; Gao, Y.; Li, J. Q.; Zhang, H. F.

    2016-04-01

    In order to find a way to produce superheavy nuclei (SHN), which appear in the gap between the SHN synthesized by cold fusion and those by hot fusion, or those so far not yet been produced in the laboratory, we tried to make use of a set of projectile isotopic chains, to use a radioactive beam projectile, and to test symmetric fusion reactions for gaining more neutrons to synthesize neutron-richer SHN based on the dinuclear system (DNS) model via cold fusion reactions. It is found that the nuclei 265Mt,Ds,272268,273Rg, and 274,275,276Cn may be produced with the detectable evaporation residual cross sections. The intensities of radioactive beams are significantly less than those of the stable beams, therefore using a stable beam is predicted to be the most favorable method for producing SHN. From the symmetric reaction system 136Xe+136Xe , no fusion event was found.

  18. Site-specific immobilization of proteins at zeolite L crystals by nitroxide exchange reactions.

    PubMed

    Becker, Maike; De Cola, Luisa; Studer, Armido

    2011-03-28

    Site-selective immobilization of dyes and different protein recognizing entities at the surface of zeolite L crystals using mild radical nitroxide exchange reactions is reported. Exposure of these crystals to aqueous protein solutions leads to site-selective immobilization of proteins onto the crystals.

  19. Long-Term (4 mo) Oxygen Isotope Exchange Experiment between Zircon and Hydrothermal Fluid

    NASA Astrophysics Data System (ADS)

    Bindeman, I. N.; Schmitt, A. K.; Lundstrom, C.; Golledge, S.

    2013-12-01

    Knowing oxygen diffusivity in zircon has several critical applications: 1) establishing zircon stability and solubility in hot silica-saturated hydrothermal solutions; 2) deriving metamorphic and magmatic heating timescales from intra-crystal oxygen isotopic gradients; 3) assessing the survivability of oxygen isotopic signatures in Hadean zircons. We report results of a microanalytical investigation of an isotope exchange experiment using a cold-seal pressure apparatus at 850°C and 500 MPa over 4 months duration. Natural zircon, quartz and rutile were sealed with a silica-rich solution doped with 18-O, D, 7-Li and 10-B in a gold capsule. The diffusion length-scales were examined by depth profiling using time-of-flight (TOF) and high-sensitivity dynamic secondary ionization mass spectrometry (SIMS). Starting materials had distinct and homogeneous δ18O: zircon from Mesa Falls tuff of Yellowstone (+3.6‰), rutile from Karelia (-29‰), Bishop Tuff Quartz (+8.4‰), and δ18O doped water (+400‰). Starting material zircon showed invariant 18O/16O during depth profiling. After the 4 month experiment, rutile crystal surfaces displayed etching (100's of nm), while zircon exteriors lacked visible change. Quartz was completely dissolved and reprecipitated in a minor residue. Rutile developed ~2 μm long Fickian diffusion profiles largely consistent with the wet diffusion coefficients for rutile previously reported [1]. Surface U-Pb dating of zircon detected no significant Pb loss from the outermost ~300 nm of the crystal face and returned identical core-face ages. We performed δ18O depth profiling of zircon in two directions. First, forward profiles (crystal rim inwards) by dynamic SIMS (no surface treatment besides Au-coating; Cs+ beam of 20 kV impact energy) showed initially high and decreasing 18O/16O over ~130 nm; TOF-SIMS forward profiles using a 2 kV Cs+ sputter beam and 25 kV Bi3+ primary ions on uncoated zircon surfaces (cleaned for 2 min with HF) yielded

  20. Study for Nuclear Structures of 22-35Na Isotopes via Measurements of Reaction Cross Sections

    NASA Astrophysics Data System (ADS)

    Suzuki, Shinji

    2014-09-01

    T. Ohtsubo, M. Nagashima, T. Ogura, Y. Shimbara (Grad. Sch. of Sc., Niigata Univ.), M.Takechi, H. Geissel, M. Winkler (GSI), D. Nishimura, T. Sumikama (Dept. of Phys., Tokyo Univ. of Sc.), M. Fukuda, M. Mihara, H. Uenishi (Dept. of Phys., Osaka Univ.), T. Kuboki, T. Suzuki, T. Yamaguchi, H. Furuki, C. S. Lee, K. Sato (Dept. of Phys., Saitama Univ.), A. Ozawa, H. Ohnishi, T. Moriguchi, S. Fukuda, Y. Ishibashi, D. Nagae, R. Nishikiori, T. Niwa (Inst. of Phys., Univ. of Tsukuba), N. Aoi (RCNP), Rui-Jiu Chen, N. Inabe, D. Kameda, T. Kubo, M. Lantz, T. Ohnishi, K. Okumura, H. Sakurai, H. Suzuki, H. Takeda, S. Takeuchi, K. Tanaka, Y. Yanagisawa (RIKEN), De-Qing Fang, Yu-Gang Ma (SINAP), T. Izumikawa (RI Ctr., Niigata Univ.), and S. Momota (Fac. of Engn., Kochi Univ. of Tech.) Reaction cross sections (σR) for 22-35Na isotopes have been measured at around 240 MeV/nucleon. The σR for 22-35Na were measured for the first time. Enhancement in cross sections is clearly observed from the systematics for stable nuclei, for isotopes with large mass numbers. These enhancement can be mainly ascribed to the nuclear deformation. We will discuss the nuclear structure (neutron skin, nuclear shell structure) for neutron-excess Na isotopes. T. Ohtsubo, M. Nagashima, T. Ogura, Y. Shimbara (Grad. Sch. of Sc., Niigata Univ.), M.Takechi, H. Geissel, M. Winkler (GSI), D. Nishimura, T. Sumikama (Dept. of Phys., Tokyo Univ. of Sc.), M. Fukuda, M. Mihara, H. Uenishi (Dept. of Phys., Osaka Univ.), T. Kuboki, T. Suzuki, T. Yamaguchi, H. Furuki, C. S. Lee, K. Sato (Dept. of Phys., Saitama Univ.), A. Ozawa, H. Ohnishi, T. Moriguchi, S. Fukuda, Y. Ishibashi, D. Nagae, R. Nishikiori, T. Niwa (Inst. of Phys., Univ. of Tsukuba), N. Aoi (RCNP), Rui-Jiu Chen, N. Inabe, D. Kameda, T. Kubo, M. Lantz, T. Ohnishi, K. Okumura, H. Sakurai, H. Suzuki, H. Takeda, S. Takeuchi, K. Tanaka, Y. Yanagisawa (RIKEN), De-Qing Fang, Yu-Gang Ma (SINAP), T. Izumikawa (RI Ctr., Niigata Univ.), and S. Momota (Fac. of Engn

  1. Stereospecific Nickel-Catalyzed Cross-Coupling Reactions of Benzylic Ethers with Isotopically-Labeled Grignard Reagents

    PubMed Central

    2015-01-01

    In this manuscript we highlight the potential of stereospecific nickel-catalyzed cross-coupling reactions for applications in the pharmaceutical industry. Using an inexpensive and sustainable nickel catalyst, we report a gram-scale Kumada cross-coupling reaction. Reactions are highly stereospecific and proceed with inversion at the benzylic position. We also expand the scope of our reaction to incorporate isotopically labeled substituents. PMID:27458328

  2. Exchange-diffusion reactions in HfSiON during annealing studied by Rutherford backscattering spectrometry, nuclear reaction analysis and narrow resonant nuclear reaction profiling

    NASA Astrophysics Data System (ADS)

    Miotti, L.; Bastos, K. P.; Soares, G. V.; Driemeier, C.; Pezzi, R. P.; Morais, J.; Baumvol, I. J. R.; Rotondaro, A. L. P.; Visokay, M. R.; Chambers, J. J.; Quevedo-Lopez, M.; Colombo, L.

    2004-11-01

    HfSiON films deposited on Si (001) by reactive sputtering were submitted to rapid thermal annealing at 1000°C in vacuum, N2 and O2 atmospheres. The stability of the dielectric was evaluated by measuring the atomic transport and exchange of the chemical species, using Rutherford backscattering spectrometry, nuclear reaction analysis and narrow resonant nuclear reaction profiling. Annealing in O2 ambient reduced the N concentration mainly from near-surface regions where oxygen was incorporated in comparable amounts. Vacuum annealing, on the other hand, induced N loss preferentially from the Si/dielectric interface and O loss preferentially from near-surface regions. The results are explained in terms of exchange-diffusion reactions occurring in the HfSiON.

  3. Conferring specificity in redox pathways by enzymatic thiol/disulfide exchange reactions.

    PubMed

    Netto, Luis Eduardo S; de Oliveira, Marcos Antonio; Tairum, Carlos A; da Silva Neto, José Freire

    2016-01-01

    Thiol-disulfide exchange reactions are highly reversible, displaying nucleophilic substitutions mechanism (S(N)2 type). For aliphatic, low molecular thiols, these reactions are slow, but can attain million times faster rates in enzymatic processes. Thioredoxin (Trx) proteins were the first enzymes described to accelerate thiol-disulfide exchange reactions and their high reactivity is related to the high nucleophilicity of the attacking thiol. Substrate specificity in Trx is achieved by several factors, including polar, hydrophobic, and topological interactions through a groove in the active site. Glutaredoxin (Grx) enzymes also contain the Trx fold, but they do not share amino acid sequence similarity with Trx. A conserved glutathione binding site is a typical feature of Grx that can reduce substrates by two mechanisms (mono and dithiol). The high reactivity of Grx enzymes is related to the very acid pK(a) values of reactive Cys that plays roles as good leaving groups. Therefore, although distinct oxidoreductases catalyze similar thiol–disulfide exchange reactions, their enzymatic mechanisms vary. PDI and DsbA are two other oxidoreductases, but they are involved in disulfide bond formation, instead of disulfide reduction, which is related to the oxidative environment where they are found. PDI enzymes and DsbC are endowed with disulfide isomerase activity, which is related with their tetra-domain architecture. As illustrative description of specificity in thiol-disulfide exchange, redox aspects of transcription activation in bacteria, yeast, and mammals are presented in an evolutionary perspective. Therefore, thiol-disulfide exchange reactions play important roles in conferring specificity to pathways, a required feature for signaling.

  4. Carbon Isotopic Fractionation During Formation of Macromolecular Organic Grain Coatings via FTT Reactions

    NASA Technical Reports Server (NTRS)

    Nuth, J. A.; Johnson, N. M.; Elsila-Cook, J.; Kopstein, M.

    2011-01-01

    Observations of carbon isotopic fractionation of various organic compounds found in meteorites may provide useful diagnostic information concerning the environments and mechanisms that were responsible for their formation. Unfortunately, carbon has only two stable isotopes, making interpretation of such observations quite problematic. Chemical reactions can increase or decrease the C-13/C-12 ratio by various amounts, but the final ratio will depend on the total reaction pathway followed from the source carbon to the final product, a path not readily discernable after 4.5 billion years. In 1970 Libby showed that the C-13/C-12 ratios of terrestrial and meteoritic carbon were similar by comparing carbon from the Murchison meteorite to that of terrestrial sediments. More recent studies have shown that the C-13/C-12 ratio of the Earth and meteorites may be considerably enriched in C-13 compared to the ratio observed in the solar wind [2], possibly suggesting that carbon produced via ion-molecule reactions in cold dark clouds could be an important source of terrestrial and meteoritic carbon. However, meteoritic carbon has been subjected to parent body processing that could have resulted in significant changes to the C-13/C-12 ratio originally present while significant variation has been observed in the C-13/C-12 ratio of the same molecule extracted from different terrestrial sources. Again we must conclude that understanding the ratio found in meteorites may be difficult.

  5. Mercury isotopes in a forested ecosystem: Implications for air-surface exchange dynamics and the global mercury cycle

    NASA Astrophysics Data System (ADS)

    Demers, Jason D.; Blum, Joel D.; Zak, Donald R.

    2013-01-01

    ABSTRACT Forests mediate the biogeochemical cycling of mercury (Hg) between the atmosphere and terrestrial ecosystems; however, there remain many gaps in our understanding of these processes. Our objectives in this study were to characterize Hg isotopic composition within forests, and use natural abundance stable Hg isotopes to track sources and reveal mechanisms underlying the cycling of Hg. We quantified the stable Hg isotopic composition of foliage, forest floor, mineral soil, precipitation, and total gaseous mercury (THg(g)) in the atmosphere and in evasion from soil, in 10-year-old aspen forests at the Rhinelander FACE experiment in northeastern Wisconsin, USA. The effect of increased atmospheric CO2 and O3 concentrations on Hg isotopic composition was small relative to differences among forest ecosystem components. Precipitation samples had δ202Hg values of -0.74 to 0.06‰ and ∆199Hg values of 0.16 to 0.82‰. Atmospheric THg(g) had δ202Hg values of 0.48 to 0.93‰ and ∆199Hg values of -0.21 to -0.15‰. Uptake of THg(g) by foliage resulted in a large (-2.89‰) shift in δ202Hg values; foliage displayed δ202Hg values of -2.53 to -1.89‰ and ∆199Hg values of -0.37 to -0.23‰. Forest floor samples had δ202Hg values of -1.88 to -1.22‰ and ∆199Hg values of -0.22 to -0.14‰. Mercury isotopes distinguished geogenic sources of Hg and atmospheric derived sources of Hg in soil, and showed that precipitation Hg only accounted for ~16% of atmospheric Hg inputs. The isotopic composition of Hg evasion from the forest floor was similar to atmospheric THg(g); however, there were systematic differences in δ202Hg values and MIF of even isotopes (∆200Hg and ∆204Hg). Mercury evasion from the forest floor may have arisen from air-surface exchange of atmospheric THg(g), but was not the emission of legacy Hg from soils, nor re-emission of wet-deposition. This implies that there was net atmospheric THg(g) deposition to the forest soils. Furthermore, MDF of

  6. Advancing the Theory of Nuclear Reactions with Rare Isotopes: From the Laboratory to the Cosmos

    SciTech Connect

    Elster, Charlotte

    2015-06-01

    The mission of the TORUS Topical Collaboration is to develop new methods that will advance nuclear reaction theory for unstable isotopes by using three-body techniques to improve direct-reaction calculations, and, by using a new partial-fusion theory, to integrate descriptions of direct and compound-nucleus reactions. Ohio University concentrates its efforts on the first part of the mission. Since direct measurements are often not feasible, indirect methods, e.g. (d,p) reactions, should be used. Those (d,p) reactions may be viewed as three-body reactions and described with Faddeev techniques. Faddeev equations in momentum space have a long tradition of utilizing separable interactions in order to arrive at sets of coupled integral equations in one variable. While there exist several separable representations for the nucleon-nucleon interaction, the optical potential between a neutron (proton) and a nucleus is not readily available in separable form. For this reason we first embarked in introducing a separable representation for complex phenomenological optical potentials of Woods-Saxon type.

  7. Incorporation of monomethylethanolamine into phosphatidylcholine by way of an exchange reaction followed by methylation

    SciTech Connect

    Moore, T.S. Jr. )

    1989-04-01

    Recent evidence by Datko and Mudd indicates that phosphatidylcholine (PC) may be synthesized by methylation of phosphatidylmonomethyl-ethanolamine (PMME), but perhaps not by utilization of phosphatidylethanolamine (PE) as a source of PMME. They provided evidence that a CDP derivative of monomethylethanolamine (MME) might be the source of the headgroup. Another possibility is incorporation of MME by an exchange reaction. We tested this by incubating MME with ER from castor bean endosperm and radiolabeled S- adenosylmethionine under conditions which would allow incorporation of the headgroup and methylation to PC. Under these conditions the reaction proceeded, with radiolabel appearing in both PC and phosphatidyldimethylethanolamine. Neither ethanolamine nor L-serine, both of which are known to undergo exchange reactions, yielded PC under the same conditions.

  8. Competition between charge exchange and chemical reaction - The D2/+/ + H system

    NASA Technical Reports Server (NTRS)

    Preston, R. K.; Cross, R. J., Jr.

    1973-01-01

    Study of the special features of molecular charge exchange and its competition with chemical reaction in the case of the D2(+) + H system. The trajectory surface hopping (TSH) model proposed by Tully and Preston (1971) is used to study this competition for a number of reactions involving the above system. The diatomics-in-molecules zero-overlap approximation is used to calculate the three adiabatic surfaces - one triplet and two singlet - which are needed to describe this system. One of the significant results of this study is that the chemical reaction and charge exchange are strongly coupled. It is also found that the number of trajectories passing into the chemical regions of the three surfaces depends very strongly on the surface crossings.-

  9. 10 CFR Appendix E to Part 110 - Illustrative List of Chemical Exchange or Ion Exchange Enrichment Plant Equipment and Components...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... between the isotopes of uranium causes small changes in chemical reaction equilibria that can be used as a... 10 Energy 2 2013-01-01 2013-01-01 false Illustrative List of Chemical Exchange or Ion Exchange.... 110, App. E Appendix E to Part 110—Illustrative List of Chemical Exchange or Ion Exchange...

  10. 10 CFR Appendix E to Part 110 - Illustrative List of Chemical Exchange or Ion Exchange Enrichment Plant Equipment and Components...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... between the isotopes of uranium causes small changes in chemical reaction equilibria that can be used as a... 10 Energy 2 2011-01-01 2011-01-01 false Illustrative List of Chemical Exchange or Ion Exchange.... 110, App. E Appendix E to Part 110—Illustrative List of Chemical Exchange or Ion Exchange...

  11. 10 CFR Appendix E to Part 110 - Illustrative List of Chemical Exchange or Ion Exchange Enrichment Plant Equipment and Components...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... between the isotopes of uranium causes small changes in chemical reaction equilibria that can be used as a... 10 Energy 2 2014-01-01 2014-01-01 false Illustrative List of Chemical Exchange or Ion Exchange.... 110, App. E Appendix E to Part 110—Illustrative List of Chemical Exchange or Ion Exchange...

  12. 10 CFR Appendix E to Part 110 - Illustrative List of Chemical Exchange or Ion Exchange Enrichment Plant Equipment and Components...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... between the isotopes of uranium causes small changes in chemical reaction equilibria that can be used as a... 10 Energy 2 2012-01-01 2012-01-01 false Illustrative List of Chemical Exchange or Ion Exchange.... 110, App. E Appendix E to Part 110—Illustrative List of Chemical Exchange or Ion Exchange...

  13. Isotope Effects and Mechanism of the Asymmetric BOROX Brønsted Acid Catalyzed Aziridination Reaction

    PubMed Central

    Vetticatt, Mathew J.; Desai, Aman A.; Wulff, William D.

    2013-01-01

    The mechanism of the chiral VANOL-BOROX Brønsted acid catalyzed aziridination reaction of imines and ethyldiazoacetate has been studied using a combination of experimental kinetic isotope effects and theoretical calculations. A stepwise mechanism where reversible formation of a diazonium ion intermediate precedes rate-limiting ring-closure to form the cis-aziridine is implicated. A revised model for the origin of enantio- and diastereoselectivity is proposed based on relative energies of the ring closing transition structures. PMID:23687986

  14. Simple (17) O NMR method for studying electron self-exchange reaction between UO2 (2+) and U(4+) aqua ions in acidic solution.

    PubMed

    Bányai, István; Farkas, Ildikó; Tóth, Imre

    2016-06-01

    (17) O NMR spectroscopy is proven to be suitable and convenient method for studying the electron exchange by following the decrease of (17) O-enrichment in U(17) OO(2+) ion in the presence of U(4+) ion in aqueous solution. The reactions have been performed at room temperature using I = 5 M ClO4 (-) ionic medium in acidic solutions in order to determine the kinetics of electron exchange between the U(4+) and UO2 (2+) aqua ions. The rate equation is given as R = a[H(+) ](-2)  + R', where R' is an acid independent parallel path. R' depends on the concentration of the uranium species according to the following empirical rate equation: R' = k1 [UO(2 +) ](1/2) [U(4 +) ](1/2)  + k2 [UO(2 +) ](3/2) [U(4 +) ](1/2) . The mechanism of the inverse H(+) concentration-dependent path is interpreted as equilibrium formation of reactive UO2 (+) species from UO2 (2+) and U(4+) aqua ions and its electron exchange with UO2 (2+) . The determined rate constant of this reaction path is in agreement with the rate constant of UO2 (2+) -UO2 (+) , one electron exchange step calculated by Marcus theory, match the range given experimentally of it in an early study. Our value lies in the same order of magnitude as the recently calculated ones by quantum chemical methods. The acid independent part is attributed to the formation of less hydrolyzed U(V) species, i.e. UO(3+) , which loses enrichment mainly by electron exchange with UO2 (2+) ions. One can also conclude that (17) O NMR spectroscopy, or in general NMR spectroscopy with careful kinetic analysis, is a powerful tool for studying isotope exchange reactions without the use of sophisticated separation processes. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Combining stable isotope and eddy covariance measurements to investigate carbon exchanges between the atmosphere and a tallgrass prairie

    NASA Astrophysics Data System (ADS)

    Lai, C.; Schauer, A.; Owensby, C.; Ham, J.; Ehleringer, J.

    2002-12-01

    Stable isotope ratios of various ecosystem components were measured in a C4-dominated tallgrass prairie with co-existing eddy covariance system near Manhattan, Kansas. The carbon and oxygen isotope compositions of nighttime atmospheric CO2 were measured weekly since early spring of 2002. In May and July, δ18O of water vapor, leaf and stem water of three major species were measured every 3-4 hours for 2-3 consecutive days. The δ18O of precipitation and soil water, δ13C of whole plant, litter and soil organic matter were also measured during these intensive field campaigns. Preliminary results from stable isotope analyses revealed apparent diurnal cycles in the δ18O of leaf water (δ18Oleaf). The Craig-Gordon model was shown capable of predicting the mean δ18Oleaf of dominant species. The carbon isotope ratios of ecosystem respiration vary by nearly 10 per mil for the 2002 growing season, reflecting the seasonality of C3-C4 dominance. Prior to our July experiment, the region experienced a severe drought. The eddy covariance measurements indicate a substantial mid-day decline in the photosynthetic uptake presumably due to high air temperature and vapor pressure deficit in this period. Details on using stable isotope and flux measurements to partition net ecosystem exchange into photosynthetic and respiratory fluxes are discussed for this grassland ecosystem.

  16. Calculation of vibronic couplings for phenoxyl/phenol and benzyl/toluene self-exchange reactions: implications for proton-coupled electron transfer mechanisms.

    PubMed

    Skone, Jonathan H; Soudackov, Alexander V; Hammes-Schiffer, Sharon

    2006-12-27

    The vibronic couplings for the phenoxyl/phenol and the benzyl/toluene self-exchange reactions are calculated with a semiclassical approach, in which all electrons and the transferring hydrogen nucleus are treated quantum mechanically. In this formulation, the vibronic coupling is the Hamiltonian matrix element between the reactant and product mixed electronic-proton vibrational wavefunctions. The magnitude of the vibronic coupling and its dependence on the proton donor-acceptor distance can significantly impact the rates and kinetic isotope effects, as well as the temperature dependences, of proton-coupled electron transfer reactions. Both of these self-exchange reactions are vibronically nonadiabatic with respect to a solvent environment at room temperature, but the proton tunneling is electronically nonadiabatic for the phenoxyl/phenol reaction and electronically adiabatic for the benzyl/toluene reaction. For the phenoxyl/phenol system, the electrons are unable to rearrange fast enough to follow the proton motion on the electronically adiabatic ground state, and the excited electronic state is involved in the reaction. For the benzyl/toluene system, the electrons can respond virtually instantaneously to the proton motion, and the proton moves on the electronically adiabatic ground state. For both systems, the vibronic coupling decreases exponentially with the proton donor-acceptor distance for the range of distances studied. When the transferring hydrogen is replaced with deuterium, the magnitude of the vibronic coupling decreases and the exponential decay with distance becomes faster. Previous studies designated the phenoxyl/phenol reaction as proton-coupled electron transfer and the benzyl/toluene reaction as hydrogen atom transfer. In addition to providing insights into the fundamental physical differences between these two types of reactions, the present analysis provides a new diagnostic for differentiating between the conventionally defined hydrogen atom

  17. Hydraulic controls of in-stream gravel bar hyporheic exchange and reactions

    NASA Astrophysics Data System (ADS)

    Trauth, Nico; Schmidt, Christian; Vieweg, Michael; Oswald, Sascha E.; Fleckenstein, Jan H.

    2015-04-01

    Hyporheic exchange transports solutes into the subsurface where they can undergo biogeochemical transformations, affecting fluvial water quality and ecology. A three-dimensional numerical model of a natural in-stream gravel bar (20 m × 6 m) is presented. Multiple steady state streamflow is simulated with a computational fluid dynamics code that is sequentially coupled to a reactive transport groundwater model via the hydraulic head distribution at the streambed. Ambient groundwater flow is considered by scenarios of neutral, gaining, and losing conditions. The transformation of oxygen, nitrate, and dissolved organic carbon by aerobic respiration and denitrification in the hyporheic zone are modeled, as is the denitrification of groundwater-borne nitrate when mixed with stream-sourced carbon. In contrast to fully submerged structures, hyporheic exchange flux decreases with increasing stream discharge, due to decreasing hydraulic head gradients across the partially submerged structure. Hyporheic residence time distributions are skewed in the log-space with medians of up to 8 h and shift to symmetric distributions with increasing level of submergence. Solute turnover is mainly controlled by residence times and the extent of the hyporheic exchange flow, which defines the potential reaction area. Although streamflow is the primary driver of hyporheic exchange, its impact on hyporheic exchange flux, residence times, and solute turnover is small, as these quantities exponentially decrease under losing and gaining conditions. Hence, highest reaction potential exists under neutral conditions, when the capacity for denitrification in the partially submerged structure can be orders of magnitude higher than in fully submerged structures.

  18. Advancing the Theory of Nuclear Reactions with Rare Isotopes. From the Laboratory to the Cosmos

    SciTech Connect

    Nunes, Filomena

    2015-06-01

    The mission of the Topical Collaboration on the Theory of Reactions for Unstable iSotopes (TORUS) was to develop new methods to advance nuclear reaction theory for unstable isotopes—particularly the (d,p) reaction in which a deuteron, composed of a proton and a neutron, transfers its neutron to an unstable nucleus. After benchmarking the state-of-the-art theories, the TORUS collaboration found that there were no exact methods to study (d,p) reactions involving heavy targets; the difficulty arising from the long-range nature of the well known, yet subtle, Coulomb force. To overcome this challenge, the TORUS collaboration developed a new theory where the complexity of treating the long-range Coulomb interaction is shifted to the calculation of so-called form-factors. An efficient implementation for the computation of these form factors was a major achievement of the TORUS collaboration. All the new machinery developed are essential ingredients to analyse (d,p) reactions involving heavy nuclei relevant for astrophysics, energy production, and stockpile stewardship.

  19. Velocity map imaging study of the reaction dynamics of the H + CH4 → H2 + CH3 reaction: the isotope effects.

    PubMed

    Pan, Huilin; Yang, Jiayue; Shuai, Quan; Zhang, Dong; Zhang, Weiqing; Wu, Guorong; Dai, Dongxu; Jiang, Bo; Zhang, Donghui; Yang, Xueming

    2014-04-03

    Following our previous study on the H + CD4 → HD + CD3 reaction [ Proc. Natl. Acad. Sci. U.S.A. 2010 , 107 , 12782 ], the reaction of H + CH4 → H2 + CH3 at collision energies ranging from 0.72 to 1.99 eV is studied using crossed-beam and time-sliced velocity map ion imaging techniques. The product angular and translational energy distributions at four different collision energies were derived from the measured images. The excitation function was also measured from these images together with a careful calibration of the H atom beam intensities at different collision energies. All of these results are compared with those of the H + CD4 reaction to investigate the isotope effects. The isotope effects are all observed in the product angular distributions, the translational energy distributions, and the excitation function and further confirm the reaction mechanism proposed in the previous study on the H + CD4 reaction.

  20. The evolution of 13C and 18O isotope composition of DIC in a calcite depositing film of water with isotope exchange between the DIC and a CO2 containing atmosphere, and simultaneous evaporation of the water. Implication to climate proxies from stalagmites: A theoretical model

    NASA Astrophysics Data System (ADS)

    Dreybrodt, Wolfgang; Romanov, Douchko

    2016-12-01

    The most widely applied climate proxies in speleothems are the isotope compositions of carbon and oxygen expressed by δ13C and δ18O values. However, mechanisms, which are not related to climate changes, overlay the climate signal. One is the temporal increase of both, δ13C and δ18O values by kinetic processes during precipitation of calcite. Isotope exchange between DIC in the water and the CO2 in the surrounding cave atmosphere can also change isotope composition. Here we present a theoretical model of the temporal isotope evolution of DIC in a thin water layer during precipitation of calcite and simultaneous isotope exchange with the cave atmosphere, and simultaneous evaporation of water. The exchange of oxygen isotopes in the DIC with those in the water is also considered. For drip times for Tdrip < 0.2τ, where τ is the precipitation time, we find for the change of the δ13C and δ18O values, respectively, after the time Tdrip ΔDIC(Tdrip) = ((λ + ɛ)Ceq/C0 - ɛ) Tdrip/τ + ((δeqatm - δ0) Tdrip/τinatm) + (δeqwater - δ0 - ɛw Tdrip/Tev) Tdrip/Twater The first term on the right hand side is the contribution from precipitation of calcite, the second stems from isotope exchange with the CO2 of the cave atmosphere, and the third results from isotope exchange between oxygen in the DIC and the oxygen in the water. λ, ε are kinetic parameters, τ is the time scale of precipitation, (δeqatm -δ0) and (δeqwater -δ0) are the differences between the corresponding initial δ-value δ0 and the value δeqatm,water if DIC were in isotope equilibrium with the atmosphere or in the case of oxygen with the water, respectively. τinatm and τwater are the time scales of approach to isotope equilibrium by the exchange reactions. Ceq is the concentration of DIC in chemical equilibrium with the CO2 in the cave atmosphere and C0 is the initial concentration, when the water drips to the stalagmite. Tev is the time needed for complete evaporation of the water layer. ε

  1. Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions

    PubMed Central

    2015-01-01

    We demonstrate that, via controlled anion exchange reactions using a range of different halide precursors, we can finely tune the chemical composition and the optical properties of presynthesized colloidal cesium lead halide perovskite nanocrystals (NCs), from green emitting CsPbBr3 to bright emitters in any other region of the visible spectrum, and back, by displacement of Cl– or I– ions and reinsertion of Br– ions. This approach gives access to perovskite semiconductor NCs with both structural and optical qualities comparable to those of directly synthesized NCs. We also show that anion exchange is a dynamic process that takes place in solution between NCs. Therefore, by mixing solutions containing perovskite NCs emitting in different spectral ranges (due to different halide compositions) their mutual fast exchange dynamics leads to homogenization in their composition, resulting in NCs emitting in a narrow spectral region that is intermediate between those of the parent nanoparticles. PMID:26214734

  2. Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions.

    PubMed

    Akkerman, Quinten A; D'Innocenzo, Valerio; Accornero, Sara; Scarpellini, Alice; Petrozza, Annamaria; Prato, Mirko; Manna, Liberato

    2015-08-19

    We demonstrate that, via controlled anion exchange reactions using a range of different halide precursors, we can finely tune the chemical composition and the optical properties of presynthesized colloidal cesium lead halide perovskite nanocrystals (NCs), from green emitting CsPbBr3 to bright emitters in any other region of the visible spectrum, and back, by displacement of Cl(-) or I(-) ions and reinsertion of Br(-) ions. This approach gives access to perovskite semiconductor NCs with both structural and optical qualities comparable to those of directly synthesized NCs. We also show that anion exchange is a dynamic process that takes place in solution between NCs. Therefore, by mixing solutions containing perovskite NCs emitting in different spectral ranges (due to different halide compositions) their mutual fast exchange dynamics leads to homogenization in their composition, resulting in NCs emitting in a narrow spectral region that is intermediate between those of the parent nanoparticles.

  3. Scaling hyporheic exchange and its influence on biogeochemical reactions in aquatic ecosystems

    USGS Publications Warehouse

    O'Connor, B.L.; Harvey, J.W.

    2008-01-01

    Hyporheic exchange and biogeochemical reactions are difficult to quantify because of the range in fluid-flow and sediment conditions inherent to streams, wetlands, and nearshore marine ecosystems. Field measurements of biogeochemical reactions in aquatic systems are impeded by the difficulty of measuring hyporheic flow simultaneously with chemical gradients in sediments. Simplified models of hyporheic exchange have been developed using Darcy's law generated by flow and bed topography at the sediment-water interface. However, many modes of transport are potentially involved (molecular diffusion, bioturbation, advection, shear, bed mobility, and turbulence) with even simple models being difficult to apply in complex natural systems characterized by variable sediment sizes and irregular bed geometries. In this study, we synthesize information from published hyporheic exchange investigations to develop a scaling relationship for estimating mass transfer in near-surface sediments across a range in fluid-flow and sediment conditions. Net hyporheic exchange was quantified using an effective diffusion coefficient (De) that integrates all of the various transport processes that occur simultaneously in sediments, and dimensional analysis was used to scale De to shear stress velocity, roughness height, and permeability that describe fluid-flow and sediment characteristics. We demonstrated the value of the derived scaling relationship by using it to quantify dissolved oxygen (DO) uptake rates on the basis of DO profiles in sediments and compared them to independent flux measurements. The results support a broad application of the De scaling relationship for quantifying coupled hyporheic exchange and biogeochemical reaction rates in streams and other aquatic ecosystems characterized by complex fluid-flow and sediment conditions.

  4. Cumulative reaction probabilities and transition state properties: a study of the F + H2 reaction and its deuterated isotopic variants.

    PubMed

    Aoiz, F J; Herrero, V J; Sáez Rábanos, V

    2008-07-14

    A comparative quantum mechanical (QM) and quasiclassical trajectory (QCT) study of the cumulative reaction probabilities (CRPs) is presented in this work for the F + H(2) reaction and its isotopic variants for low values of the total angular momentum J. The agreement between the two sets of calculations is very good with the exception of some features whose origin is genuinely QM. The agreement also extends to the CRP resolved in the helicity quantum number k. The most remarkable feature is the steplike structure, which becomes clearly distinct when the CRPs are resolved in odd and even rotational states j. The analysis of these steps shows that each successive increment is due to the opening of the consecutive rovibrational states of the H(2) or D(2) molecule, which, in this case, nearly coincide with those of the transition state. Moreover, the height of each step reflects the number of helicity states compatible with a given J and j values, thus indicating that the various helicity states for a specific j have basically the same contribution to the CRPs at a given total energy. As a consequence, the dependence with k of the reactivity is practically negligible, suggesting very small steric restrictions for any possible orientation of the reactants. This behavior is in marked contrast to that found in the D + H(2) reaction, wherein a strong k dependence was found in the threshold and magnitude of the CRP. The advantages of a combined QCT and QM approaches to the study of CRPs are emphasized in this work.

  5. Temperature dependence of carbon kinetic isotope effect for the oxidation reaction of ethane by OH radicals under atmospherically relevant conditions

    NASA Astrophysics Data System (ADS)

    Piansawan, Tammarat; Saccon, Marina; Laumer, Werner; Gensch, Iulia; Kiendler-Scharr, Astrid

    2015-04-01

    Modeling of the global distribution of atmospheric ethane sources and sinks by using the 13C isotopic composition requires accurate knowledge of the carbon kinetic isotope effect (KIE) of its atmospheric removal reactions. The quantum mechanical prediction implies the necessity to elucidate the temperature dependence of KIE within atmospherically relevant temperature range by experiment. In this study, the KIE and its temperature dependence for ethane oxidation by OH radicals was investigated at ambient pressure in a temperature range of 243 K to 303 K. The chemical reactions were carried out in a 15 L PFE reaction chamber, suspended in a thermally controlled oven. The isotope ratios of the gas phase components during the course of the reactions were measured by Thermal Desorption -- Gas Chromatography -- Isotope Ratio Mass Spectrometry (TD-GC-IRMS). For each temperature, the KIE was derived from the temporal evolution of the concentration and stable carbon isotope ratio (δ13C) of ethane using a method adapted from the relative reaction rate concept. The room temperature KIE of the ethane reaction with OH radicals was found to be 6.85 ± 0.32 ‰. This value is in agreement with the previously reported value of 8.57 ± 1.95 ‰ [Anderson et al. 2004] but has a substantially lower uncertainty. The experimental results will be discussed with the KIE temperature dependence predicted by quantum mechanical calculations. Reference: Rebecca S. Anderson, Lin Huang, Richard Iannone, Alexandra E. Thompson, and Jochen Rudolph (2004), Carbon Kinetic Isotope Effects in the Gas Phase Reactions of Light Alkanes and Ethene with the OH Radical at 296 ± 4 K, J. Phys. Chem. A, 108, 11537--11544

  6. Neutrino nuclear responses for double beta decays and astro neutrinos by charge exchange reactions

    NASA Astrophysics Data System (ADS)

    Ejiri, Hiroyasu

    2014-09-01

    Neutrino nuclear responses are crucial for neutrino studies in nuclei. Charge exchange reactions (CER) are shown to be used to study charged current neutrino nuclear responses associated with double beta decays(DBD)and astro neutrino interactions. CERs to be used are high energy-resolution (He3 ,t) reactions at RCNP, photonuclear reactions via IAR at NewSUBARU and muon capture reactions at MUSIC RCNP and MLF J-PARC. The Gamow Teller (GT) strengths studied by CERs reproduce the observed 2 neutrino DBD matrix elements. The GT and spin dipole (SD) matrix elements are found to be reduced much due to the nucleon spin isospin correlations and the non-nucleonic (delta isobar) nuclear medium effects. Impacts of the reductions on the DBD matrix elements and astro neutrino interactions are discussed.

  7. Nuclear fragmentation and charge-exchange reactions induced by pions in the Δ -resonance region

    NASA Astrophysics Data System (ADS)

    Feng, Zhao-Qing

    2016-11-01

    The dynamics of the nuclear fragmentations and the charge exchange reactions in pion-nucleus collisions near the Δ (1232) resonance energies has been investigated within the Lanzhou quantum molecular dynamics transport model. An isospin-, momentum-, and density-dependent pion-nucleon potential is implemented in the model, which influences the pion dynamics, in particular the kinetic energy spectra, but weakly impacts the fragmentation mechanism. The absorption process in pion-nucleon collisions to form the Δ (1232) resonance dominates the heating mechanism of the target nucleus. The excitation energy transferred to the target nucleus increases with the pion kinetic energy and is similar for both π-- and π+-induced reactions. The magnitude of fragmentation of the target nucleus weakly depends on the pion energy. The isospin ratio in the pion double-charge exchange is influenced by the isospin ingredient of target nucleus.

  8. Charge Exchange Reaction in Dopant-Assisted Atmospheric Pressure Chemical Ionization and Atmospheric Pressure Photoionization.

    PubMed

    Vaikkinen, Anu; Kauppila, Tiina J; Kostiainen, Risto

    2016-08-01

    The efficiencies of charge exchange reaction in dopant-assisted atmospheric pressure chemical ionization (DA-APCI) and dopant-assisted atmospheric pressure photoionization (DA-APPI) mass spectrometry (MS) were compared by flow injection analysis. Fourteen individual compounds and a commercial mixture of 16 polycyclic aromatic hydrocarbons were chosen as model analytes to cover a wide range of polarities, gas-phase ionization energies, and proton affinities. Chlorobenzene was used as the dopant, and methanol/water (80/20) as the solvent. In both techniques, analytes formed the same ions (radical cations, protonated molecules, and/or fragments). However, in DA-APCI, the relative efficiency of charge exchange versus proton transfer was lower than in DA-APPI. This is suggested to be because in DA-APCI both dopant and solvent clusters can be ionized, and the formed reagent ions can react with the analytes via competing charge exchange and proton transfer reactions. In DA-APPI, on the other hand, the main reagents are dopant-derived radical cations, which favor ionization of analytes via charge exchange. The efficiency of charge exchange in both DA-APPI and DA-APCI was shown to depend heavily on the solvent flow rate, with best efficiency seen at lowest flow rates studied (0.05 and 0.1 mL/min). Both DA-APCI and DA-APPI showed the radical cation of chlorobenzene at 0.05-0.1 mL/min flow rate, but at increasing flow rate, the abundance of chlorobenzene M(+.) decreased and reagent ion populations deriving from different gas-phase chemistry were recorded. The formation of these reagent ions explains the decreasing ionization efficiency and the differences in charge exchange between the techniques. Graphical Abstract ᅟ.

  9. Charge Exchange Reaction in Dopant-Assisted Atmospheric Pressure Chemical Ionization and Atmospheric Pressure Photoionization

    NASA Astrophysics Data System (ADS)

    Vaikkinen, Anu; Kauppila, Tiina J.; Kostiainen, Risto

    2016-08-01

    The efficiencies of charge exchange reaction in dopant-assisted atmospheric pressure chemical ionization (DA-APCI) and dopant-assisted atmospheric pressure photoionization (DA-APPI) mass spectrometry (MS) were compared by flow injection analysis. Fourteen individual compounds and a commercial mixture of 16 polycyclic aromatic hydrocarbons were chosen as model analytes to cover a wide range of polarities, gas-phase ionization energies, and proton affinities. Chlorobenzene was used as the dopant, and methanol/water (80/20) as the solvent. In both techniques, analytes formed the same ions (radical cations, protonated molecules, and/or fragments). However, in DA-APCI, the relative efficiency of charge exchange versus proton transfer was lower than in DA-APPI. This is suggested to be because in DA-APCI both dopant and solvent clusters can be ionized, and the formed reagent ions can react with the analytes via competing charge exchange and proton transfer reactions. In DA-APPI, on the other hand, the main reagents are dopant-derived radical cations, which favor ionization of analytes via charge exchange. The efficiency of charge exchange in both DA-APPI and DA-APCI was shown to depend heavily on the solvent flow rate, with best efficiency seen at lowest flow rates studied (0.05 and 0.1 mL/min). Both DA-APCI and DA-APPI showed the radical cation of chlorobenzene at 0.05-0.1 mL/min flow rate, but at increasing flow rate, the abundance of chlorobenzene M+. decreased and reagent ion populations deriving from different gas-phase chemistry were recorded. The formation of these reagent ions explains the decreasing ionization efficiency and the differences in charge exchange between the techniques.

  10. Deuterium Exchange in the Systems of H2O+/H2O and H3O+/H2O

    NASA Technical Reports Server (NTRS)

    Anicich, V. G.; Sen, A. D.

    1995-01-01

    Using tandem mass spectrometry various water ion interactions were observed. These reactions consisted of a series of charge transfer, proton transfer, and isotopic exchange steps. The experimental data sets consist of variations of ion abundances over a neutral pressure range. An expected sequence of isotopic exchange reactions is given along with differential equation solutions & reaction rate data.

  11. Kinetic Isotope Effects and Stereochemical Studies on a Ribonuclease Model: Hydrolysis Reactions of Uridine 3'-Nitrophenyl Phosphate.

    PubMed

    Hengge; Bruzik; Tobin; Cleland; Tsai

    2000-06-01

    The reactions of a ribonuclease model substrate, the compound uridine-3'-p-nitrophenyl phosphate, have been examined using heavy-atom isotope effects and stereochemical analysis. The cyclization of this compound is subject to catalysis by general base (by imidazole buffer), specific base (by carbonate buffer), and by acid. All three reactions proceed by the same mechanistic sequence, via cyclization to cUMP, which is stable under basic conditions but which is rapidly hydrolyzed to a mixture of 2'- and 3'-UMP under acid conditions. The isotope effects indicate that the specific base-catalyzed reaction exhibits an earlier transition state with respect to bond cleavage to the leaving group compared to the general base-catalyzed reaction. Stereochemical analysis indicates that both of the base-catalyzed reactions proceed with the same stereochemical outcome. It is concluded that the difference in the nucleophile in the two base-catalyzed reactions results in a difference in the transition state structure but both reactions are most likely concerted, with no phosphorane intermediate. The (15)N isotope effects were also measured for the reaction of the substrate with ribonuclease A. The results indicate that considerably less negative charge develops on the leaving group in the transition state than for the general base-catalyzed reaction in solution. Copyright 2000 Academic Press.

  12. Adsorption, partition, ion exchange and chemical reaction in batch reactors or in columns — A review

    NASA Astrophysics Data System (ADS)

    Schweich, D.; Sardin, M.

    The role of linear or non-linear adsorption, mass transfer kinetics, chemical reactions and ion exchange in column tracer experiments is qualitatively dealt with. The similarity of elution curves is emphasized even for very different phenomena. Some experimental procedures are proposed to point out the principal physico-chemical phenomenon which is responsible for the shape of the adsorption isotherm deduced from batch or column experiments.

  13. Exchange Reactions of Organotin and Organosilicon Compounds with Mild Fluorinating Agents

    DTIC Science & Technology

    1992-03-01

    AD-A251 352 CHEMICfIL RESEARCH, DEVELOPMENT i ENGINEERING CENTER CRDEC- EXCHANGE REACTIONS OF ORGANOTIN AND ORGANOSILICON COMPOUNDS WITH MILD...of Organotin and PR- 1C162622A554 Organosilicon Compounds with Mild Fluorinating Agents 6.AUTHOR(S) Roseman, David I., and Muller, August J. 7...methylphosphonic difluoride, boron trifluoride etherate, and perfluoroisobutene all react with both organosilicon and organotin . alkoxides to give

  14. Carbon nanotube inner phase chemistry: the Cl- exchange SN2 reaction.

    PubMed

    Halls, Mathew D; Raghavachari, Krishnan

    2005-10-01

    Density functional calculations have been carried out to investigate the nature of the inner phase of a (6,6) carbon nanotube, using the Cl(-) exchange S(N)2 reaction as an indicator. Inside the carbon nanotube the classical barrier height increases by 6.6 kcal/mol due to the nanotube polarizability. This suggests that the inner phase environment can be considered a form of solid solvation, offering the possibility of obtaining altered guest properties and reactivity through dielectric stabilization.

  15. Sn cation valency dependence in cation exchange reactions involving Cu(2-x)Se nanocrystals.

    PubMed

    De Trizio, Luca; Li, Hongbo; Casu, Alberto; Genovese, Alessandro; Sathya, Ayyappan; Messina, Gabriele C; Manna, Liberato

    2014-11-19

    We studied cation exchange reactions in colloidal Cu(2-x)Se nanocrystals (NCs) involving the replacement of Cu(+) cations with either Sn(2+) or Sn(4+) cations. This is a model system in several aspects: first, the +2 and +4 oxidation states for tin are relatively stable; in addition, the phase of the Cu(2-x)Se NCs remains cubic regardless of the degree of copper deficiency (that is, "x") in the NC lattice. Also, Sn(4+) ions are comparable in size to the Cu(+) ions, while Sn(2+) ones are much larger. We show here that the valency of the entering Sn ions dictates the structure and composition not only of the final products but also of the intermediate steps of the exchange. When Sn(4+) cations are used, alloyed Cu(2-4y)Sn(y)Se NCs (with y ≤ 0.33) are formed as intermediates, with almost no distortion of the anion framework, apart from a small contraction. In this exchange reaction the final stoichiometry of the NCs cannot go beyond Cu0.66Sn0.33Se (that is Cu2SnSe3), as any further replacement of Cu(+) cations with Sn(4+) cations would require a drastic reorganization of the anion framework, which is not possible at the reaction conditions of the experiments. When instead Sn(2+) cations are employed, SnSe NCs are formed, mostly in the orthorhombic phase, with significant, albeit not drastic, distortion of the anion framework. Intermediate steps in this exchange reaction are represented by Janus-type Cu(2-x)Se/SnSe heterostructures, with no Cu-Sn-Se alloys.

  16. Sn Cation Valency Dependence in Cation Exchange Reactions Involving Cu2-xSe Nanocrystals

    PubMed Central

    2014-01-01

    We studied cation exchange reactions in colloidal Cu2-xSe nanocrystals (NCs) involving the replacement of Cu+ cations with either Sn2+ or Sn4+ cations. This is a model system in several aspects: first, the +2 and +4 oxidation states for tin are relatively stable; in addition, the phase of the Cu2-xSe NCs remains cubic regardless of the degree of copper deficiency (that is, “x”) in the NC lattice. Also, Sn4+ ions are comparable in size to the Cu+ ions, while Sn2+ ones are much larger. We show here that the valency of the entering Sn ions dictates the structure and composition not only of the final products but also of the intermediate steps of the exchange. When Sn4+ cations are used, alloyed Cu2–4ySnySe NCs (with y ≤ 0.33) are formed as intermediates, with almost no distortion of the anion framework, apart from a small contraction. In this exchange reaction the final stoichiometry of the NCs cannot go beyond Cu0.66Sn0.33Se (that is Cu2SnSe3), as any further replacement of Cu+ cations with Sn4+ cations would require a drastic reorganization of the anion framework, which is not possible at the reaction conditions of the experiments. When instead Sn2+ cations are employed, SnSe NCs are formed, mostly in the orthorhombic phase, with significant, albeit not drastic, distortion of the anion framework. Intermediate steps in this exchange reaction are represented by Janus-type Cu2-xSe/SnSe heterostructures, with no Cu–Sn–Se alloys. PMID:25340627

  17. Analysis of dynamical behavior of reactions associated with 118,120,122Xe* isotopes

    NASA Astrophysics Data System (ADS)

    Grover, Neha; Sharma, Ishita; Kaur, Gurvinder; Sharma, Manoj K.

    2017-03-01

    In reference to recent experiment, the dynamical aspects of reactions forming even mass isotopes of 118,120,122Xe* nuclei are examined using the collective clusterization approach and the ℓ-summed Wong model. The role of excitation energy (or temperature), deformations, orientations and angular momentum etc. has been investigated for the 28Si + 90,92,94Zr reactions. In order to account for the role of deformations, the evaporation residue (ER) cross sections of 122Xe* nucleus have been studied in reference to the available experimental data by using spherical as well as deformed fragmentation approach. We have used optimum and compact orientations respectively for β2 alone and for β4 included, which inturn provide nice agreement with the available experimental cross-sections. Also, the effect of isospin (N/Z ratio) of decay fragments has been explored in view of the fragmentation analysis and preformation probability of 118,120,122Xe* nuclei. Additionally, the role of projectile nucleus is also explored by studying the fragmentation path of 118Xe* nucleus in comparison to 123Ba* system. Further, the ER cross-sections have been predicted for various even mass isotopes of 116,118,120,124Xe. In addition to this, to explore the fusion characteristics of 28Si + 90,92,94Zr reactions, the Wong model as well as the ℓ-summed Wong model has also been employed. Here also, the role of deformation in formation of 122Xe* nucleus has been examined and the calculated cross-sections find decent agreement with the experimental data.

  18. Isotope Exchange and Fractionation Corrections for Extraction of Tritiated Water in Silica Gel by Freeze-Drying Techniques

    SciTech Connect

    Guthrie, E B; Shen, N C; Bandong, B B

    2001-09-24

    A concentration correction curve was established for measuring the activity concentration of airborne tritiated water collected with dried silica gel and extracted by the LLNL Environmental Monitoring Radiological Laboratory freeze-dry technique. A tracer study using standard tritiated water with silica gel showed that the concentration of tritium in the extracted water is lower than that in the adsorbed water by a fraction proportional to the amount of adsorbed water. The observed decrease in tritium concentration in the extracted water can be accounted for by dilution due to isotopic exchange with both non-tritiated water and hydroxyl groups within the silica gel matrix. For the range of 8-35% adsorbed water, which is typical of samples collected in LLNL monitoring stations, the derived exchangeable water in the silica gel material under investigation was (5.12 {+-} 0.08)%. The contribution of the H{sub 2}O/HTO vapor pressure effect using published empirical data in the literature was also considered in calculating the degree of isotopic exchange.

  19. Formation of Po isotopes in the reactions {sup 27}Al + {sup 175}Lu and {sup 31}P + {sup 169}Tm

    SciTech Connect

    Andreev, A.N.; Bogdanov, D.D.; Eremin, A.V.

    1995-05-01

    The excitation functions and the cross sections for the formation of {sup 192-198}Po isotopes in the reactions {sup 27}Al + {sup 175}Lu and {sup 31}P + {sup 169}Tm are measured. A comparison of the results obtained for these reactions with the data on the cross sections for the formation of Po isotopes in the reaction {sup 100}Mo + {sup 92-100}Mo leads to the conclusion that the characteristics of the evaporation channel do not depend on the mass of the bombarding ion up to the complete symmetry in the input channel. It is shown that the experimental data can be adequately described using the statistical approach to the deexcitation of a compound nucleus only under the assumption that the liquid-drop fission barrier is reduced significantly for neutron-deficient Po isotopes. 21 refs., 5 figs., 2 tabs.

  20. Capture and isotopic exchange method for water and hydrogen isotopes on zeolite catalysts up to technical scale for pre-study of processing highly tritiated water

    SciTech Connect

    Michling, R.; Braun, A.; Cristescu, I.; Dittrich, H.; Gramlich, N.; Lohr, N.; Glugla, M.; Shu, W.; Willms, S.

    2015-03-15

    Highly tritiated water (HTW) may be generated at ITER by various processes and, due to the excessive radio toxicity, the self-radiolysis and the exceedingly corrosive property of HTW, a potential hazard is associated with its storage and process. Therefore, the capture and exchange method for HTW utilizing Molecular Sieve Beds (MSB) was investigated in view of adsorption capacity, isotopic exchange performance and process parameters. For the MSB, different types of zeolite were selected. All zeolite materials were additionally coated with platinum. The following work comprised the selection of the most efficient zeolite candidate based on detailed parametric studies during the H{sub 2}/D{sub 2}O laboratory scale exchange experiments (about 25 g zeolite per bed) at the Tritium Laboratory Karlsruhe (TLK). For the zeolite, characterization analytical techniques such as Infrared Spectroscopy, Thermogravimetry and online mass spectrometry were implemented. Followed by further investigation of the selected zeolite catalyst under full technical operation, a MSB (about 22 kg zeolite) was processed with hydrogen flow rates up to 60 mol*h{sup -1} and deuterated water loads up to 1.6 kg in view of later ITER processing of arising HTW. (authors)

  1. Modification of photosystem I reaction center by the extraction and exchange of chlorophylls and quinones.

    PubMed

    Itoh, S; Iwaki, M; Ikegami, I

    2001-10-30

    The photosystem (PS) I photosynthetic reaction center was modified thorough the selective extraction and exchange of chlorophylls and quinones. Extraction of lyophilized photosystem I complex with diethyl ether depleted more than 90% chlorophyll (Chl) molecules bound to the complex, preserving the photochemical electron transfer activity from the primary electron donor P700 to the acceptor chlorophyll A(0). The treatment extracted all the carotenoids and the secondary acceptor phylloquinone (A(1)), and produced a PS I reaction center that contains nine molecules of Chls including P700 and A(0), and three Fe-S clusters (F(X), F(A) and F(B)). The ether-extracted PS I complex showed fast electron transfer from P700 to A(0) as it is, and to FeS clusters if phylloquinone or an appropriate artificial quinone was reconstituted as A(1). The ether-extracted PS I enabled accurate detection of the primary photoreactions with little disturbance from the absorbance changes of the bulk pigments. The quinone reconstitution created the new reactions between the artificial cofactors and the intrinsic components with altered energy gaps. We review the studies done in the ether-extracted PS I complex including chlorophyll forms of the core moiety of PS I, fluorescence of P700, reaction rate between A(0) and reconstituted A(1), and the fast electron transfer from P700 to A(0). Natural exchange of chlorophyll a to 710-740 nm absorbing chlorophyll d in PS I of the newly found cyanobacteria-like organism Acaryochloris marina was also reviewed. Based on the results of exchange studies in different systems, designs of photosynthetic reaction centers are discussed.

  2. EXFOR basics: A short guide to the nuclear reaction data exchange format

    SciTech Connect

    McLane, V.

    1996-07-01

    This manual is intended as a guide to users of nuclear reaction data compiled in the EXFOR format, and is not intended as a complete guide to the EXFOR System. EXFOR is the exchange format designed to allow transmission of nuclear data between the Nuclear Reaction Data Centers. In addition to storing the data and its` bibliographic information, experimental information, including source of uncertainties, is also compiled. The status and history of the data set is also included, e.g., the source of the data, any updates which have been made, and correlations to other data sets. EXFOR is designed for flexibility in order to meet the diverse needs of the nuclear data compilation centers. This format should not be confused with a center-to-user format. Although users may obtain data from the centers in the EXFOR format, other center-to-user formats have been developed to meet the needs of the users within each center`s own sphere of responsibility. The exchange format, as outlined, allows a large variety of numerical data tables with explanatory and bibliographic information to be transmitted in an easily machine-readable format (for checking and indicating possible errors) and a format that can be read by personnel (for passing judgment on and correcting any errors indicated by the machine). The data presently included in the EXFOR exchange include: a complete compilation of experimental neutron-induced reaction data, a selected compilation of charged-particle induced reaction data, a selected compilation of photon-induced reaction data.

  3. Deuteron-induced reactions on Ni isotopes up to 60 MeV

    NASA Astrophysics Data System (ADS)

    Avrigeanu, M.; Šimečková, E.; Fischer, U.; Mrázek, J.; Novak, J.; Štefánik, M.; Costache, C.; Avrigeanu, V.

    2016-07-01

    Background: The high complexity of the deuteron-nucleus interaction from the deuteron weak binding energy of 2.224 MeV is also related to a variety of reactions induced by the deuteron-breakup (BU) nucleons. Thus, specific noncompound processes as BU and direct reactions (DR) make the deuteron-induced reactions so different from reactions with other incident particles. The scarce consideration of only pre-equilibrium emission (PE) and compound-nucleus (CN) mechanisms led to significant discrepancies with experimental results so that recommended reaction cross sections of high-priority elements as, e.g., Ni have mainly been obtained by fit of the data. Purpose: The unitary and consistent BU and DR account in deuteron-induced reactions on natural nickel may take advantage of an extended database for this element, including new accurate measurements of particular reaction cross sections. Method: The activation cross sections of 64,61,60Cu, Ni,5765, and 55,56,57,58,59m,60Co nuclei for deuterons incident on natural Ni at energies up to 20 MeV, were measured by the stacked-foil technique and high-resolution gamma spectrometry using U-120M cyclotron of CANAM, NPI CAS. Then, within an extended analysis of deuteron interactions with Ni isotopes up to 60 MeV, all processes from elastic scattering until the evaporation from fully equilibrated compound system have been taken into account while an increased attention is paid especially to the BU and DR mechanisms. Results: The deuteron activation cross-section analysis, completed by consideration of the PE and CN contributions corrected for decrease of the total-reaction cross section from the leakage of the initial deuteron flux towards BU and DR processes, is proved satisfactory for the first time to all available data. Conclusions: The overall agreement of the measured data and model calculations validates the description of nuclear mechanisms taken into account for deuteron-induced reactions on Ni, particularly the BU and

  4. Oxygen-isotope exchange and mineral alteration in gabbros of the Lower Layered Series, Kap Edvard Holm Complex, East Greenland

    SciTech Connect

    Fehlhaber, K.; Bird, D.K. )

    1991-08-01

    Multiple intrusions of gabbros, mafic dikes, and syenites in the Kap Edvard Holm Complex gave rise to prolonged circulation of meteoric hydrothermal solutions and extreme isotope exchange and mineral alteration in the 3,600-m-thick Lower Layered Series gabbros. In the Lower Layered Series, {delta}{sup 18}O of plagioclase varies from +0.3{per thousand} to {minus}5.8{per thousand}, and it decreases with an increase in the volume of secondary talc, chlorite, and actinolite. In the same gabbros, pyroxenes have a more restricted range in {delta}{sup 18}O, from 5.0{per thousand} to 3.8{per thousand}, and values of {delta}{sup 18}O{sub pyroxene} are independent of the abundance of secondary minerals, which ranges from 14% to 30%. These relations indicate that large amounts of water continued to flow through the rocks at temperatures of < 500-600C, altering the gabbros to assemblages of talc + chlorite + actinolite {plus minus}epidote {plus minus}albite and causing significant oxygen-isotope exchange in plagioclase, but not in pyroxene. The extensive low-temperature secondary mineralization and {sup 18}O depletion of plagioclase in the Lower Layered Series are associated with the later emplacement of dikes and gabbros and syenites, which created new fracture systems and provided heat sources for hydrothermal fluid circulation. This produced subsolidus mineral alteration and isotope exchange in the Lower Layered Series that are distinct from those in the Skaergaard and Cuillin gabbros of the North Atlantic Tertiary province, but are similar to those observed in some oceanic gabbros.

  5. Measurement of alpha-induced reaction cross sections on erbium isotopes for γ process studies

    NASA Astrophysics Data System (ADS)

    Kiss, G. G.; Szücs, T.; Török, Zs.; Fülöp, Zs.; Gyürky, Gy.; Halász, Z.; Somorjai, E.; Rauscher, T.

    2014-05-01

    The cross sections of the 162Er(α,γ)166Yb and 162,164,166Er(α,n)165,167,169Yb reactions have been measured at MTA Atomki. The radiative alpha capture reaction cross section was measured between Ec.m. = 11.21 MeV and Ec.m. = 16.09 MeV just above the astrophysically relevant energy region (which lies between 7.8 and 11.48 MeV at T9 = 3 GK). The 162Er(α,n)165Yb, 164Er(α,n)167Yb and 166Er(α,n)169Yb reactions were studied between Ec.m. = 12.19 and 16.09 MeV, Ec.m. = 13.17 and 16.59 MeV and Ec.m. = 12.68 and 17.08 MeV, respectively. The aim of this work is to provide experimental data for modeling the γ process which is thought to be responsible for the production of the proton-rich isotopes heavier than iron.

  6. Measurement of alpha-induced reaction cross sections on erbium isotopes for γ process studies

    SciTech Connect

    Kiss, G. G.; Szücs, T.; Török, Zs.; Fülöp, Zs.; Gyürky, Gy.; Halász, Z.; Somorjai, E.; Rauscher, T.

    2014-05-02

    The cross sections of the {sup 162}Er(α,γ){sup 166}Yb and {sup 162,164,166}Er(α,n){sup 165,167,169}Yb reactions have been measured at MTA Atomki. The radiative alpha capture reaction cross section was measured between E{sub c.m.} = 11.21 MeV and E{sub c.m.} = 16.09 MeV just above the astrophysically relevant energy region (which lies between 7.8 and 11.48 MeV at T{sub 9} = 3 GK). The {sup 162}Er(α,n){sup 165}Yb, {sup 164}Er(α,n){sup 167}Yb and {sup 166}Er(α,n){sup 169}Yb reactions were studied between E{sub c.m.} = 12.19 and 16.09 MeV, E{sub c.m.} = 13.17 and 16.59 MeV and E{sub c.m.} = 12.68 and 17.08 MeV, respectively. The aim of this work is to provide experimental data for modeling the γ process which is thought to be responsible for the production of the proton-rich isotopes heavier than iron.

  7. Evolution of the isotope composition of C and O in the DIC in a water film during precipitation of calcite to the surface of a stalagmite in the presence of isotope exchange with the CO2 of the cave atmosphere and evaporation of the water

    NASA Astrophysics Data System (ADS)

    Dreybrodt, Wolfgang; Romanov, Douchko

    2016-04-01

    In a thin water layer, super saturated with respect to calcite with pH of about 8, where the aqueous CO2 is in equilibrium with the pCO2 of the cave atmosphere, the following processes determine the temporal evolution of the isotope composition of carbon and oxygen in the dissolved inorganic carbon ( DIC). a) Precipitation of calcite driven by super saturation, whereby deposition rates Between the heavy and light isotopes are slightly different. b) Evaporation of water reducing the depth of the water layer and changing the isotope composition of oxygen in the water by Rayleigh-distillation. c) Isotope exchange between the CO2 in the cave atmosphere and the DIC for both carbon and oxygen. d) Isotope exchange between the oxygen in the water molecules and that in the DIC. All these processes can be described by a differential equation, which can be solved numerically. For small times a simple solution can be given. Δ_DIC(T_drip) = [ ( (⪉mbda + ɛ) C_eq/C0 - ɛ ) T_drip/τ + (δ^atm_eq - δ0 ) T_drip/τ^atm + (δ^water_eq-δ_0-ɛ_wT_drip/T_ev) T_drip/τ^water] Δ_DIC(T_drip) is the change of the δ13C and δ18O (given here as small numbers and not in the ‰ notation) after the drip time T_drip. ⪉mbda, ɛ are kinetic parameters of precipitation on the order of 10-2 and τ is the time scale of precipitation, typically about 1000 s. (δ^atm_eq - δ_0) and (δ^water_eq - δ_0) are the differences between the corresponding initial δ-value and that when DIC is in isotope equilibrium with the atmosphere or in the case of oxygen with the water. τ^atm and τ^water, both on the order of 10,000 s, are the time scales of the exchange reactions to approach isotope equilibrium. For carbon the last term (exchange with water) must be deleted. C_eq is the concentration of DIC in chemical equilibrium with the CO2 in the cave atmosphere and C0 is the initial concentration, when the water drips to the stalagmite. T_ev is the time needed to fully evaporate the water layer and

  8. Fluid flow pathways through the oceanic crust: reaction permeability and isotopic tracing

    NASA Astrophysics Data System (ADS)

    McCaig, Andrew; Castelain, Teddy; Klein, Frieder

    2013-04-01

    It is generally assumed that the dominant means of creating permeability in ocean floor hydrothermal systems is fracturing, induced either by cooling or by tectonic stress. Here we show textural evidence that metamorphic reactions can create a hierarchy of permeable pathways through gabbroic rocks similar to a fracture hierarchy. Isotopic microsampling shows that just as with fractures, most flow occurs through the larger channelways, and that even at the microscale, flow can be extremely heterogeneous with alteration affecting only certain minerals in the framework, leaving others untouched. Reaction permeability is created in three ways; dissolution creating open porosity, microcracking due to volume increase reactions involving olivine, and expansion of water due to rapid heating in dyke margins, particularly when intruded into brecciated rocks. Our data comes from IODP Hole U1309D, which was drilled to 1400 mbsf in the footwall of the Atlantis Massif detachment fault at the Mid-Atlantic Ridge 30°N. The core is composed of gabbroic rocks interlayered with olivine rich troctolites, with several basalt/diabase sills in the top 130 m. The dominant alteration occurred in the greenschist facies, at depths at least 1 km below seafloor, and decreases in intensity downhole. Whole rock oxygen isotope values range from +5.5 permil to +1.5 permil, indicating variable degrees of interaction with seawater at temperatures generally > 250 °C. Gabbroic rocks and diabases exhibit a range of Sr isotope ratios from MORB values (0.70261) to intermediate ratios (0.70429). Microsampling shows that amphiboles are often more radiogenic than coexisting plagioclase and can sometimes be isotopically altered in the same rock as completely unaltered primary minerals. Large (10 cm) amphibole-filled vugs show values ranging up to 0.708, close to seawater. In some cases however the secondary minerals are virtually unaltered indicating low fluid fluxes in pervasive alteration. SEM textures in

  9. Isotope Effects as Probes for Enzyme Catalyzed Hydrogen-Transfer Reactions

    PubMed Central

    Roston, Daniel; Islam, Zahidul; Kohen, Amnon

    2015-01-01

    Kinetic Isotope effects (KIEs) have long served as a probe for the mechanisms of both enzymatic and solution reactions. Here, we discuss various models for the physical sources of KIEs, how experimentalists can use those models to interpret their data, and how the focus of traditional models has grown to a model that includes motion of the enzyme and quantum mechanical nuclear tunneling. We then present two case studies of enzymes, thymidylate synthase and alcohol dehydrogenase, and discuss how KIEs have shed light on the C-H bond cleavages those enzymes catalyze. We will show how the combination of both experimental and computational studieshas changed our notion of how these enzymes exert their catalytic powers. PMID:23673528

  10. Iridium Cyclooctene Complex That Forms a Hyperpolarization Transfer Catalyst before Converting to a Binuclear C–H Bond Activation Product Responsible for Hydrogen Isotope Exchange

    PubMed Central

    2016-01-01

    [IrCl(COE)2]2 (1) reacts with pyridine (py) and H2 to form crystallographically characterized IrCl(H)2(COE)(py)2 (2). 2 undergoes py loss to form 16-electron IrCl(H)2(COE)(py) (3), with equivalent hydride ligands. When this reaction is studied with parahydrogen, 1 efficiently achieves hyperpolarization of free py (and nicotinamide, nicotine, 5-aminopyrimidine, and 3,5-lutudine) via signal amplification by reversible exchange (SABRE) and hence reflects a simple and readily available precatayst for this process. 2 reacts further over 48 h at 298 K to form crystallographically characterized (Cl)(H)(py)(μ-Cl)(μ-H)(κ-μ-NC5H4)Ir(H)(py)2 (4). This dimer is active in the hydrogen isotope exchange process that is used in radiopharmaceutical preparations. Furthermore, while [Ir(H)2(COE)(py)3]PF6 (6) forms upon the addition of AgPF6 to 2, its stability precludes its efficient involvement in SABRE. PMID:27934314

  11. Dynamics of metal-humate complexation equilibria as revealed by isotope exchange studies - a matter of concentration and time

    NASA Astrophysics Data System (ADS)

    Lippold, Holger; Eidner, Sascha; Kumke, Michael U.; Lippmann-Pipke, Johanna

    2017-01-01

    Complexation with dissolved humic matter can be crucial in controlling the mobility of toxic or radioactive contaminant metals. For speciation and transport modelling, a dynamic equilibrium process is commonly assumed, where association and dissociation run permanently. This is, however, questionable in view of reported observations of a growing resistance to dissociation over time. In this study, the isotope exchange principle was employed to gain direct insight into the dynamics of the complexation equilibrium, including kinetic inertisation phenomena. Terbium(III), an analogue of trivalent actinides, was used as a representative of higher-valent metals. Isotherms of binding to (flocculated) humic acid, determined by means of 160Tb as a radiotracer, were found to be identical regardless of whether the radioisotope was introduced together with the bulk of stable 159Tb or subsequently after pre-equilibration for up to 3 months. Consequently, there is a permanent exchange of free and humic-bound Tb since all available binding sites are occupied in the plateau region of the isotherm. The existence of a dynamic equilibrium was thus evidenced. There was no indication of an inertisation under these experimental conditions. If the small amount of 160Tb was introduced prior to saturation with 159Tb, the expected partial desorption of 160Tb occurred at much lower rates than observed for the equilibration process in the reverse procedure. In addition, the rates decreased with time of pre-equilibration. Inertisation phenomena are thus confined to the stronger sites of humic molecules (occupied at low metal concentrations). Analysing the time-dependent course of isotope exchange according to first-order kinetics indicated that up to 3 years are needed to attain equilibrium. Since, however, metal-humic interaction remains reversible, exchange of metals between humic carriers and mineral surfaces cannot be neglected on the long time scale to be considered in predictive

  12. Charge-exchange reactions and nuclear matrix elements for {beta}{beta} decay

    SciTech Connect

    Frekers, D.

    2009-11-09

    Charge-exchange reactions of (n, p) and (p, n) type at intermediate energies are a powerful tool for the study of nuclear matrix element in {beta}{beta} decay. The present paper reviews some of the most recent experiments in this context. Here, the (n, p) type reactions are realized through (d, {sup 2}He), where {sup 2}He refers to two protons in a singlet {sup 1}S{sub 0} state and where both of these are momentum analyzed and detected by the same spectrometer and detector. These reactions have been developed and performed exclusively at KVI, Groningen (NL), using an incident deuteron energy of 183 MeV. Final state resolutions of about 100 keV have routinely been available. On the other hand, the ({sup 3}He, t) reaction is of (p, n) type and was developed at the RCNP facility in Osaka (JP). Measurements with an unprecedented high resolution of 30 keV at incident energies of 420 MeV are now readily possible. Using both reaction types one can extract the Gamow-Teller transition strengths B(GT{sup +}) and B(GT{sup -}), which define the two ''legs'' of the {beta}{beta} decay matrix elements for the 2v{beta}{beta} decay The high resolution available in both reactions allows a detailed insight into the excitations of the intermediate odd-odd nuclei and, as will be shown, some unexpected features are being unveiled.

  13. Double-regge exchange limit for the γp→ K⁺K⁻p reaction

    SciTech Connect

    Shi, M.; Danilkin, I. V.; Fernández-Ramírez, C.; Mathieu, V.; Pennington, M. R.; Schott, D.; Szczepaniak, A. P.

    2015-02-01

    We apply the generalized Veneziano model (B₅ model) in the double-Regge exchange limit to the γp→K⁺K⁻p reaction. Four different cases defined by the possible combinations of the signature factors of leading Regge exchanges ((K*,a₂/f₂), (K*,ρ/ω), (K*₂,a₂/f₂), and (K*₂,ρ/ω)) have been simulated through the Monte Carlo method. Suitable event candidates for the double-Regge exchange high-energy limit were selected employing Van Hove plots as a better alternative to kinematical cuts in the K⁺K⁻p Dalitz plot. In this way we predict and analyze the double-Regge contribution to the K⁺K⁻p Dalitz plot, which constitutes one of the major backgrounds in the search for strangeonia, hybrids and exotics using γp→K⁺K⁻p reaction. We expect that data currently under analysis, and that to come in the future, will allow verification of the double-Regge behavior and a better assessment of this component of the amplitude.

  14. EXFOR systems manual: Nuclear reaction data exchange format. Revision 97/1

    SciTech Connect

    McLane, V.

    1997-07-01

    This document describes EXFOR, the exchange format designed to allow transmission of nuclear reaction data between the members of the Nuclear Data Center Network. In addition to storing the data and its` bibliographic information, experimental information, including source of uncertainties, is also compiled. The status and history of the data set is also included, e.g., the source of the data, any updates which have been made, and correlations to other data sets. EXFOR is designed for flexibility rather than optimization of data processing in order to meet the diverse needs of the nuclear reaction data centers. The exchange format should not be confused with a center-to-user format. Although users may obtain data from the centers in the EXFOR format, other center-to-user formats have been developed to meet the needs of the users within each center`s own sphere of responsibility. The exchange format, as outlined, is designed to allow a large variety of numerical data tables with explanatory and bibliographic information to be transmitted in an easily machine-readable format (for checking and indicating possible errors) and a format that can be read by personnel (for passing judgment on and correcting any errors indicated by the machine).

  15. Double-regge exchange limit for the γp→ K⁺K⁻p reaction

    DOE PAGES

    Shi, M.; Danilkin, I. V.; Fernández-Ramírez, C.; ...

    2015-02-01

    We apply the generalized Veneziano model (B₅ model) in the double-Regge exchange limit to the γp→K⁺K⁻p reaction. Four different cases defined by the possible combinations of the signature factors of leading Regge exchanges ((K*,a₂/f₂), (K*,ρ/ω), (K*₂,a₂/f₂), and (K*₂,ρ/ω)) have been simulated through the Monte Carlo method. Suitable event candidates for the double-Regge exchange high-energy limit were selected employing Van Hove plots as a better alternative to kinematical cuts in the K⁺K⁻p Dalitz plot. In this way we predict and analyze the double-Regge contribution to the K⁺K⁻p Dalitz plot, which constitutes one of the major backgrounds in the search for strangeonia,more » hybrids and exotics using γp→K⁺K⁻p reaction. We expect that data currently under analysis, and that to come in the future, will allow verification of the double-Regge behavior and a better assessment of this component of the amplitude.« less

  16. Exchanged cations and water during reactions in polypyrrole macroions from artificial muscles.

    PubMed

    Valero, Laura; Otero, Toribio F; Martínez, José G

    2014-02-03

    The movement of the bilayer (polypyrrole-dodecylbenzenesulfonate/tape) during artificial muscle bending under flow of current square waves was studied in aqueous solutions of chloride salts. During current flow, polypyrrole redox reactions result in variations in the volumes of the films and macroscopic bending: swelling by reduction with expulsion of cations and shrinking by oxidation with the insertion of cations. The described angles follow a linear function, different in each of the studied salts, of the consumed charge: they are faradaic polymeric muscles. The linearity indicates that cations are the only exchanged ions in the studied potential range. By flow of the same specific charge in every electrolyte, different angles were described by the muscle. The charge and the angle allow the number and volume of both the exchanged cations and the water molecules (related to a reference) between the film to be determined, in addition to the electrolyte per unit of charge during the driving reaction. The attained apparent solvation numbers for the exchanged cations were: 0.8, 0.7, 0.6, 0.5, 0.5, 0.4, 0.25, and 0.0 for Na(+), Mg(2+), La(3+), Li(+), Ca(2+), K(+), Rb(+), and Cs(+), respectively.

  17. Kinetic isotope effects of peptidylglycine alpha-hydroxylating mono-oxygenase reaction.

    PubMed Central

    Takahashi, K; Onami, T; Noguchi, M

    1998-01-01

    Many bioactive polypeptides or neuropeptides possess a C-terminal alpha-amide group as a critical determinant for their optimal bioactivities. The amide functions are introduced by the sequential actions of peptidylglycine alpha-hydroxylating mono-oxygenase (PHM; EC 1.14.17.3) and peptidylamidoglycollate lyase (PAL; EC 4.3.2.5) from their glycine-extended precursors. In the present study we examined the kinetic isotope effects of the frog PHM reaction by competitive and non-competitive approaches. In the competitive approach we employed the double-label tracer method with D-Tyr-[U-14C]Val-Gly, D-Tyr-[3,4-3H]Val-[2,2-2H2]-Gly, and D-Tyr-Val-(R,S)[2-3H]Gly as substrates, and we determined the deuterium and tritium effects on Vmax/Km as 1.625+/-0.041 (mean+/-S. D.) and 2.71+/-0.16 (mean+/-S.D.), respectively. The intrinsic deuterium isotope effect (Dk) on the glycine hydroxylation reaction was estimated to be 6.5-10.0 (mean 8.1) by the method of Northrop [Northrop (1975) Biochemistry 14, 2644-2651]. In the non-competitive approach with N,N-dimethyl-1,4-phenylenediamine as a reductant, however, the deuterium effect on Vmax (DV) was approximately unity, although the deuterium effect on Vmax/Km (DV/K) was comparable to that obtained by the competitive approach. These results indicated that DV was completely masked by the presence of one or more steps much slower than the glycine hydroxylation step and that DV/K was diminished from Dk by a large forward commitment to catalysis. The addition of PAL, however, increased the apparent DV from 1.0 to 1.2, implying that the product release step was greatly accelerated by PAL. These results suggest that the product release is rate-limiting in the overall PHM reaction. The large Dk indicated that the glycine hydroxylation catalysed by PHM might proceed in a stepwise mechanism similar to that proposed for the dopamine beta-hydroxylase reaction [Miller and Klinman (1983) Biochemistry 22, 3091-3096]. PMID:9806894

  18. Theoretical rate constants and kinetic isotope effects in the reaction of methane with H, D, T, and Mu atoms.

    PubMed

    Espinosa-García, J

    2008-03-07

    The rate constants and kinetic isotope effects of the reaction of methane with four isotopes of hydrogen, protium (H), deuterium (D), tritium (T), and muonium (Mu), were studied using variational transition state theory with multidimensional tunneling on an analytical potential energy surface, PES-2002, previously constructed by our group. For the four isotopes, our kinetics results agree reasonably with available experimental measurements, improving previous theoretical results that used different potential energy surfaces and/or theoretical approaches. In the comparison of the reactivity between protium and muonium, which is the most severe test of the surface and theoretical method due to the large mass difference between the two isotopes, some sources of discrepancy between theory and experiment were analyzed. These were the zero-point energy, tunneling effect, and the role of the reactivity from methane excited vibrational states.

  19. Theoretical Investigations for Anomalous Fractionation of Sulfur Isotopes during a surface reaction

    NASA Astrophysics Data System (ADS)

    Otake, T.; Lasaga, A. C.; Watanabe, Y.; Ohmoto, H.

    2009-12-01

    While SO2 photolysis by UV radiation has been the most widely accepted process to cause Anomalous Isotope Fractionation (AIF: i.e., large deviation from the mass-dependent relationships) of sulfur in nature, recent experimental evidence demonstrated that thermochemical reduction of sulfate by simple amino acids also produce AIF (Watanabe et al., 2009). Their study provides an alternative process that may have caused AIF signatures in Archean sedimentary rocks: reactions between organic matter in sediments and sulfate-rich hydrothermal solutions. Our theoretical investigations (Lasaga et al. 2008) supported their study and suggested that a surface reaction is another mechanism that can cause AIF of sulfur. Applying squire adsorption-well and Morse potential models for adsorption of sulfur species on a solid surface, we showed that a combination of small chemisorption energies (<30 kJ/mole) with possible discontinuities in the number of bound energy levels for different sulfur isotopes may lead to AIF effects in heterogeneous reactions between a surface and sulfur-bearing species. We also performed ab initio calculations for SO2 adsorption onto a naphthalene molecule, which simulates a kerogen surface. The results indicate the possibility of producing large AIF effects (e.g., δ33S/δ34S ≈ 1.08, δ36S/δ34S ≈ 0.84, Δ33S = 7.0 - 13.6‰, Δ36S = -13.0 - -25.2‰) by heterogeneous reactions between organic matter and sulfur-bearing solutions under hydrothermal conditions. The results also indicate that AIF signatures may increase with increasing temperature because the discontinuity occurs at high energy states. However, more recently, Balan et al. (2009) dismissed the surface reaction as a possible AIF mechanism. They recognized a significant overlap of wavefunctions between the last bound state and first unbound state for the systems where the boundary wall was arbitrarily set very close to the surface. The overlap led them to include the unbound state in the

  20. New data on cross sections for partial and total photoneutron reactions on the isotopes {sup 91,94}Zr

    SciTech Connect

    Varlamov, V. V.; Makarov, M. A.; Peskov, N. N.; Stepanov, M. E.

    2015-07-15

    Experimental data on {sup 91,94}Zr photodisintegration that were obtained in a beam of quasimonoenergetic annihilation photons by the method of neutron multiplicity sorting are analyzed. It is found that the cross sections for the (γ, 1n), (γ, 2n), and (γ, 3n) reactions on both isotopes do not meet the objective data-reliability criteria formulated earlier. Within the experimental–theoretical method for evaluating partial-reaction cross sections that satisfy these criteria, new data on the cross sections for the aforementioned partial reactions, as well as for the (γ, sn) = (γ, 1n) + (γ, 2n) + (γ, 3n) +... total photoneutron reaction, are obtained for the isotopes {sup 91,94}Zr.

  1. On the synthesis of neutron-rich isotopes along the N = 126 shell in multinucleon transfer reactions

    NASA Astrophysics Data System (ADS)

    Beliuskina, O.; Heinz, S.; Zagrebaev, V.; Comas, V.; Heinz, C.; Hofmann, S.; Knöbel, R.; Stahl, M.; Ackermann, D.; Heßberger, F. P.; Kindler, B.; Lommel, B.; Maurer, J.; Mann, R.

    2014-10-01

    We performed experimental and theoretical studies of deep inelastic multinucleon transfer reactions in heavy-ion collisions at Coulomb barrier energies. Our goal was to investigate if deep inelastic transfer is superior to fragmentation reactions for producing neutron-rich isotopes in the astrophysically interesting region along the closed neutron shell N = 126 . Here, we will present our results obtained in reactions of 64Ni + 207Pb at 5.0 MeV/nucleon. The experiment was performed at the velocity filter SHIP at GSI Darmstadt. Several transfer products on the neutron-rich side were populated but new isotopes were not observed. A comparison of the measured transfer cross-sections and production yields with those from fragmentation reactions allowed for interesting conclusions.

  2. Controlling plasmonic "hot spots" in nanoparticle assemblies using ligand place-exchange reactions

    NASA Astrophysics Data System (ADS)

    Bao, Lanlan

    This thesis describes the 1) selective attachment of Au nanoparticles (NPs) to the edges of Au nanoplates via ligand place-exchange reactions, 2) preparation of coupled Au nanoplates via ligand place-exchange reactions, 3) attachment of Au NPs to Au nanorods via ligand place-exchange reactions, 4) study of the dynamics of ligand place-exchange reactions on Au nanoplates, 5) study of the changes in the optical properties of Au nanoplates upon attachment of Au NPs by observing the shift in the localized surface plasmon resonance (LSPR) band, and 6) study of the surface-enhanced Raman spectroscopy (SERS) enhancement of analyte molecules located in the "hot-spots" of coupled Au nanoplate-Au NP structures. We regio-selectively attached 20 nm Au NPs to Au nanoplates by first assembling hexanethiol (HT) onto Au nanoplates, then exchanging HT with 4-aminothiophenol (4-ATP) using different reaction times, and finally electrostatically attaching the negatively-charged Au NPs to the positively-charged 4-ATP ligands bound to the Au nanoplates. We prepared nanoplate-NP assemblies with 100% of the NPs attached to vertex sites or 100% attached to vertex and edge sites using 1 h and 2 h exchange times, respectively. The location and number of bound Au NPs to the nanoplates as a function of exchange time provided information about the mechanism of the ligand place-exchange reaction on the Au nanoplate surface. Ligand place-exchange starts from the vertex sites, then proceeds at the edge sites and finally occurs at smooth terrace sites for longer times. Direct exchange at terraces is possible but the data suggests it occurs mostly through lateral migration of the 4-ATP ligands from vertex/edge sites to the terrace. The data also suggests that phase segregation of 4-ATP ligands and HT ligands occurs on the terrace sites for longer times. The ligand place-exchange strategy also leads to interesting coupled Au nanoplate-Au nanoplate and Au nanorod-Au NP assemblies. The optical

  3. Effects of the anion salt nature on the rate constants of the aqueous proton exchange reactions.

    PubMed

    Paredes, Jose M; Garzon, Andres; Crovetto, Luis; Orte, Angel; Lopez, Sergio G; Alvarez-Pez, Jose M

    2012-04-28

    The proton-transfer ground-state rate constants of the xanthenic dye 9-[1-(2-methyl-4-methoxyphenyl)]-6-hydroxy-3H-xanthen-3-one (TG-II), recovered by Fluorescence Lifetime Correlation Spectroscopy (FLCS), have proven to be useful to quantitatively reflect specific cation effects in aqueous solutions (J. M. Paredes, L. Crovetto, A. Orte, J. M. Alvarez-Pez and E. M. Talavera, Phys. Chem. Chem. Phys., 2011, 13, 1685-1694). Since these phenomena are more sensitive to anions than to cations, in this paper we have accounted for the influence of salts with the sodium cation in common, and the anion classified according to the empirical Hofmeister series, on the proton transfer rate constants of TG-II. We demonstrate that the presence of ions accelerates the rate of the ground-state proton-exchange reaction in the same order than ions that affect ion solvation in water. The combination of FLCS with a fluorophore undergoing proton transfer reactions in the ground state, along with the desirable feature of a pseudo-dark state when the dye is protonated, allows one unique direct determination of kinetic rate constants of the proton exchange chemical reaction.

  4. Revised Calculations of the Production Rates for Co Isotopes in Meteorites Using New Cross Sections for Neutron-induced Reactions

    NASA Technical Reports Server (NTRS)

    Sisterson, J. M.; Brooks, F. D.; Buffler, A.; Allie, M. S.; Herbert, M. S.; Nchodu, M. R.; Makupula, S.; Ullmann, J.; Reedy, R. C.; Jones, D. T. L.

    2002-01-01

    New cross section measurements for reactions induced by neutrons with energies greater than 70 MeV are used to calculate the production rates for cobalt isotopes in meteorites and these new calculations are compared to previous estimates. Additional information is contained in the original extended abstract.

  5. Reaction of dimethyl ether with hydroxyl radicals: kinetic isotope effect and prereactive complex formation.

    PubMed

    Bänsch, Cornelie; Kiecherer, Johannes; Szöri, Milan; Olzmann, Matthias

    2013-09-05

    The kinetic isotope effect of the reactions OH + CH3OCH3 (DME) and OH + CD3OCD3 (DME-d6) was experimentally and theoretically studied. Experiments were carried out in a slow-flow reactor at pressures between 5 and 21 bar (helium as bath gas) with production of OH by laser flash photolysis of HNO3 and time-resolved detection of OH by laser-induced fluorescence. The temperature dependences of the rate coefficients obtained can be described by the following modified Arrhenius expressions: k(OH+DME) = (4.5 ± 1.3) × 10(-16) (T/K)(1.48) exp(66.6 K/T) cm(3) s(-1) (T = 292-650 K, P = 5.9-20.9 bar) and k(OH+DME-d6) = (7.3 ± 2.2) × 10(-23) (T/K)(3.57) exp(759.8 K/T) cm(3) s(-1) (T = 387-554 K, P = 13.0-20.4 bar). A pressure dependence of the rate coefficients was not observed. The agreement of our experimental results for k(OH+DME) with values from other authors is very good, and from a fit to all available literature data, we derived the following modified Arrhenius expression, which reproduces the values obtained in the temperature range T = 230-1500 K at pressures between 30 mbar and 21 bar to better than within ±20%: k(OH+DME) = 8.45 × 10(-18) (T/K)(2.07) exp(262.2 K/T) cm(3) s(-1). For k(OH+DME-d6), to the best of our knowledge, this is the first experimental study. For the analysis of the reaction pathway and the kinetic isotope effect, potential energy diagrams were calculated by using three different quantum chemical methods: (I) CCSD(T)/cc-pV(T,Q)Z//MP2/6-311G(d,p), (II) CCSD(T)/cc-pV(T,Q)Z//CCSD/cc-pVDZ, and (III) CBS-QB3. In all three cases, the reaction is predicted to proceed via a prereaction OH-ether complex with subsequent intramolecular hydrogen abstraction and dissociation to give the methoxymethyl radical and water. Overall rate coefficients were calculated by assuming a thermal equilibrium between the reactants and the prereaction complex and by calculating the rate coefficients of the hydrogen abstraction step from canonical transition state theory

  6. Neutron skin thickness of {sup 90}Zr determined by charge exchange reactions

    SciTech Connect

    Yako, K.; Sakai, H.; Sagawa, H.

    2006-11-15

    Charge exchange spin-dipole (SD) excitations of {sup 90}Zr are studied by the {sup 90}Zr(p,n) and {sup 90}Zr(n,p) reactions at 300 MeV. A multipole decomposition technique is employed to obtain the SD strength distributions in the cross-section spectra. For the first time, a model-independent SD sum rule value is obtained: 148{+-}12 fm{sup 2}. The neutron skin thickness of {sup 90}Zr is determined to be 0.07{+-}0.04 fm from the SD sum rule value.

  7. Gas chromatography mass spectrometry study of hydrogen deuterium exchange reactions of volatile hydrides of As, Sb, Bi, Ge and Sn in aqueous media

    NASA Astrophysics Data System (ADS)

    D'Ulivo, Alessandro; Mester, Zoltan; Meija, Juris; Sturgeon, Ralph E.

    2006-07-01

    The H-D exchange processes in MH n or MD n hydrides (M = As, Sb, Bi, n = 3; M = Ge, Sn, n = 4) taking place when they are in contact with H 2O or D 2O solution at different pH or pD values (interval of pH = [0,13]) have been investigated using gas chromatography-mass spectrometry (GC-MS). MH n or MD n compounds were injected into the headspace of reaction vials (4-12 ml) containing 1-2 ml of buffered solution maintained under stirring or shaking conditions. The isotopic composition of the gaseous phase hydrides/deuterides was determined at regular intervals in the range of time 0-15 min. The MH n or MD n compounds were synthesized in separate vials and their purity was checked separately before injection into the reaction vials. The mass spectra were deconvoluted in order to estimate the relative abundance of each species formed following the H-D exchange process (AsH nD 3- n , SbH nD 3- n, BiH nD 3- n, n = 0-3; GeH nD 4- n, SnH nD 4- n, n = 0-4) and the relative abundance of H and D. In the investigated pH (or pD) interval arsanes and stibanes undergo H-D exchange in alkaline media for pH > 7. No H-D exchange was detected for the other hydrides, where the prevailing process is their decomposition in the aqueous phase. A reaction model, based on the formation of protonated or deprotonated intermediates is proposed for H-D exchange of MH n or MD n compounds placed in contact with H 2O or D 2O at different pH or pD values. The H-D exchange in the already formed hydrides can be source of the interference in mechanistic studies on hydride formation performed using labeled reagents; no H-D exchange was detected within the following pH intervals that can be considered free from interference: arsanes pH = [0,7), stibanes pH = [0,7), bismuthanes, germanes and stannanes pH = [0,13].

  8. Protein Structure-Function Correlation in Living Human Red Blood Cells Probed by Isotope Exchange-based Mass Spectrometry.

    PubMed

    Narayanan, Sreekala; Mitra, Gopa; Muralidharan, Monita; Mathew, Boby; Mandal, Amit K

    2015-12-01

    To gain insight into the underlying mechanisms of various biological events, it is important to study the structure-function correlation of proteins within cells. Structural probes used in spectroscopic tools to investigate protein conformation are similar across all proteins. Therefore, structural studies are restricted to purified proteins in vitro and these findings are extrapolated in cells to correlate their functions in vivo. However, due to cellular complexity, in vivo and in vitro environments are radically different. Here, we show a novel way to monitor the structural transition of human hemoglobin upon oxygen binding in living red blood cells (RBCs), using hydrogen/deuterium exchange-based mass spectrometry (H/DX-MS). Exploiting permeability of D2O across cell membrane, the isotope exchange of polypeptide backbone amide hydrogens of hemoglobin was carried out inside RBCs and monitored using matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). To explore the conformational transition associated with oxygenation of hemoglobin in vivo, the isotope exchange kinetics was simplified using the method of initial rates. RBC might be considered as an in vivo system of pure hemoglobin. Thus, as a proof-of-concept, the observed results were correlated with structural transition of hemoglobin associated with its function established in vitro. This is the first report on structural changes of a protein upon ligand binding in its endogenous environment. The proposed method might be applicable to proteins in their native state, irrespective of location, concentration, and size. The present in-cell approach opens a new avenue to unravel a plethora of biological processes like ligand binding, folding, and post-translational modification of proteins in living cells.

  9. Pt loaded carbon aerogel catalyst for catalytic exchange reactions between water and hydrogen gas

    NASA Astrophysics Data System (ADS)

    Singh, Rashmi; Singh, Ashish; Kohli, D. K.; Singh, M. K.; Gupta, P. K.

    2013-06-01

    We report development and characterization of platinum doped carbon aerogel catalyst for catalytic exchange reactions between water and hydrogen gas. The carbon aerogel with uniformly dispersed platinum nanoparticles was prepared by adding platinum precursor during the sol-gel process. Thereafter colloidal PTFE was mixed with the platinum doped carbon aerogel powder and coated on Dixon rings to obtain hydrophobic catalyst with required mechanical strength. Detailed studies have been carried out to observe the effect of physical characteristics of the catalyst powder (surface area and pore size of aerogels, Pt cluster size and its valence state etc) and the different coating parameters (PTFE to Pt-CA ratio and Pt loading on Dixon ring) on volume transfer rate (Ky.a) for H/D reaction. Ky.a values of ˜0.8 m3 (STP).s-1. m-3 were obtained for Pt loading of 7% and Pt cluster size of 3 nm at atmospheric pressure.

  10. Review of computer simulations of isotope effects on biochemical reactions: From the Bigeleisen equation to Feynman's path integral.

    PubMed

    Wong, Kin-Yiu; Xu, Yuqing; Xu, Liang

    2015-11-01

    Enzymatic reactions are integral components in many biological functions and malfunctions. The iconic structure of each reaction path for elucidating the reaction mechanism in details is the molecular structure of the rate-limiting transition state (RLTS). But RLTS is very hard to get caught or to get visualized by experimentalists. In spite of the lack of explicit molecular structure of the RLTS in experiment, we still can trace out the RLTS unique "fingerprints" by measuring the isotope effects on the reaction rate. This set of "fingerprints" is considered as a most direct probe of RLTS. By contrast, for computer simulations, oftentimes molecular structures of a number of TS can be precisely visualized on computer screen, however, theoreticians are not sure which TS is the actual rate-limiting one. As a result, this is an excellent stage setting for a perfect "marriage" between experiment and theory for determining the structure of RLTS, along with the reaction mechanism, i.e., experimentalists are responsible for "fingerprinting", whereas theoreticians are responsible for providing candidates that match the "fingerprints". In this Review, the origin of isotope effects on a chemical reaction is discussed from the perspectives of classical and quantum worlds, respectively (e.g., the origins of the inverse kinetic isotope effects and all the equilibrium isotope effects are purely from quantum). The conventional Bigeleisen equation for isotope effect calculations, as well as its refined version in the framework of Feynman's path integral and Kleinert's variational perturbation (KP) theory for systematically incorporating anharmonicity and (non-parabolic) quantum tunneling, are also presented. In addition, the outstanding interplay between theory and experiment for successfully deducing the RLTS structures and the reaction mechanisms is demonstrated by applications on biochemical reactions, namely models of bacterial squalene-to-hopene polycyclization and RNA 2'-O

  11. Protein-thiol substitution or protein dethiolation by thiol/disulfide exchange reactions: the albumin model.

    PubMed

    Summa, Domenico; Spiga, Ottavia; Bernini, Andrea; Venditti, Vincenzo; Priora, Raffaella; Frosali, Simona; Margaritis, Antonios; Di Giuseppe, Danila; Niccolai, Neri; Di Simplicio, Paolo

    2007-11-01

    Dethiolation experiments of thiolated albumin with thionitrobenzoic acid and thiols (glutathione, cysteine, homocysteine) were carried out to understand the role of albumin in plasma distribution of thiols and disulfide species by thiol/disulfide (SH/SS) exchange reactions. During these experiments we observed that thiolated albumin underwent thiol substitution (Alb-SS-X+RSH<-->Alb-SS-R+XSH) or dethiolation (Alb-SS-X+XSH<-->Alb-SH+XSSX), depending on the different pK(a) values of thiols involved in protein-thiol mixed disulfides (Alb-SS-X). It appeared in these reactions that the compound with lower pK(a) in mixed disulfide was a good leaving group and that the pK(a) differences dictated the kind of reaction (substitution or dethiolation). Thionitrobenzoic acid, bound to albumin by mixed disulfide (Alb-TNB), underwent rapid substitution after thiol addition, forming the corresponding Alb-SS-X (peaks at 0.25-1 min). In turn, Alb-SS-X were dethiolated by the excess nonprotein SH groups because of the lower pK(a) value in mixed disulfide with respect to that of other thiols. Dethiolation of Alb-SS-X was accompanied by formation of XSSX and Alb-SH up to equilibrium levels at 35 min, which were different for each thiol. Structures by molecular simulation of thiolated albumin, carried out for understanding the role of sulfur exposure in mixed disulfides in dethiolation process, evidenced that the sulfur exposure is important for the rate but not for determining the kind of reaction (substitution or dethiolation). Our data underline the contribution of SH/SS exchanges to determine levels of various thiols as reduced and oxidized species in human plasma.

  12. Accurate time-dependent wave packet study of the Li + H₂⁺ reaction and its isotopic variants.

    PubMed

    Aslan, E; Bulut, N; Castillo, J F; Bañares, L; Roncero, O; Aoiz, F J

    2012-01-12

    The dynamics and kinetics of the Li + H₂⁺ reaction and its isotopic variants (D₂⁺ and T₂⁺) have been studied by using a time-dependent wave packet (TDWP) coupled-channel (CC) method on the ab initio potential energy surface (PES) of Martinazzo et al. [J. Chem. Phys. 2003, 119, 21]. Total initial v = 0, j = 0 state-selected reaction probabilities for the Li + H₂⁺ reaction and its isotopic variants have been calculated from the threshold up to 1 eV for total angular momenta J from 0 to 90. Integral cross sections have been evaluated from the reaction probabilities at collision energies from threshold (≈0.2 eV) up to 1.0 eV collision. The calculated rate constants as a function of temperature show an Arrhenius type behavior in the 200 ≤ T ≤ 1000 K temperature interval. It has been found to be a considerable large intermolecular kinetic isotope effect. The TDWP-CC results are in overall good agreement with those obtained applying the TDWP Centrifugal-Sudden (CS) approximation, showing that the CS approximation is rather accurate for the title reaction.

  13. O2 activation by binuclear Cu sites: Noncoupled versus exchange coupled reaction mechanisms

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Solomon, Edward I.

    2004-09-01

    Binuclear Cu proteins play vital roles in O2 binding and activation in biology and can be classified into coupled and noncoupled binuclear sites based on the magnetic interaction between the two Cu centers. Coupled binuclear Cu proteins include hemocyanin, tyrosinase, and catechol oxidase. These proteins have two Cu centers strongly magnetically coupled through direct bridging ligands that provide a mechanism for the 2-electron reduction of O2 to a µ-2:2 side-on peroxide bridged species. This side-on bridged peroxo-CuII2 species is activated for electrophilic attack on the phenolic ring of substrates. Noncoupled binuclear Cu proteins include peptidylglycine -hydroxylating monooxygenase and dopamine -monooxygenase. These proteins have binuclear Cu active sites that are distant, that exhibit no exchange interaction, and that activate O2 at a single Cu center to generate a reactive CuII/O2 species for H-atom abstraction from the C-H bond of substrates. O2 intermediates in the coupled binuclear Cu enzymes can be trapped and studied spectroscopically. Possible intermediates in noncoupled binuclear Cu proteins can be defined through correlation to mononuclear CuII/O2 model complexes. The different intermediates in these two classes of binuclear Cu proteins exhibit different reactivities that correlate with their different electronic structures and exchange coupling interactions between the binuclear Cu centers. These studies provide insight into the role of exchange coupling between the Cu centers in their reaction mechanisms.

  14. Independent control of the shape and composition of ionic nanocrystals through sequential cation exchange reactions

    SciTech Connect

    Luther, Joseph Matthew; Zheng, Haimei; Sadtler, Bryce; Alivisatos, A. Paul

    2009-07-06

    Size- and shape-controlled nanocrystal growth is intensely researched for applications including electro-optic, catalytic, and medical devices. Chemical transformations such as cation exchange overcome the limitation of traditional colloidal synthesis, where the nanocrystal shape often reflects the inherent symmetry of the underlying lattice. Here we show that nanocrystals, with established synthetic protocols for high monodispersity, can be templates for independent composition control. Specifically, controlled interconversion between wurtzite CdS, chalcocite Cu2S, and rock salt PbS occurs while preserving the anisotropic dimensions unique to the as-synthesized materials. Sequential exchange reactions between the three sulfide compositions are driven by the disparate solubilites of the metal ion exchange pair in specific coordinating molecules. Starting with CdS, highly anisotropic PbS nanorods are created, which serve as an important material for studying strong 2-dimensional quantum confinement, as well as for optoelectronic applications. Furthermore, interesting nanoheterostructures of CdS|PbS are obtained by precise control over ion insertion and removal.

  15. The influence of leaf-atmosphere NH3(g ) exchange on the isotopic composition of nitrogen in plants and the atmosphere.

    PubMed

    Johnson, Jennifer E; Berry, Joseph A

    2013-10-01

    The distribution of nitrogen isotopes in the biosphere has the potential to offer insights into the past, present and future of the nitrogen cycle, but it is challenging to unravel the processes controlling patterns of mixing and fractionation. We present a mathematical model describing a previously overlooked process: nitrogen isotope fractionation during leaf-atmosphere NH3(g ) exchange. The model predicts that when leaf-atmosphere exchange of NH3(g ) occurs in a closed system, the atmospheric reservoir of NH3(g ) equilibrates at a concentration equal to the ammonia compensation point and an isotopic composition 8.1‰ lighter than nitrogen in protein. In an open system, when atmospheric concentrations of NH3(g ) fall below or rise above the compensation point, protein can be isotopically enriched by net efflux of NH3(g ) or depleted by net uptake. Comparison of model output with existing measurements in the literature suggests that this process contributes to variation in the isotopic composition of nitrogen in plants as well as NH3(g ) in the atmosphere, and should be considered in future analyses of nitrogen isotope circulation. The matrix-based modelling approach that is introduced may be useful for quantifying isotope dynamics in other complex systems that can be described by first-order kinetics.

  16. Identification of a Critical Intermediate in Galvanic Exchange Reactions by Single-Nanoparticle Resolved Kinetics

    NASA Astrophysics Data System (ADS)

    Smith, Jeremy George; Jain, Prashant

    2014-06-01

    The realization of common materials transformations in nanocrystalline systems is fostering the development of novel nanostructures and allowing a deep look into the atomistic mechanisms involved. Galvanic corrosion is one such transformation. We studied galvanic replacement within individual metal nanoparticles by using plasmonic spectroscopy. This proved to be a powerful approach to studying materials transformations in the absence of ensemble averaging. Individual nanoscale units act as domains that can be interrogated optically in isolation, whereas the averaging of all such domains provides a bulk reaction trajectory. Single-nanoparticle reaction trajectories showed that a Ag nanoparticle exposed to Au3+ makes an abrupt transition into a nanocage structure. The transition is limited by a critical structural event, which we identified by electron microscopy to comprise the formation of a nanosized void, similar to the pitting process commonly observed in the corrosion of metals. Trajectories also revealed a surprisingly strong nonlinearity of the reaction kinetics, which we explain by a model involving the critical coalescence of vacancies into a growing void. The critical void size for galvanic exchange to spontaneously proceed was found to be 20 atomic vacancies. In the future we hope to extend this approach to examine a wide variety of materials transformations and chemical reactions.

  17. Production of neutron-rich Ca, Sn, and Xe isotopes in transfer-type reactions with radioactive beams

    SciTech Connect

    Adamian, G. G.; Antonenko, N. V.; Lacroix, D.

    2010-12-15

    The production cross sections of neutron-rich isotopes {sup 52,54,56,58,60}Ca, {sup 136,138,140,142}Sn, and {sup 146,148,150,152}Xe are predicted for future experiments in the diffusive multinucleon transfer reactions {sup 86,90,92,94}Kr, {sup 124,130,132,134}Sn, {sup 136,140,142,146}Xe, and {sup 138,144,146}Ba+{sup 48}Ca with stable and radioactive beams at incident energies close to the Coulomb barrier. Because of the small cross sections, the production of neutron-rich isotopes requires the optimal choice of projectile-target combinations and bombarding energies.

  18. Attempt to produce the isotopes of element 108 in the fusion reaction {sup 136}Xe+{sup 136}Xe

    SciTech Connect

    Oganessian, Yu. Ts.; Dmitriev, S. N.; Yeremin, A. V.; Aksenov, N. V.; Bozhikov, G. A.; Chepigin, V. I.; Chelnokov, M. L.; Lebedev, V. Ya.; Malyshev, O. N.; Petrushkin, O. V.; Shishkin, S. V.; Svirikhin, A. I.; Tereshatov, E. E.; Vostokin, G. K.

    2009-02-15

    A setup of the experiment on the production of the isotopes with Z=108 in the fusion reaction {sup 136}Xe+{sup 136}Xe and the obtained results are presented. At the excitation energy 0{<=}E{sub x}{<=}30 MeV of the {sup 272}Hs* compound nucleus the upper limit of the cross section for evaporation residues {sigma}{sub (1-3)n}{<=}4 pb has been measured. The experimental results together with the data from asymmetric reactions point to a strong limitation of the Hs compound nucleus formation with increasing Coulomb forces in the entrance channel of the reaction.

  19. Rate constants and isotope effects for the reaction of H-atom abstraction from RH substrates by PINO radicals

    NASA Astrophysics Data System (ADS)

    Opeida, I. A.; Litvinov, Yu. E.; Kushch, O. V.; Kompanets, M. A.; Shendrik, A. N.; Matvienko, A. G.; Novokhatko, A. A.

    2016-11-01

    The kinetics of the reactions of hydrogen atom abstraction from the C-H bonds of substrates of different structures by phthalimide- N-oxyl radicals is studied. The rate constants of this reaction are measured and the kinetic isotope effects are determined. It is shown that in addition to the thermodynamic factor, Coulomb forces and donor-acceptor interactions affect the reaction between phthalimide- N-oxyl radicals and substrate molecules, altering the shape of the transition state. This favors the tunneling of hydrogen atoms and leads to a substantial reduction in the activation energy of the process.

  20. Thermomechanics of a temperature sensitive covalent adaptable polymer with bond exchange reactions.

    PubMed

    Sun, XiaoHao; Wu, HengAn; Long, Rong

    2016-11-04

    We study a covalent adaptable polymer that can rearrange its network topology through thermally activated bond exchange reactions. When the polymer is deformed, such a network rearrangement leads to macroscopic stress relaxation, which allows the polymer to be thermoformed without a mold. Based on a previously developed constitutive model, we investigate thermal-mechanical behaviors of this material under a non-uniform and evolving temperature field through numerical simulations. Our focus is on the complex coupling between mechanical deformation, heat conduction and bond exchange reactions. Several examples are presented to illustrate the effects of non-uniform heating: uniaxial tension under heat conduction, torsion of a thin strip with local heating and thermal imprinting. Our results show that during non-uniform heating the material in the high temperature region creeps. This causes a redistribution of the deformation field and thus results in a final shape that deviates from the prescribed shape. The final shapes after thermoforming can be tuned by controlling the extent of heat conduction through different combinations of heating temperature and time. For example, with high temperature and a short heating time, it is possible to approximately confine stress relaxation and thus shape fixity within the local heating region. This is not the case if low temperature and a long heating time are used. These results can be utilized to design the temporal and spatial sequences of local heating during thermoforming to achieve various complex final shapes.

  1. Probable graft-vs-graft reaction in an infant after exchange transfusion and marrow transplantation.

    PubMed

    Lauer, B A; Githens, J H; Hayward, A R; Conrad, P D; Yanagihara, R T; Tubergen, D G

    1982-07-01

    A newborn with graft-vs-host (GVH) disease following an exchange transfusion was treated by attempting to eradicate the incompatible graft and to reconstitute the child hematologically and immunologically with a bone marrow transplant. The patient was a female term infant (blood group B, Rh+ Coombs test positive) who received a one-unit group O, Rh- exchange transfusion from an unrelated female donor for hyperbilirubinemia due to ABO incompatibility on day 2. Signs of acute GVH disease began on day 8 and the clinical diagnosis was supported by skin biopsy. With antithymocyte globulin and high dose dexamethasone, the GVH reaction improved somewhat. Cyclophosphamide, 200 mg/kg total dose, was given over four days followed by a marrow graft from a brother who was HLA-A, B identical, and probably also D locus compatible in mixed lymphocyte culture. All signs of GVH resolved with cyclophosphamide treatment and hematologic reconstitution was evident by 14 days after transplant. Two weeks later the GVH reaction and aplastic anemia recurred and Y chromatin was detected in only 6% of marrow cells. The infant died on day 80. Autopsy showed disseminated candidiasis, disseminated cytomegalovirus infection, thymic dysplasia, hypoplastic marrow, and other histopathologic changes consistent with GVH disease. The persistence of female cells in blood and bone marrow and the destruction of the reconstituted marrow suggest that the original incompatible transfusion-derived graft was not eliminated and that it ultimately rejected the histocompatible marrow graft.

  2. Communication: Rigorous quantum dynamics of O + O{sub 2} exchange reactions on an ab initio potential energy surface substantiate the negative temperature dependence of rate coefficients

    SciTech Connect

    Li, Yaqin; Sun, Zhigang E-mail: dawesr@mst.edu; Jiang, Bin; Guo, Hua E-mail: dawesr@mst.edu; Xie, Daiqian; Dawes, Richard E-mail: dawesr@mst.edu

    2014-08-28

    The kinetics and dynamics of several O + O{sub 2} isotope exchange reactions have been investigated on a recently determined accurate global O{sub 3} potential energy surface using a time-dependent wave packet method. The agreement between calculated and measured rate coefficients is significantly improved over previous work. More importantly, the experimentally observed negative temperature dependence of the rate coefficients is for the first time rigorously reproduced theoretically. This negative temperature dependence can be attributed to the absence in the new potential energy surface of a submerged “reef” structure, which was present in all previous potential energy surfaces. In addition, contributions of rotational excited states of the diatomic reactant further accentuate the negative temperature dependence.

  3. Communication: Rigorous quantum dynamics of O + O2 exchange reactions on an ab initio potential energy surface substantiate the negative temperature dependence of rate coefficients.

    PubMed

    Li, Yaqin; Sun, Zhigang; Jiang, Bin; Xie, Daiqian; Dawes, Richard; Guo, Hua

    2014-08-28

    The kinetics and dynamics of several O + O2 isotope exchange reactions have been investigated on a recently determined accurate global O3 potential energy surface using a time-dependent wave packet method. The agreement between calculated and measured rate coefficients is significantly improved over previous work. More importantly, the experimentally observed negative temperature dependence of the rate coefficients is for the first time rigorously reproduced theoretically. This negative temperature dependence can be attributed to the absence in the new potential energy surface of a submerged "reef" structure, which was present in all previous potential energy surfaces. In addition, contributions of rotational excited states of the diatomic reactant further accentuate the negative temperature dependence.

  4. Substituent effects on the vibronic coupling for the phenoxyl/phenol self-exchange reaction.

    PubMed

    Ludlow, Michelle K; Skone, Jonathan H; Hammes-Schiffer, Sharon

    2008-01-17

    The impact of substituents on the vibronic coupling for the phenoxyl/phenol self-exchange reaction, which occurs by a proton-coupled electron transfer mechanism, is investigated. The vibronic couplings are calculated with a grid-based nonadiabatic method and a nuclear-electronic orbital nonorthogonal configuration interaction method. The quantitative agreement between these two methods for the unsubstituted phenoxyl/phenol system and the qualitative agreement in the predicted trends for the substituted phenoxyl/phenol systems provides a level of validation for both methods. Analysis of the results indicates that electron-donating groups enhance the vibronic coupling, while electron-withdrawing groups attenuate the vibronic coupling. Thus, if all other aspects of the reaction are the same, then electron-donating groups will increase the rate, while electron-withdrawing groups will decrease the rate. Correlations between the vibronic coupling and physical properties of the phenol are also analyzed. Negative Hammett constants correspond to higher vibronic couplings, while positive Hammett constants correspond to similar or slightly lower vibronic couplings relative to the unsubstituted phenoxyl/phenol system. In addition, lower bond dissociation enthalpies, ionization potentials, and redox potentials, as well as higher pKa values, tend to correspond to higher vibronic couplings relative to the unsubstituted phenoxyl/phenol system. The observed trends enable the prediction of the impact of general substituents on the vibronic coupling, and hence the rate, for the phenoxyl/phenol self-exchange reaction. The fundamental physical insights obtained from these studies are applicable to other proton-coupled electron transfer systems.

  5. Kinetic and Vibrational Isotope Effects of Proton Transfer Reactions in Channelrhodopsin-2

    PubMed Central

    Resler, Tom; Schultz, Bernd-Joachim; Lórenz-Fonfría, Víctor A.; Schlesinger, Ramona; Heberle, Joachim

    2015-01-01

    Channelrhodopsins (ChRs) are light-gated cation channels. After blue-light excitation, the protein undergoes a photocycle with different intermediates. Here, we have recorded transient absorbance changes of ChR2 from Chlamydomonas reinhardtii in the visible and infrared regions with nanosecond time resolution, the latter being accomplished using tunable quantum cascade lasers. Because proton transfer reactions play a key role in channel gating, we determined vibrational as well as kinetic isotope effects (VIEs and KIEs) of carboxylic groups of various key aspartic and glutamic acid residues by monitoring their C=O stretching vibrations in H2O and in D2O. D156 exhibits a substantial KIE (>2) in its deprotonation and reprotonation, which substantiates its role as the internal proton donor to the retinal Schiff base. The unusual VIE of D156, upshifted from 1736 cm−1 to 1738 cm−1 in D2O, was scrutinized by studying the D156E variant. The C=O stretch of E156 shifted down by 8 cm−1 in D2O, providing evidence for the accessibility of the carboxylic group. The C=O stretching band of E90 exhibits a VIE of 9 cm−1 and a KIE of ∼2 for the de- and the reprotonation reactions during the lifetime of the late desensitized state. The KIE of 1 determined in the time range from 20 ns to 5 ms is incompatible with early deprotonation of E90. PMID:26200864

  6. EXCHANGE

    SciTech Connect

    Boltz, J.C.

    1992-09-01

    EXCHANGE is published monthly by the Idaho National Engineering Laboratory (INEL), a multidisciplinary facility operated for the US Department of Energy (DOE). The purpose of EXCHANGE is to inform computer users about about recent changes and innovations in both the mainframe and personal computer environments and how these changes can affect work being performed at DOE facilities.

  7. Isotope exchange experiments on TEXTOR and TORE SUPRA using Ion Cyclotron Wall Conditioning and Glow Discharge Conditioning

    NASA Astrophysics Data System (ADS)

    Wauters, T.; Douai, D.; Lyssoivan, A.; Philipps, V.; Brémond, S.; Freisinger, M.; Kreter, A.; Lombard, G.; Marchuk, O.; Mollard, P.; Paul, M. K.; Pegourié, B.; Reimer, H.; Sergienko, G.; Tsitrone, E.; Vervier, M.; Van Wassenhove, G.; Wünderlich, D.; Van Schoor, M.; Van Oost, G.

    2011-08-01

    This contribution reports on isotope exchange studies with both Ion Cyclotron Wall Conditioning (ICWC) and Glow Discharge Conditioning (GDC) in TEXTOR and TORE SUPRA. The discharges have been carried out in H2, D2 (ICWC and GDC) and He/H2 mixtures (ICWC). The higher reionization probability in ICWC compared to GDC, following from the 3 to 4 orders of magnitude higher electron density, leads to a lower pumping efficiency of wall desorbed species. GDC has in this analysis (5-10) times higher removal rates of wall desorbed species than ICWC, although the wall release rate is 10 times higher in ICWC. Also the measured high retention during ICWC can be understood as an effect of the high reionization probability. The use of short RF pulses (∼1 s) followed by a larger pumping time significantly improves the ratio of implanted over recovered particles, without severely lowering the total amount of removed particles.

  8. Differential isotopic enrichment to facilitate characterization of asymmetric multimeric proteins using hydrogen/deuterium exchange mass spectrometry

    PubMed Central

    Pascal, Bruce D.; Bauman, Joseph D.; Patel, Disha; Arnold, Eddy; Griffin, Patrick R.

    2015-01-01

    Hydrogen/deuterium exchange (HDX) coupled to mass spectrometry has emerged as a powerful tool for analyzing the conformational dynamics of protein-ligand and protein-protein interactions. Recent advances in instrumentation and methodology have expanded the utility of HDX for the analysis of large and complex proteins; however, asymmetric dimers with shared amino acid sequence present a unique challenge for HDX because assignment of peptides with identical sequence to their subunit of origin remains ambiguous. Here we report the use of differential isotopic labeling to facilitate HDX analysis of multimers using HIV-1 reverse transcriptase (RT) as a model. RT is an asymmetric heterodimer of 51 kDa (p51) and 66 kDa (p66) subunits. The first 440 residues of p51 and p66 are identical. In this study differentially labeled RT was reconstituted from isotopically enriched (15N-labeled) p51 and unlabeled p66. In order to enable detection of 15N-deuterated RT peptides, the software HDX Workbench was modified to follow a 100% 15N model. Our results demonstrated that 15N enrichment of p51 did not affect its conformational dynamics compared to unlabeled p51, but 15N-labeled p51 did show different conformational dynamics than p66 in the RT heterodimer. Differential HDX-MS of isotopically labeled RT in the presence of the nonnucleoside reverse transcriptase inhibitor (NNRTI) efavirenz (EFV) showed subunit-specific perturbation in the rate of HDX consistent with previously published results and the RT-EFV co-crystal structure. PMID:25763479

  9. Ab initio study of nitrogen and position-specific oxygen kinetic isotope effects in the NO + O3 reaction

    NASA Astrophysics Data System (ADS)

    Walters, Wendell W.; Michalski, Greg

    2016-12-01

    Ab initio calculations have been carried out to investigate nitrogen (k15/k14) and position-specific oxygen (k17/k16O & k18/k16) kinetic isotope effects (KIEs) for the reaction between NO and O3 using CCSD(T)/6-31G(d) and CCSD(T)/6-311G(d) derived frequencies in the complete Bigeleisen equations. Isotopic enrichment factors are calculated to be -6.7‰, -1.3‰, -44.7‰, -14.1‰, and -0.3‰ at 298 K for the reactions involving the 15N16O, 14N18O, 18O16O16O, 16O18O16O, and 16O16O18O isotopologues relative to the 14N16O and 16O3 isotopologues, respectively (CCSD(T)/6-311G(d)). Using our oxygen position-specific KIEs, a kinetic model was constructed using Kintecus, which estimates the overall isotopic enrichment factors associated with unreacted O3 and the oxygen transferred to NO2 to be -19.6‰ and -22.8‰, respectively, (CCSD(T)/6-311G(d)) which tends to be in agreement with previously reported experimental data. While this result may be fortuitous, this agreement suggests that our model is capturing the most important features of the underlying physics of the KIE associated with this reaction (i.e., shifts in zero-point energies). The calculated KIEs will useful in future NOx isotopic modeling studies aimed at understanding the processes responsible for the observed tropospheric isotopic variations of NOx as well as for tropospheric nitrate.

  10. Evidence for Oxygen-Isotope Exchange in Chondrules and Refractory Inclusions During Fluid-Rock Interaction on the CV Chondrite Parent Body

    NASA Astrophysics Data System (ADS)

    Krot, A. N.; Nagashima, K.

    2016-08-01

    Plagioclase in chondrules, CAIs and AOAs from the carbonaceous chondrite Kaba (CV3.1) experienced oxygen-isotope exchange with a metasomatic fluid responsible for the formation of magnetite, fayalite and Ca,Fe-rich silicates on the CV parent body.

  11. Dual Studies on a Hydrogen-Deuterium Exchange of Resorcinol and the Subsequent Kinetic Isotope Effect

    ERIC Educational Resources Information Center

    Giles, Richard; Kim, Iris; Chao, Weyjuin Eric; Moore, Jennifer; Jung, Kyung Woon

    2014-01-01

    An efficient laboratory experiment has been developed for undergraduate students to conduct hydrogen-deuterium (H-D) exchange of resorcinol by electrophilic aromatic substitution using D[subscript 2]O and a catalytic amount of H[subscript 2]SO[subscript 4]. The resulting labeled product is characterized by [superscript 1]H NMR. Students also…

  12. Synthesis of ordered mesoporous crystalline CuS and Ag2S materials via cation exchange reaction

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Xu, Weiming; Bao, Haifeng; Shi, Yifeng

    2015-02-01

    Cation exchange reaction is a strong tool for the synthesis of new ionic nanomaterials. Most of them are isolated nanoparticles with simple geometric features, such as nanodots, nanorods and nanospheres. In this work, we demonstrated that ordered mesoporous CdS with a complex cubic Ia3d gyroidal 3D bicontinuous porous structure and large particle size can be successfully converted to crystalline CuS and Ag2S materials via cation exchange reaction without destroying the well-defined nanostructure. The change in crystal structure is an important factor for a successful conversion when the reaction is carried out without the presence of a silica template. In addition, the cation exchange reaction is sufficient for a complete compositional conversion, even when the mesostructured CdS precursor is embedded inside a mesoporous silica matrix. Our results indicate that cation exchange reaction may be applied to highly complex nanostructures with extremely large particle sizes.Cation exchange reaction is a strong tool for the synthesis of new ionic nanomaterials. Most of them are isolated nanoparticles with simple geometric features, such as nanodots, nanorods and nanospheres. In this work, we demonstrated that ordered mesoporous CdS with a complex cubic Ia3d gyroidal 3D bicontinuous porous structure and large particle size can be successfully converted to crystalline CuS and Ag2S materials via cation exchange reaction without destroying the well-defined nanostructure. The change in crystal structure is an important factor for a successful conversion when the reaction is carried out without the presence of a silica template. In addition, the cation exchange reaction is sufficient for a complete compositional conversion, even when the mesostructured CdS precursor is embedded inside a mesoporous silica matrix. Our results indicate that cation exchange reaction may be applied to highly complex nanostructures with extremely large particle sizes. Electronic supplementary

  13. Predicting the solubility and lability of Zn, Cd, and Pb in soils from a minespoil-contaminated catchment by stable isotopic exchange

    NASA Astrophysics Data System (ADS)

    Marzouk, E. R.; Chenery, S. R.; Young, S. D.

    2013-12-01

    The Rookhope catchment of Weardale, England, has a diverse legacy of contaminated soils due to extensive lead mining activity over four centuries. We measured the isotopically exchangeable content of Pb, Cd and Zn (E-values) in a large representative subset of the catchment soils (n = 246) using stable isotope dilution. All three metals displayed a wide range of %E-values (c. 1-100%) but relative lability followed the sequence Cd > Pb > Zn. A refinement of the stable isotope dilution approach also enabled detection of non-reactive metal contained within suspended sub-micron (<0.22 μm) colloidal particles (SCP-metal). For most soils, the presence of non-labile SCP-metal caused only minor over-estimation of E-values (<2%) but the effect was greater for soils with particularly large humus or carbonate contents. Approximately 80%, 53% and 66% of the variability in Zn, Cd and Pb %E-values (respectively) could be explained by pH, loss on ignition and total metal content. E-values were affected by the presence of ore minerals at high metal contents leading to an inconsistent trend in the relationship between %E-value and soil metal concentration. Metal solubility, in the soil suspensions used to measure E-values, was predicted using the WHAM geochemical speciation model (versions VI and VII). The use of total and isotopically exchangeable metal as alternative input variables was compared; the latter provided significantly better predictions of solubility, especially in the case of Zn. Lead solubility was less well predicted by either version of WHAM, with over-prediction at low pH and under-prediction at high soil pH values. Quantify the isotopically exchangeable fractions of Zn, Cd and Pb (E-values), and assess their local and regional variability, using multi-element stable isotope dilution, in a diverse range of soil ecosystems within the catchment of an old Pb/Zn mining area. Assess the controlling influences of soil properties on metal lability and develop

  14. Magnesium retention on the soil exchange complex controlling Mg isotope variations in soils, soil solutions and vegetation in volcanic soils, Iceland

    NASA Astrophysics Data System (ADS)

    Opfergelt, S.; Burton, K. W.; Georg, R. B.; West, A. J.; Guicharnaud, R. A.; Sigfusson, B.; Siebert, C.; Gislason, S. R.; Halliday, A. N.

    2014-01-01

    Understanding the biogeochemical cycle of magnesium (Mg) is not only crucial for terrestrial ecology, as this element is a key nutrient for plants, but also for quantifying chemical weathering fluxes of Mg and associated atmospheric CO2 consumption, requiring distinction of biotic from abiotic contributions to Mg fluxes exported to the hydrosphere. Here, Mg isotope compositions are reported for parent basalt, bulk soils, clay fractions, exchangeable Mg, seasonal soil solutions, and vegetation for five types of volcanic soils in Iceland in order to improve the understanding of sources and processes controlling Mg supply to vegetation and export to the hydrosphere. Bulk soils (δ26Mg = -0.40 ± 0.11‰) are isotopically similar to the parent basalt (δ26Mg = -0.31‰), whereas clay fractions (δ26Mg = -0.62 ± 0.12‰), exchangeable Mg (δ26Mg = -0.75 ± 0.14‰), and soil solutions (δ26Mg = -0.89 ± 0.16‰) are all isotopically lighter than the basalt. These compositions can be explained by a combination of mixing and isotope fractionation processes on the soil exchange complex. Successive adsorption-desorption of heavy Mg isotopes leads to the preferential loss of heavy Mg from the soil profile, leaving soils with light Mg isotope compositions relative to the parent basalt. Additionally, external contributions from sea spray and organic matter decomposition result in a mixture of Mg sources on the soil exchange complex. Vegetation preferentially takes up heavy Mg from the soil exchange complex (Δ26Mgplant-exch = +0.50 ± 0.09‰), and changes in δ26Mg in vegetation reflect changes in bioavailable Mg sources in soils. This study highlights the major role of Mg retention on the soil exchange complex amongst the factors controlling Mg isotope variations in soils and soil solutions, and demonstrates that Mg isotopes provide a valuable tool for monitoring biotic and abiotic contributions of Mg that is bioavailable for plants and is exported to the hydrosphere.

  15. Synthesis of Composition Tunable and Highly Luminescent Cesium Lead Halide Nanowires through Anion-Exchange Reactions.

    PubMed

    Zhang, Dandan; Yang, Yiming; Bekenstein, Yehonadav; Yu, Yi; Gibson, Natalie A; Wong, Andrew B; Eaton, Samuel W; Kornienko, Nikolay; Kong, Qiao; Lai, Minliang; Alivisatos, A Paul; Leone, Stephen R; Yang, Peidong

    2016-06-15

    Here, we demonstrate the successful synthesis of brightly emitting colloidal cesium lead halide (CsPbX3, X = Cl, Br, I) nanowires (NWs) with uniform diameters and tunable compositions. By using highly monodisperse CsPbBr3 NWs as templates, the NW composition can be independently controlled through anion-exchange reactions. CsPbX3 alloy NWs with a wide range of alloy compositions can be achieved with well-preserved morphology and crystal structure. The NWs are highly luminescent with photoluminescence quantum yields (PLQY) ranging from 20% to 80%. The bright photoluminescence can be tuned over nearly the entire visible spectrum. The high PLQYs together with charge transport measurements exemplify the efficient alloying of the anionic sublattice in a one-dimensional CsPbX3 system. The wires increased functionality in the form of fast photoresponse rates and the low defect density suggest CsPbX3 NWs as prospective materials for optoelectronic applications.

  16. Spin dipole nuclear matrix elements for double beta decay nuclei by charge-exchange reactions

    NASA Astrophysics Data System (ADS)

    Ejiri, H.; Frekers, D.

    2016-11-01

    Spin dipole (SD) strengths for double beta-decay (DBD) nuclei were studied experimentally for the first time by using measured cross sections of (3He, t) charge-exchange reactions (CERs). Then SD nuclear matrix elements (NMEs) {M}α ({{SD}}) for low-lying 2- states were derived from the experimental SD strengths by referring to the experimental α = GT (Gamow-Teller) and α = F (Fermi) strengths. They are consistent with the empirical NMEs M({{SD}}) based on the quasi-particle model with the empirical effective SD coupling constant. The CERs are used to evaluate the SD NME, which is associated with one of the major components of the neutrino-less DBD NME.

  17. Reprint of: A numerical modelling of gas exchange mechanisms between air and turbulent water with an aquarium chemical reaction

    NASA Astrophysics Data System (ADS)

    Nagaosa, Ryuichi S.

    2014-08-01

    This paper proposes a new numerical modelling to examine environmental chemodynamics of a gaseous material exchanged between the air and turbulent water phases across a gas-liquid interface, followed by an aquarium chemical reaction. This study uses an extended concept of a two-compartment model, and assumes two physicochemical substeps to approximate the gas exchange processes. The first substep is the gas-liquid equilibrium between the air and water phases, A(g)⇌A(aq), with Henry's law constant H. The second is a first-order irreversible chemical reaction in turbulent water, A(aq)+H2O→B(aq)+H+ with a chemical reaction rate κA. A direct numerical simulation (DNS) technique has been employed to obtain details of the gas exchange mechanisms and the chemical reaction in the water compartment, while zero velocity and uniform concentration of A is considered in the air compartment. The study uses the different Schmidt numbers between 1 and 8, and six nondimensional chemical reaction rates between 10(≈0) to 101 at a fixed Reynolds number. It focuses on the effects of the Schmidt number and the chemical reaction rate on fundamental mechanisms of the gas exchange processes across the interface.

  18. A numerical modelling of gas exchange mechanisms between air and turbulent water with an aquarium chemical reaction

    NASA Astrophysics Data System (ADS)

    Nagaosa, Ryuichi S.

    2014-01-01

    This paper proposes a new numerical modelling to examine environmental chemodynamics of a gaseous material exchanged between the air and turbulent water phases across a gas-liquid interface, followed by an aquarium chemical reaction. This study uses an extended concept of a two-compartment model, and assumes two physicochemical substeps to approximate the gas exchange processes. The first substep is the gas-liquid equilibrium between the air and water phases, A(g)⇌A(aq), with Henry's law constant H. The second is a first-order irreversible chemical reaction in turbulent water, A(aq)+H2O→B(aq)+H+ with a chemical reaction rate κA. A direct numerical simulation (DNS) technique has been employed to obtain details of the gas exchange mechanisms and the chemical reaction in the water compartment, while zero velocity and uniform concentration of A is considered in the air compartment. The study uses the different Schmidt numbers between 1 and 8, and six nondimensional chemical reaction rates between 10(≈0) to 101 at a fixed Reynolds number. It focuses on the effects of the Schmidt number and the chemical reaction rate on fundamental mechanisms of the gas exchange processes across the interface.

  19. Evidence for thiol/disulfide exchange reactions between tubulin and glyceraldehyde-3-phosphate dehydrogenase.

    PubMed

    Landino, Lisa M; Hagedorn, Tara D; Kennett, Kelly L

    2014-12-01

    While thiol redox reactions are a common mechanism to regulate protein structure and function, protein disulfide bond formation is a marker of oxidative stress that has been linked to neurodegeneration. Both tubulin and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) contain multiple cysteines that have been identified as targets for oxidation to disulfides, S-nitrosation and S-glutathionylation. We show that GAPDH is one of three prominent brain microtubule-associated proteins (MAPs), in addition to MAP-2 and tau, with reactive cysteines. We detected a threefold to fourfold increase in tubulin cysteine oxidation by hydrogen peroxide in the presence of rabbit muscle GAPDH by 5-iodoacetamidofluorescein labeling and by Western blot detection of higher molecular weight inter-chain tubulin disulfides. In thiol/disulfide exchange experiments, tubulin restored ∼50% of oxidized GAPDH cysteines and the equilibrium favored reduced GAPDH. Further, we report that oxidized GAPDH is repaired by the thioredoxin reductase system (TRS). Restoration of GAPDH activity after reduction by both tubulin and the TRS was time-dependent suggesting conformational changes near the active site cysteine149. The addition of brain MAPs to oxidized tubulin reduced tubulin disulfides and labeling of MAP-2 and of GAPDH decreased. Because the extent of tubulin repair of oxidized GAPDH was dependent on buffer strength, we conclude that electrostatics influence thiol/disulfide exchange between the two proteins. The novel interactions presented herein may protect GAPDH from inhibition under oxidative stress conditions.

  20. Ligand Exchange Reaction of Au(I) R-N-Heterocyclic Carbene Complexes with Cysteine.

    PubMed

    Dos Santos, H F; Vieira, M A; Sánchez Delgado, G Y; Paschoal, D

    2016-04-14

    The chemotherapy with gold complexes has been attempted since the 90s after the clinical success of auranofin, a gold(I) coordination complex. Currently, the organometallics compounds have shown promise in cancer therapy, mainly in those complexes containing N-heterocylic carbenes (NHC) as a ligand. The present study shows a kinetic analysis of the reaction of six alkyl-substituted NHC with cysteine (Cys), which is taken as an important bionucleophile representative. The first and second ligand exchange processes were analyzed with the complete description of the mechanism and energy profiles. For the first reaction step, which is the rate-limiting step of the whole substitution reaction, the activation enthalpy follows the order 1/Me2 < 2/Me,Et < 4/n-Bu2 < 3/i-Pr2 < 6/Cy2 < 5/t-Bu2, which is fully explained by steric and electronic features. From a steric point of view, the previous reactivity order is correlated with the r(Au-S) calculated for the transition state structures where S is the sulfur ligand from the Cys entering group. This means that longer r(Au-S) leads to higher activation enthalpy and is consistent with the effectiveness of gold shielding from nucleophile attack by bulkier alkyl-substituted NHC ligand. When electronic effect was addressed we found that higher activation barrier was predicted for strongly electron-donating NHC ligand, represented by the eigenvalue of σ-HOMO orbital of the free ligands. The molecular interpretation of the electronic effects is that strong donating NHC forms strong metal-ligand bond. For the second reaction step, similar structure-reactivity relationships were obtained, however the activation energies are less sensitive to the structure.

  1. On molecular origin of mass-independent fractionation of oxygen isotopes in the ozone forming recombination reaction

    PubMed Central

    Ivanov, Mikhail V.; Babikov, Dmitri

    2013-01-01

    Theoretical treatment of ozone forming reaction is developed within the framework of mixed quantum/classical dynamics. Formation and stabilization steps of the energy transfer mechanism are both studied, which allows simultaneous capture of the delta zero-point energy effect and η-effect and identification of the molecular level origin of mass-independent isotope fractionation. The central role belongs to scattering resonances; dependence of their lifetimes on rotational excitation, asymmetry; and connection of their vibrational wave functions to two different reaction channels. Calculations, performed within the dimensionally reduced model of ozone, are in semiquantitative agreement with experiment. PMID:23431175

  2. Nuclear spectroscopy study of the isotopes populated via multinucleon transfer in the 90Zr + 208Pb reaction

    SciTech Connect

    Ur, C. A.; Corradi, L.; Stefanini, A. M.; Behera, B. R.; Fioretto, E.; Gadea, A.; Latina, A.; Szilner, S.; Beghini, S.; Farnea, E.; Montagnoli, G.; Scarlassara, F.; Haas, F.; Pollarolo, G.

    2006-08-14

    The present work takes advantage of the multinucleon transfer mechanism between heavy reaction partners to study the population pattern of excited nuclear states in near spherical Zirconium isotopes following the 90Zr + 208Pb reaction at an energy closed to the Coulomb barrier. Both the projectile and the target are well known closed shell nuclei offering an optimum situation for clean experimental and theoretical conditions. Total kinetic energy loss (TKEL) distributions were compared with calculations performed with the GRAZING code. The ability to use the TKEL as a selection tool for the states at different excitation energies was shown.

  3. Gaseous anion chemistry. Hydrogen-deuterium exchange in mono- and dialcohol alkoxide ions: ionization reactions in dialcohols

    SciTech Connect

    Lloyd, J.R.; Agosta, W.C.; Field, F.H.

    1980-08-15

    The subject of this work is H-D exchange in certain gaseous anions using D/sub 2/ as the exchanging agent. The anions involved are produced from ethylene glycol, 1,3-propanediol, 1,4-butanediol, ethanol, 1-propanol, and 1-butanol. Spectra and postulated ionization reactions for these mono- and dialcohols are given. Hydrogen-deuterium exchange occurs in the (M - 1)/sup -/ and (2M - 1)/sup -/ ions of ethylene glycol, 1,3-propanediol, and 1,4-butanediol. The amount of exchange occurring is 3-8 times greater in (2M - 1)/sup -/ than in (M - 1)/sup -/. The amount of H-D exchange occurring in ethanol, 1-propanol, and 1-butanol is small or zero in the (2M - 1)/sup -/ ions and in the (M - 1)/sup -/ ion for 1-butanol (the only (M - 1)/sup -/ ion which could be examined experimentally). The amount of exchange occurring in the (2M - 1)/sup -/ and (M - 1)/sup -/ ions from ethylene glycol is not affected by the total pressure or composition of the reaction mixture in the ionization chamber of the mass spectrometer. A novel hydrogen-bridging mechanism is suggested to account for the observed exchange occurring in the dialcohols.

  4. Anaerobic reductive dechlorination of tetrachloroethene: how can dual Carbon-Chlorine isotopic measurements help elucidating the underlying reaction mechanism?

    NASA Astrophysics Data System (ADS)

    Badin, Alice; Buttet, Géraldine; Maillard, Julien; Holliger, Christof; Hunkeler, Daniel

    2014-05-01

    Chlorinated ethenes (CEs) such as tetrachloroethene (PCE) are common persistent groundwater contaminants. Among clean-up strategies applied to sites affected by such pollution, bioremediation has been considered with a growing interest as it represents a cost-effective, environmental friendly approach. This technique however sometimes leads to an incomplete and slow biodegradation of CEs resulting in an accumulation of toxic metabolites. Understanding the reaction mechanisms underlying anaerobic reductive dechlorination would thus help assessing PCE biodegradation in polluted sites. Stable isotope analysis can provide insight into reaction mechanisms. For chlorinated hydrocarbons, carbon (C) and chlorine (Cl) isotope data (δ13C and δ37Cl) tend to show a linear correlation with a slope (m ≡ ɛC/ɛCl) characteristic of the reaction mechanism [1]. This study hence aims at exploring the potential of a dual C-Cl isotope approach in the determination of the reaction mechanisms involved in PCE reductive dechlorination. C and Cl isotope fractionation were investigated during anaerobic PCE dechlorination by two bacterial consortia containing members of the Sulfurospirillum genus. The specificity in these consortia resides in the fact that they each conduct PCE reductive dechlorination catalysed by one different reductive dehalogenase, i.e. PceADCE which yields trichloroethene (TCE) and cis-dichloroethene (cDCE), and PceATCE which yields TCE only. The bulk C isotope enrichment factors were -3.6±0.3 o for PceATCE and -0.7±0.1o for PceADCE. The bulk Cl isotope enrichment factors were -1.3±0.2 o for PceATCE and -0.9±0.1 o for PceADCE. When applying the dual isotope approach, two m values of 2.7±0.1 and 0.7±0.2 were obtained for the reductive dehalogenases PceATCE and PceADCE, respectively. These results suggest that PCE can be degraded according to two different mechanisms. Furthermore, despite their highly similar protein sequences, each reductive dehalogenase seems

  5. Determination of Equine Cytochrome c Backbone Amide Hydrogen/Deuterium Exchange Rates by Mass Spectrometry Using a Wider Time Window and Isotope Envelope

    NASA Astrophysics Data System (ADS)

    Hamuro, Yoshitomo

    2017-03-01

    A new strategy to analyze amide hydrogen/deuterium exchange mass spectrometry (HDX-MS) data is proposed, utilizing a wider time window and isotope envelope analysis of each peptide. While most current scientific reports present HDX-MS data as a set of time-dependent deuteration levels of peptides, the ideal HDX-MS data presentation is a complete set of backbone amide hydrogen exchange rates. The ideal data set can provide single amide resolution, coverage of all exchange events, and the open/close ratio of each amide hydrogen in EX2 mechanism. Toward this goal, a typical HDX-MS protocol was modified in two aspects: measurement of a wider time window in HDX-MS experiments and deconvolution of isotope envelope of each peptide. Measurement of a wider time window enabled the observation of deuterium incorporation of most backbone amide hydrogens. Analysis of the isotope envelope instead of centroid value provides the deuterium distribution instead of the sum of deuteration levels in each peptide. A one-step, global-fitting algorithm optimized exchange rate and deuterium retention during the analysis of each amide hydrogen by fitting the deuterated isotope envelopes at all time points of all peptides in a region. Application of this strategy to cytochrome c yielded 97 out of 100 amide hydrogen exchange rates. A set of exchange rates determined by this approach is more appropriate for a patent or regulatory filing of a biopharmaceutical than a set of peptide deuteration levels obtained by a typical protocol. A wider time window of this method also eliminates false negatives in protein-ligand binding site identification.

  6. Determination of Equine Cytochrome c Backbone Amide Hydrogen/Deuterium Exchange Rates by Mass Spectrometry Using a Wider Time Window and Isotope Envelope.

    PubMed

    Hamuro, Yoshitomo

    2017-03-01

    A new strategy to analyze amide hydrogen/deuterium exchange mass spectrometry (HDX-MS) data is proposed, utilizing a wider time window and isotope envelope analysis of each peptide. While most current scientific reports present HDX-MS data as a set of time-dependent deuteration levels of peptides, the ideal HDX-MS data presentation is a complete set of backbone amide hydrogen exchange rates. The ideal data set can provide single amide resolution, coverage of all exchange events, and the open/close ratio of each amide hydrogen in EX2 mechanism. Toward this goal, a typical HDX-MS protocol was modified in two aspects: measurement of a wider time window in HDX-MS experiments and deconvolution of isotope envelope of each peptide. Measurement of a wider time window enabled the observation of deuterium incorporation of most backbone amide hydrogens. Analysis of the isotope envelope instead of centroid value provides the deuterium distribution instead of the sum of deuteration levels in each peptide. A one-step, global-fitting algorithm optimized exchange rate and deuterium retention during the analysis of each amide hydrogen by fitting the deuterated isotope envelopes at all time points of all peptides in a region. Application of this strategy to cytochrome c yielded 97 out of 100 amide hydrogen exchange rates. A set of exchange rates determined by this approach is more appropriate for a patent or regulatory filing of a biopharmaceutical than a set of peptide deuteration levels obtained by a typical protocol. A wider time window of this method also eliminates false negatives in protein-ligand binding site identification. Graphical Abstract ᅟ.

  7. Determination of Equine Cytochrome c Backbone Amide Hydrogen/Deuterium Exchange Rates by Mass Spectrometry Using a Wider Time Window and Isotope Envelope

    NASA Astrophysics Data System (ADS)

    Hamuro, Yoshitomo

    2017-01-01

    A new strategy to analyze amide hydrogen/deuterium exchange mass spectrometry (HDX-MS) data is proposed, utilizing a wider time window and isotope envelope analysis of each peptide. While most current scientific reports present HDX-MS data as a set of time-dependent deuteration levels of peptides, the ideal HDX-MS data presentation is a complete set of backbone amide hydrogen exchange rates. The ideal data set can provide single amide resolution, coverage of all exchange events, and the open/close ratio of each amide hydrogen in EX2 mechanism. Toward this goal, a typical HDX-MS protocol was modified in two aspects: measurement of a wider time window in HDX-MS experiments and deconvolution of isotope envelope of each peptide. Measurement of a wider time window enabled the observation of deuterium incorporation of most backbone amide hydrogens. Analysis of the isotope envelope instead of centroid value provides the deuterium distribution instead of the sum of deuteration levels in each peptide. A one-step, global-fitting algorithm optimized exchange rate and deuterium retention during the analysis of each amide hydrogen by fitting the deuterated isotope envelopes at all time points of all peptides in a region. Application of this strategy to cytochrome c yielded 97 out of 100 amide hydrogen exchange rates. A set of exchange rates determined by this approach is more appropriate for a patent or regulatory filing of a biopharmaceutical than a set of peptide deuteration levels obtained by a typical protocol. A wider time window of this method also eliminates false negatives in protein-ligand binding site identification.

  8. Continuous In-situ Measurements of Carbonyl Sulfide (OCS) and Carbon Dioxide Isotopes to Constrain Ecosystem Carbon and Water Exchanges

    NASA Astrophysics Data System (ADS)

    Rastogi, B.; Still, C. J.; Noone, D. C.; Berkelhammer, M. B.; Whelan, M.; Lai, C. T.; Hollinger, D. Y.; Gupta, M.; Leen, J. B.; Huang, Y. W.

    2015-12-01

    Understanding the processes that control the terrestrial exchange of carbon and water are critical for examining the role of forested ecosystems in changing climates. A small but increasing number of studies have identified Carbonyl Sulfide (OCS) as a potential tracer for photosynthesis. OCS is hydrolyzed by an irreversible reaction in leaf mesophyll cells that is catalyzed by the enzyme, carbonic anhydrase. Leaf- level field and greenhouse studies indicate that OCS uptake is controlled by stomatal activity and that the ratio of OCS and CO2 uptake is reasonably constant. Existing studies on ecosystem OCS exchange have been based on laboratory measurements or short field campaigns and therefore little information on OCS exchange in a natural ecosystem over longer timescales is available. The objective of this study is to further assess the stability of OCS as a tracer for canopy photosynthesis in an active forested ecosystem and also to assess its utility for constraining transpiration, since both fluxes are mediated by canopy stomatal conductance. An off-axis integrated cavity output spectroscopy analyzer (Los Gatos Research Inc.) was deployed at the Wind River Experimental Forest in Washington (45.8205°N, 121.9519°W). Canopy air was sampled from four heights as well as the soil to measure vertical gradients of OCS within the canopy, and OCS exchange between the forest and the atmosphere for the growing season. Here we take advantage of simultaneous measurements of the stable isotopologues of H2O and CO2 at corresponding heights as well as NEE (Net Ecosystem Exchange) from eddy covariance measurements to compare GPP (Gross Primary Production) and transpiration estimates from a variety of independent techniques. Our findings also seek to allow assessment of the environmental and ecophysicological controls on evapotranspiration rates, which are projected to change in coming decades, and are otherwise poorly constrained.

  9. Estimation of the outer-sphere contribution to the activation volume for electron exchange reactions using the mean spherical approximation

    NASA Astrophysics Data System (ADS)

    Takagi, Hideo D.; Swaddle, Thomas W.

    1996-01-01

    The outer-sphere contribution to the volume of activation of homogeneous electron exchange reactions is estimated for selected solvents on the basis of the mean spherical approximation (MSA), and the calculated values are compared with those estimated by the Strank-Hush-Marcus (SHM) theory and with activation volumes obtained experimentally for the electron exchange reaction between tris(hexafluoroacetylacetonato)ruthenium(III) and -(II) in acetone, acetonitrile, methanol and chloroform. The MSA treatment, which recognizes the molecular nature of the solvent, does not improve significantly upon the continuous-dielectric SHM theory, which represents the experimental data adequately for the more polar solvents.

  10. Bidirectional exchange of biogenic volatiles with vegetation: emission sources, reactions, breakdown and deposition

    PubMed Central

    Niinemets, Ülo; Fares, Silvano; Harley, Peter; Jardine, Kolby J.

    2014-01-01

    Biogenic volatile organic compound (BVOC) emissions are widely modeled as inputs to atmospheric chemistry simulations. However, BVOC may interact with cellular structures and neighboring leaves in a complex manner during volatile diffusion from the sites of release to leaf boundary layer and during turbulent transport to the atmospheric boundary layer. Furthermore, recent observations demonstrate that the BVOC emissions are bidirectional, and uptake and deposition of BVOC and their oxidation products are the rule rather than the exception. This review summarizes current knowledge of within-leaf reactions of synthesized volatiles with reactive oxygen species (ROS), uptake, deposition and storage of volatiles and their oxidation products as driven by adsorption on leaf surface and solubilization and enzymatic detoxification inside leaves. The available evidence indicates that due to reactions with ROS and enzymatic metabolism, the BVOC gross production rates are much larger than previously thought. The degree to which volatiles react within leaves and can be potentially taken up by vegetation depends on compound reactivity, physicochemical characteristics, as well as their participation in leaf metabolism. We argue that future models should be based on the concept of bidirectional BVOC exchange and consider modification of BVOC sink/source strengths by within-leaf metabolism and storage. PMID:24635661

  11. Influence of matrix diffusion and exchange reactions on radiocarbon ages in fissured carbonate aquifers

    SciTech Connect

    Maloszewski, P. ); Zuber, A. )

    1991-08-01

    The parallel fissure model coupled with the equation of diffusion into the matrix and with exchange reaction equations has been used to derive a simple formula for estimating the influence of matrix porosity and reaction parameters on the determination of radiocarbon ages in fissured carbonate rocks. Examples of evidently too great radiocarbon ages in carbonate formations, which are not explainable by models for the initial {sup 14}C corrections, can easily be explained by this formula. Parameters obtained for a chalk formation from a known multitracer experiment combined with a pumping test suggest a possibility of {sup 14}C ages more than three orders of magnitude greater than the ages which would be observed if the radiocarbon transport took place only in the mobile water in the fissures. It is shown that contrary to the solute movement on a small scale and with a variable input, the large-scale movement, characteristic for the {sup 14}C dating, does not necessarily require the knowledge of kinetic parameters, because they may be replaced by the distribution coefficient. Discordant tritium and {sup 14}C concentrations are commonly interpreted as a proof of mixing either in the aquifer or at the discharge site. For fissured carbonate formations, however, an alternative explanation is given by the derived model showing a considerable delay of {sup 14}C with respect to nonsorbable tracers.

  12. Reversible dissociation and ligand-glutathione exchange reaction in binuclear cationic tetranitrosyl iron complex with penicillamine.

    PubMed

    Syrtsova, Lidia; Sanina, Natalia; Lyssenko, Konstantin; Kabachkov, Evgeniy; Psikha, Boris; Shkondina, Natal'ja; Pokidova, Olesia; Kotelnikov, Alexander; Aldoshin, Sergey

    2014-01-01

    This paper describes a comparative study of the decomposition of two nitrosyl iron complexes (NICs) with penicillamine thiolic ligands [Fe2(SC5H11NO2)2(NO)4]SO4 ·5H2O (I) and glutathione- (GSH-) ligands [Fe2(SC10H17N3O6)2(NO)4]SO4 ·2H2O (II), which spontaneously evolve to NO in aqueous medium. NO formation was measured by a sensor electrode and by spectrophotometric methods by measuring the formation of a hemoglobin- (Hb-) NO complex. The NO evolution reaction rate from (I)  k 1 = (4.6 ± 0.1)·10(-3) s(-1) and the elimination rate constant of the penicillamine ligand k 2 = (1.8 ± 0.2)·10(-3) s(-1) at 25°C in 0.05 M phosphate buffer,  pH 7.0, was calculated using kinetic modeling based on the experimental data. Both reactions are reversible. Spectrophotometry and mass-spectrometry methods have firmly shown that the penicillamine ligand is exchanged for GS(-) during decomposition of 1.5·10(-4) M (I) in the presence of 10(-3) M GSH, with 76% yield in 24 h. As has been established, such behaviour is caused by the resistance of (II) to decomposition due to the higher affinity of iron to GSH in the complex. The discovered reaction may impede S-glutathionylation of the essential enzyme systems in the presence of (I) and is important for metabolism of NIC, connected with its antitumor activity.

  13. Calculation of individual isotope equilibrium constants for implementation in geochemical models

    USGS Publications Warehouse

    Thorstenson, Donald C.; Parkhurst, David L.

    2002-01-01

    Theory is derived from the work of Urey to calculate equilibrium constants commonly used in geochemical equilibrium and reaction-transport models for reactions of individual isotopic species. Urey showed that equilibrium constants of isotope exchange reactions for molecules that contain two or more atoms of the same element in equivalent positions are related to isotope fractionation factors by , where is n the number of atoms exchanged. This relation is extended to include species containing multiple isotopes, for example and , and to include the effects of nonideality. The equilibrium constants of the isotope exchange reactions provide a basis for calculating the individual isotope equilibrium constants for the geochemical modeling reactions. The temperature dependence of the individual isotope equilibrium constants can be calculated from the temperature dependence of the fractionation factors. Equilibrium constants are calculated for all species that can be formed from and selected species containing , in the molecules and the ion pairs with where the subscripts g, aq, l, and s refer to gas, aqueous, liquid, and solid, respectively. These equilibrium constants are used in the geochemical model PHREEQC to produce an equilibrium and reaction-transport model that includes these isotopic species. Methods are presented for calculation of the individual isotope equilibrium constants for the asymmetric bicarbonate ion. An example calculates the equilibrium of multiple isotopes among multiple species and phases.

  14. Water exchange, mixing and transient storage between a saturated karstic conduit and the surrounding aquifer: Groundwater flow modeling and inputs from stable water isotopes

    NASA Astrophysics Data System (ADS)

    Binet, S.; Joigneaux, E.; Pauwels, H.; Albéric, P.; Fléhoc, Ch.; Bruand, A.

    2017-01-01

    Water exchanges between a karstic conduit and the surrounding aquifer are driven by hydraulic head gradient at the interface between these two domains. The case-study presented in this paper investigates the impact of the geometry and interface conditions around a conduit on the spatial distribution of these exchanges. Isotopic (δ18O and δD), discharge and water head measurements were conducted at the resurgences of a karst system with a strong allogenic recharge component (Val d'Orléans, France), to estimate the amounts of water exchanged and the mixings between a saturated karstic conduit and the surrounding aquifer. The spatio-temporal variability of the observed exchanges was explored using a 2D coupled continuum-conduit flow model under saturated conditions (Feflow®). The inputs from the water heads and stable water isotopes in the groundwater flow model suggest that the amounts of water flowing from the aquifer are significant if the conduit flow discharges are less than the conduit flow capacity. This condition creates a spatial distribution of exchanges from upstream where the aquifer feeds the conduit (recharge area) to downstream where the conduit reaches its maximum discharge capacity and can feed the aquifer (discharge area). In the intermediate transport zone no exchange between the two domains takes place that brings a new criterion to delineate the vulnerable zones to surface water. On average, 4% of the water comes from the local recharge, 80% is recent river water and 16% is old river water. During the November 2008 flood, both isotopic signatures and model suggest that exchanges fluctuate around this steady state, limited when the river water level increases and intensified when the river water level decreases. The existence of old water from the river suggests a transient storage at the aquifer/conduit interface that can be considered as an underground hyporheic zone.

  15. Neutral current reaction cross sections for the stable 100 Mo isotope

    NASA Astrophysics Data System (ADS)

    Balasi, K. G.; Kosmas, T. S.; Divari, P. C.; Ejiri, H.

    2010-01-01

    Motivated by the ongoing MOON neutrino experiment at Japan aiming to search for double beta and neutrinoless double beta decay events, we investigate inelastic neutrino scattering cross sections for the stable 100Mo isotope by performing state-by-state calculations. The required many body nuclear wave functions are constructed within the context of the quasi-particle random phase approximation (QRPA) tested in the reproducibility of the low-lying spectrum of the 100Mo isotope.

  16. Tracking Melt-Rock Reaction Using Os Isotopes: Maqsad Diapir (Oman Ophiolite)

    NASA Astrophysics Data System (ADS)

    Godard, M.; Alard, O.; Lorand, J.; Burton, K. W.

    2001-12-01

    . The processes leading to the overprinting of the Os isotopic signature in the DH and MTZ domain is currently under investigation but could be related to the dissolution and precipitation of sulphides and to the S-saturation and under-saturation of the percolating melt. These preliminary results suggest that the Re-Os system could be a very efficient tracer of melt-rock reaction occurring at large melt-rock ratios and indicate that a fair amount of melt-rock interaction occurred. Such processes may have important bearings for the Os-systematic of MORB. Kelemen et al., Nature, 375, 747-753, 1995; Godard et al, Earth Planet. Sci. Lett., 180, 133-148, 2000.

  17. Production of radioactive nuclides in inverse reaction kinematics

    NASA Astrophysics Data System (ADS)

    Traykov, E.; Rogachevskiy, A.; Bosswell, M.; Dammalapati, U.; Dendooven, P.; Dermois, O. C.; Jungmann, K.; Onderwater, C. J. G.; Sohani, M.; Willmann, L.; Wilschut, H. W.; Young, A. R.

    2007-03-01

    Efficient production of short-lived radioactive isotopes in inverse reaction kinematics is an important technique for various applications. It is particularly relevant when the isotope of interest is only a few nucleons away from a stable isotope. In this article production via charge exchange and stripping reactions in combination with a magnetic separator is explored. The relation between the separator transmission efficiency, the production yield, and the choice of beam energy is discussed. The results of some exploratory experiments will be presented.

  18. The Precise Determination of Cd Isotope Ratio in Geological Samples by MC-ICP-MS with Ion Exchange Separation

    NASA Astrophysics Data System (ADS)

    Du, C.; Hu, S.; Wang, D.; Jin, L.; Guo, W.

    2014-12-01

    Cadmium (Cd) is a trace element which occurs at μg g-1 level abundances in the crust. Cd isotopes have great prospects in the study of the cosmogony, the trace of anthropogenic sources, the micronutrient cycling and the ocean productivity. This study develops an optimized technique for the precise and accurate determination of Cd isotopic compositions. Cd was separated from the matrix by elution with AG-MP-1 anionic exchange chromatographic resin. The matrix elements (K, Na, Ca, Al, Fe, and Mg etc.), polyatomic interfered elements (Ge, Ga, Zr, Nb, Ru, and Mo), and isobaric interfered elements (In, Pd and most of Sn) were eluted using HCl with gradient descent concentrations (2, 0.3, 0.06, 0.012 and 0.0012 mol L-1). The same elution procedure was repeated to eliminate the residuel Sn (Sn/Cd < 0.018). The collected Cd was analyzed using MC-ICP-MS, in which the instrumental mass fractionation was controlled by a "sample-standard bracketing" technique. The recovery of Cd larger than 96.85%, and the δ114/110Cd are in the range of -1.43~+0.20‰ for ten geological reference materials (GSD-3a, GSD-5a, GSD-7a, GSD-6, GSD-9, GSD-10, GSD-11, GSD-12, GSD-23, and GSS-1). The δ114/110Cd obtained for GSS-1 soil sample relative to the NIST SRM 3108 Cd solution was 0.20, which was coherent with the literature values (0.08±0.23). This method had a precision of 0.001~0.002% (RSD), an error range of 0.06~0.14 (δ114/110Cd, 2σ), and a long-term reproducibility of 0.12 (δ114/110Cd, 2σ).

  19. Modelling of geochemical reactions and experimental cation exchange in MX 80 bentonite.

    PubMed

    Montes-H, G; Fritz, B; Clement, A; Michau, N

    2005-10-01

    Bentonites are widely used for waste repository systems because of their hydrodynamic, surface and chemical-retention properties. MX 80 bentonite (bentonite of Wyoming) contains approximately 85% Na/Ca-montmorillonite and 15% accessory minerals. The dominant presence of Na/Ca-montmorillonite in this clay mineral could cause it to perform exceptionally well as an engineered barrier for a radioactive waste repository because this buffer material is expected to fill up by swelling the void between canisters containing waste and the surrounding ground. However, the Na/Ca-montmorillonite could be transformed to other clay minerals as a function of time under repository conditions. Previous modelling studies based on the hydrolysis reactions have shown that the Na/Ca-montmorillonite-to-Ca-montmorillonite conversion is the most significant chemical transformation. In fact, this chemical process appears to be a simple cation exchange into the engineered barrier. The purpose of the present study was two-fold. Firstly, it was hoped to predict the newly formed products of bentonite-fluid reactions under repository conditions by applying a thermokinetic hydrochemical code (KIRMAT: Kinetic Reactions and Mass Transport). The system modelled herein was considered to consist of a 1-m thick zone of water-saturated engineered barrier. This non-equilibrated system was placed in contact with a geological fluid on one side, which was then allowed to diffuse into the barrier, while the other side was kept in contact with iron-charged water. Reducing initial conditions ( [P(O)2 approximately equals 0] ; Eh=-200 mV) and a constant reaction temperature (100 degrees C) were considered. Secondly, it was hoped to estimate the influence of inter-layer cations (Ca and Na) on the swelling behaviour of the MX 80 bentonite by using an isothermal system of water vapour adsorption and an environmental scanning electron microscope (ESEM) coupled with a digital image analysis (DIA) program. Here, the

  20. Nd and Sr isotope compositions of different phases of surface sediments in the South Pacific: Extraction of seawater signatures, boundary exchange, and detrital/dust provenance

    NASA Astrophysics Data System (ADS)

    Molina-Kescher, Mario; Frank, Martin; Hathorne, Ed C.

    2014-09-01

    radiogenic isotope composition of neodymium (Nd) and strontium (Sr) are useful tools to investigate present and past oceanic circulation or input of terrigenous material. We present Nd and Sr isotope compositions extracted from different sedimentary phases, including early diagenetic Fe-Mn coatings, "unclean" foraminiferal shells, fossil fish teeth, and detritus of marine surface sediments (core-tops) covering the entire midlatitude South Pacific. Comparison of detrital Nd isotope compositions to deep water values from the same locations suggests that "boundary exchange" has little influence on the Nd isotope composition of western South Pacific seawater. Concentrations of Rare Earth Elements (REE) and Al/Ca ratios of "unclean" planktonic foraminifera suggest that this phase is a reliable recorder of seawater Nd isotope composition. The signatures obtained from fish teeth and "nondecarbonated" leachates of bulk sediment Fe-Mn oxyhydroxide coatings also agree with "unclean" foraminifera. Direct comparison of Nd isotope compositions extracted using these methods with seawater Nd isotope compositions is complicated by the low accumulation rates yielding radiocarbon ages of up to 24 kyr, thus mixing the signal of different ocean circulation modes. This suggests that different past seawater Nd isotope compositions have been integrated in authigenic sediments from regions with low sedimentation rates. Combined detrital Nd and Sr isotope signatures indicate a dominant role of the Westerly winds transporting lithogenic material from South New Zealand and Southeastern Australia to the open South Pacific. The proportion of this material decreases toward the east, where supply from the Andes increases and contributions from Antarctica cannot be ruled out.

  1. A cationic Rh(III) complex that efficiently catalyzes hydrogen isotope exchange in hydrosilanes.

    PubMed

    Campos, Jesús; Esqueda, Ana C; López-Serrano, Joaquín; Sánchez, Luis; Cossio, Fernando P; de Cozar, Abel; Alvarez, Eleuterio; Maya, Celia; Carmona, Ernesto

    2010-12-01

    The synthesis and structural characterization of a mixed-sandwich (η(5)-C(5)Me(5))Rh(III) complex of the cyclometalated phosphine PMeXyl(2) (Xyl = 2,6-C(6)H(3)Me(2)) with unusual κ(4)-P,C,C',C'' coordination (compound 1-BAr(f); BAr(f) = B(3,5-C(6)H(3)(CF(3))(2))(4)) are reported. A reversible κ(4) to κ(2) change in the binding of the chelating phosphine in cation 1(+) induced by dihydrogen and hydrosilanes triggers a highly efficient Si-H/Si-D (or Si-T) exchange applicable to a wide range of hydrosilanes. Catalysis can be carried out in an organic solvent solution or without solvent, with catalyst loadings as low as 0.001 mol %, and the catalyst may be recycled a number of times.

  2. Photochemical Synthesis and Ligand Exchange Reactions of Ru(CO)[subscript 4] (Eta[superscript 2]-Alkene) Compounds

    ERIC Educational Resources Information Center

    Cooke, Jason; Berry, David E.; Fawkes, Kelli L.

    2007-01-01

    The photochemical synthesis and subsequent ligand exchange reactions of Ru(CO)[subscript 4] (eta[superscript2]-alkene) compounds has provided a novel experiment for upper-level inorganic chemistry laboratory courses. The experiment is designed to provide a system in which the changing electronic properties of the alkene ligands could be easily…

  3. One- and two-dimensional chemical exchange nuclear magnetic resonance studies of the creatine kinase catalyzed reaction

    SciTech Connect

    Gober, J.R.

    1988-01-01

    The equilibrium chemical exchange dynamics of the creatine kinase enzyme system were studied by one- and two-dimensional {sup 31}P NMR techniques. Pseudo-first-order reaction rate constants were measured by the saturation transfer method under an array of experimental conditions of pH and temperature. Quantitative one-dimensional spectra were collected under the same conditions in order to calculate the forward and reverse reaction rates, the K{sub eq}, the hydrogen ion stoichiometry, and the standard thermodynamic functions. The pure absorption mode in four quadrant two-dimensional chemical exchange experiment was employed so that the complete kinetic matrix showing all of the chemical exchange process could be realized.

  4. Quasiclassical trajectory study of the F + H 2 system. Rate constants, kinetic isotope effects and energy partitioning among reaction products

    NASA Astrophysics Data System (ADS)

    Rosenman, Efrat; Persky, Avigdor

    1995-06-01

    Quasiclassical trajectory calculations were carried out for the reactions F + H 2, F + D 2, and F + HD, using two potential energy surfaces T5A and 6SEC. The results which include rate constants and kinetic isotope effects as a function of temperature, isotopic branching ratios for F + HD as a function off collision energy and the energy partitioning and vibrational state distributions of the products at room temperature, are compared with experimental data. For most of the quantities under study, the results for the 6SEC surface are in qualitative agreement with experiment, as opposed to the results for the T5A surface. The conclusions from the present study concerning the quality of the 6SEC surface are consistent with the conclusions of Aoiz et al. which are based mainly on calculations of vibrationally state resolved differential cross sections and vibrational distributions of products, for specific collision energies.

  5. On-line stable isotope gas exchange reveals an inducible but leaky carbon concentrating mechanism in Nannochloropsis salina.

    PubMed

    Hanson, David T; Collins, Aaron M; Jones, Howland D T; Roesgen, John; Lopez-Nieves, Samuel; Timlin, Jerilyn A

    2014-09-01

    Carbon concentrating mechanisms (CCMs) are common among microalgae, but their regulation and even existence in some of the most promising biofuel production strains is poorly understood. This is partly because screening for new strains does not commonly include assessment of CCM function or regulation despite its fundamental role in primary carbon metabolism. In addition, the inducible nature of many microalgal CCMs means that environmental conditions should be considered when assessing CCM function and its potential impact on biofuels. In this study, we address the effect of environmental conditions by combining novel, high frequency, on-line (13)CO2 gas exchange screen with microscope-based lipid characterization to assess CCM function in Nannochloropsis salina and its interaction with lipid production. Regulation of CCM function was explored by changing the concentration of CO2 provided to continuous cultures in airlift bioreactors where cell density was kept constant across conditions by controlling the rate of media supply. Our isotopic gas exchange results were consistent with N. salina having an inducible "pump-leak" style CCM similar to that of Nannochloropsis gaditana. Though cells grew faster at high CO2 and had higher rates of net CO2 uptake, we did not observe significant differences in lipid content between conditions. Since the rate of CO2 supply was much higher for the high CO2 conditions, we calculated that growing cells bubbled with low CO2 is about 40 % more efficient for carbon capture than bubbling with high CO2. We attribute this higher efficiency to the activity of a CCM under low CO2 conditions.

  6. Reaction chemistry and ligand exchange at cadmium-selenide nanocrystal surfaces.

    PubMed

    Owen, Jonathan S; Park, Jungwon; Trudeau, Paul-Emile; Alivisatos, A Paul

    2008-09-17

    The surface chemistry of cadmium selenide nanocrystals, prepared from tri-n-octylphosphine selenide and cadmium octadecylphosphonate in tri-n-octylphosphine oxide, was studied with 1H and {1H}31P NMR spectroscopy as well as ESI-MS and XPS. The identity of the surface ligands was inferred from reaction of nanocrystals with Me3Si-X (X = -S-SiMe3, -Se-SiMe3, -Cl and -S-(CH2CH2O)4OCH3)) and unambiguous assignment of the organic byproducts, O,O'-bis(trimethylsilyl)octadecylphosphonic acid ester and O,O'-bis(trimethylsilyl)ocatdecylphosphonic acid anhydride ester. Nanocrystals isolated from these reactions have undergone exchange of the octadecylphosphonate ligands for -X as was shown by 1H NMR (X = -S-(CH2CH2O)4OCH3) and XPS (X = -Cl). Addition of free thiols to as prepared nanocrystals results in binding of the thiol to the particle surface and quenching of the nanocrystal fluorescence. Isolation of the thiol-ligated nanocrystals shows this chemisorption proceeds without displacement of the octadecylphosphonate ligands, suggesting the presence of unoccupied Lewis-acidic sites on the particle surface. In the presence of added triethylamine, however, the octadecylphosphonate ligands are readily displaced from the particle surface as was shown with 1H and {1H}31P NMR. These results, in conjunction with previous literature reports, indicate that as-prepared nanocrystal surfaces are terminated by X-type binding of octadecylphosphonate moieties to a layer of excess cadmium ions.

  7. Preparation of poly(aniline-co-o-anisidine)-intercalated mesostructured manganese oxide composites by exchange reaction

    SciTech Connect

    Wang Gengchao Yang Zhenyu; Li Xingwei; Li Chunzhong; Yuan Weikang

    2008-08-04

    Layered mesostructured manganese oxide (mesostructured MnO{sub 2}) was synthesized using manganese chloride and lithium hydroxide as the raw materials and cetyltrimethylammonium bromide (CTAB) as the structure-directing agent. Poly(aniline-co-o-anisidine)-intercalated mesostructured MnO{sub 2} composites (P(An-co-oAs)/MnO{sub 2}) were synthesized in an organic solvent through the exchange reaction between the CTAB in MnO{sub 2} gallery and the P(An-co-oAs). The interlayer spacing (I{sub c} values) of mesostructured MnO{sub 2} enlarged from 2.52 to 4.41 nm as the added amount of P(An-co-oAs) increased from 0 to 0.5 g per 0.5 g of mesostructured MnO{sub 2}. The regularity of the layered structure of the composites was firstly decreased due to intercalation of low amounts of P(An-co-oAs). However, with increasing the intercalated amount of P(An-co-oAs) the layered structure of the composites becomes more regular. The electrical conductivity of the composites is 10{sup 2} to 10{sup 3} times higher than that of the mesostructured MnO{sub 2}.

  8. Exchange repulsive potential adaptable for electronic structure changes during chemical reactions

    SciTech Connect

    Yokogawa, D.

    2015-04-28

    Hybrid methods combining quantum mechanical (QM) and classical calculations are becoming important tools in chemistry. The popular approach to calculate the interaction between QM and classical calculations employs interatomic potentials. In most cases, the interatomic potential is constructed of an electrostatic (ES) potential and a non-ES potential. Because QM treatment is employed in the calculation of the ES potential, the electronic change can be considered in this ES potential. However, QM treatment of the non-ES potential is difficult because of high computational cost. To overcome this difficulty of evaluating the non-ES potential, we proposed an exchange repulsive potential as the main part of the non-ES potential on the basis of a QM approach. This potential is independent of empirical parameters and adaptable for electronic structure. We combined this potential with the reference interaction site model self-consistent field explicitly including spatial electron density distribution and successfully applied it to the chemical reactions in aqueous phase.

  9. Tracing amino acid exchange during host-pathogen interaction by combined stable-isotope time-resolved Raman spectral imaging

    NASA Astrophysics Data System (ADS)

    Naemat, Abida; Elsheikha, Hany M.; Boitor, Radu A.; Notingher, Ioan

    2016-02-01

    This study investigates the temporal and spatial interchange of the aromatic amino acid phenylalanine (Phe) between human retinal pigment epithelial cell line (ARPE-19) and tachyzoites of the apicomplexan protozoan parasite Toxoplasma gondii (T. gondii). Stable isotope labelling by amino acids in cell culture (SILAC) is combined with Raman micro-spectroscopy to selectively monitor the incorporation of deuterium-labelled Phe into proteins in individual live tachyzoites. Our results show a very rapid uptake of L-Phe(D8) by the intracellular growing parasite. T. gondii tachyzoites are capable of extracting L-Phe(D8) from host cells as soon as it invades the cell. L-Phe(D8) from the host cell completely replaces the L-Phe within T. gondii tachyzoites 7–9 hours after infection. A quantitative model based on Raman spectra allowed an estimation of the exchange rate of Phe as 0.5–1.6 × 104 molecules/s. On the other hand, extracellular tachyzoites were not able to consume L-Phe(D8) after 24 hours of infection. These findings further our understanding of the amino acid trafficking between host cells and this strictly intracellular parasite. In particular, this study highlights new aspects of the metabolism of amino acid Phe operative during the interaction between T. gondii and its host cell.

  10. Water vapour isotopic exchange by epiphytic bromeliads in tropical dry forests reflects niche differentiation and climatic signals.

    PubMed

    Reyes-García, Casandra; Mejia-Chang, Monica; Jones, Glyn D; Griffiths, Howard

    2008-06-01

    The 18O signals in leaf water (delta18O(lw)) and organic material were dominated by atmospheric water vapour 18O signals (delta18O(vap)) in tank and atmospheric life forms of epiphytic bromeliads with crassulacean acid metabolism (CAM), from a seasonally dry forest in Mexico. Under field conditions, the mean delta18O(lw) for all species was constant during the course of the day and systematically increased from wet to dry seasons (from 0 to +6 per thousand), when relative water content (RWC) diminished from 70 to 30%. In the greenhouse, progressive enrichment from base to leaf tip was observed at low night-time humidity; under high humidity, the leaf tip equilibrated faster with delta18O(vap) than the other leaf sections. Laboratory manipulations using an isotopically depleted water source showed that delta18O(vap) was more rapidly incorporated than liquid water. Our data were consistent with a Craig-Gordon (C-G) model as modified by Helliker and Griffiths predicting that the influx and exchange of delta18O(vap) control delta18O(lw) in certain epiphytic life forms, despite progressive tissue water loss. We use delta18O(lw) signals to define water-use strategies for the coexisting species which are consistent with habitat preference under natural conditions and life form. Bulk organic matter (delta18O(org)) is used to predict the deltaO18(vap) signal at the time of leaf expansion.

  11. Heavy-ion double charge exchange reactions: A tool toward 0 νββ nuclear matrix elements

    NASA Astrophysics Data System (ADS)

    Cappuzzello, F.; Cavallaro, M.; Agodi, C.; Bondì, M.; Carbone, D.; Cunsolo, A.; Foti, A.

    2015-11-01

    The knowledge of the nuclear matrix elements for the neutrinoless double beta decay is fundamental for neutrino physics. In this paper, an innovative technique to extract information on the nuclear matrix elements by measuring the cross section of a double charge exchange nuclear reaction is proposed. The basic point is that the initial- and final-state wave functions in the two processes are the same and the transition operators are similar. The double charge exchange cross sections can be factorized in a nuclear structure term containing the matrix elements and a nuclear reaction factor. First pioneering experimental results for the 40Ca(18O,18Ne)40Ar reaction at 270 MeV incident energy show that such cross section factorization reasonably holds for the crucial 0+ → 0+ transition to 40Args, at least at very forward angles.

  12. Alternate substrates and isotope effects as a probe of the malic enzyme reaction

    SciTech Connect

    Gavva, S.R.

    1988-01-01

    Dissociation constants for alternative dinucleotide substrates and competitive inhibitors suggest that the dinucleotide binding site of the Ascaris suum NAD-malic enzyme is hydrophobic in the vicinity of the nicotinamide ring. Changes in the divalent metal ion activator from Mg{sup 2+} to Mn{sup 2+} or Cd{sup 2+} results in a decrease in the dinucleotide affinity and an increase in the affinity for malate. Primary deuterium and {sup 13}C isotope effects obtained with the different metal ions suggest either a change in the transition state structure for the hydride transfer or decarboxylation steps or both. Deuterium isotope effects are finite whether reactants are maintained at saturating or limiting concentrations with all the metal ions and dinucleotide substrates used. For the native enzyme, primary deuterium isotope effects increase with a concomitant decrease in the {sup 13}C effects when NAD is replaced by an alternate dinucleotide substrate different in redox potential.

  13. Authigenic Nd isotope record of North Pacific Intermediate Water formation and boundary exchange on the Bering Slope

    NASA Astrophysics Data System (ADS)

    Jang, Kwangchul; Huh, Youngsook; Han, Yeongcheol

    2017-01-01

    The Bering Sea is a potential location for the formation of the North Pacific Intermediate Water (NPIW), which drives the global ocean circulation as a counterpart to the North Atlantic Deep Water (NADW). To evaluate the NPIW-NADW seesaw hypothesis, we reconstructed the long-term variation of the bottom water Nd isotopic composition at site U1345 on the Bering Slope by extracting authigenic Fe-Mn oxyhydroxide from bulk sediments. We examined six different extractions in order to ensure that authentic seawater composition is recovered. For Bering Slope sediments whose typical carbonate content is less than 5% (average 2%), the most reliable results are obtained if the decarbonation step is omitted and a low reagent-to-sediment ratio is adopted. The reconstructed authigenic εNd record for the last 520 kyr exhibits large temporal variations depending on whether the NPIW formation or the boundary exchange process is dominant. Periods of radiogenic εNd can be attributed to NPIW formation triggered by brine rejection, as evidenced by the difference in δ18O of benthic foraminifera between sites (Δδ18Obf), high % sea-ice related diatoms, and low abundance of Bulimina aff. Exilis (low-oxygen deep fauna). Diminished supply of unradiogenic Nd from boundary exchange seems to intensify these radiogenic peaks. On the other hand, the unradiogenic εNd intervals can be attributed to stagnant bottom water conditions, as can be deduced from the Δδ18Obf values, low % sea-ice related diatoms, abundant B. aff. Exilis, and laminations. When there is no NPIW formation, the continental margin sediments are exposed to boundary exchange for a longer period of time, leading to release of unradiogenic Nd. The mid-MIS 6 and mid-MIS 5 are exceptions in that NPIW formation occurred yet the εNd compositions are unradiogenic. NPIW formation and cold climate (closed Bering Strait) are not always correlated. Comparison against εNd records of the South Atlantic suggests only an ambiguous

  14. Possibilities of production of neutron-deficient isotopes of U, Np, Pu, Am, Cm, and Cf in complete fusion reactions

    SciTech Connect

    Adamian, G. G.; Antonenko, N. V.; Zubov, A. S.; Scheid, W.

    2008-10-15

    Within the dinuclear system model we analyze the production of yet unknown neutron-deficient isotopes of U, Np, Pu, Am, Cm, and Cf in various complete fusion reactions. Different deexcitation channels of the excited compound nucleus are treated. The results are obtained without special adjustment to the selected evaporation channel. The fusion probability is an important ingredient of the excitation function. The results are in good agreement with the available experimental data. The alpha decay half-life times in the neutron-deficient actinides are discussed.

  15. Iceland Deep Drilling Project: (V) Isotopic Evidence of Hydrothermal Exchange and Seawater Ingress from Alteration Minerals in the Reykjanes Geothermal System

    NASA Astrophysics Data System (ADS)

    Marks, N. E.; Zierenberg, R. A.; Schiffman, P.

    2009-12-01

    The Reykjanes geothermal system is a seawater recharged hydrothermal system located on the landward extension of the Mid-Atlantic Ridge in Iceland. Fluid compositions in the system have evolved through time as a result of changing proportions of meteoric water as well as differing pressure and temperature conditions imposed by glaciation (Sveinbjornsdottir, 1986; Fridleifsson et al., 2005; Marks et al., 2009). Samples from the deepest part of Reykjanes well RN-17 include greenschist to pyroxene hornfels facies assemblages, suggesting seawater penetration into a part of the system that is close to the high temperature reaction zone. Electron microprobe studies of drill cuttings reveal intense alteration of hyaloclastites with calc-silicate alteration assemblages comprising calcic hydrothermal plagioclase, grandite garnet, prehnite, epidote, hydrothermal clinopyroxene, and titanite. In contrast, crystalline basalts and intrusive rocks display a wide range in alteration intensity from essentially unaltered to pervasive and nearly complete replacement of feldspar and pyroxene. Epidote is widely distributed throughout the RN-17 samples and fills veins and vugs, replaces glass in hyaloclastites and the interstitial matrix of basalt samples, and is also an alteration product of primary plagioclase. 87Sr/86Sr values of individual epidote grains measured by LA-ICPMS were typically 0.7045-0.7050, but ranged as high as 0.7073 in individual grains. Anhydrite is widespread in shallow portions of the Reykjanes system to about 1500 m. 87Sr/86Sr values of anhydrite from the Reykjanes geothermal system range from 0.7044-0.7053, and gypsum values range from 0.7093 to 0.7094. The Sr isotopic ratios of alteration minerals are shifted from basaltic values (0.7030-0.7034; O’Nions and Grönvold, 1973; Sun and Jahn, 1975) toward seawater values (0.70916; Palmer and Edmond, 1989). This suggests that seawater Sr is able to penetrate deep within the geothermal system, and that seawater Sr

  16. Comparisons between Theoretical and Experimental Deuterium Isotope Effects for Some Outer-Sphere Electrochemical Reactions.

    DTIC Science & Technology

    1983-03-01

    compared with the predictions of contemporary theories which take into account nuclear tunneling from inner-shell vibrational modes . The isotope rate...ratios calculated by considering nuclear tunneling of metal-ligand vibrational modes are in most cases much smaller than the observed rate ratios

  17. Isotopic exchange on the diurnal scale between near-surface snow and lower atmospheric water vapor at Kohnen station, East Antarctica

    NASA Astrophysics Data System (ADS)

    Ritter, François; Steen-Larsen, Hans Christian; Werner, Martin; Masson-Delmotte, Valérie; Orsi, Anais; Behrens, Melanie; Birnbaum, Gerit; Freitag, Johannes; Risi, Camille; Kipfstuhl, Sepp

    2016-07-01

    Quantifying the magnitude of post-depositional processes affecting the isotopic composition of surface snow is essential for a more accurate interpretation of ice core data. To achieve this, high temporal resolution measurements of both lower atmospheric water vapor and surface snow isotopic composition are required. This study presents continuous measurements of water vapor isotopes performed in East Antarctica (Kohnen station) from December 2013 to January 2014 using a laser spectrometer. Observations have been compared with the outputs of two atmospheric general circulation models (AGCMs) equipped with water vapor isotopes: ECHAM5-wiso and LMDZ5Aiso. During our monitoring period, the signals in the 2 m air temperature T, humidity mixing ratio q and both water vapor isotopes δD and δ18O are dominated by the presence of diurnal cycles. Both AGCMs simulate similar diurnal cycles with a mean amplitude 30 to 70 % lower than observed, possibly due to an incorrect simulation of the surface energy balance and the boundary layer dynamics. In parallel, snow surface samples were collected each hour over 35 h, with a sampling depth of 2-5 mm. A diurnal cycle in the isotopic composition of the snow surface is observed in phase with the water vapor, reaching a peak-to-peak amplitude of 3 ‰ for δD over 24 h (compared to 36 ‰ for δD in the water vapor). A simple box model treated as a closed system has been developed to study the exchange of water molecules between an air and a snow reservoir. In the vapor, the box model simulations show too much isotopic depletion compared to the observations. Mixing with other sources (advection, free troposphere) has to be included in order to fit the observations. At the snow surface, the simulated isotopic values are close to the observations with a snow reservoir of ˜ 5 mm depth (range of the snow sample depth). Our analysis suggests that fractionation occurs during sublimation and that vapor-snow exchanges can no longer

  18. Nuclear orientation in the reaction S34+U238 and synthesis of the new isotope Hs268

    NASA Astrophysics Data System (ADS)

    Nishio, K.; Hofmann, S.; Heßberger, F. P.; Ackermann, D.; Antalic, S.; Aritomo, Y.; Comas, V. F.; Düllmann, Ch. E.; Gorshkov, A.; Graeger, R.; Hagino, K.; Heinz, S.; Heredia, J. A.; Hirose, K.; Ikezoe, H.; Khuyagbaatar, J.; Kindler, B.; Kojouharov, I.; Lommel, B.; Mann, R.; Mitsuoka, S.; Nagame, Y.; Nishinaka, I.; Ohtsuki, T.; Popeko, A. G.; Saro, S.; Schädel, M.; Türler, A.; Watanabe, Y.; Yakushev, A.; Yeremin, A. V.

    2010-08-01

    The synthesis of isotopes of the element hassium was studied using the reaction S34+U238→Hs272*. At a kinetic energy of 163.0 MeV in the center-of-mass system we observed one α-decay chain starting at the isotope Hs267. The cross section was 1.8-1.5+4.2 pb. At 152.0 MeV one decay of the new isotope Hs268 was observed. It decays with a half-life of 0.38-0.17+1.8 s by 9479±16 keV α-particle emission. Spontaneous fission of the daughter nucleus Sg264 was confirmed. The measured cross section was 0.54-0.45+1.3 pb. In-beam measurements of fission-fragment mass distributions were performed to obtain information on the fusion probability at various orientations of the deformed target nucleus. The distributions changed from symmetry to asymmetry when the beam energy was changed from above-barrier to sub-barrier values, indicating orientation effects on fusion and/or quasifission. It was found that the distribution of symmetric mass fragments originates not only from fusion-fission, but has a strong component from quasifission. The result was supported by a calculation based on a dynamical description using the Langevin equation, in which the mass distributions for fusion-fission and quasifission fragments were separately determined.

  19. Using stable isotopes of dissolved oxygen for the determination of gas exchange in the Grand River, Ontario, Canada.

    PubMed

    Jamieson, Terra S; Schiff, Sherry L; Taylor, William D

    2013-02-01

    Gas exchange can be a key component of the dissolved oxygen (DO) mass balance in aquatic ecosystems. Quantification of gas transfer rates is essential for the estimation of DO production and consumption rates, and determination of assimilation capacities of systems receiving organic inputs. Currently, the accurate determination of gas transfer rate is a topic of debate in DO modeling, and there are a wide variety of approaches that have been proposed in the literature. The current study investigates the use of repeated measures of stable isotopes of O₂ and DO and a dynamic dual mass-balance model to quantify gas transfer coefficients (k) in the Grand River, Ontario, Canada. Measurements were conducted over a longitudinal gradient that reflected watershed changes from agricultural to urban. Values of k in the Grand River ranged from 3.6 to 8.6 day⁻¹, over discharges ranging from 5.6 to 22.4 m³ s⁻¹, with one high-flow event of 73.1 m³ s⁻¹. The k values were relatively constant over the range of discharge conditions studied. The range in discharge observed in this study is generally representative of non-storm and summer low-flow events; a greater range in k might be observed under a wider range of hydrologic conditions. Overall, k values obtained with the dual model for the Grand River were found to be lower than predicted by the traditional approaches evaluated, highlighting the importance of determining site-specific values of k. The dual mass balance approach provides a more constrained estimate of k than using DO only, and is applicable to large rivers where other approaches would be difficult to use. The addition of an isotopic mass balance provides for a corroboration of the input parameter estimates between the two balances. Constraining the range of potential input values allows for a direct estimate of k in large, productive systems where other k-estimation approaches may be uncertain or logistically infeasible.

  20. Study of neutron-deficient isotopes of Fl in the 239Pu, 240Pu + 48Ca reactions

    NASA Astrophysics Data System (ADS)

    Voinov, A. A.; Utyonkov, V. K.; Brewer, N. T.; Oganessian, Yu Ts; Rykaczewski, K. P.; Abdullin, F. Sh; Dmitriev, S. N.; Grzywacz, R. K.; Itkis, M. G.; Miernik, K.; Polyakov, A. N.; Roberto, J. B.; Sagaidak, R. N.; Shirokovsky, I. V.; Shumeiko, M. V.; Tsyganov, Yu S.; Subbotin, V. G.; Sukhov, A. M.; Sabelnikov, A. V.; Vostokin, G. K.; Hamilton, J. H.; Stoyer, M. A.; Strauss, S. Y.

    2016-07-01

    The results of the experiments aimed at the synthesis of Fl isotopes in the 239Pu + 48Ca and 240Pu + 48Ca reactions are presented. The experiment was performed using the Dubna gas-filled recoil separator at the U400 cyclotron. In the 239Pu+48Ca experiment one decay of spontaneously fissioning 284Fl was detected at 245-MeV beam energy. In the 240Pu+48Ca experiment three decay chains of 285Fl were detected at 245 MeV and four decays were assigned to 284Fl at the higher 48Ca beam energy of 250 MeV. The α-decay energy of 285Fl was measured for the first time and decay properties of its descendants 281Cn, 277Ds, 273Hs, 269Sg, and 265Rf were determined more precisely. The cross section of the 239Pu(48Ca,3n)284Fl reaction was observed to be about 20 times lower than those predicted by theoretical models and 50 times less than the value measured in the 244Pu+48Ca reaction. The cross sections of the 240Pu(48Ca,4-3n)284,285Fl at both 48Ca energies are similar and exceed that observed in the reaction with lighter isotope 239Pu by a factor of 10. The decay properties of the synthesized nuclei and their production cross sections indicate rapid decrease of stability of superheavy nuclei with departing from the neutron number N=184 predicted to be the next magic number.

  1. Degradation of methyl bromide and methyl chloride in soil microcosms: Use of stable C isotope fractionation and stable isotope probing to identify reactions and the responsible microorganisms

    USGS Publications Warehouse

    Miller, L.G.; Warner, K.L.; Baesman, S.M.; Oremland, R.S.; McDonald, I.R.; Radajewski, S.; Murrell, J.C.

    2004-01-01

    Bacteria in soil microcosm experiments oxidized elevated levels of methyl chloride (MeCl) and methyl bromide (MeBr), the former compound more rapidly than the latter. MeBr was also removed by chemical reactions while MeCl was not. Chemical degradation dominated the early removal of MeBr and accounted for more than half of its total loss. Fractionation of stable carbon isotopes during chemical degradation of MeBr resulted in a kinetic isotope effect (KIE) of 59 ?? 7???. Soil bacterial oxidation dominated the later removal of MeBr and MeCl and was characterized by different KIEs for each compound. The KIE for MeBr oxidation was 69 ?? 9??? and the KIE for MeCl oxidation was 49 ?? 3???. Stable isotope probing revealed that different populations of soil bacteria assimilated added 13C-labeled MeBr and MeCl. The identity of the active MeBr and MeCl degrading bacteria in soil was determined by analysis of 16S rRNA gene sequences amplified from 13C-DNA fractions, which identified a number of sequences from organisms not previously thought to be involved in methyl halide degradation. These included Burkholderia , the major clone type in the 13C-MeBr fraction, and Rhodobacter, Lysobacter and Nocardioides the major clone types in the 13C-MeCl fraction. None of the 16S rRNA gene sequences for methyl halide oxidizing bacteria currently in culture (including Aminobacter strain IMB-1 isolated from fumigated soil) were identified. Functional gene clone types closely related to Aminobacter spp. were identified in libraries containing the sequences for the cmuA gene, which codes for the enzyme known to catalyze the initial step in the oxidation of MeBr and MeCl. The cmuA gene was limited to members of the alpha-Proteobacteria whereas the greater diversity demonstrated by the 16S rRNA gene may indicate that other enzymes catalyze methyl halide oxidation in different groups of bacteria. Copyright ?? 2004 Elsevier Ltd.

  2. Experimental evaluation of the isotopic exchange equilibrium 10B(OH) 3+ 11B(OH) 4-= 11B(OH) 3+ 10B(OH) 4- in aqueous solution

    NASA Astrophysics Data System (ADS)

    Byrne, Robert H.; Yao, Wensheng; Klochko, Kateryna; Tossell, John A.; Kaufman, Alan J.

    2006-04-01

    The precision of spectrophotometric measurements of indicator absorbance ratios is sufficient to allow evaluation of small isotopically induced differences in the dissociation constant of boric acid ( KB). The quotient of 11KB and 10KB, obtained using isotopically ⩾99% pure borate/boric acid buffers, provides an equilibrium constant for the reaction 10B(OH) 3+ 11B(OH) 4-⇔ 11B(OH) 3+ 10B(OH) 4- which heretofore had not been experimentally determined. Previous theoretical and semi-empirical evaluations of this equilibrium, which is important for assessments of the paleo-pH of seawater and the paleo- pCO 2 of the atmosphere, have yielded constants, 11-10KB= 10KB/ 11KB, that have ranged between 1.0194 and approximately 1.033. The experimentally determined value 11-10KB=1.028 5±0.001 6 (mean±95% confidence interval) obtained at 25 °C and 0.63 molal (mol kg -1 H 2O) ionic strength is in much better agreement with recent theoretical assessments of 11-10KB that have ranged between 1.026 and 1.033, than the much-cited original estimate (1.0194) of Kakihana et al. (1977) [Fundamental studies on the ion-exchange separation of boron isotopes. Bulletin of Chemical Society of Japan 50, 158-163]. Since the activity quotient for the fractionation reaction is almost equal to unity, it is expected that the 11-10KB value obtained in this study will be applicable over a wide range of solution compositions and ionic strengths.

  3. Electrocatalytic reduction of acetone in a proton-exchange-membrane reactor: a model reaction for the electrocatalytic reduction of biomass.

    PubMed

    Green, Sara K; Tompsett, Geoffrey A; Kim, Hyung Ju; Bae Kim, Won; Huber, George W

    2012-12-01

    Acetone was electrocatalytically reduced to isopropanol in a proton-exchange-membrane (PEM) reactor on an unsupported platinum cathode. Protons needed for the reduction were produced on the unsupported Pt-Ru anode from either hydrogen gas or electrolysis of water. The current efficiency (the ratio of current contributing to the desired chemical reaction to the overall current) and reaction rate for acetone conversion increased with increasing temperature or applied voltage for the electrocatalytic acetone/water system. The reaction rate and current efficiency went through a maximum with respect to acetone concentration. The reaction rate for acetone conversion increased with increasing temperature for the electrocatalytic acetone/hydrogen system. Increasing the applied voltage for the electrocatalytic acetone/hydrogen system decreased the current efficiency due to production of hydrogen gas. Results from this study demonstrate the commercial feasibility of using PEM reactors to electrocatalytically reduce biomass-derived oxygenates into renewable fuels and chemicals.

  4. Kinetic and Mechanistic Studies of the Deuterium Exchange in Classical Keto-Enol Tautomeric Equilibrium Reactions

    ERIC Educational Resources Information Center

    Nichols, Michael A.; Waner, Mark J.

    2010-01-01

    An extension of the classic keto-enol tautomerization of beta-dicarbonyl compounds into a kinetic analysis of deuterium exchange is presented. It is shown that acetylacetone and ethyl acetoacetate undergo nearly complete deuterium exchange of the alpha-methylene carbon when dissolved in methanol-d[subscript 4]. The extent of deuteration may be…

  5. Charge-Transfer Effects in Ligand Exchange Reactions of Au25 Monolayer-Protected Clusters.

    PubMed

    Carducci, Tessa M; Blackwell, Raymond E; Murray, Royce W

    2015-04-16

    Reported here are second-order rate constants of associative ligand exchanges of Au25L18 nanoparticles (L = phenylethanethiolate) of various charge states, measured by proton nuclear magnetic resonance at room temperature and below. Differences in second-order rate constants (M(-1) s(-1)) of ligand exchange (positive clusters ∼1.9 × 10(-5) versus negative ones ∼1.2 × 10(-4)) show that electron depletion retards ligand exchange. The ordering of rate constants between the ligands benzeneselenol > 4-bromobenzene thiol > benzenethiol reveals that exchange is accelerated by higher acidity and/or electron donation capability of the incoming ligand. Together, these observations indicate that partial charge transfer occurs between the nanoparticle and ligand during the exchange and that this is a rate-determining effect in the process.

  6. Kinetics of Sr and Nd exchange in silicate liquids: Theory, experiments, and applications to uphill diffusion, isotopic equilibration, and irreversible mixing of magmas

    SciTech Connect

    Lesher, C.E.

    1994-05-10

    Diffusion coefficients that govern chemical and isotopic exchange of Sr and Nd were determined from compositional profiles developed between juxtaposed anhydrous basaltic and rhyolitic liquids. Analysis of simple diffusion couples involving isotopically enriched and normal tholeiitic basalt and metaluminous rhyolite recover Sr and Nd self-diffusion coefficients (D{sup *}) in the end-member compositions of contrasting polymerization. Self-diffusion of Sr is 7 times faster in basaltic melt than rhyolitic melt at 1255{degrees}C and 1 GPa, while self-diffusion of Nd is more than 1 order of magnitude greater in basalt than rhyolite. Also, at these conditions, D{sub Sr}{sup *} is a factor of 3 greater than D{sub Nd}{sup *} in basalt and an order of magnitude greater than D{sub Nd}{sup *} in rhyolite. The results of a Botlzmann-Matano analysis of {sup 87}Sr/{Sigma}Sr and {sup 144}Nd/{Sigma}Nd profiles of complex diffusion couples composed of isotopically normal basalt and enriched rhyolite yield diffusion coefficients for intermediate bulk compositions in agreement with interpolated values given by the relationships above. An important feature of the interdiffusion of basaltic and rhyolitic liquids is the equilibration of isotopic composition in advance of chemical homogenization. This behavior is best displayed by Sr in the present experiments and predicted for Nd. These results are considered in a magmatic context, where intimate blending of magmas during mixing is frustrated by large rheological contrasts and/or insufficient exposure time. Time-dependent diffusional exchange between mingling magmas leads to covariations in chemical and isotopic compositions that differ markedly from the expectations of bulk mixing. Examples presented offer alternative interpretations for the compositional relationships found among magmatic rocks of hybrid origin. 63 refs., 14 figs., 4 tabs.

  7. A full dimensional time-dependent wave packet study for the H4 four-center, collision induced dissociation, and single exchange reactions: reaction probabilities for J=0.

    PubMed

    Lu, Yunpeng; Lee, Soo-Y; Zhang, Dong H

    2006-01-07

    A time-dependent initial state selected wave packet method has been developed to study the H2(v(1)=10-11,j1=0)+H2'(v2=0,j2=0)-->HH'+HH' four-center (4C) reaction, and two other competing reactions: the H2+H2'-->H+H+H2' collision induced dissociation (CID) and the H2+H2'-->H+HH'+H' single exchange (SE) reaction, in full six dimensions. Initial state-specific total reaction probabilities for these three competing reactions are presented for total angular momentum J=0 and the effects of reagent vibration on reactions are examined. It is found that (a) the CID process is the dominant process over the whole energy range considered in this study, but the 4C and SE processes also have non-negligible probabilities; (b) the SE process has a lower threshold energy than the 4C process, but the SE probability increases slower than the 4C probability as collision energy increases; (c) the vibrational excitation of H2(v1) is much more efficient than translational motion for promoting these processes, in particular to the CID process.

  8. Reaction kinetics and isotope effect of water formation by the surface reaction of solid H2O2 with H atoms at low temperatures.

    PubMed

    Oba, Yasuhiro; Osaka, Kazuya; Watanabe, Naoki; Chigai, Takeshi; Kouchi, Akira

    2014-01-01

    We performed laboratory experiments on the formation of water and its isotopologues by surface reactions of hydrogen peroxide (H2O2) with hydrogen (H) atoms and their deuterated counterparts (D2O2, D) at 10-30 K. High-purity H2O2 (> 95%) was prepared in situ by the codeposition of molecular oxygen and H atoms at relatively high temperatures (45-50 K). We determined that the high-purity H2O2 solid reacts with both H and deuterium (D) atoms at 10-30 K despite the large activation barriers (-2000 K). Moreover, the reaction rate for H atoms is approximately 45 times faster than that for D atoms at 15 K. Thus, the observed large isotope effect indicates that these reactions occurred through quantum tunneling. We propose that the observed HDO/H2O ratio in molecular clouds might be a good tool for the estimation of the atomic D/H ratio in those environments.

  9. Meson-exchange calculation of the d(. gamma. ,p)n reaction in the GeV energy region

    SciTech Connect

    Lee, T.S.H.

    1991-01-01

    We show that a meson-exchange model of the d({gamma},p) reaction can be constructed to reproduce the energy-dependence of the existing data for the differential cross section at 90{degree}. The prediction of the model in the GeV energy region is found to be radically different from the QCD prediction by Brodsky and Hiller. The results will be compared with the new data presented in a companion paper. 12 refs., 4 figs.

  10. Computational replication of the abnormal secondary kinetic isotope effects in a hydride transfer reaction in solution with a motion assisted H-tunneling model.

    PubMed

    Kashefolgheta, Sadra; Razzaghi, Mortezaali; Hammann, Blake; Eilers, James; Roston, Daniel; Lu, Yun

    2014-03-07

    We recently reported abnormal secondary deuterium kinetic isotope effects (2° KIEs) for hydride transfer reactions from alcohols to carbocations in acetonitrile (Chem. Comm. 2012, 48, 11337). Experimental 2° KIE values were found to be inflated on the 9-C position in the xanthylium cation but deflated on the β-C position in 2-propanol with respect to the values predicted by the semi-classical transition-state theory. No primary (1°) isotope effect on 2° KIEs was observed. Herein, the KIEs were replicated by the Marcus-like H-tunneling model that requires a longer donor-acceptor distance (DAD) in a lighter isotope transfer process. The 2° KIEs for a range of potential tunneling-ready-states (TRSs) of different DADs were calculated and fitted to the experiments to find the TRS structure. The observed no effect of 1° isotope on 2° KIEs is explained in terms of the less sterically hindered TRS structure so that the change in DAD due to the change in 1° isotope does not significantly affect the reorganization of the 2° isotope and hence the 2° KIE. The effect of 1° isotope on 2° KIEs may be expected to be more pronounced and thus observable in reactions occurring in restrictive environments such as the crowded and relatively rigid active site of enzymes.

  11. Hybrid quantum and classical methods for computing kinetic isotope effects of chemical reactions in solutions and in enzymes.

    PubMed

    Gao, Jiali; Major, Dan T; Fan, Yao; Lin, Yen-Lin; Ma, Shuhua; Wong, Kin-Yiu

    2008-01-01

    A method for incorporating quantum mechanics into enzyme kinetics modeling is presented. Three aspects are emphasized: 1) combined quantum mechanical and molecular mechanical methods are used to represent the potential energy surface for modeling bond forming and breaking processes, 2) instantaneous normal mode analyses are used to incorporate quantum vibrational free energies to the classical potential of mean force, and 3) multidimensional tunneling methods are used to estimate quantum effects on the reaction coordinate motion. Centroid path integral simulations are described to make quantum corrections to the classical potential of mean force. In this method, the nuclear quantum vibrational and tunneling contributions are not separable. An integrated centroid path integral-free energy perturbation and umbrella sampling (PI-FEP/UM) method along with a bisection sampling procedure was summarized, which provides an accurate, easily convergent method for computing kinetic isotope effects for chemical reactions in solution and in enzymes. In the ensemble-averaged variational transition state theory with multidimensional tunneling (EA-VTST/MT), these three aspects of quantum mechanical effects can be individually treated, providing useful insights into the mechanism of enzymatic reactions. These methods are illustrated by applications to a model process in the gas phase, the decarboxylation reaction of N-methyl picolinate in water, and the proton abstraction and reprotonation process catalyzed by alanine racemase. These examples show that the incorporation of quantum mechanical effects is essential for enzyme kinetics simulations.

  12. Activation evaluation and isotopic effects in the (n, p) reaction cross section on A-180 target nuclei

    SciTech Connect

    Avrigeanu, M.; Forrest, R. A.; Roman, F. L.; Avrigeanu, V.

    2006-07-01

    The fast-neutron nuclear data for the stable isotopes of tungsten, tantalum and hafnium, which are important in nuclear technology applications, have been consistently analyzed by means of the nuclear model computer codes TALYS, EMPIRE-II and STAPRE-H. The latter code uses a unique parameter set. The long-lived Hf isomers, which could be produced after a few reactions on W and Ta in the first-wall material of fusion power plants, need special consideration. The analysis, making use of global as well as local parameters within different model assumptions, aims to increase the predictive power of the models, which is of interest to basic as well as applied questions. This work suggests a physical reason for some of the discrepancies between experimental and calculated cross sections for (n, p) and (n, {alpha}) reactions on {sup 181}Ta. Thus, the rather similar Q-values for the (n, p) reaction on the {sup 179}Hf, {sup 181}Ta, and {sup 183}W odd-A target nuclei, also with similar asymmetry-parameter values, support the comparable cross sections which are predicted by all three computer code calculations at variance with the lower measured cross sections of the {sup 181}Ta(n, p) {sup 181}Hf reaction. (authors)

  13. The loss rates of O{sup +} in the inner magnetosphere caused by both magnetic field line curvature scattering and charge exchange reactions

    SciTech Connect

    Ji, Y.; Shen, C.

    2014-03-15

    With consideration of magnetic field line curvature (FLC) pitch angle scattering and charge exchange reactions, the O{sup +} (>300 keV) in the inner magnetosphere loss rates are investigated by using an eigenfunction analysis. The FLC scattering provides a mechanism for the ring current O{sup +} to enter the loss cone and influence the loss rates caused by charge exchange reactions. Assuming that the pitch angle change is small for each scattering event, the diffusion equation including a charge exchange term is constructed and solved; the eigenvalues of the equation are identified. The resultant loss rates of O{sup +} are approximately equal to the linear superposition of the loss rate without considering the charge exchange reactions and the loss rate associated with charge exchange reactions alone. The loss time is consistent with the observations from the early recovery phases of magnetic storms.

  14. Mass-dependent dynamics of the luminescent exchange reactions C+(2P), P+(3P) + H2, D2, HD

    NASA Astrophysics Data System (ADS)

    Glenewinkel-Meyer, Th; Hoppe, U.; Kowalski, A.; Ottinger, Ch; Rabenda, D.

    1995-06-01

    Chemiluminescent ion/molecule reactions of ground state C+ and P+ ions with H2, D2 and HD have been studied in an ion beam/target gas cell arrangement. Emission spectra of CH+, CD+ (A 1II) and of PH+, PD+ (A 2[Delta]) were observed with up to 1 Å FWHM resolution and at collision energies from threshold ([approximate] 3 eV) to 8 eVc.m. (centre-of-mass) and 15eVc.m., respectively. Very detailed computer simulations of the spectral contours were done, including ab initio transition moments and, in the case of PH+/PD+, the effects of predissociation. In simulating the spectra obtained with HD, the overlapped hydride and deuteride product ion spectra could be isolated by varying the respective weighting factors to achieve an optimum overall fit. In the case of C+ + HD, the two components were found to have very similar rovibrational distributions as with the products from C+ + H2 and C+ + D2. In the P+ case, however, the rotational, although not the vibrational, distributions were found to be significantly different for the isotopically mixed and the pure reactions. The cross-sections showed an intermolecular isotope effect only for C+ + H2 vs. C+ + D2 at high energies. However, both with C+ + HD and P+ + HD, a very strong intramolecular isotope effect, i.e. an energy-dependent branching ratio, was observed: at low energies deuteride formation prevails, at high energies hydride. This behaviour is discussed in terms of an impulsive collision model, assuming the "pairwise" relative kinetic energy between the reacting atoms to be the determining factor. On the basis of the measured cross-section curves for the H2 and D2 reactions, the energy-dependent hydride/deuteride ratio in the HD reaction can then be predicted. The agreement with the experimental results is excellent in the P+ case, but only moderate for the C+ reactions. Even the P+ reaction, however, does not occur via the spectator stripping mechanisms. The spectra show an energy-independent vibrational excitation

  15. Theoretical analysis of kinetic isotope effects on proton transfer reactions between substituted alpha-methoxystyrenes and substituted acetic acids.

    PubMed

    Wong, Kin-Yiu; Richard, John P; Gao, Jiali

    2009-10-07

    Primary kinetic isotope effects (KIEs) on a series of carboxylic acid-catalyzed protonation reactions of aryl-substituted alpha-methoxystyrenes (X-1) to form oxocarbenium ions have been computed using the second-order Kleinert variational perturbation theory (KP2) in the framework of Feynman path integrals (PI) along with the potential energy surface obtained at the B3LYP/6-31+G(d,p) level. Good agreement with the experimental data was obtained, demonstrating that this novel computational approach for computing KIEs of organic reactions is a viable alternative to the traditional method employing Bigeleisen equation and harmonic vibrational frequencies. Although tunneling makes relatively small contributions to the lowering of the free energy barriers for the carboxylic acid catalyzed protonation reaction, it is necessary to include tunneling contributions to obtain quantitative estimates of the KIEs. Consideration of anharmonicity can further improve the calculated KIEs for the protonation of substituted alpha-methoxystyrenes by chloroacetic acid, but for the reactions of the parent and 4-NO(2) substituted alpha-methoxystyrene with substituted carboxylic acids, the correction of anharmonicity overestimates the computed KIEs for strong acid catalysts. In agreement with experimental findings, the largest KIEs are found in nearly ergoneutral reactions, DeltaG(o) approximately 0, where the transition structures are nearly symmetric and the reaction barriers are relatively low. Furthermore, the optimized transition structures are strongly dependent on the free energy for the formation of the carbocation intermediate, that is, the driving force DeltaG(o), along with a good correlation of Hammond shift in the transition state structure.

  16. Theoretical Analysis of Kinetic Isotope Effects on Proton Transfer Reactions between Substituted α-Methoxystyrenes and Substituted Acetic Acids

    PubMed Central

    Wong, Kin Yiu; Richard, John P.; Gao, Jiali

    2009-01-01

    Primary kinetic isotope effects (KIEs) on a series of carboxylic acid-catalyzed protonation reactions of aryl-substituted α-methoxystyrenes (X-1) to form oxocarbenium ions have been computed using the Kleinert variational second-order perturbation theory (KP2) in the framework of Feynman path integrals (PI) along with the potential energy surface obtained at the B3LYP/6-31+G(d,p) level. Good agreement with the experimental data was obtained, demonstrating that this novel computational approach for computing KIEs of organic reactions is a viable alternative to the traditional method employing Bigeleisen equation and harmonic vibrational frequencies. Although tunneling makes relative small contributions to the lowering of the free energy barriers for the carboxylic acid catalyzed protonation reaction, it is necessary to include tunneling contributions to obtain quantitative estimates of the KIEs. Consideration of anharmonicity can further improve the calculated KIEs for the protonation of substituted α-methoxystyrenes by chloroacetic acid, but for the reactions of the parent and 4-NO2 substituted α-methoxystyrene with substituted carboxylic acids, the correction of anharmonicity overestimates the computed KIEs for strong acid catalysts. In agreement with experimental findings, the largest KIEs are found in nearly ergoneutral reactions, ΔGo ≈ 0, where the transition structures are nearly symmetric and the reaction barriers are relatively low. Furthermore, the optimized transition structures are strongly dependent on the free energy for the formation of the carbocation intermediate, i.e., the driving force ΔGo, along with a good correlation of Hammond shift in the transition state structure. PMID:19754046

  17. What are the instrumentation requirements for measuring the isotopic composition of net ecosystem exchange of CO2 using eddy covariance methods?

    PubMed

    Saleska, Scott R; Shorter, Joanne H; Herndon, Scott; Jiménez, Rodrigo; McManus, J Barry; Munger, J William; Nelson, David D; Zahniser, Mark S

    2006-06-01

    Better quantification of isotope ratios of atmosphere-ecosystem exchange of CO2 could substantially improve our ability to probe underlying physiological and ecological mechanisms controlling ecosystem carbon exchange, but the ability to make long-term continuous measurements of isotope ratios of exchange fluxes has been limited by measurement difficulties. In particular, direct eddy covariance methods have not yet been used for measuring the isotopic composition of ecosystem fluxes. In this article, we explore the feasibility of such measurements by (a) proposing a general criterion for judging whether a sensor's performance is sufficient for making such measurements (the criterion is met when the contribution of sensor error to the flux measurement error is comparable to or less than the contribution of meteorological noise inherently associated with turbulence flux measurements); (b) using data-based numerical simulations to quantify the level of sensor precision and stability required to meet this criterion for making direct eddy covariance measurements of the 13C/12C ratio of CO2 fluxes above a specific ecosystem (a mid-latitude temperate forest in central Massachusetts, USA); (c) testing whether the performance of a new sensor-a prototype pulsed quantum cascade laser (QCL) based isotope-ratio absorption spectrometer (and plausible improvements thereon)-is sufficient for meeting the criterion in this ecosystem. We found that the error contribution from a prototype sensor (approximately 0.2 per thousand, 1 SD of 10 s integrations) to total isoflux measurement error was comparable to (1.5 to 2x) the irreducible 'meteorological' noise inherently associated with turbulent flux measurements above this ecosystem (daytime measurement error SD of approximately 60% of flux versus meteorological noise of 30-40% for instantaneous half-hour fluxes). Our analysis also shows that plausible instrument improvements (increase of sensor precision to approximately 0.1 per

  18. Oxygen isotope exchange kinetics of mineral pairs in closed and open systems: Applications to problems of hydrothermal alteration of igneous rocks and Precambrian iron formations

    USGS Publications Warehouse

    Gregory, R.T.; Criss, R.E.; Taylor, H.P.

    1989-01-01

    The systematics of stable-isotope exchange between minerals and fluids are examined in the context of modal mineralogical variations and mass-balance considerations, both in closed and in open systems. On mineral-pair ??18O plots, samples from terranes that have exchanged with large amounts of fluid typically map out steep positively-sloped non-equilibrium arrays. Analytical models are derived to explain these effects; these models allow for different exchange rates between the various minerals and the external fluids, as well as different fluid fluxes. The steep arrays are adequately modelled by calculated isochron lines that involve the whole family of possible exchange trajectories. These isochrons have initially-steep near-vertical positive slopes that rotate toward a 45?? equilibrium slope as the exchange process proceeds to completion. The actual data-point array is thus analogous to the hand of an "isotopic clock" that measures the duration of the hydrothermal episode. The dimensionless ratio of the volumetric fluid flux to the kinetic rate parameter ( u k) determines the shape of each individual exchange trajectory. In a fluid-buffered system ( u k ??? 1), the solutions to the equations: (1) are independent of the mole fractions of the solid phases; (2) correspond to Taylor's open-system water/rock equation; and (3) yield straight-line isochrons that have slopes that approach 1 f, where f is the fraction reacted of the more sluggishly exchanging mineral. The isochrons for this simple exchange model are closely congruent with the isochrons calculated for all of the more complex models, thereby simplifying the application of theory to actual hydrothermal systems in nature. In all of the models an order of magnitude of time (in units of kt) separates steep non-equilibrium arrays (e.g., slope ??? 10) from arrays approaching an equilibrium slope of unity on a ??-?? diagram. Because we know the approximate lifetimes of many hydrothermal systems from geologic and

  19. Fusion reactions in collisions induced by Li isotopes on Sn targets

    SciTech Connect

    Fisichella, M.; Shotter, A. C.; Di Pietro, A.; Figuera, P.; Lattuada, M.; Marchetta, C.; Musumarra, A.; Pellegriti, M. G.; Ruiz, C.; Scuderi, V.; Strano, E.; Torresi, D.; Zadro, M.

    2012-10-20

    Fusion cross sections for the {sup 6}Li+{sup 120}Sn and {sup 7}Li+{sup 119}Sn systems have been measured. We aim to search for possible effects due to the different neutron transfer Q-values, by comparing the fusion cross sections for the two systems below the barrier. This experiment is the first step of a wider systematic aiming to study the above problems in collisions induced by stable and unstable Li isotopes on tin all forming the same compound nucleus.

  20. Isotopic effects in the ( π±, 2N) reactions on 16O and 18O

    NASA Astrophysics Data System (ADS)

    Altman, A.; Ashery, D.; Piasetzky, E.; Lichtenstadt, J.; Yavin, A. I.; Bertl, W.; Felawka, L.; Walter, H. K.; Powers, R. J.; Winter, R. G.; v. d. Pluym, J.

    1984-09-01

    The ( π+, 2p), ( π+, pn) and ( π-, pn) reactions on 16O and 18O were studied at 165 MeV. The cross section for the ( π+, 2p) reaction on 18O is larger than that for 16O be only 5% ± 3%, while the total π+ absorption cross section is larger by 17% ± 5%. This supports the assumption that two-nucleon absorption occurs mainly on nucleons in the same shell. It is further concluded that Δ++n → pp is not only absorption mechanism that couples strongly to the nucleon knock out reactions.

  1. An observational constraint on stomatal function in forests: evaluating coupled carbon and water vapor exchange with carbon isotopes in the Community Land Model (CLM4.5)

    NASA Astrophysics Data System (ADS)

    Raczka, Brett; Duarte, Henrique F.; Koven, Charles D.; Ricciuto, Daniel; Thornton, Peter E.; Lin, John C.; Bowling, David R.

    2016-09-01

    Land surface models are useful tools to quantify contemporary and future climate impact on terrestrial carbon cycle processes, provided they can be appropriately constrained and tested with observations. Stable carbon isotopes of CO2 offer the potential to improve model representation of the coupled carbon and water cycles because they are strongly influenced by stomatal function. Recently, a representation of stable carbon isotope discrimination was incorporated into the Community Land Model component of the Community Earth System Model. Here, we tested the model's capability to simulate whole-forest isotope discrimination in a subalpine conifer forest at Niwot Ridge, Colorado, USA. We distinguished between isotopic behavior in response to a decrease of δ13C within atmospheric CO2 (Suess effect) vs. photosynthetic discrimination (Δcanopy), by creating a site-customized atmospheric CO2 and δ13C of CO2 time series. We implemented a seasonally varying Vcmax model calibration that best matched site observations of net CO2 carbon exchange, latent heat exchange, and biomass. The model accurately simulated observed δ13C of needle and stem tissue, but underestimated the δ13C of bulk soil carbon by 1-2 ‰. The model overestimated the multiyear (2006-2012) average Δcanopy relative to prior data-based estimates by 2-4 ‰. The amplitude of the average seasonal cycle of Δcanopy (i.e., higher in spring/fall as compared to summer) was correctly modeled but only when using a revised, fully coupled An - gs (net assimilation rate, stomatal conductance) version of the model in contrast to the partially coupled An - gs version used in the default model. The model attributed most of the seasonal variation in discrimination to An, whereas interannual variation in simulated Δcanopy during the summer months was driven by stomatal response to vapor pressure deficit (VPD). The model simulated a 10 % increase in both photosynthetic discrimination and water-use efficiency (WUE

  2. An observational constraint on stomatal function in forests: evaluating coupled carbon and water vapor exchange with carbon isotopes in the Community Land Model (CLM4.5)

    DOE PAGES

    Raczka, Brett; Duarte, Henrique F.; Koven, Charles D.; ...

    2016-09-19

    Land surface models are useful tools to quantify contemporary and future climate impact on terrestrial carbon cycle processes, provided they can be appropriately constrained and tested with observations. Stable carbon isotopes of CO2 offer the potential to improve model representation of the coupled carbon and water cycles because they are strongly influenced by stomatal function. Recently, a representation of stable carbon isotope discrimination was incorporated into the Community Land Model component of the Community Earth System Model. Here, we tested the model's capability to simulate whole-forest isotope discrimination in a subalpine conifer forest at Niwot Ridge, Colorado, USA. We distinguishedmore » between isotopic behavior in response to a decrease of δ13C within atmospheric CO2 (Suess effect) vs. photosynthetic discrimination (Δcanopy), by creating a site-customized atmospheric CO2 and δ13C of CO2 time series. We implemented a seasonally varying Vcmax model calibration that best matched site observations of net CO2 carbon exchange, latent heat exchange, and biomass. The model accurately simulated observed δ13C of needle and stem tissue, but underestimated the δ13C of bulk soil carbon by 1–2 ‰. The model overestimated the multiyear (2006–2012) average Δcanopy relative to prior data-based estimates by 2–4 ‰. The amplitude of the average seasonal cycle of Δcanopy (i.e., higher in spring/fall as compared to summer) was correctly modeled but only when using a revised, fully coupled An − gs (net assimilation rate, stomatal conductance) version of the model in contrast to the partially coupled An − gs version used in the default model. The model attributed most of the seasonal variation in discrimination to An, whereas interannual variation in simulated Δcanopy during the summer months was driven by stomatal response to vapor pressure deficit (VPD). The model simulated a 10 % increase in both photosynthetic discrimination

  3. The non-mass-dependent oxygen isotopic composition of CO2 formed by O+CO: Anomalous isotope effects in the O+CO recombination reaction or transfer from ozone?

    NASA Astrophysics Data System (ADS)

    Estillore, A. D.; Wiegel, A. A.; Boering, K. A.

    2013-12-01

    A number of oxygen-containing atmospheric species are now known to have non-mass-dependent triple oxygen isotope compositions (i.e., non-mass-dependent relationships between 16O, 17O, and 18O), which in turn are now being broadly applied as probes of biogeochemical cycles and chemical reactivity or as climate proxies on a variety of timescales. For many species, their non-mass-dependent oxygen isotope compositions derive from chemical or O(1D)-mediated photochemical transfer from ozone, which is non-mass-dependently enriched in 17O and 18O due to large non-mass-dependent kinetic isotope effects in the ozone recombination reaction, O+O2+M. For other species, however, there may also be additional non-mass-dependent kinetic isotope effects involved beyond ozone formation. The distinction is important both with respect to the biogeochemical and climate applications and to obtaining a deeper fundamental understanding of non-mass-dependent isotope fractionation in general. In work to be presented here, we have used a photochemical kinetics model to understand the isotopic composition of CO2 formed by O+CO+M in a mixture of O2 and CO gases irradiated with UV light at several wavelengths. We compare our model results with experimental results from Bhattacharya and Thiemens [Z. Naturforsch. 44a, 435-444 (1989)] and Pandey and Bhattacharya [J. Chem. Phys. 124, 234301 (2006)] in order to evaluate the extent to which the non-mass-dependent isotopic composition of CO2 derives from photochemical transfer from ozone formed during the experiment versus possible non-mass-dependent isotope effects in the CO2 recombination reaction.

  4. Competing Noncovalent Host-guest Interactions and H/D Exchange: Reactions of Benzyloxycarbonyl-Proline Glycine Dipeptide Variants with ND3

    NASA Astrophysics Data System (ADS)

    Miladi, Mahsan; Olaitan, Abayomi D.; Zekavat, Behrooz; Solouki, Touradj

    2015-11-01

    A combination of density functional theory calculations, hydrogen/deuterium exchange (HDX) reactions, ion mobility-mass spectrometry, and isotope labeling tandem mass spectrometry was used to study gas-phase "host-guest" type interactions of a benzyloxycarbonyl (Z)-capped proline (P) glycine (G) model dipeptide (i.e., Z-PG) and its various structural analogues with ND3. It is shown that in a solvent-free environment, structural differences between protonated and alkali metal ion (Na+, K+, or Cs+)-complexed species of Z-PG affect ND3 adduct formation. Specifically, [Z-PG + H]+ and [Z-PG-OCH3 + H]+ formed gas-phase ND3 adducts ([Z-PG (or Z-PG-OCH3) + H + ND3]+) but no ND3 adducts were observed for [Z-PG + alkali metal]+ or [Z-PG + H - CO2]+. Experimentally measured and theoretically calculated collision cross sections (CCSs) of protonated and alkali metal ion-complexed Z-PG species showed similar trends that agreed with the observed structural differences from molecular modeling results. Moreover, results from theoretical ND3 affinity calculations were consistent with experimental HDX observations, indicating a more stable ND3 adduct for [Z-PG + H]+ compared to [Z-PG + alkali metal]+ species. Molecular modeling and experimental MS results for [Z-PG + H]+ and [Z-PG + alkali metal]+ suggest that optimized cation-π and hydrogen bonding interactions of carbonyl groups in final products are important for ND3 adduct formation.

  5. Quantal Study of the Exchange Reaction for N + N2 using an ab initio Potential Energy Surface

    NASA Technical Reports Server (NTRS)

    Wang, Dunyou; Stallcop, James R.; Huo, Winifred M.; Dateo, Christopher E.; Schwenke, David W.; Partridge, Harry; Kwak, Dochan (Technical Monitor)

    2002-01-01

    The N + N2 exchange rate is calculated using a time-dependent quantum dynamics method on a newly determined ab initio potential energy surface (PES) for the ground A" state. This ab initio PES shows a double barrier feature in the interaction region with the barrier height at 47.2 kcal/mol, and a shallow well between these two barriers, with the minimum at 43.7 kcal/mol. A quantum dynamics wave packet calculation has been carried out using the fitted PES to compute the cumulative reaction probability for the exchange reaction of N + N2(J=O). The J - K shift method is then employed to obtain the rate constant for this reaction. The calculated rate constant is compared with experimental data and a recent quasi-classical calculation using a LEPS PES. Significant differences are found between the present and quasiclassical results. The present rate calculation is the first accurate 3D quantal dynamics study for N + N2 reaction system and the ab initio PES reported here is the first such surface for N3.

  6. Stress Test for Quantum Dynamics Approximations: Deep Tunneling in the Muonium Exchange Reaction D + HMu → DMu + H.

    PubMed

    Pérez de Tudela, Ricardo; Suleimanov, Yury V; Richardson, Jeremy O; Sáez Rábanos, Vicente; Green, William H; Aoiz, F J

    2014-12-04

    Quantum effects play a crucial role in chemical reactions involving light atoms at low temperatures, especially when a light particle is exchanged between two heavier partners. Different theoretical methodologies have been developed in the last decades attempting to describe zero-point energy and tunneling effects without abandoning a classical or semiclassical framework. In this work, we have chosen the D + HMu → DMu + H reaction as a stress test system for three well-established methods: two representative versions of transition state theory (TST), canonical variational theory and semiclassical instanton, and ring polymer molecular dynamics (RPMD). These calculations will be compared with accurate quantum mechanical results. Despite its apparent simplicity, the exchange of the extremely light muonium atom (0.114 u) becomes a most challenging reaction for conventional methods. The main result of this work is that RPMD provides an overall better performance than TST-based methods for such a demanding reaction. RPMD might well turn out to be a useful tool beyond TST applicability.

  7. Testing the TPSS meta-generalized-gradient-approximation exchange-correlation functional in calculations of transition states and reaction barriers.

    PubMed

    Kanai, Yosuke; Wang, Xiaofei; Selloni, Annabella; Car, Roberto

    2006-12-21

    We have studied the performance of local and semilocal exchange-correlation functionals [meta-generalized-gradient-approximation (GGA)-TPSS, GGA-Perdew-Burke-Ernzerhof (PBE), and local density approximation (LDA)] in the calculation of transition states, reaction energies, and barriers for several molecular and one surface reaction, using the plane-wave pseudopotential approach. For molecular reactions, these results have been compared to all-electron Gaussian calculations using the B3LYP hybrid functional, as well as to experiment and high level quantum chemistry calculations, when available. We have found that the transition state structures are accurately identified irrespective of the level of the exchange-correlation functional, with the exception of a qualitatively incorrect LDA prediction for the H-transfer reaction in the hydrogen bonded complex between a water molecule and a OH radical. Both the meta-GGA-TPSS and the GGA-PBE functionals improve significantly the calculated LDA barrier heights. The meta-GGA-TPSS further improves systematically, albeit not always sufficiently, the GGA-PBE barriers. We have also found that, on the Si(001) surface, the meta-GGA-TPSS barriers for hydrogen adsorption agree significantly better than the corresponding GGA-PBE barriers with quantum Monte Carlo cluster results and experimental estimates.

  8. Nitrogen, carbon, and sulfur isotopic change during heterotrophic (Pseudomonas aureofaciens) and autotrophic (Thiobacillus denitrificans) denitrification reactions

    NASA Astrophysics Data System (ADS)

    Hosono, Takahiro; Alvarez, Kelly; Lin, In-Tian; Shimada, Jun

    2015-12-01

    In batch culture experiments, we examined the isotopic change of nitrogen in nitrate (δ15NNO3), carbon in dissolved inorganic carbon (δ13CDIC), and sulfur in sulfate (δ34SSO4) during heterotrophic and autotrophic denitrification of two bacterial strains (Pseudomonas aureofaciens and Thiobacillus denitrificans). Heterotrophic denitrification (HD) experiments were conducted with trisodium citrate as electron donor, and autotrophic denitrification (AD) experiments were carried out with iron disulfide (FeS2) as electron donor. For heterotrophic denitrification experiments, a complete nitrate reduction was accomplished, however bacterial denitrification with T. denitrificans is a slow process in which, after seventy days nitrate was reduced to 40% of the initial concentration by denitrification. In the HD experiment, systematic change of δ13CDIC (from - 7.7‰ to - 12.2‰) with increase of DIC was observed during denitrification (enrichment factor εN was - 4.7‰), suggesting the contribution of C of trisodium citrate (δ13C = - 12.4‰). No SO42 - and δ34SSO4 changes were observed. In the AD experiment, clear fractionation of δ13CDIC during DIC consumption (εC = - 7.8‰) and δ34SSO4 during sulfur use of FeS2-S (around 2‰), were confirmed through denitrification (εN = - 12.5‰). Different pattern in isotopic change between HD and AD obtained on laboratory-scale are useful to recognize the type of denitrification occurring in the field.

  9. Nitrogen, carbon, and sulfur isotopic change during heterotrophic (Pseudomonas aureofaciens) and autotrophic (Thiobacillus denitrificans) denitrification reactions.

    PubMed

    Hosono, Takahiro; Alvarez, Kelly; Lin, In-Tian; Shimada, Jun

    2015-12-01

    In batch culture experiments, we examined the isotopic change of nitrogen in nitrate (δ(15)NNO3), carbon in dissolved inorganic carbon (δ(13)CDIC), and sulfur in sulfate (δ(34)SSO4) during heterotrophic and autotrophic denitrification of two bacterial strains (Pseudomonas aureofaciens and Thiobacillus denitrificans). Heterotrophic denitrification (HD) experiments were conducted with trisodium citrate as electron donor, and autotrophic denitrification (AD) experiments were carried out with iron disulfide (FeS2) as electron donor. For heterotrophic denitrification experiments, a complete nitrate reduction was accomplished, however bacterial denitrification with T. denitrificans is a slow process in which, after seventy days nitrate was reduced to 40% of the initial concentration by denitrification. In the HD experiment, systematic change of δ(13)CDIC (from -7.7‰ to -12.2‰) with increase of DIC was observed during denitrification (enrichment factor εN was -4.7‰), suggesting the contribution of C of trisodium citrate (δ(13)C=-12.4‰). No SO4(2-) and δ(34)SSO4 changes were observed. In the AD experiment, clear fractionation of δ(13)CDIC during DIC consumption (εC=-7.8‰) and δ(34)SSO4 during sulfur use of FeS2-S (around 2‰), were confirmed through denitrification (εN=-12.5‰). Different pattern in isotopic change between HD and AD obtained on laboratory-scale are useful to recognize the type of denitrification occurring in the field.

  10. Broad reactivity trends for oxygen-isotope exchange from the near-surface regions of some metal (hydr)oxide solids.

    PubMed

    Loring, John S; Rosenqvist, Jörgen; Casey, William H

    2004-06-01

    The flux of (18)O from suspensions of isotopically enriched Cr(III) and Rh(III) hydroxide solids at varying temperature and pH was measured in a series of experiments. Most of these solids are metal hydroxide nanospheres that have a large surface area and a narrow distribution in particle sizes and contain inert metals (Cr(III) and Rh(III)). Using rate data for dissolved multimeric complexes as a guide, the solids were enriched in (18)O under conditions that were intended to affect mostly bound water molecules (eta-OH(2)) at the surface, but this point could not be verified. Nevertheless, the fluxes of (18)O back into solution from the isotopically enriched surfaces indicate that increased pH, which partly deprotonates the surface, is surprisingly unimportant to the rate and does not measurably affect (18)O fluxes. Although these data are sparse, Rh(III) solids react at rates that are lower than for Cr(III) solids, and the rates of exchange for crystalline and amorphous solids are relatively close. The results indicate that rates of ligand exchange at these surface sites are controlled dominantly by the local metal-oxygen bond strengths and that long-range forces are relatively unimportant. These experiments also indicate a strategy for measuring rates of ligand exchange from solid surfaces.

  11. The molecular mechanism of the ligand exchange reaction of an antibody against a glutathione-coated gold cluster.

    PubMed

    Rojas-Cervellera, Víctor; Raich, Lluís; Akola, Jaakko; Rovira, Carme

    2017-03-02

    The labeling of proteins with heavy atom clusters is of paramount importance in biomedical research, but its detailed molecular mechanism remains unknown. Here we uncover it for the particular case of the anti-influenza N9 neuraminidase NC10 antibody against a glutathione-coated gold cluster by means of ab initio QM/MM calculations. We show that the labeling reaction follows an associative double SN2-like reaction mechanism, involving a proton transfer, with low activation barriers only if one of the two distinct peptide/peptidic ligands (the one that occupies the side position) is substituted. Positively charged residues in the vicinity of the incoming thiol result in strong interactions between the antibody and the AuMPC, favoring the ligand exchange reaction for suitable protein mutants. These results pave the way for future investigations aimed at engineering biomolecules to increase their reactivity towards a desired gold atom cluster.

  12. Declines in Soil pH due to Anthropogenic Nitrogen Inputs Alter Buffering and Exchange Reactions in Tropical Forest Soils

    NASA Astrophysics Data System (ADS)

    Lohse, K. A.

    2003-12-01

    Anthropogenic nitrogen (N) inputs may alter tropical soil buffering and exchange reactions that have important implications for nutrient cycling, forest productivity, and downstream ecosystems. In contrast to relatively young temperate soils that are typically buffered from N inputs by base cation reactions, aluminum reactions may serve to buffer highly weathered tropical soils and result in immediate increases in aluminum mobility and toxicity. Increased nitrate losses due to chronic N inputs may also deplete residual base cations in already weathered base cation-poor soils, further acidify soils, and thereby reduce nitrate mobility through pH-dependent anion exchange reactions. To test these hypotheses, I determined soil pH and cation and anion exchange capacity (CEC and AEC) and measured base cation and aluminum soil solution losses following first-time and long-term experimental N additions from two Hawaiian tropical forest soils, a 300 year old Andisol and a 4.1 million year old Oxisol. I found that elevated base cation losses accompanied increased nitrate losses after first time N additions to the young Andisol whereas immediate and large aluminum losses were associated with increased nitrate losses from the Oxisol. In the long-term, base cation and aluminum losses increased in proportion to nitrate losses. Long-term N additions at both sites resulted in significant declines in soil pH, decreased CEC and increased AEC. These results suggest that even chronic N inputs resulting in small but elevated nitrate losses may deplete residual base cations, increase mobility and toxicity of aluminum, and potentially lead to declines in forest productivity and acidification of downstream ecosystems. These findings also suggest that AEC may provide a long-term mechanism to delay nitrate losses in tropical forests with significant variable charge that are experiencing chronic anthropogenic N inputs.

  13. Lightest Isotope of Bh Produced Via the 209Bi(52Cr,n)260BhReaction

    SciTech Connect

    Nelson, Sarah L.; Gregorich, Kenneth E.; Dragojevic, Irena; Garcia, Mitch A.; Gates, Jacklyn M.; Sudowe, Ralf; Nitsche, Heino

    2007-05-07

    The lightest isotope of Bh known was produced in the new {sup 209}Bi({sup 52}Cr,n){sup 260}Bh reaction at the Lawrence Berkeley National Laboratory's 88-Inch Cyclotron. Positive identification was made by observation of eight correlated alpha particle decay chains in the focal plane detector of the Berkeley Gas-Filled Separator. {sup 260}Bh decays with a 35{sub -9}{sup +19} ms half-life by alpha particle emission mainly by a group at 10.16 MeV. The measured cross section of 59{sub -20}{sup +29} pb is approximately a factor of four larger than compared to recent model predictions. The influences of the N = 152 and Z = 108 shells on alpha decay properties are discussed.

  14. Lightest Isotope of Bh Produced via the {sup 209}Bi({sup 52}Cr,n){sup 260}Bh Reaction

    SciTech Connect

    Nelson, S. L.; Dragojevic, I.; Garcia, M. A.; Gates, J. M.; Nitsche, H.; Gregorich, K. E.; Sudowe, R.

    2008-01-18

    The lightest isotope of Bh was produced in the new {sup 209}Bi({sup 52}Cr,n){sup 260}Bh reaction at the Lawrence Berkeley National Laboratory's 88-Inch Cyclotron. Positive identification was made by observation of eight correlated alpha particle decay chains in the focal plane detector of the Berkeley Gas-Filled Separator. {sup 260}Bh decays with a 35{sub -9}{sup +19} ms half-life by alpha particle emission mainly by a group at 10.16 MeV. The measured cross section of 59{sub -20}{sup +29} pb is compared to model predictions. The influence of the N=152 and Z=108 shells on alpha decay properties is discussed.

  15. Theoretical study of isotopic production cross-sections in proton-nucleus reactions at 200MeV

    NASA Astrophysics Data System (ADS)

    Sabra, Mohammad S.

    2016-03-01

    As NASA's future plans are likely to include extended human missions in deep space, protections from space radiation take on increased importance. When galactic cosmic rays, mainly protons, interacts with the material of spacecraft, secondary fragments are produced, which contribute substantially to the dose and dose equivalent received by the crew inside. A detailed understanding of the reaction mechanism, as well as a knowledge of cross sections are needed. We analyze energy spectra, angular distributions, and isotopic cross-sections of intermediate-mass fragments (IMFs) from the interaction of 27Al, 59Co, and 197Au with 200 MeV protons. Calculations within the modified statistical model with final state interaction were performed using SAPTON code. General agreement is obtained with the experiment which suggests that most of the IMFs are emitted after equilibrium is reached (i.e. in the evaporation stage).

  16. Functionalized Mesoporous Silica via an Aminosilane Surfactant Ion Exchange Reaction: Controlled Scaffold Design and Nitric Oxide Release

    PubMed Central

    2015-01-01

    Nitric oxide-releasing mesoporous silica nanoparticles (MSNs) were prepared using an aminosilane-template surfactant ion exchange reaction. Initially, bare silica particles were synthesized under basic conditions in the presence of cetyltrimethylammonium bromide (CTAB). These particles were functionalized with nitric oxide (NO) donor precursors (i.e., secondary amines) via the addition of aminosilane directly to the particle sol and a commensurate ion exchange reaction between the cationic aminosilanes and CTAB. N-Diazeniumdiolate NO donors were formed at the secondary amines to yield NO-releasing MSNs. Tuning of the ion exchange-based MSN modification approach allowed for the preparation of monodisperse particles ranging from 30 to 1100 nm. Regardless of size, the MSNs stored appreciable levels of NO (0.4–1.5 μmol mg–1) with tunable NO release durations (1–33 h) dependent on the aminosilane modification. Independent control of NO release properties and particle size was achieved, demonstrating the flexibility of this novel MSN synthesis over conventional co-condensation and surface grafting strategies. PMID:26717238

  17. Modeling of Isotope Fractionation in Stratospheric CO2, N2O, CH4, and O3: Investigations of Stratospheric Chemistry and Transport, Stratosphere-Troposphere Exchange, and Their Influence on Global Isotope Budgets

    NASA Technical Reports Server (NTRS)

    Boering, Kristie A.; Connell, Peter; Rotman, Douglas

    2005-01-01

    Until recently, the stable isotopic composition of chemically and datively important stratospheric species, such as ozone (O3), carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4), was largely unexplored, despite indications from the few measurements available and theoretical studies that global-scale isotopic variations will provide a unique tool for quantifying rates of global-scale mass transport into, within, and out of the stratosphere and for understanding the mechanisms of chemical reactions involved in ozone production. The number and geographical extent of observations are beginning to increase rapidly, however, as access to the stratosphere, both directly and by remote-sensing, has increased over the last 10 years and as new analytical techniques have been developed that make global-scale isotope measurements by whole-air sampling more feasible. The objective of this study, begun in April 1999, is to incorporate into the Livermore 2D model the likely photochemical fractionation processes that determine the isotopic compositions of stratospheric CO2, N2O, CH4, and O3, and to use the model results and new observations from NASA field campaigns in 1996 and 1997 to investigate stratospheric chemistry and mass transport. Additionally, since isotopic signatures from the stratosphere are transferred to the troposphere by downward transport at middle and high latitudes, the isotopic compositions may also serve as sensitive tracers of stratosphere-totroposphere transport. Comparisons of model results with stratospheric and upper tropospheric observations from these campaigns, as well as with ground-based observations from new NOAA and NSF-sponsored studies, will help determine whether the magnitudes of the stratospheric fractionation processes are large enough to use as global-scale tracers of transport into the troposphere and, if so, will be used to help constrain the degree of coupling between the troposphere and the stratosphere.

  18. Yield from Proton-Induced Reaction on Light Element Isotopes in the Hydrogen Plasma Focus

    NASA Astrophysics Data System (ADS)

    Udovičić, V.; Dragić, A.; Banjanac, R.; Joković, D.; Veselinović, N.; Aničin, I.; Savić, M.; Puzović, J.

    2011-12-01

    The high Q-value of some (p,α) fusion reactions is very important in the investigation that can lead to power production with controlled fusion using advanced fuels (hydrogen-lithium-7, hydrogen-boron-11). For this reason, it is crucial to know the rates of these fusion reactions. Unfortunately, in the fusion machines such as plasma focus device, the interaction energy is usually far below the Coulomb barrier. Because of that, direct measurements of the relevant reaction cross sections are practically impossible. A few different indirect approaches have been proposed. In this work the Trojan Horse Method (THM) will be described. On the basis of the results obtained from the THM method and data, which are well-known from our previous work (Banjanac et al. in Radiat Meas 40:483-485, 2005), the reaction rate for proton-induced reaction 7Li(p,α)α produced in the hydrogen plasma focus is calculated. This calculation will be compared with the measurements of α particles production rate using CR-39 detectors.

  19. Reversible Halide Exchange Reaction of Organometal Trihalide Perovskite Colloidal Nanocrystals for Full-Range Band Gap Tuning.

    PubMed

    Jang, Dong Myung; Park, Kidong; Kim, Duk Hwan; Park, Jeunghee; Shojaei, Fazel; Kang, Hong Seok; Ahn, Jae-Pyung; Lee, Jong Woon; Song, Jae Kyu

    2015-08-12

    In recent years, methylammonium lead halide (MAPbX3, where X = Cl, Br, and I) perovskites have attracted tremendous interest caused by their outstanding photovoltaic performance. Mixed halides have been frequently used as the active layer of solar cells, as a result of their superior physical properties as compared to those of traditionally used pure iodide. Herein, we report a remarkable finding of reversible halide-exchange reactions of MAPbX3, which facilitates the synthesis of a series of mixed halide perovskites. We synthesized MAPbBr3 plate-type nanocrystals (NCs) as a starting material by a novel solution reaction using octylamine as the capping ligand. The synthesis of MAPbBr(3-x)Clx and MAPbBr(3-x)Ix NCs was achieved by the halide exchange reaction of MAPbBr3 with MACl and MAI, respectively, in an isopropyl alcohol solution, demonstrating full-range band gap tuning over a wide range (1.6-3 eV). Moreover, photodetectors were fabricated using these composition-tuned NCs; a strong correlation was observed between the photocurrent and photoluminescence decay time. Among the two mixed halide perovskite series, those with I-rich composition (x = 2), where a sole tetragonal phase exists without the incorporation of a cubic phase, exhibited the highest photoconversion efficiency. To understand the composition-dependent photoconversion efficiency, first-principles density-functional theory calculations were carried out, which predicted many plausible configurations for cubic and tetragonal phase mixed halides.

  20. Kinetics and Mechanism of the Ligand Exchange Reaction Between Tetraaza Macrocycle Ligand and Cu(II) Tetradentate Amine-Amide Complexes.

    PubMed

    Vafazadeh, Rasoul; Zare-Sadrabadi, Ghasem

    2015-01-01

    The kinetics of the ligand exchange reaction of tetraaza macrocycle, teazma (teazmais 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene dihydrogen perchlorate) with Cu(bcen)(2+) and Cu(bctn)(2+), where bcen and bctn are N,N'-bis(β-carbamoylethyl) ethylendiamine) and N,N'-bis(β-carbamoylethyl) propylendiamine), respectively, have been studied by visible spectrophotometry in dimethylformamide, DMF, solvent at 25 ± 0.2°C. In the system of Cu(bctn)(2+)/teazma,the ligand exchange reaction proceeds in a two-step-consecutive manner, with two rate constants k(bctn)(obsd)(1) and k(bctn)(obsd)(2). The first reaction step was dependent on the concentration of teazma macrocycle, while the second reaction step was independent. However, it is found that the ligand exchange reaction in Cu(bcen)(2+)/teazma proceeds in an one-step with the rate constant k(bcen)(obsd). The rate constant is dependent on [teazma] macrocycle. The ligand exchange reaction in the system of Cu(bcen)(2+)/teazma is not complete and after some progress, the reaction reaches equilibrium. On the basis of results, a reaction mechanism is proposed and discussed for the ligand exchange rate.

  1. Oxygen isotopes in nitrite: Analysis, calibration, and equilibration

    USGS Publications Warehouse

    Casciotti, K.L.; Böhlke, J.K.; McIlvin, M.R.; Mroczkowski, S.J.; Hannon, J.E.

    2007-01-01

    Nitrite is a central intermediate in the nitrogen cycle and can persist in significant concentrations in ocean waters, sediment pore waters, and terrestrial groundwaters. To fully interpret the effect of microbial processes on nitrate (NO3-), nitrite (NO2-), and nitrous oxide (N2O) cycling in these systems, the nitrite pool must be accessible to isotopic analysis. Furthermore, because nitrite interferes with most methods of nitrate isotopic analysis, accurate isotopic analysis of nitrite is essential for correct measurement of nitrate isotopes in a sample that contains nitrite. In this study, nitrite salts with varying oxygen isotopic compositions were prepared and calibrated and then used to test the denitrifier method for nitrite oxygen isotopic analysis. The oxygen isotopic fractionation during nitrite reduction to N2O by Pseudomonas aureofaciens was lower than for nitrate conversion to N2O, while oxygen isotopic exchange between nitrite and water during the reaction was similar. These results enable the extension of the denitrifier method to oxygen isotopic analysis of nitrite (in the absence of nitrate) and correction of nitrate isotopes for the presence of nitrite in "mixed" samples. We tested storage conditions for seawater and freshwater samples that contain nitrite and provide recommendations for accurate oxygen isotopic analysis of nitrite by any method. Finally, we report preliminary results on the equilibrium isotope effect between nitrite and water, which can play an important role in determining the oxygen isotopic value of nitrite where equilibration with water is significant. ?? 2007 American Chemical Society.

  2. Isotopic chirality

    SciTech Connect

    Floss, H.G.

    1994-12-01

    This paper deals with compounds that are chiral-at least in part, due to isotope substitution-and their use in tracing the steric course of enzyme reaction in vitro and in vivo. There are other applications of isotopically chiral compounds (for example, in analyzing the steric course of nonenzymatic reactions and in probing the conformation of biomolecules) that are important but they will not be discussed in this context.

  3. Cu3-xP Nanocrystals as a Material Platform for Near-Infrared Plasmonics and Cation Exchange Reactions

    PubMed Central

    2015-01-01

    Synthesis approaches to colloidal Cu3P nanocrystals (NCs) have been recently developed, and their optical absorption features in the near-infrared (NIR) have been interpreted as arising from a localized surface plasmon resonance (LSPR). Our pump–probe measurements on platelet-shaped Cu3-xP NCs corroborate the plasmonic character of this absorption. In accordance with studies on crystal structure analysis of Cu3P dating back to the 1970s, our density functional calculations indicate that this material is substoichiometric in copper, since the energy of formation of Cu vacancies in certain crystallographic sites is negative, that is, they are thermodynamically favored. Also, thermoelectric measurements point to a p-type behavior of the majority carriers from films of Cu3-xP NCs. It is likely that both the LSPR and the p-type character of our Cu3-xP NCs arise from the presence of a large number of Cu vacancies in such NCs. Motivated by the presence of Cu vacancies that facilitate the ion diffusion, we have additionally exploited Cu3-xP NCs as a starting material on which to probe cation exchange reactions. We demonstrate here that Cu3-xP NCs can be easily cation-exchanged to hexagonal wurtzite InP NCs, with preservation of the anion framework (the anion framework in Cu3-xP is very close to that of wurtzite InP). Intermediate steps in this reaction are represented by Cu3-xP/InP heterostructures, as a consequence of the fact that the exchange between Cu+ and In3+ ions starts from the peripheral corners of each NC and gradually evolves toward the center. The feasibility of this transformation makes Cu3-xP NCs an interesting material platform from which to access other metal phosphides by cation exchange. PMID:25960605

  4. Cu3-x P Nanocrystals as a Material Platform for Near-Infrared Plasmonics and Cation Exchange Reactions.

    PubMed

    De Trizio, Luca; Gaspari, Roberto; Bertoni, Giovanni; Kriegel, Ilka; Moretti, Luca; Scotognella, Francesco; Maserati, Lorenzo; Zhang, Yang; Messina, Gabriele C; Prato, Mirko; Marras, Sergio; Cavalli, Andrea; Manna, Liberato

    2015-02-10

    Synthesis approaches to colloidal Cu3P nanocrystals (NCs) have been recently developed, and their optical absorption features in the near-infrared (NIR) have been interpreted as arising from a localized surface plasmon resonance (LSPR). Our pump-probe measurements on platelet-shaped Cu3-x P NCs corroborate the plasmonic character of this absorption. In accordance with studies on crystal structure analysis of Cu3P dating back to the 1970s, our density functional calculations indicate that this material is substoichiometric in copper, since the energy of formation of Cu vacancies in certain crystallographic sites is negative, that is, they are thermodynamically favored. Also, thermoelectric measurements point to a p-type behavior of the majority carriers from films of Cu3-x P NCs. It is likely that both the LSPR and the p-type character of our Cu3-x P NCs arise from the presence of a large number of Cu vacancies in such NCs. Motivated by the presence of Cu vacancies that facilitate the ion diffusion, we have additionally exploited Cu3-x P NCs as a starting material on which to probe cation exchange reactions. We demonstrate here that Cu3-x P NCs can be easily cation-exchanged to hexagonal wurtzite InP NCs, with preservation of the anion framework (the anion framework in Cu3-x P is very close to that of wurtzite InP). Intermediate steps in this reaction are represented by Cu3-x P/InP heterostructures, as a consequence of the fact that the exchange between Cu(+) and In(3+) ions starts from the peripheral corners of each NC and gradually evolves toward the center. The feasibility of this transformation makes Cu3-x P NCs an interesting material platform from which to access other metal phosphides by cation exchange.

  5. High catalytic activity of palladium(II)-exchanged mesoporous sodalite and NaA zeolite for bulky aryl coupling reactions: reusability under aerobic conditions.

    PubMed

    Choi, Minkee; Lee, Dong-Hwan; Na, Kyungsu; Yu, Byung-Woo; Ryoo, Ryong

    2009-01-01

    Exchange for the better: Mesoporous sodalite and NaA zeolite exchanged with Pd(2+) exhibit remarkably high activity and reusability in C-C coupling reactions under aerobic atmosphere. It is proposed that the catalytic reactions are mediated by a molecular Pd(0) species generated in situ within the pores (see picture), which is oxidized back to Pd(2+) by O(2), preventing the formation of catalytically inactive Pd(0) agglomerates.

  6. A Computational Study of a Recreated G Protein-GEF Reaction Intermediate Competent for Nucleotide Exchange: Fate of the Mg Ion

    PubMed Central

    Ben Hamida-Rebaï, Mériam; Robert, Charles H.

    2010-01-01

    Small G-proteins of the superfamily Ras function as molecular switches, interacting with different cellular partners according to their activation state. G-protein activation involves the dissociation of bound GDP and its replacement by GTP, in an exchange reaction that is accelerated and regulated in the cell by guanine-nucleotide exchange factors (GEFs). Large conformational changes accompany the exchange reaction, and our understanding of the mechanism is correspondingly incomplete. However, much knowledge has been derived from structural studies of blocked or inactive mutant GEFs, which presumably closely represent intermediates in the exchange reaction and yet which are by design incompetent for carrying out the nucleotide exchange reaction. In this study we have used comparative modelling to recreate an exchange-competent form of a late, pre-GDP-ejection intermediate species in Arf1, a well-characterized small G-protein. We extensively characterized three distinct models of this intermediate using molecular dynamics simulations, allowing us to address ambiguities related to the mutant structural studies. We observed in particular the unfavorable nature of Mg associated forms of the complex and the establishment of closer Arf1-GEF contacts in its absence. The results of this study shed light on GEF-mediated activation of this small G protein and on predicting the fate of the Mg ion at a critical point in the exchange reaction. The structural models themselves furnish additional targets for interfacial inhibitor design, a promising direction for exploring potentially druggable targets with high biological specificity. PMID:20174625

  7. Oxygen isotope exchange in rocks and minerals from the Cerro Prieto geothermal system: Indicators of temperature distribution and fluid flow

    SciTech Connect

    Williams, A.E.; Elders, W.A.

    1981-01-01

    Oxygen isotopic compositions have been measured in drill cuttings and core samples from more than 40 wells ranging in depth to more than 3.5 km in the Cerro Prieto geothermal field. Profiles of isotopic ratios versus sampling depths provide information on the three-dimensional distribution of temperature and fluid flow. These parameters also indicate variations in the history of hydrothermal processes in different areas of the geothermal field.

  8. Performance Of A Laser Based CO2 Isotope Ratio Infrared Spectrometer To Study Biosphere-Atmosphere Exchange

    NASA Astrophysics Data System (ADS)

    Jost, Hans-Juerg; Wapelhorst, Eric; Schlueter, Hans-Juergen; Kracht, Oliver; Radke, Jens; Hilkert, Andreas; Gangi, Laura; Bol, Roland; Brueggemann, Nicolas; Van Leeuwen, Charlotte; Meijer, Harro

    2014-05-01

    We are presenting results from a mid-infrared laser-based Isotope Ratio Infrared Spectrometers (IRIS) that is capable of simultaneously determining both δ18O and δ13C isotope ratios of carbon dioxide utilizing a simple, direct absorption approach with a robust multi pass cell and a cryogen free setup. A simulation of ambient measurement conditions with a 75 ppm per hour change in CO2 concentration from 350-650 ppm showed a precision of

  9. Relevance of single-particle and collective excitations in zirconium isotopes populated by neutron transfer reactions in the {sup 90}Zr+{sup 208}Pb system

    SciTech Connect

    Pajtler, M. Varga; Szilner, S.; Malenica, D. Jelavić; Mijatović, T.; Soić, N.; Corradi, L.; Angelis, G. de; Fioretto, E.; Montanari, D.; Stefanini, A. M.; Valiente-Dobón, J. J.; Gadea, A.; Haas, F.; Lunardi, S.; Mengoni, D.; Montagnoli, G.; Recchia, F.; Scarlassara, F.; Märginean, N.; Pollarolo, G.; and others

    2015-10-15

    Multineutron transfer reaction {sup 90}Zr+{sup 208}Pb has been studied at the energy close to the Coulomb barrier energy by using the PRISMA + CLARA set-up. In this fragment-γ coincidence measurement, the selective properties of the reaction mechanism in the population of the specific states have been discussed. Based on the observed γ transitions of neutron transfer channels, namely {sup 89–94}Zr isotopes, their level schemes have been constructed and updated.

  10. Hydrogen production and deuterium-proton exchange reactions catalyzed by Desulfovibrio nickel(II)-substituted rubredoxins

    PubMed Central

    Saint-Martin, Pascal; Lespinat, Paul A.; Fauque, Guy; Berlier, Yves; LeGall, Jean; Moura, Isabel; Teixeira, Miguel; Xavier, Antonio V.; Moura, Jose J. G.

    1988-01-01

    The nickel tetrahedral sulfur-coordinated core formed upon metal replacement of the native iron in Desulfovibrio sp. rubredoxins is shown to mimic the reactivity pattern of nickel-containing hydrogenases with respect to hydrogen production, deuterium-proton exchange, and inhibition by carbon monoxide. PMID:16594005

  11. Kinetics of Hg(II) exchange between organic ligands, goethite, and natural organic matter studied with an enriched stable isotope approach.

    PubMed

    Jiskra, Martin; Saile, Damian; Wiederhold, Jan G; Bourdon, Bernard; Björn, Erik; Kretzschmar, Ruben

    2014-11-18

    The mobility and bioavailability of toxic Hg(II) in the environment strongly depends on its interactions with natural organic matter (NOM) and mineral surfaces. Using an enriched stable isotope approach, we investigated the exchange of Hg(II) between dissolved species (inorganically complexed or cysteine-, EDTA-, or NOM-bound) and solid-bound Hg(II) (carboxyl-/thiol-resin or goethite) over 30 days under constant conditions (pH, Hg and ligand concentrations). The Hg(II)-exchange was initially fast, followed by a slower phase, and depended on the properties of the dissolved ligands and sorbents. The results were described by a kinetic model allowing the simultaneous determination of adsorption and desorption rate coefficients. The time scales required to reach equilibrium with the carboxyl-resin varied greatly from 1.2 days for Hg(OH)2 to 16 days for Hg(II)-cysteine complexes and approximately 250 days for EDTA-bound Hg(II). Other experiments could not be described by an equilibrium model, suggesting that a significant fraction of total-bound Hg was present in a non-exchangeable form (thiol-resin and NOM: 53-58%; goethite: 22-29%). Based on the slow and incomplete exchange of Hg(II) described in this study, we suggest that kinetic effects must be considered to a greater extent in the assessment of the fate of Hg in the environment and the design of experimental studies, for example, for stability constant determination or metal isotope fractionation during sorption.

  12. Predicted yields of new neutron-rich isotopes of nuclei with Z=64-80 in the multinucleon transfer reaction {sup 48}Ca+{sup 238}U

    SciTech Connect

    Adamian, G. G.; Antonenko, N. V.; Sargsyan, V. V.; Scheid, W.

    2010-05-15

    The production cross sections of new neutron-rich isotopes of nuclei with charge numbers Z=64-80 are estimated for future experiments in the multinucleon transfer reaction {sup 48}Ca+{sup 238}U at bombarding energy E{sub c.m.}=189 MeV close to the Coulomb barrier.

  13. NUMEN Project @ LNS : Heavy ions double charge exchange reactions towards the 0νββ nuclear matrix element determination

    SciTech Connect

    Agodi, C. Calabretta, L.; Calanna, A.; Carbone, D.; Cavallaro, M.; Colonna, M.; Cuttone, G.; Finocchiaro, P.; Pandola, L.; Rifuggiato, D.; Tudisco, S.; Cappuzzello, F.; Greco, V.; Bonanno, D. L.; Bongiovanni, D. G.; Longhitano, F.; Branchina, V.; Foti, A.; Lo Presti, D.; Lanzalone, G.; and others

    2015-10-28

    In the NUMEN Project it is proposed an innovative technique to access the nuclear matrix elements entering in the expression of the life-time of the neutrinoless double beta decay, using relevant cross sections of double charge exchange reactions. A key aspect is the use of MAGNEX large acceptance magnetic spectrometer, for the detection of the ejectiles, and of the INFN Laboratori Nazionali del Sud (LNS) K800 Superconducting Cyclotron (CS), for the acceleration of the required high resolution and low emittance heavy-ion beams.

  14. Contribution of the t-channel N*(1535) exchange for the pp¯→ϕϕ reaction

    NASA Astrophysics Data System (ADS)

    Shi, Jun; Dai, Jian-Ping; Zou, Bing-Song

    2011-07-01

    Since the N*(1535) resonance was found to have large coupling to the strangeness due to its possible large ss¯ component, we investigate the possible contribution of the t-channel N*(1535) exchange for the pp¯→ϕϕ reaction. Our calculation indicates that the new mechanism may give significant contribution for the energies above 2.25 GeV and may be an important source for evading the Okubo-Zweig-Iizuka rule in the ϕ production from NN¯ annihilation.

  15. Cyclotron production of I-123: An evaluation of the nuclear reactions which produce this isotope

    NASA Technical Reports Server (NTRS)

    Sodd, V. J.; Scholz, K. L.; Blue, J. W.; Wellamn, H. N.

    1970-01-01

    The reactions studied which produce I-123 directly were Sb-121(He-4,2n) I-123, Sb-121(He-3,n) I-123, Te-122(d,n) I-123, Te-122(He-4,p2n) I-123, Te-122(He-3,pn) I-123, and Te-123(He-3,p2n) I-123. Reactions which produce I-123 indirectly through the positron decay of 2.1-hour Xe-123 were Te-122(He-4,3n) Xe-123, Te-122(He-3,2n) Xe-123 and Te-123(He-3,3n) Xe-123. Use of the gas flow I-123 cyclotron target assembly is recommended for the production of I-123 with radiochemical purity greater than 99.995%.

  16. Population of collective bands in Dy isotopes using heavy ion induced transfer reactions

    SciTech Connect

    Cresswell, A.J.; Butler, P.A.; Cline, D.; Cunningham, R.A.; Devlin, M.; Hannachi, F.; Ibbotson, R.; Jones, G.D.; Jones, P.M.; Simon, M.; Simpson, J.; Smith, J.F.; Wu, C.Y. ||

    1995-10-01

    It is demonstrated that low-lying collective bands in deformed nuclei are strongly populated by quasielastic heavy ion transfer reactions at near barrier energies. The {sup 161}Dy({sup 61}Ni,{sup 62}Ni){sup 160}Dy and {sup 161}Dy({sup 61}Ni,{sup 60}Ni){sup 162}Dy reactions at a beam energy of 270 MeV have been studied using a particle-{gamma} technique. Significant population of sidebands in {sup 160}Dy was observed, particularly the {ital S} band built upon the [{nu}({ital i}{sub 13/2})]{sup 2} configuration and the {ital K}{sup {pi}}=1{sup {minus}}, 2{sup {minus}}, and {gamma} bands. For {sup 162}Dy the only sideband significantly populated was the {gamma} band.

  17. Alpha capture reaction cross section measurements on Sb isotopes by activation method

    NASA Astrophysics Data System (ADS)

    Korkulu, Z.; Özkan, N.; Kiss, G. G.; Szücs, T.; Fülöp, Zs; Güray, R. T.; Gyürky, Gy; Halász, Z.; Somorjai, E.; Török, Zs; Yalçin, C.

    2016-01-01

    Alpha induced reactions on natural and enriched antimony targets were investigated via the activation technique in the energy range from 9.74 MeV to 15.48 MeV, close to the upper end of the Gamow window at a temperature of 3 GK relevant to the γ-process. The experiments were carried out at the Institute for Nuclear Research, the Hungarian Academy of Sciences (MTA Atomki). 121Sb(α,γ)125I, 121Sb(α,n)124I and 123Sb(α,n)126I reactions were measured using a HPGe detector. In this work, the 121Sb(α,n)124 cross section results and the comparison with the theoretical predictions (obtained with standard settings of the statistical model codes NON-SMOKER and TALYS) were presented.

  18. Time scale of hydrothermal water-rock reactions in Yellowstone National Park based on radium isotopes and radon

    NASA Astrophysics Data System (ADS)

    Clark, Jordan F.; Turekian, Karl K.

    1990-02-01

    We have measured 224Ra (3.4 d), 228Ra (5.7 yr), and 226Ra (1620 yr) and chloride in hot spring waters from the Norris-Mammoth Corridor, Yellowstone National Park. Two characteristic cold-water components mix with the primary hydrothermal water: one for the travertine-depositing waters related to the Mammoth Hot Springs and the other for the sinter-depositing Norris Geyser Basin springs. The Mammoth Hot Springs water is a mixture of the primary hydrothermal fluid with meteoric waters flowing through the Madison Limestone, as shown by the systematic decrease of the ( {228Ra}/{226Ra}) activity ratio proceeding northward. The Norris Geyser Basin springs are mixtures of primary hydrothermal water with different amounts of cold meteoric water with no modification of the primary hydrothermal ( {228Ra}/{226Ra}) activity ratio. Using a solution and recoil model for radium isotope supply to the primary hydrothermal water, a mean water-rock reaction time prior to expansion at 350°C and supply to the surface is 540 years assuming that 250 g of water are involved in the release of the radium from one gram of rock. The maximum reaction time allowed by our model is 1150 years.

  19. Particle-gamma studies of Gd isotopes by (p,p'), (p,d) and (p,t) reactions

    NASA Astrophysics Data System (ADS)

    Ross, T. J.; Hughes, R. O.; Beausang, C. W.; Allmond, J. M.; Burke, J. T.; Phair, L. W.; Scielzo, N.; Angell, C. T.; Basunia, M. S.; Bleuel, D. L.; Casperson, R. J.; Fallon, P.; Hatarik, R.; Munson, J.; Paschalis, S.; Petri, M.; Ressler, J. J.

    2010-11-01

    An experiment was conducted using the STARS-LIBERACE array at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory to study Gd isotopes around the N=90 transition region. A 25 MeV proton beam was incident on ^158/155/154Gd targets and used to populate states in ^152-158Gd by (p,p'), (p,d) and (p,t) reactions. This experiment compliments our earlier work on ^156Gd(p,x),[1]. The exit channel is selected by gating on charged particles using the STARS (Silicon Telescope Array for Reaction Studies) array, which also gives the excitation energy of the residual nucleus. Coincident gamma information is obtained using the LIBERACE (LIvermore BErkeley Array for Collaborative Experiments) clover detector array. Particle-gamma coincidence measurements provide a strong tool for probing the residual nucleus, [1]. Preliminary results pertaining to ^158Gd will be presented. [1] J. M. Allmond et al. Phys. Rev. C 81, 064316 (2010) This work is supported in part via DOE grant numbers DE-FG02-05 ER41379 & DE-FG52-06 NA26206(University of Richmond), DE-AC52 07NA27344(LLNL) and DE-AC02 05CH11231(LBNL).

  20. [Comparative analysis of gas exchange and cardiorespiratory systems reactions to increasing normobaric hypoxia and physical load of swimmers and skiers].

    PubMed

    Krivoshchekin, S G; Divert, V E; Mel'nikov, V N; Vodianitskiĭ, S N; Girenko, L A

    2013-01-01

    Qualification comparable groups of young men engaged in cyclic kinds of sports were tested with stepwise accruing loads on bicycle ergometer and 25-minute exponential increasing normobaric hypoxia to final concentration of 10% oxygen. Group of skiers, having the greatest values of the maximal oxygen consumption at muscular work, show the relaxed cardiorespiratory reactions and more falling of blood oxygen in the hypoxia. The swimmers, having restrictions of ventilatory function in the course of trainings, form preadaptation to hypoxia with changes of external respiration and gas exchange functions that allows at hypoxia to better oxygen sate the blood in lungs. The joint assessment of aerobic capacity at physical work and physiological reactions to hypoxia shows the direct relation between individual maximal oxygen consumption and the descent rate of blood oxygen saturation at accruing hypoxia that can be useful at an assessment of a sportsman functional state and its correction at training processes.

  1. Charge-exchange and fusion reaction measurements during compression experiments with neutral beam heating in the Tokamak Fusion Test Reactor

    SciTech Connect

    Kaita, R.; Heidbrink, W.W.; Hammett, G.W.; Chan, A.A.; England, A.C.; Hendel, H.W.; Medley, S.S.; Nieschmidt, E.; Roquemore, A.L.; Scott, S.D.

    1986-04-01

    Adiabatic toroidal compression experiments were performed in conjunction with high power neutral beam injection in the Tokamak Fusion Test Reactor (TFTR). Acceleration of beam ions to energies nearly twice the injection energy was measured with a charge-exchange neutral particle analyzer. Measurements were also made of 2.5 MeV neutrons and 15 MeV protons produced in fusion reactions between the deuterium beam ions and the thermal deuterium and /sup 3/He ions, respectively. When the plasma was compressed, the d(d,n)/sup 3/He fusion reaction rate increased a factor of five, and the /sup 3/He(d,p)/sup 4/He rate by a factor of twenty. These data were simulated with a bounce-averaged Fokker-Planck program, which assumed conservation of angular momentum and magnetic moment during compression. The results indicate that the beam ion acceleration was consistent with adiabatic scaling.

  2. In situ spectroscopy of ligand exchange reactions at the surface of colloidal gold and silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Dinkel, Rebecca; Peukert, Wolfgang; Braunschweig, Björn

    2017-04-01

    Gold and silver nanoparticles with their tunable optical and electronic properties are of great interest for a wide range of applications. Often the ligands at the surface of the nanoparticles have to be exchanged in a second step after particle formation in order to obtain a desired surface functionalization. For many techniques, this process is not accessible in situ. In this review, we present second-harmonic scattering (SHS) as an inherently surface sensitive and label-free optical technique to probe the ligand exchange at the surface of colloidal gold and silver nanoparticles in situ and in real time. First, a brief introduction to SHS and basic features of the SHS of nanoparticles are given. After that, we demonstrate how the SHS intensity decrease can be correlated to the thiol coverage which allows for the determination of the Gibbs free energy of adsorption and the surface coverage.

  3. Oxygen exchange on platinum electrodes in zirconia cells; Location of electrochemical reaction sites

    SciTech Connect

    Robertson, N.L. . Almaden Research Center); Michaels, J.N. . Dept. of Chemical Engineering)

    1990-01-01

    Oxygen exchange kinetics on porous platinum electrodes in a zirconia electrochemical cell were measured at 600{degrees}--800{degrees}C in 10{sup {minus} 5}-0.21 atmospheres oxygen. Steady-state polarization and potential-step chronoamperometric experiments were performed. Steady-state current-voltage characteristics exhibited near-exponential behavior at intermediate potentials and approached anodic and cathodic limiting currents at higher overpotentials. At and below 600{degrees}C, the initial decay of the current following anodic and cathodic potential steps was inversely proportional to the square root of time. This Cottrell-type behavior indicates that the charge-transfer step in the mechanism of oxygen exchange occurs at the three-phase boundary where the electrode, electrolyte, and gas-phase intersect.

  4. Ionization and Charge Exchange Reactions in Neutral Entrainment of a Field Reversed Configuration Thruster

    DTIC Science & Technology

    2012-07-16

    exchange and ionization rates for neon are plotted in Fig. 3 (right). The recombination rate is not shown as it was found, similar to helium , to be much...temperature for light gas, helium are shown in Fig. 2 (left). It can be concluded that at those temperatures and a number density on the order of 1018 m−3...process in a helium -based FRC thruster may be expected to be fairly efficient, especially for lower plasma temperatures. Note however that for

  5. Determination of U isotope ratios in sediments using ICP-QMS after sample cleanup with anion-exchange and extraction chromatography.

    PubMed

    Zheng, Jian; Yamada, Masatoshi

    2006-01-15

    The determination of uranium is important for environmental radioactivity monitoring, which investigates the releases of uranium from nuclear facilities and of naturally occurring radioactive materials by the coal, oil, natural gas, mineral, ore refining and phosphate fertilizer industries, and it is also important for studies on the biogeochemical behavior of uranium in the environment. In this paper, we describe a quadrupole ICP-MS (ICP-QMS)-based analytical procedure for the accurate determination of U isotope ratios ((235)U/(238)U atom ratio and (234)U/(238)U activity ratio) in sediment samples. A two-stage sample cleanup using anion-exchange and TEVA extraction chromatography was employed in order to obtain accurate and precise (234)U/(238)U activity ratios. The factors that affect the accuracy and precision of U isotope ratio analysis, such as detector dead time, abundance sensitivity, dwell time and mass bias were carefully evaluated and corrected. With natural U, a precision lower than 0.5% R.S.D. for (235)U/(238)U atom ratio and lower than 2.0% R.S.D. for (234)U/(238)U activity ratio was obtained with less than 90 ng uranium. The developed analytical method was validated using an ocean sediment reference material and applied to an investigation into the uranium isotopic compositions in a sediment core in a brackish lake in the vicinity of U-related nuclear facilities in Japan.

  6. Does the pressure dependence of kinetic isotope effects report usefully on dynamics in enzyme H-transfer reactions?

    PubMed

    Hoeven, Robin; Heyes, Derren J; Hay, Sam; Scrutton, Nigel S

    2015-08-01

    The temperature dependence of kinetic isotope effects (KIEs) has emerged as the main experimental probe of enzymatic H-transfer by quantum tunnelling. Implicit in the interpretation is a presumed role for dynamic coupling of H-transfer chemistry to the protein environment, the so-called 'promoting motions/vibrations hypothesis'. This idea remains contentious, and others have questioned the importance and/or existence of promoting motions/vibrations. New experimental methods of addressing this problem are emerging, including use of mass-modulated enzymes and time-resolved spectroscopy. The pressure dependence of KIEs has been considered as a potential probe of quantum tunnelling reactions, because semi-classical KIEs, which are defined by differences in zero-point vibrational energy, are relatively insensitive to kbar changes in pressure. Reported combined pressure and temperature (p-T) dependence studies of H-transfer reactions are, however, limited. Here, we extend and review the available p-T studies that have utilized well-defined experimental systems in which quantum mechanical tunnelling is established. These include flavoproteins, quinoproteins, light-activated enzymes and chemical model systems. We show that there is no clear general trend between the p-T dependencies of the KIEs in these systems. Given the complex nature of p-T studies, we conclude that computational simulations using determined (e.g. X-ray) structures are also needed alongside experimental measurements of reaction rates/KIEs to guide the interpretation of p-T effects. In providing new insight into H-transfer/environmental coupling, combined approaches that unite both atomistic understanding with experimental rate measurements will require careful evaluation on a case-by-case basis. Although individually informative, we conclude that p-T studies do not provide the more generalized insight that has come from studies of the temperature dependence of KIEs.

  7. Studies of N ~ 40 Ni isotopes via neutron-knockout (nKO) and deep-inelastic (DI) reactions

    NASA Astrophysics Data System (ADS)

    Chiara, C. J.; Recchia, F.; Gade, A.; Janssens, R. V. F.; Walters, W. B.

    2013-10-01

    V. BADER, T. BAUGHER, D. BAZIN, J.S. BERRYMAN, B.A. BROWN, C. LANGER, N. LARSON, S.N. LIDDICK, E. LUNDERBERG, S. NOJI, C. PROKOP, S.R. STROBERG, S. SUCHYTA, D. WEISSHAAR, S. WILLIAMS, NSCL/MSU, M. ALBERS, M. ALCORTA, P.F. BERTONE, M.P. CARPENTER, J. CHEN, C.R. HOFFMAN, F.G. KONDEV, T. LAURITSEN, A.M. ROGERS, D. SEWERYNIAK, S. ZHU, ANL, C.M. CAMPBELL, LBNL, H.M. DAVID, D.T. DOHERTY, U. of Edinburgh/ANL, A. KORICHI, CSNSM-IN2P3/ANL, C.J. LISTER, U. of Mass.-Lowell, K. WIMMER, Central Mich. U. -- Excited states in 68Ni were populated in 2nKO reactions at NSCL. Prompt γ rays were detected with the GRETINA array located in front of the S800 separator. A hodoscope at the S800 focal plane captured the 68Ni ions, where isomeric decays could be correlated with prompt γ rays. Decay of the first excited state, a 0+ isomer, was observed, confirming that its energy substantially differs from the literature value. Comparing the decay patterns of excited states with shell-model calculations provides insight into their underlying structure. Data from 70Zn + 208Pb DI reactions studied with Gammasphere provide results consistent with the 2nKO. Single-particle strengths are also under investigation in the odd- A Ni isotopes via 1nKO reactions. Supported in part by the DoE (DE-FG02-94ER40834, DE-AC02-06CH11357), NSF (PHY-1102511), and NNSA (DE-NA0000979).

  8. Remarkable nanoconfinement effects on chemical equilibrium manifested in nucleotide dimerization and H-D exchange reactions.

    PubMed

    Polak, Micha; Rubinovich, Leonid

    2011-10-06

    Nanoconfinement entropic effects on chemical equilibrium involving a small number of molecules, which we term NCECE, are revealed by two widely diverse types of reactions. Employing statistical-mechanical principles, we show how the NCECE effect stabilizes nucleotide dimerization observed within self-assembled molecular cages. Furthermore, the effect provides the basis for dimerization even under an aqueous environment inside the nanocage. Likewise, the NCECE effect is pertinent to a longstanding issue in astrochemistry, namely the extra deuteration commonly observed for molecules reacting on interstellar dust grain surfaces. The origin of the NCECE effect is elucidated by means of the probability distributions of the reaction extent and related variations in the reactant-product mixing entropy. Theoretical modelling beyond our previous preliminary work highlights the role of the nanospace size in addition to that of the nanosystem size, namely the limited amount of molecules in the reaction mixture. Furthermore, the NCECE effect can depend also on the reaction mechanism, and on deviations from stoichiometry. The NCECE effect, leading to enhanced, greatly variable equilibrium "constants", constitutes a unique physical-chemical phenomenon, distinguished from the usual thermodynamical properties of macroscopically large systems. Being significant particularly for weakly exothermic reactions, the effects should stabilize products in other closed nanoscale structures, and thus can have notable implications for the growing nanotechnological utilization of chemical syntheses conducted within confined nanoreactors.

  9. Evaluation of excitation functions of proton and deuteron induced reactions on enriched tellurium isotopes with special relevance to the production of iodine-124.

    PubMed

    Aslam, M N; Sudár, S; Hussain, M; Malik, A A; Shah, H A; Qaim, S M

    2010-09-01

    Cross-section data for the production of medically important radionuclide (124)I via five proton and deuteron induced reactions on enriched tellurium isotopes were evaluated. The nuclear model codes, STAPRE, EMPIRE and TALYS, were used for consistency checks of the experimental data. Recommended excitation functions were derived using a well-defined statistical procedure. Therefrom integral yields were calculated. The various production routes of (124)I were compared. Presently the (124)Te(p,n)(124)I reaction is the method of choice; however, the (125)Te(p,2n)(124)I reaction also appears to have great potential.

  10. Cyclotron production of I-123: An evaluation of the nuclear reactions which produce this isotope

    NASA Technical Reports Server (NTRS)

    Sodd, V. J.; Scholz, K. L.; Blue, J. W.; Wellman, H. N.

    1970-01-01

    The use of the various nuclear reactions is described by which I-123,a low radiation dose radiopharmaceutical, can be cyclotron-produced. Methods of directly producing I-123 and those which indirectly produce the radionuclide through the beta (+) decay of its nautral precursor, Xe-123. It is impossible to separate from the radioiodine contaminants, notably I-124, which occur in the direct method. Thus, it is preferable to produce pure I-123 from Xe-123 which is easily separated from the radioiodines. Among the characteristics of I-123 is the capability of reducing the patient dose in a thyroid uptake measurement to a very small percentage of that delivered by the more commonly used I-131.

  11. The H + Li2 bimolecular exchange reaction: dynamical and kinetical properties at J = 0.

    PubMed

    Vila, Henrique Vieira Rivera; Leal, Luciano Almeida; Martins, João Batista Lopes; Skouteris, Dimitrios; Magela e Silva, Geraldo; Gargano, Ricardo

    2012-04-07

    For the first time in the literature, rigorous time-independent quantum scattering formalism was applied, by means of the ABC program, to the H + Li(2) → LiH + Li reaction. The state-to-state probabilities as a function of the total energy have been computed at zero total angular momentum (J = 0) allowing us to evaluate the effect of vibrational/rotational excitation on the reaction promotion/inhibition, the energetic distribution of products, and the temperature dependence of the J-shifting thermal rate coefficients.

  12. Quantum dynamics of {sup 16}O + {sup 36}O{sub 2} and {sup 18}O + {sup 32}O{sub 2} exchange reactions

    SciTech Connect

    Rajagopala Rao, T.; Mahapatra, S.; Guillon, G.; Honvault, P.

    2015-05-07

    We present quantum dynamical investigations of {sup 16}O + {sup 36}O{sub 2} and {sup 18}O + {sup 32}O{sub 2} exchange reactions using a time-independent quantum mechanical method and an accurate global potential energy surface of ozone [Dawes et al., J. Chem. Phys. 135, 081102 (2011)]. Initial state-selected integral cross sections, rate constants, and Boltzmann averaged thermal rate constants are obtained and compared with earlier experimental and theoretical results. The computed thermal rate constants for the oxygen exchange reactions exhibit a negative temperature dependence, as found experimentally. They are in better agreement with the experiments than the previous studies on the same reactions.

  13. Hydrogen and Oxygen Isotope Exchange in Hydrated Carbonates from an H-5 Chondrite: Clues to the Formation of Weathering Products on LEW85320

    NASA Astrophysics Data System (ADS)

    Socki, R. A.; Romanek, C. S.; Gibson, E. K., Jr.; Allton, J. H.

    1992-07-01

    Terrestrial weathering is an important process that can significantly alter the elemental and isotopic character of meteorites (e.g., SOCKI et al., 1991). JULL et al. (1988) demonstrated that alteration and subsequent formation of the hydrated Mg-carbonates, nesquehonite and hydromagnesite, can occur in geologically short time frames (<40 A). KARLSSON et al. (1991) showed that a large portion of the carbonate material in seven Antarctic meteorites either underwent extensive isotopic exchange with atmospheric CO2 or formed recently in the Antarctic environment. To further constrain the effects of terrestrial weathering on Antarctic meteorites, we have characterized isotopic exchange equilibria for the hydrated Mg-carbonate nesquehonite {Mg(HCO3 x OH) x 2H2O}. To this end, mineralogically pure nesquehonite was grown from fixed-temperature solutions under controlled isotopic composition to monitor the partitioning of hydrogen and oxygen isotopes during the growth of the solid phase. These results are used to interpret the isotopic composition of water extracted from nesquehonite occurring on the surface of LEW85320. Following the procedures of MING and FRANKLIN (1985), mineralogically pure nesquehonite was synthesized at 10 degrees and 25 degrees C from solutions of constant hydrogen and oxygen isotopic composition. After filtration, the mineralogy of oven-dried precipitate was confirmed by X-ray diffraction (XRD) to be pure nesquehonite. Differential scanning calorimetry (DSC) heating curves from the synthetic product match those of the salt scraped from LEW85320. This salt was identified by XRD as nesquehonite by GOODING et al. (1988). Approximately 250 microliters of water was extracted from synthetic nesquehonite by cryogenic trapping during heating of the solid to 625 degrees C in vacuum. The delta^18O of extracted water was determined following the procedure of SOCKI et al. (1992). A second water extraction was condensed into a pyrex tube containing zinc. The

  14. Design of Isotope Heat Source for Automatic Modular Dispersal During Reentry, and Its Integration with Heat Exchangers of 6-kWe Dynamic Isotope Power System

    SciTech Connect

    Schock, Alfred

    1989-01-01

    In late 1986 the Air Force Space Division (AF / SD) had expressed an interest in using a Dynamic Isotope Power System (DIPS) of approximately 6-kWe to power the Boost Surveillance and Tacking System (BSTS) satellites. In support of that objective, the U.S. Department of Energy (DOE) requested Fairchild Space Company to perform a conceptual design study of the DIPS heat source and of its integration with the dynamic power conversion system, with particular emphasis on system safety. This paper describes the results of that study. The study resulted in a design for a single heat source of ~30-kWt, employing the standard 250-W General Purpose Heat Source (GPHS) modules which DOE had previously developed and safety-tested for Radioisotope Thermoelectric Generators (RTS's)

  15. Impact of oxygen exchange reaction at the ohmic interface in Ta2O5-based ReRAM devices.

    PubMed

    Kim, Wonjoo; Menzel, Stephan; Wouters, Dirk J; Guo, Yuzheng; Robertson, John; Roesgen, Bernd; Waser, Rainer; Rana, Vikas

    2016-10-20

    Interface reactions constitute essential aspects of the switching mechanism in redox-based resistive random access memory (ReRAM). For example, the modulation of the electronic barrier height at the Schottky interface is considered to be responsible for the toggling of the resistance states. On the other hand, the role of the ohmic interface in the resistive switching behavior is still ambigious. In this paper, the impact of different ohmic metal-electrode (M) materials, namely W, Ta, Ti, and Hf on the characteristics of Ta2O5 ReRAM is investigated. These materials are chosen with respect to their free energy for metal oxide formation and, associated, their impact on the formation energy of oxygen vacancy defects at the M/Ta2O5 interface. The resistive switching devices with Ti and Hf electrodes that have a negative defect formation energy, show an early RESET failure during the switching cycles. This failure process with Ti and Hf electrode is attributed to the accumulation of oxygen vacancies in the Ta2O5 layer, which leads to permanent breakdown of the metal-oxide to a low resistive state. In contrast, the defect formation energy in the Ta2O5 with respect to Ta and W electrodes is positive and for those highly stable resistive switching behavior is observed. During the quasi-static and transient-pulse characterization, the ReRAM devices with the W electrode consistently show an increased high resistance state (HRS) than with the Ta electrode for all RESET stop voltages. This effect is attributed to the faster oxygen exchange reaction at the W-electrode interface during the RESET process in accordance to lower stability of WO3 than Ta2O5. Based on these findings, an advanced resistive switching model, wherein also the oxygen exchange reaction at the ohmic M-electrode interface plays a vital role in determining of the resistance states, is presented.

  16. Ab initio study of the H + HONO reaction: Direct abstraction versus indirect exchange processes

    SciTech Connect

    Hsu, C.C.; Lin, M.C.; Mebel, A.M.; Melius, C.F.

    1997-01-02

    The mechanism of the H + HONO reaction (for which no experimental data are available) has been elucidated by ab initio molecular orbital calculations using modified G2 and BAC-MP4 methods. These results indicate that the reaction occurs predominantly by two indirect metathetical processes. One produces OH + HNO and H{sub 2}O + NO from the decomposition of vibrationally excited hydroxyl nitroxide, HN(O)OH, formed by H atom addition to the N atom of HONO. The other produces H{sub 2}O + NO from the decomposition of vibrationally excited dihydroxylamino radical, N(OH){sub 2}, formed by H atom addition to the terminal O atom. These indirect displacement processes are much more efficient than the commonly assumed, direct H-abstraction reaction producing H{sub 2} + NO{sub 2}. A transition-state theory calculation for the direct abstraction reaction and RRKM calculations for the two indirect displacement processes give rise to the following rate constants, in units of cm{sup 3} molecule{sup -1} s{sup -1} for the 300-3500 K temperature range under atmospheric conditions: k{sub H(2)} = 3.33 x 10{sup -16}T{sup 1.55} exp(-3328.5/T), k{sub OH} = 9.36 x 10{sup -14}T{sup 0.86} exp(-2500.8/T), k{sub H(2)O} = 1.35 x 10{sup -17}T{sup 1.89} exp-(-1935.7/T), where the rate constant for H{sub 2}O production represents the sum from both indirect displacement reactions. 32 refs., 3 figs., 7 tabs.

  17. CO2-water-mineral reactions during CO2 leakage into glauconitic sands: geochemical and isotopic monitoring of batch experiments

    NASA Astrophysics Data System (ADS)

    Humez, P.; Lions, J.; Lagneau, V.; Negrel, Ph.

    2012-04-01

    experiment; (2) dissolved iron strongly decreases immediately after CO2 injection; (3) potassium, sodium and fluorine concentrations increase at the start of CO2 injection and then stabilize to levels higher than the pre-injection concentrations, (4) chlorides and sulfates are stable. These variations indicate dissolution/precipitation and surface reactions involving mineral phases such as glauconite, siderite/iron hydroxide. The experimental results were interpreted and the geochemical mechanisms involved were included in geochemical modeling using PHREEQC, an essential step to quantify the overall effect of the combined individual reactions and processes. These mechanisms were corroborated with isotopic ratio variations. E.g. the variations of δ13CDIC (from -15.7 ‰ to -21 ‰ vs. PDB) cannot be explained solely by the CO2 dissolution, and indicate additional chemical processes. Likewise, shifts of δ11B towards more negative values stress the implication of the glauconitic minerals, mainly B-bearing phase in the system. These experimental results, and their numerical simulation, are promising for the development of our indirect geochemical and isotopic monitoring technique.

  18. Cumulative reaction probabilities and transition state properties: a study of the H+ + H2 and H+ + D2 proton exchange reactions.

    PubMed

    Jambrina, P G; Aoiz, F J; Eyles, C J; Herrero, V J; Sáez Rábanos, V

    2009-05-14

    Cumulative reaction probabilities (CRPs) have been calculated by accurate (converged, close coupling) quantum mechanical (QM), quasiclassical trajectory (QCT), and statistical QCT (SQCT) methods for the H(+) + H(2) and H(+) + D(2) reactions at collision energies up to 1.2 eV and total angular momentum J = 0-4. A marked resonance structure is found in the QM CRP, most especially for the H(3)(+) system and J = 0. When the CRPs are resolved in their ortho and para contributions, a clear steplike structure is found associated with the opening of internal states of reactants and products. The comparison of the QCT results with those of the other methods evinces the occurrence of two transition states, one at the entrance and one at the exit. At low J values, except for the quantal resonance structure and the lack of quantization in the product channel, the agreement between QM and QCT is very good. The SQCT model, that reflects the steplike structure associated with the opening of initial and final states accurately, clearly tends to overestimate the value of the CRP as the collision energy increases. This effect seems more marked for the H(+) + D(2) isotopic variant. For sufficiently high J values, the growth of the centrifugal barrier leads to an increase in the threshold of the CRP. At these high J values the discrepancy between SQCT and QCT becomes larger and is magnified with growing collision energy. The total CRPs calculated with the QCT and SQCT methods allowed the determination of the rate constant for the H(+) + D(2) reaction. It was found that the rate, in agreement with experiment, decreases with temperature as expected for an endothermic reaction. In the range of temperatures between 200 and 500 K the differences between SQCT and QCT rate results are relatively minor. Although exact QM calculations are formidable for an exact determination of the k(T), it can be reliably expected that their value will lie between those given by the dynamical and statistical

  19. Linear free energy relationship and deuterium kinetic isotope effect observed on phospho and thiophosphoryl transfer reactions in some organophosphorous compounds

    NASA Astrophysics Data System (ADS)

    Lumbiny, B. J.; Hui, Z.; Islam, M. A.; Quader, M. A.; Rahman, M.

    2014-04-01

    Tetracoordinated organophosphorous compounds were synthesized, characterized and nucleophilic substitution reaction were investigated by varying substituents around phosphorous centre or in nucleophile considering its utility in biological and environmental system. The reactivity is expressed in terms of second-order rate constant, k2 and measured conductometrically. Linear Free Energy Relationship (LFER) tools mainly Hammett (ρ), Brönsted (β) LFER coefficients and deuterium kinetic isotope effects (KIEs) being determined for the pyridinolysis of 4 - chlorophenyl 4 - methoxy phenyl chlorophosphate, 1 in acetonitrile at 5.0 °C. The experimental data's were compared with those of structurally similar organophosphorous compounds reported earlier in quest for the mechanistic information. Nice linear correlation being found for Hammett (logk2 vs σx), having negative value of the ρX = -5.85 and Brönsted (logk2 vs pKa(x)) plots having large positive value for βX = 1.18 for 1 can be interpreted as SN2 process with greater extent of bond formation in transition state (TS) of 1. The observed kH/kD values of 1 is 1.00 ± 0.05 and net KIE, 1.32 suggests the primary KIE and indicates frontside nucleophilic attack through the partial deprotonation of pyridine occurs by the hydrogen bonding in the rate-determining step.

  20. Rapid determination of parabens in personal care products by stable isotope GC-MS/MS with dynamic selected reaction monitoring.

    PubMed

    Wang, Perry G; Zhou, Wanlong

    2013-06-01

    In this study, a rapid and sensitive analytical method for the determination of methyl-, ethyl-, propyl-, and butyl esters of para-hydroxy benzoic acid (parabens) in personal care products was developed and fully validated. Test portions were extracted with methanol followed by vortexing, sonication, centrifugation, and filtration without derivatization. The four parabens were quantified by GC-MS/MS in the electron ionization mode. Four corresponding isotopically labeled parabens were selected as internal standards, which were added at the beginning of the sample preparation and used to correct for recovery and matrix effects. Sensitivity, extraction efficiency, and recovery of the respective analytes were evaluated. The coefficients of determination (r(2)) were all greater than 0.995 for the four parabens investigated. The recoveries ranged from 97 to 107% at three spiked levels and a one-time (single) extraction efficiency greater than 97% was obtained. This method has been applied to screen 26 personal care products. This is the first time that a unique GC-MS/MS method with dynamic selected reaction monitoring and confirmation of analytes has been used to determine these parabens in cosmetic personal care products.

  1. Estimating evolution of δ13CH4 during methanization of cellulosic waste based on stoichiometric chemical reactions, microbial dynamics and stable carbon isotope fractionation.

    PubMed

    Vavilin, V A

    2012-04-01

    A change in δ(13)CH(4) during mesophilic methanization of cellulosic waste (paper and cardboard) was described using a mathematical model based on stoichiometric chemical reactions, microbial dynamics and the equation for the (13)C isotope accumulation in products including isotope fractionation. In this study, experimental data, previously obtained by Qu et al. (2009), was used to model metabolic pathways of cellulose transformation. A significant change in δ(13)CH(4) occurred in time during cellulosic waste methanization which was in accordance with the model. It was explained by the change in input of acetoclastic and hydrogenotrophic methanogenesis as well as by fractionation of stable carbon isotopes (13)C and (12)C which was much higher for hydrogenotrophic methanogenesis when compared to acetoclastic methanogenesis.

  2. A novel methodology to investigate isotopic biosignatures

    NASA Astrophysics Data System (ADS)

    Horner, T. J.; Lee, R. B. Y.; Henderson, G. M.; Rickaby, R. E. M.

    2012-04-01

    . coli (e.g. membranes, cytosol, etc.), including the catalytic metal atoms within CdCA. These experiments allow isotopic exchange reactions to be observed in biological systems at an unparalleled resolution, demonstrating that isotopic fractionation can occur, in vivo, on length scales as small as a few Å. We will explore future applications of this technique using the marine geochemistry of Cd as a case study. This experimental approach has great promise for studying the individual isotopic biosignatures of other biochemical reactions, in particular those which may have been active during early Earth History.

  3. Positioning of Platinum Nanoparticles In Cation-exchange Membrane By Galvanic Reaction

    NASA Astrophysics Data System (ADS)

    Kumar, Rakesh; Pandey, A. K.; Ramagiri, S. V.; Bellare, J. R.; Goswami, A.

    2010-12-01

    Platinum nanoparticles were formed at the surface of the poly (perfluorosulfonic) acid membrane (Nafion-117) by the galvanic reaction of PtCl62- ions with Ag nanoparticles positioned near the surface of the membrane. The reduction with BH4- ions produced Ag nanoparticles (15±4 nm size) mostly positioned near the surface of membrane due to Donnan exclusion of co-ions (BH4-). Energy Dispersive X-ray Fluorescence (EDXRF) analysis of the membrane indicated that galvanic reaction proceeded quantitatively. Transmission Electron Microscopy (TEM) of the cross-sections of membrane samples indicated that the spherical Pt nanoparticles having size 2 to 8 nm were mostly located near the surface of the membrane. The positioning of Pt nanoparticles at surface of the membrane is important for using nano-composite in catalytical application.

  4. A model of isotope fractionation in reacting geochemical systems

    SciTech Connect

    Lee, Ming-Kuo; Bethke, C.M.

    1996-11-01

    The authors present a numerical technique that predicts how the stable isotopes {sup 2}H, {sup 13}C, {sup 18}O, and {sup 34}S fractionate among solvent, aqueous species, minerals, and gases over the course of a geochemical reaction process. This model is based on mass balance techniques similar to those already presented in the literature but differs from previous techniques in that it allows minerals to be segregated form isotopic exchange instead of remaining in isotopic equilibrium. Such an approach allows us to simulate the fractionation of isotopes between rock and fluid resulting solely from mineral dissolution and precipitation. The technique was tested by modeling isotopic fractionation during several reaction processes, including (1) dolomitization of limestone by a migrating pore fluid, (2) diagenetic alteration of the Permian Lyons sandstone in the Denver basin, and (3) hydrothermal alteration of the Okanagan Batholith in southern British Columbia. The results of calculations in which minerals are segregated from isotopic exchange compare well to isotopic trends observed in nature but differ markedly from calculations that assume isotopic equilibrium. 54 refs., 4 figs., 3 tabs.

  5. TORUS: Theory of Reactions for Unstable iSotopes Annual Continuation and Progress Report Year-2: March 1, 2011 - February 29, 2012

    SciTech Connect

    Arbanas, G; Elster, C; Escher, J; Mukhamedzanov, A; Nunes, F; Thompson, I J

    2012-02-24

    The TORUS collaboration derives its name from the research it focuses on, namely the Theory of Reactions for Unstable iSotopes. It is a Topical Collaboration in Nuclear Theory, and funded by the Nuclear Theory Division of the Office of Nuclear Physics in the Office of Science of the Department of Energy. The funding supports one postdoctoral researcher for the years 1 through 3. The collaboration brings together as Principal Investigators a large fraction of the nuclear reaction theorists currently active within the USA. The mission of the TORUS Topical Collaboration is to develop new methods that will advance nuclear reaction theory for unstable isotopes by using three-body techniques to improve direct-reaction calculations, and, by using a new partial-fusion theory, to integrate descriptions of direct and compound-nucleus reactions. This multi-institution collaborative effort is directly relevant to three areas of interest: the properties of nuclei far from stability; microscopic studies of nuclear input parameters for astrophysics, and microscopic nuclear reaction theory.

  6. Structural, Thermal, and Safety Analysis of Isotope Heat Source and Integrated Heat Exchangers for 6-kWe Dynamic Isotope Power System (DIPS)

    SciTech Connect

    Schock, Alfred

    1989-01-01

    The design of the 30-kWt isotope heat source integrated with a Rankine boiler and a Brayton gas heater, which was described in the preceding paper in these proceedings, was subjected to structural, thermal, and safety analyses. The present paper describes and discusses the results of these analyses. Detailed structural analyses of the heat source integrated with the boiler and gas heater showed positive safety margins at all locations during the launch. Detailed thermal analyses showed acceptable temperatures at all locations, during assembly, transfer and orbital operations. Reentry thermal analyses showed that the clads have acceptable peak and impact temperatures. Loss-of-cooling analyses indicated the feasibility of a passive safety concept for preventing over temperatures. Static structural analysis showed positive safety margins at all locations, and dynamic analysis showed that there were no low-frequency resources. Continuum-mechanics code analyses of the effects of the impact of Solid Rocket Booster (SRB) fragments on the heat source and of the very unlikely impact of the full heat source on concrete indicated relatively modest fuel clad deformations and little or no fuel release.

  7. Exploring the limits of ultrafast polymerase chain reaction using liquid for thermal heat exchange: A proof of principle

    PubMed Central

    Maltezos, George; Johnston, Matthew; Taganov, Konstantin; Srichantaratsamee, Chutatip; Gorman, John; Baltimore, David; Chantratita, Wasun; Scherer, Axel

    2010-01-01

    Thermal ramp rate is a major limiting factor in using real-time polymerase chain reaction (PCR) for routine diagnostics. We explored the limits of speed by using liquid for thermal exchange rather than metal as in traditional devices, and by testing different polymerases. In a clinical setting, our system equaled or surpassed state-of-the-art devices for accuracy in amplifying DNA∕RNA of avian influenza, cytomegalovirus, and human immunodeficiency virus. Using Thermococcus kodakaraensis polymerase and optimizing both electrical and chemical systems, we obtained an accurate, 35 cycle amplification of an 85-base pair fragment of E. coli O157:H7 Shiga toxin gene in as little as 94.1 s, a significant improvement over a typical 1 h PCR amplification. PMID:21267083

  8. Exploring the limits of ultrafast polymerase chain reaction using liquid for thermal heat exchange: A proof of principle

    NASA Astrophysics Data System (ADS)

    Maltezos, George; Johnston, Matthew; Taganov, Konstantin; Srichantaratsamee, Chutatip; Gorman, John; Baltimore, David; Chantratita, Wasun; Scherer, Axel

    2010-12-01

    Thermal ramp rate is a major limiting factor in using real-time polymerase chain reaction (PCR) for routine diagnostics. We explored the limits of speed by using liquid for thermal exchange rather than metal as in traditional devices, and by testing different polymerases. In a clinical setting, our system equaled or surpassed state-of-the-art devices for accuracy in amplifying DNA/RNA of avian influenza, cytomegalovirus, and human immunodeficiency virus. Using Thermococcus kodakaraensis polymerase and optimizing both electrical and chemical systems, we obtained an accurate, 35 cycle amplification of an 85-base pair fragment of E. coli O157:H7 Shiga toxin gene in as little as 94.1 s, a significant improvement over a typical 1 h PCR amplification.

  9. Process for preparing a chemical compound enriched in isotope content

    DOEpatents

    Michaels, Edward D.

    1982-01-01

    A process to prepare a chemical enriched in isotope content which includes: (a) A chemical exchange reaction between a first and second compound which yields an isotopically enriched first compound and an isotopically depleted second compound; (b) the removal of a portion of the first compound as product and the removal of a portion of the second compound as spent material; (c) the conversion of the remainder of the first compound to the second compound for reflux at the product end of the chemical exchange reaction region; (d) the conversion of the remainder of the second compound to the first compound for reflux at the spent material end of the chemical exchange region; and the cycling of the additional chemicals produced by one conversion reaction to the other conversion reaction, for consumption therein. One of the conversion reactions is an oxidation reaction, and the energy that it yields is used to drive the other conversion reaction, a reduction. The reduction reaction is carried out in a solid polymer electrolyte electrolytic reactor. The overall process is energy efficient and yields no waste by-products.

  10. Further links between the maximum hardness principle and the hard/soft acid/base principle: insights from hard/soft exchange reactions.

    PubMed

    Chattaraj, Pratim K; Ayers, Paul W; Melin, Junia

    2007-08-07

    Ayers, Parr, and Pearson recently showed that insight into the hard/soft acid/base (HSAB) principle could be obtained by analyzing the energy of reactions in hard/soft exchange reactions, i.e., reactions in which a soft acid replaces a hard acid or a soft base replaces a hard base [J. Chem. Phys., 2006, 124, 194107]. We show, in accord with the maximum hardness principle, that the hardness increases for favorable hard/soft exchange reactions and decreases when the HSAB principle indicates that hard/soft exchange reactions are unfavorable. This extends the previous work of the authors, which treated only the "double hard/soft exchange" reaction [P. K. Chattaraj and P. W. Ayers, J. Chem. Phys., 2005, 123, 086101]. We also discuss two different approaches to computing the hardness of molecules from the hardness of the composing fragments, and explain how the results differ. In the present context, it seems that the arithmetic mean of fragment softnesses is the preferable definition.

  11. Isospin and Spin-Isospin Modes in Charge-Exchange Reactions

    SciTech Connect

    Harakeh, M.N.; Akimune, H.; van den Berg, A.M.; Brandenburg, S.; Fujiwara, M.; Laurent, H.; Willis, A.; Zegers, R.G.T.

    1999-12-31

    The microscopic structure of the Gamow-Teller resonance (GTR) and spin-dipole resonance (SDR) in {sup 208}Bi has been investigated in the {sup 208}Pb({sup 3}He,tp){sup 207}Pb reaction at E{sup 3}He=450 MeV and very forward scattering angles. The partial and total branching ratios and the escape widths for GTR and SDR decay to the residual neutron-hole states in {sup 207}Pb were deduced. These are found to be in good agreement with recent theoretical estimates. The ({sup 3}He,tp) reaction on Pb at E({sup 3}He)=177 MeV was also studied in order to locate isovector monopole strength corresponding to 2{Dirac_h}{omega} transitions. Monopole strength at excitation energies above 25 MeV was discovered and compared to calculated strength due to the isovector giant monopole resonance and the spin-flip isovector monopole resonance. Calculations in a normal-mode framework show that all isovector monopole strength can be accounted for if the branching ratio for decay by proton emission is 20%.

  12. Isospin and spin-isospin modes in charge-exchange reactions

    SciTech Connect

    Harakeh, M. N.; Berg, A. M. van den; Brandenburg, S.; Zegers, R. G. T.; Akimune, H.; Fujiwara, M.; Laurent, H.; Willis, A.

    1999-11-16

    The microscopic structure of the Gamow-Teller resonance (GTR) and spin-dipole resonance (SDR) in {sup 208}Bi has been investigated in the {sup 208}Pb({sup 3}He,tp){sup 207}Pb reaction at E({sup 3}He)=450 MeV and very forward scattering angles. The partial and total branching ratios and the escape widths for GTR and SDR decay to the residual neutron-hole states in {sup 207}Pb were deduced. These are found to be in good agreement with recent theoretical estimates. The ({sup 3}He,tp) reaction on Pb at E({sup 3}He)=177 MeV was also studied in order to locate isovector monopole strength corresponding to 2({Dirac_h}/2{pi}){omega} transitions. Monopole strength at excitation energies above 25 MeV was discovered and compared to calculated strength due to the isovector giant monopole resonance and the spin-flip isovector monopole resonance. Calculations in a normal-mode framework show that all isovector monopole strength can be accounted for if the branching ratio for decay by proton emission is 20%.

  13. Sulfur(VI) fluoride exchange (SuFEx): another good reaction for click chemistry.

    PubMed

    Dong, Jiajia; Krasnova, Larissa; Finn, M G; Sharpless, K Barry

    2014-09-01

    Aryl sulfonyl chlorides (e.g. Ts-Cl) are beloved of organic chemists as the most commonly used S(VI) electrophiles, and the parent sulfuryl chloride, O2 S(VI) Cl2 , has also been relied on to create sulfates and sulfamides. However, the desired halide substitution event is often defeated by destruction of the sulfur electrophile because the S(VI) Cl bond is exceedingly sensitive to reductive collapse yielding S(IV) species and Cl(-) . Fortunately, the use of sulfur(VI) fluorides (e.g., R-SO2 -F and SO2 F2 ) leaves only the substitution pathway open. As with most of click chemistry, many essential features of sulfur(VI) fluoride reactivity were discovered long ago in Germany.6a Surprisingly, this extraordinary work faded from view rather abruptly in the mid-20th century. Here we seek to revive it, along with John Hyatt's unnoticed 1979 full paper exposition on CH2 CH-SO2 -F, the most perfect Michael acceptor ever found.98 To this history we add several new observations, including that the otherwise very stable gas SO2 F2 has excellent reactivity under the right circumstances. We also show that proton or silicon centers can activate the exchange of SF bonds for SO bonds to make functional products, and that the sulfate connector is surprisingly stable toward hydrolysis. Applications of this controllable ligation chemistry to small molecules, polymers, and biomolecules are discussed.

  14. Iron-sulfur cluster exchange reactions mediated by the human Nfu protein.

    PubMed

    Wachnowsky, Christine; Fidai, Insiya; Cowan, J A

    2016-10-01

    Human Nfu is an iron-sulfur cluster protein that has recently been implicated in multiple mitochondrial dysfunctional syndrome (MMDS1). The Nfu family of proteins shares a highly homologous domain that contains a conserved active site consisting of a CXXC motif. There is less functional conservation between bacterial and human Nfu proteins, particularly concerning their Iron-sulfur cluster binding and transfer roles. Herein, we characterize the cluster exchange chemistry of human Nfu and its capacity to bind and transfer a [2Fe-2S] cluster. The mechanism of cluster uptake from a physiologically relevant [2Fe-2S](GS)4 cluster complex, and extraction of the Nfu-bound iron-sulfur cluster by glutathione are described. Human holo Nfu shows a dimer-tetramer equilibrium with a protein to cluster ratio of 2:1, reflecting the Nfu-bridging [2Fe-2S] cluster. This cluster can be transferred to apo human ferredoxins at relatively fast rates, demonstrating a direct role for human Nfu in the process of [2Fe-2S] cluster trafficking and delivery.

  15. METHOD OF ISOTOPE CONCENTRATION

    DOEpatents

    Spevack, J.S.

    1957-04-01

    An isotope concentration process is described which consists of exchanging, at two or more different temperature stages, two isotopes of an element between substances that are physically separate from each other and each of which is capable of containing either of the isotopes, and withdrawing from a point between at least two of the temperatare stages one of the substances containing an increased concentration of the desired isotope.

  16. Development of a high-density gas-jet target for nuclear astrophysics and reaction studies with rare isotope beams. Final Report

    SciTech Connect

    Uwe, Greife

    2014-08-12

    The purpose of this project was to develop a high-density gas jet target that will enable a new program of transfer reaction studies with rare isotope beams and targets of hydrogen and helium that is not currently possible and will have an important impact on our understanding of stellar explosions and of the evolution of nuclear shell structure away from stability. This is the final closeout report for the project.

  17. Quantification of protein deposits on silicone hydrogel materials using stable-isotopic labeling and multiple reaction monitoring.

    PubMed

    Omali, Negar Babaei; Zhao, Zhenjun; Zhong, Ling; Raftery, Mark J; Zhu, Hua; Ozkan, Jerome; Willcox, Mark

    2012-01-01

    This study was designed to use multiple reaction monitoring (MRM) for accurate quantification of contact lens protein deposits. Worn lenses used with a multipurpose disinfecting solution were collected after wear. Individual contact lenses were extracted and then digested with trypsin. MRM in conjunction with stable-isotope-labeled peptide standards was used for protein quantification. The results show that lysozyme was the major protein detected from both lens types. The amount of protein extracted from contact lenses was affected by the lens material. Except for keratin-1 (0.83 ± 0.61 vs 0.77 ± 0.20, p = 0.81) or proline rich protein-4 (0.11 ± 0.04 vs 0.15 ± 0.12, p = 0.97), the amounts of lysozyme, lactoferrin, or lipocalin-1 extracted from balafilcon A lenses (12.9 ± 9.01, 0.84 ± 0.50 or 2.06 ± 1.6, respectively) were significantly higher than that extracted from senofilcon A lenses (0.88 ± 0.13, 0.50 ± 0.10 or 0.27 ± 0.23, respectively) (p < 0.05). The amount of protein extracted from contact lenses was dependent on both the individual wearer and the contact lens material. This may have implications for the development of clinical responses during lens wear for different people and with different types of contact lenses. The use of MRM-MS is a powerful analytical tool for the quantification of specific proteins from single contact lenses after wear.

  18. Oxygen evolution reaction characteristics of synthetic nickel-cobalt-oxide electrodes for alkaline anion-exchange membrane water electrolysis

    NASA Astrophysics Data System (ADS)

    Koo, Tae Woo; Park, ChanSu; Kim, Yang Do; Lee, Dooyong; Park, Sungkyun; Lee, Jae Ho; Choi, Sung Mook; Choi, Chul Young

    2015-11-01

    A polymer electrolyte membrane water electrolysis system can produce high-purity hydrogen gases in a highly efficient manner. However, the level of hydrogen gas production is still small. In addition, noble-metal catalysts for the reaction in acidic environments, as well as an additional drying step to remove water contained in the hydrogen, are required. Therefore, water electrolysis system with high efficiency and lower cost, an alkaline anion-exchange membrane system that can produce high-purity hydrogen without a noble-metal catalyst, is needed. Nano-size NiCo2O4 powders were prepared by using a sol-gel method to achieve an efficient and economical water electrolysis system. When the powder was calcined at 450 °C, the crystallinity and the cyclic voltammogram measurement showed the best values. In addition, the 15-wt.% polytetrafluoroethylene mixed NiCo2O4 powders exhibited the largest cyclic voltammetry active area and the highest oxygen evolution reaction activity with the appropriate stability.

  19. Experimental investigation of the reaction of helium ions with dimethyl ether: stereodynamics of the dissociative charge exchange process.

    PubMed

    Cernuto, Andrea; Tosi, Paolo; Martini, Luca Matteo; Pirani, Fernando; Ascenzi, Daniela

    2017-03-09

    The fate of dimethyl ether (DME, CH3OCH3) in collisions with He(+) ions is of high relevance for astrochemical models aimed at reproducing the abundances of complex organic molecules in the interstellar medium. Here we report an investigation on the reaction of He(+) ions with DME carried out using a Guided Ion Beam Mass Spectrometer (GIB-MS), which allows the measurement of reactive cross-sections and branching ratios (BRs) as a function of the collision energy. We obtain insights into the dissociative charge (electron) exchange mechanism by investigating the nature of the non-adiabatic transitions between the relevant potential energy surfaces (PESs) in an improved Landau-Zener approach. We find that the large interaction anisotropy could induce a pronounced orientation of the polar DME molecule in the electric field generated by He(+) so that at short distances the collision complex is confined within pendular states, a particular case of bending motion, which gives rise to intriguing stereodynamic effects. The positions of the intermolecular potential energy curve crossings indicate that He(+) captures an electron from an inner valence orbital of DME, thus causing its dissociation. In addition to the crossing positions, the symmetry of the electron density distribution of the involved DME orbitals turns out to be a further major point affecting the probability of electron transfer. Thus, the anisotropy of the intermolecular interaction and the electron densities of the orbitals involved in the reaction are the key "ingredients" for describing the dynamics of this dissociative charge transfer.

  20. Magma mixing and crystal exchange at Yellowstone caldera revealed though sub-crystal-scale age, trace-element, and Hf-isotopic analyses of zircons

    NASA Astrophysics Data System (ADS)

    Stelten, M. E.; Cooper, K. M.; Vazquez, J. A.; Wimpenny, J.; Yin, Q.

    2011-12-01

    We examine magma mixing and crystal exchange in a young magma reservoir by correlating sub-crystal-scale SIMS age, SIMS trace element, and LA-MC-ICPMS Hf-isotopic data from zircons in the coeval ca. 100ka, yet compositionally distinct rhyolites of the Solfatara Plateau flow (SPF) and Hayden Valley flow (HVF) at Yellowstone Caldera. The SPF and HVF lavas are part of the Central Plateau Member (CPM) of the Plateau Rhyolite that is composed of the youngest intracaldera rhyolite flows at Yellowstone, erupted between ca. 170-70ka. We compare these data to age and trace element data from zircons in 1) the Pitchstone Plateau Flow, West Yellowstone Flow, and Dry Creek Flow of the CPM as representative of main reservoir zircons, 2) the ca. 118ka extracaldera Gibbon River Flow rhyolite (GRF), and 3) the ca. 260ka Scaup Lake Flow of the Upper Basin Member rhyolites. Additionally, we compare the zircon data to new MC-ICPMS Hf-isotopic data from CPM glasses. Correlating age, trace element, and Hf-isotopic data from zircons in the HVF and SPF reveals the presence of four zircon populations. Main reservoir-like (MR-like) zircons have trace element compositions similar to main CPM reservoir zircons, young ages (<200ka), a range in ɛHf (0.2 to -7.2), and are commonly zoned with high ɛHf cores and rims with ɛHf values within error of CPM glasses (-6.5 to -7.2 ɛHf). Extracaldera-like (EC-like) zircons are indistinguishable in age, trace element, and Hf-isotopic composition (-5.1 to -9.2 ɛHf) from zircons in the GRF. Mixed zircons have cores with either MR-like or EC-like compositions but rims of intermediate composition. Lastly, a population of zircons (which we interpret to be inherited) have cores with older ages (>350ka), a range in trace element compositions, and high ɛHf (-5.8 to -3.6) whereas the rims have restricted MR-like trace element compositions and ɛHf within error of CPM glasses. The sense of core to rim zoning specific to each population suggests that each

  1. Submolecular regulation of cell transformation by deuterium depleting water exchange reactions in the tricarboxylic acid substrate cycle

    PubMed Central

    Boros, László G; D’Agostino, Dominic P.; Katz, Howard E.; Roth, Justine P.; Meuillet, Emmanuelle J.; Somlyai, Gábor

    2016-01-01

    The naturally occurring isotope of hydrogen (1H), deuterium (2H), could have an important biological role. Deuterium depleted water delays tumor progression in mice, dogs, cats and humans. Hydratase enzymes of the tricarboxylic acid (TCA) cycle control cell growth and deplete deuterium from redox cofactors, fatty acids and DNA, which undergo hydride ion and hydrogen atom transfer reactions. A model is proposed that emphasizes the terminal complex of mitochondrial electron transport chain reducing molecular oxygen to deuterium depleted water (DDW); this affects gluconeogenesis as well as fatty acid oxidation. In the former, the DDW is thought to diminish the deuteration of sugar-phosphates in the DNA backbone, helping to preserve stability of hydrogen bond networks, possibly protecting against aneuploidy and resisting strand breaks, occurring upon exposure to radiation and certain anticancer chemotherapeutics. DDW is proposed here to link cancer prevention and treatment using natural ketogenic diets, low deuterium drinking water, as well as DDW production as the mitochondrial downstream mechanism of targeted anti-cancer drugs such as Avastin and Glivec. The role of 2H in biology is a potential missing link to the elusive cancer puzzle seemingly correlated with cancer epidemiology in western populations as a result of excessive 2H loading from processed carbohydrate intake in place of natural fat consumption. PMID:26826644

  2. Submolecular regulation of cell transformation by deuterium depleting water exchange reactions in the tricarboxylic acid substrate cycle.

    PubMed

    Boros, László G; D'Agostino, Dominic P; Katz, Howard E; Roth, Justine P; Meuillet, Emmanuelle J; Somlyai, Gábor

    2016-02-01

    The naturally occurring isotope of hydrogen ((1)H), deuterium ((2)H), could have an important biological role. Deuterium depleted water delays tumor progression in mice, dogs, cats and humans. Hydratase enzymes of the tricarboxylic acid (TCA) cycle control cell growth and deplete deuterium from redox cofactors, fatty acids and DNA, which undergo hydride ion and hydrogen atom transfer reactions. A model is proposed that emphasizes the terminal complex of mitochondrial electron transport chain reducing molecular oxygen to deuterium depleted water (DDW); this affects gluconeogenesis as well as fatty acid oxidation. In the former, the DDW is thought to diminish the deuteration of sugar-phosphates in the DNA backbone, helping to preserve stability of hydrogen bond networks, possibly protecting against aneuploidy and resisting strand breaks, occurring upon exposure to radiation and certain anticancer chemotherapeutics. DDW is proposed here to link cancer prevention and treatment using natural ketogenic diets, low deuterium drinking water, as well as DDW production as the mitochondrial downstream mechanism of targeted anti-cancer drugs such as Avastin and Glivec. The role of (2)H in biology is a potential missing link to the elusive cancer puzzle seemingly correlated with cancer epidemiology in western populations as a result of excessive (2)H loading from processed carbohydrate intake in place of natural fat consumption.

  3. Demonstration of Synaptic Behaviors and Resistive Switching Characterizations by Proton Exchange Reactions in Silicon Oxide

    PubMed Central

    Chang, Yao-Feng; Fowler, Burt; Chen, Ying-Chen; Zhou, Fei; Pan, Chih-Hung; Chang, Ting-Chang; Lee, Jack C.

    2016-01-01

    We realize a device with biological synaptic behaviors by integrating silicon oxide (SiOx) resistive switching memory with Si diodes. Minimal synaptic power consumption due to sneak-path current is achieved and the capability for spike-induced synaptic behaviors is demonstrated, representing critical milestones for the use of SiO2–based materials in future neuromorphic computing applications. Biological synaptic behaviors such as long-term potentiation (LTP), long-term depression (LTD) and spike-timing dependent plasticity (STDP) are demonstrated systematically using a comprehensive analysis of spike-induced waveforms, and represent interesting potential applications for SiOx-based resistive switching materials. The resistive switching SET transition is modeled as hydrogen (proton) release from (SiH)2 to generate the hydrogen bridge defect, and the RESET transition is modeled as an electrochemical reaction (proton capture) that re-forms (SiH)2. The experimental results suggest a simple, robust approach to realize programmable neuromorphic chips compatible with large-scale CMOS manufacturing technology. PMID:26880381

  4. Demonstration of Synaptic Behaviors and Resistive Switching Characterizations by Proton Exchange Reactions in Silicon Oxide

    NASA Astrophysics Data System (ADS)

    Chang, Yao-Feng; Fowler, Burt; Chen, Ying-Chen; Zhou, Fei; Pan, Chih-Hung; Chang, Ting-Chang; Lee, Jack C.

    2016-02-01

    We realize a device with biological synaptic behaviors by integrating silicon oxide (SiOx) resistive switching memory with Si diodes. Minimal synaptic power consumption due to sneak-path current is achieved and the capability for spike-induced synaptic behaviors is demonstrated, representing critical milestones for the use of SiO2–based materials in future neuromorphic computing applications. Biological synaptic behaviors such as long-term potentiation (LTP), long-term depression (LTD) and spike-timing dependent plasticity (STDP) are demonstrated systematically using a comprehensive analysis of spike-induced waveforms, and represent interesting potential applications for SiOx-based resistive switching materials. The resistive switching SET transition is modeled as hydrogen (proton) release from (SiH)2 to generate the hydrogen bridge defect, and the RESET transition is modeled as an electrochemical reaction (proton capture) that re-forms (SiH)2. The experimental results suggest a simple, robust approach to realize programmable neuromorphic chips compatible with large-scale CMOS manufacturing technology.

  5. Impurity charge-exchange processes processes in Tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Puiatti, M. E.; Breton, C.; Michelis, C.; Mattioll, M.

    1981-02-01

    Charge exchange reactions between multiply charged impurity ions and neutral hydrogen isotopes were considered. Ionization equilibrium and radiative losses were evaluated for oxygen and iron in the presence of either thermal or beam neutrals. The influence of thermal neutrals on recently reported results from chemically heated TFR discharges is also discussed.

  6. Methane to acetic acid over Cu-exchanged zeolites: mechanistic insights from a site-specific carbonylation reaction.

    PubMed

    Narsimhan, Karthik; Michaelis, Vladimir K; Mathies, Guinevere; Gunther, William R; Griffin, Robert G; Román-Leshkov, Yuriy

    2015-02-11

    The selective low temperature oxidation of methane is an attractive yet challenging pathway to convert abundant natural gas into value added chemicals. Copper-exchanged ZSM-5 and mordenite (MOR) zeolites have received attention due to their ability to oxidize methane into methanol using molecular oxygen. In this work, the conversion of methane into acetic acid is demonstrated using Cu-MOR by coupling oxidation with carbonylation reactions. The carbonylation reaction, known to occur predominantly in the 8-membered ring (8MR) pockets of MOR, is used as a site-specific probe to gain insight into important mechanistic differences existing between Cu-MOR and Cu-ZSM-5 during methane oxidation. For the tandem reaction sequence, Cu-MOR generated drastically higher amounts of acetic acid when compared to Cu-ZSM-5 (22 vs 4 μmol/g). Preferential titration with sodium showed a direct correlation between the number of acid sites in the 8MR pockets in MOR and acetic acid yield, indicating that methoxy species present in the MOR side pockets undergo carbonylation. Coupled spectroscopic and reactivity measurements were used to identify the genesis of the oxidation sites and to validate the migration of methoxy species from the oxidation site to the carbonylation site. Our results indicate that the Cu(II)-O-Cu(II) sites previously associated with methane oxidation in both Cu-MOR and Cu-ZSM-5 are oxidation active but carbonylation inactive. In turn, combined UV-vis and EPR spectroscopic studies showed that a novel Cu(2+) site is formed at Cu/Al <0.2 in MOR. These sites oxidize methane and promote the migration of the product to a Brønsted acid site in the 8MR to undergo carbonylation.

  7. Isotope labeling of rubisco subunits provides in vivo information on subcellular biosynthesis and exchange of amino acids between compartments.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The architecture of plant metabolism includes substantial duplication of metabolite pools and enzyme catalyzed reactions in different subcellular compartments. This poses considerable challenges for understanding the regulation of metabolism particularly in primary metabolism and amino acid biosynth...

  8. The reversibility of dissimilatory sulphate reduction and the cell-internal multi-step reduction of sulphite to sulphide: insights from the oxygen isotope composition of sulphate.

    PubMed

    Brunner, Benjamin; Einsiedl, Florian; Arnold, Gail L; Müller, Inigo; Templer, Stefanie; Bernasconi, Stefano M

    2012-01-01

    Dissimilatory sulphate reduction (DSR) leads to an overprint of the oxygen isotope composition of sulphate by the oxygen isotope composition of water. This overprint is assumed to occur via cell-internally formed sulphuroxy intermediates in the sulphate reduction pathway. Unlike sulphate, the sulphuroxy intermediates can readily exchange oxygen isotopes with water. Subsequent to the oxygen isotope exchange, these intermediates, e.g. sulphite, are re-oxidised by reversible enzymatic reactions to sulphate, thereby incorporating the oxygen used for the re-oxidation of the sulphur intermediates. Consequently, the rate and expression of DSR-mediated oxygen isotope exchange between sulphate and water depend not only on the oxygen isotope exchange between sulphuroxy intermediates and water, but also on cell-internal forward and backward reactions. The latter are the very same processes that control the extent of sulphur isotope fractionation expressed by DSR. Recently, the measurement of multiple sulphur isotope fractionation has successfully been applied to obtain information on the reversibility of individual enzymatically catalysed steps in DSR. Similarly, the oxygen isotope signature of sulphate has the potential to reveal complementary information on the reversibility of DSR. The aim of this work is to assess this potential. We derived a mathematical model that links sulphur and oxygen isotope effects by DSR, assuming that oxygen isotope effects observed in the oxygen isotopic composition of ambient sulphate are controlled by the oxygen isotope exchange between sulphite and water and the successive cell-internal oxidation of sulphite back to sulphate. Our model predicts rapid DSR-mediated oxygen isotope exchange for cases where the sulphur isotope fractionation is large and slow exchange for cases where the sulphur isotope fractionation is small. Our model also demonstrates that different DSR-mediated oxygen isotope equilibrium values are observed, depending on the

  9. Direct lead isotope analysis in Hg-rich sulfides by LA-MC-ICP-MS with a gas exchange device and matrix-matched calibration.

    PubMed

    Zhang, Wen; Hu, Zhaochu; Günther, Detlef; Liu, Yongsheng; Ling, Wenli; Zong, Keqing; Chen, Haihong; Gao, Shan

    2016-12-15

    In situ Pb isotope data of sulfide samples measured by LA-MC-ICP-MS provide valuable geochemical information for studies of the origin and evolution of ore deposits. However, the severe isobaric interference of (204)Hg on (204)Pb and the lack of matrix-matched sulfide reference materials limit the precision of Pb isotopic analyses for Hg-rich sulfides. In this study, we observe that Hg forms vapor and can be completely removed from sample aerosol particles produced by laser ablation using a gas exchange device. Additionally, this device does not influence the signal intensities of Pb isotopes. The within-run precision, the external reproducibility and the analytical accuracy are significantly improved for the Hg-rich sulfide samples using this mercury-vapor-removing device. Matrix effects are observed when using silicate glass reference materials as the external standards to assess the relationship of mass fractionation factors between Tl and Pb in sulfide samples, resulting in a maximum deviation of ∼0.20% for (20x)Pb/(204)Pb. Matrix-matched reference materials are therefore required for the highly precise and accurate Pb isotope analyses of sulfide samples. We investigated two sulfide samples, MASS-1 (the Unites States Geological Survey reference materials) and Sph-HYLM (a natural sphalerite), as potential candidates. Repeated analyses of the two proposed sulfide reference materials by LA-MC-ICP-MS yield good external reproducibility of <0.04% (RSD, k = 2) for (20x)Pb/(206)Pb and <0.06% (RSD, k = 2) for (20x)Pb/(204)Pb with the exception of (20x)Pb/(204)Pb in MASS-1, which provided an external reproducibility of 0.24% (RSD, k = 2). Because the concentration of Pb in MASS-1 (76 μg g(-1)) is ∼5.2 times lower than that in Sph-HYLM (394 ± 264 μg g(-1)). The in situ analytical results of MASS-1 and Sph-HYLM are consistent with the values obtained by solution MC-ICP-MS, demonstrating the reliability and robustness of our analytical protocol.

  10. Computational modeling of transport and electrochemical reactions in proton-exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Um, Sukkee

    A comprehensive, multi-physics computational fuel cell dynamics (CFCD) model integrating electrochemical kinetics, charge transport, mass transport (particularly water transport), and flow dynamics is developed in this thesis. The numerical model is validated against published experimental data and utilized to generate results that reveal the internal operation of a PEM fuel cell. A number of model applications are demonstrated in the present work. First, the CFCD model is applied to explore hydrogen dilution effects in the anode feed. Detailed two-dimensional electrochemical and flow/transport simulations are provided to examine substantial anode concentration polarization due to hydrogen depletion at the reaction sites. A transient simulation of the cell current response to a step change in cell voltage is also attempted to elucidate characteristics of the dynamic response of a fuel cell for the first time. After the two-dimensional computational study, the CFCD model is applied to illustrate three-dimensional interactions between mass transfer and electrochemical kinetics. Emphasis is placed on obtaining a fundamental understanding of fully three-dimensional flow in the air cathode with interdigitated flowfield design and how it impacts the transport and electrochemical reaction processes. The innovative design concept for enhanced oxygen transport to, and effective water removal from the cathode, is explored numerically. Next, an analytical study of water transport is performed to investigate various water transport regimes of practical interest. The axial locations characteristic of anode water loss and cathode flooding are predicted theoretically and compared with numerical results. A continuous stirred fuel cell reactor (CSFCR) model is also proposed for the limiting situation where the anode and cathode sides reach equilibrium in water concentration with a thin ionomer membrane in between. In addition to the analytical solutions, a detailed water transport

  11. Core-shell self-assembly triggered via a thiol-disulfide exchange reaction for reduced glutathione detection and single cells monitoring

    PubMed Central

    Zhang, Zhen; Jiao, Yuting; Wang, Yuanyuan; Zhang, Shusheng

    2016-01-01

    A novel core-shell DNA self-assembly catalyzed by thiol-disulfide exchange reactions was proposed, which could realize GSH-initiated hybridization chain reaction (HCR) for signal amplification and molecules gathering. Significantly, these self-assembled products via electrostatic interaction could accumulate into prominent and clustered fluorescence-bright spots in single cancer cells for reduced glutathione monitoring, which will effectively drive cell monitoring into a new era. PMID:27412605

  12. Using lead isotopes and trace element records from two contrasting Lake Tanganyika sediment cores to assess watershed – Lake exchange

    USGS Publications Warehouse

    Odigie, Kingsley; Cohen, A.D.; Swarzenski, Peter W.; Flegal, R

    2014-01-01

    Lead isotopic and trace element records of two contrasting sediment cores were examined to reconstruct historic, industrial contaminant inputs to Lake Tanganyika, Africa. Observed fluxes of Co, Cu, Mn, Ni, Pb, and Zn in age-dated sediments collected from the lake varied both spatially and temporally over the past two to four centuries. The fluxes of trace elements were lower (up to 10-fold) at a mid-lake site (MC1) than at a nearshore site (LT-98-58), which is directly downstream from the Kahama and Nyasanga River watersheds and adjacent to the relatively pristine Gombe Stream National Park. Trace element fluxes at that nearshore site did not measurably change over the last two centuries (1815–1998), while the distal, mid-lake site exhibited substantial changes in the fluxes of trace elements – likely caused by changes in land use – over that period. For example, the flux of Pb increased by ∼300% from 1871 to 1991. That apparent accelerated weathering and detrital mobilization of lithogenic trace elements was further evidenced by (i) positive correlations (r = 0.77–0.99, p < 0.05) between the fluxes of Co, Cu, Mn, Ni, Pb, and Zn and those of iron (Fe) at both sites, (ii) positive correlations (r = 0.82–0.98, p < 0.01, n = 9) between the fluxes of elements (Al, Co, Cu, Fe, Mn, Ni, Pb, and Zn) and the mass accumulation rates at the offshore site, (iii) the low enrichment factors (EF < 5) of those trace elements, and (iv) the temporal consistencies of the isotopic composition of Pb in the sediment. These measurements indicate that accelerated weathering, rather than industrialization, accounts for most of the increases in trace element fluxes to Lake Tanganyika in spite of the development of mining and smelting operations within the lake’s watershed over the past century. The data also indicate that the mid-lake site is a much more sensitive and useful recorder of environmental changes than the nearshore site. Furthermore, the lead isotopic compositions

  13. Semiclassical study of quantum coherence and isotope effects in ultrafast electron transfer reactions coupled to a proton and a phonon bath.

    PubMed

    Venkataraman, Charulatha

    2011-11-28

    The linearized semiclassical initial value representation is employed to describe ultrafast electron transfer processes coupled to a phonon bath and weakly coupled to a proton mode. The goal of our theoretical investigation is to understand the influence of the proton on the electronic dynamics in various bath relaxation regimes. More specifically, we study the impact of the proton on coherences and analyze if the coupling to the proton is revealed in the form of an isotope effect. This will be important in distinguishing reactions in which the proton does not undergo significant rearrangement from those in which the electron transfer is accompanied by proton transfer. Unlike other methodologies widely employed to describe nonadiabatic electron transfer, this approach treats the electronic and nuclear degrees of freedom consistently. However, due to the linearized approximation, quantum interference effects are not captured accurately. Our study shows that at small phonon bath reorganization energies, coherent oscillations and isotope effect are observed in both slow and fast bath regimes. The coherences are more substantially damped by deuterium in comparison to the proton. Further, in contrast to the dynamics of the spin-boson model, the coherences are not long-lived. At large bath reorganization energies, the decay is incoherent in the slow and fast bath regimes. In this case, the extent of the isotope effect depends on the relative relaxation timescales of the proton mode and the phonon bath. The isotope effect is magnified for baths that relax on picosecond timescales in contrast to baths that relax in femtoseconds.

  14. Importance of tunneling in H-abstraction reactions by OH radicals. The case of CH4 + OH studied through isotope-substituted analogs

    NASA Astrophysics Data System (ADS)

    Lamberts, T.; Fedoseev, G.; Kästner, J.; Ioppolo, S.; Linnartz, H.

    2017-03-01

    We present a combined experimental and theoretical study focussing on the quantum tunneling of atoms in the reaction between CH4 and OH. The importance of this reaction pathway is derived by investigating isotope substituted analogs. Quantitative reaction rates needed for astrochemical models at low temperature are currently unavailable both in the solid state and in the gas phase. Here, we study tunneling effects upon hydrogen abstraction in CH4 + OH by focusing on two reactions: CH4 + OD → CH3 + HDO and CD4 + OH → CD3 + HDO. The experimental study shows that the solid-state reaction rate RCH4 + OD is higher than RCD4 + OH at 15 K. Experimental results are accompanied by calculations of the corresponding unimolecular and bimolecular reaction rate constants using instanton theory taking into account surface effects. For the work presented here, the unimolecular reactions are particularly interesting as these provide insight into reactions following a Langmuir-Hinshelwood process. The resulting ratio of the rate constants shows that the H abstraction (kCH4 + OD) is approximately ten times faster than D-abstraction (kCD4 + OH) at 65 K. We conclude that tunneling is involved at low temperatures in the abstraction reactions studied here. The unimolecular rate constants can be used by the modeling community as a first approach to describe OH-mediated abstraction reactions in the solid phase. For this reason we provide fits of our calculated rate constants that allow the inclusion of these reactions in models in a straightforward fashion.

  15. Quantum and quasi-classical dynamics of reaction H + DN (v = 0,1; j = 0) → HD + N and its isotopic variants

    NASA Astrophysics Data System (ADS)

    Li, Dan; Wang, Yuliang; Wumaier, Tuerdi

    2016-08-01

    Time-dependent wave packet (TDWP) and quasic-classical trajectory (QCT) methods were employed to study the title reaction and its isotopic variants on a new potential energy surface (PES) of 4A'' state over the range of collision energies, starting from the reaction threshold to 1.0 eV. We took the Coriolis coupling (CC) effect into account and presented the comparison between the CC and the centrifugal sudden (CS) approximation calculations. Reaction probabilities obtained using the different methods were thoroughly compared as a function of the collision energy for a series of total angular momentum J values. Significant differences of integral cross section between CC and CS results have been observed. The QCT-calculated cross sections and probabilities reproduced well the CC results over most of the collision energy range. In addition, the attack angle dependent reaction probabilities of the title reaction at J = 0 were calculated. The reaction probabilities were found to be strongly dependent on the attack angle. The influences of the reactant vibration excitation on the attack angle dependent reaction probabilities were also studied in detail.

  16. Eleven new heaviest isotopes of elements Z=105 to Z=117 identified among the products of {sup 249}Bk+{sup 48}Ca reactions

    SciTech Connect

    Oganessian, Yu. Ts.; Abdullin, F. Sh.; Dmitriev, S. N.; Itkis, M. G.; Lobanov, Yu. V.; Mezentsev, A. N.; Polyakov, A. N.; Sagaidak, R. N.; Shirokovsky, I. V.; Subbotin, V. G.; Sukhov, A. M.; Tsyganov, Yu. S.; Utyonkov, V. K.; Voinov, A. A.; Vostokin, G. K.; Bailey, P. D.; Benker, D. E.; Ezold, J. G.; Porter, C. E.; Riley, F. D.

    2011-05-15

    The heaviest isotopes of elements Z=117 to Z=105, {sup 294}117, {sup 293}117, {sup 290}115, {sup 289}115, {sup 286}113, {sup 285}113, {sup 282}Rg, {sup 281}Rg, {sup 278}Mt, {sup 274}Bh, and {sup 270}Db, were identified by means of the Dubna gas-filled recoil separator among the products of the {sup 249}Bk + {sup 48}Ca reaction. The details of the observed six decay chains, indicating the production and decay of isotopes {sup 293}117 and {sup 294}117, are presented and discussed. The decay energies and resulting half-lives of these new nuclei show a strong rise of stability with increasing neutron number, validating the concept of the island of enhanced stability for superheavy nuclei [Oganessian et al., Phys. Rev. Lett. 104, 142502 (2010)].

  17. Further insight into the reaction FeO(+) + H2 → Fe(+) + H2O: temperature dependent kinetics, isotope effects, and statistical modeling.

    PubMed

    Ard, Shaun G; Melko, Joshua J; Martinez, Oscar; Ushakov, Vladimir G; Li, Anyang; Johnson, Ryan S; Shuman, Nicholas S; Guo, Hua; Troe, Jürgen; Viggiano, Albert A

    2014-08-28

    The reactions of FeO(+) with H2, D2, and HD were studied in detail from 170 to 670 K by employing a variable temperature selected ion flow tube apparatus. High level electronic structure calculations were performed and compared to previous theoretical treatments. Statistical modeling of the temperature and isotope dependent rate constants was found to reproduce all data, suggesting the reaction could be well explained by efficient crossing from the sextet to quartet surface, with a rigid near thermoneutral barrier accounting for both the inefficiency and strong negative temperature dependence of the reactions over the measured range of thermal energies. The modeling equally well reproduced earlier guided ion beam results up to translational temperatures of about 4000 K.

  18. Protection of Endogenous Thiols against Methylmercury with Benzimidazole-Based Thione by Unusual Ligand-Exchange Reactions.

    PubMed

    Banerjee, Mainak; Karri, Ramesh; Chalana, Ashish; Das, Ranajit; Rai, Rakesh Kumar; Rawat, Kuber Singh; Pathak, Biswarup; Roy, Gouriprasanna

    2017-01-25

    Organomercurials, such as methylmercury (MeHg(+) ), are among the most toxic materials to humans. Apart from inhibiting proteins, MeHg(+) exerts its cytotoxicity through strong binding with endogenous thiols cysteine (CysH) and glutathione (GSH) to form MeHgCys and MeHgSG complexes. Herein, it is reported that the N,N-disubstituted benzimidazole-based thione 1 containing a N-CH2 CH2 OH substituent converts MeHgCys and MeHgSG complexes to less toxic water-soluble HgS nanoparticles (NPs) and releases the corresponding free thiols CysH and GSH from MeHgCys and MeHgSG, respectively, in solution by unusual ligand-exchange reactions in phosphate buffer at 37 °C. However, the corresponding N-substituted benzimidazole-based thione 7 and N,N-disubstituted imidazole-based thione 3, in spite of containing a N-CH2 CH2 OH substituent, failed to convert MeHgX (X=Cys, and SG) to HgS NPs under identical reaction conditions, which suggests that not only the N-CH2 CH2 OH moiety but the benzimidazole ring and N,N-disubstitution in 1, which leads to the generation of a partial positive charge at the C2 atom of the benzimidazole ring in 1:1 MeHg-conjugated complex of 1, are crucial to convert MeHgX to HgS NPs under physiologically relevant conditions.

  19. H/D exchange in reactions of OH(-) with D2 and of OD(-) with H2 at low temperatures.

    PubMed

    Mulin, Dmytro; Roučka, Štěpán; Jusko, Pavol; Zymak, Illia; Plašil, Radek; Gerlich, Dieter; Wester, Roland; Glosík, Juraj

    2015-04-14

    Using a cryogenic linear 22-pole rf ion trap, rate coefficients for H/D exchange reactions of OH(-) with D2 (1) and OD(-) with H2 (2) have been measured at temperatures between 11 K and 300 K with normal hydrogen. Below 60 K, we obtained k1 = 5.5 × 10(-10) cm(3) s(-1) for the exoergic . Upon increasing the temperature above 60 K, the data decrease with a power law, k1(T) ∼T(-2.7), reaching ≈1 × 10(-10) cm(3) s(-1) at 200 K. This observation is tentatively explained with a decrease of the lifetime of the intermediate complex as well as with the assumption that scrambling of the three hydrogen atoms is restricted by the topology of the potential energy surface. The rate coefficient for the endoergic increases with temperature from 12 K up to 300 K, following the Arrhenius equation, k2 = 7.5 × 10(-11) exp(-92 K/T) cm(3) s(-1) over two orders of magnitude. The fitted activation energy, EA-Exp = 7.9 meV, is in perfect accordance with the endothermicity of 24.0 meV, if one accounts for the thermal population of the rotational states of both reactants. The low mean activation energy in comparison with the enthalpy change in the reaction is mainly due to the rotational energy of 14.7 meV contributed by ortho-H2 (J = 1). Nonetheless, one should not ignore the reactivity of pure para-H2 because, according to our model, it already reaches 43% of that of ortho-H2 at 100 K.

  20. Pioneer and late stage tropical rainforest tree species (French Guiana) growing under common conditions differ in leaf gas exchange regulation, carbon isotope discrimination and leaf water potential.

    PubMed

    Huc, R; Ferhi, A; Guehl, J M

    1994-09-01

    Leaf gas exchange rates, predawn Ψwp and daily minimum Ψwm leaf water potentials were measured during a wet-to-dry season transition in pioneer (Jacaranda copaia, Goupia glabra andCarapa guianensis) and late stage rainforest tree species (Dicorynia guianensis andEperua falcata) growing in common conditions in artificial stands in French Guiana. Carbon isotope discrimination (Δ) was assessed by measuring the stable carbon isotope composition of the cellulose fraction of wood cores. The Δ values were 2.7‰ higher in the pioneer species than in the late stage species. The calculated time integratedC i values derived from the Δ values averaged 281 μmol mol(-1) in the pioneers and 240 μmol mol(-1) in the late stage species. The corresponding time-integrated values of intrinsinc water-use efficiency [ratio CO2 assimilation rate (A)/leaf conductance (g)] ranged from 37 to 47 mmol mol(-1) in the pioneers and the values were 64 and 74 mmol mol(-1) for the two late stage species. The high Δ values were associated-at least inJ. copaia-with high maximumg values and with high plant intrinsinc specific hydraulic conductance [C≔g/(Ψwm-Ψwp], which could reflect a high competitive ability for water and nutrient uptake in the absence of soil drought in the pioneers. A further clear discriminating trait of the pioneer species was the very sensitive stomatal response to drought in the soil, which might be associated with a high vulnerability to cavitation in these species. From a methodological point of view, the results show the relevance of Δ for distinguishing ecophysiological functional types among rainforest trees.