Science.gov

Sample records for isotope reactor safety

  1. Performance and safety parameters for the high flux isotope reactor

    SciTech Connect

    Ilas, G.; Primm III, T.

    2012-07-01

    A Monte Carlo depletion model for the High Flux Isotope Reactor (HFIR) Cycle 400 and its use in calculating parameters of relevance to the reactor performance and safety during the reactor cycle are presented in this paper. This depletion model was developed to serve as a reference for the design of a low-enriched uranium (LEU) fuel for an ongoing study to convert HFIR from high-enriched uranium (HEU) to LEU fuel; both HEU and LEU depletion models use the same methodology and ENDF/B-VII nuclear data as discussed in this paper. The calculated HFIR Cycle 400 parameters, which are compared with measurement data from critical experiments performed at HFIR, data included in the HFIR Safety Analysis Report (SAR), or data reported by previous calculations, provide a basis for verification or updating of the corresponding SAR data. (authors)

  2. Performance and Safety Parameters for the High Flux Isotope Reactor

    SciTech Connect

    Ilas, Germina; Primm, Trent

    2012-01-01

    A Monte Carlo depletion model for the High Flux Isotope Reactor (HFIR) Cycle 400 and its use in calculating parameters of relevance to the reactor performance and safety during the reactor cycle are presented in this paper. This depletion model was developed to serve as a reference for the design of a low-enriched uranium (LEU) fuel for an ongoing study to convert HFIR from high-enriched uranium (HEU) to LEU fuel; both HEU and LEU depletion models use the same methodology and ENDV/B-VII nuclear data as discussed in this paper. The calculated HFIR Cycle 400 parameters, which are compared when available with measurement data from critical experiments performed at HFIR, data included in the HFIR Safety Analysis Report (SAR), or data reported by previous calculations, provide a basis for verification or updating of the corresponding SAR data.

  3. Reactor physics input to the safety analysis report for the High Flux Isotope Reactor

    SciTech Connect

    Primm, R.T. III.

    1992-03-01

    HFIR specific, few group neutron and coupled neutron-gamma libraries have been prepared. These are based on data from ENDF/B-V and beginning-of-life (BOL) conditions. The neutron library includes actinide data for curium target rods. Six critical experiments, collectively designated HFIR critical experiment 4, were analyzed. Calculated k-effective was 2% high at BOL-typical conditions but was 1.0 at end-of-life-typical conditions. The local power density distributions were calculated for each of the critical experiments. The axially averaged values at a given radius were frequently within experimental error. However at individual points, the calculated local power densities were significantly different from the experimentally derived values (several times greater than experimental uncertainty). A reassessment of the foil activation data with transport theory techniques seems desirable. Using the results of the critical experiments study, a model of current HFIR configuration was prepared. As with the critical experiments, BOL k-effective was high (3%). However, end-of-life k-effective was high (2%). The end-of-life concentrations of fission products were compared to those generated using the ORIGEN code. Agreement was generally good through differences in the inventories of some important nuclides, Xe and I, need to be understood. End-of-cycle curium target isotopics based on measured, discharged target rods were compared to calculated values and agreement was good. Axial flux plots at various irradiation positions were generated. Time-dependent power distributions based on two-dimensional calculations were provided.

  4. Computer analyses for the design, operation and safety of new isotope production reactors: A technology status review

    SciTech Connect

    Wulff, W.

    1990-01-01

    A review is presented on the currently available technologies for nuclear reactor analyses by computer. The important distinction is made between traditional computer calculation and advanced computer simulation. Simulation needs are defined to support the design, operation, maintenance and safety of isotope production reactors. Existing methods of computer analyses are categorized in accordance with the type of computer involved in their execution: micro, mini, mainframe and supercomputers. Both general and special-purpose computers are discussed. Major computer codes are described, with regard for their use in analyzing isotope production reactors. It has been determined in this review that conventional systems codes (TRAC, RELAP5, RETRAN, etc.) cannot meet four essential conditions for viable reactor simulation: simulation fidelity, on-line interactive operation with convenient graphics, high simulation speed, and at low cost. These conditions can be met by special-purpose computers (such as the AD100 of ADI), which are specifically designed for high-speed simulation of complex systems. The greatest shortcoming of existing systems codes (TRAC, RELAP5) is their mismatch between very high computational efforts and low simulation fidelity. The drift flux formulation (HIPA) is the viable alternative to the complicated two-fluid model. No existing computer code has the capability of accommodating all important processes in the core geometry of isotope production reactors. Experiments are needed (heat transfer measurements) to provide necessary correlations. It is important for the nuclear community, both in government, industry and universities, to begin to take advantage of modern simulation technologies and equipment. 41 refs.

  5. Partial Safety Analysis for a Reduced Uranium Enrichment Core for the High Flux Isotope Reactor

    SciTech Connect

    Primm, Trent; Gehin, Jess C

    2009-04-01

    A computational model of the reactor core of the High Flux Isotope Rector (HFIR) was developed in order to analyze non-destructive accidents caused by transients during reactor operation. The reactor model was built for the latest version of the nuclear analysis software package called Program for the Analysis of Reactor Transients (PARET). Analyses performed with the model constructed were compared with previous data obtained with other tools in order to benchmark the code. Finally, the model was used to analyze the behavior of the reactor under transients using a different nuclear fuel with lower enrichment of uranium (LEU) than the fuel currently used, which has a high enrichment of uranium (HEU). The study shows that the presence of fertile isotopes in LEU fuel, which increases the neutron resonance absorption, reduces the impact of transients on the fuel and enhances the negative reactivity feedback, thus, within the limitations of this study, making LEU fuel appear to be a safe alternative fuel for the reactor core.

  6. High Flux Isotope Reactor technical specifications

    SciTech Connect

    Not Available

    1985-11-01

    This report gives technical specifications for the High Flux Isotope Reactor (HFIR) on the following: safety limits and limiting safety system settings; limiting conditions for operation; surveillance requirements; design features; and administrative controls.

  7. Impact induced response spectrum for the safety evaluation of the high flux isotope reactor

    SciTech Connect

    Chang, S.J.

    1997-05-01

    The dynamic impact to the nearby HFIR reactor vessel caused by heavy load drop is analyzed. The impact calculation is carried out by applying the ABAQUS computer code. An impact-induced response spectrum is constructed in order to evaluate whether the HFIR vessel and the shutdown mechanism may be disabled. For the frequency range less than 10 Hz, the maximum spectral velocity of impact is approximately equal to that of the HFIR seismic design-basis spectrum. For the frequency range greater than 10 Hz, the impact-induced response spectrum is shown to cause no effect to the control rod and the shutdown mechanism. An earlier seismic safety assessment for the HFIR control and shutdown mechanism was made by EQE. Based on EQE modal solution that is combined with the impact-induced spectrum, it is concluded that the impact will not cause any damage to the shutdown mechanism, even while the reactor is in operation. The present method suggests a general approach for evaluating the impact induced damage to the reactor by applying the existing finite element modal solution that has been carried out for the seismic evaluation of the reactor.

  8. Reactor safety method

    DOEpatents

    Vachon, Lawrence J.

    1980-03-11

    This invention relates to safety means for preventing a gas cooled nuclear reactor from attaining criticality prior to start up in the event the reactor core is immersed in hydrogenous liquid. This is accomplished by coating the inside surface of the reactor coolant channels with a neutral absorbing material that will vaporize at the reactor's operating temperature.

  9. Nuclear reactor safety device

    DOEpatents

    Hutter, Ernest

    1986-01-01

    A safety device is disclosed for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of an upward thermal excursion. Such safety device comprises a laminated helical ribbon configured as a tube-like helical coil having contiguous helical turns with slidably abutting edges. The helical coil is disclosed as a portion of a drive member connected axially to the control rod. The laminated ribbon is formed of outer and inner laminae. The material of the outer lamina has a greater thermal coefficient of expansion than the material of the inner lamina. In the event of an upward thermal excursion, the laminated helical coil curls inwardly to a smaller diameter. Such inward curling causes the total length of the helical coil to increase by a substantial increment, so that the control rod is axially repositioned by a corresponding amount to reduce the power output of the reactor.

  10. Reactor Safety Research Programs

    SciTech Connect

    Edler, S. K.

    1981-07-01

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from January 1 through March 31, 1981, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipeto- pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-ofcoolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, Ispra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  11. Perspectives on reactor safety

    SciTech Connect

    Haskin, F.E.; Camp, A.L.

    1994-03-01

    The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor, safety concepts. The course consists of five modules: (1) historical perspective; (2) accident sequences; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course.

  12. Reactor Safety Research Programs

    SciTech Connect

    Dotson, CW

    1980-08-01

    This document summarizes the work performed by Pacific Northwest laboratory from October 1 through December 31, 1979, for the Division of Reactor Safety Research within the Nuclear Regulatory Commission. Evaluation of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibilty of determining structural graphite strength, evaluating the feasibilty of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the remaining integrity of pressurized water reactor steam generator tubes where service-induced degradation has been indicated. Test assemblies and analytical support are being provided for experimental programs at other facilities. These programs include the loss-of-coolant accident simulation tests at the NRU reactor, Chalk River, Canada; the fuel rod deformation and post-accident coolability tests for the ESSOR Test Reactor Program, lspra, Italy; the blowdown and reflood tests in the test facility at Cadarache, France; the instrumented fuel assembly irradiation program at Halden, Norway; and the experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory. These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  13. N Reactor operational safety summary

    SciTech Connect

    Franz, G.R.; Quapp, W.J.; Ogden, D.M.

    1988-08-01

    This report is a safety summary of the N Reactor. Beginning with its conceptual design in the mid-1950`s, and throughout its 23 years of operation, continuous efforts have been made to ensure safe N Reactor operation and protection of the public health and safety. The N Reactor Updated Safety Analysis Report, completed in 1978(UNC1978), and its subsequent amendments document the safety bases of N Reactor. Following the April 1986 Chernobyl accident in the Soviet Union, a major effort to confirm N Reactor safety and further increase its safety margin was initiated. This effort, called the Safety Enhancement Program, reassessed the N Reactor using the latest accepted analysis techniques and commercial light-water reactor guidelines, where applicable. 122 refs., 38 figs., 10 tabs.

  14. Nuclear reactor safety device

    DOEpatents

    Hutter, E.

    1983-08-15

    A safety device is described for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of a thermal excursion. It comprises a laminated strip helically configured to form a tube, said tube being in operative relation to said control rod. The laminated strip is formed of at least two materials having different thermal coefficients of expansion, and is helically configured such that the material forming the outer lamina of the tube has a greater thermal coefficient of expansion than the material forming the inner lamina of said tube. In the event of a thermal excursion the laminated strip will tend to curl inwardly so that said tube will increase in length, whereby as said tube increases in length it exerts a force on said control rod to axially reposition said control rod with respect to said core.

  15. Neutronics Simulations of 237Np Targets to Support Safety-Basis and 238Pu Production Assessment Efforts at the High Flux Isotope Reactor

    SciTech Connect

    Chandler, David; Ellis, Ronald James

    2015-01-01

    Fueled by two highly enriched uranium-bearing fuel elements surrounded by a large concentric ring of beryllium reflector, the High Flux Isotope Reactor (HFIR) provides one of the highest neutron fluxes in the world and is used to produce unique isotopes like plutonium-238. The National Aeronautics and Space Administration use radioisotope thermoelectric generators powered by 238Pu for deep-space missions. As part of the US Department of Energy s task to reestablish the domestic production of 238Pu, a technology demonstration sub-project has been initiated to establish a new 238Pu supply chain. HFIR safety-basis neutronics calculations are being performed to ensure the target irradiations have no adverse impacts on reactor performance and to calculate data required as input to follow-on thermal-structural, thermal-hydraulic and radionuclide/dose analyses. Plutonium-238 production assessments are being performed to estimate the amount of 238Pu that can be produced in HFIR s permanent beryllium reflector. It is estimated that a total of 0.96 1.12 kg 238Pu (~1.28 1.49 kg PuO2 at 85% 238Pu/Pu purity) could be produced per year in HFIR s permanent beryllium reflector irradiation facilities if they are all utilized.

  16. Reactor operation safety information document

    SciTech Connect

    Not Available

    1990-01-01

    The report contains a reactor facility description which includes K, P, and L reactor sites, structures, operating systems, engineered safety systems, support systems, and process and effluent monitoring systems; an accident analysis section which includes cooling system anomalies, radioactive materials releases, and anticipated transients without scram; a summary of onsite doses from design basis accidents; severe accident analysis (reactor core disruption); a description of operating contractor organization and emergency planning; and a summary of reactor safety evolution. (MB)

  17. Nuclear Reactor Safety: a current awareness bulletin

    SciTech Connect

    Cunningham, D.C.

    1985-01-15

    Nuclear Reactor Safety announces on a semimonthly basis the current worldwide information available on all safety-related aspects of fission reactors, including: accident analysis, safety systems, radiation protection, decommissioning and dismantling, and security measures.

  18. Thermal reactor safety

    SciTech Connect

    Not Available

    1980-06-01

    Information is presented concerning new trends in licensing; seismic considerations and system structural behavior; TMI-2 risk assessment and thermal hydraulics; statistical assessment of potential accidents and verification of computational methods; issues with respect to improved safety; human factors in nuclear power plant operation; diagnostics and activities in support of recovery; LOCA transient analysis; unresolved safety issues and other safety considerations; and fission product transport.

  19. Overview of fusion reactor safety

    NASA Astrophysics Data System (ADS)

    Cohen, S.; Crocker, J. G.

    Use of deuterium-tritium fusion reactors requires examination of several major safety and environmental issues: (1) tritium inventory control; (2) neutron activation of structural materials, fluid streams and reactor hall environment; (3) release of radioactivity from energy sources including lithium spill reactions, superconducting magnet stored energy release, and plasma disruptions; (4) high magnetic and electromagnetic fields associated with fusion reactor superconducting magnets and radio frequency heating devices; and (5) handling and disposal of radioactive waste. Early recognition of potential safety problems with fusion reactors provides the opportunity for improvement in design and materials to eliminate or greatly reduce these problems. With an early start in this endeavor, fusion should be among the lower risk technologies for generation of commercial electrical power.

  20. Automatic safety rod for reactors

    DOEpatents

    Germer, John H.

    1988-01-01

    An automatic safety rod for a nuclear reactor containing neutron absorbing material and designed to be inserted into a reactor core after a loss-of-core flow. Actuation is based upon either a sudden decrease in core pressure drop or the pressure drop decreases below a predetermined minimum value. The automatic control rod includes a pressure regulating device whereby a controlled decrease in operating pressure due to reduced coolant flow does not cause the rod to drop into the core.

  1. [Reactor safety and human failure].

    PubMed

    Smidt, D

    1979-12-01

    Reactor safety is given by the reliable solution of 3 tasks: on-time shutdown, continuous decay-heat removal, safe containment. After describing the general strategy of their solution even under upset conditions the most important engineered safeguards of pressurized water reactors are summarized. The important problem of human failure is discussed in some more detail. For the example Harrisburg some difficulties, but also some technical countermeasures are illustrated. PMID:537639

  2. Thermal Reactor Safety

    SciTech Connect

    Not Available

    1980-06-01

    Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods.

  3. Reactor Safety Planning for Prometheus Project, for Naval Reactors Information

    SciTech Connect

    P. Delmolino

    2005-05-06

    The purpose of this letter is to submit to Naval Reactors the initial plan for the Prometheus project Reactor Safety work. The Prometheus project is currently developing plans for cold physics experiments and reactor prototype tests. These tests and facilities may require safety analysis and siting support. In addition to the ground facilities, the flight reactor units will require unique analyses to evaluate the risk to the public from normal operations and credible accident conditions. This letter outlines major safety documents that will be submitted with estimated deliverable dates. Included in this planning is the reactor servicing documentation and shipping analysis that will be submitted to Naval Reactors.

  4. Design and Nuclear-Safety Related Simulations of Bare-Pellet Test Irradiations for the Production of Pu-238 in the High Flux Isotope Reactor using COMSOL

    SciTech Connect

    Freels, James D; Jain, Prashant K; Hobbs, Randy W

    2012-01-01

    The Oak Ridge National Laboratory (ORNL)is developing technology to produce plutonium-238 for the National Aeronautics and Space Administration (NASA) as a power source material for powering vehicles while in deep-space[1]. The High Flux Isotope Reactor (HFIR) of ORNL has been utilized to perform test irradiations of incapsulated neptunium oxide (NpO2) and aluminum powder bare pellets for purposes of understanding the performance of the pellets during irradiation[2]. Post irradiation examinations (PIE) are currently underway to assess the effect of temperature, thermal expansion, swelling due to gas production, fission products, and other phenomena

  5. Sandia National Laboratories Medical Isotope Reactor concept.

    SciTech Connect

    Coats, Richard Lee; Dahl, James J.; Parma, Edward J., Jr.

    2010-04-01

    This report describes the Sandia National Laboratories Medical Isotope Reactor and hot cell facility concepts. The reactor proposed is designed to be capable of producing 100% of the U.S. demand for the medical isotope {sup 99}Mo. The concept is novel in that the fuel for the reactor and the targets for the {sup 99}Mo production are the same. There is no driver core required. The fuel pins that are in the reactor core are processed on a 7 to 21 day irradiation cycle. The fuel is low enriched uranium oxide enriched to less than 20% {sup 235}U. The fuel pins are approximately 1 cm in diameter and 30 to 40 cm in height, clad with Zircaloy (zirconium alloy). Approximately 90 to 150 fuel pins are arranged in the core in a water pool {approx}30 ft deep. The reactor power level is 1 to 2 MW. The reactor concept is a simple design that is passively safe and maintains negative reactivity coefficients. The total radionuclide inventory in the reactor core is minimized since the fuel/target pins are removed and processed after 7 to 21 days. The fuel fabrication, reactor design and operation, and {sup 99}Mo production processing use well-developed technologies that minimize the technological and licensing risks. There are no impediments that prevent this type of reactor, along with its collocated hot cell facility, from being designed, fabricated, and licensed today.

  6. Final Report on Isotope Ratio Techniques for Light Water Reactors

    SciTech Connect

    Gerlach, David C.; Gesh, Christopher J.; Hurley, David E.; Mitchell, Mark R.; Meriwether, George H.; Reid, Bruce D.

    2009-07-01

    The Isotope Ratio Method (IRM) is a technique for estimating the energy or plutonium production in a fission reactor by measuring isotope ratios in non-fuel reactor components. The isotope ratios in these components can then be directly related to the cumulative energy production with standard reactor modeling methods.

  7. Safety control circuit for a neutronic reactor

    DOEpatents

    Ellsworth, Howard C.

    2004-04-27

    A neutronic reactor comprising an active portion containing material fissionable by neutrons of thermal energy, means to control a neutronic chain reaction within the reactor comprising a safety device and a regulating device, a safety device including means defining a vertical channel extending into the reactor from an aperture in the upper surface of the reactor, a rod containing neutron-absorbing materials slidably disposed within the channel, means for maintaining the safety rod in a withdrawn position relative to the active portion of the reactor including means for releasing said rod on actuation thereof, a hopper mounted above the active portion of the reactor having a door disposed at the bottom of the hopper opening into the vertical channel, a plurality of bodies of neutron-absorbing materials disposed within the hopper, and means responsive to the failure of the safety rod on actuation thereof to enter the active portion of the reactor for opening the door in the hopper.

  8. Monitoring circuit for reactor safety systems

    DOEpatents

    Keefe, Donald J.

    1976-01-01

    The ratio between the output signals of a pair of reactor safety channels is monitored. When ratio falls outside of a predetermined range, it indicates that one or more of the safety channels has malfunctioned.

  9. Licensed reactor nuclear safety criteria applicable to DOE reactors

    SciTech Connect

    Not Available

    1991-04-01

    The Department of Energy (DOE) Order DOE 5480.6, Safety of Department of Energy-Owned Nuclear Reactors, establishes reactor safety requirements to assure that reactors are sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that adequately protects health and safety and is in accordance with uniform standards, guides, and codes which are consistent with those applied to comparable licensed reactors. This document identifies nuclear safety criteria applied to NRC (Nuclear Regulatory Commission) licensed reactors. The titles of the chapters and sections of USNRC Regulatory Guide 1.70, Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants, Rev. 3, are used as the format for compiling the NRC criteria applied to the various areas of nuclear safety addressed in a safety analysis report for a nuclear reactor. In each section the criteria are compiled in four groups: (1) Code of Federal Regulations, (2) US NRC Regulatory Guides, SRP Branch Technical Positions and Appendices, (3) Codes and Standards, and (4) Supplemental Information. The degree of application of these criteria to a DOE-owned reactor, consistent with their application to comparable licensed reactors, must be determined by the DOE and DOE contractor.

  10. High Flux Isotope Reactor power upgrade status

    SciTech Connect

    Rothrock, R.B.; Hale, R.E.; Cheverton, R.D.

    1997-03-01

    A return to 100-MW operation is being planned for the High Flux Isotope Reactor (HFIR). Recent improvements in fuel element manufacturing procedures and inspection equipment will be exploited to reduce hot spot and hot streak factors sufficiently to permit the power upgrade without an increase in primary coolant pressure. Fresh fuel elements already fabricated for future use are being evaluated individually for power upgrade potential based on their measured coolant channel dimensions.

  11. Licensed reactor nuclear safety criteria applicable to DOE reactors

    SciTech Connect

    Not Available

    1993-11-01

    This document is a compilation and source list of nuclear safety criteria that the Nuclear Regulatory Commission (NRC) applies to licensed reactors; it can be used by DOE and DOE contractors to identify NRC criteria to be evaluated for application to the DOE reactors under their cognizance. The criteria listed are those that are applied to the areas of nuclear safety addressed in the safety analysis report of a licensed reactor. They are derived from federal regulations, USNRC regulatory guides, Standard Review Plan (SRP) branch technical positions and appendices, and industry codes and standards.

  12. Fast Reactor Fuel Type and Reactor Safety Performance

    SciTech Connect

    R. Wigeland; J. Cahalan

    2009-09-01

    Fast Reactor Fuel Type and Reactor Safety Performance R. Wigeland , Idaho National Laboratory J. Cahalan, Argonne National Laboratory The sodium-cooled fast neutron reactor is currently being evaluated for the efficient transmutation of the highly-hazardous, long-lived, transuranic elements that are present in spent nuclear fuel. One of the fundamental choices that will be made is the selection of the fuel type for the fast reactor, whether oxide, metal, carbide, nitride, etc. It is likely that a decision on the fuel type will need to be made before many of the related technologies and facilities can be selected, from fuel fabrication to spent fuel reprocessing. A decision on fuel type should consider all impacts on the fast reactor system, including safety. Past work has demonstrated that the choice of fuel type may have a significant impact on the severity of consequences arising from accidents, especially for severe accidents of low probability. In this paper, the response of sodium-cooled fast reactors is discussed for both oxide and metal fuel types, highlighting the similarities and differences in reactor response and accident consequences. Any fast reactor facility must be designed to be able to successfully prevent, mitigate, or accommodate all consequences of potential events, including accidents. This is typically accomplished by using multiple barriers to the release of radiation, including the cladding on the fuel, the intact primary cooling system, and most visibly the reactor containment building. More recently, this has also included the use of ‘inherent safety’ concepts to reduce or eliminate the potential for serious damage in some cases. Past experience with oxide and metal fuel has demonstrated that both fuel types are suitable for use as fuel in a sodium-cooled fast reactor. However, safety analyses for these two fuel types have also shown that there can be substantial differences in accident consequences due to the neutronic and

  13. Molten salt reactors - safety options galore

    SciTech Connect

    Gat, U.; Dodds, H.L.

    1997-03-01

    Safety features and attributes of molten salt reactors (MSR) are described. The unique features of fluid fuel reactors of on-line continuous processing and the ability for so-called external cooling result in simple and safe designs with low excess reactivity, low fission product inventory, and small source term. These, in turn, make a criticality accident unlikely and reduce the severity of a loss of coolant to where they are no longer severe accidents. A melt down is not an accident for a reactor that uses molten fuel. The molten salts are stable, non-reactive and efficient heat transfer media that operate at high temperatures at low pressures and are highly compatible with selected structural materials. All these features reduce the accident plethora. Freeze valves can be used for added safety. An ultimate safe reactor (U.S.R) is described with safety features that are passive, inherent and non-tamperable (PINT).

  14. Probabilistic Safety Assessment of Tehran Research Reactor

    SciTech Connect

    Hosseini, Seyed Mohammad Hadi; Nematollahi, Mohammad Reza; Sepanloo, Kamran

    2004-07-01

    Probabilistic Safety Assessment (PSA) application is found to be a practical tool for research reactor safety due to intense involvement of human interactions in an experimental facility. In this paper the application of the Probabilistic Safety Assessment to the Tehran Research Reactor (TRR) is presented. The level 1 PSA application involved: Familiarization with the plant, selection of accident initiators, mitigating functions and system definitions, event tree constructions and quantification, fault tree constructions and quantification, human reliability, component failure data base development and dependent failure analysis. Each of the steps of the analysis given above is discussed with highlights from the selected results. Quantification of the constructed models is done using SAPHIRE software. This Study shows that the obtained core damage frequency for Tehran Research Reactor (8.368 E-6 per year) well meets the IAEA criterion for existing nuclear power plants (1E-4). But safety improvement suggestions are offered to decrease the most probable accidents. (authors)

  15. Some views on nuclear reactor safety

    SciTech Connect

    Tanguy, P.Y.

    1995-04-01

    This document is the text of a speech given by Pierre Y. Tanguy (Electricite de France) at the 22nd Water Reactor Safety Meeting held in Bethesda, MD in 1994. He describes the EDF nuclear program in broad terms and proceeds to discuss operational safety results with EDF plants. The speaker also outlines actions to enhance safety planned for the future, and he briefly mentions French cooperation with the Chinese on the Daya Bay project.

  16. Calculation of heating values for the high flux isotope reactor

    SciTech Connect

    Peterson, J.; Ilas, G.

    2012-07-01

    Calculating the amount of energy released by a fission reaction (fission Q value) and the heating rate distribution in a nuclear reactor is an important part of the safety analysis. However, these calculations can become very complex. One of the codes that can be used for this type of analyses is the Monte Carlo transport code MCNP5. Currently it is impossible to calculate the Q value and heating rate disposition for delayed beta and delayed gamma particles directly from MCNP5. The purpose of this paper is to outline a rigorous method for indirectly calculating the Q values and heating rates in the High Flux Isotope Reactor (HFIR), based on previous similar studies carried out for very high-temperature reactor configurations. This method has been applied in this study to calculate heating rates for the beginning of cycle (BOC) and end-of-cycle (EOC) states of HFIR. In addition, the BOC results obtained for HFIR are compared with corresponding results for the Advanced Test Reactor. The fission Q value for HFIR was calculated as 200.2 MeV for the BOC and 201.3 MeV for the EOC. It was also determined that 95.1% and 95.4% of the heat was deposited within the HFIR fuel plates for the BOC and EOC models, respectively. This methodology can also be used for heating rate calculations for HFIR experiments. (authors)

  17. Calculation of Heating Values for the High Flux Isotope Reactor

    SciTech Connect

    Peterson, Joshua L; Ilas, Germina

    2012-01-01

    Calculating the amount of energy released by a fission reaction (fission Q value) and the heating rate distribution in a nuclear reactor is an important part of the safety analysis. However, these calculations can become very complex. One of the codes that can be used for this type of analyses is the Monte Carlo transport code MCNP5. Currently it is impossible to calculate the Q value and heating rate disposition for delayed beta and delayed gamma particles directly from MCNP5. The purpose of this paper is to outline a rigorous method for indirectly calculating the Q values and heating rates in the High Flux Isotope Reactor (HFIR), based on previous similar studies carried out for very high-temperature reactor configurations. This method has been applied in this study to calculate heating rates for the beginning of cycle (BOC) and end-of-cycle (EOC) states of HFIR. In addition, the BOC results obtained for HFIR are compared with corresponding results for the Advanced Test Reactor. The fission Q value for HFIR was calculated as 200.2 MeV for the BOC and 201.3 MeV for the EOC. It was also determined that 95.1% and 95.4% of the heat was deposited within the HFIR fuel plates for the BOC and EOC models, respectively. This methodology can also be used for heating rate calculations for HFIR experiments.

  18. (UA1 reactor fuels safety and performance)

    SciTech Connect

    Taleyarkhan, R.P.

    1990-07-13

    The traveler visited several reactor and hot cell experimental facilities connected with JAERI at the Oarai and Tokai establishments. Uranium silicide fission product release experimental data and related acquisition systems were discussed. A presentation was made by the traveler on analysis and modeling of fission product release from UAl reactor fuels. Data obtained by JAERI thus far were offered to the traveler for Oak Ridge National Laboratory (ORNL) review and analysis. This data confirmed key aspects of ORNL theoretical model predictions and will be useful for Advanced Neutron Source (ANS) design. The Oarai establishment expressed their interest and willingness to pursue ORNL/JAERI cooperative efforts in understanding volatile fission product release behavior from silicide fuels. The traveler also presented a perspective overview on ORNL severe accident analysis technology and identified areas for cooperation in JAERI's forthcoming transient testing program. JAERI staff presented plans for evaluating silicide fuel performance under transient reactivity insertion accident conditions in the Nuclear Safety Research Reactor (NSRR) facility. A surprise announcement was made concerning JAERI's most recent initiative relating to the construction of a safety demonstration reactor (SDR) at the Tokai site. The purpose of this reactor facility would be to demonstrate operational safety of both Pressurized Water Reactors (PWRs) and Boiling Water Reactors (BWRs) in support of Japan's nuclear power industry.

  19. Evolution of space reactor safety

    SciTech Connect

    Wetch, J.R. )

    1993-01-10

    This paper summarizes some of the major safety issues and proposed and developed solutions to real and perceived problems. Safety of the public, operating personnel, facilities and the environment has always been a driving concern of the public, government agencies, system designers and users of nuclear power and propulsion systems.

  20. Automatic safety rod for reactors. [LMFBR

    DOEpatents

    Germer, J.H.

    1982-03-23

    An automatic safety rod for a nuclear reactor containing neutron absorbing material and designed to be inserted into a reactor core after a loss-of-flow. Actuation is based upon either a sudden decrease in core pressure drop or the pressure drop decreases below a predetermined minimum value. The automatic control rod includes a pressure regulating device whereby a controlled decrease in operating pressure due to reduced coolant flow does not cause the rod to drop into the core.

  1. Perspectives on reactor safety. Revision 1

    SciTech Connect

    Haskin, F.E.; Camp, A.L.; Hodge, S.A.

    1997-11-01

    The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor safety concepts. The course consists of five modules: (1) the development of safety concepts; (2) severe accident perspectives; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course.

  2. Trends in fusion reactor safety research

    SciTech Connect

    Herring, J.S.; Holland, D.F.; Piet, S.J.

    1991-01-01

    Fusion has the potential to be an attractive energy source. From the safety and environmental perspective, fusion must avoid concerns about catastrophic accidents and unsolvable waste disposal. In addition, fusion must achieve an acceptable level of risk from operational accidents that result in public exposure and economic loss. Finally, fusion reactors must control routine radioactive effluent, particularly tritium. Major progress in achieving this potential rests on development of low-activation materials or alternative fuels. The safety and performance of various material choices and fuels for commercial fusion reactors can be investigated relatively inexpensively through reactor design studies. These studies bring together experts in a wide range of backgrounds and force the group to either agree on a reactor design or identify areas for further study. Fusion reactors will be complex with distributed radioactive inventories. The next generation of experiments will be critical in demonstrating that acceptable levels of safe operation can be achieved. These machines will use materials which are available today and for which a large database exists (e.g. for 316 stainless steel). Researchers have developed a good understanding of the risks associated with operation of these devices. Specifically, consequences from coolant system failures, loss of vacuum events, tritium releases, and liquid metal reactions have been studied. Recent studies go beyond next step designs and investigate commercial reactor concerns including tritium release and liquid metal reactions. 18 refs.

  3. Reactor Safety Research: Semiannual report, January-June 1986: Reactor Safety Research Program

    SciTech Connect

    Not Available

    1987-05-01

    Sandia National Laboratories is conducting, under USNRC sponsorship, phenomenological research related to the safety of commercial nuclear power reactors. The research includes experiments to simulate the phenomenology of accident conditions and the development of analytical models, verified by experiment, which can be used to predict reactor and safety systems performance behavior under abnormal conditions. The objective of this work is to provide NRC requisite data bases and analytical methods to (1) identify and define safety issues, (2) understand the progression of risk-significant accident sequences, and (3) conduct safety assessments. The collective NRC-sponsored effort at Sandia National Laboratories is directed at enhancing the technology base supporting licensing decisions.

  4. Small Liquid Metal Cooled Reactor Safety Study

    SciTech Connect

    Minato, A; Ueda, N; Wade, D; Greenspan, E; Brown, N

    2005-11-02

    The Small Liquid Metal Cooled Reactor Safety Study documents results from activities conducted under Small Liquid Metal Fast Reactor Coordination Program (SLMFR-CP) Agreement, January 2004, between the Central Research Institute of the Electric Power Industry (CRIEPI) of Japan and the Lawrence Livermore National Laboratory (LLNL)[1]. Evaluations were completed on topics that are important to the safety of small sodium cooled and lead alloy cooled reactors. CRIEPI investigated approaches for evaluating postulated severe accidents using the CANIS computer code. The methods being developed are improvements on codes such as SAS 4A used in the US to analyze sodium cooled reactors and they depend on calibration using safety testing of metal fuel that has been completed in the TREAT facility. The 4S and the small lead cooled reactors in the US are being designed to preclude core disruption from all mechanistic scenarios, including selected unprotected transients. However, postulated core disruption is being evaluated to support the risk analysis. Argonne National Laboratory and the University of California Berkeley also supported LLNL with evaluation of cores with small positive void worth and core designs that would limit void worth. Assessments were also completed for lead cooled reactors in the following areas: (1) continuing operations with cladding failure, (2) large bubbles passing through the core and (3) recommendations concerning reflector control. The design approach used in the US emphasizes reducing the reactivity in the control mechanisms with core designs that have essentially no, or a very small, reactivity change over the core life. This leads to some positive void worth in the core that is not considered to be safety problem because of the inability to identify scenarios that would lead to voiding of lead. It is also believed that the void worth will not dominate the severe accident analysis. The approach used by 4S requires negative void worth throughout

  5. Preliminary Safety Analysis for the IRIS Reactor

    SciTech Connect

    Ricotti, M.E.; Cammi, A.; Cioncolini, A.; Lombardi, C.; Cipollaro, A.; Orioto, F.; Conway, L.E.; Barroso, A.C.

    2002-07-01

    A deterministic analysis of the IRIS safety features has been carried out by means of the best-estimate code RELAP (ver. RELAP5 mod3.2). First, the main system components were modeled and tested separately, namely: the Reactor Pressure Vessel (RPV), the modular helical-coil Steam Generators (SG) and the Passive (natural circulation) Emergency Heat Removal System (PEHRS). Then, a preliminary set of accident transients for the whole primary and safety systems was investigated. Since the project was in a conceptual phase, the reported analyses must be considered preliminary. In fact, neither the reactor components, nor the safety systems and the reactor signal logics were completely defined at that time. Three 'conventional' design basis accidents have been preliminary evaluated: a Loss Of primary Flow Accident, a Loss Of Coolant Accident and a Loss Of Feed Water accident. The results show the effectiveness of the safety systems also in LOCA conditions; the core remains covered for the required grace period. This provides the basis to move forward to the preliminary design. (authors)

  6. High Flux Isotope Reactor system RELAP5 input model

    SciTech Connect

    Morris, D.G.; Wendel, M.W.

    1993-01-01

    A thermal-hydraulic computational model of the High Flux Isotope Reactor (HFIR) has been developed using the RELAP5 program. The purpose of the model is to provide a state-of-the art thermal-hydraulic simulation tool for analyzing selected hypothetical accident scenarios for a revised HFIR Safety Analysis Report (SAR). The model includes (1) a detailed representation of the reactor core and other vessel components, (2) three heat exchanger/pump cells, (3) pressurizing pumps and letdown valves, and (4) secondary coolant system (with less detail than the primary system). Data from HFIR operation, component tests, tests in facility mockups and the HFIR, HFIR specific experiments, and other pertinent experiments performed independent of HFIR were used to construct the model and validate it to the extent permitted by the data. The detailed version of the model has been used to simulate loss-of-coolant accidents (LOCAs), while the abbreviated version has been developed for the operational transients that allow use of a less detailed nodalization. Analysis of station blackout with core long-term decay heat removal via natural convection has been performed using the core and vessel portions of the detailed model.

  7. Dry phase reactor for generating medical isotopes

    DOEpatents

    Mackie, Thomas Rockwell; Heltemes, Thad Alexander

    2016-05-03

    An apparatus for generating medical isotopes provides for the irradiation of dry-phase, granular uranium compounds which are then dissolved in a solvent for separation of the medical isotope from the irradiated compound. Once the medical isotope is removed, the dissolved compound may be reconstituted in dry granular form for repeated irradiation.

  8. Isotopic signature of atmospheric xenon released from light water reactors.

    PubMed

    Kalinowski, Martin B; Pistner, Christoph

    2006-01-01

    A global monitoring system for atmospheric xenon radioactivity is being established as part of the International Monitoring System to verify compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The isotopic activity ratios of (135)Xe, (133m)Xe, (133)Xe and (131m)Xe are of interest for distinguishing nuclear explosion sources from civilian releases. Simulations of light water reactor (LWR) fuel burn-up through three operational reactor power cycles are conducted to explore the possible xenon isotopic signature of nuclear reactor releases under different operational conditions. It is studied how ratio changes are related to various parameters including the neutron flux, uranium enrichment and fuel burn-up. Further, the impact of diffusion and mixing on the isotopic activity ratio variability are explored. The simulations are validated with reported reactor emissions. In addition, activity ratios are calculated for xenon isotopes released from nuclear explosions and these are compared to the reactor ratios in order to determine whether the discrimination of explosion releases from reactor effluents is possible based on isotopic activity ratios.

  9. A proposed standard on medical isotope production in fission reactors

    SciTech Connect

    Schenter, R. E.; Brown, G. J.; Holden, C. S.

    2006-07-01

    Authors Robert E. Sehenter, Garry Brown and Charles S. Holden argue that a Standard for 'Medical Isotope Production' is needed. Medical isotopes are becoming major components of application for the diagnosis and treatment of all the major diseases including all forms of cancer, heart disease, arthritis, Alzheimer's, among others. Current nuclear data to perform calculations is incomplete, dated or imprecise or otherwise flawed for many isotopes that could have significant applications in medicine. Improved data files will assist computational analyses to design means and methods for improved isotope production techniques in the fission reactor systems. Initial focus of the Standard is expected to be on neutron cross section and branching data for both fast and thermal reactor systems. Evaluated and reviewed tables giving thermal capture cross sections and resonance integrals for the major target and product medical isotopes would be the expected 'first start' for the 'Standard Working Group'. (authors)

  10. OECD NEA Benchmark Database of Spent Nuclear Fuel Isotopic Compositions for World Reactor Designs

    SciTech Connect

    Gauld, Ian C; Sly, Nicholas C; Michel-Sendis, Franco

    2014-01-01

    Experimental data on the isotopic concentrations in irradiated nuclear fuel represent one of the primary methods for validating computational methods and nuclear data used for reactor and spent fuel depletion simulations that support nuclear fuel cycle safety and safeguards programs. Measurement data have previously not been available to users in a centralized or searchable format, and the majority of accessible information has been, for the most part, limited to light-water-reactor designs. This paper describes a recent initiative to compile spent fuel benchmark data for additional reactor designs used throughout the world that can be used to validate computer model simulations that support nuclear energy and nuclear safeguards missions. Experimental benchmark data have been expanded to include VVER-440, VVER-1000, RBMK, graphite moderated MAGNOX, gas cooled AGR, and several heavy-water moderated CANDU reactor designs. Additional experimental data for pressurized light water and boiling water reactor fuels has also been compiled for modern assembly designs and more extensive isotopic measurements. These data are being compiled and uploaded to a recently revised structured and searchable database, SFCOMPO, to provide the nuclear analysis community with a centrally-accessible resource of spent fuel compositions that can be used to benchmark computer codes, models, and nuclear data. The current version of SFCOMPO contains data for eight reactor designs, 20 fuel assembly designs, more than 550 spent fuel samples, and measured isotopic data for about 80 nuclides.

  11. Space reactor safety, 1985--1995 lessons learned

    SciTech Connect

    Marshall, A.C.

    1995-12-31

    Space reactor safety activities and decisions have evolved over the last decade. Important safety decisions have been made in the SP-100, Space Exploration Initiative, NEPSTP, SNTP, and Bimodal Space Reactor programs. In addition, international guidance on space reactor safety has been instituted. Space reactor safety decisions and practices have developed in the areas of inadvertent criticality, reentry, radiological release, orbital operation, programmatic, and policy. In general, the lessons learned point out the importance of carefully reviewing previous safety practices for appropriateness to space nuclear programs in general and to the specific mission under consideration.

  12. The effective management of medical isotope production in research reactors

    SciTech Connect

    Drummond, D.T. )

    1993-01-01

    During the 50-yr history of the use of radioisotopes for medical applications, research reactors have played a pivotal role in the production of many if not most of the key products. The marriage between research reactors and production operations is subject to significant challenges on two fronts. The medical applications of the radioisotope products impose some unique constraints and requirements on the production process. In addition, the mandates and priorities of a research reactor are not always congruent with the demands of a production environment. This paper briefly reviews the historical development of medical isotope production, identifies the unique challenges facing this endeavor, and discusses the management of the relationship between the isotope producer and the research reactor operator. Finally, the key elements of a successful relationship are identified.

  13. Issues affecting advanced passive light-water reactor safety analysis

    SciTech Connect

    Beelman, R.J.; Fletcher, C.D.; Modro, S.M.

    1992-08-01

    Next generation commercial reactor designs emphasize enhanced safety through improved safety system reliability and performance by means of system simplification and reliance on immutable natural forces for system operation. Simulating the performance of these safety systems will be central to analytical safety evaluation of advanced passive reactor designs. Yet the characteristically small driving forces of these safety systems pose challenging computational problems to current thermal-hydraulic systems analysis codes. Additionally, the safety systems generally interact closely with one another, requiring accurate, integrated simulation of the nuclear steam supply system, engineered safeguards and containment. Furthermore, numerical safety analysis of these advanced passive reactor designs wig necessitate simulation of long-duration, slowly-developing transients compared with current reactor designs. The composite effects of small computational inaccuracies on induced system interactions and perturbations over long periods may well lead to predicted results which are significantly different than would otherwise be expected or might actually occur. Comparisons between the engineered safety features of competing US advanced light water reactor designs and analogous present day reactor designs are examined relative to the adequacy of existing thermal-hydraulic safety codes in predicting the mechanisms of passive safety. Areas where existing codes might require modification, extension or assessment relative to passive safety designs are identified. Conclusions concerning the applicability of these codes to advanced passive light water reactor safety analysis are presented.

  14. Issues affecting advanced passive light-water reactor safety analysis

    SciTech Connect

    Beelman, R.J.; Fletcher, C.D.; Modro, S.M.

    1992-01-01

    Next generation commercial reactor designs emphasize enhanced safety through improved safety system reliability and performance by means of system simplification and reliance on immutable natural forces for system operation. Simulating the performance of these safety systems will be central to analytical safety evaluation of advanced passive reactor designs. Yet the characteristically small driving forces of these safety systems pose challenging computational problems to current thermal-hydraulic systems analysis codes. Additionally, the safety systems generally interact closely with one another, requiring accurate, integrated simulation of the nuclear steam supply system, engineered safeguards and containment. Furthermore, numerical safety analysis of these advanced passive reactor designs wig necessitate simulation of long-duration, slowly-developing transients compared with current reactor designs. The composite effects of small computational inaccuracies on induced system interactions and perturbations over long periods may well lead to predicted results which are significantly different than would otherwise be expected or might actually occur. Comparisons between the engineered safety features of competing US advanced light water reactor designs and analogous present day reactor designs are examined relative to the adequacy of existing thermal-hydraulic safety codes in predicting the mechanisms of passive safety. Areas where existing codes might require modification, extension or assessment relative to passive safety designs are identified. Conclusions concerning the applicability of these codes to advanced passive light water reactor safety analysis are presented.

  15. Activation product safety in the ARIES-I reactor design

    SciTech Connect

    Herring, J.S. ); Sze, D.K. ); Wong, C.; Cheng, E.T. ); Grotz, S.P. )

    1990-01-01

    The ARIES design effort has sought to maximize the environmental and safety advantages of fusion through careful selection of materials and careful design. Three goals are that the reactor achieve inherent or passive safety, that no public evacuation plan be necessary and that the waste be disposable as 10CFR61 Class C waste. The ARIES-I reactor consists of a SiC composite structure for the first wall and blanket, cooled by 10 MPa He. The breeder is Li{sub 2}ZrO{sub 3}, although Li{sub 2}O and Li{sub 4}SiO{sub 4} were also considered. The divertor consists of SiC composite tubes coated with 2 mm of tungsten. Due to the minimal afterheat of this blanket design, LOCA calculations indicate maximum temperatures will not cause damage if the plasma is promptly extinguished. Two primary safety issues are the zirconium in the breeder and tungsten on the divertor. Li{sub 2}ZrO{sub 3} was chosen because of its demonstrated high-temperature stability. The other breeders have lower afterheat and activation. Use of zirconium in the breeder will necessitate isotopic tailoring to remove {sup 90}Zr and {sup 94}Zr. The 5.8 tonnes of W on the divertor would also have to be tailored to remove {sup 186}W and/or to concentrate {sup 183}W. Thus the ARIES-I design achieves the passive safety and low-level waste disposal criteria with respect to activation products. Development of low activation materials to replace zirconium and tungsten is needed to avoid requiring an evacuation plan.

  16. Request for Naval Reactors Comment on Proposed Prometheus Space Flight Nuclear Reactor High Tier Reactor Safety Requirements and for Naval Reactors Approval to Transmit These Requirements to JPL

    SciTech Connect

    D. Kokkinos

    2005-04-28

    The purpose of this letter is to request Naval Reactors comments on the nuclear reactor high tier requirements for the PROMETHEUS space flight reactor design, pre-launch operations, launch, ascent, operation, and disposal, and to request Naval Reactors approval to transmit these requirements to Jet Propulsion Laboratory to ensure consistency between the reactor safety requirements and the spacecraft safety requirements. The proposed PROMETHEUS nuclear reactor high tier safety requirements are consistent with the long standing safety culture of the Naval Reactors Program and its commitment to protecting the health and safety of the public and the environment. In addition, the philosophy on which these requirements are based is consistent with the Nuclear Safety Policy Working Group recommendations on space nuclear propulsion safety (Reference 1), DOE Nuclear Safety Criteria and Specifications for Space Nuclear Reactors (Reference 2), the Nuclear Space Power Safety and Facility Guidelines Study of the Applied Physics Laboratory.

  17. Isotopic composition and neutronics of the Okelobondo natural reactor

    NASA Astrophysics Data System (ADS)

    Palenik, Christopher Samuel

    The Oklo-Okelobondo and Bangombe uranium deposits, in Gabon, Africa host Earth's only known natural nuclear fission reactors. These 2 billion year old reactors represent a unique opportunity to study used nuclear fuel over geologic periods of time. The reactors in these deposits have been studied as a means by which to constrain the source term of fission product concentrations produced during reactor operation. The source term depends on the neutronic parameters, which include reactor operation duration, neutron flux and the neutron energy spectrum. Reactor operation has been modeled using a point-source computer simulation (Oak Ridge Isotope Generation and Depletion, ORIGEN, code) for a light water reactor. Model results have been constrained using secondary ionization mass spectroscopy (SIMS) isotopic measurements of the fission products Nd and Te, as well as U in uraninite from samples collected in the Okelobondo reactor zone. Based upon the constraints on the operating conditions, the pre-reactor concentrations of Nd (150 ppm +/- 75 ppm) and Te (<1 ppm) in uraninite were estimated. Related to the burnup measured in Okelobondo samples (0.7 to 13.8 GWd/MTU), the final fission product inventories of Nd (90 to 1200 ppm) and Te (10 to 110 ppm) were calculated. By the same means, the ranges of all other fission products and actinides produced during reactor operation were calculated as a function of burnup. These results provide a source term against which the present elemental and decay abundances at the fission reactor can be compared. Furthermore, they provide new insights into the extent to which a "fossil" nuclear reactor can be characterized on the basis of its isotopic signatures. In addition, results from the study of two other natural systems related to the radionuclide and fission product transport are included. A detailed mineralogical characterization of the uranyl mineralogy at the Bangombe uranium deposit in Gabon, Africa was completed to improve

  18. Reactor production of sup 252 Cf and transcurium isotopes

    SciTech Connect

    Alexander, C.W.; Halperin, J.; Walker, R.L.; Bigelow, J.E.

    1990-01-01

    Berkelium, californium, einsteinium, and fermium are currently produced in the High Flux Isotope Reactor (HFIR) and recovered in the Radiochemical Engineering Development Center (REDC) at the Oak Ridge National Laboratory (ORNL). All the isotopes are used for research. In addition, {sup 252}Cf, {sup 253}Es, and {sup 255}Fm have been considered or are used for industrial or medical applications. ORNL is the sole producer of these transcurium isotopes in the western world. A wide range of actinide samples were irradiated in special test assemblies at the Fast Flux Test Facility (FFTF) at Hanford, Washington. The purpose of the experiments was to evaluate the usefulness of the two-group flux model for transmutations in the special assemblies with an eventual goal of determining the feasibility of producing macro amounts of transcurium isotopes in the FFTF. Preliminary results from the production of {sup 254g}Es from {sup 252}Cf will be discussed. 14 refs., 5 tabs.

  19. Nuclear Reactor Safety--The APS Submits its Report

    ERIC Educational Resources Information Center

    Physics Today, 1975

    1975-01-01

    Presents the summary section of the American Physical Society (APS) report on the safety features of the light-water reactor, reviews the design, construction, and operation of a reactor and outlines the primary engineered safety features. Summarizes the major recommendations of the study group. (GS)

  20. Savannah River Site K-Reactor Probabilistic Safety Assessment

    SciTech Connect

    Brandyberry, M.D.; Bailey, R.T.; Baker, W.H.; Kearnaghan, D.P.; O`Kula, K.R.; Wittman, R.S.; Woody, N.D.; Amos, C.N.; Weingardt, J.J.

    1992-12-01

    This report gives the results of a Savannah River Site (SRS) K-Reactor Probabilistic Safety Assessment (PSA). Measures of adverse consequences to health and safety resulting from representations of severe accidents in SRS reactors are presented. In addition, the report gives a summary of the methods employed to represent these accidents and to assess the resultant consequences. The report is issued to provide useful information to the U. S. Department of Energy (DOE) on the risk of operation of SRS reactors, for insights into severe accident phenomena that contribute to this risk, and in support of improved bases for other DOE programs in Heavy Water Reactor safety.

  1. Hydrogen isotopes transport parameters in fusion reactor materials

    NASA Astrophysics Data System (ADS)

    Serra, E.; Benamati, G.; Ogorodnikova, O. V.

    1998-06-01

    This work presents a review of hydrogen isotopes-materials interactions in various materials of interest for fusion reactors. The relevant parameters cover mainly diffusivity, solubility, trap concentration and energy difference between trap and solution sites. The list of materials includes the martensitic steels (MANET, Batman and F82H-mod.), beryllium, aluminium, beryllium oxide, aluminium oxide, copper, tungsten and molybdenum. Some experimental work on the parameters that describe the surface effects is also mentioned.

  2. Research reactors - an overview

    SciTech Connect

    West, C.D.

    1997-03-01

    A broad overview of different types of research and type reactors is provided in this paper. Reactor designs and operating conditions are briefly described for four reactors. The reactor types described include swimming pool reactors, the High Flux Isotope Reactor, the Mark I TRIGA reactor, and the Advanced Neutron Source reactor. Emphasis in the descriptions is placed on safety-related features of the reactors. 7 refs., 7 figs., 2 tabs.

  3. Advanced Multiphysics Thermal-Hydraulics Models for the High Flux Isotope Reactor

    SciTech Connect

    Jain, Prashant K; Freels, James D

    2015-01-01

    Engineering design studies to determine the feasibility of converting the High Flux Isotope Reactor (HFIR) from using highly enriched uranium (HEU) to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory (ORNL). This work is part of an effort sponsored by the US Department of Energy (DOE) Reactor Conversion Program. HFIR is a very high flux pressurized light-water-cooled and moderated flux-trap type research reactor. HFIR s current missions are to support neutron scattering experiments, isotope production, and materials irradiation, including neutron activation analysis. Advanced three-dimensional multiphysics models of HFIR fuel were developed in COMSOL software for safety basis (worst case) operating conditions. Several types of physics including multilayer heat conduction, conjugate heat transfer, turbulent flows (RANS model) and structural mechanics were combined and solved for HFIR s inner and outer fuel elements. Alternate design features of the new LEU fuel were evaluated using these multiphysics models. This work led to a new, preliminary reference LEU design that combines a permanent absorber in the lower unfueled region of all of the fuel plates, a burnable absorber in the inner element side plates, and a relocated and reshaped (but still radially contoured) fuel zone. Preliminary results of estimated thermal safety margins are presented. Fuel design studies and model enhancement continue.

  4. Reactor Safety Research: Semiannual report, July-December 1986

    SciTech Connect

    Not Available

    1987-11-01

    Sandia National Laboratories is conducting, under USNRC sponsorship, phenomenological research related to the safety of commercial nuclear power reactors. The research includes experiments to simulate the phenomenology of the accident conditions and the development of analytical models, verified by experiment, which can be used to predict reactor and safety systems performance and behavior under abnormal conditions. The objective of this work is to provide NRC requisite data bases and analytical methods to (1) identify and define safety issues, (2) understand the progression of risk-significant accident sequences, and (3) conduct safety assessments. The collective NRC-sponsored effort at Sandia National Laboratories is directed at enhancing the tehcnology base supporting licensing decisions.

  5. Study Gives Good Odds on Nuclear Reactor Safety

    ERIC Educational Resources Information Center

    Russell, Cristine

    1974-01-01

    Summarized is data from a recent study on nuclear reactor safety completed by Norman C. Rasmussen and others. Non-nuclear events are about 10,000 times more likely to produce large accidents than nuclear plants. (RH)

  6. VVER Reactor Safety in Eastern Europe and Former Soviet Union

    NASA Astrophysics Data System (ADS)

    Papadopoulou, Demetra

    2012-02-01

    VVER Soviet-designed reactors that operate in Eastern Europe and former Soviet republics have heightened international concern for years due to major safety deficiencies. The governments of countries with VVER reactors have invested millions of dollars toward improving the safety of their nuclear power plants. Most of these reactors will continue to operate for the foreseeable future since they provide urgently-needed electrical power. Given this situation, this paper assesses the radiological consequences of a major nuclear accident in Eastern Europe. The paper also chronicles the efforts launched by the international nuclear community to improve the safety of the reactors and notes the progress made so far through extensive collaborative efforts in Armenia, Bulgaria, the Czech Republic, Hungary, Kazakhstan, Lithuania, Russia, Slovakia, and Ukraine to reduce the risks of nuclear accidents. Western scientific and technical staff collaborated with these countries to improve the safety of their reactor operations by strengthening the ability of the regulator to perform its oversight function, installing safety equipment and technologies, investing time in safety training, and working diligently to establish an enduring safety culture. Still, continued safety improvement efforts are necessary to ensure safe operating practices and achieve timely phase-out of older plants.

  7. Neutronics Modeling of the High Flux Isotope Reactor using COMSOL

    SciTech Connect

    Chandler, David; Primm, Trent; Freels, James D; Maldonado, G Ivan

    2011-01-01

    The High Flux Isotope Reactor located at the Oak Ridge National Laboratory is a versatile 85 MWth research reactor with cold and thermal neutron scattering, materials irradiation, isotope production, and neutron activation analysis capabilities. HFIR staff members are currently in the process of updating the thermal hydraulic and reactor transient modeling methodologies. COMSOL Multiphysics has been adopted for the thermal hydraulic analyses and has proven to be a powerful finite-element-based simulation tool for solving multiple physics-based systems of partial and ordinary differential equations. Modeling reactor transients is a challenging task because of the coupling of neutronics, heat transfer, and hydrodynamics. This paper presents a preliminary COMSOL-based neutronics study performed by creating a two-dimensional, two-group, diffusion neutronics model of HFIR to study the spatially-dependent, beginning-of-cycle fast and thermal neutron fluxes. The 238-group ENDF/B-VII neutron cross section library and NEWT, a two-dimensional, discrete-ordinates neutron transport code within the SCALE 6 code package, were used to calculate the two-group neutron cross sections required to solve the diffusion equations. The two-group diffusion equations were implemented in the COMSOL coefficient form PDE application mode and were solved via eigenvalue analysis using a direct (PARDISO) linear system solver. A COMSOL-provided adaptive mesh refinement algorithm was used to increase the number of elements in areas of largest numerical error to increase the accuracy of the solution. The flux distributions calculated by means of COMSOL/SCALE compare well with those calculated with benchmarked three-dimensional MCNP and KENO models, a necessary first step along the path to implementing two- and three-dimensional models of HFIR in COMSOL for the purpose of studying the spatial dependence of transient-induced behavior in the reactor core.

  8. 77 FR 60479 - Burnup Credit in the Criticality Safety Analyses of Pressurized Water Reactor Spent Fuel in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ... Information The draft SFST-ISG-8, Revision 3, was published in the Federal Register on May 2, 2012 (77 FR... safety analyses of pressurized water reactor spent nuclear fuel (SNF) in transportation packages and...) optional credit for fission product and minor actinide neutron absorbing isotopes in the SNF...

  9. Advanced Reactor Safety Research Division. Quarterly progress report, April 1-June 30, 1980

    SciTech Connect

    Romano, A.J.

    1980-01-01

    The Advanced Reactor Safety Research Programs Quarterly Progress Report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the USNRC Division of Reactor Safety Research. The projects reported each quarter are the following: HTGR safety evaluation, SSC Code Development, LMFBR Safety Experiments, and Fast Reactor Safety Code Validation.

  10. Advanced Reactor Safety Research Division. Quarterly progress report, January 1-March 31, 1980

    SciTech Connect

    Agrawal, A.K.; Cerbone, R.J.; Sastre, C.

    1980-06-01

    The Advanced Reactor Safety Research Programs quarterly progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the USNRC Division of Reactor Safety Research. The projects reported each quarter are the following: HTGR Safety Evaluation, SSC Code Development, LMFBR Safety Experiments, and Fast Reactor Safety Code Validation.

  11. Part I. Fuel-motion diagnostics in support of fast-reactor safety experiments. Part II. Fission product detection system in support of fast reactor safety experiments

    SciTech Connect

    Devolpi, A.; Doerner, R.C.; Fink, C.L.; Regis, J.P.; Rhodes, E.A.; Stanford, G.S.; Braid, T.H.; Boyar, R.E.

    1986-05-01

    In all destructive fast-reactor safety experiments at TREAT, fuel motion and cladding failure have been monitored by the fast-neutron/gamma-ray hodoscope, providing experimental results that are directly applicable to design, modeling, and validation in fast-reactor safety. Hodoscope contributions to the safety program can be considered to fall into several groupings: pre-failure fuel motion, cladding failure, post-failure fuel motion, steel blockages, pretest and posttest radiography, axial-power-profile variations, and power-coupling monitoring. High-quality results in fuel motion have been achieved, and motion sequences have been reconstructed in qualitative and quantitative visual forms. A collimated detection system has been used to observe fission products in the upper regions of a test loop in the TREAT reactor. Particular regions of the loop are targeted through any of five channels in a rotatable assembly in a horizontal hole through the biological shield. A well-type neutron detector, optimized for delayed neutrons, and two GeLi gamma ray spectrometers have been used in several experiments. Data are presented showing a time history of the transport of Dn emitters, of gamma spectra identifying volatile fission products deposited as aerosols, and of fission gas isotopes released from the coolant.

  12. Generation III reactors safety requirements and the design solutions

    NASA Astrophysics Data System (ADS)

    Felten, P.

    2009-03-01

    Nuclear energy's public acceptance, and hence its development, depends on its safety. As a reactor designer, we will first briefly remind the basic safety principles of nuclear reactors' design. We will then show how the industry, and in particular Areva with its EPR, made design evolution in the wake of the Three Miles Island accident in 1979. In particular, for this new generation of reactors, severe accidents are taken into account beyond the standard design basis accidents. Today, Areva's EPR meets all so-called "generation III" safety requirements and was licensed by several nuclear safety authorities in the world. Many innovative solutions are integrated in the EPR, some of which will be introduced here.

  13. Safety status of space radioisotope and reactor power sources

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.

    1990-01-01

    The current overall safety criterion for both radioisotope and reactor power sources is containment or immobilization in the case of a reentry accident. In addition, reactors are designed to remain subcritical under conditions of land impact or water immersion. A very extensive safety test and analysis program was completed on the radioisotope thermoelectric generators (RTGs) in use on the Galileo spacecraft and planned for use on the Ulysses spacecraft. The results of this work show that the RTGs will pose little or no risk for any credible accident. The SP-100 space nuclear reactor program has begun addressing its safety criteria, and the design is planned to be such as to ensure meeting the various safety criteria. Preliminary mission risk analyses on SP-100 show the expected value population dose from postulated accidents on the reference mission to be very small. It is concluded that the current US nuclear power sources are the safest flown.

  14. Software reliability and safety in nuclear reactor protection systems

    SciTech Connect

    Lawrence, J.D.

    1993-11-01

    Planning the development, use and regulation of computer systems in nuclear reactor protection systems in such a way as to enhance reliability and safety is a complex issue. This report is one of a series of reports from the Computer Safety and Reliability Group, Lawrence Livermore that investigates different aspects of computer software in reactor National Laboratory, that investigates different aspects of computer software in reactor protection systems. There are two central themes in the report, First, software considerations cannot be fully understood in isolation from computer hardware and application considerations. Second, the process of engineering reliability and safety into a computer system requires activities to be carried out throughout the software life cycle. The report discusses the many activities that can be carried out during the software life cycle to improve the safety and reliability of the resulting product. The viewpoint is primarily that of the assessor, or auditor.

  15. Advanced light water reactor requirements document: Chapter 3, Reactor coolant system and reactor non-safety auxiliary systems

    SciTech Connect

    Not Available

    1987-06-01

    The purpose of this chapter of the Advanced Light Water Reactor (ALWR) Plant Requirements Document is to establish utility requirements for the design of the Reactor Coolant System and the Reactor Non-safety Auxiliary Systems of Advanced LWR plants consistent with the objectives and principles of the ALWR program. The scope of this chapter covers the reactor coolant system and reactor non-safety auxiliary systems for Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR). Non-safety auxiliaries include systems which are required for normal operation of the plant but are not required to operate for accident mitigation or to bring the plant to a safe shutdown condition. For PWRs, the reactor coolant system, steam generator system, chemical and volume control system and boron recycle system are included. For BWRs, the reactor coolant system and reactor water cleanup system are included. The chapter also includes requirements for the above systems which are common to BWRs and PWRs and requirements for process sampling for BWRs and PWRs.

  16. Reactor Fuel Isotopics and Code Validation for Nuclear Applications

    SciTech Connect

    Francis, Matthew W.; Weber, Charles F.; Pigni, Marco T.; Gauld, Ian C.

    2015-02-01

    Experimentally measured isotopic concentrations of well characterized spent nuclear fuel (SNF) samples have been collected and analyzed by previous researchers. These sets of experimental data have been used extensively to validate the accuracy of depletion code predictions for given sets of burnups, initial enrichments, and varying power histories for different reactor types. The purpose of this report is to present the diversity of data in a concise manner and summarize the current accuracy of depletion modeling. All calculations performed for this report were done using the Oak Ridge Isotope GENeration (ORIGEN) code, an internationally used irradiation and decay code solver within the SCALE comprehensive modeling and simulation code. The diversity of data given in this report includes key actinides, stable fission products, and radioactive fission products. In general, when using the current ENDF/B-VII.0 nuclear data libraries in SCALE, the major actinides are predicted to within 5% of the measured values. Large improvements were seen for several of the curium isotopes when using improved cross section data found in evaluated nuclear data file ENDF/B-VII.0 as compared to ENDF/B-V-based results. The impact of the flux spectrum on the plutonium isotope concentrations as a function of burnup was also shown. The general accuracy noted for the actinide samples for reactor types with burnups greater than 5,000 MWd/MTU was not observed for the low-burnup Hanford B samples. More work is needed in understanding these large discrepancies. The stable neodymium and samarium isotopes were predicted to within a few percent of the measured values. Large improvements were seen in prediction for a few of the samarium isotopes when using the ENDF/B-VII.0 libraries compared to results obtained with ENDF/B-V libraries. Very accurate predictions were obtained for 133Cs and 153Eu. However, the predicted values for the stable ruthenium and rhodium isotopes varied

  17. Development of a Scale Model for High Flux Isotope Reactor Cycle 400

    SciTech Connect

    Ilas, Dan

    2012-03-01

    The development of a comprehensive SCALE computational model for the High Flux Isotope Reactor (HFIR) is documented and discussed in this report. The SCALE model has equivalent features and functionality as the reference MCNP model for Cycle 400 that has been used extensively for HFIR safety analyses and for HFIR experiment design and analyses. Numerical comparisons of the SCALE and MCNP models for the multiplication constant, power density distribution in the fuel, and neutron fluxes at several locations in HFIR indicate excellent agreement between the results predicted with the two models. The SCALE HFIR model is presented in sufficient detail to provide the users of the model with a tool that can be easily customized for various safety analysis or experiment design requirements.

  18. Fabrication of control rods for the High Flux Isotope Reactor

    SciTech Connect

    Sease, J.D.

    1998-03-01

    The High Flux Isotope Reactor (HFIR) is a research-type nuclear reactor that was designed and built in the early 1960s and has been in continuous operation since its initial criticality in 1965. Under current plans, the HFIR is expected to continue in operation until 2035. This report updates ORNL/TM-9365, Fabrication Procedure for HFIR Control Plates, which was mainly prepared in the early 1970's but was not issued until 1984, and reflects process changes, lessons learned in the latest control rod fabrication campaign, and suggested process improvements to be considered in future campaigns. Most of the personnel involved with the initial development of the processes and in part campaigns have retired or will retire soon. Because their unlikely availability in future campaigns, emphasis has been placed on providing some explanation of why the processes were selected and some discussions about the importance of controlling critical process parameters. Contained in this report is a description of the function of control rods in the reactor, the brief history of the development of control rod fabrication processes, and a description of procedures used in the fabrication of control rods. A listing of the controlled documents and procedures used in the last fabrication campaigns is referenced in Appendix A.

  19. Preliminary safety evaluation of the advanced burner test reactor.

    SciTech Connect

    Dunn, F. E.; Fanning, T. H.; Cahalan, J. E.; Nuclear Engineering Division

    2006-09-15

    Results of a preliminary safety evaluation of the Advanced Burner Test Reactor (ABTR) pre-conceptual design are reported. The ABTR safety design approach is described. Traditional defense-in-depth design features are supplemented with passive safety performance characteristics that include natural circulation emergency decay heat removal and reactor power reduction by inherent reactivity feedbacks in accidents. ABTR safety performance in design-basis and beyond-design-basis accident sequences is estimated based on analyses. Modeling assumptions and input data for safety analyses are presented. Analysis results for simulation of simultaneous loss of coolant pumping power and normal heat rejection are presented and discussed, both for the case with reactor scram and the case without reactor scram. The analysis results indicate that the ABTR pre-conceptual design is capable of undergoing bounding design-basis and beyond-design-basis accidents without fuel cladding failures. The first line of defense for protection of the public against release of radioactivity in accidents remains intact with significant margin. A comparison and evaluation of general safety design criteria for the ABTR conceptual design phase are presented in an appendix. A second appendix presents SASSYS-1 computer code capabilities and modeling enhancements implemented for ABTR analyses.

  20. Safety philosophy of gas turbine high temperature reactor (GTHTR300)

    SciTech Connect

    Shoji Katanishi; Kazuhiko Kunitomi; Shusaku Shiozawa

    2002-07-01

    Japan Atomic Energy Research Institute (JAERI) has undertaken the study of an original design concept of gas turbine high temperature reactor, the GTHTR300. The general concept of this study is development of a greatly simplified design that leads to substantially reduced technical and cost requirements. Newly proposed design features enable the GTHTR300 to be an efficient and economically competitive reactor in 2010's. Also, the GTHTR300 fully takes advantage of its inherent safety characteristics. The safety philosophy of the GTHTR300 is developed based on the HTTR (High Temperature Engineering Test Reactor) of JAERI which is the first HTGR in Japan. Major features of the newly proposed safety philosophy for the GTHTR300 are described in this article. (authors)

  1. Hydrogen and water reactor safety: proceedings

    SciTech Connect

    Not Available

    1982-01-01

    Separate abstracts were prepared for papers presented in the following areas of interest: 1) hydrogen research programs; 2) hydrogen behavior during light water reactor accidents; 3) combustible gas generation; 4) hydrogen transport and mixing; 5) combustion modeling and experiments; 6) accelerated flames and detonations; 7) combustion mitigation and control; and 8) equipment survivability.

  2. METHOD AND APPARATUS FOR REACTOR SAFETY CONTROL

    DOEpatents

    Huston, N.E.

    1961-06-01

    A self-contained nuclear reactor fuse controlled device tron absorbing material, normally in a compact form but which can be expanded into an extended form presenting a large surface for neutron absorption when triggered by an increase in neutron flux, is described.

  3. New reactor technology: safety improvements in nuclear power systems.

    PubMed

    Corradini, M L

    2007-11-01

    Almost 450 nuclear power plants are currently operating throughout the world and supplying about 17% of the world's electricity. These plants perform safely, reliably, and have no free-release of byproducts to the environment. Given the current rate of growth in electricity demand and the ever growing concerns for the environment, nuclear power can only satisfy the need for electricity and other energy-intensive products if it can demonstrate (1) enhanced safety and system reliability, (2) minimal environmental impact via sustainable system designs, and (3) competitive economics. The U.S. Department of Energy with the international community has begun research on the next generation of nuclear energy systems that can be made available to the market by 2030 or earlier, and that can offer significant advances toward these challenging goals; in particular, six candidate reactor system designs have been identified. These future nuclear power systems will require advances in materials, reactor physics, as well as thermal-hydraulics to realize their full potential. However, all of these designs must demonstrate enhanced safety above and beyond current light water reactor systems if the next generation of nuclear power plants is to grow in number far beyond the current population. This paper reviews the advanced Generation-IV reactor systems and the key safety phenomena that must be considered to guarantee that enhanced safety can be assured in future nuclear reactor systems.

  4. New reactor technology: safety improvements in nuclear power systems.

    PubMed

    Corradini, M L

    2007-11-01

    Almost 450 nuclear power plants are currently operating throughout the world and supplying about 17% of the world's electricity. These plants perform safely, reliably, and have no free-release of byproducts to the environment. Given the current rate of growth in electricity demand and the ever growing concerns for the environment, nuclear power can only satisfy the need for electricity and other energy-intensive products if it can demonstrate (1) enhanced safety and system reliability, (2) minimal environmental impact via sustainable system designs, and (3) competitive economics. The U.S. Department of Energy with the international community has begun research on the next generation of nuclear energy systems that can be made available to the market by 2030 or earlier, and that can offer significant advances toward these challenging goals; in particular, six candidate reactor system designs have been identified. These future nuclear power systems will require advances in materials, reactor physics, as well as thermal-hydraulics to realize their full potential. However, all of these designs must demonstrate enhanced safety above and beyond current light water reactor systems if the next generation of nuclear power plants is to grow in number far beyond the current population. This paper reviews the advanced Generation-IV reactor systems and the key safety phenomena that must be considered to guarantee that enhanced safety can be assured in future nuclear reactor systems. PMID:18049233

  5. Secondary Ionization Mass Spectrometric Analysis of Impurity Element Isotope Ratios in Nuclear Reactor Materials

    SciTech Connect

    Gerlach, David C.; Cliff, John B.; Hurley, David E.; Reid, Bruce D.; Little, Winston W.; Meriwether, George H.; Wickham, Anthony J.; Simmons, Tere A.

    2006-07-30

    Secondary ion mass spectrometry (SIMS) analysis has been used to measure isotope ratios of selected impurity elements in irradiated reactor materials. Samples of reactor materials such as graphite or aluminum alloys are obtained from fuel channels or supporting materials. During reactor operations and fuel burn up, some isotopic abundances change due to nuclear reactions and provide sensitive indicators of neutron fluence. The rate of change is related to cross section for a particular isotope. Different isotopes can be used as indicators of burn up during different stages in the reactor operating history. Isotope ratios of B are useful indicators for low burnup stages early in reactor operations, Ti isotope ratios are useful at later burn up stages, and Cl isotope ratios are useful in both early and later stages. Knowledge of the sample position within the reactor also yields information on the fluence shape or profile. In a sequence of samples from one reactor, 10B/11B ratios decreased from near natural values of 0.25 to < 0.03. Direct SIMS measurements of isotope ratios have been possible in materials, following shaping and surface cleaning trials which have included dry ice micropellet blasting, plasma etching, and vacuum furnace treatment.

  6. NUSAR: N Reactor Updated Safety Analysis Report, Amendment 21

    SciTech Connect

    Smith, G L

    1989-12-01

    The enclosed pages are Amendment 21 of the N Reactor Updated Safety Analysis Report (NUSAR). NUSAR, formerly UNI-M-90, was revised by 18 amendments that were issued by UNC Nuclear Industries, the contractor previously responsible for N Reactor operations. As of June 1987, Westinghouse Hanford Company (WHC) acquired the operations and engineering contract for N Reactor and other facilities at Hanford. The document number for NUSAR then became WHC-SP-0297. The first revision was issued by WHC as Amendment 19, prepared originally by UNC. Summaries of each of the amendments are included in NUSAR Section 1.1.

  7. Methods and strategies for future reactor safety goals

    NASA Astrophysics Data System (ADS)

    Arndt, Steven Andrew

    There have been significant discussions over the past few years by the United States Nuclear Regulatory Commission (NRC), the Advisory Committee on Reactor Safeguards (ACRS), and others as to the adequacy of the NRC safety goals for use with the next generation of nuclear power reactors to be built in the United States. The NRC, in its safety goals policy statement, has provided general qualitative safety goals and basic quantitative health objectives (QHOs) for nuclear reactors in the United States. Risk metrics such as core damage frequency (CDF) and large early release frequency (LERF) have been used as surrogates for the QHOs. In its review of the new plant licensing policy the ACRS has looked at the safety goals, as has the NRC. A number of issues have been raised including what the Commission had in mind when it drafted the safety goals and QHOs, how risk from multiple reactors at a site should be combined for evaluation, how the combination of a new and old reactor at the same site should be evaluated, what the criteria for evaluating new reactors should be, and whether new reactors should be required to be safer than current generation reactors. As part of the development and application of the NRC safety goal policy statement the Commissioners laid out the expectations for the safety of a nuclear power plant but did not address the risk associated with current multi-unit sites, potential modular reactor sites, and hybrid sites that could contain current generation reactors, new passive reactors, and/or modular reactors. The NRC safety goals and the QHOs refer to a "nuclear power plant," but do not discuss whether a "plant" refers to only a single unit or all of the units on a site. There has been much discussion on this issue recently due to the development of modular reactors. Additionally, the risk of multiple reactor accidents on the same site has been largely ignored in the probabilistic risk assessments (PRAs) done to date, and in most risk

  8. Transactions of the nineteenth water reactor safety information meeting

    SciTech Connect

    Weiss, A.J.

    1991-10-01

    This report contains summaries of papers on reactor safety research to be presented at the 19th Water Reactor Safety Information Meeting at the Bethesda Marriott Hotel in Bethesda, Maryland, October 28--30, 1991. The summaries briefly describe the programs and results of nuclear safety research sponsored by the Office of Nuclear Regulatory Research, USNRC. Summaries of invited papers concerning nuclear safety issues from US government laboratories, the electric utilities, the Electric Power Research Institute (EPRI), the nuclear industry, and from the governments and industry in Europe and Japan are also included. The summaries have been compiled in one report to provide a basis for meaningful discussion and information exchange during the course of the meeting, and are given in the order of their presentation in each session. The individual summaries have been cataloged separately.

  9. Production of transplutonium elements in the high flux isotope reactor

    SciTech Connect

    Bigelow, J.E.; Corbett, B.L.; King, L.J.; McGuire, S.C.; Sims, T.M.

    1981-01-01

    The techniques described here have been demonstrated to predict the contents of transplutonium element production targets, at least for isotopes of mass 253 or less. The HFIR irradiation model is a workhorse for planning the TRU processing campaigns, for certifying the heat evolution rate of targets prior to insertion in the reactor, for predicting future production capabilities over a multi-year period, and for making optimization studies. Practical considerations, however, may limit the range of available options so that optimum operation is not always achievable. We do intend, however, to keep fine-tuning the constants which define the cross sections as time permits. We need to do more work on optimizing the production of /sup 250/Cm, /sup 254/Es, /sup 255/Es, and ultimately /sup 257/Fm, since researchers are interested in obtaining larger quantities of these rare and difficult-to-produce nuclides. 7 figures, 2 tables.

  10. Passive compact molten salt reactor (PCMSR), modular thermal breeder reactor with totally passive safety system

    NASA Astrophysics Data System (ADS)

    Harto, Andang Widi

    2012-06-01

    Design Study Passive Compact Molten Salt Reactor (PCMSR) with totally passive safety system has been performed. The term of Compact in the PCMSR name means that the reactor system is designed to have relatively small volume per unit power output by using modular and integral concept. In term of modular, the reactor system consists of three modules, i.e. reactor module, turbine module and fuel management module. The reactor module is an integral design that consists of reactor, primary and intermediate heat exchangers and passive post shutdown cooling system. The turbine module is an integral design of a multi heating, multi cooling, regenerative gas turbine. The fuel management module consists of all equipments related to fuel preparation, fuel reprocessing and radioactive handling. The preliminary calculations show that the PCMSR has negative temperature and void reactivity coefficient, passive shutdown characteristic related to fuel pump failure and possibility of using natural circulation for post shutdown cooling system.

  11. Passive compact molten salt reactor (PCMSR), modular thermal breeder reactor with totally passive safety system

    SciTech Connect

    Harto, Andang Widi

    2012-06-06

    Design Study Passive Compact Molten Salt Reactor (PCMSR) with totally passive safety system has been performed. The term of Compact in the PCMSR name means that the reactor system is designed to have relatively small volume per unit power output by using modular and integral concept. In term of modular, the reactor system consists of three modules, i.e. reactor module, turbine module and fuel management module. The reactor module is an integral design that consists of reactor, primary and intermediate heat exchangers and passive post shutdown cooling system. The turbine module is an integral design of a multi heating, multi cooling, regenerative gas turbine. The fuel management module consists of all equipments related to fuel preparation, fuel reprocessing and radioactive handling. The preliminary calculations show that the PCMSR has negative temperature and void reactivity coefficient, passive shutdown characteristic related to fuel pump failure and possibility of using natural circulation for post shutdown cooling system.

  12. Nuclear reactor safety. Progress report, October 1-December 31, 1980

    SciTech Connect

    Stevenson, M.G.; Vigil, J.C.

    1981-09-01

    Development of the fast-running Transient Reactor Analysis Code (TRAC) version (PF1) continued during the quarter with numerical improvements and addition of a stratified-flow model. Independent assessment of the detailed version (PD2) continued with several Loss-Of-Fluid Test (LOFT) small-break tests, a PKL reflood test, and five Marviken critical-flow tests. Analysis efforts in the 2D/3D project concentrated on detailed investigations of Cylindrical-Core Test Facility (CCTF) Core I tests and calculated flow oscillations in the primary loops of the German pressurized water reactor (PWR). Investigations were completed of PWR transients involving emergency feed-water unavailability. Other Light-Water Reactor (LWR) safety progress included the use of the three-dimensional version of the SALE code to study hot-leg injection into the upper plenum and the effect of guide tube cross section on momentum flux. Efforts in Liquid-Metal-Cooled Fast-Breeder Reactor safety included studying transition-phase phenomena in an SNR-300-type reactor geometry using SIMMER and performing Upper Structure Dynamics experiments to examine rupture disk performance. In High-Temperature Gas-Cooled Reactor (HTGR safety, improvements were made to the Composite High-Temperature Gas-Cooled reactor Analysis Program (CHAP) code, and system transients in the Fort St. Vrain reactor were calculated. Other work in this area included thermal stress analyses of core support block response during fire-water cooldown following a loss-of-forced-circulation accident. Tests were run on steel cylinders to determine the effects of the Area Replacement Method on buckling strength as part of the Structural Margins-to-Failure program. In addition, a literature review was completed of models and experiments to determine damping and stiffness of reinforced concrete structures.

  13. An Overview of the Safety Case for Small Modular Reactors

    SciTech Connect

    Ingersoll, Daniel T

    2011-01-01

    Several small modular reactor (SMR) designs emerged in the late 1970s and early 1980s in response to lessons learned from the many technical and operational challenges of the large Generation II light-water reactors. After the accident at the Three Mile Island plant in 1979, an ensuing reactor redesign effort spawned the term inherently safe designs, which later evolved into passively safe terminology. Several new designs were engineered to be deliberately small in order to fully exploit the benefits of passive safety. Today, new SMR designs are emerging with a similar philosophy of offering highly robust and resilient designs with increased safety margins. Additionally, because these contemporary designs are being developed subsequent to the September 11, 2001, terrorist attack, they incorporate a number of intrinsic design features to further strengthen their safety and security. Several SMR designs are being developed in the United States spanning the full spectrum of reactor technologies, including water-, gas-, and liquid-metal-cooled ones. Despite a number of design differences, most of these designs share a common set of design principles to enhance plant safety and robustness, such as eliminating plant design vulnerabilities where possible, reducing accident probabilities, and mitigating accident consequences. An important consequence of the added resilience provided by these design approaches is that the individual reactor units and the entire plant should be able to survive a broader range of extreme conditions. This will enable them to not only ensure the safety of the general public but also help protect the investment of the owner and continued availability of the power-generating asset. Examples of typical SMR design features and their implications for improved plant safety are given for specific SMR designs being developed in the United States.

  14. Sodium fast reactor safety and licensing research plan. Volume II.

    SciTech Connect

    Ludewig, H.; Powers, D. A.; Hewson, John C.; LaChance, Jeffrey L.; Wright, A.; Phillips, J.; Zeyen, R.; Clement, B.; Garner, Frank; Walters, Leon; Wright, Steve; Ott, Larry J.; Suo-Anttila, Ahti Jorma; Denning, Richard; Ohshima, Hiroyuki; Ohno, S.; Miyhara, S.; Yacout, Abdellatif; Farmer, M.; Wade, D.; Grandy, C.; Schmidt, R.; Cahalen, J.; Olivier, Tara Jean; Budnitz, R.; Tobita, Yoshiharu; Serre, Frederic; Natesan, Ken; Carbajo, Juan J.; Jeong, Hae-Yong; Wigeland, Roald; Corradini, Michael; Thomas, Justin; Wei, Tom; Sofu, Tanju; Flanagan, George F.; Bari, R.; Porter D.; Lambert, J.; Hayes, S.; Sackett, J.; Denman, Matthew R.

    2012-05-01

    Expert panels comprised of subject matter experts identified at the U.S. National Laboratories (SNL, ANL, INL, ORNL, LBL, and BNL), universities (University of Wisconsin and Ohio State University), international agencies (IRSN, CEA, JAEA, KAERI, and JRC-IE) and private consultation companies (Radiation Effects Consulting) were assembled to perform a gap analysis for sodium fast reactor licensing. Expert-opinion elicitation was performed to qualitatively assess the current state of sodium fast reactor technologies. Five independent gap analyses were performed resulting in the following topical reports: (1) Accident Initiators and Sequences (i.e., Initiators/Sequences Technology Gap Analysis), (2) Sodium Technology Phenomena (i.e., Advanced Burner Reactor Sodium Technology Gap Analysis), (3) Fuels and Materials (i.e., Sodium Fast Reactor Fuels and Materials: Research Needs), (4) Source Term Characterization (i.e., Advanced Sodium Fast Reactor Accident Source Terms: Research Needs), and (5) Computer Codes and Models (i.e., Sodium Fast Reactor Gaps Analysis of Computer Codes and Models for Accident Analysis and Reactor Safety). Volume II of the Sodium Research Plan consolidates the five gap analysis reports produced by each expert panel, wherein the importance of the identified phenomena and necessities of further experimental research and code development were addressed. The findings from these five reports comprised the basis for the analysis in Sodium Fast Reactor Research Plan Volume I.

  15. The temperature effect and safety of the Topaz reactor

    SciTech Connect

    Artyukhov, G.Y.; Zelentsov, S.N.; Ionkin, V.I.; Kudryavtsev, V.P.; Makarenkov, Y.D.; Marin, S.N.; Pupko, V.Y.; Raskach, F.P. )

    1991-01-01

    This paper presents the results of a design calculation to compute the 3-dimensional geometry of the TOPAZ reactor. Emphasis was given to the calculation of the temperature effects and temperature reactivity coefficients. Performance of the control and safety systems, spectral and dynamic characteristics were also evaluated.(AIP)

  16. Documented Safety Analysis Addendum for the Neutron Radiography Reactor Facility Core Conversion

    SciTech Connect

    Boyd D. Christensen

    2009-05-01

    The Neutron Radiography Reactor Facility (NRAD) is a Training, Research, Isotope Production, General Atomics (TRIGA) reactor which was installed in the Idaho National Laboratory (INL) Hot Fuels Examination Facility (HFEF) at the Materials and Fuels Complex (MFC) in the mid 1970s. The facility provides researchers the capability to examine both irradiated and non-irradiated materials in support of reactor fuel and components programs through non-destructive neutron radiography examination. The facility has been used in the past as one facet of a suite of reactor fuels and component examination facilities available to researchers at the INL and throughout the DOE complex. The facility has also served various commercial research activities in addition to the DOE research and development support. The reactor was initially constructed using Fuel Lifetime Improvement Program (FLIP)- type highly enriched uranium (HEU) fuel obtained from the dismantled Puerto Rico Nuclear Center (PRNC) reactor. In accordance with international non-proliferation agreements, the NRAD core will be converted to a low enriched uranium (LEU) fuel and will continue to utilize the PRNC control rods, control rod drives, startup source, and instrument console as was previously used with the HEU core. The existing NRAD Safety Analysis Report (SAR) was created and maintained in the preferred format of the day, combining sections of both DOE-STD-3009 and Nuclear Regulatory Commission Regulatory Guide 1.70. An addendum was developed to cover the refueling and reactor operation with the LEU core. This addendum follows the existing SAR format combining required formats from both the DOE and NRC. This paper discusses the project to successfully write a compliant and approved addendum to the existing safety basis documents.

  17. Comparison of eigenvalue computations for the Savannah River K Reactor using 5 and 7 digit dimensional and isotopic quantities

    SciTech Connect

    Durkee, J.W. Jr.; Mosteller, R.D.; Perry, R.T.; Sapir, J.

    1991-01-01

    A study was undertaken to characterize the reactivity temperature coefficient (RTC) behavior for the Savannah River K-Reactor pursuant to the safety review mandated by the Department of Energy (DOE) in August 1988. During the course of the investigation, it was found that the accuracy levels required in dimensional and isotopic quantities at elevated temperatures were much greater than was initially supposed and are typically used in reactor neutronics calculations. The codes involved do not automatically calculate dimensional and density changes due to temperature. This paper discusses and compares calculated eigenvalues obtained from using 5, 6, and 7 digit dimensional and isotopic densities used in the Mark 22 fuel assembly cell models. 5 refs., 1 fig., 1 tab.

  18. Hydrogen Explosion Analysis for Cold Source Installation at the High Flux Isotope Reactor

    SciTech Connect

    Cook, David Howard

    2008-01-01

    Installation of a cold neutron source in the High Flux Isotope Reactor (HFIR) involved introduction of pressurized, cryogenic hydrogen into the facility and created explosion hazards to reactor safety-related equipment and personnel. Evaluation of potential hydrogen releases and facility/personnel consequences as a result of explosions was a key part of the safety analyses submitted to the DOE to obtain approval for testing and operation with hydrogen. This paper involves a description of the various hydrogen release and explosion consequence analyses that were performed. The range of explosion calculations involved (1) a detonation analysis using a 2D-transient CTH code model, (2) various BLAST/FX code models to estimate structural damage from equivalent point TNT sources, (3) a BLASTX code model to propagate shock and gas flow overpressures from a point TNT source, (4) a spreadsheet that combined a TNT-quivalence model and strong deflagration methods, and (5) a hydrogen jet model to evaluate potential high pressure jet releases.

  19. Reactor Safety Research Programs Quarterly Report April- June 1981

    SciTech Connect

    Edler, S. K.

    1981-09-01

    This document summarizes the work performed by Pacific Northwest laboratory (PNL} from April1 through June 30, 1981, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, lspra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory {INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  20. Reactor Accident Analysis Methodology for the Advanced Test Reactor Critical Facility Documented Safety Analysis Upgrade

    SciTech Connect

    Gregg L. Sharp; R. T. McCracken

    2003-06-01

    The regulatory requirement to develop an upgraded safety basis for a DOE nuclear facility was realized in January 2001 by issuance of a revision to Title 10 of the Code of Federal Regulations Section 830 (10 CFR 830).1 Subpart B of 10 CFR 830, “Safety Basis Requirements,” requires a contractor responsible for a DOE Hazard Category 1, 2, or 3 nuclear facility to either submit by April 9, 2001 the existing safety basis which already meets the requirements of Subpart B, or to submit by April 10, 2003 an upgraded facility safety basis that meets the revised requirements.1 10 CFR 830 identifies Nuclear Regulatory Commission (NRC) Regulatory Guide 1.70, “Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants”2 as a safe harbor methodology for preparation of a DOE reactor documented safety analysis (DSA). The regulation also allows for use of a graded approach. This report presents the methodology that was developed for preparing the reactor accident analysis portion of the Advanced Test Reactor Critical Facility (ATRC) upgraded DSA. The methodology was approved by DOE for developing the ATRC safety basis as an appropriate application of a graded approach to the requirements of 10 CFR 830.

  1. Reactor Accident Analysis Methodology for the Advanced Test Reactor Critical Facility Documented Safety Analysis Upgrade

    SciTech Connect

    Sharp, G.L.; McCracken, R.T.

    2003-05-13

    The regulatory requirement to develop an upgraded safety basis for a DOE Nuclear Facility was realized in January 2001 by issuance of a revision to Title 10 of the Code of Federal Regulations Section 830 (10 CFR 830). Subpart B of 10 CFR 830, ''Safety Basis Requirements,'' requires a contractor responsible for a DOE Hazard Category 1, 2, or 3 nuclear facility to either submit by April 9, 2001 the existing safety basis which already meets the requirements of Subpart B, or to submit by April 10, 2003 an upgraded facility safety basis that meets the revised requirements. 10 CFR 830 identifies Nuclear Regulatory Commission (NRC) Regulatory Guide 1.70, ''Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants'' as a safe harbor methodology for preparation of a DOE reactor documented safety analysis (DSA). The regulation also allows for use of a graded approach. This report presents the methodology that was developed for preparing the reactor accident analysis portion of the Advanced Test Reactor Critical Facility (ATRC) upgraded DSA. The methodology was approved by DOE for developing the ATRC safety basis as an appropriate application of a graded approach to the requirements of 10 CFR 830.

  2. Lessons learned from commercial reactor safety analysis

    NASA Astrophysics Data System (ADS)

    Fragola, J. R.

    1992-07-01

    As design concepts involving nuclear power are developed for space missions, prudence requires a consideration of the historical perspective provided by the commerical nuclear power generating station industry. This would allow the aerospace industry to take advantage of relevant historical experience, drawing from the best features and avoiding the pitfalls which appear to have stifled the growth of the commercial nuclear industry as a whole despite its comparatively admirable safety performance record. This paper provides some history of the development of commercial nuclear plant designs, and discusses the lessons which have been learned and how they apply to the space nuclear propulsion situation.

  3. Technology, Safety and Costs of Decommissioning Nuclear Reactors At Multiple-Reactor Stations

    SciTech Connect

    Wittenbrock, N. G.

    1982-01-01

    Safety and cost information is developed for the conceptual decommissioning of large (1175-MWe) pressurized water reactors (PWRs) and large (1155-MWe) boiling water reactors {BWRs) at multiple-reactor stations. Three decommissioning alternatives are studied: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). Safety and costs of decommissioning are estimated by determining the impact of probable features of multiple-reactor-station operation that are considered to be unavailable at a single-reactor station, and applying these estimated impacts to the decommissioning costs and radiation doses estimated in previous PWR and BWR decommissioning studies. The multiple-reactor-station features analyzed are: the use of interim onsite nuclear waste storage with later removal to an offsite nuclear waste disposal facility, the use of permanent onsite nuclear waste disposal, the dedication of the site to nuclear power generation, and the provision of centralized services. Five scenarios for decommissioning reactors at a multiple-reactor station are investigated. The number of reactors on a site is assumed to be either four or ten; nuclear waste disposal is varied between immediate offsite disposal, interim onsite storage, and immediate onsite disposal. It is assumed that the decommissioned reactors are not replaced in one scenario but are replaced in the other scenarios. Centralized service facilities are provided in two scenarios but are not provided in the other three. Decommissioning of a PWR or a BWR at a multiple-reactor station probably will be less costly and result in lower radiation doses than decommissioning an identical reactor at a single-reactor station. Regardless of whether the light water reactor being decommissioned is at a single- or multiple-reactor station: • the estimated occupational radiation dose for decommissioning an LWR is lowest for SAFSTOR and highest for DECON • the estimated

  4. Foundational development of an advanced nuclear reactor integrated safety code.

    SciTech Connect

    Clarno, Kevin; Lorber, Alfred Abraham; Pryor, Richard J.; Spotz, William F.; Schmidt, Rodney Cannon; Belcourt, Kenneth; Hooper, Russell Warren; Humphries, Larry LaRon

    2010-02-01

    This report describes the activities and results of a Sandia LDRD project whose objective was to develop and demonstrate foundational aspects of a next-generation nuclear reactor safety code that leverages advanced computational technology. The project scope was directed towards the systems-level modeling and simulation of an advanced, sodium cooled fast reactor, but the approach developed has a more general applicability. The major accomplishments of the LDRD are centered around the following two activities. (1) The development and testing of LIME, a Lightweight Integrating Multi-physics Environment for coupling codes that is designed to enable both 'legacy' and 'new' physics codes to be combined and strongly coupled using advanced nonlinear solution methods. (2) The development and initial demonstration of BRISC, a prototype next-generation nuclear reactor integrated safety code. BRISC leverages LIME to tightly couple the physics models in several different codes (written in a variety of languages) into one integrated package for simulating accident scenarios in a liquid sodium cooled 'burner' nuclear reactor. Other activities and accomplishments of the LDRD include (a) further development, application and demonstration of the 'non-linear elimination' strategy to enable physics codes that do not provide residuals to be incorporated into LIME, (b) significant extensions of the RIO CFD code capabilities, (c) complex 3D solid modeling and meshing of major fast reactor components and regions, and (d) an approach for multi-physics coupling across non-conformal mesh interfaces.

  5. Space Reactor Launch Safety--An Acceptably Low Risk

    SciTech Connect

    Weitzberg, Abraham; Wright, Steven

    2008-01-21

    Results from previous space reactor and radioisotope power source risk assessments were combined to provide a scoping assessment of the possible risks from the launch of a reactor power system for use on the surface of the moon or Mars. It is assumed that future reactor power system launches would be subject to the same rigorous safety analysis and launch approval process as past nuclear payload launches. Using the same methodology that has gained approval of past launches, it was determined that the mission risk would be 0.029 person-rem worldwide which translates to 1.5*10{sup -5} latent health effects. It is seen that the only significant sources of radiological risks from a non-operating reactor are possible inadvertent criticality accidents and the consequences of such events have been shown to be extremely low. Passive means such as spectral shift poisons or high reactor core length/diameter ratios have been shown to be able to reduce or eliminate the possibility of the more credible criticality accidents, such as flooding or sand burial. This paper advances the premise that, for design purposes, future space reactor surface-power designs should primarily address the credible accidents and not the hypothetical accidents. For launch accidents and other safety assessments, a probabilistic risk assessment approach will have to be used to assess the safety impact of all types of accidents, including the hypothetical accidents. With this approach, the design of the system will not be burdened with design features that are based on hypothetical criticality accidents having negligible risk. Moreover, there is little chance of convincingly demonstrating that these design features can substantially reduce or eliminated the risk associated with hypothetical criticality accidents.

  6. Conversion Preliminary Safety Analysis Report for the NIST Research Reactor

    SciTech Connect

    Diamond, D. J.; Baek, J. S.; Hanson, A. L.; Cheng, L-Y; Brown, N.; Cuadra, A.

    2015-01-30

    The NIST Center for Neutron Research (NCNR) is a reactor-laboratory complex providing the National Institute of Standards and Technology (NIST) and the nation with a world-class facility for the performance of neutron-based research. The heart of this facility is the NIST research reactor (aka NBSR); a heavy water moderated and cooled reactor operating at 20 MW. It is fueled with high-enriched uranium (HEU) fuel elements. A Global Threat Reduction Initiative (GTRI) program is underway to convert the reactor to low-enriched uranium (LEU) fuel. This program includes the qualification of the proposed fuel, uranium and molybdenum alloy foil clad in an aluminum alloy, and the development of the fabrication techniques. This report is a preliminary version of the Safety Analysis Report (SAR) that would be submitted to the U.S. Nuclear Regulatory Commission (NRC) for approval prior to conversion. The report follows the recommended format and content from the NRC codified in NUREG-1537, “Guidelines for Preparing and Reviewing Applications for the Licensing of Non-power Reactors,” Chapter 18, “Highly Enriched to Low-Enriched Uranium Conversions.” The emphasis in any conversion SAR is to explain the differences between the LEU and HEU cores and to show the acceptability of the new design; there is no need to repeat information regarding the current reactor that will not change upon conversion. Hence, as seen in the report, the bulk of the SAR is devoted to Chapter 4, Reactor Description, and Chapter 13, Safety Analysis.

  7. High Flux Isotopes Reactor (HFIR) Cooling Towers Demolition Waste Management

    SciTech Connect

    Pudelek, R. E.; Gilbert, W. C.

    2002-02-26

    This paper describes the results of a joint initiative between Oak Ridge National Laboratory, operated by UT-Battelle, and Bechtel Jacobs Company, LLC (BJC) to characterize, package, transport, treat, and dispose of demolition waste from the High Flux Isotope Reactor (HFIR), Cooling Tower. The demolition and removal of waste from the site was the first critical step in the planned HFIR beryllium reflector replacement outage scheduled. The outage was scheduled to last a maximum of six months. Demolition and removal of the waste was critical because a new tower was to be constructed over the old concrete water basin. A detailed sampling and analysis plan was developed to characterize the hazardous and radiological constituents of the components of the Cooling Tower. Analyses were performed for Resource Conservation and Recovery Act (RCRA) heavy metals and semi-volatile constituents as defined by 40 CFR 261 and radiological parameters including gross alpha, gross beta, gross gamma, alpha-emitting isotopes and beta-emitting isotopes. Analysis of metals and semi-volatile constituents indicated no exceedances of regulatory limits. Analysis of radionuclides identified uranium and thorium and associated daughters. In addition 60Co, 99Tc, 226Rm, and 228Rm were identified. Most of the tower materials were determined to be low level radioactive waste. A small quantity was determined not to be radioactive, or could be decontaminated. The tower was dismantled October 2000 to January 2001 using a detailed step-by-step process to aid waste segregation and container loading. The volume of waste as packaged for treatment was approximately 1982 cubic meters (70,000 cubic feet). This volume was comprised of plastic ({approx}47%), wood ({approx}38%) and asbestos transite ({approx}14%). The remaining {approx}1% consisted of the fire protection piping (contaminated with lead-based paint) and incidental metal from conduit, nails and braces/supports, and sludge from the basin. The waste

  8. Reactor Safety Research Programs Quarterly Report January - March 1980

    SciTech Connect

    Hagen, C. M

    1980-10-01

    This document summarizes the work performed by Pacific Northwest Laboratory from January 1 through March 31, 1980, for the Division of Reactor Safety Research within the Nuclear Regulatory Commission. Evaluation of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibilty of determining structural graphite strength, evaluating the feasibilty of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the remaining integrity of pressurized water reactor steam generator tubes where serviceinduced degradation has been indicated. Test assemblies and analytical support are being provided for experimental programs at other facilities. These programs include the loss-of-coolant accident simulation tests at the NRU reactor, Chalk River, Canada; the fuel rod deformation and post-accident coolability tests for the ESSOR Test Reactor Program, Ispra, Italy; the blowdown and reflood tests in the test facility at Cadarache, France; the instrumented fuel assembly irradiation program at Halden, Norway; and the experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory. These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  9. Reactor Safety Research Programs Quarterly Report April -June 1980

    SciTech Connect

    Edler, S. K.

    1980-11-01

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from April 1 through June 30, 1980, for the Division of Reactor Safety Research within the Nuclear Regulatory Commission {NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining structural graphite strength, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the remaining integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Test assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation and postaccident coolability tests for the ESSOR Test Reactor Program, Ispra, Italy; blowdown and reflood tests in the test facility at Cadarache, France; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  10. Reactor Safety Research Programs Quarterly Report July- September 1980

    SciTech Connect

    Edler, S. K.

    1980-12-01

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from April 1 through June 30, 1980, for the Division of Reactor Safety Research within the Nuclear Regulatory Commission {NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining structural graphite strength, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the remaining integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Test assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation and postaccident coolability tests for the ESSOR Test Reactor Program, Ispra, Italy; blowdown and reflood tests in the test facility at Cadarache, France; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  11. Reactor Safety Research Programs Quarterly Report October - December 1980

    SciTech Connect

    Edler, S K

    1981-04-01

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from October 1 through December 31, 1980, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining structural graphite strength, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NOE reliability and probabilistic fracture mechanics, and assessing the remaining integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Test assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation and postaccident coolability tests for the ESSOR Test Reactor Program, Ispra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  12. Dynamic safety systems in U.S. light water reactors

    SciTech Connect

    Miller, D.W.; Adams, G.; Hajek, B.K.

    1995-12-31

    The use of dynamic rather than static logic in reactor safety function systems provides significant benefits in achieving a fail-safe design. Dynamic safety system (DSS) are based on such an approach that can be realized in hardware- and/or software-based products. AEA Technology has implemented a dynamic architecture in a number of systems licensed and used on commercial gas-cooled reactors, including those in Refs. 1, 2, and 3, where software elements are operationally verified by hardwired components. The principal software-based components in DSS are the trip algorithm computers (TACs) and vote algorithm computers (VACs). The TACs provide trip thresholds or trip requirements for individual plant variables or channels, The VACs provide voter requirements for groups of channels or plant variables as specified to initiate a trip condition. Continuous dynamic testing of instrument loops occurs by a programmed pattern of simulated trip/nontrip conditions, which exercise both software and hardware in the safety channel. The pattern recognition logic (PRL) is a hardware wired component programmed to maintain nontrip output only when this excepted time-dependent pattern is not changed. If a change occurs, as will happen if there is a plant trip condition or safety system failure - either hardware or software - then the PRL will initiate a trip condition. In summary, DSS provides for continuous dynamic testing of safety-related components and fail-safe operation. Through scenario testing of a DSS emulator on a boiling water reactor (BWR) plant training simulator it has been shown that DSS can provide a cost- effective safety system in BWR power plants. Experimental research has been completed that indicates the feasibility of extending DSS to include the plant nuclear instrumentation in the DSS test domain. This extension has the potential to decrease operating and maintenance (O&M) costs and improve fault diagnosis.

  13. Safety significance of ATR (Advanced Test Reactor) passive safety response attributes

    SciTech Connect

    Atkinson, S.A.

    1989-01-01

    The Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory was designed with some passive safety response attributes which contribute to the safety posture of the facility. The three passive safety attributes being evaluated in the paper are: (1) In-core and in-vessel natural convection cooling, (2) a passive heat sink capability of the ATR primary coolant system (PCS) for the transfer of decay power from the uninsulated piping to the confinement, and (3) gravity feed of emergency coolant makeup. The safety significance of the ATR passive safety response attributes is that the reactor can passively respond for most transients, given a reactor scram, to provide adequate decay power removal and a significant time for operator action should the normal active heat removal systems and their backup systems both fail. The ATR Interim Level 1 Probabilistic Risk Assessment (PRA) model ands results were used to evaluate the significance to ATR fuel damage frequency (or probability) of the above three passive response attributes. The results of the evaluation indicate that the first attribute is a major safety characteristic of the ATR. The second attribute has a noticeable but only minor safety significance. The third attribute has no significant influence on the ATR Level 1 PRA because of the diversity and redundancy of the ATR firewater injection system (emergency coolant system). 8 refs., 4 figs., 1 tab.

  14. A probabilistic safety analysis of incidents in nuclear research reactors.

    PubMed

    Lopes, Valdir Maciel; Agostinho Angelo Sordi, Gian Maria; Moralles, Mauricio; Filho, Tufic Madi

    2012-06-01

    This work aims to evaluate the potential risks of incidents in nuclear research reactors. For its development, two databases of the International Atomic Energy Agency (IAEA) were used: the Research Reactor Data Base (RRDB) and the Incident Report System for Research Reactor (IRSRR). For this study, the probabilistic safety analysis (PSA) was used. To obtain the result of the probability calculations for PSA, the theory and equations in the paper IAEA TECDOC-636 were used. A specific program to analyse the probabilities was developed within the main program, Scilab 5.1.1. for two distributions, Fischer and chi-square, both with the confidence level of 90 %. Using Sordi equations, the maximum admissible doses to compare with the risk limits established by the International Commission on Radiological Protection (ICRP) were obtained. All results achieved with this probability analysis led to the conclusion that the incidents which occurred had radiation doses within the stochastic effects reference interval established by the ICRP-64.

  15. Safety requirements, facility user needs, and reactor concepts for a new Broad Application Test Reactor

    SciTech Connect

    Ryskamp, J.M.; Liebenthal, J.L.; Denison, A.B.; Fletcher, C.D.

    1992-07-01

    This report describes the EG G Laboratory Directed Research and Development Program (LDRD) Broad Application Test Reactor (BATR) Project that was conducted in fiscal year 1991. The scope of this project was divided into three phases: a project process definition phase, a requirements development phase, and a preconceptual reactor design and evaluation phase. Multidisciplinary teams of experts conducted each phase. This report presents the need for a new test reactor, the project process definition, a set of current and projected regulatory compliance and safety requirements, a set of facility user needs for a broad range of projected testing missions, and descriptions of reactor concepts capable of meeting these requirements. This information can be applied to strategic planning to provide the Department of Energy with management options.

  16. Safety requirements, facility user needs, and reactor concepts for a new Broad Application Test Reactor

    SciTech Connect

    Ryskamp, J.M.; Liebenthal, J.L.; Denison, A.B.; Fletcher, C.D.

    1992-07-01

    This report describes the EG&G Laboratory Directed Research and Development Program (LDRD) Broad Application Test Reactor (BATR) Project that was conducted in fiscal year 1991. The scope of this project was divided into three phases: a project process definition phase, a requirements development phase, and a preconceptual reactor design and evaluation phase. Multidisciplinary teams of experts conducted each phase. This report presents the need for a new test reactor, the project process definition, a set of current and projected regulatory compliance and safety requirements, a set of facility user needs for a broad range of projected testing missions, and descriptions of reactor concepts capable of meeting these requirements. This information can be applied to strategic planning to provide the Department of Energy with management options.

  17. Proceedings of the 1984 DOE nuclear reactor and facility safety conference. Volume II

    SciTech Connect

    Not Available

    1984-01-01

    This report is a collection of papers on reactor safety. The report takes the form of proceedings from the 1984 DOE Nuclear Reactor and Facility Safety Conference, Volume II of two. These proceedings cover Safety, Accidents, Training, Task/Job Analysis, Robotics and the Engineering Aspects of Man/Safety interfaces.

  18. Safety of New Generation Concepts in Reference to Present Reactors

    SciTech Connect

    Rouyer, Jean-Loup; Vitton, Francis

    2004-07-01

    Present operational nuclear reactors have reached a high level of safety and reliability. Main safety principles which have allowed to obtain excellent present performances must remain the cornerstone for future projects, with adaptations on points where operating feedback shows needs for reinforcement or simplification. These basic principles are defense in depth concept and probabilistic quantification. Criteria for which specific emphasis should be put for the future are: Inertia of processes, important parameter contributing to stability, applying to neutronics as well as coolant fluids. Barriers, whose number must not be rigidly fixed, but determined by independence and margins considerations. Hazards, risk induced by external and internal hazards which should be at least, comparable to the one induced by internal accidents. On the basis of these safety criteria, the paper analyses the potentials of several reactor concepts for the future, as compared with advanced existing reactors. The six concepts selected by the Generation IV Forum (VHTR, GFR, SFR, LFR, SCWR, MSR) are appreciated. The MHTGR project which has been evaluated by the US-NRC is also considered as a reference for gas-cooled advanced concepts. (authors)

  19. Nested reactor chamber and operation for Hg-196 isotope separation process

    DOEpatents

    Grossman, Mark W.

    1991-01-01

    The present invention is directed to an apparatus for use in .sup.196 Hg separation and its method of operation. Specifically, the present invention is directed to a nested reactor chamber useful for .sup.196 Hg isotope separation reactions avoiding the photon starved condition commonly encountered in coaxial reactor systems.

  20. Nested reactor chamber and operation for Hg-196 isotope separation process

    DOEpatents

    Grossman, M.W.

    1991-10-08

    The present invention is directed to an apparatus for use in [sup 196]Hg separation and its method of operation. Specifically, the present invention is directed to a nested reactor chamber useful for [sup 196]Hg isotope separation reactions avoiding the photon starved condition commonly encountered in coaxial reactor systems. 6 figures.

  1. Measuring of fissile isotope partial antineutrino spectra in direct experiment at nuclear reactor

    SciTech Connect

    Sinev, V. V.

    2009-11-15

    The direct measuring method is considered to get nuclear reactor antineutrino spectrum. We suppose to isolate partial spectra of the fissile isotopes by using the method of antineutrino spectrum extraction from the inverse beta-decay reaction positron spectrum applied at Rovno experiment. This admits to increase the accuracy of partial antineutrino spectra forming the total nuclear reactor spectrum. It is important for the analysis of the reactor core fuel composition and could be applied for non-proliferation purposes.

  2. Identification and characterization of passive safety system and inherent safety feature building blocks for advanced light-water reactors

    SciTech Connect

    Forsberg, C.W.

    1989-01-01

    Oak Ridge National Laboratory (ORNL) is investigating passive and inherent safety options for Advanced Light-Water Reactors (ALWRs). A major activity in 1989 includes identification and characterization of passive safety system and inherent safety feature building blocks, both existing and proposed, for ALWRs. Preliminary results of this work are reported herein. This activity is part of a larger effort by the US Department of Energy, reactor vendors, utilities, and others in the United States to develop improved LWRs. The Advanced Boiling Water Reactor (ABWR) program and the Advanced Pressurized Water Reactor (APWR) program have as goals improved, commercially available LWRs in the early 1990s. The Advanced Simplified Boiling Water Reactor (ASBWR) program and the AP-600 program are developing more advanced reactors with increased use of passive safety systems. It is planned that these reactors will become commercially available in the mid 1990s. The ORNL program is an exploratory research program for LWRs beyond the year 2000. Desired long-term goals for such reactors include: (1) use of only passive and inherent safety, (2) foolproof against operator errors, (3) malevolence resistance against internal sabotage and external assault and (4) walkaway safety. The acronym ''PRIME'' (Passive safety, Resilient operation, Inherent safety, Malevolence resistance, and Extended (walkaway) safety) is used to summarize these desired characteristics. Existing passive and inherent safety options are discussed in this document.

  3. REACTOR

    DOEpatents

    Christy, R.F.

    1961-07-25

    A means is described for co-relating the essential physical requirements of a fission chain reaction in order that practical, compact, and easily controllable reactors can be built. These objects are obtained by employing a composition of fissionsble isotope and moderator in fluid form in which the amount of fissionsble isotcpe present governs the reaction. The size of the reactor is no longer a critical factor, the new criterion being the concentration of the fissionable isotope.

  4. Ba isotopic signature for early differentiation between Cs and Ba in natural fission reactors

    NASA Astrophysics Data System (ADS)

    Hidaka, Hiroshi; Gauthier-Lafaye, François

    2008-08-01

    Ba isotopic studies of the Oklo and Bangombé natural fission reactors in east Gabon provide information on the geochemical behavior of radioactive Cs ( 135Cs and 137Cs) in a geological medium. Large isotopic deviations derived from fissiogenic Ba were found in chemical leachates of the reactor uraninites. The fissiogenic Ba isotopic patterns calculated by subtracting the non-fissiogenic component are classified into three types that show different magnifications of chemical fractionation between Cs and Ba. In addition, the isotopic signatures of fissiogenic 135Ba, 137Ba and 138Ba suggest an early differentiation between Cs and Ba of less than 20 years after the production of fissiogenic Cs and Ba. On the other hand, only small excesses of 135Ba ( ɛ < +1.8) and/or 137Ba ( ɛ < +1.3) were identified in some clay samples, which might have resulted from selective adsorption of 135Cs and 137Cs that migrated from the reactors by differentiation.

  5. Progress toward international agreement to improve reactor safety

    SciTech Connect

    Lieberman, J.I.; Graham, B.

    1993-05-14

    Representatives of nearly one-half of the 114 member states of the International Atomic Energy Agency (IAEA), including the United States, have participated in the development of an international nuclear safety conventions proposed multilateral treaty to improve civil nuclear power reactor safety. A preliminary draft of the convention has been developed (referred to as the draft convention for this report), but discussions are continuing, and when the final convention text will be completed and presented to IAEA member states for signature is uncertain. This report responds to the former and current Chairman`s request that we provide information on the development of the nuclear safety convention, including a discussion of (1) the draft convention`s scope and objectives, (2) how the convention will be implemented and monitored, (3) the views of selected country representatives on what provisions should be included in the draft convention, and (4) the convention`s potential benefits and limitations.

  6. Flooding Experiments and Modeling for Improved Reactor Safety

    SciTech Connect

    Solmos, M., Hogan, K.J., VIerow, K.

    2008-09-14

    Countercurrent two-phase flow and “flooding” phenomena in light water reactor systems are being investigated experimentally and analytically to improve reactor safety of current and future reactors. The aspects that will be better clarified are the effects of condensation and tube inclination on flooding in large diameter tubes. The current project aims to improve the level of understanding of flooding mechanisms and to develop an analysis model for more accurate evaluations of flooding in the pressurizer surge line of a Pressurized Water Reactor (PWR). Interest in flooding has recently increased because Countercurrent Flow Limitation (CCFL) in the AP600 pressurizer surge line can affect the vessel refill rate following a small break LOCA and because analysis of hypothetical severe accidents with the current flooding models in reactor safety codes shows that these models represent the largest uncertainty in analysis of steam generator tube creep rupture. During a hypothetical station blackout without auxiliary feedwater recovery, should the hot leg become voided, the pressurizer liquid will drain to the hot leg and flooding may occur in the surge line. The flooding model heavily influences the pressurizer emptying rate and the potential for surge line structural failure due to overheating and creep rupture. The air-water test results in vertical tubes are presented in this paper along with a semi-empirical correlation for the onset of flooding. The unique aspects of the study include careful experimentation on large-diameter tubes and an integrated program in which air-water testing provides benchmark knowledge and visualization data from which to conduct steam-water testing.

  7. High Flux Isotope Reactor cold neutron source reference design concept

    SciTech Connect

    Selby, D.L.; Lucas, A.T.; Hyman, C.R.

    1998-05-01

    In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

  8. Physics of reactor safety. Quarterly report, October-December 1980. Volume IV

    SciTech Connect

    Not Available

    1981-02-01

    The work in the Applied Physics Division includes reports on reactor safety modeling and assessment by members of the Reactor Safety Appraisals Section. Work on reactor core thermal-hydraulics is performed in ANL's Components Technology Division, emphasizing 3-dimensional code development for LMFBR accidents under natural convection conditions.

  9. Westinghouse independent safety review of Savannah River production reactors

    SciTech Connect

    Leggett, W.D.; McShane, W.J. ); Liparulo, N.J.; McAdoo, J.D.; Strawbridge, L.E. . Nuclear and Advanced Technology Div.); Toto, G. . Nuclear Services Div.); Fauske, H.K. ); Call, D.W. (Westinghouse Savannah R

    1989-04-01

    Westinghouse Electric Corporation has performed a safety assessment of the Savannah River production reactors (K,L, and P) as requested by the US Department of Energy. This assessment was performed between November 1, 1988, and April 1, 1989, under the transition contract for the Westinghouse Savannah River Company's preparations to succeed E.I. du Pont de Nemours Company as the US Department of Energy contractor for the Savannah River Project. The reviewers were drawn from several Westinghouse nuclear energy organizations, embody a combination of commercial and government reactor experience, and have backgrounds covering the range of technologies relevant to assessing nuclear safety. The report presents the rationale from which the overall judgment was drawn and the basis for the committee's opinion on the phased restart strategy proposed by E.I. du Pont de Nemours Company, Westinghouse, and the US Department of Energy-Savannah River. The committee concluded that it could recommend restart of one reactor at partial power upon completion of a list of recommended upgrades both to systems and their supporting analyses and after demonstration that the organization had assimilated the massive changes it will have undergone.

  10. Hydrogen Cylinder Storage Array Explosion Evaluations at the High Flux Isotope Reactor

    SciTech Connect

    Cook, David Howard; Griffin, Frederick P; Hyman III, Clifton R

    2010-01-01

    The safety analysis for a recently-installed cold neutron source at the High Flux Isotope Reactor (HFIR) involved evaluation of potential explosion consequences from accidental hydrogen jet releases that could occur from an array of hydrogen cylinders. The scope of the safety analysis involved determination of the release rate of hydrogen, the total quantity of hydrogen assumed to be involved in the explosion, the location of an ignition point or center of the explosion from receptors of interest, and the peak overpressure at the receptors. To evaluate the total quantity of hydrogen involved in the explosion, a 2D model was constructed of the jet concentration and a radial-axial integral over the jet cloud from the centerline to the flammability limit of 4% was used to determine the hydrogen mass to be used as a source term. The location of the point source was chosen as the peak of the jet centerline concentration profile. Consequences were assessed using a combination of three methods for estimating local overpressure as a function of explosion source strength and distance: the Baker-Strehlow method, the TNT-equivalence method, and the TNO method. Results from the explosions were assessed using damage estimates in screening tables for buildings and industrial equipment.

  11. Fast reactor safety testing in Transient Reactor Test (TREAT) in the 1980s

    SciTech Connect

    Wright, A.E. ); Dutt, D.S. ); Harrison, L.J. )

    1990-01-01

    Several series of fast reactor safety tests were performed in TREAT during the 1980s. These focused on the transient behavior of full-length oxide fuels (US reference, UK reference, and US advanced design) and on modern metallic fuels. Most of the tests addressed fuel behavior under transient overpower or loss-of-flow conditions. The test series were the PFR/TREAT tests; the RFT, TS, CDT, and RX series on oxide fuels; and the M series on metallic fuels. These are described in terms of their principal results and relevance to analyses and safety evaluation. 4 refs., 3 tabs.

  12. Modeling and Simulations for the High Flux Isotope Reactor Cycle 400

    SciTech Connect

    Ilas, Germina; Chandler, David; Ade, Brian J; Sunny, Eva E; Betzler, Benjamin R; Pinkston, Daniel

    2015-03-01

    A concerted effort over the past few years has been focused on enhancing the core model for the High Flux Isotope Reactor (HFIR), as part of a comprehensive study for HFIR conversion from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel. At this time, the core model used to perform analyses in support of HFIR operation is an MCNP model for the beginning of Cycle 400, which was documented in detail in a 2005 technical report. A HFIR core depletion model that is based on current state-of-the-art methods and nuclear data was needed to serve as reference for the design of an LEU fuel for HFIR. The recent enhancements in modeling and simulations for HFIR that are discussed in the present report include: (1) revision of the 2005 MCNP model for the beginning of Cycle 400 to improve the modeling data and assumptions as necessary based on appropriate primary reference sources HFIR drawings and reports; (2) improvement of the fuel region model, including an explicit representation for the involute fuel plate geometry that is characteristic to HFIR fuel; and (3) revision of the Monte Carlo-based depletion model for HFIR in use since 2009 but never documented in detail, with the development of a new depletion model for the HFIR explicit fuel plate representation. The new HFIR models for Cycle 400 are used to determine various metrics of relevance to reactor performance and safety assessments. The calculated metrics are compared, where possible, with measurement data from preconstruction critical experiments at HFIR, data included in the current HFIR safety analysis report, and/or data from previous calculations performed with different methods or codes. The results of the analyses show that the models presented in this report provide a robust and reliable basis for HFIR analyses.

  13. Application of software to development of reactor-safety codes

    SciTech Connect

    Wilburn, N.P.; Niccoli, L.G.

    1980-09-01

    Over the past two-and-a-half decades, the application of new techniques has reduced hardware cost for digital computer systems and increased computational speed by several orders of magnitude. A corresponding cost reduction in business and scientific software development has not occurred. The same situation is seen for software developed to model the thermohydraulic behavior of nuclear systems under hypothetical accident situations. For all cases this is particularly noted when costs over the total software life cycle are considered. A solution to this dilemma for reactor safety code systems has been demonstrated by applying the software engineering techniques which have been developed over the course of the last few years in the aerospace and business communities. These techniques have been applied recently with a great deal of success in four major projects at the Hanford Engineering Development Laboratory (HEDL): 1) a rewrite of a major safety code (MELT); 2) development of a new code system (CONACS) for description of the response of LMFBR containment to hypothetical accidents, and 3) development of two new modules for reactor safety analysis.

  14. Modular High Temperature Gas-Cooled Reactor Safety Basis and Approach

    SciTech Connect

    David Petti; Jim Kinsey; Dave Alberstein

    2014-01-01

    Various international efforts are underway to assess the safety of advanced nuclear reactor designs. For example, the International Atomic Energy Agency has recently held its first Consultancy Meeting on a new cooperative research program on high temperature gas-cooled reactor (HTGR) safety. Furthermore, the Generation IV International Forum Reactor Safety Working Group has recently developed a methodology, called the Integrated Safety Assessment Methodology, for use in Generation IV advanced reactor technology development, design, and design review. A risk and safety assessment white paper is under development with respect to the Very High Temperature Reactor to pilot the Integrated Safety Assessment Methodology and to demonstrate its validity and feasibility. To support such efforts, this information paper on the modular HTGR safety basis and approach has been prepared. The paper provides a summary level introduction to HTGR history, public safety objectives, inherent and passive safety features, radionuclide release barriers, functional safety approach, and risk-informed safety approach. The information in this paper is intended to further the understanding of the modular HTGR safety approach. The paper gives those involved in the assessment of advanced reactor designs an opportunity to assess an advanced design that has already received extensive review by regulatory authorities and to judge the utility of recently proposed new methods for advanced reactor safety assessment such as the Integrated Safety Assessment Methodology.

  15. Power Distribution Analysis for the ORNL High Flux Isotope Reactor Critical Experiment 3

    SciTech Connect

    Chandler, David; Primm, Trent; Maldonado, G Ivan

    2010-01-01

    The mission of the Reduced Enrichment for Research and Test Reactors Program is to minimize and, to the extent possible, eliminate the use of highly enriched uranium (HEU) in civilian nuclear applications by working to convert research and test reactors, as well as radioisotope production processes, to low-enriched uranium (LEU) fuel and targets. Oak Ridge National Laboratory (ORNL) is currently reviewing the design bases and key operating criteria including fuel operating parameters, enrichment-related safety analyses, fuel performance, and fuel fabrication in regard to converting the fuel of the High Flux Isotope Reactor (HFIR) from HEU to LEU. The purpose of this study is to validate Monte Carlo methods currently in use for conversion analyses. The methods have been validated for the prediction offlux values in the reactor target, reflector, and beam tubes, but this study focuses on the prediction of the power density profile in the core. Power distributions were calculated in the fuel elements of the HFIR, a research reactor at ORNL, via MCNP and were compared to experimentally obtained data. This study was performed to validate Monte Carlo methods for power density calculations and to observe biases. A current three-dimensional MCNP model was modified to replicate the 1965 HFIR Critical Experiment 3 (HFIRCE-3). In this experiment, the power profile was determined by counting the gamma activity at selected locations in the core. 'Foils' (chunks of fuel meat and clad) were punched out of the fuel elements in HFIRCE-3 following irradiation, and experimental relative power densities were obtained by measuring the activity of these foils and comparing each foil's activity to the activity of a normalizing foil. This analysis consisted of calculating corresponding activities by inserting volume tallies into the modified MCNP model to represent the punchings. The average fission density was calculated for each foil location and then normalized to the reference foil

  16. Generic safety insights for inspection of boiling water reactors

    SciTech Connect

    Higgins, J.C.; Taylor, J.H.; Fresco, A.N.; Hillman, B.M.

    1987-01-01

    As the number of operating nuclear power plants (NPPs) increases, safety inspection has increased in importance. Over the last 2 yr, probabilistic risk assessment (PRA) techniques have been developed to aid in the inspection process. Broad interest in generic PRA-based methods has arisen in the past year, since only approx. 25% of the US nuclear power plants have completed PRAs, and also, inspectors want PRA-based tools for these plants. This paper describes the Brookhaven National Lab. program to develop generic boiling water reactor (BWR) PRA-based inspection insights or inspection guidance designed to be applied to plants without PRAs.

  17. Evidence of fissiogenic Cs estimated from Ba isotopic deviations in an Oklo natural reactor zone

    NASA Astrophysics Data System (ADS)

    Hidaka, Hiroshi; Holliger, Philippe; Masuda, Akimasa

    1993-01-01

    Isotopic studies of many elements from the uranium ore natural nuclear reactors at Oklo provide useful information on the migration of radioactive nuclides. The fissiogenic isotopic composition of Ba is particularly interesting, as it is an important indication in the search for fissiogenic Cs. In this report we detail the detection of remarkable isotopic deviations of Ba in the Oklo samples and estimate the geochemical behaviour of fissiogenic Cs from excess Ba isotopes. Six samples systematically collected from borehole SF84 (zone 10) at the Oklo uranium mine have been analyzed. Isotopic deviations of Ba indicate the existence of fissiogenic Cs and Ba. A good correlation between the elemental abundance of Cs and isotopic abundances of excess 135Ba and 137Ba suggests that fissiogenic 135Ba and 137Ba behaved as Cs rather than Ba.

  18. PHYSICS AND SAFETY ANALYSIS FOR THE NIST RESEARCH REACTOR.

    SciTech Connect

    Cheng, L.; Diamond, D.; Xu, J.; Carew, J.; Rorer, D.

    2004-03-31

    Detailed reactor physics and safety analyses have been performed for the 20 MW D{sub 2}O moderated research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The analyses provide an update to the Final Safety Analysis Report (FSAR) and employ state-of-the-art calculational methods. Three-dimensional Monte Carlo neutron and photon transport calculations were performed with the MCNP code to determine the safety parameters for the NBSR. The core depletion and determination of the fuel compositions were performed with MONTEBURNS. MCNP calculations were performed to determine the beginning, middle, and end-of-cycle power distributions, moderator temperature coefficient, and shim safety arm, beam tube and void reactivity worths. The calculational model included a plate-by-plate description of each fuel assembly, axial mid-plane water gap, beam tubes and the tubular geometry of the shim safety arms. The time-dependent analysis of the primary loop was determined with a RELAP5 transient analysis model that includes the pump, heat exchanger, fuel element geometry, and flow channels for both the six inner and twenty-four outer fuel elements. The statistical analysis used to assure protection from critical heat flux (CHF) was performed using a Monte Carlo simulation of the uncertainties contributing to the CHF calculation. The power distributions used to determine the local fuel conditions and margin to CHF were determined with MCNP. Evaluations were performed for the following accidents: (1) the control rod withdrawal startup accident, (2) the maximum reactivity insertion accident, (3) loss-of-flow resulting from loss of electrical power, (4) loss-of-flow resulting from a primary pump seizure, (5) loss-of-flow resulting from inadvertent throttling of a flow control valve, (6) loss-of-flow resulting from failure of both shutdown cooling pumps and (7) misloading of a fuel element. In both the startup and maximum reactivity insertion accidents, the

  19. Flibe use in fusion reactors -- An initial safety assessment

    SciTech Connect

    Cadwallader, L.C.; Longhurst, G.R.

    1999-03-01

    This report is an initial effort to identify and evaluate safety issues associated with the use of Flibe (LiF-BeF{sub 2}) as a molten salt coolant for nuclear fusion power plant applications. Flibe experience in the Molten Salt Reactor Experiment is briefly reviewed. Safety issues identified include chemical toxicity, radiological issues resulting from neutron activation, and the operational concerns of handling a high temperature coolant. Beryllium compounds and fluorine pose be toxicological concerns. Some controls to protect workers are discussed. Since Flibe has been handled safely in other applications, its hazards appear to be manageable. Some safety issues that require further study are pointed out. Flibe salt interaction with strong magnetic fields should be investigated. Evolution of Flibe constituents and activation products at high temperature (i.e., will Fluorine release as a gas or remain in the molten salt) is an issue. Aerosol and tritium release from a Flibe spill requires study, as does neutronics analysis to characterize radiological doses. Tritium migration from Flibe into the cooling system is also a safety concern. Investigation of these issues will help determine the extent to which Flibe shows promise as a fusion power plant coolant or plasma-facing material.

  20. Flibe Use in Fusion Reactors - An Initial Safety Assessment

    SciTech Connect

    Cadwallader, Lee Charles; Longhurst, Glen Reed

    1999-04-01

    This report is an initial effort to identify and evaluate safety issues associated with the use of Flibe (LiF-BeF2) as a molten salt coolant for nuclear fusion power plant applications. Flibe experience in the Molten Salt Reactor Experiment is briefly reviewed. Safety issues identified include chemical toxicity, radiological issues resulting from neutron activation, and the operational concerns of handling a high temperature coolant. Beryllium compounds and fluorine pose be toxicological concerns. Some controls to protect workers are discussed. Since Flibe has been handled safely in other applications, its hazards appear to be manageable. Some safety issues that require further study are pointed out. Flibe salt interaction with strong magnetic fields should be investigated. Evolution of Flibe constituents and activation products at high temperature (i.e., will Fluorine release as a gas or remain in the molten salt) is an issue. Aerosol and tritium release from a Flibe spill requires study, as does neutronics analysis to characterize radiological doses. Tritium migration from Flibe into the cooling system is also a safety concern. Investigation of these issues will help determine the extent to which Flibe shows promise as a fusion power plant coolant or plasma-facing material.

  1. Packed bed reactor for photochemical .sup.196 Hg isotope separation

    DOEpatents

    Grossman, Mark W.; Speer, Richard

    1992-01-01

    Straight tubes and randomly oriented pieces of tubing having been employed in a photochemical mercury enrichment reactor and have been found to improve the enrichment factor (E) and utilization (U) compared to a non-packed reactor. One preferred embodiment of this system uses a moving bed (via gravity) for random packing.

  2. Light Water Reactor Sustainability Program: Reactor Safety Technologies Pathway Technical Program Plan

    SciTech Connect

    Corradini, M. L.

    2015-06-01

    In the aftermath of the March 2011 multi-unit accident at the Fukushima Daiichi nuclear power plant (Fukushima), the nuclear community has been reassessing certain safety assumptions about nuclear reactor plant design, operations and emergency actions, particularly with respect to extreme events that might occur and that are beyond each plant’s current design basis. Because of our significant domestic investment in nuclear reactor technology (99 operating reactors in the fleet of commercial LWRs with five under construction), the United States has been a major leader internationally in these activities. The U.S. nuclear industry is voluntarily pursuing a number of additional safety initiatives. The NRC continues to evaluate and, where deemed appropriate, establish new requirements for ensuring adequate protection of public health and safety in the occurrence of low probability events at nuclear plants; (e.g., mitigation strategies for beyond design basis events initiated by external events like seismic or flooding initiators). The DOE has also played a major role in the U.S. response to the Fukushima accident. Initially, DOE worked with the Japanese and the international community to help develop a more complete understanding of the Fukushima accident progression and its consequences, and to respond to various safety concerns emerging from uncertainties about the nature of and the effects from the accident. DOE R&D activities are focused on providing scientific and technical insights, data, analyses methods that ultimately support industry efforts to enhance safety. These activities are expected to further enhance the safety performance of currently operating U.S. nuclear power plants as well as better characterize the safety performance of future U.S. plants. In pursuing this area of R&D, DOE recognizes that the commercial nuclear industry is ultimately responsible for the safe operation of licensed nuclear facilities. As such, industry is considered the primary

  3. Density of Gadolinium Nitrate Solutions for the High Flux Isotope Reactor

    SciTech Connect

    Taylor, Paul Allen; Lee, Denise L

    2009-05-01

    In late 1992, the High Flux Isotope Reactor (HFIR) was planning to switch the solution contained in the poison injection tank from cadmium nitrate to gadolinium nitrate. The poison injection system is an emergency system used to shut down the reactor by adding a neutron poison to the cooling water. This system must be able to supply a minimum of 69 pounds of gadolinium to the reactor coolant system in order to guarantee that the reactor would become subcritical. A graph of the density of gadolinium nitrate solutions over a concentration range of 5 to 30 wt% and a temperature range of 15 to 40{sup o}C was prepared. Routine density measurements of the solution in the poison injection tank are made by HFIR personnel, and an adaptation of the original graph is used to determine the gadolinium nitrate concentration. In late 2008, HFIR personnel decided that the heat tracing that was present on the piping for the poison injection system could be removed without any danger of freezing the solution; however, the gadolinium nitrate solution might get as cold as 5{sup o}C. This was outside the range of the current density-concentration correlation, so the range needed to be expanded. This report supplies a new density-concentration correlation that covers the extended temperature range. The correlation is given in new units, which greatly simplifies the calculation that is required to determine the pounds of gadolinium in the tank solution. The procedure for calculating the amount of gadolinium in the HFIR poison injection system is as follows: (1) Calculate the usable volume in the system; (2) Measure the density of the solution; (3) Calculate the gadolinium concentration using the following equation: Gd(lb/ft{sup 3}) = measured density (g/mL) x 34.681 - 34.785; (4) Calculate the amount of gadolinium in the system using the following equation: Amount of Gd(lb) = Gd concentration (lb/ft{sup 3}) x usable volume (ft{sup 3}). The equation in step 3 is exact for a temperature of

  4. Development of High Flux Isotope Reactor (HFIR) subcriticality monitoring methods

    SciTech Connect

    Rothrock, R.B.

    1991-01-01

    Use of subcritical source multiplication measurements during refueling has been investigated as a possible replacement for out-of-reactor subcriticality measurements formerly made on fresh HFIR fuel elements at the ORNL Critical Experiment Facility. These measurements have been used in the past for preparation of estimated critical rod positions, and as a partial verification, prior to reactor startup, that the requirements for operational shutdown margin would be met. Results of subcritical count rate data collection during recent HFIR refuelings and supporting calculations are described illustrating the intended measurement method and its expected uncertainty. These results are compared to historical uses of the out-of-reactor core measurements and their accuracy requirements, and a planned in-reactor test is described which will establish the sensitivity of the method and calibrate it for future routine use during HFIR refueling. 2 refs., 1 fig., 2 tabs.

  5. Homogeneous fast-flux isotope-production reactor

    DOEpatents

    Cawley, W.E.; Omberg, R.P.

    1982-08-19

    A method is described for producing tritium in a liquid metal fast breeder reactor. Lithium target material is dissolved in the liquid metal coolant in order to facilitate the production and removal of tritium.

  6. Analysis of Experimental Data for High Burnup PWR Spent Fuel Isotopic Validation - Vandellos II Reactor

    SciTech Connect

    Ilas, Germina; Gauld, Ian C

    2011-01-01

    This report is one of the several recent NUREG/CR reports documenting benchmark-quality radiochemical assay data and the use of the data to validate computer code predictions of isotopic composition for spent nuclear fuel, to establish the uncertainty and bias associated with code predictions. The experimental data analyzed in the current report were acquired from a high-burnup fuel program coordinated by Spanish organizations. The measurements included extensive actinide and fission product data of importance to spent fuel safety applications, including burnup credit, decay heat, and radiation source terms. Six unique spent fuel samples from three uranium oxide fuel rods were analyzed. The fuel rods had a 4.5 wt % {sup 235}U initial enrichment and were irradiated in the Vandellos II pressurized water reactor operated in Spain. The burnups of the fuel samples range from 42 to 78 GWd/MTU. The measurements were used to validate the two-dimensional depletion sequence TRITON in the SCALE computer code system.

  7. Safety Issues at the DOE Test and Research Reactors. A Report to the U.S. Department of Energy.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Commission on Physical Sciences, Mathematics, and Resources.

    This report provides an assessment of safety issues at the Department of Energy (DOE) test and research reactors. Part A identifies six safety issues of the reactors. These issues include the safety design philosophy, the conduct of safety reviews, the performance of probabilistic risk assessments, the reliance on reactor operators, the fragmented…

  8. Sodium fast reactor gaps analysis of computer codes and models for accident analysis and reactor safety.

    SciTech Connect

    Carbajo, Juan; Jeong, Hae-Yong; Wigeland, Roald; Corradini, Michael; Schmidt, Rodney Cannon; Thomas, Justin; Wei, Tom; Sofu, Tanju; Ludewig, Hans; Tobita, Yoshiharu; Ohshima, Hiroyuki; Serre, Frederic

    2011-06-01

    This report summarizes the results of an expert-opinion elicitation activity designed to qualitatively assess the status and capabilities of currently available computer codes and models for accident analysis and reactor safety calculations of advanced sodium fast reactors, and identify important gaps. The twelve-member panel consisted of representatives from five U.S. National Laboratories (SNL, ANL, INL, ORNL, and BNL), the University of Wisconsin, the KAERI, the JAEA, and the CEA. The major portion of this elicitation activity occurred during a two-day meeting held on Aug. 10-11, 2010 at Argonne National Laboratory. There were two primary objectives of this work: (1) Identify computer codes currently available for SFR accident analysis and reactor safety calculations; and (2) Assess the status and capability of current US computer codes to adequately model the required accident scenarios and associated phenomena, and identify important gaps. During the review, panel members identified over 60 computer codes that are currently available in the international community to perform different aspects of SFR safety analysis for various event scenarios and accident categories. A brief description of each of these codes together with references (when available) is provided. An adaptation of the Predictive Capability Maturity Model (PCMM) for computational modeling and simulation is described for use in this work. The panel's assessment of the available US codes is presented in the form of nine tables, organized into groups of three for each of three risk categories considered: anticipated operational occurrences (AOOs), design basis accidents (DBA), and beyond design basis accidents (BDBA). A set of summary conclusions are drawn from the results obtained. At the highest level, the panel judged that current US code capabilities are adequate for licensing given reasonable margins, but expressed concern that US code development activities had stagnated and that the

  9. Progress in reliability of fast reactor operation and new trends to increased inherent safety

    SciTech Connect

    Merk, Bruno; Stanculescu, Alexander; Chellapandi, Perumal; Hill, Robert

    2015-06-01

    The reasons for the renewed interest in fast reactors and an overview of the progress in sodium cooled fast reactor operation in the last ten years are given. The excellent operational performance of sodium cooled fast reactors in this period is highlighted as a sound basis for the development of new fast reactors. The operational performance of the BN-600 is compared and evaluated against the performance of German light water reactors to assess the reliability. The relevance of feedback effects for safe reactor design is described, and a new method for the enhancement of feedback effects in fast reactors is proposed. Experimental reactors demonstrating the inherent safety of advanced sodium cooled fast reactor designs are described and the potential safety improvements resulting from the use of fine distributed moderating material are discussed.

  10. Worldwide advanced nuclear power reactors with passive and inherent safety: What, why, how, and who

    SciTech Connect

    Forsberg, C.W.; Reich, W.J.

    1991-09-01

    The political controversy over nuclear power, the accidents at Three Mile Island (TMI) and Chernobyl, international competition, concerns about the carbon dioxide greenhouse effect and technical breakthroughs have resulted in a segment of the nuclear industry examining power reactor concepts with PRIME safety characteristics. PRIME is an acronym for Passive safety, Resilience, Inherent safety, Malevolence resistance, and Extended time after initiation of an accident for external help. The basic ideal of PRIME is to develop power reactors in which operator error, internal sabotage, or external assault do not cause a significant release of radioactivity to the environment. Several PRIME reactor concepts are being considered. In each case, an existing, proven power reactor technology is combined with radical innovations in selected plant components and in the safety philosophy. The Process Inherent Ultimate Safety (PIUS) reactor is a modified pressurized-water reactor, the Modular High Temperature Gas-Cooled Reactor (MHTGR) is a modified gas-cooled reactor, and the Advanced CANDU Project is a modified heavy-water reactor. In addition to the reactor concepts, there is parallel work on super containments. The objective is the development of a passive box'' that can contain radioactivity in the event of any type of accident. This report briefly examines: why a segment of the nuclear power community is taking this new direction, how it differs from earlier directions, and what technical options are being considered. A more detailed description of which countries and reactor vendors have undertaken activities follows. 41 refs.

  11. PHYSICS AND SAFETY ANALYSIS FOR THE NIST RESEARCH REACTOR.

    SciTech Connect

    Carew, J.; Hanson, A.; Xu, J.; Rorer, D.; Diamond, D.

    2003-08-26

    Detailed reactor physics and safety analyses have been performed for the 20 MW D{sub 2}O moderated research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The analyses provide an update to the Final Safety Analysis Report (FSAR) and employ state-of-the-art calculational methods. Three-dimensional MCNP Monte Carlo neutron and photon transport calculations were performed to determine the safety parameters for the NBSR. The core depletion and determination of the fuel compositions were performed with MONTEBURNS. MCNP calculations were performed to determine the beginning, middle, and end-of-cycle power distributions, moderator temperature coefficient, and shim arm, beam tube and void reactivity worths. The calculational model included a plate-by-plate description of each fuel assembly, axial mid-plane water gap, beam tubes and the tubular geometry of the shim arms. The time-dependent analysis of the primary loop was determined with a RELAP5 transient analysis model including the pump, heat exchanger, fuel element geometry, and flow channels for both the six inner and twenty-four outer fuel elements. The statistical analysis used to assure protection from critical heat flux (CHF) was performed using a Monte Carlo simulation of the uncertainties contributing to the CHF calculation. The power distributions used to determine the local fuel conditions and margin to CHF were determined with MCNP. Evaluations were performed for the following accidents: (1) the control rod withdrawal startup accident, (2) the maximum reactivity insertion accident, (3) loss-of-flow resulting from loss of electrical power, (4) loss-of-flow resulting from a primary pump seizure, (5) loss-of-flow resulting from inadvertent throttling of a flow control valve, (6) loss-of-flow resulting from failure of both shutdown cooling pumps and (7) misloading of a fuel element. In both the startup and maximum reactivity insertion accidents, the core power transient is terminated

  12. Three-dimensional calculations of neutron streaming in the beam tubes of the ORNL HFIR (High Flux Isotope Reactor) Reactor

    SciTech Connect

    Childs, R.L.; Rhoades, W.A.; Williams, L.R.

    1988-01-01

    The streaming of neutrons through the beam tubes in High Flux Isotope Reactor at Oak Ridge National Laboratory has resulted in a reduction of the fracture toughness of the reactor vessel. As a result, an evaluation of vessel integrity was undertaken in order to determine if the reactor can be operated again. As a part of this evaluation, three-dimensional neutron transport calculations were performed to obtain fluxes at points of interest in the wall of the vessel. By comparing the calculated and measured activation of dosimetry specimens from the vessel surveillance program, it was determined that the calculated flux shape was satisfactory to transpose the surveillance data to the locations in the vessel. A bias factor was applied to correct for the average C/E ratio of 0.69. 8 refs., 7 figs., 3 tabs.

  13. Nuclear reactor safety research since three mile island.

    PubMed

    Mynatt, F R

    1982-04-01

    The Three Mile Island nuclear power plant accident has resulted in redirection of reactor safety research priorities. The small release to the environment of radioactive iodine-13 to 17 curies in a total radioactivity release of 2.4 million to 13 million curies-has led to a new emphasis on the physical chemistry of fission product behavior in accidents; the fact that the nuclear core was severely damaged but did not melt down has opened a new accident regime-that of the degraded core; the role of the operators in the progression and severity of the accident has shifted emphasis from equipment reliability to human reliability. As research progresses in these areas, the technical base for regulation and risk analysis will change substantially. PMID:17736229

  14. Passive Safety Small Reactor for Distributed Energy Supply

    NASA Astrophysics Data System (ADS)

    Ishida, Toshihisa; Sawada, Ken-Ichi; Odano, Naoteru

    The purpose of this paper is to study the core performance of passive safety small reactor for distributed energy supply by changing the heavy water (D2O) concentration in the mixed coolant together with the fuel pitch. The long core life with conditions of the excessive reactivity of 2 %Δk/k, the reactivity shutdown margin of 1 %Δk/k and the negative coolant temperature reactivity coefficient is attained for the case of D2O concentration of 60% with 10% enrichment gadolinia (Gd2O3) doped fuel rods. This D2O core has a shorter core life 4.14 years than the original light water (H2O) core 4.76 years, while it needs a larger core size. However, changing the D2O concentration on the way during the burn-up shows a possibility of extending more the core life than that of the original H2O core.

  15. Safety analysis for operating the Annular Core Research Reactor with Cintichem-type targets installed in the central region of the core

    SciTech Connect

    PARMA JR.,EDWARD J.

    2000-01-01

    Production of the molybdenum-99 isotope at the Annular Core Research Reactor requires highly enriched, uranium oxide loaded targets to be irradiated for several days in the high neutron-flux region of the core. This report presents the safety analysis for the irradiation of up to seven Cintichem-type targets in the central region of the core and compares the results to the Annular Core Research Reactor Safety Analysis Report. A 19 target grid configuration is presented that allows one to seven targets to be irradiated, with the remainder of the grid locations filled with aluminum ''void'' targets. Analyses of reactor, neutronic, thermal hydraulics, and heat transfer calculations are presented. Steady-state operation and accident scenarios are analyzed with the conclusion that the reactor can be operated safely with seven targets in the grid, and no additional risk to the public.

  16. 10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a...

  17. 10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a...

  18. 10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a...

  19. 10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a...

  20. 10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a...

  1. Water Reactor Safety Research Division. Quarterly progress report, April 1-June 30, 1980

    SciTech Connect

    Abuaf, N.; Levine, M.M.; Saha, P.; van Rooyen, D.

    1980-08-01

    The Water Reactor Safety Research Programs quarterly report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the USNRC Division of Reactor Safety Research. The projects reported each quarter are the following: LWR Thermal Hydraulic Development, Advanced Code Evlauation, TRAC Code Assessment, and Stress Corrosion Cracking of PWR Steam Generator Tubing.

  2. Water Reactor Safety Research Division quarterly progress report, January 1-March 31, 1980

    SciTech Connect

    Romano, A.J.

    1980-06-01

    The Water Reactor Safety Research Programs Quarterly Report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the USNRC Division of Reactor Safety Research. The projects reported each quarter are the following: LWR Thermal Hydraulic Development, Advanced Code Evaluation, TRAC Code Assessment, and Stress Corrosion Cracking of PWR Steam Generator Tubing.

  3. Physics of reactor safety. Quarterly report, July-September 1980. Volume III

    SciTech Connect

    Not Available

    1980-11-01

    This Quarterly progress report summarizes work done during the months of July-September 1980 in Argonne National Laboratory's Applied Physics and Components Technology Divisions for the Division of Reactor Safety Research of the US Nuclear Regulatory Commission. The work in the Applied Physics Division includes reports on reactor safety modeling and assessment by members of the Reactor Safety Appraisals Section. Work on reactor core thermal-hydraulics is performed in ANL's Components Technology Division, emphasizing 3-dimensional code development for LMFBR accidents under natural convection conditions. An executive summary is provided including a statement of the findings and recommendations of the report.

  4. COUNTERCURRENT FLOW LIMITATION EXPERIMENTS AND MODELING FOR IMPROVED REACTOR SAFETY

    SciTech Connect

    Vierow, Karen

    2008-09-26

    This project is investigating countercurrent flow and “flooding” phenomena in light water reactor systems to improve reactor safety of current and future reactors. To better understand the occurrence of flooding in the surge line geometry of a PWR, two experimental programs were performed. In the first, a test facility with an acrylic test section provided visual data on flooding for air-water systems in large diameter tubes. This test section also allowed for development of techniques to form an annular liquid film along the inner surface of the “surge line” and other techniques which would be difficult to verify in an opaque test section. Based on experiences in the air-water testing and the improved understanding of flooding phenomena, two series of tests were conducted in a large-diameter, stainless steel test section. Air-water test results and steam-water test results were directly compared to note the effect of condensation. Results indicate that, as for smaller diameter tubes, the flooding phenomena is predominantly driven by the hydrodynamics. Tests with the test sections inclined were attempted but the annular film was easily disrupted. A theoretical model for steam venting from inclined tubes is proposed herein and validated against air-water data. Empirical correlations were proposed for air-water and steam-water data. Methods for developing analytical models of the air-water and steam-water systems are discussed, as is the applicability of the current data to the surge line conditions. This report documents the project results from July 1, 2005 through June 30, 2008.

  5. Development of electro-optical instrumentation for reactor safety studies

    SciTech Connect

    Turko, B.T.; Kolbe, W.F.; Leskovar, B.; Sun, R.K.

    1980-11-01

    The development of new electro-optical instrumentation for reactor safety studies is described. The system measures the thickness of the water film and droplet size and velocity distributions which would be encountered in the annular two-phase flow in a reactor cooling system. The water film thickness is measured by a specially designed capacitance system with a short time constant. Water droplet size and velocity are measured by a subsystem consisting of a continuously pulsed laser light source, a vidicon camera, a video recorder, and an automatic image analyzer. An endoscope system attached to the video camera is used to image the droplets. Each frame is strobed with two accurately spaced uv light pulses, from two sequentially fired nitrogen lasers. The images are stored in the video disk recorder. The modified automatic image analyzer is programmed to digitize the droplet size and velocity distributions. Many special optical, mechanical and electronic system components were designed and fabricated. They are described in detail, together with calibration charts and experimental results.

  6. La-138/139 isotopic data and neutron fluences for Oklo RZ10 reactor

    NASA Astrophysics Data System (ADS)

    Gould, C. R.; Sharapov, E. I.

    2012-08-01

    Background: Recent years have seen a renewed interest in the Oklo phenomenon, particularly in relation to the study of time variation of the fine structure constant α. The neutron fluence is one of the crucial parameters for Oklo reactors. Several approaches to its determination were elaborated in the past.Purpose: We consider whether it is possible to use the present isotopic 138La-139La data for RZ10 as an additional indicator of neutron fluences in the active cores of the reactors.Results: We calculate the dependence of the Oklo 138La abundance on neutron fluence and elemental lanthanum concentration.Conclusion: The neutron fluence in RZ10 can be deduced from lanthanum isotopic data, but requires reliable data on the primordial elemental abundance. Conversely, if the fluence is known, the isotope ratio provides information on the primordial lanthanum abundance that is not otherwise easily determined.

  7. The Role of COMSOL Toward a Low-Enriched Uranium Fuel Design for the High Flux Isotope Reactor

    SciTech Connect

    Freels, James D; Arimilli, Rao V; Lowe, Kirk T; Bodey, Isaac T

    2009-01-01

    Design and safety analyses are underway to convert the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) from a high-enriched uranium (HEU) fuel to a low-enriched uranium (LEU) fuel. The primary constraint for the project is that the overall fuel plate dimensions and the current neutron flux performance must remain unchanged. This allows minimal impact on the facility and cost for the conversion, and provides transparency to the HFIR customer base and research projects that depend on the facility for isotopes and neutron flux. As a consequence, the LEU design demands more accuracy and less margin in the analysis efforts than the original design. Several technical disciplines are required to complete this conversion including nuclear reactor physics, heat transfer, fluid dynamics, structural mechanics, fuel fabrication, and engineering design. The role of COMSOL is to provide the fully-coupled 3D multi-physics analysis for heat transfer, turbulent flow, and structural mechanics of the fuel plates and flow channels. A goal is for COMSOL to simulate the entire fuel element array of fuel plates (171 inner, 369 outer). This paper describes the progress that has been made toward development of benchmark validation models of the existing HEU inner-element fuel plates.

  8. Recent performance experience with US light water reactor self-actuating safety and relief valves

    SciTech Connect

    Hammer, C.G.

    1996-12-01

    Over the past several years, there have been a number of operating reactor events involving performance of primary and secondary safety and relief valves in U.S. Light Water Reactors. There are several different types of safety and relief valves installed for overpressure protection of various safety systems throughout a typical nuclear power plant. The following discussion is limited to those valves in the reactor coolant systems (RCS) and main steam systems of pressurized water reactors (PWR) and in the RCS of boiling water reactors (BWR), all of which are self-actuating having a setpoint controlled by a spring-loaded disk acting against system fluid pressure. The following discussion relates some of the significant recent experience involving operating reactor events or various testing data. Some of the more unusual and interesting operating events or test data involving some of these designs are included, in addition to some involving a number of similar events and those which have generic applicability.

  9. Low-Enriched Uranium Fuel Conversion Activities for the High Flux Isotope Reactor, Annual Report for FY 2011

    SciTech Connect

    Renfro, David G; Cook, David Howard; Freels, James D; Griffin, Frederick P; Ilas, Germina; Sease, John D; Chandler, David

    2012-03-01

    This report describes progress made during FY11 in ORNL activities to support converting the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum (UMo) alloy. With both radial and axial contouring of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current levels achieved with HEU fuel. Studies are continuing to demonstrate that the fuel thermal safety margins can be preserved following conversion. Studies are also continuing to update other aspects of the reactor steady state operation and accident response for the effects of fuel conversion. Technical input has been provided to Oregon State University in support of their hydraulic testing program. The HFIR conversion schedule was revised and provided to the GTRI program. In addition to HFIR conversion activities, technical support was provided directly to the Fuel Fabrication Capability program manager.

  10. Experimental spectrum of reactor antineutrinos and spectra of main fissile isotopes

    SciTech Connect

    Sinev, V. V.

    2013-05-15

    Within the period between the years 1988 and 1990, the spectrum of positrons from the inverse-beta-decay reaction on a proton was measured at the Rovno atomic power plant in the course of experiments conducted there. The measured spectrum has the vastest statistics in relation to other neutrino experiments at nuclear reactors and the lowest threshold for positron detection. An experimental reactor-antineutrino spectrum was obtained on the basis of this positron spectrum and was recommended as a reference spectrum. The spectra of individual fissile isotopes were singled out from the measured antineutrino spectrum. These spectra can be used to analyze neutrino experiments performed at nuclear reactors for various compositions of the fuel in the reactor core.

  11. Guidelines for preparing criticality safety evaluations at Department of Energy non-reactor nuclear facilities

    SciTech Connect

    Not Available

    1993-11-01

    This document contains guidelines that should be followed when preparing Criticality Safety Evaluations that will be used to demonstrate the safety of operations performed at DOE non-reactor nuclear facilities. Adherence to these guidelines will provide consistency and uniformity in criticality safety evaluations (CSEs) across the complex and will document compliance with the requirements of DOE Order 5480.24.

  12. A strategy for intensive production of molybdenum-99 isotopes for nuclear medicine using CANDU reactors.

    PubMed

    Morreale, A C; Novog, D R; Luxat, J C

    2012-01-01

    Technetium-99m is an important medical isotope utilized worldwide in nuclear medicine and is produced from the decay of its parent isotope, molybdenum-99. The online fueling capability and compact fuel of the CANDU(®)(1) reactor allows for the potential production of large quantities of (99)Mo. This paper proposes (99)Mo production strategies using modified target fuel bundles loaded into CANDU fuel channels. Using a small group of channels a yield of 89-113% of the weekly world demand for (99)Mo can be obtained.

  13. Conception of electron beam-driven subcritical molten salt ultimate safety reactor

    NASA Astrophysics Data System (ADS)

    Abalin, S. S.; Alekseev, P. N.; Ignat'ev, V. V.; Kolyaskin, O. E.; Men'shikov, L. I.; Mostovoi, V. I.; Prusakov, V. N.; Subbotin, S. A.; Krasnykh, A. K.; Popov, Yu. P.; Rudenko, V. T.; Somov, L. N.; Dikansky, N. S.; Novokhatsky, A. V.; Dovbnia, A. N.

    1995-09-01

    This paper is a preliminary sketch of a conception to develop the ``ultimate safety reactor'' using modern reactor and accelerator technologies. This approach would not require a long-range R&D program. The ultimate safety reactor could produce heat and electric energy, expand the production of fuel, or be used for the transmutation of long-lived wastes. The use of the combined double molten salt reactor system allows adequate neutron multiplication to permit using an electron accelerator for the initial neutron flux. The general parameters of such a system are discussed in this paper.

  14. An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses-Isotopic Composition Predictions

    SciTech Connect

    Radulescu, Georgeta; Gauld, Ian C; Ilas, Germina; Wagner, John C

    2011-01-01

    The expanded use of burnup credit in the United States (U.S.) for storage and transport casks, particularly in the acceptance of credit for fission products, has been constrained by the availability of experimental fission product data to support code validation. The U.S. Nuclear Regulatory Commission (NRC) staff has noted that the rationale for restricting the Interim Staff Guidance on burnup credit for storage and transportation casks (ISG-8) to actinide-only is based largely on the lack of clear, definitive experiments that can be used to estimate the bias and uncertainty for computational analyses associated with using burnup credit. To address the issues of burnup credit criticality validation, the NRC initiated a project with the Oak Ridge National Laboratory to (1) develop and establish a technically sound validation approach for commercial spent nuclear fuel (SNF) criticality safety evaluations based on best-available data and methods and (2) apply the approach for representative SNF storage and transport configurations/conditions to demonstrate its usage and applicability, as well as to provide reference bias results. The purpose of this paper is to describe the isotopic composition (depletion) validation approach and resulting observations and recommendations. Validation of the criticality calculations is addressed in a companion paper at this conference. For isotopic composition validation, the approach is to determine burnup-dependent bias and uncertainty in the effective neutron multiplication factor (keff) due to bias and uncertainty in isotopic predictions, via comparisons of isotopic composition predictions (calculated) and measured isotopic compositions from destructive radiochemical assay utilizing as much assay data as is available, and a best-estimate Monte Carlo based method. This paper (1) provides a detailed description of the burnup credit isotopic validation approach and its technical bases, (2) describes the application of the approach for

  15. Criticality safety analysis on fissile materials in Fukushima reactor cores

    SciTech Connect

    Liu, Xudong; Lemaitre-Xavier, E.; Ahn, Joonhong; Hirano, Fumio

    2013-07-01

    The present study focuses on the criticality analysis for geological disposal of damaged fuels from Fukushima reactor cores. Starting from the basic understanding of behaviors of plutonium and uranium, a scenario sequence for criticality event is considered. Due to the different mobility of plutonium and uranium in geological formations, the criticality safety is considered in two parts: (1) near-field plutonium system and (2) far-field low enriched uranium (LEU) system. For the near-field plutonium system, a mathematical analysis for pure-solute transport was given, assuming a particular buffer material and waste form configuration. With the transport and decay of plutonium accounted, the critical mass of plutonium was compared with the initial load of a single canister. Our calculation leads us to the conclusion that our system with the initial loading being the average mass of plutonium in an assembly just before the accident is very unlikely to become critical over time. For the far-field LEU system, due to the uncertainties in the geological and geochemical conditions, calculations were made in a parametric space that covers the variation of material compositions and different geometries. Results show that the LEU system could not remain sub-critical within the entire parameter space assumed, although in the iron-rich rock, the neutron multiplicity is significantly reduced.

  16. Sodium fast reactor safety and licensing research plan. Volume I.

    SciTech Connect

    Sofu, Tanju; LaChance, Jeffrey L.; Bari, R.; Wigeland, Roald; Denman, Matthew R.; Flanagan, George F.

    2012-05-01

    This report proposes potential research priorities for the Department of Energy (DOE) with the intent of improving the licensability of the Sodium Fast Reactor (SFR). In support of this project, five panels were tasked with identifying potential safety-related gaps in available information, data, and models needed to support the licensing of a SFR. The areas examined were sodium technology, accident sequences and initiators, source term characterization, codes and methods, and fuels and materials. It is the intent of this report to utilize a structured and transparent process that incorporates feedback from all interested stakeholders to suggest future funding priorities for the SFR research and development. While numerous gaps were identified, two cross-cutting gaps related to knowledge preservation were agreed upon by all panels and should be addressed in the near future. The first gap is a need to re-evaluate the current procedures for removing the Applied Technology designation from old documents. The second cross-cutting gap is the need for a robust Knowledge Management and Preservation system in all SFR research areas. Closure of these and the other identified gaps will require both a reprioritization of funding within DOE as well as a re-evaluation of existing bureaucratic procedures within the DOE associated with Applied Technology and Knowledge Management.

  17. GIF sodium fast reactor project R and D on safety and operation

    SciTech Connect

    Vasile, A.; Sofu, T.; Jeong, H. Y.; Sakai, T.

    2012-07-01

    The 'Safety and Operation' project is started in 2009 within the framework of Generation-IV International Forum (GIF) Sodium Fast Reactor (SFR) research and development program. In the safety area, the project involves R and D activities on phenomenological model development and experimental programs, conceptual studies in support of the design of safety provisions, preliminary assessment of safety systems, framework and methods for analysis of safety architecture. In the operation area, the project involves R and D activities on fast reactors safety tests and analysis of reactor operations, feedback from decommissioning, in-service inspection technique development, under-sodium viewing and sodium chemistry. This paper presents a summary of such activities and the main achievements. (authors)

  18. Passive and inherent safety technologies for light-water nuclear reactors

    SciTech Connect

    Forsberg, C.W.

    1990-07-01

    Passive/inherent safety implies a technical revolution in our approach to nuclear power safety. This direction is discussed herein for light-water reactors (LWRs) -- the predominant type of power reactor used in the world today. At Oak Ridge National Laboratory (ORNL) the approach to the development of passive/inherent safety for LWRs consists of four steps: identify and quantify safety requirements and goals; identify and quantify the technical functional requirements needed for safety; identify, invent, develop, and quantify technical options that meet both of the above requirements; and integrate safety systems into designs of economic and reliable nuclear power plants. Significant progress has been achieved in the first three steps of this program. The last step involves primarily the reactor vendors. These activities, as well as related activities worldwide, are described here. 27 refs., 7 tabs.

  19. Safety Analyses at the Idaho National Engineering and Environmental Laboratory Test Reactor Area - Past to Present

    SciTech Connect

    Ambrosek, Richard Garry; Ingram, Frederick William

    1999-11-01

    Test reactors are unique in that the core configuration may change with each operating interval. The process of safety analyses for test reactors at the Idaho National Engineering and Environmental Test Reactor Area has evolved as the computing capabilities, software, and regulatory requirements have changed. The evaluations for experiments and the reactor have moved from measurements in a set configuration and then application to other configurations with a relatively large error to modeling in three-dimensions and explicit analyses for each experiment and operating interval. This evolution is briefly discussed for the Test Reactor Area.

  20. Seismic, high wind, tornado, and probabilistic risk assessments of the High Flux Isotope Reactor

    SciTech Connect

    Harris, S.P.; Stover, R.L.; Hashimoto, P.S.; Dizon, J.O.; Oak Ridge National Lab., TN; EQE, Inc., San Francisco, CA )

    1989-01-01

    Natural phenomena analyses were performed on the High Flux Isotope Reactor (HFIR) Deterministic and probabilistic evaluations were made to determine the risks resulting from earthquakes, high winds, and tornadoes. Analytic methods in conjunction with field evaluations and an earthquake experience data base evaluation methods were used to provide more realistic results in a shorter amount of time. Plant modifications completed in preparation for HFIR restart and potential future enhancements are discussed. 5 figs.

  1. A new safety channel based on ¹⁷N detection in research reactors.

    PubMed

    Seyfi, Somayye; Gharib, Morteza

    2015-10-01

    Tehran research reactor (TRR) is a representative of pool type research reactors using light water, as coolant and moderator. This reactor is chosen as a prototype to demonstrate and prove the feasibility of (17)N detection as a new redundant channel for reactor power measurement. In TRR, similar to other pool type reactors, neutron detectors are immersed in the pool around the core as the main power measuring devices. In the present article, a different approach, using out of water neutron detector, is employed to measure reactor power. This new method is based on (17)O (n,p) (17)N reaction taking place inside the core and subsequent measurement of delayed neutrons emitted due to (17)N disintegration. Count and measurement of neutrons around outlet water pipe provides a reliable redundant safety channel to measure reactor power. Results compared with other established channels indicate a good agreement and shows a linear interdependency with true thermal power. Safety of reactor operation is improved with installation & use of this new power measuring channel. The new approach may equally serve well as a redundant channel in all other types of reactors having coolant comprised of oxygen in its molecular constituents. Contrary to existing channels, this one is totally out of water and thus is an advantage over current instrumentations. It is proposed to employ the same idea on other reactors (nuclear power plants too) to improve safety criteria.

  2. A new safety channel based on ¹⁷N detection in research reactors.

    PubMed

    Seyfi, Somayye; Gharib, Morteza

    2015-10-01

    Tehran research reactor (TRR) is a representative of pool type research reactors using light water, as coolant and moderator. This reactor is chosen as a prototype to demonstrate and prove the feasibility of (17)N detection as a new redundant channel for reactor power measurement. In TRR, similar to other pool type reactors, neutron detectors are immersed in the pool around the core as the main power measuring devices. In the present article, a different approach, using out of water neutron detector, is employed to measure reactor power. This new method is based on (17)O (n,p) (17)N reaction taking place inside the core and subsequent measurement of delayed neutrons emitted due to (17)N disintegration. Count and measurement of neutrons around outlet water pipe provides a reliable redundant safety channel to measure reactor power. Results compared with other established channels indicate a good agreement and shows a linear interdependency with true thermal power. Safety of reactor operation is improved with installation & use of this new power measuring channel. The new approach may equally serve well as a redundant channel in all other types of reactors having coolant comprised of oxygen in its molecular constituents. Contrary to existing channels, this one is totally out of water and thus is an advantage over current instrumentations. It is proposed to employ the same idea on other reactors (nuclear power plants too) to improve safety criteria. PMID:26123105

  3. Fukushima Daiichi reactor source term attribution using cesium isotope ratios from contaminated environmental samples

    DOE PAGESBeta

    Snow, Mathew S.; Snyder, Darin C.; Delmore, James E.

    2016-01-18

    Source term attribution of environmental contamination following the Fukushima Daiichi Nuclear Power Plant (FDNPP) disaster is complicated by a large number of possible similar emission source terms (e.g. FDNPP reactor cores 1–3 and spent fuel ponds 1–4). Cesium isotopic analyses can be utilized to discriminate between environmental contamination from different FDNPP source terms and, if samples are sufficiently temporally resolved, potentially provide insights into the extent of reactor core damage at a given time. Rice, soil, mushroom, and soybean samples taken 100–250 km from the FDNPP site were dissolved using microwave digestion. Radiocesium was extracted and purified using two sequentialmore » ammonium molybdophosphate-polyacrylonitrile columns, following which 135Cs/137Cs isotope ratios were measured using thermal ionization mass spectrometry (TIMS). Results were compared with data reported previously from locations to the northwest of FDNPP and 30 km to the south of FDNPP. 135Cs/137Cs isotope ratios from samples 100–250 km to the southwest of the FDNPP site show a consistent value of 0.376 ± 0.008. 135Cs/137Cs versus 134Cs/137Cs correlation plots suggest that radiocesium to the southwest is derived from a mixture of FDNPP reactor cores 1, 2, and 3. Conclusions from the cesium isotopic data are in agreement with those derived independently based upon the event chronology combined with meteorological conditions at the time of the disaster. In conclusion, cesium isotopic analyses provide a powerful tool for source term discrimination of environmental radiocesium contamination at the FDNPP site. For higher precision source term attribution and forensic determination of the FDNPP core conditions based upon cesium, analyses of a larger number of samples from locations to the north and south of the FDNPP site (particularly time-resolved air filter samples) are needed. Published in 2016. This article is a U.S. Government work and is in the public domain

  4. Passive cooling safety system for liquid metal cooled nuclear reactors

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.; Hui, Marvin M.; Berglund, Robert C.

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

  5. Fast reactor safety: proceedings of the international topical meeting. Volume 1

    SciTech Connect

    Not Available

    1985-07-01

    The emphasis of this meeting was on the safety-related aspects of fast reactor design, analysis, licensing, construction, and operation. Relative to past meetings, there was less emphasis on the scientific and technological basis for accident assessment. Because of its broad scope, the meeting attracted 217 attendees from a wide cross section of the design, safety analysis, and safety technology communities. Eight countries and two international organizations were represented. A total of 126 papers were presented, with contributions from the United States, France, Japan, the United Kingdom, Germany, and Italy. Sessions covered in Volume 1 include: impact of safety and licensing considerations on fast reactor design; safety aspects of innovative designs; intra-subassembly behavior; operational safety; design accommodation of seismic and other external events; natural circulation; safety design concepts; safety implications derived from operational plant data; decay heat removal; and assessment of HCDA consequences.

  6. Boiling water neutronic reactor incorporating a process inherent safety design

    DOEpatents

    Forsberg, C.W.

    1985-02-19

    A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (nonborated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two water volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.

  7. Boiling water neutronic reactor incorporating a process inherent safety design

    DOEpatents

    Forsberg, Charles W.

    1987-01-01

    A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (non-borated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.

  8. The symbiotic relationship between waste burning and safety in liquid metal reactors

    SciTech Connect

    Nelson, J.V.; Dobbin, K.D.; Kessler, S.F.; Wootan, D.W.; Omberg, R.P.; Waltar, A.E.

    1993-06-01

    The relationship between the transmutation of minor actinides and fission products, and safety related reactivity feedbacks in liquid metal reactors (LMR) was explored. Several design features appear promising for performing waste transmutation while retaining the desirable safety characteristics. Innovative variations of conventional LMR configurations and compositions establish symbiotic relationships between plutonium fuel, minor actinides, and fission products. These relationships enhance safety characteristics of the core and provide acceptable fuel and burnup performance. Although a specific design has not been developed, an LMR capable of transmuting the minor actinides and fission products from up to 10 comparable light water reactors while retaining desirable safety features, appears to be feasible.

  9. Reactor safety. Annual technical progress report, Government fiscal year 1979. [LMFBR

    SciTech Connect

    Not Available

    1980-04-15

    Information is presented on LMFBR reactor safety concerning the energetics effects of sodium spray fires; sodium drop and spray burning; core debris accommodation; attenuation in containment; and attenuation in the environment.

  10. Code development incorporating environmental, safety, and economic aspects of fusion reactors (FY 89--91)

    SciTech Connect

    Ho, S.K.; Fowler, T.K.; Holdren, J.P.

    1991-11-01

    This report discusses the following aspects of Fusion reactors.: Activation Analysis; Tritium Inventory; Environmental and Safety Indices and Their Graphical Representation; Probabilistic Risk Assessment (PRA) and Decision Analysis; Plasma Burn Control -- Application to ITER; and Other Applications.

  11. Light-water-reactor safety research program. Quarterly progress report, January-March 1980

    SciTech Connect

    Massey, W.E.; Kyger, J.A.

    1980-08-01

    This progress report summarizes the Argonne National Laboratory work performed during January, February, and March 1980 on water-reactor-safety problems. The research and development area covered is Transient Fuel Response and Fission-Product Release.

  12. A reactor for high-temperature pyrolysis and oxygen isotopic analysis of cellulose via induction heating.

    PubMed

    Evans, Michael N

    2008-07-01

    A reactor for converting cellulose into carbon monoxide for subsequent oxygen isotopic analysis via continuous flow isotope ratio mass spectrometry is described. The system employs an induction heater to produce temperatures >or=1500 degrees C within a molybdenum foil crucible positioned by boron nitride (BN) spacers within a quartz outer sleeve. For samples of a homogeneous working standard cellulose between 300 and 400 microg in size, the blank/signal ratio is <5%, and the long-term precision is 0.30 per thousand (N = 232). For samples of 30 to 100 microg in size, a gas pressure sintered silicon nitride (Si(3)N(4)) outer sleeve replaces the quartz sleeve, the BN spacers are not used, and 6.0-grade carrier He must be used to minimize the blank signal. With these modifications a blank/sample ratio of <5% and long-term precision of 0.30 per thousand (N = 144) are obtained. These results are similar to those achieved using standard high-temperature furnaces, but the reactor is simpler to pack, the system is more economical to run, and samples as small as 30 microg cellulose may be measured. For both reactors memory is significant in the subsequent sample and is believed to be due to exchange with reactor oxygen at temperatures above 1000 degrees C. Further applications might include online preparation of other materials requiring temperatures of 1500-2600 degrees C.

  13. PREPARING THE HIGH FLUX ISOTOPE REACTOR FOR CONVERSION TO LOW ENRICHED URANIUM FUEL ? RETURN TO 100 MW

    SciTech Connect

    Smith, Kevin Arthur; Primm, Trent

    2009-01-01

    The feasibility of low-enriched uranium (LEU) fuel as a replacement for the current, high enriched uranium (HEU) fuel for the High Flux Isotope Reactor (HFIR) has been under study since 2006. Reactor performance studies have been completed for conceptual plate designs and show that maintaining reactor performance while converting to LEU fuel requires returning the reactor power to 100 MW from 85 MW. The analyses required to up-rate the reactor power and the methods to perform these analyses are discussed. Comments regarding the regulatory approval process are provided along with a conceptual schedule.

  14. Preliminary studies of groundwater flow and migration of uranium isotopes around the Oklo natural reactors (Gabon)

    NASA Astrophysics Data System (ADS)

    Toulhoat, Pierre; Gallien, Jean Paul; Louvat, Didier; Moulin, Valérie; l'Henoret, Pascal; Guérin, Roland; Ledoux, Emmanuel; Gurban, Ioana; Smellie, John A. T.; Winberg, Anders

    1996-02-01

    In specific zones of the Oklo uranium deposit, critically was naturally reached 2 Ga ago. This site thus provides a unique opportunity to show whether the stable nuclear reaction end-products have remained or not in the vicinity of the reactor zones after the termination of nuclear reactions. In addition, the evaluation of the stability of the uraninite matrix over very long periods of time provides information on the possible long-term stability of waste forms such as spent fuel. The Commission of the European Communities initiated in 1991 the Oklo Natural Analogue Programme, a part of which is devoted to present-day migration studies. The Swedish Nuclear Fuel and Waste Management Company (SKB) supports this programme, with special interest in the Bangombe reactor, a shallow reaction zone possibly affected by surficial alteration processes. The Oklo study comprises hydrogeology, groundwater chemistry, isotopic analyses (environmental isotopes, U series, 235U/ 238U), and modelling. Two sites are being thoroughly investigated: the less perturbed OK84 reactor zone in Okelobondo (200 m south from Oklo) and the Bangombe reactor zone, 30 km south of Oklo. We focus our study on uranium migration from these reactor zones, using tracers such as the 235U/ 238U isotope ratio. After preliminary field campaigns, a conceptual model was constructed, both for Okelobondo and Bangombe. For this purpose, groundwaters have been characterised for three years in different areas around Oklo: Okelobondo groundwaters in mines and boreholes and surface waters, and Bangombe, both in boreholes and surface waters. Detailed investigations were then conducted in order to validate our conceptual models, and finally to enabling us to model U migration from the reaction zones, and to evaluate the performance assessment of deep geological disposal of radioactive wastes. After the presentation of regional and local geology and hydrogeology, we give a complete description and interpretation of

  15. The Oak Ridge Research Reactor: safety analysis: Volume 2, supplement 2

    SciTech Connect

    Hurt, S.S.

    1986-11-01

    The Oak Ridge Research Reactor Safety Analysis was last updated via ORNL-4169, Vol. 2, Supplement 1, in May of 1978. Since that date, several changes have been effected through the change-memo system described below. While these changes have involved the cooling system, the electrical system, and the reactor instrumentation and controls, they have not, for the most part, presented new or unreviewed safety questions. However, some of the changes have been based on questions or recommendations stemming from safety reviews or from reactor events at other sites. This paper discusses those changes which were judged to be safety related and which include revisions to the syphon-break system and changes related to seismic considerations which were very recently completed. The maximum hypothetical accident postulated in the original safety analysis requires dynamic containment and filtered flow for compliance with 10CFR100 limits at the site boundary.

  16. The procedure and results of calculations of the equilibrium isotopic composition of a demonstration subcritical molten salt reactor

    NASA Astrophysics Data System (ADS)

    Nevinitsa, V. A.; Dudnikov, A. A.; Blandinskiy, V. Yu.; Balanin, A. L.; Alekseev, P. N.; Titarenko, Yu. E.; Batyaev, V. F.; Pavlov, K. V.; Titarenko, A. Yu.

    2015-12-01

    A subcritical molten salt reactor with an external neutron source is studied computationally as a facility for incineration and transmutation of minor actinides from spent nuclear fuel of reactors of VVER-1000 type and for producing 233U from 232Th. The reactor configuration is chosen, the requirements to be imposed on the external neutron source are formulated, and the equilibrium isotopic composition of heavy nuclides and the key parameters of the fuel cycle are calculated.

  17. The procedure and results of calculations of the equilibrium isotopic composition of a demonstration subcritical molten salt reactor

    SciTech Connect

    Nevinitsa, V. A. Dudnikov, A. A.; Blandinskiy, V. Yu.; Balanin, A. L.; Alekseev, P. N.; Titarenko, Yu. E.; Batyaev, V. F.; Pavlov, K. V.; Titarenko, A. Yu.

    2015-12-15

    A subcritical molten salt reactor with an external neutron source is studied computationally as a facility for incineration and transmutation of minor actinides from spent nuclear fuel of reactors of VVER-1000 type and for producing {sup 233}U from {sup 232}Th. The reactor configuration is chosen, the requirements to be imposed on the external neutron source are formulated, and the equilibrium isotopic composition of heavy nuclides and the key parameters of the fuel cycle are calculated.

  18. Conceptual Design of Passive Safety System for Lead-Bismuth Cooled Fast Reactor

    NASA Astrophysics Data System (ADS)

    Abdullah, A. G.; Nandiyanto, A. B. D.

    2016-04-01

    This paper presents the results of the conceptual design of passive safety systems for reactor power 225 MWth using Pb-Bi coolant. Main purpose of this research is to design of heat removal system from the reactor wall. The heat from the reactor wall is removed by RVACS system using the natural circulation from the atmosphere around the reactor at steady state. The calculation is performed numerically using Newton-Raphson method. The analysis involves the heat transfer systems in a radiation, conduction and natural convection. Heat transfer calculations is performed on the elements of the reactor vessel, outer wall of guard vessel and the separator plate. The simulation results conclude that the conceptual design is able to remove heat 1.33% to 4.67% from the thermal reactor power. It’s can be hypothesized if the reactor had an accident, the system can still overcome the heat due to decay.

  19. 77 FR 62270 - Proposed Revision Treatment of Non-Safety Systems for Passive Advanced Light Water Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-12

    ... COMMISSION Proposed Revision Treatment of Non-Safety Systems for Passive Advanced Light Water Reactors AGENCY... Treatment of Non-Safety Systems (RTNSS) for Passive Advanced Light Water Reactors.'' The current SRP does not contain guidance on the proposed RTNSS for Passive Advance Light Water Reactors. DATES:...

  20. Preapplication safety evaluation report for the Power Reactor Innovative Small Module (PRISM) liquid-metal reactor. Final report

    SciTech Connect

    Donoghue, J.E.; Donohew, J.N.; Golub, G.R.; Kenneally, R.M.; Moore, P.B.; Sands, S.P.; Throm, E.D.; Wetzel, B.A.

    1994-02-01

    This preapplication safety evaluation report (PSER) presents the results of the preapplication desip review for die Power Reactor Innovative Small Module (PRISM) liquid-mew (sodium)-cooled reactor, Nuclear Regulatory Commission (NRC) Project No. 674. The PRISM conceptual desip was submitted by the US Department of Energy in accordance with the NRC`s ``Statement of Policy for the Regulation of Advanced Nuclear Power Plants`` (51 Federal Register 24643). This policy provides for the early Commission review and interaction with designers and licensees. The PRISM reactor desip is a small, modular, pool-type, liquid-mew (sodium)-cooled reactor. The standard plant design consists of dim identical power blocks with a total electrical output rating of 1395 MWe- Each power block comprises three reactor modules, each with a thermal rating of 471 MWt. Each module is located in its own below-grade silo and is co to its own intermediate heat transport system and steam generator system. The reactors utilize a metallic-type fuel, a ternary alloy of U-Pu-Zr. The design includes passive reactor shutdown and passive decay heat removal features. The PSER is the NRC`s preliminary evaluation of the safety features in the PRISM design, including the projected research and development programs required to support the design and the proposed testing needs. Because the NRC review was based on a conceptual design, the PSER did not result in an approval of the design. Instead it identified certain key safety issues, provided some guidance on applicable licensing criteria, assessed the adequacy of the preapplicant`s research and development programs, and concluded that no obvious impediments to licensing the PRISM design had been identified.

  1. Advanced reactor safety research quarterly report, October-December 1982. Volume 24

    SciTech Connect

    1984-04-01

    This report describes progress in a number of activities dealing with current safety issues relevant to both light water reactors (LWRs) and breeder reactors. The work includes a broad range of experiments to simulate accidental conditions to provide the required data base to understand important accident sequences and to serve as a basis for development and verification of the complex computer simulation models and codes used in accident analysis and licensing reviews. Such a program must include the development of analytical models, verified by experiment, which can be used to predict reactor and safety system performance under a broad variety of abnormal conditions. Current major emphasis is focused on providing information to NRC relevant to (1) its deliberations and decisions dealing with severe LWR accidents and (2) its safety evaluation of the proposed Clinch River Breeder Reactor.

  2. Advanced reactors and associated fuel cycle facilities: safety and environmental impacts.

    PubMed

    Hill, R N; Nutt, W M; Laidler, J J

    2011-01-01

    The safety and environmental impacts of new technology and fuel cycle approaches being considered in current U.S. nuclear research programs are contrasted to conventional technology options in this paper. Two advanced reactor technologies, the sodium-cooled fast reactor (SFR) and the very high temperature gas-cooled reactor (VHTR), are being developed. In general, the new reactor technologies exploit inherent features for enhanced safety performance. A key distinction of advanced fuel cycles is spent fuel recycle facilities and new waste forms. In this paper, the performance of existing fuel cycle facilities and applicable regulatory limits are reviewed. Technology options to improve recycle efficiency, restrict emissions, and/or improve safety are identified. For a closed fuel cycle, potential benefits in waste management are significant, and key waste form technology alternatives are described.

  3. Advanced reactors and associated fuel cycle facilities: safety and environmental impacts.

    PubMed

    Hill, R N; Nutt, W M; Laidler, J J

    2011-01-01

    The safety and environmental impacts of new technology and fuel cycle approaches being considered in current U.S. nuclear research programs are contrasted to conventional technology options in this paper. Two advanced reactor technologies, the sodium-cooled fast reactor (SFR) and the very high temperature gas-cooled reactor (VHTR), are being developed. In general, the new reactor technologies exploit inherent features for enhanced safety performance. A key distinction of advanced fuel cycles is spent fuel recycle facilities and new waste forms. In this paper, the performance of existing fuel cycle facilities and applicable regulatory limits are reviewed. Technology options to improve recycle efficiency, restrict emissions, and/or improve safety are identified. For a closed fuel cycle, potential benefits in waste management are significant, and key waste form technology alternatives are described. PMID:21399407

  4. PREPARING THE HIGH FLUX ISOTOPE REACTOR FOR CONVERSION TO LOW ENRICHED URANIUM FUEL ? EXTENDING CYCLE BURNUP

    SciTech Connect

    Primm, Trent; Chandler, David

    2009-01-01

    Reactor performance studies have been completed for conceptual plate designs and show that maintaining reactor performance while converting HFIR from high enriched to low enriched uranium (20 wt % 235U) fuel requires extending the end-of-life burnup value for HFIR fuel from the current nominal value of 2200 MWD to 2600 MWD. The current fuel fabrication procedure is discussed and changes that would be required to this procedure are identified. Design and safety related analyses that are required for the certification of a new fuel are identified. Qualification tests and comments regarding the regulatory approval process are provided along with a conceptual schedule.

  5. Guidelines for preparing criticality safety evaluations at Department of Energy non-reactor nuclear facilities

    SciTech Connect

    1998-09-01

    This Department of Energy (DOE) is approved for use by all components of DOE. It contains guidelines that should be followed when preparing Criticality Safety Evaluations that will be used to demonstrate the safety of operations performed at DOE Non-Reactor Nuclear Facilities. Adherence with these guidelines will provide consistency and uniformity in Criticality Safety Evaluations (CSEs) across the complex and will document compliance with DOE Order 5480.24 requirements as they pertain to CSEs.

  6. Simulator platform for fast reactor operation and safety technology demonstration

    SciTech Connect

    Vilim, R. B.; Park, Y. S.; Grandy, C.; Belch, H.; Dworzanski, P.; Misterka, J.

    2012-07-30

    A simulator platform for visualization and demonstration of innovative concepts in fast reactor technology is described. The objective is to make more accessible the workings of fast reactor technology innovations and to do so in a human factors environment that uses state-of-the art visualization technologies. In this work the computer codes in use at Argonne National Laboratory (ANL) for the design of fast reactor systems are being integrated to run on this platform. This includes linking reactor systems codes with mechanical structures codes and using advanced graphics to depict the thermo-hydraulic-structure interactions that give rise to an inherently safe response to upsets. It also includes visualization of mechanical systems operation including advanced concepts that make use of robotics for operations, in-service inspection, and maintenance.

  7. Reactor Safety Research Programs Quarterly Report July - September 1981

    SciTech Connect

    Edler, S. K.

    1982-01-01

    This document summarizes the work performed by Pacific Northwest laboratory (PNL) from July 1 through September 30, 1981, for the Division of Accident Evaluation, U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR} steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, lspra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho. These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  8. Reactor Safety Research Programs Quarterly Report October - December 1981

    SciTech Connect

    Edler, S. K.

    1982-03-01

    This document summarizes the work performed by Pacific Northwest laboratory (PNL) from October 1 through December 31, 1981, for the Division of Accident Evaluation, U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where serviceinduced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and post accident coolability tests for the ESSOR reactor Super Sara Test Program, lspra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho. These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  9. Safety Issues at the Defense Production Reactors. A Report to the U.S. Department of Energy.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Commission on Physical Sciences, Mathematics, and Resources.

    This report provides an assessment of safety management, safety review, and safety methodology employed by the Department of Energy (DOE) and private contractors. Chapter 1, "The DOE Safety Framework," examines safety objectives for production reactors and processes to implement the objectives. Chapter 2, "Technical Issues," focuses on a variety…

  10. Use of LEU in the aqueous homogeneous medical isotope production reactor

    SciTech Connect

    Ball, R.M.

    1997-08-01

    The Medical Isotope Production Reactor (MIPR) is an aqueous solution of uranyl nitrate in water, contained in an aluminum cylinder immersed in a large pool of water which can provide both shielding and a medium for heat exchange. The control rods are inserted at the top through re-entrant thimbles. Provision is made to remove radiolytic gases and recombine emitted hydrogen and oxygen. Small quantities of the solution can be continuously extracted and replaced after passing through selective ion exchange columns, which are used to extract the desired products (fission products), e.g. molybdenum-99. This reactor type is known for its large negative temperature coefficient, the small amount of fuel required for criticality, and the ease of control. Calculation using TWODANT show that a 20% U-235 enriched system, water reflected can be critical with 73 liters of solution.

  11. Establishing Specifications for Low Enriched Uranium Fuel Operations Conducted Outside the High Flux Isotope Reactor Site

    SciTech Connect

    Pinkston, Daniel; Primm, Trent; Renfro, David G; Sease, John D

    2010-10-01

    The National Nuclear Security Administration (NNSA) has funded staff at Oak Ridge National Laboratory (ORNL) to study the conversion of the High Flux Isotope Reactor (HFIR) from the current, high enriched uranium fuel to low enriched uranium fuel. The LEU fuel form is a metal alloy that has never been used in HFIR or any HFIR-like reactor. This report provides documentation of a process for the creation of a fuel specification that will meet all applicable regulations and guidelines to which UT-Battelle, LLC (UTB) the operating contractor for ORNL - must adhere. This process will allow UTB to purchase LEU fuel for HFIR and be assured of the quality of the fuel being procured.

  12. Heterogeneous sodium fast reactor designed for transmuting minor actinide waste isotopes into plutonium fuel

    NASA Astrophysics Data System (ADS)

    Bays, Samuel Eugene

    2008-10-01

    In the past several years there has been a renewed interest in sodium fast reactor (SFR) technology for the purpose of destroying transuranic waste (TRU) produced by light water reactors (LWR). The utility of SFRs as waste burners is due to the fact that higher neutron energies allow all of the actinides, including the minor actinides (MA), to contribute to fission. It is well understood that many of the design issues of LWR spent nuclear fuel (SNF) disposal in a geologic repository are linked to MAs. Because the probability of fission for essentially all the "non-fissile" MAs is nearly zero at low neutron energies, these isotopes act as a neutron capture sink in most thermal reactor systems. Furthermore, because most of the isotopes produced by these capture reactions are also non-fissile, they too are neutron sinks in most thermal reactor systems. Conversely, with high neutron energies, the MAs can produce neutrons by fast fission. Additionally, capture reactions transmute the MAs into mostly plutonium isotopes, which can fission more readily at any energy. The transmutation of non-fissile into fissile atoms is the premise of the plutonium breeder reactor. In a breeder reactor, not only does the non-fissile "fertile" U-238 atom contribute fast fission neutrons, but also transmutes into fissile Pu-239. The fissile value of the plutonium produced by MA transmutation can only be realized in fast neutron spectra. This is due to the fact that the predominate isotope produced by MA transmutation, Pu-238, is itself not fissile. However, the Pu-238 fission cross section is significantly larger than the original transmutation parent, predominately: Np-237 and Am-241, in the fast energy range. Also, Pu-238's fission cross section and fission-to-capture ratio is almost as high as that of fissile Pu-239 in the fast neutron spectrum. It is also important to note that a neutron absorption in Pu-238, that does not cause fission, will instead produce fissile Pu-239. Given this

  13. Dynamic response of the High Flux Isotope Reactor structure caused by nearby heavy load drop

    SciTech Connect

    Chang, S.J.

    1995-12-01

    A heavy load of 50,000 lb is assumed to drop from 10 ft above the bottom of the High Flux Isotope Reactor (HFIR) pool at the loading station. The consequences of the dynamic impact to the bottom slab of the pool and to the nearby HFIR reactor vessel are analyzed by applying the ABAQUS computer code. The results show that both the HFIR vessel structure and its supporting legs are subjected to elastic disturbances only and, therefore, will not be damaged. The bottom slab of the pool, however, will be damaged to about half of the slab thickness. The velocity response spectrum at the concrete floor next to the HFIR vessel as a result of the vibration caused by the impact is obtained. It is concluded, that the damage caused by heavy load drop at the loading station is controlled by the slab damage and the nearby HFIR vessel and the supporting legs will not be damaged.

  14. Dynamic response of the high flux isotope reactor structure caused by nearby heavy load drop

    SciTech Connect

    Chang, Shih-Jung

    1995-09-01

    A heavy load of 50,000 lb is assumed to drop from 10 ft above the bottom of the High Flux Isotope Reactor (HFIR) pool at the loading station. The consequences of the dynamic impact to the bottom slab of the pool and to the nearby HFIR reactor vessel are analyzed by applying the ABAQUS computer code The results show that both the BM vessel structure and its supporting legs are subjected to elastic disturbances only and, therefore, will not be damaged. The bottom slab of the pool, however, will be damaged to about half of the slab thickness. The velocity response spectrum at the concrete floor next to the HFIR vessel as a result of the vibration caused by the impact is obtained. It is concluded, that the damage caused by heavy load drop at the loading station is controlled by the slab damage and the nearby HFIR vessel and the supporting legs will not be damaged.

  15. Fast reactor safety program. Progress report, January-March 1980

    SciTech Connect

    1980-05-01

    The goal of the DOE LMFBR Safety Program is to provide a technology base fully responsive to safety considerations in the design, evaluation, licensing, and economic optimization of LMFBRs for electrical power generation. A strategy is presented that divides safety technology development into seven program elements, which have been used as the basis for the Work Breakdown Structure (WBS) for the Program. These elements include four lines of assurance (LOAs) involving core-related safety considerations, an element supporting non-core-related plant safety considerations, a safety R and D integration element, and an element for the development of test facilities and equipment to be used in Program experiments: LOA-1 (prevent accidents); LOA-2 (limit core damage); LOA-3 (maintain containment integrity); LOA-4 (attenuate radiological consequences); plant considerations; R and D integration; and facility development.

  16. Recent developments in Topaz II reactor safety assessments

    SciTech Connect

    Marshall, A.C.

    1993-07-01

    In December 1991, the Strategic Defense Initiative Organization (SDIO) decided to investigate the possibility of a US launch of a Russian Topaz II space nuclear power system. The primary mission goal would be to demonstrate and evaluate Nuclear Electric Propulsion technology to establish a capability for future civilian and military missions. A preliminary nuclear safety assessment, involving selected safety analyses, was initiated to determine whether or not a space mission could be conducted safely and within budget constraints. This paper describes the preliminary safety assessment results and the nuclear safety program now being established for the Nuclear Electric Propulsion Space Test Program (NEPSTP).

  17. Advanced Fuel/Cladding Testing Capabilities in the ORNL High Flux Isotope Reactor

    SciTech Connect

    Ott, Larry J; Ellis, Ronald James; McDuffee, Joel Lee; Spellman, Donald J; Bevard, Bruce Balkcom

    2009-01-01

    The ability to test advanced fuels and cladding materials under reactor operating conditions in the United States is limited. The Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) and the newly expanded post-irradiation examination (PIE) capability at the ORNL Irradiated Fuels Examination Laboratory provide unique support for this type of advanced fuel/cladding development effort. The wide breadth of ORNL's fuels and materials research divisions provides all the necessary fuel development capabilities in one location. At ORNL, facilities are available from test fuel fabrication, to irradiation in HFIR under either thermal or fast reactor conditions, to a complete suite of PIEs, and to final product disposal. There are very few locations in the world where this full range of capabilities exists. New testing capabilities at HFIR have been developed that allow testing of advanced nuclear fuels and cladding materials under prototypic operating conditions (i.e., for both fast-spectrum conditions and light-water-reactor conditions). This paper will describe the HFIR testing capabilities, the new advanced fuel/cladding testing facilities, and the initial cooperative irradiation experiment that begins this year.

  18. Organic matter and containment of uranium and fissiogenic isotopes at the Oklo natural reactors

    USGS Publications Warehouse

    Nagy, B.; Gauthier-Lafaye, F.; Holliger, P.; Davis, D.W.; Mossman, D.J.; Leventhal, J.S.; Rigali, M.J.; Parnell, J.

    1991-01-01

    SOME of the Precambrian natural fission reactors at Oklo in Gabon contain abundant organic matter1,2, part of which was liquefied at the time of criticality and subsequently converted to a graphitic solid3,4. The liquid organic matter helps to reduce U(VI) to U(IV) from aqueous solutions, resulting in the precipitation of uraninite5. It is known that in the prevailing reactor environments, precipitated uraninite grains incorporated fission products. We report here observations which show that these uraninite crystals were held immobile within the resolidified, graphitic bitumen. Unlike water-soluble (humic) organic matter, the graphitic bituminous organics at Oklo thus enhanced radionu-clide containment. Uraninite encased in solid graphitic matter in the organic-rich reactor zones lost virtually no fissiogenic lan-thanide isotopes. The first major episode of uranium and lead migration was caused by the intrusion of a swarm of adjacent dolerite dykes about 1,100 Myr after the reactors went critical. Our results from Oklo imply that the use of organic, hydrophobic solids such as graphitic bitumen as a means of immobilizing radionuclides in pretreated nuclear waste warrants further investigation. ?? 1991 Nature Publishing Group.

  19. SELECTED STUDIES OF PAST OPERATIONS AT THE ORNL HIGH FLUX ISOTOPE REACTOR

    SciTech Connect

    Chandler, David; Primm, Trent

    2010-01-01

    In response to on-going programs at Oak Ridge National Laboratory, two topics related to past operations of the High Flux Isotope Reactor (HFIR) are being reviewed and include determining whether HFIR fuel can be converted from high enriched uranium (HEU) to low enriched uranium (LEU) and determining whether HFIR beryllium reflectors are discharged as transuranic (TRU) waste. The LEU conversion and TRU waste studies are being performed in accordance with the Reduced Enrichment for Research and Test Reactors program and the Integrated Facility Disposition Project, respectively. While assessing data/analysis needs for LEU conversion such as the fuel cycle length and power needed to maintain the current level of reactor performance, a reduction of about 8% (~200 MWD) in the end-of-cycle exposure for HFIR fuel was observed over the lifetime of the reactor (43 years). The SCALE 6.0 computational system was used to evaluate discharged beryllium reflectors and it was discovered if the reflectors are procured according to the current HFIR standard, discharged reflectors would not be TRU waste, but the removable reflector (closest to core) would become TRU waste approximately 40 years after discharge. However, beryllium reflectors have been fabricated with a greater uranium content than that stipulated in the standard and these reflectors would be discharged as TRU waste.

  20. Evaluation of HFIR (High Flux Isotope Reactor) pressure-vessel integrity considering radiation embrittlement

    SciTech Connect

    Cheverton, R.D.; Merkle, J.G.; Nanstad, R.K.

    1988-04-01

    The High Flux Isotope Reactor (HFIR) pressure vessel has been in service for 20 years, and during this time, radiation damage was monitored with a vessel-material surveillance program. In mid-November 1986, data from this program indicated that the radiation-induced reduction in fracture toughness was greater than expected. As a result, a reevaluation of vessel integrity was undertaken. Updated methods of fracture-mechanics analysis were applied, and an accelerated irradiations program was conducted using the Oak Ridge Research Reactor. Results of these efforts indicate that (1) the vessel life can be extended 10 years if the reactor power level is reduced 15% and if the vessel is subjected to a hydrostatic proof test each year; (2) during the 10-year life extension, significant radiation damage will be limited to a rather small area around the beam tubes; and (3) the greater-than-expected damage rate is the result of the very low neutron flux in the HFIR vessel relative to that in samples of material irradiated in materials-testing reactors (a factor of approx.10/sup 4/ less), that is, a rate effect.

  1. Light Water Reactor Sustainability Program Risk Informed Safety Margin Characterization (RISMC) Advanced Test Reactor Demonstration Case Study

    SciTech Connect

    Curtis Smith; David Schwieder; Cherie Phelan; Anh Bui; Paul Bayless

    2012-08-01

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). Consequently, the ability to better characterize and quantify safety margin holds the key to improved decision making about LWR design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margins management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. The purpose of the RISMC Pathway R&D is to support plant decisions for risk-informed margins management with the aim to improve economics, reliability, and sustain safety of current NPPs. Goals of the RISMC Pathway are twofold: (1) Develop and demonstrate a risk-assessment method coupled to safety margin quantification that can be used by NPP decision makers as part of their margin recovery strategies. (2) Create an advanced “RISMC toolkit” that enables more accurate representation of NPP safety margin. This report describes the RISMC methodology demonstration where the Advanced Test Reactor (ATR) was used as a test-bed for purposes of determining safety margins. As part of the demonstration, we describe how both the thermal-hydraulics and probabilistic safety calculations are integrated and used to quantify margin management strategies.

  2. Reactor safety research section probability of heat exchanger leaks

    SciTech Connect

    Cramer, D.S.; Shine, E.P.; Copeland, W.J.

    1992-02-01

    Three heat exchangers (HXs) were changed out after the December 1991 leak of Process Water to the Savannah River. This leaves 6 of the original 304 stainless steel heat exchangers which will remain in K-Reactor for restart. This report discusses SRS site specific data which were used to estimate the probability of a leak within a one-year period as a function of leak rate and root cause in these six heat exchangers in conjunction with six new heat exchangers presently in service in K-Reactor. Based on several assumptions and statistical models, SRS data indicate that the total probability of a leak occurring during a one-year period in K-Reactor with 6 original (304 stainless steel) and 6 new (316-L or SEA-CURE) heat exchangers, with a leak rate greater than 20, 40 or 90 pounds/hr, is 0.013, 0.004 or 0.0005, respectively.

  3. Advanced reactor safety research. Quarterly report, April-June 1982. Volume 22

    SciTech Connect

    1983-10-01

    Overall objective of this work is to provide NRC a comprehensive data base essential to (1) defining key safety issues, (2) understanding risk-significant accident sequences, (3) developing and verifying models used in safety assessments, and (4) assuring the public that power reactor systems will not be licensed and placed in commercial service in the United States without appropriate consideration being given to their effects on health and safety. This report describes progress in a number of activities dealing with current safety issues relevant to both light water and breeder reactors. The work includes a broad range of experiments to simulate accidental conditions to provide the required data base to understand important accident sequences and to serve as a basis for development and verification of the complex computer simulation models and codes used in accident analysis and licensing reviews. Such a program must include the development of analytical models, verified by experiment, which can be used to predict reactor and safety system performance under a broad variety of abnormal conditions. Current major emphasis is focused on providing information to NRC relevant to (1) its deliberations and decisions dealing with severe LWR accidents, and (2) its safety evaluation of the proposed Clinch River Breeder Reactor.

  4. Advanced Reactor Safety Program – Stakeholder Interaction and Feedback

    SciTech Connect

    Szilard, Ronaldo H.; Smith, Curtis L.

    2014-08-01

    In the Spring of 2013, the Idaho National Laboratory (INL) began discussions with industry stakeholders on how to upgrade our safety analysis capabilities. The focus of these improvements would primarily be on advanced safety analysis capabilities that could help the nuclear industry analyze, understand, and better predict complex safety problems. The current environment in the DOE complex is such that recent successes in high performance computer modeling and simulation could lead the nuclear industry to benefit from these advances, as long as an effort to translate these advances into realistic applications is made. Upgrading the nuclear industry modeling analysis capabilities is a significant effort that would require participation and coordination from all industry segments: research, engineering, vendors, and operations. We focus here on interactions with industry stakeholders to develop sound advanced safety analysis applications propositions that could have a positive impact on industry long term operation, hence advancing the state of nuclear safety.

  5. Coupled high fidelity thermal hydraulics and neutronics for reactor safety simulations

    SciTech Connect

    Vincent A. Mousseau; Hongbin Zhang; Haihua Zhao

    2008-09-01

    This work is a continuation of previous work on the importance of accuracy in the simulation of nuclear reactor safety transients. This work is qualitative in nature and future work will be more quantitative. The focus of this work will be on a simplified single phase nuclear reactor primary. The transient of interest investigates the importance of accuracy related to passive (inherent) safety systems. The transient run here will be an Unprotected Loss of Flow (ULOF) transient. Here the coolant pump is turned off and the un’SCRAM’ed reactor transitions from forced to free convection (Natural circulation). Results will be presented that show the difference that the first order in time truncation physics makes on the transient. The purpose of this document is to illuminate a possible problem in traditional reactor simulation approaches. Detailed studies need to be done on each simulation code for each transient analyzed to determine if the first order truncation physics plays an important role.

  6. Recent developments in Topaz-II reactor safety assessments

    SciTech Connect

    Marshall, A.C. )

    1993-01-01

    In December 1991, the Strategic Defense Initiative Organization (SDIO) decided to investigate the possibility of a US launch of a Russian Topaz-II space nuclear power system. The primary mission goal would be to demonstrate and evaluate nuclear electric propulsion technology to establish a capability for future civilian and military missions. A preliminary nuclear safety analysis was initiated to determine whether or not a space mission could be conducted safely and within budget constraints. This paper describes preliminary safety analysis results and the nuclear safety program now being established for the NEP space test (NEPST).

  7. Preliminary safety calculations to improve the design of Molten Salt Fast Reactor

    SciTech Connect

    Brovchenko, M.; Heuer, D.; Merle-Lucotte, E.; Allibert, M.; Capellan, N.; Ghetta, V.; Laureau, A.

    2012-07-01

    Molten salt reactors are liquid fuel reactors so that they are flexible in operation but very different in the safety approach from solid fuel reactors. This study bears on the specific concept named Molten Salt Fast Reactor (MSFR). Since this new nuclear technology is in development, safety is an essential point to be considered all along the R and D studies. This paper presents the first step of the safety approach: the systematic description of the MSFR, limited here to the main systems surrounding the core. This systematic description is the basis on which we will be able to devise accidental scenarios. Thanks to the negative reactivity feedback coefficient, most accidental scenarios lead to reactor shut down. Because of the decay heat generated in the fuel salt, it must be cooled. After the description of the tools developed to calculate the residual heat, the different contributions are discussed in this study. The decay heat of fission products in the MSFR is evaluated to be low (3% of nominal power), mainly due to the reprocessing that transfers the fission products to the gas reprocessing unit. As a result, the contribution of the actinides is significant (0.5% of nominal power). The unprotected loss of heat sink transients are studied in this paper. It appears that slow transients are favorable (> 1 min) to minimize the temperature increase of the fuel salt. This work will be the basis of further safety studies as well as an essential parameter for the design of the draining system. (authors)

  8. Evaluation of Launch Accident Safety Options for Low-Power Surface Reactors

    NASA Astrophysics Data System (ADS)

    Fung Poon, Cindy; Poston, David I.

    2006-01-01

    Safety options for surface reactors of less than 800 kW (thermal power) are analyzed. The concepts under consideration are heat pipe cooled reactors fueled with either uranium nitride or uranium dioxide. This study investigates the impact of launch accident criteria on the system mass, while ensuring the mechanical integrity and reliability of the system through launch accident scenarios. The four criticality scenarios analyzed for shutdown determination are dry sand surround with reflectors stripped, water submersion on concrete, water submersion with all control drums in, and the nominal shutdown reactor condition. Additionally the following two operational criteria are analyzed: reactor is warm and swelled, and reactor is warm and swelled with one drum in (where swelled includes both thermal mechanical expansion and irradiation induced swelling of the fuel).

  9. Evaluation of Launch Accident Safety Options for Low-Power Surface Reactors

    SciTech Connect

    Fung Poon, Cindy; Poston, David I.

    2006-01-20

    Safety options for surface reactors of less than 800 kW (thermal power) are analyzed. The concepts under consideration are heat pipe cooled reactors fueled with either uranium nitride or uranium dioxide. This study investigates the impact of launch accident criteria on the system mass, while ensuring the mechanical integrity and reliability of the system through launch accident scenarios. The four criticality scenarios analyzed for shutdown determination are dry sand surround with reflectors stripped, water submersion on concrete, water submersion with all control drums in, and the nominal shutdown reactor condition. Additionally the following two operational criteria are analyzed: reactor is warm and swelled, and reactor is warm and swelled with one drum in (where swelled includes both thermal mechanical expansion and irradiation induced swelling of the fuel)

  10. Isotopic evidence for trapped fissiogenic REE and nucleogenic Pu in apatite and Pb evolution at the Oklo natural reactor

    NASA Astrophysics Data System (ADS)

    Horie, Kenji; Hidaka, Hiroshi; Gauthier-Lafaye, François

    2004-01-01

    A part of the boundary layer of reactor zone 10 at the Oklo natural reactor shows a unique petrologic texture, which contains high-grade uraninite and massive apatite concretions. In order to study distribution behavior of fission products around the boundary between the reactor zone and the wall rock and to clarify the relation of migration mechanisms of fission products with geochemical factors, in-situ isotopic analyses of Nd, Sm, Gd, Pb and U in uraninite and apatite from the sample were performed by Sensitive High Resolution Ion Microprobe (SHRIMP). Sm and Gd isotopic ratios of uraninite and apatite show evidence of neutron irradiation with fluence between 4.4-6.8×10 19 n/cm 2. Judging from the isotopic anomalies of Nd and U, the apatite coexisting with the uraninite plays an important role in trapping fissiogenic LREE and nucleogenic 239Pu into the structure. Systematic Pb isotopic data from apatite, uraninite, galena and minium suggest the following chronological interpretations. The apatite formed 1.92±0.01 Ga ago and trapped fissiogenic light REE and nucleogenic 239Pu that migrated from the reactor during the criticality. The uraninite around the boundary between reactor and sandstone dissolved once 1.1˜1.2 Ga ago. Galena grains were formed by U-Pb mobilization in association with the intrusion of dolerite dyke 0.45˜0.83 Ga ago. Minium was derived from recent dissolution of galena under locally oxidizing conditions.

  11. Evaluation of proposed German safety criteria for high-temperature gas-cooled reactors

    SciTech Connect

    Barsell, A.W.

    1980-05-01

    This work reviews proposed safety criteria prepared by the German Bundesministerium des Innern (BMI) for future licensing of gas-cooled high-temperature reactor (HTR) concepts in the Federal Republic of Germany. Comparison is made with US General Design Criteria (GDCs) in 10CFR50 Appendix A and with German light water reactor (LWR) criteria. Implications for the HTR design relative to the US design and safety approach are indicated. Both inherent characteristics and design features of the steam cycle, gas turbine, and process heat concepts are taken into account as well as generic design options such as a pebble bed or prismatic core.

  12. Determination of Light Water Reactor Fuel Burnup with the Isotope Ratio Method

    SciTech Connect

    Gerlach, David C.; Mitchell, Mark R.; Reid, Bruce D.; Gesh, Christopher J.; Hurley, David E.

    2007-11-01

    For the current project to demonstrate that isotope ratio measurements can be extended to zirconium alloys used in LWR fuel assemblies we report new analyses on irradiated samples obtained from a reactor. Zirconium alloys are used for structural elements of fuel assemblies and for the fuel element cladding. This report covers new measurements done on irradiated and unirradiated zirconium alloys, Unirradiated zircaloy samples serve as reference samples and indicate starting values or natural values for the Ti isotope ratio measured. New measurements of irradiated samples include results for 3 samples provided by AREVA. New results indicate: 1. Titanium isotope ratios were measured again in unirradiated samples to obtain reference or starting values at the same time irradiated samples were analyzed. In particular, 49Ti/48Ti ratios were indistinguishably close to values determined several months earlier and to expected natural values. 2. 49Ti/48Ti ratios were measured in 3 irradiated samples thus far, and demonstrate marked departures from natural or initial ratios, well beyond analytical uncertainty, and the ratios vary with reported fluence values. The irradiated samples appear to have significant surface contamination or radiation damage which required more time for SIMS analyses. 3. Other activated impurity elements still limit the sample size for SIMS analysis of irradiated samples. The sub-samples chosen for SIMS analysis, although smaller than optimal, were still analyzed successfully without violating the conditions of the applicable Radiological Work Permit

  13. On the Criticality Safety of Transuranic Sodium Fast Reactor Fuel Transport Casks

    SciTech Connect

    Samuel Bays; Ayodeji Alajo

    2010-05-01

    This work addresses the neutronic performance and criticality safety issues of transport casks for fuel pertaining to low conversion ratio sodium cooled fast reactors, conventionally known as Advanced Burner Reactors. The criticality of a one, three, seven and 19-assembly cask capacity is presented. Both dry “helium” and flooded “water” filled casks are considered. No credit for fuel burnup or fission products was assumed. As many as possible of the conservatisms used in licensing light water reactor universal transport casks were incorporated into this SFR cask criticality design and analysis. It was found that at 7-assemblies or more, adding moderator to the SFR cask increases criticality margin. Also, removal of MAs from the fuel increases criticality margin of dry casks and takes a slight amount of margin away for wet casks. Assuming credit for borated fuel tube liners, this design analysis suggests that as many as 19 assemblies can be loaded in a cask if limited purely by criticality safety. If no credit for boron is assumed, the cask could possibly hold seven assemblies if low conversion ratio fast reactor grade fuel and not breeder reactor grade fuel is assumed. The analysis showed that there is a need for new cask designs for fast reactors spent fuel transportation. There is a potential of modifying existing transportation cask design as the starting point for fast reactor spent fuel transportation.

  14. NUCLEAR REACTOR

    DOEpatents

    Christy, R.F.

    1958-07-15

    A nuclear reactor of the homogeneous liquid fuel type is described wherein the fissionable isotope is suspended or dissolved in a liquid moderator such as water. The reactor core is comprised essentially of a spherical vessel for containing the reactive composition surrounded by a reflector, preferably of beryllium oxide. The reactive composition may be an ordinary water solution of a soluble salt of uranium, the quantity of fissionable isotope in solution being sufficient to provide a critical mass in the vessel. The liquid fuel is stored in a tank of non-crtttcal geometry below the reactor vessel and outside of the reflector and is passed from the tank to the vessel through a pipe connecting the two by air pressure means. Neutron absorbing control and safety rods are operated within slots in the reflector adjacent to the vessel.

  15. Transactions of the twenty-fifth water reactor safety information meeting

    SciTech Connect

    Monteleone, S.

    1997-09-01

    This report contains summaries of papers on reactor safety research to be presented at the 25th Water Reactor Safety Information Meeting at the Bethesda Marriott Hotel in Bethesda, Maryland, October 20--22, 1997. The summaries briefly describe the programs and results of nuclear safety research sponsored by the Office of Nuclear Regulatory Research, US NRC. Summaries of invited papers concerning nuclear safety issues from US government laboratories, the electric utilities, the nuclear industry, and from foreign governments and industry are also included. The summaries have been compiled in one report to provide a basis for meaningful discussion of information exchanged during the course of the meeting, and are given in order of their presentation in each session.

  16. Transactions of the Twenty-First Water Reactor Safety Information Meeting

    SciTech Connect

    Monteleone, S.

    1993-10-01

    This report contains summaries of papers on reactor safety research to be presented at the 21st Water Reactor Safety Information Meeting at the Bethesda Marriott Hotel, Bethesda, Maryland, October 25--27, 1993. The summaries briefly describe the programs and results of nuclear safety research sponsored by the Office of Nuclear Regulatory Research, US NRC. Summaries of invited papers concerning nuclear safety issues from US government laboratories, the electric utilities, the Electric Power Research Institute (EPRI), the nuclear industry, and from foreign governments and industry are also included. The summaries have been compiled in one report to provide a basis for meaningful discussion and information exchange during the course of the meeting and are given in the order of their presentation in each session.

  17. Design Study for a Low-enriched Uranium Core for the High Flux Isotope Reactor, Annual Report for FY 2007

    SciTech Connect

    Primm, Trent; Ellis, Ronald James; Gehin, Jess C; Ilas, Germina; Miller, James Henry; Sease, John D

    2007-11-01

    This report documents progress made during fiscal year 2007 in studies of converting the High Flux Isotope Reactor (HFIR) from highly enriched uranium (HEU) fuel to low enriched uranium fuel (LEU). Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. A high volume fraction U/Mo-in-Al fuel could attain the same neutron flux performance as with the current, HEU fuel but materials considerations appear to preclude production and irradiation of such a fuel. A diffusion barrier would be required if Al is to be retained as the interstitial medium and the additional volume required for this barrier would degrade performance. Attaining the high volume fraction (55 wt. %) of U/Mo assumed in the computational study while maintaining the current fuel plate acceptance level at the fuel manufacturer is unlikely, i.e. no increase in the percentage of plates rejected for non-compliance with the fuel specification. Substitution of a zirconium alloy for Al would significantly increase the weight of the fuel element, the cost of the fuel element, and introduce an as-yet untried manufacturing process. A monolithic U-10Mo foil is the choice of LEU fuel for HFIR. Preliminary calculations indicate that with a modest increase in reactor power, the flux performance of the reactor can be maintained at the current level. A linearly-graded, radial fuel thickness profile is preferred to the arched profile currently used in HEU fuel because the LEU fuel media is a metal alloy foil rather than a powder. Developments in analysis capability and nuclear data processing techniques are underway with the goal of verifying the preliminary calculations of LEU flux performance. A conceptual study of the operational cost of an LEU fuel fabrication facility yielded the conclusion that the annual fuel cost to the HFIR would increase significantly from the current, HEU fuel cycle. Though manufacturing can be accomplished with existing technology

  18. Final report of the HFIR (High Flux Isotope Reactor) irradiation facilities improvement project

    SciTech Connect

    Montgomery, B.H.; Thoms, K.R.; West, C.D.

    1987-09-01

    The High-Flux Isotope Reactor (HFIR) has outstanding neutronics characteristics for materials irradiation, but some relatively minor aspects of its mechanical design severely limited its usefulness for that purpose. In particular, though the flux trap region in the center of the annular fuel elements has a very high neutron flux, it had no provision for instrumentation access to irradiation capsules. The irradiation positions in the beryllium reflector outside the fuel elements also have a high flux; however, although instrumented, they were too small and too few to replace the facilities of a materials testing reactor. To address these drawbacks, the HFIR Irradiation Facilities Improvement Project consisted of modifications to the reactor vessel cover, internal structures, and reflector. Two instrumented facilities were provided in the flux trap region, and the number of materials irradiation positions in the removable beryllium (RB) was increased from four to eight, each with almost twice the available experimental space of the previous ones. The instrumented target facilities were completed in August 1986, and the RB facilities were completed in June 1987.

  19. Reactor safety research programs. Quarterly report, July-September 1983

    SciTech Connect

    Edler, S.K.

    1984-04-01

    Evaluations of nondestructive examination (NDE) techniques and instrumentation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, and examining NDE reliability and probabilistic fracture mechanics. Accelerated pellet-cladding interaction modeling is being conducted to predict the probability of fuel rod failure under normal operating conditions. Experimental data and analytical models are being provided to aid in decision making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Experimental data and validated models are being used to determine a method for evaluating the acceptance of welded or weld-repaired stainless steel piping. Thermal-hydraulic models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. High-temperature materials property tests are being conducted to provide data on severe core damage fuel behavior. Severe fuel damage accident tests are being conducted at the NRU reactor, Chalk River, Canada; and an instrumented fuel assembly irradiation program is being performed at Halden, Norway. Fuel assemblies and analytical support are being provided for experimental programs at other facilities, including the Super Sara Test Program, Ispra, Italy, and experimental programs at the Power Burst Facility.

  20. Reactor safety research programs. Quarterly report, April-June 1982

    SciTech Connect

    Edler, S.K.

    1982-11-01

    This document summarizes work performed by Pacific Northwest Laboratory (PNL) from April 1 through June 30, 1982, for the Division of Accident Evaluation and the Division of Engineering Technology, US Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities.

  1. Reactor safety research programs. Quarterly report, January-March 1982

    SciTech Connect

    Edler, S.K.

    1982-07-01

    This document summarizes work performed by Pacific Northwest Laboratory (PNL) from January 1 through March 31, 1982, for the Division of Accident Evaluation and the Division of Engineering Technology, US Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities.

  2. Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Main report

    SciTech Connect

    Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

    1982-03-01

    Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). The study results are presented in two volumes. Volume 1 (Main Report) contains the results in summary form.

  3. Analysis and modeling of flow blockage-induced steam explosion events in the High-Flux Isotope Reactor

    SciTech Connect

    Taleyarkhan, R.P.; Georgevich, V.; Lestor, C.W.; Gat, U.; Lepard, B.L.; Cook, D.H.; Freels, J.; Chang, S.J.; Luttrell, C.; Gwaltney, R.C.; Kirkpatrick, J.

    1993-06-01

    This paper provides a perspective overview of the analysis and modeling work done to evaluate the threat from steam explosion loads in the High-Flux Isotope Reactor during flow blockage events. The overall workscope included modeling and analysis of core melt initiation, melt propagation, bounding and best-estimate steam explosion energetics, vessel failure from fracture, bolts failure from exceedance of elastic limits, and finally, missile evolution and transport. Aluminum ignition was neglected. Evaluations indicated that a thermally driven steam explosion with more than 65 MJ of energy insertion in the core region over several miliseconds would be needed to cause a sufficiently energetic missile with a capacity to cause early confinement failure. This amounts to about 65% of the HFIR core mass melting and participating in a steam explosion. Conservative melt propagation analyses have indicated that at most only 24% of the HFIR core mass could melt during flow blockage events under full-power conditions. Therefore, it is judged that the HFIR vessel and top head structure will be able to withstand loads generated from thermally driven steam explosions initiated by any credible flow blockage event. A substantial margin to safety was demonstrated.

  4. Analysis and modeling of flow blockage-induced steam explosion events in the High-Flux Isotope Reactor

    SciTech Connect

    Taleyarkhan, R.P.; Georgevich, V.; Lestor, C.W.; Gat, U.; Lepard, B.L.; Cook, D.H.; Freels, J.; Chang, S.J.; Luttrell, C.; Gwaltney, R.C.; Kirkpatrick, J.

    1993-01-01

    This paper provides a perspective overview of the analysis and modeling work done to evaluate the threat from steam explosion loads in the High-Flux Isotope Reactor during flow blockage events. The overall workscope included modeling and analysis of core melt initiation, melt propagation, bounding and best-estimate steam explosion energetics, vessel failure from fracture, bolts failure from exceedance of elastic limits, and finally, missile evolution and transport. Aluminum ignition was neglected. Evaluations indicated that a thermally driven steam explosion with more than 65 MJ of energy insertion in the core region over several miliseconds would be needed to cause a sufficiently energetic missile with a capacity to cause early confinement failure. This amounts to about 65% of the HFIR core mass melting and participating in a steam explosion. Conservative melt propagation analyses have indicated that at most only 24% of the HFIR core mass could melt during flow blockage events under full-power conditions. Therefore, it is judged that the HFIR vessel and top head structure will be able to withstand loads generated from thermally driven steam explosions initiated by any credible flow blockage event. A substantial margin to safety was demonstrated.

  5. Safety and core design of large liquid-metal cooled fast breeder reactors

    NASA Astrophysics Data System (ADS)

    Qvist, Staffan Alexander

    In light of the scientific evidence for changes in the climate caused by greenhouse-gas emissions from human activities, the world is in ever more desperate need of new, inexhaustible, safe and clean primary energy sources. A viable solution to this problem is the widespread adoption of nuclear breeder reactor technology. Innovative breeder reactor concepts using liquid-metal coolants such as sodium or lead will be able to utilize the waste produced by the current light water reactor fuel cycle to power the entire world for several centuries to come. Breed & burn (B&B) type fast reactor cores can unlock the energy potential of readily available fertile material such as depleted uranium without the need for chemical reprocessing. Using B&B technology, nuclear waste generation, uranium mining needs and proliferation concerns can be greatly reduced, and after a transitional period, enrichment facilities may no longer be needed. In this dissertation, new passively operating safety systems for fast reactors cores are presented. New analysis and optimization methods for B&B core design have been developed, along with a comprehensive computer code that couples neutronics, thermal-hydraulics and structural mechanics and enables a completely automated and optimized fast reactor core design process. In addition, an experiment that expands the knowledge-base of corrosion issues of lead-based coolants in nuclear reactors was designed and built. The motivation behind the work presented in this thesis is to help facilitate the widespread adoption of safe and efficient fast reactor technology.

  6. Feasibility and Safety Assessment for Advanced Reactor Concepts Using Vented Fuel

    SciTech Connect

    Klein, Andrew; Matthews, Topher; Lenhof, Renae; Deason, Wesley; Harter, Jackson

    2015-01-16

    Recent interest in fast reactor technology has led to renewed analysis of past reactor concepts such as Gas Fast Reactors and Sodium Fast Reactors. In an effort to make these reactors more economic, the fuel is required to stay in the reactor for extended periods of time; the longer the fuel stays within the core, the more fertile material is converted into usable fissile material. However, as burnup of the fuel-rod increases, so does the internal pressure buildup due to gaseous fission products. In order to reach the 30 year lifetime requirements of some reactor designs, the fuel pins must have a vented-type design to allow the buildup of fission products to escape. The present work aims to progress the understanding of the feasibility and safety issues related to gas reactors that incorporate vented fuel. The work was separated into three different work-scopes: 1. Quantitatively determine fission gas release from uranium carbide in a representative helium cooled fast reactor; 2. Model the fission gas behavior, transport, and collection in a Fission Product Vent System; and, 3. Perform a safety analysis of the Fission Product Vent System. Each task relied on results from the previous task, culminating in a limited scope Probabilistic Risk Assessment (PRA) of the Fission Product Vent System. Within each task, many key parameters lack the fidelity needed for comprehensive or accurate analysis. In the process of completing each task, the data or methods that were lacking were identified and compiled in a Gap Analysis included at the end of the report.

  7. Light Water Reactor Safety Research Program. Semiannual report, April-September 1982

    SciTech Connect

    Berman, M.

    1983-10-01

    This report documents progress made in Light Water Reactor Safety research conducted by Division 6441 in the period from April 1982 to September 1982. The programs conducted under investigation include Core Concrete Interactions, Core Melt-Coolant Interactions, Containment Emergency Sump Performance, the Hydrogen Program, and Combustible Gas in Containment Program. 50 references.

  8. Two-field and drift-flux models with applications to nuclear reactor safety

    SciTech Connect

    Travis, J.R.

    1984-05-01

    The ideas of the two-field (6 equation model) and drift-flux (4 equation model) description of two-phase flows are presented. Several example calculations relating to reactor safety are discussed and comparisons of the numerical results and experimental data are shown to be in good agreement.

  9. Reactor Safety Gap Evaluation of Accident Tolerant Components and Severe Accident Analysis

    SciTech Connect

    Farmer, Mitchell T.; Bunt, R.; Corradini, M.; Ellison, Paul B.; Francis, M.; Gabor, John D.; Gauntt, R.; Henry, C.; Linthicum, R.; Luangdilok, W.; Lutz, R.; Paik, C.; Plys, M.; Rabiti, Cristian; Rempe, J.; Robb, K.; Wachowiak, R.

    2015-01-31

    The overall objective of this study was to conduct a technology gap evaluation on accident tolerant components and severe accident analysis methodologies with the goal of identifying any data and/or knowledge gaps that may exist, given the current state of light water reactor (LWR) severe accident research, and additionally augmented by insights obtained from the Fukushima accident. The ultimate benefit of this activity is that the results can be used to refine the Department of Energy’s (DOE) Reactor Safety Technology (RST) research and development (R&D) program plan to address key knowledge gaps in severe accident phenomena and analyses that affect reactor safety and that are not currently being addressed by the industry or the Nuclear Regulatory Commission (NRC).

  10. Job/task analysis for I C (Instrumentation and Controls) instrument technicians at the High Flux Isotope Reactor

    SciTech Connect

    Duke, L.L.

    1989-09-01

    To comply with Department of Energy Order 5480.XX (Draft), a job/task analysis was initiated by the Maintenance Management Department at Oak Ridge National Laboratory (ORNL). The analysis was applicable to instrument technicians working at the ORNL High Flux Isotope Reactor (HFIR). This document presents the procedures and results of that analysis. 2 refs., 2 figs.

  11. Inherent safety of minimum-burnup breed and burn reactors

    SciTech Connect

    Qvist, S.; Reenspan, E.

    2012-07-01

    Reactors that aim to sustain the breed and burn (B and B) mode of operation at minimum discharge burnup require excellent neutron economy, Minimum-burnup B and B cores are generally large and feature low neutron leakage probability and a hard neutron spectrum. While highly promising fuel cycles can be achieved with such designs, the very same features are pushing the limits of the core's ability to passively respond safely to unprotected accidents. Low leakage minimum-burnup sodium-cooled B and B cores have a large positive coolant void-worth and coolant temperature reactivity coefficient. In this study, the applicability of major approaches for fast reactor void-worth reduction is evaluated specifically for B and B cores. The design, shuffling scheme and performance of a new metallic-fueled, sodium-cooled minimum burnup B and B core, used as basis for the void-worth reduction analysis, is presented. The analysis shows that reactivity control systems based on passive {sup 6}Li injection during temperature excursions are the only option able to provide negative void-worth without significantly increasing the minimum burnup required for sustaining the B and B mode of operation. A new type of lithium expansion module (LEM) system was developed specifically for B and B cores and its effect on core performance is presented. (authors)

  12. Cold source moderator vessel development for the High Flux Isotope Reactor: Thermal-hydraulic studies

    SciTech Connect

    Williams, P.T.; Lucas, A.T.; Wendel, M.W.

    1998-07-01

    A project is underway at Oak Ridge National Laboratory (ORNL) to design, test, and install a cold neutron source facility in the High Flux Isotope Reactor (HFIR). This new cold source employs supercritical hydrogen at cryogenic temperatures both as the medium for neutron moderation and as the working fluid for removal of internally-generated nuclear heating. The competing design goals of minimizing moderator vessel mass and providing adequate structural integrity for the vessel motivated the requirement of detailed multidimensional thermal-hydraulic analyses of the moderator vessel as a critical design subtask. This paper provides a summary review of the HFIR cold source moderator vessel design and a description of the thermal-hydraulic studies that were carried out to support the vessel development.

  13. Design and use of the ORNL HFIR (High Flux Isotope Reactor) pneumatic tube irradiation systems

    SciTech Connect

    Dyer, F.F.; Emery, J.F.; Robinson, L.; Teasley, N.A.

    1987-01-01

    A second pneumatic tube that was recently installed in the High Flux Isotope Reactor for neutron activation analysis is described. Although not yet tested, the system is expected to have a thermal neutron flux of about 1.5 x 10/sup 14/ cm/sup -2/ s/sup -1/. A delayed neutron counter is an integral part of the pneumatic tube, and all of the hardware is present to enable automated use of the counter. The system is operated with a Gould programmable controller that is programmed with an IBM personal computer. Automation of any mode of operation, including the delayed neutron counter, will only require a nominal amount of software development. Except for the lack of a hot cell, the irradiation facility has all of the advantageous features of an older pneumatic tube that has been in operation for 17 years. The design of the system and some applications and methods of operation are described.

  14. High Flux Isotope Reactor Core Analysis-Challenges and Recent Enhancements in Modeling and Simulation

    SciTech Connect

    Ilas, Germina

    2016-01-01

    A concerted effort over the past few years has focused on enhancing the core depletion models for the High Flux Isotope Reactor (HFIR) as part of a comprehensive study for designing a HFIR core that would use low-enriched uranium (LEU) fuel. A HFIR core depletion model that is based on current state-of-the-art methods and nuclear data was needed for use as a reference for the design of an LEU fuel for HFIR and to improve the basis for analyses that support HFIR s current operation with high-enriched uranium (HEU) fuel. This paper summarizes the recent improvements in modeling and simulation for HFIR core analyses, with a focus on core depletion models.

  15. Reactivity Accountability Attributed to Reflector Poisons in the High Flux Isotope Reactor

    SciTech Connect

    Chandler, David; Maldonado, G Ivan; Primm, Trent

    2009-12-01

    The objective of this study is to develop a methodology to predict the reactivity impact as a function of outage time between cycles of 3He, 6Li, and other poisons in the High Flux Isotope Reactor s (HFIR) beryllium reflector. The reactivity worth at startup of the HFIR has been incorrectly predicted in the past after the reactor has been shut-down for long periods of time. The incorrect prediction was postulated to be due to the erroneous calculation of 3He buildup in the beryllium reflector. It is necessary to develop a better estimate of the start-of-cycle symmetric critical control element positions since if the estimated and actual symmetrical critical control element positions differ by more than $1.55 in reactivity (approximately one-half inch in control element startup position), HFIR is to be shutdown and a technical evaluation is performed to resolve the discrepancy prior to restart. 3He is generated and depleted during operation, but during an outage, the depletion of 3He ceases because it is a stable isotope. 3He is born from the radioactive decay of tritium, and thus the concentration of 3He increases during shutdown. SCALE, specifically the TRITON and CSAS5 control modules including the KENO V.A, COUPLE, and ORIGEN functional modules were utilized in this study. An equation relating the down time (td) to the change in symmetric control element position was generated and validated against measurements for approximately 40 HFIR operating cycles. The newly-derived correlation was shown to improve accuracy of predictions for long periods of down time.

  16. Xenon and krypton isotopic anomalies in a natural nuclear reactor and at the epicenter of a nuclear explosion

    SciTech Connect

    Shukolyukov, Yu.A.; Meshik, A.P.; Pravdivtseva, O.V.; Verkhovskii, A.B.

    1988-06-01

    The purpose of this work was to investigate the possibility of the appearance of Xe and Kr isotopic anomalies in a natural reactor owing to migration processes. Four objects of study were used. The first was a soil sample from the crater formed by the first atomic bomb in Alamagordo, New Mexico, in 1945. The second sample consisted of standard uranium resin circa 130 million years old. The third object consisted of samples of uranium black and the fourth object consisted of samples of uranium resins Nos. 1470 and 1348 from the natural reactor in large ore lenses of the Oklo uranium deposit. Isotope ratios from stepwise and thermal annealing, unirradiated as well as irradiated with neutrons, and subjected to strong heating or melting in rock, were determined. The migratory mechanism was found to operate in the natural nuclear reactor in the Oklo uranium deposit.

  17. Tritium management in a fusion reactor--safety, handling and economical issues--

    SciTech Connect

    Tanabe, Tetsuo

    2009-02-19

    In order to establish a D-T fusion reactor as an energy source, it is not enough to have a DT burning plasma, and economical conversion of fusion energy to electricity and/or heat, a large enough margin of tritium breeding and tritium safety must be simultaneously achieved. In particular, handling of huge amount of tritium needs significant efforts to ensure that the radiation dose of radiological workers and of the public is below the limits specified by the International Commission on Radiological Protection (ICRP). In this paper, after the introduction of tritium as a fuel of DT reactors and as a radioisotope of hydrogen, tritium safety issues in fuel cycle and blanket systems are summarized. In particular, in-vessel tritium inventory, the most important and uncertain tritium safety issue, is discussed in detail.

  18. FAFTRCS: an experiment in computerized reactor safety systems

    SciTech Connect

    Chisholm, G.H.

    1985-01-01

    Nuclear Power Plant availability and reliability could be improved by the integration of computers into the control environment. However, computer-based systems are historically viewed as being unreliable. This places a burden upon the designer to demonstrate adequate reliability and availability for the computer. The complexity associated with computers coupled with the manual nature of these demonstrations results in a high cost which typically has been justified for critical applications only. This paper investigates a methodology for automating this process and discusses a project which intends to apply this methodology to design verification and validation for a control system which will be installed and tested in an actual reactor control environment. 7 refs., 4 figs., 1 tab.

  19. Safety in the ARIES-III D- sup 3 He tokamak reactor design

    SciTech Connect

    Herring, J.S.; Dolan, T.J.

    1991-01-01

    The ARIES-3 reactor study is an extensive examination of the viability of a D-{sup 3}He-fueled commercial tokamak power reactor. Because neutrons are produced only through side reactions, the reactor has the significant advantages of reduced activation of the first wall and shield, low afterheat and Class A or C low level waste disposal. Since no tritium is required for operation, no lithium-containing breeding blanket is necessary. A ferritic steel shield behind the first wall protects the magnets from gamma and neutron heating and from radiation damage. The ARIES-3 reactor uses an organic coolant to cool the first wall, shield and divertor. The organic coolant has a low vapor pressure at the operating temperature required for good thermal efficiency. Radiation damage requires processing the coolant to remove and crack radiolytic products that would otherwise foul cooling surfaces. The cracking process produces waste, which must be disposed of through incineration or burial. We estimated the offsite doses due to incineration at five candidate locations. The plasma confinement requirements for a D-{sup 3}He reactor are much more challenging than those for a D-T reactor. Thus, the demands on the divertor are more severe, particularly during a disruption. We explored the potential for isotopically tailoring the 4 mm tungsten layer on the divertor in order to reduce the offsite doses should a tungsten aerosol be released from the reactor after an accident. We also modeled a loss-of-cooling accident in which the organic coolant was burning in order to estimate the amount of radionuclides released from the first wall. We analyzed the disposition of the 20 g/day of tritium that is produced by D-D reactions and removed by the vacuum pumps. For our reference design, the tritium will be burned in the plasma. These results re-emphasize the need for low activation materials and advanced divertor designs, even in reactors using advanced fuels.

  20. Fast reactor safety: proceedings of the international topical meeting. Volume 2. [R

    SciTech Connect

    Not Available

    1985-07-01

    The emphasis of this meeting was on the safety-related aspects of fast reactor design, analysis, licensing, construction, and operation. Relative to past meetings, there was less emphasis on the scientific and technological basis for accident assessment. Because of its broad scope, the meeting attracted 217 attendees from a wide cross section of the design, safety analysis, and safety technology communities. Eight countries and two international organizations were represented. A total of 126 papers were presented, with contributions from the United States, France, Japan, the United Kingdom, Germany, and Italy. Sessions covered in Volume 2 include: safety design concepts; operational transient experiments; analysis of seismic and external events; HCDA-related codes, analysis, and experiments; sodium fires; instrumentation and control/PPS design; whole-core accident analysis codes; and impact of safety design considerations on future LMFBR developments.

  1. The safety designs for the TITAN reversed-field pinch reactor study

    NASA Astrophysics Data System (ADS)

    Wong, C. P. C.; Grotz, S. P.; Blanchard, J.; Cheng, E. T.; Sharafat, S.; Creedon, R. L.; Hoot, C. G.; Najmabadi, F.; Schultz, K. R.

    1988-03-01

    TITAN is a study to investigate the potential of the reversed-field pinch concept as a compact, high-power density energy system. Two reactor concepts were developed, a self-cooled lithium design with vanadium structure and an aqueous solution loop-in-pool design, both operating at 18 MWm. The key safety features of the TITAN-1 lithium-vanadium blanket design are in material selection, fusion power core configuration selection, lithium piping connections and passive lithium drain tank system. Based on these safety features and results from accident evaluation, TITAN-1 can at least be rated as level 3 of safety assurance. For the TITAN-2 aqueous loop-in-pool design, the key passive feature is the complete submersion of the fusion power core and the corresponding primary coolant loop system into a pool of low temperature water. Based on this key safety design feature, the TITAN-2 design can be rated as level 2 of safety assurance.

  2. Neutron flux characterization of a peripheral target position in the High Flux Isotope Reactor.

    PubMed

    Garland, M A; Mirzadeh, S; Alexander, C W; Hirtz, G J; Hobbs, R W; Pertmer, G A; Knapp, F F

    2003-07-01

    The High Flux Isotope Reactor at the Oak Ridge National Laboratory provides the highest steady-state thermal neutron flux in the western world for a wide range of experiments and for isotope production. The highest available fluxes are located in a flux trap region created inside the nested fuel elements. The experimentally determined thermal and the empirically obtained epithermal flux values along the vertical axis of the peripheral target position were fit to cosine curves, with the thermal flux ranging from 1.1 x 10(15)ns(-1)cm(-2) at outer positions to 1.5 x 10(15)ns(-1)cm(-2) at the center. The corresponding epithermal flux ranged from 3.5 x 10(13) to 7.5 x 10(13)ns(-1)cm(-2), respectively. The fast neutron flux (En > or = 0.32 MeV in two positions and En > or = 1.5 MeV in two other positions) was approximately 6 x 10(14)ns(-1)cm(-2), corresponding to a fast to thermal ratio of approximately 0.4.

  3. Extraction of gadolinium from high flux isotope reactor control plates. [Alternative method

    SciTech Connect

    Kohring, M.W.

    1987-04-01

    Gadolinium-153 is an important radioisotope used in the diagnosis of various bone disorders. Recent medical and technical developments in the detection and cure of osteoporosis, a bone disease affecting an estimated 50 million people, have greatly increased the demand for this isotope. The Oak Ridge National Laboratory (ORNL) has produced /sup 153/Gd since 1980 primarily through the irradiation of a natural europium-oxide powder followed by the chemical separation of the gadolinium fraction from the europium material. Due to the higher demand for /sup 153/Gd, an alternative production method to supplement this process has been investigated. This process involves the extraction of gadolinium from the europium-bearing region of highly radioactive, spent control plates used at the High Flux Isotope Reactor (HFIR) with a subsequent re-irradiation of the extracted material for the production of the /sup 153/Gd. Based on the results of experimental and calculational analyses, up to 25 grams of valuable gadolinium (greater than or equal to60% enriched in /sup 152/Gd) resides in the europium-bearing region of the HFIR control components of which 70% is recoverable. At a specific activity yield of 40 curies of /sup 153/Gd for each gram of gadolinium re-irradiated, 700 one-curie sources can be produced from each control plate assayed.

  4. Health and safety plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1996-08-01

    This HASP describes the process for identifying the requirements, written safety documentation, and procedures for protecting personnel involved in the Isotopes Facilities Deactivation Project. Objective of this project is to place 19 former isotope production facilities at ORNL in a safe condition in anticipation of an extended period of minimum surveillance and maintenance.

  5. Reactor physics and safety aspects of various design options of a Russian light water reactor with rock-like fuels

    NASA Astrophysics Data System (ADS)

    Bondarenko, A. V.; Komissarov, O. V.; Kozmenkov, Ya. K.; Matveev, Yu. V.; Orekhov, Yu. I.; Pivovarov, V. A.; Sharapov, V. N.

    2003-06-01

    This paper presents results of analytical studies on weapons grade plutonium incineration in VVER (640) medium size light water reactors using a special composition of rock-like fuel (ROX-fuel) to assure spent fuel long-term storage without its reprocessing. The main goal is to achieve high degree of plutonium incineration in once-through cycle. In this paper we considered two fuel compositions. In both compositions weapons grade plutonium is used as fissile material. Spinel (MgAl 2O 4) is used as the 'preserving' material assuring safe storage of the spent fuel. Besides an inert matrix, the option of rock-like fuel with thorium dioxide was studied. One of principal problems in the realization of the proposed approach is the substantial change of properties of the light water reactor core when passing to the use of the ROX-fuel, in particular: (i) due to the absence of 238U the Doppler effect playing a crucial role in reactor's self-regulation and limiting the consequences of reactivity accidents, decreases significantly, (ii) no fuel breeding on one hand, and the quest to attain the maximum plutonium burnup on the other hand, would result in a drastical change of the fuel assembly power during the lifetime and, as a consequence, the rise in irregularity of the power density of fuel assemblies, (iii) both the control rods worth and dissolved boron worth decrease in view of neutron spectrum hardening brought on by the larger absorption cross-section of plutonium as compared to uranium, (iv) βeff is markedly reduced. All these distinctive features are potentially detrimental to the reactor nuclear safety. The principal objective of this work is that to identify a variant of the fuel composition and the reactor layout, which would permit neutralize the negative effect of the above-mentioned distinctive features.

  6. Propagation of Isotopic Bias and Uncertainty to Criticality Safety Analyses of PWR Waste Packages

    SciTech Connect

    Radulescu, Georgeta

    2010-06-01

    Burnup credit methodology is economically advantageous because significantly higher loading capacity may be achieved for spent nuclear fuel (SNF) casks based on this methodology as compared to the loading capacity based on a fresh fuel assumption. However, the criticality safety analysis for establishing the loading curve based on burnup credit becomes increasingly complex as more parameters accounting for spent fuel isotopic compositions are introduced to the safety analysis. The safety analysis requires validation of both depletion and criticality calculation methods. Validation of a neutronic-depletion code consists of quantifying the bias and the uncertainty associated with the bias in predicted SNF compositions caused by cross-section data uncertainty and by approximations in the calculational method. The validation is based on comparison between radiochemical assay (RCA) data and calculated isotopic concentrations for fuel samples representative of SNF inventory. The criticality analysis methodology for commercial SNF disposal allows burnup credit for 14 actinides and 15 fission product isotopes in SNF compositions. The neutronic-depletion method for disposal criticality analysis employing burnup credit is the two-dimensional (2-D) depletion sequence TRITON (Transport Rigor Implemented with Time-dependent Operation for Neutronic depletion)/NEWT (New ESC-based Weighting Transport code) and the 44GROUPNDF5 crosssection library in the Standardized Computer Analysis for Licensing Evaluation (SCALE 5.1) code system. The SCALE 44GROUPNDF5 cross section library is based on the Evaluated Nuclear Data File/B Version V (ENDF/B-V) library. The criticality calculation code for disposal criticality analysis employing burnup credit is General Monte Carlo N-Particle (MCNP) Transport Code. The purpose of this calculation report is to determine the bias on the calculated effective neutron multiplication factor, k{sub eff}, due to the bias and bias uncertainty associated with

  7. Enhancing VHTR passive safety and economy with thermal radiation based direct reactor auxiliary cooling system

    SciTech Connect

    Zhao, H.; Zhang, H.; Zou, L.; Sun, X.

    2012-07-01

    One of the most important requirements for Gen. IV Very High Temperature Reactor (VHTR) is passive safety. Currently all the gas cooled version of VHTR designs use Reactor Vessel Auxiliary Cooling System (RVACS) for passive decay heat removal. The RVACS can be characterized as a surface-based decay heat removal system. It is especially suitable for smaller power reactors since small systems have relatively larger surface area to volume ratio. However, RVACS limits the maximum achievable power level for modular VHTRs due to the mismatch between the reactor power (proportional to the core volume) and decay heat removal capability (proportional to the vessel surface area). Besides the safety considerations, VHTRs also need to be economical in order to compete with other reactor concepts and other types of energy sources. The limit of decay heat removal capability set by using RVACS has affected the economy of VHTRs. A potential alternative solution is to use a volume-based passive decay heat removal system, called Direct Reactor Auxiliary Cooling Systems (DRACS), to remove or mitigate the limitation on decay heat removal capability. DRACS composes of natural circulation loops with two sets of heat exchangers, one on the reactor side and another on the environmental side. For the reactor side, cooling pipes will be inserted into holes made in the outer or inner graphite reflector blocks. There will be gaps or annular regions formed between these cooling pipes and their corresponding surrounding graphite surfaces. Graphite has an excellent heat conduction property. By taking advantage of this feature, we can have a volume-based method to remove decay heat. The scalability can be achieved, if needed, by employing more rows of cooling pipes to accommodate higher decay heat rates. Since heat can easily conduct through the graphite regions among the holes made for the cooling pipes, those cooling pipes located further away from the active core region can still be very

  8. STATUS OF HIGH FLUX ISOTOPE REACTOR IRRADIATION OF SILICON CARBIDE/SILICON CARBIDE JOINTS

    SciTech Connect

    Katoh, Yutai; Koyanagi, Takaaki; Kiggans, Jim; Cetiner, Nesrin; McDuffee, Joel

    2014-09-01

    Development of silicon carbide (SiC) joints that retain adequate structural and functional properties in the anticipated service conditions is a critical milestone toward establishment of advanced SiC composite technology for the accident-tolerant light water reactor (LWR) fuels and core structures. Neutron irradiation is among the most critical factors that define the harsh service condition of LWR fuel during the normal operation. The overarching goal of the present joining and irradiation studies is to establish technologies for joining SiC-based materials for use as the LWR fuel cladding. The purpose of this work is to fabricate SiC joint specimens, characterize those joints in an unirradiated condition, and prepare rabbit capsules for neutron irradiation study on the fabricated specimens in the High Flux Isotope Reactor (HFIR). Torsional shear test specimens of chemically vapor-deposited SiC were prepared by seven different joining methods either at Oak Ridge National Laboratory or by industrial partners. The joint test specimens were characterized for shear strength and microstructures in an unirradiated condition. Rabbit irradiation capsules were designed and fabricated for neutron irradiation of these joint specimens at an LWR-relevant temperature. These rabbit capsules, already started irradiation in HFIR, are scheduled to complete irradiation to an LWR-relevant dose level in early 2015.

  9. Production of Thorium-229 at the ORNL High Flux Isotope Reactor

    SciTech Connect

    Boll, Rose Ann; Garland, Marc A; Mirzadeh, Saed

    2008-01-01

    The investigation of targeted cancer therapy using -emitters has developed considerably in recent years and clinical trials have generated promising results. In particular, the initial clinical trials for treatment of acute myeloid leukemia have demonstrated the effectiveness of the -emitter 213Bi in killing cancer cells [1]. Pre-clinical studies have also shown the potential application of both 213Bi and its 225Ac parent radionuclide in a variety of cancer systems and targeted radiotherapy [2]. Bismuth-213 is obtained from a radionuclide generator system from decay of the 10-d 225Ac parent, a member of the 7340-y 229Th chain. Currently, 233U is the only viable source for high purity 229Th; however, due to increasing difficulties associated with 233U safeguards, processing additional 233U is presently unfeasible. The recent decision to downblend and dispose of enriched 233U further diminished the prospects for extracting 229Th from 233U stock. Nevertheless, the anticipated growth in demand for 225Ac may soon exceed the levels of 229Th (~40 g or ~8 Ci; ~80 times the current ORNL 229Th stock) present in the aged 233U stockpile. The alternative routes for the production of 229Th, 225Ra and 225Ac include both reactor and accelerator approaches [3]. Here, we describe production of 229Th via neutron transmutation of 226Ra targets in the ORNL High Flux Isotope Reactor (HFIR).

  10. A system analysis computer model for the High Flux Isotope Reactor (HFIRSYS Version 1)

    SciTech Connect

    Sozer, M.C.

    1992-04-01

    A system transient analysis computer model (HFIRSYS) has been developed for analysis of small break loss of coolant accidents (LOCA) and operational transients. The computer model is based on the Advanced Continuous Simulation Language (ACSL) that produces the FORTRAN code automatically and that provides integration routines such as the Gear`s stiff algorithm as well as enabling users with numerous practical tools for generating Eigen values, and providing debug outputs and graphics capabilities, etc. The HFIRSYS computer code is structured in the form of the Modular Modeling System (MMS) code. Component modules from MMS and in-house developed modules were both used to configure HFIRSYS. A description of the High Flux Isotope Reactor, theoretical bases for the modeled components of the system, and the verification and validation efforts are reported. The computer model performs satisfactorily including cases in which effects of structural elasticity on the system pressure is significant; however, its capabilities are limited to single phase flow. Because of the modular structure, the new component models from the Modular Modeling System can easily be added to HFIRSYS for analyzing their effects on system`s behavior. The computer model is a versatile tool for studying various system transients. The intent of this report is not to be a users manual, but to provide theoretical bases and basic information about the computer model and the reactor.

  11. Reviewing real-time performance of nuclear reactor safety systems

    SciTech Connect

    Preckshot, G.G.

    1993-08-01

    The purpose of this paper is to recommend regulatory guidance for reviewers examining real-time performance of computer-based safety systems used in nuclear power plants. Three areas of guidance are covered in this report. The first area covers how to determine if, when, and what prototypes should be required of developers to make a convincing demonstration that specific problems have been solved or that performance goals have been met. The second area has recommendations for timing analyses that will prove that the real-time system will meet its safety-imposed deadlines. The third area has description of means for assessing expected or actual real-time performance before, during, and after development is completed. To ensure that the delivered real-time software product meets performance goals, the paper recommends certain types of code-execution and communications scheduling. Technical background is provided in the appendix on methods of timing analysis, scheduling real-time computations, prototyping, real-time software development approaches, modeling and measurement, and real-time operating systems.

  12. A Qualitative Reactivity and Isotopic Assessment of Fuels for Lead-Alloy Cooled Fast Reactors

    SciTech Connect

    Kevan Weaver; Phil MacDonald

    2004-09-01

    Various methods have been proposed to transmute and thus consume the current inventory of transuranic waste from spent light water reactor (LWR) fuel and plutonium from weapons. We discuss the neutronics performance of nonfertile, fertile metallic, and fertile nitride fuels loaded with 20 to 30 wt% LWR-grade plutonium plus minor actinides and burned in an open-lattice lead-alloy-cooled fast reactor, with an emphasis on the fuel cycle life and spent fuel isotopic content. As a comparison, similar fuel was also studied in a sodium-cooled fast reactor. Our calculations show that the average actinide burn rate for fertile-free fuel is similar for both the sodium- and lead-bismuth-cooled cases, ranging from 1.02 to 1.16 g/MWd, compared to a typical LWR actinide generation rate of 0.303 g/MWd. In addition, our calculations show that the effective full-power days (EFPDs) of operation (or equivalent reactivity-limited burnup) using fertile fuel can extend beyond 20 yr, and the average actinide burn rate is similar for both the sodium- and lead-bismuth-cooled cases, ranging from 0.5 to 0.9 g/MWd. Using the same parameters (i.e., a large pitch-to-diameter ratio, same linear power, and fissile/fertile loading, etc.), the lead-alloy-cooled cases had an EFPD that was 18% to several times greater than their sodium-cooled counterparts. However, tight sodium-cooled lattices are equivalent to the looser lead-alloy lattices in terms of beginning-of-life excess reactivity.

  13. A Qualitative Reactivity and Isotopic Assessment of Fuels for Lead-Alloy-Cooled Fast Reactors

    SciTech Connect

    Weaver, Kevan D.; MacDonald, Philip E.

    2004-09-15

    Various methods have been proposed to transmute and thus consume the current inventory of transuranic waste from spent light water reactor (LWR) fuel and plutonium from weapons. We discuss the neutronics performance of nonfertile, fertile metallic, and fertile nitride fuels loaded with 20 to 30 wt% LWR-grade plutonium plus minor actinides and burned in an open-lattice lead-alloy-cooled fast reactor, with an emphasis on the fuel cycle life and spent fuel isotopic content. As a comparison, similar fuel was also studied in a sodium-cooled fast reactor. Our calculations show that the average actinide burn rate for fertile-free fuel is similar for both the sodium- and lead-bismuth-cooled cases, ranging from 1.02 to 1.16 g/MWd, compared to a typical LWR actinide generation rate of 0.303 g/MWd. In addition, our calculations show that the effective full-power days (EFPDs) of operation (or equivalent reactivity-limited burnup) using fertile fuel can extend beyond 20 yr, and the average actinide burn rate is similar for both the sodium- and lead-bismuth-cooled cases, ranging from 0.5 to 0.9 g/MWd. Using the same parameters (i.e., a large pitch-to-diameter ratio, same linear power, and fissile/fertile loading, etc.), the lead-alloy-cooled cases had an EFPD that was 18% to several times greater than their sodium-cooled counterparts. However, tight sodium-cooled lattices are equivalent to the looser lead-alloy lattices in terms of beginning-of-life excess reactivity.

  14. The use of experimental data in an MTR-type nuclear reactor safety analysis

    NASA Astrophysics Data System (ADS)

    Day, Simon E.

    Reactivity initiated accidents (RIAs) are a category of events required for research reactor safety analysis. A subset of this is unprotected RIAs in which mechanical systems or human intervention are not credited in the response of the system. Light-water cooled and moderated MTR-type ( i.e., aluminum-clad uranium plate fuel) reactors are self-limiting up to some reactivity insertion limit beyond which fuel damage occurs. This characteristic was studied in the Borax and Spert reactor tests of the 1950s and 1960s in the USA. This thesis considers the use of this experimental data in generic MTR-type reactor safety analysis. The approach presented herein is based on fundamental phenomenological understanding and uses correlations in the reactor test data with suitable account taken for differences in important system parameters. Specifically, a semi-empirical approach is used to quantify the relationship between the power, energy and temperature rise response of the system as well as parametric dependencies on void coefficient and the degree of subcooling. Secondary effects including the dependence on coolant flow are also examined. A rigorous curve fitting approach and error assessment is used to quantify the trends in the experimental data. In addition to the initial power burst stage of an unprotected transient, the longer term stability of the system is considered with a stylized treatment of characteristic power/temperature oscillations (chugging). A bridge from the HEU-based experimental data to the LEU fuel cycle is assessed and outlined based on existing simulation results presented in the literature. A cell-model based parametric study is included. The results are used to construct a practical safety analysis methodology for determining reactivity insertion safety limits for a light-water moderated and cooled MTR-type core.

  15. An approach to model reactor core nodalization for deterministic safety analysis

    NASA Astrophysics Data System (ADS)

    Salim, Mohd Faiz; Samsudin, Mohd Rafie; Mamat @ Ibrahim, Mohd Rizal; Roslan, Ridha; Sadri, Abd Aziz; Farid, Mohd Fairus Abd

    2016-01-01

    Adopting good nodalization strategy is essential to produce an accurate and high quality input model for Deterministic Safety Analysis (DSA) using System Thermal-Hydraulic (SYS-TH) computer code. The purpose of such analysis is to demonstrate the compliance against regulatory requirements and to verify the behavior of the reactor during normal and accident conditions as it was originally designed. Numerous studies in the past have been devoted to the development of the nodalization strategy for small research reactor (e.g. 250kW) up to the bigger research reactor (e.g. 30MW). As such, this paper aims to discuss the state-of-arts thermal hydraulics channel to be employed in the nodalization for RTP-TRIGA Research Reactor specifically for the reactor core. At present, the required thermal-hydraulic parameters for reactor core, such as core geometrical data (length, coolant flow area, hydraulic diameters, and axial power profile) and material properties (including the UZrH1.6, stainless steel clad, graphite reflector) have been collected, analyzed and consolidated in the Reference Database of RTP using standardized methodology, mainly derived from the available technical documentations. Based on the available information in the database, assumptions made on the nodalization approach and calculations performed will be discussed and presented. The development and identification of the thermal hydraulics channel for the reactor core will be implemented during the SYS-TH calculation using RELAP5-3D® computer code. This activity presented in this paper is part of the development of overall nodalization description for RTP-TRIGA Research Reactor under the IAEA Norwegian Extra-Budgetary Programme (NOKEBP) mentoring project on Expertise Development through the Analysis of Reactor Thermal-Hydraulics for Malaysia, denoted as EARTH-M.

  16. Generic safety insights for inspection of boiling water reactors

    SciTech Connect

    Higgins, J.C.; Taylor, J.H.; Fresco, A.N.; Hillman, B.M.

    1987-01-01

    As the number of operating nuclear power plants (NPP) increases, safety inspection has increased in importance. However, precisely what is important, and what is not important. What should one focus inspection efforts on. Over the last two years Probabilistic Risk Assessment (PR) techniques have been developed to aid in the inspection process. Broad interest in generic PRA-based methods has arisen in the past year, since only about 25% of the US nuclear power plants have completed PRAs, and also, inspectors want PRA-based tools for these plants. This paper describes the BNL program to develop generic BWR PRA-based inspection insights or inspection guidance designed to be applied to plants without PRAs.

  17. Critical review of the reactor-safety study radiological health effects model. Final report

    SciTech Connect

    Cooper, D.W.; Evans, J.S.; Jacob, N.; Kase, K.R.; Maletskos, C.J.; Robertson, J.B.; Smith, D.G.

    1983-03-01

    This review of the radiological health effects models originally presented in the Reactor Safety Study (RSS) and currently used by the US Nuclear Regulatory Commission (NRC) was undertaken to assist the NRC in determining whether or not to revise the models and to aid in the revision, if undertaken. The models as presented in the RSS and as implemented in the CRAC (Calculations of Reactor Accident Consequences) Code are described and critiqued. The major elements analyzed are those concerning dosimetry, early effects, and late effects. The published comments on the models are summarized, as are the important findings since the publication of the RSS.

  18. Final report-passive safety optimization in liquid sodium-cooled reactors.

    SciTech Connect

    Cahalana, J. E.; Hahn, D.; Nuclear Engineering Division; Korea Atomic Energy Research Inst.

    2007-08-13

    This report summarizes the results of a three-year collaboration between Argonne National Laboratory (ANL) and the Korea Atomic Energy Research Institute (KAERI) to identify and quantify the performance of innovative design features in metallic-fueled, sodium-cooled fast reactor designs. The objective of the work was to establish the reliability and safety margin enhancements provided by design innovations offering significant potential for construction, maintenance, and operating cost reductions. The project goal was accomplished with a combination of advanced model development (Task 1), analysis of innovative design and safety features (Tasks 2 and 3), and planning of key safety experiments (Task 4). Task 1--Computational Methods for Analysis of Passive Safety Design Features: An advanced three-dimensional subassembly thermal-hydraulic model was developed jointly and implemented in ANL and KAERI computer codes. The objective of the model development effort was to provide a high-accuracy capability to predict fuel, cladding, coolant, and structural temperatures in reactor fuel subassemblies, and thereby reduce the uncertainties associated with lower fidelity models previously used for safety and design analysis. The project included model formulation, implementation, and verification by application to available reactor tests performed at EBR-II. Task 2--Comparative Analysis and Evaluation of Innovative Design Features: Integrated safety assessments of innovative liquid metal reactor designs were performed to quantify the performance of inherent safety features. The objective of the analysis effort was to identify the potential safety margin enhancements possible in a sodium-cooled, metal-fueled reactor design by use of passive safety mechanisms to mitigate low-probability accident consequences. The project included baseline analyses using state-of-the-art computational models and advanced analyses using the new model developed in Task 1. Task 3--Safety

  19. Safety Design Strategy for the Advanced Test Reactor Primary Coolant Pump and Motor Replacement Project

    SciTech Connect

    Noel Duckwitz

    2011-06-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

  20. Safety Design Strategy for the Advanced Test Reactor Diesel Bus (E-3) and Switchgear Replacement Project

    SciTech Connect

    Noel Duckwitz

    2011-06-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

  1. Safety Design Strategy for the Advanced Test Reactor Emergency Firewater Injection System Replacement Project

    SciTech Connect

    Noel Duckwitz

    2011-06-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

  2. Plant Modernization with Digital Reactor Protection System Safety System Upgrades at US Nuclear Power Stations

    SciTech Connect

    Heckle, Wm. Lloyd; Bolian, Tricia W.

    2006-07-01

    As the current fleet of nuclear power plants in the US reaches 25+ years of operation, obsolescence is driving many utilities to implement upgrades to both their safety and non-safety-related Instrumentation and Control (I and C) Systems. Digital technology is the predominant replacement technology for these upgrades. Within the last 15 years, digital control systems have been deployed in non-safety- related control applications at many utilities. In addition, a few utilities have replaced small safety-related systems utilizing digital technology. These systems have shown digital technology to be robust, reliable and simpler to maintain. Based upon this success, acceptance of digital technology has gained momentum with both utilities and regulatory agencies. Today, in an effort to extend the operating lives of their nuclear stations and resolve obsolescence of critical components, utilities are now pursuing digital technology for replacement of their primary safety systems. AREVA is leading this effort in the United States with the first significant digital upgrade of a major safety system. AREVA has previously completed upgrades to safety-related control systems emergency diesel engine controls and governor control systems for a hydro station which serves as the emergency power source for a nuclear station. Currently, AREVA is implementing the replacement of both the Reactor Protection System (RPS) and the Engineered Safety Features Actuation System (ESFAS) on all three units at a US PWR site. (authors)

  3. Materials and mechanical design analysis of boron carbide reactor safety rods

    SciTech Connect

    Marra, J.C.

    1992-04-01

    The purpose of this task was to analyze the materials and mechanical design bases for the new boron carbide safety rod. These analyses included examination of the irradiation response of the materials, chemical compatibility of component materials, moisture considerations for the boron carbide pellets and susceptibility of the rod to corrosion under reactor environmental conditions. A number of issues concerning the mechanical behavior were also addressed. These included: safety rod dynamic response in scram scenarios, flexibility and mishandling behavior, and response to thermal excursions associated with gamma heating. A surveillance program aimed at evaluating the integrity of the safety rods following actual operating conditions and justifying life extension for the rods was also proposed. Based on the experimental testing and analyses associated with this task, it is concluded that the boron carbide safety rod design meets the materials and mechanical criteria for successful operational performance.

  4. Materials and mechanical design analysis of boron carbide reactor safety rods. Final report

    SciTech Connect

    Marra, J.C.

    1992-04-01

    The purpose of this task was to analyze the materials and mechanical design bases for the new boron carbide safety rod. These analyses included examination of the irradiation response of the materials, chemical compatibility of component materials, moisture considerations for the boron carbide pellets and susceptibility of the rod to corrosion under reactor environmental conditions. A number of issues concerning the mechanical behavior were also addressed. These included: safety rod dynamic response in scram scenarios, flexibility and mishandling behavior, and response to thermal excursions associated with gamma heating. A surveillance program aimed at evaluating the integrity of the safety rods following actual operating conditions and justifying life extension for the rods was also proposed. Based on the experimental testing and analyses associated with this task, it is concluded that the boron carbide safety rod design meets the materials and mechanical criteria for successful operational performance.

  5. Study of Cost Effective Large Advanced Pressurized Water Reactors that Employ Passive Safety Features

    SciTech Connect

    Winters, J. W.; Corletti, M. M.; Hayashi, Y.

    2003-11-12

    A report of DOE sponsored portions of AP1000 Design Certification effort. On December 16, 1999, The United States Nuclear Regulatory Commission issued Design Certification of the AP600 standard nuclear reactor design. This culminated an 8-year review of the AP600 design, safety analysis and probabilistic risk assessment. The AP600 is a 600 MWe reactor that utilizes passive safety features that, once actuated, depend only on natural forces such as gravity and natural circulation to perform all required safety functions. These passive safety systems result in increased plant safety and have also significantly simplified plant systems and equipment, resulting in simplified plant operation and maintenance. The AP600 meets NRC deterministic safety criteria and probabilistic risk criteria with large margins. A summary comparison of key passive safety system design features is provided in Table 1. These key features are discussed due to their importance in affecting the key thermal-hydraulic phenomenon exhibited by the passive safety systems in critical areas. The scope of some of the design changes to the AP600 is described. These changes are the ones that are important in evaluating the passive plant design features embodied in the certified AP600 standard plant design. These design changes are incorporated into the AP1000 standard plant design that Westinghouse is certifying under 10 CFR Part 52. In conclusion, this report describes the results of the representative design certification activities that were partially supported by the Nuclear Energy Research Initiative. These activities are unique to AP1000, but are representative of research activities that must be driven to conclusion to realize successful licensing of the next generation of nuclear power plants in the United States.

  6. Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Appendices

    SciTech Connect

    Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

    1982-03-01

    Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and EMTOMB (entombment). The study results are presented in two volumes. Volume 2 (Appendices) contains the detailed data that support the results given in Volume 1, including unit-component data.

  7. Testing of the Multi-Application Small Light Water Reactor (MASLWR) Passive Safety Systems

    SciTech Connect

    Reyes, Jose N.; Groome, John; Woods, Brian G.; Young, Eric; Abel, Kent; Yao, You; Yeon Jong Yoo

    2006-07-01

    Experimental thermal hydraulic research has been conducted at Oregon State University for the purpose of assessing the performance of a new reactor design concept, the Multi-application Small Light Water Reactor (MASLWR). MASLWR is a pressurized light water reactor that uses natural circulation in both normal and transient operation. The purpose of the OSU MASLWR Test Facility is to assess the operation of the MASLWR under normal full pressure and full temperature conditions and to assess the passive safety systems under transient conditions. The data generated by the testing program will be used to assess computer code calculations and to provide a better understanding of the thermal-hydraulic phenomena in the design of the MASLWR NSSS. During this testing program, four tests were conducted at the OSU MASLWR Test Facility. These tests included one design basis accident and one beyond design basis accident. Plant start up, normal operation and shut down evolutions were also examined. (authors)

  8. Shielding calculation and criticality safety analysis of spent fuel transportation cask in research reactors.

    PubMed

    Mohammadi, A; Hassanzadeh, M; Gharib, M

    2016-02-01

    In this study, shielding calculation and criticality safety analysis were carried out for general material testing reactor (MTR) research reactors interim storage and relevant transportation cask. During these processes, three major terms were considered: source term, shielding, and criticality calculations. The Monte Carlo transport code MCNP5 was used for shielding calculation and criticality safety analysis and ORIGEN2.1 code for source term calculation. According to the results obtained, a cylindrical cask with body, top, and bottom thicknesses of 18, 13, and 13 cm, respectively, was accepted as the dual-purpose cask. Furthermore, it is shown that the total dose rates are below the normal transport criteria that meet the standards specified. PMID:26720262

  9. Shielding calculation and criticality safety analysis of spent fuel transportation cask in research reactors.

    PubMed

    Mohammadi, A; Hassanzadeh, M; Gharib, M

    2016-02-01

    In this study, shielding calculation and criticality safety analysis were carried out for general material testing reactor (MTR) research reactors interim storage and relevant transportation cask. During these processes, three major terms were considered: source term, shielding, and criticality calculations. The Monte Carlo transport code MCNP5 was used for shielding calculation and criticality safety analysis and ORIGEN2.1 code for source term calculation. According to the results obtained, a cylindrical cask with body, top, and bottom thicknesses of 18, 13, and 13 cm, respectively, was accepted as the dual-purpose cask. Furthermore, it is shown that the total dose rates are below the normal transport criteria that meet the standards specified.

  10. Radiation safety assessment of a system of small reactors for distributed energy.

    PubMed

    Odano, N; Ishida, T

    2005-01-01

    A passively safe small reactor for a distributed energy system, PSRD, is an integral type of light-water reactor with a thermal output of 100 or 300 MW aimed to be used for supplying district heat, electricity to small grids, and so on. Candidate locations for the PSRD as a distributed energy source are on-ground, deep underground, and in a seaside pit in the vicinity of the energy consumption area. Assessments of the radiation safety of a PSRD were carried out for three cases corresponding to normal operation, shutdown and a hypothetical postulated accident for several siting candidates. Results of the radiation safety assessment indicate that the PSRD design has sufficient shielding performance and capability and that the exposure to the general public is very low in the case of a hypothetical accident.

  11. Model development experimental programs as part of the NRC reactor safety research

    SciTech Connect

    Young, M.W.; Hsu, Y.Y.

    1982-07-01

    Experimental and model development programs have a key impact on the overall success of code calculational capabilities in addition to supporting regulatory and licensing decisions. The reactor safety research effort undertaken by the Nuclear Regulatory Commission (NRC) has as one of several objectives to obtain experimental data for model and code development and code assessment. This article highlights recent research sponsored under the thermal-hydraulic model-development experimental programs at NRC.

  12. Application of software engineering to development of reactor-safety codes

    SciTech Connect

    Wilburn, N P; Niccoli, L G

    1980-11-01

    As a result of the drastically increasing cost of software and the lack of an engineering approach, the technology of Software Engineering is being developed. Software Engineering provides an answer to the increasing cost of developing and maintaining software. It has been applied extensively in the business and aerospace communities and is just now being applied to the development of scientific software and, in particular, to the development of reactor safety codes at HEDL.

  13. Enhancing VHTR Passive Safety and Economy with Thermal Radiation Based Direct Reactor Auxiliary Cooling System

    SciTech Connect

    Haihua Zhao; Hongbin Zhang; Ling Zou; Xiaodong Sun

    2012-06-01

    One of the most important requirements for Gen. IV Very High Temperature Reactor (VHTR) is passive safety. Currently all the gas cooled version of VHTR designs use Reactor Vessel Auxiliary Cooling System (RVACS) for passive decay heat removal. The decay heat first is transferred to the core barrel by conduction and radiation, and then to the reactor vessel by thermal radiation and convection; finally the decay heat is transferred to natural circulated air or water systems. RVACS can be characterized as a surface based decay heat removal system. The RVACS is especially suitable for smaller power reactors since small systems have relatively larger surface area to volume ratio. However, RVACS limits the maximum achievable power level for modular VHTRs due to the mismatch between the reactor power (proportional to volume) and decay heat removal capability (proportional to surface area). When the relative decay heat removal capability decreases, the peak fuel temperature increases, even close to the design limit. Annular core designs with inner graphite reflector can mitigate this effect; therefore can further increase the reactor power. Another way to increase the reactor power is to increase power density. However, the reactor power is also limited by the decay heat removal capability. Besides the safety considerations, VHTRs also need to be economical in order to compete with other reactor concepts and other types of energy sources. The limit of decay heat removal capability set by using RVACS has affected the economy of VHTRs. A potential alternative solution is to use a volume-based passive decay heat removal system, called Direct Reactor Auxiliary Cooling Systems (DRACS), to remove or mitigate the limitation on decay heat removal capability. DRACS composes of natural circulation loops with two sets of heat exchangers, one on the reactor side and another on the environment side. For the reactor side, cooling pipes will be inserted into holes made in the outer or

  14. Restart of K-Reactor, Savannah River Site: Safety evaluation report

    SciTech Connect

    Not Available

    1991-04-01

    This Safety Evaluation Report (SER) focuses on those issues required to support the restart of the K-Reactor at the Savannah River Plant. This SER provides the safety criteria for restart and documents the results of the staff reviews of the DOE and operating contractor activities to meet these criteria. To develop the restart criteria for the issues discussed in this SER, the Savannah River Restart Office and Savannah River Special Projects Office staffs relied, when possible, on commercial industry codes and standards and on NRC requirements and guidelines for the commercial nuclear industry. However, because of the age and uniqueness of the Savannah River reactors, criteria for the commercial plants were not always applicable. In these cases, alternate criteria were developed. The restart criteria applicable to each of the issues are identified in the safety evaluations for each issue. The restart criteria identified in this report are intended to apply only to restart of the Savannah River reactors. Following the development of the acceptance criteria, the DOE staff and their support contractors evaluated the results of the DOE and operating contractor (WSRC) activities to meet these criteria. The results of those evaluations are documented in this report. Deviations or failures to meet the requirements are either justified in the report or carried as open or confirmatory items to be completed and evaluated in supplements to this report before restart. 62 refs., 1 fig.

  15. Experimental and design experience with passive safety features of liquid metal reactors

    SciTech Connect

    Lucoff, D.M.; Waltar, A.E.; Sackett, J.I.; Salvatores, M.; Aizawa, K.

    1992-10-01

    Liquid metal cooled reactors (LMRs) have already been demonstrated to be robust machines. Many reactor designers now believe that it is possible to include in this technology sufficient passive safety that LMRs would be able to survive loss of flow, loss of heat sink, and transient overpower events, even if the plant protective system fails completely and do so without damage to the core. Early whole-core testing in Rapsodie, EBR-II. and FFTF indicate such designs may be possible. The operational safety testing program in EBR-II is demonstrating benign response of the reactor to a full range of controls failures. But additional testing is needed if transient core structural response under major accident conditions is to be properly understood. The proposed international Phase IIB passive safety tests in FFTF, being designed with a particular emphasis on providing, data to understand core bowing extremes, and further tests planned in EBR-II with processed IFR fuel should provide a substantial and unique database for validating the computer codes being used to simulate postulated accident conditions.

  16. Experimental and design experience with passive safety features of liquid metal reactors

    SciTech Connect

    Lucoff, D.M.; Waltar, A.E. ); Sackett, J.I. ); Aizawa, K. )

    1992-07-01

    Liquid metal cooled reactors (LMRs) have already been demonstrated to be robust machines. Many reactor designers now believe that it is possible to include in this technology sufficient passive safety that LMRs would be able to survive loss of flow, loss of heat sink, and transient overpower events, even if the plant protective system fails completely--and do so without damage to the core. Early whole-core testing in Rapsodie, EBR-II, and FFTF indicate such designs may be possible. The operational safety testing program in EBR-II is demonstrating benign response of the reactor to a full range on controls failures. But additional testing is needed if transient core structural response under major accident conditions is to be properly understood. The proposed international Phase IIB passive safety tests in FFTF, being designed with a particular emphasis on providing data to understand core bowing extremes, and further tests planned in EBR-II with processed IFR fuel should provide a substantial and unique database for validating the computer codes being used to simulate postulated accident conditions.

  17. Simulating High Flux Isotope Reactor Core Thermal-Hydraulics via Interdimensional Model Coupling

    SciTech Connect

    Travis, Adam R

    2014-05-01

    A coupled interdimensional model is presented for the simulation of the thermal-hydraulic characteristics of the High Flux Isotope Reactor core at Oak Ridge National Laboratory. The model consists of two domains a solid involute fuel plate and the surrounding liquid coolant channel. The fuel plate is modeled explicitly in three-dimensions. The coolant channel is approximated as a twodimensional slice oriented perpendicular to the fuel plate s surface. The two dimensionally-inconsistent domains are linked to one another via interdimensional model coupling mechanisms. The coupled model is presented as a simplified alternative to a fully explicit, fully three-dimensional model. Involute geometries were constructed in SolidWorks. Derivations of the involute construction equations are presented. Geometries were then imported into COMSOL Multiphysics for simulation and modeling. Both models are described in detail so as to highlight their respective attributes in the 3D model, the pursuit of an accurate, reliable, and complete solution; in the coupled model, the intent to simplify the modeling domain as much as possible without affecting significant alterations to the solution. The coupled model was created with the goal of permitting larger portions of the reactor core to be modeled at once without a significant sacrifice to solution integrity. As such, particular care is given to validating incorporated model simplifications. To the greatest extent possible, the decrease in solution time as well as computational cost are quantified versus the effects such gains have on the solution quality. A variant of the coupled model which sufficiently balances these three solution characteristics is presented alongside the more comprehensive 3D model for comparison and validation.

  18. Effect to the High Flux Isotope Reactor by the nearby heavy load drop

    SciTech Connect

    Chang, S.J.

    1996-06-01

    In this calculation, GE-2000 cask of 25,000 lbs is assumed to drop from a height of 20-ft above the bottom of the High Flux Isotope Reactor (HFIR) pool slab with end velocity of 430 in/sec at the loading station. The consequences of the dynamic impact to the bottom slab of the pool and to the nearby HFIR reactor vessel are analyzed by applying ABAQUS computer code. The results show that both HFIR vessel structure and its supporting legs are subjected to elastic disturbances only and will not be damaged. The bottom slab of the pool will be damaged. The plastic strain that will cause failure to the concrete slab at the point of impact extends a distance approximately half of the slab thickness of 36 inches. The plastic strain of failure for concrete is assumed to be 0.45%. The velocity response spectrum at the concrete slab next to HFIR vessel as a result of the impact is also obtained. The maximum spectral velocity is approximately 10 in/sec. It is approximately equal to the maximum magnitude of the Oak Ridge velocity spectrum formulated recently with 0.26g peak ground acceleration and 5% damping. However, the peak ground acceleration that is associated with the impact generated response spectrum curve can be as much as 20g. The high frequency acceleration waves are generated in impact problems. It is concluded that the damage caused by heavy load drop at loading station is controlled by the slab damage. The damage of slab will not be severe enough to cause the leakage of pool water.

  19. Studies of Plutonium-238 Production at the High Flux Isotope Reactor

    SciTech Connect

    Lastres, Oscar; Chandler, David; Jarrell, Joshua J; Maldonado, G. Ivan

    2011-01-01

    The High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) is a versatile 85 MW{sub th}, pressurized, light water-cooled and -moderated research reactor. The core consists of two fuel elements, an inner fuel element (IFE) and an outer fuel element (OFE), each constructed of involute fuel plates containing high-enriched-uranium (HEU) fuel ({approx}93 wt% {sup 235}U/U) in the form of U{sub 3}O{sub 8} in an Al matrix and encapsulated in Al-6061 clad. An over-moderated flux trap is located in the center of the core, a large beryllium reflector is located on the outside of the core, and two control elements (CE) are located between the fuel and the reflector. The flux trap and reflector house numerous experimental facilities which are used for isotope production, material irradiation, and cold/thermal neutron scattering. Over the past five decades, the US Department of Energy (DOE) and its agencies have been producing radioisotope power systems used by the National Aeronautics and Space Administration (NASA) for unmanned, long-term space exploration missions. Plutonium-238 is used to power Radioisotope Thermoelectric Generators (RTG) because it has a very long half-life (t{sub 1/2} {approx} 89 yr.) and it generates about 0.5 watts/gram when it decays via alpha emission. Due to the recent shortage and uncertainty of future production, the DOE has proposed a plan to the US Congress to produce {sup 238}Pu by irradiating {sup 237}Np as early as in fiscal year 2011. An annual production rate of 1.5 to 2.0 kg of {sup 238}Pu is expected to satisfy these needs and could be produced in existing national nuclear facilities like HFIR and the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). Reactors at the Savannah River Site were used in the past for {sup 238}Pu production but were shut down after the last production in 1988. The nation's {sup 237}Np inventory is currently stored at INL. A plan for producing {sup 238}Pu at US research reactor

  20. Code development incorporating environmental, safety, and economic aspects of fusion reactors (FY 89--91). Final report

    SciTech Connect

    Ho, S.K.; Fowler, T.K.; Holdren, J.P.

    1991-11-01

    This report discusses the following aspects of Fusion reactors.: Activation Analysis; Tritium Inventory; Environmental and Safety Indices and Their Graphical Representation; Probabilistic Risk Assessment (PRA) and Decision Analysis; Plasma Burn Control -- Application to ITER; and Other Applications.

  1. A concept of JAERI passive safety light water reactor system (JPSR)

    SciTech Connect

    Murao, Y.; Araya, F.; Iwamura, T.

    1995-09-01

    The Japan Atomic Energy Research Institute (JAERI) proposed a passive safety reactor system concept, JPSR, which was developed for reducing manpower in operation and maintenance and influence of human errors on reactor safety. In the concept the system was extremely simplified. The inherent matching nature of core generation and heat removal rate within a small volume change of the primary coolant is introduced by eliminating chemical shim and adopting in-vessel control rod drive mechanism units, a low power density core and once-through steam generators. In order to simplify the system, a large pressurizer, canned pumps, passive engineered-safety-features-system (residual heat removal system and coolant injection system) are adopted and the total system can be significantly simplified. The residual heat removal system is completely passively actuated in non-LOCAs and is also used for depressurization of the primary coolant system to actuate accumulators in small break LOCAs and reactor shutdown cooling system in normal operation. All of systems for nuclear steam supply system are built in the containment except for the air coolers as a the final heat sink of the passive residual heat removal system. Accordingly the reliability of the safety system and the normal operation system is improved, since most of residual heat removal system is always working and a heat sink for normal operation system is {open_quotes}safety class{close_quotes}. In the passive coolant injection system, depressurization of the primary cooling system by residual heat removal system initiates injection from accumulators designed for the MS-600 in medium pressure and initiates injection from the gravity driven coolant injection pool at low pressure. Analysis with RETRAN-02/MOD3 code demonstrated the capability of passive load-following, self-power-controllability, cooling and depressurization.

  2. Safety apparatus for nuclear reactor to prevent structural damage from overheating by core debris

    DOEpatents

    Gabor, John D.; Cassulo, John C.; Pedersen, Dean R.; Baker Jr., Louis

    1986-07-01

    The invention teaches safety apparatus that can be included in a nuclear reactor, either when newly fabricated or as a retrofit add-on, that will minimize proliferation of structural damage to the reactor in the event the reactor is experiencing an overheating malfunction whereby radioactive nuclear debris might break away from and be discharged from the reactor core. The invention provides a porous bed or sublayer on the lower surface of the reactor containment vessel so that the debris falls on and piles up on the bed. Vapor release elements upstand from the bed in some laterally spaced array. Thus should the high heat flux of the debris interior vaporize the coolant at that location, the vaporized coolant can be vented downwardly to and laterally through the bed to the vapor release elements and in turn via the release elements upwardly through the debris. This minimizes the pressure buildup in the debris and allows for continuing infiltration of the liquid coolant into the debris interior.

  3. Safety apparatus for nuclear reactor to prevent structural damage from overheating by core debris

    DOEpatents

    Gabor, J.D.; Cassulo, J.C.; Pedersen, D.R.; Baker, L. Jr.

    The invention teaches safety apparatus that can be included in a nuclear reactor, either when newly fabricated or as a retrofit add-on, that will minimize proliferation of structural damage to the reactor in the event the reactor is experiencing an overheating malfunction whereby radioactive nuclear debris might break away from and can be discharged from the reactor core. The invention provides a porous bed of sublayer on the lower surface of the reactor containment vessel so that the debris falls on and piles up on the bed. Vapor release elements upstand from the bed in some laterally spaced array. Thus should the high heat flux of the debris interior vaporize the coolant at that location, the vaporized coolant can be vented downwardly to and laterally through the bed to the vapor release elements and in turn via the release elements upwardly through the debris. This minimizes the pressure buildup in the debris and allows for continuing infiltration of the liquid coolant into the debris interior.

  4. Safety apparatus for nuclear reactor to prevent structural damage from overheating by core debris

    DOEpatents

    Gabor, John D.; Cassulo, John C.; Pedersen, Dean R.; Baker, Jr., Louis

    1986-01-01

    The invention teaches safety apparatus that can be included in a nuclear reactor, either when newly fabricated or as a retrofit add-on, that will minimize proliferation of structural damage to the reactor in the event the reactor is experiencing an overheating malfunction whereby radioactive nuclear debris might break away from and be discharged from the reactor core. The invention provides a porous bed or sublayer on the lower surface of the reactor containment vessel so that the debris falls on and piles up on the bed. Vapor release elements upstand from the bed in some laterally spaced array. Thus should the high heat flux of the debris interior vaporize the coolant at that location, the vaporized coolant can be vented downwardly to and laterally through the bed to the vapor release elements and in turn via the release elements upwardly through the debris. This minimizes the pressure buildup in the debris and allows for continuing infiltration of the liquid coolant into the debris interior.

  5. GROWTH OF THE INTERNATIONAL CRITICALITY SAFETY AND REACTOR PHYSICS EXPERIMENT EVALUATION PROJECTS

    SciTech Connect

    J. Blair Briggs; John D. Bess; Jim Gulliford

    2011-09-01

    Since the International Conference on Nuclear Criticality Safety (ICNC) 2007, the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) have continued to expand their efforts and broaden their scope. Eighteen countries participated on the ICSBEP in 2007. Now, there are 20, with recent contributions from Sweden and Argentina. The IRPhEP has also expanded from eight contributing countries in 2007 to 16 in 2011. Since ICNC 2007, the contents of the 'International Handbook of Evaluated Criticality Safety Benchmark Experiments1' have increased from 442 evaluations (38000 pages), containing benchmark specifications for 3955 critical or subcritical configurations to 516 evaluations (nearly 55000 pages), containing benchmark specifications for 4405 critical or subcritical configurations in the 2010 Edition of the ICSBEP Handbook. The contents of the Handbook have also increased from 21 to 24 criticality-alarm-placement/shielding configurations with multiple dose points for each, and from 20 to 200 configurations categorized as fundamental physics measurements relevant to criticality safety applications. Approximately 25 new evaluations and 150 additional configurations are expected to be added to the 2011 edition of the Handbook. Since ICNC 2007, the contents of the 'International Handbook of Evaluated Reactor Physics Benchmark Experiments2' have increased from 16 different experimental series that were performed at 12 different reactor facilities to 53 experimental series that were performed at 30 different reactor facilities in the 2011 edition of the Handbook. Considerable effort has also been made to improve the functionality of the searchable database, DICE (Database for the International Criticality Benchmark Evaluation Project) and verify the accuracy of the data contained therein. DICE will be discussed in separate papers at ICNC 2011. The status of the ICSBEP and the IRPh

  6. Tritium trapping in silicon carbide in contact with solid breeder under high flux isotope reactor irradiation

    SciTech Connect

    H. Katsui; Y. Katoh; A. Hasegawa; M. Shimada; Y. Hatano; T. Hinoki; S. Nogami; T. Tanaka; S. Nagata; T. Shikama

    2013-11-01

    The trapping of tritium in silicon carbide (SiC) injected from ceramic breeding materials was examined via tritium measurements using imaging plate (IP) techniques. Monolithic SiC in contact with ternary lithium oxide (lithium titanate and lithium aluminate) as a ceramic breeder was irradiated in the High Flux Isotope Reactor (HFIR) in Oak Ridge, Tennessee, USA. The distribution of photo-stimulated luminescence (PSL) of tritium in SiC was successfully obtained, which separated the contribution of 14C ß-rays to the PSL. The tritium incident from ceramic breeders was retained in the vicinity of the SiC surface even after irradiation at 1073 K over the duration of ~3000 h, while trapping of tritium was not observed in the bulk region. The PSL intensity near the SiC surface in contact with lithium titanate was higher than that obtained with lithium aluminate. The amount of the incident tritium and/or the formation of a Li2SiO3 phase on SiC due to the reaction with lithium aluminate under irradiation likely were responsible for this observation.

  7. Scientific Upgrades at the Oak Ridge National Laboratory High Flux Isotope Reactor

    SciTech Connect

    Selby, Douglas L; Jones, Amy; Crow, Lowell

    2012-01-01

    The United States Department of Energy is sponsoring a number of projects that will provide scientific upgrades to the neutron science facilities associated with the High Flux Isotope Reactor (HFIR) located at Oak Ridge National Laboratory. Funding for the first upgrade project was initiated in 1996 and all presently identified upgrade projects are expected to be completed by the end of 2003. The upgrade projects include: (1) larger beam tubes, (2) a new monochromator drum for the HB-1 beam line, (3) a new HB-2 beam line system that includes one thermal guide and a new monochromator drum, (4) new instruments for the HB-2 beamline, (5) a new monochromator drum for the HB-3 beam line, (6) a supercritical hydrogen cold source system to be retrofitted into the HB-4 beam tube, (7) a 3.5 kW refrigeration system at 20 K to support the cold source and a new building to house it, (8) a new HB-4 beam line system composed of four cold neutron guides with various mirror coatings and associated shielding, (9) a number of new instruments for the cold beams including two new SANS instruments, and (10) construction of support buildings. This paper provides a short summary of these projects including their present status and schedule.

  8. Scientific Upgrades at the High Flux Isotope Reactor at Oak Ridge National Laboratory

    SciTech Connect

    Selby, Douglas L; Smith, Gregory Scott

    2010-01-01

    The United States Department of Energy is sponsoring a number of projects that will provide scientific upgrades to the neutron science facilities associated with the high Flux Isotope Reactor (HFIR) located at Oak Ridge National Laboratory. Funding for the first upgrade project was initiated in 1996 and all presently identified upgrade projects are expected to be completed by the end of 2003. The upgrade projects include: (1) larger beam tubes, (2) a new monochromator drum for the HB-1 beam line, (3) a new HB-2 beam line system that includes one thermal guide and a new monochromator drum, (4) new instruments for the HB-2 beamline, (5) a new monochromator drum for the HB-3 beam line, (6) a supercritical hydrogen cold source system to be retrofitted into the HB-4 beam tube, (7) a 3.5 kW refrigeration system at 20 K to support the cold source and a new building to house it, (8) a new HB-4 beam line system composed of four cold neutron guides with various mirror coatings and associated shielding, (9) a number of new instruments for the cold beams including two new SANS instruments, and (10) construction of support buildings. This paper provides a short summary of these projects including their present status and schedule.

  9. The HB-2D Polarized Neutron Development Beamline at the High Flux Isotope Reactor

    NASA Astrophysics Data System (ADS)

    Crow, Lowell; Hamilton, WA; Zhao, JK; Robertson, JL

    2016-09-01

    The Polarized Neutron Development beamline, recently commissioned at the HB-2D position on the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory, provides a tool for development and testing of polarizers, polarized neutron devices, and prototyping of polarized neutron techniques. With available monochromators including pyrolytic graphite and polarizing enriched Fe-57 (Si), the instrument has operated at 4.25 and 2.6 Å wavelengths, using crystal, supermirror, or He-3 polarizers and analyzers in various configurations. The Neutron Optics and Development Team has used the beamline for testing of He-3 polarizers for use at other HFIR and Spallation Neutron Source (SNS) instruments, as well as a variety of flipper devices. Recently, we have acquired new supermirror polarizers which have improved the instrument performance. The team and collaborators also have continuing demonstration experiments of spin-echo focusing techniques, and plans to conduct polarized diffraction measurements. The beamline is also used to support a growing use of polarization techniques at present and future instruments at SNS and HFIR.

  10. Safety Evaluation for Packaging for the N Reactor/single pass reactor fuel characterization shipments

    SciTech Connect

    Stevens, P.F.

    1994-10-13

    The purpose of this Safety Evaluation for Packaging (SEP) is to authorize the ChemNuclear CNS 1-13G packaging to ship samples of irradiated fuel elements from the 100 K East and 100 K West basins to the Postirradiation Testing Laboratory (PTL) in support of the spent nuclear fuel characterization effort. It also authorizes the return of the fuel element samples to the 100 K East facility using the same packaging. The CNS 1-13G cask has been-chosen to transport the fuel because it has a Certificate of Compliance (CoC) issued by the US Nuclear Regulatory Commission (NRC) for transporting irradiated oxide and metal fuel in commerce. It is capable of being loaded and offloaded underwater and may be shipped with water in the payload compartment.

  11. Determination of plutonium content in high burnup pressurized water reactor fuel samples and its use for isotope correlations for isotopic composition of plutonium.

    PubMed

    Joe, Kihsoo; Jeon, Young-Shin; Han, Sun-Ho; Lee, Chang-Heon; Ha, Yeong-Keong; Song, Kyuseok

    2012-06-01

    The content of plutonium isotopes in high burnup pressurized water reactor fuel samples was examined using both alpha spectrometry and mass spectrometry after anion exchange separation. The measured values were compared with results calculated by the ORIGEN-2 code. On average, the ratios (m/c) of the measured values (m) over the calculated values (c) were 1.22±0.16 for (238)Pu, 1.02±0.14 for (239)Pu, 1.08±0.06 for (240)Pu, 1.06±0.16 for (241)Pu, and 1.13±0.08 for (242)Pu. Using the Pu data obtained in this work, correlations were derived between the alpha activity ratios of (238)Pu/((239)Pu+(240)Pu), the alpha specific activities of Pu, and the atom % abundances of the Pu isotopes. Using these correlations, the atom % abundances of the plutonium isotopes in the target samples were calculated. These calculated results agreed within a range from 2 to 8% of the experimentally derived values according to the isotopes of plutonium.

  12. Low-Enriched Uranium Fuel Design with Two-Dimensional Grading for the High Flux Isotope Reactor

    SciTech Connect

    Ilas, Germina; Primm, Trent

    2011-05-01

    An engineering design study of the conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel is ongoing at Oak Ridge National Laboratory. The computational models developed during fiscal year 2010 to search for an LEU fuel design that would meet the requirements for the conversion and the results obtained with these models are documented and discussed in this report. Estimates of relevant reactor performance parameters for the LEU fuel core are presented and compared with the corresponding data for the currently operating HEU fuel core. The results obtained indicate that the LEU fuel design would maintain the current performance of the HFIR with respect to the neutron flux to the central target region, reflector, and beam tube locations under the assumption that the operating power for the reactor fueled with LEU can be increased from the current value of 85 MW to 100 MW.

  13. Design Study for a Low-Enriched Uranium Core for the High Flux Isotope Reactor, Annual report for FY 2009

    SciTech Connect

    Chandler, David; Freels, James D; Ilas, Germina; Miller, James Henry; Primm, Trent; Sease, John D; Guida, Tracey; Jolly, Brian C

    2010-02-01

    This report documents progress made during FY 2009 in studies of converting the High Flux Isotope Reactor (HFIR) from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in reactor performance from the current level. Results of selected benchmark studies imply that calculations of LEU performance are accurate. Studies are reported of the application of a silicon coating to surrogates for spheres of uranium-molybdenum alloy. A discussion of difficulties with preparing a fuel specification for the uranium-molybdenum alloy is provided. A description of the progress in developing a finite element thermal hydraulics model of the LEU core is provided.

  14. Design Study for a Low-Enriched Uranium Core for the High Flux Isotope Reactor, Annual Report for FY 2008

    SciTech Connect

    Primm, Trent; Chandler, David; Ilas, Germina; Miller, James Henry; Sease, John D; Jolly, Brian C

    2009-03-01

    This report documents progress made during FY 2008 in studies of converting the High Flux Isotope Reactor (HFIR) from highly enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in reactor performance from the current level. Results of selected benchmark studies imply that calculations of LEU performance are accurate. Scoping experiments with various manufacturing methods for forming the LEU alloy profile are presented.

  15. Utilization of non-weapons-grade plutonium and highly enriched uranium with breeding of the 233U isotope in the VVER reactors using thorium and heavy water

    NASA Astrophysics Data System (ADS)

    Marshalkin, V. E.; Povyshev, V. M.

    2015-12-01

    A method for joint utilization of non-weapons-grade plutonium and highly enriched uranium in the thorium-uranium—plutonium oxide fuel of a water-moderated reactor with a varying water composition (D2O, H2O) is proposed. The method is characterized by efficient breeding of the 233U isotope and safe reactor operation and is comparatively simple to implement.

  16. Design and Transient Analysis of Passive Safety Cooling Systems for Advanced Nuclear Reactors

    NASA Astrophysics Data System (ADS)

    Galvez, Cristhian

    2011-12-01

    The Pebble Bed Advanced High Temperature Reactor (PB-AHTR) is a pebble fueled, liquid salt cooled, high temperature nuclear reactor design that can be used for electricity generation or other applications requiring the availability of heat at elevated temperatures. A stage in the design evolution of this plant requires the analysis of the plant during a variety of potential transients to understand the primary and safety cooling system response. This study focuses on the performance of the passive safety cooling system with a dual purpose, to assess the capacity to maintain the core at safe temperatures and to assist the design process of this system to achieve this objective. The analysis requires the use of complex computational tools for simulation and verification using analytical solutions and comparisons with experimental data. This investigation builds upon previous detailed design work for the PB-AHTR components, including the core, reactivity control mechanisms and the intermediate heat exchanger, developed in 2008. In addition the study of this reference plant design employs a wealth of auxiliary information including thermal-hydraulic physical phenomena correlations for multiple geometries and thermophysical properties for the constituents of the plant. Finally, the set of performance requirements and limitations imposed from physical constrains and safety considerations provide with a criteria and metrics for acceptability of the design. The passive safety cooling system concept is turned into a detailed design as a result from this study. A methodology for the design of air-cooled passive safety systems was developed and a transient analysis of the plant, evaluating a scrammed loss of forced cooling event was performed. Furthermore, a design optimization study of the passive safety system and an approach for the validation and verification of the analysis is presented. This study demonstrates that the resulting point design responds properly to the

  17. Investigation of the effects of radiolytic-gas bubbles on the long-term operation of solution reactors for medical-isotope production

    NASA Astrophysics Data System (ADS)

    Souto Mantecon, Francisco Javier

    One of the most common and important medical radioisotopes is 99Mo, which is currently produced using the target irradiation technology in heterogeneous nuclear reactors. The medical isotope 99Mo can also be produced from uranium fission using aqueous homogeneous solution reactors. In solution reactors, 99Mo is generated directly in the fuel solution, resulting in potential advantages when compared with the target irradiation process in heterogeneous reactors, such as lower reactor power, less waste heat, and reduction by a factor of about 100 in the generation of spent fuel. The commercial production of medical isotopes in solution reactors requires steady-state operation at about 200 kW. At this power regime, the formation of radiolytic-gas bubbles creates a void volume in the fuel solution that introduces a negative coefficient of reactivity, resulting in power reduction and instabilities that may impede reactor operation for medical-isotope production. A model has been developed considering that reactivity effects are due to the increase in the fuel-solution temperature and the formation of radiolytic-gas bubbles. The model has been validated against experimental results from the Los Alamos National Laboratory uranyl fluoride Solution High-Energy Burst Assembly (SHEBA), and the SILENE uranyl nitrate solution reactor, commissioned at the Commissariat a l'Energie Atomique, in Valduc, France. The model shows the feasibility of solution reactors for the commercial production of medical isotopes and reveals some of the important parameters to consider in their design, including the fuel-solution type, 235U enrichment, uranium concentration, reactor vessel geometry, and neutron reflectors surrounding the reactor vessel. The work presented herein indicates that steady-state operation at 200 kW can be achieved with a solution reactor consisting of 120 L of uranyl nitrate solution enriched up to 20% with 235U and a uranium concentration of 145 kg/m3 in a graphite

  18. Almost twenty years' search of transuranium isotopes in effluents discharged to air from nuclear power plants with VVER reactors.

    PubMed

    Hölgye, Z; Filgas, R

    2006-04-01

    Airborne effluents of 5 stacks (stacks 1-5) of three nuclear power plants, with 9 pressurized water reactors VVER of 4,520 MWe total power, were searched for transuranium isotopes in different time periods. The search started in 1985. The subject of this work is a presentation of discharge data for the period of 1998-2003 and a final evaluation. It was found that 238Pu, 239,240Pu, 241Am, 242Cm, and 244Cm can be present in airborne effluents. Transuranium isotope contents in most of the quarterly effluent samples from stacks 2, 4 and 5 were not measurable. Transuranium isotopes were present in the effluents from stack l during all 9 years of the study and from stack 3 since the 3rd quarter of 1996 as a result of a defect in the fuel cladding. A relatively high increase of transuranium isotopes in effluents from stack 3 occurred in the 3rd quarter of 1999, and a smaller increase occurred in the 3rd quarter of 2003. In each instance 242Cm prevailed in the transuranium isotope mixtures. 238Pu/239,240Pu, 241Am/239,240Pu, 242Cm/239,240Pu, and 244Cm/239,240Pu ratios in fuel for different burn-up were calculated, and comparison of these ratios in fuel and effluents was performed.

  19. Development and methodology of level 1 probability safety assessment at PUSPATI TRIGA Reactor

    NASA Astrophysics Data System (ADS)

    Maskin, Mazleha; Tom, Phongsakorn Prak; Lanyau, Tonny Anak; Brayon, Fedrick Charlie Matthew; Mohamed, Faizal; Saad, Mohamad Fauzi; Ismail, Ahmad Razali; Abu, Mohamad Puad Haji

    2014-02-01

    As a consequence of the accident at the Fukushima Dai-ichi Nuclear Power Plant in Japan, the safety aspects of the one and only research reactor (31 years old) in Malaysia need be reviewed. Based on this decision, Malaysian Nuclear Agency in collaboration with Atomic Energy Licensing Board and Universiti Kebangsaan Malaysia develop a Level-1 Probability Safety Assessment on this research reactor. This work is aimed to evaluate the potential risks of incidents in RTP and at the same time to identify internal and external hazard that may cause any extreme initiating events. This report documents the methodology in developing a Level 1 PSA performed for the RTP as a complementary approach to deterministic safety analysis both in neutronics and thermal hydraulics. This Level-1 PSA work has been performed according to the procedures suggested in relevant IAEA publications and at the same time numbers of procedures has been developed as part of an Integrated Management System programme implemented in Nuclear Malaysia.

  20. Development and methodology of level 1 probability safety assessment at PUSPATI TRIGA Reactor

    SciTech Connect

    Maskin, Mazleha; Tom, Phongsakorn Prak; Lanyau, Tonny Anak; Saad, Mohamad Fauzi; Ismail, Ahmad Razali; Abu, Mohamad Puad Haji; Brayon, Fedrick Charlie Matthew; Mohamed, Faizal

    2014-02-12

    As a consequence of the accident at the Fukushima Dai-ichi Nuclear Power Plant in Japan, the safety aspects of the one and only research reactor (31 years old) in Malaysia need be reviewed. Based on this decision, Malaysian Nuclear Agency in collaboration with Atomic Energy Licensing Board and Universiti Kebangsaan Malaysia develop a Level-1 Probability Safety Assessment on this research reactor. This work is aimed to evaluate the potential risks of incidents in RTP and at the same time to identify internal and external hazard that may cause any extreme initiating events. This report documents the methodology in developing a Level 1 PSA performed for the RTP as a complementary approach to deterministic safety analysis both in neutronics and thermal hydraulics. This Level-1 PSA work has been performed according to the procedures suggested in relevant IAEA publications and at the same time numbers of procedures has been developed as part of an Integrated Management System programme implemented in Nuclear Malaysia.

  1. Awareness, Preference, Utilization, and Messaging Research for the Spallation Neutron Source and High Flux Isotope Reactor

    SciTech Connect

    Bryant, Rebecca; Kszos, Lynn A

    2011-03-01

    Oak Ridge National Laboratory (ORNL) offers the scientific community unique access to two types of world-class neutron sources at a single site - the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR). The 85-MW HFIR provides one of the highest steady-state neutron fluxes of any research reactor in the world, and the SNS is one of the world's most intense pulsed neutron beams. Management of these two resources is the responsibility of the Neutron Sciences Directorate (NScD). NScD commissioned this survey research to develop baseline information regarding awareness of and perceptions about neutron science. Specific areas of investigative interest include the following: (1) awareness levels among those in the scientific community about the two neutron sources that ORNL offers; (2) the level of understanding members of various scientific communities have regarding benefits that neutron scattering techniques offer; and (3) any perceptions that negatively impact utilization of the facilities. NScD leadership identified users of two light sources in North America - the Advanced Photon Source (APS) at Argonne National Laboratory and the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory - as key publics. Given the type of research in which these scientists engage, they would quite likely benefit from including the neutron techniques available at SNS and HFIR among their scientific investigation tools. The objective of the survey of users of APS, NSLS, SNS, and HFIR was to explore awareness of and perceptions regarding SNS and HFIR among those in selected scientific communities. Perceptions of SNS and FHIR will provide a foundation for strategic communication plan development and for developing key educational messages. The survey was conducted in two phases. The first phase included qualitative methods of (1) key stakeholder meetings; (2) online interviews with user administrators of APS and NSLS; and (3) one-on-one interviews

  2. Neutronic safety parameters and transient analyses for Poland's MARIA research reactor.

    SciTech Connect

    Bretscher, M. M.; Hanan, N. A.; Matos, J. E.; Andrzejewski, K.; Kulikowska, T.

    1999-09-27

    Reactor kinetic parameters, reactivity feedback coefficients, and control rod reactivity worths have been calculated for the MARIA Research Reactor (Swierk, Poland) for M6-type fuel assemblies with {sup 235}U enrichments of 80% and 19.7%. Kinetic parameters were evaluated for family-dependent effective delayed neutron fractions, decay constants, and prompt neutron lifetimes and neutron generation times. Reactivity feedback coefficients were determined for fuel Doppler coefficients, coolant (H{sub 2}O) void and temperature coefficients, and for in-core and ex-core beryllium temperature coefficients. Total and differential control rod worths and safety rod worths were calculated for each fuel type. These parameters were used to calculate generic transients for fast and slow reactivity insertions with both HEU and LEU fuels. The analyses show that the HEU and LEU cores have very similar responses to these transients.

  3. SLSF in-reactor local fault safety experiment P4. Final report

    SciTech Connect

    Thompson, D. H.; Holland, J. W.; Braid, T. H.; Ragland, W. A.

    1985-09-01

    The Sodium Loop Safety Facility (SLSF), a major facility in the US fast-reactor safety program, has been used to simulate a variety of sodium-cooled fast reactor accidents. SLSF experiment P4 was conducted to investigate the behavior of a "worse-than-case" local fault configuration. Objectives of this experiment were to eject molten fuel into a 37-pin bundle of full-length Fast-Test-Reactor-type fuel pins form heat-generating fuel canisters, to characterize the severity of any molten fuel-coolant interaction, and to demonstrate that any resulting blockage could either be tolerated during continued power operation or detected by global monitors to prevent fuel failure propagation. The design goal for molten fuel release was 10 to 30 g. Explusion of molten fuel from fuel canisters caused failure of adjacent pins and a partial flow channel blockage in the fuel bundle during full-power operation. Molten fuel and fuel debris also lodged against the inner surface of the test subassembly hex-can wall. The total fuel disruption of 310 g evaluated from posttest examination data was in excellent agreement with results from the SLSF delayed neutron detection system, but exceeded the target molten fuel release by an order of magnitude. This report contains a summary description of the SLSF in-reactor loop and support systems and the experiment operations. results of the detailed macro- and microexamination of disrupted fuel and metal and results from the analysis of the on-line experimental data are described, as are the interpretations and conclusions drawn from the posttest evaluations. 60 refs., 74 figs.

  4. Technology, safety and costs of decommissioning a Reference Boiling Water Reactor Power Station. Main report. Volume 1

    SciTech Connect

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWe.

  5. Using reactor operating experience to improve the design of a new Broad Application Test Reactor

    SciTech Connect

    Fletcher, C.D.; Ryskamp, J.M.; Drexler, R.L.; Leyse, C.F.

    1993-07-01

    Increasing regulatory demands and effects of plant aging are limiting the operation of existing test reactors. Additionally, these reactors have limited capacities and capabilities for supporting future testing missions. A multidisciplinary team of experts developed sets of preliminary safety requirements, facility user needs, and reactor design concepts for a new Broad Application Test Reactor (BATR). Anticipated missions for the new reactor include fuels and materials irradiation testing, isotope production, space testing, medical research, fusion testing, intense positron research, and transmutation doping. The early BATR design decisions have benefited from operating experiences with existing reactors. This paper discusses these experiences and highlights their significance for the design of a new BATR.

  6. Continuous production of tritium in an isotope-production reactor with a separate circulation system

    DOEpatents

    Cawley, W.E.; Omberg, R.P.

    1982-08-19

    A method is described for producing tritium in a fast breeder reactor cooled with liquid metal. Lithium is allowed to flow through the reactor in separate loops in order to facilitate the production and removal of tritium.

  7. Influences of the substrate feeding regime on methanogenic activity in biogas reactors approached by molecular and stable isotope methods.

    PubMed

    Lv, Z; Leite, A F; Harms, H; Richnow, H H; Liebetrau, J; Nikolausz, M

    2014-10-01

    In order to better understand the effects of the substrate feeding regime on methanogenesis during anaerobic digestion in biogas reactors, four continuous stirred tank reactors operated under mesophilic conditions were investigated. In addition to standard physicochemical parameters, the stable isotopic signatures of CH4 and CO2 before and after daily feeding were analyzed. The activity of the methanogens was assessed by methyl coenzyme M reductase alpha-subunit (mcrA/mrtA) gene transcript analysis. Two different feeding regimes i.e. single vs. double consecutive feeding of the otherwise same daily maize silage load were investigated. During the first phase, a single feeding of the whole daily dose increased the biogas production within 70-80 min from around 0.5 to 2.0 L/h. This increase was associated with a transient increase of the acetic acid concentration and a corresponding decrease of the pH. Only moderate increase in biogas yield and VFA concentration (mainly acetate) was observed when the daily substrate was apportioned into two feedings. However, the overall daily gas production was similar in both cases. Regardless of the feeding regime, significantly depleted δ(13)CH4 and minor changes in the CO2 content of biogas were observed after feeding, which were followed by enrichment of δ(13)CH4. This period was associated with detectable changes in activity of methanogenic communities monitored by terminal restriction fragment length polymorphism analysis based on the transcripts of mcrA/mrtA genes. Methanoculleus and Methanobacterium spp. were the predominant methanogens in all reactors, while Methanosarcina spp. activity was only significant in two reactors. The activity of Methanoculleus and Methanosarcina spp. increased after the feeding in these reactors, which was followed by a depletion of δ(13)C in the produced gas. In both reactors, the less depleted isotopic values were detected before the second feeding, when Methanobacterium was the most

  8. Analysis of safety limits of the Moroccan TRIGA MARK II research reactor

    NASA Astrophysics Data System (ADS)

    Erradi, L.; Essadki, H.

    2001-06-01

    The main objective of this study is to check the ability of the Moroccan TRIGA MARK II research reactor, designed to use natural convection cooling, to operate at its nominal power (2 MW) with sufficient safety margins. The neutronic analysis of the core has been performed using Leopard and Mcrac codes and the parameters of interest were the power distributions, the power peaking factors and the core excess reactivity. The thermal hydraulic analysis of the TRIGA core was performed using the French code FLICA designed for transient and study state situations. The main safety related parameters of the core have been evaluated with special emphasises on the following: maximum fuel temperature, minimum DNBR and maximum void fraction. The obtained results confirm the designer predictions except for the void fraction.

  9. Safety evaluation for packaging (onsite) plutonium recycle test reactor graphite cask

    SciTech Connect

    Romano, T.

    1997-09-29

    This safety evaluation for packaging (SEP) provides the evaluation necessary to demonstrate that the Plutonium Recycle Test Reactor (PRTR) Graphite Cask meets the requirements of WHC-CM-2-14, Hazardous Material Packaging and Shipping, for transfer of Type B, fissile, non-highway route controlled quantities of radioactive material within the 300 Area of the Hanford Site. The scope of this SEP includes risk, shieldling, criticality, and.tiedown analyses to demonstrate that onsite transportation safety requirements are satisfied. This SEP also establishes operational and maintenance guidelines to ensure that transport of the PRTR Graphite Cask is performed safely in accordance with WHC-CM-2-14. This SEP is valid until October 1, 1999. After this date, an update or upgrade to this document is required.

  10. Independent Safety Assessment of the TOPAZ-II space nuclear reactor power system (Revised)

    SciTech Connect

    1993-09-01

    The Independent Safety Assessment described in this study report was performed to assess the safety of the design and launch plans anticipated by the U.S. Department of Defense (DOD) in 1993 for a Russian-built, U.S.-modified, TOPAZ-II space nuclear reactor power system. Its conclusions, and the bases for them, were intended to provide guidance for the U.S. Department of Energy (DOE) management in the event that the DOD requested authorization under section 91b. of the Atomic Energy Act of 1954, as amended, for possession and use (including ground testing and launch) of a nuclear-fueled, modified TOPAZ-II. The scientists and engineers who were engaged to perform this assessment are nationally-known nuclear safety experts in various disciplines. They met with participants in the TOPAZ-II program during the spring and summer of 1993 and produced a report based on their analysis of the proposed TOPAZ-II mission. Their conclusions were confined to the potential impact on public safety and did not include budgetary, reliability, or risk-benefit analyses.

  11. Uranium isotopic data in uraninite spent fuel from the Bangombe natural nuclear reactor (Gabon) and its surroundings

    PubMed

    Fernandez-Diaz; Quejido; Crespo; Perez del Villar L; Martin-Sanchez; Lozano

    2000-07-01

    In the framework of the "Oklo-Natural Analogue Phase II" Project, uraninite from the Bangombe natural reactor and samples from its host rock were analyzed to determine their uranium isotopic composition by thermal ionisation mass spectrometry, inductively coupled plasma mass spectrometry and alpha spectrometry. There were several objectives for this work: (i) to validate the 235U/238U isotopic ratios obtained by these techniques; (ii) to test the use of the 235U/238U ratio of uraninite as a tracer of migration/retention processes of uranium from the source term to the far field; (iii) to evaluate the most recent migration/retention processes of uranium in the system by U-series disequilibrium.

  12. Criticality Safety Evaluation for the Advanced Test Reactor U-Mo Demonstration Elements

    SciTech Connect

    Leland M. Montierth

    2010-12-01

    The Reduced Enrichment Research Test Reactors (RERTR) fuel development program is developing a high uranium density fuel based on a (LEU) uranium-molybdenum alloy. Testing of prototypic RERTR fuel elements is necessary to demonstrate integrated fuel performance behavior and scale-up of fabrication techniques. Two RERTR-Full Size Demonstration fuel elements based on the ATR-Reduced YA elements (all but one plate fueled) are to be fabricated for testing in the Advanced Test Reactor (ATR). The two fuel elements will be irradiated in alternating cycles such that only one element is loaded in the reactor at a time. Existing criticality analyses have analyzed Standard (HEU) ATR elements (all plates fueled) from which controls have been derived. This criticality safety evaluation (CSE) documents analysis that determines the reactivity of the Demonstration fuel elements relative to HEU ATR elements and shows that the Demonstration elements are bound by the Standard HEU ATR elements and existing HEU ATR element controls are applicable to the Demonstration elements.

  13. Evaluation of the Safety Systems in the Next Generation Boiling Water Reactor

    NASA Astrophysics Data System (ADS)

    Cheng, Ling

    The thesis evaluates the safety systems in the next generation boiling water reactor by analyzing the main steam line break loss of coolant accident performed in the Purdue university multi-dimensional test assembly (PUMA). RELAP5 code simulations, both for the PUMA main steam line break (MSLB) case and for the simplified boiling water reactor (SBWR) MSLB case have been utilized to compare with the experiment data. The comparison shows that RELAP5 is capable to perform the safety analysis for SBWR. The comparison also validates the three-level scaling methodology applied to the design of the PUMA facility. The PUMA suppression pool mixing and condensation test data have been studied to give the detailed understanding on this important local phenomenon. A simple one dimensional integral model, which can reasonably simulate the mixing process inside suppression pool have been developed and the comparison between the model prediction and the experiment data demonstrates the model can be utilized for analyzing the suppression pool mixing process.

  14. Delivery of completed irradiation vehicles and the quality assurance document to the High Flux Isotope Reactor for irradiation

    SciTech Connect

    Petrie, Christian M.; McDuffee, Joel Lee; Katoh, Yutai; Terrani, Kurt A.

    2015-10-01

    This report details the initial fabrication and delivery of two Fuel Cycle Research and Development (FCRD) irradiation capsules (ATFSC01 and ATFSC02), with associated quality assurance documentation, to the High Flux Isotope Reactor (HFIR). The capsules and documentation were delivered by September 30, 2015, thus meeting the deadline for milestone M3FT-15OR0202268. These irradiation experiments are testing silicon carbide composite tubes in order to obtain experimental validation of thermo-mechanical models of stress states in SiC cladding irradiated under a prototypic high heat flux. This document contains a copy of the completed capsule fabrication request sheets, which detail all constituent components, pertinent drawings, etc., along with a detailed summary of the capsule assembly process performed by the Thermal Hydraulics and Irradiation Engineering Group (THIEG) in the Reactor and Nuclear Systems Division (RNSD). A complete fabrication package record is maintained by the THIEG and is available upon request.

  15. DESIGN STUDY FOR A LOW-ENRICHED URANIUM CORE FOR THE HIGH FLUX ISOTOPE REACTOR, ANNUAL REPORT FOR FY 2010

    SciTech Connect

    Cook, David Howard; Freels, James D; Ilas, Germina; Jolly, Brian C; Miller, James Henry; Primm, Trent; Renfro, David G; Sease, John D; Pinkston, Daniel

    2011-02-01

    This report documents progress made during FY 2010 in studies of converting the High Flux Isotope Reactor (HFIR) from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current level. Studies are reported of support to a thermal hydraulic test loop design, the implementation of finite element, thermal hydraulic analysis capability, and infrastructure tasks at HFIR to upgrade the facility for operation at 100 MW. A discussion of difficulties with preparing a fuel specification for the uranium-molybdenum alloy is provided. Continuing development in the definition of the fuel fabrication process is described.

  16. Human factors and safety issues associated with actinide retrieval from spent light water reactor fuel assemblies

    SciTech Connect

    Spelt, P.F.

    1992-01-01

    A major problem in environmental restoration and waste management is the disposition of used fuel assemblies from the many light water reactors in the United States, which present a radiation hazard to those whose job is to dispose of them, with a similar threat to the general environment associated with long-term storage in fuel repositories around the country. Actinides resident in the fuel pins as a result of their use in reactor cores constitute a significant component of this hazard. Recently, the Department of Energy has initiated an Actinide Recycle Program to study the feasibility of using pyrochemical (molten salt) processes to recover actinides from the spent fuel assemblies of commercial reactors. This project concerns the application of robotics technology to the operation and maintenance functions of a plant whose objective is to recover actinides from spent fuel assemblies, and to dispose of the resulting hardware and chemical components from this process. Such a procedure involves a number of safety and human factors issues. The purpose of the project is to explore the use of robotics and artificial intelligence to facilitate accomplishment of the program goals while maintaining the safety of the humans doing the work and the integrity of the environment. This project will result in a graphic simulation on a Silicon Graphics workstation as a proof of principle demonstration of the feasibility of using robotics along with an intelligent operator interface. A major component of the operator-system interface is a hybrid artificial intelligence system developed at Oak Ridge National Laboratory, which combines artificial neural networks and an expert system into a hybrid, self-improving computer-based system interface. 10 refs.

  17. Human factors and safety issues associated with actinide retrieval from spent light water reactor fuel assemblies

    SciTech Connect

    Spelt, P.F.

    1992-08-01

    A major problem in environmental restoration and waste management is the disposition of used fuel assemblies from the many light water reactors in the United States, which present a radiation hazard to those whose job is to dispose of them, with a similar threat to the general environment associated with long-term storage in fuel repositories around the country. Actinides resident in the fuel pins as a result of their use in reactor cores constitute a significant component of this hazard. Recently, the Department of Energy has initiated an Actinide Recycle Program to study the feasibility of using pyrochemical (molten salt) processes to recover actinides from the spent fuel assemblies of commercial reactors. This project concerns the application of robotics technology to the operation and maintenance functions of a plant whose objective is to recover actinides from spent fuel assemblies, and to dispose of the resulting hardware and chemical components from this process. Such a procedure involves a number of safety and human factors issues. The purpose of the project is to explore the use of robotics and artificial intelligence to facilitate accomplishment of the program goals while maintaining the safety of the humans doing the work and the integrity of the environment. This project will result in a graphic simulation on a Silicon Graphics workstation as a proof of principle demonstration of the feasibility of using robotics along with an intelligent operator interface. A major component of the operator-system interface is a hybrid artificial intelligence system developed at Oak Ridge National Laboratory, which combines artificial neural networks and an expert system into a hybrid, self-improving computer-based system interface. 10 refs.

  18. Safety aspects of the Modular High-Temperature Gas-Cooled Reactor (MHTGR)

    SciTech Connect

    Silady, F.A.; Millunzi, A.C.

    1989-08-01

    The Modular High-Temperature Gas-Cooled Reactor (MHTGR) is an advanced reactor concept under development through a cooperative program involving the US Government, the nuclear industry and the utilities. The design utilizes the basic high-temperature gas-cooled reactor (HTGR) features of ceramic fuel, helium coolant, and a graphite moderator. The qualitative top-level safety requirement is that the plant's operation not disturb the normal day-to-day activities of the public. The MHTGR safety response to events challenging the functions relied on to retain radionuclides within the coated fuel particles has been evaluated. A broad range of challenges to core heat removal have been examined which include a loss of helium pressure and a simultaneous loss of forced cooling of the core. The challenges to control of heat generation have considered not only the failure to insert the reactivity control systems, but the withdrawal of control rods. Finally, challenges to control chemical attack of the ceramic coated fuel have been considered, including catastrophic failure of the steam generator allowing water ingress or of the pressure vessels allowing air ingress. The plant's response to these extreme challenges is not dependent on operator action and the events considered encompass conceivable operator errors. In the same vein, reliance on radionuclide retention within the full particle and on passive features to perform a few key functions to maintain the fuel within acceptable conditions also reduced susceptibility to external events, site-specific events, and to acts of sabotage and terrorism. 4 refs., 14 figs., 1 tab.

  19. Department of Energy's High Flux Beam Reactor (HFBR), September 15--19, 1980: An independent on-site safety review

    SciTech Connect

    Not Available

    1981-02-01

    The intent of this on-site safety review was to make a broad management assessment of HFBR operations, rather than conduct a detailed in-depth audit. The result of the review should only be considered as having identified trends or indications. The Team's observations and recommendations for the most part are based upon licensed reactor facility practices used to meet industry standards. These standards form the basis for many of the comments in this report. The Team believes that a uniform minimum standard of performance should be achieved in the operation of DOE reactors. In order to assure that this is accomplished, clear standards are necessary. Consistent with the past AEC and ERDA policy, the team has used the standards of the commercial nuclear power industry. It is recognized that this approach is conservative in that the HFBR reactor has a significantly greater degree of inherent safety (low pressure, temperature, power, etc.) than a licensed reactor.

  20. The MSFR as a flexible CR reactor: the viewpoint of safety

    SciTech Connect

    Fiorina, C.; Cammi, A.; Franceschini, F.; Krepel, J.

    2013-07-01

    In this paper, the possibility has first been discussed of using the liquid-fuelled Molten Salt Fast Reactor (MSFR) as a flexible conversion ratio (CR) reactor without design modification. By tuning the reprocessing rate it is possible to determine the content of fission products in the core, which in turn can significantly affect the neutron economy without incurring in solubility problems. The MSFR can thus be operated as U-233 breeder (CR>1), iso-breeder (CR=1) and burner reactor (CR<1). In particular a 40 year doubling time can be achieved, as well as a considerable Transuranics and MA (minor actinide) burning rate equal to about 150 kg{sub HN}/GWE-yr. The safety parameters of the MSFR have then been evaluated for different fuel cycle strategies. Th use and a softer spectrum combine to give a strong Doppler coefficient, one order of magnitude higher compared to traditional fast reactors (FRs). The fuel expansion coefficient is comparable to the Doppler coefficient and is only mildly affected by core compositions, thus assisting the fuel cycle flexibility of the MSFR. βeff and generation time are comparable to the case of traditional FRs, if a static fuel is assumed. A notable reduction of βeff is caused by salt circulation, but a low value of this parameter is a limited concern in the MSFR thanks to the lack of a burnup reactivity swing and of positive feedbacks. A simple approach has also been developed to evaluate the MSFR capabilities to withstand all typical double-fault accidents, for different fuel cycle options.

  1. Processes and Procedures for Application of CFD to Nuclear Reactor Safety Analysis

    SciTech Connect

    Richard W. Johnson; Richard R. Schultz; Patrick J. Roache; Ismail B. Celik; William D. Pointer; Yassin A. Hassan

    2006-09-01

    Traditionally, nuclear reactor safety analysis has been performed using systems analysis codes such as RELAP5, which was developed at the INL. However, goals established by the Generation IV program, especially the desire to increase efficiency, has lead to an increase in operating temperatures for the reactors. This increase pushes reactor materials to operate towards their upper temperature limits relative to structural integrity. Because there will be some finite variation of the power density in the reactor core, there will be a potential for local hot spots to occur in the reactor vessel. Hence, it has become apparent that detailed analysis will be required to ensure that local ‘hot spots’ do not exceed safety limits. It is generally accepted that computational fluid dynamics (CFD) codes are intrinsically capable of simulating fluid dynamics and heat transport locally because they are based on ‘first principles.’ Indeed, CFD analysis has reached a fairly mature level of development, including the commercial level. However, CFD experts are aware that even though commercial codes are capable of simulating local fluid and thermal physics, great care must be taken in their application to avoid errors caused by such things as inappropriate grid meshing, low-order discretization schemes, lack of iterative convergence and inaccurate time-stepping. Just as important is the choice of a turbulence model for turbulent flow simulation. Turbulence models model the effects of turbulent transport of mass, momentum and energy, but are not necessarily applicable for wide ranges of flow types. Therefore, there is a well-recognized need to establish practices and procedures for the proper application of CFD to simulate flow physics accurately and establish the level of uncertainty of such computations. The present document represents contributions of CFD experts on what the basic practices, procedures and guidelines should be to aid CFD analysts to obtain accurate

  2. Advanced Concepts for Pressure-Channel Reactors: Modularity, Performance and Safety

    NASA Astrophysics Data System (ADS)

    Duffey, Romney B.; Pioro, Igor L.; Kuran, Sermet

    Based on an analysis of the development of advanced concepts for pressure-tube reactor technology, we adapt and adopt the pressure-tube reactor advantage of modularity, so that the subdivided core has the potential for optimization of the core, safety, fuel cycle and thermal performance independently, while retaining passive safety features. In addition, by adopting supercritical water-cooling, the logical developments from existing supercritical turbine technology and “steam” systems can be utilized. Supercritical and ultra-supercritical boilers and turbines have been operating for some time in coal-fired power plants. Using coolant outlet temperatures of about 625°C achieves operating plant thermal efficiencies in the order of 45-48%, using a direct turbine cycle. In addition, by using reheat channels, the plant has the potential to produce low-cost process heat, in amounts that are customer and market dependent. The use of reheat systems further increases the overall thermal efficiency to 55% and beyond. With the flexibility of a range of plant sizes suitable for both small (400 MWe) and large (1400 MWe) electric grids, and the ability for co-generation of electric power, process heat, and hydrogen, the concept is competitive. The choice of core power, reheat channel number and exit temperature are all set by customer and materials requirements. The pressure channel is a key technology that is needed to make use of supercritical water (SCW) in CANDU®1 reactors feasible. By optimizing the fuel bundle and fuel channel, convection and conduction assure heat removal using passive-moderator cooling. Potential for severe core damage can be almost eliminated, even without the necessity of activating the emergency-cooling systems. The small size of containment structure lends itself to a small footprint, impacts economics and building techniques. Design features related to Canadian concepts are discussed in this paper. The main conclusion is that development of

  3. Integrating Safety, Operations, Security, and Safeguards (ISOSS) into the design of small modular reactors : a handbook.

    SciTech Connect

    Middleton, Bobby D.; Mendez, Carmen Margarita

    2013-10-01

    The existing regulatory environment for nuclear reactors impacts both the facility design and the cost of operations once the facility is built. Delaying the consideration of regulatory requirements until late in the facility design - or worse, until after construction has begun - can result in costly retrofitting as well as increased operational costs to fulfill safety, security, safeguards, and emergency readiness requirements. Considering the scale and scope, as well as the latest design trends in the next generation of nuclear facilities, there is an opportunity to evaluate the regulatory requirements and optimize the design process for Small Modular Reactors (SMRs), as compared to current Light Water Reactors (LWRs). To this end, Sandia has embarked on an initiative to evaluate the interactions of regulations and operations as an approach to optimizing the design of SMR facilities, supporting operational efficiencies, as well as regulatory requirements. The early stages of this initiative consider two focus areas. The first focus area, reported by LaChance, et al. (2007), identifies the regulatory requirements established for the current fleet of LWR facilities regarding Safety, Security, Operations, Safeguards, and Emergency Planning, and evaluates the technical bases for these requirements. The second focus area, developed in this report, documents the foundations for an innovative approach that supports a design framework for SMR facilities that incorporates the regulatory environment, as well as the continued operation of the facility, into the early design stages, eliminating the need for costly retrofitting and additional operating personnel to fulfill regulatory requirements. The work considers a technique known as Integrated Safety, Operations, Security and Safeguards (ISOSS) (Darby, et al., 2007). In coordination with the best practices of industrial operations, the goal of this effort is to develop a design framework that outlines how ISOSS

  4. Report of the ANS Project Feasibility Workshop for a High Flux Isotope Reactor-Center for Neutron Research Facility

    SciTech Connect

    Peretz, F.J.; Booth, R.S.

    1995-07-01

    The Advanced Neutron Source (ANS) Conceptual Design Report (CDR) and its subsequent updates provided definitive design, cost, and schedule estimates for the entire ANS Project. A recent update to this estimate of the total project cost for this facility was $2.9 billion, as specified in the FY 1996 Congressional data sheet, reflecting a line-item start in FY 1995. In December 1994, ANS management decided to prepare a significantly lower-cost option for a research facility based on ANS which could be considered during FY 1997 budget deliberations if DOE or Congressional planners wished. A cost reduction for ANS of about $1 billion was desired for this new option. It was decided that such a cost reduction could be achieved only by a significant reduction in the ANS research scope and by maximum, cost-effective use of existing High Flux Isotope Reactor (HFIR) and ORNL facilities to minimize the need for new buildings. However, two central missions of the ANS -- neutron scattering research and isotope production-were to be retained. The title selected for this new option was High Flux Isotope Reactor-Center for Neutron Research (HFIR-CNR) because of the project`s maximum use of existing HFIR facilities and retention of selected, central ANS missions. Assuming this shared-facility requirement would necessitate construction work near HFIR, it was specified that HFIR-CNR construction should not disrupt normal operation of HFIR. Additional objectives of the study were that it be highly credible and that any material that might be needed for US Department of Energy (DOE) and Congressional deliberations be produced quickly using minimum project resources. This requirement made it necessary to rely heavily on the ANS design, cost, and schedule baselines. A workshop methodology was selected because assessment of each cost and/or scope-reduction idea required nearly continuous communication among project personnel to ensure that all ramifications of propsed changes.

  5. Utilization of non-weapons-grade plutonium and highly enriched uranium with breeding of the {sup 233}U isotope in the VVER reactors using thorium and heavy water

    SciTech Connect

    Marshalkin, V. E. Povyshev, V. M.

    2015-12-15

    A method for joint utilization of non-weapons-grade plutonium and highly enriched uranium in the thorium–uranium—plutonium oxide fuel of a water-moderated reactor with a varying water composition (D{sub 2}O, H{sub 2}O) is proposed. The method is characterized by efficient breeding of the {sup 233}U isotope and safe reactor operation and is comparatively simple to implement.

  6. Safety Evaluation for Packaging for onsite Transfer of plutonium recycle test reactor ion exchange columns

    SciTech Connect

    Smith, R.J.

    1995-09-11

    The purpose of this Safety Evaluation for Packaging (SEP) is to authorize the use of three U.S. Department of Transportation (DOT) 7A, Type A metal boxes (Capital Industries Part No. S 0600-0600-1080- 0104) to package 12 Plutonium Recycle Test Reactor (PRTR) ion exchange columns as low-level waste (LLW). The packages will be transferred from the 309 Building in the 300 Area to low level waste burial in the 200 West Area. Revision 1 of WHC-SD-TP-SEP-035 (per ECN No. 621467) documents that the boxes containing ion exchange columns and grout will maintain the payload under normal conditions of transport if transferred without the box lids

  7. Accident safety analysis for 300 Area N Reactor Fuel Fabrication and Storage Facility

    SciTech Connect

    Johnson, D.J.; Brehm, J.R.

    1994-01-01

    The purpose of the accident safety analysis is to identify and analyze a range of credible events, their cause and consequences, and to provide technical justification for the conclusion that uranium billets, fuel assemblies, uranium scrap, and chips and fines drums can be safely stored in the 300 Area N Reactor Fuel Fabrication and Storage Facility, the contaminated equipment, High-Efficiency Air Particulate filters, ductwork, stacks, sewers and sumps can be cleaned (decontaminated) and/or removed, the new concretion process in the 304 Building will be able to operate, without undue risk to the public, employees, or the environment, and limited fuel handling and packaging associated with removal of stored uranium is acceptable.

  8. Endogenous estimation of safety coefficient for optimal design of biochemical reactors at industrial level

    NASA Astrophysics Data System (ADS)

    Siontorou, Christina G.; Karydi, Angeliki

    2012-12-01

    This work deals with the endogenous estimation of the Safety Coefficient Ge = Vd/Vm, where Vd is the design volume and Vm is the mean volume of liquid of a biochemical reactor operating at industrial level. The Vd-value is estimated through Monte Carlo simulation while Vm-value is obtained by means of material balances and biochemical kinetics. A case example on waste water biological treatment is presented, referring to a well-mixed bioreactor followed by a clarifier. The Ge-values finally estimated are in the lower part of the (exogenously determined) region as suggested in the relevant technical literature, implying a significant saving of investment capital, which forms the principle component of fixed cost. Similar applications are also mentioned in brief.

  9. Safety design approach for external events in Japan sodium-cooled fast reactor

    SciTech Connect

    Yamano, H.; Kubo, S.; Tani, A.; Nishino, H.; Sakai, T.

    2012-07-01

    This paper describes a safety design approach for external events in the design study of Japan sodium-cooled fast reactor. An emphasis is introduction of a design extension external condition (DEEC). In addition to seismic design, other external events such as tsunami, strong wind, abnormal temperature, etc. were addressed in this study. From a wide variety of external events consisting of natural hazards and human-induced ones, a screening method was developed in terms of siting, consequence, frequency to select representative events. Design approaches for these events were categorized on the probabilistic, statistical and deterministic basis. External hazard conditions were considered mainly for DEECs. In the probabilistic approach, the DEECs of earthquake, tsunami and strong wind were defined as 1/10 of exceedance probability of the external design bases. The other representative DEECs were also defined based on statistical or deterministic approaches. (authors)

  10. Reentry safety for the Topaz II Space Reactor: Issues and analyses

    SciTech Connect

    Connell, L.W.; Trost, L.C.

    1994-03-01

    This report documents the reentry safety analyses conducted for the TOPAZ II Nuclear Electric Propulsion Space Test Program (NEPSTP). Scoping calculations were performed on the reentry aerothermal breakup and ground footprint of reactor core debris. The calculations were used to assess the risks associated with radiologically cold reentry accidents and to determine if constraints should be placed on the core configuration for such accidents. Three risk factors were considered: inadvertent criticality upon reentry impact, atmospheric dispersal of U-235 fuel, and the Special Nuclear Material Safeguards risks. Results indicate that the risks associated with cold reentry are very low regardless of the core configuration. Core configuration constraints were therefore not established for radiologically cold reentry accidents.

  11. Light Water Reactor Sustainability Program Risk-Informed Safety Margins Characterization (RISMC) PathwayTechnical Program Plan

    SciTech Connect

    Curtis Smith; Cristian Rabiti; Richard Martineau

    2012-11-01

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). As the current Light Water Reactor (LWR) NPPs age beyond 60 years, there are possibilities for increased frequency of Systems, Structures, and Components (SSCs) degradations or failures that initiate safety-significant events, reduce existing accident mitigation capabilities, or create new failure modes. Plant designers commonly “over-design” portions of NPPs and provide robustness in the form of redundant and diverse engineered safety features to ensure that, even in the case of well-beyond design basis scenarios, public health and safety will be protected with a very high degree of assurance. This form of defense-in-depth is a reasoned response to uncertainties and is often referred to generically as “safety margin.” Historically, specific safety margin provisions have been formulated, primarily based on “engineering judgment.”

  12. Progress in the Use of Isotopes: The Atomic Triad - Reactors, Radioisotopes and Radiation

    DOE R&D Accomplishments Database

    Libby, W. F.

    1958-08-04

    Recent years have seen a substantial growth in the use of isotopes in medicine, agriculture, and industry: up to the minute information on the production and use of isotopes in the U.S. is presented. The application of radioisotopes to industrial processes and manufacturing operations has expanded more rapidly than any one except its most ardent advocates expected. New uses and new users are numerous. The adoption by industry of low level counting techniques which make possible the use of carbon-14 and tritium in the control of industrial processes and in certain exploratory and research problems is perhaps most promising of current developments. The latest information on savings to industry will be presented. The medical application of isotopes has continued to develop at a rapid pace. The current trend appears to be in the direction of improvements in technique and the substitution of more effective isotopes for those presently in use. Potential and actual benefits accruing from the use of isotopes in agriculture are reviewed. The various methods of production of radioisotopes are discussed. Not only the present methods but also interesting new possibilities are covered. Although isotopes are but one of the many peaceful uses of the atom, it is the first to pay its way. (auth)

  13. Exploration of High-Dimensional Scalar Function for Nuclear Reactor Safety Analysis and Visualization

    SciTech Connect

    Dan Maljovec; Bei Wang; Valerio Pascucci; Peer-Timo Bremer; Michael Pernice; Robert Nourgaliev

    2013-05-01

    The next generation of methodologies for nuclear reactor Probabilistic Risk Assessment (PRA) explicitly accounts for the time element in modeling the probabilistic system evolution and uses numerical simulation tools to account for possible dependencies between failure events. The Monte-Carlo (MC) and the Dynamic Event Tree (DET) approaches belong to this new class of dynamic PRA methodologies. A challenge of dynamic PRA algorithms is the large amount of data they produce which may be difficult to visualize and analyze in order to extract useful information. We present a software tool that is designed to address these goals. We model a large-scale nuclear simulation dataset as a high-dimensional scalar function defined over a discrete sample of the domain. First, we provide structural analysis of such a function at multiple scales and provide insight into the relationship between the input parameters and the output. Second, we enable exploratory analysis for users, where we help the users to differentiate features from noise through multi-scale analysis on an interactive platform, based on domain knowledge and data characterization. Our analysis is performed by exploiting the topological and geometric properties of the domain, building statistical models based on its topological segmentations and providing interactive visual interfaces to facilitate such explorations. We provide a user’s guide to our software tool by highlighting its analysis and visualization capabilities, along with a use case involving dataset from a nuclear reactor safety simulation.

  14. Preliminary Assessment of the Impact on Reactor Vessel dpa Rates Due to Installation of a Proposed Low Enriched Uranium (LEU) Core in the High Flux Isotope Reactor (HFIR)

    SciTech Connect

    Daily, Charles R.

    2015-10-01

    An assessment of the impact on the High Flux Isotope Reactor (HFIR) reactor vessel (RV) displacements-per-atom (dpa) rates due to operations with the proposed low enriched uranium (LEU) core described by Ilas and Primm has been performed and is presented herein. The analyses documented herein support the conclusion that conversion of HFIR to low-enriched uranium (LEU) core operations using the LEU core design of Ilas and Primm will have no negative impact on HFIR RV dpa rates. Since its inception, HFIR has been operated with highly enriched uranium (HEU) cores. As part of an effort sponsored by the National Nuclear Security Administration (NNSA), conversion to LEU cores is being considered for future HFIR operations. The HFIR LEU configurations analyzed are consistent with the LEU core models used by Ilas and Primm and the HEU balance-of-plant models used by Risner and Blakeman in the latest analyses performed to support the HFIR materials surveillance program. The Risner and Blakeman analyses, as well as the studies documented herein, are the first to apply the hybrid transport methods available in the Automated Variance reduction Generator (ADVANTG) code to HFIR RV dpa rate calculations. These calculations have been performed on the Oak Ridge National Laboratory (ORNL) Institutional Cluster (OIC) with version 1.60 of the Monte Carlo N-Particle 5 (MCNP5) computer code.

  15. Incorporation of Passive Safety Systems in the Generation-IV Multi-Application Small Light Water Reactor (MASLWR)

    SciTech Connect

    Modro, S. Michael; Ougouag, Abderrafi M.; Fisher, James; Weaver, Kevan

    2002-07-01

    The Idaho National Engineering and Environmental Laboratory (INEEL), Nexant Inc. and the Oregon State University (OSU) developed an innovative Multi-Application Small Light Water Reactor (MASLWR) concept. The MASLWR is a small, modular, safe, and economic natural circulation light water reactor developed with the primary goal of producing electric power, but with the flexibility to be used for water desalination or district heating with deployment in a variety of locations. The MASLWR was developed, by design, to be a safe and economic reactor concept that can be deployed in the near term by utilizing current experience and capabilities of the industry. The key features of the MASLWR concept are the extreme simplicity of the design and its passive safety systems. This paper provides an overview of safety analyses performed for the MASLWR concept and explores potential for the increase in passive safety via the implementation of new features. The results of these safety studies demonstrate that the reactor core will be provided with a stable cooling source adequate to remove decay heat without significant cladding heatup under all credible scenarios. The response of the system to accident conditions is a controlled depressurization, whereby most of the primary system blowdown occurs via the submerged ADS blowdown pathway. (authors)

  16. 78 FR 31988 - Atomic Safety and Licensing Board; In the Matter of Charlissa C. Smith (Denial of Senior Reactor...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-28

    ..., posters, demonstrations, and displays are prohibited in accordance with NRC policy. See 66 FR 31719 (June... COMMISSION Atomic Safety and Licensing Board; In the Matter of Charlissa C. Smith (Denial of Senior Reactor.... Charlissa Smith's demand for hearing. LBP-13-03, 77 NRC ---- (2013). This hearing will consider Ms....

  17. MODULAR AND FULL SIZE SIMPLIFIED BOILING WATER REACTOR DESIGN WITH FULLY PASSIVE SAFETY SYSTEMS

    SciTech Connect

    M. Ishii; S. T. Revankar; T. Downar; Y. Xu, H. J. Yoon; D. Tinkler; U. S. Rohatgi

    2003-06-16

    OAK B204 The overall goal of this three-year research project was to develop a new scientific design of a compact modular 200 MWe and a full size 1200 MWe simplified boiling water reactors (SBWR). Specific objectives of this research were: (1) to perform scientific designs of the core neutronics and core thermal-hydraulics for a small capacity and full size simplified boiling water reactor, (2) to develop a passive safety system design, (3) improve and validate safety analysis code, (4) demonstrate experimentally and analytically all design functions of the safety systems for the design basis accidents (DBA) and (5) to develop the final scientific design of both SBWR systems, 200 MWe (SBWR-200) and 1200 MWe (SBWR-1200). The SBWR combines the advantages of design simplicity and completely passive safety systems. These advantages fit well within the objectives of NERI and the Department of Energy's focus on the development of Generation III and IV nuclear power. The 3-year research program was structured around seven tasks. Task 1 was to perform the preliminary thermal-hydraulic design. Task 2 was to perform the core neutronic design analysis. Task 3 was to perform a detailed scaling study and obtain corresponding PUMA conditions from an integral test. Task 4 was to perform integral tests and code evaluation for the DBA. Task 5 was to perform a safety analysis for the DBA. Task 6 was to perform a BWR stability analysis. Task 7 was to perform a final scientific design of the compact modular SBWR-200 and the full size SBWR-1200. A no cost extension for the third year was requested and the request was granted and all the project tasks were completed by April 2003. The design activities in tasks 1, 2, and 3 were completed as planned. The existing thermal-hydraulic information, core physics, and fuel lattice information was collected on the existing design of the simplified boiling water reactor. The thermal-hydraulic design were developed. Based on a detailed integral

  18. Preliminary safety analysis of Pb-Bi cooled 800 MWt modified CANDLE burn-up scheme based fast reactors

    NASA Astrophysics Data System (ADS)

    Su'ud, Zaki; Sekimoto, H.

    2014-09-01

    Pb-Bi Cooled fast reactors with modified CANDLE burn-up scheme with 10 regions and 10 years cycle length has been investigated from neutronic aspects. In this study the safety aspect of such reactors have been investigated and discussed. Several condition of unprotected loss of flow (ULOF) and unprotected rod run-out transient over power (UTOP) have been simulated and the results show that the reactors excellent safety performance. At 80 seconds after unprotected loss of flow condition, the core flow rate drop to about 25% of its initial flow and slowly move toward its natural circulation level. The maximum fuel temperature can be managed below 1000°C and the maximum cladding temperature can be managed below 700°C. The dominant reactivity feedback is radial core expansion and Doppler effect, followed by coolant density effect and fuel axial expansion effect.

  19. Preliminary safety analysis of Pb-Bi cooled 800 MWt modified CANDLE burn-up scheme based fast reactors

    SciTech Connect

    Su'ud, Zaki; Sekimoto, H.

    2014-09-30

    Pb-Bi Cooled fast reactors with modified CANDLE burn-up scheme with 10 regions and 10 years cycle length has been investigated from neutronic aspects. In this study the safety aspect of such reactors have been investigated and discussed. Several condition of unprotected loss of flow (ULOF) and unprotected rod run-out transient over power (UTOP) have been simulated and the results show that the reactors excellent safety performance. At 80 seconds after unprotected loss of flow condition, the core flow rate drop to about 25% of its initial flow and slowly move toward its natural circulation level. The maximum fuel temperature can be managed below 1000°C and the maximum cladding temperature can be managed below 700°C. The dominant reactivity feedback is radial core expansion and Doppler effect, followed by coolant density effect and fuel axial expansion effect.

  20. Fuel pins with both target and fuel pellets in an isotope-production reactor

    DOEpatents

    Cawley, W.E.; Omberg, R.P.

    1982-08-19

    A method is described for producing tritium in a fast breeder reactor cooled with liquid metal. Lithium target pellets are placed in close contact with fissile fuel pellets in order to increase the tritium production rate.

  1. Assemblies with both target and fuel pins in an isotope-production reactor

    DOEpatents

    Cawley, W.E.; Omberg, R.P.

    1982-08-19

    A method is described for producing tritium in a fast breeder reactor cooled with liquid metal. Lithium target material is placed in pins adjacent to fuel pins in order to increase the tritium production rate.

  2. Vented target elements for use in an isotope-production reactor. [LMFBR

    DOEpatents

    Cawley, W.E.; Omberg, R.P.

    1982-08-19

    A method is described for producing tritium gas in a fast breeder reactor cooled with liquid metal. Lithium target material is placed in pins equipped with vents, and tritium gas is recovered from the coolant.

  3. High-temperature gas-cooled reactor safety studies for the Division of Reactor Safety Research. Quarterly progress report, July 1-September 30, 1981

    SciTech Connect

    Ball, S.J.; Cleveland, J.C.; Conklin, J.C.; Harrington, R.M.

    1982-01-01

    Development work continued on the accident dynamics simulation codes ORTAP, BLAST, and ORECA for the Fort St. Vrain (FSV) reactor. New steam line and main steam bypass system models were developed and incorporated into ORTAP. An initial simulation of the FSV prestressed concrete reactor vessel and liner cooling system was developed and tested for use in the severe accident sequence analysis task.

  4. Nuclear safety considerations in the conceptual design of a fast reactor for space electric power and propulsion

    NASA Technical Reports Server (NTRS)

    Hsieh, T.-M.; Koenig, D. R.

    1977-01-01

    Some nuclear safety aspects of a 3.2 mWt heat pipe cooled fast reactor with out-of-core thermionic converters are discussed. Safety related characteristics of the design including a thin layer of B4C surrounding the core, the use of heat pipes and BeO reflector assembly, the elimination of fuel element bowing, etc., are highlighted. Potential supercriticality hazards and countermeasures are considered. Impacts of some safety guidelines of space transportation system are also briefly discussed, since the currently developing space shuttle would be used as the primary launch vehicle for the nuclear electric propulsion spacecraft.

  5. Hydrogen isotope trapping on graphite collectors during an isotope exchange experiment in the tokomak fusion test reactor

    SciTech Connect

    Kilpatrick, S.J.; Nygren, R.; Wampler, W.R.; Ulrickson, M.; Dylla, H.F.; Manos, D.M.; Ramsey, A.T.; Hirooka, Y.

    1988-01-01

    A rotatable collector probe was used to expose several graphite samples to a deuterium-to-hydrogen-to-deuterium exchange experiment in the Tokamak Fusion Test Reactor (TFTR) at the start of the 1988 operations period. This experiment proved the utility of helium conditioning discharges in accelerating the changeover process. Samples included portions of a tile taken from the inner bumper limiter (POCO AXF-5Q graphite) of TFTR during the recent machine opening, and coupons which had been conditioned in the Plasma Surface Interaction Experimental Facility (PISCES) by exposure to a helium plasma. The samples were exposed to different groups of the /approximately/100 1.4MA discharges that comprised the experiment. They were removed and analyzed for retained deuterium and impurities by nuclear reaction analysis and Rutherford backscattering spectrometry. Codeposited carbon layers had been formed with thicknesses up to several tenths of a micron. The inferred percentages of trapped hydrogenic species were in general agreement with spectroscopic data. The computed carbon fluence per D discharge, 1.2 /times/ 10 X C/cmS, is compared to recent measurements on limiter tiles removed from TFTR. 21 refs., 3 figs., 1 tab.

  6. Improved methodology for integral analysis of advanced reactors employing passive safety

    NASA Astrophysics Data System (ADS)

    Muftuoglu, A. Kursad

    After four decades of experience with pressurized water reactors, a new generation of nuclear plants are emerging. These advanced designs employ passive safety which relies on natural forces, such as gravity and natural circulation. The new concept of passive safety also necessitates improvement in computational tools available for best-estimate analyses. The system codes originally designed for high pressure conditions in the presence of strong momentum sources such as pumps are challenged in many ways. Increased interaction of the primary system with the containment necessitates a tool for integral analysis. This study addresses some of these concerns. An improved tool for integral analysis coupling primary system with containment calculation is also presented. The code package is based on RELAP5 and CONTAIN programs, best-estimate thermal-hydraulics code for primary system analysis and containment code for containment analysis, respectively. The suitability is demonstrated with a postulated small break loss of coolant accident analysis of Westinghouse AP600 plant. The thesis explains the details of the analysis including the coupling model.

  7. Uncertainty analysis of Lead cross sections on reactor safety for ELECTRA

    NASA Astrophysics Data System (ADS)

    Alhassan, Erwin; Sjöstrand, Henrik; Duan, Junfeng; Gustavsson, Cecilia; Pomp, Stephan; Österlund, Michael; Rochman, Dimitri; Koning, Arjan J.

    2014-06-01

    The Total Monte Carlo (TMC) method was used in this study to assess the impact of Pb-206, 207 and 208 nuclear data uncertainties on keff , βeff, coolant temperature coefficient, the coolant void worth for the ELECTRA reactor. Relatively large uncertainties were observed in the keff and the coolant void worth for all the isotopes with significant contribution coming from Pb-208 nuclear data. The large Pb-208 nuclear data uncertainty observed was further investigated by studying the impact of partial channels on the keff and the βeff. Various sections of ENDF file: elastic scattering (n, el), inelastic scattering (n, inl), neutron capture (n, γ), (n, 2n), resonance parameters and the angular distribution were varied randomly and distributions in keff and the βeff obtained. The dominant contributions to the uncertainty in the keff from Pb-208 came from uncertainties in the resonance parameters; however, elastic scattering cross section and the angular distribution also had significant impact. The impact of nuclear data uncertainties on the βeff was observed to be small.

  8. Nuclear Criticality Control and Safety of Plutonium-Uranium Fuel Mixtures Outside Reactors

    SciTech Connect

    Biswas, D; Mennerdahl, D

    2008-06-23

    The ANSI/ANS 8.12 standard was first approved in July 1978. At that time, this edition was applicable to operations with plutonium-uranium oxide (MOX) fuel mixtures outside reactors and was limited to subcritical limits for homogeneous systems. The next major revision, ANSI/ANS-8.12-1987, included the addition of subcritical limits for heterogeneous systems. The standard was subsequently reaffirmed in February 1993. During late 1990s, substantial work was done by the ANS 8.12 Standard Working Group to re-examine the technical data presented in the standard using the latest codes and cross section sets. Calculations performed showed good agreement with the values published in the standard. This effort resulted in the reaffirmation of the standard in March 2002. The standard is currently in a maintenance mode. After 2002, activities included discussions to determine the future direction of the standard and to follow the MOX standard development by the International Standard Organization (ISO). In 2007, the Working Group decided to revise the standard to extend the areas of applicability by providing a wider range of subcritical data. The intent is to cover a wider domain of MOX fuel fabrication and operations. It was also decided to follow the ISO MOX standard specifications (related to MOX density and isotopics) and develop a new set of subcritical limits for homogeneous systems. This has resulted in the submittal (and subsequent approval) of the project initiation notification system form (PINS) in 2007.

  9. Monte Carlo simulation of a research reactor with nominal power of 7 MW to design new control safety rods

    NASA Astrophysics Data System (ADS)

    Shoushtari, M. K.; Kakavand, T.; Sadat Kiai, S. M.; Ghaforian, H.

    2010-03-01

    The Monte Carlo simulation has been established for a research reactor with nominal power of 7 MW. A detailed model of the reactor core was employed including standard and control fuel elements, reflectors, irradiation channels, control rods, reactor pool and thermal column. The following physical parameters of reactor core were calculated for the present LEU core: core reactivity ( ρ), control rod (CR) worth, thermal and epithermal neutron flux distributions, shutdown margin and delayed neutron fraction. Reduction of unfavorable effects of blockage probability of control safety rod (CSR)s in their interiors because of not enough space in their sites, and lack of suitable capabilities to fabricate very thin plates for CSR cladding, is the main aim of the present study. Making the absorber rod thinner and CSR cladding thicker by introducing a better blackness absorbing material and a new stainless steel alloy, respectively, are two studied ways to reduce the effects of mentioned problems.

  10. Reactor shutdown delays medical procedures

    NASA Astrophysics Data System (ADS)

    Gwynne, Peter

    2008-01-01

    A longer-than-expected maintenance shutdown of the Canadian nuclear reactor that produces North America's entire supply of molybdenum-99 - from which the radioactive isotopes technetium-99 and iodine-131 are made - caused delays to the diagnosis and treatment of thousands of seriously ill patients last month. Technetium-99 is a key component of nuclear-medicine scans, while iodine-131 is used to treat cancer and other diseases of the thyroid. Production eventually resumed, but only after the Canadian government had overruled the Canadian Nuclear Safety Commission (CNSC), which was still concerned about the reactor's safety.

  11. Discrimination of source reactor type by multivariate statistical analysis of uranium and plutonium isotopic concentrations in unknown irradiated nuclear fuel material.

    PubMed

    Robel, Martin; Kristo, Michael J

    2008-11-01

    The problem of identifying the provenance of unknown nuclear material in the environment by multivariate statistical analysis of its uranium and/or plutonium isotopic composition is considered. Such material can be introduced into the environment as a result of nuclear accidents, inadvertent processing losses, illegal dumping of waste, or deliberate trafficking in nuclear materials. Various combinations of reactor type and fuel composition were analyzed using Principal Components Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLSDA) of the concentrations of nine U and Pu isotopes in fuel as a function of burnup. Real-world variation in the concentrations of (234)U and (236)U in the fresh (unirradiated) fuel was incorporated. The U and Pu were also analyzed separately, with results that suggest that, even after reprocessing or environmental fractionation, Pu isotopes can be used to determine both the source reactor type and the initial fuel composition with good discrimination.

  12. STARTUP REACTIVITY ACCOUNTABILITY ATTRIBUTED TO ISOTOPIC TRANSMUTATIONS IN THE IRRADIATED BERYLLIUM REFLECTOR OF THE HIGH FLUX ISTOTOPE REACTOR

    SciTech Connect

    Chandler, David; Maldonado, G Ivan; Primm, Trent

    2010-01-01

    The objective of this study is to develop a methodology to predict the reactivity impact as a function of outage time between cycles of 3He, 6Li, and other poisons in the High Flux Isotope Reactor s (HFIR) beryllium reflector. The reactivity worth at startup of the HFIR has been incorrectly predicted in the past after the reactor has been shut-down for long periods of time. The incorrect prediction was postulated to be due to the erroneous calculation of 3He buildup in the beryllium reflector. It is necessary to develop a better estimate of the start-of-cycle symmetric critical control element positions since if the estimated and actual symmetrical critical control element positions differ by more than $1.55 in reactivity (approximately one-half inch in control element startup position), HFIR is to be shutdown and a technical evaluation is performed to resolve the discrepancy prior to restart. 3He is generated and depleted during operation, but during an outage, the depletion of 3He ceases because it is a stable isotope. 3He is born from the radioactive decay of tritium, and thus the concentration of 3He increases during shutdown. The computer program SCALE, specifically the TRITON and CSAS5 control modules including the KENO V.A, COUPLE, and ORIGEN functional modules were utilized in this study. An equation relating the down time (td) to the change in symmetric control element position was generated and validated against measurements for approximately 40 HFIR operating cycles. The newly-derived correlation was shown to improve accuracy of predictions for long periods of down time.

  13. The Gas-Cooled Fast Reactor: Report on Safety System Design for Decay Heat Removal

    SciTech Connect

    K. D. Weaver; T. Marshall; T. Y. C. Wei; E. E. Feldman; M. J. Driscoll; H. Ludewig

    2003-09-01

    The gas-cooled fast reactor (GFR) was chosen as one of the Generation IV nuclear reactor systems to be developed based on its excellent potential for sustainability through reduction of the volume and radiotoxicity of both its own fuel and other spent nuclear fuel, and for extending/utilizing uranium resources orders of magnitude beyond what the current open fuel cycle can realize. In addition, energy conversion at high thermal efficiency is possible with the current designs being considered, thus increasing the economic benefit of the GFR. However, research and development challenges include the ability to use passive decay heat removal systems during accident conditions, survivability of fuels and in-core materials under extreme temperatures and radiation, and economical and efficient fuel cycle processes. This report addresses/discusses the decay heat removal options available to the GFR, and the current solutions. While it is possible to design a GFR with complete passive safety (i.e., reliance solely on conductive and radiative heat transfer for decay heat removal), it has been shown that the low power density results in unacceptable fuel cycle costs for the GFR. However, increasing power density results in higher decay heat rates, and the attendant temperature increase in the fuel and core. Use of active movers, or blowers/fans, is possible during accident conditions, which only requires 3% of nominal flow to remove the decay heat. Unfortunately, this requires reliance on active systems. In order to incorporate passive systems, innovative designs have been studied, and a mix of passive and active systems appears to meet the requirements for decay heat removal during accident conditions.

  14. Structural, Thermal, and Safety Analysis of Isotope Heat Source and Integrated Heat Exchangers for 6-kWe Dynamic Isotope Power System (DIPS)

    SciTech Connect

    Schock, Alfred

    1989-01-01

    The design of the 30-kWt isotope heat source integrated with a Rankine boiler and a Brayton gas heater, which was described in the preceding paper in these proceedings, was subjected to structural, thermal, and safety analyses. The present paper describes and discusses the results of these analyses. Detailed structural analyses of the heat source integrated with the boiler and gas heater showed positive safety margins at all locations during the launch. Detailed thermal analyses showed acceptable temperatures at all locations, during assembly, transfer and orbital operations. Reentry thermal analyses showed that the clads have acceptable peak and impact temperatures. Loss-of-cooling analyses indicated the feasibility of a passive safety concept for preventing over temperatures. Static structural analysis showed positive safety margins at all locations, and dynamic analysis showed that there were no low-frequency resources. Continuum-mechanics code analyses of the effects of the impact of Solid Rocket Booster (SRB) fragments on the heat source and of the very unlikely impact of the full heat source on concrete indicated relatively modest fuel clad deformations and little or no fuel release.

  15. Safety evaluation report related to the renewal of the operating license for the research reactor at North Carolina State University

    SciTech Connect

    1997-04-01

    This safety evaluation report (SER) summarizes the findings of a safety review conducted by the staff of the U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Reactor Regulation (NRR). The staff conducted this review in response to a timely application filed by North Carolina State University (the licensee or NCSU) for a 20-year renewal of Facility Operating License R-120 to continue to operate the NCSU PULSTAR research reactor. The facility is located in the Burlington Engineering Laboratory complex on the NCSU campus in Raleigh, North Carolina. In its safety review, the staff considered information submitted by the licensee (including past operating history recorded in the licensee`s annual reports to the NRC), as well as inspection reports prepared by NRC Region H personnel and first-hand observations. On the basis of this review, the staff concludes that NCSU can continue to operate the PULSTAR research reactor, in accordance with its application, without endangering the health and safety of the public. 16 refs., 31 figs., 7 tabs.

  16. REACTOR

    DOEpatents

    Szilard, L.

    1963-09-10

    A breeder reactor is described, including a mass of fissionable material that is less than critical with respect to unmoderated neutrons and greater than critical with respect to neutrons of average energies substantially greater than thermal, a coolant selected from sodium or sodium--potassium alloys, a control liquid selected from lead or lead--bismuth alloys, and means for varying the quantity of control liquid in the reactor. (AEC)

  17. Comparisons of HELIOS Calculated Isotope Concentrations to Measured Values for Several Reactor Systems

    SciTech Connect

    Charlton, W.S.; Perry, R.T.; Fearey, B.L.; Parish, T.A.

    1998-10-21

    Heavy metal and fission product noble gas concentrations in spent fuel from two different PWR'S were calculated using HELIOS and compared to measured results from the literature. It was found that for the U-235/U-238 and Pu-240/Pu-239 isotopic ratios, the HELIOS calculation agreed to within the experimental uncertainty. For the Xe-131/Xe-134 isotopic ratios, HELIOS tended to overestimate the result by up to 4%. Conversely for the Xe-132/Xe-134 ratios, HELIOS underestimated the result by a slight amount ({approximately}1%). This suggests that either the fission product yields for Xe-131 and Xe-132 should be slightly altered or that the absorption cross-section for Xe-131 should be slightly increased. More analysis is necessary to determine which of these two alternatives is more appropriate. This work has shown that the accuracy of HELIOS (within 2% for heavy metals and within 4% for fission noble gases) is sufficient for most analyses.

  18. Automated system for neutron activation analysis determination of short lived isotopes at The DOW Chemical Company's TRIGA research reactor

    NASA Astrophysics Data System (ADS)

    Zieman, J. J.; Rigot, W. L.; Romick, J. D.; Quinn, T. J.; Kocher, C. W.

    1994-12-01

    An automated neutron activation analysis (NAA) system for the determination of short lived isotopes was constructed at The DOW Chemical Company's TRIGA Research Reactor in 1993. The NAA group of the Analytical Sciences Laboratory uses the reactor for thousands of analyses each year and therefore automation is important to achieve and maintain high throughput and precision (productivity). This project is complementary to automation of the long-lived counting facilities (see Romick et al., these Proceedings). Canberra/Nuclear Data Systems DEC-based software and electronics modules and an I/O mounting board are the basic commercial components. A Fortran program on a VAX computer controls I/O via ethernet to an Acquisition Interface Module (AIM). The AIM controls the γ spectrometer modules and is interfaced to a Remote Parallel Interface (RPI) module which controls the pneumatic transfer apparatus with TTL signals to the I/O mounting board. Near-infrared sensors are used to monitor key points in the transfer system. Spectra are acquired by a single HPGe detector mounted on a sliding rail to allow flexible and more reproducible counting geometries than with manual sample handling. The maximum sample size is 8 ml in a heat-sealed two dram vial. The sample vial is nested into a "rabbit" vial for irradiation which can be automatically removed prior to spectrum collection. The system was designed to be used by the reactor operator at the control console without the aid of an additional experimenter. Applications include the determination of selenium and silver in coal and water, fluorine in tetra-fluoro ethylene (TFE) coated membranes, aluminum and titanium in composite materials and trace fluorine in non-chlorinated cleaning solvents. Variable dead time software allows analysis for 77mSe despite high dead times from 16N encountered in samples.

  19. Reactor safety issues resolved by the 2D/3D Program. International Agreement Report

    SciTech Connect

    Damerell, P.S.; Simons, J.W.

    1993-07-01

    The 2D/3D Program studied multidimensional thermal-hydraulics in a PWR core and primary system during the end-of-blowdown and post-blowdown phases of a large-break LOCA (LBLOCA), and during selected small-break LOCA (SBLOCA) transients. The program included tests at the Cylindrical Core Test Facility (CCTF), the Slab Core Test Facility (SCTF), and the Upper Plenum Test Facility (UPTF), and computer analyses using TRAC. Tests at CCTF investigated core thermal-hydraulics and overall system behavior while tests at SCTF concentrated on multidimensional core thermal-hydraulics. The UPTF tests investigated two-phase flow behavior in the downcomer, upper plenum, tie plate region, and primary loops. TRAC analyses evaluated thermal-hydraulic behavior throughout the primary system in tests as well as in PWRs. This report summarizes the test and analysis results in each of the main areas where improved information was obtained in the 2D/3D Program. The discussion is organized in terms of the reactor safety issues investigated.

  20. Understanding Earthquake Processes in the Central and Eastern US and Implications for Nuclear Reactor Safety

    NASA Astrophysics Data System (ADS)

    Seber, D.; Tabatabai, S.

    2012-12-01

    All of the early site permits and new reactor licensing applications, which have been submitted to the U.S. Nuclear Regulatory Commission (U.S. NRC), are located in the Central and Eastern United States (CEUS). Furthermore, among the 104 commercial nuclear power plants (NPPs) already licensed to operate in the US, 96 are located in the CEUS. While there are many considerations in siting commercial NPPs, the perceived lower seismic hazard in the CEUS compared to the Western United States is one of the reasons why the majority of operating and potential future nuclear reactors are located in the CEUS. However, one important criterion used in the licensing and safe operation of a nuclear power plant is its seismic design basis, which establishes the plant's ability to withstand ground motions produced by moderate- to large-sized earthquakes without suffering any damage to its critical safety related structures, systems, and components. The seismic design basis for a NPP is site specific and determined using up-to-date knowledge and information about seismic sources surrounding the site and seismic wave propagation characteristics. Therefore, an in-depth understanding of the processes generating earthquakes (tectonic or man-made) and the seismic wave propagation characteristics in the CEUS is crucial. The U.S. NRC's seismic review process for evaluating new reactor siting applications heavily relies upon up-to-date scientific knowledge of seismic sources within at least 320 km of a proposed site. However, the availability of up-to-date knowledge and information about potential seismic sources in low-seismicity regions is limited and relevant data are sparse. Recently, the NRC participated in a joint effort to develop new seismic source models to be used in the CEUS seismic hazard studies for nuclear facilities. In addition, efforts are underway to better understand the seismic potential of the Eastern Tennessee Seismic Zone. While very large and successful scientific

  1. An analysis of thermionic space nuclear reactor power system: II. Merits of using safety drums for backup control

    NASA Astrophysics Data System (ADS)

    El-Genk, Mahomed S.; Xue, Huimin

    1993-01-01

    An analysis is performed to investigate the merits of using the TOPAZ-II safety drums for a backup control to prevent a reactivity excursion, stabilize the reactor, and achieve steady-state power operation, following a severe hypothetical reactivity initiated accident (RIA). Such an RIA is assumed to occur during the system start-up in orbit due to a malfunction of the drive mechanism of the control drums, causing the nine drums to accidentally rotate the full 180° outward. Results show that an immediate, inward rotation of the three safety drums to an angle of 80° will shutdown the reactor, however, a delay time of 10 s will not only prevents a reactivity excursion, but also enables operating the reactor at a steady-state thermal power of about 33.3 kW (0.9 kW per TFE). Conversely, when the immediate rotation of the safety drums is to a larger angle of 100°, a steady-state operation at about 37 kW can be achieved, but a delay of 10 s causes a reactivity excursion and overheating of the TFEs. It is therefor concluded that, should the drive mechanism be modified to enable rotating the safety drums for TOPAZ-II reactor at variable speeds of and below 22.5°/s, the three safety drums could be used successfully for a backup control, following an RIA. However, since the reactivity worth of the three safety drums is only 2.0, the maximum steady-state electric power achievable for the system is limited to approximately 0.25 kW, at which the fission power is about 37 kW and the emitter temperature is approximaely 1500 K. To alleviate such a limitation and enable operation at nominal design conditions (fission power of about 107 kW or a system's total electric power of 5.6 kW), the reactivity worth of the safety drums would have to be increased by at least 0.24. An additional increase in the safety drums' worth will also be necessary to maintain steady-state operation of the system at nominal conditions throughout the mission lifetime, with all nine control drums fully

  2. Proceedings of the US Nuclear Regulatory Commission twentieth water reactor safety information meeting; Volume 2, Severe accident research, Thermal hydraulics

    SciTech Connect

    Weiss, A.J.

    1993-03-01

    This three-volume report contains papers presented at the Twentieth Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 21--23, 1992. The papers describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included 10 different papers presented by researchersfrom CEC, China, Finland, France, Germany, Japan, Spain and Taiwan. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  3. Providing the Basis for Innovative Improvements in Advanced LWR Reactor Passive Safety Systems Design: An Educational R&D Project

    SciTech Connect

    Brian G. Williams; Jim C. P. Liou; Hiral Kadakia; Bill Phoenix; Richard R. Schultz

    2007-02-27

    This project characterizes typical two-phase stratified flow conditions in advanced water reactor horizontal pipe sections, following activation of passive cooling systems. It provides (1) a means to educate nuclear engineering students regarding the importance of two-phase stratified flow in passive cooling systems to the safety of advanced reactor systems and (2) describes the experimental apparatus and process to measure key parameters essential to consider when designing passive emergency core cooling flow paths that may encounter this flow regime. Based on data collected, the state of analysis capabilities can be determined regarding stratified flow in advanced reactor systems and the best paths forward can be identified to ensure that the nuclear industry can properly characterize two-phase stratified flow in passive emergency core cooling systems.

  4. REACTOR

    DOEpatents

    Roman, W.G.

    1961-06-27

    A pressurized water reactor in which automatic control is achieved by varying the average density of the liquid moderator-cooiant is patented. Density is controlled by the temperature and power level of the reactor ftself. This control can be effected by the use of either plate, pellet, or tubular fuel elements. The fuel elements are disposed between upper and lower coolant plenum chambers and are designed to permit unrestricted coolant flow. The control chamber has an inlet opening communicating with the lower coolant plenum chamber and a restricted vapor vent communicating with the upper coolant plenum chamber. Thus, a variation in temperature of the fuel elements will cause a variation in the average moderator density in the chamber which directly affects the power level of the reactor.

  5. An overview of modeling methods for thermal mixing and stratification in large enclosures for reactor safety analysis

    SciTech Connect

    Haihua Zhao; Per F. Peterson

    2010-10-01

    Thermal mixing and stratification phenomena play major roles in the safety of reactor systems with large enclosures, such as containment safety in current fleet of LWRs, long-term passive containment cooling in Gen III+ plants including AP-1000 and ESBWR, the cold and hot pool mixing in pool type sodium cooled fast reactor systems (SFR), and reactor cavity cooling system behavior in high temperature gas cooled reactors (HTGR), etc. Depending on the fidelity requirement and computational resources, 0-D steady state models (heat transfer correlations), 0-D lumped parameter based transient models, 1-D physical-based coarse grain models, and 3-D CFD models are available. Current major system analysis codes either have no models or only 0-D models for thermal stratification and mixing, which can only give highly approximate results for simple cases. While 3-D CFD methods can be used to analyze simple configurations, these methods require very fine grid resolution to resolve thin substructures such as jets and wall boundaries. Due to prohibitive computational expenses for long transients in very large volumes, 3-D CFD simulations remain impractical for system analyses. For mixing in stably stratified large enclosures, UC Berkeley developed 1-D models basing on Zuber’s hierarchical two-tiered scaling analysis (HTTSA) method where the ambient fluid volume is represented by 1-D transient partial differential equations and substructures such as free or wall jets are modeled with 1-D integral models. This allows very large reductions in computational effort compared to 3-D CFD modeling. This paper will present an overview on important thermal mixing and stratification phenomena in large enclosures for different reactors, major modeling methods and their advantages and limits, potential paths to improve simulation capability and reduce analysis uncertainty in this area for advanced reactor system analysis tools.

  6. High-temperature gas-cooled reactor safety studies for the Division of Reactor Safety Research. Quarterly progress report, January 1-March 31, 1980

    SciTech Connect

    Ball, S.J.; Cleveland, J.C.; Conklin, J.C.; Harrington, R.M.

    1980-08-01

    Work continued on development of the ORTAP, ORECA, and BLAST codes; and verification studies were continued on the ORECA, CORTAP, and BLAST codes. An improved steam turbine plant model (ORTURB) for use in ORTAP was developed and checked. Predictions from BLAST, CORTAP, and ORECA were compared with various transient test data from the Fort St. Vrain reactor.

  7. High-temperature gas-cooled reactor safety studies for the Division of Reactor Safety Research. Quarterly progress report, October 1-December 31, 1981

    SciTech Connect

    Ball, S J; Clapp, Jr, N E; Cleveland, J C; Conklin, J C; Harrington, R M; Kornegay, F C

    1982-05-01

    Work continued on code development and verification activities and included improvements in the ORTAP code steam line model and the ORECA code capabilities for long-term transients. A preliminary severe accident sequence analysis exercise is presented that includes reactor building release source term, atmospheric dispersion, and radiation exposure calculations.

  8. Experimental assessment of computer codes used for safety analysis of integral reactors

    SciTech Connect

    Falkov, A.A.; Kuul, V.S.; Samoilov, O.B.

    1995-09-01

    Peculiarities of integral reactor thermohydraulics in accidents are associated with presence of noncondensable gas in built-in pressurizer, absence of pumped ECCS, use of guard vessel for LOCAs localisation and passive RHRS through in-reactor HX`s. These features defined the main trends in experimental investigations and verification efforts for computer codes applied. The paper reviews briefly the performed experimental investigation of thermohydraulics of AST-500, VPBER600-type integral reactors. The characteristic of UROVEN/MB-3 code for LOCAs analysis in integral reactors and results of its verification are given. The assessment of RELAP5/mod3 applicability for accident analysis in integral reactor is presented.

  9. Application of noise analysis to safety-related assessments and reactor diagnostics

    SciTech Connect

    Dryter, R.C.; Fry, D.N.

    1980-01-01

    Noise analysis methods were used to assess anomalous in-core temperature fluctuations at the Fort St. Vrain gas-cooled reactor and postaccident reactor conditions at Three Mile Island, Unit 2. In addition to these applications of noise analysis, the underlying technology is developed concerning (1) analytical methods for predicting noise signatures under postulated anomalous conditions, (2) techniques for on-line monitoring of boiling water reactor stability, (3) new methods for locating and characterizing loose or drifting metallic objects in reactor coolant systems, and (4) acquisition of baseline noise signatures for commercial pressurized water reactors.

  10. Dynamic System Model of LS-VHTR to Estimate Design Parameter Impacts on Safety Margin and Reactor Economics

    SciTech Connect

    Qualls, A.L.; Wilson Jr, T.L.

    2006-07-01

    Early reactor analysis work for the U.S. Department of Energy's (DOE's) Liquid Salt - Very High Temperature Reactor (LS-VHTR) concept has focused primarily on detailed analyses of the core. This paper discusses ongoing analyses of the balance of plant and how it impacts overall system design. A dynamic system model of the end-to-end LS-VHTR has been developed to investigate the impact of major design parameters on systems performance, safety margin, and plant economics. The core model uses simplified thermal-hydraulic analyses to calculate four characteristic radial coolant channel parameters during transients. The core model is coupled to a multi-reheat Brayton power conversion system model through an intermediate salt-coolant loop model. A passive, safety-related heat-removal system is modeled for reactor pressure vessel protection. Critical parameters, such as peak fuel and vessel temperatures and peak temperatures and pressures in the power conversion loop, are estimated during proposed transients. The impacts of design parameters on component design requirements, safety margin, and economics are to be investigated. Transients initially analyzed will include loss-of-coolant-flow accidents. For initial transients, the axial- and radial-power profiles within the core will remain constant, with power levels decreasing in proportion to the time-dependent decay heating rate of the fuel. Later transients will represent spatial core power shifts during transients without scram. Results from simplified economic models will support relative comparisons among system design options. (authors)

  11. Final Report: Safety of Plasma Components and Aerosol Transport During Hard Disruptions and Accidental Energy Release in Fusion Reactor

    SciTech Connect

    Bourham, Mohamed A.; Gilligan, John G.

    1999-08-14

    Safety considerations in large future fusion reactors like ITER are important before licensing the reactor. Several scenarios are considered hazardous, which include safety of plasma-facing components during hard disruptions, high heat fluxes and thermal stresses during normal operation, accidental energy release, and aerosol formation and transport. Disruption events, in large tokamaks like ITER, are expected to produce local heat fluxes on plasma-facing components, which may exceed 100 GW/m{sup 2} over a period of about 0.1 ms. As a result, the surface temperature dramatically increases, which results in surface melting and vaporization, and produces thermal stresses and surface erosion. Plasma-facing components safety issues extends to cover a wide range of possible scenarios, including disruption severity and the impact of plasma-facing components on disruption parameters, accidental energy release and short/long term LOCA's, and formation of airborne particles by convective current transport during a LOVA (water/air ingress disruption) accident scenario. Study, and evaluation of, disruption-induced aerosol generation and mobilization is essential to characterize database on particulate formation and distribution for large future fusion tokamak reactor like ITER. In order to provide database relevant to ITER, the SIRENS electrothermal plasma facility at NCSU has been modified to closely simulate heat fluxes expected in ITER.

  12. Radioactive Carbon Isotope Monitoring System Based on Cavity Ring-down Laser Spectroscopy for Decommissioning Process of Nuclear Facilities

    NASA Astrophysics Data System (ADS)

    Tomita, Hideki; Watanabe, Kenichi; Takiguchi, Yu; Kawarabayashi, Jun; Iguchi, Tetsuo

    In decommissioning process of nuclear facilities, large amount of radioactive isotopes are discharged as waste. Radioactive carbon isotope (14C) is one of the key nuclides to determine the upper limit of concentration in the waste disposal. In particular, 14C on the graphite reactor decommissioning should be separated from stable carbon isotopes (12C and 13C) and monitored for the public health and safety. We propose an isotope analysis system based on cavity ring-down laser spectroscopy (CRDS) to monitor the carbon isotopes (12C, 13C and 14C) in the isotope separation process for the graphite reactor decommissioning. This system is compact and suitable for a continuous monitoring, because the concentration of molecules including the carbon isotope is derived from its photo absorbance with ultra high sensitive laser absorption spectroscopy. Here are presented the necessary conditions of CRDS system for 14C isotope analysis through the preliminary experimental results of 13C isotope analysis with a prototype system.

  13. The combination of laser micro-boring and high resolution α-spectroscopy for the analysis of α-emitting isotopes in irradiated high-temperature-reactor fuel

    NASA Astrophysics Data System (ADS)

    Helmbold, M.; Allelein, H. J.; Koch, H. R.

    1980-02-01

    A new method for the determination of α-emitting isotopes in irradiated high-temperature-reactor fuel has been developed. By use of a laser micro-boring system it is possible to prepare extremely thin α-spectroscopy samples out of any part of the fuel with a spatial resolution of about 10 μm. The measurement of the samples with a silicon barrier detector yields α-spectra of high resolution, allowing the determination of the content of most of the heavy metal isotopes. The method can be extended to the analysis of any kind of nuclear fuel.

  14. An analysis of thermionic space nuclear reactor power system: II. Merits of using safety drums for backup control

    SciTech Connect

    El-Genk, M.S.; Huimin Xue )

    1993-01-10

    An analysis is performed to investigate the merits of using the TOPAZ-II safety drums for a backup control to prevent a reactivity excursion, stabilize the reactor, and achieve steady-state power operation, following a severe hypothetical reactivity initiated accident (RIA). Such an RIA is assumed to occur during the system start-up in orbit due to a malfunction of the drive mechanism of the control drums, causing the nine drums to accidentally rotate the full 180[degree] outward. Results show that an immediate, inward rotation of the three safety drums to an angle of 80[degree] will shutdown the reactor, however, a delay time of 10 s will not only prevents a reactivity excursion, but also enables operating the reactor at a steady-state thermal power of about 33.3 kW (0.9 kW per TFE). Conversely, when the immediate rotation of the safety drums is to a larger angle of 100[degree], a steady-state operation at about 37 kW can be achieved, but a delay of 10 s causes a reactivity excursion and overheating of the TFEs. It is therefor concluded that, should the drive mechanism be modified to enable rotating the safety drums for TOPAZ-II reactor at variable speeds of and below 22.5[degree]/s, the three safety drums could be used successfully for a backup control, following an RIA. However, since the reactivity worth of the three safety drums is only $2.0, the maximum steady-state electric power achievable for the system is limited to approximately 0.25 kW, at which the fission power is about 37 kW and the emitter temperature is approximaely 1500 K. To alleviate such a limitation and enable operation at nominal design conditions (fission power of about 107 kW or a system's total electric power of 5.6 kW), the reactivity worth of the safety drums would have to be increased by at least $0.24.

  15. The advanced neutron source reactor: An overview

    SciTech Connect

    West, C.D.

    1990-01-01

    The Advanced Neutron Source (ANS) will be a new user facility for all kinds of neutron research, including neutron scattering, materials testing, materials analysis, isotope production and nuclear physics experiments. The centerpiece of the facility is to be the world's highest flux beam reactor. There will be beams of hot, cold and thermal neutrons for more than 40 simultaneous scattering and nuclear physics experiments. In addition, there will be irradiation positions and rabbit tubes for in-pile experiments, testing and isotopes production (including transuranium isotopes). To reduce technical risks and to minimize safety issues, the reactor design is based on technology already employed in existing research reactors. The fuel elements are annular assemblies of aluminum clad involute fuel plates, similar to the design of the High Flux Isotope Reactor (HFIR) at Oak Ridge and the Institut Laue-Langevin (ILL) Reactor in Grenoble. As is common with many other research reactors, the core is cooled, moderated and reflected by heavy water. The preferred fuel is U{sub 3}Si{sub 2} - a high-density fuel form developed by Argonne National Laboratory and Babcock and Wilcox that has been extensively tested in reactors in the United States, Europe and Japan. 7 figs., 2 tabs.

  16. Conceptual Process for the Manufacture of Low-Enriched Uranium/Molybdenum Fuel for the High Flux Isotope Reactor

    SciTech Connect

    Sease, J.D.; Primm, R.T. III; Miller, J.H.

    2007-09-30

    The U.S. nonproliferation policy 'to minimize, and to the extent possible, eliminate the use of HEU in civil nuclear programs throughout the world' has resulted in the conversion (or scheduled conversion) of many of the U.S. research reactors from high-enriched uranium (HEU) to low-enriched uranium (LEU). A foil fuel appears to offer the best option for using a LEU fuel in the High Flux Isotope Reactor (HFIR) without degrading the performance of the reactor. The purpose of this document is to outline a proposed conceptual fabrication process flow sheet for a new, foil-type, 19.75%-enriched fuel for HFIR. The preparation of the flow sheet allows a better understanding of the costs of infrastructure modifications, operating costs, and implementation schedule issues associated with the fabrication of LEU fuel for HFIR. Preparation of a reference flow sheet is one of the first planning steps needed in the development of a new manufacturing capacity for low enriched fuels for U.S. research and test reactors. The flow sheet can be used to develop a work breakdown structure (WBS), a critical path schedule, and identify development needs. The reference flow sheet presented in this report is specifically for production of LEU foil fuel for the HFIR. The need for an overall reference flow sheet for production of fuel for all High Performance Research Reactors (HPRR) has been identified by the national program office. This report could provide a starting point for the development of such a reference flow sheet for a foil-based fuel for all HPRRs. The reference flow sheet presented is based on processes currently being developed by the national program for the LEU foil fuel when available, processes used historically in the manufacture of other nuclear fuels and materials, and processes used in other manufacturing industries producing a product configuration similar to the form required in manufacturing a foil fuel. The processes in the reference flow sheet are within the

  17. Impact of mechanical- and maintenance-induced failures of main reactor coolant pump seals on plant safety

    SciTech Connect

    Azarm, M A; Boccio, J L; Mitra, S

    1985-12-01

    This document presents an investigation of the safety impact resulting from mechanical- and maintenance-induced reactor coolant pump (RCP) seal failures in nuclear power plants. A data survey of the pump seal failures for existing nuclear power plants in the US from several available sources was performed. The annual frequency of pump seal failures in a nuclear power plant was estimated based on the concept of hazard rate and dependency evaluation. The conditional probability of various sizes of leak rates given seal failures was then evaluated. The safety impact of RCP seal failures, in terms of contribution to plant core-melt frequency, was also evaluated for three nuclear power plants. For leak rates below the normal makeup capacity and the impact of plant safety were discussed qualitatively, whereas for leak rates beyond the normal make up capacity, formal PRA methodologies were applied. 22 refs., 17 figs., 19 tabs.

  18. Development of safety analysis codes and experimental validation for a very high temperature gas-cooled reactor Final report

    SciTech Connect

    Chang Oh

    2006-03-01

    The very high-temperature gas-cooled reactor (VHTR) is envisioned as a single- or dual-purpose reactor for electricity and hydrogen generation. The concept has average coolant temperatures above 9000C and operational fuel temperatures above 12500C. The concept provides the potential for increased energy conversion efficiency and for high-temperature process heat application in addition to power generation. While all the High Temperature Gas Cooled Reactor (HTGR) concepts have sufficiently high temperature to support process heat applications, such as coal gasification, desalination or cogenerative processes, the VHTR’s higher temperatures allow broader applications, including thermochemical hydrogen production. However, the very high temperatures of this reactor concept can be detrimental to safety if a loss-of-coolant accident (LOCA) occurs. Following the loss of coolant through the break and coolant depressurization, air will enter the core through the break by molecular diffusion and ultimately by natural convection, leading to oxidation of the in-core graphite structure and fuel. The oxidation will accelerate heatup of the reactor core and the release of toxic gasses (CO and CO2) and fission products. Thus, without any effective countermeasures, a pipe break may lead to significant fuel damage and fission product release. Prior to the start of this Korean/United States collaboration, no computer codes were available that had been sufficiently developed and validated to reliably simulate a LOCA in the VHTR. Therefore, we have worked for the past three years on developing and validating advanced computational methods for simulating LOCAs in a VHTR. Research Objectives As described above, a pipe break may lead to significant fuel damage and fission product release in the VHTR. The objectives of this Korean/United States collaboration were to develop and validate advanced computational methods for VHTR safety analysis. The methods that have been developed are now

  19. Fabrication procedures for manufacturing High Flux Isotope Reactor fuel elements - 2

    SciTech Connect

    Knight, R.W.; Morin, R.A.

    1999-12-01

    The original fabrication procedures written in 1968 delineated the manufacturing procedures at that time. Since 1968, there have been a number of procedural changes. This rewrite of the fabrication procedures incorporates these changes. The entire fuel core of this reactor is made up of two fuel elements. Each element consists of one annular array of fuel plates. These annuli are identified as the inner and outer fuel elements, since one fits inside the other. The inner element consists of 171 identical fuel plates, and the outer element contains 369 identical fuel plates differing slightly from those in the inner element. Both sets of fuel plates contain U{sub 3}O{sub 8} powder as the fuel, dispersed in an aluminum powder matrix and clad with aluminum. Procedures for manufacturing and inspection of the fuel elements are described and illustrated.

  20. Experimental plan and design of two experiments for graphite irradiation at temperatures up to 1500 °C in the target region of the high flux isotope reactor

    NASA Astrophysics Data System (ADS)

    McDuffee, J. L.; Burchell, T. D.; Heatherly, D. W.; Thoms, K. R.

    2008-10-01

    Two irradiation capsules have been designed for the target region of the high flux isotope reactor (HFIR). The objective is to provide dimensional change and physical property data for four candidate next generation nuclear plant (NGNP) graphites. The capsules will reach peak doses of ˜1.59 and ˜4.76 dpa, respectively, at temperatures of 900, 1200, and 1500 °C.

  1. Steam-explosion safety considerations for the Advanced Neutron Source Reactor at the Oak Ridge National Laboratory

    SciTech Connect

    Taleyarkhan, R.

    1990-02-01

    This report provides a perspective on steam-explosion safety and design issues for the Advanced Neutron Source (ANS) reactor being designed at the Oak Ridge National Laboratory. A historical background along with a description of experiments and analytical work performed to date has been provided. Preliminary analyses (for the ANS) have been conducted to evaluate steam-explosion pressure- pulse loadings, the effects of reactor coolant system (RCS) overpressurization, and slug energetics. The method used for pressure-pulse magnitude evaluation was benchmarked with previous calculations, an aluminum-water steam-explosion experiment, and test reactor steam explosion data with good agreement. Predicted pressure-pulse magnitudes evaluated were found to be several orders of magnitude lower than corresponding values evaluated by correlating available energies with shock-wave pressures from equivalent chemical detonations. The preliminary best estimate, as well as conservative estimates for RCS volume-pressurization failure and slug energetics for RCS volume-pressurization failure and slug energetics, indicated that (1) steam explosions in the ANS have significant damage potential, and (2) steam-explosion issues must be considered during the design phase of the ANS Project. Recommendations are made for efficiently addressing this important safety and design issue. 38 refs., 17 figs., 11 tabs.

  2. INTEGRAL BENCHMARKS AVAILABLE THROUGH THE INTERNATIONAL REACTOR PHYSICS EXPERIMENT EVALUATION PROJECT AND THE INTERNATIONAL CRITICALITY SAFETY BENCHMARK EVALUATION PROJECT

    SciTech Connect

    J. Blair Briggs; Lori Scott; Enrico Sartori; Yolanda Rugama

    2008-09-01

    Interest in high-quality integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of next generation reactor and advanced fuel cycle concepts. The International Reactor Physics Experiment Evaluation Project (IRPhEP) and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) continue to expand their efforts and broaden their scope to identify, evaluate, and provide integral benchmark data for method and data validation. Benchmark model specifications provided by these two projects are used heavily by the international reactor physics, nuclear data, and criticality safety communities. Thus far, 14 countries have contributed to the IRPhEP, and 20 have contributed to the ICSBEP. The status of the IRPhEP and ICSBEP is discussed in this paper, and the future of the two projects is outlined and discussed. Selected benchmarks that have been added to the IRPhEP and ICSBEP handbooks since PHYSOR’06 are highlighted, and the future of the two projects is discussed.

  3. Implications of Graphite Radiation Damage on the Neutronic, Operational, and Safety Aspects of Very High Temperature Reactors

    SciTech Connect

    Hawari, Ayman I

    2011-08-30

    In both the prismatic and pebble bed designs of Very High Temperature Reactors (VHTR), the graphite moderator is expected to reach exposure levels of 1021 to 1022 n/cm2 over the lifetime of the reactor. This exposure results in damage to the graphite structure. In this work, molecular dynamic and ab initio molecular static calculations will be used to: 1) simulate radiation damage in graphite under various irradiation and temperature conditions, 2) generate the thermal neutron scattering cross sections for damaged graphite, and 3) examine the resulting microstructure to identify damage formations that may produce the high-temperature Wigner effect. The impact of damage on the neutronic, operational and safety behavior of the reactor will be assessed using reactor physics calculations. In addition, tests will be performed on irradiated graphite samples to search for the high-temperature Wigner effect, and phonon density of states measurements will be conducted to quantify the effect on thermal neutron scattering cross sections using these samples.

  4. Operating experience feedback report: Reliability of safety-related steam turbine-driven standby pumps. Commercial power reactors, Volume 10

    SciTech Connect

    Boardman, J.R.

    1994-10-01

    This report documents a detailed analysis of failure initiators, causes and design features for steam turbine assemblies (turbines with their related components, such as governors and valves) which are used as drivers for standby pumps in the auxiliary feedwater systems of US commercial pressurized water reactor plants, and in the high pressure coolant injection and reactor core isolation cooling systems of US commercial boiling water reactor plants. These standby pumps provide a redundant source of water to remove reactor core heat as specified in individual plant safety analysis reports. The period of review for this report was from January 1974 through December 1990 for licensee event reports (LERS) and January 1985 through December 1990 for Nuclear Plant Reliability Data System (NPRDS) failure data. This study confirmed the continuing validity of conclusions of earlier studies by the US Nuclear Regulatory Commission and by the US nuclear industry that the most significant factors in failures of turbine-driven standby pumps have been the failures of the turbine-drivers and their controls. Inadequate maintenance and the use of inappropriate vendor technical information were identified as significant factors which caused recurring failures.

  5. Assumptions and Criteria for Performing a Feasability Study of the Conversion of the High Flux Isotope Reactor Core to Use Low-Enriched Uranium Fuel

    SciTech Connect

    Primm, R.T., III; Ellis, R.J.; Gehin, J.C.; Moses, D.L.; Binder, J.L.; Xoubi, N.

    2006-02-01

    A computational study will be initiated during fiscal year 2006 to examine the feasibility of converting the High Flux Isotope Reactor from highly enriched uranium fuel to low-enriched uranium. The study will be limited to steady-state, nominal operation, reactor physics and thermal-hydraulic analyses of a uranium-molybdenum alloy that would be substituted for the current fuel powder--U{sub 3}O{sub 8} mixed with aluminum. The purposes of this document are to (1) define the scope of studies to be conducted, (2) define the methodologies to be used to conduct the studies, (3) define the assumptions that serve as input to the methodologies, (4) provide an efficient means for communication with the Department of Energy and American research reactor operators, and (5) expedite review and commentary by those parties.

  6. Code development incorporating environmental, safety, and economic aspects of fusion reactors (FY 92--94). Final report

    SciTech Connect

    Ho, S.K.; Fowler, T.K.; Holdren, J.P.

    1994-11-01

    This is the Final Report for a three-year (FY 92--94) study of the Environmental, Safety, and Economic (ESE) aspects of fusion energy systems, emphasizing development of computerized approaches suitable for incorporation as modules in fusion system design codes. First, as is reported in Section 2, the authors now have operating a simplified but complete environment and safety evaluation code, BESAFE. The first tests of BESAFE as a module of the SUPERCODE, a design optimization systems code at LLNL, are reported in Section 3. Secondly, as reported in Section 4, the authors have maintained a strong effort in developing fast calculational schemes for activation inventory evaluation. In addition to these major accomplishments, considerable progress has been made on research on specific topics as follows. A tritium modeling code TRIDYN was developed in collaboration with the TSTA group at LANL and the Fusion Nuclear Technology group at UCLA. A simplified algorithm has been derived to calculate the transient temperature profiles in the blanket during accidents. The scheme solves iteratively a system of non-linear ordinary differential equations describing about 10 regions of the blanket by preserving energy balance. The authors have studied the physics and engineering aspects of divertor modeling for safety applications. Several modifications in the automation and characterization of environmental and safety indices have been made. They have applied this work to the environmental and safety comparisons of stainless steel with alternative structural materials for fusion reactors. A methodology in decision analysis utilizing influence and decision diagrams has been developed to model fusion reactor design problems. Most of the work during this funding period has been reported in 26 publications including theses, journal publications, conference papers, and technical reports, as listed in Section 11.

  7. The early internationalization of safety culture: The impact of Yugoslavia`s Vinca reactor accident of 1958

    SciTech Connect

    Calkins, L.M.; Kearfott, K.J.

    1996-06-01

    The radiation exposure accident in October 1958 at the experimental zero-power reactor of the Boris Kidric Institute in Vinca, Yugoslavia, presented one of the first opportunities for the newly-created International Atomic Energy Agency (IAEA) to oversee multinational cooperation in radiological safety analysis and dose reconstruction. IAEA involvement developed from initiatives by the U.S. State Department and U.S. Atomic Energy Commission (AEC) in the post-accident period, including an offer by U.S. AEC to exchange U.S. radiation exposure case histories for information on the doses received by and the bioeffects exhibited by the technicians exposed during the Vinca incident. U.S. intelligence sources estimated that the dose equivalents received ranged between 6-8 Sv; official Yugoslavian estimates put the average dose equivalent at 6.8 Sv. Through an agreement between the Yugoslav Federal Nuclear Commission and IAEA, U.S. AEC`s Oak Ridge Health Physics Division personnel were given access to the Vinca reactor in early 1960. A gamma and neutron dose reconstruction experiment, featuring anthropomorphic phantoms with approximately tissue-equivalent liquid and an array of internal detectors for neutron dose measurements, was conducted at the Kidric Institute. The reconstruction project`s dose calculations were compared with the estimates developed by French scientists based upon clinical observation of the Vinca technicians. This dose reconstruction study was evaluated simultaneously with studies of the June 1958 Y-12 accident and the January 1960 SLA accident. Studies of these incidents provoked an intensive U.S. AEC re-evaluation of reactor safety engineering and operations which had important ramifications for IAEA`s international standards for operational safety and radiological risk assessment.

  8. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 1. Main report. Technical report, September 1977-October 1979

    SciTech Connect

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE.

  9. Mitigation of steam generator tube rupture in a pressurized water reactor with passive safety systems

    DOEpatents

    McDermott, Daniel J.; Schrader, Kenneth J.; Schulz, Terry L.

    1994-01-01

    The effects of steam generator tube ruptures in a pressurized water reactor are mitigated by reducing the pressure in the primary loop by diverting reactor coolant through the heat exchanger of a passive heat removal system immersed in the in containment refueling water storage tank in response to a high feed water level in the steam generator. Reactor coolant inventory is maintained by also in response to high steam generator level introducing coolant into the primary loop from core make-up tanks at the pressure in the reactor coolant system pressurizer. The high steam generator level is also used to isolate the start-up feed water system and the chemical and volume control system to prevent flooding into the steam header. 2 figures.

  10. Mitigation of steam generator tube rupture in a pressurized water reactor with passive safety systems

    DOEpatents

    McDermott, D.J.; Schrader, K.J.; Schulz, T.L.

    1994-05-03

    The effects of steam generator tube ruptures in a pressurized water reactor are mitigated by reducing the pressure in the primary loop by diverting reactor coolant through the heat exchanger of a passive heat removal system immersed in the in containment refueling water storage tank in response to a high feed water level in the steam generator. Reactor coolant inventory is maintained by also in response to high steam generator level introducing coolant into the primary loop from core make-up tanks at the pressure in the reactor coolant system pressurizer. The high steam generator level is also used to isolate the start-up feed water system and the chemical and volume control system to prevent flooding into the steam header. 2 figures.

  11. Reactor

    DOEpatents

    Evans, Robert M.

    1976-10-05

    1. A neutronic reactor having a moderator, coolant tubes traversing the moderator from an inlet end to an outlet end, bodies of material fissionable by neutrons of thermal energy disposed within the coolant tubes, and means for circulating water through said coolant tubes characterized by the improved construction wherein the coolant tubes are constructed of aluminum having an outer diameter of 1.729 inches and a wall thickness of 0.059 inch, and the means for circulating a liquid coolant through the tubes includes a source of water at a pressure of approximately 350 pounds per square inch connected to the inlet end of the tubes, and said construction including a pressure reducing orifice disposed at the inlet ends of the tubes reducing the pressure of the water by approximately 150 pounds per square inch.

  12. Advanced neutron source reactor conceptual safety analysis report, three-element-core design: Chapter 15, accident analysis

    SciTech Connect

    Chen, N.C.J.; Wendel, M.W.; Yoder, G.L.; Harrington, R.M.

    1996-02-01

    In order to utilize reduced enrichment fuel, the three-element-core design for the Advanced Neutron Source has been proposed. The proposed core configuration consists of inner, middle, and outer elements, with the middle element offset axially beneath the inner and outer elements, which are axially aligned. The three-element-core RELAP5 model assumes that the reactor hardware is changed only within the core region, so that the loop piping, heat exchangers, and pumps remain as assumed for the two-element-core configuration. To assess the impact of changes in the core region configuration and the thermal-hydraulic steady-state conditions, the safety analysis has been updated. This report gives the safety margins for the loss-of-off-site power and pressure-boundary fault accidents based on the RELAP5 results. AU margins are greater for the three-element-core simulations than those calculated for the two-element core.

  13. The CG-1D neutron imaging beamline at the Oak Ridge National Laboratory High Flux Isotope Reactor

    SciTech Connect

    Santodonato, Louis J; Bilheux, Hassina Z; Bailey, William Barton; Bilheux, Jean-Christophe; Nguyen, Phong T; Tremsin, Anton S; Selby, Douglas L; Walker, Lakeisha MH

    2015-01-01

    The Oak Ridge National Laboratory Neutron Sciences Directorate has installed a neutron imaging beamline at the High Flux Isotope Reactor (HFIR) cold guide hall. CG-1D is one of the three instruments that make up the CG1 instrument suite. The beamline optics and detector have recently been upgraded to meet the needs of the neutron imaging community (better smoothing of guide system artifacts, higher flux or spatial resolution). These upgrades comprise a new diffuser/aperture system, two new detectors, a He-filled flight tube and silicon (Si) windows. Shielding inside the flight tube, beam scrapers and a beam stop ensure that biological dose is less than 50 Sv/hr outside of the radiation boundary. A set of diffusers and apertures (pinhole geometry) has been installed at the exit of the guide system to allow motorized L/D variation. Samples sit on a translation/rotation stage for alignment and tomography purposes. Detectors for the CG-1D beamline are (1) an ANDOR DW936 charge coupled device (CCD) camera with a field of view of approximately 7 cm x 7 cm and ~ 80 microns spatial resolution and 1 frame per second time resolution, (2) a new Micro-Channel Plate (MCP) detector with a 2.8 cm x 2.8 cm field of view and 55 microns spatial resolution, and 5 s timing capability. 6LiF/ZnS scintillators of thickness varying from 50 to 200 microns are being used at this facility. An overview of the beamline upgrade and preliminary data is presented here.

  14. Design Study for a Low-Enriched Uranium Core for the High Flux Isotope Reactor, Annual Report for FY 2006

    SciTech Connect

    Primm, R. T.; Ellis, R. J.; Gehin, J. C.; Clarno, K. T.; Williams, K. A.; Moses, D. L.

    2006-11-01

    Neutronics and thermal-hydraulics studies show that, for equivalent operating power [85 MW(t)], a low-enriched uranium (LEU) fuel cycle based on uranium-10 wt % molybdenum (U-10Mo) metal foil with radially, “continuously graded” fuel meat thickness results in a 15% reduction in peak thermal flux in the beryllium reflector of the High Flux Isotope Reactor (HFIR) as compared to the current highly enriched uranium (HEU) cycle. The uranium-235 content of the LEU core is almost twice the amount of the HEU core when the length of the fuel cycle is kept the same for both fuels. Because the uranium-238 content of an LEU core is a factor of 4 greater than the uranium-235 content, the LEU HFIR core would weigh 30% more than the HEU core. A minimum U-10Mo foil thickness of 84 μm is required to compensate for power peaking in the LEU core although this value could be increased significantly without much penalty. The maximum U-10Mo foil thickness is 457μm. Annual plutonium production from fueling the HFIR with LEU is predicted to be 2 kg. For dispersion fuels, the operating power for HFIR would be reduced considerably below 85 MW due to thermal considerations and due to the requirement of a 26-d fuel cycle. If an acceptable fuel can be developed, it is estimated that $140 M would be required to implement the conversion of the HFIR site at Oak Ridge National Laboratory from an HEU fuel cycle to an LEU fuel cycle. To complete the conversion by fiscal year 2014 would require that all fuel development and qualification be completed by the end of fiscal year 2009. Technological development areas that could increase the operating power of HFIR are identified as areas for study in the future.

  15. Proceedings of the international meeting on thermal nuclear reactor safety. Vol. 1

    SciTech Connect

    1983-02-01

    Separate abstracts are included for each of the papers presented concerning current issues in nuclear power plant safety; national programs in nuclear power plant safety; radiological source terms; probabilistic risk assessment methods and techniques; non LOCA and small-break-LOCA transients; safety goals; pressurized thermal shocks; applications of reliability and risk methods to probabilistic risk assessment; human factors and man-machine interface; and data bases and special applications.

  16. Anticipated transients without scram for light-water reactors: unresolved safety issue Tap A-9

    SciTech Connect

    Hagen, E.W.

    1981-03-01

    This is a synopsis of the fourth volume of the NRC staff's review on the subject of anticipated transients without scram, which contains the proposed resolution of this unresolved safety issue in the form of requirements recommended to be imposed on licensees and applicants. A phased approach is proposed, with near-term improvements in safety, both hardware and procedural, being required over the next 1 to 2 y to provide an expeditious safety increment.

  17. Identification of tertiary butyl alcohol (TBA)-utilizing organisms in BioGAC reactors using 13C-DNA stable isotope probing.

    PubMed

    Aslett, Denise; Haas, Joseph; Hyman, Michael

    2011-09-01

    Biodegradation of the gasoline oxygenates methyl tertiary-butyl ether (MTBE) and ethyl tertiary-butyl ether (ETBE) can cause tertiary butyl alcohol (TBA) to accumulate in gasoline-impacted environments. One remediation option for TBA-contaminated groundwater involves oxygenated granulated activated carbon (GAC) reactors that have been self-inoculated by indigenous TBA-degrading microorganisms in ground water extracted from contaminated aquifers. Identification of these organisms is important for understanding the range of TBA-metabolizing organisms in nature and for determining whether self-inoculation of similar reactors is likely to occur at other sites. In this study (13)C-DNA-stable isotope probing (SIP) was used to identify TBA-utilizing organisms in samples of self-inoculated BioGAC reactors operated at sites in New York and California. Based on 16S rRNA nucleotide sequences, all TBA-utilizing organisms identified were members of the Burkholderiales order of the β-proteobacteria. Organisms similar to Cupriavidus and Methylibium were observed in both reactor samples while organisms similar to Polaromonas and Rhodoferax were unique to the reactor sample from New York. Organisms similar to Hydrogenophaga and Paucibacter strains were only detected in the reactor sample from California. We also analyzed our samples for the presence of several genes previously implicated in TBA oxidation by pure cultures of bacteria. Genes Mpe_B0532, B0541, B0555, and B0561 were all detected in (13)C-metagenomic DNA from both reactors and deduced amino acid sequences suggested these genes all encode highly conserved enzymes. One gene (Mpe_B0555) encodes a putative phthalate dioxygenase-like enzyme that may be particularly appropriate for determining the potential for TBA oxidation in contaminated environmental samples.

  18. Final safety evaluation report related to the certification of the advanced boiling water reactor design. Volume 2: Appendices

    SciTech Connect

    Not Available

    1994-07-01

    This safety evaluation report (SER) documents the technical review of the US Advanced Boiling Water Reactor (ABWR) standard design by the US Nuclear Regulatory Commission (NRC) staff. The application for the ABWR design was initially submitted by the General Electric Company, now GE Nuclear Energy (GE), in accordance with the procedures of Appendix O of Part 50 of Title 10 of the code of Federal Regulations (10 CFR Part 50). Later GE requested that its application be considered as an application for design approval and subsequent design certification pursuant to 10 CFR {section} 52.45. The ABWR is a single-cycle, forced-circulation, boiling water reactor (BWR) with a rated power of 3,926 megawatts thermal (MWt) and a design power of 4,005 MWt. To the extent feasible and appropriate, the staff relied on earlier reviews for those ABWR design features that are substantially the same as those previously considered. Unique features of the ABWR design include internal recirculation pumps, fine-motion control rod drives, microprocessor-based digital logic and control systems, and digital safety systems. On the basis of its evaluation and independent analyses, the NRC staff concludes that, subject to satisfactory resolution of the confirmatory items identified in Section 1.8 of this SER, GE`s application for design certification meets the requirements of Subpart B of 10 CFR Part 52 that are applicable and technically relevant to the US ABWR standard design.

  19. Final safety evaluation report related to the certification of the advanced boiling water reactor design. Volume 1: Main report

    SciTech Connect

    Not Available

    1994-07-01

    This safety evaluation report (SER) documents the technical review of the US Advanced Boiling Water Reactor (ABWR) standard design by the US Nuclear Regulatory Commission (NRC) staff. The application for the ABWR design was initially submitted by the General Electric Company, now GE Nuclear Energy (GE), in accordance with the procedures of Appendix O of Part 50 of Title 10 of the Code of Federal Regulations (10 CFR Part 50). Later GE requested that its application be considered as an application for design approval and subsequent design certification pursuant to 10 CFR {section} 52.45. The ABWR is a single-cycle, forced-circulation, boiling water reactor (BWR) with a rated power of 3,926 megawatts thermal (MWt) and a design power of 4,005 MWt. To the extent feasible and appropriate, the staff relied on earlier reviews for those ABWR design features that are substantially the same as those previously considered. Unique features of the ABWR design include internal recirculation pumps, fine-motion control rod drives, microprocessor-based digital logic and control systems, and digital safety systems. On the basis of its evaluation and independent analyses, the NRC staff concludes that, subject to satisfactory resolution of the confirmatory items identified in Section 1.8 of this SER, GE`s application for design certification meets the requirements of Subpart B of 10 CFR Part 52 that are applicable and technically relevant to the US ABWR standard design.

  20. Reactor-safety research programs. Quarterly report, July-September 1982

    SciTech Connect

    Edler, S.K.

    1983-03-01

    Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions.

  1. Reactor-safety research programs. Quarterly report, October-December 1982. Volume 4

    SciTech Connect

    Edler, S.K.

    1983-04-01

    Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized-water-reactor steam-generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models being developed to provide better digital codes to compute the bahavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities.

  2. Development of Safety Analysis Codes and Experimental Validation for a Very High Temperature Gas-Cooled Reactor

    SciTech Connect

    Chang, H. Oh, PhD; Cliff Davis; Richard Moore

    2004-11-01

    The very high temperature gas-cooled reactors (VHTGRs) are those concepts that have average coolant temperatures above 900 degrees C or operational fuel temperatures above 1250 degrees C. These concepts provide the potential for increased energy conversion efficiency and for high-temperature process heat application in addition to power generation and nuclear hydrogen generation. While all the High Temperature Gas Cooled Reactor (HTGR) concepts have sufficiently high temperatures to support process heat applications, such as desalination and cogeneration, the VHTGR's higher temperatures are suitable for particular applications such as thermochemical hydrogen production. However, the high temperature operation can be detrimental to safety following a loss-of-coolant accident (LOCA) initiated by pipe breaks caused by seismic or other events. Following the loss of coolant through the break and coolant depressurization, air from the containment will enter the core by molecular diffusion and ultimately by natural convection, leading to oxidation of the in-core graphite structures and fuel. The oxidation will release heat and accelerate the heatup of the reactor core. Thus, without any effective countermeasures, a pipe break may lead to significant fuel damage and fission product release. The Idaho National Engineering and Environmental Laboratory (INEEL) has investigated this event for the past three years for the HTGR. However, the computer codes used, and in fact none of the world's computer codes, have been sufficiently developed and validated to reliably predict this event. New code development, improvement of the existing codes, and experimental validation are imperative to narrow the uncertaninty in the predictions of this type of accident. The objectives of this Korean/United States collaboration are to develop advanced computational methods for VHTGR safety analysis codes and to validate these computer codes.

  3. DEVELOPMENT OF HUMAN FACTORS ENGINEERING GUIDANCE FOR SAFETY EVALUATIONS OF ADVANCED REACTORS.

    SciTech Connect

    O'HARA, J.; PERSENSKY, J.; SZABO, A.

    2006-10-01

    Advanced reactors are expected to be based on a concept of operations that is different from what is currently used in today's reactors. Therefore, regulatory staff may need new tools, developed from the best available technical bases, to support licensing evaluations. The areas in which new review guidance may be needed and the efforts underway to address the needs will be discussed. Our preliminary results focus on some of the technical issues to be addressed in three areas for which new guidance may be developed: automation and control, operations under degraded conditions, and new human factors engineering methods and tools.

  4. Preliminary nuclear safety assessment of the NEPST (Topaz II) space reactor program

    SciTech Connect

    Marshall, A.C.

    1993-01-01

    The United States (US) Strategic Defense Initiative Organization (SDIO) decided to investigate the possibility of launching a Russian Topaz II space nuclear power system. A preliminary nuclear safety assessment was conducted to determine whether or not a space mission could be conducted safely and within budget constraints. As part of this assessment, a safety policy and safety functional requirements were developed to guide both the safety assessment and future Topaz II activities. A review of the Russian flight safety program was conducted and documented. Our preliminary nuclear safety assessment included a number of deterministic analyses, such as; neutronic analysis of normal and accident configurations, an evaluation of temperature coefficients of reactivity, a reentry and disposal analysis, an analysis of postulated launch abort impact accidents, and an analysis of postulated propellant fire and explosion accidents. Based on the assessment to date, it appears that it will be possible to safely launch the Topaz II system in the US with a modification to preclude water flooded criticality. A full scale safety program is now underway.

  5. High-temperature gas-cooled reactors: preliminary safety and environmental information document. Volume IV

    SciTech Connect

    Not Available

    1980-01-01

    Information is presented concerning medium-enriched uranium/thorium once-through fuel cycle; medium-enrichment uranium-233/thorium recycle fuel; high-enrichment uranium-235/thorium recycle (spiked) fuel cycle; high-enrichment uranium-233/thorium recycle (spiked) fuel cycle; and gas-turbine high-temperature gas-cooled reactor.

  6. Light-water breeder reactors: preliminary safety and environmental information document. Volume III

    SciTech Connect

    Not Available

    1980-01-01

    Information is presented concerning prebreeder and breeder reactors based on light-water-breeder (LWBR) Type 1 modules; light-water backfit prebreeder supplying advanced breeder; light-water backfit prebreeder/seed-blanket breeder system; and light-water backfit low-gain converter using medium-enrichment uranium, supplying a light-water backfit high-gain converter.

  7. Sample Heat, Activity, Reactivity, and Dose Analysis for Safety Analysis of Irradiations in a Research Reactor.

    1987-12-01

    SHARDA is a program for assessing sample heating rates, activities produced and reactivity load caused while irradiating a small sample in a well thermalized research reactor like CIRUS. It estimates the sample cooling or lead shielding requirements to limit the gamma-ray dose rates due to the irradiated sample within permissible levels.

  8. Thermal-hydraulics and safety analysis of sectored compact reactor for lunar surface power

    SciTech Connect

    Schriener, T. M.; El-Genk, M. S.

    2012-07-01

    The liquid NaK-cooled, fast-neutron spectrum, Sectored Compact Reactor (SCoRe-N 5) concept has been developed at the Univ. of New Mexico for lunar surface power applications. It is loaded with highly enriched UN fuel pins in a triangular lattice, and nominally operates at exit and inlet coolant temperatures of 850 K and 900 K. This long-life reactor generates up to 1 MWth continuously for {>=} 20 years. To avoid a single point failure in reactor cooling, the core is divided into 6 sectors that are neutronically and thermally coupled, but hydraulically independent. This paper performs a 3-D the thermal-hydraulic analysis of SCoRe--N 5 at nominal operation temperatures and a power level of 1 MWth. In addition, the paper investigates the potential of continuing reactor operation at a lower power in the unlikely event that one sector in the core experiences a loss of coolant (LOC). Redesigning the core with a contiguous steel matrix enhances the cooling of the sector experiencing a LOC. Results show that with a core sector experiencing a LOC, SCORE-N 5 could continue operating safely at a reduced power of 166.6 kWth. (authors)

  9. Safety Assurance for ATR Irradiations

    SciTech Connect

    S. Blaine Grover

    2006-10-01

    The Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL) is the world’s premiere test reactor for performing high fluence, large volume, irradiation test programs. The ATR has many capabilities and a wide variety of tests are performed in this truly one of a kind reactor, including isotope production, simple self-contained static capsule experiments, instrumented/controlled experiments, and loop testing under pressurized water conditions. Along with the five pressurized water loops, ATR may also have gas (temperature controlled) lead experiments, fuel boosted fast flux experiments, and static sealed capsules all in the core at the same time. In addition, any or all of these tests may contain fuel or moderating materials that can affect reactivity levels in the ATR core. Therefore the safety analyses required to ensure safe operation of each experiment as well as the reactor itself are complex. Each test has to be evaluated against stringent reactor control safety criteria, as well as the effects it could have on adjacent tests and the reactor as well as the consequences of those effects. The safety analyses of each experiment are summarized in a document entitled the Experiment Safety Assurance Package (ESAP). The ESAP references and employs the results of the reactor physics, thermal, hydraulic, stress, seismic, vibration, and all other analyses necessary to ensure the experiment can be irradiated safely in the ATR. The requirements for reactivity worth, chemistry compatibilities, pressure limitations, material issues, etc. are all specified in the Technical Safety Requirements and the Upgraded Final Safety Analysis Report (UFSAR) for the ATR. This paper discusses the ESAP process, types of analyses, types of safety requirements and the approvals necessary to ensure an experiment can be safely irradiated in the ATR.

  10. Experimental Plan and Irradiation Target Design for FeCrAl Embrittlement Screening Tests Conducted Using the High Flux Isotope Reactor

    SciTech Connect

    Field, Kevin G.; Howard, Richard H.; Yamamoto, Yukinori

    2015-06-26

    The objective of the FeCrAl embrittlement screening tests being conducted through the use of Oak Ridge National Laboratories (ORNL) High Flux Isotope Reactor is to provide data on the radiation-induced changes in the mechanical properties including radiation-induced hardening and embrittlement through systematic testing and analysis. Data developed on the mechanical properties will be supported by extensive microstructural evaluations to assist in the development of structure-property relationships and provide a sound, fundamental understanding of the performance of FeCrAl alloys in intense neutron radiation fields. Data and analysis developed as part of this effort will be used to assist in the determination of FeCrAl alloys as a viable material for commercial light water reactor (LWR) applications with a primary focus as an accident tolerant cladding.

  11. Thermal-hydraulic simulation of natural convection decay heat removal in the High Flux Isotope Reactor using RELAP5 and TEMPEST: Part 1, Models and simulation results

    SciTech Connect

    Morris, D.G.; Wendel, M.W.; Chen, N.C.J.; Ruggles, A.E.; Cook, D.H.

    1989-01-01

    A study was conducted to examine decay heat removal requirements in the High Flux Isotope Reactor (HFIR) following shutdown from 85 MW. The objective of the study was to determine when forced flow through the core could be terminated without causing the fuel to melt. This question is particularly relevant when a station blackout caused by an external event is considered. Analysis of natural circulation in the core, vessel upper plenum, and reactor pool indicates that 12 h of forced flow will permit a safe shutdown with some margin. However, uncertainties in the analysis preclude conclusive proof that 12 h is sufficient. As a result of the study, two seismically qualified diesel generators were installed in HFIR. 9 refs., 4 figs.

  12. Selection of support structure materials for irradiation experiments in the HFIR (High Flux Isotope Reactor) at temperatures up to 500 degrees C

    SciTech Connect

    Farrell, K.; Longest, A.W.

    1990-01-01

    The key factor in the design of capsules for irradiation of test specimens in the High Flux Isotope Reactor at preselected temperatures up to 500{degree}C utilizing nuclear heating is a narrow gas-filled gap which surrounds the specimens and controls the transfer of heat from the specimens through the wall of a containment tube to the reactor cooling water. Maintenance of this gap to close tolerances is dependent on the characteristics of the materials used to support the specimens and isolate them from the water. These support structure materials must have low nuclear heating rates, high thermal conductivities, and good dimensional stabilities under irradiation. These conditions are satisfied by certain aluminum alloys. One of these alloys, a powder metallurgy product containing a fine dispersion of aluminum oxide, is no longer manufactured. A new alloys of this type, with the trade name DISPAL, is determined to be a suitable substitute. 23 refs., 13 figs., 3 tabs.

  13. A Common Methodology for Safety and Reliability Analysis for Space Reactor Missions

    SciTech Connect

    Frank, Michael V.

    2006-01-20

    The thesis of this paper is that the methodology of probabilistic risk management (PRM) has the capability to integrate both safety and reliability analyses for space nuclear missions. Practiced within a decision analysis framework, the concept of risk and the overall methodology of PRM are not dependent on whether the outcome affects mission success or mission safety. This paper presents the methodology by means of simplified exampl0008.

  14. Isotopic evidence for the retention of Sr-90 inferred from excess Zr-90 in the Oklo natural fission reactors: Implication for geochemical behaviour of fissiogenic Rb, Sr, Cs and Ba

    NASA Astrophysics Data System (ADS)

    Hidaka, Hiroshi; Sugiyama, Takeshi; Ebihara, Mitsuru; Holliger, Philippe

    1994-03-01

    In order to investigate the mobility of fissiogenic Sr-90 in the geological environment, the Zr isotopic compositions of seven samples from one of the newly formed Oklo natural reactor zones (i.e., reactor core and adjacent rocks (10, SF84)) in the Republic of Gabon were determined with an inductively coupled plasma mass spectrometer (ICP-MS). Zr isotopes in uraninite grains from different reactor zones were also measured by secondary ion mass spectrometry (SIMS). Fissiogenic Zr isotopic abundances of three samples from the reactor core have excess Zr-90, which has never before been formed in previous Oklo samples. In this paper, the geochemical behaviour of Zr-90 is discussed by making use of the relative retentivity inferred from the isotopic abundance of Sr. The excess in Zr-90 suggests dependence on the degree of retention/migration of Sr-90, the precursor of Zr-90 in the fission chain. In the aqueous phase, chemical fractionation between Sr and Zr could have occurred before radioactive Sr-90 decayed. Considering the halflife of Sr-90 (t(sub 1/2) = 29.1 y), considerable amounts of the latter have been produced during criticality. Sr and Zr (including Zr-90) could have been redistributed between the reactor core and its vicinity. The retentivity of fissiogenic Zr-90 in reactor core 10 is not homogeneous. In addition, the distributions of Rb, Cs and Ba is also heterogeneous.

  15. Proceedings of the US Nuclear Regulatory Commission fifteenth water reactor safety information meeting: Volume 6, Decontamination and decommissioning, accident management, TMI-2

    SciTech Connect

    Weiss, A. J.

    1988-02-01

    This six-volume report contains 140 papers out of the 164 that were presented at the Fifteenth Water Reactor Safety Information Meeting held at the National Bureau of Standards, Gaithersburg, Maryland, during the week of October 26-29, 1987. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. This report, Volume 6, discusses decontamination and decommissioning, accident management, and the Three Mile Island-2 reactor accident. Thirteen reports have been cataloged separately.

  16. Redistribution of REE, Pb and U by supergene weathering studied from in-situ isotopic analyses of the Bangombé natural reactor, Gabon

    NASA Astrophysics Data System (ADS)

    Kikuchi, M.; Hidaka, H.; Horie, K.; Gauthier-Lafaye, F.

    2007-10-01

    The isotopic analyses of rare earth elements (REE), Pb and U in several kinds of minerals from the clay and black shale layers above the Bangombé natural reactor, Gabon, were performed using a sensitive high-resolution microprobe (SHRIMP) to investigate the migration and retardation processes of fission products released from the reactor. REE isotopic data of the secondary minerals found in clays and black shales show that most of fission products were effectively trapped in the clays and not distributed into the black shales over the clays, which reveals that the clays play an important role in preventing fission products from spreading. Zircon crystals in the clays heterogeneously contain high-U regions (up to 28.3 wt%) with normal 235U/ 238U ratios (=0.00725) and significant amounts of fissiogenic REE, which suggest the occurrence of significant chemical fractionation between REE and U during the dissolution of reactor uraninite and the recrystallization of secondary U minerals. The Pb data suggest that galena grains in the clays were also formed by the mixing of the two components during a recent alteration event, and that a significant amount of Pb was derived from 2.05-Ga-old original uraninite rather than reactor uraninite. The U-Pb systematics of zircon provide chronological information on the old igneous activity associated with the basement rock formation at 2.8 Ga and geochemical evidence of the incomplete mixing of independent Pb and U sources. This result is consistent with previous chronological results in this area.

  17. Impact of the High Flux Isotope Reactor HEU to LEU Fuel Conversion on Cold Source Nuclear Heat Generation Rates

    SciTech Connect

    Chandler, David

    2014-03-01

    Under the sponsorship of the US Department of Energy National Nuclear Security Administration, staff members at the Oak Ridge National Laboratory have been conducting studies to determine whether the High Flux Isotope Reactor (HFIR) can be converted from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. As part of these ongoing studies, an assessment of the impact that the HEU to LEU fuel conversion has on the nuclear heat generation rates in regions of the HFIR cold source system and its moderator vessel was performed and is documented in this report. Silicon production rates in the cold source aluminum regions and few-group neutron fluxes in the cold source moderator were also estimated. Neutronics calculations were performed with the Monte Carlo N-Particle code to determine the nuclear heat generation rates in regions of the HFIR cold source and its vessel for the HEU core operating at a full reactor power (FP) of 85 MW(t) and the reference LEU core operating at an FP of 100 MW(t). Calculations were performed with beginning-of-cycle (BOC) and end-of-cycle (EOC) conditions to bound typical irradiation conditions. Average specific BOC heat generation rates of 12.76 and 12.92 W/g, respectively, were calculated for the hemispherical region of the cold source liquid hydrogen (LH2) for the HEU and LEU cores, and EOC heat generation rates of 13.25 and 12.86 W/g, respectively, were calculated for the HEU and LEU cores. Thus, the greatest heat generation rates were calculated for the EOC HEU core, and it is concluded that the conversion from HEU to LEU fuel and the resulting increase of FP from 85 MW to 100 MW will not impact the ability of the heat removal equipment to remove the heat deposited in the cold source system. Silicon production rates in the cold source aluminum regions are estimated to be about 12.0% greater at BOC and 2.7% greater at EOC for the LEU core in comparison to the HEU core. Silicon is aluminum s major transmutation product and

  18. Calculational framework for safety analyses of non-reactor nuclear facilities

    SciTech Connect

    Coleman, J.R.

    1994-06-01

    A calculational framework for the consequences analysis of non-reactor nuclear facilities is presented. The analysis framework starts with accident scenarios which are developed through a traditional hazard analysis and continues with a probabilistic framework for the consequences analysis. The framework encourages the use of response continua derived from engineering judgment and traditional deterministic engineering analyses. The general approach consists of dividing the overall problem into a series of interrelated analysis cells and then devising Markov chain like probability transition matrices for each of the cells. An advantage of this division of the problem is that intermediate output (as probability state vectors) are generated at each calculational interface. The series of analyses when combined yield risk analysis output. The analysis approach is illustrated through application to two non-reactor nuclear analyses: the Ulysses Space Mission, and a hydrogen burn in the Hanford waste storage tanks.

  19. Transactions of the twenty-third water reactor safety information meeting to be held at Bethesda Marriott Hotel, Bethesda, Maryland, October 23--25, 1995

    SciTech Connect

    Monteleone, S.

    1995-09-01

    This report contains summaries of papers on reactor safety research to be presented at the 23rd Water Reactor Safety Information Meeting at the Bethesda Marriott Hotel, Bethesda, Maryland, October 23--25, 1995. The summaries briefly describe the programs and results of nuclear safety research sponsored by the Office of Nuclear Regulatory, Research, US NRC. Summaries of invited papers concerning nuclear safety issues from US government laboratories, the electric utilities, the nuclear industry, and from foreign governments and industry are also included. The summaries have been compiled in one report to provide a basis for meaningful discussion and information exchange during the course of the meeting and are given in the order of their presentation in each session.

  20. Light-water reactors: preliminary safety and environmental information document. Volume I

    SciTech Connect

    Not Available

    1980-01-01

    Information is presented concerning the reference PWR reactor system; once-through, low-enrichment uranium-235 fuel, 30 MWD per kilogram (PWR LEU(5)-OT); once-through, low-enrichment, high-burnup uranium fuel (PWR LEU(5)-Mod OT); self-generated plutonium spiked recycle (PWR LEU(5)-Pu-Spiked Recycle); denatured uranium-233/thorium cycle (PWR DU(3)-Th Recycle DU(3)); and plutonium/thorium cycle (Pu/ThO/sub 2/ Burner).

  1. Covariance Applications in Criticality Safety, Light Water Reactor Analysis, and Spent Fuel Characterization

    NASA Astrophysics Data System (ADS)

    Williams, M. L.; Wiarda, D.; Ilas, G.; Marshall, W. J.; Rearden, B. T.

    2015-01-01

    A new covariance data library based on ENDF/B-VII.1 was recently processed for the SCALE nuclear analysis code system. The multigroup covariance data are discussed here, along with testing and application results for critical benchmark experiments. The cross section covariance library, along with covariances for fission product yields and decay data, is used to compute uncertainties in the decay heat produced by a burned reactor fuel assembly.

  2. Reactor safety research programs. Quarterly report, April-June 1983. Vol. 2

    SciTech Connect

    Edler, S.K.

    1983-12-01

    This document summarizes work performed by Pacific Northwest Laboratory from April 1 through June 30, 1983, for the Division of Accident Evaluation and the Division of Engineering Technology, US Nuclear Regulatory Commission. Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Experimental data and validated models are being used to determine a method for evaluating the acceptance of welded or weld-repaired stainless steel piping. Core thermal models are being developed to provide better digital codes to compute the behavior or full-scale reactor systems under postulated accident conditions. High-temperature materials property tests are being conducted to provide data on severe core damage fuel behavior. Severe fuel damage accident tests are being conducted at the NRU reactor, Chalk River, Canada; and an instrumented fuel assembly irradiation program is being performed at Halden, Norway. Fuel assemblies and analytical support are being provided for experimental programs at other facilities, including fuel rod deformation and severe fuel damage tests for the Super Sara Test Program, Ispra, Italy; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory, Idaho Falls, Idaho.

  3. Covariance Applications in Criticality Safety, Light Water Reactor Analysis, and Spent Fuel Characterization

    DOE PAGESBeta

    Williams, M. L.; Wiarda, D.; Ilas, G.; Marshall, W. J.; Rearden, B. T.

    2014-06-15

    Recently, we processed a new covariance data library based on ENDF/B-VII.1 for the SCALE nuclear analysis code system. The multigroup covariance data are discussed here, along with testing and application results for critical benchmark experiments. Moreover, the cross section covariance library, along with covariances for fission product yields and decay data, is used to compute uncertainties in the decay heat produced by a burned reactor fuel assembly.

  4. Covariance Applications in Criticality Safety, Light Water Reactor Analysis, and Spent Fuel Characterization

    SciTech Connect

    Williams, M.L. Wiarda, D.; Ilas, G.; Marshall, W.J.; Rearden, B.T.

    2015-01-15

    A new covariance data library based on ENDF/B-VII.1 was recently processed for the SCALE nuclear analysis code system. The multigroup covariance data are discussed here, along with testing and application results for critical benchmark experiments. The cross section covariance library, along with covariances for fission product yields and decay data, is used to compute uncertainties in the decay heat produced by a burned reactor fuel assembly.

  5. Reactor safety research programs. Quarterly report, October-December 1983. Vol. 4

    SciTech Connect

    Edler, S.K.

    1984-05-01

    Evaluations of nondestructive examination (NDE) techniques and instrumentation include investigating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems and examining NDE reliability and probabilistic fracture mechanics. Accelerated pellet-cladding interaction modeling is being conducted to predict the probability of fuel rod failure under normal operating conditions. Experimental data and analytical models are being provided to aid in decision making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Experimental data and validated models are being used to determine a method for evaluating the acceptance of welded or weld-repaired stainless steel piping. Thermal-hydraulic models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. High-temperature materials property tests are being conducted to provide data on severe core damage fuel behavior. Severe fuel damage accident tests are being conducted at the NRU reactor, Chalk River, Canada; an instrumented fuel assembly irradiation program is being performed at Halden, Norway; and fuel assemblies and analytical support are being provided for experimental programs at the Power Burst Facility.

  6. Gas-Cooled Fast Breeder Reactor Preliminary Safety Information Document, Amendment 10. GCFR residual heat removal system criteria, design, and performance

    SciTech Connect

    Not Available

    1980-09-01

    This report presents a comprehensive set of safety design bases to support the conceptual design of the gas-cooled fast breeder reactor (GCFR) residual heat removal (RHR) systems. The report is structured to enable the Nuclear Regulatory Commission (NRC) to review and comment in the licensability of these design bases. This report also presents information concerning a specific plant design and its performance as an auxiliary part to assist the NRC in evaluating the safety design bases.

  7. Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors

    NASA Astrophysics Data System (ADS)

    Scarlat, Raluca Olga

    This dissertation treats system design, modeling of transient system response, and characterization of individual phenomena and demonstrates a framework for integration of these three activities early in the design process of a complex engineered system. A system analysis framework for prioritization of experiments, modeling, and development of detailed design is proposed. Two fundamental topics in thermal-hydraulics are discussed, which illustrate the integration of modeling and experimentation with nuclear reactor design and safety analysis: thermal-hydraulic modeling of heat generating pebble bed cores, and scaled experiments for natural circulation heat removal with Boussinesq liquids. The case studies used in this dissertation are derived from the design and safety analysis of a pebble bed fluoride salt cooled high temperature nuclear reactor (PB-FHR), currently under development in the United States at the university and national laboratories level. In the context of the phenomena identification and ranking table (PIRT) methodology, new tools and approaches are proposed and demonstrated here, which are specifically relevant to technology in the early stages of development, and to analysis of passive safety features. A system decomposition approach is proposed. Definition of system functional requirements complements identification and compilation of the current knowledge base for the behavior of the system. Two new graphical tools are developed for ranking of phenomena importance: a phenomena ranking map, and a phenomena identification and ranking matrix (PIRM). The functional requirements established through this methodology were used for the design and optimization of the reactor core, and for the transient analysis and design of the passive natural circulation driven decay heat removal system for the PB-FHR. A numerical modeling approach for heat-generating porous media, with multi-dimensional fluid flow is presented. The application of this modeling

  8. FFTF A History of Safety & Operational Excellence

    SciTech Connect

    NIELSEN, D L

    2002-06-26

    The Fast Flux Test Facility (FFTF) is a 400-megawatt, sodium-cooled, fast neutron flux reactor owned by the United States Department of Energy (DOE) at the Hanford Site. The reactor was designed and built in the late 1970s and brought on line in 1982 during a period when world interest in development of a liquid metal breeder reactor was high. For approximately 10 years, FFTF operated successfully as a national research facility testing advanced nuclear fuels, materials, components, active and passive reactor safety technologies, and gaining operating experience for the next generation of nuclear reactors. FFTF also produced a wide variety of high purity medical isotopes, made tritium for the U.S. fusion research program, and provided international testing support. The reactor was last operated in 1992 and is proceeding with deactivation.

  9. Risk-Oriented Safety Evaluation of the CAREM-25 Prototype Reactor

    SciTech Connect

    Baron, Jorge H.; McLeod, Jorge E. Nunez; Rivera, Selva S

    2001-05-15

    Construction of the CAREM-25 full-size prototype, a very low power nuclear power station [25 MW(electric)], is scheduled to begin in Argentina in 2001. The CAREM-25 is designed based on principles of inherent safety, passive safety functions, and ease of operation. This paper analyzes the safety philosophy from the point of view of risk by performing a level-III probabilistic safety assessment (PSA) of this prototype. The specific PSA steps are discussed, including a specially developed method to obtain representative initiating events, system analysis by fault trees, event development in event trees, plant and containment response analysis, containment event tree development, consequence calculations, and risk representation. The PSA results are presented and discussed in terms of their own values as well as in comparison to other PSA results performed for larger nuclear power plants (NPPs). The advantages of the CAREM-25 from the risk point of view are studied in terms of the effective reduction of both the probability of severe accident sequences and the potential consequences of such sequences (radiological and emergency preparedness impact). The risk point of view also provides a perspective to analyze the impact of several design modifications in order to further reduce the residual risk of the NPP. These design modifications, several of which have already been included in the prototype, are discussed and evaluated.

  10. Criticality-safety analyses of compacted and water-flooded. SP-100 reactors

    SciTech Connect

    Brandon, D.I.; Sapir, J.L.

    1986-01-01

    Reactivity calculations were performed to determine the sensitivity of three liquid metal-cooled, fast reactor designs to various accident environments. The concepts, proposed for the SP-100 Space Nuclear Power Program, included one thermionic and two fuel-pin designs. Numerous models of each core were developed to analyze the effect of core compaction and of water-flooded lattice spreading. Results indicate that those designs incorporating in-core control are least affected by core compaction and that the thermonic concept can best withstand expansion of the flooded fuel element array.

  11. High-temperature gas-cooled reactor safety studies for the Division of Accident Evaluation quarterly progress report, January 1-March 31, 1985

    SciTech Connect

    Ball, S.J.; Cleveland, J.C.; Harrington, R.M.; Weber, C.F.; Wilson, J.H.

    1985-10-01

    Modeling, code development, and analyses of the modular High-Temperature Gas-Cooled Reactor (HTGR) continued with work on the side-by-side design. Fission-product release and transport experiments were completed. A description and assessment report on Oak Ridge National Laboratory HTGR safety codes was issued.

  12. High-temperature gas-cooled reactor safety studies for the Division of Accident Evaluation. Quarterly progress report, April 1-June 30, 1985

    SciTech Connect

    Ball, S.J.; Cleveland, J.C.; Harrington, R.M.; Wilson, J.H.

    1986-02-01

    Modeling, code development, and analyses of the modular High-Temperature Gas-Cooled Reactor (HTGR) continued with work on the side-by-side design. Fission-product release and transport experiments were completed. Sections of an HTGR safety handbook were written.

  13. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 2. Appendices. Technical report, September 1977-October 1979

    SciTech Connect

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE. This volume contains the appendices.

  14. Health and safety plan for the Molten Salt Reactor Experiment remediation project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    Burman, S.N.; Uziel, M.S.

    1995-12-01

    The Lockheed Martin Energy Systems, Inc., (Energy Systems) policy is to provide a safe and healthful workplace for all employees and subcontractors. The accomplishment of the policy requires that operations at the Molten Salt Reactor Experiment (MSRE) facility at the Department of Energy (DOE) Oak Ridge National Laboratory (ORNL) are guided by an overall plan and consistent proactive approach to safety and health (S and H) issues. The policy and procedures in this plan apply to all MSRE operations. The provisions of this plan are to be carried out whenever activities are initiated at the MSRE that could be a threat to human health or the environment. This plan implements a policy and establishes criteria for the development of procedures for day-to-day operations to prevent or minimize any adverse impact to the environment and personnel safety and health and to meet standards that define acceptable management of hazardous and radioactive materials and wastes. The plan is written to utilize past experience and the best management practices to minimize hazards to human health or the environment from events such as fires, explosions, falls, mechanical hazards, or any unplanned release of hazardous or radioactive materials to the air.

  15. Nitrous oxide production pathways in a partial nitritation-anammox reactor: Isotopic evidence for nitrous oxide production associated anaerobic ammonium oxidation?

    NASA Astrophysics Data System (ADS)

    Wunderlin, P.; Harris, E. J.; Joss, A.; Emmenegger, L.; Kipf, M.; Mohn, J.; Siegrist, H.

    2014-12-01

    Nitrous oxide (N2O) is a strong greenhouse gas and a major sink for stratospheric ozone. In biological wastewater treatment N2O can be produced via several pathways. This study investigates the dynamics of N2O emissions from a nitritation-anammox reactor, and links its interpretation to the nitrogen and oxygen isotopic signature of the emitted N2O. A 400-litre single-stage nitritation-anammox reactor was operated and continuously fed with digester liquid. The isotopic composition of N2O emissions was monitored online with quantum cascade laser absorption spectroscopy (QCLAS; Aerodyne Research, Inc.; Waechter et al., 2008). Dissolved ammonium and nitrate were monitored online (ISEmax, Endress + Hauser), while nitrite was measured with test strips (Nitrite-test 0-24mgN/l, Merck). Table 1. Summary of experiments conducted to understand N2O emissions Experimental conditions O2[mgO2/L] NO2-[mgN/L] NH4+[mgN/L] N2O/NH4+[%] Normal operation <0.1 <0.5 10 0.6 Normal operation, high NH4+ <0.1 <0.5 100 6.1 High aeration 0.5 to 1.5 up to 50 10 and 50 4.9 NO2- addition (oxic) <0.1 <0.5 to 4 10 5.8 NO2- addition (anoxic) 0 <0.5 to 4 10 3.2 NH2OH addition <0.1 <0.5 10 2.5 Results showed that under normal operating conditions, the N2O isotopic site preference (SP = d15Nα - d15Nβ) was much higher than expected - up to 41‰ - strongly suggesting an unknown N2O production pathway, which is hypothesized to be mediated by anammox activity (Figure 1). A less likely explanation is that the SP of N2O was increased by partial N2O reduction by heterotrophic denitrification. Various experiments were conducted to further investigate N2O formation pathways in the reactor. Our data reveal that N2O emissions increased when reactor operation was not ideal, for example when dissolved oxygen was too high (Table 1). SP measurements confirmed that these N2O peaks were due to enhanced nitrifier denitrification, generally related to nitrite build-up in the reactor (Figure 1; Table 1). Overall

  16. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Appendices. Volume 2

    SciTech Connect

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Appendices are presented concerning the evaluations of decommissioning financing alternatives; reference site description; reference BWR facility description; radiation dose rate and concrete surface contamination data; radionuclide inventories; public radiation dose models and calculated maximum annual doses; decommissioning methods; generic decommissioning information; immediate dismantlement details; passive safe storage, continuing care, and deferred dismantlement details; entombment details; demolition and site restoration details; cost estimating bases; public radiological safety assessment details; and details of alternate study bases.

  17. Retrospective view of fast reactor safety: EBR-I to the present. Revison

    SciTech Connect

    Hummel, H.H.

    1986-05-01

    In the thirty-odd years that core-disruptive accidents have been analyzed, great advances have been made both in understanding the physical phenomena involved and in development of computational techniques to deal with them. More realistic modeling has tended to reduce predicted accident consequences. Some safety issues have been satisfactorily resolved, but some new ones have arisen. The unprotected loss-of-flow accident continues to be a source of potentially significant energetics should core disruption occur. 27 refs.

  18. Production of Medical Radioisotopes in the ORNL High Flux Isotope Reactor (HFIR) for Cancer Treatment and Arterial Restenosis Therapy after PTCA

    DOE R&D Accomplishments Database

    Knapp, F. F. Jr.; Beets, A. L.; Mirzadeh, S.; Alexander, C. W.; Hobbs, R. L.

    1998-06-01

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) represents an important resource for the production of a wide variety of medical radioisotopes. In addition to serving as a key production site for californium-252 and other transuranic elements, important examples of therapeutic radioisotopes which are currently routinely produced in the HFIR for distribution include dysprosium-166 (parent of holmium-166), rhenium-186, tin-117m and tungsten-188 (parent of rhenium-188). The nine hydraulic tube (HT) positions in the central high flux region permit the insertion and removal of targets at any time during the operating cycle and have traditionally represented a major site for production of medical radioisotopes. To increase the irradiation capabilities of the HFIR, special target holders have recently been designed and fabricated which will be installed in the six Peripheral Target Positions (PTP), which are also located in the high flux region. These positions are only accessible during reactor refueling and will be used for long-term irradiations, such as required for the production of tin-117m and tungsten-188. Each of the PTP tubes will be capable of housing a maximum of eight HT targets, thus increasing the total maximum number of HT targets from the current nine, to a total of 57. In this paper the therapeutic use of reactor-produced radioisotopes for bone pain palliation and vascular brachytherapy and the therapeutic medical radioisotope production capabilities of the ORNL HFIR are briefly discussed.

  19. Production of medical radioisotopes in the ORNL High Flux Isotope Reactor (HFIR) for cancer treatment and arterial restenosis therapy after PTCA

    SciTech Connect

    Knapp, F.F. Jr.; Beets, A.L.; Mirzadeh, S.; Alexander, C.W.; Hobbs, R.L.

    1998-06-01

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) represents an important resource for the production of a wide variety of medical radioisotopes. In addition to serving as a key production site for californium-252 and other transuranic elements, important examples of therapeutic radioisotopes which are currently routinely produced in the HFIR for distribution include dysprosium-166 (parent of holmium-166), rhenium-186, tin-117m and tungsten-188 (parent of rhenium-188). The nine hydraulic tube (HT) positions in the central high flux region permit the insertion and removal of targets at any time during the operating cycle and have traditionally represented a major site for production of medical radioisotopes. To increase the irradiation capabilities of the HFIR, special target holders have recently been designed and fabricated which will be installed in the six Peripheral Target Positions (PTP), which are also located in the high flux region. These positions are only accessible during reactor refueling and will be used for long-term irradiations, such as required for the production of tin-117m and tungsten-188. Each of the PTP tubes will be capable of housing a maximum of eight HT targets, thus increasing the total maximum number of HT targets from the current nine, to a total of 57. In this paper the therapeutic use of reactor-produced radioisotopes for bone pain palliation and vascular brachytherapy and the therapeutic medical radioisotope production capabilities of the ORNL HFIR are briefly discussed.

  20. Risk-Informing Safety Reviews for Non-Reactor Nuclear Facilities

    SciTech Connect

    Mubayi, V.; Azarm, A.; Yue, M.; Mukaddam, W.; Good, G.; Gonzalez, F.; Bari, R.A.

    2011-03-13

    This paper describes a methodology used to model potential accidents in fuel cycle facilities that employ chemical processes to separate and purify nuclear materials. The methodology is illustrated with an example that uses event and fault trees to estimate the frequency of a specific energetic reaction that can occur in nuclear material processing facilities. The methodology used probabilistic risk assessment (PRA)-related tools as well as information about the chemical reaction characteristics, information on plant design and operational features, and generic data about component failure rates and human error rates. The accident frequency estimates for the specific reaction help to risk-inform the safety review process and assess compliance with regulatory requirements.

  1. Review of Halden Reactor Project high burnup fuel data that can be used in safety analyses

    SciTech Connect

    Wiesenack, W.

    1996-03-01

    The fuels and materials testing programmes carried out at the OECD Halden Reactor Project are aimed at providing data in support of a mechanistic understanding of phenomena, especially as related to high burnup fuel. The investigations are focused on identifying long term property changes, and irradiation techniques and instrumentation have been developed over the years which enable to assess fuel behaviour and properties in-pile. The fuel-cladding gap has an influence on both thermal and mechanical behaviour. Improved gap conductance due to gap closure at high exposure is observed even in the case of a strong contamination with released fission gas. On the other hand, pellet-cladding mechanical interaction, which is measured with cladding elongation detectors and diameter gauges, is re-established after a phase with less interaction and is increasing. These developments are exemplified with data showing changes of fuel temperature, hydraulic diameter and cladding elongation with burnup. Fuel swelling and cladding primary and secondary creep have been successfully measured in-pile. They provide data for, e.g., the possible cladding lift-off to be accounted for at high burnup. Fuel conductivity degradation is observed as a gradual temperature increase with burnup. This affects stored heat, fission gas release and temperature dependent fuel behaviour in general. The Halden Project`s data base on fission gas release shows that the phenomenon is associated with an accumulation of gas atoms at the grain boundaries to a critical concentration before appreciable release occurs. This is accompanied by an increase of the surface-to-volume ratio measured in-pile in gas flow experiments. A typical observation at high burnup is also that a burst release of fission gas may occur during a power decrease. Gas flow and pressure equilibration experiments have shown that axial communication is severely restricted at high burnup.

  2. Development of tools for safety analysis of control software in advanced reactors

    SciTech Connect

    Guarro, S.; Yau, M.; Motamed, M.

    1996-04-01

    Software based control systems have gained a pervasive presence in a wide variety of applications, including nuclear power plant control and protection systems which are within the oversight and licensing responsibility of the US Nuclear Regulatory Commission. While the cost effectiveness and flexibility of software based plant process control is widely recognized, it is very difficult to achieve and prove high levels of demonstrated dependability and safety assurance for the functions performed by process control software, due to the very flexibility and potential complexity of the software itself. The development of tools to model, analyze and test software design and implementations in the context of the system that the software is designed to control can greatly assist the task of providing higher levels of assurance than those obtainable by software testing alone. This report presents and discusses the development of the Dynamic Flowgraph Methodology (DFM) and its application in the dependability and assurance analysis of software-based control systems. The features of the methodology and full-scale examples of application to both generic process and nuclear power plant control systems are presented and discussed in detail. The features of a workstation software tool developed to assist users in the application of DFM are also described.

  3. Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors

    NASA Astrophysics Data System (ADS)

    Scarlat, Raluca Olga

    This dissertation treats system design, modeling of transient system response, and characterization of individual phenomena and demonstrates a framework for integration of these three activities early in the design process of a complex engineered system. A system analysis framework for prioritization of experiments, modeling, and development of detailed design is proposed. Two fundamental topics in thermal-hydraulics are discussed, which illustrate the integration of modeling and experimentation with nuclear reactor design and safety analysis: thermal-hydraulic modeling of heat generating pebble bed cores, and scaled experiments for natural circulation heat removal with Boussinesq liquids. The case studies used in this dissertation are derived from the design and safety analysis of a pebble bed fluoride salt cooled high temperature nuclear reactor (PB-FHR), currently under development in the United States at the university and national laboratories level. In the context of the phenomena identification and ranking table (PIRT) methodology, new tools and approaches are proposed and demonstrated here, which are specifically relevant to technology in the early stages of development, and to analysis of passive safety features. A system decomposition approach is proposed. Definition of system functional requirements complements identification and compilation of the current knowledge base for the behavior of the system. Two new graphical tools are developed for ranking of phenomena importance: a phenomena ranking map, and a phenomena identification and ranking matrix (PIRM). The functional requirements established through this methodology were used for the design and optimization of the reactor core, and for the transient analysis and design of the passive natural circulation driven decay heat removal system for the PB-FHR. A numerical modeling approach for heat-generating porous media, with multi-dimensional fluid flow is presented. The application of this modeling

  4. Final safety evaluation report related to the certification of the Advanced Boiling Water Reactor design. Supplement 1

    SciTech Connect

    1997-05-01

    This report supplements the final safety evaluation report (FSER) for the US Advanced Boiling Water Reactor (ABWR) standard design. The FSER was issued by the US Nuclear Regulatory Commission (NRC) staff as NUREG-1503 in July 1994 to document the NRC staff`s review of the US ABWR design. The US ABWR design was submitted by GE Nuclear Energy (GE) in accordance with the procedures of Subpart B to Part 52 of Title 10 of the Code of Federal Regulations. This supplement documents the NRC staff`s review of the changes to the US ABWR design documentation since the issuance of the FSER. GE made these changes primarily as a result of first-of-a-kind-engineering (FOAKE) and as a result of the design certification rulemaking for the ABWR design. On the basis of its evaluations, the NRC staff concludes that the confirmatory issues in NUREG-1503 are resolved, that the changes to the ABWR design documentation are acceptable, and that GE`s application for design certification meets the requirements of Subpart B to 10 CFR Part 52 that are applicable and technically relevant to the US ABWR design.

  5. Alternate analysis criteria for the seismic qualification of the supplementary safety system in Reactor Building 105-L, Savannah River Plant

    SciTech Connect

    Quan, C.N.; Wong, P.W.

    1982-09-01

    This system consists of a series of stainless-steel, safety-related pipelines, 1/2 to 2 in. in diameter, which run from the control room to the reactor tank. The alternate analysis criteria were developed for the seismic qualification of the piping system, according to the requirements of the 1967 Housner criteria. The application of alternate analysis criteria is a widely employed and accepted procedure for the seismic qualification of large lengths of nuclear power plant small-diameter piping (generally 2 in. in diameter and smaller). Objective of this procedure is to eliminate the need for extensive and costly individual mathematical modeling and dynamic analysis of a great number of small-bore piping systems. The procedure used to develop the alternate analysis criteria consisted of applying equivalent static seismic loading to the various pipe sizes to determine maximum support spacings for each pipe size based on the allowable stress or deflection limits. Guidelines were also developed to provide for sufficient thermal growth capacity, which is typically in direct conflict with seismic requirements.

  6. Investigation of parameters of interaction of hydrogen isotopes with liquid lithium and lithium capillary-porous system under reactor irradiation

    NASA Astrophysics Data System (ADS)

    Tazhibayeva, I. L.; Kulsartov, T. V.; Gordienko, Yu. N.; Zaurbekova, Zh. A.; Ponkratov, Yu. V.; Barsukov, N. I.; Tulubayev, Ye. Yu.; Baklanov, V. V.; Gnyrya, V. S.; Kenzhin, Ye. A.

    2015-12-01

    In this study, the effect of reactor irradiation on the processes of interaction of hydrogen with liquid lithium and a lithium capillary-porous system (CPS) is considered. The experiments are carried out by the gas-absorption method with use of a specially designed ampoule device. The results of investigation of the interaction of hydrogen with liquid lithium and a lithium CPS under conditions of reactor irradiation are described; namely, these are the temperature dependences of the rate constant for the interaction of hydrogen with liquid lithium at different reactor powers, the activation energies of the processes, and the pre-exponential factor in the Arrhenius dependence. The effect of increasing absorption of hydrogen by the samples under investigation as a result of the reactor irradiation is fixed. The effect can be explained by increasing mobility of hydrogen in liquid lithium due to hot spots in lithium bulk and the interaction of helium and tritium ions (formed as a result of the nuclear reaction of 6Li with neutron) with a surface hydride film.

  7. Investigation of parameters of interaction of hydrogen isotopes with liquid lithium and lithium capillary-porous system under reactor irradiation

    SciTech Connect

    Tazhibayeva, I. L. Kulsartov, T. V.; Gordienko, Yu. N.; Zaurbekova, Zh. A.; Ponkratov, Yu. V.; Barsukov, N. I.; Tulubayev, Ye. Yu.; Baklanov, V. V.; Gnyrya, V. S.; Kenzhin, Ye. A.

    2015-12-15

    In this study, the effect of reactor irradiation on the processes of interaction of hydrogen with liquid lithium and a lithium capillary-porous system (CPS) is considered. The experiments are carried out by the gas-absorption method with use of a specially designed ampoule device. The results of investigation of the interaction of hydrogen with liquid lithium and a lithium CPS under conditions of reactor irradiation are described; namely, these are the temperature dependences of the rate constant for the interaction of hydrogen with liquid lithium at different reactor powers, the activation energies of the processes, and the pre-exponential factor in the Arrhenius dependence. The effect of increasing absorption of hydrogen by the samples under investigation as a result of the reactor irradiation is fixed. The effect can be explained by increasing mobility of hydrogen in liquid lithium due to hot spots in lithium bulk and the interaction of helium and tritium ions (formed as a result of the nuclear reaction of {sup 6}Li with neutron) with a surface hydride film.

  8. Exploratory Nuclear Reactor Safety Analysis and Visualization via Integrated Topological and Geometric Techniques

    SciTech Connect

    Dan Maljovec; Bei Wang; Valerio Pascucci; Peer-Timo Bremer; Diego Mandelli; Michael Pernice; Robert Nourgaliev

    2013-10-01

    A recent trend in the nuclear power engineering field is the implementation of heavily computational and time consuming algorithms and codes for both design and safety analysis. In particular, the new generation of system analysis codes aim to embrace several phenomena such as thermo-hydraulic, structural behavior, and system dynamics, as well as uncertainty quantification and sensitivity analyses. The use of dynamic probabilistic risk assessment (PRA) methodologies allows a systematic approach to uncertainty quantification. Dynamic methodologies in PRA account for possible coupling between triggered or stochastic events through explicit consideration of the time element in system evolution, often through the use of dynamic system models (simulators). They are usually needed when the system has more than one failure mode, control loops, and/or hardware/process/software/human interaction. Dynamic methodologies are also capable of modeling the consequences of epistemic and aleatory uncertainties. The Monte-Carlo (MC) and the Dynamic Event Tree (DET) approaches belong to this new class of dynamic PRA methodologies. The major challenges in using MC and DET methodologies (as well as other dynamic methodologies) are the heavier computational and memory requirements compared to the classical ET analysis. This is due to the fact that each branch generated can contain time evolutions of a large number of variables (about 50,000 data channels are typically present in RELAP) and a large number of scenarios can be generated from a single initiating event (possibly on the order of hundreds or even thousands). Such large amounts of information are usually very difficult to organize in order to identify the main trends in scenario evolutions and the main risk contributors for each initiating event. This report aims to improve Dynamic PRA methodologies by tackling the two challenges mentioned above using: 1) adaptive sampling techniques to reduce computational cost of the analysis

  9. Safety.

    ERIC Educational Resources Information Center

    Education in Science, 1996

    1996-01-01

    Discusses safety issues in science, including: allergic reactions to peanuts used in experiments; explosions in lead/acid batteries; and inspection of pressure vessels, such as pressure cookers or model steam engines. (MKR)

  10. Twenty-second water reactor safety information meeting. Volume 2: Severe accident research, thermal hydraulic research for advanced passive LWRs, high-burnup fuel behavior

    SciTech Connect

    Monteleone, S.

    1995-04-01

    This three-volume report contains papers presented at the Twenty-Second Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 24-26, 1994. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from Finland, France, Italy, Japan, Russia, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting.

  11. Proposed and existing passive and inherent safety-related structures, systems, and components (building blocks) for advanced light-water reactors

    SciTech Connect

    Forsberg, C.W.; Moses, D.L.; Lewis, E.B.; Gibson, R.; Pearson, R.; Reich, W.J.; Murphy, G.A.; Staunton, R.H.; Kohn, W.E.

    1989-10-01

    A nuclear power plant is composed of many structures, systems, and components (SSCs). Examples include emergency core cooling systems, feedwater systems, and electrical systems. The design of a reactor consists of combining various SSCs (building blocks) into an integrated plant design. A new reactor design is the result of combining old SSCs in new ways or use of new SSCs. This report identifies, describes, and characterizes SSCs with passive and inherent features that can be used to assure safety in light-water reactors. Existing, proposed, and speculative technologies are described. The following approaches were used to identify the technologies: world technical literature searches, world patent searches, and discussions with universities, national laboratories and industrial vendors. 214 refs., 105 figs., 26 tabs.

  12. Generic analyses for evaluation of low Charpy upper-shelf energy effects on safety margins against fracture of reactor pressure vessel materials

    SciTech Connect

    Dickson, T.L.

    1993-07-01

    Appendix G to 10 CFR Part 50 requires that reactor pressure vessel beltline material maintain Charpy upper-shelf energies of no less than 50 ft-lb during the plant operating life, unless it is demonstrated in a manner approved by the Nuclear Regulatory Commission (NRC), that lower values of Charpy upper-shelf energy provide margins of safety against fracture equivalent to those in Appendix G to Section XI of the ASME Code. Analyses based on acceptance criteria and analysis methods adopted in the ASME Code Case N-512 are described herein. Additional information on material properties was provided by the NRC, Office of Nuclear Regulatory Research, Materials Engineering Branch. These cases, specified by the NRC, represent generic applications to boiling water reactor and pressurized water reactor vessels. This report is designated as HSST Report No. 140.

  13. Diagnosis and quantification of glycerol assimilating denitrifying bacteria in an integrated fixed-film activated sludge reactor via 13C DNA stable-isotope probing.

    PubMed

    Lu, Huijie; Chandran, Kartik

    2010-12-01

    Glycerol, a byproduct of biodiesel and oleo-chemical manufacturing operations, represents an attractive alternate to methanol as a carbon and electron donor for enhanced denitrification. However, unlike methanol, little is known about the diversity and activity of glycerol assimilating bacteria in activated sludge. In this study, the microbial ecology of glycerol assimilating denitrifying bacteria in a sequencing batch integrated fixed film activated sludge (SB-IFAS) reactor was investigated using (13)C-DNA stable isotope probing (SIP). During steady state SB-IFAS reactor operation, near complete nitrate removal (92.7 ± 5.8%) was achieved. Based on (13)C DNA clone libraries obtained after 360 days of SB-IFAS reactor operation, bacteria related to Comamonas spp. and Diaphorobacter spp. dominated in the suspended phase communities. (13)C assimilating members in the biofilm community were phylogenetically more diverse and were related to Comamonas spp., Bradyrhizobium spp., and Tessaracoccus spp. Possibly owing to greater substrate availability in the suspended phase, the glycerol-assimilating denitrifying populations (quantified by real-time PCR) were more abundant therein than in the biofilm phase. The biomass in the suspended phase also had a higher specific denitrification rate than the biofilm phase (p = 4.33e-4), and contributed to 69.7 ± 4.5% of the overall N-removal on a mass basis. The kinetics of glycerol based denitrification by suspended phase biomass were approximately 3 times higher than with methanol. Previously identified methanol assimilating denitrifying bacteria were not associated with glycerol assimilation, thereby suggesting limited cross-utilization of these two substrates for denitrification in the system tested.

  14. Experimental Validation of Passive Safety System Models: Application to Design and Optimization of Fluoride-Salt-Cooled, High-Temperature Reactors

    NASA Astrophysics Data System (ADS)

    Zweibaum, Nicolas

    The development of advanced nuclear reactor technology requires understanding of complex, integrated systems that exhibit novel phenomenology under normal and accident conditions. The advent of passive safety systems and enhanced modular construction methods requires the development and use of new frameworks to predict the behavior of advanced nuclear reactors, both from a safety standpoint and from an environmental impact perspective. This dissertation introduces such frameworks for scaling of integral effects tests for natural circulation in fluoride-salt-cooled, high-temperature reactors (FHRs) to validate evaluation models (EMs) for system behavior; subsequent reliability assessment of passive, natural- circulation-driven decay heat removal systems, using these validated models; evaluation of life cycle carbon dioxide emissions as a key environmental impact metric; and recommendations for further work to apply these frameworks in the development and optimization of advanced nuclear reactor designs. In this study, the developed frameworks are applied to the analysis of the Mark 1 pebble-bed FHR (Mk1 PB-FHR) under current investigation at the University of California, Berkeley (UCB). (Abstract shortened by UMI.).

  15. POWER REACTOR

    DOEpatents

    Zinn, W.H.

    1958-07-01

    A fast nuclear reactor system ls described for producing power and radioactive isotopes. The reactor core is of the heterogeneous, fluid sealed type comprised of vertically arranged elongated tubular fuel elements having vertical coolant passages. The active portion is surrounded by a neutron reflector and a shield. The system includes pumps and heat exchangers for the primary and secondary coolant circuits. The core, primary coolant pump and primary heat exchanger are disposed within an irapenforate tank which is filled with the primary coolant, in this case a liquid metal such as Na or NaK, to completely submerge these elements. The tank is completely surrounded by a thick walled concrete shield. This reactor system utilizes enriched uranium or plutonium as the fissionable material, uranium or thorium as a diluent and thorium or uranium containing less than 0 7% of the U/sup 235/ isotope as a fertile material.

  16. Type B investigation of the iridium contamination event at the High Flux Isotope Reactor on September 7, 1993

    SciTech Connect

    Not Available

    1994-03-01

    On the title date, at ORNL, area radiation alarms sounded during a routine transfer of a shielding cask (containing 60 Ci{sup 192}Ir) from the HFIR pool side to a transport truck. Small amounts of Ir were released from the cask onto the reactor bay floor. The floor was cleaned, and the cask was shipped to a hot cell at Building 3047 on Oct. 3, 1993. The event was caused by rupture of one of the Ir target rods after it was loaded into the cask for normal transport operations; the rupture was the result of steam generation in the target rod soon after it was placed in the cask (water had entered the target rod through a tiny defect in a weld while it was in the reactor under pressure). While the target rods were in the reactor and reactor pool, there was sufficient cooling to prevent steam generation; when the target rod was loaded into the dry transport cask, the temperature increased enough to result in boiling of the trapped water and produced high enough pressure to result in rupture. The escaping steam ejected some of the Ir pellets. The event was reported as Occurrence Report Number ORO--MMES-X10HFIR-1993-0030, dated Sept. 8, 1993. Analysis indicated that the following conditions were probable causes: less than adequate welding procedures, practices, or techniques, material controls, or inspection methods, or combination thereof, could have led to weld defects, affecting the integrity of target rod IR-75; less than adequate secondary containment in the cask allowed Ir pellets to escape.

  17. Experimental stand for studies of hydrogen isotopes permeation

    SciTech Connect

    Brad, S.; Stefanescu, I.; Stefan, L.; Lazar, A.; Vijulie, M.; Sofilca, N.; Bornea, A.; Vasut, F.; Zamfirache, M.; Bidica, N.; Postolache, C.; Matei, L.

    2008-07-15

    As a result of the high probability of hydrogen isotope permeation through materials used in high-temperature reactor operations, the interaction of hydrogen isotopes with metallic structural materials proposed to be used for fusion reactor designing is of great importance for safety considerations. Determining the parameters of the interaction between hydrogen isotopes and different materials, is therefore essential to accurately calculate recycling, outgassing, loading, permeation and hydrogen embrittlement. The permeation tests were made in collaboration with IFIN Bucuresti inside of a special glove-box to avail their radioactive protection expertise. This investigation programme is ongoing. In this paper we describe the permeation stand facility and the preliminary tests carried out to date. (authors)

  18. Status of Physics and Safety Analyses for the Liquid-Salt-Cooled Very High-Temperature Reactor (LS-VHTR)

    SciTech Connect

    Ingersoll, DT

    2005-12-15

    A study has been completed to develop a new baseline core design for the liquid-salt-cooled very high-temperature reactor (LS-VHTR) that is better optimized for liquid coolant and that satisfies the top-level operational and safety targets, including strong passive safety performance, acceptable fuel cycle parameters, and favorable core reactivity response to coolant voiding. Three organizations participated in the study: Oak Ridge National Laboratory (ORNL), Idaho National Laboratory (INL), and Argonne National Laboratory (ANL). Although the intent was to generate a new reference LS-VHTR core design, the emphasis was on performing parametric studies of the many variables that constitute a design. The results of the parametric studies not only provide the basis for choosing the optimum balance of design options, they also provide a valuable understanding of the fundamental behavior of the core, which will be the basis of future design trade-off studies. A new 2400-MW(t) baseline design was established that consists of a cylindrical, nonannular core cooled by liquid {sup 7}Li{sub 2}BeF{sub 4} (Flibe) salt. The inlet and outlet coolant temperatures were decreased by 50 C, and the coolant channel diameter was increased to help lower the maximum fuel and vessel temperatures. An 18-month fuel cycle length with 156 GWD/t burnup was achieved with a two-batch shuffling scheme, while maintaining a core power density of 10 MW/m{sup 3} using graphite-coated uranium oxicarbide particle fuel enriched to 15% {sup 235}U and assuming a 25 vol-% packing of the coated particles in the fuel compacts. The revised design appears to have excellent steady-state and transient performance. The previous concern regarding the core's response to coolant voiding has been resolved for the case of Flibe coolant by increasing the coolant channel diameter and the fuel loading. Also, the LSVHTR has a strong decay heat removal performance and appears capable of surviving a loss of forced circulation

  19. Individual plant examination program: Perspectives on reactor safety and plant performance. Part 1: Final summary report; Volume 1

    SciTech Connect

    1997-12-01

    This report provides perspectives gained by reviewing 75 Individual Plant Examination (IPE) submittals pertaining to 108 nuclear power plant units. IPEs are probabilistic analyses that estimate the core damage frequency (CDF) and containment performance for accidents initiated by internal events. The US Nuclear Regulatory Commission (NRC) reviewed the IPE submittals with the objective of gaining perspectives in three major areas: (1) improvements made to individual plants as a result of their IPEs and the collective results of the IPE program, (2) plant-specific design and operational features and modeling assumptions that significantly affect the estimates of CDF and containment performance, and (3) strengths and weaknesses of the models and methods used in the IPEs. These perspectives are gained by assessing the core damage and containment performance results, including overall CDF, accident sequences, dominant contributions to component failure and human error, and containment failure modes. Methods, data, boundary conditions, and assumptions used in the IPEs are considered in understanding the differences and similarities observed among the various types of plants. This report is divided into three volumes containing six parts. Part 1 is a summary report of the key perspectives gained in each of the areas identified above, with a discussion of the NRC`s overall conclusions and observations. Part 2 discusses key perspectives regarding the impact of the IPE Program on reactor safety. Part 3 discusses perspectives gained from the IPE results regarding CDF, containment performance, and human actions. Part 4 discusses perspectives regarding the IPE models and methods. Part 5 discusses additional IPE perspectives. Part 6 contains Appendices A, B and C which provide the references of the information from the IPEs, updated PRA results, and public comments on draft NUREG-1560 respectively.

  20. Experiment Safety Assurance Package for Mixed Oxide Fuel Irradiation in an Average Power Position (I-24) in the Advanced Test Reactor

    SciTech Connect

    J. M . Ryskamp; R. C. Howard; R. C. Pedersen; S. T. Khericha

    1998-10-01

    The Fissile Material Disposition Program Light Water Reactor Mixed Oxide Fuel Irradiation Test Project Plan details a series of test irradiations designed to investigate the use of weapons-grade plutonium in MOX fuel for light water reactors (LWR) (Cowell 1996a, Cowell 1997a, Thoms 1997a). Commercial MOX fuel has been successfully used in overseas reactors for many years; however, weapons-derived test fuel contains small amounts of gallium (about 2 parts per million). A concern exists that the gallium may migrate out of the fuel and into the clad, inducing embrittlement. For preliminary out-of-pile experiments, Wilson (1997) states that intermetallic compound formation is the principal interaction mechanism between zircaloy cladding and gallium. This interaction is very limited by the low mass of gallium, so problems are not expected with the zircaloy cladding, but an in-pile experiment is needed to confirm the out-of-pile experiments. Ryskamp (1998) provides an overview of this experiment and its documentation. The purpose of this Experiment Safety Assurance Package (ESAP) is to demonstrate the safe irradiation and handling of the mixed uranium and plutonium oxide (MOX) Fuel Average Power Test (APT) experiment as required by Advanced Test Reactor (ATR) Technical Safety Requirement (TSR) 3.9.1 (LMITCO 1998). This ESAP addresses the specific operation of the MOX Fuel APT experiment with respect to the operating envelope for irradiation established by the Upgraded Final Safety Analysis Report (UFSAR) Lockheed Martin Idaho Technologies Company (LMITCO 1997a). Experiment handling activities are discussed herein.

  1. Final Safety Analysis Addenda to Hazards Summary Report, Experimental Breeder Reactor II (EBR-II): upgrading of plant protection system. Volume II

    SciTech Connect

    Allen, N. L.; Keeton, J. M.; Sackett, J. I.

    1980-06-01

    This report is the second in a series of compilations of the formal Final Safety Analysis Addenda (FSAA`s) to the EBR-II Hazard Summary Report and Addendum. Sections 2 and 3 are edited versions of the original FSAA`s prepared in support of certain modifications to the reactor-shutdown-system portion of the EBR-II plant-protection system. Section 4 is an edited version of the original FSAA prepared in support of certain modifications to a system classified as an engineered safety feature. These sections describe the pre- and postmodification system, the rationale for the modification, and required supporting safety analysis. Section 5 provides an updated description and analysis of the EBR-II emergency power system. Section 6 summarizes all significant modifications to the EBR-II plant-protection system to date.

  2. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.

    1958-04-22

    A nuclear reactor for isotope production is described. This reactor is designed to provide a maximum thermal neutron flux in a region adjacent to the periphery of the reactor rather than in the center of the reactor. The core of the reactor is generally centrally located with respect tn a surrounding first reflector, constructed of beryllium. The beryllium reflector is surrounded by a second reflector, constructed of graphite, which, in tune, is surrounded by a conventional thermal shield. Water is circulated through the core and the reflector and functions both as a moderator and a coolant. In order to produce a greatsr maximum thermal neutron flux adjacent to the periphery of the reactor rather than in the core, the reactor is designed so tbat the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the materials in the reflector is approximately twice the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the material of the core of the reactor.

  3. Heterogeneous Transmutation Sodium Fast Reactor

    SciTech Connect

    S. E. Bays

    2007-09-01

    The threshold-fission (fertile) nature of Am-241 is used to destroy this minor actinide by capitalizing upon neutron capture instead of fission within a sodium fast reactor. This neutron-capture and its subsequent decay chain leads to the breeding of even neutron number plutonium isotopes. A slightly moderated target design is proposed for breeding plutonium in an axial blanket located above the active “fast reactor” driver fuel region. A parametric study on the core height and fuel pin diameter-to-pitch ratio is used to explore the reactor and fuel cycle aspects of this design. This study resulted in both non-flattened and flattened core geometries. Both of these designs demonstrated a high capacity for removing americium from the fuel cycle. A reactivity coefficient analysis revealed that this heterogeneous design will have comparable safety aspects to a homogeneous reactor of comparable size. A mass balance analysis revealed that the heterogeneous design may reduce the number of fast reactors needed to close the current once-through light water reactor fuel cycle.

  4. ISOTOPE CONVERSION DEVICE

    DOEpatents

    Wigner, E.P.; Young, G.J.; Ohlinger, L.A.

    1957-12-01

    This patent relates to nuclear reactors of tbe type utilizing a liquid fuel and designed to convert a non-thermally fissionable isotope to a thermally fissionable isotope by neutron absorption. A tank containing a reactive composition of a thermally fissionable isotope dispersed in a liquid moderator is disposed within an outer tank containing a slurry of a non-thermally fissionable isotope convertible to a thermally fissionable isotope by neutron absorption. A control rod is used to control the chain reaction in the reactive composition and means are provided for circulating and cooling the reactive composition and slurry in separate circuits.

  5. NUCLEAR REACTOR

    DOEpatents

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  6. Growth and Expansion of the International Criticality Safety Benchmark Evaluation Project and the Newly Organized International Reactor Physics Experiment Evaluation Project

    SciTech Connect

    J. Blair Briggs; Lori Scott; Yolanda Rugama; Enrico Satori

    2007-05-01

    Since ICNC 2003, the International Criticality Safety Benchmark Evaluation Project (ICSBEP) has continued to expand its efforts and broaden its scope. Criticality-alarm / shielding type benchmarks and fundamental physics measurements that are relevant to criticality safety applications are not only included in the scope of the project, but benchmark data are also included in the latest version of the handbook. A considerable number of improvements have been made to the searchable database, DICE and the criticality-alarm / shielding benchmarks and fundamental physics measurements have been included in the database. There were 12 countries participating on the ICSBEP in 2003. That number has increased to 18 with recent contributions of data and/or resources from Brazil, Czech Republic, Poland, India, Canada, and China. South Africa, Germany, Argentina, and Australia have been invited to participate. Since ICNC 2003, the contents of the “International Handbook of Evaluated Criticality Safety Benchmark Experiments” have increased from 350 evaluations (28,000 pages) containing benchmark specifications for 3070 critical or subcritical configurations to 442 evaluations (over 38,000 pages) containing benchmark specifications for 3957 critical or subcritical configurations, 23 criticality-alarm-placement / shielding configurations with multiple dose points for each, and 20 configurations that have been categorized as fundamental physics measurements that are relevant to criticality safety applications in the 2006 Edition of the ICSBEP Handbook. Approximately 30 new evaluations and 250 additional configurations are expected to be added to the 2007 Edition of the Handbook. Since ICNC 2003, a reactor physics counterpart to the ICSBEP, The International Reactor Physics Experiment Evaluation Project (IRPhEP) was initiated. Beginning in 1999, the IRPhEP was conducted as a pilot activity by the by the Organization of Economic Cooperation and Development (OECD) Nuclear Energy

  7. Study of the Potential Impact of Gamma-Induced Radiolytic Gases on Loading of Cesium Onto Crystalline Silicotitanate Sorbent at ORNL's High Flux Isotope Reactor

    SciTech Connect

    Mattus, A.J.

    2001-02-12

    The use of an engineered form of crystalline silicotitanate as a potential sorbent for the removal and concentration of cesium from the high-level waste at the Savannah River Site was investigated. Results conclusively showed this sorbent to be unaffected by gamma-induced radiolytic gas formation during column loading. Closely controlled column-loading experiments were performed at the Oak Ridge National Laboratory's High Flux Isotope Reactor (HFIR) in a gamma field with a conservative dose rate expected to exceed that in a full-scale column by a factor of nearly 16. Operation of column loading under expected nominal full-scale field conditions in the HFIR pool showed that radiolytic gases were formed at a previously calculated generation rate of 0.4 mL per liter of feed solution. When the resulting cesium-loading curve in the gamma field was compared with that of a control experiment in the absence of a gamma field, no discernable difference in the curves (within analytical error) was detected. Both curves were in good agreement with the VERSE computer-generated curve. Results conclusively indicate that the production of radiolytic gases within a full-scale column is not expected to result in reduced capacity or associated gas generation problems during operation at the Savannah River Site.

  8. Experimental investigations of thermal-hydraulic processes arising during operation of the passive safety systems used in new projects of nuclear power plants equipped with VVER reactors

    NASA Astrophysics Data System (ADS)

    Morozov, A. V.; Remizov, O. V.; Kalyakin, D. S.

    2014-05-01

    The results obtained from experimental investigations into thermal-hydraulic processes that take place during operation of the passive safety systems used in new-generation reactor plants constructed on the basis of VVER technology are presented. The experiments were carried out on the model rigs available at the Leipunskii Institute for Physics and Power Engineering. The processes through which interaction occurs between the opposite flows of saturated steam and cold water moving in the vertical steam line of the additional system for passively flooding the core from the second-stage hydro accumulators are studied. The specific features pertinent to undeveloped boiling of liquid on a single horizontal tube heated by steam and steam-gas mixture that is typical for of the condensing operating mode of a VVER reactor steam generator are investigated.

  9. High-temperature gas-cooled reactor safety studies for the Division of Accident Evaluation. Quarterly progress report, October 1-December 31, 1983. Volume 4

    SciTech Connect

    Ball, S.J.; Cleveland, J.C.; Harrington, R.M.; Siman-Tov, I.; Wilson, J.H.

    1984-07-01

    Development work continued on models and codes for predicting source terms in both the Fort St. Vrain (FSV) and 2240-MW(t) lead plant reactors. Experimental work on fission-product vapor pressures and diffusion rates through graphite continued at temperatures up to 2775 K, and a mathematical model of the experimental system was developed to aid analysis of the results and to guide improvements in the system and experiment design. Benchmarking of the BLAST steam generator code continued using FSV data, and more support work was done for proposed FSV core bypass flow model verification. Progress was made in setting up cooperative high-temperature gas-cooled reactor (HTGR) safety research with the Federal Republic of Germany. A review of an FSV technical specification on limiting maximum core temperature was begun.

  10. Neutron behavior, reactor control, and reactor heat transfer. Volume four

    SciTech Connect

    Not Available

    1986-01-01

    Volume four covers neutron behavior (neutron absorption, how big are nuclei, neutron slowing down, neutron losses, the self-sustaining reactor), reactor control (what is controlled in a reactor, controlling neutron population, is it easy to control a reactor, range of reactor control, what happens when the fuel burns up, controlling a PWR, controlling a BWR, inherent safety of reactors), and reactor heat transfer (heat generation in a nuclear reactor, how is heat removed from a reactor core, heat transfer rate, heat transfer properties of the reactor coolant).

  11. Twenty-First Water Reactor Safety Information Meeting. Volume 3, Primary system integrity; Aging research, products and applications; Structural and seismic engineering; Seismology and geology: Proceedings

    SciTech Connect

    Monteleone, S.

    1994-04-01

    This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25-27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Selected papers were indexed separately for inclusion in the Energy Science and Technology Database.

  12. Solid State Reactor Final Report

    SciTech Connect

    Mays, G.T.

    2004-03-10

    The Solid State Reactor (SSR) is an advanced reactor concept designed to take advantage of Oak Ridge National Laboratory's (ORNL's) recently developed graphite foam that has enhanced heat transfer characteristics and excellent high-temperature mechanical properties, to provide an inherently safe, self-regulated, source of heat for power and other potential applications. This work was funded by the U.S. Department of Energy's Nuclear Energy Research Initiative (NERI) program (Project No. 99-064) from August 1999 through September 30, 2002. The initial concept of utilizing the graphite foam as a basis for developing an advanced reactor concept envisioned that a suite of reactor configurations and power levels could be developed for several different applications. The initial focus was looking at the reactor as a heat source that was scalable, independent of any heat removal/power conversion process. These applications might include conventional power generation, isotope production and destruction (actinides), and hydrogen production. Having conducted the initial research on the graphite foam and having performed the scoping parametric analyses from neutronics and thermal-hydraulic perspectives, it was necessary to focus on a particular application that would (1) demonstrate the viability of the overall concept and (2) require a reasonably structured design analysis process that would synthesize those important parameters that influence the concept the most as part of a feasible, working reactor system. Thus, the application targeted for this concept was supplying power for remote/harsh environments and a design that was easily deployable, simplistic from an operational standpoint, and utilized the new graphite foam. Specifically, a 500-kW(t) reactor concept was pursued that is naturally load following, inherently safe, optimized via neutronic studies to achieve near-zero reactivity change with burnup, and proliferation resistant. These four major areas of research

  13. Neutronic reactor

    DOEpatents

    Wende, Charles W. J.

    1976-08-17

    A safety rod for a nuclear reactor has an inner end portion having a gamma absorption coefficient and neutron capture cross section approximately equal to those of the adjacent shield, a central portion containing materials of high neutron capture cross section and an outer end portion having a gamma absorption coefficient at least equal to that of the adjacent shield.

  14. Manned space flight nuclear system safety. Volume 3: Reactor system preliminary nuclear safety analysis. Part 2A: Accident model document, appendix

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The detailed abort sequence trees for the reference zirconium hydride (ZrH) reactor power module that have been generated for each phase of the reference Space Base program mission are presented. The trees are graphical representations of causal sequences. Each tree begins with the phase identification and the dichotomy between success and failure. The success branch shows the mission phase objective as being achieved. The failure branch is subdivided, as conditions require, into various primary initiating abort conditions.

  15. Research and Development of Multiphysics Models in Support of the Conversion of the High Flux Isotope Reactor to Low Enriched Uranium Fuel

    SciTech Connect

    Bodey, Isaac T.; Curtis, Franklin G.; Arimilli, Rao V.; Ekici, Kivanc; Freels, James D.

    2015-11-01

    ABSTRACT The findings presented in this report are results of a five year effort lead by the RRD Division of the ORNL, which is focused on research and development toward the conversion of the High Flux Isotope Reactor (HFIR) fuel from high-enriched uranium (HEU) to low-enriched uranium (LEU). This report focuses on the tasks accomplished by the University of Tennessee Knoxville (UTK) team from the Department of Mechanical, Aerospace, and Biomedical Engineering (MABE) that provided expert support in multiphysics modeling of complex problems associated with the LEU conversion of the HFIR reactor. The COMSOL software was used as the main computational modeling tool, whereas Solidworks was also used in support of computer-aided-design (CAD) modeling of the proposed LEU fuel design. The UTK research has been governed by a statement of work (SOW), which was updated annually to clearly define the specific tasks reported herein. Ph.D. student Isaac T. Bodey has focused on heat transfer and fluid flow modeling issues and has been aided by his major professor Dr. Rao V. Arimilli. Ph.D. student Franklin G. Curtis has been focusing on modeling the fluid-structure interaction (FSI) phenomena caused by the mechanical forces acting on the fuel plates, which in turn affect the fluid flow in between the fuel plates, and ultimately the heat transfer, is also affected by the FSI changes. Franklin Curtis has been aided by his major professor Dr. Kivanc Ekici. M.Sc. student Adam R. Travis has focused two major areas of research: (1) on accurate CAD modeling of the proposed LEU plate design, and (2) reduction of the model complexity and dimensionality through interdimensional coupling of the fluid flow and heat transfer for the HFIR plate geometry. Adam Travis is also aided by his major professor, Dr. Kivanc Ekici. We must note that the UTK team, and particularly the graduate students, have been in very close collaboration with Dr. James D. Freels (ORNL technical monitor and mentor

  16. NUCLEAR REACTOR CONTROL SYSTEM

    DOEpatents

    Epler, E.P.; Hanauer, S.H.; Oakes, L.C.

    1959-11-01

    A control system is described for a nuclear reactor using enriched uranium fuel of the type of the swimming pool and other heterogeneous nuclear reactors. Circuits are included for automatically removing and inserting the control rods during the course of normal operation. Appropriate safety circuits close down the nuclear reactor in the event of emergency.

  17. Rare cell proteomic reactor applied to stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomics study of human embryonic stem cell differentiation.

    PubMed

    Tian, Ruijun; Wang, Shuai; Elisma, Fred; Li, Li; Zhou, Hu; Wang, Lisheng; Figeys, Daniel

    2011-02-01

    The molecular basis governing the differentiation of human embryonic stem cells (hESCs) remains largely unknown. Systems-level analysis by proteomics provides a unique approach to tackle this question. However, the requirement of a large number of cells for proteomics analysis (i.e. 10(6)-10(7) cells) makes this assay challenging, especially for the study of rare events during hESCs lineage specification. Here, a fully integrated proteomics sample processing and analysis platform, termed rare cell proteomic reactor (RCPR), was developed for large scale quantitative proteomics analysis of hESCs with ∼50,000 cells. hESCs were completely extracted by a defined lysis buffer, and all of the proteomics sample processing procedures, including protein preconcentration, reduction, alkylation, and digestion, were integrated into one single capillary column with a strong cation exchange monolith matrix. Furthermore, on-line two-dimensional LC-MS/MS analysis was performed directly using RCPR as the first dimension strong cation exchange column. 2,281 unique proteins were identified on this system using only 50,000 hESCs. For stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative study, a ready-to-use and chemically defined medium and an in situ differentiation procedure were developed for complete SILAC labeling of hESCs with well characterized self-renewal and differentiation properties. Mesoderm-enriched differentiation was studied by RCPR using 50,000 hESCs, and 1,086 proteins were quantified with a minimum of two peptides per protein. Of these, 56 proteins exhibited significant changes during mesoderm-enriched differentiation, and eight proteins were demonstrated for the first time to be overexpressed during early mesoderm development. This work provides a new platform for the study of rare cells and in particular for further elucidating proteins that govern the mesoderm lineage specification of human pluripotent stem cells.

  18. Development of Safety Analysis Codes and Experimental Validation for a Very High Temperature Gas-Cooled Reactor - FY-05 Annual Report

    SciTech Connect

    Chang Oh

    2005-09-01

    The very high temperature gas-cooled reactors (VHTGRs) are those concepts that have average coolant temperatures above 9000C or operational fuel temperatures above 12500C. These concepts provide the potential for increased energy conversion efficiency and for high-temperature process heat application in addition to power generation and nuclear hydrogen generation. While all the High Temperature Gas Cooled Reactor (HTGR) concepts have sufficiently high temperatures to support process heat applications, such as desalination and cogeneration, the VHTGR’s higher temperatures are suitable for particular applications such as thermochemical hydrogen production. However, the high temperature operation can be detrimental to safety following a loss-of-coolant accident (LOCA) initiated by pipe breaks caused by seismic or other events. Following the loss of coolant through the break and coolant depressurization, air from the containment will enter the core by molecular diffusion and ultimately by natural convection, leading to oxidation of the in-core graphite structures and fuel. The oxidation will release heat and accelerate the heatup of the reactor core. Thus, without any effective countermeasures, a pipe break may lead to significant fuel damage and fission product release. The Idaho National Laboratory (INL) has investigated this event for the past three years for the HTGR. However, the computer codes used, and in fact none of the world’s computer codes, have been sufficiently developed and validated to reliably predict this event. New code development, improvement of the existing codes, and experimental validation are imperative to narrow the uncertainty in the predictions of this type of accident. The objectives of this Korean/United States collaboration are to develop advanced computational methods for VHTGR safety analysis codes and to validate these computer codes.

  19. NEUTRONIC REACTOR

    DOEpatents

    Hurwitz, H. Jr.; Brooks, H.; Mannal, C.; Payne, J.H.; Luebke, E.A.

    1959-03-24

    A reactor of the heterogeneous, liquid cooled type is described. This reactor is comprised of a central region of a plurality of vertically disposed elongated tubes surrounded by a region of moderator material. The central region is comprised of a central core surrounded by a reflector region which is surrounded by a fast neutron absorber region, which in turn is surrounded by a slow neutron absorber region. Liquid sodium is used as the primary coolant and circulates through the core which contains the fuel elements. Control of the reactor is accomplished by varying the ability of the reflector region to reflect neutrons back into the core of the reactor. For this purpose the reflector is comprised of moderator and control elements having varying effects on reactivity, the control elements being arranged and actuated by groups to give regulation, shim, and safety control.

  20. Safe actinide disposition in molten salt reactors

    SciTech Connect

    Gat, U.

    1997-03-01

    Safe molten salt reactors (MSR) can readily accommodate the burning of all fissile actinides. Only minor compromises associated with plutonium are required. The MSRs can dispose safely of actinides and long lived isotopes to result in safer and simpler waste. Disposing of actinides in MSRs does increase the source term of a safety optimized MSR. It is concluded that the burning and transmutation of actinides in MSRs can be done in a safe manner. Development is needed for the processing to handle and separate the actinides. Calculations are needed to establish the neutron economy and the fuel management. 9 refs.